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PREFACE

Linear Programming 2 continues where Linear Programming 1 left off. We assume
that the reader has an introductory knowledge of linear programming, for example
has read Linear Programming 1: Introduction (or its equivalent) and has knowledge
of linear algebra (reviewed in the appendices in Linear Programming 1). In this
volume, we prove all theorems stated and those that were sketched but not proved
in Linear Programming 1, and we describe various extensions.

Linear Programming 2 is intended to be an advanced graduate text as well as
a reference. Portions of Linear Programming 1 and Linear Programming 2 have
been used in a graduate-level course that we have taught together. The rest of the
discussion here summarizes the contents of this volume.

OUTLINE OF CHAPTERS

Chapter 1 (Geometry): In this chapter we study the geometry and properties
of linear inequality systems and how they are related to the Simplex Method,
which can be described as a movement along the edges of a convex polyhedral
set to obtain a global minimum of the objective function, generate a class
of feasible solutions for which the objective z → −∞, or determine that
the convex polyhedral set is infeasible. The important separating hyperplane
concepts are also discussed and proved.

Chapter 2 (Duality and Theorems of the Alternatives): We provide proofs
for the Weak and Strong Duality Theorems. This is followed by additional the-
orems on duality; that is, the Unboundedness Theorem and the Primal/Dual
Optimality Criteria. The chapter also discusses complementary slackness and
various Theorems of the Alternatives: Gordan’s Theorem, Farkas’s Lemma,
Stiemke’s Theorem, Motzkin’s Transposition Theorem, Ville’s Theorem, and
Tucker’s Strict Complementary Slackness Theorem.

Chapter 3 (Early Interior-Point Methods): In this chapter we trace the early
development of interior-point methods. The earliest known method is that
attributable to von Neumann [1948], followed by Frisch [1957] (only referenced
here), and Dikin [1967]. A theoretical breakthrough was due to Khachian
[1979] who devloped a polynomial-time ellipsoid algorithm (only referenced

xix
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here). This was followed by Karmarkar’s [1984] polynomial-time interior-point
algorithm.

Chapter 4 (Interior-Point Methods): Since the development of Karmarkar’s
[1984] algorithm several new important practical interior-point algorithms
emerged. Among these are the primal logarithmic barrier method, primal-
affine algorithm, dual logarithmic barrier method, dual-affine algorithm, and
the primal-dual algorithm. All these algorithms are described. The optimal
solution obtained by an interior-point method is not necessarily at a vertex;
we describe a technique to make it into a vertex.

Chapter 5 (Degeneracy): When degeneracy occurs, it is possible for the Sim-
plex Algorithm to have an infinite sequence of iterations with no decrease
in the value of z. The chapter illustrates this with examples due to Hoff-
man, Beale, and Kuhn. Then various methods for resolving degeneracy are
presented: Dantzig’s Inductive Methods, Wolfe’s Rule, Bland’s Rule, and Kr-
ishna’s Extra Column Rule. This is followed by a technique that attempts
to avoid degenerate pivot by making use of an extra objective function and
resultant reduced cost calculation.

Chapter 6 (Variants of the Simplex Method): Over the years several vari-
ants of the Simplex Algorithm have been proposed as a way to reduce the
number of iterations. We start by describing an efficient way of determin-
ing an incoming column that yields the maximum improvement per iteration.
Next we describe the Dual-Simplex Method, Parametric Linear Programming,
Self-Dual Parametric Algorithm, Primal-Dual Algorithm, and a Phase I Least-
Squares Algorithm.

Chapter 7 (Transportation Problem and Variations): The Classical Trans-
portation Problem is stated, and various theorems are proved about it. An
example is provided for cycling under degeneracy when the most negative
reduced cost is used to select an incoming column. This is followed by a
discussion of the Transshipment Problem and transportation problems with
bounded partial sums.

Chapter 8 (Network Flow Theory): Theorems are proved about the Maximal-
Flow problem and the Shortest-Route problem.

Chapter 9 (Generalized Upper Bounds): In this chapter we discuss a varia-
tion of the Simplex Algorithm to efficiently solve linear programs that have
upper bounds on subsets of variables such that each variable appears in at
most one subset. Such constraints are called generalized upper bounds.

Chapter 10 (Decomposition): Decomposition is a term to describe breaking a
problem into smaller parts and then using a variant of the Simplex Algo-
rithm to solve the enire problem efficiently. The chapter starts by describing
Wolfe’s Generalized Linear Program (or a linear program with variable coef-
ficients). The Dantzig-Wolfe Decomposition Principle is described for solving
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this class of problems. This is followed by a description of Benders Decomposi-
tion which is the Dantzig-Wolfe Decomposition applied to the dual. Benders
Decomposition is used to solve Stochastic Programs. Next we describe the
application of Dantzig-Wolfe Decomposition to solving of Block-Angular sys-
tems. Then staircase structured problems are described; we show how to
solve such problems using Dantzig-Wolfe Decomposition and Benders Decom-
position. Finally, the possible use of decomposition to solve central planning
problems is described.

Chapter 11 (Stochastic Programming Introduction): Here we introduce the
concept of planning under uncertainty. Simple problems with uncertain de-
mand and uncertain costs respectively are illustrated. This is followed by a
discussion of the convexity property of multi-stage problems.

Chapter 12 (Two-Stage Stohastic Programs): An important class of optimi-
zation problems arise in dynamic systems that describe activities initiated at
time t that have coefficients at time t and time t + 1. Such problems, called
dynamic linear programs, typically have a nonzero submatrix with a staircase
structure. The simplest dynamic linear program has only two stages; this is
discussed in this chapter.

Appendix A (Probability Theory Overview): In this appendix we introduce
some basic concepts and notation of probability theory for use in solving
stochastic linear programs.

LINEAR PROGRAMMING 1.

In a graduate course that we have taught together at Stanford, portions of Linear
Programming 1: Introduction and Linear Programming 2: Theory & Extensions
have been used.

Professor George B. Dantzig Dr. Mukund N. Thapa
Stanford, California Palo Alto, California
USA USA
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DEFINITION OF
SYMBOLS

The notation described below will be followed in general. There may be some
deviations where appropriate.

• Uppercase letters will be used to represent matrices.

• Lowercase letters will be used to represent vectors.

• All vectors will be column vectors unless otherwise noted.

• Greek letters will typically be used to represent scalars.

�n – Real space of dimension n.
c – Coefficients of the objective function.
A – Coefficient matrix of the linear program.
B – Basis matrix (nonsingular). It contains the basic

columns of A.
N – Nonbasic columns of A.
x – Solution of the linear program (typically the current

one).
x

B
– Basic solution (typically the current one).

xN – Nonbasic solution (typically the current one).
(x, y) – The column vector consisting of components of the

vector x followed by the components of y. This helps
in avoiding notation such as (xT, yT)T.

L – Lower triangular matrix with 1s on the diagonal.
U – Upper triangular matrix (sometimes R will be used).
R – Alternative notation for an upper triangular matrix.
D – Diagonal matrix.
Diag (d) – Diagonal matrix. Sometimes Diag ( d1, d2, . . . , dn )

will be used.
Dx – Diag (x).
I – Identity matrix.

xxiii



xxiv DEFINITION OF SYMBOLS

ej – jth column of an identity matrix.
e – Vector of 1s (dimension will be clear from the

context).
Ej – Elementary matrix (jth column is different from the

identity).
||v|| – The 2-norm of a vector v; i.e., ||v||2 =

√
vTv.

||v||1 – The 1-norm of a vector v; i.e., ||v||1 =
∑n

i=1 |vi|.
||v||∞ – The ∞-norm of a vector v; i.e.,

||v||∞ = maxi=1,...,n |vi|.
||A|| – The 2-norm of an m× n matrix A; i.e.,

||A||2 =
√
λmax(ATA).

||A||1 – The 1-norm of an m× n matrix A; i.e.,
||A||1 = maxj=1,...,n

∑m
i=1|aij |.

||A||∞ – The ∞-norm of an m× n matrix A; i.e.,
||A||∞ = maxi=1,...,m

∑n
j=1 |aij |.

det (A) – Determinant of the matrix A.
A•j – jth column of A.
Ai• – ith row of A.
Bt – The matrix B at the start of iteration t.
B[t] – Alternative form for the matrix Bt.
B̄ – Update from iteration t to iteration t+ 1.
B−1

ij – Element (i, j) of B−1.
X ⊂ Y – X is a proper subset of Y .
X ⊆ Y – X is a subset of Y .
X ∪ Y – Set union, that is, the set {ω | ω ∈ X or ω ∈ Y }.
X ∩ Y – The set {ω | ω ∈ X and ω ∈ Y }.
X \ Y – Set difference, that is, the set {ω | ω ∈ X,ω �∈ Y }
∅ – Empty set.
| – Such that. For example, { x | Ax ≤ b } means the set

of all x such that Ax ≤ b holds.
αn – A scalar raised to power n.
(A)n – A square matrix raised to power n.
AT – Transpose of the matrix A.
≈ – Approximately equal to.
� (�) – Much greater (less) than.
� (≺) – Lexicographically greater (less) than.
← – Store in the computer the value of the quantity on

the right into the location where the quantity on the
left is stored. For example, x← x+ αp.

O(v) – Implies a number ≤ kv, where k, a fixed constant
independent of the value of v, is meant to convey
the the notion that k is some small integer value less
than 10 (or possibly less than 100) and not something
ridiculous like k = 10100.



NOTATION xxv

argminx f(x) – The value of x where f(x) takes on its global min-
imum value.

argmini βi – The value of the least index i where βi takes on its
minimum value.

LP – Linear program.
sign (α) – The sign of α. It is +1 if α ≥ 0 and −1 if α < 0.
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C H A P T E R 1

GEOMETRY OF LINEAR

INEQUALITY SYSTEMS &

THE SIMPLEX METHOD

In this chapter we study the geometry and properties of linear inequality systems
and how they are related to the Simplex Method, which can be described as a
movement along edges of convex polyhedral sets to obtain a global minimum of
the objective function, generate a class of feasible solutions for which the objective
z → −∞, or determine that the convex polyhedral set is infeasible.

1.1 CONVEXITY AND LINEAR
INEQUALITY SYSTEMS

We denote x ∈ �n to be either a point or a vector in n-dimensional space. As
a vector it is a directed straight line segment formed by joining the origin to the
point whose coordinates are (x1, x2, . . . , xn ). This is shown in Figure 1-1 for a
two-dimensional space.

Let α be a scalar. Then αx is the vector obtained by continuing, in the same
direction as x, a distance |α| ||x|| if α > 0. On the other hand, if α < 0 then αx is
the vector obtained by continuing a distance |α| ||x|| in the opposite direction of x.

1.1.1 AFFINE AND CONVEX COMBINATIONS

A linear combination of k vectors x1, x2, . . . , xk is

x = α1x
1 + α2x

2 + · · ·+ αkx
k (1.1)

1



2 GEOMETRY OF LINEAR INEQUALITY SYSTEMS & THE SIMPLEX METHOD

�

�

x1

x2

�������

Figure 1-1: Vector (x1, x2)T

where αj are real numbers. In Linear Programming 1, the set of all such linear
combinations was defined as a vector subspace generated by x1, x2, . . . , xk. If αj ≥ 0
for all j, then (1.1) is called a nonnegative linear combination.

Definition: An affine combination of x1, x2, . . . , xk is:

x = α1x
1 + α2x

2 + · · ·+ αkx
k, (1.2)

where αj are real numbers that satisfy
∑k

j=1 αj = 1.

Definition (Affine Hull): The set of all such affine combinations (1.2) is called
the affine hull of x1, x2, . . . , xk.

Definition: A convex combination of vectors x1, x2, . . . , xk is:

x = α1x
1 + α2x

2 + · · ·+ αkx
k, (1.3)

where αj ≥ 0 are real numbers that satisfy
∑k

j=1 αj = 1.

Definition (Convexity Constraint): The condition

α1 + α2 + · · ·+ αk = 1, αj ≥ 0, for j = 1, . . . , k (1.4)

is called a convexity constraint on the αj .

Definition (Convex Hull): The set of all such convex combinations (1.3) is
called the convex hull of x1, x2, . . . , xk.

� Exercise 1.1 Show that the convex hull C of a subset of �n has the property that every
convex combination of a convex combination of points in C is also in C.
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Figure 1-2: Examples of Two-Dimensional Convex Regions
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(c)

Figure 1-3: Additional Examples of Two-Dimensional Convex Regions

1.1.2 TWO-DIMENSIONAL CONVEX REGIONS

We begin by giving some simple examples of convex regions. The set of points
(x1, x2) satisfying the relation

x1 + x2 ≥ 2 (1.5)

consists of a region in two-dimensional space on one side of the line (see Figure 1-2):

x1 + x2 = 2. (1.6)

This is an example of a convex region, or, what is the same thing, a convex set
of points. The region defined by the shaded area between two vectors indefinitely
extended (see Figure 1-2) is also a convex set. Various other examples of convex
regions in two dimensions can be constructed. For example, the region inside the
rectangle (Figure 1-3a), the circle (Figure 1-3b), or the polygon (Figure 1-3c); but
not the L-shaped region in Figure 1-5. Examples of convex regions in three dimen-
sions are the volumes inside a cube and inside a sphere. Note that the latter regions
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Extreme point
.................................................................................

.....
.........
.......

Extreme half-line.....................................................................................

Figure 1-4: Example of an Unbounded Two-Dimensional Convex Set and an
Unbounded Three-Dimensional Convex Set
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Figure 1-5: Examples of Two-Dimensional Nonconvex Regions

may include or exclude the boundary; sometimes they may include or exclude parts
of the boundary. The regions may be bounded in extent or unbounded. Exam-
ples of unbounded two-dimensional and three-dimensional convex sets are shown in
Figure 1-4.

Definition (Convex Set): A set of points is called a convex set if all points on
the straight line segment joining any two points in the set belong to the set.

� Exercise 1.2 Show that in the case of a sphere any part of the boundary may be
included or excluded without affecting the convexity of the region. Show that this is not
necessarily true for a cube.

Clearly not all regions are convex; for example, neither of the two sets of points
depicted by the shaded regions in Figure 1-5 is convex. The L-shaped region of
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Figure 1-6: Points Common to Convex Sets

Figure 1-5 is not convex because it is possible to find two points, say p and q, in
the set such that not all points on the line joining them belong to the set.

Definition: A closed convex set is one that includes its boundaries.

For example, a circle and its interior is a closed convex set; the interior of a circle
is a convex set, but it is not closed.

Note that the region common to the two circles in Figure 1-6 is convex, as is the
set of points belonging to the intersection of two or more regions defined by linear
inequalities (see Figure 1-6).

� Exercise 1.3 Prove that the set of points common to two or more convex sets is convex.

1.1.3 LINE SEGMENTS, RAYS, AND HALF LINES

Definition: The line segment joining two points, p and q, with coordinates
( p1, p2, . . . , pn ) and ( q1, q2, . . . , qn ), respectively, in n-dimensional space is
all points x whose coordinates are


x1

x2
...
xn

 = λ


p1

p2
...
pn

 + (1− λ)


q1
q2
...
qn

 (1.7)

where λ is a parameter such that 0 ≤ λ ≤ 1. Clearly all the convex combina-
tions of two points is a line segment joining them.

Example 1.1 (Line Segment) Consider the points p = (p1, p2) and q = (q1, q2) in two-
dimensional space: p = (1, 2) and q = (5, 4). The line segment joining p and q is displayed
in Figure 1-7. Next consider the point x, with coordinates (x1, x2). By definition, if x is
to be on the line segment joining p and q, then its components (x1, x2) satisfy:

x1 = λp1 + (1− λ)q1 = 1λ + 5(1− λ) = −4λ + 5
x2 = λp2 + (1− λ)q2 = 2λ + 4(1− λ) = −2λ + 4.

(1.8)
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�

�

x1

x2

����

�

p = (1, 2)

� x = (−4λ+ 5,−2λ+ 4)
�
q = (5, 4)

Figure 1-7: Example of a Line Segment

For example, let λ = 1, then x1 = 1 and x2 = 2 and the point x is point p. Likewise let
λ = 0, then x = q. For other λ values (0 < λ < 1) we get all points between p and q.
For example, when the parameter λ = 1

2
, the coordinates of x become x1 = 3 and x2 = 3,

which is the point midway between p and q.

� Exercise 1.4 Obtain the linear relationship between x1 and x2 by eliminating the
parameter λ in Equation (1.8).

Definition (Ray and Half-Line): Let x, p, q ∈ �n and let θ ≥ 0. The ray
generated by q ∈ �n is the set of points { x | x = θq } as the scalar parameter
θ varies from 0 to +∞. A half-line anchored at p ∈ �n is the set of points
{ x | x = p + θq } as the scalar parameter θ varies from 0 to +∞. It is
straightforward to see that every ray contains the origin and every half-line is
a translation of a ray.

� Exercise 1.5 Show the set of points generated by a ray is convex. Graph the half-line
anchored at p = (1, 1, 1) with the ray generated by q = (1, 1, 1).

1.1.4 GENERAL CONVEX REGIONS

In linear programming we will be dealing with linear inequalities involving many
variables, so it will not be possible to visualize the solution as a point in many
dimensions. Accordingly we must be able to demonstrate algebraically whether or
not certain sets are convex. The definition of a convex set requires that all points
on a straight line segment joining any two points in the set belong to the set.

With the definition of a line segment, Equation (1.7), it is often easy to determine
whether a given set is convex. For example, consider the region R defined by all
points whose coordinates satisfy

x1 + x2 ≥ 2. (1.9)
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To prove that this region is convex, let p = (p1, p2) and q = (q1, q2) be any two
points in R. For p and q to be in R their respective coordinates must satisfy (1.9),
whence

p1 + p2 ≥ 2
q1 + q2 ≥ 2. (1.10)

Then the coordinates (x1, x2) of an arbitrary point x, on the segment joining p to
q, are found by forming a convex combination of the coordinates of the two points,
that is,

x = λp+ (1− λ)q (1.11)

where λ is the ratio of the distance xq to pq.
To prove convexity for (1.9) we wish to show that x lies in R, which means its

coordinates should satisfy x1 + x2 ≥ 2, or we need to show that

x1 + x2 =
[
λp1 + (1− λ)q1

]
+

[
λp2 + (1 − λ)q2

]
≥ 2. (1.12)

To prove this we multiply the first inequality of (1.10) by λ ≥ 0 and the second, by
1 ≥ 1− λ ≥ 0 to obtain

λp1 + λp2 ≥ 2λ,
(1 − λ)q1 + (1− λ)q2 ≥ 2(1− λ).

When added together, these two inequalities result in (1.12), which establishes
algebraically the convexity of R.

1.1.5 HYPERPLANES AND HALF-SPACES

Definition (Hyperplane): In n dimensions, the set of points x ∈ �n whose
coordinates ( x1, x2, . . . , xn ) satisfy a linear equation

a1x1 + a2x2 + · · ·+ anxn = b (1.13)

where, for j = 1, . . . , n, at least one aj �= 0, is called a hyperplane. More
precisely, it is an (n− 1)-dimensional hyperplane.

Definition (Independence of Hyperplanes): A system of hyperplanes is inde-
pendent if there exist no affine combination of the hyperplanes that results in
0x = 0.

Definition (Dimension of Hyperplane Intersection): The intersection of p
independent hyperplanes in �n is called an (n− p)-dimensional hyperplane.

A k-dimensional hyperplane Hk is called k-dimensional because we can choose
any point xo that lies on Hk and find k independent vectors v1, v2, . . . , vk such
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that xo + vj lies in Hk; moreover, it is easy to prove that all points x ∈ Hk can be
represented as

xo +
k∑

j=1

λjv
j

for some chosen λj .

� Exercise 1.6 In the hyperplane (1.13), assume that a1 �= 0. Choose a point xo on the
hyperplane and show how to find n− 1 independent vectors v1, v2, . . . , vn−1 such that the
point xo +

∑n−1

j=1
λjv

j lies on the hyperplane for any choice of λj , j = 1, . . . , n− 1.

� Exercise 1.7 Choose any point xo on the k-dimensional hyperplane Hk and prove that
there are k independent vectors v1, v2, . . . , vk such that such that the point xo+

∑k

j=1
λjv

j

lies on the hyperplane for any choice of λj , j = 1, . . . , k.

� Exercise 1.8 Show that the lowest-dimensional intersection of hyperplanes containing
a set of points in �n is a subset of the vector subspace formed by the same set of points.
Illustrate this in two dimensions.

� Exercise 1.9 Show that a straight line is the lowest-dimensional hyperplane containing
any two distinct points on it.

Definition (Half-Space): The set of points x ∈ �n whose coordinates satisfy
a linear inequality such as

a1x1 + a2x2 + · · ·+ anxn ≤ b (1.14)

is called a half-space or, to be precise, a closed half-space because we include
the boundary. In two dimensions it is called a half-plane, and in one dimension
it is a half-line.

1.1.6 CONVEXITY OF HALF SPACES AND
HYPERPLANES

To prove the half-space defined by a linear inequality is convex, let p and q be any
two points in the set, so that

aTp ≤ b (1.15)
aTq ≤ b. (1.16)

Let 0 ≤ λ ≤ 1 be the value of the parameter associated with an arbitrary point x
on the line segment joining p to q; see (1.7). Multiplying (1.15) by λ ≥ 0 and (1.16)
by (1− λ) ≥ 0 and adding, one obtains

aTλp+ aT(1 − λ)q ≤ b (1.17)
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whence, factoring aT and substituting x = λp+ (1 − λ)q,

aTx ≤ b. (1.18)

Hence, an arbitrary point x on the line segment joining any two points lies in the
half-space, establishing convexity.

To prove that a hyperplane is convex, let (1.13) be written as

aTx ≤ b
aTx ≥ b.

(1.19)

Each of these inequalities defines a half-space, and their intersection defines a hy-
perplane. Since a half-space is a convex set, then, by Exercise 1.3 on Page 5, a
hyperplane is also a convex set. An n-dimensional space may contain many such
convex sets. By Exercise 1.3, the common intersection of two or more of these
convex sets is a convex set.

1.1.7 CONVEXITY OF THE SET OF FEASIBLE
SOLUTIONS OF AN LP

THEOREM 1.1 (Set of Feasible Points for an LP is Convex) The set of
points corresponding to feasible (or optimal feasible) solutions of the general linear
programming problem constitutes a convex set.

� Exercise 1.10 Prove Theorem 1.1.

Thus, if p = (p1, p2, . . . , pn, zp) is a feasible solution and q = (q1, q2, . . . , qn, zq)
is another, the weighted linear combination of these two feasible solutions,

x = λp+ (1 − λ)q, (1.20)

where λ is a constant, 0 ≤ λ ≤ 1, is also a feasible solution. Moreover, assigning
a fixed value for z, say z = z0, the set of points satisfying cTx = z and Ax = b,
x ≥ 0 is also a convex set. In particular, setting z0 = min z, it is clear that the set
of minimal feasible solutions is also a convex set.

1.1.8 CONVEX POLYHEDRONS, POLYTOPES, AND
CONES

Definition (Convex Polyhedron): A convex polyhedron is the set of points
common to one or more half-spaces.

Definition (Convex Polytope): A convex polyhedron that is bounded is called
a convex polytope.
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Definition (Convex Polygon): A convex polygon is a two-dimensional convex
polytope.

� Exercise 1.11 Prove that for the intersection of a set of half-spaces in �n to be bounded
it is necessary (but not sufficient) that their number must be n+1 or more. For the feasible
set for a linear program Ax = b, x ≥ 0, A ∈ �m×n to be bounded, must m bear a special
relation to n?

� Exercise 1.12 Show that the set of optimal feasible solutions to a linear program is a
convex polyhedron.

� Exercise 1.13 Show that the convex combination of the set of optimal feasible solutions
to a linear program is a convex polytope.

Definition (Cone): A subset K ⊂ �n is a cone if and only if x ∈ K implies
that αx ∈ K for all α ≥ 0. In other words, K is a cone if and only if the ray
generated by any point in the cone lies entirely in the cone. A convex cone is
a cone that is also a convex set.

� Exercise 1.14 Construct an example to show that a cone in general need not be convex.

� Exercise 1.15 Prove that a cone is convex if and only if it contains every nonnegative
linear combination of any finite number of points in it.

� Exercise 1.16 Show that a convex cone is formed by the set C of all points b =
( b1, b2, . . . , bm ) generated by all choices of x ≥ 0 in the expression

Ax = b.

Definition (Convex Polyhedral Cone): A convex polyhedral cone is a convex
cone K that is the intersection of a finite number of half-spaces, each of which
contains the origin.

Definition (Simplicial Cone): A simplicial cone of dimension m is defined to
be:

S =
{
b

∣∣∣∣ b =
m∑

i=1

αipi; αi ≥ 0 for i = 1, . . . ,m
}
,

where {p1, p2, . . . , pm} are linearly independent.

� Exercise 1.17 Show that
{
b | b =

∑m+1

i=1
αipi; αi ≥ 0 for i = 1, . . . ,m + 1

}
in �m is

not a simplicial cone.
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1.1.9 SEPARATING HYPERPLANE

An important property of convex regions is the concept of separating hyperplanes
and supporting hyperplanes.

Definition (Separating Hyperplane): Let C1 and C2 be two convex sets in �n.
A hyperplane

αTx = β

with
αTu > β for all u ∈ C1
αTv ≤ β for all v ∈ C2,

is called a separating hyperplane. It separates the convex set C1 from the
convex set C2.

Definition (Supporting Hyperplane): Given a convex set C in�n, a hyperplane
αTx = β, is called a supporting hyperplane if all x ∈ C satisfy αTx ≥ β (or if
all x ∈ C satisfy αTx ≤ β), with equality holding for at least one x ∈ C.

LEMMA 1.2 (Separating Hyperplane for Half-Spaces) Let

C1 =
{
x
∣∣∣ n∑

j=1

aijxj ≥ bi, i = 1, . . . , k
}

(1.21)

C2 =
{
x
∣∣∣ n∑

j=1

aijxj ≥ bi, i = k + 1, . . . ,m
}

(1.22)

be disjoint convex sets. Then there exists a separating hyperplane that separates C1
from C2.

Proof. By the hypothesis the combined set of inequalities that define C1 and
C2 are infeasible. By the Infeasibility Theorem (see Linear Programming 1), there
exist nonnegative multipliers π1, π2, . . . , πk on the inequalities in C1 and nonnegative
multipliers πk+1, πk+2, . . . , πm on the inequalities in C2 so that

k∑
i=1

πiaij +
m∑

i=k+1

πiaij = 0 for j = 1, . . . , n (1.23)

implying
k∑

i=1

πiaij = −
m∑

i=k+1

πiaij for j = 1, . . . , n (1.24)

and
k∑

i=1

πibi +
m∑

i=k+1

πibi > 0 (1.25)
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implying
k∑

i=1

πibi +
m∑

i=k+1

πibi = δ > 0. (1.26)

Choosing any ε > 0 and η ≥ 0 such that δ = ε+ η, we rewrite this last equation as

k∑
i=1

πibi − ε = −
m∑

i=k+1

πibi + η. (1.27)

Note that multiplying the inequalities in C1 by πi ≥ 0, i = 1, . . . , k, and summing
we obtain

k∑
i=1

n∑
j=1

πiaijxj ≥
k∑

i=1

πibi. (1.28)

Clearly, subtracting ε > 0 from the right-hand side and rearranging the summations
results in the strict inequality

n∑
j=1

(
k∑

i=1

πiaij

)
xj >

k∑
i=1

πibi − ε (1.29)

which holds for all x ∈ C1. Similarly, multiplying the inequalities in C2 by πi,
i = k + 1, . . . ,m, and summing we obtain

m∑
i=k+1

n∑
j=1

πiaijxj ≥
m∑

i=k+1

πibi. (1.30)

Clearly, multiplying by −1 and adding η ≥ 0 on the right hand side, and rearranging
the summations, results in the strict inequality

n∑
j=1

(
−

m∑
i=k+1

πiaij

)
xj ≤

(
−

m∑
i=k+1

πibi

)
+ η. (1.31)

Substituting (1.24) and (1.27) into (1.31) we obtain

n∑
j=1

(
k∑

i=1

πiaij

)
xj ≤

k∑
i=1

πibi − ε (1.32)

which holds for all x ∈ C2. Hence we have constructed a separating hyperplane
defined by (1.29) and (1.32) which is:

n∑
j=1

(
k∑

i=1

πiaij

)
xj =

k∑
i=1

πibi − ε (1.33)
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Figure 1-8: A Three-Dimensional Simplex

� Exercise 1.18 Show that (1.33) is a separating hyperplane for any choice of 0 < ε < δ
that strictly separates C1 from C2. If ε = 0 it is a supporting hyperplane for C1 but not for
C2, and if ε = δ it is a supporting hyperplane for C2 but not for C1.

THEOREM 1.3 (Separating Hyperplane for General Convex Sets) If
two convex sets C1 and C2 in �n are disjoint, there exists a separating hyperplane
that separates C1 from C2.

Proof. Find a point x1 ∈ C1 that is closest to the points in C2 and find a point
x2 ∈ C2 that is closest to the points in C1. Because the convex sets are disjoint
we can pick any point xo on the closed line segment of positive length joining x1

to x2 and construct a hyperplane that passes through xo perpendicular to the line
joining x1 to x2. This hyperplane separates C1 from C2.

1.2 SIMPLEX DEFINED

There is a close connection between the Simplex Method and the the simplest
higher-dimensional polyhedral set, the simplex.

Definition (m-Dimensional Simplex): In higher dimensions, say m, the con-
vex hull of m+ 1 points in general position (see definition below) is called an
m-dimensional simplex.

Thus

• a zero-dimensional simplex is a point;

• a one-dimensional simplex is a line segment;

• a two-dimensional simplex is a triangle and its interior;

• a three-dimensional simplex is a tetrahedron and its interior. (See Figure 1-8).
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Figure 1-9: Local and Global Minima

Definition (General Position): Let Aj = (a1j , a2j , . . . , amj) be the coordi-
nates of a point Aj in m-dimensional space. Algebraically a set of m+1 points
[A1, A2, . . . , Am+1] of points in m dimensions is said to be in general posi-
tion if the determinant of their coordinates and a row of ones, as in (1.34), is
nonvanishing, ∣∣∣∣∣∣∣∣

1 1 . . . 1
a11 a12 . . . a1,m+1

...
...

...
am1 am2 . . . am,m+1

∣∣∣∣∣∣∣∣ �= 0. (1.34)

Definition (Algebraic Definition of an m-Dimensional Simplex): The set of
all points,

x = λ1A1 + λ2A2 + · · ·+ λm+1Am+1, (1.35)

generated by all choices of λ such that
∑m+1

j=1 λj = 1, λj ≥ 0 is defined to be
an m-dimensional simplex if the determinant (1.34) is nonvanishing.

Definition (Vertices of a Simplex): The points x = Aj in (1.35) are called
vertices or extreme points of the simplex.

1.3 GLOBAL MINIMUM, EXTREME
POINTS, AND EDGES

In the calculus we learned that if a function f(x), defined over an interval, has a
continuous derivative f ′(x) and attains a minimum (or maximum) at a point x0

within the interval, then the derivative f ′(x0) = 0. However, having a derivative
f ′(x̄) = 0 does not necessarily imply that a minimum of f(x) is attained at f(x̄).
See, for example, the point x = x1 in Figure 1-9, where f(x) is minimum only in
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Figure 1-10: Extreme Points

the neighborhood of x1; this is called a local minimum. However, it will also be
noted that there is another local minimum at x = x2, where f(x) attains its lowest
value; this is called a global minimum. The point x = x3 is also a local minimum,
and so also are its neighboring points.

LEMMA 1.4 (A Local Minimum of an LP is Global) Any solution to
a linear programming problem that is a local minimum solution is also a global
minimum solution.

Proof. To see this, let p = (p1, p2, . . . , pn, zp) be a local minimum solution and
assume on the contrary that it is not a global minimum solution, so that there
is another solution q = (q1, q2, . . . , qn, zq) with zq < zp. Then any point x =
(x1, x2, . . . , xn, z) = (1 − λ)p + λq, 0 ≤ λ ≤ 1, on the line segment joining these p
and q points would be a feasible solution and its objective z = (1 − λ)zp + λzq. In
this case the value of z decreases from zp to zq as λ varies from 0 to 1. Thus all
such feasible points (including those in the neighborhood of p) would have z values
less than zp contrary to the hypothesis that p is a local minimum and not a global
minimum. This means that zp is a global minimum.

� Exercise 1.19 Prove that the point x which yields a global minimum for an LP is not
necessarily unique. Illustrate with an example.

� Exercise 1.20 Suppose p and q are both local minima. Prove that for a linear program
all points on the line segment joining p and q are global minima.

Definition (Extreme Point or Vertex): Any point x in a convex set C that
is not a midpoint of the line segment joining two other distinct points in C is
by definition an extreme point or vertex of the convex set.

Example 1.2 (Degenerate and Nondegenerate Extreme Points) In Figure 1-10,
the corners of the polygonal region bounded by a square are extreme points, as is every
point on the circumference of a circle bounding a disk. The points where three or more
facets of a diamond (assumed to be flat on the bottom) come together are extreme points
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of the diamond. Notice also that the corners of the square facet on top of the diamond are
degenerate extreme points because more than three hyperplanes intersect to generate each
corner. Further note that none of the half-spaces defining these four degenerate extreme
points can be dropped without changing the polyhedral set, implying that there are no
redundant constraints.

� Exercise 1.21 In Figure 1-10 find degenerate extreme points other than those described
in Example 1.2. Are there any redundant constraints associated with these degenerate
extreme points? Why?

� Exercise 1.22 Given the coordinates (x1, x2) of the vertices of a simplex in �2:

P1 =

(
0
0

)
, P2 =

(
1
0

)
, and P3 =

(
0
1

)
.

1. Write down the relations defining the convex hull of P1, P2, and P3.

2. Use the FME process (see Linear Programming 1) to define the feasible region in
terms of x1 and x2 alone.

3. Plot the points P1, P2, and P3 and verify your result.

� Exercise 1.23 In Figure 1-10, let the coordinates of the extreme points of the square
facet be (1, 1, 1), (1,−1, 1), (−1, 1, 1), and (−1,−1, 1) and the coordinates of the remaining
extreme points of the diamond be (−1.5, 2, 0), (1.5, 2, 0), (2, 0, 0), (1.5,−2, 0), (−1.5,−2, 0),
and (−2, 0, 0). Determine algebraically the hyperplanes that represent the diamond by
reducing the system representing the convex hull of these extreme points to a system of
inequalites in nonnegative variables. Show that the basic solutions corresponding to the
extreme points where four hyperplanes intersect are degenerate.

Definition (Basic Solution): Consider the canonical system

IxB + ĀxN = b̄. (1.36)

The special solution obtained by setting the independent variables x
N

equal
to zero and solving for the dependent variables x

B
is called a basic solution.

THEOREM 1.5 (Basic Feasible Solution is an Extreme Point) A basic
feasible solution to a linear program Ax = b, x ≥ 0, cTx = min corresponds to an
extreme point in the convex set of feasible solutions to the linear program.

Proof. We assume that the rank of the system is m (see Exercise 1.25). It is
easy to show that a basic feasible solution corresponds to an extreme point. By
relabeling the indices, let xo = (b̄1, b̄2, . . . , b̄m, 0, . . . , 0) be a basic feasible solution
with respect to basic variables x1, x2, . . . , xm. By definition the columns of A
corresponding to these variables are independent. Suppose, on the contrary, that
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xo is not an extreme point. Then, by definition, it is the average of two other distinct
feasible solutions p = (p1, p2, . . . , pm, . . . , pn) ≥ 0 and q = (q1, q2, . . . , qm, . . . , qn) ≥
0. It follows for all j corresponding to the nonbasic variables j = m+ 1, . . . , n that

xo
j =

1
2
(pj + qj) = 0, (1.37)

where pj ≥ 0 and qj ≥ 0. But this is possible only if pj = qj = 0 for j =
m + 1, . . . , n. Thus p, q, and xo have the same values (namely zero) for their
components corresponding to nonbasics. Since the values of the basic variables
are uniquely determined by the values of the nonbasics (independent variables), we
must have p = q = xo. This proves that xo cannot be the average of two solutions
p and q distinct from xo and hence, by definition, xo is an extreme point.

COROLLARY 1.6 (Extreme Point is a Basic Feasible Solution) Each
extreme point corresponds to one or more basic feasible solutions. If one of the basic
feasible solutions is nondegenerate an extreme point corresponds to it uniquely.

Proof. We again assume that the rank of the system is m (see Exercise 1.25). By
relabeling the indices, let x = (xo

1, . . . , x
0
k, 0, . . . , 0) ≥ 0 be an extreme point, where

xo
j > 0 for 1 ≤ j ≤ k. Then, the first k columns must be linearly independent,

because, if not, for some column k,

A•k =
k−1∑
j=1

yjA•j .

This would imply that the class of solutions

x(θ) = (xo
1 − θy1, xo

2 − θy2, . . . , xo
k−1 − θyk−1, x

o
k + θ, 0, . . . , 0)T (1.38)

are feasible solutions for some range −θo ≤ θ ≤ θo, where θo > 0. Therefore,

xo =
1
2
x(−θo) +

1
2
x(θo)

is a midpoint of two other feasible solutions, a contradiction if xo is an extreme
point.

Since the maximum number of independent columns is m, this implies that
k ≤ m. If k = m, then, by definition of a basis, xo is a basic feasible solution
and the only one corresponding to the extreme point. However, if k < m, we can
augment the independent columns j = 1, . . . , k by m − k additional independent
columns with indices jk+1, jk+2, . . . , jm that can be used to construct the feasible
basis. (such additional columns exist because we assumed the rank of the system
is m). The corresponding (degenerate) basic feasible solution is obtained by letting
xjk+1 = xjk+2 = · · · = xjm = 0. In general, this augmentation by m−k independent
columns is not unique.
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Figure 1-11: Joining Extreme Points

� Exercise 1.24 Show in the preceding proof that the class of solutions x(θ) given by
Equation (1.38) are feasible solutions for some range −ε ≤ θ ≤ ε, where ε > 0.

� Exercise 1.25 Modify the proofs of Theorem 1.5 and of Corollary 1.6 if the rank of the
system is r < m.

Definition (Edge): An edge of a convex polyhedron C is the straight line
segment joining two extreme points such that no point on the segment is the
midpoint of two other points in C not on the segment.

Definition (Neighbors): Two distinct extreme points having an edge in com-
mon are said to be neighbors or adjacent to each other.

� Exercise 1.26 Why is the segment joining two extreme points AB in Figure 1-11 not
an edge, but AC is an edge?

THEOREM 1.7 (Movements Along Edges) The class of feasible solutions
generated by increasing the value θ of a nonbasic variable and adjusting the values of
the basic variables, while maintainting feasibility, corresponds to a movement along
an edge of the convex set.

Proof. The case where the increase in θ is unbounded is left as an exercise (see
Exercise 1.28). Let

p = (b̄1, b̄2, . . . , b̄m; 0, 0, . . . , 0) ≥ 0

be the basic feasible solution for iteration t and relabel the indices so that s =m+ 1
is the index of the incoming variable. Then we know that if xm+1 = θ, the change
in the feasible solution is given by

x = (b̄1 − θv1, b̄2 − θv2, . . . , b̄m − θvm, θ, 0, 0, . . . , 0) (1.39)

where v = B−1A•m+1 = Ā•m+1 is the representation of the incoming column
A•m+1 in terms of the basis. Let θ̂ be the maximum value of θ such that x in
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(1.39) is nonnegative; by assumption θ̂ is finite. (Note that if θ̂ = 0; the problem is
degenerate and there is no change in the extreme point p but there is a change in the
set of basic variables that define the extreme point p.) Assuming nondegeneracy, we
let θ̂ = b̂m+1 > 0 be the maximum value of θ. Relabel the indices so that r = 1 is
the index of the outgoing variable. Then it follows that b̄1− θ̂v1 = 0 (or θ̂ = b̄1−v1).
Denote the new basic feasible solution by

q = (0, b̂2, . . . , b̂m, b̂m+1, 0, 0, . . . , 0),

where
b̂i = b̄i − θ̂vi for i = 2, . . . ,m.

It is easy to see that x given by (1.39) satisfies

x = (1− λ)p+ λq, 0 ≤ λ ≤ 1, (1.40)

where λ = θ/b̂m+1 = θ/θ̂ ≥ 0 and (1 − λ) = (b̂m+1 − θ)/b̂m+1 = (θ̂ − θ)/θ̂ ≥ 0 (see
Exercise 1.27). Thus, increasing xm+1 while keeping xm+2 = xm+3 = · · · = xn = 0
is the same as increasing λ from 0 to 1, which, in turn, is the same as moving along
the line segment joining p and q.

What is left to be shown is that the line segment joining p and q is actually
an edge joining two adjacent extreme points. Clearly 0 ≤ xm+1 ≤ b̂m+1, because
this is the range of values of the incoming variable that keeps all other variables
nonnegative. Furthermore, the (m + 1)th component of any point u on the line
segment joining p and q satisifies 0 ≤ um+1 ≤ b̂m+1 and um+2 = um+3 = · · · =
un = 0. Conversely let y be any feasible point with the property that ym+2 =
ym+3 = · · · = yn = 0, then y must be on the line segment joining p and q because,
letting ym+1 = θ > 0, the value of y = x is given by (1.39). Thus, θ ≤ b̂m+1 must
be true for feasibility. Suppose next that u on the line segment joining p and q is
the midpoint of some two other feasible points p′ and q′. Thus

u =
1
2
p′ +

1
2
q′.

Note p′j ≥ 0 and q′j ≥ 0 for all components j because p′ and q′ are feasible points.
Clearly p′j = q′j = 0 for j = m + 2,m + 3, . . . , n because p′j + q′j = uj = 0 for
all j = m + 2,m + 3, . . . , n and p′j ≥ 0 and q′j ≥ 0. But as we have just shown
such a y = p′ lies on the line segment joining p and q. Similarly q′ also lies on the
line segment joining p and q. By definition, an edge is a line segment having the
property that every point on the line segment, if it is the midpoint of two other
feasible points, has the property that these two points must also lie on the line
segment.

� Exercise 1.27 Verify that x given by Equation (1.39) satisfies Equation (1.40). Prove
conversely that if x lies on the line segment joining p and q then it satisfies (1.39) for some
choice of θ.
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� Exercise 1.28 Prove Theorem 1.7 for the case where the increase in θ is unbounded so
that the movement is along an edge that is an extreme half-line.

1.4 THE SIMPLEX METHOD VIEWED AS
THE STEEPEST DESCENT ALONG
EDGES

It can be shown in general that the Simplex Algorithm can be viewed as a steepest
descent “gradient” technique in which a “gradient direction” is defined in the space
of nonbasic variables, say xm+1, xm+2, . . . , xn. This gradient direction differs
from the one usually used in the Calculus. Translating the origin to some trial
solution point, the usual steepest gradient direction is defined by finding the limiting
direction as ρ→ 0 from this origin to a point on the spherical surface

x2
m+1 + x2

m+2 + · · ·+ x2
n = ρ2, xj ≥ 0, (1.41)

where some function z = f(x) is minimized. In contradistinction, the Simplex
Algorithm’s steepest gradient direction is found using a planar surface (instead of
a spherical surface)

xm+1 + xm+2 + · · ·+ xn = ρ, xj ≥ 0. (1.42)

In other words, in defining the gradient, the usual (Euclidean) distance (1.41) from
the origin (located at some trial solution point) is replaced by (1.42), one based on
the sum of the nonnegative values of the coordinates of the independent (nonbasic)
variables.

THE SPECIAL CASE OF n = m + 2

Consider a linear programming problem with n = m+2 that has a basic feasible so-
lution with respect to some m basic variables, say x3, x4, . . . , xm+2. The canonical
form with respect to these variables is

c̄1x1 + c̄2x2 = z − z̄0
ā11x1 + ā12x2 + x3 = b̄1
ā21x1 + ā22x2 + x4 = b̄2

...
...

. . . =
...

ām1x1 + ām2x2 + · · · + xm+2 = b̄m

(1.43)

with b̄i ≥ 0 and where the problem is to find xj ≥ 0 and min z satisfying (1.43).
The convex set of feasible solutions satisfying (x1, x2, . . . , xn ) ≥ 0 will be denoted
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ā11x1 + ā12x2 = b̄1

āi1x1 + āi2x2 = b̄i

c̄1x1 + c̄2x2 = c̄0

Figure 1-12: Geometrically the Iterates of the Simplex Algorithm Move Along the
Edges of the Convex Set

by C. This is equivalent to finding values of x1 and x2 and the smallest constant
c̄0 = z − z̄0 satisfying the system of linear inequalities

c̄1x1 + c̄2x2 = c̄0
ā11x1 + ā12x2 ≤ b̄1
ā21x1 + ā22x2 ≤ b̄2

...
...

...
ām1x1 + ām2x2 ≤ b̄m

x1 ≥ 0
x2 ≥ 0

(1.44)

We may graph these m+ 2 relations in the two-dimensional space of the nonbasic
or independent variables x1 and x2 as illustrated in Figure 1-12. The convex region
formed by the half-spaces (in this case half-planes) āi1x1 + āi2x2 ≤ b̄i is denoted
by K. The boundaries of K are the solid lines shown in Figure 1-12.

The optimal solution is found by moving the dotted line c̄1x1 + c̄2x2 = c̄0
parallel to itself until the line just touches the convex set K and c̄0 is minimum.
(If c̄1 and c̄2 are both less than zero this would be in the direction away from
the origin.) Associated with every point P in K is a unique feasible solution to
(1.43). In fact, such a point P must satisfy all the inequalities (1.44) and the
slacks, which are the nonnegative differences between the values on the left-hand
side of (1.44) and the right-hand side are the unique values of the basic variables
in (1.43) when the nonbasic variables x1 and x2 have the specified values (x0

1, x
0
2).

The value xi+2 = x0
i+2 of the ith basic variable is equal to the distance of the point

P = (x0
1, x

0
2) from the boundary of the ith constraint times a factor (ā2

i1 + ā2
i2)

1
2

because, from analytic geometry, the distance di of P from āi1x1 + āi2x2 = b̄i is
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Figure 1-13: Geometric Picture of the Distance of a Point to a Boundary

given by (1.45) for i = 1, . . . ,m,

distance = di =
b̄i − āi1x

0
1 − āi2x

0
2

[ā2
i1 + ā2

i2]
1
2

= kix
0
i+2, (1.45)

where ki = (ā2
i1 + ā2

i2)
− 1

2 . If the point (x0
1, x

0
2) satisfies the inequality, then the

geometric picture of the distance of a point from the boundary is shown in Figure 1-
13.

If the slack variables xi+2 are replaced by yi = kixi+2 for i = 1, . . . ,m, and the
coordinates of a point P are the values of the independent variables, then the value
of the ith basic variable is just the distance from the point P to the corresponding
ith constraint.

Every basic solution to (1.43) has at least two xj = 0; hence the corresponding
P is at the same time a point in K and at zero distance to two distinct boundary
lines of K. It is intuitively evident (and we show this rigorously below) that such
a P is a vertex of K. In particular, the basic feasible solution with respect to the
canonical form (1.43) is associated with the point (x0

1 = 0, x0
2 = 0) in Figure 1-12,

hence the origin is always in the convex K.

LEMMA 1.8 (Extreme Points) Associated with every extreme point in the
convex set of feasible solutions to the original linear program in standard form,
(1.43), is an extreme point of K and conversely; where K is formed by dropping
the basic feasible variables in the canonical form (1.43) and replacing equations by
inequalities to get (1.44).

Proof. Let P = (xo
1, x

o
2, ) and Q = (x′1, x

′
2) be any two points in K, and let

the corresponding feasible solutions satisfying (1.43) be p = (xo
1, x

o
2, . . . , x

o
n ) and

q = (x′1, x′2, . . . , x′n ), which, as we saw in Theorem 1.1, lie in a convex set C. It is
easy to see that any point λP + (1 − λ)Q on the line joining P to Q corresponds
to a point λp + (1 − λ)q that satisfies (1.43), and conversely. Hence line segments
in the convex set C of solutions satisfying (1.43) correspond to line segments in K,
and in particular the midpoint of a segment in C corresponds to the midpoint in K
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and conversely. It follows that nonextreme points must correspond to each other
and it follows that extreme points (basic feasible solutions) to (1.43) correspond to
extreme points of K and conversely.

LEMMA 1.9 (Movement from One Vertex to the Next) The movement
along the edge corresponding to the class of feasible solutions generated by increasing
a nonbasic variable and adjusting the values of the basic variables in the shift from
one basic solution to the next, corresponds to a movement around the boundary of
K from one vertex to the next.

Proof. Let p and q be successive distinct extreme points corresponding to basic
feasible solutions obtained by the Simplex Method under nondegeneracy, so that
the line segment joining p to q is an edge in C. If the corresponding vertices P and
Q in K were not neighbors, there would be a point X on the segment joining P
to Q that would be the midpoint of two points P ′ and Q′ in K, but not on the
segment. We shall show, however, that P ′ and Q′ must lie on the line joining P
to Q. We have shown that x, corresponding to X must be the midpoint of p′ and
q′ corresponding to P ′ and Q′. However, x must also be on the line joining p to
q since X was on the line joining P to Q. It follows, since the segment pq is an
edge (see Theorem 1.7), that p′ and q′ must both be on this edge and hence their
corresponding points P ′ and Q′ must lie on the line joining P to Q. This shows
that edges in the convex set of feasible solutions to (1.43), correspond to edges in
Figure 1-12.

Thus, in the nondegenerate case, the Simplex Method proceeds from one vertex
to the next in the convex region K in the space of some initial set of nonbasic
variables. Starting with the vertex at the origin and moving successively from one
neighboring vertex to another, each step decreases the value of c̄0 until a minimum
value for c̄0 is obtained, as shown by the arrows in Figure 1-12.

� Exercise 1.29 Modify Figure 1-12 to illustrate the degenerate case and modify the
preceding discussion to correspond to your drawing.

THE GENERAL CASE

Although our remarks have been restricted to the case of n = m+ 2 for simplicity,
they hold equally well for n = m+ k. In the general case, the values of k = n−m
of any set of nonbasic variables become the coordinates of a point in k dimensions.
In this geometry the convex set K of feasible solutions is defined as before by a set
of m inequalities formed by dropping the basic variables in the canonical form and
by k inequalities xj ≥ 0 where xj are the nonbasic variables. Each basic feasible
solution corresponds to a vertex of K. In the general (nondegenerate) situation,
there are n−m edges leading from each vertex to n−m neighboring vertices; these
correspond to the n−m basic solutions obtained by introducing one of the n−m
nonbasic variables in place of one of the basic variables.
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x1

x2

θ

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

............. z = c̄1x1 + c̄2x2

Figure 1-14: Movement of θ

STEEPEST DESCENT ALONG EDGES

The simplex criterion of choosing c̄s = min c̄j < 0 followed by an increase in xs

corresponds to a movement along that edge of the convex set that induces the greatest
decrease in z per unit change in the variable introduced.

For example, for n = m + 2 (see Figure 1-14), if c̄1 < c̄2 then any movement
for a distance θ along the x1-axis produces a greater decrease in z than an equal
movement of θ along the x2-axis and therefore the steepest descent direction using as
boundary the planar surface (line) x1 +x2 = ρ, x1 ≥ 0, x2 ≥ 0, and c̄1x1 + c̄2x2 = z,
is in the direction (1, 0). In general, use

x1 + x2 + · · · + xn = ρ, xj ≥ 0
c̄1x1 + c̄2x2 + · · · + c̄nxn = z

� Exercise 1.30 Consider the problem of minimizing f(x) =
∑n

j=m+1
c̄jxj subject to

(1.42) for fixed ρ where xj ≥ 0. Show that the solution is to choose xs = ρ and all other
xj = 0 where c̄s = min c̄j . Compare this steepest descent direction with that obtained
using (1.41) instead of (1.42). Does this steepest descent direction depend on the value of
ρ?

� Exercise 1.31 Consider the problem of minimizing f(x) =
∑n

j=m+1
c̄jxj subject to

(1.41) for fixed ρ where xj is unrestricted in sign. Show that the solution is to choose

xj = c̄jρ/
√∑

c̄2k. What is the steepest gradient direction as ρ → 0? Does this steepest
gradient direction depend on the value of ρ?

1.5 THE SIMPLEX INTERPRETATION OF
THE SIMPLEX METHOD

While the Simplex Method appears to be a natural one to try in the n-dimensional
space of the variables, it might be expected, a priori, to be inefficient as there
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could be considerable wandering on the outside edges of the convex set of solutions
before an optimal extreme point is reached. This certainly appears to be true when
n−m = k is small as in Figure 1-12, where k = 2. However, empirical experience
with thousands of practical problems indicates that the number of iterations is
usually close to the number of basic variables in the final set that were not present
in the initial set. In practical applications for an m-equation problem with m
different variables in the final basic set, the number of iterations may possibly run
from m as a minimum to 2m, and very rarely to more than 3m. The number is
usually less than 3m/2 when there are fewer than 50 equations and 200 variables
(to judge from informal empirical observations). Some believe that for a randomly
chosen problem with fixed m, the number of iterations grows in proportion to n.

W. M. Hirsch conjectured in 1957, that, by proper choice of variables to enter
the basic set, it is always possible for linear programs with bounded solution sets to
pass from any basic feasible solution to any other in m or fewer pivot steps, where
each basic solution generated along the way must be feasible. For the cases m ≤ 5
the conjecture is known to be true. For m > 5, the problem is a famous unsolved
conjecture.

When the Simplex Method is viewed in the m-dimensional space associated
with the columns of coefficients of the variables, as will be done in this section, the
method appears to be quite efficient. It was in this geometry that the method was
first seriously proposed, after it had been set aside earlier as apparently unpromising
when viewed in the geometry of the rows.

GEOMETRY OF THE CASE m = 2

In Linear Programming 1, both the Blending Model II and the Product Mix Model
were graphically solved using, as the coordinates of a point, the coefficients of a
variable in one of the equations and the cost form. In both examples, one of the
equations of the model was a convexity constraint of the form

x1 + x2 + · · ·+ xn = 1, xj ≥ 0, : π0 (1.46)

leaving, for the case m = 2, one other equation and cost form

a1x1 + a2x2 + · · ·+ anxn = b : π1 (1.47)
c1x1 + c2x2 + · · ·+ cnxn = z (min), (1.48)

where π0 and π1 are the corresponding dual multipliers. The variables xj were
interpreted as nonnegative weights to be assigned to a system of points Aj = (aj , cj)
in two dimensional space (u, v) so that their weighted average (center of gravity)
is a point R = (b, min z); that is, the xj ≥ 0 are chosen so that the center of
gravity lies on the “requirement line” u = b (constant) such that the v coordinate
is minimum (see Figure 1-15).

In Figure 1-15, the shaded area C represents the set of all possible centers of
gravity G formed by assigning different weights xj to the points Aj . It is easy to
prove that these form a convex region C, called the convex hull (see Section 1.1
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Figure 1-15: Geometrically a Linear Program is a Center-of-Gravity Problem

for the definition of a convex hull) of the set of points Aj . To see this, let G′ be
any point in C obtained by using nonnegative weights w′

1, w
′
2, . . . , w

′
n and let G′′

be any other point obtained by using nonnegative weights w′′
1 , w

′′
2 , . . . , w

′′
n. Let

G∗ = λG′ + (1 − λ)G′′, where 0 ≤ λ ≤ 1, be any point on the line segment joining
G′ to G′′. It follows that G∗ must also lie in C because it can be obtained by using
weights w∗ = λw′

j +(1−λ)w′′
j for j = 1, . . . , n. Moreover, if w′

j ≥ 0, w′′
j ≥ 0,

∑
w′

j =
1,

∑
w′′

j = 1 and 0 ≤ λ ≤ 1, then w∗j ≥ 0,
∑
w∗j = 1. This establishes the convexity

of C.
It is also easy to see that any column (activity) corresponding to a point Aj

that is not an extreme point of the convex hull can be dropped from the linear
programming problem. Thus the points A3, A4, and A6 in the interior of C in
Figure 1-15 and A7 on an edge can be dropped; that is, one can set x3 = x4 = x6 =
x7 = 0 and still obtain a feasible solution with just as low a minimum value.

A basic feasible solution corresponds to a pair of points, say A1 and A6 in
Figure 1-15, such that the line joining A1 to A6 intersects the constant line u = b
in a point G on the line segment between A1 and A6. For this to be true we would
want

λa1 + (1− λ)a6 = b1, (0 ≤ λ ≤ 1).

But this corresponds to the basic feasible solution to (1.46) and (1.47) found by
setting x1 = λ, x6 = (1− λ) and xj = 0 for all other j.

To improve the solution, the Simplex Method first computes the relative cost
factors c̄j by eliminating the basic variables from the cost equation. We shall now
show that this is the same as first computing the line joining A1 to A6, which we
will refer to as the solution line, and then substituting the coordinates of a point
Aj into the equation of the line to see how much (if any) in the v-direction it is
above or below the line (see Figure 1-16).

In the Simplex Method the basic variables x1 and x6 are eliminated from the
cost equation (1.48) by multiplying (1.46) by π0 and multiplying (1.47) by π1 and
subtracting from (1.48). Thus π0 and π1 must be chosen so that the relative cost
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Figure 1-16: Simplex Associated with an Iteration of the Simplex Algorithm (m = 2)

factors for basic columns 1 and 6 are zero:

c1 − (π0 + π1a1) = 0 (1.49)
c6 − (π0 + π1a6) = 0 (1.50)

The relative cost factors c̄j for the remaining j are given by

c̄j = cj − (π0 + π1aj). (1.51)

Let us compare this with what we need to do geometrically. First we need to
compute the equation of the line joining A1 to A6 in (u, v) space. Let

v = π0 + π1u (1.52)

be the equation of the line, where constants π0 and π1 are chosen so that the line
passes through the points A1 = (a1, c1) and A6 = (a6, c6). Substituting u = a1

and v = c1 into Equation (1.52) gives the condition that A1 lies on this line, and
substituting u = a6, v = c6 yields the condition for A6 to be on this line. But these
are precisely conditions (1.49) and (1.50). To determine how much a point with
coordinates u = aj , v = cj is above or below the solution line in the v-direction, we
first determine the ordinate of the point where the line u = aj cuts v = π0 + π1u,
namely at v = π0 + π1aj, and then subtract this value from the ordinate cj of Aj

which is exactly what we did to compute c̄j in (1.51). Thus Aj is above, on, or
below the line according to whether c̄j > 0, c̄j = 0, or c̄j < 0 is true.

The condition that a basic feasible solution be minimal is that c̄j ≥ 0 for all
nonbasic variables cj . Geometrically it states that a basic feasible solution is optimal
if all points Aj lie on or above the solution line corresponding to some pair of Ajs.
For example, in Figure 1-15, the requirement line u = b cuts the line segment joining
A5 to A10, and all other points Aj lie above the extended support line joining these
two points; hence the minimal solution is obtained by using x5 and x10 as basic
variables.
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Figure 1-17: Geometry of the Simplex Algorithm for the Product Mix Problem

On the other hand, if there is a point Aj , as in Figure 1-16, below a given solution
line, then join Aj to A1 and to A6 and consider the convex figure S formed by the
points A1, A6, and Aj . This is the convex hull of three points in general position in
m = 2 dimensions, which is a two-dimensional simplex. If Aj is below the solution
line, every point of this simplex S is on or below the solution line. Recall that G
is the intersection of the requirement line with the solution line. If G is not at a
vertex, there is a segment G∗G on the requirement line belonging to S with points
below the solution line with G∗ the lowest point on the requirement line in S. Thus
there exists a new solution line passing through G∗ — it is either A1Aj or A6Aj

depending on whether Aj is on the right or left of u = b. We are now able to repeat
the iterative process with the pair of points A1, Aj or A6, Aj .

In Figure 1-17, we illustrate these steps of the Simplex Algorithm geometrically
on (1.53) below, which is the Product Mix Problem of Linear Programming 1. Find
min z, yj ≥ 0, such that

.2y1 + .1y2 + .3y3 + .8y4 + 0y5 + 1y6 = .4
−2.4y1 − 2.0y2 − 1.8y3 − .8y4 + 0y5 + 0y6 = z (min) (1.53)

and the convexity constraint

y1 + y2 + y3 + y4 + y5 + y6 = 1 (1.54)

Let the coordinates of a point Aj in Figure 1-17 be the coefficients of yj in the
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third and first equations:

A1 =
(

.2
−2.4

)
; A2 =

(
.1

−2.0

)
; A3 =

(
.3

−1.8

)
;

A4 =
(

.8
−0.8

)
; A5 =

(
0.0
0.0

)
; A6 =

(
1.0
0.0

)
.

The simplex iterations may be summarized as follows:

Iteration Basic Solution Simplex
variables line through vertices

0
1
2

y5, y6
y1, y6
y1, y4

A5, A6

A1, A6

A1, A4

}
A5, A6, A1}
A4, A6, A1

� Exercise 1.32 Consider the system of equations:

a11y1 + a12y2 + · · · + a1nyn = 0
a21y1 + a22y2 + · · · + a2nyn = 0

y1 + y2 + · · · + yn = 1
(1.55)

where a2
1j + a2

2j = 1 for j = 1, . . . , n. Plot the column coefficients of (1.55) as points in �2

and show that the problem geometrically is to find weights on a set of n points lying on a
unit circle with center at the origin so that the weighted center of gravity of the n points
is the origin.

THE GEOMETRY OF THE CASE m = 3

For m = 3 dimensions, consider the problem of finding xj ≥ 0 and min z satisfying
linear constraints, where one of the equations of the model is a convexity constraint,

x1 + x2 + · · ·+ xn = 1, (xj ≥ 0). : π0 (1.56)

leaving two other constraints and a cost equation.

a11x1 + a12x2 + · · · + a1nxn = b1 : π1

a21x1 + a22x2 + · · · + a2nxn = b2 : π2

c1x1 + c2x2 + · · · + cnxn = z.
(1.57)

Define as coordinates (u1, u2, v) of a point the coefficients of xj in (1.57); thus
Aj = (a1j , a2j , cj). The requirement line is u1 = b1, u2 = b2. A basic feasible
solution corresponds to a two-dimensional simplex with vertices, sayA1, A2, A3 such
that the requirement line intersects this two-dimensional simplex at some interior
point G as shown in Figure 1-18. Let v = π0 + π1u1 + π2u2 be the equation of the
current solution plane, that is, the plane passing through the vertices A1, A2, and
A3 of the simplex. If Aj is a point below this solution plane, then algebraically the
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Figure 1-18: Simplex Associated with an Iteration of the Simplex Algorithm (m = 3)

difference c̄j = cj− (π0 +π1a1j +π2a2j) < 0 is the vertical distance that Aj is below
the plane. In this case, a three-dimensional simplex with vertices Aj , A1, A2, and A3

can be formed and a point G∗ found where the requirement line pierces the simplex
at its lowest point. ThenG∗ is on one of the three faces A1A2Aj , A2A3Aj , A1A3Aj ,
depending on the position of Aj . In Figure 1-18, G∗ lies on the face A1A3Aj and
these three vertices A1, A3, Aj are used to determine the new two-dimensional
simplex.

The simplex criterion used to select a new basic variable xs does not select an
arbitrary xj corresponding to an Aj below the solution plane, but an As = Aj that
is a maximum distance c̄s = min c̄j below the plane. Inspection of figures such as
Figure 1-15 and Figure 1-16 give credence to the belief that choosing such a point
would result in the point having a good chance of being in the optimal solution. If
the point chosen on each iteration is not dropped on some later iteration, then no
more than m iterations would be required to obtain an optimal solution. Empirical
evidence on thousands of problems confirms this choice criterion as a pretty good
practice, particularly when one notes that the computational work per iteration is
low. In Chapter 6 other criteria will be presented for selecting the incoming column
that result in fewer iterations and/or fewer computations than the simplex criterion
used here.

� Exercise 1.33 Study Figure 1-12 and Figure 1-14. Construct an example to show for
n = m + 2 that the simplex criterion c̄s = min c̄j could cause a maximum number of
iterations to be performed.
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1.6 NOTES & SELECTED BIBLIOGRAPHY

Klee & Minty [1972] created special examples (see Linear Programming 1) to show that
the Simplex Algorithm, using the criterion c̄s = min c̄j to select the incoming column,
would in the worst case pass through every extreme point before termination. However,
computational experience on many thousands of practical problems using this criterion has
demonstrated that the Simplex Algorithm required less than 3m steps. See, for example,
Klotz [1988], Lustig [1987], and Gill, Murray, Saunders, & Wright [1989].

The results reported in Gill, Murray, Saunders, & Wright [1989] for 53 problems drawn
from practical situations and varying sizes (m = 28 to m = 2263; and n = 32 to n = 9799)
show that: 23 of the problems are solved in less than m iterations; 14 are solved in between
m and 2m iterations; 3 are solved in between 2m and 3m iterations; and 13 required
more than 3m iterations. For many years the explanation for this observed efficiency
of the Simplex Method remained a mystery. Papers that began to appear in the early
1980s provided a partial theoretical explanation for randomly generated problems solved
by the Simplex Algorithm and its variants; see Borgwardt [1982a, 1982b, 1987a, 1987b]
and Smale [1982]. For example, Smale showed that when the linear program min z = cTx,
x ≥ 0, Ax ≥ b is solved by the self-dual parametric algorithm (see Section 6.5), the average
number of iterations grows proportional to n when m is fixed. Borgwadt showed, for the
linear program min z = −cTx, x ≥ 0, Ax ≤ e, where e = (1, 1, . . . , 1)T and where c and the
rows of A are assumed to be independently, and identically distributed, and symmetrically
distributed under rotation about the origin, that the expected number of iterations (by a
variant of the Simplex Algorithm) grows proportional to n4m1/(n−1).

In 1957, W. M. Hirsch conjectured that, by proper choice of variables to enter the basic
set, it is always possible for linear programs with bounded solution sets to pass from any
basic feasible solution to any other in m or fewer pivot steps, where each basic solution
generated along the way must be feasible. For the cases m ≤ 5 the conjecture is known
to be true. For m > 5, the problem is a famous unsolved conjecture. Klee and Walkup
[1967] have constructed examples to show that the Hirsch conjecture is false if the set of
feasible solutions is unbounded. They have also proved that the Hirsch conjecture is true
for all polytopes for which n − m ≤ 5. Todd [1980] has provided a counter-example for
the Monotonic Bounded Hirsch conjecture.

The concept of separating hyperplanes and the theorems of the alternatives can be

used to prove many important results in mathematical theorems. For further discussions

on separation theorems see Avriel [1976], Berge [1963], and Rockafellar [1970]. Tucker

[1955] is recommended as reading for Section 1.3 which discusses properties of the Simplex

Method.

1.7 PROBLEMS

1.1 Review: Define the following terms:

(a) Convex set, extreme point of a convex set.

(b) Polytope, polyhedron.
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(c) Degenerate basic feasible solution for:

Minimize cTx = z
subject to Ax = b

x ≥ 0.

(d) Convexity constraint.

1.2 Review the relationship between convex sets and linear programming.

1.3 Look at the feasible region defined by:

x1 + 2x2 ≤ 6
2x1 + x2 ≤ 6
2x1 + 2x2 ≤ 7
x1, x2 ≥ 0.

(1.58)

(a) Set up an initial tableau with three slack variables.

(b) Draw the feasible region in (x1, x2)-space. Label the constraints.

(c) Notice that, including nonnegativity, we have five constraints and five vari-
ables. We can associate each variable with a constraint, so that for each
extreme point of the feasible region there corresponds a basic feasible so-
lution, and so that the extreme point is the intersection of the constraints
associated with the nonbasic variables of the solution. What is this asso-
ciation, i.e., what variables do we associate with what constraints? What
is the basic feasible solution corresponding to each extreme point of the
feasible region?

(d) Suppose we add the constraint:

x1 ≤ 3. (1.59)

In your diagram, the extreme point (3, 0) of the feasible region is now the
intersection of three constraints, and any two of them will uniquely specify
that extreme point. Thus there are three distinct bases that correspond
to that extreme point. What are the basic variables in each of these three
bases? Is it still true that there is a one-to-one correspondence between
basic feasible solutions and extreme points of the feasible region? Show
that the basic feasible solutions corresponding to the extreme point (3, 0)
are all degenerate.

(e) In part (d) we created an example of degeneracy by using a redundant
system of inequalities. The redundancy can be seen in the diagram in that
we could remove one of the constraints without changing the feasible region.
Give an example of degeneracy with a nonredundant system of inequalities.
Draw a picture to demonstrate this.

1.4 Dantzig [1963].

(a) Show that the set of possible values of any variable xk of a linear program
forms a convex set, in this case, a straight line segment a ≤ xk ≤ b.

(b) Show that the set of possible values of two variables, say (x1, x2) or (x1, z)
satisfying a linear program, forms a convex set in two dimensions.
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(c) As a corollary to part (a), show if xk is treated as a parameter and can take
on a range of possible values, then the value of min z becomes a convex
function of xk.

1.5 Let F = {x ∈ Rn | Ax ≤ b }. For each x ∈ F , let T (x) = { i | Ai•x = bi } be
the “tight” constraints of x. Show that x is an extreme point of F if and only
if the rank of AT (x)• is n.

1.6 Given the coordinates (x1, x2) of five points in �2:

P1 =

(
0
0

)
, P2 =

(
0
1

)
, P3 =

(
0
2

)
, P4 =

(
1
0

)
, and P5 =

(
2
0

)
.

(a) Write down the relations defining the convex hull of P1, P2, P3, P4, and P5.

(b) Use the FME process (see Linear Programming 1) to define the feasible
region in terms of x1 and x2 only.

(c) Plot the points P1, P2, P3, P4, and P5 and verify your result.

1.7 The hypercube

0 ≤ xj ≤ 1 for j = 1, . . . , n

is expressed through 2n inequalities. If expressed as a convex hull of its extreme
points, show that there are 2n variables λj ≥ 0 and n variables xj in n + 1
constraints.

1.8 Dantzig [1963].

(a) The process of increasing the variable xs in the Simplex Algorithm, while
holding the other independent variables fixed at zero, generates a class of
solutions corresponding to an edge in a convex polyhedron of feasible so-
lutions in the case that the vertex corresponds to a nondegenerate basic
feasible solution. What can happen in the case that the vertex is degener-
ate?

(b) If a basic solution is nondegenerate, there are precisely n−m neighbors of
its corresponding extreme point, and these are generated by increasing one
of the n − m independent variables while holding the remainder fixed at
zero. What can happen if the basic solution is degenerate?

1.9 Dantzig [1963]. Devise a method for finding the second best basic feasible solu-
tion. Generalize to the third best, fourth best, etc. Discuss any complications.

1.10 Dantzig [1963]. Show that if r variables have unique and nonnegative values
when the remaining variables are set equal to zero, the feasible solution is an
extreme-point solution.

1.11 Dantzig [1963]. Given an extreme-point solution ( v1, v2, . . . , vn ), show that if
the variables xj are set equal to zero corresponding to vj = 0, then the remaining
variables are uniquely determined and xj = vj > 0.

1.12 W. M. Hirsch Conjecture, [1957, Private Communication with Dantzig], un-
solved. Does there exist a sequence of m or less pivot operations, each gener-
ating a new basic feasible solution, which starts with some given basic feasible
solution and ends with some other given basic feasible solution, where m is the
number of equations? Expressed geometrically:
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Given a bounded convex region in (n − m)-dimensional space de-
fined by n half-planes, is m an upper bound for the minimum-length
chain of adjacent vertices joining two given vertices? If not, what is
the minimum length chain of adjacent vertices joining the two given
vertices.

1.13 Gale in Dantzig [1963]. Prove that a square homogeneous linear inequality
system always has a nontrivial solution.

1.14 Dantzig [1963]. Suppose P1, P2, . . . , Pk, . . . is an infinite collection of points in
m-dimensional space. Let C be the set of points generated by forming nonneg-
ative linear combinations of finite subsets of these points. Let C′ be the set of
points generated by forming nonnegative linear combinations of subsets of m or
fewer of these points. Show that C and C′ are identical convex cones.

1.15 Ph.D. Comprehensive Exam, June 15, 1967, at Stanford. Let

C =
{
x ∈ Rn | Ax = b, x ≥ 0, cTx = zmin

}
where xmin > −∞ is the minimal value of x in the linear program

Minimize z = cTx subject to Ax = b, x ≥ 0.

(a) Prove that C is a convex set in �n.

(b) What is true about C if the solution to the linear program is unique?

(c) Prove that

C̄ =
{

(b, z) | Ax = b, x ≥ 0, cTx = z, for some x
}

is a convex set.

(d) Prove that

C̄ =
{

(b, z̄) | Min cTx = z̄ for Ax = b, x ≥ 0 and each fixed b
}

is a convex set.

(e) Prove that z̄ in part (d) can be regarded as a convex function of b.

1.16 Carry out the steps of the Simplex Method both algebraically and geometrically
on

(a) The Product Mix Problem (Linear Programming 1):

Minimize −12x1 − 20x2 − 18x3 − 40x4 = z
subject to 4x1 + 9x2 + 7x3 + 10x4 + x5 = 6000

x1 + x2 + 3x3 + 40x4 + x6 = 4000
xj ≥ 0, j = 1, . . . , 6.

(b) The Blending Problem (Linear Programming 1):

Minimize the Objective
4.1x1 +4.3x2 +5.8x3 +6.0x4 +7.6x5 +7.5x6 +7.3x7 +6.9x8 +7.3x9 = z

subject to
x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 = 1

.2x1 + .5x2 + .3x3 + .3x4 + .3x5 + .6x6 + .4x7 + .1x8 + .1x9 = .3

.3x1 + .4x2 + .2x3 + .4x4 + .3x5 + .3x6 + .5x7 + .3x8 + .1x9 = .3

.5x1 + .1x2 + .5x3 + .3x4 + .4x5 + .1x6 + .1x7 + .6x8 + .8x9 = .4
and xj ≥ 0, j = 1, . . . , 9.
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Show the correspondence between the algebraic and geometric methods.

1.17 Dantzig [1963].

(a) Use the Fourier-Motzkin Elimination procedure (see Linear Programming 1)
to solve

3y1 + 4y2 = v (max)
2y1 + y2 ≤ 2
−3y1 + y2 ≤ −3
y1 − 2y2 ≤ 6

3y1 + 9y2 ≤ 1
−y1 ≤ −2.

(b) Solve the preceding, using the following variant of the Simplex Method: for
those with positive right-hand sides introduce slack variables yj ≥ 0; for
those with nonpositive right-hand sides introduce artificial excess variables
yj ≥ 0. Apply the usual Simplex Method to minimizing the sum of artificial
variables, in this case y4 + y7 = w. However, note that y1 and y2 are not
restricted in sign; see part (c).

(c) Invent a variant of the Simplex Method that permits specified variables to
be unrestricted in sign. Apply this to part (b).

1.18 Dantzig [1963]. Solve
3y1 + 4y2 = v (max)
2y1 + y2 ≤ 2
y1 − 2y2 ≤ 6

3y1 + 9y1 ≤ 1
y1 ≥ 0

y2 ≥ 0.

using the Simplex Method. Interpret geometrically the simplex steps in the
two-dimensional space of y1 and y2.

1.19 Dantzig [1963].

(a) Given a system

c1x1 + c2x2 + · · · + cnxn = z (min)

a1x1 + a2x2 + · · · + anxn = b

x1 + x2 + · · · + xn = 1 (xj ≥ 0)

show that the solution line v = π∗0 +π∗1u associated with the minimal basic
solution must satisfy

π∗0 + π∗1b = min z

cj − (π∗0 + π∗1aj) ≥ 0

(b) Prove in part (a) that the convex hull of points Aj = (aj , cj) lies on or
above some given line v = π0 + π1u, if

cj − (π0 + π1aj) ≥ 0.

Use this to show that such a line must cut the requirement line u = b1 in a
point, whose ordinate v ≤ min z.
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1.20 Dantzig [1963]. Note that the dual of a standard linear program is a system
of inequalities in unrestricted variables. Suppose one is given a system in the
latter form; review how its dual may be used as a third way to get a standard
linear program from a system of linear inequalities. Find the standard linear
program of which this is the dual:

π0 + .2π1 ≤ −2.4

π0 + .1π1 ≥ −2.0

π0 + .3π1 ≤ −1.8

π0 + .8π1 ≤ −.8
π0 ≤ 0

π0 + π1 ≤ 0

π0 ≤ v.

Solve the dual, by using the Simplex Method and also by using the elimination
method, and prove that max v = min z of the dual original system.

1.21 Dantzig [1963]. If v = π0 +π1u1 +π2u2 represents the solution plane associated
with A1, A2, A3 in Figure 1-18, interpret the conditions

vj − (π0 + π1a1j + π2a2j) = 0 for j = 1, 2, 3

and the quantities
vj − (π0 + π1a1j + πa2j) = c̄j

both algebraically in the Simplex Method and geometrically.

1.22 Wolfe [1960]. A third geometry of the Simplex Method can be obtained by
regarding a column j as representing a line π0 + ajπ1 = cj in (π0, π1)-space.
Thus, this procedure can be interpreted to be in the same space as the space
of independent variables π0 and π1 of the dual linear programming problem
π0 + bπ1 = v (max), π0 + ajπ1 ≤ cj , for j = 1, . . . , n. Show that the simplex
procedure for solving the dual is different from the interpretation of the simplex
procedure for solving the original problem in this geometry. (The procedure
of Kelley, see Wolfe [1960], for solving nonlinear programs is based on this
geometry.)

1.23 (a) Interpret the problem: Find xj ≥ 0, j = 1, . . . , 4, and min z satisfying

x1 + 2x2 + 3x3 + 4x4 = z (Min)
x1 + x2 + x3 + x4 = 4
x1 + 2x2 + 3x3 + 4x4 = −2

as a Center-of-Gravity-Problem, see Section 1.5

(b) Dualize and graph the dual problem.

(c) Solve the dual using the Fourier-Motzkin Elimination Method (see Linear
Programming 1).

(d) Solve the primal using the Simplex Method. Trace the steps of the proce-
dure as graphed in (a) and (b).

1.24 Minkowski [1896]. Theorem: A feasible solution of a bounded linear program
can be expressed as a nonnegative linear combination of basic feasible solutions.
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Geometrically stated, a point of a bounded convex polyhedron C, defined as
the intersection of finitely many half-spaces, can be expressed as a nonnegative
linear combination of extreme points of C.
Show that the theorem is false if C is unbounded.

1.25 Steinitz [1913]. Theorem: LetM be a given set of points in a Euclidean (m−1)-
dimensional space and let Q be in the convex hull of M. It is possible to find
m points P1, P2, . . . , Pm (not necessarily different) of M, and m real numbers
x1 . . . xm so that xi ≥ 0,

∑m

1
xi = 1, and

∑m

1
xiPi = Q.

1.26 Dantzig [1963]. Theorem: Let M be a given infinite set of points in Euclidean
m-dimensional space and let Q be in the convex cone spanned by M. It is
possible to find m points P1, P2, . . . , Pm (not necessarily different) of M, and
m real numbers x1 ≥ 0, . . . , xm ≥ 0, so that

∑m

1
xiPi = Q.

Hint: Establish this theorem for any point Q representable as a nonnegative
finite linear combination of points Pi ∈ M. Show that all such points Q define
the convex cone spanned byM.

1.27 For the following system, is (4, 9, 0, 3, 0, 0)T an extreme point? If so, why? If
not, is it on an edge?

x1 + x2 − 3x4 + 3x5 + x6 = 4
x1 + 2x2 − 5x4 + 5x5 + 3x6 = 7
− x2 + x3 + 2x4 − 5x5 + x6 = −3

xj ≥ 0, j = 1, . . . , 6.

1.28 Consider a polyhedron in n-dimensions defined by the following set of linear
constraints

{x | Ax ≤ b }
Suppose that we wish to embed this polyhedron in the “smallest” possible rect-
angle whose sides are parallel to the coordinate axes. Discuss how linear pro-
gramming can be used to solve this problem.

1.29 Let P1, P2, . . . , Pn be points in �m where m and n are finite positive integers
and Pj are distinct points in �m.

(a) Prove

S =
{
P | P =

n∑
j=1

Pjxj ,

n∑
j=1

xj = 1, xj ≥ 0
}
∈ �m

is a convex set.

(b) Prove S is a bounded convex set in �m.

(c) Prove S is a bounded polyhedral set (i.e., polytope) in �m.

(d) Prove that there are no extreme points of S other than some subset of the
P1, P2, . . . , Pn.

(e) Prove that S has only a finite number of extreme points.

(f) Prove that S has at least one extreme point.

(g) Given some Pi, say P1, how would you determine whether or not P1 is an
extreme point?

(h) If the system

n∑
j=2

xj = 1 where xj ≥ 0 for j = 2, . . . , n,
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n∑
j=2

Pjxj = P1,

is infeasible, prove that there exist (π0, π)T such that

π0 + πTPj ≥ 0 for j = 2, . . . , n

π0 + πTP1 ≤ −1

Also prove that every point Pj , j > 1, is separated from P1 by two parallel
hyperplanes a distance greater than ∆ where

∆ = min
j=2,...,n

(π0 + πTPj)− (π0 + πTP1).

What is used to measure distance? What would be the formula if the
Euclidean distance was used?

(i) Given two polytopes C1 and C2 in �m defined by

C1 =
{
P | P =

n∑
j=1

Pjxj ,

n∑
j=1

xj = 1, xj ≥ 0
}
∈ �m

Pj ∈ �m for j = 1, . . . , n

C2 =
{
Q | Q =

n̄∑
k=1

Qkyk,

n̄∑
k=1

yk = 1, yk ≥ 0
}
∈ �m,

Qk ∈ �m for k = 1, . . . , n̄,

how would you determine whether C1 and C2 have points in common?

(j) Given two nonempty polyhedral sets C1 and C2 in �m defined by:

C1 =
{
x | Ax ≥ b

}
, A : m× n,

C2 =
{
x | Āx ≥ b

}
, Ā : m× n,

how would you determine whether the ployhedral sets C1 and C2 have a
point x = xo in common?

1.30 Bazarra, Jarvis, & Sherali [1990]. Let S be a nonempty open set; i.e., if x0 ∈ S
then there exists an ε > 0 such that ||x − x0|| < ε implies that x ∈ S . Show
that the problem

Minimize cTx = z
subject to x ∈ S ,

with c �= 0 possesses no optimal solution.

1.31 Ph.D. Comprehensive Exam, September 21, 1974, at Stanford. Solve the follow-
ing problems:

(a) Consider the set
X = {x | Ax ≤ a }

where A is an m× n matrix. The dimension of X is defined to be the
dimension of the highest-dimensional hyperplane whose interior lies in X .
Suppose there is a point x̄ ∈ X such that

Aix̄ < ai
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where Ai denotes the ith row of A. Let

Y = { y | By ≤ b }

where [B, b] is obtained from [A, a] by deleting its ith row. Prove that the
sets X and Y have the same dimension.

(b) Devise a scheme to determine the dimension of the set

Z = { z | Cz = c, z ≥ 0 }, where C is a m× n matrix.

Assume the set Z is nonempty.

1.32 Ph.D. Comprehensive Exam, September 21, 1974, at Stanford. Let A = [aij ]
denote a positive matrix of order m× n, i.e.,

aij > 0, i = 1, . . . ,m, j = 1, . . . , n.

Prove, given ri ≥ 0, i = 1, . . . ,m and cj ≥ 0, j = 1, . . . , n with

m∑
i=1

ri =

n∑
j=1

cj

that there exists ui ≥ 0, i = 1, . . . , m, vj ≥ 0, j = 1, . . . , n such that

n∑
j=1

uiaijvj = ri, i = 1, . . . ,m,

m∑
i=1

uiaijvj = αcj , j = 1, . . . , n.

1.33 Ph.D. Comprehensive Exam, September 27, 1975, at Stanford. In a paper sub-
mitted for publication in an operations research journal, the author considered
a set

S =
{

(x, y) | Ax+By ≥ c, x ≥ 0, y ≥ 0
}

where A is an m× n matrix, B is a positive semi-definite m×m matrix and
c ∈ �m. The author explicitly assumed the set S is compact in �n+m. A
reviewer of the paper pointed out that the only compact set of the above form
is the empty set. Prove the reviewer’s assertion.

1.34 Ph.D. Comprehensive Exam, September 1982, at Stanford. Given two sets

S = {x ∈ �n | Ax = b, x ≥ 0 },
T = {x ∈ �n | Āx ≤ b̄ }.

(a) Prove S is a convex set.

(b) Set up a linear program for determining whether S and T have a point in
common.

(c) Show how to use the Simplex Method for determining a separating hyper-
plane when S and T have no point in common. That is, find a hyperplane
πTx = πo such that

πTx < πo for all x ∈ S and πTx > πo for all x ∈ T .
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πTĀ•j = c̄j

Hyperplane Hj

corresponding
to column j

Figure 1-19: Hyperplane Hj and Simplex S

1.35 Ph.D. Comprehensive Exam, September 26, 1987, at Stanford. Yinyu Ye [1987]
proposes a criterion that, if satisfied by column j on iteration t of the Simplex
Method, allows one to drop the column because it cannot be in any optimal
basis.

The PRIMAL linear program is

Minimize c̄Tx = z
subject to Āx = b̄, b̄ > 0, Ā : m× n,

x ≥ 0.

Assume we are in iteration t and the system is in canonical form so that

Ā = [I,N ], note that b̄ > 0,

c̄ = [0, c̄N ],

where N refers to the nonbasic column of Ā, c̄ the corresponding relative cost
factors, and I is the identity matrix.

The DUAL problem is
Maximize πTb̄ = z

subject to πTĀ ≤ c̄
π ≤ 0.

Assume zLB is a known finite lower bound for the primal system.

(a) Prove (or cite a theorem) that an optimal primal feasible solution exists.

(b) Prove zLB ≤ max z.

(c) Prove that dual optimal π = π∗ satisfies conditions πTb ≥ zLB, π1 ≤ 0,
π2 ≤ 0, . . . πm ≤ 0.

(d) Prove that conditions on π described in (c) form a simplex S in the dual
m-dimensional space of π.

(e) Prove (or cite a theorem) that the set of π that satisfies the set of dual
conditions,

πTĀ•j ≤ c̄j , j = 1, . . . , n,

form a convex set in π-space where Ā•j is column j of Ā.

(f) Prove that a basic feasible solution to the primal problem corresponds to
the point in π-space where m hyperplanes,

Hj =
{
π | πTĀ•j = c̄j

}
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for some j = j1, j2, . . . , jm, intersect. Show that the origin π = 0 is such a
point π. Show that the orign π = 0 lies in the simplex S , and in fact is one
of the vertices of S . See Figure 1-19.

(g) Prove that optimal basic feasible solution to the primal problem corresponds
to a point π∗ in π space where certain m of the hyperplanes Hj intersect.
Prove π∗ ⊂ S .

(h) Prove that if a column j corresponding to a hyperplane πTĀ•j = c̄j does
not intersect simplex S , column j cannot be a basic column of any optimal
basic feasible solution and therefore can be dropped.

(i) Specify exactly what the m coordinates of each of the m + 1 vertices of S
are. Devise an algebraic test for checking that Hj does not intersect S .
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C H A P T E R 2

DUALITY AND THEOREMS

OF THE ALTERNATIVES

2.1 THE DUALITY THEOREM

The primal problem for a linear program stated in von Neumann “symmetric” form
is:

PRIMAL:
Minimize cTx = z
subject to Ax ≥ b, A : m× n,

x ≥ 0,
(2.1)

and the dual problem is

DUAL:
Maximize bTy = v

subject to ATy ≤ c, A : m× n,
y ≥ 0.

(2.2)

The von Neumann symmetric form is actually not symmetric but skew-symmetric
because the full system of relations is: 0 A −b

−AT 0 c
b −c 0

 y
x
1

 ≥
 0

0
0

 , x ≥ 0, y ≥ 0. (2.3)

The Duality Theorem is a statement about the range of possible z values for the
primal versus the range of possible v values for the dual. This is depicted graphically
in Figure 2-1, for the case where the primal and dual are both feasible.

Von Neumann stated but did not prove the Duality Theorem: If the primal (2.1)
and dual (2.2) have feasible solutions, then there exist optimal feasible solutions to

43
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both the primal and the dual that are equal. We shall formally state and prove
the Duality Theorem using the Infeasibility Theorem, which is proved using the
Fourier-Motzkin Elimination Process; see Linear Programming 1. Here we state
the Infeasibility Theorem without proof.

THEOREM 2.1 (Infeasibility Theorem) The system of linear inequalities

n∑
j=1

aijxj ≥ bj for i = 1, . . . ,m (2.4)

is infeasible if and only if there exists a nonnegative linear combination of the in-
equalities that is an infeasible inequality. In matrix notation, the system Ax ≥ b
is infeasible if and only if there exists a vector y ≥ 0 such that yTAx ≥ yTb is an
infeasible inequality, namely one where yTA = 0 and yTb > 0.

� Exercise 2.1 State the Infeasibility Theorem in terms of the system

Ax = b
x ≥ 0

(2.5)

and apply Phase I of the Simplex Algorithm to prove the Infeasibility Theorem.

COROLLARY 2.2 (Infeasible Equation) If a system of linear equations in
nonnegative variables is infeasible, there exists a linear combination of the equations
that is an infeasible equation in nonnegative variables.

Assuming that primal and dual solutions exist, the weaker form of the Duality
Theorem, which follows, is obvious.

THEOREM 2.3 (Weak Duality Theorem) If xo is any feasible solution to
the primal (2.1) and yo is any feasible solution to the dual (2.2), then

yoTb = vo ≤ zo = cTxo. (2.6)

Proof. We have
Axo ≥ b
cTxo = zo

yoTA ≤ cT

yoTb = vo

Multiplying Axo ≥ b by yoT on the left and multiplying yoTA ≤ cT by xo on the
right we obtain

yoTAxo ≥ yoTb = vo

yoTAxo ≤ cTxo = zo

Therefore,
vo = yoTb ≤ yoTAxo ≤ cTxo = zo.

This concludes our proof.
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COROLLARY 2.4 (Bounds on the Objectives) Every feasible solution yo

to the dual yields a lower bound yoTb to values of zo for feasible solutions xo to the
primal. Conversely, every feasible solution xo to the primal yields an upper bound
cTxo to values of vo for feasible solutions yo to the dual.

� Exercise 2.2 Prove Corollary 2.4.

COROLLARY 2.5 (Optimality) If vo = zo then vo = max v and zo = min z.

We can depict the relationship by plotting the points vo and zo on a line as
shown in Figure 2-1.

vo sup v inf z zo

� �Duality Gap

Figure 2-1: Illustration of the Duality Gap

We are now ready to formally state and prove Von Neumann’s Duality Theorem
which states that if feasible solutions to the primal and dual exist then the duality
gap (depicted in Figure 2-1) is zero and sup v is actually attained for some choice
of y, and inf z is attained for some choice of x.

THEOREM 2.6 (Strong Duality Theorem) If the primal system min z =
cTx, Ax ≥ b, x ≥ 0 has a feasible solution and the dual system max v = bTy,
ATy ≤ c, y ≥ 0 has a feasible solution, then there exist optimal feasible solutions
x = x∗ and y = y∗ to the primal and dual systems such that

bTy∗ = max v = min z = cTx∗. (2.7)

Proof. Consider the system of inequalities and corresponding infeasibility mul-
tipliers:

Ax ≥ b : ỹ (2.8)
Ix ≥ 0 : ũ (2.9)

−ATy ≥ −c : x̃ (2.10)
Iy ≥ 0 : ṽ (2.11)
bTy − cTx ≥ 0 : θ (2.12)

We first show that (2.8) through (2.12) is a feasible system from which it fol-
lows by the Weak Duality Theorem 2.3 that strong duality holds. Assume, on the
contrary, that (2.8) through (2.12) is an infeasible system. In general, if Ms ≥ d
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is an infeasible system, then, by the Infeasibility Theorem, there exist infeasibility
multipliers π ≥ 0 such that (πTM)s ≥ πTd is an infeasibility inequality, i.e., one
where πTM = 0 and πTd > 0. These multipliers are not unique; because of the
homogenity, π may be replaced by any scalar multiple λπ ≥ 0, where λ ≥ 0.

Let the infeasibility multipliers be ỹT ≥ 0, ũT ≥ 0, x̃T ≥ 0, ṽT ≥ 0, and θ = 1 for
(2.8) through (2.12), respectively, where we assume that the multipliers have been
rescaled so that θ = 1. Note that it must be true that the scalar θ > 0 because
θ = 0 would imply that there is no feasible solution to the system (2.8) through
(2.11), contrary to the hypothesis that Ax ≥ b, x ≥ 0 and ATy ≤ c and y ≥ 0 are
feasible systems.

Applying the infeasibility multipliers on the left of (2.8) through (2.12) and
summing, we obtain the relations:

−x̃TAT + ṽTI + bT = 0 or Ax̃ ≥ b (2.13)
ỹTA+ ũTI − cT = 0 or ỹTA ≤ cT (2.14)
ỹTb− x̃Tc > 0 or ỹTb > cTx̃ (2.15)

If we multiply (2.13) on the left by ỹT and (2.14) on the right by x̃, we obtain
ỹTb ≤ ỹTAx̃ ≤ cTx̃ which contradicts (2.15). Hence we see that (2.8) through (2.12)
is always a feasible system.

Since the system (2.8) through (2.12) is feasible, let x, y be any feasible solution
satisfying (2.8) through (2.12). Multiplying (2.8) on the left by yT ≥ 0 and (2.10)
on the left by xT ≥ 0, we obtain

yTb ≤ yTAx = xTATy ≤ xTc = cTx.

Comparing this with yTb ≥ cTx from (2.12) we conclude that bTy = cTx. Therefore
every feasible solution of (2.8) through (2.12) satisfies the conditions of the Duality
Theorem.

� Exercise 2.3 Show that the proof of the Strong Duality Theorem 2.6 is essentially a
proof that there is no separating hyperplane between the inequalities defining the primal
feasible region and the dual feasible region when both the primal and dual systems are
feasible.

THEOREM 2.7 (Primal/Dual Interchange Theorem) For every theorem
involving primal and dual problems there is an analogous theorem in which the word
dual (meaning dual system) is replaced by the word primal (meaning primal system)
and the word primal (meaning primal system) is replaced by the word dual (meaning
dual system).

� Exercise 2.4 Prove the Theorem 2.7.

� Exercise 2.5 Why does Theorem 2.7 not apply to the theorem: “the dual of the dual
is the primal.”
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2.2 ADDITIONAL THEOREMS ON DUALITY

2.2.1 UNBOUNDEDNESS THEOREM

Definition (Homegeneous Inequalities and Solution): A system of linear in-
equalities Ax ≥ b is homogeneous if the right-hand side vector is b = 0. A
solution x = xh is called a homogeneous solution associated with Ax ≥ b if
Axh ≥ 0.

A fundamental property of homogeneous solutions of linear systems of inequali-
ties is that any scalar multiple of a homogeneous solution to the system of linear
inequalities is a homogeneous solution.

Definition: A homogeneous solution is called nontrivial if xh �= 0.

THEOREM 2.8 (Unboundedness) Consider the primal (2.1) and dual (2.2)
systems.

I If a feasible solution to the primal system exists, but not to the dual, there
exists, for the primal, a class of solutions x = x∗ + λxh, z = z∗ + λzh such
that Ax∗ ≥ b, x∗ ≥ 0, Axh ≥ 0, xh ≥ 0, and zh = cTxh < 0, such that
z → −∞ as λ→∞.

II If a feasible solution to the dual system exists, but not to the primal, there
exists, for the dual, a class of solutions y = y∗ + λyh, v = v∗ + λvh such that
ATy∗ ≤ c, y∗ ≥ 0, ATyh ≤ 0, yh ≥ 0, and vh = bTyh > 0, such that v →∞ as
λ→∞.

III If neither the primal nor dual system has a feasible solution there exist non-
negative homogeneous solutions xh, yh, to the primal and dual systems such
that zh = cTxh < 0 and vh = bTyh > 0.

Proof.

I For the dual AyT ≤ c, y ≥ 0 to be infeasible, there must (by the Infeasibility
Theorem) exist multipliers xh ≥ 0 such that Axh = 0, cTxh < 0. Thus Part I
follows.

II We prove Part II by applying Theorem 2.7 to Part I. We replace the word
primal with the word dual, the word dual with the word primal, and change
the objective so that we are minimizing.

III To prove Part III we note that if the primal problem is not feasible, we can
make it feasible by replacing b with b = Ae, where e = (1, 1, . . . , 1)T. Such
transformations of the right-hand side have no affect on the feasibility or non-
feasibility of the dual. Since the dual system is still infeasible, it follows from
Part I that we can find a xh such that zh = cTxh < 0. In an analogous way
we can apply Part II to show that we can find a yh such that vh = bTyh > 0.
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This completes the proof.

� Exercise 2.6 Apply the Simplex Algorithm to the primal problem, assuming the case
of a degeneracy rule to resolve degeneracy (see Chapter 5), to prove Part I of Theorem 2.8.

2.2.2 MISCELLANEOUS THEOREMS FOR THE
STANDARD FORM

In this section we state theorems for a primal system in standard form:

Minimize cTx = z
subject to Ax = b, A : m× n,

x ≥ 0,
(2.16)

and its dual:
Maximize bTπ = v
subject to ATπ ≤ c, A : m× n,

x ≥ 0.
(2.17)

THEOREM 2.9 (Primal/Dual Optimality Criteria) Let (x∗1, . . . , x∗n, z∗) be
a feasible solution to a primal linear program in standard form and (π∗1 , . . . , π∗m, v∗)
be a feasible solution to its dual, satisfying:

c̄∗ = c−ATπ∗ ≥ 0, bTπ∗ = v∗. (2.18)

Then a necessary and sufficient condition for optimality of both solutions is

c̄∗j = 0 for x∗j > 0. (2.19)

Proof. Let xj ≥ 0 be any feasible solution satisfying the primal problem (2.16),
and π be any multipliers satisfying the dual problem (2.17). Thus, c̄ = c−ATπ ≥ 0.
If Ax = b in (2.16) is multiplied on the left by πT and subtracted from the z-form,
we get

c̄Tx = z − v. (2.20)

By the sufficiency hypothesis, there is a particular feasible solution xj = x∗j ≥
0, z = z∗, and particular multipliers, πi = π∗i satisfying c̄∗j ≥ 0, such that c̄∗j = 0, if
x∗j > 0. Substituting these values in (2.20), the left-hand side vanishes term by term
and v∗ = z∗. Applying Corollary 2.5 we conclude that max v = v∗ = z∗ = min z.
This proves the sufficient part of the theorem.

To show the necessary part, by the Duality Theorem, we have v∗ = z∗. Substi-
tuting this into (2.20), the left-hand side must be zero. Since c̄j ≥ 0 and xj ≥ 0 by
hypothesis, the left-hand side is nonnegative term by term, and hence for it to be
zero all terms on the left must vanish, which means c̄∗j = 0 for x∗j > 0.
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THEOREM 2.10 (Existence of a Primal Optimum) If a feasible solution
exists for the primal and z has a finite lower bound, an optimal feasible solution
exists.

� Exercise 2.7 Prove Theorem 2.10 by proving that the dual is feasible and then applying
the Strong Duality Theorem.

� Exercise 2.8 Prove that Theorem 2.10 is an immediate consequence of applying the
Simplex Method to the primal problem.

COROLLARY 2.11 (Existence of a Dual Optimum) If an optimal feasible
solution exists for the primal, there exists an optimal feasible solution to the dual.

� Exercise 2.9 Show that Corollary 2.11 is a special case of Theorem 2.10.

� Exercise 2.10 Prove Corollary 2.11 by showing that the terminal conditions of the
Simplex Method generate an optimal feasible solution to the dual.

2.3 COMPLEMENTARY SLACKNESS

When the primal and dual systems are expressed in von Neumann symmetric form,
as systems of inequalities in nonnegative variables, Theorem 2.9 takes on a more
elegant symmetric form.

Let xj ≥ 0 be any feasible solution satisfying (2.1) and yi ≥ 0 be any feasible
solution satisfying (2.2); we assume here that feasible solutions exist. We rewrite
the former in standard equality form by substituting a vector of slack variables xs:

Minimize cTx = z
subject to Ax − Ixs = b

x ≥ 0
(2.21)

where xs = (xn+1, xn+2, . . . , xn+m)T ≥ 0 are variables that measure the extent of
inequality, or negative slack, between the left and right-hand sides of the inequalities.

It will be convenient to let ys = (ym+1, ym+2, . . . , ym+n) ≥ 0 measure the positive
slack in the inequalities of the dual system. Then (2.2) in standard equality form
becomes:

Maximize bTy = v
subject to ATy + Iys = c

y ≥ 0
(2.22)

where ys = (ym+1, ym+2, . . . , ym+n)T ≥ 0.
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Let (x, xs, z) be any feasible solution to the primal system (2.21) and let (y, ys, v)
be any feasible solution to the dual system (2.22). Multiplying Ax− Ixs = b on the
left by yT and subtracting from the z form in (2.21) we get

cTx− yTAx + yTxs = z − yTb. (2.23)

Multiplying ATy + Iys = c on the left by xT and subtracting the v form of equa-
tion (2.22) from it, we get

− bTy + xTATy + xTys = xTc− v. (2.24)

Adding (2.23) and (2.24) and cancelling we obtain

yT
sx+ yTxs = z − v. (2.25)

The left-hand side of (2.25) is nonnegative term by term, hence 0 ≤ z − v or v ≤ z.
Since we are assuming that primal and dual solutions exist, the hypothesis of the

Duality Theorem is satisfied and there exist optimal feasible solutions, (x, xs, z) =
(x∗, x∗s, z∗) and (y, ys, v) = (y∗, y∗s , v∗), to both systems with z∗ = v∗. Hence

(y∗s)Tx∗ + (y∗)Tx∗s = 0. (2.26)

Since (x∗, x∗s) ≥ 0 and (y∗, y∗s) ≥ 0, the left-hand side of (2.26) vanishes term by
term: [

y∗s
]
j
x∗j = 0 for j = 1, . . . , n

y∗i
[
x∗s

]
i

= 0 for i = 1, . . . ,m

establishing the following theorem.

THEOREM 2.12 (Complementary Slackness) For optimal feasible solu-
tions of the primal (2.1) and dual (2.2) systems, whenever the kth relation of either
system is slack, the kth variable of its dual is zero; if the kth variable is positive in
either system, the kth relation of its dual is tight, i.e.,

xkym+k = 0 k = 1, . . . , n and ykxm+k = 0 k = 1, . . . ,m. (2.27)

Comment: By a “slack constraint” we mean that the value of the slack variable in
the optimum solution is positive. By a “tight constraint” we mean that the value
of the slack variable is zero.
Comment: The primal variable x and dual slacks ys (similarly, the dual variables y
and primal slacks xs) are called complementary variables.

2.4 THEOREMS OF THE ALTERNATIVES

Although we state the various theorems of the alternatives using the term dual
linear program, these theorems (except Tucker’s) predate 1947–1948 when linear
programming was formulated and the term dual was first used. Instead the authors
of these theorems referred to the dual system in homogeneous form as adjoint or
transpose systems.
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2.4.1 GORDAN’S THEOREM

THEOREM 2.13 (Gordan [1873]) Either a linear homogeneous system of
equations Ax = 0 possesses a nontrivial solution in nonnegative variables or there
exists an equation, formed by taking some linear combination of the equations, that
has all positive coefficients. That is, either there exists an x = xo such that

Axo = 0, 0 �= xo ≥ 0 (2.28)

or there exists a π such that
πTA > 0. (2.29)

Proof. If (2.28) has a solution, then so does(
A
eT

)
x =

(
0
1

)
, x ≥ 0, (2.30)

where e = (1, 1, . . . , 1)T. If (2.30) has no solution, then by Corollary 2.2 of the
Infeasibility Theorem, there exist (π̃, η) such that

π̃TA+ ηeT = 0, π̃T0 + η > 0. (2.31)

Since η > 0 by (2.31), this implies

π̃TA = −ηeT < 0. (2.32)

Substituting π = −π̃, we obtain πTA > 0.

Example 2.1 (Illustration of Gordan’s Theorem) The system

2x1 − 3x2 = 0
3x1 − 2x2 = 0

has only a trivial solution x1 = 0, and x2 = 0. Therefore, according to Gordan’s theorem,
there must exist a π such that πTA > 0. It is easy to verify that one such π is π1 = −1,
π2 = 1. On the other hand, the system

x1 − 2x2 + x3 = 0
x2 − x3 = 0

has the nontrivial solution x1 = 1, x2 = 1, x3 = 1, implying, according to Gordan’s
theorem, that πTA > 0 results in an infeasible system. It is easy to verify that this is
indeed the case:

π1 > 0
−2π1 + π2 > 0
π1 − π2 > 0.

� Exercise 2.11 Prove the converse of Gordan’s Theorem, namely, if (2.29) is true then
this implies that the only feasible solution to Ax = 0, x ≥ 0 is x = 0.
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2.4.2 FARKAS’S LEMMA

THEOREM 2.14 (Farkas’s Lemma [1902]) If a linear homogeneous inequal-
ity

bTπ ≤ 0 (2.33)

holds for every π satisfying a system of homogeneous inequalities

ATπ ≤ 0, (2.34)

then the inequality bTπ ≤ 0 is a nonnegative linear combination x ≥ 0 of the in-
equalities of the system ATπ ≤ 0, that is,

Ax = b, x ≥ 0. (2.35)

Proof. Assume the hypothesis is true but, on the contrary assume, that there
exists no nonnegative linear combination x of (2.34) that yields (2.33). Then there
exists no feasible solution to the system (2.35). By Corollary 2.2 of the Infeasibility
Theorem, there exist multipliers πi = π0

i , that, when applied to (2.35), yield an
infeasible equation; the coefficients and right hand side of this equation are

ATπo ≤ 0,
bTπo > 0,

contrary to our hypothesis.

Example 2.2 (Illustration of Farkas’s Lemma) Note by adding the system of in-
equalities

π1 + 2π2 ≤ 0
π1 + π2 ≤ 0

the linear homogeneous inequality

2π1 + 3π2 ≤ 0

holds for every π satisfying the inequalities. It is easy to verify the statement of Farkas’s
lemma that there exists x ≥ 0 satisfying

x1 + x2 = 2
2x1 + x2 = 3,

namely x1 = 1 and x2 = 1.

� Exercise 2.12 Prove that the following is an equivalent statement of Farkas’s Lemma.
Either:

1. there exists an x ≥ 0 for which Ax = b,

2. or there exists a π for which ATπ ≥ 0 and bTπ < 0.
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� Exercise 2.13 State and prove the analogue of Farkas’s Lemma for linear equation
systems.

� Exercise 2.14 Show that Farkas’s Lemma implies the Infeasibility Theorem 2.1.

� Exercise 2.15 Apply the FME algorithm (Linear Programming 1) to prove Farkas’s
Lemma.

2.4.3 STIEMKE’S THEOREM

THEOREM 2.15 (Stiemke [1915]) Either a linear homogeneous system Ax =
0 possesses a solution with all variables positive or there exists a linear combination
of the equations that has all nonnegative coefficients, one or more of which are
positive. That is, either there exists an x = xo such that

Axo = 0, xo > 0, (2.36)

or there exists a π such that
0 �= ATπ ≥ 0. (2.37)

Proof. If the homogeneous system possesses a strictly positive solution, there
exists, by positive rescaling, a solution to the system

Ax = 0
x ≥ e, where e = (1, 1, . . . , 1)T.

(2.38)

Replacing x with x′ + e, where x′ ≥ 0, results in the system

Ax′ = −Ae
x′ ≥ 0 (2.39)

Either this system possesses a feasible solution or there exist, by Corollary 2.2 of
the Infeasibility Theorem, multipliers π such that the resulting linear combination

(πTA)x′ = −(πTA)e (2.40)

is an infeasible equation in nonnegative variables. That is, πTA ≥ 0 and −πTAe < 0;
but πTAe > 0 implies that at least one component of πTA is > 0 establishing the
theorem.

Example 2.3 (Illustration of Stiemke’s Theorem) The linear homogeneous system

x1 − x2 = 0
2x1 − x2 = 0
x1 > 0, x2 > 0
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Primal

Variables x1 ≥ 0 · · · xk ≥ 0 xk+1 ≥ 0 · · · xn ≥ 0 Rel Const
π1 a11 · · · a1k a1k+1 · · · a1n = 0
π2 a21 · · · a2k a2k+1 · · · a2n = 0

Dual
...

...
...

...
...

...
...

...
...

πm am1 · · · amk amk+1 · · · amn = 0
Relation ≤ · · · ≤ ≤ · · · ≤

Constants 0 · · · 0 0 · · · 0

Table 2-1: Tucker Diagram (Partitioned)

has no solution. Therefore, according to Stiemke’s Theorem, there must exist a π such
that 0 �= πTA ≥ 0. It is easy to verify that one such π is π1 = −1, π2 = 1, resulting in

ATπ =

(
1 2
−1 −1

)(
−1

1

)
=

(
1
0

)
.

On the other hand, the system

x1 − 2x2 + x3 = 0
x2 − x3 = 0

x1 > 0, x2 > 0, x3 > 0

has a solution x1 = 1, x2 = 1, x3 = 1, implying, according to Stkemke’s theorem, that
0 �= πTA ≥ 0 does not hold. It is easy to verify that this is indeed the case because

π1 ≥ 0
−2π1 + π2 ≥ 0
π1 − π2 ≥ 0

implies π1 = 0, π2 = 0, or ATπ =

(
0
0

)
.

2.4.4 MOTZKIN’S TRANSPOSITION THEOREM

The pair of homogeneous systems Ax = 0, x ≥ 0, and ATπ ≤ 0 may be viewed as
dual linear programs with zero-coefficient objectives 0Tx = min and 0Tπ = max.
These are displayed in the Tucker Diagram shown in Table 2-1. We assume each
column has at least one nonzero coefficient.

THEOREM 2.16 (Motzkin [1936]) Consider any arbitrary subset of k col-
umns; for example the first k columns shown as a partition in the diagram (see
Table 2-1) to the left of the vertical double line. Either there exists a solution to
the dual system ATπ ≤ 0, such that all inequalities corresponding to the subset hold
strictly, or the primal system Ax = 0, x ≥ 0 has a solution such that at least one
corresponding variable of the subset has a positive value.
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Proof. If there exists a solution to the primal system with the requisite property,
then one exists such that

x1 + x2 + · · ·+ xk = 1 (2.41)

where j = 1, . . . , k is the assumed subset. The remainder of the proof parallels the
proof of Gordan’s Theorem (See Theorem 2.13).

� Exercise 2.16 Complete the proof of the Motzkin Transposition Theorem.

Example 2.4 (Illustration of Motzkin’s Theorem) Consider the system:

x1 + x2 − x3 = 0
x2 = 0.

The dual system satisfies:
π1 ≤ 0
π1 + π2 ≤ 0
−π1 ≤ 0.

The dual clearly implies that π1 = 0 and π2 can take on any nonpositive value.
If we choose as the subset the variables x1 and x2, the first inequality in the dual

corresponding to this subset cannot hold strictly because π1 = 0 as we have just shown.
Hence, according to Motzkin’s theorem there must exist x ≥ 0 such that x1 +x2 > 0. This
is clearly true, because one solution is x1 = 1, x2 = 0, x3 = 1.

On the other hand, if we choose as the subset only the variable x2, the dual inequality
corresponding to this subset can be made strict by choosing π2 < 0. In this case, according
to Motzkin’s theorem, x2 = 0, which is indeed the case.

COROLLARY 2.17 (Complementary Pair) Consider the von Neumann pri-
mal/dual pair of homogeneous systems Ax ≥ 0, x ≥ 0 and ATy ≤ 0, y ≥ 0 with
zero-coefficient objectives, where A is m× n. If we subtract slack variables u ≥ 0
in the primal to obtain Ax − Iv = 0, x ≥ 0, then given an index p there exists a
pair of complementary solutions (vp, yp) such that either

vp
p > 0, yp

p = 0,

or
vp

p = 0, yp
p > 0.

� Exercise 2.17 Prove Corollary 2.17.

2.4.5 VILLE’S THEOREM

THEOREM 2.18 (Ville [1938]) Consider the dual homogeneous programs with
all zero-coefficient objective forms,

Ax ≥ 0, x ≥ 0, (2.42)
ATy ≤ 0, y ≥ 0. (2.43)
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Let either system be the primal and the other the dual. Either there exists a solution
to the primal where all inequalities hold strictly or there exists a nontrivial solution
to the dual.

Example 2.5 (Illustration of Ville’s Theorem) Consider the primal and dual ho-
mogeneous linear programs with zero-coefficient objectives:

x1 + x2 ≥ 0
x1 ≥ 0, x2 ≥ 0

and
y1 ≤ 0
y1 ≥ 0.

Clearly, there exists a solution that satisfies the primal problem with all inequalities holding
strictly, namely, x1 = 1, x2 = 1. Then by Ville’s theorem the dual has only a trivial
solution, i.e., y1 = 0, which is indeed the case. On the other hand, consider the primal
and dual homogeneous linear programs with zero-coefficient objectives:

x1 + x2 ≥ 0
− x2 ≥ 0

x1 ≥ 0, x2 ≥ 0
and

y1 ≤ 0
y1 − y2 ≤ 0
y1 ≥ 0, y2 ≥ 0.

The second inequality in the primal cannot hold strictly because clearly x2 = 0. Then by
Ville’s theorem we must have a nontrivial solution to the dual, which is the case because,
for example, y1 = 0, y2 = 1, satisfies the dual.

� Exercise 2.18 Show that Ville’s Theorem 2.18 is a special case of the Motzkin’s Trans-
position Theorem 2.16 by introducing slack variables into the primal system.

2.4.6 TUCKER’S STRICT COMPLEMENTARY
SLACKNESS THEOREM

Sharper forms of the various Theorems of Alternatives can be obtained by judi-
cious application of Motzkin’s Transposition Theorem; in particular Tucker’s The-
orem 2.21.

Definition (Complementary Pair): Let Ax − Iv = 0, x ≥ 0, v ≥ 0 and
ATy + Iu = 0, y ≥ 0, u ≥ 0 be a pair of homogeneous primal/dual linear pro-
grams with all zero coefficient objectives and slacks added. The corresponding
(xj , uj) and (yi, vi) are called complementary pairs.

LEMMA 2.19 (Complementary Slackness for Homogeneous Case) Ev-
ery solution to the homogeneous primal (2.42) and dual (2.43) systems is optimal
and the products of all complementary pairs vanish.

LEMMA 2.20 (Combining Solutions) If (x0, y0) and (x1, y1) are two pairs
of feasible solutions to (2.42) and (2.43) then (x0 + x1, y0 + y1) are also feasible
solutions to (2.42) and (2.43) and satisfy the complementary slackness property.

� Exercise 2.19 Prove Lemmas 2.19 and 2.20.
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THEOREM 2.21 (Tucker [1956]) There exist solutions to the homogeneous
primal (2.42) and dual (2.43) programs that have all zero coefficient objectives such
that every variable in one system and its complementary slack in the other system
have one positive and one zero value.

Comment: Tucker’s Theorem is also known as the Strict Complementary Slackness
Theorem because it states that optimal solutions can be found such that in every
complementary pair exactly one variable is positive and the other variable is zero.
Proof. We prove the theorem by demonstrating strict complementary slackness
for the pairs (y, v). Then, by interchanging the role of the primal and dual in the
proof, we can find a solution that also satisfies strict complementary slackness for
the pairs (x, u).

Augment the primal system Ax ≥ 0, x ≥ 0 with slack variables v ≥ 0 to obtain
the system

Ax − Iv = 0, x ≥ 0, v ≥ 0

and add slack variables u ≥ 0 to the dual to obtain

ATy + Iu = 0, y ≥ 0, u ≥ 0.

Find any feasible solution (x, v) = (x̄o, v̄o) to the primal and any feasible solution
y = ȳo to its dual; by Lemma 2.19 these are optimal and satisfy complementary
slackness.

If strict complementary slackness holds for each pair (ȳ0
i , v̄

o
i ) for i = 1, . . . ,m, we

are done. Otherwise, we find the first index i = p for which v̄o
p = 0 and ȳo

p = 0. Next,
partition the primal system so that Motzkin’s subset (see Section 2.4.4) consists of
one slack variable, vp, then by Corollary 2.17, either there exists a solution in which
vp > 0 for the primal system or yp > 0 for the dual. In the first case find a
primal solution (x, v) = (xp, vp) with vp

p > 0 and set (y, u) = (yp, up) = (0, 0).
In the second case find a dual solution y = yp, u = up = 0 with yp

p > 0 and set
(x, v) = (xp, vp) = (0, 0). Next add the current two solutions to obtain:

x̄1 = x̄o + xp

v̄1 = v̄o + vp

ȳ1 = ȳo + yp

ū1 = ūo + up

which is also a feasible solution to the primal/dual system by Lemma 2.20. By
Lemma 2.19 (x̄1, v̄1) and (ȳ1, ū1) are optimal and also satisfy complementary slack-
ness. We know that none of the values (x̄o, v̄o) and (ȳo) have decreased because we
have added nonnegative numbers. Hence, if p < m, we have examined the solution
(x̄1, v̄1) and (ȳ1, ū1) from components i = p+ 1, . . . ,m to find if any pair of ȳ1

i , v̄1
i

fails to meet strict complementary slackness. If any pair fails, repeat the process
iteratively until a solution (x̄k, v̄k), (ȳk, ūk) is obtained where all pairs ȳk

i , v̄k
i satisfy

strict complementary slackness.
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Example 2.6 (Illustration of Strict Complementary Slackness) Consider the pri-
mal and dual homogeneous programs with zero-coefficient objectives:

x1 + x2 ≥ 0
−x1 ≥ 0
x1 ≥ 0, x2 ≥ 0

and
y1 − y2 ≤ 0
y1 ≤ 0
y1 ≥ 0, y2 ≥ 0.

A solution to the primal is

x =

(
x1

x2

)
=

(
0
1

)
, v =

(
v1
v2

)
=

(
1
0

)
and a solution to the dual is

y =

(
y1
y2

)
=

(
0
1

)
, u =

(
u1

u2

)
=

(
1
0

)
.

It is easy to verify Tucker’s strict complementary slackness.

� Exercise 2.20 Consider the primal problem (with vacuous objective)

x1 + x2 + x3 ≥ 0
x1 − x3 ≥ 0
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

Write down its dual and show there exists a nontrivial primal solution that does not satisfy
strict complementary slackness. Show how to modify your solution, by adding to it one
or more solutions according to the proof of Tucker’s theorem, to obtain one that satisfies
strict complementary slackness.

� Exercise 2.21 Consider the primal homogeneous system Ax ≥ 0, x ≥ 0 with all zero
coefficient objective and A given by

A =

(
1.0 −0.5 −0.6
−0.1 1.0 −0.1
−0.3 −0.2 1.0

)
.

What does Tucker’s Strict Complementary Slackness Theorem say about its dual?

� Exercise 2.22 For the primal (2.42) and dual (2.43) systems show how to obtain a
strictly complementary solution by formulating and solving one linear program.

2.5 NOTES & SELECTED BIBLIOGRAPHY
As noted in this chapter, associated with every linear programming problem is another
linear programming problem called the dual. The fundamental notion of duality and the
term was introduced by John von Neumann (in conversations with George Dantzig in Oc-
tober 1947) and appears implicitly in a working paper he wrote a few weeks later (von



2.6 PROBLEMS 59

Neumann, [1947]). George Dantzig’s report, A Theorem on Linear Inequalities, dated
January 5, 1948, contains the first known rigorous (unpublished) proof of the Duality
Theorem. Subsequently Gale, Kuhn, & Tucker [1951] independently formulated the Du-
ality Theorem which they proved by means of a classical lemma due to Farkas [1902].
This theorem (see Theorem 2.14), known as Farkas’ Lemma, first appeared as a lemma
in Farkas’s 1902 paper. A constructive proof of the Duality Theorem using the Simplex
Method can be found in Dantzig [1963]. J. Abadie in verbal communications [1965] with
one of the authors showed how to use the Infeasibility Theorem to prove von Neumann’s
Strong Duality Theorem. Our proof is a more concise version of Abadie’s.

Tobias Dantzig, mathematician and author, well known for his books popularizing the
history of mathematics, suggested around 1955, to his son George, the term primal as the
natural antonym to dual since both primal and dual derive from the Latin.

A systematic presentation of theoretical properties of dual linear programs can be
found in Gale [1951] and Goldman & Tucker [1956a,b]. A review of von Neumann’s
contributions can be found in Kuhn & Tucker [1958]. Today everyone cites von Neumann as
the originator of the Duality Theorem and credits Gale, Kuhn, & Tucker as the publishers
of the first rigorous proof.

As already noted, there are several important duality-type results, known as “Either
Or” theorems of the alternatives, that predated the linear programming era: Farkas [1902],
Gordan [1873], Motzkin [1936], Stiemke [1915], and Ville [1938]. The earliest known
result on feasibility is one concerning homogeneous systems, Gordan [1873]. Tucker [1956]
presented a sharper form of the Theorem of Alternatives as presented in this chapter.

A natural question to ask is why not use the classical method of Lagrange multipliers
to solve the linear programming problem. If we were to do so we would be required to
find optimal multipliers (or prices π), which, if they exist, must satisfy a “dual” system
with the property that the c̄j (or relative cost factors) and optimal xj satisfy c̄jxj = 0 for
j = 1, . . . , n. The latter leads to 2n possible cases of either c̄j = 0 or xj = 0. It is here that
this classical approach breaks down, for it is not practical to consider all 2n possible cases
for large n. In a certain sense, however, the Simplex Method can be viewed as a systematic
way to eliminate most of these cases and to consider only a few. Indeed, it immediately
restricts the number of cases by considering only those with n−m of the xj = 0 at one time
and such that the coefficient matrix of the remaining m variables is nonsingular; moreover
the unique value of these variables is positive (under nondegeneracy). The conditions
c̄jxj = 0 tell us that c̄j = 0 for xj > 0 and this determines uniquely πi and the remaining
c̄j . If it turns out that not all c̄j ≥ 0, the case is dropped and a special new one is examined
on the next iteration, and so on.

2.6 PROBLEMS

2.1 Assuming Farkas’s Lemma is true, derive the Duality Theorem.

2.2 Ph.D. Comprehensive Exam, September 21, 1991, at Stanford. Given the linear
program, find xj ≥ 0, min z, satisfying, in detached coefficients
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−z x1 x2 x3 x4 x5 x6 b

1 4 3 2 1 0 −1 0

1 −.5 −.4 1 2
−.2 1 −.5 1 3
−.3 −.2 1 1 4

(a) Prove every basic feasible solution satisfies

x1x4 = 0, x2x5 = 0, x3x6 = 0.

(b) Prove that the set of feasible x is bounded.

2.3 In this exercise we examine a different proof of the Duality Theorem 2.6 which
also uses the Infeasibility Theorem 2.1. Refer to the von Neumann symmetric
form (2.1) and (2.2).

(a) Consider the primal system

Ax ≥ b
Ix ≥ 0

−cTx ≥ − sup v (i.e., cTx ≤ sup v ≤ inf z)

where v = bTy, ATy ≤ c, and y ≥ 0. Show in a detailed step-by-step way
that assuming this system is infeasible leads to a contradiction.

(b) Consider in an analogous way the dual system

yTA ≤ cT

−yTI ≤ 0
−yTb ≤ − inf z (i.e., yTb ≥ inf z ≥ sup v)

where z = cTx, Ax = b, and x ≥ 0. Show in an analogous detailed step-by-
step way that assuming this system is infeasible leads to a contradiction

(c) Conclude from (a) and (b) that the Duality Theorem 2.6 is true.

(d) Redo the proof of part (b) by viewing the dual system as a primal problem
and applying the conclusions that we have already arrived at for the primal
problem. Therefore show that is not necessary to go through a detailed
step by step proof to arrive at an analogous conclusion for the dual.

2.4 Ph.D. Comprehensive Exam, September 21, 1991, at Stanford. Consider the two
linear programs (i) 0Tx = min z subject to Ax ≥ 0, x ≥ 0, and (ii) 0Ty = max v
subject to ATy ≤ 0, y ≥ 0.

(a) Prove that either program is the dual of the other.

(b) Prove that either there exists an x ≥ 0 such that Ax > 0 or there exists a
nontrivial solution to the dual linear program.

2.5 Consider the problem:

Minimize cTx + gTy = z
subject to Ax = b

−Bx + Fy = d
x ≥ 0

y ≥ 0.
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We are given a point x = xo that satisfies Axo = b, xo ≥ 0. We wish to
determine whether there exists a y = y∗ such that (xo, y∗) is optimal for the
full problem. Let π1 and π2 be the multipliers on Ax = b and −Bx + Fy = d
respectively. We perform a number of checks:

(a) Axo = b, xo ≥ 0 is satisfied. However, we note that xo is not a basic feasible
solution.

(b) Solve min gTy subject to Fy = d + Bxo, yo ≥ 0. The optimal solution is
y = y∗ with optimal multipliers π2 = π∗2 .

(c) Solve min (c+BTπ∗2)Tx subject to Ax = b. The optimal solution is x = x∗
with optimal multipliers π1 = π∗1 .

Prove that (xo, y∗) is an optimal solution to the original system and (π∗1, π∗2) is
the optimal dual solution if

(c+BTπ
∗
2)

Txo = bTπ
∗
1.

2.6 Dantzig [1963]. The Fourier-Motzkin Elimination method permits one to drop
a variable by increasing the number of inequalities. Dualize the procedure and
find a method for decreasing the number of inequalities by increasing the number
of variables.

2.7 Suppose there exists a solution to a homogeneous system of inequalities, Ax ≥ 0,
each of which is satisfied strictly. Show that there exists a solution to Ax ≥ e,
where e = (1, 1, . . . , 1)T.

2.8 Consider the linear program:

Minimize cTx
subject to Ax ≥ b, A : m× n,

x ≥ 0.
(2.44)

Suppose that x = x∗ is a basic feasible optimal solution for this program and
that x∗B > 0, i.e., the optimal basic feasible solution is nondegenerate. Show
that the dual to this linear program has a unique optimal solution.

2.9 Show that the set {x | Ax ≥ b } �= φ is unbounded if and only if there exists an
x �= 0 such that Ax ≥ 0.

2.10 Consider von Neumann’s primal-dual pair of LPs, (2.1) and (2.2). Show that it
is impossible for the primal’s feasible region (set of feasible solutions) and the
dual’s feasible region to be both nonempty and bounded.

2.11 Devise an efficient way to test that a given solution x = x∗ is an optimal solution
for a linear program in standard form by considering the following cases:

(a) xk > 0, for k = 1, . . . ,m+ l, where 0 < l ≤ n−m; if columns 1, . . . ,m are
nonsingular and also if they are singular;

(b) xk > 0, for k = 1, . . . ,m− l, where 0 < l < m.

Clearly explain your approach.

2.12 Show that the primal has a unique solution if the dual is nondegenerate and
that the dual has a unique solution if the primal is nondegenerate. Note that
the dual max bTπ, subject to ATπ ≤ c, of a linear program in standard form is
defined to be nondegenerate if for any π, with ATπ ≤ c, we have c− ATπ with
at most m zeros.
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2.13 Dantzig [1963].

(a) Suppose that an optimal solution with respect to a given objective form z
is not unique and that it is desired to introduce an alternative objective ẑ
and to minimize ẑ, given that z is minimum. Show that an optimal solution
exists that is basic in the restraint system, excluding the z and ẑ forms.
Prove that this solution can be obtained by first dropping all variables xi,
such that c̄j > 0 at the end of Phase II, and then replacing the z form by
the ẑ form.

(b) Generalize the usual Phase I, Phase II procedure to find a solution that is
as “feasible as possible” (minw) and given that it is and is not unique, find
the one that minimizes z, given that w = minw.

2.14 Dantzig [1963].

(a) Show that it is not possible for z → −∞, if no positive combination of
activities vanishes. Discuss what this means in a practical situation if a
positive combination vanishes except for a positive reduced cost, a negative
reduced cost, a zero reduced cost.

(b) Show that if z → −∞, there exists a homogeneous feasible solution to the
system. Show that it is possible to have z → +∞ and z → −∞ in the same
system.

(c) Does a column with all negative entries in the original tableau imply that
(if feasible solutions exist) a class of solutions exists such that z → −∞?

2.15 Dantzig [1963]. Prove that if an optimal solution xo
j ≥ 0, z = zo = min z exists

to a linear program, then the system of equations formed by dropping all xj ,
such that xo

j = 0 and setting z = zo is redundant.
2.16 Ph.D. Comprehensive Exam, June 15, 1967, at Stanford. Given the system

n∑
j=1

yj = 1,

n∑
j=1

aijyj ≤ M for i = 1, . . . ,m,

yj ≥ 0 for j = 1, . . . , n.

(2.45)

Systems such as these have application in “game” theory.

(a) Show that the problem of finding the minimum M satisfying (2.45) is a
linear program.

(b) Show that the dual of the linear program in part (a) is of the form

Maximize N,

subject to
m∑

i=1

xi = 1

m∑
i=1

aijxi ≥ N for j = 1, . . . , n

xi ≥ 0 for i = 1, . . . ,m.

(2.46)

(c) Prove

N ≤
m∑

i=1

n∑
j=1

xiaijyj ≤M
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Figure 2-2: Find Basic Feasible Solutions of Dual of Two Variable Primal

and

maxN = minM.

(d) Show that primal and dual feasible solutions for the linear programs (2.45)
and (2.46) always exist.

(e) Why is maxN = minM positive, if all aij > 0?

2.17 Ph.D. Comprehensive Exam, June 15, 1967, at Stanford. We know that linear
programming problems whose variables have lower and upper bounds permit a
special variant of the Simplex Method.

(a) State the variant

(b) Considering a problem of this type as primal, state the associated dual
problem.

2.18 Ph.D. Comprehensive Exam, March 31, 1969, at Stanford. Let

S =
{
x | Ax ≥ b, x ≥ 0

}
and T =

{
y | ATy ≤ c, y ≥ 0

}
be the set of feasible solutions of primal and dual linear programs. Prove that
if S and T are nonempty, then at least one of them must be unbounded. Could
both of them be unbounded?

2.19 Ph.D. Comprehensive Exam, September 25, 1971, at Stanford. Consider a two-
variable linear programming problem of the form

Maximize cTx = z
subject to Ax ≤ b,

x ≥ 0,

for which the constraint set X and the objective function are as indicated in
Figure 2-2. Use the figure to determine the number of basic feasible solutions
of the dual problem.

2.20 Ph.D. Comprehensive Exam, September 27, 1975, at Stanford. Von Neumann’s
Minimax Theorem for a two-person zero-sum game (see Problem 2.16) is as
follows.
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Von Neumann’s Minimax Theorem. Given
∑m

i=1
xi =

∑n

j=1
yj = 1,

xi ≥ 0 for i = 1, . . . , m and yj ≥ 0 for j = 1, . . . , n:

max
x

min
{y|x}

m∑
i=1

n∑
j=1

aijxiyj = max
y

min
{x|y}

m∑
i=1

n∑
j=1

aijxiyj

where {y | x} means y given x.

Prove that von Neumann’s Minimax Theorem for finite two-person zero-sum
games is a special case of the Duality Theorem for linear programs.

2.21 Ph.D. Comprehensive Exam, September 1979, at Stanford. Given

Ax = b
Bx + Gy = d

(2.47)

with x ≥ 0 and y ≥ 0. Suppose x = xo ≥ 0 satisfies Axo = b, but that
Gy = d−Bxo, y ≥ 0, is infeasible.

(a) Prove there exists a π = πo such that

GTπo ≤ 0 and (d−Bxo)Tπo > 0. (2.48)

(b) How can you use Phase I of the Simplex Method to find such a πo?

(c) Show that every feasible solution to (2.47) must satisfy

Ax = b, x ≥ 0,
(πo)TBx ≥ dTπo,

(2.49)

and that the current solution x = xo violates the latter condition.

(d) Suppose x = x∗ satisfies (2.49) and
(
(πo)TB

)
x∗ = dTπo (i.e., tight). Sup-

pose
Gy = d−Bx∗, y ≥ 0, (2.50)

is now feasible. Prove that every basic feasible solution to the system (2.50)
is degenerate.

2.22 Ph.D. Comprehensive Exam, September 24, 1988, at Stanford. Given a linear
program

x ≥ 0, Ax = b, cTx = z (min),

let π denote the dual variables.

(a) State the dual problem in terms of π.

(b) Given alleged solutions x = x∗ to the primal and π = π∗ to the dual, state
the conditions that must be satisfied by x∗ and π∗ in order to be optimal
feasible solutions to the primal and the dual, respectively.

(c) Assume B is an optimal feasible basis. Partition A, c, and x into basic and
nonbasic components, thus:

ABxB + ANxN = b, x = (xB, xN)T ≥ 0,

cTBxB + cTNxN = z (min)

Let BTπ∗ = cB where B = AB. Restate the optimality conditions in terms
of the partitioned structure.
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(d) Assume x∗ = (x∗B, x∗N = 0) is an optimal basic feasible solution and that
NTπ∗ < c where N = AN (note the strict ineqality). Prove x∗ is the unique
optimal primal feasible solution.

(e) Assume further that x∗B in part (d) is degenerate. Prove that π∗ is an
optimal dual feasible solution but is not the unique optimal dual feasible
solution. Show how to go about numerically constructing another optimal
dual solution.
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C H A P T E R 3

EARLY INTERIOR-POINT

METHODS

An interior-point algorithm is one that improves a feasible interior solution point of
the linear program by steps through the interior, rather than one that improves by
steps around the boundary of the feasible region, as the classical Simplex Algorithm
does. The earliest interior-point method is due to the famous mathematician John
von Neumann. His method for finding a feasible solution to a linear program with a
convexity constraint is notable for its simplicity and remarkable convergence prop-
erties; see Section 3.1. Since a general linear program combined with its dual can
be reformulated into a feasibility problem of this restricted form, von Neumann’s
algorithm may be viewed as a method for solving the general linear program.

Just like there are many variants of the Simplex Method (which we refer to
as pivot step algorithms), so there are many variants of interior methods such as
projective and/or potential reduction, affine, and path-following.

1. Projective and Potential Reduction Methods. These methods measure the ap-
proach toward an optimal solution by the reduction of the value of a potential
function rather than the reduction of the value of the linear objective. For
example, Karmarkar’s agorithm is typically based on projective geometry but
uses a potential function to measure progress of the solution towards opti-
mality. The potential function is typically designed to ensure the following:
(a) the objective function decreases at each iteration, (b) the solution point
stays in the interior of the feasible space, and (c) the algorithm converges in
polynomial time. In practice, these methods have not done well.

2. Affine Methods. These methods approximate the feasible region, at each iter-
ation, by an ellipsoid and optimize over the ellipsoid. The implementation of

67
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such methods is easy as we saw in the discussion of one such method in Linear
Programming 1: Introduction. In this chapter, we discuss Dikin’s method, an
early affine method. In practice these methods perform quite well but not as
well as the path-following methods.

3. Path-Following Methods. These methods follow a certain path as the optimal
solution is approached. The linear program is first transformed into an uncon-
strained nonlinear optimization problem, called a logarithmic barrier function.
The logarithmic barrier function typically consists of the objective function
and one or more additional terms, multiplied by a scalar positive parameter,
that increase in value as the iterates approach the boundary. In effect, the
additional terms throw up a barrier at the boundary. The unconstrained op-
timization problem is solved and the parameter value reduced for the next
iteration. The optimal values of the sequence of unconstrained problems ap-
proach the optimal solution of the linear program along a path through the
interior of the feasible region.

Path-following methods have performed the best in theory and practice in
recent times. In Chapter 4 we will describe the primal logarithmic barrier
method and the primal-dual logarithmic barrier method.

Some other interior-methods inscribe an ellipsoidal ball in the feasible region
with its center at the current iterate, or first transform the feasible space and then
inscribe a hypersphere with the current iterate at the center. Then an improving
direction is found by joining the current iterate to the point on the boundary of
the ellipsoid or sphere that maximizes (or minimizes) the linear objective function
(obtained by solving a least-squares problem). A point is then selected on the
improving direction line as the next current iterate. Sometimes this iterate is found
along a line that is a linear combination of the improving direction and some other
direction.

In 1967 Dikin proposed an affine method that in its original form is not a finite
method but one that converges in the limit. In particular, Dikin’s method as de-
scribed in Section 3.2, has an asymptotic rate of convergence of 1 − 1/

√
m. This

method has the distinction of having been rediscovered by many; for example, the
primal affine method is the same as Dikin’s method.

During the period 1979–2003, there has been intense interest in the development
of interior-point methods. These methods are related to classical least-square meth-
ods used in numerical analysis for making fits to data or fitting simpler functional
forms to more complicated ones. Therefore interior research can tap into the vast
literature of approximation theory. A theoretical breakthrough came in 1979: the
Russian mathematician L. G. Khachian (based on the work of Shor, 1971–1972)
discovered an ellipsoid algorithm whose running time in its worst case was signifi-
cantly lower than that of the Simplex Algorithm in its worst case. Its iterates are
not required to be feasible. Other theoretical results quickly followed, notably that
of N. Karmarkar, who discovered an interior-point algorithm whose running-time
performance in its worst case was significantly lower than that of Khachian’s. This
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was followed by the theoretical results of others that improved on the upper-bound
estimates of the worst-case performance as the dimensions of the problems and the
amount of input data increased indefinitely.

The algorithm best suited for solving a particular problem or a special class of
problems may not be the same algorithm best suited for solving any problem from
the broad class of problems defined by Ax ≥ b, x ≥ 0, cTx = min. One criterion
used for comparing algorithms is upper bounds on worst-case performance times as
the dimensions of the problem grow indefinitely in size. This criterion turns out
to be totally misleading for deciding which algorithm to use for practical problems
because these theoretical upper-bound estimates are many many times greater than
any experienced with practical problems.

Attempts to characterize in a simple way the class (or classes) of practical prob-
lems from which one might be able to derive a theoretical explanation of the excellent
performance times of some of the algorithms used in practice have, in general, failed.
In special cases, such as the shortest-path problem, the performance of shortest-
path algorithms for the entire class of shortest-path problems is comparable to that
observed on actual problems. There has been progress proving that average perfor-
mance on classes of randomly generated problems using a parametric variant of the
Simplex Method resembles that obtained on practical problems, but no one claims
these randomly generated problems are representative of the class of practical linear
programs.

Because the theoretical results can be totally misleading as to what algorithm
to choose to solve a practical problem, an emperical approach is used. The linear
programming profession has accumulated a large collection of test problems drawn
from practical sources. These are used to compare the running times of various
proposed algorithms. The general goal of these efforts is to find the algorithm that
surpasses the performance of all other algorithms in the collection.

For example, Karmarkar claimed (when he developed his method) that on very
large problems his technique would be significantly faster. As of this writing, as
far as the authors can ascertain, there appears to be no one algorithm that is a
clear winner, i.e., that solves all (or almost all) of the test problems faster than
all the other proposed methods. On problems with many bounding hyperplanes in
the neighborhood of the optimum point, an interior method will probably do better
than an exterior method. On problems with relatively few boundary planes (which
is often the case in practice) an exterior method will be hard to beat. For this reason,
it is likely that the commercial software of the future will be some sort of a hybrid
because one does not know which kind of problem is being solved or because one
wishes to obtain an extreme-point solution. Many specialized efficient codes have
been proposed for solving structured linear programs such as network problems,
staircase problems, block-angular systems, and multi-stage stochastic systems.

Definition (Polynomial Time): Let the problem data size (length of the in-
put data stream) be L, the total number of bits required to store the data of a
linear program in m equations and n variables in the computer. An algorithm
is said to have a polynomial worst-case running time if the algorithm’s execu-
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tion time (in, say, seconds) to find an optimal solution on the computer is less
than some polynomial expression in L, m, and n. Otherwise the algorithm is
said to be NP (nonpolynomial).

Worst-Case Measures Can be Misleading. For example, given a linear program in
m equations and n variables, it may be stated that a method requires less than
O(npmq) iterations, where O(npmq) means some fixed constant times npmq. If
the constant for the worst-case bound were huge, say 10100 (which may be larger
than the number of all the electrons in the universe), then such a bound would be
ridiculous. Implicit in such statements about a worst-case bound is the assumption
that the fixed constant is small, say 10 or 100. Usually this assumption is valid,
and it has become common practice to compare worst-case bounds of algorithms as
if the fixed constants for each of the algorithms are the same.

In general, given a linear program in m equations and n variables, projective
methods require less than O(n) iterations. Path-following methods require less than
O(
√
n) iterations. Each of these also require O(n3) arithmetic operations per iter-

ation to solve a linear least-squares subproblem in order to find a steepest descent
direction. However, with refinements (such as rank-one updates) it is possible to
solve each least-squares problem in O(n5/2) arithmetic operations instead of O(n3).
When the number of operations is multiplied by the bound on the number of itera-
tions, we find that Karmarkar’s projective method is bounded byO(n7/2) arithmetic
operations while path-following methods are bounded by O(n3) arithmetic opera-
tions to obtain an optimal solution within a tolerance ε > 0. The time required to
carry out the arithmetic operations depend on L, the digits of input data. Thus
the bound on the time to execute Karmarkar’s algorithm is O(n7/2L).

Because the number of arithmetic operations (and iterations) can depend crit-
ically on ε > 0, the bound on the accuracy of the computed optimal solution, we
will use the following definition of a polynomial-time algorithm.

Definition (ε-Optimal Polynomial Time): An algorithm to solve a linear
program in m rows and n columns is said to have a polynomial worst-case
running time (measured in seconds, say) if the time to execute it is less than
some polynomial expression in L, m, n, q = − log10 ε, where L is the total
number of bits required to store the problem’s data in the computer, q is the
number of significant decimal digits of accuracy of the optimal solution, and
the tolerance ε is some measure of how much the calculated solution differs
from the true optimal objective value, or an approximate feasible solution to a
feasibility problem differs from the right-hand side of a true feasible solution.

3.1 VON NEUMANN’S METHOD

Von Neumann, in a discussion with George Dantzig in 1948, proposed the first
interior algorithm for finding a feasible solution to a linear program with a convexity
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constraint recast in the form:

x ≥ 0,
n∑
1

xj = 1,
n∑
1

Pjxj = 0, ||Pj ||2 = 1 for j = 1, . . . , n. (3.1)

He provided no proof of its convergence properties. In a follow-up letter to von
Neumann, Dantzig proved that if the problem is feasible, it has the remarkable
property that, independent of the number of rows m and columns n, it is guaranteed
to generate in less than t iterations an approximate feasible solution with a precision

ε ≤ 1√
t

(3.2)

where ε2 is the sum of the squares of errors of the fit of the left-hand side of the
equations to their right-hand side.

In the worst-case scenario, which gives rise to (3.2), all the points Pj lie on,
or on one side of, a hyperplane through the origin. This, as we will see, causes
the algorithm to have an exponentially slow rate of convergence, namely an upper
bound on iterations t = 102q, which is not a polynomial expression in (m,n, q), to
achieve q decimal digits of accuracy. However, when the convex hull of the points
Pj contains the origin in its interior, we will prove a very strong result, namely, the
algorithm generates in less than t iterations an approximate feasible solution with
a precision,

ε ≤
(
1− r2

)t/2
, 0 < r < 1, (3.3)

in the worst case, where the fixed constant r is the radius of the largest ball centered
at the origin that is contained in the convex hull of the Pjs. In this case the
polynomial expression for the number of iterations t is linear in q, independent of
the m and n, namely:

t ≤ 2 log10 ε

log10(1− r2)
= − 2q

log10(1− r2)
The work per iteration is approximately mn multiplications and additions; see Ex-
ercise 3.17.

� Exercise 3.1 Show that the general linear program min cTx, Ax ≥ b, x ≥ 0 with
feasible primal and dual solutions is equivalent to Ax ≥ b, ATy ≤ c, bTy ≥ cTx, x ≥ 0,
y ≥ 0.

� Exercise 3.2 Show that the number of iterations to attain an approximate feasible
solution whose Euclidean distance ε = 10−q from the origin is t ≤ 16q if r = 0.5. Show
that t ≤ 113q if r = 0.2.

� Exercise 3.3 Show that a feasibility problem Ax = b, x ≥ 0 can be reduced to a
feasibility problem with a convexity constraint by adding a relation

∑
j
xj + xo = M

where M is sufficiently large.
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Consider the general linear program feasibility problem with a convexity con-
straint: Find y = ( y1, y2, . . . , yn ) ≥ 0 such that

n∑
j=1

Qjyj = b, where Qj ∈ �m

n∑
j=1

yj = 1,

yj ≥ 0 for j = 1, . . . , n.

(3.4)

This system is equivalent to
n∑

j=1

Q̂jyj = 0, where Q̂j = Qj − b

n∑
j=1

yj = 1,

yj ≥ 0 for j = 1, . . . , n,

(3.5)

which we will refer to as the Center of Gravity Problem, which can be transformed
into a Center of Gravity Problem with Normalized Columns ||Pj || = 1 for j =
1, . . . , n: Find x = (x1, x2, . . . , xn ) ≥ 0 such that

n∑
j=1

Pjxj = 0, where Pj ∈ �m, ||Pj || = 1

n∑
j=1

xj = 1.
(3.6)

This is done by setting:

Pj =
Q̂j

||Q̂j ||
, (3.7)

and noting that if x = xo solves (3.6) then y = yo solves (3.4) where

yo
j =

xo
j/||Q̂j||∑n

k=1 x o
k/||Q̂k||

. (3.8)

Conversely, if y = yo solves (3.4) then x = xo solves (3.6) where

xo
j =

||Q̂j||yo
j∑n

k=1 ||Q̂k||yo
k

. (3.9)

� Exercise 3.4 Verify that if x = xo solves (3.6), then y = yo solves (3.4) and conversely.

� Exercise 3.5 Prove that if there exists a nondegenerate basic feasible solution, the
convex hull of the Pjs contains a ball of positive radius centered at the origin.
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Figure 3-1: The Two-Dimensional Center-of-Gravity Problem: Find a Simplex that
Contains the Origin

3.1.1 THE VON NEUMANN ALGORITHM

Given n points Pj ∈ �m located on the surface of an m-dimensional sphere S of unit
radius centered at the origin O, the problem is to find nonnegative weights xj = x∗j
to assign to the points Pj such that their weighted center of gravity is the origin,
or prove that no such weighting exists; (3.10) states this problem algebraically. See
Figure 3-1 for a two-dimensional example.

� Exercise 3.6 Given the coordinates of n points Pj on a circle, devise a very efficient
algorithm for solving the 2-dimensional center of gravity problem on a computer. Try to
generalize your procedure to higher dimensions.

By an approximate solution G to a Center of Gravity Problem (3.10) with nor-
malized columns, we mean any nonnegative weighted linear combination of points
Pj whose weights xj ≥ 0 sum to one.

G =
n∑

j=1

Pjxj = 0,
n∑

j=1

xj = 1, PT
j Pj = 1, for j = 1, . . . , n. (3.10)

The von Neumann Algorithm iteratively finds improving approximations

G1, G2, . . . , Gt, Gt+1, . . .
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Figure 3-2: Finding an Improved Approximation

whose distances ||Gt|| from the origin O decrease toward zero if the problem is
feasible. Given an ε > 0, the algorithm terminates in a finite number of iterations t
with 0 ≤ ||Gt|| < ε or terminates on satisfying a certain condition that implies no
feasible solution exists.

Von Neumann’s algorithm is initiated with the approximate solution G1 = P1

or any arbitrary convex linear combination:

G1 =
n∑

j=1

Pjx
1
j ,

n∑
j=1

x1
j = 1, x1

j ≥ 0 for j = 1, . . . , n. (3.11)

Given an approximate solution for iteration t,

Gt =
n∑

j=1

Pjx
t
j ,

n∑
j=1

xt
j = 1, xt

j ≥ 0 for j = 1, . . . , n, (3.12)

the von Neumman algorithm either generates the next approximate:

Gt+1 =
n∑

j=1

Pjx
t+1
j ,

n∑
j=1

xt+1
j = 1, xt+1

j ≥ 0 for j = 1, . . . , n, (3.13)

with the property
||Gt+1|| < ||Gt|| (3.14)

or terminates with the condition that implies no feasible solution exists.
On iteration t, von Neumman selects Ps as the direction Pj that makes the

sharpest angle γj with the direction −Gt/||Gt|| for j = 1, . . . , n.

LEMMA 3.1 (Properties of Improved Solution Gt+1) If γs ≤ π/2, the
improved solution is Gt+1 (see Figure 3-2), the point closest to the origin O on the
line joining Ps to Gt. The point Gt+1 satisfies ||Gt+1|| < ||Gt||.
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Proof. We must show two things. First that Gt+1 is a convex combination of
P1, P2, . . . , Pn and second that ||Gt+1|| < ||Gt||.

By assumption γs ≤ π/2. Since γs, the exterior angle of the triangle OGtPs, is
greater than the interior angle α, the angle α is acute implying Gt+1 is an interior
point on the line (Ps)TGt and hence is a convex combination of P1, P2, . . . , Pn.
Finally ||Gt+1|| < ||Gt|| because

||Gt+1|| = ||Gt|| sinα < ||Gt||. (3.15)

LEMMA 3.2 (Infeasibility Condition) If γs = minj γj > π/2 on some iter-
ation t, there exist no feasible solution to the linear program.

Proof. If γs > π/2, then the angles γj of all Pj with −Gt are greater than
π/2, implying all points Pj lie strictly on one side of the hyperplane through the
origin orthogonal to the direction −Gt and hence every convex combination G of
the points Pj lies strictly on the same side as Gt implying there exists no convex
combination G = 0.

� Exercise 3.7 Convert the geometric proof of Lemma 3.2 into an algebraic proof.

THEOREM 3.3 (Convergence to an Optimal) If γt ≤ π/2 for all itera-
tions t, then

||Gt|| → 0 as t→ +∞.

Proof. Let γt = γs = π/2−∆, ∆ ≥ 0; see Figure 3-2. Then noting γ = α+ β,

||Gt+1|| = sinβ = sin(γ − α) = sin(π/2−∆− α) = cos(∆ + α)

≤ cosα (3.16)

||Gt+1||
||Gt|| = sinα (3.17)

Squaring (3.16) and (3.17), and summing

||Gt+1||2
||Gt||2 + ||Gt+1||2 ≤ sin2 α+ cos2 α = 1

Therefore
1

||Gt||2 + 1 ≤ 1
||Gt+1||2 for all t. (3.18)

Starting with G1 = P1 and ||G1|| = 1, summing the preceding relations from t = 1
to t = T − 1 and cancelling the corresponding terms on each side of the inequality,
we obtain

T ≤ 1
||GT ||2 ; ||GT || ≤ 1√

T
→ 0 as T → +∞. (3.19)
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THEOREM 3.4 (Convergent Subsequence when ||Gt|| → 0) If Gt =∑
Pjx

t
j ,

∑
xt

j = 1, xt ≥ 0 and ||Gt|| → 0 as t → ∞, then there exists a sub-
sequence t = t1, t2, t3, . . . such that 0 = G∗ =

∑
Pjx
∗
j , where xti

j → x∗j > 0 for
j = 1, . . . , n and

∑
x∗j = 1.

� Exercise 3.8 Prove Theorem 3.4.

THEOREM 3.5 (Convergence When Sharpest Angle Always < π/2) If
the sharpest angle is ≤ some γ∗ < π/2 for all t, then

||Gt+1|| ≤
(
sinγ∗

)t+1 → 0 as t→ +∞.

Proof. In Figure 3-2, exterior angle γt > α; therefore

||Gt+1|| = ||Gt|| sinα < ||Gt|| sinγt ≤ ||Gt|| sin γ∗;

whence, assuming ||G1|| = 1, ||Gt+1|| ≤
(
sin γ∗

)t+1 → 0 as t→ +∞.

� Exercise 3.9 Prove ||Gt|| → 0, if an infinite subsequence t = t1, t2, t3, . . . satisfies
γti
≤ γ∗.

THEOREM 3.6 (Convergence If Ball Contains Origin) Given the class
of normalized feasibility problems (3.6) with the property that the convex hull of the
Pjs contains a ball B centered at the origin with positive radius 0 < ρ < 1 then

||Gt|| ≤ (1− ρ2)t → 0 as t→ +∞,

and the rate of convergence to the origin is linear, i.e., the number of iterations t
required for ||Gt|| ≤ 10−q is t ≤

(
− log(1− ρ2)

)−1
q.

Proof. In Figure 3-3, the vertical dotted line throughQ represents the hyperplane
H through Q orthogonal to direction −Gt/||Gt||, where Q is a point on the surface
of ball B at a distance ρ from the origin. Because Q ⊂ B, it is a convex combination
of the Pjs. We claim for all t, on each iteration t, Ps, the direction Pj that makes
the sharpest angle with −Gt/||Gt||, lies on the opposite side of H from the origin O.
If this is true, this implies distance

OR = cos γs ≥ ρ for all t > 1. (3.20)

Assume, on the contrary, cos γs = maxj cos γj < ρ. Then all cos γj < ρ and all
Pj lie on the origin side of H. This implies that B, the ball containing all convex
combinations of Pj , includingQ, lie strictly on the origin side ofQ, which contradicts
the fact that Q lies on the hyperplane H. We conclude that (3.20) is true. The rest
of the proof is straightforward.

||Gt+1|| = ||Gt|| sinα < ||Gt|| sinγs = ||Gt||
√

1− cos2 γs ≤
√

1− ρ2.
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Figure 3-3: Convergence under Existence of a Ball B

� Exercise 3.10 Convert the geometric proof of Theorem 3.6 into an algebraic proof.

THEOREM 3.7 (Linear Rate of Convergence under Nondegeneracy) If
a nondegenerate basic solution to the feasibility problem (3.6) exists, then the iterates

||Gt|| ≤
(
1− r2

)t/2 → 0 as t→∞ for all t > 1

where r > 0 is the largest ball centered at the origin in the finite set of simplices
associated with the nondegenerate basic feasible solutions.

� Exercise 3.11 Prove Theorem 3.7. How is finiteness of the number of simplices used
to prove linear rate of convergence?

� Exercise 3.12 If the radius of the largest ball in the convex hull centered at the origin
has radius r = 0, all basic feasible solutions to the linear program are degenerate.

� Exercise 3.13 Construct a two-dimesional example in which all basic feasible solutions
are degenerate but the largest ball centered at the origin contained in the convex hull has
positive radius.

� Exercise 3.14 Construct a two-dimensional example whose convex hull contains a ball
of positive radius that contains the origin, and every basic solution is degenerate.

We have described the von Neumann algorithm geometrically. We now describe
it algebraically. The iterative process is repeated with iteration counter t set equal
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to t+ 1. The direction Ps can be computed by:

s = argmax
j=1,...,n

{ cosγj } where cos γj =
−(Gt)TPj

||Gt|| ||Pj ||
. (3.21)

Since ||Gt|| and ||Pj || in the denominator are independent of j (recall that ||Pj || = 1),
we can simplify the determination of Ps by

s = argmax
j=1,...,n

{−(Gt)TPj }, (3.22)

and setting

cos γs = − (Gt)TPs

||Gt|| ||Ps||
. (3.23)

To algebraically determine the point Gt+1 closest to the origin on the line joining
Ps to Gt, set Gt+1 = λPs + (1− λ)Gt, and determine the value of the scalar λ = λ̄
that minimizes

||Gt+1||2 = ||Gt||2 + 2λ(Gt)T(Ps −Gt) + λ2||Ps −Gt||2, (3.24)

by setting ∂||Gt+1||2/∂λ = 0. This yields

(Gt)T(Ps −Gt) + λ̄||Ps −Gt||2 = 0 (3.25)

and

λ̄ =
||Gt||2 − (Gt)TPs

||Gt||2 − 2(Gt)TPs + 1
. (3.26)

� Exercise 3.15 Show that λ = λ̄ yields the minimum and not the maximum of the
expression for Gt+1 in (3.24).

Hence we determine the new approximation

Gt+1 = λ̄Ps + (1− λ̄)Gt. (3.27)

Replacing λ in (3.24) by optimal λ̄ and subtracting λ̄ times (3.25) from (3.24) and
rearranging terms we obtain

Min ||Gt+1||2 = (1− λ̄)||Gt||2 + λ̄(Gt)TPs. (3.28)

The next step is to update the weights x as follows:

xt+1
j = (1− λ̄)xt

j for all j �= s

xt+1
s = (1− λ̄)xt

s + λ̄.
(3.29)

Comment: Since −(Gt)TPs > 0, it follows from (3.26) that 1 > λ̄ > 0, (1 − λ̄) > 0
and therefore from (3.29) and xt

j ≥ 0, that xt+1
j ≥ 0 for all j; also

∑n
j=1 x

t+1
j = 1.

We have already shown that ||Gt+1|| < ||Gt||. This can also be seen by rewriting
(3.28) as

Min ||Gt+1||2 = ||Gt||2 − λ̄
(
||Gt||2 − (Gt)TPs

)
(3.30)

and noting −(Gt)TPs ≥ 0.
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Figure 3-4: Degenerate Two-Dimensional Case

� Exercise 3.16 Prove that as γs varies between 0 and π/2 that

||Gt||2
||Gt||2 + 1

≤ λ̄ ≤ ||Gt||
||Gt||+ 1

(3.31)

� Exercise 3.17 Define δ to be the nonzero coefficient density, i.e., the ratio of the number
of nonzeros to the total number of elements in the coefficient matrix. Show that the work
of the various steps per iterations is:

Multiplications Additions Comparisons

Step 1 δmn δmn n
Step 3 2m+ n+ 9 m+ 8 1

� Exercise 3.18 Suppose system (3.4) has a nonzero coefficient density of δ and b is 100%
dense. Then the coefficient density of system (3.5) will also turn out to be 100% dense.
Show, however, that you can replace the computation of −(Gt)TPj of the algorithm with
one that preserves the sparsity of the original Qj by replacing Pj by Qj − b in (3.5).

Convergence Rate in the Degenerate Two-Dimensional Case. Apply the
von Neumann algorithm to the Center of Gravity Problem (3.6) with n = 3; see
Figure 3-4. The Pjs are

P1 =
(

0
1

)
, P2 =

(
1
0

)
, P3 =

(
−1

0

)
.

Starting with
G1 = P2 or G1 = P3,

the von Neumann algorithm converges in one iteration. However, starting on iter-
ation t = 1 at

G1 = P1 =
(

0
1

)
,
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the von Neumann algorithm, on even iterations t, arrives at

Gt = ut

(
cos θt

sin θt

)
where ut = cos θt > 0; (3.32)

and on odd iterations arrives at

Gt+1 = cos θt

(
− cos θt+1

sin θt+1

)
where ut+1 = cos θt+1 > 0, (3.33)

because the iterates have the property that the angle OGtP2 = π/2. On the next
odd iteration Gt+1 is obtained by joining Gt to P2 and dropping a perpendicular
from the origin O. Therefore angle OGtP3 = π/2. Angle P2OG

t is denoted by θt

and angle P3OG
t+1 is denoted by θt+1.

The distance Gt to Pt is denoted by dt, where, for t ≥ 2

d2
t = (ut cos θt + 1)2 + u2

t sin2 θt = u2
t + 2ut cos θt + 1 = 3u2

t + 1.

The angle θt+1 is related to θt by (see the dotted line GtHt = G2H2 in Figure 3-4):

GtHt = dt sin(π/2− θt+1) = ut sin θt

dt cos θt+1 = ut sin θt

1
ut+1

=
(1 + 3u2

t )
1/2

ut(1− u2
t )1/2

.

From this it follows for t ≥ 2 that

1
u2

t+1

=
1
u2

t

+
4

1− u2
t

. (3.34)

For t ≥ t0, because ut ≤ uto ,

1
u2

t+1

≤ 1
u2

t

+
4

1− u2
to

for t = to, to + 1, . . . (3.35)

If we sum the relations (3.34) from t = to to t = T − 1 for T ≥ to we obtain

1
u2

T

≤ 1
u2

to

+
4(T − to)
1− u2

to

. (3.36)

Starting with G2 = (1/2, 1/2)T, u2
2 = 1/2, from (3.35), u2

3 = 1/10. Leting to = 3,
u2

to
= 1/10 and

1
u2

T

≤ 40T − 30
9

or u
T
≥ 3/

√
40T − 30. (3.37)

In other words, uT is converging to 0 more slowly than 3/
√

40T − 30 in T iterations.
Letting ε

T
= 3/

√
40T − 30 = 10−k, to obtain an approximate solution to k decimal

digits of accuracy will require the number of iterations T to satisfy

10−k > 3/
√

40T − 30
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Figure 3-5: Decreasing xt
s to Improve the Rate of Convergence

implying

T > 102k−0.65 (3.38)

iterations, which is an exponential expression in (m,n, k); and therefore in this de-
genreate case, starting at P1, the von Neumann convergence rate is nonpolynomial.

3.1.2 IMPROVING THE RATE OF CONVERGENCE

In Section 3.1.1, we showed that the von Neumann algorithm, when applied to
the degenerate two-dimensional example P1 = (0, 1), P2 = (1, 0), P3 = (−1, 0),
and initiated with G1 = P1, converges exponentially slowly; see Figure 3-4 and
Equation (3.38). In general, its convergence rate can be sped up significantly by
decreasing the weight xt

s > 0 for some term j = s in the approximation Gt =∑n
j=1 Pjx

t
j and adjusting the remaining weights xt

j proportionally upward so that
their weights re-sum to one.

This improvement can be striking in the degenerate case.

Definition (Degenerate Problem): A problem is degenerate by definition if
there are no points Pj on one side of some hyperplane through the origin.

The previous example is degenerate because letting Pj = (uj , vj) there are no points
below the line v = 0. At the end of iteration 3, G3 = P1x

3
1 + P2x

3
2 + P3x

3
3 where

x3
1 > 0, x3

2 > 0, x3
3 > 0. Reducing x3

1 to 0 and increasing x3
2, x

3
3 to ρx3

2, ρx
3
3, where

ρ = 1/(1− x3
3), results in G4 = 0 on the next iteration.

Algorithm 3.1 (Improved von Neumann Algorithm) Given Pj ∈ �n, ||Pj || = 1,
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and ε, the algorithm converges to an ε-optimal solution, if one exists, to the problem:

n∑
j=1

Pjxj = 0,

n∑
j=1

xj = 1, xj ≥ 0 for j = 1, . . . , n. (3.39)

Initiate the approximation Gt =
∑n

j=1
Pjx

t
j , at t = 1 as follows. Let E2 = ||Gt||2 measure

the square of the error of the approximation Gt and set

t← 1, Gt ← P1, xt
1 ← 1, xt

j ← 0 for j > 1, E2 ← ||Gt||2 = 1, FLAG← 1.

1. Determine s, the Index of xs. For j = 1, . . . , n compute

δj = −(Gt)TPj . (3.40)

Set

s =


argmin

j

{δj} if FLAG = 1

argmax
j

{δj | xt
j > 0} if FLAG = −1

(3.41)

2. Terminate Infeasible. If FLAG = +1 and δs > 0, no feasible solution exists. STOP.

3. Find Adjustments for Next Approximation. Determine λ that minimizes the norm
of the next approximation ||λPs + (1− λ)Gt||; i.e.,

λ← E2 − δs

E2 − 2δs + 1
. (3.42)

Adjust λ so that the updated xt+1
s ≥ 0. If FLAG = −1 and λ < −xt

s/(1−xt
s), then

λ← − xt
s

1− xt
s
. (3.43)

4. Update Approximation.

Set:

E2 ← (1− λ2)E2 + 2λ(1− λ)δs + λ2

Gt+1 ← λPs + (1− λ)Gt

xt+1
j ← (1− λ)xt

j for all j �= s

xt+1
s ← (1− λ)xt

s + λ

FLAG ← −FLAG
t ← t+ 1.

5. Loop Back. If E > ε return to Step 1.

6. Terminate ε-Feasible. If E ≤ ε, STOP and report the iteration count t, the value
E2 = ||Gt||2, and the ε-feasible solution xt.
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3.1.3 Von Neumann Algorithm as a Variant of the Simplex
Algorithm

The Improved von Neumann Algorithm may be interpreted as a variant of the
Simplex Algorithm with a separable quadratic objective. We illustrate this for the
case m = 3.

At iteration t of the Improved von Neumann Algorithm,

Gt =
n∑

j=1

Pjx
t
j , Gt =

 gt
1

gt
2

gt
3

 , xt
j ≥ 0 for j = 1, . . . , n. (3.44)

The equivalent problem for solution by the Simplex Algorithm is:

Find Min z, v ≥ 0, xt
jv + ∆xj ≥ 0, for j = 1, . . . , n,

such that
1
2g

2
1 + 1

2g
2
2 + 1

2g
2
3 = z :Multipliers

−g1 + gt
1v +

n∑
j=1

a1j∆xj = 0 :−gt
1

− g2 + gt
2v +

n∑
j=1

a1j∆xj = 0 :−gt
2

− g3 + gt
3v +

n∑
j=1

a1j∆xj = 0 :−gt
3

1v +
n∑

j=1

∆xj = 1 : ||Gt||2

(3.45)

where aij are the coefficients from the original problem.
The current basic variables are gt

1 = 0, gt
2 = 0, gt

3 = 0, and v = 1, and the
nonbasic variables are ∆xj = 0, for j = 1, . . . , n.

� Exercise 3.19 Prove that (3.45) is equivalent to the original problem.

� Exercise 3.20 Prove that the simplex multipliers π associated with the basis is

π =
(
gt
1, g

t
2, g

t
3, ||Gt||2

)
.

� Exercise 3.21 Assume that all ∆xj except ∆xs are fixed at ∆xj = 0 and the adjusted
values of z, gi, v are expressed as a function of ∆xs.

1. Determine the range of ∆xs such that xt+1
j ≥ 0 for all j.

2. Determine ∆xs that minimizes z subject to xt+1
j ≥ 0 for all j.
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� Exercise 3.22 The Simplex Algorithm “prices” out the columns to determine which
column j = s to increase (or decrease). Show that this results in the criterion that z will
decrease with an infinitesimal decrease in xj if (Pj)

TGt < ||Gt||2 or with an infinitesimal
increase in xj if (Pt)

TGt > ||Gt||2 and xt
j ≥ 0.

� Exercise 3.23 LetB = (Pj1 , Pj2 , . . . , Pjk ) be k independent columns and let πTPji = 1
for all ji. Prove that B̄ = (Pj1 , Pj2 , . . . , Pjk , Ps) is an augmented set of k+ 1 independent
columns if πTPs �= 1.

� Exercise 3.24 Let B = (Pj1 , Pj2 , . . . , Pjk ) be k independent columns. Prove that
BTB is a k × k nonsingular matrix that can be used to find y such that By is closest to b
in the least-squares sense.

� Exercise 3.25 Let B = (Pj1 , Pj2 , . . . , Pjk ) be k independent columns. Show how BTB
can be used to determine By closest to the origin b = 0 where eTy = 1, e = (1, 1, . . . , 1)T.
Note that if Pji is very sparse, then BBT is likely to be sparse and likely to make it
computationally efficient to solve a system BBTu = e. Whereas if

B̄ =

(
Pj1 Pj2 · · · Pjk

1 1 · · · 1

)
then B̄TB̄ is 100% dense; verify that B̄TB̄ is 100% dense.

� Exercise 3.26 If Pj are m component vectors and B = (Pj1 , Pj2 , . . . , Pjm ) are m
independent columns, show how the inverse of B instead of the inverse of BTB can be
used to determine By closest to the origin b = 0 where eTy = 1, e = (1, 1, . . . , 1)T.

3.2 DIKIN’S METHOD

We are concerned with the linear program whose primal form is

(P)
Minimize z = cTx
subject to x ∈

{
x ∈ �n

∣∣ Ax = b, x ≥ 0
} (3.46)

where c ∈ �n, A ∈ �m×n, and 0 �= b ∈ �m are given. Its dual form is

(D)
Maximize v = bTy
subject to y ∈

{
y ∈ �m

∣∣ c−ATy ≥ 0
}
.

(3.47)

We denote the dual slack variables by

u = c−ATy ≥ 0. (3.48)
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When feasible solutions exist for both (P) and (D), then feasible solutions x = x∗
and (y, u) = (y∗, u∗) exist and are optimal for (P) and (D) if and only if (see
Section 2.2) the complementary conditions

ujxj = 0 for j = 1, . . . , n (3.49)

are satisfied. It is convenient to define D = [Dij ] as the diagonal matrix

D = Diag (u),

where

Dij =
{

0 if i �= j,
ui if i = j.

(3.50)

It is easy to verify that the condition

Dx = 0 (3.51)

is a convenient way to write the complementary conditions (3.49) in matrix notation.
We therefore seek feasible solutions for (P) and (D), see (3.46) and (3.47), satisfying
the complementary conditions (3.51).

Recall some definitions: A primal solution is any x satisfying Ax = b; it is
feasible if x ≥ 0. A dual solution is any (y, u) satisfying ATy + u = c; it is feasible
if ATy ≤ c or u ≥ 0. Neither primal nor dual solutions need be feasible in general;
however, all dual solutions we will be generating in Dikin’s affine algorithm, will
be required to be feasible but primal solutions will not necessarily be required to
be feasible. A partition of indices j = 1, . . . , n into two sets consisting of any m
indices and the remaining (n −m) indices will be denoted by {B,N}. The set A

B

of columns corresponding to B we will later assume to be nonsingular and hence it
will form a basis in the space generated by linear combinations of the columns of
A. The basic primal and dual solutions associated with some partition {B,N} will
be denoted by x̄ and (ȳ, ū), respectively. In other words, the bar over the symbol
denotes that the solution is basic.

By definition, the primal solution x̄ = (x̄B, x̄N) associated with {B,N} is basic,
if x̄

N
= 0. The basic primal solution is nondegenerate if

|x̄j | > 0 for all j ∈ B. (3.52)

By definition, the dual solution (ȳ, ū) associated with {B,N} is basic if ū
B

= 0. The
dual basic solution is nondegenerate if |ūj | > 0 for all j ∈ N . A dual basic solution
is nondegenerate and feasible, if and only if

ū
N
> 0. (3.53)

The primal and dual basic solutions x̄ and (ȳ, ū) are called complementary because
|uj | > 0 implies xj = 0 and |xj | > 0 implies uj = 0; see (3.51).

Definition (Interior Solution): A solution (y, u) is said to be an interior
solution for the dual (D) if u > 0, implying that interior solutions are strictly
in the interior of the u space.
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Figure 3-6: Ellipsoid Centered at (1, 2)

Recall that quadratic expressions, such as y2
1 + y2

2 and y2
1 + y1y2 + y2

2 or more
generally yTMy, are positive-definite if and only if yTMy > 0 for all y �= 0.

Definition (Ellipsoid): Let M be any positive-definite matrix; then the set
of points {

y ∈ �m

∣∣∣∣ (y − yo)TM(y − yo) ≤ k
}
, k > 0, (3.54)

defines an ellipsoid with center at yo. Another way to express an ellipsoidal
region is by the set of points{

y ∈ �m

∣∣∣∣ ||AT(y − yo)|| ≤ k̄
}
, k̄ > 0, (3.55)

where A is any m× n matrix of rank m and m ≤ n.

� Exercise 3.27 Show that the set of y given by (3.55) is the same as the ellipsoidal
region defined by (3.54) with M = AAT and k = k̄2. Prove that if A is of rank m, then
M is positive-definite. If rank (M) < m, then prove that M is positive semi-definite; i.e.,
yTMy ≥ 0 for all y.

� Exercise 3.28 Prove that if M in (3.54) is positive semi-definite then (3.54) defines an
ellipsoid in a lower-dimensional space than �m.

� Exercise 3.29 Show that the expression

(y1 − 1)2 − (y1 − 1)(y2 − 2) + (y2 − 2)2 ≤ 4
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bTyt+1 = max over E
E =

{
y
∣∣ ||D−1AT(y − yt)|| ≤ 1

}
bTy∗ = max over C
C =

{
y
∣∣ ATy ≤ c

}

Figure 3-7: Ellipsoid Subproblem Centered at yt

defines a two-dimensional ellipsoid whose boundary is an ellipse

(y1 − 1)2 − (y1 − 1)(y2 − 2) + (y2 − 2)2 = 4

having a center yo = (1, 2)T. The shaded region in Figure 3-6 is a graph of this ellipsoid.

� Exercise 3.30 Find the translation and a rotation about the origin that transforms the
ellipse in Exercise 3.29 so that its resulting equation is in the form

x2
1

a2
1

+
x2

2

a2
2

= 1.

3.2.1 DIKIN’S ALGORITHM

Each iteration t of Dikin’s affine algorithm applied to the dual problem starts
with an interior solution yt to the dual (D), and looks for an interior point y = yt+1

(see Figure 3-7) where the objective bTy is maximized over an ellipsoidal region E
centered at yt, that is,

E =
{
y ∈ �m

∣∣∣∣ ||D−1AT(y − yt)|| ≤ 1
}
, (3.56)

where D = Dt = [Dt
ij ] is the diagonal matrix

D = Diag (ut).

The matrix D has a positive diagonal ut > 0 corresponding to the current interior
solution (yt, ut). A fundamental property of this ellipsoid, which we will prove later
(Lemma 3.9), is that it lies strictly in the interior of the feasible dual region

C =
{
y ∈ �m

∣∣ ATy ≤ c
}

(3.57)
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(except under very special circumstances it may not be strictly in the interior,
that is, it may touch the boundary; see Exercises 3.31 and 3.37). Once (yt+1,
ut+1 = c − ATyt+1 > 0) is found, a new ellipsoid is constructed and the process
is repeated. This generates a sequence of points y1, y2, . . . , yt, which we will show
converges to y∗, the optimal dual solution. We will show that the difference between
the optimal value of the objective v∗ = bTy∗ and the value of the objective at the
current iterate vt = bTyt decreases asymptotically by a factor ρ that approaches
1− 1/

√
m as t→∞.

� Exercise 3.31 Graph the two-dimensional ellipsoid defined by (3.56) and centered at
y0 = (0, 0) for the dual feasible region defined by y1 ≤ 1 and y2 ≤ 1. Show analytically
that this ellipsoid is not strictly in the interior of the dual feasible region but touches its
boundaries.

� Exercise 3.32 Graph the two-dimensional ellipsoid defined by (3.56) and centered at
y0 = (0, 0) when the feasible region is the square region defined by −1 ≤ y1 ≤ 1 and
−1 ≤ y2 ≤ 1.

Algebraically, the ellipsoid subproblem (EP), shown in (3.58), at iteration t is
to find y = yt+1 ∈ �m, which

(EP) Maximizes v = bTy
subject to ||D−1AT(y − yt)|| ≤ 1. (3.58)

The algorithm is iterated with (yt+1, ut+1) replacing (yt, ut). The iterate also com-
putes a primal (not necessarily feasible) solution xt in addition to the maximizing
point yt+1 in the ellipsoid. These iterates xt and yt+1 are computed as shown in
Algorithm 3.2.

Algorithm 3.2 (Dikin’s Algorithm) Given a dual interior solution (yo, uo) where
uo > 0. Given a convergence tolerance ε > 0. Set t← 0.

1. Find a Search Direction p:

p = (AD−2AT )−1b, D = Dt = diag (ut). (3.59)

2. Determine a Primal Solution xt:

xt = D−2AT p (3.60)

3. Update the Dual Solution for the Next Iteration:

yt+1 = yt + p̃ = yt +
∣∣(bTp)−1/2

∣∣p, (3.61)

ut+1 = c−ATyt+1. (3.62)

4. Convergence Test : If
||yt+1 − yt|| ≤ ε

stop and report the primal solution xt and dual solution (yt+1, ut+1) as “optimal.”
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5. Set t← t+ 1 and go to Step 1.

� Exercise 3.33 Show that yt+1 given by (3.61) is the optimal solution to the ellipsoid
problem (3.58).

� Exercise 3.34 If the dual has an unbounded maximum, i.e., it is primal infeasible, then
Step 4 of Algorithm 3.2 will never test optimal. Suggest a modification that detects this.

� Exercise 3.35 Suggest a method for determining an initial (starting) dual interior
solution (yo, uo). If the dual were infeasible, how would you detect it in your technique?

We will prove that yt+1 lies in the interior of (C) when n > m and that xt,
the primal solution, satisfies Axt = b but not necessarily xt ≥ 0. As t → ∞, we
will show that xt tends toward the unique optimal basic feasible solution under our
nondegeneracy assumption and (yt, ut) tends towards its complementary optimal-
dual basic feasible solution. Until convergence the dual solution is strictly in the
interior and is given by:

ut = c−ATyt > 0. (3.63)

Comment: In practical applications, in order to speed up the rate of convergence
one often takes bigger steps than p̃ =

∣∣(bTp)−1/2
∣∣p. Instead of (3.61),

adjusted yt+1 = yt + α
∣∣(bTp)−1/2

∣∣p, α ≥ 1,

where α is chosen so that the adjusted yt+1 is, say, .9 of the way in the direction p
from the unadjusted yt+1 to the boundary of C; see (3.57). The proof of convergence
is almost exactly the same. For our development, however, we will assume α = 1.

3.2.2 CONVERGENCE OF DIKIN’S ALGORITHM

In this section, to simplify the proof, we prove that Dikin’s algorithm converges
under the following rather restrictive assumptions:

A1 b �= 0, c �= 0, n > m, and every subset of m columns from A has rank m.

A2 An interior feasible dual solution yo is given.

A3 A feasible primal solution exists but is not specified.

A4 Every feasible dual basic solution is nondegenerate.

A5 Every primal basic solution, feasible or not, is nondegenerate.

We first show that the steps of Dikin’s algorithm are valid; we do this by using
two lemmas that show several interesting properties of the steps of Dikin’s algo-
rithm. Next we show that the algorithm converges to an optimal feasible solution
by proving several interesting lemmas.
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THE STEPS OF DIKIN’S ALGORITHM ARE VALID

LEMMA 3.8 (Properties) In Dikin’s algorithm the following hold:

D−1 exists. (3.64)

(AD−2AT )−1 exists and is positive-definite. (3.65)

Axt = b. (3.66)

||Dxt||2 = pTb > 0. (3.67)

p̃ =
∣∣(bTp)−1/2

∣∣p is an improving direction, i.e., bTyt+1 > bTyt. (3.68)

ut+1 = ut − ||Dxt||−1(D2xt). (3.69)

Proof. We first show (3.64). We are given inductively by (3.63) that yt is an
interior point meaning ut = c − ATyt > 0. Thus D = Diag (ut) has a positive
diagonal and therefore D−1 and D−2 exist and have positive diagonals.

We next show (3.65). The rank of A by (A1) is m and so the rank of AD−1

(which rescales the columns j of A by (1/ut
j) > 0) is also of rank m; hence AD−2AT

is an m by m symmetric positive-definite matrix of rank m (see Exercise 3.27),
implying (AD−2AT )−1 exists.

To show (3.66), we note that the iterates satisfy certain important relationships.
First

Axt = b, (3.70)

which is obtained by substituting the expression for p from (3.59) into (3.60) and
multiplying by A, thus:

Axt = (AD−2AT )(AD−2AT )−1b = b (3.71)

which are valid steps since D−1 and (AD−2AT )−1 exist.
To show (3.67), we note that xt �= 0 because if xt = 0 in (3.70) it would imply

b = 0 contrary to (A1). Since ut > 0 and xt �= 0:

Dxt = (ut
1x

t
1, u

t
2x

t
2, ..., u

t
nx

t
n)T �= 0, ⇒ ||Dxt|| > 0. (3.72)

Also note that

0 < ||Dxt||2 = (xt)TD2xt

= (pTAD−2)D2(D−2AT p) (3.73)
= pT(AD−2AT )p
= bT(AD−2AT )−1(AD−2AT )p (3.74)
= bTp, (3.75)

where (3.73) follows from (3.60), and (3.74) follows from (3.59).



3.2 DIKIN’S METHOD 91

To show that (3.68) is true, note that (3.67) implies that it is legal to use∣∣(pTb)−1/2
∣∣ as a factor in (3.68) and in the computation of yt+1 by (3.61) since

pTb > 0. Multiplying (3.61) on the left by bT and noting (3.67), we get

bTyt+1 − bTyt =
∣∣(bTp)1/2

∣∣ = ||Dxt|| > 0, (3.76)

that is, p̃ =
∣∣(bTp)−1/2

∣∣p is a strictly improving direction.
Finally, to show (3.69), multiply (3.61) on the left by AT and substitute c− ut

for ATyt and c− ut+1 for ATyt+1, to obtain from (3.63):

ut+1 = ut −AT
∣∣(bTp)−1/2

∣∣p (3.77)

= ut − ||Dxt||−1ATp (3.78)
= ut − ||Dxt||−1(D2xt) (3.79)

where (3.78) follows from (3.75), and (3.79) follows by multiplying (3.60) by D2.
Hence (3.69) is true.

LEMMA 3.9 (The Ellipsoid is Strictly in the Dual Interior) The dual
iterates are feasible and lie strictly in the interior and satisfy:

0 < ut+1 ≤ 2ut. (3.80)

Proof. We first show that 0 < ut+1 ≤ 2ut, by showing first 0 ≤ ut+1 ≤ 2ut and
next that the feasible region of (E) is contained in the interior of the feasible region
of the dual feasible region (C).

Let ŷ �= yt be any point that lies in the ellipsoid E and let û = c − ATŷ. Then
by the definition of the ellipsoid E given by (3.56):

n∑
j=1

(
AT

•j(ŷ − yt)
)2

(ut
j)2

≤ 1. (3.81)

From (3.81) and the equation for ut, (3.63), it follows that

n∑
j=1

(ûj − ut
j)

2

(ut
j)2

≤ 1. (3.82)

This implies for each component j:

(ûj − ut
j)

2

(ut
j)2

≤ 1, (3.83)

− ut
j ≤ ûj − ut

j ≤ ut
j , (3.84)

0 ≤ ûj ≤ 2ut
j. (3.85)
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We next show that û > 0. Assume on the contrary, that ŷ is on the boundary
of the dual feasible region (C), then there exists a component j = s of û = c−ATŷ
such that

0 = ûs = cs −AT
•sŷ. (3.86)

But ûs = 0 holding implies

(ûs − ut
s)

2

(ut
s)2

=
(0− ut

s)
2

(ut
s)2

= 1. (3.87)

Since the sum of all the terms in (3.82) must be less than or equal to 1, and, from
(3.87) the term for j = s equals 1 this implies that all the terms except for j = s
must vanish. Therefore, applying (3.63):

0 = ut
j − ûj = AT

•j(ŷ − yt), ∀ j �= s. (3.88)

However, choosing B to be any basic set of m indices j, which excludes j = s, we
have by the nonsingularity of A

B
(see assumption (A1)):

AT
B
(ŷ − yt) = 0 ⇒ ŷ = yt.

However, our contrary assumption that ŷ is a boundary point of (C) implies that
yt = ŷ is also a boundary point, which contradicts the assumption that yt is an
interior point of (C). Therefore ŷ, which is any point that lies in the ellipsoid (E) is
an interior point of (C), i.e., û > 0. In particular, ŷ = yt+1 is not on the boundary
of (C) implying ut+1 > 0. This, together with (3.85), implies:

0 < ut+1 = c−ATyt+1 ≤ 2ut. (3.89)

This establishes what we set out to prove.

� Exercise 3.36 Prove in Lemma 3.9 that in fact ut+1 < 2ut.

� Exercise 3.37 Since we just proved that the ellipsoid (E) lies strictly in the interior
of the dual feasible region and we know from Exercise 3.31 that if n = m this may not
be true, discover where in the proof for Lemma 3.9 we made use of the assumption that
m < n.

� Exercise 3.38 Note that in the proof of Lemma 3.9 we have not made use of the primal
nondegeneracy assumption (A5). Suppose in assumption (A1) we allow m ≤ n. Prove that
the optimal solution yt+1 to (3.58) would be strictly in the interior of the dual feasible
region if assumption (A5) holds.

THEOREM 3.10 (Steps of Dikin’s Algorithm are Legal) Steps (3.59),
(3.60), and (3.61) of Dikin’s algorithm are legal and hence can be executed iteratively.

� Exercise 3.39 Apply Lemmas 3.8 and 3.9 to prove Theorem 3.10.
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PROOF OF CONVERGENCE

Having completed the proof that the detailed steps of Dikin’s algorithm are legal,
we will now use Lemmas 3.8 and 3.9 to prove convergence of the algorithm. Before
formally proving the theorem we will sketch the proof.

We start by showing that the primal-dual iterates generated by Dikin’s algo-
rithm are complementary. We next use this to show that, given a basic/nonbasic
partition, if convergence of the primal basic variables occurs, or of the primal non-
basic variables, or of the dual nonbasic variables, or of the dual basic variables, then
in fact convergence occurs to a basic primal solution and a corresponding basic dual
feasible solution. Next we show that convergence does in fact occur and that, in
fact, the primal basic solution and basic dual feasible solutions are complementary.
What is left to show is that the basic primal solution is feasible and that the solution
is optimal.

About each of the dual basic feasible solutions (extreme points) we construct
a ball of radius δ, where δ is chosen so small that none of the balls overlap. We
claim that only a finite number of iterates yt lie outside all of the balls because if
an infinite number lay outside the balls a subset of them would converge to a point
not in any of the balls, but, as we have already shown, convergence of the subset
must be to an extreme point, which is a contradiction. Therefore every convergent
subsequence must be to the extreme point centers of some balls. However, we show
that there cannot be two subsequences converging to two or more different extreme
points. We, next show that the extreme point it converges to is in fact primal
feasible and primal/dual optimal.

THEOREM 3.11 (Complementarity of Primal-Dual Iterates) The primal-
dual iterates {ut, xt} tend toward complementarity, i.e., for each j = 1, . . . , n

ut
jx

t
j → 0 as t→∞. (3.90)

Proof. Note that bTyt is strictly monotonically increasing by (3.68), Lemma 3.9,
and has a finite upper bound because by assumption (A3) primal feasible solutions
exist. Therefore from (3.76) we have

bTyt+1 − bTyt = ||Dxt|| → 0 as t→∞. (3.91)

where ||Dxt||2 =
∑n

j=1(u
t
jx

t
j)

2 from (3.72). This implies that ut
jx

t
j → 0 for all

components j.
Note that our assumptions (A1)–(A5) do not imply that the dual space is

bounded; and, that we do not require boundedness of the dual feasible space for
our proofs as do some proofs (of Dikin’s algorithm) in the literature.

Definition (Using t in S): Let S = {t1, t2, . . . , ti, . . .} be an increasing
infinite subsequence of iterations t = {1, 2, . . .}. By the phrase using t in S,
we mean choosing some increasing infinite subsequence of the subsequence S.
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THEOREM 3.12 (Convergence to Basic Solutions) Given some partition
(B,N ) of the column indices of A. Using t in S, if xt

B
→ x̄

B
, or xt

N
→ x̄

N
, or

ut
B → ūB, or ut

N → ūN , then (x̄B, x̄N) is a basic primal solution and (ūB, ūN) is a
basic dual feasible solution.

Proof. The proof consists in showing the implications outlined in the following
figure:

xt
B
→ x̄

B
⇐= xt

N
→ x̄

N
= 0

⇓ Using t in S ⇑
ut

B → ūB = 0 =⇒ ut
N → ūN > 0

We will show each implication separately.

1. Suppose xt
N
→ x̄

N
= 0 using t in S; then we get

xt
B

= B−1(b −A
N
xt

N
)→ B−1b = x̄

B
using t in S,

where B = AB .

2. Suppose xt
B → x̄B using t in S. By the nondegeneracy assumption A5, |x̄i| > 0

for all i ∈ B. Hence |x̄t
i| > ε > 0 for all t > some fixed to. Then by the

Complementarity Theorem 3.11 we get ut
B → 0 = ūB.

3. Suppose that ut
B → ūB = 0 using t in S, then

ut
N

= c
N
−

(
(c

B
− ut

B
)TB−1A

N

)T → c
N
−

(
(cT

B
B−1)A

N

)T = ū
N
.

Since ut
N
> 0, this implies ū

N
≥ 0 and this in turn implies by nondegeneracy

of the dual solution (assumption A4), that ūN > 0 and ut
N > ε > 0 for some ε

for t > to in S.

4. Suppose that ut
N
→ ū

N
> 0 using t in S, then by the Complementarity Theo-

rem 3.11 we get xt
N → x̄N = 0.

This completes the proof.

LEMMA 3.13 (Convergence of Dual Iterates) Let u1, u2, . . . , ut, . . . be the
infinite sequence of ut generated by Dikin’s algorithm. Let S0 = {1, 2, . . . , . . . , t, . . .}.
Then there exists an infinite subsequence S∗ = {t∗1, t∗2, . . .} ⊇ S0 such that for each
component j using t in S∗ either ut

j → 0 or ut
j ≥ ε∗ for some fixed ε∗ > 0.

Proof. Let n be the number of columns of A. Define inductively for j = 1, 2, ..., n
the nested set of infinite subsequences S0 ⊇ S1 ⊇ S2 · · · ⊇ Sn as follows. For the
first component j = 1 of the ut, let ε1 = inf ut using t in S0. Clearly ε1 ≥ 0 since
ut > 0. If ε1 > 0 then ut

1 ≥ ε1 for all t and we set S1 = S0. If, on the other hand,
ε1 = 0, then there exists a subsequence S1 ⊆ S0 such that ut

1 → 0 using t in S1.
The process is then repeated for component j = 2 with S1 instead of S0 generating
ε2 = inf ut

2 using t in S1. If ε2 > 0, then we set S2 = S1; if ε2 = 0 using t in S1
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then we set S2 ⊆ S1 such that ut
2 → 0 using t in S2. In this manner, we obtain

for components j = 1, . . . , n, ε1, ε2, . . . , εn and subsequence S1 ⊇ S2 ⊇ · · · ⊇ Sn.
Letting ε∗ = min εj for εj > 0 and letting S∗ = Sn, we obtain the desired result.

Comment: The proof is an existence proof. Since it involves finding the inf (infi-
mum) of an infinite sequence, it cannot be executed as an algorithm on a computer
in a finite lifetime.

THEOREM 3.14 (Convergence to Complementary Basic Solutions) Let
S0 be any infinite subsequence of iterations. There exists a partition {B,N} and
infinite subsequence S∗ = {t∗1, t∗2, . . . , } contained in S0 such that xt = (xt

B , x
t
N ) tends

to the primal basic solution (x̄
B
, x̄

N
= 0) and (yt;ut

B
, ut

N
) tends to the complementary

dual basic feasible solution (ȳ; ūB = 0, ūN > 0) using t in S∗.

Proof. In Lemma 3.13, let m̄ be the number of indices j such that ut
j → 0 using

t in S∗. For the remaining n− m̄ indices j, ut
j ≥ ε∗ > 0 for all t in S∗. One of the

following two cases holds.

Case 1: m̄ ≥ m of the ujs tend to 0.

Case 2: n− m̄ > n−m of the ujs are bounded away from 0.

We will show that in either case the (xt, ut) converge to complementary basic
feasible solutions using t in S∗ where the basic partition {B,N} is defined as follows.

Case 1: Since m̄ ≥ m, there exists a subset B of m indices such that for j ∈ B,
ut

j → 0 using t in S∗. The basic partition {B,N} is then defined by letting
N denote the remaining indices j.

B N
0 0 · · · 0 0 0 0 + + · · · · · + +

Case 2: Since n− m̄ > n−m, there exists a subset N of n−m indices j such that
for j ∈ N , ut

j ≥ ε∗ for all t in S∗. The basic partition {B,N} is then defined
by letting B denote the remaining indices j.

B N
0 0 · · · 0 + + + · · · · · · · · · + +

In Case 1 there is a basic partition {B,N} such that ut
B → 0 = ūB using t in S∗.

The result follows from Theorem 3.12.
In Case 2 there is a basic partition {B,N} such that for j ∈ N that ut

j ≥ ε∗ > 0
for all t in S∗. The result follows from Theorem 3.12.
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Convergence as t→∞: Letting S0 be any arbitrary infinite subset t1 < t2 < · · · <
∞, we have shown convergence to a basic primal solution x̄∗ and its complementary
dual basic feasible solution (ȳ∗, ū∗) using t in some infinite subset S∗ ⊂ S0. Our
goal (see Theorem 3.19) will be to show that xt, (yt, ut) converge to x̄∗, (ȳ∗, ū∗) and
x̄∗ is basic feasible and primal optimal as is (ȳ∗, ȳ∗) dual basic feasible and optimal
using {t} = {1, 2, . . .}.

But first some definitions and easy to prove lemmas.

Definition (Lying in a Ball): In Theorem 3.14, choose S0 = {1, 2, . . . ,∞} and
let T∗ = S∗ be the subsequence obtained for this choice of S0 where xt, (yt, ut)
converge to a primal basic solution and a complementary dual feasible solution.
Let (x̄∗, ȳ∗) be the basic (which we will show is not necessarily feasible) primal
solution and complementary basic dual feasible solution that (xt, yt) converge
to using t in T∗.

Denote by (x̄ν , ȳν) for ν = 1, . . . , q the finite set q of all other basic (not
necessarily feasible) primal and complementary basic dual feasible solutions.
Let 2δ0 be the shortest distance between any two distinct extreme points ȳ;
i.e.,

δ0 = (1/2)min ||ȳi − ȳj ||, i �= j, (3.92)

where i, j ∈ {∗, 1, . . . , q}.
We say that all points y that are within a δ > 0 distance of an extreme point
ȳ are lying in a ball of radius δ with a center at ȳ or lying in a δ-neighborhood
of ȳ denoted by Nδ(ȳ):

Nδ(ȳ) =
{
y : ||y − ȳ|| ≤ δ

}
. (3.93)

An iterate yt is said to lie outside the nonoverlapping balls Nδ(ȳν) if

||yt − ȳν || > δ for all ν = ∗, 1, . . . , q.

� Exercise 3.40 Show that for 0 < δ < δ0 defined in (3.92) the δ-neighborhoods of the
extreme points ȳ∗ and ȳν for ν = 1, . . . , q have no points in common.

LEMMA 3.15 (Count of yt that are Outside of the Balls is Finite.) Given
any δ, 0 < δ < δ0, where δ0 defined by (3.92) and given balls Nδ(ȳν) where ȳν is
one of the dual basic feasible solutions for ν = ∗, 1, . . . , q. Then the count of yt, for
t = 1, 2, . . . ,∞, that are outside of the balls is finite.

Proof. Let Y0 = {yt1 , yt2 , . . . , } be the subsequence of all yt lying outside the
balls and let S0 = {t1, t2, . . . , } be the corresponding subsequence of t. If, on the
contrary, the count of t in S0 is infinite, then by Theorem 3.14 there would be an
infinite subsequence S∗ ⊂ S0 such that, using t in S∗, yt → ȳν0 , for some dual basic
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feasible solution ȳν0 . This implies an infinity of t in S0 whose yt are in the ball
||y − ȳν0 || ≤ δ, contrary to the construction of Y0 as the set of yt lying outside all
the balls Nδ(ȳν), for ν = ∗, 1, . . . , q.

LEMMA 3.16 (Iterates yt Converge to an Extreme Point ȳν0) If the count
of yt is infinite in the ball Nδ0(ȳν0) for some extreme point ȳν0 , then yt → ȳν0 using
yt in the ball.

Proof. Let Y0 be the subsequence of yt lying in the ballNδ0(ȳν0) for some extreme
point ȳ, but outside some smaller concentric ball Nδ(ȳν0), 0 < δ < δ0. From
Lemma 3.15 the subsequence Y0 must be finite whatever be δ < δ0. It follows that
if the count of yt in Nδ0(ȳν0) is infinite, then given any δ, 0 < δ < δ0, there exists a
tδ such that for all t > tδ all yt in Nδ0(ȳν0) are also in Nδ(ȳν0). By definition, this
is what we mean when we say yt → ȳν0 using yt in Nδ0(ȳν0).

LEMMA 3.17 (Iterates yt Converge to a Primal Basic Solution and Dual
Basic Feasible Solution ȳ∗) If for t in S0, yt does not converge as t→∞ to the
same limit ȳ∗ using t in T∗ then for some ν �= ∗ there exists an infinite subsequence
T1 = {t1, t2, . . .} and a successor subsequence T2 = {t1 + 1, t2 + 1, . . .} such that
yt → ȳ∗ using t = tk in T1 and yt+1 → ȳν using t = tk + 1 in T2.

Proof. Assume that yt → ȳ∗ is not true. Generate infinite subsequences T ′
1 =

{tk} and T ′
2 = {tk + 1} and {νk} as follows:

initialize k := 1; s1 := first t such that yt ∈ Nδ0(ȳ
∗);

while j <∞ do begin
tk := first t ≥ sk such that yt ∈ Nδ0(ȳ

∗) and yt+1 ∈ Nδ0(ȳν) for some ν �= ∗;
νk := ν;
sk := first t > tk such that yt ∈ Nδ0(ȳ

∗);
k := k + 1;

end while;

Referring to the definition of T∗ (see Page 96), note that sk always exists since
yt → ȳ∗ using t in T∗. Under the contrary assumption that yt �→ ȳ∗ it follows
that tk must also exist; otherwise sk, sk+1, sk+2, . . . would all belong to Nδ0(ȳ

∗),
implying by Lemma 3.15 that yt → ȳ∗ as t→∞. Therefore, since the subsequence
{νk} is infinite and there are at most q different values that the νk can assume,
there exists a ν �= ∗ such that there is an infinite subsequence of t ∈ T ′

1 whose yt

are in Nδ0(ȳ
∗) and whose successor subsequence yt+1 are in Nδ0(ȳν). Hence, there

exists a subsequence T1 ⊂ T ′
1 of tk and successor sequence T2 ⊂ T ′

2 of tk + 1 such
that yt → ȳ∗ using t in T1 and yt+1 → ȳν , where ν �= ∗ using t in T2.

THEOREM 3.18 (Iterates yt Converge to the Same Extreme Point) A
subsequence yt and a successive subsequence yt+1 cannot tend to different limits ȳ∗
and ȳν , ν �= ∗ implying as t → ∞, (xt, yt) converge to primal basic and comple-
mentary dual basic feasible solutions (x̄∗, ȳ∗).
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Proof. Let {B,N} be the basic partition associated with ȳ∗, ū∗ = c−ATȳ∗ and
let (B̂, N̂ ) be the basic partition associated with ȳν , ūν = c−ATȳν where ν �= ∗ as
implied under the contrary assumption that yt does not converge. Since B �= B̂, let
j = r be an index in B that is not in B̂. Then, since for tk in T1 (from Lemma 3.17),
ytk → ȳ∗ as k→∞, and ytk+1 → ȳν , we have

utk
r = cr −AT

•ry
tk → cr −AT

•r ȳ
∗ = ū∗r = 0, (3.94)

utk+1
r = cr −AT

•ry
tk+1 → cr −AT

•r ȳ
ν = ūν

r > 0, (3.95)

where ūν
r > 0 since r is nonbasic with respect to (B̂, N̂ ) and the dual basic solution

is nondegenerate by assumption (A4). Since utk
r → 0, as k → ∞, it follows from

ut+1
r ≤ 2ut

r

(
see Equation (3.80)

)
that utk+1

r → 0, contrary to (3.95). Since the
contrary assumption yt → ȳ∗ and yt+1 → ȳν , ν �= ∗ leads to a contradiction, we
conclude that yt → ȳ∗ from which it follows from Theorem 3.12 that (xt, yt, ut)→
(x̄∗, ȳ∗, ū∗), where ū

N
∗ > 0.

THEOREM 3.19 (Convergence to Optimal Solution) Dikin’s algorithm
converges to optimal basic primal and dual solutions.

Proof. If we can prove that xt → x̄∗ is feasible, then by Theorem 3.18 we have
convergence in the limit to optimal solutions to the primal and dual problems. Since
Axt = b, we only need to prove that xt

j → x∗j ≥ 0 for all j. At the tth iteration, we
have from (3.79)

ut+1
j = ut

j −
(ut

j)
2xt

j

||Dxt|| = ut
j

(
1−

ut
jx

t
j

||Dxt||

)
, (3.96)

D = Dt = diag (ut). On the contrary, let us assume for some basic index r, that
xt

r → x̄∗r < 0 as t → ∞. There exists a finite t̄ such that for all t > t̄, xt
r < 0 and

therefore, because ut
r > 0:

1− ut
rx

t
r

||Dxt|| > 1 for all t > t̄. (3.97)

Hence, from (3.96), for all t > t̄
ut+1

r > ut
r. (3.98)

Thus, we have ut
r strictly increasing for t = t̄+1, t̄+2, . . . ,∞, contradicting ut

r → 0
by Theorem 3.11 for basic index r. This completes the proof.

The next theorem tells us how fast Dikin’s algorithm converges to an optimum.

THEOREM 3.20 (Ratio of Convergence) Let vt = bTyt and v∗ = bTȳ∗ be
the values of the dual objective on iteration t and in the limit as t→∞. Then the
ratio of convergence ρt satisfies

ρt =
v∗ − vt+1

v∗ − vt
≤ 1−

(
1
m

+ εt

)1/2

, vt < v∗, D = Diag (ut), (3.99)
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where εt → 0 as t→∞, i.e., ρt is asymptotically ≤ 1− (1/m)1/2.

Proof. Let {B,N} be the basic partition associated with optimal (x̄∗, ȳ∗). We
rewrite (3.99) as

ρt = 1− bTyt+1 − bTyt

bTȳ∗ − bTyt
= 1− ||Dx

t||
(ut

B)Tx̄∗B
, (ut

B
)Tx̄∗

B
> 0, (3.100)

where the numerator follows from (3.76) and the denominator follows from A
B
x̄∗

B
=

b, AT
By

t = (cB − ut
B) and AT

Bȳ
∗ = cB ; that is,

bT(ȳ∗ − yt) = (x̄∗
B
)TAT

B
(ȳ∗ − yt) = (x̄∗

B
)T
(
c

B
− (c

B
− ut

B
)
)

= (ut
B)Tx̄∗B > 0 (3.101)

because ut
B > 0 by (3.80) and x̄∗B > 0 by nondegeneracy. Relabeling the indices

B = (1, . . . ,m) then

||Dxt|| =
( n∑

j=1

(ut
jx

t
j)

2

)1/2

≥
( m∑

i=1

(ut
ix

t
i)

2

)1/2

(3.102)

(ut
B)Tx̄∗B =

m∑
k=1

ut
kx̄
∗
k. (3.103)

Thus,

ρt ≤ 1−
(∑m

i=1(u
t
ix

t
i)

2
)1/2∑m

k=1 u
t
kx̄
∗
k

. (3.104)

Noting that ut
i > 0 and x∗k > 0, define λi by

ut
ix̄
∗
i = λi

m∑
k=1

ut
kx̄
∗
k,

m∑
i=1

λi = 1, λi > 0, i = 1, . . . ,m (3.105)

If, in (3.104), we were to replace xt
i in the numerator by its limit x̄∗i and then

substitute ut
ix̄
∗
i = λi

∑m
k=1 u

t
kx̄
∗
k then the factor

∑m
k=1 u

t
kx̄
∗
k will cancel out with the

denominator obtaining:

asymptotically ρt ≤ 1−
(

m∑
i=1

(λt
i)

2

)1/2

< 1− (1/m)1/2 (3.106)

because
∑m

i=1 λi = 1.
To make this “proof” a little more rigorous, we rewrite ut

ix
t
i in the numerator

of (3.104) as

ut
ix

t
i = ut

ix̄
∗
i

(
1 +

xt
i − x̄∗i
x̄∗i

)
= ut

ix̄
∗
i (1 + δt

i)

= λi

( m∑
k=1

ut
kx̄
∗
k

)
(1 + δt

i)
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where λi is defined by (3.105), x∗i > 0, and δt
i = (xt

i − x̄∗i )/x̄∗i → 0 as t →∞. This
yields

ρt ≤ 1−
[

m∑
i=1

(
λt

i

)2 (1 + δt
i)

2

] 1
2

≤ 1−
[

m∑
i=1

(
λt

i

)2
+

m∑
i=1

(
λt

i

)2
δt
i(2 + δt

i)

] 1
2

≤ 1−
(

1
m

+ εt

)1/2

where
∑m

i=1 (λt
i)

2
> 1/m because

∑m
i=1 λ

t
i = 1, λi

t > 0, and

εt =
m∑

i=1

(λt
i)

2δt
i(2 + δt

i)→ 0 as t→∞

because 0 < λt
i ≤ 1.

3.3 KARMARKAR’S METHOD

We will present a variation of Karmarkar’s method and a simpler proof. His algo-
rithm, like Dikin’s, moves through the interior of a polytope. However in deciding
at each iteration t how to make a move from xt to xt+1, in Karmarkar’s method,
the coordinate system is temporarily changed so that the current iterate xt becomes
yt at the polytope’s “center” in the transformed space and the ellipsoid becomes a
hypersphere. The algorithm has a polynomial bound of O(n7/2L) on the number
of arithmetic operations, where n is the number of variables and L is the number
of bits required to represent the problem data on the computer.

The rationale for the approach is based on the following observations. When
minimizing, one is first tempted to move from the current solution xt in the direc-
tion of steepest descent of the objective function (i.e., in the negative gradient of the
objective function, which is the same as moving orthogonal to the objective hyper-
plane cTx = constant). If the current iterate xt is an interior point so that xt > 0,
such a move will in general violate the constraints Ax = b. To adjust for this,
one typically moves instead in the direction given by the projection of the negative
gradient of the objective onto the hyperplanes Ax = b. However, if xt is close to
the boundary hyperplanes, as xt = x̄t is in Figure 3-8, very little improvement will
occur. On the other hand, if the current iterate happens to be near the “center,”
such as xt = x̂t in Figure 3-8, there could be a big improvement.

3.3.1 DEVELOPMENT OF THE ALGORITHM

One of Karmarkar’s key ideas is to view the current iterate xt > 0 in a different
coordinate system as being at the center of the polytope. This is done by trans-
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Figure 3-8: Comparison of a Move from a Point x̂t Near the “Center” Versus a
Point x̄t Near the Boundary

forming the coordinates x = ( x1, x2, . . . , xn ) to y = ( y1, y2, . . . , yn ) by means of
the mapping T defined by:

yj = n
xj/aj∑n
i=1 xi/ai

for j = 1, . . . , n, (3.107)

where the current iterate xt = a > 0. Transformations such as (3.107) above
or its inverse (3.109) below are called projective transformations; for this reason
Karmarkar’s algorithm is often referred to as a projective algorithm. If we sum
(3.107) for j = 1, . . . , n, we obtain, whatever x is,

n∑
j=1

yj = n. (3.108)

The inverse mapping can be written

xj = n
yjaj∑n
i=1 yiai

for j = 1, . . . , n, (3.109)

provided the original xjs of the linear program always satisfy

n∑
j=1

xj = n. (3.110)

In matrix notation, letting D = Diag (xt) = Diag (a), the transformation T and
its inverse are defined by:

y = n
D−1x

eTD−1x
and x = n

Dy

eTDy
. (3.111)

� Exercise 3.41 Verify that (3.107) and (3.109) are inverse maps provided (3.108) and
(3.110) hold.
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� Exercise 3.42 Prove (see Section 1.2 for the definition of a simplex) that the set of
relations:

(S)

n∑
j=1

xj = n, xj ≥ 0 for j = 1, . . . , n. (3.112)

defines an (n− 1)-dimensional simplex S ⊂ �n. What are the coordinates of the vertices
of S?

� Exercise 3.43 Show that the center of the simplex S defined earlier is e = (1, 1, . . . , 1)T.
Show that the transformation (3.111) maps the simplex onto itself and maps the feasible
interior point xt ∈ S into the center yt = e ∈ S .

� Exercise 3.44 Let S be a simplex defined by (3.112). Show that the radius of the

smallest circumscribed sphere is R =
√
n(n− 1) and the radius of the largest inscribed

sphere is r =
√
n/(n− 1). Show that the vertices of the simplex S are of the form nek

where ek = (0, . . . , 0, 1, 0, . . . , 0)T is the kth unit vector. Prove that the furthest points from

the center e are the vertices nek and their distances from the center are R =
√
n(n− 1).

Karmarkar assumes that the original linear program is of the form c̄Tx̄ = z̄ (min),
eTx̄ = 1, Āx̄ = b̄, x̄ ≥ 0, which can always be written in the equivalent special form
(see Exercise 3.45):

Minimize cTx = z
subject to Ax = 0, A ∈ �m× n

eTx = n,
x ≥ 0.

(3.113)

He also makes certain additional assumptions:

A1 A minimizing solution x∗ exists and is such that the minimum value of the
objective function is zero, i.e., cTx∗ = 0.

A2 A starting feasible interior solution xo > 0, Axo = 0, eTxo = n is given. We
denote cTxo = z0.

A3 The solution process generates feasible interior iterates xt; a feasible solution
x = xt will be declared an “optimal” solution if

zt

z0
=
cTxt

cTxo
≤ e−q

go
(3.114)

where go = (xo
1x

o
2 · · ·xo

n)1/n is the geometric mean of xo
1, x

o
2, . . . , x

o
n, q is a

given positive constant, and e is the base of the natural logarithm.

One way to transform the general linear program without a convexity constraint
to (3.113) and obtain a starting feasible solution will be discussed in Section 3.3.4.
It assumes that we know a finite upper bound on the sum of the variables at an
optimal solution, which is often known for a particular problem.
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� Exercise 3.45 Show that a linear program with a convexity constraint, namely, c̄Tx̄ =
z̄ (min), Āx̄ = b̄, eTx̄ = 1, x̄ ≥ 0 is equivalent to the linear program of the form cTx =
z (min), Ax = 0, eTx = n, x ≥ 0, see (3.113), where x = nx̄, c = c̄/n, A•j = n(Ā•j − b̄)
for j = 1, . . . , n.

Applying T at iteration t, problem (3.113) is transformed to:

Minimize nĉTy/aTy = z

subject to Ây = 0,
eTy = n,
y ≥ 0,

(3.115)

where a = xt, ĉ = Dc, Â = AD, and D = Diag (xt) = Diag (a). Iterate xt becomes
yt = e > 0, where e = (1, 1, . . . , 1)T. Letting the map of optimal x∗ be y∗, note
that, by assumption A1 on Page 102, ĉTy∗ = 0.

� Exercise 3.46 Show that x = xt is mapped into yt = e satisfying Âyt = 0, eTyt = n,
ĉTyt = ĉTe = zt, and yt > 0.

However, Karmarkar’s next key idea is to avoid solving (3.115) with its frac-
tional objective by considering the alternative problem (3.116), which has the same
optimal solution y∗ ≥ 0 and the same initiating solution y = e > 0:

Minimize ĉTy = ẑ

subject to Ây = 0,
eTy = n,
y ≥ 0.

(3.116)

� Exercise 3.47 Show that ẑt = zt.

� Exercise 3.48 Ph.D. Comprehensive Exam, September 26, 1992, at Stanford. Prove if
x∗ is optimal for (3.113), then its map is optimal for (3.116) and conversely if y∗ is optimal
for (3.116) then its inverse map x∗ is optimal for (3.113).

Problem (3.116) is never completely solved to obtain y = y∗ instead only an
improved solution y = yt+1 is obtained by moving some distance ρ from yt = e in
the direction of steepest descent of ĉTy subject to the equality constraints, i.e.,

yt+1 = yt + ρ
p

||p|| = e+ ρ
p

||p|| (3.117)

where the steepest direction p is the negative of the gradient ĉ projected onto the

null space of F =
(
Â
eT

)
and ρ = ρt > 0 may be chosen arbitrarily so that yt+1 > 0.

Later, for theoretical reasons, we choose ρ = 1/2.
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The equality constraints for (3.116) can be written as:

Fy =
(
Â
eT

)
y =

(
0
n

)
. (3.118)

In order for y = e+ αp to be feasible, we need, in addition to e+ αp ≥ 0,

Fe+ αFp =
(

0
n

)
or

Fp = 0.

This implies that the direction p must be in the null space of F . Any vector can
be projected into the null space of F by multiplying it on the left by the projection
matrix:

PF = I − FT(FFT)−1F. (3.119)

The steepest descent direction projected onto the null space of F is

p̂ = −PFDc. (3.120)

Hence, the steepest descent direction is computed by:

p = −
[
I − ÂT(ÂÂT )−1Â− 1

n
eeT

]
ĉ (3.121)

= −ĉ− ÂT
(
ÂÂT

)−1
Âĉ+ e(zt/n).

� Exercise 3.49 Verify that PFx projects x into the null space of F . Show that PF = P T
F

and that P T
F PF = PFP

T
F = PF .

� Exercise 3.50 Show that

PF = I − ÂT(ÂÂT)−1Â− 1

n
eeT. (3.122)

� Exercise 3.51 Prove (3.121).

� Exercise 3.52 Prove Âp = 0 and eTp = 0.

Iterative Step: The solution yt+1 is then mapped back to the x space by xt+1 =
nDyt+1/eTDyt+1 and the iterative process is repeated with t← t+ 1.
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Figure 3-9: Bound for ĉTyt+1

3.3.2 PROOF OF CONVERGENCE

Because the current iterate yt = e is at the center e of the simplex

(S)
n∑

j=1

yj = n, yj ≥ 0, for j = 1, . . . , n, (3.123)

we can inscribe a hypersphere of radius ρ <
√
n/(n− 1) (see Exercise 3.44) as our

ellipsoid in S and consider the hypersphere problem

(H)

Minimize ĉTy = ẑ

subject to Ây = 0,
eTy = n,

||y − e|| ≤ ρ.

(3.124)

This problem is a variant of the classical least-squares problem subject to constraints
and is trivial to solve; the optimal solution is

yt+1 = yt +
ρ

||p||p (3.125)

where the steepest direction p is the negative of the gradient ĉ projected onto the

null space of
(
Â
eT

)
and 0 < ρ ≤

√
n/(n− 1). As long as ρ <

√
n/(n− 1), we know

that the ball ||y − e|| ≤ ρ lies strictly in the interior of S, i.e., y > 0. Therefore all
y satisfying (3.124) are strictly interior feasible solutions of (3.116).

� Exercise 3.53 Prove (3.125).
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� Exercise 3.54 The “ball” shown in Figure 3-9 is the intersection of the n-dimensional
ball ||y − e|| ≤ ρ with the hyperplane

∑
j
yj = n. Show that this intersection is an

(n− 1)-dimensional hyperspheroid with radius ρ.

� Exercise 3.55 Assume Â is of full rank. Show that the intersection of the n-dimensional
ball ||y−e|| ≤ ρ with the hyperplanes Ây = 0 and

∑
j
yj = n is an (n−m−1)-dimensional

hyperspheroid with radius ρ.

The iterative step is to move to yt+1, the optimal solution to (H) for some choice
of ρ <

√
n/(n− 1). For reasons that will become clear later we will choose ρ = 1/2.

This minimizing point yt+1 lies on the boundary surface of the hypersphere. To see
why, note that an optimal point y∗ of (3.116) exists that is an extreme point and
hence lies on the boundary of the simplex S and hence lies outside the interior of
the sphere. If on the contrary, yt+1 were an interior point of the hypersphere, an
improved solution lying on the boundary of the sphere could be found along the
line joining yt+1 to y∗, a contradiction. Without explicitly computing p by (3.121)
and ĉTyt+1 by (3.125), it is easy to prove the following important result.

LEMMA 3.21 (Bound on ĉTyt+1)

ĉTyt+1 ≤
(
1− ρ/

√
n(n− 1)

)
zt < (1− ρ/n)zt. (3.126)

Proof. It follows from yt+1 being a minimizing point on the boundary of the
ball that ĉTyt+1 ≤ ĉTỹ where ỹ is any other point on this boundary. In particular,
this is true for ỹ defined as the intersection of the ball’s boundary with the line
segment joining the center of the ball e to y∗ where y∗ corresponds to an optimal
extreme point x∗ (see Figure 3-9). By assumption A1 on Page 102 and Exercise 3.48,
cTx∗ = 0 implies ĉTy∗ = 0. Because y∗, ỹ, and e are on a straight line (see Figure 3-
9), we have

ỹ = λe + (1 − λ)y where λ = ||y∗ − ỹ||/||y∗ − e||
ĉTỹ = λĉTe+ (1 − λ)ĉTy∗ = λĉTe

where ĉTy∗ = 0 and ĉTe = ẑt. Therefore

ĉTỹ =
||y∗ − ỹ||
||y∗ − e|| (ĉ

Te) =
||y∗ − e|| − ||ỹ − e||

||y∗ − e|| ẑt (3.127)

=
(

1− ||ỹ − e||||y∗ − e||

)
ẑt =

(
1− ρ

||y∗ − e||

)
ẑt (3.128)

≤
(

1− ρ

||nek − e||

)
ẑt, (3.129)
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where ||nek − e|| is the distance of a vertex nek of the simplex S from its center e,
see Exercise 3.44. Since ||nek − e|| =

√
n(n− 1) we have finally

ĉTyt+1 ≤ ĉTỹ ≤
(
1− ρ/

√
n(n− 1)

)
ẑt <

(
1− ρ/n

)
ẑt,

where ẑt = zt (see Exercise 3.47). This completes our proof.
Having fixed ρ at some value, say ρ = 1/2, and found yt+1 by (3.125), the next

step is to determine xt+1 as the inverse map by (3.109):

xt+1 = n
Dyt+1

eTDyt+1
= Dyt+1

(
n∑n

i=1 x
t
iy

t+1
i

)
, D = Diag (xt) (3.130)

and to repeat the iterative process with xt+1 > 0, zt+1 = cTxt+1.
At this point, we ask in what way the solution xt+1 is an improvement over xt?

Just because ĉTyt+1/ĉTyt < 1 − ρ/n does not imply cTxt+1 < cTxt. To see why,
multiply (3.130) by cT = ĉTD−1 and then divide by cTxt on the left and ĉTyt = cTxt

on the right obtaining

cTxt+1

cTxt
=
ĉTyt+1

ĉTyt

(
n∑n

i=1 x
t
iy

t+1
i

)
. (3.131)

It is possible for the factor n/
∑n

i=1 x
t
iy

t+1
i to be so large that cTxt+1 > cTxt, in

which case zt+1 > zt and there would be no improvement.
While this possibility may happen on some iterations, Karmarkar proved that

cTxt → cTx∗ = 0 by finding a function that bounds zt, namely,

cTxt

cTxo
≤ e−γt/n

go
for some fixed γ > 0, (3.132)

where go = (xo
1x

o
2 · · ·xo

n)1/n is the geometric mean of xo
1, x

o
2, . . . , x

o
n. To this end,

he defines

u(x) = n log(cTx) −
n∑

j=1

log(xj)

v(y) = n log(ĉTy)−
n∑

j=1

log(yj)

(3.133)

as corresponding potential functions if x maps into y by the projective transfor-
mation (3.111) for iteration t. (Functions of type (3.133) are used in physics and
chemistry to measure the potential energy of physical systems, hence the term po-
tential function.) He uses v(yt) − v(yt+1) to measure the “improvement” of the
solution (yt+1, ẑt+1) over that of (yt, ẑt), and similarly he uses u(xt) − u(xt+1) to
measure the corresponding “improvement” of (xt+1, zt+1) over that of (xt, zt).

LEMMA 3.22 (Improvement in Transformed Space Equals Improvement
in Original Space) If y is the map of x, then an improvement measured by a
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decrease in the potential function v(y) in the transformed space corresponds to an
equal improvement measured by a decrease in the potential function u(x) in the
original space.

Proof. We will first show that the value of the potential function u(x) differs
from v(y) by a constant that depends on xt, i.e.,

v(y)− u(x) =
n∑

j=1

log(xt
j). (3.134)

Indeed, from the definitions (3.133) of the potential functions u(x) and v(y) and
from (3.111) the transformation T of x→ y,

v(y) = n log(ĉTy)−
n∑

j=1

log(yj)

= n log
(
n
cTDD−1x

eTD−1x

)
−

n∑
j=1

log
(
n
xj/x

t
j

eTD−1x

)

= n log(cTx)−
n∑

j=1

log(xj) +
n∑

j=1

log(xt
j)

= u(x) +
n∑

j=1

log(xt
j).

If (yt+1, vt+1) is any solution to (3.115) with improvement vt+1− vt = ψ < 0, it
follows that it maps back into a solution (xt+1, ut+1) that equally improves (xt, ut),
i.e., ut+1 − ut = ψ < 0.
Iterative Cycle: Assuming the move from (yt, vt) to (yt+1, vt+1) is made by
(3.125), (3.121) for some fixed ρ then the change of coordinates (xt, ut) → (yt, ut)
and the change of coordinates back of the improvement (yt+1, vt+1) satisfy:

(xt, ut) −→ (yt = e, vt = n log ĉTe)
↓

(xt+1, ut+1) ←− (yt+1, vt+1)

where ut+1 − ut = vt+1 − vt.

� Exercise 3.56 Prove vt = v(e) = n log ĉTe = n log ẑt = n log zt.

THEOREM 3.23 (Bounds on Potential Function Decrease) The corre-
sponding iterates xt+1, yt+1 and the corresponding potential decreases ut+1 − ut =
vt+1 − vt satisfy the following inequalities at each iteration

xt+1 > 0, yt+1 > 0, (3.135)
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ut+1 − ut = vt+1 − vt ≤ −γ = −1 + log(2) ≈ −0.307, (3.136)

where the iterate yt+1 is defined to be the point that minimizes ĉTy subject to eTy =
n, Ây = 0, and ||y − e|| = ρ for ρ = 1/2.

Proof. Since yt = e and ĉTyt = ẑt we get vt = n log ẑt. Therefore

vt+1 − vt = n log(ĉTyt+1)−
n∑

j=1

log(yt+1
j )− n log ẑt

< n log
(
(1 − ρ/n)ẑt

)
−

n∑
j=1

log(yt+1
j )− n log ẑt (3.137)

= n log(1 − ρ/n)−
n∑

j=1

log(yt+1
j )

= n log(1 − ρ/n)−
n∑

j=1

log(1− εj), (3.138)

where (3.137) follows from Lemma 3.21 and we have set yt+1
j = 1− εj . Since yt+1

satisfies eTyt+1 = n and belongs to the boundary of the ball of radius ρ, εj must
satisfy the following:

n∑
j=1

εj = 0,
n∑

j=1

ε2j = ρ2 < 1, |εj| ≤ ρ. (3.139)

From the definition of log(1− θ) for |θ| < 1, i.e.,

log(1− θ) = −
(
θ +

1
2
θ2 +

1
3
θ3 + · · ·

)
for |θ| < 1 (3.140)

and (3.139) we get

vt+1 − vt < n log(1− ρ/n) +
n∑

j=1

(
εj +

1
2
ε2j +

1
3
ε3j + · · ·

)

≤ n log(1− ρ/n) +
n∑

j=1

(
1
2
ε2j +

1
3
ε2jρ+

1
4
ε2jρ

2 + · · ·
)

= n log(1− ρ/n) +
(

1
2
ρ2 +

1
3
ρ3 +

1
4
ρ4 + · · ·

)
= n log(1− ρ/n)− ρ− log(1− ρ)
< −2ρ− log(1− ρ). (3.141)

Finally, we see that the minimum for the upper bound (3.141) for vt+1 − vt is
achieved if we choose the radius ρ = ρ∗ by setting the derivative of the right-hand
side to zero:

− 2 +
1

1− ρ∗ = 0. (3.142)
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Clearing fractions, we get ρ∗ = 1/2. Substituting ρ∗ = 1/2 into (3.141), we obtain

ut+1 − ut = vt+1 − vt < −1 + log(2) = −γ ≈ −0.307. (3.143)

This γ results in a somewhat sharper bound than that found by Karmarkar.

� Exercise 3.57 Prove n log(1− ρ/n) < −ρ.

� Exercise 3.58 Prove that a sharper bound can be obtained by setting the derivative of
n log(1− ρ/n)− ρ to zero and substituting the value of ρ = ρ∗ so obtained to compute γ.

THEOREM 3.24 (Bound on Objective Function Ratio) Letting go =
(xo

1x
o
2 · · ·xo

n)1/n be the geometric mean of the coordinates xo
1, x

o
2, . . . , x

o
n,

cTxt

cTxo
<
e−γt/n

go
, (3.144)

where γ = 1− log(2) ≈ 0.307.

Proof. Summing uk+1−uk < −γ from k = 0 to k = t−1, we obtain ut−uo < −γt.
Hence we have from (3.133) the definition of ut, that:

−γt > ut − uo = n log(cTxt)−
n∑

j=1

log(xt
j)− n log(cTxo) +

n∑
j=1

log(xo
j).

Because log(φ) is a concave function, we have

(1/n)
n∑

j=1

log(xt
j) ≤ log

( n∑
j=1

(xt
j/n)

)
= 0;

thus

−γt > n log(cTxt)− n log(cTxo) +
n∑

j=1

log(xo
j ).

Dividing by n and rearranging terms this implies that

log
(
cTxt

cTxo

)
< −γt

n
−

n∑
j=1

log(xo
j ),

from which (3.144) follows.

COROLLARY 3.25 (Polynomial Time Bound) The algorithm is guaranteed
to stop in t < n

(
q − log(go)

)
/γ iterations.
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Proof. Apply (3.114), the termination condition, assumption A3 on Page 102,
and Theorem 3.24.

If some of the components xo
j are very small then it is clear that the factor 1/go

can be very large, implying poor convergence. One way to avoid this is as follows.
Suppose that the original problem is min c̄Tx̄, s.t. Āx̄ = 0, eTx̄ = n, x̄ ≥ 0 and
we are given a starting a feasible solution x̄ = x̄o > 0. Instead of optimizing this
problem, we first convert the problem by applying a projective transformation T to
the constraints of the original problem. This mapping of x̄ to x transforms the linear
objective function c̄Tx̄ to a fractional objective function nc̄TD̄x/eTD̄x. Suppose we
“throw away” the denominator divided by n and solve instead the problem min cTx
s.t. Ax = 0, eTx = n, x ≥ 0 where c = D̄c̄, A = ĀD̄ with D̄ = Diag (x̄o). Then
we solve this converted problem with the interior-point method just described with
starting solution xo = e > 0. Let x = x∗ be optimal. Since the geometric mean of
the components of xo is now go = 1, (3.144) now reduces to

cTxt

cTxo
≤ e−γt/n. (3.145)

It would appear that we could obtain a much better upper bound for ut+1 −
ut = vt+1 − vt if we had a sharp upper bound for −

∑n
j=1 log(1 − εj) in (3.138).

Lemma 3.26 will provide such a bound but, as we will see later, it differs very little
from −2ρ− log(1− ρ).

LEMMA 3.26 (Sharp Upper Bound) Given
∑n

j=1 εj = 0,
∑n

j=1 ε
2
j = ρ2,

F = −
n∑

j=1

log(1− εj)

≤ − log

(
1− ρ

√
n− 1
n

)
− (n− 1) log

(
1 + ρ

√
1

n(n− 1)

)
.

This upper bound is sharp and is attained by setting εn = ρ
√

(n− 1)/n and ε1 =
ε2 = · · · = εn−1 = −ρ/

√
n(n− 1).

Proof. To find max F subject to
∑n

j=1 εj = 0,
∑n

j=1 ε
2
j = ρ2 we form the

Lagrangian

L = −
n∑

j=1

log(1 − εj)− λ
n∑

j=1

εj −
1
2
µ

n∑
j=1

ε2j (3.146)

and set its partials ∂L/∂εj = 0, obtaining for some fixed choices of λ and µ:

1
1− εj

− λ− µεj = 0, for j = 1, . . . , n. (3.147)

Multiplying by (1 − εj), we see that each εj is equal to either the positive or the
negative root of the quadratic

µε2j + (λ− µ)εj + (1− λ) = 0. (3.148)
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Thus εj are functions of λ and µ and the fixed values of λ and µ are adjusted so
that

∑
j εj = 0 and

∑
j ε

2
j = ρ2. To this end we sum (3.148) for j = 1, . . . , n and

set
∑

j ε
2
j = ρ2 and

∑
j εj = 0 obtaining 1− λ = −ρ2µ/n. Dividing (3.148) by µ:

ε2j +
(
λ− µ
µ

)
εj −

ρ2

n
= 0. (3.149)

At this point we know that some integer k of the εj all have the same value εj =
u > 0 and that the remaining l = n− k of the εj have the same value εj = −ū < 0
and that the product of the roots (−ū)u = −ρ2/n. Therefore we wish to find u > 0,
ū > 0 and integers k > 0, l > 0 to obtain

max F = k
[
− log(1− u)

]
+ l

[
− log(1 + ū)

]
where

k + l = n, (3.150)

ku− lū = 0, since
n∑

j=1

εj = 0 (3.151)

ku2 + lū2 = ρ2, since
n∑

j=1

ε2j = ρ2 (3.152)

uū = ρ2/n. (3.153)

Although it appears that we have four relations (3.150), (3.151), (3.152), and (3.153)
with which to determine (u, ū) > 0 and integers (k, l) > 0, it turns out that (3.153)
is redundant, which can be seen by solving (3.150), (3.151), and (3.152) for u and
ū:

u =
ρ√
n

√
l

k
, ū =

ρ√
n

√
k

l
, uū =

ρ2

n
. (3.154)

We are thus left with one degree of freedom with which to maximize F . The relation
ku− lū = 0 implies for some α that k = αū, l = αu. Substituting into the relation
k+ l = n we obtain α = n/(u+ ū) and therefore we wish to choose u and ū so that

F

n
=
−ū log(1− u)− u log(1 + ū)

u+ ū
, uū =

ρ2

n
, (3.155)

where the range of u and ū are restricted by the range of integers k and l in (3.154),
i.e.,

ρ√
n(n− 1)

≤ u =
ρ√
n

√
l

k
≤ ρ

√
n

n− 1
. (3.156)

We will prove that F in (3.155) monotonically increases with u and therefore at
max F we have u = ρ

√
(n− 1)/n, ū = ρ/

√
n(n− 1), which corresponds to k = 1
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and l = n− 1. To get a better separation of variables, we divide (3.155) on the left
by ρ2/n and the right side by uū = ρ2/n obtaining

F

ρ2
=

[
− log(1 − u)

u
− log(1 + ū)

ū

]/
(u+ ū). (3.157)

Instead of trying to show that dF/du > 0, we get a more symmetric treat-
ment of the terms involving u and ū if we let w = log u and show that dF/dw >
0 ⇔ dF/du > 0. To see this, note that du/dw = u, dū/dw = −ū, and dF/du =
(dF/dw)(dw/du) = (dF/dw)(1/u) > 0 when dF/dw > 0 since u > 0. Differ-
entiating (3.157) with respect to w, setting du/dw = u, dū/dw = −ū, and then
multiplying both sides by the resulting denominator (u+ ū)2 we obtain

dF

dw

(
(u + ū)2

ρ2

)
=

[
1

1− u +
1

1 + ū

]
(u+ ū)

+
[
log(1− u)

u
− log(1 + ū)

ū

]
(u+ ū)

+
[
log(1− u)

u
+

log(1 + ū)
ū

]
(u− ū)

=
[

1
1− u +

1
1 + ū

][
(1 + ū)− (1− u)

]
+ 2 log(1− u)− 2 log(1 + ū)

= 2 log
(

1− u
1 + ū

)
+

1 + ū

1− u −
1− u
1 + ū

= 2 log θ +
1
θ
− θ = g(θ),

where θ = (1 − u)/(1 + ū). Note for any u such that ρ/
√
n(n− 1) ≤ u ≤

ρ
√

(n− 1)/n that the corresponding θ satisfies 0 < θ < 1. For any θ, 0 < θ < 1
the function g(θ) = 2 log θ − θ + 1/θ is positive because first of all its deriva-
tive 2/θ − 1 − 1/θ2 = −(1/θ − 1)2 < 0, implying g(θ) is decreasing in the range
(0 < θ < 1), and second, at θ = 1, g(θ) = 0. Finally g(θ) > 0 implies dF/dw =(
ρ2/(u+ ū)2

)
g(θ) > 0 for any u in its admissible range.

Thus F achieves its maximum at the maximum of u = (ρ/
√
n )

√
l/k, which is

when k = 1 and l = n− 1. This completes the proof of the Lemma.

To improve the bound obtained in Theorem 3.23, we have just shown

vt+1 − vt < n log(1− ρ/n)− log
(
1− ρ

√
(n− 1)/n

)
−(n− 1) log

(
1 + ρ/

√
n(n− 1)

)
. (3.158)

Again we are free to choose any radius ρ < 1 so we choose ρ = ρ∗, which yields the
smallest upper bound for vt+1 − vt. We find ρ = ρ∗ by setting to 0 the derivatives
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of the bound with respect to ρ obtaining:

−1
1− ρ∗/n +

√
(n− 1)/n

1− ρ∗
√

(n− 1)/n
−

√
(n− 1)/n

1 + ρ∗/
√
n(n− 1)

= 0.

Clearing of fractions and solving for ρ∗ we obtain

ρ∗ =
1

1 + (n− 2)/
√
n(n− 1)

. (3.159)

In the limit
ρ∗ ≈ 0.5 as n→∞, (3.160)

which yields the same approximation as that obtained from (3.142).

� Exercise 3.59 Show (3.160).

� Exercise 3.60 Compute ρ∗ using (3.160) with n = 1000. Substitute this value of ρ∗ in
(3.158) and compute the upper bound. How does this compare with −0.307, the bound
in (3.136)?

3.3.3 THE ALGORITHM SUMMARIZED

According to the theory developed in the previous section, to decrease the potential
u(x) = log(cTx) −

∑n
j=1 xj by at least γ = 0.307, we can do so by moving in the

transformed space from e in the direction p̂, where p̂ is the projection of ĉ onto the
null space of the equality constraints (3.116). The steps of the algorithm applied to
(3.113) are then as follows.

Algorithm 3.3 (Karmarkar’s Algorithm) Given a linear program in the standard
form (3.113) that satisfies assumptions A1–A3 (see Page 102) and has a feasible interior
point xo = e.

1. Initiate with t = 0 and the feasible interior point xo = e.

2. If cTxo = 0 stop with x∗ = xo as optimal.

3. Check for Convergence. Given the current point xt, test for termination:

cTxt

cTxo
≤ 2−q .

If the test is satisfied stop with x∗ = xt declared as optimum.

4. Compute the Search Direction.

(a) Let

D = Diag (xt).
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(b) Let

F =

(
AD
eT

)
(c) Compute

p̂t = −[I − F T(FF T )−1F ]Dc

as the direction of decrease for cTDy from the center of the simplex S in the
transformed space.

(d) Set pt = p̂t/||p̂t||.

5. Compute the New Point yt+1 in the Transformed Space. Set

yt+1 = yt + αrpt,

where yt = e, r =
√
n/(n− 1) is the radius of the largest inscribed sphere in the

simplex in the transformed space, and α ∈ (0, 1) is a fixed constant, αr = ρ may be
fixed at ρ = 0.5 according to the proof of Theorem 3.23. In practice αr = ρ can be
chosen even larger, for example, αr = 0.9.

6. Compute the New Point xt+1 in the Original Space: Finally, transform the coordi-
nates back to the original space using (3.111), i.e.,

xt+1 = n
Dyt+1

eTDyt+1
.

7. Set t← t+ 1 and return to Step 3.

Comment: Since we want to maximize the decrease of the potential function it
is advantageous to determine the αr = ρ that minimizes the potential function
along the direction pt in Step 5. An efficient technique for doing this is based on
developing a line search using a cubic fit.

3.3.4 CONVERTING A STANDARD LP TO A STARTING
FORM FOR THE ALGORITHM

One way to transform the general linear program to (3.113) and obtain a starting
feasible solution is as follows. Consider the linear program in standard form

Minimize c̃Ty = z

subject to Ãy = b, Ã : (m− 1)× (n− 3),
y ≥ 0.

(3.161)

We do not know whether a feasible solution exists, and if it exists, whether there
exists an optimal solution that is bounded.

For the purpose of transforming (3.161) to a starting form, assume that a feasible
solution exists and an optimal feasible solution exists that satisfies

eTy < σ(n− 1), (3.162)
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for some prespecified σ, a large number. (If it turns out that this assumption is
incorrect we will discover this in the course of solving the problem; see Section 3.3.5.)

First we rescale y by defining

x̄ =
(

1
σ

)
y, (3.163)

where x̄ ∈ �n−3. This gives:

Minimize σc̃Tx̄ = z

subject to Ãx̄ = (1/σ)b
x̄ ≥ 0

(3.164)

which can in turn be written in the form

Minimize c̃Tx̄ = z

subject to Ãx̄ − (1/σ)bxn−2 = 0
xn−2 = 1

eTx̄ + xn−2 + xn−1 = n
(x̄, xn−2, xn−1) ≥ 0.

(3.165)

Note that xn−2 = 1 and xn−1 is the value of the slack in the equation eTx̄ < n− 1.
Furthermore, the objective function has been rescaled by dividing by σ.

In order to have a starting feasible solution we introduce an artificial variable xn

and assign to it a large cost coefficient M in the objective and assign the remaining
coefficients as shown in (3.166).

Minimize c̃Tx̄ + Mxn = z

subject to Ãx̄ − (1/σ)bxn−2 + ((1/σ)b− Ãe)xn = 0
xn−2 = 1

eTx̄ + xn−2 + xn−1 + xn = n
(x̄, xn−2, xn−1, xn) ≥ 0.

(3.166)

Note that x = (x̄, xn−2, xn−1, xn) = e = (1, 1, . . . , 1)T is a starting feasible solution
to (3.166). As a final step, subtracting 1/n times the last equation from the second-
from-last equation puts the problem in the required form except for the optimal
objective being 0.

3.3.5 COMPUTATIONAL COMMENTS

Comment 1: If at the optimal solution of (3.166) it turns out that xn is zero (i.e.,
very small in practice), the original linear program (3.161) is feasible. If it
turns out that, in addition to xn being zero, xn−1 = 0 at the optimal solution
to (3.166) then this implies that (3.162) is satisfied as an equality implying
that σ was not chosen sufficiently large. If σ was in fact chosen extremely large
it could be interpreted that the linear program is unbounded for all practical
purposes.
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Comment 2: If at the optimal solution of (3.166) it turns out that xn is not zero
(i.e., not very small in practice), then either M was not chosen large enough or
our assumption that (3.165) is feasible is incorrect. At this point we can decide
either to quit or to try again by increasing σ, or to try again by increasing
M , or to try again by increasing both M and σ.

� Exercise 3.61 Construct an example that shows that if σ is not chosen large enough,
problem (3.165) may be infeasible even if the original linear program (3.161) is feasible.

Comment 3: The requirement that the objective function be zero is equivalent to
assuming that an optimal value z = z∗ is known because it is easy to convert
an objective whose minimum is z∗ to one whose minimum is zero. All we have
to do is replace z = cTx by:

ẑ =
(
c− (z∗/n)e

)T
x

as the new objective.

However, since we do not know the minimum z∗ in general, a method needs
to be devised to handle this situation. One approach is to use an estimate of
z∗ of the original problem, namely, z̄. The objective after the transformation
is

ẑ = (c− (z̄/n)e)Tx.

One way to update this estimate as the iterations proceed is to identify a dual
solution at each iteration and let z̄ be the objective value of the dual problem,
which we know is a lower bound for the primal objective value. It turns out
that it is very easy to find a feasible dual solution when Ax = 0 and eTx = n.
Suppose that the primal problem is of the form:

Minimize cTy = z
subject to Ay = 0,

eTy = n,
y ≥ 0.

(3.167)

The dual of (3.167) is to

Maximize nv
subject to ATπ + ve ≤ c (3.168)

One way to find a feasible dual solution (π, v) is to choose any π and set
v = minj{(cj − πTA•j)}. It is equally straightforward to examine the dual in
the transformed space, i.e., for (3.116).

However for some variants of Karmarkar’s method to converge, one needs
to find a π such that (π, v)s converge to an optimal dual feasible solution.
One approach to do this is shown next without proof. The dual problems
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considered here are generated in the transformed space. Start by obtaining
πo as the least-squares solution to:

DATπo = Dc, (3.169)

where D = Diag (xo). Set vo = minj

{
(cj − AT

•jπ
o)
}
. Then on subsequent

iterations, say at the start of iteration k+ 1, update the dual variables. First
solve the least squares problem obtained from the dual to the primal problem
whose objective has been replaced by (c− vke)Tx, i.e.,

DATπk+1 = D(c− vke), (3.170)

where D = Diag (xk) and e = (1, 1, . . . , 1)T. Set v̄ = minj

{
(cj − AT

•jπ
k)
}
.

If v̄ ≤ vk then we have not improved our solution and we set vk+1 = vk.
Otherwise, if v̄ > vk, set vk+1 = v̄ and revise the estimate of πk+1 by solving:

DATπk+1 = D(c− vk+1e), (3.171)

where D = Diag (xk) and e = (1, 1, . . . , 1)T.

Comment 4: In most practical cases it appears that the number of iterations
performed by interior-point methods is remarkably small and grows slowly
with problem size. Note, however, that each iteration requires solving a large
linear least-squares problem (see, for example, Step 3(b) of Algorithm 3.3).
It is clear that the key to computational efficiency is being able to solve such
least-squares problem quickly. Certain classes of practical models give rise
to least-squares problems that can be solved very quickly because the linear
programs have specially structured coefficient matrices.

Comment 5: A practical numerical difficulty is that the least-squares problems
become more and more ill-conditioned as the optimal solution is approached.
This is especially true in the degenerate case, which almost always occurs in
practice.

Comment 6: Finally, note that interior-point methods almost never find a vertex
solution when the linear program does not have a unique optimum solution.
This can have serious implications for sensitivity analysis and when the dual
solution is important.

3.3.6 COMPLEXITY OF VON NEUMANN VERSUS
KARMARKAR ALGORITHMS

To attain a precision of ε, Karmarkar’s Algorithm has an upper bound of

n(− loge ε)/γ

iterations where γ = 1 − loge 2 ≈ 0.3. The work per iteration for his algorithm is
considerably higher than a von Neumann iteration. To load the dice in favor of
the Karmarkar algorithm, we will assume the work per iteration is the same. The
comparison is therefore for the same precision ε:
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Algorithm Upper Bound on Operations

Karmarkar
(

1
0.3

)
(− loge ε)n(mn+ 2m+ n+ 9)

Von Neumann
(

1
ε2

)
(mn+ 2m+ n+ 9)

For a precision ε, say ε = 10−10, the von Newmann method has an upper bound on
the number of arithmetic operations which is lower than that for Karmarkar when
the number of vairables

h > .3(− loge ε)/ε
2 = 1.3× 1018 for ε = 10−10.

The polynomial complexity of Karmarkar as simplified here is 3 (actually 3.5) while
that of von Newmann is 2, but the latter has a 1018 constant factor to obtain a
precision of 10−10.

3.4 NOTES & SELECTED BIBLIOGRAPHY
Interior-point methods are not recent; they have been around for a very long time. For
example, von Neumann [1947] (see Dantzig [1992a]), Hoffman, Mannos, Sokolowsky, &
Wiegmann [1953], Tompkins [1955, 1957], Frisch [1957], Dikin [1967]. (Fiacco & Mc-
Cormick [1968] further developed Frisch’s Barrier Method approach to nonlinear program-
ming.) None of these earlier methods, up to and including Khachian’s [1979] ellipsoidal
polynomial-time method, turned out to be competitive in speed to the Simplex Method
on practical problems.

Von Neumann, in a private communication with Dantzig in 1948, proposed the first
interior algorithm for finding a feasible solution to a linear program with a convexity
constraint. Dantzig [1992a] proved it has the remarkable property that independent of
the number of rows m and columns n, it generates in less than 1/ε2 iterations a feasible
solution with a precision ε (where ε2 is the sum of the squares of errors of the fit of the
left-hand side of the equations to the right-hand side) when the general problem is recast
in the form:

x ≥ 0,

n∑
1

xj = 1,

n∑
1

Pjxj = 0, ||Pj ||2 = 1 for all j.

For a comparison of the complexity of von Neumann’s versus Karmarkar’s algorithms see
Section 3.3.6.

The modification to improve the rate of convergence was developed by Dantzig in 1997
and not published. Another approach that attempts to improve the rate of convergence is
one that exploits a “bracketing” idea. Analogous to gunners firing trial shots to bracket a
target in order to adjust direction and distance, we demonstate that it is sometimes faster
not to apply an algorithm directly, but to approximately solve several perturbations of
the problem and then combine these rough approximations to get an exact solution. This
is described in Dantzig [1992b]. Such an approach may also be a way to speed up other
infinitely converging methods.

Dikin’s [1967] method has the distinction of having been rediscovered by many; for ex-
ample, the primal affine method is the same as Dikin’s method. Later, Dikin [1974] proved
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convergence of his method under primal nondegeneracy. Proofs of convergence of Dikin’s
iterates discussed in Section 3.2 can also be found in Adler, Resende, Veiga, & Karmakar
[1989], Barnes [1986], Dantzig [1988a], Dantzig & Ye [1990], Monma & Morton [1987],
Vanderbei, Meketon, & Freedman [1986], and, under somewhat weaker assumptions, in
Vanderbei & Lagarias [1988].

In 1979, Khachian presented an algorithm, based on a nonlinear geometry of shrinking
ellipsoids, with a worst-case polynomial-time bound of O(n6L2), (where L is the number of
bits required to represent the input data on a computer). Given an open set of inequalities
of the form Ax < b, where A is m× n with m ≥ 2, n ≥ 2, Khachian’s algorithm either finds
a feasible point if the system is nonempty or demonstrates that no feasible point exists.
Assuming that the inequalities have a feasible solution, the method starts by defining a ball
that is assumed to have a radius large enough to contain a sufficiently large volume of the
feasible space defined by the inequalities Ax < b. If the center of the ball is within the open
set of inequalities, a feasible solution has been found and the algorithm terminates. If a
feasible solution is not obtained, the method proceeds to the next iteration by constructing
an ellipsoid of smaller volume which contains the feasible space of the inequalities contained
in the previously drawn ball. If the center of the ellipsoid is in the feasible space of Ax < b
we have found a feasible solution; otherwise the method proceeds to the next iteration by
constructing another ellipsoid of smaller volume, and so on.

The theory developed by Khachian states that if a feasible solution exists, then the
center of some ellipsoid will lie in the feasible space within a number of iterations bounded
by some polynomial expression in the data. Although Khachian’s ellipsoid method has
nice theoretical properties, unfortunately, it performs poorly in practice. First, the number
of iterations tends to be very large, and second, the computation associated with each
iteration is much more than needed with the Simplex Method. Khachian’s work specialized
to linear programming is based on earlier work done by Shor [1971a, 1971b, 1972a, 1972b,
1975, 1977a, 1977b] for the more general case of convex programming. Other work that
was influenced by Shor and preceded Khachian was due to Judin & Nemirovskii [1976a,
1976b, 1976c]. Predating all this was an article by Levin [1965] for convex programming.
For detailed proofs of Khachian’s polynomial-time complexity results see, for example,
Papadimitriou & Steiglitz [1982] and Grötschel, Lovász, & Schrijver [1988].

In 1984, Karmarkar presented his interior-point ellipsoid method with a worst-case
polynomial-time bound of O(n3.5L2), where L, as defined here, is the number of bits re-
quired to represent the input data on a computer. Claims by Karmarkar that his method is
much faster (in some cases 50 times faster) than the Simplex Method stimulated improve-
ments in the simplex-based algorithms and the development of alternative interior-point
methods. More than a thousand papers on interior methods have been published during
the period 1984–2003. See Kranich [1991] for a bibliography, and M. Wright [1992] for a
review of interior-point methods. Also see Lustig, Marsten, & Shanno [1994] for a review
of the computational aspects of interior-point methods. Until 2003 no method has been
devised to our knowledge that is superior for all problems encountered in practice.

The upper bound of γ = −0.307 developed in Section 3.3 is a sharper bound than that
found by Karmarkar. However, an even sharper bound is claimed by Anstreicher [1989]
and independently by McDiarmid [1990], namely:

ut+1 − ut = vt+1 − vt < − log(2) ≈ −0.69 = −γ̄. (3.172)

Anstreicher [1989] and McDiarmid [1990] further showed that the bound on the potential
decrease approaches 0.7215 in the limit as the size of the problem tends towards ∞ when
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a step-size close to 1 is taken. Karmarkar’s algorithm and its variants, when applied to
practical problems, take much fewer iterations than the theoretical worst-case polynomial-
time bound.

Powell [1991] showed a potentially serious computational difficulty by constructing
an example with n variables where the actual number of iterations is O(n). Gonzaga
[1991] devised a potential-reduction method that avoids the necessity of using projective
transformations; variants of this method allow large steps to be taken. For some other
theoretical results, see Freund [1988a, 1988b, 1991a].

Tomlin [1987] proposed an approach in 1985 to convert a linear program in standard
form to a standard form for Karmarkar’s algorithm, see (3.113). His approach, as described
in this chapter, also provides a way to generate an initial starting feasible strictly interior
solution. Gay [1987] and de Ghellinck & Vial [1986] also show how to apply Karmarkar’s
method to a linear program in standard form. Another approach to determine an initial
feasible interior point is described in Section 4.4.2.

The method of estimating and updating the estimate z̄ of the optimal z∗ described
through equations (3.169), (3.170), and (3.171) is due to Todd & Burrel [1986]; their paper
describes a variant of Karmarkar’s algorithm. They prove that the dual feasible solutions
converge and thus the estimate z̄ converges to z∗. Todd and Burrel also show that instead
of using α = 0.9, one could perform a line search on the potential function

v = n log(ĉTe+ αp)−
n∑

j=1

log(1 + αpj),

i.e., along the direction p = p̂/||p̂|| computed in Step 5 of Algorithm 3.3.
Bahn, Goffin, Vial, & Merle [1994], Goffin & Vial [1990], and Mitchell & Todd [1992]

have used a projective interior-point algorithm for cutting plane algorithms. Yamashita
[1986] implemented a projective algorithm applied to the dual. Additional computational
results are reported by Anstreicher & Watteyne [1993], Fraley & Vial [1989], and Todd
[1990a]. Anstreicher & Watteyne [1993] indicate that the reason projective methods do
not perform as well as affine-scaling and primal-dual methods (see Chapter 4) is because
of the necessity of generating upper and lower bounds on the optimal value. The poor
performance is particularly noticeable when the dual has no feasible interior. Todd [1994a]
draws the same conclusion.

3.5 PROBLEMS

3.1 Construct examples in m = 2 and m = 3 dimensions to show that the convex
hull contains the center in its interior but there exists no nondegenerate basic
feasible solution.

3.2 Solve, by hand, the following problem by the variant of Karmarkar’s method
described in this chapter:

Minimize 4x1 − 2x2 + 3x3 = z
subject to x1 + x2 + x3 = 3

2x1 − x2 − x3 = 0

and x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

(3.173)
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3.3 Solve (3.173) by hand by Dikin’s Method as described in this chapter.
3.4 Ph.D. Comprehensive Exam, Fall 1985, at Stanford. This question is based on

issues raised in Karmarkar’s “nonlinear algorithm” for linear programming. Let
N(x) = x

eTx
, e = (1, 1, . . . , 1)T be the operator that

maps
{
x ∈ �n | eTx > 0

}
to

{
x ∈ �n | eTx = 1

}
.

(a) Is N a linear or affine function? Justify your answer.
(b) Let Λ be a convex subset of �1 containing at least two points. Let

L =
{
b+ λd | λ ∈ Λ

}
be a line segment in the domain of N . What is N(L) like? Justify your
answer.

(c) Does N carry convex sets to convex sets? Justify your answer.

3.5 Based on Ph.D. Comprehensive Exam, Fall 1985, at Stanford. This question
is based on issues raised in Karmarkar’s “nonlinear algorithm” for linear pro-
gramming. Let A and B be m× n and k × n matrices of full row rank. Assume
ABT = 0. Define the sets

A =
{
x | Ax = 0

}
,

B =
{
x | Bx = 0

}
,

C =
{
x | Ax = 0, Bx = 0

}
.

Given y ∈ �n let u ∈ A, v ∈ B, and w ∈ C, be the three points closest to y
in the least-squares sense. In addition, let U , V , and W be the three functions
that send y to u, v, and w respectively.

(a) Does ATA have an inverse?
(b) Does AAT have an inverse?
(c) Is U a linear or affine function of y?
(d) Derive an explicit formula for U .
(e) Does UU = U?
(f) Does V U = W ?
(g) Does UV = V U?

3.6 Consider a “generalized” ellipsoid with coordinates ( y1, y2, . . . , yn ) defined by:

n∑
j=1

|yj − 1|k = ρk. (3.174)

(a) Inscribe the largest such generalized ellipsoid into the simplex

(S)

n∑
j=1

yj = n, yj ≥ 0 for j = 1, . . . , n, (3.175)

and find the point on the generalized ellipsoid closest to a vertex.
(b) Prove that this point is invariant whatever power of k is used.
(c) Does the generalized ellipsoid for power k include the generalized ellipsoid

for power k − 1?



C H A P T E R 4

INTERIOR-POINT

METHODS

In this chapter, we concentrate on path-following methods. We describe the primal
logarithm barrier method and the primal-dual algorithm for solving linear programs.
These methods are based on Newton’s method, a logarithm barrier method, and the
methods used to solve least-squares problems. Hence, we start by briefly describing
Newton’s method, the barrier function method, and the least-squares problem.

4.1 NEWTON’S METHOD

In this section our discussion will concern the minimization of a specified scalar-
valued function f(x), usually called an objective function. The following notation
will be used throughout. Let g(x), a column vector, denote the gradient vector of
f(x), that is,

g(x) = ∇f(x) =


∂f(x)/∂x1

∂f(x)/∂x2

...
∂f(x)/∂xn

 .

If f(x) has continuous second derivatives (i.e., it is twice-continuously differen-
tiable), the symmetric matrix G(x) of second partial derivatives will denote the
Hessian matrix of f(x). That is, G(x) is the symmetric matrix of second partial
derivatives of f , whose ijth element is given by

Gij(x) =
∂2f(x)
∂xi ∂xj

.

123
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Newton’s method appears in a variety of forms depending on the applications.
The model algorithm that follows is a generalized outline for minimizing an un-
constrained nonlinear function. Certain details are omitted such as tolerances for
convergence, method for defining a descent search direction, and description of an
efficient method for determining the steplength. After the model algorithm is de-
scribed, we explain how to obtain a Newton search direction.

Algorithm 4.1 (Outline of an Algorithm to Solve minx∈�n f(x)) In order to min-
imize a nonlinear function f(x), the algorithm starts with some x0 and produces a series
of iterates x1, x2, . . . , xk, . . .

1. Test for When to Stop. If, on iterate k, the conditions for stopping are satisfied,
the algorithm terminates with xk declared a local minimizer of f(x). The tests are
divided into two categories:

(a) Standard Test. Three tests usually must be passed simultaneously to decide
when to stop: (i) the norm of the gradient of f(x) at xk, denoted by gk =
g(xk), is sufficiently small; (ii) the function values f(xk−1), f(xk) are getting
sufficiently close together; and (iii) the iterates xk−1, xk are getting sufficiently
close together.

(b) Pathological Case Test. To handle the case where x0 is the minimizer or xk

happens to be very close to a local minimizer but xk−1 is not, replace the
preceding three tests by a test to terminate if the norm of the gradient is less
than the bound on the absolute accuracy in the computation of the function
value at any point.

2. Compute a Search Direction. Compute a nonzero vector pk, satisfying (pk)Tgk < 0.
Along such a direction the function value is decreasing in the neighborhood of xk,
and therefore f(xk + αpk) < f(xk) for some α > 0. Such a direction is called a
descent direction.

3. Compute a Steplength. Compute a positive scalar α = αk, the steplength, that is a
minimizer of the one-dimensional problem minα f(xk + αpk). This usually requires
too much computational effort; instead αk is chosen to satisfy somewhat looser
criteria. An easy to implement, but not very efficient, way to estimate αk is to start
with α = 1 and then keep dividing by 2 until the gradient of f(xk + αpk) with
respect to α is sufficiently reduced from that at α = 0 and f(xk + αkp

k) < f(xk).

4. Update the Estimate of the Minimum. Set xk+1 ← xk + αkp
k; k ← k + 1; and go

back to Step 1.

CLASSICAL STEEPEST DESCENT

A classical search direction is the steepest descent direction pk = −gk, where gk

is the gradient of f(x) at xk. Methods that use it have the very nice theoretical
property of guaranteed convergence from any starting point x0 to a local minimizer
if one exists. Unfortunately, in practice, these methods have an extremely poor rate
of convergence and hence are not recommended.
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NEWTON DIRECTION

A much better way, than the steepest descent direction, is a Newton direction,
which is based on a quadratic approximation of the objective function at the current
point xk. We use the Taylor series expansion of the function to three terms to obtain
a quadratic model of the function around xk, i.e.,

f(xk + p) ≈ f(xk) + pTg(xk) +
1
2
pTG(xk)p (4.1)

which has an error term of O(||p||3). The matrix Gk = G(xk) is symmetric and
is called the Hessian matrix. The minimum of the right hand side of (4.1) will be
achieved if pk is the solution of the problem

Minimize
p

Q(p) = fk + pTgk +
1
2
pTGkp, (4.2)

where fk = f(xk) is a fixed scalar, gk = g(xk) is a fixed vector and Gk = G(xk)
is a fixed symmetric matrix. A stationary point of Q(p) is given by the solution of
∇Q(p) = 0, i.e., the solution of the linear system of equations:

Gkpk = −gk. (4.3)

An algorithm for minimization that uses (4.3) to define a search direction pk is
classified as a Newton’s method algorithm.

HESSIAN IS POSITIVE-DEFINITE

If Gk is positive-definite, so is (Gk)−1, and hence the search direction pk obtained
using the system of equations (4.3) is a descent direction, because gk �= 0 and

(gk)Tpk = −(gk)T(Gk)−1gk < 0.

If Gk is positive-definite, xk+1 = xk + pk solves (4.3), as the exact minimizer of the
right-hand side of (4.1).

Even if Gk is positive-definite, the quadratic model may be a very poor ap-
proximation to the objective function. In particular, it is a poor approximation if
f(xk + pk) exceeds f(xk), which violates the descent condition. Thus, a steplength
procedure must be included according to some acceptable criteria to construct a
convergent algorithm. When Newton’s Method is used with a steplength algorithm
it is sometimes termed a damped Newton’s method because the “natural” steplength
of unity is not taken. Finally, note that the steepest descent direction is the vector
p that solves the minimization problem

min
p

(gk)Tp

||p||2
. (4.4)
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It turns out that the Newton direction defined by (4.3) is a “steepest descent” direc-
tion when the norm is defined with respect to Gk, the positive-definite symmetric
Hessian matrix, i.e., p solves

min
p

(gk)Tp

||p||Gk

. (4.5)

� Exercise 4.1 Let C be any symmetric positive-definite matrix. Then ||x||2c = xTCx is
a norm.

1. The Cauchy-Schwartz inequality for any two n-vectors x, y is |xTy|2 ≤ (xTx)(yTy).
Use this to derive the inequality

(gTp)2 ≤ (gTC−1g)(pTCp).

2. Use (1) to show that the solution of the problem

Minimize
p∈�n

gTp

||p||c

where gTp < 0, is given by p = −C−1g.

HESSIAN IS NOT POSITIVE-DEFINITE

So far, we have considered the case when Gk is positive-definite. Difficulties arise if
Gk is not positive-definite, because it is no longer clear what the quadratic model
is telling us. In particular, if Gk is indefinite, the quadratic model indicates that
Q(αp) → −∞ as α → ∞, indicating that an infinite step should be taken when
applied to f(x) at xk. Unfortunately, there is no universal agreement on how
to define a Newton direction when the Hessian matrix Gk is indefinite. Various
strategies exist that seem “reasonable” in this case, such as replacing pk by −pk,
finding a direction of negative curvature, i.e., (pk)TGkpk < 0, or modifying the
Hessian matrix, if necessary, to ensure that the modified Hessian matrix is positive-
definite. In the latter case, if Gk is not “sufficiently” positive-definite, construct a
“related” positive-definite matrix Ḡk, and solve for the search direction using

Ḡkpk = −gk.

In this way the resulting search direction is a descent direction; furthermore, the
search direction will not be altered if the Hessian matrix is sufficiently positive
definite.

CONVERGENCE

We expect good convergence from Newton’s method, when the quadratic function
is a good approximation to the nonlinear function being minimized. In fact, for a
general nonlinear function f(x), Newton’s method has a quadratic rate of conver-
gence to x∗ if x0 is sufficiently close to x∗, if the Hessian matrix is positive-definite
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at x∗, and if the steplengths {αk} converge to unity. A method is said to have a
quadratic rate of convergence to x∗ if there exists a constant 0 < γ <∞ such that

γ = lim
k→∞

||xk+1 − x∗||
||xk − x∗||2

where, limk→∞ xk = x∗.
The outstanding local convergence properties of Newton’s method make it a po-

tentially attractive algorithm for unconstrained minimization. A further benefit of
having the second derivatives available is that sufficient conditions for a minimum
can be verified, namely, that the Hessian is positive-definite. In fact, Newton’s
method is often regarded as a standard against which other algorithms are mea-
sured. However, difficulties and even failure can occur if the quadratic model is not
a good-enough approximation of f(x).

If a modification Ḡk of the Hessian matrix is used to ensure positive-definiteness,
then starting at xo (not necessarily “close” to a local minimizer x∗) and using Ḡk

coupled with an appropriate steplength approach, Newton’s method converges to
some x∗, a local minimizer, provided that f(x) is twice continuously differentiable,
g(x) is uniformly continuous on the level set L

(
f(x0)

)
and that ||G(x)|| is uniformly

bounded on the level set L
(
f(x0)

)
.

Definition (Level Set): For any function f and scalar β, the level set L(β) is
the set of points x such that f(x) ≤ β.

4.2 THE LINEAR LEAST-SQUARES
PROBLEM

The linear least-squares problem is to

Minimize
π∈Rm

||d−ATπ||22, (4.6)

where A is an m× n matrix, d is an n-vector, and subscript 2 refers to the 2-norm.
The least-squares solution π∗ satisfies

AATπ∗ = Ad. (4.7)

If we let
r∗ = d−ATπ∗ (4.8)

denote the optimal residual then from (4.7) and (4.8) we obtain

Ar∗ = Ad−AATπ∗ = 0. (4.9)

Note that ATπ∗ is the projection of d ∈ �n onto the space of the columns of AT

and Equation (4.9) states that the residual r∗ lies in the null space of A. Rewriting
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equations (4.8) and (4.9) in matrix notation we get(
I AT

A 0

)(
r∗
π∗

)
=

(
d
0

)
. (4.10)

� Exercise 4.2 Show that the optimal residual r∗ is given by

r
∗

= Pd where P = I − AT
(
AAT

)−1
A

is called the projection matrix because it projects any n-vector into the null space of A.
Show that an alternative expression for the optimal residual r∗ is given by:

r
∗

= ZZTd, (4.11)

where Z is an n× (n−m) orthonormal matrix whose columns form a basis for the null
space of the matrix A.

4.3 BARRIER FUNCTION METHODS

An idea for solving a minimization problem with inequalities is to replace the in-
equalities by a term, called a barrier term, appended to the objective function
with a weight on it. The barrier term, as a function of x, has the property that
it approaches +∞ as any feasible interior point x approaches the boundary of the
feasible region. Because we are minimizing, this property prevents the feasible it-
erates from crossing the boundary and becoming infeasible. However, the optimal
solution to the original problem is typically a point on the boundary. To obtain
such a boundary point solution, it is necessary to keep decreasing the parameter µ
of the barrier function to 0 in the limit.

In this section we shall only consider the logarithmic barrier function.

4.3.1 THE LOGARITHMIC BARRIER FUNCTION

Consider the nonlinear inequality constrained problem

Minimize f(x) = z
subject to ci(x) ≥ 0, i = 1, . . . ,m, (4.12)

where ci(x) ≥ 0 are nonlinear constraints. The logarithmic barrier function is
defined by

B(x, µ) = f(x) − µ
m∑

i=1

ln
(
ci(x)

)
, µ > 0. (4.13)

Note that ln
(
ci(x)

)
is not defined for ci(x) ≤ 0 and that for ci(x) > 0,

−ln
(
ci(x)

)
→ +∞ as ci(x)→ 0.
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Figure 4-1: Barrier Function Method: Approach of x∗(µ) to x∗

If we let x∗(µ) denote an unconstrained minimizer of B(x, µ), then under mild
conditions it can be shown that for µ > 0 there exists a nonempty set S such that

lim
µ→0

x∗(µ) = x∗, µ ∈ S, (4.14)

where x∗ can be shown to be a local minimizer of (4.12).

Example 4.1 Consider the following univariate problem

Minimize x2 = z
subject to x ≥ 1

which has the unique solution x∗ = 1. The barrier function for fixed µ for this problem is
given by

B(x, µ) = x2 − µ ln(x− 1)

and the unconstrained minimizer of B(x, µ) for fixed µ is

x
∗
(µ) = 1/2 + 1/2

√
1 + 2µ.

The approach of the barrier function minimizers x∗(µ) to the unique solution x∗ = 1 is
illustrated in Figure 4-1.

Definition (Stationary Point): A stationary point of a function f(x) is the
point x = x̄ where the ∇f(x̄) = 0.

� Exercise 4.3 Show in Example 4.1 that x(µ) = 1/2±1/2
√

1 + 2µ are stationary points
of B(x, µ) for fixed µ and that x∗(µ) = 1/2 + 1/2

√
1 + 2µ.
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4.3.2 PROPERTIES OF BARRIER FUNCTION
METHODS

Successive minima x∗(µ) of the Barrier function B(x, µ) can be shown to have the
following properties. Let µ̄ < µ for sufficiently small µ, then

1. B
(
x∗(µ̄), µ̄

)
< B

(
x∗(µ), µ

)
.

2. f
(
x∗(µ̄)

)
≤ f

(
x∗(µ)

)
.

3. −
m∑

i=1

ln
(
ci(x
∗(µ̄)

)
≥ −

m∑
i=1

ln
(
ci(x
∗(µ)

)
.

See the Notes & Selected Bibliography Section (Section 4.8) where references to
proofs can be found.

Given a fixed µ, at each iteration k with iterate xk(µ), the Newton direction is
given by

∇2B
(
xk(µ), µ

)
p = −∇B

(
xk(µ), µ

)
.

Unfortunately, as µ goes to 0, the Hessian matrix at xk(µ) becomes increasingly
more ill-conditioned with singularity occurring in the limit. This makes it necessary
to use some modification of the Hessian matrix to ensure positive-definiteness.

� Exercise 4.4 Determine the Hessian matrix of B(x, µ) in Example 4.1 and show that
it becomes increasingly ill-conditioned as µ→ 0.

Furthermore, because of ill-conditioning in this approach, a specialized linesearch
is required to take care of the case of an ill-conditioned Hessian matrix near the
boundary. Thus, the unconstrained problems in general become more and more
ill-conditioned and hence more and more difficult to solve.

If the feasible region is bounded and f(x) is bounded from below over the feasible
region then the barrier function is bounded from below over the feasible region.
However, if the objective is unbounded over the feasible region, there is danger of
the barrier function being unbounded, possibly leading to further complications.

At x∗, a minimizer of (4.12),

g(x∗) =
m∑

i=1

ai(x
∗)λ∗i , (4.15)

where λ∗i are the Lagrange multipliers. Estimates of the Lagrange multipliers can
be easily obtained by observing that at the solution x∗(µ) of B(x, µ), the gradient

g
(
x∗(µ)

)
=

m∑
i=1

ai

(
x∗(µ)

) µ

ci
(
x∗(µ)

) , (4.16)
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where ai

(
x∗(µ)

)
is the gradient of ci(x) evaluated at x∗(µ). Thus, comparing (4.15)

and (4.16) estimates of the Lagrange multipliers are given by

λi(µ) =
µ

ci
(
x∗(µ)

) . (4.17)

Under mild conditions, it can be shown that

lim
µ→0

µ

ci
(
x∗(µ)

) = λ∗i , µ ∈ S, (4.18)

where S is the same subset as that defined in (4.14).

4.4 THE PRIMAL LOGARITHMIC BARRIER
METHOD FOR SOLVING LINEAR
PROGRAMS

In this section, we apply a barrier function approach (combined with Newton’s
method for computing a search direction) to solve a linear programming problem
in standard form.

Minimize cTx = z
subject to Ax = b

x ≥ 0,
(4.19)

where x ∈ �n, A is an m× n matrix, and b is an m-vector, with m < n. This
method is called the primal logarithmic barrier method. Each iteration requires the
solution of a linear least-squares problem.

4.4.1 DETAILS OF THE METHOD

Replacing the objective in (4.19) by the logarithmic barrier function, we get the
linearly constrained problem.

Minimize f(x) = cTx− µ
n∑

j=1

log(xj)

subject to Ax = b.

(4.20)

Note that the conditions xj ≥ 0 are no longer needed because ln(xj) is not a real-
valued function if xj < 0 and because, starting with xj > 0, ln(xj) → −∞ as
xj → 0. This latter property means that ln(xj) serves as a barrier discouraging xj

from going to 0.
The first and second derivatives of the barrier function are given by:

g(x) = c− µD−1
x e and G(x) = µD−2

x , (4.21)

where
Dx = Diag (x) (4.22)
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and e = (1, 1, . . . , 1)T. Note that the gradient g(x) and Hessian G(x) are defined
only for xj > 0 for all j.

� Exercise 4.5 Show that G(x) is positive-definite.

Let x = x̄ > 0 satisfying Ax = b be an initial feasible solution to (4.20). As we
have seen, in Equation (4.1), to obtain a Newton search direction ∆x from x̄ we
first approximate f(x) by a quadratic at x̄, i.e.,

Q(∆x) = g(x̄)T∆x +
1
2
∆xTG(x̄)∆x (4.23)

where g(x) and G(x) are given by (4.21), and we minimize this quadratic to ob-
tain ∆x. However, (4.20) requires we minimize Q(∆x) subject to ∆x satisfying
A(x̄ + ∆x) = b. Hence we obtain ∆x as the solution to

Minimize Q(∆x) = g(x̄)T∆x+ 1
2∆xTG(x̄)∆x

subject to A∆x = 0, (4.24)

with g(x) and G(x) defined by (4.21). If we let πx denote the Lagrange multipliers
for the constraints A∆x = 0, then the Lagrangian is

L(x, πx) = g(x̄)T∆x+
1
2
∆xTG(x̄)∆x− πT

xA∆x. (4.25)

Because the Hessian matrix G(x̄) is positive-definite, we obtain the conditions for
optimality by setting the partials with respect to ∆x of the Lagrangian to zero,
namely,

g(x̄) +G(x̄)∆x = ATπx. (4.26)

Thus, at an optimum, the gradient ∇Q(∆x) = g(x̄) +G(x̄)∆x is a linear combina-
tion πx of the rows of A. Substituting for g(x̄) and G(x̄) from (4.21), we obtain

c− µD−1
x̄ e+ µD−2

x̄ ∆x = ATπx,

which, after rearranging, becomes

µD−2
x̄ (−∆x) +ATπx = c− µD−1

x̄ e. (4.27)

Thus the solution of (4.24) satisfies the following equations:(
µD−2

x̄ AT

A 0

)(
−∆x
πx

)
=

(
c− µD−1

x̄ e
0

)
(4.28)

If we define a vector rx by
Dx̄rx = −µ∆x, (4.29)

we get (
I Dx̄A

T

ADx̄ 0

)(
rx
πx

)
=

(
Dx̄c− µe

0

)
. (4.30)
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This system may be too large to solve directly in practice. Comparing (4.30) with
(4.6) and (4.10), we see that an alternative way to obtain rx is by solving the
least-squares problem

Minimize
π

||Dx̄c− µe−Dx̄A
Tπ||22 (4.31)

for π and setting
rx = Dxc− µe−DxA

Tπ. (4.32)

An efficient and numerically stable way to solve (4.31), the least-squares problem,
is by using the QR factorization.

The Newton barrier direction is then given by

∆x = −(1/µ)Dx̄rx. (4.33)

Thus, the search direction at each iteration is obtained as the solution of the linear
least-squares problem defined by (4.31). Letting xk = x̄, the new approximation to
the solution of (4.20) is then given by

xk+1 = xk + α∆x, (4.34)

where α, the steplength, is obtained by a steplength algorithm (such as the one
described in Step 3 of Algorithm 4.1). Finally, note that because we could use a
steplength algorithm to determine α, we could redefine the search direction (4.33)
by

∆̄x = −Dxrx (4.35)

for µ > 0. In this case, the iterative process is terminated when the iterates are
geting “close” or when the duality gap is “sufficiently small.”

� Exercise 4.6 Show that the Newton search direction for the primal logarithmic barrier
method can be written as

∆x = − 1

µ
DxPDxc+DxPe, (4.36)

where e = (1, 1, . . . , 1)T and where P , called the projection matrix, is

P = I −DxA
T
(
AD2

xA
T
)−1

ADx. (4.37)

Definition (Affine Transformation): Let M be an n× n nonsingular matrix
and let d ∈ �n. The transformation y = Mx+ d is called an affine transfor-
mation of x into y.

Instead of (4.36), some authors have proposed the search direction

∆̂x = −DxPDxc, (4.38)

that is the direction of ∆x in the limit µ→ 0. In the literature, a method that uses
∆̂x is called a primal affine method or Dikin’s method.

� Exercise 4.7 Develop a Newton barrier method for the dual of the linear program in
standard form. What is the dual affine direction, i.e., the direction as µ→ 0.
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4.4.2 INITIAL FEASIBLE SOLUTION

So far we have assumed that an initial feasible interior-point solution is available.
If an initial feasible interior solution is not available, we can easily generate one by
picking an xo > 0 and setting up the following linear program with one artificial
variable xa and associated large cost M :

Minimize cTx + Mxa = z
subject to Ax + (b −Axo)xa = b x ≥ 0, xa ≥ 0. (4.39)

Then x = xo > 0 and xa = 1 is clearly a feasible solution to (4.39). On application
of an algorithm, if M is sufficiently large, then at an optimal solution we must
have xa = 0. Refer to the comments in Section 3.3.5 to see how the choice of M
plays a role in practice.

� Exercise 4.8 Show that for M sufficiently large, asssuming a feasible solution to Ax = b,
x ≥ 0 exists, then the set of optimal solutions to (4.39) is the same as that for the
corresponding linear program in standard form.

While any xo > 0 can be chosen it would be nice to choose a “good” starting xo.
If something is known about the problem, then it is possible that a very good
educated guess can be made for a choice of xo. On the other hand, if this is not at
hand, then one possibility might be to choose x̂o by

x̂o = AT
(
AAT

)−1
b, (4.40)

which has the property that Ax̂o = b but not necessarily x̂o > 0. If xo > 0 then
set xo = θ where θ > 0 is chosen arbitrarily. That is, to ensure an xo > 0, set the
components

xo
j =

{
x̂o

j if x̂o
j ≥ θ

θ if x̂o
j < θ

(4.41)

Of course, if all x̂o
j ≥ θ then the artificial variable xa is not needed.

� Exercise 4.9 Show how to generate an artificial initial feasible interior solution for the
dual of a linear program in standard form if an initial feasible interior solution is not given.

4.5 PRIMAL-DUAL LOGARITHMIC
BARRIER METHODS

Primal-dual logarithmic barrier algorithms have been reported to outperform the
Simplex Algorithm on very large-scale linear programs. To derive the algorithm we
apply the barrier method to the dual of the linear program in standard form. Recall
that an LP in standard form is min cTx subject to Ax = b, x ≥ 0, and its dual
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is to find max bTy, subject to ATy ≤ c. Letting µ > 0 be a given fixed parameter
(which is decreased during the course of the algorithm) and inserting slack variables
s = (s1, . . . , sj, . . . , sn)T ≥ 0, the barrier method formulation of the dual is:

Maximize bTy + µ

n∑
j=1

ln(sj)

subject to ATy + s = c.

(4.42)

Note that the conditions sj ≥ 0 are no longer needed because ln(sj) is not a real-
valued function if sj < 0 and because, starting with sj > 0, ln(sj)→ −∞ as sj → 0.
This latter property means that ln(sj) serves as a barrier discouraging sj from going
to 0.

Denoting by x the vector of Lagrange multipliers, the Lagrangian of the preced-
ing problem is:

L(x, y, s, µ) = bTy + µ
n∑

j=1

ln(sj)− xT(ATy + s− c). (4.43)

To write the first-order necessary conditions for a minimum, we set the partial
derivatives of the Lagrangian with respect to x, y, and s to zero. This results in
the following three sets of equations:

ATy + s = c (4.44)
Ax = b (4.45)

DxDse = µe (4.46)

where (4.46) is the same as µD−1
s e = Dxe rewritten with

Ds = Diag (s) and Dx = Diag (x). (4.47)

Note that (4.44) is the usual dual feasibility condition with s ≥ 0 omitted and (4.45)
is the usual primal feasibility condition with x ≥ 0 omitted. Note that (4.46) states
that xisi = µ for i = 1, . . . , n and thus, in the limit as µ → 0, results in the usual
complementary slackness conditions.

To initiate we pick µ > 0, say µ = 1, and assume we have a starting interior dual
feasible solution (y, s) = (yo, so) with so > 0 available, as well as a primal feasible
solution x = xo available. Since µ is arbitrarily chosen equal to 1, the solution will in
general not satisfy (4.46). In this case we determine a search direction (∆x,∆y,∆s)
satisfying (4.44), (4.45) and (4.46). Any movement α ≥ 0 along such a direction
satisfies the feasibility conditions (4.44) and (4.45) but does not necessarily maintain
the nonnegativity of xo + ∆x and so + ∆s. In place of the current solution (x, y, s),
we substitute the proposed new solution (x + ∆x, y + ∆y, s + ∆s) in (4.44) and
(4.45), to obtain the Newton equations:

AT∆y + ∆s = 0 (4.48)
A∆x = 0 (4.49)
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Substituting the new solution into (4.46) we obtain

(xi + ∆xi)(si + ∆si) = µ for i = 1, . . . , n. (4.50)

In order to satisfy the computations we ignore the second-order term ∆xi∆si for
i = 1, . . . , n, we obtain the first-order approximation to (4.50) as

xo
i s

o
i + xo

i ∆si + so
i ∆xi = µ,

which in matrix notation is

Dso∆x+Dxo∆s = µe−DxoDsoe. (4.51)

We next solve this linear system of equations (4.48), (4.49), and (4.51) for
(∆x,∆y,∆s). From (4.48) we obtain

∆s = −AT∆y. (4.52)

From (4.51) we obtain, after noting that D−1
so Dxo = DxoD−1

so ,

∆x = D−1
so (µe−DxoDsoe)−DxoD−1

so ∆s. (4.53)

Next, noting A∆x = 0, we multiply (4.53) on the left by A and substitute ∆s =
−AT∆y, from (4.52), in it to obtain:

0 = A∆x = AD−1
so (µe−DxoDsoe) +ADxoD−1

so AT∆y

Hence
∆y = −

(
ADxoD−1

so AT
)−1

AD−1
so (µe−DxoDsoe). (4.54)

Because we have a separate search direction ∆x in the primal space and a sepa-
rate search direction (∆y,∆s) in the dual space we can have a separate steplength
αP for ∆x and αD for (∆y,∆s) respectively. One possible way to compute the
steplengths is to compute the maximum step αmax

P
that maintains x+αmax

P
∆x ≥ 0

and the maximum step αmax
D

that maintains s+ αmax
D

∆s ≥ 0. Next choose a mul-
tiple ρ < 1 of the maximum steplength

α
P

= ραmax
P

if αmax
P

<= 1, else α
P

= 1. (4.55)
α

D
= ραmax

D
if αmax

D
<= 1, else α

D
= 1. (4.56)

In practice ρ is chosen very close to 1, for example, 0.99995. Note that αP = 1 or
α

D
= 1 corresponds to an unconstrained Newton step.
The only items that remain to be discussed are when to terminate and when

to decrease the parameter µ. At some iteration, assume that we have a feasible
primal solution x̄ ≥ 0 satisfying Ax̄ = b and a dual feasible interior solution (ȳ, s̄)
with s > 0 and ĀTȳ + s̄ = c. If the duality gap cTx̄ − b̄Tȳ is deemed sufficiently
close to 0 we terminate. (Note that, because µ is a user-defined parameter a duality
gap equal to 0 does not imply satisfaction of (4.46) because µ may not be small;
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however, satisfaction of (4.46) for very small µ always implies a duality gap that
is very small.) If, on the other hand, the duality gap is not close to 0 and (4.46)
holds with µ not sufficiently close to zero, then we are at a stationary point of the
Lagrangian but not at an optimal solution to the linear program. Then, in order
to continue, we decrease µ by some specified factor, for example, µ← 0.1× µ; this
means that (4.46) is no longer satisfied and the iterative process can be continued.

Note that an affine variant of the algorithm can be developed by setting µ = 0 in
the equations for (∆x,∆y,∆s). In computing steplengths, affine variants typically
use a somewhat smaller value of ρ, for example ρ = 0.95.

� Exercise 4.10 Show how to generate an initial feasible interior solution for the primal-
dual approach using artificial variables (see Section 4.4.2).

� Exercise 4.11 In the preceding discussion, do not assume that we have a feasible
solution (xo, yo, so) to (4.44) and (4.45). Derive the Newton search directions (∆x,∆y,∆s)
in this case.

How are the primal log barrier, dual log barrier, and primal-dual log barrier
methods related to the first-order condition (4.46)? See Exercise 4.12.

� Exercise 4.12 Notice that the condition DxDs = µe can also be written as Dse =
µD−1

x e, Dxe = µD−1
s e, or e = µD−1

x D−1
s e. Therefore the second-order terms can be

dropped in four different ways leading to four different algorithms: The primal-dual loga-
rithmic method we have just seen and the other three:

1. If we use the form Dse = µD−1
x e, show that we obtain the primal log barrier method

of Section 4.4.

2. If we use the form Dxe = µD−1
s e, show that we obtain the dual log barrier method

of Exercise 4.7.

3. Develop a barrier method associated with e = µD−1
x D−1

s e.

4.6 RECOVERING A BASIC FEASIBLE
SOLUTION

When the optimal solution is unique, an interior-point method will terminate with
the unique extreme-point optimal solution. However, in the more likely case of non-
uniqueness (dual degeneracy), an interior-point method will typically not terminate
at an extreme-point (basic feasible) solution; instead it will typically terminate at
a point somewhere on the optimal face of the feasible region.

Although a nonextreme point solution may be acceptable in some applications,
there are other situations when it is desirable to obtain a basic feasible solution.
For example, when attempting to obtain integer solutions by using linear program
relaxations, it is desirable to have a basic feasible solution because it will have fewer
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nonzeros than an interior-point solution. In commercial applications, too, it is de-
sirable to have plans that require fewer nonzero activity levels. In some commercial
applications several activities are bundled together to reduce the number of po-
tentially different activities that may result with nonzero levels. Many commercial
applications require the solution of several related linear programs; in this case the
optimal solution of one linear program can be used to start the optimization process
for a subsequent linear program. Typically, in such situations, the Simplex Method
can solve such problems very efficiently and quickly. If so, it may make sense to
solve the initial problem with an interior-point method; convert the solution to a
basic feasible solution, and use the corresponding basis to solve subsequent linear
programs by the Simplex Method.

Hence it is important to know how to recover an optimal basic feasible solution
from an optimal interior-point solution, assuming one exists. The recovery of a basic
feasible solution can be done by an approach discussed by Dantzig as an exercise in
his 1963 book. Assuming the linear program is in standard form and an interior-
point solution has been found, start by throwing away all the columns that have
zero activity levels. Next pick a basic set of columns (or create a basis with all
artificial variables). Then, for each of the remaining columns j not already in the
basis attempt to bring it into the basis. It will either enter the basis and drive a
current basic column to zero or be driven to zero. Clearly the number of iterations
in this procedure is bounded by the number of positive activity level columns not
in the basis (at most n). The approach is summarized in the following algorithm.

Algorithm 4.2 (Converting an Optimal Solution to a Basic Optimal Solution)

Given an optimal solution x̂∗ ≥ 0 satisfying Ax̂∗ = b, delete the columns Â•j corresponding
to x̂∗j = 0. Let the resulting coefficient matrix be denoted by A and the corresponding

solution by x∗, where x∗ > 0 satisfies Ax∗ = b.

1. Initialize. Set k← 0, xk ← x∗.
2. Pick a basis B from among the columns of A assuming that A is of full row rank.

Let Bk = (A•j1 , A•j2 , A•jm ). (See Exercise 4.13 for how to handle the degenerate
case and less-than-full-rank-case.)

3. Pick Nonbasic Columns. Let N k be the set of nonbasic columns of A.

4. Check for Termination. If N k = ∅, stop and report xk as the optimal basic feasible
solution and report Bk as the corresponding optimal basis.

5. Select Incoming Column. Pick any s ∈ N such that xk
s > 0.

6. Select Outgoing Column. Decrease xk
s ≥ 0 as much as possible and adjust the basic

variables to maintain feasibility while all remaining nonbasics are held fixed. The
detailed steps are as follows.

(a) Determine y as the solution to Bky = A•s.

(b) Set θmax = Maxθ

[
(xk

s − θ) ≥ 0, (xk
j1 + θy1) ≥ 0, (xk

jm
+ θym) ≥ 0,

]
.

7. Update Basis and Nonbasic Set.

(a) If θmax = xk
s , set Bk+1 = Bk, xk+1

ji
= xkji + θyi for i = 1, . . . ,m, and

N k+1 = N k − {s}.
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(b) If xjr +θmaxyr = 0, replace the basic variable jr by s and set xk
jr

= xk
s−θmax

and set xk
ji

= xk
ji

+ θmaxyi for all i �= r. (If r is not unique then choose the

smallest such r.) Set N k+1 = N k − {s}.

8. Update an Loop Back. Set k ← k + 1 and go to Step 4.

� Exercise 4.13 Here we address the issues of rank and degeneracy.

1. If the coefficient matrix A is not of full rank, then we cannot pick a basis B in the
algorithm from the columns of A. Show, in this case, how to modify the algorithm
in one of two ways:

(a) By augmentation with artificial variables.

(b) By dropping the redundant row.

2. Suppose that the linear program has a degenerate primal optimal solution. Show
how to modify the algorithm to take degeneracy into account.

� Exercise 4.14 Suppose we are given an interior-point solution x̄ that is not basic and
not necessarily optimal. Show how to modify Algorithm 4.2 to construct a basic feasible
solution x̂ in n or fewer steps such that cTx̂ ≤ cTx̄. Consider both the degenerate and the
nondegenerate cases.

4.7 COMPUTATIONAL COMMENTS

Computational comments 4, 5, and 6 made in the context of Karmarkar’s algorithm
in Section 3.3.5 also apply to interior-point methods in general.

Besides being able to obtain a solution with fewer iterations than Simplex
iterations, the key to being able to develop a computationally efficient interior-
point method lies in being able to solve, at each iteration, a problem of the form
AD2ATp = d, where D = Diag (x) is a diagonal matrix with positive diagonal
terms. Although the systems are similar for the various interior-point methods, the
diagonal matrix and the right-hand side tend to be different. Depending on the
method, one of the following three systems is solved at each iteration:

AD2ATp = ADd (4.57)
AD2ATp = d (4.58)

ADp = d, and p chosen as min ||p||. (4.59)

System (4.57) is solved at each iteration in projective methods and in the primal log
barrier Newton methods. System (4.59) is solved at each iteration in the dual log
barrier and primal-dual log barrier methods. System (4.58) is used to find an initial
point; see Section 4.4.2. The techniques for solving these systems are similar but
the numerical properties can be quite different. Numerical difficulties can arise due
to AD becoming increasingly ill-conditioned because many of the diagonal elements
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in D tend to zero as the optimal solution is approached. Numerically, the solution
to (4.59) is “better defined” than the solution to (4.58), which, in turn, is “better
defined” than the solution to (4.57). By “better defined,” we mean that small
changes in the values of the parameters cause less fluctuation in the solution.

In order for an interior method to be considered efficient, systems such as
AD2ATp = d need to be solved very accurately and fast with low storage require-
ments. One approach that is fast and uses low storage is the Cholesky factorization,
which is defined for a positive-definite and symmetric matrix. The matrix AD2AT

is clearly symmetric; it is positive definite if A is full rank and D has a strictly
positive diagonal. The Cholesky Factorization of the symmetric positive-definite
matrix AD2AT is of the form

AD2AT = LLT (4.60)

where L is lower triangular. An alternative, equivalent way to write the Cholesky
factorization is

AD2AT = L̄ΓL̄T (4.61)

where L̄ is a unit lower-triangular matrix (i.e., it is a lower-triangular matrix with
all ones on the diagonal) and Γ is a diagonal matrix of all positive diagonal elements.
This latter form is preferred because it avoids computing square roots.

� Exercise 4.15 Suppose we write the LU factorization of AD2AT as LΘU where L is
unit lower-triangular, Θ is a diagonal matrix, and U is unit upper-triangular. Show in this
case that the factors L = L̄, Θ = Γ, and U = L̄T (that is, the LU factors are the same
as the Cholesky factors), provided that interchanges of rows i and j are accompanied by a
corresponding interchange of columns i and j for the same pairs in both factorizations.

Better numerical stability is achieved using the QR factorization, i.e.,

DAT = QR (4.62)

where Q is an orthornormal square matrix and R is an upper-triangular matrix.
Then AD2AT = RTR. The computational work to do a QR factorization is usually
two to three times more than for a Cholesky factorization.

4.8 NOTES & SELECTED BIBLIOGRAPHY
For proofs on convergence of various iterative algorithms, see, for example, Ortega &
Rheinboldt [1970]. For details and computational results using the Projected Newton
Barrier Method, see Gill, Murray, Saunders, Tomlin, & Wright [1986]; this paper also shows
that the projected Newton Barrier method and Karmarkar’s method are related. Renegar
[1988] showed polynomial time convergence for a Newton-type algorithm applied to the
linear program min cTx, subject to Ax ≥ b. Gonzaga [1989] and Shanno & Bagchi [1990]
showed that Karmarkar’s method is just a special case of the logarithmic barrier function
method; Karmarkar showed polynomial complexity for his method but Shanno and Bagchi
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did not for theirs. Anstreicher [1990] has shown that the application to linear programs of
Frisch’s [1957] logarithmic barrier approach (as developed by Fiacco & McCormick [1968])
has polynomial complexity. See also Freund [1991a] for results on the theoretical efficiency
of a shifted barrier function approach.

The primal-affine method, developed by Barnes [1986] and Vanderbei, Meketon, &
Freedman [1986], defines the search direction by p = −DxPDxc where Dx = Diag (x)
and P is defined by (4.37). It also turns out that this method is the same as the method
proposed earlier by Dikin [1967, 1974]. Several interesting results on Dikin’s method have
appeared since its rediscovery and reclassification as the primal-affine method. Saigal
[1993a] and Tsuchiya & Monteiro [1996] have shown that the primal-affine method con-
verges superlinearly. Examples have been constructed by various researchers to show that
the primal-affine method does not converge when the primal problem is degenerate. Mas-
carenhas [1993] has constructed an example in which the method does not converge to an
optimal solution if a steplength of α = 0.999, called the long-step, is used because when
a steplength of α = 0.999 is used the iterates stay too close to the boundary. Hall &
Vanderbei [1993] have constructed an example where the dual iterates failed to converge
if steplength α > 2/3 is used; see Problem 4.2 on Page 146. Saigal [1993b] describes a
variant of the method called the power variant of the primal-affine method.

Notice, in the limit as µ → 0, the Newton search direction (4.36) is p = −DxPDxc,
the primal-affine method search direction. An explanation of the relationship between the
primal logarithmic Newton barrier method and primal affine method is as follows. The
idea of an interior-point method is to keep the iterates in the interior of the feasible region
defined by inequalities. As described by Sonnevend [1986], we can find the “analytic
center” of the feasible region by solving the problem: min−

∑n

j=1
ln(xj), subject to

Ax = b. For this problem, the Newton direction is p = DxPe, where Dx = Diag (x)
and P is defined by (4.37). This is reflected in the Newton direction (4.36), which is a
combination of an affine term that points in the direction of optimality and a centering
term that causes the iterates to stay away from the boundary. Hertog & Roos [1991] have
shown, in their survey of search directions for interior-point methods, that most of these
methods use search directions that are a combination of a component that points toward
an optimal solution and a centering term.

The approach described in Section 4.4.2 to determine an initial feasible interior x0 is
described in Lustig, Marsten, & Shanno [1994].

Another class of interior-point methods operates on max bTy subject to ATy ≤ c, the
dual of a linear programming in standard form. Huard’s [1970] method of centers was first
applied to this problem by Renegar [1988], who obtained an algorithm that takes O(

√
nL)

iterations, where n is the dimension of x and L is the total number of bits required to store
the problem’s data in the computer. Later Gonzaga [1992] showed that this was a special
case of the logarithmic barrier function method. Notice that the dual of a linear program
has no equality constraints, hence the use of a logarithmic barrier function results in the
following unconstrained problem:

max
y

bTy + µ

n∑
j=1

ln
(
cj − AT

•jy
)
, (4.63)

where A•j is the jth column of the coefficient matrix A. Letting s = c−ATy, the first and
second derivatives of the barrier function are given by

g(y) = b− µAD−1
s e and G(y) = −µAD−2

s AT, (4.64)
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where
Ds = Diag (s) = Diag (c− ATy), (4.65)

and e = (1, 1, . . . , 1)T. Note that g(y) and G(y) are defined only if sj = cj − AT
•jy > 0 for

all j. The Newton search direction (see Exercise 4.7) is given by

∆y = − 1

µ

(
AD−2

s AT
)−1

b+
(
AD−2

s AT
)−1

AD−1
s e. (4.66)

The first term of this search direction ∆y points toward optimality and the second term
does the centering. A dual-affine variant search direction can be found by letting µ → 0,
namely

∆yA = −
(
AD−2

s AT
)−1

b. (4.67)

Shortly after the publication of Karmarkar’s [1984] result, Adler, Resende, Veiga, &
Karmarkar [1989] implemented an interior-point method, called the dual-affine variant,
to solve the dual problem. The implementation demonstrated superiority over an ear-
lier version of MINOS, a simplex-based code, on a class of problems distributed by Gay
[1985]. A description of the data structures used in the approach can be found in Adler,
Karmarkar, Resende, & Veiga [1990]. Later McShane, Monma, & Shanno [1989] demon-
strated similar results using a primal-dual path-following algorithm. Marsten, Saltzman,
Shanno, Ballinton, & Pierce [1989] did further interesting computational work using the
dual-affine approach. Tsuchiya & Muramatsu [1995] prove convergence of the primal-affine
and dual-affine scaling methods without the nondegeneracy assumptions. Their proof is
based on Dikin’s [1990, 1992] results. Since then, simpler proofs have been developed by
Monteiro, Tsuchiya, & Wang [1993] and Saigal [1992].

Megiddo [1986, 1988] first devised the theory for primal-dual interior-point methods
(see Section 4.5 for details of the method), which has performed very well in practice.
Based on Megiddo’s theory, Kojima, Mizuno, & Yoshise [1989a] developed an O(nL) al-
gorithm, where L is the total number of bits required to store the problem’s data in
the computer. Shortly thereafter, Lustig, Marsten, & Shanno [1990, 1991a, 1991b, 1992a,
1992b, 1992c] implemented and reported promising results for various versions of a primal-
dual algorithm. Primal-dual algorithms were first implemented with different steplengths
in the primal and dual spaces by McShane, Monma, & Shanno [1989]. Lustig [1991] and
Lustig, Marsten, & Shanno [1994] showed how to derive directions (without the need for
artificial variables) when an initial feasible solution is not easily available for application
of the primal-dual algorithm. Choi, Monma, & Shanno [1990] show how to conveniently
handle upper and lower bounds on variables in primal-dual interior-point methods. Lustig,
Marsten, & Shanno [1994] show that it is possible to handle free (unrestricted) variables
in a primal-dual interior-point method by splitting it into the difference of its positive
and negative parts (similar to the way discussed in Linear Programming 1, for the regular
Simplex Method) and then at each iteration setting the smaller of the two variables to
a constant thereby shifting the origin of the unrestricted variable. Shortly after Lustig,
Marsten, & Shanno’s [1991a] implementation of the primal-dual interior-point method,
Mehrotra [1992a] devised a predictor-corrector method, that utilizes a combination of
three search directions: the predictor, the corrector, and the centering direction. Assum-
ing that the current solution (x, y, s) does not necessarily satisfy the first-order corrections
of optimality we substitute (x+∆x, y+∆y, s+∆s) in place of the current solution (x, y, s)
in (4.44), (4.45), and (4.46) to obtain the Newton equations

AT∆y + ∆s = c− ATy − s (4.68)
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A∆x = b− Ax (4.69)

Ds∆x+Dx∆s = µe−DxDse−D∆xD∆se. (4.70)

Mehrotra proposed first solving the above system with µ set to 0 and D∆xD∆se
dropped. The resulting solution (∆x,∆y,∆s) = (∆̄x, ∆̄y, ∆̄s) is then used to substitute
for the product D∆xD∆s and the system re-solved. In this method µ is adjusted to be
small when the affine direction produces a large decrease in complementarity (see (4.46))
from the previous iteration, and µ is adjusted to be large when the affine direction produces
a small decrease in complementarity. The iterative process of substituting for D∆xD∆se
described earlier can be repeated to obtain a better search direction (∆x,∆y,∆s) but
requires a lot more work. Carpenter, Lustig, Mulvey, & Shanno [1993] have examined
this multiple corrections procedure and concluded that for a general primal-dual algorithm
one such iteration works best in terms of overall execution time. Lustig, Marsten, &
Shanno [1992a] prove that the algorithm will have guaranted convergence if the predictor-
corrector approach is used. They further show how to determine whether a regular primal
step should be taken or a correction step performed. They report that the test has little
computational effect on the problems even though it is necessary to prove guaranteed con-
vergence. In another paper, Lustig, Marsten, & Shanno [1992c] describe an implementation
of the primal-dual algorithm with a slightly modified Mehrotra [1992a] predictor-corrector
method. Mitchell & Borchers [1992] have applied the primal-dual interior-point algorithm
in a cutting-plane setting.

For Megiddo’s [1986, 1988] primal-dual method, Monteiro & Adler [1989a] and Kojima,
Mizuno, & Yoshise’s [1989b] improved Kojima, Mizuno, & Yoshise’s [1989a] result to
O(
√
nL) complexity, where L is the total number of bits required to store the problem’s

data in the computer; unfortunately in their algorithm µ is being reduced so slowly that
in practice the algorithm is very inefficient. Lustig, Marsten, & Shanno [1990] present
empirical evidence that their implementation appears to result in O

(
(log n)L

)
iterations.

Todd [1994b] proves that a long-step primal-dual algorithm similar to an earlier version of
the Lustig, Marsten, Shanno [1994] OB1 algorithm may require O(n1/3) iterations before
achieving a reasonable constant improvement in the duality gap.

All the complexity results mentioned so far for primal-dual algorithms are for algo-
rithms using strictly feasible points. In 1991, Kojima, Megiddo, & Mizuno [1993] showed
global convergence for an infeasible primal-dual method under special conditions. Mizuno
[1992] and, earlier in 1992, Zhang [1994] provided a polynomial time complexity bound
for the Kojima-Megiddo-Mizuno infeasible interior-point algorithm. Lustig, Marsten, &
Shanno [1992a] show global convergence for the predictor-corrector algorithm. Complexity
bounds for variants of the Mehrotra predictor-corrector method are established by Zhang
& Zhang [1995]. Mizuno, Kojima, & Todd [1995] developed an infeasible interior-point
primal-dual potential reduction algorithm that is polynomial time bounded.

Superlinear convergence of a primal-dual algorithm has been shown by S. Wright [1993].
Zhang, Tapia, & Dennis [1992] give sufficient conditions for superlinear and quadratic
convergence of primal-dual algorithms in terms of the centering parameter and the step
size chosen. Among others, Ye, Güler, Tapia, & Zhang [1993] and Mehrotra [1993] de-
scribe methods that attain superlinear and quadratic convergence together with polyno-
mial bounds on complexity. El-Bakry, Tapia, & Zhang [1991] compare local convergence
strategies and point out that theoretical asymptotic superlinear and quadratic convergence
usually translate into fast linear convergence in practice. Typically infeasible interior-point
methods detect infeasibility by not being able to converge to optimality (or, as in the case
of artificial variables, having one or more not equal to zero even though a high objective
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coefficient is attached to them); in fact, guaranteed detection of infeasibility is available
theoretically only if the method is started from a very inefficient initial point. In 1992, Ye,
Todd, & Mizuno [1994] developed a homogeneous and self-dual formulation that treats
optimality and infeasibility more symmetrically for the purpose of being able to detect
infeasibility.

Clearly, the implementation of an efficient interior-point algorithm requires an efficient
Cholesky factorization that also minimizes the storage requirement for the lower triangu-
lar matrix L. Sparsity is maintained in L by first determining an ordering of the rows
of AD2AT and then using a sparse column Cholesky factorization. Two heuristics for
permuting the rows of AD2AT to minimize the fill-in in L are the multiple minimum de-
gree ordering (see, for example Liu [1985]); and the minimum local fill-in ordering, (see,
for example, Markowitz [1957] and Duff, Erisman, & Reid [1986]). In practice the min-
imum fill-in local ordering produces a sparser L than the minimum degree ordering but
requires more computational time. The Cholesky factors are obtained through the use
of a sparse column Cholesky factorization procedure; for details see George & Liu [1981].
If A has relatively few dense columns then the Cholesky factors will also have few dense
columns. Techniques for handling such dense columns can be found for general cases in
Grcar [1990], for general linear programs in Vanderbei [1991], and for stochastic linear
programs in Lustig, Mulvey, and Carpenter [1991].

Eventually the matrices AD2AT get very ill-conditioned leading to problems in com-
puting the Cholesky factors. One technique to reduce the effect of ill-conditioning is
preprocessing. Another possibility is regularization, which is the perturbing of the linear
program problems to make them “easier” to solve. Yet another possibility is refinement,
which is iteratively solving modified prolems to ensure that the error in the solution process
is small. For a discussion of regularization and refinement, see Gill, Murray, Ponceleón, &
Saunders [1995].

As noted in this chapter, the use of the QR factorization can improve numerical sta-
bility at the expense of computational speed. However, there is still the possibility of a
large amount of fill-in (additional nonzeros being created) in R. One possibility is to solve
instead a system of equations whose coefficient matrix is:(

−D−2
x (ADx)T

ADx

)
. (4.71)

For details on the solution of such systems see Fourer & Mehrotra [1993], Vanderbei
[1995, 1992], and Vanderbei & Carpenter [1993]. In the context of finite element analysis,
Vavasis [1993, 1994] to ensure stability when solving (4.71) suggests caution be exercised
and proposes a stable method. M. Wright [1992], on the other hand, proposes working
with an unsymmetric Jacobian matrix, found in primal-dual methods, of the form(

Ds −DxA
T

A

)
. (4.72)

Other options for reducing fill-in are that of incomplete or partial Cholesky factoriza-
tions. For a discussion on incomplete factorizations, see for example, Axelsson & Munks-
gaard [1983], Jones & Plassmann [1995], Meijerink & van der Vorst [1981], Munksgaard
[1980], and Thapa [1984b]. Mehrotra [1992b] has experimented with using an incomplete
Cholesky factorization for use in a preconditioned conjugate gradient method; however, his
results were not very promising. Iterative methods can also be used to solve the Newton
equations (4.48), (4.49), and (4.51); see Kim & Nazareth [1994].
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For a review of methods with a focus on computational results, see, for example, Gill,
Murray, & Saunders [1988] and Lustig, Marsten, & Shanno [1994]. The latter paper
reports that test results have demonstrated the following: (i) problems where the sum of
the rows and columns is less than 2000 are more likely to be solved faster by the Simplex
Method; (ii) for problems where the sum of the number of rows and columns is between
2000 and 10000, simplex codes and interior-point codes compete evenly; and (iii) problems
larger than the latter are more likely to be solved faster by interior-point codes. Of course,
the structure of the models plays a very important role and even very large problems may
very easily be solved faster by very good implementations of the Simplex Method.

The first-order conditions were derived through the use of a Lagrangian, however, we
should note that these are simply the Karush-Kuhn-Tucker (KKT) conditions. As noted in
Section 4.5, the primal log barrier method uses Dx = µD−1

s e, the dual log barrier method
uses Ds = µD−1

x e, and the primal-dual log barrier method uses DxDse = µe, where
e = (1, 1, . . . , 1)T. Gill, Murray, Ponceleón, & Saunders [1995], among others, suggests
also looking at the fourth possibility of D−1

x D−1
s = µe. They further suggests research on

the development of solvers that would directly solve the resulting Jacobian equations if
each of the four options is used in turn in place of (4.46) in the first order conditions. The
associated Jacobians are:

Jp =

(
I µD−2

x

I AT

A

)
, Jd =

(
µD−2

s I
I AT

A

)
,

Jpd =

(
Dx Ds

I AT

A

)
, J =

(
D−1

x D−1
s D−2

x D−1
s

I AT

A

)
.

See Gill, Murray, Ponceleón, & Saunders [1994] for a discussion of these systems and for
global convergence proofs and guarantees of nonsingularity in each of the above Jacobians.

Several papers have appeared that suggest the superiority of solving reduced KKT
systems because of better sparsity control, more direct handling of free variables, and
the application of static preordering schemes for factorization. For example, see Forsgren
& Murray [1990], Fourer & Mehrotra [1992], Gill, Murray, Ponceleón, & Saunders [1994],
Vanderbei [1995, 1992, 1994], and Vanderbei & Carpenter [1993]. As an example of reduced
KKT systems consider the first-order conditions for von Neumann’s symmetric primal (2.1)
and dual (2.2) systems:

Ax− w = b

ATy + s = c

DxDse = µe

DyDwe = µe

where e = (1, 1, . . . , 1)T,

Dx = Diag (x), Ds = Diag (s), Dy = Diag (y), Dw = Diag (w).

Application of Newton’s method results in:Dx Ds

Dy Dw

I AT

−I A


 ∆s

∆w
∆x
∆y

 =

 µe−DxDse
µe−DyDwe
c−ATy − s
b− Ax+ w

 .



146 INTERIOR-POINT METHODS

The first two sets of equations can be used to solve for ∆s and ∆w respectively, and
substituted in the next two sets to give us the reduced KKT system:(

−DsD
−1
x AT

A DwD
−1
y

)(
∆x
∆y

)
=

(
c−ATy − µD−1

x e
b− Ax+ µD−1

y e

)
.

As mentioned earlier, it is likely that the best commercial software of the future will
be some sort of a hybrid of the Simplex Method and an interior-point method. A prob-
lem with interior-point methods has been the inability to quickly obtain a basic feasible
solution (or extreme point). Algorithm 4.2 on Page 138 addresses this issue; it, together
with Exercise 4.14 on Page 139 is based on Problem 11 on Page 145 of Dantzig [1963].
For additional details on obtaining a basic feasible solution, see Andersen & Ye [1995],
Bixby, Gregory, Lustig, Marsten, & Shanno [1992], Bixby & Saltzman [1994], Charnes &
Kortanek [1963], Kortanek & Zhu [1988], and Megiddo [1991].

For an introduction to nonlinear programming see, for example, Avriel [1976], Fiacco
& McCormick [1968], Gill, Murray, & Wright [1981], Kuhn & Tucker [1950], Wolfe [1967],
and Zangwill [1969]. For a thorough analysis of barrier function methods, see M. Wright
[1976].

In conclusion, over the years there have been significant improvements in Simplex
Method based codes. As a consequence, test results as of 2003 with interior-point codes
show superiority only on problems with several thousand rows and columns. Typically,
the results are superior on problems where a block-diagonal type structure exists.

4.9 PROBLEMS

4.1 Based on a problem in Dantzig [1963]. Suppose zo; x
o
1 > 0, xo

2 > 0, . . . , xo
k > 0

and xo
k+1 = · · · = xo

n = 0 constitutes a feasible solution to a linear program in
standard form.

(a) Show that if k > m a new solution can be found with m or fewer variables
at positive values.

(b) Show that this reduction process can take up to k −m steps.

(c) Show that the reduction can be done in such a way that the objective
function is not increasing at each step. Show also that a case can arise in
which a class of solutions is generated where z → −∞.

4.2 Hall & Vanderbei [1993]. This problem demonstrates that the dual iterates of
the affine scaling algorithm do not converge when α > 2/3. Consider the primal
problem:

Minimize x1 + x2 + x3 = z
subject to x1 + x2 + x3 − x4 = 0

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0.
(4.73)

(a) Write down the dual of the problem.

(b) Start with the primal interior point x = (10, 10, 19, 1)T and use a
steplength size of α = 0.995 to demonstrate that the primal affine algo-
rithm generates dual iterates that do not converge but generates primal
iterates that do converge to the unique primal minimum x∗ = (0, 0, 0, 0)T.
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(c) Which of the assumptions required in the proof of convergence of Dikin’s
algorithm is violated?
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C H A P T E R 5

DEGENERACY

We have seen that if degeneracy occurs, then it is possible to have a sequence of
iterations with no decrease in the value of z. Under such circumstances, it may
happen that a basic set will be repeated, thereby initiating an endless cycle of
such repetitions. It turns out, for reasons not fully understood, that in practice
almost all problems are degenerate and some are highly degenerate, but that in
spite of degeneracy, cycling almost never happens. This is why early commercial
software packages did not include any degeneracy resolving schemes. When there is
degeneracy or “near” degeneracy it tends to slow the solution process, and this has
given rise to a number of anti-cycling or degeneracy resolving schemes that have
been very successfuly used in commercial software packages to reduce the number
of iterations.

5.1 EXAMPLES OF CYCLING
Example 5.1 (Hoffman) In 1951, A. J. Hoffman constructed an ingenious example
to show that cycling can occur under degeneracy; it involves three equations and eleven
variables; see Table 5-1 and Table 5-2. He showed, in the case of degeneracy, that if one
resolved the ambiguity of choice regarding which variable to drop from the basic set by
the rule of selecting the first among them, then the tableau at iteration 10 would turn
out to be the same as that at iteration 0. Notice in Tables 5-1 and 5-2 that column 1,
associated with the relation x1 = 1, remains in the basis for all iterations. Next notice
that the tableau for iteration 2 is exactly the same as that of iteration 0 if we relabel the
indices (2, 3, 4, . . . , 11) of iteration 0 as (4, 5, 6, . . . , 11; 2, 3). Hence, eight more iterations
will repeat iteration 0. It follows, in this case, using the first choice rule, that the same
basic set would be repeated every ten iterations and the Simplex Algorithm would cycle
forever without converging to an optimal solution.

149
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x1 x2 x3 x4 x5 x6

Iteration 0

−(1 − cos θ)/ cos θ w

1

1 cos θ −w cos θ cos 2θ

1 sin θ tan θ/w cos θ tan θ sin 2θ/w

Iteration 1

(1 − cos θ)/ cos2 θ w(2 cos θ − 1)/cosθ −2 sin θ tan θ

1
sec θ 1 −w 4 cos2 θ − 3

− tan2 θ/w 1 sec θ tan2 θ/w

Iteration 2

4 sin2 θ w(1 − 2 cos θ) −(1 − cos θ)/ cos θ

1

cos θ w cos θ 1 cos θ

− tan θ sin θ/w cos θ 1 sin θ tan θ/w

Where θ = 2π/5, w > (1 − cos θ)/(1 − 2 cos θ)

Table 5-1: Hoffman’s Example of Cycling (Continued on the Right)

� Exercise 5.1 The purpose of this exercise is to demonstrate how many of the relations
in Hoffman’s examples are determined assuming that θ = 2π/5.

1. Show that cos 2θ = cos 3θ.

2. Show that sin 2θ = − sin 3θ.

3. Use (1) to show that cos 2θ + cos θ = cos θ cos 2θ.

4. Use (1) and (3) to show that on iteration 1 the objective coefficient for x6 is
−2 sin θ tan θ.

5. Use (1) to show that the coefficient ā26 = 4 cos2 θ − 3.

Example 5.2 (Beale’s Three Equation, Seven Variable Example) In 1955,
E. M. L. Beale constructed a second example, a version of which is shown in Table 5-3,
which is remarkable for its simplicity. It also has three equations but only seven variables.
Using the same rule for resolving a tie, the tableau at iteration 6 is the same as that at
iteration 0; it has the same basic variables in the same order. It is conjectured that this is
the simplest not totally degenerate example of cycling; i.e., none can be constructed with
fewer variables regardless of the number of equations.

Example 5.3 (Tucker’s Totally Degenerate Example) The following example,
due to Tucker, is said to be the simplest of all examples constructed so far. However, this
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x7 x8 x9 x10 x11 RHS

Iteration 0

2w 4 sin2 θ −2w cos 2θ 4 sin2 θ w(1 − 2 cos θ) z(min)

1
−2w cos2 θ cos 2θ 2w cos2 θ cos θ w cos θ 0

cos 2θ −2 sin2 θ/w cos 2θ − tan θ sin θ/w cos θ 0

Iteration 1

2w cos θ (cos θ − 1)/ cos θ 3w 2 sin θ tan θ −w(4 cos2 θ − 3) z
1

−2w cos θ 4 cos2 θ − 3 2w cos θ 1 w 0
1 2 sin θ tan θ/w 4 cos2 θ − 3 −2 sin θ tan θ/w 4 cos2 θ − 3 0

Iteration 2

+w 2w 4 sin2 θ −2w cos 2θ z
1

−w cos θ cos 2θ −2w cos2 θ cos 2θ 2w cos2 θ 0
cos θ tan θ sin 2θ/w cos 2θ −2 sin2 θ/w cos 2θ 0

Where θ = 2π/5, w > (1 − cos θ)/(1 − 2 cos θ)

Table 5-2: Hoffman’s Example of Cycling (Continued from the Left)

example has a totally degenerate solution (see Exercise 5.4).

Minimize −2x1 − 3x2 + x3 + 12x4 = z
subject to −2x1 − 9x2 + x3 + 9x4 ≤ 0

1
3
x1 + x2 − 1

3
x3 − 2x4 ≤ 0

and x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0.

(5.1)

On adding slack variables x5 ≥ 0 and x6 ≥ 0, a feasible solution is readily available as the
slacks (x5, x6) = (0, 0). Choose the initial basic variables as the slacks x5, x6.

1. Assume the index s of the incoming variable is chosen as the nonbasic variable with
the most negative reduced cost.

2. Assume the index jr of the outgoing variable is determined by looking at all āis > 0
as specified in the Simplex Algorithm and choosing r = i as the smallest index such
that āis > 0.

Then the basic sets of indices generated at each iteration for the first six iterations are:
{5, 2}, {1, 2}, {1, 4}, {3, 4}, {3, 6}, and {5, 6}, respectively. Observe that the basis repeats
on the sixth iteration, leading to an endless cycle of iterations.

� Exercise 5.2 Apply the tableau form of the Simplex Algorithm to Tucker’s example,
the linear program (5.1), to show that it cycles endlessly.
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Basics −z x1 x2 x3 x4 x5 x6 x7 RHS

Iteration 0

−z 1 −3/4 150 −1/50 6 0

x5 1/4 −60 −1/25 9 1 0
x6 1/2 −90 −1/50 3 1 0
x7 1 1 1

Iteration 1

−z 1 −30 −7/50 33 3 0

x1 1 −240 −4/25 36 4 0
x6 30 3/50 −15 −2 1 0
x7 1 1 1

Iteration 2

−z 1 −2/25 18 1 1 0

x1 1 8/25 −84 −12 8 0
x2 1 1/500 −1/2 −1/15 1/30 0
x7 1 1 1

Iteration 3

−z 1 1/4 −3 −2 3 0

x3 25/8 1 −525/2 −75/2 25 0
x2 −1/160 1 1/40 1/120 −1/60 0
x7 −25/8 525/2 75/2 −25 1 1

Iteration 4

−z 1 −1/2 120 −1 1 0

x3 −125/2 10, 500 1 50 −150 0
x4 −1/4 40 1 1/3 −2/3 0
x7 125/2 −10, 500 −50 150 1 1

Iteration 5

−z 1 −7/4 330 1/50 −2 0

x5 −5/4 210 1/50 1 −3 0
x4 1/6 −30 −1/150 1 1/3 0
x7 1 1 1

Table 5-3: Beale’s Example of Cycling
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� Exercise 5.3 The software DTZG Simplex Primal (Linear Programming 1) does not
use any anti-cycling procedures. Run it on Tucker’s example, the linear program (5.1), to
verify that it also cycles endlessly.

� Exercise 5.4 Show by introducing slack variables x5 and x6, and an equation x7 = 1
that this becomes a not totally degenerate example similar to that of Beale in size, degree,
and number of iterations before cycling. Show that by deleting the last row and last
column in Beale’s example it becomes a totally degenerate example, similar to Tucker’s
example, that cycles endlessly.

5.2 ON RESOLVING DEGENERACY

Since cycling in the Simplex Algorithm is only possible under degeneracy, it is
pertinent to ask how degeneracy can occur, how frequently it is encountered in
practice, and how often it implies cycling. Degenerate solutions are possible only
when the constants, bi of the original right-hand side bear a special relation to the
coefficients of the basic variables. This is clear because the process of reduction to
one of the finite set of canonical forms depends only on the coefficients and not on
the right-hand side; the final values b̄i are weighted sums of the original bis where
the weights depend only on the coefficients in the basis. If all the bis were selected
at random, it would be something of a miracle if one or more of the constants b̄i of
the canonical system should vanish.

Nevertheless, it is common experience, based on the solutions of thousands of
practical linear programming problems by the Simplex Method, that nearly every
problem at some stage of the process is degenerate. It might be thought that, since
degeneracy happens all the time, there should be many observed cases of cycling.
However, to date, there have been very few known cases of cycling other than the
specially concocted examples of Hoffman, Beale, and others. Apparently, cycling is
a very rare phenomenon in practice. For this reason, most software for computers
until the 1980s did not include special code for resolving (avoiding) degeneracy in
order to prevent the possibility of cycling. Since the 1980s anti-cycling schemes
have been used in some commercial software not only to prevent cycling but, more
importantly, to reduce the number of iterations in degenerate and “near”-degenerate
cases.

From a mathematical point of view, the phenomenon of cycling is fascinating.
Long before Hoffman discovered his example, it was conjectured that cycling could
happen and simple devices were proposed to avoid degeneracy and thus avoid the
possibility of cycling. The goal of the early efforts was to devise a way of avoiding
degeneracy that involved as little extra work as possible. The first proposal along
these lines was by Dantzig and his student Edmondson; it involved perturbing the
right-hand sides in such a way that on each iteration:

1. the basic feasible solution of the perturbed problem is nondegenerate, and
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2. the basic solution for the corresponding unperturbed problem is feasible.

Another early proposal involving perturbation is due to Charnes; see Problems 5.9,
5.11, and 5.12 for methods that perturb the right-hand side.

The perturbation may be viewed as a rule that guides the proper choice of
variables to drop from the basic set in case of ties. Many other rules have been
developed over the years. Five well-known ones will now be described.

5.3 DANTZIG’S INDUCTIVE METHOD

We first present the inductive method that was initially thought to be difficult to
implement because it appears to require a complicated bookkeeping scheme to keep
track of a hierarchy of subproblems. Philip Wolfe, however, discovered a very simple
rule, which we will describe in Section 5.4, that requires the updating of only one
extra column of indices d that keeps track of this hierarchy.

The induction will be on the number of rows m. To initiate the induction, we
begin with a one equation (m = 1) linear program in canonical form:

−z +
∑
j∈N

c̄jxj =−z̄t

xj1 +
∑
j∈N

ā1jxj = b̄1, xj ≥ 0, j = 1, . . . , n.
(5.2)

If b̄1 > 0 (i.e., the problem is nondegenerate) then after a pivot the updated b̄1 > 0
because b̄1 = b̄1/āis and āis > 0. It follows for m = 1 that the Simplex Algorithm
with a positive right-hand side will terminate in a finite number of iterations.

If, on the other hand, the one-equation (m = 1) problem is degenerate, i.e.,
b̄1 = 0, create an auxiliary problem that is the same as problem (5.2) in every respect
except that b̄1 = 1. Perform identical pivot steps on both problems. Clearly, both
remain basic feasible; the only difference is that the updated b̄1 = 0 for the original
unperturbed problem. Furthermore, both terminate at the same time because the
termination condition depends on the left-hand side of the problems only. Since the
auxiliarly problem is nondegenerate, the Simplex Algorithm will terminate after a
finite number of steps, and thus the original problem will also be solved in a finite
number of steps.

� Exercise 5.5 Show that if an LP in standard form is totally degenerate, i.e., bi = 0 for
all i, it will remain so after pivoting. Also show that if the LP is not totally degenerate,
i.e., b �= 0, then after pivoting updated b �= 0.

At this point we have shown that we can solve an m = 1 problem in a finite
number of pivot steps. Next we shall demonstrate an inductive proof of finiteness
of the Simplex Algorithm using the ideas that we have just discussed.
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THEOREM 5.1 (Finiteness of the Inductive Method) If for all k < m
there exist rules Ak for choosing to pivot in the Simplex Algorithm that solves a
k-equation linear program in a finite number of pivot steps, then for k = m there
exists a rule Am for choosing to pivot in the Simplex Algorithm which solves an
m-equation linear program in a finite number of pivot steps, terminating with c̄ ≥ 0
or, for some s, c̄s < 0 and Ā•s ≤ 0.

Proof. We are given algorithms Ak for k = 1, . . . ,m − 1 that solve any linear
program with k < m rows in a finite number of steps. We wish to use these
algorithms to generate an algorithm Am for solving any m-row linear program in a
finite number of feasible pivot steps.

Consider first an m-equation linear program in canonical form:

−z +
∑
j∈N

c̄jxj =−z̄t,

xji +
∑
j∈N

āijxj = 0 for i = 1, . . . , k,

xji +
∑
j∈N

āijxj = b̄i, bi > 0 for i = k + 1, . . . ,m.

(5.3)

Call the restricted linear program Rk the one obtained by setting aside for the
moment the m− k rows of (5.3) in which b̄i > 0.

Case 1: Suppose k < m. Since Rk has k < m rows, we have an algorithm Ak

that makes a finite sequence P of row-column choices of pivots that
terminates with either c̄ ≥ 0 or, for some s, c̄s < 0 and āis ≤ 0 for i
restricted to the rows of Rk.

Simultaneously apply these same pivot choices P (restricted to the rows
of Rk) to (5.3), except when we pivot we do the elimination on all the
rows of (5.3). Note this elimination does not affect feasibility because b̄r
of the pivot row is 0 and hence there is no change to the value of b̄i.
Although the updated c̄ changes from iteration to iteration, the change
in c̄ of the restricted problem Rk is the same as that for (5.3).

If Ak results in c̄ ≥ 0 on some iteration then we have a finite sequence
of feasible steps that solves (5.3). On the other hand, if Ak results, on
some iteration, with updated c̄s < 0 and āis ≤ 0 for i restricted to the
rows of Rk, then choose for pivot on the full system ārs > 0 for a row r
among the rows not in Rk in the usual manner. If no such r exists then
we can construct a class of solutions such that z → −∞. Otherwise
we pivot on ārs on some row where b̄r > 0, and this results in a strict
decrease of the objective function. After the pivot update we repeat this
process generating a new restricted problem. We know that there can
only be a finite number of strict decreases of the objective function z
(because there is only a finite number of distinct canonical forms). We
call the set of pivots used to solve (5.3), Algorithm Am.
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Case 2: Suppose that the k = m problem is totally degenerate. Create an
auxilliary problem by setting the right-hand sides b̄i > 0, for exam-
ple b̄ = e = (1, 1, . . . , 1)T. This auxilliary problem can be solved by
Algorithm Am of Case 1. The latter will also terminate in a finite
number of pivot steps with either c̄ ≥ 0 (in which case we terminate
the corresponding pivoting on the original system with an optimal so-
lution) or a situation where c̄s < 0 and Ā•s ≤ 0 and we have an un-
bounded solution for the auxilliary problem. If this is the situation then
we solve the corresponding totally degenerate problem by applying the
same pivot steps that solved the auxilliary problem and generate the
same unbounded class of solutions for the original system.

This completes the proof.

� Exercise 5.6 Show, except for the updating of the right-hand side of R, that no extra
work is involved to maintain the restricted problems.

5.4 WOLFE’S RULE

Except for the work of inductively generating the where to pivot rules Ak, the
inductive method requires no extra work. It was originally thought that the method
was impractical because of the work involved to generate the rules Ak. Wolfe
observed that if an auxilliary problem R1 is degenerate its auxilliary problem R2

is a subset of R1 and therefore the set of auxilliary problems at any point in the
algorithm form a hierarchy that can be kept track of and updated by a single
m vector of integers. We first solve a simple example using the inductive method
and Wolfe’s Rule.

Example 5.4 (Inductive Method and Wolfe’s Rule) We illustrate the Inductive
Method and Wolfe’s Rule by applying it to Beale’s example of cycling. In Table 5-4, the
column b̂ is the modified right-hand side for the restricted problem and column d keeps
track of the hierarchy of restricted problems. Iteration 0 has the first two right-hand sides
equal to 0; as a result d1 = d2 = 1, d3 = 0, and b̂1 = b̂2 = 1, implying that the first
restricted problem R1 consists of the rows 1 and 2. The pivot is next chosen from among
the restricted problem rows 1 and 2 using the right hand side b̂. Using the usual rules,
the pivot is on column 1 and row 2, shown in boldface. Next the pivot is performed on
the entire problem using the original right-hand side. In addition, the right-hand side
b̂ is updated for the restricted problem R1 only. No new b̂i become 0 and the pivoting
process continues using R1. This time, the incoming column is x3 which has all negative
coefficients āi3 in R1. Hence, we look at the remaining rows and attempt to find a pivot.
A pivot is found in row 3; on pivoting, on the entire problem it turns out that an optimal
solution is found. This process is formalized in Algorithm 5.1.
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Basics −z x1 x2 x3 x4 x5 x6 x7 RHS b̂ d

Iteration 0: di = 1 for R1

−z 1 −3/4 150 −1/50 6 0

x5 1/4 −60 −1/25 9 1 0 1 1
x6 1/2 −90 −1/50 3 1 0 1 1
x7 1 1 1 0

Iteration 1

−z 1 15 −1/20 21/2 3/2 0

x5 −15 −3/100 15/2 1 1/2 0 −1/2 1
x1 1 −180 −2/50 6 2 0 2 1
x7 1 1 1 0

Iteration 2: Optimal

−z 1 15 21/2 3/2 1/20 1/20

x5 −15 15/2 1 1/2 3/100 3/100 −1/2 1
x1 1 −180 6 2 2/50 2/50 2 1
x3 1 1 1 0

Table 5-4: Inductive Method and Wolfe’s Rule Applied to Beale’s Example

Algorithm 5.1 (Wolfe’s Rule for Selecting a Pivot) Consider a linear program in
feasible canonical form:

−z + c̄TxN = −zt

IxB + ĀxN = b̄,

where xB are the basic variables and xN are the nonbasic variables. Let d be a m-vector
that keeps track of the hierarchy of restricted problems. For example, suppose the α-
component of d is dα = 3. This states that equation α belongs to a restricted problem
R3 = { i | di ≥ 3 }, which in turn is a subset of a restricted problem R2 = { i | di ≥ 2 },
and so on. Perform the following steps:

1. Initialize d = 0.

2. For all i, if b̄i = 0 then set di ← di + 1 and b̄i = 1.

3. Let D be the restricted subset { i | di = maxk dk }.
4. Find

s = argmin
j

c̄j , (5.4)

where s is the index j (argument) where c̄j attains a minimum, that is,

c̄s = min
j
c̄j . (5.5)

5. Test for Optimality. If c̄s ≥ 0, set b̄i = 0 for di > 0 and report the basic feasible
solution as optimal and stop.
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6. If c̄s < 0, then s is the index of the incoming basic variable.

7. Test for Unbounded z. If c̄s < 0 and ĀDs ≤ 0 then let

d
∗

= max
i

{
di if āis > 0;
−1 otherwise.

(a) If d∗ = −1 then Ā•s ≤ 0. Set b̄i = 0 for all i such that di > 0 and terminate
with solutions such that z → −∞.

(b) If d∗ ≥ 0 then set b̄i = 0 and di = d∗ for all i such that di > d∗. Next redefine
D = { i | di = maxk dk }.

8. Use the usual rules for selecting the pivot row r restricted to rows in D. Do a full
pivot on all rows i, for i = 1, . . . ,m and the objective function, except do not modify
b̄i for i �∈ D or the value of zt on the objective row.

9. Go to Step 2.

� Exercise 5.7 How is Wolfe’s Rule related to the inductive method?

5.5 BLAND’S RULE

Except possibly for the Random Choice Rule, Robert Bland’s Rule is the simplest
to implement.

Rule 5.2 (Bland) Whenever the regular choice for selecting the pivot in the Simplex
Method would result in a 0 change of objective value of the basic solution then, instead of
the regular choice, do the following:

1. Incoming Column. Choose the pivot column j = s with relative cost c̄j < 0 having
the smallest index j.

2. Outgoing Column. Choose the outgoing basic column jr among those eligible for
dropping with the smallest index ji.

THEOREM 5.2 (Finite Termination Using Bland’s Rule) Cycling is im-
possible using Bland’s Rule.

Proof. We will prove the theorem for a linear program in standard form min cTx
subject to Ax = b, x ≥ 0, where A is an m̄× n̄ matrix.

Assume on the contrary that applying Bland’s Rule for some LP results after a
number of iterations in a repeat of an earlier canonical form and hence would cycle
thereafter.

Some columns may have remained nonbasic throughout the entire cycle; we drop
them from the LP as dropping them will not result in a different choice of incoming
column when applying Bland’s Rule. It may also happen that there may be some
basic column with index ji, which remained in as the ith basic column throughout
the cycle; we drop all such basic columns with indices ji and their corresponding
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ith equations as this will not affect the choice of outgoing column. Maintaining
the original ordering of the columns and rows, relabel the indices of the columns
from j = 1, . . . , n and the indices of the equations from i = 1, . . . ,m. After these
deletions, each column of the adjusted LP has the property that on at least one
iteration of the cycle it is basic and at another iteration it is nonbasic.

Therefore, on some iteration to, column A•n is basic as the rth basic column, that
is, jr = n, and is replaced on the next iteration by some other column s. We denote
by Co the canonical form of iteration to and its basic indices by j1, . . . , jr, . . . , jm
where jr = n is the outgoing column. Clearly

c̄s < 0, s < n, (5.6)

and, because n > ji for all i �= r, we have by Bland’s outgoing basic column rule,

ārs > 0, where jr = n,
āis ≤ 0, for all i �= r.

(5.7)

According to our contrary assumption, on some future iteration t1, the column
A•n is nonbasic and is the candidate for reentering the basic set, which by Bland’s
incoming column rule, can only happen if its reduced cost is negative while all other
reduced costs are nonnegative, i.e.,

ĉn < 0 and
ĉj ≥ 0 for all j < n.

(5.8)

Now the canonical system C1 at t1 was obtained from the canonical system Co
at to by a sequence of pivoting. Therefore the objective coefficients ( ĉ1, ĉ2, . . . , ĉn )
of C1 can be obtained by multiplying the rows of Co by the simplex multipliers
( π̂1, π̂2, . . . , π̂m ), summing, and subtracting from the objective row ( c̄1, c̄2, . . . , c̄n )
of Co. These simplex multipliers are unique and are obviously

( π̂1, π̂2, . . . , π̂m ) = (−ĉj1 ,−ĉj2 , . . . ,−ĉjm )

because the corresponding columns of Co are basic and its columns are the identity
in the canonical form. Hence, in particular, we can apply the values of π̂ to column s
of Co to obtain the reduced cost ĉs of column s in C1 as:

ĉs = c̄s −
m∑

i=1

π̂iāis = c̄s +
m∑

i=1

ĉji āis.

Rearranging we obtain
m∑

i=1

ĉji āis = −c̄s + ĉs. (5.9)

Because c̄s < 0 by (5.6) and ĉs ≥ 0 by (5.8) since s < n, the right-hand side of (5.9)
is positive:

−c̄s + ĉs > 0.
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On the other hand, by (5.7)

ārs > 0, āis ≤ 0,

and by (5.8)
ĉjr = ĉn < 0, ĉji ≥ 0,

implying that the left-hand side of (5.9) is negative:

m∑
i=1

ĉji āis < 0,

which is a contradiction. Hence we conclude that our assumption that cycling can
occur using Bland’s Rule is false.

Comment: Bland’s Rule is clearly very easy to implement and, as we have just
shown, guaranteed to prevent cycling. Its chief drawback is that its choice of in-
coming column may not be a very good one. Another reason is that it does not
appear to be amenable to partial pivoting schemes that will be discussed Linear
Programming 4: Implementation.

� Exercise 5.8 State Bland’s Rule in the context of a linear program with upper and
lower bounds on the variables.

� Exercise 5.9 State Bland’s Rule in the context of an inequality constrained linear
program.

Minimize cTx = z
subject to Ax ≥ b, A : m× n. (5.10)

5.6 KRISHNA’S EXTRA COLUMN RULE

The canonical system on iteration t has an extra degeneracy resolving column(
−γt

βt

)
“tacked” onto its right-hand side:

(−z) + c̄t
Nt

T
x

Nt = −z̄t, −γt

Ix
Bt + Ātx

Nt = b̄t, βt
(5.11)

The extra column has the property that if it replaced the right-hand side
(
−z̄t

b̄t

)
it would never have a βt with a zero component. Therefore, γt is strictly decreasing
on each iteration, implying there can be no repeat of a canonical form.
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Let s, the incoming column, be chosen by some rule such as s = argminj c̄j , with
c̄j < 0. Let Rt be the set of rows k on iteration t that are tied for pivot choices:

Rt =
{
k

∣∣∣∣ b̄tk
āt

ks

≤ b̄ti
āt

is

, b̄ti ≥ 0, āt
is > 0, āt

ks > 0, i = 1, . . . ,m
}
. (5.12)

Then the outgoing column jr is chosen by:

r = argmin
i∈Rt

(
βt

i

āt
is

)
. (5.13)

Pivoting is then done (as before) using āt
rsxs as the pivot term. The extra column(

−γt

βt

)
is updated the same way that any other column j or the right hand side

is updated. To initiate, the canonical form for t = 0 is partitioned into basic and

nonbasic parts with an extra column
(
−γo

βo

)
tacked on:

(−z) + c̄o
No

Tx
No = −z̄o, −γo

Ix
Bo + Āox

No = b̄o, βo, b̄o ≥ 0, β0 > 0;
(5.14)

where γo and βo = (βo
1 , . . . , β

o
m)T are defined by Krishna’s Rule

−γo = 0,
βo

1 = FRAC(π) = FRAC(3.1415926 . . .) = .1415926 . . . ,
βo

i = FRAC(βo
i−1π), for i = 2, . . . ,m,

(5.15)

where FRAC(α) is defined to be the fractional part of α. Clearly Krishna’s rule can
never be implemented because it requires an infinite number of digits of π. In prac-
tice one could make do with the accuracy of the machine (without the theoretical
guarantee of no cycling).

� Exercise 5.10 Prove that βo
i > 0 for i = 1, . . . ,m.

Krishna’s Rule is based on the fundamental property of transcendental numbers,
such as π, that it can never be the root of a polynomial equation with all rational
coefficients; more precisely,

α0 + α1π + α2π
2 + · · ·+ αmπ

m �= 0 (5.16)

whatever be the choice of rational αi not all zero. It follows (see Exercise 5.11),
that βo

i defined by (5.15) has the property

ᾱ1β
o
1 + ᾱ2β

o
2 + · · ·+ ᾱmβ

o
m �= 0 (5.17)

whatever be the choice of rational ᾱi not all zero.
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� Exercise 5.11 Prove that (5.17) follows from (5.16) and the definition of βo
i given in

(5.15). Prove that βo
i > 0 for i = 1, . . . ,m.

LEMMA 5.3 (Properties of the Extra Column Rule) Given that all coef-
ficients āo

ij are rational, r is the row chosen for pivot by (5.13) and Rt is the set
of rows i on iteration t that are tied for pivot by the ratio b̄ti/ā

t
is criterion given in

(5.12). The extra column β rule has the following properties for every iteration t:

Property (1): βt
i �= 0, for i = 1, . . . ,m;

Property (2): βt
r/ā

t
rs < βt

i/ā
t
is for all i ∈ Rt, i �= r;

Property (3): If b̄ti = 0, then βt
i > 0;

Property (4): If z̄t+1 = z̄t, then γt+1 < γt.

Proof. To prove Property (1) note that the canonical form (Ix
Bt +Ātx

Nt = b̄t, βt)
for iteration t can be generated from (Aox = Ix

Bo + Āox
No = bo, βo) by multiplying

the latter by a nonsingular matrix M = [Ao
Bt ]−1 and reordering the columns:

MAo = At, Mbo = b̄t, Mβo = βt, (5.18)

because MAo
Bt = At

Bt = I (the identity). Moreover since Ao
Bt is a nonsingular

matrix with all elements rational, M is nonsingular with all elements rational. It
follows from (5.17) and (5.18) that

βt
i = Mi1β

o
1 +Mi2β

o
2 + · · ·+Mimβ

o
m �= 0 (5.19)

because ᾱj = Mij are rational and at least one Mij �= 0 in row i of M (since, if
row i were all zero, M would be a singular matrix). This proves Property (1).

To prove Property (2), note by definition of Rt that āt
js > 0 and āt

ks > 0 for
j, k ∈ Rt. We have from Property (1) that

βt
j = Mj1β

o
1 +Mj2β

o
2 + · · ·+Mjmβ

o
m �= 0

βt
k = Mk1β

o
1 +Mk2β

o
2 + · · ·+Mkmβ

o
m �= 0

and that
βt

j

āt
js

− βt
k

āt
ks

�= 0,

because
Mji

āt
js

− Mki

āt
ks

�= 0,

are rational and not zero for at least one i because no two columns of M are
proportional. Therefore one of the ratios must be the smallest and j = r by (5.13)
is chosen by definition as the smallest.
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The proof that Property (3) holds is inductive. To initiate the inductive step,
note that for t = 0, Property (3) obviously holds since βo > 0 by construction, see
Exercise 5.11. We assume that the relations in Property (3) are true up to some t,
and we will prove that they hold for t+ 1.

On iteration t consider the following six terms of the canonical form:

āt
rs b̄tr βt

r

āt
is b̄ti βt

i

(5.20)

where r is the pivot row for generating iteration t + 1 from t and i �= r. After the
pivot on ārs, the corresponding right-hand-side terms for t+ 1 are:

b̄t+1
r =

b̄tr
āt

rs

βt+1
r =

βt
r

āt
rs

b̄t+1
i = b̄ti −

b̄trā
t
is

āt
rs

βt+1
i = βt

i −
βt

rā
t
is

āt
rs

.

(5.21)

We assume inductively, if b̄tr = 0 then βt
r > 0. It is easy to see that βt+1

r > 0 when
b̄t+1
r = 0 because b̄t+1

r = 0 implies b̄tr = 0 since āt
rs > 0, which in turn implies, by

induction, βt
r > 0 and βt+1

r > 0 easily follows. Therefore Property (3) holds for
i = r. We wish now to show Property (3) for i �= r.

If āt
is < 0 and b̄t+1

i = 0, the latter can only happen if b̄ti = 0 and b̄tr = 0 since
b̄t+1
i in (5.21) is the sum of two nonnegative terms. In this case inductively βt

i > 0
and βt

r > 0. Thus βt+1
i > 0 since it is the sum of two positive terms in (5.21).

If āt
is > 0 and b̄t+1

i = 0, this can only happen if

b̄t+1
i = āt

is

(
b̄ti
āt

is

− b̄tr
āt

rs

)
= 0; (5.22)

in other words, i and r are tied and so both i and r are in Rt, see (5.12). In this
case by (5.13), r is chosen so that, rewriting the expression for βt+1

i ,

βt+1
i = āt

is

(
βt

i

āt
is

− βt
r

āt
rs

)
. (5.23)

the bracket term is positive (zero is not possible because of properties (1) and (2)).
Finally, if āt

is = 0, then b̄t+1
i = b̄ti and βt+1

i = βt
i so that property (3) holds for

t+ 1 if it holds for t. Therefore b̄t+1
i = 0 implies βt+1

i > 0.
To prove Property (4) note that

z̄t+1 = z̄t + c̄ts
b̄tr
āt

rs

, γt+1 = γt + c̄ts
βt

r

āt
rs

,

where c̄ts < 0, so that either z̄t+1 < z̄t if b̄tr > 0 or z̄t+1 = z̄t if b̄tr = 0 in which case
γt+1 < γt since βt

r > 0 in this case.



164 DEGENERACY

THEOREM 5.4 (Finite Termination Using Krishna’s Rule) The Simplex
Algorithm will terminate in a finite number of iterations.

Proof. It is clear that as long as z̄ strictly decreases from iteration to iteration,
each canonical form generated must be different from all others previously gener-
ated. When z̄ does not decrease it is said to stall. It can only remain stalled a finite
number of iterations because for the sequence of t stalled, b̄tr = 0 and γt is strictly
decreasing, implying that their corresponding canonical forms are all different.

� Exercise 5.12 Why does the nonrepetition of the canonical forms imply a finite number
of iterations?

� Exercise 5.13 The order of degeneracy is defined as the number of basic variable values
equal to zero on iteration t. Prove that if the order of degeneracy is at most 1 on every
iteration t, the Simplex Method, implemented without any rule for resolving ties, will
always converge in a finite number of iterations.

� Exercise 5.14 Show that if the auxilliary problem right-hand side for Wolfe’s Rule is
modified using Krishna’s Rule, then di > 1 is not possible.

5.7 ON AVOIDING DEGENERATE PIVOTS

So far we have discussed how to avoid cycling under degeneracy. A related issue
is how to avoid degenerate pivots so that we can get a nonzero decrease in the
objective function. Although it is not possible to totally avoid such pivots in the
Simplex Method, we can attempt to bypass some of them.

For simplicity of exposition, consider a linear program in standard form rather
than one with bounded variables. The choice of variable entering a basis is based
on computing the reduced costs σN as the solution to:

σ
N

= c
N
−NTπ, where BTπ = c

B
.

In the Revised Simplex Method, we pick a σs < 0 and compute a search direction
ps

B
by solving Bps

B
= −A•s. Then we find the variable to leave the basis by finding

the largest α ≥ 0 such that feasibility is maintained, i.e., xB +αps
B ≥ 0. If, for some

i,
(x

B
)i = 0 and [ps

B
]i < 0

then α = 0. This results in a degenerate pivot with no change to the objective. If
possible we would like to avoid such a step. Thus, if we could foresee in advance that
a particular search direction would result in a step α = 0, we could, by selecting a
different direction, succeed in bypassing a degenerate pivot. One obvious way to do
this is to scan j such that σj < 0, one by one, stopping when a direction is found
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that results in a step α > 0 or, if no such direction is found, then one of these
directions is chosen whose α = 0. However, this method is computationally very
expensive if many σj < 0. Fortunately it is possible to efficiently determine that
some of the directions will definitely cause degenerate pivots. Then we can choose
among the remaining directions and hope for the best. This approach requires
computing an additional vector γN , analogous to computing the reduced costs σ,
such that if γj < 0 we know for sure that the associated direction pj will result in
a degenerate pivot step and thus this j should be avoided if possible. The new rule
for column selection would then be

σs = min
j
{ σj < 0 such that γj ≥ 0 }. (5.24)

if such an s exists.
To create such a γ, we define an additional “objective” function f = dTx where

di =
{

1 if i ∈ B and xi = 0
0 otherwise. (5.25)

We use the “objective” f to compute the simplex multiplier ρ with respect to d by
BTρ = d

B
, and the relative costs γ

N
as follows:

γN = dN −NTρ = −NTρ (5.26)

since dN = 0 by definition. We now show that γN provides us with information that
allows us to not consider some of the directions pj that would result in degenerate
pivot steps. To see this, substitute ρ = (BT )−1dB in (5.26):

γN = −NTρ = −(B−1N)TdB .

Thus, for each j ∈ N ,

γj = −(B−1A•j)Td
B

= −(pj
B
)Td

B
=

∑
{ i∈B|xi=0 }

pj
i (5.27)

where pj
B is the solution to Bpj

B = −A•j , or in tableau form pj
B = −Ā•j .

From (5.27), we see that γj is the sum over all the components of pj that
correspond to basic variables at 0. Thus, if γj < 0 it implies that at least one
element of pj

B is negative such that the corresponding component of x
B

is zero.
That is, from (5.27), γj < 0 implies that there exists an i0 ∈ B such that xi0 = 0
and pi0 < 0. This implies a step of α = 0. Thus, in order to attempt to avoid the
possibility of degenerate steps we choose the incoming variable xs by (5.24). If no
such σs exists we choose σs as the minimum over the σj only. Note that if γj ≥ 0 it
is still possible that one or more pj

i < 0 and xi = 0 for i ∈ B implying a degenerate
pivot. However, in practical applications it has been observed that the use of (5.24)
reduces the number of pivot steps significantly.
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5.8 NOTES & SELECTED BIBLIOGRAPHY
In 1951, A. J. Hoffman [1953] constructed an example to demonstrate cycling in a linear
program involving three equations and eleven variables. E. M. L. Beale[1955a] constructed
a second example, that is remarkable for its simplicity. Hoffman’s and Beale’s examples
displayed in this chapter are adapted from Dantzig [1963]. A. W. Tucker constructed an
even simpler, but totally degenerate, example to demonstrate cycling. See also Kotiah &
Steinberg [1977, 1978] and Marshall & Suurballe [1969].

Dantzig [1963] proved that the Random Choice Rule prevented cycling with probabil-
ity 1, see Problem 5.1. Earlier, in 1951, Dantzig proposed a method of perturbation of the
right-hand side (row i was perturbed by the addition of εi for any 0 < εi < ε∗) as a way of
avoiding degeneracy when using the Simplex Method, the proofs of which he outlined and
gave as homework exercises to classes he was teaching at the time. Edmondson turned in
a proof in March 1951, see Edmondson [1951] and Dantzig [1951b]; also see Problem 5.9.
In the summer of 1951, Philip Wolfe, then a student at Berkeley, spent the summer with
Dantzig at the Pentagon and proposed a lexicographic interpretation of the perturbation
idea (which later Dantzig, Orden, & Wolfe [1955] published as a joint paper), see Prob-
lem 5.12. The basic idea was to consider attaching an identity matrix to the right-hand
side; then ties were broken by applying the min ratio test to the first column of the ba-
sis inverse, followed by the second column, etc. Independently, at about the same time,
A. Charnes

(
see Charnes [1952]

)
developed a different perturbation scheme. Years later,

Wolfe [1963], see Section 5.4, proposed a third way based on Dantzig’s[1960a] inductive
proof of the Simplex Method that is very elegant because it resolves degeneracy using only
one extra column of index pointers. The approach of Section 5.6 for attaching an extra
column β for resolving degeneracy is due to A. Krishna [1989].

For details on Bland’s method see Bland [1977]. Harris’s procedure can be found in Har-
ris [1975]. Gill, Murray, Saunders, & Wright [1989]. developed a practical “anti-cycling”
procedure. The paper also shows that their method can be viewed as a modification of
Wolfe’s procedure. A version of their “anti-cycling” procedure is implemented by Murtagh
and Saunders in the popular optimization software MINOS.

The approach presented in Section 5.7 for avoiding degenerate pivots was first shown by
Kalan [1976]. For additional work on this and related approaches, see Greenberg [1978c],
Klotz [1988], and Nazareth [1987]. Klotz [1988] has run many test problems that show
that the computational time can be reduced significantly by using degeneracy resolving
schemes.

Dantzig [1988b] developed a simple anti-cycling device that avoids dual degeneracy
of the parameterized objective with probability “one.” This approach shows that it is
not necessary to use row selection rules for resolving degeneracy; instead it shows that
independent of what tieing row is selected to choose the outgoing variable, the Gass &
Saaty [1955b] parametric method applied to the objective function can be used to choose
the incoming column. Tests run on a set of nine problems showed 56% improvement in the
number of iterations and a CPU time reduction of approximately 48%. On a computer,
most impementations use partial pricing; an adaption of this approach to partial pricing
that guarantees finite convergence is an open problem.

In addition to the already mentioned researchers, many others have suggested anti-
cycling techniques; see, for example, Balanski & Gomory [1963], Benichou, Gauthier,
Hentges, & Ribiére [1977], and Rockafellar [1984]. Fletcher [1985, 1987] developed a
method for resolving degeneracy that is designed to display favorable properties in the
presence of rounding error.
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Whether any degeneracy avoiding scheme is needed in practice has never been settled.
It has been observed, however, that even when there is no degeneracy, there is a high
probability of “near”-degeneracy. This suggests that pivot-selection criteria should be de-
signed to seek feasible solutions in directions away from degenerate and “near”-degenerate
basic feasible solutions, or better yet, driven by dual feasibility considerations. Doing so
has been observed to reduce the total number of iterations in highly degenerate cases.
The practical benefits of anti-cycling are many. For a discussion on this see, for example,
Faulkner [1988], Gill, Murray, Saunders, & Wright [1989], and Ryan & Osborne [1988].

5.9 PROBLEMS

5.1 Random Choice Rule. This rule states that the outgoing basic variable at any
iteration of the Simplex Algorithm is chosen from among those r satisfying

b̄r
ārs

= Min
i:āis>0

b̄i
āis

with equal probability.

(a) Show that the Simplex Algorithm, using the Random Choice Rule, will
terminate in k iterations with probability

P ≥
(

1

m

)k

where m is the number of equations and k is the longest of the shortest
chain leading to an optimal canonical form.

(b) Show that, using the Random Choice Rule, the probability of failing to
reach an optimum in N iterations tends to zero as N →∞.

5.2 Solve Tucker’s cycling example (see Example 5.3) using Wolfe’s Rule.

5.3 Solve Tucker’s cycling example (see Example 5.3) using Bland’s Rule.

5.4 Solve Tucker’s cycling example (see Example 5.3) using Krishna’s Rule, where
instead of π, the approximation 3.1415926 is used.

5.5 Solve Tucker’s cycling example (see Example 5.3) using a Random Choice Rule.

5.6 Solve Beale’s cycling example (see Example 5.2) using Bland’s Rule.

5.7 Solve Beale’s cycling example (see Example 5.2) using Krishna’s Rule, where
instead of π, the approximation 3.1415926 is used.

5.8 Solve Beale’s cycling example (see Example 5.2) using a Random Choice Rule.

5.9 Dantzig [1951b] & Edmondson [1951] Perturbation Method. Consider a linear
program in canonical form:

Minimize cTx
subject to Ax = b, A : m× n,

x ≥ 0,
(5.28)

where A is a rectangular matrix of dimension m× n, b ≥ 0 is a column vector
of dimension m, c is a column vector of dimension n, and x is a column vector
of dimension n. For i = 1, . . . ,m, perturb each right-hand side bi by adding εi

where 0 < ε < ε∗ and ε∗ is a small number.
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(a) Show that on subsequent iterations, the right-hand sides will become poly-
nomial expressions in ε of the form

b = B−1


ε
ε2

...
εm

 . (5.29)

(b) Letting βij denote element (i, j), show that for each i there exists a k such
that βik �= 0.

(c) Show that no two rows of the inverse are proportional to each other.

(d) Consider the m-order polynomial

f(ε) = ao + a1ε+ · · ·+ amε
m. (5.30)

Show that there exists a ε∗ > 0 such that f(ε) > 0 for all 0 < ε < ε∗ if and
only if not all ai = 0 and the nonzero term with the lowest index i has a
positive coefficient.

(e) Given two polynomials

f(ε) =

m∑
i=0

aiε
i, g(ε) =

m∑
i=0

biε
i, (5.31)

then for some range 0 ≤ ε ≤ ε∗, f(ε) < g(ε) if for some k

ai = bi for i = 1, . . . , k − 1

ak < bk

and ai, bi arbitrary for i = k + 1, . . . ,m

(f) From part (a) we know that for any iteration t, each polynomial expression
in ε in (5.29) has at least one nonzero term. Show that if the first term is
positive for every i, then there is a range of values 0 < ε < ε∗t such that for
any fixed ε in the range, the values of all basic variables are positive.

(g) Lexicographic Rule. The maximum value x̄s of the entering variable xs

and the choice of which variable jr to drop from the basic set is determined
by

x̄s =
b̄r(ε)

ārs
= Min

āis>0

{
b̄i +

∑m

k=1
βikε

k

āis

}
(5.32)

Show that the minimum of several polynomial expressions is found by first
comparing the constant terms; if there are ties, then the vector of coefficients
corresponding to ε are used in the comparison; if there are still ties, then
the vector of coefficients corresponding to ε2 are used in the comparison;
and so on. Show that it is not possible to have a tie at the end of the
process.

(h) Show that there exists a common range of values 0 < ε < ε∗ such that
for any finite number of iterations of the Simplex Method as applied to any
perturbed problem within the range, the values of all basic variables remain
positive and the choice of the variable entering and leaving the basic set is
unique and independent of the particular value of ε in the range.
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(i) Show that the Simplex Algorithm as applied to the perturbed problem
terminates in a finite number of iterations.

(j) Show that the optimal basic feasible solution of the perturbed problem will
yield the corresponding solution for the unperturbed problem by setting
ε = 0 in (5.29).

5.10 Dantzig [1963].

(a) Is it possible to construct a class of perturbed problems that are infeasible,
but the corresponding class of unperturbed problems are feasible?

(b) Can the class of perturbed problems be feasible, but the unperturbed prob-
lem infeasible?

(c) Can the class of perturbed problems have a finite lower bound for z, but
not the unperturbed?

(d) Can the class of perturbed problems have a lower bound of −∞ for z, but
not the unperturbed?

5.11 Charnes [1952] Perturbation Method. Show how to develop an alternative
perturbation scheme where the right-hand sides are replaced by polynomial
expressions bi(ε), i.e.,

bi(ε) = bi +

n∑
j=1

aijε
j . (5.33)

5.12 Dantzig, Orden, & Wolfe’s [1955] Lexicographic Method.

(a) An m-component vector A is said to be lexico-positive, denoted by A � 0,
if at least one component is nonzero and the first such is positive. The term
lexico is a word suggested by A. W. Tucker because of its analogy to sorting
of names in alphabetical order. A vector A is said to be lexico-greater than
B, written A � B, if A − B � 0. The smallest of several vectors will be
denoted by Lexico-Min. Prove that this lexicogrphic ordering of vectors is
transitive, in other words

A � B and B � C =⇒ A � C.

(b) Instead of perturbing constraints, suppose that the constants bi are replaced
by vectors:

b̂T1 = (b1, 1, 0, . . . , 0)

b̂T2 = (b2, 0, 1, . . . , 0)

...

b̂Tm = (bm, 0, 0, . . . , 1).

(a) Show, analogous to (5.29), that the vector of basic variables and objec-
tive value on some subsequent iteration are replaced by matrix b̄ and
vector z̄ where

b̄ = B−1b, B−1

z̄ = zt, π
T
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(b) Show that the basic variable jr chosen to be dropped is selected so that

b̄r
ārs

= Lexico-Min

{
b̄i
āis

}
and the choice of r is unique.

(c) Prove that b̄i � 0 for all iterations implying zo � z1 � z2 � . . .
(i.e., a strictly lexico decreasing sequence of vectors), implying that no
canonical form can repeat.

5.13 Suppose you have a linear program with three constraints and you wish to use
lexicography (see Problem 5.12) to resolve degeneracy. Instead of adding a 3×3
identity matrix to the right-hand side, you decide to add the matrix:[

1 1 0
0 2 1
1 4 1

]
.

Can you still guarantee that all ties will be broken on the current and all sub-
sequent iterations. Why or why not?

5.14 Ph.D. Comprehensive Exam, September 21, 1991, at Stanford.

(a) Most commercial software packages for solving linear programs by the Sim-
plex Method have no protection against cycling. Why is this a safe proce-
dure in practice?

(b) On the other hand, some commercial software packages for solving linear
programs by the Simplex Method do have anti-cycling procedures. Does it
have any purpose other than avoiding cycling?

(c) State the names of a number of ways that cycling can be avoided.

(d) Outline a proof of why one of the anti-cycling rules works.

5.15 Ph.D. Comprehensive Exam, March 30, 1970, at Stanford. Let (P1, P2, . . . , Pm )
be m linearly independent vectors in m-space, and let P0 be any other m-vector.
Prove that if we let

x1P1 + x2P2 + · · ·+ xmPm = P0 +


ε
ε2

...
εm


then there exists an ε0 > 0 such that for ε satisfying 0 < ε < ε0,

xi �= 0 for all i = 1, . . . ,m.

5.16 Ph.D. Comprehensive Exam, September 23, 1972, at Stanford. The system

Ax = b, x ≥ 0, A ∈ Rm×n (5.34)

is said to be nondegenerate if it is feasible and if each solution x has at least
m positive components. A k-dimensional bounded polyhedral convex set P is
said to be regular if each extreme point is adjacent to exactly k other extreme
points.
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(a) If P = { x ≥ 0 | Ax = b } is nonempty and bounded, does regularity of P
imply nondegeneracy of (5.34), or vice versa, or are they equivalent?

(b) Assuming (5.34) is feasible, when can one perturb the right-hand side b to
obtain nondegeneracy?

(c) View the set P defined in part (a) as the convex hull of its extreme points.
Can P be made regular by perturbing these extreme points?

5.17 Ph.D. Comprehensive Exam, September 26, 1980, at Stanford. Consider a linear
program of the form

Minimize cTx
subject to Ax = b,

x ≥ 0.

where the matrix A is m× n. Let β = {j1, j2, . . . , jm} denote a basic set of
indices for which the corresponding basic solution xo is feasible but degenerate
with xo

j1 = 0. Suppose that for every choice of nonnegative values of the nonbasic
variables (except all zero) the value of xj1 is negative.

(a) Prove that the basic feasible solution xo is optimal.

(b) Find a way to obtain dual prices that prove the optimality of xo.
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C H A P T E R 6

VARIANTS OF THE

SIMPLEX METHOD

By a variant of the Simplex Method (in this chapter) we mean an algorithm consist-
ing of a sequence of pivot steps in the primal system using alternative rules for the
selection of the pivot. Historically these variants were developed to take advantage
of a situation where an infeasible basic solution of the primal is available. In other
applications there often occurs a set of problems differing from one another only in
their constant terms and cost factors. In such cases, it is convenient to omit Phase
I and to use the optimal basis of one problem as the initial basis for the next.

6.1 INTRODUCTION

Several methods have been proposed for varying the Simplex Algorithm to reduce
the number of iterations. This is especially needed for problems involving many
equations in order to reduce the computation time. It is also needed for problems
involving a large number of variables n, for the number of iterations in practice
appears to grow roughly proportional to n.

For example, instead of using the selection rule c̄s = min c̄j , one could select
j = s such that introducing xs into the basic set gives the largest decrease in the
value of z in the next basic solution. This requires computing, for c̄j < 0, the largest
in absolute value of c̄jθj , where θj is determined so that if xj replaced xjr then the
solution will remain feasible. This rule is obviously not practical when using the
revised Simplex Method with multipliers. Even using the standard canonical form,
considerably more computations would be required per iteration. It is possible,
however, in the nondegenerate case, to develop a modification of the canonical form
in which the coefficient of the ith basic variable is allowed to be different from unity

173
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in the ith equation but b̄i = 1. In this form the selection of s by the steepest descent
criterion would require a little more effort; moreover (by means of a special device),
no more effort than that for the standard Simplex Algorithm would be required
to maintain the tableau in proper modified form from iteration to iteration (see
Section 6.2 for details).

The simplest variant occurs when the new problem differs from the original in
the cost coefficients alone. In this case, the cost coefficients are replaced by the new
ones, and Phase II of the Revised Simplex Method is applied. Another possibility
is to use the parametric objective method to be described in Section 6.4.

An important variant occurs when the new problem differs from the original in
the constant terms only. In this case the optimal basis of the first problem will
still price out dual feasible, i.e., c̄j ≥ 0, for the second, but the associated primal
solution may not be feasible. For this situation, we could use the Dual-Simplex
Algorithm, which is the variant of the standard Primal-Simplex Algorithm, to be
discussed in Section 6.3, or the paramteric right-hand-side method to be described
in Section 6.4, or the Primal-Dual method of Section 6.6.

However, when the problems differ by more than either the constant terms or the
cost coefficient terms, the old basis may be neither primal feasible nor dual feasible.
When neither the basic solution nor the dual solution generated by its simplex
multipliers remains feasible, the corresponding algorithm is called composite. The
Self-Dual parametric algorithm discussed in Section 6.5 is an example of such a
composite algorithm.

Correspondence of Primal and Dual Bases.

In 1954, Lemke discovered a certain correspondence between the bases of the primal
and dual systems that made it possible to interpret the Simplex Algorithm as applied
to the dual as a sequence of basis changes in the primal; this interpretation is
called the Dual-Simplex Algorithm. From a computational point of view, the Dual-
Simplex Algorithm is advantageous because the size of the basis being manipulated
in the computer is m×m instead of n× n. In this case, however, the associated
basic solutions of the primal are not feasible, but the simplex multipliers continue
to price out optimal (hence, yield a basic feasible solution to the dual). It is good
to understand the details of this correspondence, for it provides a means of easily
dualizing a problem without transposing the constraint matrix.

Consider the standard form

Minimize cTx = z
subject to Ax = b, A : m× n,

x ≥ 0,
(6.1)

and the dual of the standard form:

Maximize bTπ = v
subject to ATπ ≤ c, A : m× n, (6.2)
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PRIMAL-DUAL CORRESPONDENCES
Primal Dual

Basis B B̄ =
(
BT 0
NT I

)
Basic variables x

B
π, y

N
= c̄

N

Nonbasic variables xN yB = c̄B
Feasibility condition Ax = b, x ≥ 0 c̄ ≥ 0

Table 6-1: Primal-Dual Correspondences

where πi is unrestricted in sign. We assume A is full rank. Adding slack variables
y ≥ 0 to the dual problem (6.2) we get:

Maximize bTπ = v
subject to ATπ + Iy = c, A : m× n,

y ≥ 0.
(6.3)

Clearly the dual has n basic variables and m nonbasic variables. The variables π
are unrestricted in sign and, when A is full rank, always constitute m out of the
n basic variables of the dual. The basis for the primal is denoted by B and the
nonbasic columns are denoted by N . Note that y = c − ATπ = c̄ ≥ 0 when the
dual is feasible and that c̄

B
= 0 and c̄

N
≥ 0 when the primal is optimal. The basic

and nonbasic columns for the dual are denoted by B̄, an n× n matrix, and N̄ , an
n×m matrix

B̄ =
(
BT 0
NT In−m

)
, N̄ =

(
Im
0

)
, (6.4)

where In−m is an (n−m)-dimensional identity matrix and Im is an m-dimensional
identity matrix. Thus, (π, y

N
) as basic variables and y

B
as nonbasic variables con-

stitute a basic solution to the dual if and only if yB = 0.

� Exercise 6.1 Show that the determinant of B has the same value as that of B̄. Also
show that if B−1 exists, then B̄−1 exists.

It is now clear that there is a correspondence between primal and dual bases.
These correspondences are shown in Table 6-1. With these correspondences in mind,
we shall discuss variations of the Simplex Method.

� Exercise 6.2 How is the concept of complementary primal and dual variables related
to the correspondence of primal and dual bases?

Definition (Dual Degeneracy): We have already defined degeneracy and non-
degeneracy with respect to the primal. A basis is said to be dual degenerate
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if one or more of the c̄j corresponding to nonbasic variables xj are zero and
to be dual nondegenerate otherwise.

6.2 MAX IMPROVEMENT PER ITERATION

In this section we present an alternative canonical form for efficiently determining
the incoming column that yields the maximum improvement per iteration. It has
been observed on many test problems that this often leads to fewer iterations. We
will assume, to simplify the discussion, that all basic feasible solutions that are
generated are nondegenerate.

Assume xj ≥ 0 for j = 1, . . . , n and xj for j = 1, . . . ,m are basic variables, in
the standard canonical form:

−z + c̄m+1xm+1 + · · ·+ c̄jxj + · · ·+ c̄nxn =−z̄0
x1 + ā1,m+1xm+1 + · · ·+ ā1jxj + · · ·+ ā1nxn = b̄1

. . .
...

...
...

...
xp + āp,m+1xm+1 + · · ·+ āpjxj + · · ·+ āpnxn = b̄p

. . .
...

...
...

...
xm + ām,m+1xm+1 + · · ·+ āmjxj + · · ·+ āmnxn = b̄m

(6.5)

where āij , c̄j , b̄i, and z̄0 are constants and we assume that b̄i > 0 for i = 1, . . . ,m. If
there are two or more c̄j < 0, our problem is to find which j = s among them has the
property that putting column s into the basis and driving some column j = r out
of the basis gives the greatest decrease in z while preserving feasibility. Using the
standard canonical form (6.5), the main work is that of performing ratio tests for the
several columns j such that c̄j < 0, plus the update work of pivoting, which takes
mn operations where each operation consists of one addition (or subtraction) plus
one multiplication. To do this more efficiently, consider the alternative canonical
form:

−z + c̄m+1xm+1 + · · ·+ c̄nxn =−z̄0
α11x1 + α1,m+1xm+1 + · · ·+ α1nxn = 1

. . .
...

...
...

αppxp + αp,m+1xm+1 + · · ·+ αpnxn = 1
. . .

...
...

...
αmmxm +αm,m+1xm+1 + · · ·+αmnxn = 1

(6.6)

formed by rescaling the rows by dividing them by b̄i > 0 for all i = 1, . . . ,m. In
this format we scan column j such that c̄j < 0 and find for each such j the row

rj = argmax αij .
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If αrjj ≤ 0 for any j such that c̄j < 0 then a class of solutions can be constructed so
that z → −∞ in the usual way. If αrjj > 0 for all j such that c̄j < 0, then the best
choice for maximum decrease of the objective value in the next iteration is j = s
where

s = argmin
{ j|c̄j<0 }

(c̄j/αrjj). (6.7)

The corresponding pivot row is
r = rs. (6.8)

The pivot operations require mn operations but the rescaling of the rows such
that the right hand sides are all ones requires an additional mn multiplications so
that this format is inferior to (6.5) in that it requires considerably more work per
iteration.

We can, however, perform the operations efficiently by considering the following
revised alternative canonical form that is generated from (6.6) by subtracting some
row p, called a key row, from other rows i �= p:

−z + c̄m+1xm+1 + · · ·+ c̄nxn =−z̄0
β11x1 + β1pxp + β1,m+1xm+1 + · · ·+ β1nxn = 0

.. .
...

...
...

βppxp + βp,m+1xm+1 + · · ·+ βpnxn = 1
. . .

...
...

...
βmpxp +βmmxm +βm,m+1xm+1 + · · ·+βmnxn = 0

(6.9)

where βij = αij − αpj for i �= p and βpj = αpj . Let

r̄j = argmax
i�=p

αij = argmax
i�=p

(αij − αpj) = argmax
i�=p

βij .

Note that

rj =
{
p if αpj > αr̄jj ,
r̄j otherwise.

Therefore:

1. The work to find the pivot row s and the corresponding pivot row r = rs from
the revised alternative canonical form (6.9) is about the same as it was to find
it from the alternative canonical form (6.6).

2. The work to update (6.9) for doing the pivot turns out, as we will see next,
to be about the same as that for the standard canonical form (6.5), so that
(6.9) is the preferred canonical form.

The updating of (6.9) is done in the following two steps:

1. If r �= p, modify the β matrix before pivoting by making row p, where 1
appears on the right-hand side, the same as the pivot row r as follows. Make
p = r by
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(a) first subtracting row r of (6.9) from every other i �= p. The adjusted βij

for i �= r and i �= p are

βij ← βij − βrj = (αij − αpj)− (αrj − αpj) = (αij − αrj).

(b) Next add row p to row r. The adjusted βrj are

βrj ← βrj + βpj = (αrj − αpj) + αpj = αrj.

(c) Then subtract the adjusted row r from row p. The adjusted βpj is given
by

βpj ← βpj − βrj = αpj − αrj.

This step requires mn subtractions/additions.

2. The pivot update consists of

(a) multiplying row r by 1, and

(b) multiplying rows i �= r by −βrs/βis provided βis �= 0; if βis = 0 we
multiply row i by 1. (The proof is given by the proof to Lemma 6.1.)

This step requires mn multiplications.

LEMMA 6.1 (Relation for Updated βij) If p = r, the updated βij = β̄ij,
for i �= r, and βis �= 0, is obtained by multiplying βij for all j by the same ratio(
βrs/βis

)
, namely, β̄ij = −βij

(
βrs/βis

)
.

Proof. At iteration t, the α format of Equation (6.9) for equation r and equation i
is

αr1x1 + · · · + αrjxj + · · · + αrsxs + · · · + αrn = 1
αi1x1 + · · · + αijxj + · · · + αisxs + · · · + αin = 1

After pivoting

αr1x1 + · · · + αrjxj + · · · + αrsxs + · · · + αrn = 1

α̂i1x1 + · · · + α̂ijxj + · · · + 0xs + · · · + α̂in = 1− αis

αrs

where
α̂ij = αij − αrj

αis

αrs
for j �= s.

Dividing by 1−αis/αrs so that the right-hand side is 1, the updated coefficient αij

of the jth term is

ᾱij =
αij − αrj (αis/αrs)

1− (αis/αrs)
.
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Subtracting the equation r so that the right hand side is zero and clearing fractions,
we get the updated βij as

β̄ij =
[αij − αrj (αis/αrs)]− αrj [1− (αis/αrs)]

1− (αis/αrs)

= −αij − αrj

αis − αrs
αrs

= −βij

(
βrs

βis

)
. (6.10)

� Exercise 6.3 Show that β̄rj = βrj for all j and that for all i for which βis = 0, we have
β̄ij = βij for all j.

� Exercise 6.4 In the β format (6.9) show how to get αrj j after updating βij .

� Exercise 6.5 Show how to update the relative cost factors in the β format (6.9).

� Exercise 6.6 Modify the approach of maximum improvement per iteration for the
degenerate case.

6.3 DUAL-SIMPLEX METHOD

In practice, after a solution to a linear program is obtained, it often happens that an
adjustment is required for a slight modification of the original problem. If it turns
out that this modified problem is primal infeasible but still prices out optimal, the
Dual-Simplex Method can be used to efficiently find a feasible optimal solution to
the original problem.

Recall that the Primal-Simplex Algorithm maintains primal feasibility at each
iteration while trying to decrease the primal objective function. It does this at
each iteration by reducing the infeasibility of the dual variable c̄s < 0 by pivoting
column s into the basis in place of some basic column jr while maintaining primal
feasibility. The Dual-Simplex Algorithm, as we shall see, maintains dual feasibility
at each iteration while trying to increase the dual objective function. It does this
at each iteration by reducing the primal infeasibility of xjr = b̄r < 0 to xjr = 0
by pivoting column jr out of the basis and bringing into the primal basis some
column s.

We know by the Weak Duality Theorem 2.3 that when the dual problem is known
to be feasible, the primal problem cannot be unbounded. Thus, the Dual-Simplex
Method, that is usually applied to a problem which is dual feasible, will terminate
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Primal-Simplex Method Dual-Simplex Method

Applied to
cTNxN = z − zo

IxB + ANxN = b
x ≥ 0

cTNxN = z − zo

IxB + ANxN = b
x ≥ 0

Optimality criterion c̄ ≥ 0 b̄ ≥ 0

Selection of incoming
new basic variable

If c̄s = min
j∈N

c̄j < 0 then choose

xs, i.e., pivot in column s.

If b̄r = min
i
b̄i < 0 then choose

xr, i.e., pivot in row r.

Selection of outgoing
basic variable

If
b̄r
ārs

= min
āis>0

b̄i
āis
≥ 0, drop

xr; pivot in row r

If
c̄s

−ārs
= min

−ārj>0

c̄j

−ārj
≥ 0,

drop xs; pivot in column s

Pivot element ārs ārs

Objective function z = cTNxN + zo decreases z = cTNxN + zo increases

Table 6-2: Primal-Simplex and Dual-Simplex Methods

with an optimal solution or go unbounded, implying that the primal problem is
infeasible.

In the Dual-Simplex Method, when viewed in terms of the primal variables,
one first decides which basic variable to drop and then which nonbasic variable to
introduce in its place. The relations between the Primal-Simplex Method applied
to a linear program in standard form and the Dual-Simplex Method applied to its
dual are discussed next (see Table 6-2 for a summary).

1. Optimality Criterion.

The Dual-Simplex Method operates with the same tableau as the Primal-
Simplex Method. However, the relative cost factors are nonnegative from
iteration to iteration (c̄j ≥ 0 instead of b̄i ≥ 0). The primal problem is feasible
and optimal if in the canonical form c̄ ≥ 0 and b̄ ≥ 0. These conditions also
imply feasibility and optimality for the dual. The dual is feasible if c̄ ≥ 0 and
is optimal if

b̄ ≥ 0. (6.11)

2. Selection of the Outgoing Basic Variable.

In the primal method the incoming column is selected first. Since the dual
essentially works on the transpose, we select the pivot row or outgoing variable
first. If the optimality criterion is not satisfied for the dual, then a pivot row
r can be selected such that b̄r < 0. A commonly used criterion is to pick row
r such that b̄r is the most negative of the b̄i, i.e.,

b̄r = min
{ i=1,...,m}

b̄i < 0. (6.12)
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3. Selection of the Incoming Basic Variable.

In the Dual-Simplex Method the incoming variable s is selected after the
outgoing variable r has been selected. After pivoting on an element, say s,
in row r we need b̄r/ārs, the value of the modified right-hand side to become
positive. Thus, we must have ārs < 0 since br < 0. At the same time, we wish
to maintain dual feasibility by ensuring that c̄ ≥ 0 after the pivot step. That
is, we need:

c̄j − c̄s
ārj

ārs
≥ 0 for j = 1, . . . , n.

If it turns out for r that ārj ≥ 0 for all j ∈ N , then the problem is primal-
infeasible (see Exercise 6.7 that follows). Otherwise we pick the incoming
column s such that

c̄s
−ārs

= min
{ j|j∈N , ārj<0 }

c̄j
−ārj

, (6.13)

and pivot on ārs. Note that this pivot step is dual-degenerate if it turns out
that c̄s = 0.

� Exercise 6.7 Why is it obvious that if in selecting an incoming variable, it turns out
for r that ārj ≥ 0 for all j ∈ N , then the problem is primal-infeasible.

Just as with the Primal-Simplex Method, the Dual-Simplex Method can take
degenerate steps and cycle indefinitely. One of the many primal degeneracy resolv-
ing techniques can be modified and used to prevent cycling in the Dual-Simplex
Method.

� Exercise 6.8 Construct a degeneracy resolving scheme to prevent cycling in the Dual-
Simplex Method.

� Exercise 6.9 For the primal method, the incoming column s can be represented in
terms of the basis by Ā•s. Referring to (6.4) show that the outgoing column r of B in the
primal corresponds, in the dual, to a unit column of N̄ with component r equal to unity
and the representation of this column in terms of B̄ is

B−1
r• ;−ār,m+1,−ār,m+2, . . . ,−ār,n. (6.14)

We will illustrate the Dual-Simplex Method first when there are no artificial
variables and then when artificials are present.

Example 6.1 (Illustration of the Dual-Simplex Method) Suppose a system has
been transformed to yield

(−z) + x4 + 2x5 + 4x6 = −5
x1 + 2x4 − 5x5 + 5x6 = 9

x2 − 3x4 + 6x5 − 3x6 = −3
x3 + x4 − 4x5 + 2x6 = 2.

(6.15)
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Since all c̄j but not all constant terms, are nonnegative, we apply the Dual-Simplex
Method. Thus, first we drop the basic variable, x2, because

b̄r = b̄2 = min
i

b̄i = −3.

Next we introduce x4 into the next basic set, because j = 4 is determined by the criterion,

s = argmin
{ j|ā2j<0 }

c̄j
−ā2j

= argmin
{

c̄4
−ā24

=
1

3
,
c̄6
−ā26

=
4

3

}
= 4.

After pivoting, the system becomes (6.16). Since all b̄i and c̄j are nonnegative, the basic
solution is now feasible and optimal.

(−z) + 1
3
x2 + 4x5 + 3x6 = −6

x1 + 2
3
x2 − 1x5 + 3x6 = 7

− 1
3
x2 + x4 − 2x5 + x6 = 1

+ 1
3
x2 + x3 − 2x5 + x6 = 1.

(6.16)

We now consider the case when artificials are present. Conceptually, any artifi-
cial basic variable, xj , whose value is positive in the basic solution, may be replaced
by −x′j = xj, so that the basic solution becomes “infeasible,” which allows the ap-
plication of the Dual-Simplex Method. In practice, it is probably better not to make
the formal substitution, xj = −x′j , for artificial variables of positive value, but to
modify the rules of the procedure to produce the same effect. The next example
illustrates the Dual-Simplex Method when artificial variables are present.

Example 6.2 (Dual-Simplex Method with Artificial Variables) Suppose, for Ex-
ample 6.1, that x2 and x3 are artificial, meaning we seek a solution in which x2 = 0 and
x3 = 0. We shall proceed as before; however, we shall disregard all artificial variables once
they drop out of the basic set. Thus x2, which is artificial, will be dropped from the system
in (6.16). The basic solution is still not feasible because x3 is artificial; thus replacing x3

by −x′
3, we have

(−z) 4x5 + 3x6 = −6
x1 − 1x5 + 3x6 = 7

+ x4 − 2x5 + x6 = 1
+ x′

3 + 2x5 − 1x6 = −1.

(6.17)

After pivoting on −1x6, the next iteration results in an optimal solution, as shown in the
tableau below.

(−z) + 3x′
3 + 10x5 = −9

x1 + 3x′
3 + 5x5 = 4

+ x′
3 + x4 = 0

− x′
3 − x5 + x6 = 1.

(6.18)

According to our rules, since artificial x′
3 is nonbasic, terms in x′

3 are dropped from the
problem.

As we have pointed out, many problems have a feasible solution to the dual
readily available. For example, if the equations are weighted by the multipliers of a



6.4 PARAMETRIC LINEAR PROGRAMS 183

previously optimized system having the same matrix of coefficients, aij and c̄j, and
if the equations are weighted by the multipliers and their sum is subtracted from
the z-equation, the coefficients, c′j , of the transformed z-equation are nonnegative.
After augmentation of the new system with artificial variables, the system is

• in canonical form with respect to the artificial basis, and

• its relative cost factors, c′j , are nonnegative.

Hence, optimizing via the Dual-Simplex Algorithm provides an optimum to the
primal system without the usual Phase I.

Even in cases where the minimizing form has a few negative coefficients, it
is expedient to replace each negative c′j by c′j = 0 and then to optimize by the
Dual-Simplex Algorithm. This will provide a basic feasible solution to the original
system (not necessarily optimal), which may then be used with the true values of
cj to initiate the usual Phase II of the Primal-Simplex process.

� Exercise 6.10 Discuss how to recover the true values of c̄j in the case when c′j is set
to 0.

� Exercise 6.11 Prove that no more than k iterations are required to eliminate k artificial
variables from a basic set while maintaining feasibility of the dual. Note that the primal
problem may be infeasible at the end. What is the dual of this exercise?

6.4 PARAMETRIC LINEAR PROGRAMS

The term parametric linear programming is applied to the situation where the co-
efficients of the objective function and/or the right-hand-side constants are allowed
to vary with a parameter, say θ. In this section, we shall first examine the effect
of varying the coefficients of the objective function and then examine the effect of
varying the right-hand-side constants.

6.4.1 PARAMETERIZING THE OBJECTIVE FUNCTION

In this case, the objective function coefficients cj are assumed to change simultane-
ously at given rates γj . Thus, the class of linear programs of interest is:

Minimize (c+ θγ)Tx = z(θ)
subject to Ax = b, A : m× n,

x ≥ 0,
(6.19)

where γ = ( γ1, γ2, . . . , γn )T are the given fixed rates of change of the objective
function coefficients c = ( c1, c2, . . . , cn )T per unit of the scalar parameter θ ≥ 0.
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We shall examine the behavior of (6.19) as θ varies. Without loss of generality we
have assumed θ ≥ 0 because the case of θ ≤ 0 is equivalent to replacing θ by −θ̄.

The feasibility of problem (6.19) is clearly independent of the objective function;
thus, we shall only examine the case when the problem is feasible. Let us first assume
that the objective function has a finite optimum when θ = 0 and the optimal basis
is B. Let π be the optimal prices for a basis B when θ = 0 and π̂(θ) = π + θρ for
some θ > 0. Then, for a given value of θ, we can determine π and ρ from

BTπ̂(θ) = BT(π + θρ) = c
B

+ θγ
B
, (6.20)

i.e., π and ρ are solutions to

BTπ = c
B

and BTρ = γ
B
. (6.21)

Next we determine the reduced costs σ̂(θ) with respect to B from

σ̂(θ) = c
N

+ θγ
N
−NTπ̂(θ)

= cN −NTπ + θ
(
γN −NTρ

)
. (6.22)

We are interested in the range of θ ≥ 0 for which B is an optimal basis. In particular
by the assumed optimality of B for θ = 0, we have

c̄
N

= σ̂(0) = c
N
−NTπ ≥ 0. (6.23)

The range of θ ≥ 0 for which B is an optimal basis is the range for which σ̂(θ) ≥ 0.
From Equation (6.22), we require

σ̂(θ) = c̄N + θγ̄N ≥ 0, (6.24)

where
γ̄N = γN −NTρ. (6.25)

Then from (6.24), the basis B remains optimal for θ satisfying the vector relation

− θγ̄N ≤ c̄N , where c̄N ≥ 0. (6.26)

Two cases arise in determining the range of θ that maintains optimality:

1. If γ̄N ≥ 0 then the basis B is optimal for all values of θ ≥ 0.

2. If one or more components γ̄j < 0 for j ∈ N , then the basis B is optimal for
all θ in the range 0 ≤ θ ≤ θ1 where

θ1 = min
{ j∈N|γ̄j<0 }

c̄j
−γ̄j

. (6.27)

For θ = θ1 + ε, where ε > 0, the basis B will no longer be optimal, and one or
more nonbasic variables will become candidates for entering the basis.
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For the rest of this discussion, assume that we are solving the problem in the
canonical form of the Simplex Method. If θ > θ1, then one or more nonbasic
variables will be candidates for entering the basis B. It is clear that if any candidate
variable xs has coefficients āis ≤ 0 for i = 1, . . . ,m, the problem is unbounded for
all θ > θ1 because we have found a ray along which the objective function can be
made arbitrarily small. When this happens, we terminate with the class of solutions
x

B
= b − αĀ•s, xs = α ≥ 0, xj = 0 for j ∈ N and j �= s where the corresponding

z → −∞ as α→∞.

LEMMA 6.2 (Nonnegativity of Relative Cost Factors) When there is only
one eligible candidate xs to enter the basis at θ = θ1 + ε > 0, ε > 0, and there are
one or more coefficients āis > 0 then the relative cost factors with respect to the
new basis at θ = θ1 defined by (6.27) are nonnegative and remain nonnegative for
some range of θ > θ1.

Proof. It is evident that c̄s + θ1γ̄s = 0 and c̄j + θ1γ̄j > 0 for j ∈ N and j �= s
because we are assuming only one candidate xs. If we pivot on ārs assuming θ ≥ θ1,
we get the new reduced costs for column s equal to zero and, for the remaining
nonbasic columns we get

ĉj = c̄j + θγ̄j −
ārj

ārs
(c̄s + θγ̄s), j ∈ N , j �= s. (6.28)

Noting that c̄s + θ1γ̄s = 0, we rewrite Equation (6.28) as

(c̄j + θ1γ̄j) + (θ − θ1)
(
γ̄j −

ārj

ārs
γ̄s

)
. (6.29)

Because, by assumption, c̄j + θ1γ̄j > 0 for j ∈ N , j �= s, the first term dominates
the second term for some range θ > θ1.

� Exercise 6.12 Extend Lemma 6.2 to the case when there is more than one candidate for
entering variable at θ = θ1. Resolve the tie by solving a restricted linear program involving
only the basic columns and the tied columns with new objective coefficients (θ−θ1)γ̄j . Let
B̄ be the optimal basis of the restricted problem. Show that the new relative cost factors
with respect to B̄ are nonnegative for some range of θ > θ1 for all j = 1, . . . , n.

THEOREM 6.3 (When Minimizing, the Optimal Value is a Continuous
Piecewise Linear Concave Function) The optimal value of the parametric
objective function for the linear program (6.19) is a continuous piecewise linear
concave function of the parameter θ.

Proof. Let 0 ≤ θ ≤ θ∗ be the range of values for θ for which a finite minimum
exists for the objective function. As θ increases from 0 to θ1, as defined by (6.27),
the basis does not change and thus the basic feasible solution (xB , xN = 0) does
not change. Hence the objective function value changes linearly with θ in this



186 VARIANTS OF THE SIMPLEX METHOD

range. Similarly, for θ1 < θ ≤ θ2 there is a new basis and the objective function
also changes linearly with θ until the next point θ2, where the next optimal basis
change is reached. However, under nondegeneracy, the slope γTx with respect to
θ is different beyond θ1 because the optimal solution x2 in the new interval is not
the same as the optimal solution x1 in the previous interval. (Under degeneracy, it
is possible that x2 = x1, implying the slopes are the same.) Thus, in general, the
function is clearly piecewise linear and continuous.

Let θ′ and θ′′ be any two points in the interval 0 ≤ θ ≤ θ∗ and let x′ and
x′′ be the corresponding feasible optimal solutions to (6.19) with optimal objective
function values z(θ′) and z(θ′′), respectively. Pick any λ in the range 0 ≤ λ ≤ 1
and define θλ = λθ′ + (1− λ)θ′′. Let the optimal solution at θλ be denoted xλ and
the optimal objective value by z(θλ). Then

z(θλ) = (c+ θλγ)Txλ = λ(c+ θ′γ)Txλ + (1 − λ)(c+ θ′′γ)Txλ

≥ λz(θ′) + (1− λ)z(θ′′)

where the last line follows from the optimality of z(θ′) and z(θ′′). This proves
that the function is concave and we have already shown that it is piecewise linear
continuous.

COROLLARY 6.4 (When Maximizing, the Optimal Value Is a Continu-
ous Piecewise Linear Convex Function) If the objective function of the para-
metric linear program defined by (6.19) is maximized instead of minimized, then the
optimal value is a continuous piecewise linear convex function of the parameter θ.

COROLLARY 6.5 (When Minimizing, the Optimal Value Is a Contin-
uous Piecewise Linear Concave Function) If the objective function of the
parametric linear program defined by (6.19) is of the form z(θ) = (1− θ)cTx+ θγTx,
the optimal value is a continuous piecewise linear concave function of the parameter
θ.

� Exercise 6.13 Prove Corollaries 6.4 and 6.5.

� Exercise 6.14 Construct a linear program with a parametric objective function (c +
θγ)Tx such that the objective has a finite minimum for all −1 ≤ θ ≤ 1, but at θ = 1 + ε
and at θ = −1 − ε the objective function z → −∞ for a class of feasible solutions where
ε > 0 is arbitrarily small. If so, also prove that z → −∞ for all ε > 0 arbitrarily large.

� Exercise 6.15 Apply parametric programming to revise the optimal solution to a linear
program when the cost coefficients x are replaced by new cost coefficients.

In practice, parametric linear programming problems are solved using two ob-
jective functions, z = cTx and γTx. Pricing operations are carried out on both
functions. The relative cost factors c̄+ θγ̄ are never explicitly computed but xs is
determined by (6.27) where c̄j and γ̄j are determined from the simplex multipliers
π and ρ, which are the solutions to BTπ = cB and BTρ = γB for the current updated
basis B.
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6.4.2 PARAMETERIZING THE RIGHT-HAND SIDE

In this case the right-hand side constants bi are assumed to change at given rates
βj . Thus, the class of linear programs of interest is:

Minimize cTx = z(φ)
subject to Ax = b + φβ, A : m× n,

x ≥ 0,
(6.30)

where β = (β1, β2, . . . , βm )T are the given fixed rates of changes to the right-hand
side per unit of the scalar parameter φ. Once again, without loss of generality, we
restrict φ ≥ 0 because looking at φ ≤ 0 is equivalent to replacing φ by −φ̄. It can
easily be verified that if β does not lie in the range space of the coefficient matrix
A, the linear program is feasible only for φ = 0.

� Exercise 6.16 If Ax = b, x ≥ 0 is feasible and Ax = β, x ≥ 0 is also feasible, show that
Ax = b+φβ is feasible for all choices of φ ≥ 0. Also show that if a constraint is redundant
for some φ > 0 then it is redundant for all values of φ > 0.

Assume that the linear program is feasible for both b and β. Then the optimal
basis B at φ = 0 stays feasible for the range of φ for some range φ ≥ 0, namely, φ
satisfying:

B−1b+ φB−1β ≥ 0. (6.31)

Therefore, letting b̄ = B−1b and β̄ = B−1β, the basis B remains primal feasible for
all φ satisfying the vector relation:

− φβ̄ ≤ b̄. (6.32)

� Exercise 6.17 Show that if the optimal basic feasible is nondegenerate then B stays
feasible and optimal for some range [0, φ1] where φ1 > 0.

Two cases arise in determining the range of φ that maintains feasibility:

1. If β̄ ≥ 0 then the optimal basis B results in a feasible solution for all values of
φ ≥ 0. The values of the basic variables and the objective are the only ones
that change; the basic set of columns remain unchanged.

2. If, on the other hand, one or more components β̄i < 0, then the range of φ
that maintains feasibility is 0 ≤ φ ≤ φ1, where

φ1 = min
{ i|i∈B, β̄i<0}

b̄i

−β̄i
. (6.33)

At φ = φ1 + ε, where ε > 0, the problem is primal-infeasible but is still
dual-feasible since c̄

N
≥ 0 does not depend on the right-hand side b.
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The analysis of the parametric right-hand-side case is similar to the parametric
cost function case discussed in the previous section, except that now we apply the
Dual-Simplex Method of Section 6.3 to bring back primal feasibility.

� Exercise 6.18 Show that a linear program with a parametric right-hand side whose
objective is being minimized is a dual of a linear program with a parametric cost function
whose objective is being maximized and vice versa.

THEOREM 6.6 (When Minimizing, the Optimal Value Is a Continu-
ous Piecewise Linear Convex Function) The optimal value of the objective
function z(φ) for the linear program (6.30) is a continuous piecewise linear convex
function of the parameter φ.

� Exercise 6.19 Prove Theorem 6.6 using either Corollary 6.5 and duality or a proof
similar to Theorem 6.3.

� Exercise 6.20 Develop the theory for the parametric right-hand side analogous to that
of the parametric cost case.

6.5 SELF-DUAL PARAMETRIC
ALGORITHM

The self-dual parametric algorithm, sometimes referred to as the criss-cross method,
is applied to a linear program where both the objective function and the right-hand
side are functions of a parameter θ. One application of this method is in the case
when neither the basic solution nor its complementary dual solution is feasible. It
is then a simple matter to increase all the negative b̄i and c̄j to nonnegative values
by adding some constant θ to all of them. (A variant is to add a vector φβ to the
right-hand side and θγ to the objective coefficients.)

The modified problem is now optimal. Next we will consider ways to maintain
the feasibility of the primal and dual systems as the constants and cost coeffi-
cients are gradually changed linearly as a function of θ toward their original values.
Depending on whether the basic solution of the dual or the primal first becomes
infeasible as θ moves toward zero, the Primal-Simplex or the Dual-Simplex pivot
choice criterion is employed. The method is illustrated in the following example.

Example 6.3 (Illustration of a Self-Dual Parametric Algorithm) In the following
canonical system, the original problem is obtained by setting θ = 0; the associated basic
solutions are infeasible for both the primal and dual.

(−z) 8x4 + (θ − 4)x5 = 0
x1 + x4 + x5 = 8

x2 − 2x4 + 1x5 = −1 + θ
x3 + 3x4 − 2x5 = −1 + θ.

(6.34)
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On the other hand, if θ ≥ 4, the associated solutions are both feasible. If we start with
θ = 5, say, and then let θ approach zero, the associated solutions will remain feasible down
to the critical value θ = 4. Just below θ = 4, the primal solution still remains feasible,
but the dual solution becomes infeasible since c̄3 = θ − 4 is negative. Hence, for θ less
than 4 but “very close” to it, we use the Primal Simplex Algorithm, introducing x5 while
maintaining the feasibility of both systems. The variable to be dropped is determined
from the minimum of the ratios b̄i/āis for āis positive:

b̄1
ā15

= 8,
b̄2
ā25

= −1 + θ

Since in the neighborhood of θ = 4 the second ratio is minimal, x2 is to be dropped from
the basic set at the next iteration. The new canonical system, after pivoting on ā25 = 1,
is

(−z) + (4− θ)x2 + 2θx4 = (4− θ)(−1 + θ)
x1 −1x2 + 3x4 = 9− θ

x2 − 2x4 + x5 = −1 + θ
2x2 + x3 − 1x4 = −3 + 3θ

(6.35)

which remains feasible for all θ in the range 1 ≤ θ ≤ 4. Below the critical value θ = 1,
the primal basic solution becomes infeasible. For θ less than 1 but very close to it, basic
variable x3 < 0; therefore we use the Dual-Simplex Algorithm to drop x3 as a basic
variable. The variable to be introduced is given by the minimum of the ratios c̄j/(−ā3j)
for j such that ā3j < 0; in this case, the only variable in row 3 with a negative coefficient
is x4. Pivoting on ā34 = −1, we obtain

(−z) + (4 + 3θ)x2 + 2θx3 = (4− θ)(−1 + θ) + 2θ(−3 + 3θ)
x1 +5x2 + 3x3 = 0 + 8θ

−3x2 − 2x3 + x5 = 5− 5θ
−2x2 − x3 + x4 = 3− 3θ

(6.36)

which is feasible for both the primal and dual systems for 0 ≤ θ ≤ 1. Hence, the optimal
solution to the original problem is obtained by setting θ = 0.

In general, it is not necessary to add the same parameter, θ, to all of the negative
constants, b̄i and c̄j , as was done in (6.34). Several different parameters could be
added and each allowed to tend toward zero according to some prespecified rules as
to how they move relative to each other. Either way, the net result is the successive
application of either the Primal-Simplex or Dual-Simplex rules to change the basis.

In order to show that such a process will terminate in a finite number of steps,
we now prove two theorems for the case of a single parameter, θ.

THEOREM 6.7 (Feasibility of Complementary Bases) It is not possible
to have the same complementary bases feasible in the primal and dual for two values
θ1 < θ2, unless the pair is also feasible for all values in the range θ1 ≤ θ ≤ θ2.

Proof. Note that for any fixed primal basis the values of the primal-basic or
dual-basic variables are linear functions of θ so that, clearly, when a variable is
nonnegative for both θ = θ1 and θ = θ2, then it is nonnegative throughout the
interval θ1 ≤ θ ≤ θ2.
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THEOREM 6.8 (Finite Termination) If each change in basis is accompanied
by a positive decrease in θ, there can only be a finite number of iterations.

Proof. Suppose that as θ decreases there is a change of feasible basis from B0

to B1 at some critical value θ = θ1. After the change in basis, suppose B1 remains
feasible for all θ2 < θ ≤ θ1. The basis B1 cannot be a repeat of some earlier basis
that was feasible at θ̂ > θ because B1 = B̂ by Theorem 6.7 would have been feasible
for all θ2 < θ ≤ θ̂ and therefore θ1 would not have been a critical value; this is a
contradiction.

THEOREM 6.9 (Positive Decrease With Only One Degeneracy) If there
is only one degeneracy in the primal and dual solutions before and after pivoting at
a critical value of θ = θ0, then after the pivot there will be a positive decrease in θ.

Proof. Since θ = θ0 is critical, there is at least one degeneracy in either the
primal or dual systems. If a degeneracy occurs in the primal we assume there are
no others in the primal and dual systems and, similarly, if a degeneracy occurs in
the dual we assume there are no others in the primal and dual systems. We now
assume dual degeneracy occurs at θ = θ0. If we prove the theorem for the case of
dual degeneracy, the proof for a primal degeneracy will follow by duality. Suppose
that dual degeneracy occurs at c̄s at a critical value of θ = θ0, and for θo ≤ θ ≤ θo+δ
we have c̄s = ε = d(θ − θ0) > 0, where d > 0. All other nonbasic c̄j can now be
expressed linearly in ε, by substituting θ = θ0 + ε/d; thus c̄j = αj + εβj where, by
hypothesis, αj is strictly positive for nonbasic j �= s. By hypothesis, at ε = 0, the
primal solution is nondegenerate before and after xs displaces some variable, xjr ,
in the basic set. Under these conditions the new values of the relative cost factors
for nonbasic ĉj will be

ĉj = c̄j − (ārj/ārs)ε = αj +
[
βj − ārj/ārs

]
ε, j �= s,

ĉjr = −(1/ārs)ε.
(6.37)

Since αj is positive for all updated nonbasic j, except jr, there clearly is a range of
values, ε0 < ε < 0, for some fixed ε0 < 0, for which ĉj remains positive for all j �= jr.
For j �= jr it also follows that ĉjr > 0 because ε < 0 in this range and ārs > 0.

THEOREM 6.10 (Range of θ Over Which Feasible Solutions Exist) If
a feasible solution to the primal and dual systems exists for θ = 0 and θ = θ0, then
feasible solutions exist for all θ in the interval 0 ≤ θ ≤ θ0.

� Exercise 6.21 Prove Theorem 6.10.

� Exercise 6.22 Prove that Theorem 6.10 also implies that the solution set (x, π) gen-
erated by all vectors of constant terms, bi, and cost terms, cj , for which both the primal
and dual problems remain feasible simultaneously, is a convex polyhedron.
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6.6 THE PRIMAL-DUAL ALGORITHM

Like the Dual-Simplex method (see Section 6.3), the Primal-Dual Algorithm starts
with a feasible solution to the dual already at hand. It iteratively decreases the
infeasibility form of the primal and improves the feasible dual solution in such a
manner that, if a feasible basic solution is finally obtained, it will already be optimal.

Associated with each iteration is a subproblem with fewer columns called the
column-restricted primal, which is optimized by a primal method (for example, the
Phase I Simplex Algorithm). When the optimal solution of the column-restricted
primal has been obtained, the optimal dual solution to this restricted primal is
used to generate an improved dual solution to the original problem. This gives
rise to a new column-restricted primal to be optimized. After a finite number of
improvements an optimal solution is obtained for the original problem, or a class of
feasible dual solutions with unbounded objective is obtained, establishing that the
original primal problem is infeasible.

Once again consider a linear program in standard form (6.1) and its dual (6.2).
Then, as we have seen before, y = c̄ = c − ATπ is a vector of dual slack variables
and v = bTπ is the value of the dual objective.

After adding a full set of artificials, xa = xn+1, . . . , xn+m, to (6.1), we have the
following usual Phase I problem:

0Tx + eTxa = w (min)
Ax + Ixa = b.

(6.38)

Suppose an initial dual feasible solution π = π1 is known in advance; let

c̄1 = c−ATπ1 ≥ 0, z1 = bTπ1. (6.39)

For convenience, assume that we have reordered the original variables so that c̄1j = 0
for j = 1, . . . , l, and c̄1j > 0 for j = l + 1, . . . , n. The problem (6.38) is then solved
by the usual Phase I procedure, except we restrict the choice of columns entering
the basis to those whose c̄1j = 0. This Phase I problem is called a column-restricted
Phase I problem. As artificial variables drop out of the basis we drop them from
the problem. At the end of Phase I, we get the simplex multipliers γ = γ1 with
respect to the Phase I objective and a solution xa = x1

a, x = x1, and z = z1.

THEOREM 6.11 (Optimality Condition) If, at the end of Phase I, w1 = 0,
then the solution x1 ≥ 0 is an optimal feasible solution for the primal (6.38), and
the solution π1 is an optimal solution for the dual of the original system.

Proof. By assumption w1 = minw = 0, therefore, the artificial variables all have
zero values in the basic solution. After dropping them, the primal feasible solution
x = x1 ≥ 0 has c̄1j = 0 for x1

j > 0 and c̄1j ≥ 0 for x1
j = 0, which fulfills the condition

of the optimality of x = x1 for the original system.
Therefore, if w1 = 0 at the end of Phase I, we terminate with an optimal solution

to the original problem. On the other hand, if w1 > 0, then we can get an improved
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dual-feasible solution π2 to the original system (6.1) for some θ > 0 by:

π2 = π1 + θγ1. (6.40)

For π2 to result in an improved dual-feasible solution, we need for some θ > 0

c̄2 = c−ATπ2 = c−AT(π1 + θγ1) = c̄1 + θd̄1 ≥ 0, (6.41)

where d̄1 = −ATγ1.
We already have d̄1

j ≥ 0, for j = 1, . . . , l because this is a condition of optimality
of the column-restricted primal; for these j, we clearly have c̄2j ≥ 0 for all θ ≥ 0.
If all the factors, d̄1

j , are nonnegative for j = l + 1, . . . , n then, since w1 > 0, and
d̄j ≥ 0 for all j, (6.40) and (6.41) constitute a class of feasible solutions to the dual
objective of the original problem, whose value,

v = z1 + θw1, (6.42)

tends to +∞ with increasing θ, implying no feasible solution to the primal exists.
If one or more of the d̄1

j , for j = l+1, . . . , n are negative then for dual feasibility
we pick θ to satisfy:

θ = θ1 = min
{ j|d̄1

j
<0 }

c̄1j
−d̄1

j

> 0, (6.43)

since c̄1j > 0 for j = l + 1, . . . , n. The resulting π2 = π1 + θ1d̄
1 and corresponding

c̄2 = c−ATπ2 are then dual feasible; furthermore, z2 = z1+θ1w1 > z1 since w1 > 0.

� Exercise 6.23 Refer to Theorem 5.1 on Page 155 concerning a degenerate basic fea-
sible solution obtained using the Simplex Algorithm. Then a restricted linear program
R is optimized, corresponding to rows where b̄i = 0. Develop an anology between this
restricted-row problem and the restricted-column problem of this section.

� Exercise 6.24 Let θ1 be given by (6.43) and c̄2 = c̄1+θd̄1. Letting jo, where 1 ≤ jo ≤ l,
correspond to a basic column, prove c̄2jo

= 0. Prove, for j = l + 1, . . . , n, there is at least
one c̄2j = 0.

All columns j = 1, . . . , n whose c̄2j = 0 and all artificial columns that have not
been dropped consititute the columns associated with the new restricted primal
problem. Since there is at least one c̄2j = 0 and d̄1

j < 0 for j = l + 1, . . . , n at
the end of the previous restricted problem (see Exercise 6.24), we know there are
new candidates for entering the basis in the Phase I process applied to the new
column-restricted primal and permitting the iterative process to continue.

� Exercise 6.25 Show that the optimal basis of the previous restricted problem can be
used as the starting basis for the new restricted problem.
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� Exercise 6.26 In the Primal-Simplex Algorithm, the pivot steps can sometimes result
in no improvement when the basic solutions are degenerate. In the Primal-Dual Algo-
rithm there is improvement of the dual and strict decrease of primal infeasibility on every
iteration. Does degeneracy play a role? If so, where?

At first glance it may appear that we might not have been able to initiate the
algorithm if all c̄1j were positive for j = 1, . . . , n. However, in this case, we view the
basic set of artificials as the full set of variables of the restricted primal. Clearly, the
artificial columns are the optimal basic columns and their optimal multipliers are
γ1 = (1, 1, . . . , 1). The algorithm can then be initiated after finding an improved
dual solution by computing θ by (6.43).

� Exercise 6.27 Suppose that no π1 was given but the original problem satisfied cj ≥ 0
for all j. How would you initiate the Primal-Dual Algorithm?

Example 6.4 (Illustration of Primal-Dual Algorithm) We illustrate the Primal-
Dual Algorithm on the problem of finding x1 ≥ 0, x2 ≥ 0, . . ., x5 ≥ 0, min z, and artificial
variables, x6 = x7 = x8 = w = 0, satisfying

(−w) + x6 + x7 + x8 = 0
(−z) + 2x1 + 5x2 + 10x3 + 4x4 + 28x5 = 0

x1 + 2x2 + 2x3 + 0x4 − 4x5 + x6 = 8
x1 − 4x2 + 4x3 − 4x4 + 4x5 + x7 = 12

+ x2 + 0x3 + 2x4 + 2x5 + x8 = 2.

(6.44)

Since all the cjs are positive, a feasible dual solution is π = (0, 0, 0)T and therefore c̄o = c.
The initial simplex multipliers with respective to the Phase I objective are γo = (1, 1, 1)T.
This γo can then be used to generate the w-equation in terms of the original variables as
the difference between the first equation and the sum of the last three equations:

− 2x1 + x2 − 6x3 + 2x4 − 2x5 = w − 22. (6.45)

Letting d̄o
j be the coefficients of xj in this new expression for w, we determine the largest

number, θ = θo, such that c̄1 = c̄o + θod̄
o ≥ 0 has all nonnegative components. In this

case, θ = θo = 1. Thus, the new z-equation (6.46) is obtained by adding the z-equation in
(6.44) to the w-equation in (6.45); where we have dropped the w variable because all we
are really doing is adding to the z-equation a linear combination of the original equations,
which have no artificial variables:

0x1 + 6x2 + 4x3 + 6x4 + 30x5 = z − 22. (6.46)

Note that in (6.46), x6, x7, and x8 are already basic, and, besides these, only x1 has a
relative cost factor of zero. Thus, the first column-restricted primal is obtained by choosing
variables x1 and artificials x6, x7, and x8 that have not been dropped; see columns with ↑
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in (6.47).

Iteration 1: Initiate First Column-Restricted Primal: (x6, x7, x8;x1)

(−w) − 2x1 + x2 − 6x3 + 2x4 − 2x5 = −22
1x1 + 2x2 + 2x3 + 0x4 − 4x5 + x6 = 8
x1 − 4x2 + 4x3 − 4x4 + 4x5 + x7 = 12

+ x2 + 0x3 + 2x4 + 2x5 + x8 = 2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

↑ ↑ ↑ ↑
0x1 + 6x2 + 4x3 + 6x4 + 30x5 ∗ ∗ ∗ = z − 22

(6.47)

The only variable xj in the column-restricted primal (i.e., those with ↑) with negative d̄o
j

in the w-equation is d̄o
1 = −2. Pivoting on 1x1 in the second equation, x6 drops from the

basic set and is dropped from the problem since it is artificial; the updated w-equation
then becomes:

(−w) + 0x1 + 5x2 − 2x3 + 2x4 − 10x5 = −6. (6.48)

Thus an optimal solution to the column-restricted problem (x6, x7, x8;x1) is obtained in
one iteration because d̄1

j ≥ 0 for the restricted j.
We are now ready to set up the second column-restricted primal. To do so we adjust

the z-equation by determining the largest value of θ = θ1 such that c̄2 = c̄1 + θd̄1 ≥ 0,
where c̄1 are the coefficients of xj in the z-equation in (6.47) and d̄1

j are the coefficients
of xj in the w-equation in (6.48) respectively. Now θ1 = 2, so that the new z-equation,
which again does not contain w because all we are really doing is adding to the z-equation
a linear combination of the original equations that have no artificial, is:

0x1 + 16x2 + 0x3 + 10x4 + 10x5 = z − 34. (6.49)

Since c̄3 = 0 in this equation, the variables of the new restricted primal are the variables
x1, x3, and the artificials that have not been dropped, x7 and x8. The basic variables are
x1, x7, and x8. The variable x3 is now admissible as an incoming nonbasic variable in the
next column-restricted primal.

Iteration 2: Initiate Second Column-Restricted Primal: (x1, x7, x6;x3)

(−w) 5x2 − 2x3 + 2x4 − 10x5 = −6

x1 + 2x2 + 2x3 + 0x4 − 4x5 = 8

− 6x2 + 2x3 − 4x4 + 8x5 + x7 = 4

+ x2 + 0x3 + 2x4 + 2x5 + x8 = 2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

↑ ↑ ↑ ↑
0x1 + 16x2 + 0x3 + 10x4 + 10x5 ∗ ∗ = z − 34

(6.50)

The only negative d̄1
j in the w-equation for the column-restricted primal is d̄o

3 = −2.
Pivoting on 2x3 in the third equation, x7 drops from the basic set and is dropped from
the problem since it is artificial; the updated w-equation becomes:

(−w) + 0x1 − 1x2 + 0x3 − 2x4 − 2x5 = −2. (6.51)

Thus an optimal solution to the column-restricted problem (x1, x7, x8; x3) is again obtained
in one iteration because d̄2

j ≥ 0 for the restricted j.
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We are now ready to set up the third column-restricted primal. To do so we adjust
the z-equation by determining the largest value of θ = θ2 such that c̄3 = c̄2 + θ2d̄

2 ≥ 0,
where c̄2 are the coefficients of xj in the z-equation in (6.50) and d̄2

j are the coefficients
of xj in the w-equation in (6.51) respectively. Now θ2 = 5, so that the new z-equation,
which again does not contain w because all we are really doing is adding to the z-equation
a linear combination of the original equations that have no artificial, is:

0x1 + 11x2 + 0x3 + 0x4 + 0x5 = z − 44. (6.52)

Note that this time we have generated an extra zero in the z-equation because there was a
tie in columns 4 and 5 in generating θ2 = 5. Therefore the corresponding column-restricted
primal is (x1, x3, x8;x4, x5), since both x4 and x5 have zero cost factors. Notice that, in
this example, except for x2, all the original variables now belong to the column-restricted
primal.

Iteration 3: Initiate Third Column-Restricted Primal: (x1, x3, x8;x4, x5)

(−w) − 1x2 − 2x4 − 2x5 = −2
x1 + 8x2 + 4x4 − 12x5 = 4
− 3x2 + x3 − 2x4 + 4x5 = 2
+ x2 + 2x4 + 2x5 + x8 = 2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
↑ ↑ ↑ ↑ ↑

0x1 + 11x2 + 0x3 + 0x4 + 0x5 ∗ = z − 44

(6.53)

To minimize w for the new column-restricted primal, we now introduce x4 into the basic
set by pivoting on 2x4 in the fourth equation, dropping x8 from the basic set and from
the problem since it is artificial, and obtaining the system:

Iteration 4: (Optimal)

(−w) + 0x1 + 0x2 + 0x3 + 0x4 + 0x5 = 0
x1 + 6x2 − 16x5 = 0
− 2x2 + x3 6x5 = 4
+ 0.5x2 + x4 + x5 = 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
+ 11x2 = z − 44

(6.54)

whose associated solution is (0, 0, 4, 1, 0) and w = 0. Since w = 0 it means that the values
of xj ≥ 0 constitute a feasible solution to the original unrestricted problem. Since the xj

basic in the column-restricted problem corresponds to c̄j = 0 and beacuse c̄j ≥ 0 for all j
has been maintained throughout, it follows that this basic solution is feasible and optimal
for the original problem. The minimum value of z = 44 is obtained from the z-equation
in (6.54).

Algorithm 6.1 (Primal-Dual Algorithm at Iteration t) The steps are repeated for
t = 1, 2, . . .

1. Minimizing Infeasibility of the Column-Restricted Primal.

At the start of cycle t, it is assumed that we are given a dual feasible solution,
c̄t = ct − ATπt ≥ 0, to the original problem generated by some π = πt. We assume
that the column-restricted primal problem consists of q ≥ 1 artificials that, together
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with possibly some columns of the original problem, form a basis. All columns j
whose c̄t

j = 0 belong to the column-restricted problem, and all columns j whose
c̄tj > 0 are not in this restricted problem. It is further assumed that there is at least
one nonbasic xj that belongs to the column-restricted problem; if no such xj exist,
go to Step 3.

Using only the columns of the restricted primal problem for pivot choice, the Simplex
Algorithm with a degeneracy-resolving scheme is applied to minimize w. Artificial
variables are dropped from the system when they become nonbasic. During this
step, which may consist of several Phase I simplex iterations, the values of the
multipliers, πt, are not modified. The simplex multipliers, γt, associated with the
w-objective, change, of course, at each Phase I Simplex Algorithm iteration until w
is “minimized;” that is, until d̄j is nonnegative for each xj of the column-restricted
primal.

2. Termination Condition.

(a) If minw = 0, terminate with a basic solution that is feasible and minimal for
the original problem.

(b) If minw > 0, and d̄t
j ≥ 0 for j = 1, . . . , n+q, terminate and report an infeasible

original problem because no primal feasible solution exists.

(c) Otherwise, go to Step 3 with the optimal γt.

3. Improving the Dual Solution (Finding a New Column-Restricted Primal).

An improved solution of the dual and a new column-restricted primal is found by
using new multipliers,

πt+1
i = πt

i + θγt
i for i = 1, . . . ,m, (6.55)

and max θ = θt which generate nonnegative cost factors,

c̄t+1
j = c̄tj + θd̄t

j for j = q + 1, . . . , n+ q. (6.56)

The scalar max θ = θt is a strictly positive number defined by

θt =
c̄t

s

−d̄t
s

= min
d̄t

j
<0

c̄tj

−d̄t
j

> 0. (6.57)

The new column-restricted primal is obtained by using all the basic variables and
those nonbasic variables whose cost factors, c̄t+1

j , are zero. In this step, at least one
new variable appears in the new column-restricted primal, namely, xs, as determined
by (6.57). Note also that d̄s < 0, so that at least one iteration must take place before
w is minimized within the new column-restricted primal.

Comment. Given a feasible solution to the dual, the Primal-Dual algorithm assumes
we have at hand a routine that solves the column-restricted problem by minimizing
the sum of the artificial variables. It terminates with either proving that no fea-
sible solution exists or finding an improved primal feasible solution to the original
problem. Thus the algorithm terminates after a finite number of iterations.
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6.7 THE PHASE I LEAST-SQUARES
ALGORITHM

In this section we describe a Phase I algorithm to obtain a strict improvement at
each iteration even if degeneracy is present. It is different from other variants that
try to recognize and avoid degenerate steps in the Simplex Method. As we shall
see, this algorithm solves a nonnegative least-squares problem at each iteration in
order to find a feasible solution.

In each iteration it obtains a better fit to the right-hand side by solving a simple
two-variable least-squares subproblem to select an incoming column to augment a
set of independent columns (called basic) in order to get a better least-squares fit
to the right-hand side. Because a strict improvement is obtained at each iteration,
cycling cannot occur and convergence is guaranteed. It is closely related to a number
of other algorithms proposed for nonnegative least-squares and quadratic programs.

The general Phase I problem is:

Find xj ≥ 0,
n∑

j=1

Pjxj = b, Pj ∈ �m, b ∈ �m. (6.58)

Both the Simplex Algorithm and the Least Squares (LSQ) Algorithm augment this
system by a set of artificial slack (errors) variables εT = ( ε1, ε2, . . . , εm ) unrestricted
in sign:

Find xj ≥ 0,
n∑

j=1

Pjxj + Iε = b, Pj ∈ �m, b ∈ �m. (6.59)

Both seek to minimize the absolute values of the εis. The Simplex Algorithm
objective z is to determine xj ≥ 0 and εi to minimize

z = |ε1|+ |ε2|+ · · ·+ |εm|. (6.60)

The LSQ objective z is to determine xj ≥ 0 and εi to minimize

z =
1
2

(
ε21 + ε22 + · · ·+ ε2m

)
. (6.61)

Each iteration of LSQ starts with an improved solution to the right-hand side:

gt =
p∑

i=1

Pjixji , xji > 0 εt = b− gt (6.62)

which is first tested to see if it is the best least-squares fit to b. If not the best, a
strictly improved feasible approximation is found next.

Definition (Basis): A set of independent columns B =
[
Pk1 , Pk2 , . . . , Pkq

]
is called a basis. The matrix R = BTB is called the basis norm and R−1 =
(BTB)−1 is the inverse of the basis norm.
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Definition (Least-Squares Approximation): q = Bξ is a basic (or least-
squares) approximation to b if B is a basis and ξ minimizes ||b−Bξ||2.

Definition (Basic Feasible Approximation): q = Bξ is called a basic feasible
approximation to b if ξ is a basic approximation that satisfies ξ > 0. In Phase I
we seek a basic feasible approximation q such that q = b.

Algorithm 6.2 (The Phase I Least-Squares Algorithm) The algorithm maintains
an update of the basis norm that is used to generate strictly improved basic feasible
approximate solutions η. It begins by finding an initial basis, an approximate least-squares
solution, and Lagrange multipliers (prices) as follows. Let s = argmaxj P

T
j b be the index

of the incoming column Ps. If P T
s ε ≤ 0, then terminate with the optimal approximate

solution x = 0:

1. Initialize. The initial basis is B = [Ps] and set R = BTB = ||Ps||2. Then R−1 =
1/||Ps||2; η = R−1

(
BTb

)
. The initial approximation satisfies η > 0.

2. Begin Cycle. Set
g = Bη, ε = b− g. (6.63)

3. Determine Index s of Incoming Column.

s = argmax
j

P T
j ε. (6.64)

4. Optimality Test. If P T
s ε ≤ 0 terminate. If ε = 0, a basic feasible solution η has been

found; if ε �= 0, report the problem infeasible, and g = Bη as the best approximate
solution, and the error = ||ε||.

5. Add Column to Basis. The updated basis B̄ is

B̄ = [B, Ps]. (6.65)

The updated basis norm is

R̄ = B̄TB̄ =

(
BTB BTPs

P T
s B P T

s Ps

)
=

(
R C
CT d

)
, (6.66)

where C = BTPs and d = P T
s Ps. The update of the inverse of the basis norm

R̄−1 =

(
R−1 0

0 0

)
+ (1/d̄)

(
C̄
−1

)
( C̄T −1 ) (6.67)

where C̄ = R−1C and d̄ = d− C̄TC.

6. Obtain Next Approximation If η̄ > 0. Set

η̄ = R̄−1(B̄Tb) (6.68)

If η̄ > 0 then η ← η̄, B ← B̄, R← R̄ and go to Step 2.

7. Drop Pjr from Basis. If η̄r = 0, drop corresponding columns Pjr from B̄, adjust
R̄−1, then go to Step 6. See the Exercises for an efficient way to adjust R̄−1 if one
or more components η̄i = 0.
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8. Delete Column from Basis. If η̄ ≥ 0 is not true, determine the maximum λ such
that

η̄ = (1− λ)

(
η
0

)
+ λη̄ ≥ 0. (6.69)

Go to Step 6.

� Exercise 6.28 Prove s �= jr, where s is the index of the incoming column (Step 3) and
jr is the index of the outgoing column (Step 7).

THEOREM 6.12 (Optimality Test) A feasible approximation

gt =
∑

j

Pjx
t
j , xt ≥ 0, εt = b− gt (6.70)

cannot be improved if

PT
j ε

t ≤ 0 for all j and PT
j ε

t = 0 for all xt
j > 0. (6.71)

THEOREM 6.13 (Improvement Possible) If the optimality test fails for
some j, an improved approximation can be found.

� Exercise 6.29 Prove Theorems 6.12 and 6.13.

� Exercise 6.30 If the p columns of the approximation (6.62) are not independent, show
how to generate an approximation

gt =

q∑
i=1

Pki x̄
t
ki
, x̄t

ki
> 0, q < p, (6.72)

where B =
[
Pk1 , Pk2 , . . . , Pkq

]
are a subset of independent columns of Pji . Note that gt

and εt = b− gt are the same gt and εt as in (6.62).

THEOREM 6.14 (Least-Squares Approximation) The ξ that minimizes
||b−Bξ||2 can be computed by solving(

BTB
)
ξ = BTb. (6.73)

� Exercise 6.31 Prove Theorem 6.14.

� Exercise 6.32 If B is a q-column basis, BTB is a q × q square, symmetric nonsingular
matrix.

THEOREM 6.15 (εOrthogonal to Columns of B) If B=
[
Pk1 , Pk2 , . . . , Pkq

]
is a basis and ξ minimizes ||b − Bξ||2, then ε = b − Bξ satisfies PT

ki
ε = 0 for

i = 1, . . . , q.
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� Exercise 6.33 Prove Theorem 6.15. Consider the problem: Find ξ ≥ 0, ε, min z
satisfying Bξ + Iε = b, z =

∑q

i=1
ε2i . Prove that the basic approximation is optimal if

ξ > 0, ε = b − Bξ. Prove this implies, by the optimality conditions (6.71), that P T
ki
ε = 0

for i = 1, . . . , q.

THEOREM 6.16 (Incoming Column Is Independent of Basic Columns) If
εTPs �= 0,

[
Pk1 , Pk2 , . . . , Pkq , Ps

]
= B̄ is an independent set of columns.

� Exercise 6.34 Prove Theorem 6.16.

� Exercise 6.35 Show how to apply R̄, the inverse of the updated B̄, to determine the
basic approximation ḡ = B̄ξ̄ where ξ = ξ̄ minimizes ||b− B̄ξ̄||2.

� Exercise 6.36 Given ε̄ = b− B̄ξ̄ (see Exercise 6.35) and ε = b−Bξ (see Theorem 6.16),
prove that εTPs < 0 implies ||ε̄||2 < ||ε||2.

� Exercise 6.37 Given η̄ from Step 8 of the LSQ algorithm, prove ĝ = B̄ξ̂, ε̂ = b− B̄ξ is
an improved feasible approximation; i.e., ||ε̂||2 < ||ε||2.

� Exercise 6.38 Show that the improvement step can only be repeated at most q times
before an improved feasible approximation is obtained.

� Exercise 6.39 Prove that the LSQ algorithm terminates after a finite number of iter-
ations

t <

(
n
0

)
+

(
n
1

)
+ · · ·+

(
n
m

)
.

6.8 NOTES & SELECTED BIBLIOGRAPHY
Over the years, a number of investigations have been systematically gathering empirical
data on the comparative efficiency of various proposals for choosing incoming columns in
the Simplex Method, such as the steepest descent criterion. Harold Kuhn of Princeton
and Philip Wolfe of RAND (independently) were particularly active doing this in the
early 1960s. Based on their preliminary findings, criteria independent of the units of the
activities or of the items appear to be well worth the additional effort. Computational
results on some new steepest edge Simplex Algorithms by Forrest & Goldfarb [1992] show
that the computational time savings can be significant; see also Bixby [2002] for additional
computational results.

Lemke [1954] developed the Dual-Simplex Algorithm as a variant of the standard
Primal-Simplex Algorithm; see also, Dantzig [1954a]. The dual problem is a linear program
and therefore can be solved by the steps of the Simplex Algorithm. These steps can be
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simplified by eliminating the identity submatrix. This results in an algorithm analogous to
the Primal-Simplex Method with criteria for choosing the outgoing basic columns and then
the incoming basic variables. For a variant, see Forrest & Goldfarb [1992] who propose a
steepest-edge criterion for choosing the outgoing variable during a Dual-Simplex iteration;
this has worked very well in practice, see Bixby [2002].

Gass & Saaty [1955a, 1955b, 1955c], in their papers on the parametric objective, studied
the case of fixed constant terms and varying cost coefficients. Other variants, computa-
tionally similar, are the “Method of Leading Variables”, by E. M. L. Beale [1954a] and the
“PLP (Parametric Linear Programming)”, by W. Orchard-Hays [1956], and Orchard-Hays,
Cutler, & Judd [1956],.

The proof of Theorem 6.9 under the assumption of a single degeneracy at a break
point in the dual basic solution is due to Gass & Saaty [1955a, 1955b, 1955c]. The proof
of Theorem 6.9 under the assumption of a single degeneracy at a break point in the
primal basic solution is due to Orchard-Hays [1956]. Some of the early pioneering work
on parametric programming was done by Manne [1956].

The parametric programming procedure described in Section 6.4 sometimes takes a lot
of work to find all ranges of θ for which optimal bases are available. Consider the following
example by Murty [1980], which is closely related to the one by Klee & Minty [1972] for
the Simplex Method:

Minimize

n∑
j=1

(θ − 2n−j)xj = z

subject to xi + 2

n∑
j=i+1

xj ≤ 4n−i, i = 1, . . . ,m,

x ≥ 0.

It can be shown that this problem has 2n basic feasible solutions, each of which is a unique
optimal solution for a suitably chosen value of the parameter θ. Therefore, any parametric
programming procedure would, in the course of varying θ, enumerate 2n solutions; clearly
this is impractical for this particular contrived problem when n is large.

The Self-Dual algorithm of Section 6.5 is an example of a composite algorithm. For
example, see Orchard-Hays [1954, 1956]. This algorithm is related to Newton’s method and
has been used by Smale [1983] for investigating the worst-case complexity of the Simplex
Method. For a discussion of the worst-case behavior of the Self-Dual Simplex Algorithm,
see Murty [1980].

The Primal-Dual method was first developed by Ford & Fulkerson [1956] for trans-
portation problems. Experiments indicate that the technique is very efficient for solving
such problems. It is closely related to the work of H. Kuhn [1955], who developed a special
routine for solving assignment problems, called the “Hungarian Method,” based on inves-
tigations by the Hungarian mathematician Egerváry [1931]. The Hungarian method was
generalized by J. Edmonds to a method called the blossom algorithm for solving weighted
matching problems in undirected networks (see, for example, Papadimitriou & Steiglitz
[1982]).

The Primal-Dual Method of Ford & Fulkerson was later extended to the general linear
program by Dantzig, Ford & Fulkerson [1956]; this is discussed in Section 6.6. These
alterations of the algorithm apply when the old basis still prices out optimally in the
new system and thus constitutes a feasible starting solution for the new dual. What
markedly distinguishes the Ford-Fulkerson algorithm for distribution problems from the
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more general case discussed here is that the former method uses a method of optimization
of the restricted primal, which appears to be more efficient for distribution problems than
the Simplex Method. The generalization to general linear programs, as originally published
in 1956, used the Simplex Method to solve the column-restricted subproblems, because it
was the the most efficient one available at that time. As pointed out in the text, any
method for solving the column-restricted problems will do. It turns out that the Primal-
Dual Algorithm may be viewed as a condensed sequence of simplex pivot steps. According
to R. Gomory (private communication), the Primal-Dual Algorithm is a simplex variant
whose number of iterations in practice is quite often fewer than that required by the
Dual-Simplex Method.

The Phase I Least-Squares Algorithm described in this chapter is based on a strictly
improving linear programming Phase I algorithm due to Leichner, Dantzig, & Davis [1993].
It is closely related to algorithms described, for example, by Björck, Å[1987], Lawson &
Hanson [1974], Dantzig [1963], and van de Panne & Whinston [1969].

6.9 PROBLEMS

6.1 Review the following results:

(a) Show that if a linear programming problem has a finite lower bound for
some given right-hand side, then it has a finite lower bound for any right-
hand side for which a feasible solution exists.

(b) Suppose that a feasible linear programming problem is augmented with ar-
tificial nonnegative variables whose sum is bounded below by a constant
(not necessarily zero). If z is minimized. prove that the minimum is not
necessarily finite even though min z of the original problem is finite. How-
ever, if the artificials are bounded from above, then min z is finite or infinite
depending on whether min z of the original problem is finite or infinite.

6.2 Develop the rules for the Dual-Simplex Method for a linear program in standard
form with upper and lower bounds on the variables.

6.3 Adapted from Hadley [1972]. The following procedure was suggested by Lemke
for getting started with the Dual-Simplex Method. Given a linear program
in standard form: min z = cTx, subject to Ax = b, x ≥ 0, find m linearly
independent columns from A. Let b∗ be any positive linear combination of
these m vectors. Next solve instead the problem with b replaced by b∗. If the
minimum is −∞, prove that no feasible solution to the dual exists. If a finite
optimal solution is found, replace b∗ with b. This gives a basic not necessarily
feasible solution to the original problem and a dual feasible solution. The Dual-
Simplex Method can now be used.

(a) Why does this procedure work?

(b) Do you think that this is a practical procedure for getting started with the
Dual-Simplex Method?

(c) Compare this procedure with the one discussed in this chapter.
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6.4 Develop a Phase I procedure to generate a feasible starting solution to a linear
program in standard form by adding a new row in such a way that it generates
an obvious starting dual-feasible solution. Show that this is the dual of the
Phase I procedure of adding one artificial variable.

6.5 Show that no basis can reoccur in the parametric linear programming procedure.
What assumption is made about degeneracy?

6.6 Solve the following LP by the Dual-Simplex Method

Minimize x1 + 4x2 + 2x3

subject to 2x1 + 3x2 − 2x3 ≤ 14
x1 − 2x2 − 2x3 ≤ 6
−x1 − 2x2 ≤ −10

and x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

6.7 Compute
f(θ) = min{cTx | Ax = b+ θd, x ≥ 0}

for all θ ∈ (−∞,∞) where c = (1, 2, 2, 0, 0, 0)T and

A =

(−2 2 −1 1 0 0
1 −1 3 0 1 0
1 1 1 0 1 1

)
, b =

(
2
1

10

)
, d =

(−1
−1
−1

)
.

6.8 Compute
g(θ) = min{(c+ θd)Tx | Ax = b, x ≥ 0}

for all θ ∈ (−∞,∞) where c = (1, 2, 0, 0, 0, 0)T , d = (5,−5,−5, 0, 0, 0)T , and

A =

(
2 −1 2 1 0 0
−1 2 −1 0 1 0
−1 1 1 0 1 1

)
, b =

(
1
1
1

)
.

6.9 Solve the following LP by the self-dual parametric algorithm.

Minimize 2x1 − 3x2 = z
subject to x1 + x2 ≤ 6

−2x1 + 4x2 ≤ −1
2x1 − 6x2 ≤ −2

and x1 ≥ 0, x2 ≥ 0.

6.10 Solve the following LP by the Primal-Dual Algorithm.

Minimize 3x1 + x2 + 3x3 + x4 = z
subject to x1 + 2x2 − x3 + x4 = 0

2x1 − 2x2 + 3x3 + 3x4 = 9
x1 − x2 + 2x3 − x4 = 6

and x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0.

6.11 Add slacks to von Neumann’s primal-dual pair of LPs, min cTx, Ax ≥ b, x ≥ 0,
and max bTy, ATy ≤ c, y ≥ 0, to get:

Minimize cTx

subject to Ax − Ixs = b
x, xs ≥ 0

Maximize bTy

subject to Iys + ATy = c
ys, y ≥ 0
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Let α and β be complementary subsets of S = {1, . . . ,m+ n}. In other words,
α ⊂ S , β ⊂ S , α ∪ β = S , and α ∩ β = ∅. Suppose also that α has m elements
(and hence β has n elements). Show that the square submatrix (A,−I)α is
nonsingular if and only if the square submatrix (I,AT )β is nonsingular. Thus
every basic solution to the primal has a corresponding complementary basic
dual solution. (These solutions need not be feasible).

(Hint: Let α1 and β1 be complementary subsets of 1, . . . ,m and α2 and β2

be complementary subsets of m + 1, . . . ,m + n such that α = α1 ∪ α2 and
β = β1 ∪ β2).

6.12 Ph.D. Comprehensive Exam, March 31, 1969, at Stanford. We know that a lin-
ear programming problem whose variables have upper and lower bounds permit
a special variant of the Simplex Method. It follows that the dual must also
permit a special variant.

(a) State the variant.

(b) Characterize the class of duals.

(c) State the special variant for the dual problem within the above framework.

6.13 Adapted from Ph.D. Comprehensive Exam, September 25, 1976, at Stanford.

(a) Given two vectors a = ( a1, a2, . . . , an )T and b = ( b1, b2, . . . , bn )T where
ai and bi are real and bi > 0. Given θ real, when is the index k that

Maximizes
i=1,...,n

ai

bi

the same as the index k that

Maximizes
i=1,...,n

ai + θbi.

(b) Describe a simplex-like algorithm for solving the fractional linear program

Maximize
aTx+ α

bTx+ β
subject to Ax = d,

x ≥ 0

assuming bTx + β is positive for all feasible x. Here a and b are n × 1.
Hint : This problem can be solved by using part (a) or it can be solved by
performing a change of variable to obtain an equivalent linear program in
(n + 1) variables where the linear program aTx = max, Ax = d, x ≥ 0, is
feasible and has a finite upper bound. See if you can develop the theory
about how to solve the fractional program when the linear program aTx =
max, Ax = d, x ≥ 0, is feasible and has an infinite upper bound.

6.14 Ph.D. Comprehensive Exam, September 26, 1992, at Stanford. Consider the
linear program

Minimize cTx = z
subject to Ax = b, A : m× n,

x ≥ 0.
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(a) Suppose that b is a linear function of a scalar parameter θ. Show, in general,
that z is then a convex function of θ.

(b) Show, however, that the value of some variable, such as x4 in the following
example, need not be either a convex or a concave function of θ.

4x1 + 2x2 + x4 = z (Min)
x1 − x3 + x4 = θ
x1 + x2 = θ
x1 − x3 + x5 = 1

x2 + x6 = 1
xj ≥ 0 for j = 1, . . . , 6.

6.15 Ph.D. Comprehensive Exam, September 23, 1978, at Stanford. Consider the
function f : �1 → �1 defined by:

f(θ) = Sup
{
(c1 + θc2)Tx | Ax = b1 + θb2, θ ≥ 0

}
(a) Describe carefully the nature of f including the cases of c2 = 0 or b2 = 0.

(b) How would you generate the graph of f?

6.16 Adapted from Ph.D. Comprehensive Exam, September 1981, at Stanford.

(a) Suppose it is known that any feasible solution to a linear program has the
property that xk > 0 for some value of k (for example, if in equation p,
all apj ≤ 0 except apk = 1). Pivot on any nonzero coefficient of xk in any
equation to eliminate xk from the remaining equations and the objective
equation. Prove that the resulting linear program in one less equation and
one less variable can be solved instead. Show how to use it to find an
optimal solution to the original linear program.

(b) If it is known in advance that a solution to a linear program cannot be
optimal unless xk > 0, show that this variable can be eliminated and the
reduced system with one less equation and one less variable can be solved in
its place. Show how to use the reduced problem to find an optimal solution
to the original linear program.

(c) If the procedure of (b), to eliminate some xk, is applied to the linear program
min cTx, Ax = b, x ≥ 0, and we obtain a solution in which xk < 0, this
implies that either at least one feasible optimal solution of the original
problem has xk = 0 or the original problem is infeasible.

(d) Outline a possible algorithm that could make practical use of the concepts
of (a) and (b) to solve a linear programming problem that is a scenario, i.e.,
a variant of problem already solved and for which it is reasonable to assume
that most of the basic variables of the optimum solution of the scenario will
turn out to be the same (i.e., positive) as that of the originating problem
but a few (not known in advance) will turn out not to be in the optimal
solution.

6.17 Ph.D. Comprehensive Exam, Fall 1985, at Stanford. Consider the polyhedral
convex set

X = {x | Ax ≤ b },
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where A is an m× n matrix and b is an m-vector. Assume that X is nonempty.
Let θ denote an arbitrary real number. By definition:

θX = { θx | x ∈ X }.

(a) Show that for any positive real number θ:

θX = {x | Ax ≤ θb }.

(b) If the linear program

Maximize eTy = z
subject to Ax + y = θb

x free
0 ≤ y ≤ e, θ ≥ 1

(6.74)

where e = (1, 1, . . . , 1)T ∈ �m has a feasible solution for some choice of
θ ≥ 1, it has an optimal solution.

(c) Write the dual of the linear program (6.74).

(d) Suppose that we want to know whether the set

B(X ) =
{
i | [Ax]i = bi for all x ∈ X

}
is nonempty and, if so, what its elements are. Assuming exact arithmetic,
show that this can be done by solving the linear program (6.74) and inter-
preting its solution.

6.18 Show that if no artificial variables remain in the basic set using the Primal-Dual
Algorithm, the solution is optimal.

6.19 The following technique can be used to generate a starting dual feasible solution
for the Primal-Dual and the Dual-Simplex Method. For convenience, assume
that the variables have been relabeled so that the first m variables are basic and
variables xm+1, . . . , xn are nonbasic. If a dual feasible solution is not available
then construct an augmented problem by adding an artificial variable x0 with
cost coefficient 0 and an artificial constraint of the form

x0 + xm+1 + · · ·+ xn = M

where M is a very large number. Next pick c̄s = min c̄j < 0; we know such a c̄s
exists because the current basis is not dual feasible. Show that by pivoting on
xs we generate a dual feasible solution. Prove that if the augmented problem is
primal-infeasible then so is the original problem. Suppose that after applying
the Dual-Simplex Method the algorithm terminates with an optimal solution.
Discuss the properties of the solution to the original problem in the cases when
the optimal solution to the augmented problem contains x0 and when it does
not contain x0.



C H A P T E R 7

TRANSPORTATION

PROBLEM AND

VARIATIONS

The general case of the transportation problem (TP) is the minimum-cost capaci-
tated network-flow problem

Minimize cTx
subject to Ax = b, A : m× n,

l ≤ x ≤ u,
(7.1)

where each column A•j has at most one positive coefficient +1 and at most one
negative coefficient −1. This matrix structure implies that every basis is triangular
and that all basic solutions have integer values if the right-hand side and upper and
lower bounds have integer values.

7.1 THE CLASSICAL TRANSPORTATION
PROBLEM

The classical transportation problem, described here, can be shown to belong to
the class of the general minimum-cost capacitated network-flow problem.

207
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7.1.1 MATHEMATICAL STATEMENT

The classical transportation problem is as follows:

Minimize
m∑

i=1

n∑
j=1

cijxij = z

subject to
n∑

j=1

xij = ai, i = 1, . . . ,m,

m∑
i=1

xij = bj , j = 1, . . . , n,

xij ≥ 0, i = 1, . . . ,m, j = 1, . . . , n,

(7.2)

where
m∑

i=1

ai =
n∑

j=1

bj = T, ai ≥ 0, bj ≥ 0. (7.3)

Note that in this chapter, the symbolsm and n denote the number of sources and
demand centers, respectively, and are not the symbols used to denote the number
of constraints and variables for a general linear program. In this case the number of
equations is m+ n and the number of variables are mn. A network representation
of the classical transportation problem is shown in Figure 7-1.

7.1.2 PROPERTIES OF THE SYSTEM

RANK OF THE SYSTEM

LEMMA 7.1 (Rank of the Transportation Problem) The rank of the sys-
tem (7.2) is exactly m+ n− 1. Furthermore, each equation is a linear combination
of the other m+ n− 1 equations so that any one equation may be called redundant
and may be discarded if convenient to do so.

COROLLARY 7.2 (Number of Basic Variables) There are exactly m+n−1
basic variables xij .

� Exercise 7.1 Prove Lemma 7.1 and Corollary 7.2.

COMPACT REPRESENTATION

The special structure of the transportation problem allows us to compactly represent
the variables xij in an m× n array such that the sum across the rows correspond to
the demand constraints and the sums across the columns correspond to the supply
constraints. A rectangular array suitable for solving such a transportation problem
is shown in Figure 7-2 for a 3× 5 case.

In Figure 7-2 the column of cells to the right of the double vertical lines is called
the marginal column and the row of cells below the double horizontal lines is called
the marginal row. The rest of the cells is referred to as the rectangular array.
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Figure 7-1: Network Representation of the Transportation Problem

c11 c12 c13 c14 c15

c21 c22 c23 c24 c25

c31 c32 c33 c34 c35

a1

a2

a3

b1 b2 b3 b4 b5

x11 x12 x13 x14 x15

x21 x22 x23 x24 x25

x31 x32 x33 x34 x35

u1

u2

u3

v1 v2 v3 v4 v5

Figure 7-2: Example of Standard Transportation Array
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BASIS TRIANGULARITY

A fundamental property of a transportation (or network-flow) problem is that every
basis is triangular.

Definition (Triangular Matrix): We give the following two equivalent defini-
tions of a triangular matrix:

1. A square matrix is said to be triangular if it satisfies the following prop-
erties.

(a) The matrix contains at least one row having exactly one nonzero
element.

(b) If the row with a single nonzero element and its column are deleted,
the resulting matrix will once again have this same property.

2. Equivalently, we can define a square matrix to be triangular if its rows
and columns can be permuted to be either an upper triangular or lower
triangular matrix.

Before we prove that every basis is triangular, we establish the following three
lemmas.

LEMMA 7.3 (At Least One Basic Entry) Every row and column has at
least one basic variable.

Proof. By Lemma 7.1 we can drop any one of the equations as redundant without
affecting the solution and the rank of the system is m+ n− 1. It then follows that
each of the m + n − 1 equalities must have at least one basic variable with a +1
coefficient.

LEMMA 7.4 (Exactly One Basic Entry) There is at least one row or column
in the transportation array with exactly one basic entry.

Proof. Assume, on the contrary, that no row or column has exactly one basic
variable. By Lemma 7.3, every row and column has at least one basic entry. Hence,
all columns (or rows) under our contrary assumption must have two or more basic
entries.

The total number of basic entries in the array is m+ n− 1 by Lemma 7.1; let

k = m+ n− 1. (7.4)

Then since there are at least two such entries per column, we must have

k ≥ 2n.

Similarly, there are at least two such entries per row, and thus we must have

k ≥ 2m.
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Summing these two, we get the number of basic entries k must satisfy

k ≥ m+ n. (7.5)

This contradicts (7.4). Therefore the contrary assumption is false, implying that
there must be at least one row or column with exactly one basic variable.

LEMMA 7.5 (Single Basic Entry Exists after Deletion) The subsystem
obtained by removing any redundant equation from the original system will still
contain an equation with exactly one basic variable.

Proof. Drop some equation as redundant, say the last row equation. Once again
make the contrary assumption, that no row or column has exactly one basic variable.
Let k′ be the total number of basic variables in all but the last row. It is clear that

k′ ≥ 2(m− 1). (7.6)

Since there is at least one basic entry in the last row, we have

k ≥ k′ + 1, (7.7)

and
k ≥ 2n. (7.8)

Adding the relations we get

2k ≥ 2m+ 2n− 1, (7.9)

or
k ≥ m+ n− 1

2
, (7.10)

contradicting the fact that k = m+ n− 1. This proves the lemma.

THEOREM 7.6 (Fundamental Theorem: TP Basis Is Triangular) Every
basis of the transportation problem (7.2) is triangular.

Proof. Consider a standard transportation array, such as Figure 7-2, with m
rows and n columns and with arbitrary marginal constants, ai and bj. Consider
any particular set of basic variables and substitute the value zero for each of the
nonbasic variables. Now, starting with the original array, we set the value of the
basic variable in the column or row with a single basic variable (by Lemma 7.4 we
know such a row or column exists) equal to its marginal value. We then obtain
a Reduced Array by deleting the row or column having a single basic entry and
reduce the value of the mariginal value of its column or row by its value. We next
repeat the argument for the reduced array (by Lemma 7.5), thereby establishing
the theorem.
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INTEGER SOLUTION PROPERTY

THEOREM 7.7 (Integrality Property of Basic Variables) All the basic
variables have integer values if the row and column totals ai and bj are integers.

Proof. It is not possible to obtain fractional values when the right-hand sides of
the equations have integer values, because the nonzero coefficients of +1 imply that
all the variables are either set equal to the right-hand side or evaluated by simple
subtractions.

THEOREM 7.8 (Integral Property of Multipliers) When the unit costs,
cij , are integers and any one simplex multiplier (ui or vj) is given an arbitrary
integral value, then all the simplex multipliers will be integers.

Proof. Since the basis is triangular and of rank m + n − 1, so is its transpose.
Hence, once we assign an arbitrary integral value to the multiplier of a redundant
row, the values of the remaining ui and vj satisfying

cij = ui + vj for xij basic

can be obtained uniquely in the same manner as the values of the basic variables; i.e.,
by looking for one equation in one unknown, etc. Since the coefficients in the basis
are either unity or zero and one of the multipliers is arbitrarily assigned an integral
value, the values of ui and vj will be sums and differences of cij corresponding to
basic variables.

From the proof it is easy to show that the A matrix is unimodular as defined
below.

Definition (Unimodular): An m× n matrix A of rank r is said to be unimod-
ular if and only if every element of it is an integer and every square submatrix
of size r has a determinant of +1, −1, or 0.

Definition (Totally Unimodular): An m× n matrix A is said to be totally
unimodular if and only if every element of it is an integer and every square
submatrix has a determinant of +1, −1, or 0.

It is obvious that if a matrix is totally unimodular then all the entries are either
+1, −1, or 0.

� Exercise 7.2 Consider the linear program cTx subject to Ax = b, x ≥ 0. Show that if
A is totally unimodular and b is an integer vector then every basic solution is integral.

� Exercise 7.3 For the transportation problem (7.3) or its dual, show that the coefficient
matrix is totally unimodular.
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� Exercise 7.4 Construct a totally unimodular matrix that is not the coefficient matrix
of a transportation problem or its dual.

� Exercise 7.5 Show that the inverse of a basis for the transportation problem has only
−1, 0, or +1 as its elements.

7.2 FINDING AN INITIAL SOLUTION

We have shown that every basis in the classical transportation problem is triangular.
This fact makes it easy to generate a starting basic feasible solution. The simplest
way to generate a starting basic feasible solution is by the following triangularity
rule (algorithm), also described in Linear Programming 1.

Triangularity Rule: Choose arbitrarily any variable xpq as the candidate for the
first feasible basic variable. Make xpq as large as possible without violating the row
and column totals, i.e., set

xpq = min { ap, bq }. (7.11)

The next variable to be made basic is determined by this same procedure after
reducing the rectangular array depending on which of the following three cases
arises:

1. If ap < bq, then all the other variables in the pth row are given the value zero
and designated as nonbasic. Next the pth row is deleted, and the value of bq
in column q is reduced to (bq − ap).

2. If ap > bq, then all the other variables in the qth column are given the value
zero and designated as nonbasic. Next the qth column is deleted and the value
of ap in row p is reduced to (ap − bq).

3. If ap = bq, then randomly choose either the pth row or the qth column to be
deleted, but not both. However, if several columns, but only one row, remain
in the reduced array, then drop the qth column, and conversely, if several rows
and one column remain in the reduced array, drop the pth row. If the pth row
is deleted, the value of bq in column q is reduced to 0. If the qth column is
deleted, the value of ap in row p is reduced to 0.

If after deletion of a row or column there remains only one row or one column,
then all remaining cells are basic and are evaluated in turn as equal to the residual
amount in the row or column. On the last step exactly one row and one column
remain, and both must be dropped after the last variable is evaluated. Thus, this
Triangularity Rule will select as many variables for the basic set as there are rows
plus columns, less one, i.e., m+ n− 1.
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� Exercise 7.6 Show that every reduced array retains the property that the sum of the
remaining demand (or marginal row total) is equal to the sum of the remaining supply (or
marginal column total). This implies that the last remaining variable can acquire a value
consistent with the totals for the single row and column still remaining in a final reduced
array.

THEOREM 7.9 (Triangularity Rule Creates a Basic Set) The set of can-
didate variables chosen for an initial solution by the Triangularity Rule constitutes
a basic set, and conversely every basic set could have been generated by such a rule.

Proof. The variables picked out by the Triangularity Rule and called “basic” will
be true basic variables if we can find values for them when we set the remaining
variables equal to zero and arbitrarily choose the values of the right-hand-side equa-
tions excluding one that is redundant. The rule actually decides which equation is
redundant, namely either row or column associated with the last “basic” variable
evaluated. Then arbitrarily choose the values of ai and bj except for this redundant
row or column in the transportation array. If marginal bq− ap was used to evaluate
xpq then use the modified bq−ap to evaluate xpq even if it is negative, etc. To prove
the converse, we note that we have already shown that the basis is triangular and
therefore the evaluation process of finding a row or column with a single entry is
exactly what the rule would find if we mark in advance the cells that are basic.

COROLLARY 7.10 (Totals as Partial Sums) Every row total of a reduced
array is equal to some partial sum of the ai minus some partial sum of the bj,
whereas every column total of the reduced array is some partial sum of the bj minus
some partial sum of the ai.

� Exercise 7.7 Use induction to prove Corollary 7.10.

Each basic variable was chosen arbitrarily in the original and subsequent reduced
arrays. Several authors have suggested Emperical rules that provide a “good” basic
solution to start Phase II of the Simplex Method. See Linear Programming 1 for
several such rules, for example: Northwest Corner Rule, The Least Remaining Cost
Rule, Vogel’s Approximation Method, and Russel’s Approximation Method.

7.3 FINDING AN IMPROVED BASIC
SOLUTION

To distinguish the multipliers corresponding to the rows from those of the columns
of the transportation array, let ui represent the multiplier for the ith-row equation,
and let vj represent the multiplier for the jth-column equation instead of using πk

for all equations k as we did earlier.
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In order for a basic column (i, j) to price out to zero, we must have

cij = ui + vj for xij basic, (7.12)

because column (i, j) has exactly two nonzero coefficients: +1 corresponding to
equation i in the demand equations and +1 corresponding to equation j in the
supply equations; see (7.2).

The reduced costs c̄ij are given by

c̄ij = cij − (ui + vj) for i = 1, . . . ,m, j = 1, . . . , n. (7.13)

The c̄ij corresponding to the basic variables are all zero by (7.12). The basic feasible
solution is optimal if c̄ij ≥ 0 for all the nonbasic variables, that is

cij ≥ ui + vj for i = 1, . . . ,m and j = 1, . . . , n. (7.14)

Thus if for some r and s
crs < ur + vs, (7.15)

then a new basic feasible solution can be obtained by increasing the value of the
nonbasic variable xrs, if possible, and adjusting the values of the basic variable to
compensate.

THEOREM 7.11 (Changes in Values of Basic Variables) In the trans-
portation problem (7.2), if the value of a nonbasic variable xrs is allowed to increase,
with the other nonbasic variables remaining at zero, the value of any basic variable
xpq will change from xt

pq to

xt+1
pq = xt

pq + δpqx
t
rs, (7.16)

where δpq = −1, 0, or +1.

Proof. Given a basis B, for a linear program in standard form, as the nonbasic
variable xs is allowed to increase, the value of the ith basic variable is given by

xji = b̄i − āisxs

where b̄ is obtained by solving Bb̄ = b and Ā•s is obtained by solving BĀ•s = A•s.
Note the index pair (r, s) for the incoming basic variable xrs, corresponds to

index s for the incoming variable of the general linear program; and the index pair
(p, q) for the outgoing variable xpq corresponds to the index jr for the outgoing
basic variable of the general linear program. For the transportation problem, the
coefficients of the terms involving xrs are unity in the rth-row equation and in
the sth-column equation, and zero elsewhere. Hence, the coefficient of xrs in the
canonical form can be obtained by solving for the values imposed on the basic
variables when the constants are replaced by ar = 1 and bs = 1, while all other ai

and bj are zero (this is equivalent to solving BĀ•s = A•s for a linear progam in
standard form). By Corollary 7.10, the value of a basic variable is the difference
(positive or negative) between some partial sum of the ai (which in this case can
only be unity or zero because only ar = 1), and some partial sum of the bj (also
unity or zero because only bs = 1). This difference must clearly be +1, 0, or −1.
This completes the proof.
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x11 x12 x13 x14 1
3 5 5 11 u1

x21 x22 x23 x24 1
9 7 9 15 u2

x31 x32 x33 x34 1
7 7 11 13 u3

x41 x42 x43 x44 1
13 13 13 17 u4

1 1 1 1
v1 v2 v3 v4

Figure 7-3: Cycling in the Transportation Problem

7.4 DEGENERACY IN THE
TRANSPORTATION PROBLEM

Degeneracy may lead to cycling in the transportation problem if the entering vari-
able is always chosen with a negative reduced cost but not necessarily the most
negative reduced cost; see Example 7.1. It is not known if cycling can occur in a
transportation problem if the entering variable is always chosen by the usual rule of
picking the one which has the most negative reduced cost. See Section 5.1 for non-
transportation examples where cycling occurred using the most negative reduced
cost rule.

Example 7.1 (Cycling When Not Using the Most Negative Reduced Cost
Rule) Consider the transportation problem defined by the transportation array in Fig-
ure 7-3. Recall that the xij are in the upper-left corner and the specified costs cij are in
the lower-right corner of the cells in the rectangular array; the specified row availabilities
ai are in the upper-left corner and the row multipliers ui are in the lower-right corner of
the marginal column; the specified column demands bj are in the upper-left corner and
the column multipliers vi are in the lower-right corner of the marginal row.

An initial basic feasible set of variables is {x11, x22, x33, x44, x12, x23, x34}. All pivot
steps in this problem are degenerate pivot steps and the problem cycles after 12 iterations
if the entering and leaving variable pairs at each iteration are: {x13, x23}, {x42, x12},
{x32, x34}, {x41, x42}, {x43, x13}, {x21, x41}, {x31, x32}, {x24, x21}, {x23, x43}, {x14, x24},
{x34, x31}, {x12, x14}. Notice that in the last four iterations x12, x23, and x34 come back
into the basis, thus repeating the initial basis. Note that the first four variables never leave
the basic set.

It is interesting from a theoretical perspective to develop a guaranteed anti-
cycling scheme for the transportation problem. The earliest such scheme for pre-
venting cycling in the transportation problem is based on a simple perturbation.

If any ai = 0 (or bj = 0) we can drop row i (column j) and the variables in
its row (column) from the problem: therefore we can assume that all ai and bj are
positive. Degeneracy in the transportation problem can be avoided by considering
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1 1

ε 1 + ε 1 + 2ε
dropped

1 + ε 1 + ε

1− θ θ∗ 1

ε+ θ 1 + ε− θ 1 + 2ε
dropped

1 + ε 1 + ε

Figure 7-4: Perturbing the Transportation Problem

the class of perturbed problems

Minimize
m∑

i=1

n∑
j=1

cijxij = z

subject to
n∑

j=1

xij = ai, i = 1, . . . ,m− 1,

n∑
j=1

xmj = am + nε,

m∑
i=1

xij = bj + ε, j = 1, . . . , n,

xij ≥ 0, i = 1, . . . ,m, j = 1, . . . , n.

(7.17)

For the discussion that follows, we assume that the last row equation (i.e., the row
corresponding to am) is dropped as redundant.

Cycling can be prevented as follows. Assume, to initiate the algorithm, that an
arbitrary basic solution is chosen by the Triangularity Rule described in Section 7.2,
except that no xmj is selected for a basic variable until all other rows i �= m have
been eliminated (see the left part of Figure 7-4). On any subsequent iterative step,
if there is a tie as to which basic variable to drop from the basis when ε = 0, cycling
may occur. Cycling can be prevented by letting ε �= 0 and choosing to drop the
basic variable with the smallest coefficient of ε among those tied. We will prove
that the (i, j) associated with the smallest coefficient is unique. See the right part
of Figure 7-4, where the smallest coefficient of ε, among those tied, is for x11.

� Exercise 7.8 Work out the details of Example 7.1 to show that the choice of entering
variable is not based on the most negative reduced cost rule.

� Exercise 7.9 Show that using the most negative reduced cost rule, the algorithm does
not cycle on Example 7.1.
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� Exercise 7.10 Prove that the Triangularity Rule can be applied to generate a basic
feasible solution without choosing xmj for basic variables until all other rows i �= m have
been eliminated.

THEOREM 7.12 (Basic Feasible Solution Is Nondegenerate for Perturb-
ed Problem) Every basic feasible solution for the perturbed problem is nonde-
generate for all 0 < ε < ε̄ for some ε̄ > 0.

Proof. Let p be the coefficient of ε in any row total (excluding the last row
total because the last row has been dropped) of the reduced array and let q be the
coefficient of ε in any column total of the reduced array.

We first establish that p is either zero or negative and that q is strictly positive
in the reduced array. The coefficient of ε in any row total of the original or reduced
array (excluding row m) is either zero or negative, because it is composed of a non-
vacuous partial sum of the ai, minus a (possibly vacuous) partial sum of the bj + ε.
Similarly, the coefficient of ε for any column total of the original or reduced array is
always positive, because it is composed of a (nonvacuous) partial sum of the bj + ε
minus a (possibly vacuous) partial sum of the ai (since we are excluding am + nε).

We next establish that the initial basic solution is nondegenerate for a positive
range of ε in the neighborhood of ε = 0. To do this we will prove that at any
stage of evaluating the values of the basic variables in using the Triangularity Rule,
the reduced row totals for rows with coefficient of ε = 0 are strictly positive and
the reduced column totals for columns with coefficient of ε = 0 are nonnegative.
Initially all ai and bj are positive; however for the inductive proof all we need
is all ai positive and all bj nonnegative. Suppose inductively that for some step
of the Triangularity Rule for forming the initial solution it is still true for some
reduced array, that a′i = α − pε (where α is positive and p is nonnegative), and
that b′j = β + qε (where β is nonnegative and q is positive). If xij becomes a basic
variable, then its value is min

[
(α− pε), (β+ qε)

]
. For the case α ≤ β, the row total

is satisfied and the new column total becomes (β − α) + (p + q)ε, where (β − α)
is nonnegative and (p + q) is positive. On the other hand, if β < α, then, for ε in
some range 0 < ε < ε̃, the column total is satisfied, and the new row total becomes
(α− β)− (p+ q)ε, with (α− β) and (p+ q) both positive. In either case xij > 0 for
0 < ε < ε̃ for some ε̃ > 0.

We now show that the basic solution for any subsequent iteration t of the Simplex
Method is nondegenerate for some positive range of ε. At the start of the iteration
we pick the incoming variable and then an outgoing basic variable (we shall see that
the latter choice is unique for 0 < ε < εt). We have already seen that the basis
(formed by excluding the last row equation) is triangular, and, from Theorem 7.9,
we can solve for the values by using the Triangularity Rule to obtain a feasible
solution. Thus we have that the values of the new basic variables are of the form
γ + νε, where (by a repetition of the same argument) either γ > 0 and ν arbitrary,
or γ = 0 and ν > 0. Hence, the new basic solution must be nondegenerate for some
range 0 < ε < εt.
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+x̂11 −x12 −x13

−x21 +x̂22 −x23

−x31 −x32 +x̂33

= â1

= â2

= â3

=
b̂1

=
b̂2

=
b̂3

Figure 7-5: Example of a Standard Transshipment Array

In general, for any sufficiently small ε, there will be a positive (nonzero) decrease
in the value of z associated with the basic solution after each iteration. It can be
shown that no basic feasible solution can be degenerate if 0 < ε < 1/n. (See
Exercises 7.11 and 7.12.) Thus, no basis can be repeated, and the algorithm will
terminate in a finite number of steps.

� Exercise 7.11 (Orden [1956]) Prove that if ai, bj are integers for i = 1, . . . ,m,
j = 1, . . . , n and if bj are replaced by bj +(1/n) and am by am +1, then every basic feasible
solution of the new problem is nondegenerate and the corresponding basic solution for the
original unperturbed problem is always feasible. How can this be used to guard against
the possibility of cycling?

� Exercise 7.12 (Orden [1956]) With reference to Exercise 7.11, show that fractions
can be avoided in applying the Simplex Algorithm if the original bj are replaced by nbj +1
and ai by nai except am by nam + n.

7.5 TRANSSHIPMENT PROBLEM

7.5.1 Formulation

In the classical Hitchcock transportation problem, shipments are made only from
cities where goods are produced (origins) to cities where goods are consumed (desti-
nations); shipments do not take place between origins or between destinations, nor
from destinations to origins. In practice, however, the best method of distribution
may be through intermediate points (each of which may also serve as a source or as
a destination). Shipments through intermediate points are called transshipments.

Here we shall consider a generalized transportation model in which transship-
ment through intermediate cities and local production and local consumption are
permitted. See Figure 7-5 for an example of a 3× 3 transshipment array. It states
that for each city (j, j) there is a material-balance equation stating that the amount



220 TRANSPORTATION PROBLEM AND VARIATIONS

shipped out minus that shipped in is equal to the net amount produced there (if
positive), or net amount consumed there (if negative). For every city j this implies
for j = 1, . . . , n:

Gross Supply (x̂jj) = Total Amount Shipped Out (xjk) + Consumed (b̂j)
= Total Amount Shipped In(xij) + Produced(âj)

or, in equation form, for j = 1, . . . , n,

x̂jj =
∑
k �=j

xjk + b̂j

=
∑
i�=j

xij + âj ,
(7.18)

where

x̂jj = gross supply at j, x̂jj ≥ 0, cjj = 0,
xij = total quantity shipped from i to j for i �= j, xij ≥ 0.

b̂j = the consumption at city j, b̂j ≥ 0.
âj = the production at city j, âj ≥ 0.

The transshipment problem consists in finding xij ≥ 0 and min z satisfying (7.18)
and the objective equation

n∑
i=1

n∑
j=1
j �=i

cijxij = z. (7.19)

Excluding the cost factor, each column in standard LP format contains only two
nonzero coefficients, either both +1 or both −1 (or one nonzero coeficient +1). The
standard transportation model is clearly a special case of this formulation. However,
in Section 7.5.3 we shall show that the general transshipment problem is equivalent
to the classical transportation problem. More generally, if we allow surplus or
shortage, then the rows include slack variables whose corresponding columns contain
only one nonzero coefficient +1 or −1.

� Exercise 7.13 Show that no feasible solutions exist for the transshipment model shown
unless the total production equals the total consumption. Show, however, if we allow
surplus or shortage this is no longer true.

� Exercise 7.14 Write down the detached coefficient form for the transshipment problem
given by equations (7.18) and (7.19).

Let aj be the net production (referred to as the net amount available) in city j
and let bj be the net consumption (referred to as the net amount required) in
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Figure 7-6: The Transshipment Problem

the city. Then the following relationships hold between net production aj and net
consumption bj and gross production âj and gross consumption b̂j at city (node) j:

aj = âj −min(âj , b̂j), (7.20)

bj = b̂j −min(âj , b̂j). (7.21)

The transshipment problem defined by equations (7.18) and (7.19), in standard
LP format, contains n(n− 1) columns corresponding to the number of ways to ship
from each city to any other city. If, however, all shipments are routed from one city
to another by means of a chain of links between neighboring cities, then we need
consider only the network composed of such local links and need not need to find
minimum path costs from every node i to every node j. All the variables dealing
with shipments to non-neighboring cities can be ignored; that is, all variables xij

not corresponding to a local link are inadmissible.

Example 7.2 (Shipping Costs) In the network shown in Figure 7-6, the cost cij , of
shipping a ton of goods from i to a neighboring point j, is shown on the relevant links:
thus c36 = 13 is the cost from 3 to 6. We have not shown c63, the cost from 6 to 3, because
in this example we assume each cij equals cji. The theory we will develop, however, is
valid even when cij �= cji.

Although freight rates between two cities are often the same regardless of the
direction of shipment, there may be a good economic reason why they might be
different. A situation in which cij is not equal to cji might actually arise in a
pipeline system if i is at the top of a mountain and j is in a valley because it costs
less to pump downhill than up. Also, as a stabilizing influence in certain economic
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applications, it would be in the public interest to have differing rates to encourage
use of a highway at times of least use.

7.5.2 REDUCTION TO THE CLASSICAL CASE BY
COMPUTING MINIMUM COST ROUTES

In formulating the transshipment model, we assumed no knowledge of costs except
between a subset of pairs of cities (defined to be neighboring cities; and the arcs are
defined to be local links), but we assume that the shipping costs between any pair of
non-neighboring cities can be obtained by finding the minimum sum of costs along
chains of local links which connect the two cities through all possible intermediate
points. For small problems, it may not be too difficult to determine all the minimum
costs merely by inspecting the network. The actual freight rate between a pair of
cities is defined to be the least-cost obtained by this additivity process. If this is
less than the local link, then another arc is added to this transshipment network
with this lower cost.

Example 7.3 (Cheapest Way to Ship) For instance, the cheapest way to ship from
1 to 6 in the network example of Figure 7-6 is along the link from 1 to 2 and then to 6.
Hence, we can set c16 = c12 + c26 = 9 + 12 = 21. In this way the transshipment problem
can be reduced to the following classical transportation problem:

x12 x16 x18 a1 = 7
9 21 29

x52 x56 x58 a2 = 3
9 6 13

b1 = b2 = b3 =
4 4 2

� Exercise 7.15 Verify that the cheapest cost route in Figure 7-6 from sources 1 and 5
to destinations 2, 6, and 8 is as shown in Example 7.3. Solve the transportation problem
and interpret the results to determine the actual shipping routes. Put these amounts back
in Figure 7-6 and verify that the conservation-of-flow conditions are satisfied.

7.5.3 REDUCTION TO THE CLASSICAL CASE BY THE
TRANSSHIPMENT PROCEDURE

In this section our purpose is to show an alternative approach to the minimum-cost
approach of converting the transshipment problem to the classical transportation
problem, which has certain advantages:

1. It avoids the necessity of determining a least-cost route for every origin-
destination pair.

2. It permits treatment of problems in which certain arcs of the network have
fixed capacities bounding the flows over these arcs.
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3. It may involve fewer variables, because the number of arcs of a network is
often considerably less than the number of origin-destination pairs.

We shall modify the problem to include the amount transshipped xjj through
point j instead of the gross supply x̂jj at point j. In order to define xjj , there are
two cases to consider: the production at j is greater than the consumption there,
i.e., âj ≥ b̂j , or vice versa. Note that

aj = âj − b̂j if âj ≥ b̂j ,
bj = b̂j − âj if âj < b̂j .

It is straightforward to see that the following relations hold:

xjj = x̂jj − âj if âj ≥ b̂j , (7.22)

xjj = x̂jj − b̂j if âj < b̂j . (7.23)

These equations imply that

xjj = x̂jj − âj − b̂j + min(âj , b̂j). (7.24)

Susbtituting (7.24) in (7.18), the transshipment problem can be stated as:

Minimize
n∑

i=1

n∑
j=1

cijxij = z

subject to
n∑

j=1
j �=i

xij − xii = ai, i = 1, . . . , n,

n∑
i=1
i�=j

xij − xjj = bj , j = 1, . . . , n,

xij ≥ 0, i = 1, . . . , n, j = 1, . . . , n,

(7.25)

with cjj = 0 for all j. At this point it is still not in the form of a classical trans-
portation problem.

� Exercise 7.16 Write down the standard array (see Figure 7-5) for the transshipment
problem displayed in (7.25).

THEOREM 7.13 (Triangularity of Basis) Every basis for the transshipment
problem is triangular.

� Exercise 7.17 Prove Theorem 7.13.

THEOREM 7.14 (Diagonal Entries Are Part of the Basic Set) For the
transshipment problem (7.18), the diagonal variables, xjj or x̂jj , are a part of every
basic feasible set.
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Proof. Consider a new transshipment problem for which âj and b̂j in (7.18) is
replaced by âj + ε and b̂j + ε respectively, where ε is an arbitrary positive number,
and x′ij = xij are the new values of the variables for i �= j and x′jj = x̂jj + ε ≥ ε for
i = j. Hence the diagonal variables, x̂jj , are positive and therefore must form part
of every basic feasible set.

From a procedural point of view, it is not desirable to transform the problem
explicitly, since we can accomplish the same end simply by allowing the supply vari-
ables x̂jj an unrestricted range of values. They will then be retained in the basic set,
once they have entered it, even though their values may be zero. The same applies
to the transshipment variables xjj since they are in one-to-one correspondence.

THEOREM 7.15 (Relationship For Implicit Prices) The implicit prices,
uj and vj, for the transshipment problem can be made to satisfy the relation

− uj = vj for j = 1, . . . , n. (7.26)

Proof. The costs cij = ui + vj for all basic variables xij . Since cjj = 0, and
according to Theorem 7.14 xjj is basic, it follows that −uj = vj .
Note: It is common practice to use πj to denote the common values −uj and vj .

The transshipment problem (7.25) differs from the classical transportation prob-
lem in that feasible solutions exist in which xij → ∞. To see this consider the
values in a 2×2 diagonal submatrix formed by the intersection of rows i and j with
columns i and j. These values can be increased by an arbitrary constant γ, since
the row and column sums of the resulting subarray remain unchanged, as in(

−xii xij

xji −xjj

)
is equivalent to

(
−(xii + γ) (xij + γ)

(xji + γ) −(xjj + γ)

)
. (7.27)

If all costs cij > 0 for i �= j (recall that cjj = 0), it clearly never pays to transship
an amount greater than the total available from all sources. However, if cij < 0 for
some i �= j, there may be no lower bound for the objective function z. For example,
if cij + cji < 0, then z → −∞ for the class of solutions generated by γ → +∞ in
(7.27). More generally, it would pay to have such a circulation in the flow of the
network whenever the sum of the cij around some loop is negative.

� Exercise 7.18 In the transshipment problem (7.25) show that if
∑n

i=1
ai �=

∑n

j=1
bj

then no feasible solutions exist, and that if
∑n

i=1
ai =

∑n

j=1
bj , then feasible solutions

exist.

THEOREM 7.16 (Optimal Amount Transshipped Is Bounded Case) If
the sum of cij around every loop in the network is positive, then in any optimal
solution, if one exists, the amount transshipped, xjj , is bounded, and

xjj ≤
n∑

i=1

ai =
n∑

j=1

bj = α. (7.28)



7.6 BOUNDED PARTIAL SUMS OF VARIABLES 225

� Exercise 7.19 Prove Theorem 7.16.

� Exercise 7.20 Defining transshipment slack by

x̄jj = α− xjj , (7.29)

where α =
∑

i
ai =

∑
j
bj , reduce the transshipment problem (7.25) to a classical trans-

portation problem.

� Exercise 7.21 Consider the classical transportation problem with three sources and
four destinations

Minimize

3∑
i=1

7∑
j=4

cijxij = z

subject to

7∑
j=4

xij = ai for i = 1, 2, 3,

3∑
i=1

xij = bj for j = 4, 5, 6, 7.

(7.30)

Show how to convert it to a transshipment problem of the form (7.25) with seven trans-
shipment nodes xjj . Show that xjj = 0 for all j.

7.6 TRANSPORTATION PROBLEMS WITH
BOUNDED PARTIAL SUMS

A transportation problem with upper bound on the variables is called a capacitated
transportation problem:

Minimize
m∑

i=1

n∑
j=1

cijxij = z

subject to
n∑

j=1

xij = ai, i = 1, . . . ,m,

n∑
i=1

xij = bj , j = 1, . . . , n,

0 ≤ xij ≤ hij , i = 1, . . . ,m, j = 1, . . . , n.

(7.31)

A. S. Manne formalized a way to bound partial sums of variables of which simple
bounds on variables is a special case. For simplicity, we consider a case with only
one such partial sum; for example, in the scheduling of jobs, a condition such as
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x11 ≤ 40 might be interpreted to mean that at most one man can be assigned to
job 1 in week 1. In some problems a more involved condition might be desired, such
as x11 + x31 + x61 ≤ 40, expressing the circumstance that jobs 1, 3, and 6 can be
assigned only to individual 1. Similarly, a condition such as x11+x12+x13 ≥ k might
mean that at least k hours must be worked on job 1 during the first three weeks.
Similar to a capacitated transportation problem, a transportation problem subject
to a bounded partial sum of variables in a row, or in a column of a transportation
array (See Figure 7-2), can be reduced to a standard transportation problem. To
see this, consider system (7.31) with the added condition

x11 + x12 + . . .+ x1k ≤ α. (7.32)

If we introduce a slack variable x10 and a variable y10 = x11 + x12 + · · ·+ x1k the
problem can be written in the standard form by splitting the first row and adding
a new column as follows.

x10 x11 · · · x1k α
y10 x1,k+1 · · · x1n a1

x21 · · · x2k x2,k+1 · · · x2n a2

... · · ·
...

... · · ·
...

...
xm1 · · · xmk xm,k+1 · · · xmn am

α b1 · · · bk bk+1 · · · bn

The squares where there are no variables displayed will be inadmissible squares in
the transportation array. In equation form, the problem can be stated as:

Minimize
m∑

i=1

n∑
j=1

cijxij = z

subject to x10 +
k∑

j=1

x1j = α,

y10 +
n∑

j=k+1

xij = a1,

n∑
j=1

xij = ai, i = 2, . . . ,m,

x10 + y10 = α,
n∑

i=1

xij = bj, j = 1, . . . , n,

0 ≤ xij ≤ hij , i = 1, . . . ,m, j = 1, . . . , n,
x10 ≥ 0, y10 ≥ 0.

(7.33)

Note that each xij appears in at most one row equation and in one column equation.
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Clearly any number of conditions of the form (7.32) can be added to the system
by using the ideas just discussed. For example, an added condition on column 2,

x12 + x42 + x72 ≤ β, (7.34)

can be handled by splitting column 2 and using a second slack variable x20 and the
variable y20. There could also be other conditions on column 2, such as

x22 + x32 + x52 ≤ γ, (7.35)

that do not involve the same variables; this could be handled similarly. There could
also be more than one condition on the same variables in the same column, for
example, condition (7.34) and

x12 + x72 ≤ δ (7.36)

can be taken care of by further splitting the column associated with the variables
x12, x42, and x72.

THEOREM 7.17 (Reduction to a Transportation Problem) A trans-
portation problem with added partial sum conditions in rows and columns can be
reduced to a standard transportation problem, if any two conditions in a column (or
row) either have no variables in common or the variables of one of the conditions
are a subset of the variables of the other condition.

THEOREM 7.18 (Basis Need Not Be Triangular) Consider a transporta-
tion problem with added partial sums of variables. If a bounded partial sum of
variables contains two variables xij and xkl such that i �= k and j �= l, the basis
need not be triangular, so that nonintegral basic solutions can be obtained.

� Exercise 7.22 Prove Theorems 7.17 and 7.18.

7.7 NOTES & SELECTED BIBLIOGRAPHY
As noted in Section 7.4, it is not known if cycling can occur in transportation problems if
the entering variable is chosen based on the usual rule of picking the one that has the most
negative reduced cost. The very contrived example of cycling in Section 7.4, due to L.
Johnson, can be found in Gassner [1964] and Murty [1983]. Other examples along the same
lines can be found in Cunningham [1979] and Cunningham & Klincewicz [1983]; see also
Chvátal [1983] for a cycling example due to Cunningham. A. Orden [1956] proposed a first
order perturbation scheme to avoid cycling in transportation problems; see Exercises 7.11
and 7.12. Cunningham [1979] also proposed an elegant and simple way to avoid cycling in
networks.

A. Orden [1956] first proposed a generalized transportation model in which trans-
shipment through intermediate cities is permitted. As a stabilizing influence in certain
economic applications, Koopmans [1947] and Koopmans & Reiter [1951], have suggested
that it would be in the public interest to have differing rates to encourage demands in the
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direction of least use between two cities. For the transshipment problem (7.25), Koopmans
& Reiter [1951] call πj the “potential” of point i in the network, because it is analogous
to the electrostatic potential of an electrical network.

7.8 PROBLEMS

7.1 (a) Derive a Dual-Simplex Algorithm for the classical transportation problem.

(b) Derive a Primal-Dual Algorithm for the classical transportation problem.

7.2 (a) Generalize the transshipment model to allow for the storing of excesses at
a city when the total of amounts shipped-in plus produced may possibly
exceed the total of amounts shipped-out plus consumed.

(b) Show that, in this generalized model, no feasible solution exists if
∑

i
âi <∑

j
b̂j . Interpret the result.

(c) Why is xii ≥ 0 implied by the standard transshipment array?

(d) In any transshipment problem, prove that if xjj exceeds
∑

i
ai, then there

is a circularity in the flow pattern, and show that such a solution cannot
be optimal if all cij are positive.

7.3 Is the following statement true or false?

In a transportation problem, if the demands and supplies are all even
integers, then there is always an optimal solution with even integers.

Justify your answer.

7.4 Suppose that for an n×n assignment problem all the unit right-hand-side com-
ponents are changed to an integer γ > 1. Prove that in any basic feasible
solution, exactly n basic variables are nonzero.

7.5 Let P be a T × T identity matrix. Partition the T rows arbitrarily into m mu-
tually exclusive adjacent sets Ri and partition the columns into n mutually
exclusive adjacent sets Cj . Let xij be the sum of the 1s that are in the intersec-
tion of the row set Ri and the column set Cj . Prove that no more than m+n−1
of the xij are nonzero. Replace P by a permutation matrix and prove the same
theorem.

7.6 Ph.D. Comprehensive Exam, Fall 1984, at Stanford. Given a linear program

Minimize

n∑
j=1

cjxj = z

subject to

n∑
j=1

Pjxj = 0,

and lj ≤ xj ≤ hj ,

(7.37)

where cj , lj , and hj are known scalars; Pj are known vectors of dimension m;
and xj are unknown scalars to be determined.

Let B = [P1, P2, . . . , Pm] be nonsingular and let xo = (xo
1, . . . x

o
m;xo

m+1, . . . , x
o
n)

satisfy
∑n

j=1
Pjx

o
j = 0, lj < xo

j < hj for j = 1, . . . ,m and xo
j = either lj or hj

for j = m+ 1, . . . , n.
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(a) Someone asserts xo is the unique minimizer for z. How would you prove
this assertion or demonstrate (on the contrary) that it is false?

(b) Assume for j = 1, . . . , n that lj �= hj and B as defined above is nonsingu-
lar. Consider the class of 2n−m (not necessarily primal feasible) solutions,∑n

j=1
Pjxj = 0 where xj is set equal to either lj or hj for j = m+1, . . . , n.

State conditions that imply that exactly one of the 2n−m solutions is dual-
feasible.

(c) How would you “reduce” a linear program in standard form to the linear
program (7.37)?

(d) How would you “reduce” a capacitated transportation problem to the linear
program (7.37)?



This page intentionally left blank 



C H A P T E R 8

NETWORK FLOW THEORY

Network theory concerns a class of linear programs having a special network struc-
ture. The combinatorial nature of this structure has resulted in the development
of very efficient algorithms that combine ideas on data structures from computer
science with mathematical concepts from operations research.

Networks arise in a wide variety of situations. For example, the transportation
problem discussed in Chapter 7 is a network representing the shipment of goods
from sources to destinations. Network problems arise naturally in the distribution
of electric power in the design of electric circuits, in communications networks, and
in hydro-systems in which water flows from conduits from various points to others.
Typically, the analysis of a network requires finding a maximal-flow solution when
there are capacity constraints on the arcs, a shortest-path solution when there are
lengths assigned to arcs, a minimum spanning-tree solution, a least-cost solution, or
determining the optimal sequence of tasks to be performed. The ability to obtain,
under certain conditions, integer-valued solutions has made it possible to extend
network analysis to many different areas such as facilities location, project planning
(PERT, CPM), and resource management.

We shall illustrate some definitions and concepts of directed networks by refer-
ring to Figure 8-1, which displays a simple directed network.

In the figure, recall that the circles numbered 1, 2, 3, and 4 are called nodes;
the lines joining them are called arcs; and the arrowheads on the arcs show the
direction of flow. In all, there are four nodes and six directed arcs.

We shall use the following notation:

Af(k) = {j ∈ Nd | (k, j) ∈ Ac}, (8.1)
Bf(k) = {i ∈ Nd | (i, k) ∈ Ac}, (8.2)

where Af(k) stands for “after” (or “out of”) node k, Bf(k) stands for “before”
(“into”) node k, Nd is the set of nodes in the network, and Ac is the set of arcs in
the network.
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Figure 8-1: A Simple Directed Network

8.1 THE MAXIMAL FLOW PROBLEM

Consider a network with a single source node, s = 1, and a single destination node,
t = m, connected by several intermediate nodes. Except for the nodes 1 and m (the
source and destination nodes), the flows into and out of each node k must balance;
such relations are called conservation of flows (in physics, the condition that the
quantity of electrons flowing into a point of an electrical network must equal the
amount flowing out is referred to as Kirchoff’s Law). That is, for an intermediate
node k: ∑

i∈Bf(k)

xik −
∑

j∈Af(k)

xkj = 0, for k = 2, . . . ,m− 1, (8.3)

where the first summation is over all directed arcs that have node k as a head node,
and the second summation is over all directed arcs that have node k as a tail node.
If we denote F as the exogenous flow into the source s = 1 from outside the network,
then

F −
∑

j∈Af(1)

x1j = 0 (8.4)

because there are no other flows (or flows on arcs) incoming into the source node.
If we denote H as the exogenous flow from its destination node t to outside the
network, then ∑

i∈Bf(m)

xim −H = 0. (8.5)

If we sum the m− 2 relations in (8.3) and (8.4) then each variable xij appears
in exactly two equations with opposite signs (recall the node-arc incidence matrix)
and hence cancels, resulting in F = H . Therefore:∑

i∈Bf(m)

xim − F = 0. (8.6)
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8.1.1 DECOMPOSITION OF FLOWS

The next theorem shows that a flow can be decomposed into simpler components
that involve simple paths and circuits. It is useful because it shows that a solution
to a flow problem or a transshipment problem corresponds to our intuitive notion
that items start from nodes of surplus and move from one node to the next without
losing their identity until arriving finally at some node of deficit.

THEOREM 8.1 (Decomposition of Flow) Consider a network (Nd,Ac)
where the capacity constraints are 0 ≤ xij ≤ hij for (i, j) ∈ Ac. An incoming
exogenous flow of F > 0 and a set of flows xij = xo

ij that satisfy the capacity con-
straints and conservation equations (8.3)–(8.6) can be decomposed into a sum of
path flows from source to destination and circuit flows such that the direction of
these flows in any common arc is the same as that of the directed arc in Ac.

Proof. By hypothesis the incoming flow is F > 0. Begin to generate a path
starting at the source node s = 1 with an initial arc (1, i1), satisfying

i1 = argmax
i∈Af(1)

xo
1i. (8.7)

Note that xo
1i1

> 0 follows from F > 0 and the conservation relation

F =
∑

i∈Af(1)

xo
1i.

Next repeat the procedure starting at node i1 instead of s = 1, and generate i2, the
second node along the path by

i2 = argmax
i∈Af(i1)

xo
i1i. (8.8)

Again by conservation of flows at i1 and the previous result of xo
1i1

> 0, it follows
that xo

i1i2
> 0.

If we continue the process of generating nodes along the path, we either

1. generate a path that returns to a node arrived at earlier, thus forming a circuit,
or

2. complete a path to the destination.

If a circuit C is generated we subtract a constant K from each xo
ij for arcs (i, j) that

belong to the circuit, where

K = min
{ (i,j)∈C }

xo
ij > 0. (8.9)

At the node where the path first formed a circuit there must have been a positive
input flow, and therefore starting again at this node, the path-generation procedure
can be continued with the adjusted xo

ij values. Only a finite number of circuits can
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Figure 8-2: Decomposition of Flows

be removed from the solution by this procedure, since each new solution generated
by a circuit removal creates at least one more xo

ij whose adjusted value is zero.
Hence, after a finite number of circuit removals, a path from origin to destination
can finally be constructed with positive flow along it. A value θ then can be assigned
to the path P by setting

θ = min
{ (i,j)∈P }

xo
ij > 0. (8.10)

A new feasible solution is now constructed by setting x1
ij = xo

ij − θ for (i, j) ∈ P
and x1

ij = xo
ij otherwise; its flow value is F1 = F − θ.

The entire path augmentation procedure can now be repeated with the new
problem if F1 > 0. Again we note that there can only be a finite number of path
removals because each new solution has at least one more adjusted x1

ij that is zero.
Finally, if Fk = 0, for some k and some adjusted xk

ij > 0, starting with node
i and arc (i, j), the procedure can be followed to construct a circuit that can be
removed. In a finite number of steps, all residual circuits can be removed.

� Exercise 8.1 Apply the algorithm suggested by the proof of Theorem 8.1 to decompose
the flows in Figure 8-2.

� Exercise 8.2 Show that the knowledge of the capacities on the arcs is never used other
than to verify that the initial flows do not violate the capacities.

8.1.2 THE AUGMENTING-PATH ALGORITHM FOR
MAXIMAL FLOW

The maximal-flow problem for a network is to find the maximum amount that can
be transferred from the source to the destination given arc-capacity constraints
0 ≤ xij ≤ hij and the existence of a feasible flow x = xo. It is clear that solving the
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maximal flow problem is the same as solving the linear program

Maximize F

subject to
∑

j∈Af(1)

x1j = −F,

∑
i∈Bf(k)

xik −
∑

j∈Af(k)

xkj = 0, for k = 2, . . . ,m− 1,

∑
i∈Bf(m)

xim = F,

0 ≤ xij ≤ hij , for all (i, j) ∈ Ac.

(8.11)

Definition (Flow Value): The variable F , the exogenous flow into the system,
is called the flow value.

Before we describe an algorithm for finding the maximal flow, we state and prove
two theorems.

THEOREM 8.2 (Existence of a Positive Maximal Flow) In a network
with bounds 0 ≤ xij ≤ hij for all (i, j) ∈ Ac, the maximal flow is positive if and
only if there exists a chain of arcs joining the source to the destination such that a
positive θ-flow along the associated flow path is possible.

Proof. The if part of the theorem is obvious. To prove the only if part, assume
on the contrary that the maximal flow F > 0 even though there exists no path with
a positive flow from the source to the destination. Let xij = xo

ij with 0 ≤ xo
ij ≤ hij

be the arc flows corresponding to this maximal flow F > 0. By Theorem 8.1 it is
possible to decompose this positive maximum flow into a sum of path flows and
circuit flows, with at least one positive path flow. Along such a positive flow path
with positive flow θ > 0 we must have

0 < θ ≤ xo
ij ≤ hij ,

because the method of decomposition is such that each xo
ij > 0 is represented as a

sum of nonnegative path flows along the directed arc joining i to j, contrary to our
assumption that no such path exists.

THEOREM 8.3 (Existence of an Improving Flow) Consider a network
(Nd,Ac) with arc-capacities 0 ≤ xij ≤ hij for all (i, j) ∈ Ac. Given a feasible
flow x = xo

ij with F = Fo, a flow value F > Fo can be found if and only if there
exists a chain of arcs joining the source to the destination such that a positive θ-flow
augmentation along the associated flow path is possible.

Proof. The if part of the theorem is obvious. To prove the only if part construct
an associated network as follows. Subtract xo

ij from the upper bound hij on arc
capacity to obtain a new upper bound hij − xo

ij on the arc capacity. Add a reverse
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Figure 8-3: Original Network and Associated Network with θ Flow

arc (j, i) with an upper bound xo
ij on arc capacity. (For example, see Figure 8-3

with capacitieshij shown near the nodes, and where the inclusion of a reverse arc is
shown with a positive capacity in the reverse direction.) If xo

ij = 0, the reverse arc
(j, i) may be omitted.

We will now show that the two networks are equivalent. For the associated
network, let uij represent the flow on the arc (i, j) corresponding to the arc (i, j)
in the original network; and let vji represent the flow on arc (j, i) if a reverse arc
(j, i) was added to the associated network. Note that corresponding to the flow xo

ij

in the original network is the flow uij = 0, vji = 0 in the associated network. Then
if ξij is any feasible flow on the original network we can construct a corresponding
feasible flow on the associated network as follows:

uij = ξij − xo
ij , vji = 0, if xo

ij ≤ ξij ≤ hij ,
uij = 0, vji = xo

ij − ξij , if ξij < xo
ij .

(8.12)

Conservation of flow clearly holds in the associated network (see Exercise 8.3). On
the other hand, if we are given a feasible flow, uij , vij , on the associated network,
then we can construct a corresponding feasible flow ξij on the original network as
follows:

ξij = uij − vji + xo
ij . (8.13)

Conservation of flow clearly holds in the original network (see Exercise 8.3).
Now we are ready to prove the only if part of the theorem. By equivalence of

the two networks, if a feasible flow with value F ′ + F0 > F0 exists for the original
network, then a feasible flow with value F ′ > 0 exists for the associated network. By
the Decomposition of Flow Theorem 8.1 we know that this feasible flow with value
F ′ can be decomposed into sum of positive θ path flows from source to destination
and circuit flows such that the direction of these flows in any common arc is the
same as that of the directed arc. By equivalence of the two networks, it is easy to
see that any positive θ path flow in the associated network corresponds to a positive
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θ augmentation flow path along a chain of arcs joining the source to the destination
in the original network; where uij = θ corresponds to an increase in the flow along
arc (i, j) of the original network and vji = θ corresponds to a decrease in the flow
along arc (i, j) in the original network.

� Exercise 8.3 In the proof of Theorem 8.3, show that conservation of flow holds when
converting the flows in the original network to flows in the associated network.

An algorithm used to find the maximal flow is the Augmenting Path Algorithm.
This algorithm is described in Linear Programming 1. Instead of adjusting the flows
in the network until an optimal flow is obtained, it adjusts the arc capacities by
the flow on each augmenting path. Upon termination, the optimal flows can be
obtained as the difference between the original and final arc capacities.

THEOREM 8.4 (Finite Termination with Integer Capacities) If the arc
capacities are all integers and a maximal flow exists, the Augmenting Path Algo-
rithm will generate only a finite number of path augmenting flows whose algebraic
sum is the maximal flow.

Proof. Since the arc capacities hij are assumed to be integers, the path flow θ > 0
at each iteration must also be an integer θ ≥ 1. Therefore F must be increased
by at least 1 in each iteration. Furthermore, the adjusted arc capacities for each
successive associated network must also be integral. We are given that the maximal
flow is finite, therefore the algorithm must terminate in a finite number of iterations
with the maximal flow.

COROLLARY 8.5 (Finite Termination with Rational Capacities) If the
arc capacities are all rational numbers and a maximal flow exists, the Augmenting
Path Algorithm will construct only a finite-number of path flows whose algebraic
sum is the maximal flow.

� Exercise 8.4 Prove Corollary 8.5.

A systematic procedure (which is a variation of the shortest-path algorithm
discussed in Section 8.2) for finding augmenting paths is the fanning out (or breadth-
first unblocked search) procedure (see Linear Programming 1). Note that an arc is
said to be blocked if the flow on the arc cannot be increased because the arc flow is
equal to the arc capacity. This requires forming a tree of all the nodes j that can
be reached from the source s by a flow-augmenting path. At the end we obtain an
augmenting path with the smallest number of arcs.

THEOREM 8.6 (Edmonds-Karp Max-Flow Theorem) If a maximal flow
exists, the Augmenting Path Algorithm, when used with the Breadth-First Unblocked
Search Algorithm to find the augmenting paths, will construct at most mn/2 path
flows whose algebraic sum is the maximal flow, where n is the number of arcs and m
is the number of nodes.
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Proof. Let lij = 0 and hij be the original lower and upper bounds on arc flow
xij . (Note that we assume for convenience a lower bound of lij = 0 on all arc flow;
the proof does not rely on this, the lower bound could be any lij ≤ hij .) Let xo be
the feasible initial flow vector and let xτ , τ = 1, 2, . . ., be the flow vector at the end
of iteration τ ; that is, xτ is the sum of xo and the τ maximum augmenting path
flows. Let APτ be the τth augmenting path.

A breadth-first search implies that for all τ , given xτ−1, the path APτ chosen
is any augmenting path with the minimum number of arcs. Finding such an aug-
menting path by the breadth-first unblocked search algorithm is similar to finding
the shortest path (see Section 8.2) and is done by assigning arc lengths of 1 to all
unblocked arcs and ignoring all blocked arcs.

Define for any iteration τ , given xτ−1,

ητ (k, l) = The smallest number of arcs from node k to node l in
paths P passing through nodes k and l along which aug-
menting flow is possible from k to l. If no such P exists,
then ητ (k, l) =∞.

Then for any i and any iterations (τ, τ + 1),

ητ (s, i) ≤ ητ+1(s, i)
ητ (i, t) ≤ ητ+1(i, t).

The result is clearly true if in iteration τ + 1 the arcs of the augmenting path
are either totally different or if these arcs are in the same direction as those in
iteration τ . Suppose that in iteration τ + 1 arc (α, β) is traversed in the reverse
direction from that in iteration τ and it is the first arc for which this happens on
the path. The distance to β is clearly greater for iteration τ + 1. The distance
from α to i is also clearly greater for iteration τ + 1 because the argument can be
repeated for other arcs traversed in the reverse direction.

We say that (i, j) has become upper-blocked on iteration τ if (i, j) ∈ APτ and
xτ

ij = hij . Suppose (i, j) ∈ APτ were upper-blocked on iteration τ and (i, j) ∈ APτ̄ ,
xτ̄

ij ≤ hij for τ̄ > τ , then there exists an l, where τ < l < τ̄ , such that (i, j) ∈ APl

and xl
ij < hij . This is clearly true because if an arc were upper-blocked then it

can never be part of the augmenting path APτ̄ in the same direction unless it was
traversed in the opposite direction at some prior iteration and the flow reduced so
that it was no longer upper-blocked.

We say that (i, j) has become lower-blocked on iteration τ if (i, j) ∈ APτ and
xτ

ij = 0. Analogously suppose (i, j) ∈ APτ were lower-blocked on iteration τ , and
(i, j) ∈ APτ̄ , xτ̄

ij ≥ 0 for τ̄ > τ , then there exists an l, where τ < l < τ̄ , such that
(i, j) ∈ APl and xl

ij > 0. This follows from arguments similar to those give above.
Next we show that if, for τ , some fixed (i, j) ∈ APτ such that arc (i, j) is

upper-blocked (lower-blocked) and for τ̄ > τ , the same (i, j) ∈ APτ̄ , then

ητ (s, t) + 2 ≤ ητ̄ (s, t).
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We will show the result for the upper-blocked case, the other follows by a similar
argument. As we have discussed previously, arc (i, j) must then be traversed in the
opposite direction at some iteration τ < l < τ̄ and the path lengths at iteration τ̄
are clearly greater than the path lengths at iteration l which are clearly greater
than the path lengths at iteration τ . Clearly

ητ̄ (s, j) ≥ ητ (s, i) + ητ (i, j) = ητ (s, i) + 1
ητ̄ (i, t) ≥ ητ (i, j) + ητ (j, t) = 1 + ητ (j, t)

because ητ (i, j) = 1 since it is the length of an arc (i, j). Adding the above two
inequalities we get

ητ̄ (s, j) + ητ̄ (i, t) ≥ ητ (s, i) + ητ (j, t) + 2.

Adding the equality ητ̄ (j, i) = ητ (i, j) to the above inequality, we get

ητ̄ (s, j) + ητ̄ (j, i) + ητ̄ (i, t) ≥ ητ (s, i) + ητ (i, j) + ητ (j, t) + 2

or
ητ̄ (s, t) ≥ ητ (s, t) + 2

where ητ̄ (s, t) is the number of arcs in the shortest path from s to t at iteration τ̄
and ητ (s, t) is the number of arcs in the shortest path from s to t at iteration τ .

We next show that the algorithm terminates by constucting mn/2 augmenting
paths or less, where n is the number of arcs and m is the number of nodes. If there
are n arcs, clearly we can do at most n iterations before one of the arcs must be
traversed again (or the maximal flow has been found). In this case the path length
must increase by at least 2 from the length at the start of the cycle of n iterations.
Because the maximum path length is m − 1, the maximum number of cycles of n
iterations is m/2; thus the algorithm terminates by constucting mn/2 augmenting
paths or less.

8.1.3 CUTS IN A NETWORK

The search for an augmenting path can be time-consuming, especially in large net-
works. Thus, it would be nice to be able to recognize optimality without doing an
exhaustive search for an augmenting path that may not exist. It turns out that
it is sometimes possible to prove that no such path exists by verifying that the
conditions of the Ford-Fulkerson Max-Flow Min-Cut Theorem (Theorem 8.8) are
satisfied. These conditions make use of the notion of a cut and its value.

Definition (Cut): A cut Q = (X , X̄ ) in a network is a partition of the node
set into two nonempty subsets X and its complement X̄ = Nd \ X . If X
contains the source node s and X̄ contains the destination node t, the cut is
said to separate node s from node t.
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Definition (Cut Value): If 0 ≤ xij ≤ hij for all (i, j) ∈ Ac, then the cut value
C of a cut Q = (X , X̄ ) is the sum of the capacities of the arcs that start in
set X and end in set X̄ ; i.e.,

C =
∑

{ (i,j)∈Ac|i∈X ,j∈X̄ }
hij . (8.14)

Definition (Saturated Arc): An arc is said to be saturated if it is used to full
capacity, i.e., xij = hij .

LEMMA 8.7 (Flow Value ≤ Cut Value) The flow value F , of any feasible
solution, is less than or equal to the value C of any cut separating the source s from
the destination t.

Proof. Let Q = (X , X̄ ) be any cut separating the source node s from the des-
tination node t. Next sum the conservation relations (8.3), (8.4), and (8.6) for all
the nodes k of the set X . By definition, xji = −xij . Therefore variables xij and xji

cancel if both i and j are in X . What remains is only the sum,

F =
∑

{ (k,j)∈Ac|k∈X ,j∈X̄ }
xkj −

∑
{ (i,k)∈Ac|k∈X ,i∈X̄ }

xik. (8.15)

Next noting that 0 ≤ xij ≤ hij , we get

F ≤
∑

{ (k,j)∈Ac|k∈X ,j∈X̄ }
hkj − 0 = C. (8.16)

THEOREM 8.8 (Ford-Fulkerson: Min-Cut = Max-Flow) The max-flow
value is equal to the min-cut value.

Proof. Lemma 8.7 says that any flow value F is a lower bound for any cut value C
and C is an upper bound for F . Therefore it follows that if we can find an F = F0,
C = C0 such that F0 = C0, then max F = F0 and min C = C0, the theorem will
then follow.

Assume we have found a maximal flow x = xo with flow value F = F0. Create
a cut Q = (X, X̄) by placing in the set X all the nodes that can be reached from
the source node by one or more flow-augmenting paths. In the set X̄, place all the
remaining nodes. The set X̄ must be nonempty and contain t because if t belonged
to X there would be a flow-augmenting path from s to t that could be used to
augment the flow contrary to the assumption that the flow is maximal. All directed
arcs (i, j), joining a node i ∈ X to a node j ∈ X̄, must be saturated; i.e., xo

ij = hij ,
for otherwise j could be reached from the origin via some flow-augmenting path
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contrary to the construction of the cut. Moreover all directed arcs (j, i), joining a
node j ∈ X̄ to a node i ∈ X , must have the arc flow xo

ji = 0, for otherwise j could
have been reached from the origin via some flow-augmenting path passing through i
implying that j ∈ X , contrary to the construction of the cut.

We next show that the cut value of Q is C0 = F0. Sum the conservation
relations (8.3), (8.4), and (8.6) for all the nodes k of the set X . Variables xij and
xji cancel if both i and j are in X . What remains is only the sum,

F0 =
∑

{ (k,j)∈Ac|k∈X ,j∈X̄ }
xkj −

∑
{ (i,k)∈Ac|k∈X ,i∈X̄ }

xik. (8.17)

Since the (i, j) are all the arcs of the cut Q, and since, as we have just shown,
xo

ij = hij for i ∈ X and j ∈ X̄, and xo
ij = 0 for i ∈ X̄ and j ∈ X , we have

F0 =
∑

{ (k,j)∈Ac|k∈X ,j∈X̄ }
xo

kj =
∑

{ (k,j)∈Ac|k∈X ,j∈X̄ }
hkj = C0, (8.18)

and the theorem min C = max F is proved.

� Exercise 8.5 (Duality) Show that the dual of the maximal flow problem is the min-cut
problem. Hint : Set up the maximal flow problem as a linear program. Set up the dual
by letting uj be the multipliers corresponding to the nodes and let wij be the multipliers
corresponding to the upper bounds on arc flows, and show that the system is redundant.
Show that the redundancy is such that we can set ut = 0, where t is the destination node;
show that this implies that us = 1, where s is the source node. Next show that all the
remaining multipliers are each 0 or 1. Then show that for arc (i, j), we have wij = 1 if
and only if ui = 1 and uj = 0. Use this last result to define the cut.

� Exercise 8.6 If each such arc (i, j) has a lower bound lij , not necessarily zero, on the
arc flow xij , then show that the cut value is

C =
∑

{ (i,j)∈Ac|i∈X ,j∈X̄ }
hij −

∑
{ (j,i)∈Ac|j∈X̄ ,i∈X }

lij . (8.19)

8.2 SHORTEST ROUTE

The shortest-route problem is that of finding the minimum total “distance” along
paths in an undirected connected network from the source (or origin) node s = 1
to the destination node t = m. The distances along arcs in the network can be
measured in some units such as actual miles, the cost or time to go between nodes,
and so on.

A simple method to solve such a problem assuming all arc distances are non-
negative distances (or costs) is a branching-out iterative procedure that fans out
from the source. Starting from the source it always picks on the next iteration the
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closest node i to the source either directly or via a node whose minimum distance
to the source has already been determined and records its distance. The algorithm
is terminated when the shortest distance from the source node to the destination
node is recorded.

LEMMA 8.9 (Validity of Dijkstra’s Algorithm) Dijkstra’s Algorithm (see
Linear Programming 1) finds the shortest path from the source to all nodes in the
network.

Proof. Recall that at each iteration τ , the nodes are paritioned into two subsets:

• The set of nodes S such that the shortest path from the source node s = 1 to
each node j ∈ S has been determined, and pj ∈ S is the predecessor to node j
along the shortest path to node j.

• The remaining set of nodes Nd \ S such that the shortest path from each
k ∈ Nd\S to the source s has been determined via the nodes of S and pk ∈ S
is the node along the path that is its predecessor node.

On iteration τ + 1, the algorithm determines k∗ = argminj∈Nd\S zj . It next aug-
ments the set S to S ∪ {k∗} and deletes k∗ from Nd \ S. Next it adjusts zk for the
remaining nodes k ∈ Nd \ S

if z
k∗ + d

k∗k
< zk, then set zk = z

k∗ + d
k∗k

and pk = k∗.

The proof then consists of showing that the shortest path from the source s to
k∗ is through p

k∗ ∈ S. Suppose that the shortest path was not through p
k∗ but

instead thorugh some other node i ∈ Nd \ S. By our selection procedure, z
k∗ ≤ zi

and the distance along the path from i to k∗ is nonnegative. Hence it follows that
the distance to the source via i is greater than or equal to the distance to the source
via p

k∗ . The algorithm then uses node k∗ to modify the labels of adjacent nodes
belonging to Nd \ S and hence restores the property of Nd \ S.

� Exercise 8.7 Construct an example to show that Dijkstra’s Algorithm can fail if there
are negative arc distances. Construct an example with some negative arc distances but
where the sum of distances around every cycle is nonnegative. Construct an example
with some negative arc distances but where the sum of distances around every cycle is
nonnegative. Demonstrate that Dijkstra’s Algorithm in the latter case finds the shortest
route from the source to destination.

8.3 MINIMUM COST-FLOW PROBLEM

The minimum cost-flow problem is to find flows xij through a directed network
G = (Nd,Ac) with m nodes indexed 1, . . . ,m and n arcs such that the total cost
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of the flows is minimized. This is a standard linear program with a very special
structure:

Minimize
∑

(i,j)∈Ac

cijxij = z

subject to
∑

i∈Af(k)

xki −
∑

j∈Bf(k)

xjk = bk for all k ∈ Nd,

lij ≤ xij ≤ hij for all (i, j) ∈ Ac,

(8.20)

where cij is the cost per unit flow on the arc (i, j); bk is the net flow at node k; lij
is a lower bound on the flow in arc (i, j); hij is an upper bound on the flow in arc
(i, j); Af(k) = {j ∈ Nd | (k, j) ∈ Ac}; and Bf(k) = {i ∈ Nd | (i, k) ∈ Ac. Note that
bk takes on values that depend on the type of node k:

bk is


> 0 if k is a source (supply) node;
< 0 if k is a destination (demand) node;
= 0 if k is a node for transshipment only.

The Network Simplex Method for solving the minimum cost flow applied is
described in detail in Linear Programming 1.

8.4 NOTES & SELECTED BIBLIOGRAPHY
Network optimization theory is a very beautiful field grounded on graph-theoretical meth-
odology. For further details on networks and their applications, see, for example, Ahuja,
Magnanti, & Orlin [1993], Bertsekas [1991], Ford & Fulkerson [1962], Lawler [1976], and
Linear Programming 1.

The min-cut max-flow theorem was first observed to be true for planar networks at
RAND in 1954 and published by Dantzig & Fulkerson [1956]. Soon thereafter the theorem
was established by Ford & Fulkerson [1956] for general networks. It was also discovered
independently by Elias, Feinstein, & Shannon [1956]. A comprehensive treatment of the
maximal-flow problem and related matters can be found in Ford & Fulkerson [1962].

The classical augmenting-path method for finding a maximum flow through a network
was developed by Ford & Fulkerson [1957] based on earlier work by Kuhn [1955] and
Egerváry [1931]. Fulkerson & Dantzig [1955] and Dantzig & Fulkerson [1956] developed a
tree method for solving maximal flow problems which is also described in Dantzig [1963].
The approach constructs two subtrees, one branching out from the source and the other
branching out from the destination so that every intermediate node is reached by just one
of the trees. Then a connecting arc between the two trees and an associated path from
source to destination is found and the maximum flow along the path is determined.

J. Edmonds & R. M. Karp [1972] showed that an augmenting-path method called first-
labeled first-scanned finds a maximum flow in no more than mn/2 iterations, where n is
the number of arcs and m is the number of nodes in the network, regardless of what the
upper bounds hij are on the arcs. This method then finds the maximal flow in O(n2m)
operations because it can be shown that each iteration of the augmenting-path method
takes only O(n) comparisons to find an augmenting path. A proof of Theorem 8.6 can also
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be found in Edmonds & Karp [1972]. Around the same time as Edmonds & Karp’s results,
Dinic [1970] independently designed a faster algorithm that requires O(m2n) operations.
Later Malhotra, Kumar, & Maheshwari [1978] developed an algorithm that requires O(m3)
operations. For networks that have n� m2, an algorithm designed by Galil [1978] takes
O(m5/3n2/3), and an algorithm designed by Sleator [1980] takes only O(nm logm) steps.

Shortest-path problems come up often in practice and arise as subproblems in many
network problems. Dantzig was among the first to propose a method for finding the
shortest path from a source node to a destination node in a network; see Dantzig [1960a]
based on an earlier RAND research memorandum. About the same time, Dijkstra [1959]
independently proposed a refined version of the same algorithm for finding the shortest
directed paths from a node to all other nodes. Both forms of the algorithm require at most
m(m−1)/2 comparisons; See also Bellman [1958]. Independently, Whiting & Hillier [1960]
also developed a shortest route algorithm. Johnson [1977] has shown that this bound can
be further reduced to O(n logk m) operations, where k = max(2, n/m); see also Denardo
& Fox [1979], Dial [1969], Moore [1959], and Pape [1974]. A summary of various classical
algorithms can be found in Gallo & Pallottino [1988]. Improvements have continued to
be made in shortest-path algorithms; see, for example, Ahuja, Mehlhorn, Orlin, & Tarjan
[1990], Fredman & Willard [1994], Gabow & Tarjan [1989], Goldberg [1993], and Goldberg
& Radzik [1993]. Under the assumption that arc lengths are integers between 0 and L
where L ≥ 2, Ahuja, Mehlhorn, Orlin, & Tarjan’s algorithm runs in O(n+m

√
logL). For

theory and experimental evaluation of shortest-path algorithms, see Cherkassky, Goldberg,
& Radzik [1996]. In their paper they show that some algorithms behave in exactly the
same way on two networks, one of which is obtained from the other by replacing the arc
lengths by the reduced costs with respect to a potential function; that is, the algorithms
are potential-invariant. This implies, for example, that a shortest-path problem with no
negative cycles is equivalent to one with nonnegative arc lengths.

For additional details, including implementation details on the Network Simplex Meth-
od, see, Ali, Helgason, Kennington, & Lall, [1978], Bradley, Brown, & Graves [1977],
Chvátal [1983], Cunningham [1979], and Mulvey [1978].

An example of cycling in the Network Simplex Method can be found in Cunningham
& Klincewicz [1983]. To the authors’ knowledge, cycling, as a result of degeneracy, has
not been encountered on any practical problem. It is not known if cycling can occur in
minimum-cost network-flow problems if the entering variable is chosen based on the usual
rule of picking the one which has the most negative reduced cost. The interested reader
can find strategies used to prevent the possibility of cycling, for example, in Bazaraa,
Jarvis, & Sherali [1990] and Chvátal [1983].

The Network Simplex Method is very efficient in practice; in fact, this network adap-
tation of the Simplex Method for networks is typically 200 to 300 times faster than the
Simplex Method applied to a general linear programs of the same dimensions encountered
in practice. However, pathological examples can be constructed in which the Network
Simplex Method can take a very large number of iterations. Zadeh [1973] has constructed
a sequence of transshipment problems such that the kth problem has only 2k + 2 nodes
but if we choose the incoming arc by picking the most negative reduced cost, the Network
Simplex Method takes 2k + 2k−2 − 2 iterations.

An area that we have not covered is that of project planning, scheduling, and coor-

dination of various activities. Methods to do this are called PERT (Program Evaluation

and Review Techniques) and CPM (Critical Path Method). Many references exist for such

methods; see Hillier & Lieberman [1995]. One such reference relating this to networks is
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Figure 8-4: Example to Show Matching

by Elmaghraby [1977].

8.5 PROBLEMS

8.1 Bertsekas [1991]. Consider a bipartite graph that consists of two sets of nodes
S and T such that every arc in the graph has its tail node in S and its head
node in T .

(a) A matching is defined to be a subset of the arcs such that no two arcs are
incident to the same node; for example, arc (a, e) in Figure 8-4. A maximal
matching is defined to be a matching with a maximal number of arcs; for
example, arcs (a, d) and (c, e) in Figure 8-4. Show that the problem of
finding a maximal matching can be formulated as a max-flow problem.

(b) A cover C is defined to be a subset of S ∪ T such that for each arc (i, j)
in the graph either i ∈ C or j ∈ C (or both). A minimal cover is defined
to be a cover with a minimal number of nodes. Show that the number of
arcs in a maximal matching and the number of nodes in a minimal cover
are equal. Hint: Use the max-flow/min-cut theorem.

(c) Consider an n× n assignment problem of assigning persons to jobs where
not every man is eligible for every job. Prove that this assignment problem
is not feasible if and only if there is a subset of jobs q that are the only jobs
p persons are eligible for, and p > q.

8.2 Minimum-Cost Multi-Commodity Flow Problem. Consider a network with M
source-terminal pairs (sk, tk) and let the required flow value between sk and
tk be Fk for k = 1, . . . ,M ; that is, the flow between each pair (sk, tk) can be
thought of as the flow of a different commodity. Suppose that each arc (i, j)
of the network has arc capacity hij that is an upper bound on the total flow
of all commodities on the directed arc (i, j). Let cij be the cost per unit total
flow on arc (i, j). Assuming that all arcs are directed arcs and all flows are
nonnegative on these arcs, the goal is to find a minimum-cost feasible flow that
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Figure 8-5: Data for a Max-Flow Problem

can be decomposed into M feasible flows Fk. Formulate this problem.

8.3 Set up the maximal-flow problem shown in Figure 8-5 as a minimum cost-flow
problem and solve it by the Network Simplex Method.

8.4 Given any feasible solution x, not necessarily integral, to the minimum cost-
flow problem (8.20) with integer bi and integer lower and upper bounds on xij ,
show that it is possible to find an integral feasible solution y that is a close
approximation to x in the sense that

|yij − xij | ≤ 1, for all (i, j) ∈ Ac.

8.5 David Morton [1995]. Let A∗c ⊆ Ac. Let z∗1 be the optimal solution to

Maximize xts = z1

subject to
∑

j∈Af(k)

xkj −
∑

i∈Bf(k)

xik = 0 for all k ∈ Nd,

0 ≤ xij ≤ uij for all (i, j) ∈ Ac \ A∗c
xij ≤ 0 for all (i, j) ∈ A∗c

and let z∗2 be the optimal solution to

Maximize xts −
∑

(i,j)∈A∗c
xij = z2

subject to
∑

j∈Af(k)

xkj −
∑

i∈Bf(k)

xik = 0 for all k ∈ Nd,

0 ≤ xij ≤ uij for all (i, j) ∈ Ac \ A∗c.

Prove z∗1 = z∗2 .
8.6 Ph.D. Comprehensive Exam, September 25, 1976, at Stanford. Given a network

flow problem

Ax = b, x ≥ 0 (8.21)

where each column has exactly two nonzero coefficients of which one is +1 and
the other −1. It is assumed b has all integer components and that the program



8.5 PROBLEMS 247

is feasible. The objective function is of the form

n∑
j=1

φj(xj) = min, (8.22)

where φj(xj) are convex functions.

(a) Show that in general the optimal solution can have fractional values for xj .

(b) Suppose an optimal solution is desired in integers. Prove that if the φj(xj)
are replaced by the broken line fit φ̄j(xj) where the breakpoints occur at
integral values of xj , that system (8.21) and (8.23),

n∑
j=1

φ̄j(xj) = min, (8.23)

solves to yield an integer solution if unique.

(c) How would you solve (8.21) and (8.23) for an optimal integral solution?

(d) Consider the program

n∑
j=1

φj(xj) = z (min)

Fi(x) = 0 for i = 1, . . . ,m,

where Fi(x) are general convex functions in x and φj(xj) are convex in xj .
Let φ̄j(xj) ≥ φj(xj) and φ̄j(xj) = φj(xj) for all integral xj . Prove, if the
system

n∑
j=1

φ̄j(xj) = z (min)

Fi(x) = 0 for i = 1, . . . ,m,

solves and yields an integer solution, that this is the optimal integral solu-
tion to

n∑
j=1

φj(xj) = z (min)

Fi(x) = 0 for i = 1, . . . ,m.

(e) What is the relationship between questions (c) and (d).

8.7 Ph.D. Comprehensive Exam, September 24, 1988, at Stanford. Consider a di-
rected graph (Nd,Ac) with m nodes and n arcs. Assume each arc (i, j) ∈ Ac
can be traversed in unit time at a cost cij . Invent an O(m2n) running-time
algorithm for finding a simple circuit (i.e., a directed simple cycle) in the graph
for which the ratio of the cost to traverse the circuit to the time to traverse it
is as small as possible. Be sure to justify your answer.

8.8 Ph.D. Comprehensive Exam, September 23, 1989, at Stanford. Let Nd be the
node set and let Ac be the arc set of a directed network (Nd,Ac). Let s and t be
two nodes. For arc (i, j) ∈ Ac let dij (which may be positive, zero, or negative)
be its specified “length.”
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We desire to find the shortest directed route from s to t that does not use any
arc more than once. Is the following linear program a proper formulation of this
shortest-route problem?

Minimize
∑

(i,j)∈Ac

dijxij

subject to
∑
i

xij =
∑
k

xjk, j �= s, t∑
k

xsk = 1

xij ≥ 0.

If you are not satisfied with the formulation, state why. Can you do better? Ar-
gue your case. Comment on the difficulty of the problem; under what conditions
is the problem easier?

8.9 Ph.D. Comprehensive Exam, September 22, 1990, at Stanford. Given a network
G = (V,E) with node-set V and edge-set E, and given specified nodes s and t,
a flow x from s to t means x = (xj | j ∈ E) ≥ 0 such that∑

{j|H(j)=i}
xj −

∑
{j|T (j)=i}

xj = 0 for all i ∈ V \ {s, t}, (8.24)

where H(j) denotes the head of edge j and T (j) denotes the tail of edge j. The
amount f(x) of the flow is defined to be either the net flow out of the terminal
node

f(x) =
∑

{j|H(j)=t}
xj −

∑
{j|T (j)=t}

xj

or the net flow into the source node

f(x) = −
∑

{j|H(j)=s}
xj +

∑
{j|T (j)=s}

xj .

Given lower bounds β = (βj | j ∈ E) ≥ 0, we say that flow x satisfies the lower
bounds if xj ≥ βj for all j ∈ E. For S ⊆ V , let δ(S) be the set of directed arcs
from S to V \ S and let δ(V \ S) be the set of directed arcs from V \ S to S.
By definition

δ(S) = {j ∈ E | T (j) ∈ S,H(j) ∈ V \ S}
δ(V \ S) = {j ∈ E | T (j) ∈ V \ S,H(j) ∈ V }

(a) Prove algebraically that if x = (xj | j ∈ E) is a flow from s to t satisfying
the lower bounds, and if δ(V \ S) = ∅

f(x) ≥
∑

j∈δ(S)

βj .

(b) Assume that there is a directed path from t to s (i.e., there is no cut
separating s from t such that δ(V \ S) = ∅) and assume x = (xj | j ∈ E)
is a flow from s to t satisfying the lower bounds. How can you obtain flows
x′ satisfying the lower bounds such that f(x)→ −∞.
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(c) Give an algorithm for the following: Given a flow x from s to t of amount
f(x) > 0 satisfying the lower bounds, find a flow x′ from s to t of amount
f(x′) < f(x) satisfying the lower bounds or else find a cut (S, V \ S) sepa-
rating s from t such that δ(V \ S) = ∅ and

f(x′) =
∑

j∈δ(S)

βj . (8.25)

(d) Use (a) and (c) to prove: If G has a flow from s to t satisfying the lower
bounds, and a cut (S, V \ S) separating s from t such that δ(V \ S) = ∅,
then

F∗ = max
∑

j∈δ(S)

βj , (8.26)

where F∗ is the min flow from s to t satisfying the lower bounds.

(e) Given costs c = (cj | j ∈ E), the cost of flow x is

cTx =
∑

{ j∈E }
cjxj

by definition. Given dual prices (multipliers) y = (yi | i ∈ V ), define
reduced costs c̄j by

c̄j = cj + yT(j) − yH(j)

for j ∈ E. Let x∗ = (x∗j | j ∈ E) be a flow from s to t satisfying the

lower bounds, i.e., x∗j ≥ βj . Suppose there are prices y = (yi | i ∈ V ),
c̄j = cj + yT(j) − yH(j) such that

(•) c̄j ≥ 0 for all j ∈ E,
(•) x∗j > βj ⇒ c̄j = 0.

• Prove that x∗ minimizes c̄Tx over all flows x from s to t of amount
f(x∗) satisfying the lower bounds.

• Prove that x∗ also minimizes cTx over all flows x from s to t of amount
f(x∗) satisfying the lower bounds.

8.10 Ph.D. Comprehensive Exam, September 21, 1991, at Stanford.

König-Egerváry Theorem: Let M be a (0, 1) matrix with m rows and n columns.
The König-Egerváry theorem states that the largest cardinality of a set of 1s
in M , no pair of which is in the same row or column, is equal to the smallest
cardinality of a set of rows and columns containing all 1s in M .

Philip Hall’s Theorem of Distinct Representatives: Let X1,X2, . . . ,Xk be k
given finite sets. The collection {x1, x2, . . . , xk} of one element xi from each Xi

is a sytem of distinct representatives if xi ∈ Xi for all i and xi �= xj for i �= j.
No such system of distinct representatives exists if and only if there exists an
index set N ⊂ {1, . . . , k} such that the number of elements in ∪i∈NXi is less
than the number of elements in N .

Dilworth’s Theorem on the Decomposition of a Finite Partially Ordered Set
into Chains: For a given partial ordering S , a chain of elements is a sequence
s1, s2, . . . , sm where the elements satisfy si ≤ si+1. The minimum number of
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chains, such that every element is contained in at least one chain, is equal to
the maximum number of incomparable elements; i.e., where by definition si and
sj are incomparable elements if neither si ≤ sj nor sj ≤ si.

(a) Illustrate the König-Egerváry theorem for the matrix

M =


0 1 0 1 1 0 1 0
0 0 1 0 0 0 0 1
0 0 0 0 0 1 0 0
0 0 1 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0


(b) Do three of the following:

• Prove the König-Egerváry theorem from the max-flow min-cut theo-
rem.

• Sketch a proof of the König-Egerváry theorem using linear program-
ming duality.

• Show how Philip Hall’s theorem on systems of distinct representatives
is a consequence of the König-Egerváry theorem.

• Show how Dilworth’s theorem on the decomposition of a finite partially
ordered set into chains is a consequence of the König-Egerváry theorem.



C H A P T E R 9

GENERALIZED UPPER

BOUNDS

Large-scale systems typically have a special structure that can be exploited to gain
computational advantage. It is routine, in practice, to take advantage of the large
percentage of zeros in a large-scale problem. In other instances, there are linear
programs that have upper bounds on subsets of variables such that each variable
appears in at most one subset. Such constraints are called generalized upper bounds.

Quite often, linear programs have a set of general constraints and a set of con-
straints that are upper bounds on partial sums of variables such that each variable
appears in at most one of these partial sums. Such partial sum upper-bound con-
straints are called generalized upper bounds or GUB constraints. In practice, the
GUB constraints are typically much more than the other constraints.

9.1 PROBLEM STATEMENT

Consider a linear program with m+ l constraints with the properties that:

1. Each variable has at most one nonzero coefficient in the last l constraints.

2. All of these nonzero coefficients are positive.

3. The last l constant terms (right-hand sides) are positive.

� Exercise 9.1 Show that the variables can be rescaled so that all the coefficients in the
last l equations are 1 and the constants in the last l equations are also 1.

251
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For convenience we assume that the rescaling of Exercise 9.1 has been done.
Furthermore, if some of these last l constraints were ≤ inequalities, we convert
them to equations by the introduction of slack variables.

Definition (GUB Set): For i = 1, . . . , l, let Si be the ith GUB set, i.e., the
set of indices of variables with a coefficient of 1 in the (m+ i)th row. Also let
S0 be the set of indices corresponding to variables with only zero coefficients
in the rows m + 1 through m + l. These definitions imply that each variable
index j belongs to exactly one set Si for i = 0, 1, . . . , l.

A linear program with generalized upper bounds can then be written as:

Minimize
∑
j∈S0

cjxj +
∑
j∈S1

cjxj + · · · +
∑
j∈Sl

cjxj = z

subject to
∑
j∈S0

a1jxj +
∑
j∈S1

a1jxj + · · · +
∑
j∈Sl

a1jxj = b1∑
j∈S0

a2jxj +
∑
j∈S1

a2jxj + · · · +
∑
j∈Sl

a2jxj = b2

...
...

...
... =

...∑
j∈S0

amjxj +
∑
j∈S1

amjxj + · · · +
∑
j∈Sl

amjxj = bm∑
j∈S1

xj = 1

. . . ∑
j∈Sl

xj = 1

x ≥ 0.

(9.1)

The last l equations are the GUB constraints. In matrix notation, it can be written
as:

Minimize
∑
j∈S0

cjxj +
l∑

i=1

∑
j∈Si

cjxj = z

subject to
∑
j∈S0

(
A•j

0

)
xj +

l∑
i=1

∑
j∈Si

(
A•j

ei

)
xj =

(
b
e

)
x ≥ 0

(9.2)

where ej is an l-vector with a 1 in position j and 0s elsewhere, b = ( b1, b2, . . . , bm ),
and e = (1, 1, . . . , 1)T is an l-vector. Next, without loss of generality, we assume
that the equations are linearly independent.
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9.2 BASIC THEORY

LEMMA 9.1 (Each GUB Set Contains at Least One Basic Variable) Gi-
ven a basic solution to (9.2), then for each GUB set Si, for i = 1, . . . , l, there exists
at least one j ∈ Si such that xj is basic.

� Exercise 9.2 Prove Lemma 9.1.

� Exercise 9.3 Construct an example that demonstrates that it is not necessary to have
any basic variable xj such that j ∈ S0.

THEOREM 9.2 (Bound on the Number of GUB Sets with More Than
One Basic Index) The number of sets Si for 1 ≤ i ≤ l containing two or more
basic indices is at most m.

Proof. There are m+l variables that are basic. Of these, l indices are in different
sets by Lemma 9.1. Thus, of the remaining m basic indices, p can be distributed to
S0 and at most m− p to Si, i = 1 ≤ i ≤ l. Thus at most m− p GUB sets can have
two or more basic indices. By Exercise 9.3, p can be zero.

Definition (Plural (or Essential) and Singleton (or Inessential)): For 1 ≤
i ≤ l, the GUB set Si is said to be a plural (or essential) set with respect to
a basic set B if it contains two or more basic variable indices; all other GUB
sets are singleton (or inessential) sets since by Lemma 9.1 they have exactly
one basic variable index. With this definition, Theorem 9.2 can be restated:
the maximum number of plural sets is m.

Definition (Key Basic Index/Variable, Artificial): For each GUB set Si we
choose one basic variable index j ∈ Si to be designated as a key basic index and
its corresponding basic variable xj as a key basic variable. For the singleton
sets, there is exactly one basic index so this choice for key basic is unique. For
plural sets, the choice as to which one is designated as the key is arbitrary.

For an example in detached coefficient form see Table 9-1 where the basic variable
are denoted by • above and the key variables are denoted by “key” below. Notice
that if the columns of the basis are rearranged so that the columns corresponding
to the key basic variables are moved to the right, then the basis has an identity in
the lower-right corner.

9.3 SOLVING SYSTEMS WITH GUB
EQUATIONS

In practice, (9.2) will have many GUB constraints; in fact, often l � m; for example,
m = 50 and l = 1000. By taking advantage of the structure we shall see that
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• • • • • • • •
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 b
1 0 2 0 3 4 5 1 −1 −12 15
1 1 −1 0 2 1 4 2 −3 6 7
0 0 0 1 0 0 0 0 0 0 0

1 1 1 1
1 1

1 1
1 1 1

1 1 1
k
e
y

k
e
y

k
e
y

k
e
y

k
e
y

Table 9-1: An Example of GUB Constraints and Key Basic Variables

x1 x3 x4 x2 x5 x6 x7 x9

1 2 0 0 3 4 5 −1
1 −1 0 1 2 1 4 −3
0 0 1 0 0 0 0 0

1 1 1
1

1
1

1

Table 9-2: An Example of a Reordered Basis for GUB Constraints

we solve m×m equations on each iteration of the Simplex Algorithm instead of
(m+ l)× (m+ l) equations.

Suppose the columns of a basis for (9.2) have been reordered so that the last l

columns
(
G
Il

)
correspond to the key basic variables and the first m columns

(
F
E

)
correspond to the nonkey basic variables. The basis then has the following special
form:

B =
(m l

m : F G
l : E Il

)
, (9.3)

where Il is an identity matrix of dimension l because it corresponds to the key basic
variables, and E has a special form, i.e., each column has at most one 1 and all the
rest 0; see, for example, Table 9-2.
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Note that E can be eliminated by multiplying B on the right by the matrix

V =
( m l

m : Im 0
l : −E Il

)
, (9.4)

This results in

BV =
(
F −GE G

0 Il

)
=

(
W G
0 Il

)
. (9.5)

� Exercise 9.4 Show that

V −1 =

(
Im 0
E Il

)
. (9.6)

� Exercise 9.5 Show that because of the special structure of E, the matrix multiplication
GE can be performed very efficiently on a computer.

Let the basic indices be jk for k = 1, . . . ,m + l; Sq be the qth GUB set for
1 ≤ q ≤ l, S0 be the set of indices not in any of the GUB sets; and k̄q ∈ Sq be the
key basic index in set Sq. Then the matrix W = F −GE, called the working basis,
has the following form for any column k of W :

W•k =
{
A•jk

−A•k̄q
if jk ∈ Sq for some 1 ≤ q ≤ l;

A•jk
if jk ∈ S0.

(9.7)

THEOREM 9.3 (Working Basis Is Nonsingular) The matrix W = F −GE
is an m×m nonsingular matrix.

Proof. Since B is nonsingular and V is nonsingular, their product BV is non-
singular, implying that W is nonsingular.

Using equation (9.5), a system of equations whose matrix of coefficients is either
B or BT can be solved very efficiently. First consider the system:

BxB =
(
b
e

)
, e = e = (1, 1, . . . , 1)T, (9.8)

where xB , the basic solution, is of dimension m+ l. Multiplying B on the right by
V and letting y = V −1x

B
, we get

BV V −1x
B

=
(
W G
0 Il

)
y =

(
b
e

)
. (9.9)

Let y = (yM , yL) where yM consists of the first m components of y, and yL consists of
the last l components of y. Given W−1 or some factorization of the working basis
W , we can easily solve for y by setting y

L
= e and then solving

WyM = b−Ge = b−
∑
j∈K

A•j (9.10)
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where K is the set of l indices corresponding to the key basic variables. Then xB is
obtained from:

xB = V y =
(

y
M

yL − EyM

)
. (9.11)

Because of the special structure of E, the operation EyM amounts to computing
partial sums of the components of y

M
; that is, the kth component of the product

Ey
M

is given by
[Ey

M
]k =

∑
i∈Ik

[y
M

]i, (9.12)

where Ik = { i | ji ∈ B ∩ Sk, ji not key, i = 1, . . . ,m + l }, and j1, . . . , jm+l are all
the indices of the basic variables.

Using the Revised Simplex Method, if the incoming column s ∈ Sq for some

1 ≤ q ≤ l, determine the reresentation of
(
A•s

eq

)
in terms of the basis by p̄ obtained

as the solution to

Bp̄ =
(
A•s

eq

)
.

This computation can be done in a manner similar to that for xB . Let p̄ = V y;
then, in this case, y

L
= eq and y

M
is the solution to

Wy
M

= A•s −Geq = A•s −G•q. (9.13)

The vector p̄ is then obtained by computing V y.

� Exercise 9.6 How would the computations for determining p̄ change if the incoming
column s is in the set S0?

Similarly we can easily compute the reduced costs σ
N

= c
N
−NTπ by first solving

BTπ = c
B
. In order to do this, first multiply through by V T to give V TBTπ = V Tc

B
.

This gives(
WT 0
GT Il

)(
πM

πL

)
=

(
Im −ET

0 Il

)
cB =

(
[cB]M − ET[cB]L

[cB]L

)
, (9.14)

where once again the subscripts M and L on cB imply the first m components and
the last l components of c

B
, respectively. As before, the special structure of E

makes the multiplication ET[c
B
]
L

on the right-hand side of (9.14) easy, because each
column of E (or row of ET ) has at most one nonzero component, which is unity.
For notational convenience, let y = ET[c

B
]
L
, then

yi =
{

[c
B
]m+k if ji ∈ Sk;

0 otherwise; (9.15)

for i = 1, . . . , l. Given W−1, or some factorization of W , the system (9.14) is easy
to solve. The vector πM is first obtained by solving WTπM = [cB ]M − ET[cB]L and
then π

L
is obtained by substitution from the last l equations in (9.14) as

π
L

= [c
B
]
L
−GTπ

M
. (9.16)
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Once π is obtained, the reduced costs σN can be obtained as follows:

σ
N

= c
N
−NTπ = c

N
−AT

•N
π

M
−HT

•N
π

L
, (9.17)

where H is the matrix of coefficients of the last l equations. Since the columns of H
are all zeros except possibly one equal to +1, the third term in Equation (9.17) can
be computed very efficiently.

� Exercise 9.7 Show how to compute (H•N)TπL efficiently.

9.4 UPDATING THE BASIS AND WORKING
BASIS

So far, we have shown, given a factorization of W , that the steps of the Simplex
Algorithm can be performed very efficiently. At each iteration of the Simplex Al-
gorithm we need only maintain a factorization of W that is a matrix of size m×m
instead of a factorization of B that is a matrix of size (m+ l)× (m+ l) where l is
the number of the GUB constraints, which can be very large relative to m.

Now we need only show that we can efficiently obtain a new basis representation

B̄ from the old basis B =
(
F G
E Il

)
at the next iteration such that the inverse (or

factorization) of W̄ can be computed efficiently from the inverse (or factorization) of
W . For simplicity of exposition, let jr be the index of the outgoing variable where r
is the rth column of B and let s be the index of the incoming variable where s ∈ Si

for some i = 1, . . . , l or s ∈ S0. Then
(
A•s

ds

)
is the incoming column where

dj =
{
ek a unit l-vector if j ∈ Sk for some k = 1, . . . , l,
0 a zero l-vector if j ∈ S0.

(9.18)

There are three cases to consider depending on whether xjr is a non-key basic
variable, xjr is a key basic variable belonging to a singleton set, or xjr is a key basic
variable belonging to a plural set.

Case 1: xjr leaving the basis is non-key. In this case 1 ≤ r ≤ m (because of
the reordering of the basic columns, the non-key basics are in the first m
columns of B). The new basis B̄ is given by

B̄ =
(
F̄ G
Ē Il

)
, with

F̄ = F + (A•s −A•jr )eT
r ,

Ē = E + (ds − djr )eT
r ,

(9.19)

where er is an m-dimensional unit vector whose rth component is 1 and all
other components are 0. Now Ē can be eliminated from the matrix B̄ in (9.19)
by multiplying B̄ on the right by the matrix

V̄ =
(
Im 0
−Ē Il

)
. (9.20)
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Thus

B̄V̄ =
(
F̄ −GĒ G

0 Il

)
=

(
W̄ G
0 Il

)
, (9.21)

where

W̄ = F̄ −GĒ
= W +

[
(A•s −Gds)−W•r

]
eT

r , W = F −GE (9.22)

Equation (9.22) implies that W̄ is obtained from W by substituting for its
rth column W•r , the column A•s−Gds, a rank-one change. Thus, the inverse
of W̄ can be easily obtained from the inverse of W ; or the LU factors of W̄
can be easily obtained from the LU factors of W (see Linear Programming 4
for details). For the purpose of examples in this section, we shall use W−1 to
obtain W̄−1. Letting

h̄ = W−1(A•s −Gds) = W−1h, (9.23)

we have

W̄−1 =
(
I + (h̄− er)eT

r

)−1
W−1 =

(
I − 1

h̄r
(h̄− er)eT

r

)
W−1. (9.24)

� Exercise 9.8 Show that W•r = F•r −Gdjr and verify (9.22).

� Exercise 9.9 Verify (9.24).

Case 2: xjr leaving the basis is key in a singleton set. In this case the in-
dex r satisfies m < r ≤ m+ l (because of the reordering of the basic columns,
the key basics are in the last l columns). Let r̂ = r−m, then jr ∈ Sr̂, the rth
GUB set. Since r is from a singleton set, we know that Er̂• is a zero row. Now
we also know by Lemma 9.1 that at least one variable from each GUB set Si

must be basic for i = 1, . . . , l. Therefore, because xjr is from a singleton set,
the incoming variable xs must be such that s ∈ Sr̂. Then B̄ is the same as B
except column r̂ of G is replaced by A•s; thus

B̄ =
(
F Ḡ
E Il

)
, with Ḡ = G+ (A•s −G•r̂)eT

r̂ (9.25)

where er̂ is an l-dimensional unit vector whose r̂th component is 1 and all other
components are 0. Note that G•r̂ = A•jr in the equation (9.25). Because, in
this case, there is no change to E, the matrix V̄ used to multiply B̄ on the
right in order to eliminate E from B̄ is the same as V , i.e.,

V̄ = V =
(
Im 0
−E Il

)
. (9.26)
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Thus

B̄V̄ =
(
F − ḠE Ḡ

0 Il

)
=

(
W̄ Ḡ
0 Il

)
, (9.27)

where
W̄ = F −GE − (A•s −A•jr )eT

r̂ E = W

since eT
r̂E = Er̂• = 0, a zero-row vector because xjr is a key basic variable in

a singleton set. Thus, there is no change to the working basis W .

Case 3: xjr leaving the basis is key in a plural set. In this case the index r
satisfies m < r ≤ m + l (because of the reordering of the basic columns, the
key basics are in the last l columns). Let r̂ = r −m, then jr ∈ Sr̂, the rth
GUB set. Recall that the selection of a variable as a key basic variable was
arbitrary. Therefore this case can be handled by redesignating one of the
other basic variables belonging to the plural set as the key basic and then
applying Case 1. To do this first select a column k from the first m columns
of B with the property that jk ∈ Sr̂ and designate jk as the new key basic
variable for set Sr̂. Then xjr is no longer a key basic variable and the basis
can be updated by Case 1.

To redesignate jk ∈ Sr̂ as the key basic variable instead of jr ∈ Sr̂, we
interchange columns k and r of the basis B to obtain

B̃ =
(
F̃ G̃
E Il

)
, where

G̃ = G+ (F•k −G•r̂)eT
r̂

F̃ = F + (G•r̂ − F•k)eT
k ,

(9.28)

where er̂ is an l-dimensional unit vector whose r̂th component is 1 and all
other components are 0, and ek is an m-dimensional unit vector whose kth
component is 1 and all other components are 0. The updated matrix E is the
same E because a 1 in column k is replaced by another 1 from the identity
matrix column r̂. Thus the matrix Ṽ used to multiply B̃ on the right to
eliminate E from B̃ is the same as V , i.e.,

Ṽ = V =
(
Im 0
−E Il

)
. (9.29)

Multiplying B̃ on the right by V̄ = V we get

B̃Ṽ =
(
F̃ − G̃E G̃

0 Il

)
=

(
W̃ G̃
0 Il

)
. (9.30)

The matrix W̃ is related to the original matrix W in a very simple way. The
original nonkey columns W•i for ji ∈ Sr̂ are:

W•i = F•i −G•r̂ for ji ∈ Sr̂.
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including non-key column k, which will be designated as the new key variable.
Switching columns k and r in the basis B means that we switch columns F•k

and G•r̂ . This results in

W̃•k = G•r̂ − F•k = −W•k

W̃•i = F•i − F•k = W•i −W•k for ji ∈ Sr̂ and i �= k.

In matrix notation, the matrix W̃ can be represented as

W̃ = WT (9.31)

where T is a row elementary matrix whose kth row, Tk•, is defined by:

Tki =
{
−1 if ji ∈ Sr̂;

0 otherwise. (9.32)

That is, T is an elementary matrix of the row form with −1 at the intersection
of the kth row and diagonal and −1 or 0 elsewhere in the kth row.

Once the new B̃ is obtained, we apply Case 1 since now the outgoing variable
is no longer a key basic variable.

Once again, it is possible to update W−1 to W̄−1 or obtain the LU factors
of W̄ from the LU factors of W . In order to obtain W̄−1, first compute
T−1W−1 = TW−1 (see Exercise 9.11). Next use Equation (9.24) to apply
Case 1 to obtain the final updated inverse.

For updating the LU factors, let h = A•s − Gds, apply Case 1 with r being
replaced by k, 1 ≤ k ≤ m, to obtain

W̄ =
(
W +

(
h− [WT ]•k

)
eT

k T
)
T, (9.33)

which is in a form suitable for updating the LU factorization (see Linear
Programming 4).

� Exercise 9.10 Derive the general form W̃ = WT of equation (9.31).

� Exercise 9.11 Show that T−1 = T .

LEMMA 9.4 (T 2 = T ) Every matrix T that is a row (or column) elementary
matrix where the diagonal element is −1 has the property that T 2 = I.

� Exercise 9.12 Prove that the column elementary matrix of Lemma 9.4 is of the form

T = I − 2eke
T
k + ueT

k − ukeke
T
k (9.34)

for some vector u.
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� Exercise 9.13 Prove Lemma 9.4 using Exercise 9.12.

� Exercise 9.14 Prove (9.33).

� Exercise 9.15 Suppose that the variables in the last l constraints have at most one
nonzero coefficient each. Show how to generalize the GUB theory to this class of problems.

� Exercise 9.16 Suppose that instead of the last l constraints we have l sets of the
constraints, each of the form∑

j∈Si

ak
m+i,jxj ≤ bkm+i, for k = 1, . . . ,Ki, i = 1, . . . , l.

Show how to generalize the GUB theory to this class of problems. Illustrate for Ki = 2
for i = 1, . . . , l.

Example 9.1 (Illustration of GUB Procedure) Consider an example with m = 3
and l = 5 to minimize z = −x1 subject to the following constraints in detached coefficient
form where the basic columns are designated by • above and the key basic columns are
denoted by “key” below in (9.35).

• • • • • • • •
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 b

1 0 2 0 3 4 5 1 −1 −12 15
1 1 −1 0 2 1 4 2 −3 6 7
0 0 0 1 0 0 0 0 0 0 0

1 1 1 1
1 1

1 1
1 1 1

1 1 1

k
e
y

k
e
y

k
e
y

k
e
y

k
e
y

(9.35)

The columns associated with the GUB sets Si are:

S0 S1 S2 S3 S4 S5

A•1
0

A•2
e1

A•3
e1

A•4
e1

A•5
e2

A•6
e3

A•7
e4

A•8
e4

A•9
e5

A•10
e5

b
e

(9.36)

Let the initial basic set be B = {1, 2, 3, 4, 5, 6, 7, 9} and let the key basic variables be
x2, x5, x6, x7, x9. Then the basic set can be rewritten as

B = {j1, j2, . . . , j8} = {1, 3, 4; 2, 5, 6, 7, 9};

and, the basis is written as:

B =

(
F G

E I5

)
=

(
A•1 A•3 A•4 A•2 A•5 A•6 A•7 A•9

0 e1 e1 e1 e2 e3 e4 e5

)
.
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The working basis W is then given by

W = F −GE = (A•1 A•3 − A•2 A•4 −A•2 ) =

(
1 2 0
1 −2 −1
0 0 1

)
.

Its inverse is

W−1 =

(
1/2 1/2 1/2
1/4 −1/4 −1/4

0 0 1

)
.

On solving BxB = b using equations (9.8), (9.9), (9.10), and (9.11), we get

xB =

(
3,

1

2
, 0;

1

2
, 1, 1, 1, 1

)T

.

Next using (9.14) we get the prices

π = (πM , πL) =

(
−1

2
,−1

2
,−1

2
;
1

2
,
5

2
,
5

2
,
9

2
,−2

)T

,

and from (9.17) we find that the reduced costs corresponding to x8 and x10 are (−3,−1),
thus the smallest reduced cost occurs corresponding to x8. The representation, p̄, of(
A•8
e4

)
in terms of the basis is obtained by solving Bp̄ =

(
A•8
e4

)
. Using equation (9.13)

we get

p̄ =

(
−3,−1

2
, 0;

1

2
, 0, 0, 0, 1, 0

)T

.

Next we determine the variable leaving the basis by

θr = min
[p̄]i>0

[xB]i
[p̄]i

= 1; which gives r = 4 or r = 7.

There is a tie, and we break it by arbitrarily choosing r = 7 and, in this case, jr = 7.
Now jr ∈ S4, where S4 is a singleton set for the current basis. This is Case 2, where the
working basis does not change.

We replace x7 by x8 as the key basic variable and thus obtain the new basic set as
B = {1, 3, 4; 2, 5, 6, 8, 9}. The new G matrix is given by

G = [A•2, A•5, A•6, A•8, A•9].

The new basic solution is then

xB = (6, 1, 0; 0, 1, 1, 1, 1).

The new multipliers π are given by:

π = (πM , πL) =

(
−1

2
,−1

2
,−1

2
;
1

2
,
5

2
,
5

2
,
3

2
,−2

)T

.

Notice that πM does not change because W has not changed and [cB]M has not changed;
also notice that only one component (the 4th) of πL changes. After computing the reduced
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costs for the nonbasic variables x7 and x10, we find that they are (3,−1) and thus x10 is

a candidate to enter the basis. Solving Bp̄ =

(
A•10
e5

)
, using equation (9.13) we get

p̄ = (−1,−5, 0; 5, 0, 0, 0, 1)T.

Next we determine the variable leaving the basis by

θr = min
[p̄]i>0

[xB]i
[p̄]i

= 0, with r = 4 or jr = 2.

The new basic set is B = {1, 3, 4; 10, 5, 6, 8, 9}. However, x2 is a key basic variable; this
is Case 3. We first designate another variable in the set, x3, as the key basic variable (in
place of x2) so that the new basic set will be B = {1, 10, 4; 3, 5, 6, 8, 9}. This is done by
postmultiplying W by T , which is defined by (9.32) and in this case is

T =

(
1 0 0
0 −1 −1
0 0 1

)
.

We can easily updateW−1 by premultiplying it by T−1 which is the same as premultiplying
it by T . The new W−1 matrix is

TW−1 =

(
1/2 1/2 1/2
−1/4 1/4 −3/4

0 0 1

)
.

From (9.23) we compute h̄ (with the new r = 2 and jr = 2) by

h̄ = TW−1(A•10 −Gd10) = (−1, 5, 0)T.

Then from equation (9.24) we get

W̄−1 =

(
1 1/5 0
0 1/5 0
0 0 1

)(
1/2 1/2 1/2
−1/4 1/4 −3/4

0 0 1

)
=

(
9/20 11/20 7/20
−1/20 1/20 −3/20

0 0 1

)
.

The new G matrix is

G = [A•3, A•5, A•6, A•8, A•9].

The new basic feasible solution is

xB = (6, 0, 0; 1, 1, 1, 1, 1)T where B = {1, 10, 4; 3, 5, 6, 8, 9}.

The new prices are

π =

(
− 9

20
,−11

20
,− 7

20
;

7

20
,
49

20
,
47

20
,
31

20
,−42

20

)T

.

After pricing out, we find that the reduced costs corresponding to the nonbasic variables x2

and x7 are, respectively, (4/5, 13/2) ≥ 0. Hence the above solution xB is optimal.
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9.5 NOTES & SELECTED BIBLIOGRAPHY
The generalized upper bounding (GUB) technique was developed by Dantzig & Van Slyke
[1967]. Example 9.1 is the same as the one discussed in their paper. A generalization
of this method, which replaces each of the GUB constraints by a rectangular block of
constraints involving the same subset of variables, has been carried out by Kaul [1965].
Similar approaches have been investigated by Bennet [1963], Charnes & Lemke [1960],
Rosen [1964], Sakarovitch & Saigal [1967], and others. Brown & Thomen [1980] developed
an algorithm for automatically identifying generalized upper bounds in a linear program.

In all our discussions we have assumed that the bounds or generalized bounds are
fixed. Several interesting papers have appeared that handle variable upper bounds and
generalized variable upper bounds (GVUB). See, for example, Bastian [1984], Schrage
[1975], and Todd [1982, 1983].

9.6 PROBLEMS

9.1 Consider a linear program with GUB constraints having some negative coeffi-
cients −1 instead of all +1. How would the development of the solution proce-
dure and the updates to the working basis change?

9.2 Extend the GUB technique where the nonnegativity constraints on (9.2) are
replaced by upper and lower bounds on x, i.e., l ≤ x ≤ u.



C H A P T E R 10

DECOMPOSITION OF

LARGE-SCALE SYSTEMS

Large-scale linear programming systems typically have special structures that can
be exploited to gain computational advantage, for example, those having a very
large percentage of zero coefficients. It is routine to take advantage of this sparsity
of nonzero coefficients. In this Chapter we discuss how specialized versions of the
Simplex Method can be used to solve systems that have a special block-matrix
structure. We begin with the simple case of a system that, except for the objective
function, consists of two independent subsystems that have no variables in common,
for example:

Minimize
n1∑

j=1

cjxj +
n∑

j=n1+1

cjxj = z

subject to
n1∑

j=1

Aijxj = bi, i = 1, . . . ,m1

n∑
j=n1+1

Aijxj = bi, i = m1 + 1, . . . ,m

xj ≥ 0, j = 1, . . . , n.

(10.1)

Since there is no connection between the blocks except for the objective function,
it is obvious that the solution to the linear program (10.1) can be found by solving
the two linear programs (one for each block) separately and adding the objectives
to obtain z.

265
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� Exercise 10.1 Show that if there are K subsystems, each of dimension K, that are
independent of each other, except for the objective function, then it would take approxi-
mately 1/K2 times the effort to solve the full system, assuming, in general it takes less than
γm3 arithmetic operations to solve a linear program in m equations for some constant γ.

The block-angular system (10.2) is a generalization of (10.1); it has K indepen-
dent blocks and one set of coupling constraints:

Minimize (co)Txo + (c1)Tx1 + · · · + (cK)TxK = z

subject to A0xo + A1x1 + · · · + AKxK = b
F 1x1 = f1

. . .
...

FKxK = fK

xo ≥ 0, x1 ≥ 0, . . . , xK ≥ 0.

(10.2)

A possible application of a block angular system might be for a company with K
almost independent factories k = 1, . . . ,K. Each factory has many constraints
that are independent of the constraints of the other factories. There are a few
constraints, however, such as shared budget, skilled labor, and a profit function
that the K factories must share. In (10.2), xk is the vector of activity levels of the
kth factory and xo is the set of activity levels of the headquarters that are not a
part of the activities of any factory. The first equation is the objective function, the
second line the m constraints expressing the sharing of m scarce resources across
the board, the third line the m1 constraints that involve the first factory only, and
the last line the m

K
constraints that involve the Kth factory only.

The structure of the block-angular system (10.2) suggests that we try to break
the problem into K independent parts and then adjust the solution to take into
account the interconnections. One way to do this, popular with economists, is to
begin by arbitrarily assigning prices to the scarce resources and let each factory
optimize its activities assuming that it has to pay for scarce resources according
to these prices. The scarce resources that the headquarters and each factory will
demand in general will be out of kilter with b, the resources available to the system,
and the problem becomes one of finding an efficient algorithm to adjust the prices
(Lagrange multipliers). In this chapter we show how to do this in a finite number
of iterations using the Dantzig-Wolfe (D-W) Decomposition Principle.

This algorithm was first proposed in technical papers of the RAND Corpora-
tion around 1958 and first published in technical journals in 1960. Because of its
potential application to decentralized planning it was enthusiastically received by
economists. However, contrary to expectations, in initial trials on certain classes
of practical problems, the algorithm turned out to be disappointingly slow. Later,
when the initial implementations were replaced by codes prepared by skilled math-
ematical programmers, it turned out to be very efficient. Unfortunately, the initial
incorrect reports that the algorithm is inefficient still persist in the literature.

Another class of problems encountered in practice, amenable to decomposition
methods, are the staircase systems, which differ from block-angular systems (10.2)
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in that the activities associated with any step of the staircase share input/output
resources with those on the step below it on the staircase. For example, (10.3)
depicts a staircase system with four steps:

Minimize (c1)Tx1 + (c2)Tx2 + (c3)Tx3 + (c4)Tx4 = z

subject to A11x1 = b1

A21x1 + A22x2 = b2

A32x2 + A33x3 = b3

A43x3 + A44x4 = b4

xk ≥ 0, k = 1, . . . , 4.

(10.3)

Staircase systems often arise in the study of processes through time in which the
activities of one period (or stage) directly affect or are affected by the preceding
and following periods (or stages) but with no others. Such systems arise in man-
ufacturing where the production at one stage of the process is affected by that of
the previous stage and affects the products of the following stage only. In such
problems, it is often the case that several of the submatrices Aii along the diagonal
are all the same and several of the Ai,i−1 along the subdiagonal are also all the
same; when true it is possible to take advantage of it.

Another more general type of system that can be solved using decomposition
methods are the lower block-triangular systems such as the four-stage one displayed
in (10.4) below:

Minimize (c1)Tx1 + (c2)Tx2 + (c3)Tx3 + (c4)Tx4 = z

subject to A11x1 = b1

A21x1 + A22x2 = b2

A31x1 + A32x2 + A33x3 = b3

A41x1 + A42x2 + A43x3 + A44x4 = b4

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0,

(10.4)

where stage 1 directly affects stages 2, 3, and 4; stage 2 directly affects stages 3 and
4; and stage 3 directly affects stage 4.

10.1 WOLFE’S GENERALIZED LINEAR
PROGRAM

When a production system is being modeled, it may happen that the input and
output coefficients of one or more activities are not in fixed proportions (as is the
case for linear programs), but each column of coefficients may be freely chosen
as any point from a convex set Cj . This important class of problems is called a
“Generalized Linear Program.” These were first studied by Philip Wolfe.
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Definition: A generalized linear program is a problem stated in standard
linear programming problem format:

Minimize cTx = z
subject to Ax = b, A : m× n,

x ≥ 0,
(10.5)

where each column
(
cj
A•j

)
may be freely chosen to be any point in a given

convex set Cj , j = 1, . . . , n.

By simple extension, the fixed right-hand-side vector b may also be replaced by a
vector picked from a convex set Cb.

THEOREM 10.1 (Equivalent Generalized Linear Program) The gener-
alized linear program (10.6) is equivalent to the generalized program (10.7) generated
at some iteration of Wolfe’s algorithm.

Original Generalized Linear Program:

Minimize
n∑

j=1

cj x̂j = ẑ

subject to
n∑

j=1

Aij x̂j = bi, for i = 1, . . . ,m

x̂j ≥ 0, for j = 1, . . . , n,

(10.6)

where
(
cj
A•j

)
∈ Cj are freely chosen vectors in convex sets Cj.

Equivalent Generalized Linear Program:

Minimize
n∑

j=1

(
cjxj +

Tj∑
t=1

ctjx
t
j

)
= z

subject to
n∑

j=1

(
Aijxj +

Tj∑
t=1

At
ijx

t
j

)
= bi, for i = 1, . . . ,m

xj ≥ 0, for j = 1, . . . , n,

(10.7)

where
(
cj
A•j

)
∈ Cj are freely chosen vectors in convex sets Cj and

(
ctj
At

•j

)
∈ Cj,

t = 1, . . . , Tj are Tj fixed points in Cj.

Proof. Let

x̂j = uj,

(
cj
A•j

)
=

(
coj
Ao

•j

)
, Min ẑ
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be an optimal solution to (10.6). Let

xj = vj , xt
j = vt

j ,

(
cj
A•j

)
=

(
ctj
At

•j

)
, Min z

be an optimal solution to (10.7). Note (xj = uj , xt
j = 0, Min ẑ) is a feasible solution

to (10.7). Therefore Min z ≤ Min ẑ. Note that the optimal solution to (10.7) can
be rewritten as a feasible solution to (10.6):

Minimize
n∑

j=1

c̄j v̄j = z̄

subject to
n∑

j=1

Āij v̄j = bi, for i = 1, . . . ,m

v̄j ≥ 0, for j = 1, . . . , n,

(10.8)

where

v̄j = vj +
Tj∑
t=1

vt
j

(
c̄j
Ā•j

)
=


(
c∗j
A∗•j

)
vj
v̄j

+
(
ctj
At

•j

)
vt

j
v̄j

if v̄j �= 0(
c∗j
A∗•j

)
if v̄j = 0

Therefore Min z ≥Min ẑ. This and Min z ≤ Min ẑ imply Min z = Min ẑ.
In the following discussion, we further assume that the convex sets are defined

by systems of linear inequalities; however, the method can be easily extended to
the situation where the convex sets are general.

Example 10.1 (Generalized Linear Program) An example of a generalized linear
program is to find xj ≥ 0, yi4, Min z such that

6x1 + 4x2 + x3 + y04x4 = z (min)
x1 + x2 − 4x3 + y14x4 = 5
−x1 + x2 − x3 + y24x4 = 1
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0,

(10.9)

where the coefficients y•4 = (y04, y14, y24), are not fixed but must be chosen to be a point
in the convex set:

C4 =
{
y•4 | 3y04 + y14 + 2y24 = 2 with yi4 ≥ 0 for i = 0, 1, 2

}
. (10.10)

This is an example of a nonlinear system. However, we will show that by a suitable change
of variables, the problem can be reformulated as a linear program. Multiply 3y04 + y14 +
2y24 = 2 by x4 to obtain

3y04x4 + y14x4 + 2y24x4 = 2x4. (10.11)
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Substitute variables u0 = y04x4, u1 = y14x4, u2 = y24x4 into (10.9) and (10.11) to obtain
the linear program:

6x1 + 4x2 + x3 + u0 = z̄ (min)
x1 + x2 − 4x3 + u1 = 5
−x1 + x2 − x3 + u2 = 1

3u0 + u1 + 2u2 = 2x4

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0, u0 ≥ 0, u1 ≥ 0, u2 ≥ 0.

(10.12)

Our immediate goal is to prove that Wolfe’s nonlinear program (10.10) and the linear
program (10.12) are equivalent in the sense that if x̂1, x̂2, x̂3, x̂4, û0, û1, û2, ẑ is optimal
for (10.12) and x̂4 �= 0, then x1 = x̂1, x2 = x̂2, x3 = x̂3, x4 = x̂4, y04 = û0/x̂4, y14 = û1/x̂4,
y24 = û2/x̂4, z = ẑ is optimal for the generalized program (10.9).
Proof. Assume an optimal solution to Wolfe’s nonlinear program (10.9) is z∗, x∗1, x∗2,
x∗3, x∗4, y∗04, y∗14, y∗24, then a feasible solution to the linear program (10.12) is x∗1, x∗2, x∗3,
x∗4, u∗0 = y∗04x∗4, u∗1 = y∗14x∗4, u∗2 = y∗24x∗4, z̄ = z∗.

Conversely assume the minimal solution to the linear program (10.12) is x̂1, x̂2, x̂3, x̂4,
û0, û1, û2 z̄ = ẑ. Then a feasible solution to Wolfe’s generalized LP is x1 = x̂1, x2 = x̂2,
x3 = x̂3, x4 = x̂4, y04 = û0/x̂4, y14 = û1/x̂4,y24 = û0/x̂4 under the assumption of x̂4 �= 0.
We conclude that (10.9) and (10.12) have the same optimal solution.

� Exercise 10.2 If it turns out that in optimizing (10.12) x4 = x̂4 = 0, then show by
(10.13) that the optimal solution to the generalized program is not necessarily found by
setting x4 = 0 in (10.9) and optimizing (10.9). Find xj ≥ 0, yi4, Min z such that

6x1 + 4x2 + x3 + y04x4 = z (min)
x1 + x2 − 4x3 + y14x4 = 5
−x1 + x2 − x3 + y24x4 = 1
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0,

(10.13)

where the coefficients y•4 = (y04, y14, y24), are not fixed but must be chosen to be a point
in the convex set:

C4 =
{
y•4 | 3y04 − y14 + 2y24 = 2 with yi4 ≥ 0 for i = 0, 1, 2

}
. (10.14)

Show that the associated linear programming solution cannot be used to solve the original
system.

� Exercise 10.3 In Example 10.1 multiply (10.10) by x4, replace each yi4x4 by ui, reduce
the system to a linear program, and solve by hand or by using the DTZG Simplex Primal

(Linear Programming 1)) software option. Can this solution be used to solve the original
system? Show that in this case the linear program is equivalent to the original generalized
linear program in a certain sense.

THEOREM 10.2 (Generalized LP and Equivalent LP) The generalized
linear program

Minimize cTx + y0,n+1xn+1 = z
subject to Ax + y•n+1xn+1 = b, A : m× n,

(x, xn+1) = (x1, x2, . . . , xn+1 ) ≥ 0,
(10.15)
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where the coefficients (y0,n+1, y•n+1) are not fixed but must be chosen to be a point
in the convex set:

Cn+1 =
{
yi,n+1 |

m∑
i=0

αiyi,n+1 = 1, yi,n+1 ≥ 0 for i = 0, . . . ,m
}
. (10.16)

has the same optimal solution as the linear program

Minimize cTx + u0 = w
subject to Ax + u = b, A : m× n,

m∑
i=0

αiui,n+1 = xn+1

x1, x2, . . . , xn+1 ≥ 0, u0, u1, . . . , um ≥ 0

(10.17)

where ui = yi,n+1xn+1 under the assumption that the optimal solution to (10.15)
has xn+1 = x∗n+1 > 0.

Proof. We will prove that the optimal solutions are the same for (10.15) and
(10.17) by showing that the optimal solution for (10.15) is a feasible solution to
(10.17) and vice versa.

Let z = z∗, xj = x∗j , for j = 1, . . . , n + 1 with x∗n+1 > 0, and yi,n+1 = y∗i,n+1,
for i = 0, . . . ,m be an optimal feasible solution to (10.15). The values xj = x∗j
for j = 1, . . . , n + 1 and ui = y∗i,n+1x

∗
n+1 i = 0, . . . ,m + 1, are clearly feasible for

(10.17); i.e.,

Minimize cTx∗ + y∗0,n+1x
∗
n+1 = w∗

subject to Ax∗ + y∗•n+1x
∗
n+1 = b, A : m× n

m∑
i=0

αiy
∗
i,n+1x

∗
n+1 = x∗n+1

(10.18)

Therefore z∗ ≤ w∗.
Next suppose that w∗ is not optimal but there exists another set of values

w = w̄, xj = x̄j for j = 1, . . . , n+ 1 and ui = ūi, i = 0, . . . ,m+ 1, that result in an
optimal feasible solution for (10.17). Since x̄n+1 > 0 by our assumption, we compute
ȳi,n+1 = ūi,n+1/x̄n+1 for i = 0, . . . ,m. The solution xj = x̄j for j = 1, . . . , n + 1
with yi,n+1 = ȳi,n+1 for i = 0, . . . ,m is clearly feasible for (10.15) and therefore
w̄ ≤ z̄. Hence the optimal solutions for the two systems are the same.

� Exercise 10.4 Suppose that the optimal solution to (10.15) has xn+1 = x∗n+1 = 0.
Show that systems (10.15) and (10.17) are not equivalent in this case.

Returning to the general case (10.5), for now assume that(
cj
A•j

)
= y•j = (y0j , y1j , . . . , ymj)T
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may be freely chosen to be any point in a convex set Cj defined by a system of
linear inequalities in the variable coefficient parameters yij for i = 0, 1, . . . ,m, and
possibly auxiliary variables ym+1,j, ym+2,j , . . . , ym+k,j independent of the rest of
the system. Problem (10.5) can be restated as a linear program in xj and uij by
multiplying the relations of Cj by xj ≥ 0 and substituting uij = yijxj , unrestricted
in sign, as new variables. If this substitution generates a linear program that yields
a solution in which xj �= 0 then it is easy to back-substitute and get an optimal
feasible solution to the original system.

� Exercise 10.5 Suppose after the substitution, that the resulting linear program in uij

and xj generates a solution with the property that whenever xj = 0 that uij = 0 for
i = 1, . . . ,m. Show how this property can be used to find a solution to the original
system (10.5).

� Exercise 10.6 Suppose that a solution is obtained for the new linear system in uij and
xj with xt = 0; show that a solution yitxt �= 0 is still possible. Construct an example to
show how this can happen. Show that this case can only happen if Cj is an unbounded
convex set. Furthermore show that we can get a sequence of solutions to the original
problem in which yit �→ 0 and xt → 0.

The reduction of a generalized program to a linear program is not recommended
as a solution technique. Instead we recommend solving it by a series of adjustments
of the values of yij obtained by sequentially solving certain auxiliary programs
or subprograms in yij . In effect, a large linear program with variable coefficients is
decomposed into smaller linear programs, each of which can be solved very efficiently.
We shall now illustrate the method.

Example 10.2 (Illustration of Wolfe’s Method) Consider the problem defined by
equations (10.9) and (10.10) and restated here for convenience.

6x1 + 4x2 + x3 + y04x4 = z (min)
x1 + x2 − 4x3 + y14x4 = 5
−x1 + x2 − x3 + y24x4 = 1
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0,

(10.19)

where the coefficients y•4 = (y04, y14, y24), are not fixed but must be chosen to be a point
in the convex set:

C4 =
{
y•4 | 3y04 + y14 + 2y24 = 2 with yi4 ≥ 0 for i = 0, 1, 2

}
. (10.20)

If we pick a starting basic set of variables (−z, x1, x2), the basic feasible solution corre-
sponding to this set is

(−z) = 24, x1 = 2, x2 = 3, x3 = x4 = 0. (10.21)

To test if this basic feasible solution is optimal, we compute the simplex multipliers by
solving BTπ = cB to obtain

π = (5,−1)T .
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We use π to compute the reduced costs c̄3 and c̄4, where c̄j = cj − πTA•j :

c̄3 = 20
c̄4 = y04 − 5y14 + y24.

where (y04, y14, y24) ∈ C4; see (10.10).

Note this basic solution (10.21) is minimal, if c̄j ≥ 0 for all j. In this case c̄3 > 0 and
c̄4 may be less than zero depending on the choice of the variable coefficient parameters
y04, y14, and y24. In order to determine if c̄4 can be < 0, we minimize the value for c̄4
subject to conditions (10.10); i.e., we solve the subprogram associated with subset C4:

Minimize y04 − 5y14 + y24 = c̄4
subject to 3y04 + y14 + 2y24 = 2,

y04 ≥ 0, y14 ≥ 0, y24 ≥ 0.
(10.22)

Observe in this case that the minimal solution is y04 = 0, y14 = 2, y24 = 0, and c̄4 = −10.
Therefore the basic solution (10.21) fails to pass the test for optimality for the original
problem.

We next obtain an improved solution to (10.19) by allowing x4, with column coefficients

y
(1)
04 = 0, y

(1)
14 = 2, y

(1)
24 = 0, to become an incoming basic variable. Once we introduce x4

into the basic set of (10.19), x1 drops out, resulting in the new basic feasible solution:

(−z) = −4, x2 = 1, x4 = 2, x1 = x3 = 0.

However, we need to provide for the possibility of revising the values of yi4 to obtain a
still lower value of z. This is done by rewriting the program (10.9) in the equivalent form:

6x1 + 4x2 + x3 + 0x
(1)
4 + y04x4 = z (min)

x1 + x2 − 4x3 + 2x
(1)
4 + y14x4 = 5

−x1 + x2 − x3 + 0x
(1)
4 + y24x4 = 1

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x
(1)
4 ≥ 0, x4 ≥ 0,

(10.23)

where yi4 satisfy the same relations (10.10) as before, i.e.,

3y04 + y14 + 2y24 = 2 and yi4 ≥ 0 for i = 0, 1, 2. (10.24)

The column (y04, y14, y24)
T will be referred to as the generic column. It may seem that

we have changed our original problem; however, we know by Theorem 10.1 that the new
problem (10.23) is equivalent to the original one (10.19).

The new basic feasible solution to (10.23) is

(−z) = −4, x2 = 1, x
(1)
4 = 2, x1 = x3 = x4 = 0. (10.25)

The new simplex multipliers obtained from BTπ = cB are:

π = (0, 4)T .

We next obtain the reduced costs from c̄N = cN −NTπ as

c̄1 = 10, c̄3 = 5, c̄4 = y04 − 4y24.



274 DECOMPOSITION OF LARGE-SCALE SYSTEMS

The reduced costs c̄1 and c̄3 are nonnegative; in order to determine if c̄4 < 0 is possible,
we solve the subprogram

Minimize y04 − 4y24 = c̄4

subject to 3y04 + y14 + 2y24 = 2,
y04 ≥ 0, y14 ≥ 0, y24 ≥ 0,

(10.26)

which is the same problem as (10.22) except it has a different objective expression for
c̄4. On solving (10.26) we obtain c̄4 = −4, y04 = 0, y14 = 0, and y24 = 1. Thus, the
solution (10.25) fails again to pass the test for optimality of the equivalent problem. The
variable x4 is the only nonbasic with a negative cost; bringing it into the basis causes x2

to drop out and the new basic feasible solution is

(−z) = −4, x
(1)
4 = 5/2, x4 = 1, x1 = x2 = x3 = 0.

However, again we need to be careful. We construct a new augmented equivalent
program (10.27), which allows for the possibility of yi4 to be revised:

6x1 + 4x2 + x3 + 0x
(1)
4 + 0x

(2)
4 + y04x4 = z (min)

x1 + x2 − 4x3 + 2x
(1)
4 + 0x

(2)
4 + y14x4 = 5

−x1 + x2 − x3 + 0x
(1)
4 + 1x

(2)
4 + y24x4 = 1

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x
(1)
4 ≥ 0, x

(2)
4 ≥ 0, x4 ≥ 0,

(10.27)

The new basic feasible solution is

(−z) = 0, x
(1)
4 = 5/2, x

(2)
4 = 1, x1 = x2 = x3 = x4 = 0. (10.28)

The new simplex multipliers obtained from BTπ = cB are:

π = (0, 0)T .

We once again obtain the reduced costs from c̄ = cN −NTπ;

c̄1 = 6, c̄2 = 4, c̄3 = 1, c̄4 = y04.

As before, in order to see if c̄4 < 0 is possible, we solve the subprogram with the revised
objective:

Minimize y04 = c̄4

subject to 3y04 + y14 + 2y24 = 2
y04 ≥ 0, y14 ≥ 0, y24 ≥ 0.

(10.29)

On solving (10.29) we obtain c̄4 = 0, y04 = 0, y14 = 2, and y24 = 0. Since c̄4 = 0, the
solution (10.28) is optimal because all the reduced costs are nonnegative for all feasible
values of y•4. The optimal solution to (10.9) and (10.10) can be derived from the solution

to (10.27) and (10.29) as follows: z = 0, x1 = x2 = x3 = 0, x4 = x
(1)
4 +x

(2)
4 = 5/2+1 = 7/2,(

y04
y14
y24

)
= y

(1)
•4

x
(1)
4

x
(1)
4 + x

(2)
4

+ y
(2)
•4

x
(2)
4

x
(1)
4 + x

(2)
4

=

(
0
2
0

)
5

7
+

(
0
0
1

)
2

7
=

(
0

10/7
2/7

)
. (10.30)
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What to Do If the Subprogram has an Unbounded Solution

In general we must allow for the possibility for some incoming column j = s such
that y•s is a convex combination of one or more extreme points plus a nonnegative
combination of one or more homogenous solutions (see Theorem 10.5). Thus, in
general, when we solve the subprogram, two cases can arise:

1. If an extreme-point solution y•s = ye
•s ∈ Cs is obtained to the subprogram

that prices out negative, bring it into the basis of the original problem.

2. If a class of solutions y•s = ye
•s + θyh

•s ∈ Cs, where ye
•s is an extreme-point

solution and yh•s is a homogeneous solution with θ ≥ 0 a scalar parameter, is
obtained, then introduce only the homogeneous part yh

•s into the basis of the
original problem.

The intuitive reason for this is as follows. It is clear that increasing θ makes
y•s price out more negative and hence more attractive to introduce y•s as a
column into the basis of the original problem. If we rewrite y•sxs as

y•sxs = (ye
•s + θyh

•s)xs =
(

1
θ
ye
•s + yh

•s

)
θxs (10.31)

it is clear that that the nonhomogeneous part becomes negligible relative to
the homogeneous part as θ increases. Example 10.3 illustrates this.

� Exercise 10.7 Suppose the “optimal” solution to the generalized program example
using Wolfe’s procedure has some positive weights xt

s on yh
•s associated with homogeneous

solutions to the subproblem Cs and has zero weights xτ
s on each extreme-point solution ye

•s

associated with the subproblem Cs. Let z = z∗. Prove, if the final basis is nondegenerate,
there exists a class of feasible solutions with positive weights on all extreme solutions and
extreme homogeneous solutions such that z → z∗. Show, if the basis is degenerate, that
none of the class of solutions need to be feasible but they tend to feasibility in the limit.

Example 10.3 (Subprogram Has an Unbounded Solution) We illustrate the sit-
uation where the subprogram has an unbounded solution. Consider the following example
of a generalized linear program:

0x1 + 0x2 + 3x3 + y04x4 = z (min)
x1 + y14x4 = 1

x2 + y24x4 = 1
x3 + y34x4 = 1

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0

(10.32)

where y04, y14, y24, and y34 may be chosen to have any values satisfying

y04 = 2
− 0.5y14 + y24 = 0
− 0.5y14 + y34 = 1

y04 ≥ 0, y14 ≥ 0, y24 ≥ 0, y34 ≥ 0.

(10.33)
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If we pick a starting basic set of variables to be (−z, x1, x2, x3), the basic feasible solution
is

(−z) = −3, x1 = 3, x2 = 1, x3 = 1, x4 = 0. (10.34)

In order to determine if this basic feasible solution is optimal, we first compute the simplex
multipliers by solving BTπ = cB to obtain

π = (0, 0, 3)T .

We next obtain the reduced costs c̄4 from c̄N = cN −NTπ:

c̄4 = y04 − 3y34 with y04 = 2. (10.35)

The test for a minimum is c̄j ≥ 0 for all j. In this case, only c̄4, as defined by (10.35),
may be less than zero depending on the values of the parameters y04 and y34. In order to
determine if c̄4 < 0 is possible, we minimize the value for c̄4 subject to (10.33); i.e., we
solve the subprogram:

Minimize y04 − 3y34 = c̄4
subject to − (1/2)y14 + y24 = 0

− (1/2)y14 + y34 = 1
y04 = 2, y14 ≥ 0, y24 ≥ 0, y34 ≥ 0.

(10.36)

On applying the Simplex Method, we find the class of solutions

y•4 = ye
•4 + θyh

•4 =

 2
0
0
1

 + θ

 0
1

1/2
1/2

 (10.37)

and c̄4 = −1−(3/2)θ → −∞ as θ →∞. Since c̄4 < 0 for all θ ≥ 0, the basic solution (10.34)
does not satisfy the test for optimality for the original problem (10.32) whatever be θ ≥ 0.

We obtain an improved solution by introducing the homogeneous part to (10.37) as a

new column yh
•4 =

(
yh
04 = 0, yh

14 = 1, yh
24 = 1/2, yh

34 = 1/2
)T

into the basis of (10.32):

0x1 + 0x2 + 3x3 + 0xh
4 = z (min)

x1 + 1xh
4 = 1

x2 + (1/2)xh
4 = 1

x3 + (1/2)xh
4 = 1

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0.

(10.38)

It is straightforward to see that the variable x1 leaves the basis and the new basic feasible
solution is:

(−z) = −3/2, x2 = 1/2, x3 = 1/2, xh
4 = 1, x1 = 0. (10.39)

However, again we need to be careful. We construct a new augmented program (10.40)
that allows for the possibility that the values of y•4 may need to be revised to obtain a
lower value for z:

0x1 + 0x2 + 3x3 + 0xh
4 + y04x4 = z (min)

x1 + 1xh
4 + y14x4 = 1

x2 + (1/2)xh
4 + y24x4 = 1

x3 + (1/2)xh
4 + y34x4 = 1

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, xh
4 ≥ 0, x4 ≥ 0,

(10.40)
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where the y•4 satisfy the same relations (10.33) as before. From (10.39) the new basic
feasible solution is:

(−z) = −3/2, x2 = 1/2, x3 = 1/2, xh
4 = 1, x1 = x4 = 0.

In order to determine if it is optimal we compute the simplex multipliers:

π = (−3/2, 0, 3)T .

We next obtain the reduced costs c̄1 and c̄4 as

c̄1 = 3/2, c̄4 = y04 + (3/2)y14 − 3y34, with y04 = 2. (10.41)

The test for a minimum is c̄j ≥ 0 for all j. In this case, only c̄4 may possibly be less than
zero depending on the values of the parameters y04, y14, and y34. In order to determine if
c̄4 < 0 is possible, we replace only the objective of (10.36) by the updated c̄4 from (10.41)
and solve the new subprogram:

Minimize y04 + (3/2)y14 − 3y34 = c̄4
subject to − (1/2)y14 + y24 = 0

− (1/2)y14 + y34 = 1
y04 = 2, y14 ≥ 0, y24 ≥ 0, y34 ≥ 0.

(10.42)

On applying the Simplex Method, we find the minimal value is c̄4 = −1 < 0 with ye
04 = 2,

ye
14 = 0, ye

24 = 0, and ye
34 = 1. Thus, once again the solution fails to pass the optimality

test for the original problem. The variable x4 is the only nonbasic with a negative cost;
bringing it into the basis causes x3 to drop out and the new basic feasible solution is

(−z) = −1, x2 = 1/2, xh
4 = 1, xe

4 = 1/2, x1 = x3 = 0.

However, again we need to be careful here. We construct a new augmented pro-
gram (10.43), which allows for the possibility of y•4 to be revised:

0x1 + 0x2 + 3x3 + 0xh
4 + 2xe

4 + y04x4 = z (min)

x1 + 1xh
4 + 0xe

4 + y14x4 = 1

x2 + (1/2)xh
4 + 0xe

4 + y24x4 = 1

x3 + (1/2)xh
4 + 1xe

4 + y34x4 = 1

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, xh
4 ≥ 0, xe

4 ≥ 0, x4 ≥ 0,

(10.43)

where the y•4 satisfy the same relations (10.33) as before. The new basic feasible solution
is:

(−z) = −1, x2 = 1/2, xh
4 = 1, xe

4 = 1/2, x1 = x3 = x4 = 0. (10.44)

In order to determine if it is optimal we compute the simplex multipliers

π = (−1, 0, 2)T .

We next obtain the reduced costs c̄1, c̄2, and c̄4 as

c̄1 = 1, c̄3 = 1, c̄4 = y04 + y14 − 2y34 with y04 = 2.
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The test for a minimum is c̄j ≥ 0 for all j. In this case, only c̄4 may possibly be less than
zero depending on the values of the parameters y04, y14, and y34. In order to determine if
c̄4 < 0 is possible, we solve the subprogram:

Minimize y04 + y14 − 2y34 = c̄4
subject to − (1/2)y14 + y24 = 0

− (1/2)y14 + y34 = 0
y04 = 2, y14 ≥ 0, y24 ≥ 0, y34 ≥ 0.

(10.45)

On applying the Simplex Method, we find the the minimal value is c̄4 = 0 with y04 = 2,
y14 = 0, y24 = 0, and y23 = 2. Since c̄4 = 0, the solution (10.44) is optimal because all the
reduced costs are nonnegative for all feasible values of y•4.

� Exercise 10.8 From the final solution (10.44) derive the optimal solution to (10.32)
and (10.33).

� Exercise 10.9 In Example 10.3 change y04 = 2 to be y04 = 8 in equations 10.33 and
re-solve the problem.

� Exercise 10.10 This exercise is designed to show how the homogeneous part of the
solution can dominate and drive out the extreme-point part of the solution. Solve the
following generalized linear program:

x1 + 0x2 + 0x3 = z (min)
x1 + y13x3 = 3

x2 + y23x3 = 1
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0,

(10.46)

where y03 = c3 = 0, y13, and y23 may be chosen to have any values satisfying

− y13 + 2y23 = 2 with yi3 ≥ 0 for i = 1, 2 (10.47)

by the following three approaches:

1. Use the method of substituting ui4 = yi4xi4 as described in Example 10.1.

2. Use the method of Example 10.3.

3. Use the method of Example 10.3, except that when a class of solutions y•t = ye
•t +

θyh
•t ∈ Ct, where ye

•t is an extreme-point solution and yh
•t is a homogeneous solution

with θ ≥ 0 a scalar parameter is obtained, insert it into the basis of the original
problem together with the parameter θ; see (10.31).

Comment on the three methods and the solutions thus obtained.

� Exercise 10.11 Modify the steps of the algorithm to take care of the case when for
some j = s the subproblem Cs turns out to be infeasible.

We shall now formalize the concepts discussed so far and prove that the algo-
rithms just described converge.
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Definition: The Restricted Master Program at the kth stage of the algorithm

consists of variables x(k)
j with specified columns of y•j =

(
c
(k)
j

A
(k)
•j

)
drawn from

the convex set Cj .

The optimal solution of the restricted master program determines values for the
simplex multipliers, π = πo, for use in subprograms.

Definition: The jth subprogram at any stage is to find y•j ∈ Cj which
minimizes the linear form c̄j = y0j −

∑m
i=1 yijπ

o
i where π = πo are the known

simplex multipliers from the restricted master program.

If the jth subprogram has a finite optimal solution y•j = y∗•j, it generates an
additional specified column of coefficients for the next restricted master program.
If it has an unbounded class of solutions, y•j = ye

•t + θyh
•t, θ ≥ 0, then yh

•t is used to
generate an additional specified column of coefficients for the next restricted master
program. If the subproblem turns out to be infeasible, set xj = 0 permanently and
set a flag not to solve the subproblem j on any subsequent iteration or find some
other way to tell the computer to drop xj and its column of coefficients from the
problem.

THEOREM 10.3 (Optimality Check) A solution (x∗j , y∗•j) for j = 1, . . . , n
is optimal if there exists multipliers π, such that c̄j ≥ 0 for all y•j ∈ Cj and c̄j = 0
for all xe

j > 0 or xh
j > 0.

THEOREM 10.4 (Finite Termination) The Simplex Algorithm will termi-
nate in a finite number of iterations if each basic feasible solution is improved until it
is no longer possible to find either an extreme point y•s = ye

•s ∈ Cs or a homogeneous
extreme direction y•s = yh•s of Cs to introduce into the basis such that

c̄s = min
y•j∈Cj

j=1,...,n

c̄j = y0j −
m∑

i=1

yijπ
o
i < 0, (10.48)

where π are the simplex multipliers of the basis in the master program.

Proof. In order to show finiteness of the algorithm it is easy to show that the
columns of any basis of the master program must be drawn from a finite class. Each
Cj is a convex set defined by a finite number of linear inequalities; therefore it can
be represented by a finite number of extreme points and a finite number of extreme
homogeneous directions (see Theorem 10.5 on Page 281).

� Exercise 10.12 In the discussion so far we have assumed that b is fixed. Show how to
modify the approach so that b can be chosen freely from a convex set Cb.
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� Exercise 10.13 Reduce to a generalized linear program the problem: Find vector y•j ∈
Cj ⊆ �m and b ∈ Cb ⊆ �n such that

n∑
j=1

y•j = b. (10.49)

� Exercise 10.14 Referring to Example 10.1 on Page 269, suppose that

C4 =
{
y•4 | y2

04 + y2
14 + y2

24 ≤ 1
}
. (10.50)

Show that this condition also results in a generalized linear program. Apply the methods
of this section to solve the problem; contrast it with the polyhedral case. Suppose that
instead of (10.50)

C4 =
{
y•4 | y2

04 + y2
14 + y2

24 = 1
}
. (10.51)

Prove that the method of this section would still be applicable even though C4 is no longer
a convex set.

Comment: Once a generated column of the basis of the master program is dropped,
we have the option of keeping it as a nonbasic column of the master program or
dropping it because it can always be regenerated if needed later on as an extreme
point or as the direction of an extreme half-line of some Cj . Experiments show that
if the restricted master problem has not grown too large it is clearly advantageous
to keep all such dropped generated columns as nonbasic columns of the master.
However, the size of the restricted master program may grow too large and, if it
does, we can reduce the size by dropping some of its nonbasic columns by using
some rule such as dropping those that price out the most positive or dropping those
that have remained nonbasic for the longest consecutive number of iterations.

10.2 DANTZIG-WOLFE (D-W)
DECOMPOSITION PRINCIPLE

The Dantzig-Wolfe Decomposition Principle is based on the Resolution or Repre-
sentation theorem for convex polyhedra (see Theorem 10.5). Before stating and
proving the resolution (or representation) theorem, we define a normalized extreme
homogeneous solution.

Definition: The normalized extreme homogeneous solutions associated with
the basic feasible solutions of a convex polyhedral set

Ax = b
x ≥ 0 (10.52)

are the basic feasible solutions to the following system of equations

Ay = 0
eTy = 1
y ≥ 0

(10.53)
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where e = (1, 1, . . . , 1)T.

In (10.53), the first set of m equations, Ay = 0, implies that y is a homogeneous so-
lution; the convexity and nonnegativity constraints on y state that the solutions are
nonzero and the variables are normalized to sum to 1. The number of basic feasible
solutions are clearly finite for (10.53). (Note that the reason that we normalize the
homogeneous solutions is to get a finite number of them).

� Exercise 10.15 If the set of feasible solutions to (10.52) is unbounded, prove it has at
least one extreme homogeneous solution.

� Exercise 10.16 Construct an example to show it is possible for (10.53) to have a feasible
solution while (10.52) has none.

THEOREM 10.5 (Resolution) Every feasible solution of a convex polyhedral
set of the form Ax = b, x ≥ 0, can be represented as a convex combination of the
finite set of its extreme points and a nonnegative linear combination of the finite set
of its normalized extreme homogeneous solutions (i.e., the finite set of directions of
its extreme half-line solutions).

Proof. The theorem states that every feasible solution x = x̄ of

Ax = b
x ≥ 0, (10.54)

can be represented in the form

x̄ =
L∑

i=1

αiu
i +

M∑
j=1

βjv
j

1 =
L∑

i=1

αi

αi ≥ 0 for i = 1, . . . , L, βj ≥ 0 for j = 1, . . . ,M ,

(10.55)

where {ui} are the finite set of all extreme points, and {vj} are the finite set of all
normalized extreme homogeneous solutions.

First, suppose that x = x̄ is defined by (10.55) for some choice of αi, i = 1, . . . , L
and βj , j = 1, . . . ,M . Note that x = x̄ ≥ 0 because αi ≥ 0, βj ≥ 0, ui ≥ 0, vj ≥ 0
for all i, j. Moreover, since Aui = b for i = 1, . . . , L and Avj = 0 for j = 1, . . . ,M
we have

Ax̄ = A
L∑

i=1

αiu
i +A

M∑
j=1

βjv
j =

L∑
i=1

αi(Aui) +
M∑

j=1

βj(Avj)

=
L∑

i=1

αib+
M∑

j=1

βj(0) = b.
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Next, we show conversely that given any feasible solution x = x̄ ≥ 0 of (10.54),
there exist αi ≥ 0, βj ≥ 0 satisying (10.55). To show this assume on the contrary,
that there exist no αi, βj that satisfy

L∑
i=1

αiu
i +

M∑
j=1

βjv
j = x̄

L∑
i=1

αi = 1

αi ≥ 0, i = 1, . . . , L,
βj ≥ 0, j = 1, . . . ,M.

(10.56)

This implies, by the Infeasibility Theorem (see Linear Programming 1), that there
exists at least one set of multipliers π̄ = ( π̄1, π̄2, . . . , π̄n )T and γ = γ̄, not all zero,
such that

(a) π̄Tui + γ̄ ≥ 0 for i = 1, . . . , L
(b) π̄Tvj ≥ 0 for j = 1, . . . ,M
(c) π̄Tx̄ + γ̄ < 0,

(10.57)

has a feasible solution.
We now show that (10.57) is in fact infeasible, contrary to our assumption that

(10.56) is infeasible. We do this by examining the following linear program

Minimize π̄Tw
subject to Aw = b,

w ≥ 0,
(10.58)

whose objective coefficients are the π̄ satisfying (10.57), and whose set of extreme
point solutions {ui}, satisfying Aui = b, and extreme homogeneous solutions {vj},
satisfying Avj = 0, are the same as those for (10.54). This linear program (10.58)
is feasible since w = x̄ is a feasible solution by hypothesis.

The linear program (10.58) clearly has a finite minimum because every extreme
homogeneous solutions satisfies π̄Tvj ≥ 0 by (10.57b); i.e., the objective is nonde-
creasing along every extreme homogeneous solution. This implies that the minimum
value of the objective must occur at an extreme point. On subtracting the third re-
lation of (10.57c) from the first set of relations (10.57a) for each i = 1, . . . ,M we
obtain the relations

π̄Tui > π̄Tx̄ for i = 1, . . . ,M.

Clearly a contradiction since this states that objective value at the given feasible
point w = x̄ ≥ 0 is strictly smaller than the objective value at every extreme point.
Therefore, we conclude that there must exists αi ≥ 0, βj ≥ 0 satisfying (10.56).

Example 10.4 (Illustration of the Resolution Theorem) This illustrates how a
feasible solution of a convex polyhedral set can be represented as a convex combination
of the finite set of extreme points and a nonnegative linear combination of the finite set
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(1, 0)

• x̄ ∈ P

• (2.1, 1.5)

Figure 10-1: Illustration of the Resolution Theorem

of normalized extreme homogeneous solutions as proved in Theorem 10.5. Consider the
polyhedral set

P = {x ∈ �2 | x1 + x2 ≥ 0, x1 ≥ 0, x2 ≥ 0 } (10.59)

shown in Figure 10-1. From the figure we see:

Extreme Points: (1, 0)T, (0, 1)T

Half-Lines: (x1 ≥ 0, x2 = 0), (x1 = 0, x2 ≥ 0)

Extreme Directions Away from Origin (Normalized): (1, 0)T, (0, 1)T

The Resolution Theorem 10.5, in this case, states that any point x̄ ∈ P can be expressed
as

x̄ = α1

(
1
0

)
+ α2

(
0
1

)
+ β1

(
1
0

)
+ β2

(
0
1

)
where α1 + α2 = 1, α1 ≥ 0, α2 ≥ 0, β1 ≥ 0, β2 ≥ 0. For example x̄ = (2.1, 1.5)T can be
represented with α1 = 0, α2 = 1, β1 = 2.1, β2 = 0.5 or α1 = 1, α2 = 0, β1 = 1.1, β2 = 1.5
or any convex combination of these two.

� Exercise 10.17 Consider the convex polyhedral set in �3 given by x1 ≥ 0, x2 ≥ 0,
and x3 unrestricted. Show that it has no extreme points. Write it in an equivalent form
Ay = b, y ≥ 0, with y ∈ �4.

THEOREM 10.6 (D-W Transformation) Every feasible solution of a convex
polyhedral set in �n can be represented as a convex combination of a finite set of
feasible solutions and a nonnegative linear combination of the finite set of normalized
extreme homogeneous solutions (i.e., the finite set of directions of the extreme half-
line solutions).

� Exercise 10.18 Prove Theorem 10.6 by showing that every convex polyhedral set of
y ∈ �n can be represented in the form

Ax = b
x ≥ 0,

(10.60)

where x ∈ �n̄ with n̄ ≥ n and applying the Resolution Theorem 10.5.
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10.2.1 D-W PRINCIPLE

We illustrate the Dantzig-Wolfe Decomposition Principle by applying it to a general
linear program in standard form:

Minimize cTx = z
subject to Ax = b, A : m× n,

x ≥ 0.
(10.61)

Let Ax = b be arbitrarily partitioned into two sets of equations A1x = b1 and
A2x = b2 where A1 is m1 × n and A2 is m2 × n and m = m1 +m2. That is,

Minimize cTx = z
subject to A1x = b1, A1 : m1 × n,

A2x = b2, A2 : m2 × n,
x ≥ 0.

(10.62)

In this case, we view the problem as

Minimize cTx = z,
subject to A1x = b1, A1 : m1 × n,

(10.63)

subject to the additional constraints

A2x = b2, A2 : m2 × n,
x ≥ 0. (10.64)

From the Resolution Theorem 10.5, we know that any feasible solution to (10.64)
can be written as a convex linear combination of the L possible extreme points (basic
feasible solutions) x = ui and a nonnegative linear combination of the M possible
normalized extreme homogeneous solutions xh = vj of (10.64), i.e.,

x =
L∑

i=1

αiu
i +

M∑
j=1

βjv
j , (10.65)

where
∑L

i=1 αi = 1, αi ≥ 0, i = 1, . . . , L, and βj ≥ 0, j = 1, . . . ,M .

THEOREM 10.7 (Equivalent Full Master Program) Substituting (10.65)
into (10.63) transforms the original m× n linear program into an equivalent linear
program with fewer rows (m1 + 1) and possibly many more columns (L+M), where
m1 is the number of rows of A1, and where L is the number of extreme solutions and
M is the number of normalized homogeneous solutions of { x | A2x = b2, x ≥ 0 };
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that is:

FULL MASTER PROGRAM

Find minimum z, αi ≥ 0, i = 1, . . . , L, βj ≥ 0, j = 1, . . . ,M, such that
L∑

i=1

(cTui)αi +
M∑

j=1

(cTvj)βj = z

L∑
i=1

(A1ui)αi +
M∑

j=1

(A1vj)βj = b1

L∑
i=1

αi = 1

(10.66)

� Exercise 10.19 Prove Theorem 10.7.

Definition (Full Master Program or the Extremal Problem): The linear pro-
gram obtained from the extreme point solutions x = ui and normalized ex-
treme homogeneous solutions xh = vj of (10.64) is called the equivalent full
master program or the extremal problem. Note that the rows, other than the
convexity constraint, of this master program are in one-to-one correspondence
with the rows of the first partition.

THEOREM 10.8 (Feasible and Optimal Solution) Any αi and βj satisfy-
ing (10.66), determines an x by (10.65) which is a feasible solution to (10.62). If,
in addition, z is the minimum of (10.66) for αi = α∗i and βj = β∗j , then by (10.65)
these generate an optimal feasible solution x = x∗ to (10.61). If this optimal feasible
solution to (10.61) is not unique, then x∗ need not be basic feasible solution to the
original problem (10.61).

� Exercise 10.20 Prove Theorem 10.8.

To simplify notation, denote the linear transforms Gi and Hj of ui and vj by:

Gi = A1ui

Hj = A1vj (10.67)

and the associated scalar costs gi and hj by:

gi = cTui

hj = cTvj . (10.68)
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The original linear program is then equivalent to:

FULL MASTER PROGRAM

Find minimum z, αi ≥ 0, i = 1, . . . , L, βj ≥ 0, j = 1, . . . ,M, such that
L∑

i=1

giαi +
M∑

j=1

hjβj = z : Dual Variables

L∑
i=1

Giαi +
M∑

j=1

Hjβj = b1 : π

L∑
i=1

αi = 1 : γ

(10.69)

So far we have transformed the original problem (10.61) to (10.69), a linear pro-
gram, called the full master program, of lower row dimension. Unfortunately this
transformation usually results, in practice, with many, many more columns corre-
sponding to all M basic feasible solutions and all L normalized extreme nonnegative
homogeneous directions of (10.64). In practice it is usually impractical to generate
a full master program consisting of L extreme points plus M extreme homogeneous
directions. What is done instead is to generate at each iteration of the Simplex
Algorithm just that column of the full master program, which the Algorithm would
have selected to try to bring into the basis.

Definition:
The program obtained by dropping all but a subset L̄ of the L columns associ-
ated with αi and a subset M̄ of the M columns associated with βj for (10.69)
is called a Restricted Master Program.

Let us suppose after a number of iterations that we have generated a restricted
master program whose columns correspond to a basic feasible solution to the full
master problem with values of the basic variables αi = αo

i , i = 1, . . . , k, and βj = βo
j ,

j = 1, . . . , l. Since (10.69) has m1 +1 rows (excluding the objective), k+ l = m1 +1.
(Later, in Section 10.2.4, we will discuss how to obtain such a starting basic feasible
solution).

Next, let the simplex multipliers associated with this basic feasible solution be
(π̄, γ̄) where the components of π̄ correspond to m1 rows of b1 and γ̄ is the the
simplex multiplier of the convexity constraint be denoted by γ. To test whether
this basic feasible solution is an optimal solution of the Full Master problem we use
these multipliers to “price out” all M +N of its columns.
Key Idea: We will now show how to generate only the column having the most
negative reduced cost without having to generate and price out all the remaining
columns of the master.

The simplex multipliers by definition satisfy the following equations:

γ + (Gi)Tπ = gi i = 1, . . . , k
(Hj)Tπ = hj j = 1, . . . , l (10.70)
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If we used the commonly used rule of selecting the most negative reduced cost we
would first need to determine i = i∗ and j = j∗ such that

g
i∗ − (Gi∗)Tπ̄ − γ̄ = min

i=1,...,L

{
gi − (Gi)Tπ̄

}
− γ̄ (10.71)

and
h

j∗ − (Hj
∗
)Tπ̄ = min

j=1,...,M

{
hj − (Hj)Tπ̄

}
. (10.72)

where i∗ and j∗ are the indices i and j at which these minima are achieved. We
would then choose the minimum of (10.71) and (10.72) to be the index of the column
to introduce into the basis. If we define as Adjusted Costs

ρ̄ = c− (A1)Tπ̄ (10.73)

and substitute Gi = A1ui and Hj = A1vj , we can rewrite the above two reduced-
cost pricing-out equations (10.71) and (10.72) as

min
i=1,...,L

{gi − (Gi)Tπ̄
}
− γ̄ = min

i=1,...,L

{
cTui − (A1ui)Tπ̄

}
− γ̄

= min
i=1,...,L

{(
c− (A1)Tπ̄

)T
ui
}
− γ̄

= min
i=1,...,L

{
ρ̄Tui

}
− γ̄ (10.74)

and

min
j=1,...,M

{
hj − (Hj)Tπ̄

}
= min

j=1,...,M

{
cTvj − (A1vj)Tπ̄

}
= min

j=1,...,M

{(
c− (A1)Tπ̄

)T
vj

}
= min

j=1,...,M

{
ρ̄Tvj

}
. (10.75)

At this point in the algorithm we do not know if there are any extreme points or
normalized extreme solutions that price out negative. To determine (10.74) without
having to evaluate all the extreme point solutions to (10.64) that price out negative,
we determine instead x = u∗, which solves

Minimize ρ̄Tx = z2 + γ̄
subject to A2x = b2

x ≥ 0,
(10.76)

where ρ̄ = c − (A1)Tπ̄ satisfies (10.73) and where γ̄ is the value of the simplex
multiplier of the convexity constraint of the Restricted Master Problem.

If after using the Simplex Method, the optimal solution is a basic feasible solution
x = u∗, then we have found a column with the smallest reduced cost for the Full
Master Program. If u∗ is optimal, and if

min z2 < 0 (10.77)
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we augment the columns of the restricted master program byG∗
g∗
1

 =

A1u∗
cTu∗

1

 (10.78)

with index ∗, relabeled appropriately, then augment the restricted master program
by this column and reoptimize the augmented restricted master program. On the
other hand, if min z2 = 0 then all the reduced costs for the full master program
(10.69) will be nonnegative. In this case we are at an optimal solution of the full
master program (see Theorem 10.9), and (10.65) can be used to compute an optimal
solution to (10.61).

Earlier we set aside the possibility that there are extreme homogeneous solu-
tions. We now assume that after solving the subprogram (10.76) by the Simplex
Method an extreme homogeneous solution xh = v∗ is obtained. In this case, ac-
cording to the theory, we are interested in obtaining the best normalized extreme
homogeneous solution. This can be done without having to evaluate all the normal-
ized extreme homogeneous solutions to (10.64) that price out negative by solving the
linear program:

Minimize ρ̄Tx = zh
2

subject to A2x = 0
eTx = 1,
x ≥ 0,

(10.79)

where e = (1, 1, . . . , 1)T, ρ̄ satisfies (10.73), and zh
2 is the value associated with

the optimal normalized homogeneous solution. Because setting up and solving this
new subprogram (10.79) requires additional work, typically this linear program is
not solved. Instead we accept any homogeneous solution xh = v∗ of (10.76) that
prices out negative without bothering to normalize it and compute and augment
the restricted master program byH∗

h∗
0

 =

A1v∗
cTv∗

0

 (10.80)

with index ∗, relabeled appropriately, and bring this column into the basis of the
augmented restricted master program and then reoptimize the augmented restricted
master program.

� Exercise 10.21 Why is it not necessary to normalize the homogeneous solution v∗
before augmenting the restricted master program?

The D-W decomposition algorithm is sometimes also referred to in the litera-
ture as a Delayed Column Generation Procedure (we prefer to call it Wait-and-See
Column Generation Procedure) since we generate only the column of the full master
program that is coming into the basis. In summary, at each iteration we solve a
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restricted master program that provides the information used to generate the new
objective for the subprogram. The subprogram is then re-solved in order to generate
a new incoming column for the next iteration of the restricted master.

10.2.2 D-W DECOMPOSITION ALGORITHM AND
VARIANTS

10.2.2.1 The D-W ALGORITHM

So far we have described one iteration of the Dantzig-Wolfe algorithm. In this
section we formalize its steps.

Algorithm 10.1 (Dantzig-Wolfe Algorithm)

1. An initial restricted master program with a starting basic feasible solution is given
with one nonbasic column.

2. Solve the restricted master program. If a finite optimal solution is obtained go to
Step 3. Otherwise report the original problem as unbounded (see Exercise 10.22)
and stop.

3. The optimal basic feasible solution of the restricted master program provides us

with simplex multipliers

(
π̄
γ̄

)
. The nonbasic column is dropped.

4. The subprogram (10.76) is then solved.

5. If an optimal basic feasible solution is obtained to (10.76) and min z2 < 0, see (10.77);
then a new column (10.78) is added to the restricted master program and the process
is continued by going to Step 2.

6. If an extreme nonnegative homogeneous solution is obtained to (10.76), a new col-
umn (10.80) is added to the restricted master and the process is continued by going
to Step 2.

7. If min z2 = 0, the solution is declared to be optimal for the original problem. The
optimal solution is then given by (10.65) where α1, α2, α3, . . . and β1, β2, β3, . . . is
an optimal feasible solution to the final restricted master program, which is also an
optimal feasible solution to the full restricted master program.

� Exercise 10.22 Show how to display an unbounded solution to the original problem.

� Exercise 10.23 Given an optimal solution α1, α2, α3, . . . and β1, β2, β3, . . . to the Mas-
ter Problem (10.69), show how to construct an optimal solution to the original problem.

� Exercise 10.24 Show that if the original problem does not have a unique optimal solu-
tion, then the optimal solution to the Master Problem (10.69) may be a convex combination
of several optimal basic feasible solutions to the original problem.
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Computational Note: On each iteration of the D-W algorithm, we can start the
solution of the new subprogram from the last basic solution of the preceding itera-
tion. Thus, no Phase I procedure is necessary for any subprogram except the first.
It has been observed in practice that most of the time only a few iterations are
necessary to re-solve the subprogram. Some authors, especially Beale, question the
need at each iteration to fully optimize each subproblem with respect to the current
optimal prices π = π̄ of the Restricted Master. They report good results, returning
to the Restricted Master with improving, but not necessarily optimal, basic feasible
solutions to the subproblems.

10.2.2.2 VARIANTS OF THE D-W ALGORITHM

As various columns of the full master program are generated for the restricted
master program, each column that drops from the current basis of a restricted
master is also dropped from the current restricted master program. Instead, one of
the following two variants can be used.

1. Each column that drops from the current basis of a restricted master is re-
tained as a supplementary column in the current restricted master program.
This variant of retaining the nonoptimal “dropped” columns is recommended
unless these retained columns become too numerous.

2. The restricted master program is augmented by each new column and each
column that drops out of the basis is retained until the available computer
memory is used up. At this point, a subset of the columns that price out the
most positive is dropped from the current restricted master program.

10.2.3 OPTIMALITY AND DUAL PRICES

THEOREM 10.9 (Optimality and Finiteness under Nondegeneracy) An
optimal basic feasible solution of the restricted master program is also optimal for
the full master program if

min z2 = γ̄, (10.81)

see (10.76). If each restricted master program is nondegenerate such an optimum
will be reached in a finite number of iterations.

Proof. The first part follows from the optimality conditions for a linear pro-
gram. If the restricted master programs are nondegenerate the introduction of a
new column into the restricted master program will decrease the objective function
by a finite amount. Hence none of the finite number of bases of the full master
program (10.69) can reappear, implying the iterative procedure is finite.

COROLLARY 10.10 (Finiteness under Degeneracy) If some anticycling
scheme is used, Theorem 10.9 also holds if the restricted master programs are de-
generate.
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� Exercise 10.25 Prove Corollary 10.10.

THEOREM 10.11 (Lower Bound on Optimal Objective Value) Let α =
αo, β = βo be the current basic feasible solution and let π = π̄, γ = γ̄ be the
multipliers at this solution. Then a lower bound on the optimal objective value is
given by:

min z ≥ zo + min z2 (10.82)

where min z2 is an extreme-point solution to (10.76).

� Exercise 10.26 Prove Theorem 10.11.

LEMMA 10.12 (Dual-Feasible Solution) Let π1 be the multipliers on the
first set of m1 constraints of the master program and let π2 be the multipliers for

the m2 constraints of the subprogram (10.64). Then
(
π1

π2

)
consitutes a feasible

dual solution of the original linear program (10.61).

� Exercise 10.27 Prove Lemma 10.12.

THEOREM 10.13 (Optimal Basic Feasible Solution Representation) An
optimal basic feasible solution to the original linear program (10.61) can be repre-
sented as a convex combination of k basic feasible solutions and a nonnegative com-
bination of l extreme homogeneous solutions of the subprogram where m1 = k+ l is
the dimension of b1.

� Exercise 10.28 Prove Theorem 10.13.

10.2.4 D-W INITIAL SOLUTION

So far we have assumed that an initial feasible solution is available to the full
master program. In this section we show how to obtain an initial feasible solution
by a Phase I procedure.

To start the process, we obtain a feasible solution u1 to the subprogram (10.64).
If no such feasible solution exists, quit. Defining G1 = A1u1 we set up the following
restricted master program with artificial variables ξi.

Minimize
m1∑
i=1

ξi = w

subject to G1α1 +
m1∑
i=1

±eiξi = b1

α1 = 1
α1 ≥ 0, ξi ≥ 0, i = 1, . . . ,m1,

(10.83)
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where ei is the ith column of an m1 ×m1 identity matrix for i = 1, . . . ,m1. Note
that for feasibility α1 must equal 1. Hence, to ensure feasibility +ei is used if
b1i − G1

i ≥ 0 and −ei is used if b1i − G1
i < 0. The variables α1, ξ1, ξ2, . . . , ξm1

constitute a basic set of variables for the restricted master (10.83). This Phase I
problem is then solved by the procedure discussed in Section 10.2.2.1. At the end
of Phase I either a feasible solution is obtained to the original problem or the
problem is infeasible. If Phase I ends with a feasible solution, all nonbasic artificial
variables are dropped and all basic artificial variables are maintained at 0 by setting
their upper bounds to 0. Next the Phase I objective coefficients are replaced for
the columns in the Restricted Master and the Restricted Master is re-solved. The
process then continues.

10.2.5 D-W ALGORITHM ILLUSTRATED

In this section, we illustrate the D-W algorithm using first the full master problem
and then the steps of the D-W algorithm by generating the columns of the D-W
algorithm using the prices generated by the Restricted Master Problem.

Example 10.5 (Illustration of the Full Master Problem) Consider the following
linear program:

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14

1 2 3 4 5 6 1 2 3 4 5 6 7 -10 = z (min)

3 2 1 6 5 4 8 5 7 3 4 1 1 2 = 64
1 8 3 7 1 4 5 2 5 3 2 6 3 4 = 63

1 1 1 = 3
1 1 1 = 4

1 1 = 2
1 1 = 1

1 1 = 4

1 1 1 = 4
1 1 1 = 5

1 1 = 3
1 1 = 3

1 1 = 3

1 -1 = 1

where xj ≥ 0 for j = 1, . . . , 14. The problem can be thought of as consisting of the following
partitions: the objective function, followed by two equality constraints, two transportation
problems (called Sub1 and Sub2) whose variables are

[
x1 x2 x3

x4 x5 x6

]
and

[
x7 x8 x9

x10 x11 x12

]
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and an equality constraint (called Sub3). That is, the problem can be partitioned into the
form

(c1)Tx1 + (c2)Tx2 + (c3)Tx3 = z (min)
A1x1 + A2x2 + A3x3 = b
F 1x1 = f1

F 2x2 = f2

F 3 = f3

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

(10.84)

which is redisplayed below.

x1
1 x1

2 x1
3 x1

4 x1
5 x1

6 x2
1 x2

2 x2
3 x2

4 x2
5 x2

6 x3
1 x2

2

1 2 3 4 5 6 1 2 3 4 5 6 7 -10 = z (min)
3 2 1 6 5 4 8 5 7 3 4 1 1 2 = 64
1 8 3 7 1 4 5 2 5 3 2 6 3 4 = 63
1 1 1 = 3

1 1 1 = 4
1 1 = 2

1 1 = 1
1 1 = 4

1 1 1 = 4
1 1 1 = 5

1 1 = 3
1 1 = 3

1 1 = 3
1 -1 = 1

The entire set of basic solutions for Sub1 is

-2 1 4 2 -3 4 2 1 0
4 4 4

2 1 2 1 2 1
0 4 0 4 1 3

3 -1 4 1 2
-1 1 4 2 2 2 2

-1 4 3 3
3 1 2 -2 4 2 1 1

where the double-lined boxes are the basic feasible solutions excluding one degenerate case.
(For example, [

x1 = −2, x2 = 1, x3 = 4,
x4 = 4, x5 = 0, x6 = 0

]
is a basic (infeasible) solution.)

The entire set of basic solutions for Sub2 are
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-2 3 3 3 -2 3 3 3 -2
5 5 5

1 3 3 1 3 1
2 3 2 3 3 2

4 1 3 3 1
-1 3 3 3 2 3 2

1 3 4 4
2 3 3 -1 3 3 3 -1

where again the double lined boxes are the basic feasible solutions. The third subproblem
has one basic solution x13 = 1, x14 = 0, and one homogeneous solution x13 = 1, x14 = 1.
The full master problem in the order corresponding to the basic feasible cases is:

α1
1 α1

2 α1
3 α1

4 α2
1 α2

2 α2
3 α2

4 α2
5 α2

6 α3
1 β3

1

28 28 28 28 33 33 33 33 38 33 7 -3 = z (min)

24 24 24 24 32 40 45 43 33 47 1 3 = 64
26 18 36 28 35 39 38 30 32 32 3 7 = 63

1 1 1 1 = 1
1 1 1 1 1 1 = 1

1 = 1

� Exercise 10.29 In Example 10.5, solve the original problem and the full master problem
to verify that they produce the same optimal solution.

Example 10.6 (Illustration of the D-W Algorithm) We will now show how to solve
the linear program shown in Example 10.5 by the D-W algorithm. We start by trying to
generate a basic feasible solution to each of the three subproblems. If no such solution
exists to any of the subproblems then the entire linear program is infeasible. The particular
objective function we choose at this stage is not important; we assume that we use the
actual objective costs for each subproblem. That is we solve:

(Sub 1) :

Minimize 1x1 + 2x2 + 3x3 + 4x4 + 5x5 + 6x6 = z1
subject to x1 + x2 + x3 = 3

x4 + x5 + x6 = 4
x1 + x4 = 2

x2 + x5 = 1
x3 + x6 = 4

xj ≥ 0, for j = 1, . . . , 6,

(10.85)

(Sub 2) :

Minimize 1x7 + 2x8 + 3x9 + 4x10 + 5x11 + 6x12 = z2
subject to x7 + x8 + x9 = 4

x10 + x11 + x12 = 5
x7 + x10 = 3

x8 + x11 = 3
x9 + x12 = 3

xj ≥ 0, for j = 7, . . . , 12,

(10.86)
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and

(Sub 3) :
Minimize 7x13 − 10x14 = z3
subject to x13 − x14 = 1

x13 ≥ 0, x14 ≥ 0.
(10.87)

The optimal basic feasible solutions to the three subproblems are:

Sub 1 : u11
1 = 2, u11

2 = 1, u11
4 = 0, u11

6 = 4.
Sub 2 : u21

2 = 1, u21
3 = 3, u21

4 = 3, u21
5 = 2.

Sub 3 : u31
1 = 1.

(10.88)

As noted on Page 285, the solutions obtained from the subproblems are transformed
when put into the Master Problem. The Phase II objective evaluation will be done using
as objectives:

c1 =


1
2
3
4
5
6

 , c2 =


1
2
3
4
5
6

 , c3 =

(
7

−10

)
. (10.89)

The Phase I objective evaluation will be done using:

w1 =


0
0
0
0
0
0

 , w2 =


0
0
0
0
0
0

 , w3 =

(
0
0

)
. (10.90)

and the Restricted Master Problem coefficient matrix transformations will be done using

A1 =

(
3 2 1 6 5 4
1 8 3 7 1 4

)
(10.91)

A2 =

(
8 5 7 3 4 1
5 2 5 3 2 6

)
(10.92)

A3 =

(
1 2
3 4

)
(10.93)

This results in

G11 = A1u11 =

(
24
26

)
G21 = A2u21 =

(
43
30

)
G31 = A3u31 =

(
1
3

)

and

g11 = (w1)Tu11 = 0
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g21 = (w2)Tu21 = 0

g31 = (w3)Tu31 = 0

The corresponding associated objective coefficients are set to zero for Phase I. The
Phase I Restricted Master Problem is then

Minimize 0α11 + 0α21 + 0α31 + 1x13 + 1x14 = w
subject to 28α11 + 43α21 + α31 − x13 = 64

26α11 + 30α21 + 3α31 + x14 = 63
α11 = 1

α21 = 1
α31 = 1

αki ≥ 0, xj ≥ 0.

(10.94)

On solving the Phase I restricted Linear Program (10.94), all five variables are basic and
we obtain the following multipliers:

π̄ =

(
1
−1

)
, and γ̄ =

(−2
13
−2

)
. (10.95)

The multipliers are used to obtain the adjusted costs for the subproblem objectives as
follows:

ρ̄1 = w1 − (A1)Tπ̄ = ( 2 −6 −2 −1 4 16 )T

ρ̄2 = w2 − (A2)Tπ̄ = ( 3 3 2 0 2 −5 )T

ρ̄3 = w3 − (A3)Tπ̄ = (−2 −2 )T

After solving the three subproblems with the above objective coefficients repectively, we
obtain the following solutions:

Sub 1 : u12
2 = 1, u12

3 = 2, u12
4 = 2, u12

6 = 2, z1 = −12.
Sub 2 : u22

1 = 1, u22
2 = 3, u22

4 = 2, u22
6 = 3, z2 = −3.

Sub 3 : v32
1 = 1, v32

2 = 1. Homogeneous Solution.
(10.96)

Note that

z1 < γ̄1, z2 < γ̄2, z3 < γ̄3. (10.97)

Hence we transform and insert each of the solutions into the Restricted Master Problem.
The transformations are

G12 = A1u12 =

(
24
36

)
G22 = A2u22 =

(
32
35

)
H32 = A3v32 =

(
3
7

)
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and

g12 = (w1)Tu12 = 0

g22 = (w2)Tu22 = 0

h32 = (w3)Tv32 = 0

The new Phase I Restricted Master Problem is then

Minimize 0α11 + 0α12 + 0α21 + 0α22 + 0α31 + 0α32 + 1x13 + 1x14 = w
subject to 28α11 + 24α12 + 43α21 + 32α22 + α31 + 3β31 − x13 = 64

26α11 + 36α12 + 30α21 + 35α22 + 3α31 + 7β31 + x14 = 63
α11 + α12 = 1

α21 + α22 = 1
α31 = 1

αki ≥ 0, β31 ≥ 0, artificials x13 ≥ 0, x14 ≥ 0.
(10.98)

After solving this, we obtain a basic feasible solution with all artificials out of the basis.
We start Phase II with replacing the objective coefficients by the transformed coefficients:

g11 = (c1)Tu11 = 28

g21 = (c2)Tu21 = 28

g31 = (c3)Tu31 = 33

g12 = (c1)Tu12 = 33

g22 = (c2)Tu22 = 7

h32 = (c3)Tv32 = −3

On optimizing the modified Phase II Restricted Master, the multipliers are:

π̄ =

(
−0.1630
−0.3587

)
and γ̄ =

(
41.2391
50.7717
8.2391

)
. (10.99)

The new multipliers are used to obtain the adjusted costs for the subproblem objectives
as follows:

ρ̄1 = c1 − (A1)Tπ̄ = ( 1.8477 5.1956 4.2391 7.4889 6.1737 8.0868 )T

ρ̄2 = c2 − (A2)Tπ̄ = ( 4.0975 3.5324 5.9345 5.5651 6.3694 8.3152 )T

ρ̄3 = c3 − (A3)Tπ̄ = ( 8.2391 −8.2391 )T

After solving the three subproblems with the above objective coefficients repectively, we
obtain the following solutions:

Sub 1 : u13
1 = 2, u13

3 = 1, u13
5 = 1, u13

6 = 3, z1 = 38.3686
Sub 2 : u23

2 = 3, u23
3 = 1, u23

4 = 3, u23
6 = 2, z2 = −3

Sub 3 : u33
1 = 1 z3 = 8.3291

(10.100)

Note that
z1 < γ̄1, z2 < γ̄2, z3 = γ̄3. (10.101)
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Hence we transform and insert the solutions of subproblems 1 and 2 into the Restricted
Master Problem. The transformations are

G13 = A1u13 =

(
24
18

)
G23 = A2u23 =

(
33
32

)

and

g13 = (c1)Tu13 = 28

g23 = (c2)Tu23 = 33

The new Restricted Master Problem is

Minimize 28α11 + 28α12 + 28α13 + 33α21 + 33α22 + 33α23 + 7α31 + −3α32 = z
subject to 28α11 + 24α12 + 24α13 + 43α21 + 32α22 + 33α23 + α31 + 3β31 = 64

26α11 + 36α12 + 18α13 + 30α21 + 35α22 + 32α23 + 3α31 + 7β31 = 63
α11 + α12 + α13 = 1

α21 + α22 + α23 = 1
α31 = 1

αki ≥ 0, β31 ≥ 0, xj ≥ 0.
(10.102)

On optimizing the Restricted Master, the multipliers are:

π̄ =

(
−0.0789
−0.3948

)
and γ̄ =

(
37.0000
48.2367
8.2632

)
(10.103)

Once again, the new multipliers are used to obtain the adjusted costs for the subproblem
objectives as follows:

ρ̄1 = c1 − (A1)Tπ̄ = (1.6315 5.3164 4.2633 7.2370 5.7893 7.8940 )T

ρ̄2 = c2 − (A2)Tπ̄ = (3.6052 3.1841 5.5263 5.4211 7.8940 8.4477 )T

ρ̄3 = c3 − (A3)Tπ̄ = (8.2632 8.2632 )T

Upon solving the three subproblems with the above objective coefficients repectively, we
obtain the following solutions:

Sub 1 : u14
1 = 2, u14

3 = 1, u14
5 = 1, u14

6 = 3, z1 = 37.0000
Sub 2 : u24

2 = 1, u24
3 = 3, u24

4 = 3, u24
5 = 2, z2 = 48.6327

Sub 3 : u33
1 = 1 z3 = 8.2632

(10.104)

Since

z1 = γ̄1, z2 = γ̄2, z3 = γ̄3, (10.105)

the solution is optimal.
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10.3 BENDERS DECOMPOSITION

Benders decomposition is Dantzig-Wolfe decomposition applied to the dual. Un-
der this approach, the number of variables is reduced at the expense of usually
adding many new inequalities. Analogous to generating columns of the D-W mas-
ter only when needed, the inequalities of the Benders master are generated only
when needed. Thus, it is a Delayed Row-Generation Procedure. Benders decompo-
sition plays a central role in the solution of multistage stochastic linear programs
(see Chapter 12). In this section we develop the theory of Benders decomposition
as applied to solve a linear program of the following form.

Maximize (b1)Tπ1 + (b2)Tπ2 = ψ

subject to (A1)Tπ1 + (A2)Tπ2 ≤ c
(10.106)

where A1 is m1 × n and A2 is m2 × n. Although developed independently of the
D-W algorithm, its arithmetic steps turn out to be identical to solving by applying
the D-W algorithm to its dual

Minimize cTx = z
subject to A1x = b1, A1 : m1 × n,

A2x = b2, A2 : m2 × n,
x ≥ 0,

(10.107)

and interpreting its optimal conditions as the optimal solution of (10.106).
The D-W decomposition transforms a system (10.107) of (m1 +m2) equations

in n variables x into a system of m1 +1 equations and usually many more variables.
Benders decomposition transforms a system of n inequalities in m1 +m2 variables
(π1, π2) into a system in m1 + 1 variables and usually many more inequalities. We
sometimes refer to Benders decomposition as a way to eliminate variables. We shall
describe the steps and the justification of the steps of Benders decomposition from
these two perspectives.

10.3.1 DUAL OF D-W DECOMPOSITION

The first way of deriving the algorithm is a straightforward implementation of the
following lemma:

LEMMA 10.14 (Benders Decomposition is Dual of D-W Decomposition)
Solving the original problem by applying the D-W Decomposition procedure to the
dual of the original linear program (10.106) results in a procedure that is identical
to the Benders Decomposition Procedure described in Section 10.3.2.

Thus, the elimination of the m2 components of π2 in (10.106) can be done by
eliminating the last m2 equations of its dual (10.107) using the D-W decomposition
algorithm.

� Exercise 10.30 Prove Lemma 10.14.
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10.3.2 DERIVATION OF BENDERS DECOMPOSITION

We will now present another way of deriving the Benders Decomposition Algorithm.
It is the one usually found in the literature. For ease of exposition, we assume that
(10.106) is feasible and has a finite optimum.

By moving the terms in (10.106) corresponding to π1 to the right-hand side of
the inequality (see Exercise 10.31), we get:

Maximize
π1

(b1)Tπ1 + max
π2|π1

(b2)Tπ2

subject to (A2)Tπ2 ≤ c− (A1)Tπ1.
(10.108)

Holding π1 fixed, we wish to:

Maximize
π2|π1

(b2)Tπ2 = ψ2(π1)

subject to (A2)Tπ2 ≤ c− (A1)Tπ1.
(10.109)

To simplify the discussion, we assume that there always exists some π2 such that
given π1, (π1, π2) is feasible for the original problem. We shall now show how to
obtain a solution to (10.109) under this assumption. Letting x be the dual variables
corresponding to (10.109), we obtain:

Minimize
x|π1

(
c− (A1)Tπ1

)T
x = ψ2(π1)

subject to A2x = b2

x ≥ 0.

(10.110)

The Full Benders Master Program is found by expressing every feasible solution
of (10.110) as a convex linear combination of the extreme-point solutions {ui}, for
i = 1, . . . , L plus a nonnegative linear combination of normalized extreme homoge-
neous solutions {vj}, for j = 1, . . . ,M of (10.110). The Resolution Theorem 10.5
tells us that any feasible solution x of (10.110) can be written as:

x =
L∑

i=1

αiu
i +

M∑
j=1

βjv
j , (10.111)

for some choice of αi ≥ 0, i = 1, . . . , L, where
∑L

i=1 αi = 1, and βj ≥ 0, j =
1, . . . ,M .

Substituting (10.111) into (10.110) and noting that A2ui = b2, A2vj = 0 for
all i and j whatever be αi ≥ 0,

∑
αi = 1, βj ≥ 0, we obtain the following linear

program.

Given π1, find minimum ψ2(π
1), and αi ≥ 0, βj ≥ 0, such that

L∑
i=1

[(
c− (A1)Tπ1

)T
ui
]
αi +

M∑
j=1

[(
c− (A1)Tπ1

)T
vj
]
βj = ψ2(π

1)

L∑
i=1

αi = 1.

(10.112)
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Next, for (10.112) we note the following:

• Because of our feasibility assumptions of the original linear program, the op-
timal solution of (10.112) must be bounded for our choice of π1; otherwise
(10.109) would be infeasible. Thus, feasibility of (10.109) implies that π1

satisfies (
c− (A1)Tπ1

)T
vj ≥ 0 for all j = 1, . . . ,M. (10.113)

• Given that π1 satisfies (10.113), an optimal solution must then occur at an
extreme point of (10.110), that is

ψ∗2(π1) = min
1≤i≤L

(
c− (A1)Tπ1

)T
ui. (10.114)

Therefore the original linear program (10.106), which is the same as (10.109), is
equivalent to

Maximize
π1

[
(b1)Tπ1 + min

1≤i≤L

(
c− (A1)Tπ1

)T
ui
]

subject to
(
c− (A1)Tπ1

)T
vj . ≥ 0

(10.115)

It is easy to see that this then reduces to:

Maximize
π1,γ

(b1)Tπ1 + γ

subject to
(
c− (A1)Tπ1

)T
ui − γ ≥ 0 i = 1, . . . , L,(

c− (A1)Tπ1
)T
vj ≥ 0 j = 1, . . . ,M,

(10.116)

where
(
c− (A1)Tπ1

)T
vj ≥ 0, j = 1, . . . ,M , are the additional constraints to ensure

that the choice of π1 has the property, which we assumed, that there exists some π2

such that (π1, π2) is feasible for the original problem. Substituting the definitions

Gi = A1ui, Hj = A1vj ,
gi = cTui, hj = cTvj ,

(10.117)

into (10.116) we obtain:

THE FULL BENDERS MASTER PROGRAM

Find maximum ψ, π1, γ unrestricted in sign, such that
(b1)Tπ1 + γ = ψ

(Gi)Tπ1 + γ ≤ gi, i = 1, . . . , L,
(Hj)Tπ1 ≤ hj , j = 1, . . . ,M.

(10.118)

THEOREM 10.15 (Benders Transformation Into an Equivalent LP) Be-
nders Full Master Program (10.118) transforms the original n× (m1 +m2) linear
program into an equivalent linear program with fewer columns and possibly many
more inequalities, namely, an (L+M)× (m1 + 1), where m1 is the number of rows
of A1, L is the number of extreme solutions, and M is the number of normalized
homogeneous solutions of { x | A2x = b2, x ≥ 0 }, that is, linear program (10.118).
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� Exercise 10.31 Prove that (10.106) is equivalent to (10.108).

� Exercise 10.32 Prove that the assumption that the original problem (10.106) has a
finite optimal feasible solution implies that (10.110) has feasible solutions and has an
optimal feasible solution when π1 has the property that there exists some π2 such that
(π1, π2) is feasible for the original problem (10.106).

Just as in the D-W decomposition, it is usually impractical to express explicitly
the full set of basic feasible solutions and normalized extreme homogeneous solu-
tions, so in Benders it is usually impractical to express explicitly the full set of
inequalities for (10.118). To initiate an iterative step, assume that we have already
inherited from earlier iterations a set of inequalities that is a subset L̄ of the first
set of L inequalities and a subset M̄ of the second set of M inequalities (10.118).
The linear program with L̄+M̄ inequalities is called the Benders Restricted Master
Program. The inequalities themselves are called cuts (a term derived from Integer
Programming, where each inequality generated “cuts off” a region in the feasible
space where no integer solutions of interest lie).

Assuming that the L̄+ M̄ inequality Benders Restricted Master has an optimal
solution π1 = π̄1 and γ = γ̄, we generate a new inequality by letting the Adjusted
Costs be

ρ̄ = c− (A1)Tπ̄1 (10.119)

and solving:
Minimize ρ̄Tx = z1
subject to A2x = b2

x ≥ 0.
(10.120)

The solution of (10.120) gives rise to one of two cases:

1. Optimality Cut. If a finite optimal solution x = u∗ is obtained for (10.120),
then it generates a new inequality

(GL̄+1)Tπ1 + γ ≤ g
L̄+1 (10.121)

where GL̄+1 = A1u∗ and g
L̄+1 = cTu∗. This inequality is called an optimality

cut.

2. Feasibility Cut. On the other hand, if an extreme homogeneous solution xh =
v∗ is obtained for (10.120), then it generates a new inequality

(HM̄+1)Tπ1 ≤ hM̄+1. (10.122)

where HM̄+1 = A1v∗ and h
M̄+1 = cTv∗. This inequality is called a feasibility

cut.

After augmenting the Benders Restricted Master Program by either the new
optimality cut or feasibility cut indexed by i = L̄+ 1 or j = M̄ + 1, it is re-solved.
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LEMMA 10.16 (Original Problem Infeasible) If, after augmenting the Ben-
ders Restricted Master Program by a new feasibility cut and re-solving, we find that
it is infeasible, then the original linear program is infeasible.

� Exercise 10.33 Prove Lemma 10.16.

THEOREM 10.17 (Optimality) If the new optimality cut is feasible for π =
π̄1 and γ = γ̄, then (π1, π2) = (π̄1, π̄2) is an optimal solution to the original linear
program, where π2 = π̄2 is an optimal dual solution to (10.120).

� Exercise 10.34 Prove Theorem 10.17.

Example 10.7 (Illustration of Benders Decomposition) Consider the following
linear program

x1 x2 x3 x4 x5 x6

1 1 1 3 2 1 = z (min)

1 2 3 = 6
3 2 1 = 6

1 1 1 4 -1 1 = 9
3 2 1 3 2 1 = 15
4 -1 1 1 1 1 = 9

(10.123)

where xj ≥ 0 for j = 1, . . . , 6. The problem is in the following form

cTx + fTy = z (min)
Ax = b
Bx + Dy = d
x ≥ 0, y ≥ 0,

where xT = (x1, x2, x3), y
T = (y1, y2, y3) = (x4, x5, x6), c

T = (1, 1, 1), fT = (3, 2, 1),
dT = (9, 15, 9),

A =

(
1 2 3
3 2 1

)
, B =

(
1 1 1
3 2 1
4 −1 1

)
, and D =

(
4 −1 1
3 2 1
1 1 1

)
.

To solve the problem by Benders decomposition, we start by creating the Initial Restricted
Master Problem

cTx + δθ = z (min)
Ax = b
x ≥ 0,

(10.124)

where δ = 0 if there are no optimality cuts and δ = 1 if there is at least one optimality cut.
In this case δ = 0, because there are no optimality cuts so far. Given a solution x = x0,
to the Master Problem, we solve the subproblem

fTy = w (min)
Dy = d−Bx0

y ≥ 0.
(10.125)
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The solution of this is then used to define cuts for the Master Problem.
The solution to

Minimize x1 + x2 + x3 = z
subject to x1 + 2x2 + 3x3 = 6

3x1 + 2x2 + x3 = 6
x ≥ 0

is x = x0 = (1.5, 0, 1.5)T. Using this we first compute the right-hand side to the subproblem
(10.125) as

d−Bx0 =

(
9

15
9

)
−

(
1 1 1
3 2 1
4 −1 1

)(
1.5
0.0
1.5

)
=

(
6.0
9.0
1.5

)
,

and then solve the sub problem:

Minimize 3y1 + 2y2 + y3 = w
subject to 4y1 − y2 + y3 = 6.0

3y1 + 2y2 + y3 = 9.0
y1 + y2 + y3 = 1.5
y ≥ 0.

This problem is infeasible and so we use its infeasibility multipliers to create an infeasibility
cut. The infeasibility multipliers are:

π1 =

(−0.2
1.0
−2.2

)
Next we compute the infeasibility cut G1x ≥ g1 by computing

G1 = (π1)TB = (−6 4 −1.4 )T

and
g1 = (π1)Td = −6.6

The new Benders Restricted Master is:

Minimize x1 + x2 + x3 + δθ = z
subject to x1 + 2x2 + 3x3 = 6

3x1 + 2x2 + x3 = 6
−6x1 + 4x2 − 1.4x3 ≥ −6.6
x ≥ 0,

where δ = 1 because there still is no optimality cut. The optimal solution to this is z1 = 3.0,
x1 = ( 1.207792 0.584416 1.207792 ). Using this we first compute the right-hand side to
the new subproblem as

d−Bx1 =

(
9

15
9

)
−

(
1 1 1
3 2 1
4 −1 1

)(
1.207792
0.584416
1.207792

)
=

(
6.0
9.0

3.545456

)
and then solve the subproblem:

Minimize 3y1 + 2y2 + y3 = w
subject to 4y1 − y2 + y3 = 6.0

3y1 + 2y2 + y3 = 9.0
y1 + y2 + y3 = 3.545456
y ≥ 0.
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This subproblem solves to optimality: w = w∗ = 9.0, y = y∗ = (1.9091 1.6364 0.0 )T

with optimal multipliers

π2 =

(
0.0
1.0
0.0

)
.

Next we compute the optimality cut G2x+ θ ≥ g2 by computing

G2 = (π2)TB = ( 3.0 2.0 1.0 )

and
g2 = (π2)Td = 15.

The new Benders Restricted Master is:

Minimize x1 + x2 + x3 + θ = z
subject to x1 + 2x2 + 3x3 = 6

3x1 + 2x2 + x3 = 6
−6x1 + 4x2 − 1.4x3 ≥ −6.6

3x1 + 2x2 + x3 + θ ≥ 15
x ≥ 0.

The optimal solution to this is z2 = 12.0, x2 = ( 1.207792 0.584416 1.207792 ), θ2 = 9.
Since θ2 = w∗ = 9 we are optimal and we terminate.

� Exercise 10.35 Solve (10.123) to verify that the solution obtained by Benders decom-
position is correct.

� Exercise 10.36 Write down an outline of an algorithm to solve the linear program
(10.106) by Benders decomposition.

� Exercise 10.37 If at iteration k of the Restricted Master the optimal value of θk is
equal to the sum of the optimal objective values of the subproblems, prove that we have
found an optimal solution to the linear program.

� Exercise 10.38 Show that the Benders Decomposition algorithm terminates after a
finite number of steps with one of the following: a feasible optimal solution, an indication
that there exists no feasible solution, or an unbounded solution consisting of a feasible
solution plus a feasible homogeneous solution.

As we keep adding cuts and solving the Benders Restricted Master augmented
by the new cuts, some of the inequalities may no longer remain tight at an optimal
solution of the restricted master. Then to reduce the computational effort or not
exceed computer memory, some or all the inactive inequalities may be discarded
because they can always be regenerated as and when needed. However, practical
implementations have shown that discarding all such inactive inequalities typically
results in many more iterations than if some inactive inequalities were retained, as
a part of the restricted master. See Section 10.2.2.2 for some ideas of criteria for
deciding which inactive inequalities to retain.
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10.4 BLOCK-ANGULAR SYSTEM

In this section we shall show how to use the D-W decomposition principle to solve
the block-angular problem (10.126), namely:

Minimize (co)Txo + (c1)Tx1 + · · · + (cK)TxK = z

subject to A0xo + A1x1 + · · · + AKxK = b
F 1x1 = f1

. . .
...

FKxK = fK

xo ≥ 0, x1 ≥ 0, . . . , xK ≥ 0.

(10.126)

For our discussion it will be convenient to think of problem (10.126) as solving

Minimize (co)Txo + (c1)Tx1 + · · · + (cK)TxK = z

subject to A0xo + A1x1 + · · · + AKxK = b
xo ≥ 0

(10.127)

subject to the additional constraints:

(Sk) : F kxk = fk, xk ≥ 0, for k = 1, . . . ,K. (10.128)

Assume for the moment that all the basic feasible solutions and all the extreme
homogeneous solutions for S1 to SK for (10.128) are available. In practice, of
course, these are usually too numerous to be all at hand. When this is the case,
our goal will be to show how to generate just those solutions among them that are
needed.

From the Resolution Theorem 10.5 any solution xk ≥ 0 to (Sk) for k = 1, . . . ,K
can be written in the form

xk =
Lk∑
i=1

αkiu
ki +

Mk∑
j=1

βkjv
kj , (10.129)

where
L1∑
i=1

αki = 1, αki ≥ 0, i = 1, . . . , Lk, (10.130)

βkj ≥ 0, j = 1, . . . ,Mk, (10.131)

and where uki for i = 1, . . . , Lk are the full finite set of basic feasible solutions for Sk

and vkj for j = 1, . . . , Lk are the full finite set of normalized extreme homogeneous
solutions for Sk. Conversely any solution represented by (10.129) is feasible for Sk.

� Exercise 10.39 Rewrite problem (10.126) in terms of αki and βkj .
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Denote the linear transforms of Gki of uki and Hkj of vkj by:

Gki = Akuki,
Hkj = Akvkj ,

(10.132)

and denote the associated scalar costs by:

gki = (ck)Tuki,
hkj = (ck)Tvkj .

(10.133)

� Exercise 10.40 Write down the original linear program in terms of the transforms
defined by (10.132) and (10.133). Note: The resulting linear program is called the Full
Master Program.

Assume for the following exercises that we have an initial basic feasible solution
to a Restricted Master Program and let the simplex multipliers associated with
the m + K rows of the restricted master program be π, γ1, γ2, . . . , γK

, where π is
the m-vector of multipliers associated with the first m constraints of the Restricted
Master Program and γk, k = 1, . . . ,K, are the scalar multipliers associated with
the K convexity constraints (10.130) of the Restricted Master Program.

� Exercise 10.41 Show how to compute the simplex multipliers and how to determine
the reduced costs.

� Exercise 10.42 Show that in order to obtain the lowest reduced cost, we must solve
the subproblems:

Minimize (ρ̄k)Txk = zk

subject to F kxk = fk

xk ≥ 0,

(10.134)

where ρ̄k, the Adjusted Costs, satisfy

ρ̄k = ck − (Ak)Tπ (10.135)

for k = 1, . . . ,K.

If, at some iteration, basic feasible solutions are obtained to the subprograms
such that all the reduced costs for the full master program are nonnegative, we
are at an optimal solution of the full master program, and (10.129) can be used to
compute an optimal solution to (10.126). Otherwise we bring a new column into
the basis for the master program.

� Exercise 10.43 Specify the conditions under which we bring in Gk∗ or Hk∗ for k =
1, . . . ,K into the basis of the restricted master problem.

� Exercise 10.44 Analogous to Algorithm 10.1, write down the steps of the Dantzig-
Wolfe algorithm for solving a linear program in the Block-Angular form.
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� Exercise 10.45 State and prove a Theorem analogous to Theorem 10.9 for the Block
Angular system. Also state and prove an analogous Corollary 10.10 for the Block Angular
system.

� Exercise 10.46 State and prove a Lemma analogous to Lemma 10.12.

� Exercise 10.47 Consider the following two stage block-angular problem which for con-
venience has been written in a form suitable for decomposing into one master problem,
consisting of one equation and one convexity constraint, and two subprograms.

Minimize x1
1−x1

1−3x1
3 +3x1

4 +20x2
1 +30x2

2 +7x2
3 + x2

4 + x1
1 = z

subject to 3x1
1−x1

2−3x1
3 +2x1

4 + x2
1 + 2x2

2 +0x2
3− x2

4 + x2
5 =1

x1
1 +x1

2− x1
3 + x1

4 =3

0x1
1 +x1

2− x1
3− x1

4 =4

x2
1 + x2

2 + x2
3 + x2

4 +0x2
5 =1

2x2
1 + x2

2−2x2
3 +0x2

4 + x2
5 =2

and x1
i ≥ 0, i = 1, . . . , 4 and x2

j ≥ 0, j = 1, . . . , 5.

Solve this problem using the D-W decomposition principle.

� Exercise 10.48 For the Block-Angular system show how to obtain an initial feasible
solution by a Phase I procedure.

� Exercise 10.49 State and prove a theorem analogous to Theorem 10.13 for the Block
Angular system.

� Exercise 10.50 Can the coeficients of the objective be modified in such a way that a
class of feasible solutions exist such that z is unbounded below? If yes, apply the Benders
Decomposition Algorithm to the modified problem.

10.5 STAIRCASE STRUCTURED PROBLEMS

A staircase linear program has a square partitioned structure consisting of K ×K
submatrices all of whose elements are zero except possibly the elements of the
submatrices on and just below the main diagonal; for example

Minimize (c1)Tx1 + (c2)Tx2 + (c3)Tx3 + (c4)Tx4 = z

subject to A11x1 = b1

A21x1 + A22x2 = b2

A32x2 + A33x3 = b3

A43x3 + A44x4 = b4

xk ≥ 0, k = 1, . . . ,K, where K = 4.

(10.136)
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We will call the successive steps from the top of the stairs down as the time periods
t = 1, t = 2, t = 3, and t = 4, although in certain applications the steps may be
stages of a production process or partitions of a physical structure. The methods
to be described are quite general and can be used to solve any K-step problem. In
this section we sketch three ways that either the D-W or Benders Decomposition
Principle can be applied recursively using a nested decomposition approach.

10.5.1 USING BENDERS DECOMPOSITION

One way to nest the partitions of x is forward-in-time starting with the variables x
into {x1}, {x2, x3, x4} which results in a Benders subproblem to be solved for some
fixed x1:

Minimize (c2)Tx2 + (c3)Tx3 + (c4)Tx4 = γ1

subject to A22x2 = b2 −A21x1

A32x2 + A33x3 = b3

A43x3 + A44x4 = b4

xk ≥ 0, k = 2, 3, 4.

(10.137)

This subproblem is solved by nesting the partition corresponding {x2, x3, x4} into
{x2}, {x3, x4} and so forth. Each nesting recursively decreases the number of steps
until the remaining subproblem has only one step.

The Benders Restricted Master corresponding to the first partition has a form
similar to (10.118) that, in vector notation, is

(c1)Tx1 + γ1 = z (Min)
GTx1 + eγ1 ≥ g, e = (1, 1, . . . , 1)T,

HTx1 ≥ h,
x1 ≥ 0.

(10.138)

where G = (G1, G2, . . . , ), gT = ( g1, g2, . . . , ), H = (H1, H2, . . . , ), and hT =
(h1, h2, . . . , ). The Restricted Masters for the successive subproblems are defined
in an analogous way.

� Exercise 10.51 Complete the description of the Benders Decomposition approach for
K = 4. Specify all the Restricted Master and Sub Problems. Write down all the steps to
solve the entire problem.

� Exercise 10.52 Show (using Benders Decomposition in a forward direction in time as
just described) that the optimal first-period activity levels are determined by prices on
items produced in the first period for use in the second and subsequent periods. Show,
however, that these prices are not unique and therefore multiple cuts will be needed to
determine the optimal first-period activity levels.
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� Exercise 10.53 Consider the following staircase system:

(c̄1)Tx̄1 + (c1)Tx1 + (c̄2)Tx̄2 + (c2)Tx2 + (c̄3)Tx̄3 + (c3)Tx3 + (c4)Tx4 = z (Min)

Ā11x̄1 + A11x1 = b1

A21x1 + Ā22x̄2 + A22x2 = b2

A32x2 + Ā33x̄3 + A33x3 = b3

A43x3 + A44x4 = b4

xk ≥ 0, k = 1, . . . , 4, x̄j ≥ 0, j = 1, . . . , 3.

1. Show that the structure when viewed forward-in-time is identical to the structure
when viewed backward in time, i.e., relabeling the indices (1, 2, 3, 4) to (4, 3, 2, 1).
The variables x1 link the first and second periods, the variables x2 link the second
and third periods, and the variables x3 link the third and fourth periods. Assume
that the linking variables have very few components (for example, 1 or 2), while x̄1,
x̄2, x̄3 have many components. Show how this information can be used to develop
a more efficient algorithm.

2. Suppose that (x̄1, x̄2, x̄3) is each a scalar variable. Apply a backward-in-time dyna-
mic-programming recursion approach to effectively solve the problem.

� Exercise 10.54 Apply Benders Decomposition to (10.136) by the backward-in-time
partitioning x into {x1, x2, x3}, {x4} to form the first nested subproblem

Minimize (c4)Tx4 = γ

subject to A44x4 = b4 −A43x3

x4 ≥ 0.

(10.139)

Then partition {x1, x2, x3} into {x1, x2}, {x3} and finally partition {x1, x2} into {x1},
{x2} to recursively nest. Compare this way to doing the nesting with the forward-in-time
nesting way discussed at the start of this section. Why is the forward-in-time way to be
preferred?

� Exercise 10.55 Apply Benders Decomposition to (10.136) by partitioning x into the
sets {x1, x2}, {x3, x4} to form a Restricted Master corresponding to {x3, x4} and sub
corresponding to {x1, x2}. Next partition {x1, x2} into {x1}, {x2} to form a Restricted
Master with {x2} and a sub with {x1}. Compare this with the approach in Exercise 10.54.

10.5.2 USING D-W DECOMPOSITION

Using D-W Decomposition, we partition the rows into time steps {t = 1}, {t=2,
t=3, t=4}, then we solve

Minimize (c1)Tx1 + (c2)Tx2 + (c3)Tx3 + (c4)Tx4 = z

subject to A11x1 = b1

xk ≥ 0, k = 1, . . . , 4.
(10.140)
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subject to the additional constraints

A21x1 + A22x2 = b2

A32x2 + A33x3 = b3

A43x3 + A44x4 = b4

xk ≥ 0, k = 1, . . . , 4.

(10.141)

Then using the Resolution Theorem 10.5, any solution x of (10.141) can be written
as:

x =


x1

x2

x3

x4

 =
L∑

i=1

αi


ui1

ui2

ui3

ui4

 +
M∑

j=1

βj


vj1

vj2

vj3

vj4

 (10.142)

where

L1∑
i=1

αi = 1, αi ≥ 0, i = 1, . . . , L, βj ≥ 0, j = 1, . . . ,M, (10.143)

and where ui = (ui1, ui2, ui3, ui4) for i = 1, . . . , L are the full finite set of basic
feasible solutions for (10.141) and vj = (vj1, vj2, vj3, vj4) for j = 1, . . . ,M are the
full finite set of normalized extreme homogeneous solutions for (10.141). Then the
Full Master Program is:

Minimize
L∑

i=1

[
(c1)Tui1 + (c2)Tui2 + (c3)Tui3 + (c4)Tui4

]
αi

+
M∑

j=1

[
(c1)Tvj1 + (c2)Tvj2 + (c3)Tvj3 + (c4)Tvj4

]
βj = z

subject to
L∑

i=1

A11ui1αi +
M∑

j=1

A11vj1βj = b1

L∑
i=1

αi = 1

αi ≥ 0, i = 1, . . . , L, βj ≥ 0, j = 1, . . . ,M.

(10.144)

Because it is impractical in general to generate the Full Master Program, we in-
stead use the optimal prices π1 of the Restricted Master Program to determine the
objective for subproblem (10.141). The subproblem with the adjusted objective is
then solved to determine the next incoming column:

Minimize
(
c1 − (π1)TA11

)T
x1 + (c2)Tx2 + (c3)Tx3 + (c4)Tx4 = z

subject to A21x1 + A22x2 = b2

A32x2 + A33x3 = b3

A43x3 + A44x4 = b4

xk ≥ 0, k = 1, . . . , 4.

(10.145)
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This subproblem is now in a form similar to the original problem that can be
decomposed by partitioning the rows into time steps {t = 2}, {t = 3, t = 4}, and so
forth.

� Exercise 10.56 Complete the description of the D-W Decomposition approach. Specify
all the Restricted Master Problems and corresponding subproblems. Write down all the
steps to solve the entire problem.

� Exercise 10.57 Apply D-W Decomposition to (10.136) by partitioning the rows into
time steps {t = 1, t = 2, t = 3}, {t = 4} with {t = 4} used to form the subproblem. Then
partition {t = 1, t = 2, t = 3} into {t = 1, t = 2}, {t = 3} with {t = 3} used to form the
subproblem, and finally partition {t = 1, t = 2} into {t = 1}, {t = 2} with {t = 2} used to
form the subproblem. Compare the two ways to do the partitioning and discuss why the
first way is preferred.

10.5.3 USING D-W DECOMPOSITION WITH
ALTERNATE STAGES FORMING THE
SUBPROBLEMS

We start the decomposition process by making a subprogram of every other stage.
We arbitrarily let the master problem correspond to the second and fourth stages
of (10.136) to form the master program and let the first and third stages form the
subprograms. That is we wish to solve

Minimize (c1)Tx1 + (c2)Tx2 + (c3)Tx3 + (c4)Tx4 = z

subject to A21x1 + A22x2 = b2

A43x3 + A44x4 = b4

x4 ≥ 0.

(10.146)

subject to the additional two independent sets of constraints

(S1) : A11x1 = b1, x1 ≥ 0 (10.147)

and

(S2) : A32x2 +A33x3 = b3, x2 ≥ 0, x3 ≥ 0 (10.148)

Assuming that there are no homogeneous solutions, substituting the convex
combination of extreme points x1i, i = 1, . . . ,M1 of (10.147) and x2j , j = 1, . . . ,M2
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(10.148) into (10.146), and letting (cj)T = dj , we generate the Master problem

Find Min z, λi ≥ 0, µj ≥ 0, such that∑
i

(d1x1i)λi +
∑

j

(d2x2j + d3x3j)µj + d4x4 = z(Min)

∑
i

(A21x1i)λi +
∑

j

(A22x2j)µj = b1

∑
i

λi = 1∑
j

(A23x2j)µj + A44x4 = b2

∑
j

µj = 1

(10.149)

Note that the Master Problem is again a staircase problem with half the number
of steps. In general, we can partition the steps of a staircase problem into two sets
of equations, making one set the Sub and the equations of the resulting Master
corresponding to the other set plus one convexity constraint. If the Sub consists
of, for example, the subset of even steps, then equations of each even step will be
independent of those of any other even step, and each will give rise to an independent
convexity constraint in the Master; see (10.149).

� Exercise 10.58 Extend the theory to include homogeneous solutions.

THEOREM 10.18 (Decomposition of a 2K-Stage Problem) Given a 2K-
step staircase problem, each step consisting of m equations. Making the set of K
even steps, the subproblem will give rise to a Master Problem equivalent to the
original problem that is a staircase problem of K steps, each step consisting of
m+ 1 equations, one of which is a convexity constraint.

� Exercise 10.59 Prove Theorem 10.18. Restate and prove Theorem 10.18 for the case
when the staircase problem has an odd number of steps.

� Exercise 10.60 Provide details for the nested decomposition approach using alternate
stages to form the subproblems.

10.6 DECOMPOSITION USED IN CENTRAL
PLANNING

The theory developed for decomposition makes it possible to plan the overall opera-
tion of an organization without the central office staff having any detailed knowledge
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of the technology of each plant. Instead the Master Problem can be used to perform
the centralized planning task of allocating scarce resources.

Suppose that a corporation has K plants and each plant k has constraints on
the production each of which is independent of the production of the other plants:

F kxk = fk, xk ≥ 0, k = 1, . . . ,K, (10.150)

where xk is the vector of activity levels for plant k. However, all the plants must
share a number of scarce resources which the Central Office controls. This sharing
of resources is expressed by a set of constraints on the activity levels of the various
plants and on the activity levels xo of the Central Office itself:

A0xo +A1x1 + · · ·+AKxK = b. (10.151)

The planners want to maximize their profit or equivalently minimize the overall
cost. This results in the following block-angular linear program

Minimize (co)Txo + (c1)Tx1 + · · · + (cK)TxK = z

subject to A0xo + A1x1 + · · · + AKxK = b
F 1x1 = f1

. . .
...

FKxK = fK

xo ≥ 0, x1 ≥ 0, . . . , xK ≥ 0.

(10.152)

If all the data are available at the Central Office it could be fed into a modern
computer and the Central Office could use it to determine the optimal allocation
of scarce resources to each plant. It could also provide each plant with the levels of
activity xk to operate optimally.

Suppose, however, that the Central Office wants the plants to do their own
planning and does not want to know about the details of the plant operations.
What the Central Office would like to do is to give each plant k an optimal allocation
vector Gk of scarce resources and let each plant solve its own problem

Minimize (ck)Txk = zk

subject to Akxk = Gk

F kxk = fk

xk ≥ 0.

(10.153)

Unfortunately the Central Office does not have the optimal Gk to furnish the
plants and needs to have a procedure for finding them without having to solve the
whole detailed problem (10.152). Let us suppose that what Central Office has for

each plant k are the historical records
(
zk

Gk

)
=

(
zkt

Gkt

)
that it has allocated two

time periods in the past, t = 1 and t = 2, say
(
zk1

Gk1

)
and

(
zk2

Gk2

)
for k = 1, . . . ,K.
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With these it can set up a Restricted Master Program:

(co)Txo + z11α11 + z12α12 + · · · + z
K1αK1 + z

K2αK2 = z (Min)
Aoxo + G11α11 + G12α12 + · · · + GK1α

K1 + GK2α
K2 = b

α11 + α12 = 1
. . .

...
α

K1 + α
K2 = 1

αk1 ≥ 0, αk2 ≥ 0, k = 1, . . . ,K.

(10.154)

We assume, to simplify the discussion, this Restricted Master problem is feasible.
Its optimal solution αk1 = ᾱk1, αk2 = ᾱk2 provides us with allocation vectors
Ḡk = ᾱk1G

k1 + ᾱk2G
k2 for k = 1, . . . ,K. Let π = π̄, γk = γ̄k, for k = 1, . . . ,K

be the optimal prices associated with the Restricted Master Problem. We, the
Central Office, now wish to use these prices to determine if these Ḡk are the optimal
allocation vectors, and, if not, how they can be improved. To this end we instruct
the plants k to solve their own detailed program by tentatively assuming that π = π̄
are the prices for the scarce resources.

Minimize
(
ck − (Ak)Tπ̄

)T
xk = θk

subject to F kxk = fk

xk ≥ 0.
(10.155)

A sufficient test for our tentative allocation to be optimal is, according to Theo-
rem 10.9 on Page 290,

θk = γ̄k for k = 1, . . . ,K, (10.156)

where γ̄k are the optimal multipliers on the convexity constraints of (10.154).
For those k that fail the test, the Central Office requires the plant to determine

the costs zk of their tentative plan xk = x̄k and its corresponding use Gk of scarce
resources:

zk3 = (ck)Tx̄k

Gk3 = Akx̄k (10.157)

which the Central Office uses as additional columns in the Restricted Master Pro-
gram with weights αk3. The iterative process is repeated until the optimality test
is passed.

10.7 NOTES & SELECTED BIBLIOGRAPHY
The generalized linear program of Section 10.1 was first developed in the joint work of
Philip Wolfe and George Dantzig on a decomposition principle for large-scale block-angular
programs (discussed in Section 10.2), the origin of which is discussed in the next para-
graph. Wolfe suggested that the procedure there could be viewed as a special case of the
generalized linear program discussed in Section 10.1.

Kuhn & Tucker [1950] considered a broad class of nonlinear programing problems
whose objective function is a general convex function and the constraints are of the form
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fi(x) ≤ 0, where the fi(x) were convex functions; Dantzig [1963] proved that this general
class of nonlinear problems is a special case of Wolfe’s Generalized Program.

For details on the Resolution Theorem 10.5 and properties of convex polyhedral sets,
upon which the Decomposition Principle and Generalized Programming are based, see
Goldman [1956], Goldman & Tucker [1956a, 1956b], and Hoffman & Hirsch [1961].

The decomposition principle for linear programs was first developed by Dantzig &
Wolfe [1960, 1961]; the two papers present two different ways of looking at the decomposi-
tion principle. Historically, the special case (10.2) gave rise to the more general concept of
decomposition as applied to a generalized linear program (Dantzig & Wolfe [1960, 1961]).
According to Dantzig [1963], the decomposition approach was inspired by the proposals
of Ford & Fulkerson [1958b] for solving multistage commodity network problems. Jewell
[1958] also used similar approaches to that of Ford & Fulkerson. Later Benders [1962]
developed an approach that when applied to the dual was the same as the Dantzig-Wolfe
approach applied to the primal problem. Benders (dual) decomposition has been used ex-
tensively to solve stochastic programs; it is the method of choice for solving linear programs
under uncertainty (see Chapter 12).

The decomposition principle stirred up a lot of interest at first, but interest waned
when it was observed in practice, that, while the method generated good approximations
in a reasonable amount of iterates, it was slow to converge to a very close approximation
to the optimal. The convergence rate increased dramatically once the initial software
was replaced by software written by skilled numerical analysts. For a discussion of the
behavior of decomposition-based algorithms see Adler & Ülkücü [1973], Beale, Hughes, &
Small [1965], Bradley, Hax, & Magnanti [1977], and Ho [1984].

Modern implementations of the Simplex Algorithm take advantage of sparsity to effi-
ciently solve large-scale problems. For even larger systems, refinements of a decomposition
algorithm together with a very good sparse representation are promising. For an advanced
implementation of the Dantzig-Wolfe decomposition approach, see, for example, see Ho &
Loute [1981]. See also Entriken [1989] for decomposition of linear programs using parallel
computing.

For staircase structured problems it is most common to use a decomposition approach
recursively as a nested-decomposition approach. This approach was first suggested by
Dantzig [1963]. Since then there has been work by a considerable number of authors.
For discussions of the nested decomposition approach see, for example, Dantzig [1963],
Dantzig, Dempster, & Kallio [1981], Glassey [1971], Ho [1974], and Ho & Manne [1974].
Such a primal nested decomposition approach has been applied to large-scale modeling
problems in the European Common Market by Ho & Loute [1981]. See also Bisschop &
Meeraus [1981], Dantzig & Perold [1978], Fourer [1982, 1983a, 1984], and Nishiya [1983].

A linear program solved by decomposition has very different numerical characteristics
than if solved without decomposition. The numerical properties of the decomposition
process are not yet fully understood. Some characterisitics that have been observed are:

1. A linear program can be well-scaled as initially formulated but can become very
badly scaled after the decomposition principle is applied.

2. In spite of possible ill-conditioning of a decomposed problem, it usually turns out
that its “optimal solution” is “close” to the true optimal solution.

3. In most practical implementations the basic feasible solutions and extreme homoge-
neous solutions of the subprograms are not stored; instead, Gi and Hj , the products
of a matrix times these solutions, are used. Thus, at the end of the algorithm, the so-
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lutions to the original linear program have to be reconstructed by solving additional
systems of equations. This can lead to numerical errors.

For further details and examples on the numerical behavior of decomposition algorithms

see Nazareth [1984, 1987]. For convergence of decomposition algorithms see Ho [1984].

10.8 PROBLEMS

10.1 Dantzig [1963]. The coordinator, “Staff,” of the Central Agency must pro-
cure tankers to assist his distributor, “Sub,” in the shipping of their prod-
uct from two plants to four terminals. Sub has the following transportation
cost/availability/requirement array

3 6 6 5

8 1 3 6

9

8

2 7 3 5

where the right most column contains the availability at each plant, the last
row represents the requirements at each terminal, and the remaining entries are
the costs of shipping from each plant to each terminal. The shipments from
plant 1 to terminal 3 and from plant 2 to terminal 2 are made via tankers, with
each unit of product requiring two tankers. All other shipments are made via
pipeline. Staff is not interested in the Subs details but does know that there are
nine tankers available for use.

(a) Solve Sub’s transportation problem.

(b) Re-solve Sub’s transportation problem after putting in an arbitrarily high
cost for the use of tankers.

(c) Set up Staff’s problem (restricted master) from the two solutions obtained
from Sub.

(d) Solve the entire problem using the D-W decomposition algorithm. At each
iteration obtain an estimate of a lower bound on the objective function.

10.2 Show that the feasible solutions generated by the Dantzig-Wolfe decomposition
algorithm can lie in the interior of the original linear program.

10.3 The Dantzig-Wolfe method yields the optimal multipliers which are then used to
generate the primal variables. Show how to apply the Dantzig-Wolfe algorithm
to the dual of a problem in order to generate the primal variables directly and
the multipliers indirectly.

10.4 Consider a network with M source-terminal pairs (si, ti) and let the flow value
between si and ti be Fi for i = 1, . . . ,M ; that is, the flow between each pair
(si, ti) can be thought of as the flow of a different commodity. Suppose that
each arc (i, j) of the network has arc capacity hij which is an upper bound on
the total flow of all commodities on the directed arc (i, j). Let cij be the cost



318 DECOMPOSITION OF LARGE-SCALE SYSTEMS

per unit total flow on arc (i, j). Assuming that all flows can be positive on
directed arcs, the goal is to find a minimum-cost feasible flow.

1. Formulate this problem.

2. If this Minimum-Cost Multi-Commodity Flow is to be solved by the D-W
Decomposition procedure, what are the subproblems?

10.5 Ph.D. Comprehensive Exam, March 30, 1970, at Stanford. Let x, y, and z be
unknown vectors; A1, A2, B1, B2, B3 known matrices; b1, b2, b3, and c known
column vectors. Suppose that a Dantzig-Wolfe decomposition model has two
subproblems.

L1 = {x | A1x = b1;x ≥ 0 },
L2 = { y | A2y = b2; y ≥ 0}. (10.158)

Suppose further that the master problem is written in the form:

Maximize cTz
subject to B1x+B2y +B3z = b3

x ∈ L1

y ∈ L2

z ≥ 0.

(10.159)

(a) Formulate both the master and the subproblems as linear programs.

(b) Are L1 and L2 defined by (10.158) convex sets?

(c) How does your formulation of the Master Problem handle the case in which
either L1 or L2 is an unbounded set?

(d) Suppose that both L1 and L2 are bounded, and that we have one basic
feasible solution to the master problem. Applying just one simplex solution
to each of the subproblems, how may we calculate both a lower and an
upper bound on the maximand of (10.159)?

(e) Suppose that both L1 and L2 are bounded and that we wish to solve the
following problem:

Maximize cTz
subject to B1x+B2y +B3z = b3

x is an extreme point of L1

y is an extreme point of L2

z ≥ 0

(10.160)

Now suppose that we have specified arbitrarily one extreme point in L1,
another in L2, and that we have then solved the linear program for z. How
may the information from this simplex solution be used to calculate both a
lower and an upper bound on the maximand of (10.160)?

(f) Show that (10.160) is a mixed-integer programming problem; i.e., where
some of the variables are forced to be integers.

10.6 Ph.D. Comprehensive Exam, September 24, 1977, at Stanford. Assume that a
linear program of the form

c1x1 + c2x2 + c3x3 = z (min)
I : A1x1 + A2x2 = b1 (x1, x2, x3) ≥ 0

II : Ā2x2 + A3x3 = b2
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is solved by the decomposition principle. Equations II constitute the subprob-
lem and the “master” equations correspond to Equations I. There are three
questions to be answered: (a), (b1), (b2).

(a) Show that the optimal prices to the master problem are also the optimal
prices π1 = π̂1, π2 = π̂2 associated with the original problem I and II and
also the optimal values x1 = x̂1 but that optimal values for x2 and x3

are not available nor can they be reconstructed from the solution of the
master problem but can be reconstructed if complete records are kept of
the extreme solution to the subproblem of the tth cycle, i.e., the vectors
(x2, x3) = (x2,t, x3,t) for t = 1, 2, . . ., and not just their linear transforms
used to form the master.

(b) Using the known optimal value of x1 = x̂1 from the solution of the master
problem, suppose we now solve

I′ : A2x2 = b1 − A1x̂1

(x2, x3) ≥ 0
II′ : Ā2x2 + A3x3 = b2

c2x2 + c3x3 = min

as a linear program to find optimal x2 and x3.

(b1) Show that the optimal prices associated with I′ and II′ are, in gen-
eral, not unique even when π̂1 and π̂2 are unique for I and II.

(b2) Describe computational difficulties that might arise in solving I′ and
II′ due to small round-off errors in the forming of b1 − A1x̂1.

10.7 Show that solving

(c1)Tx1 + θ = z (min)
A1x1 = b1

θ − (c2)Tx2 ≥ 0
B1x1 + A2x2 = b2

(10.161)

is equivalent to solving

(c1)Tx1 + (c2)Tx2 = z (min)
A1x1 = b1

B1x1 + A2x2 = b2.
(10.162)

Next show that adding the constraint

(G1)Tx1 + θ ≥ g1 (10.163)

to (10.161), where G1 = (B1)Tπ2 and g1 = (b2)Tπ2 for any given π2 such that
(A2)Tπ2 ≤ c2 is also equivalent to solving (10.162).

10.8 Ph.D. Comprehensive Exam, September 24, 1983, at Stanford. Consider the
following linear program to find x1 ≥ 0, θ ≥ 0, x2 ≥ 0, and min z:

(c1)Tx1 + θ = z (min)

A1x1 = b1

(G1)Tx1 + θ ≥ g1

B1x1 + A2x2 = b2

+ θ − (c2)Tx2 ≥ 0

(10.164)
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where G1 = (B1)Tπ2 and g1 = (b2)Tπ2 for any given π2 such that (A2)Tπ2 ≤ c2.
Assume that c2 ≥ 0 and that this system is feasible and optimal solutions exist
and for the latter, min z = zmin.

Also assume that an optimal solution x̂1, θ̂, wmin exists for the system (10.165):

(c1)Tx1 + θ = w (min)

A1x1 = b1

(G1)Tx1 + θ ≥ g1

x1 ≥ 0, θ ≥ 0.

(10.165)

For the optimal solution to (10.165), assume that

A2x2 = b2 −B1x̂1, x2 ≥ 0 (10.166)

is feasible.

All parts of this question should be easy for you to prove.

(a) Prove there exists an x2 = x̂2 ≥ 0 and π2 = π̂2 such that

A2x̂2 = b2 −B1x̂1,
(A2)Tπ̂2 ≤ c2, (π̂2)TA2x̂2 = (c2)Tx̂2.

(b) Prove for all feasible solutions to (10.164): z ≥ zmin.

(c) Prove for all optimal feasible solution to (10.165): wmin ≤ zmin.

(d) Define θ∗ = (c2)Tx̂2. Prove that x̂1, θ∗, x̂2 is a feasible solution to (10.164).

(e) Prove that (c1)Tx̂1 + θ∗ ≥ zmin ≥ (c1)Tx̂1 + θ̂.

(f) Prove that θ∗ = θ̂ implies (x̂1, θ∗, x̂2) is optimal.

(g) Prove that if θ̂ < θ∗, then θ̂ < (c2)Tx̂2.

(h) Show that (π̂2)TB1x1 + θ ≥ (π̂2)Tb2 for all feasible (x1, θ, x2).

(i) Show that (π̂2)TB1x̂1 + θ∗ = (π̂2)Tb2.

(j) Show that a necessary condition for (x1, θ) to be part of an optimal feasible
solution to (10.164) is

G2x1 + θ ≥ g2 where G2 = (π̂2)TB1 and g2 = (π̂2)Tb2

and this inequality is not satisfied for (x̂1, θ̂) except if θ̂ = θ∗; that is,

(π̂2)TB1x̂1 + θ̂ < (π̂2)Tb2 if θ̂ < θ
∗
.

(k) Discuss how adjoining inequalities to (10.165) of the type above leads to a
finite iterative process for solving a partitioned system providing the π2 of
part 1 are extreme dual solutions.

10.9 Ph.D. Comprehensive Exam, September 22, 1990, at Stanford. Given a linear
program (10.167) with the following structure

Minimize (c1)Tx1 + (c2)Tx2 = z
subject to A1x1 = b1

−B1x1 + A2x2 = b2

x1, x2 ≥ 0

(10.167)



10.8 PROBLEMS 321

where A1 is m1 × n1 and A2 is m2 × n2. It happens that m1 and m2 are so
large that it is not feasible to solve the problem with your software.

Someone tells you that (x1,0, x2,0) is an optimal solution but you wish to verify
it. Your software can solve linear programs with m1 equations and m2 equations
but not with m1 +m2 equations.

You derive the following procedure:

(a) You test whether or not x1 = x1,0 is feasible for A1x1 = b1, x1 ≥ 0 and
discover x1,0 is feasible but not a basic solution to A1x1 = b1, x1 ≥ 0. How
did you discover that it was not a basic solution?

Why, in general, given (x1,∗, x2,∗), an optimal feasible solution to (10.167),
would you expect x1,∗ to be not basic for A1x1 = b1, x1 ≥ 0?

(b) You optimized
min (c2)Tx2 = z − (c1)Tx1,0

A2x2 = b2 +B1x1,0

x2 ≥ 0
(10.168)

and discovered that x2 = x2,0 is indeed an optimal solution and the opti-
mal dual prices are π2 = π2,0. Keeping in mind that an optimal solution
need not be unique, how did you discover that x2,0 was an optimal feasible
solution?

Why, in general, would you expect an optimal solution to be degenerate
and the corresponding basic prices not unique, when (x1,0, x2,0) is optimal
for (10.167)?

(c) You next optimized

min
(
c1 + (π2,0)TB1

)T
x1 = z − (π2,0)Tb2

A1x1 = b1

x1 ≥ 0

(10.169)

and discovered that x1,0 is an optimal feasible solution even though not a
basic solution. How were you able to ascertain it was optimal for (10.169)?

(d) Having ascertained that (x1,0, x2,0) is feasible for (10.167), and (x2,0, π2,0)
are optimal primal and dual solutions for (10.168) given x1 = x1,0, and hav-
ing ascertained that x1 = x1,0 is optimal for (10.169), prove that (x1,0, x2,0)
is indeed an optimal feasible solution to (10.167).
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C H A P T E R 11

STOCHASTIC

PROGRAMMING:

INTRODUCTION

Stochastic Programming, is the Art and Science of deciding on the best plan of ac-
tion (in some expected-value sense) while hedging against the myriad of possible
ways the best laid plans can go awry. Stochastic Mathematical Programming be-
longs to the general field of Planning Under Uncertainty which includes such topics
as: Dynamic Programming, Decision Trees, Simulation, Stochastic Processes, and
Chance Constrained Systems. It differs from deterministic mathematical programs
only in that some of the parameters (coefficients and right-hand sides) may not be
known at the time the decision is made.

Most important real-world models have some degree of uncertainty in the values
of some of its model parameters and can often make a significant difference when
these uncertainties are properly taken into account. Although deterministic math-
ematical programs are routinely solved by industry and government, which often
involve thousands of variables with a linear or nonlinear objective and many thou-
sands of inequality constraints, typically these are formulated as if the values of the
coefficient matrix and the values of the constant terms are known with certainty.
The solutions obtained are often ignored by those doing planning because these
results do not properly hedge against future contingencies that might arise.

Each decade from the 1950s on has witnessed the development of more and
more powerful techniques that properly incorporate uncertainty in the values of
coefficients and right-hand side directly as part of the model formulation. The
particular form of stochastic programs that we will consider is that of finding an
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“optimal” solution to a linear program whose coefficients and constant terms are
not known at the time the decision is made but whose probability distributions are
known or have been estimated based on historical experience. In this and the next
chapter, we will discuss some old ideas and some exciting new ideas.

11.1 OVERVIEW

Historically, planners have used various devices such as sensitivity analysis as a way
to determine how robust proposed solutions are to changes. For example, sometimes
planners hedge against running out of stock by overstating what they need, i.e., by
incorporating lots of fat in the system. If plans are made by overstating actual
needs and understating actual availabilities, then, should the disastrous happen, it
is highly unlikely for the planned optimal set of activities to turn out to be infeasible.
Consumption rates, production rates, and the like are all estimated on the high side
so that whatever the extreme values of the demand turn out to be, the planners’
solution will still remain feasible. The effect of an unfavorable future event (should
it happen) can also be further reduced by deliberately understating the amount
of exogeneous scarce resources available to the system. It turns out these ways
often lead to an infeasible program. Historically, a new program would have to be
developed based on a slower time schedule. This slowed down the demand until
supply caught up. Often this ran the risk of entering the battle with too little too
late. In World War II proper planning could have ended the war at least one year
earlier, with the saving of millions of lives.

Adding fat, understating resource availability, and allowing delays are ways to
hedge against uncertainty but at a price; typically the resulting plans are very very
inefficient because they are too costly or too late to do any good. This chapter
is concerned with finding solutions that have low expected costs, while hedging
against contingencies that may arise, and also taking advantage of favorable events
that may arise.

Research started in 1955 with George Dantzig’s paper and, independently, one
by Martin Beale, and an application paper by Ferguson and Dantzig that was pub-
lished a year later. This was about the same time that computers became reliable.
Earlier in 1952 and then in 1959 Harry Markowitz began in earnest developing
Portfolio Analysis, the first successful application of Stochastic Programming for
which, years later, he received the Nobel Prize. Most of the field’s early pioneers
did their research in isolation, unappreciated and undersupported. The stochastic
programming field grew at a snail’s pace until the late 1980s when parallel com-
puters, powerful workstations and PCs became a reality. This availability spurred
researchers to try their hand at solving practical uncertainty problems. To ev-
eryone’s surprise, using a combination of techniques such as large-scale methods,
D-W and Benders Decomposition, Importance Sampling, and Sampling-Space Par-
titioning, it turned out to be possible to solve many important practical cases. By
”solve”, we mean in the practical sense of determining strategic decisions that are
demonstrably superior to those obtained by ways that fail to properly take uncer-
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tainty fully into account—shortcuts, such as replacing the technological structure
of a model by one easier to optimize; or by making up ground rules that allow one
to optimize over a reduced set of possible alternatives.

Plans that properly hedge against future risks can make a significant improve-
ment. On some real and some realistic test problems these improvements are man-
ifested in many ways, such as increases in safety, reliability, saving of lives, prof-
itability, or control of risk.

On the other hand, failure to properly plan under uncertainty can be disastrous.
Here are some examples:

1. A single car breaks down on the freeway and hundreds are caught in a horrific
traffic jam. This happens all the time and keeps getting worse.

2. A single circuit breaker tripped in a storm in upstate New York blacked out
for days the whole Eastern Seaboard. There was a significant peak in the
birth rate nine months later.

3. A power failure in Idaho cascaded into a series of power failures from Canada
to Mexico.

4. A single satellite went out of sync, blacking out communications over a large
area of North America.

5. Our homes and offices depend on electric power from a single source, yet few
of us have emergency generators in our homes.

6. Vivid in our memory are scenes of death and destruction due to earthquakes,
floods, hurricanes, and sabotage of buildings and subways.

All of these disasters could have been significantly mitigated by better system design
and recovery strategies, particularly those generated by models that properly hedge
against the myriad of possible contingencies that might arise.

Often it is not some single event but the simultaneous occurrence of two or
more rare events that start a cascade of events that becomes a major disaster. Two
examples:

1. A weak transformer, hot weather, and an improper shift of load in a power
system.

2. Doors locked blocking escape, poorly trained emergency personnel, panic, and
the late arrival of fire trucks due to a traffic jam.

A key reason why plans have failed in the past is that planners did not know
how to develop and implement strategies that properly adapt to a spate of unusual
emergencies that might arise in the future. At best, they knew how to hedge against
one or two of the myriad of possible ways that the best-laid plans of mice and men
(to paraphrase the poet Robert Burns) can go awry.
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Mitigating World Crisis: With the methodolgy developed so far, it is possible to
develop adaptive strategic plans that, if implemented, would go a long way toward
mitigating some of the world’s chronic crises such as over-population, resource deple-
tion, floods, starvation, plague (AIDS), drought, and worldwide economic malaise.

So far, all of these truly global disasters are still out of control. Perhaps
we humans are incapable of ever getting our act together, and the only way that
we humans will ever come to a sustainable equilibrium with nature will be (as in
the past) by war, famine, and plague.

While we may not be able to stop an earthquake or a flood from happening, it
is possible, by applying our methodology, to mitigate its disastrous effects before,
during, and after disaster strikes by developing and implementing adaptive strategic
plans that hedge against the many possible contingencies that can arise in the
future. These chronic crises can be mitigated by developing flexible strategic plans
that hedge against the myriad of contingencies that might arise and by adaptively
reoptimizing future plans as events unfold in the future. While it may be possible to
mitigate chronic crises by adaptive strategic plans, we will never be able to achieve
this goal unless we find a way to bring about close cooperation between planners
charged with finding a solution and those researchers who know how to apply the
techniques.

11.2 UNCERTAIN COSTS

11.2.1 MINIMUM EXPECTED COSTS

We will illustrate the basic concepts, using as our example the nutrition problem.
A housewife wishes to buy a diet for her family. The vector A•j is the assumed
vector of calories, proteins, fats, carbohydrates, vitamins, and minerals per unit
of purchase; cj is the cost per unit of purchase; and b is the vector of material
requirments.

Deterministic Case: If the values of all the parameters are known in advance of

the purchase, then the housewife obtains the matrix
(
cT

A

)
from, say the Internet,

and inputs the vector of nutritional requirements b of her family and asks the
computer to find the diet x = (x1, x2, . . . , xn ) that minimizes the cost z = cTx;
that is

Minimize cTx = z
subject to Ax = b, A : m× n,

x ≥ 0.
(11.1)

Stochastic Case: Assume that parameters A and b are known in advance of
making a decision x, but the costs cj for each item j are not known with certainty.
For example, a housewife must decide what diet to buy for her family before she
knows what the latest prices are. However, she does have some idea what the
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expected price E[cj ] for each item j is likely to be. Having chosen an x satisfying
Ax = b, x ≥ 0, the total cost z is

∑n
j=1 cjxj , a weighted sum of random variables cj .

Then, since her purchase of xj of items j will be too small to effect the market
price cj , then the expected cost is given by (11.4) where φ is the probability density
distribtution on cj :

E[z] =
∫
· · ·

∫
φ ( c1, c2, . . . , cn )

n∑
j=1

cjxjdc1dc2 · · ·dcn (11.2)

=
n∑

j=1

cj

[∫
· · ·

∫
φ ( c1, c2, . . . , cn ) dc1dc2 · · · dcn

]
xj (11.3)

=
n∑

j=1

E[cj ]xj , (11.4)

We have thus proved the following lemma.

LEMMA 11.1 If the distribution φ ( c1, c2, . . . , cn ) of the costs cj to buy a unit
amount of j is independent of the amount xj , then the minimum expected total
cost of purchases

∑n
j=1 cjxj is obtained by finding x ≥ 0 satisfying Ax = b and

minimizing
∑n

j=1 E[cj ]xj .

Suppose next that the costs cj do depend/ on xj but are independent of xk for
k �= j. We then write cjxj = φj(xj). In this case, the expected cost is

E[z] =
n∑

j=1

E
[
φj(xj)xj

]
=

n∑
j=1

fj(xj) (11.5)

where fj(xj) is not necessarily linear in xj . In this case special separable nonlinear
optimization methods will be needed to solve the resulting problem. When fj(xj)
are convex functions, the method discussed in Linear Programming 1 can be applied
to solve the problem.

� Exercise 11.1 Discuss situations where unit cost cj goes up with increasing xj and
other situations where cj goes down with increasing xj . Show that φj(xj)xj is a convex
function of xj if φj(xj) is increasing with increasing xj but is no longer convex if φj(xj)
is decreasing with increasing xj .

11.2.2 MINIMUM VARIANCE

In a number of applications it is desirable to minimize the risk, i.e., variance of the
expected costs. For example, a stockbroker might advise a client to buy a portfolio
of stocks j, some of which historically have had low return rj with low variability
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and other stocks that have high return rj with high variability. A typical objective
would be to buy a portfolio of stocks that gives at least a desired level ro of expected
return while minimizing the overall variability. In order to help us determine such
a portfolio of stocks we would set up a portfolio optimization model as follows.

Let E[rj ] = r̄j , E
[
(rj − r̄j)2

]
= σ2

j , and E
[
(rj − r̄j)(rk − r̄k)

]
= σjσkρjk = σjk.

Assuming that the costs are independent of the xj , the variance of is x2
jσjj and

the covariance between rjxj and rkxk is xjxkσjσkρjk. Thus, it follows that the
variance of the objective function is the quadratic:

Q = E

[( n∑
j=1

(rj − r̄j)xj

)2
]

=
n∑

j=1

n∑
k=1

xjxkσjk = xTMx, (11.6)

where Mjk = Mkj = σjk . Then we solve the problem

Minimize
n∑

j=1

n∑
k=1

xjxkσjk = Q

subject to Ax = b, A : m× n,
n∑

j=1

r̄jxj ≥ ro,

x ≥ 0.

(11.7)

� Exercise 11.2 Prove that Q is a positive semi-definite quadratic form in xj .

There are three cases to consider.

Case 1: Q1/2 Is Linear. If the cost coefficients are so highly correlated that the
correlation coefficient ρjk ≈ 1 for all j �= k then σjk ≈ σjσk, and

Q
1
2 ≈ x1σ1 + x2σ2 + · · ·+ xnσn. (11.8)

We solve problem (11.7) by minimizing the linear function Q1/2 subject to
Ax = b,

∑n
j=1 E[rj ]xj ≥ ro, x ≥ 0. The effect on Q of varying ro can then be

studied by solving a standard parametric programming problem.

Case 2: Q Is a Sum of Squares. If, on the other hand, the correlation between
cost coefficients are ρjk = 0 for all j �= k, then

Q = x2
1σ

2
1 + x2

2σ
2
2 + · · ·+ x2

nσ
2
n. (11.9)

In this case, Q is convex separable and the convex functions x2
j may be ap-

proximated by piecewise linear functions or by applying a convex quadratic
programming algorithm. This again reduces to a standard parametric pro-
gramming problem if we wish to study the effects of changing ro on Q.
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Case 3: Q is general. In this case Q = xTMx where M is positive semi-definite.
Then Q can be reduced to Case 2 by a suitable transformation. For example,
by factoring M = DD. Then (11.7) can be written as min yTy such that
Ax = b,

∑n
j=1 r̄jxj ≥ ro, Dx − y = 0, x ≥ 0. We can then solve this by the

piecewise linear approximation method discussed in Linear Programming 1.

Comment: Typically the variances and covariances σjk are not available but can
be estimated from historical returns. Let ri

j be the returns in historical period i for
i = 1, . . . , t for stocks j for j = 1, . . . , n, and let r̄j = (1/t)

∑t
i=1 r

i
j be the mean

return. We can compute the variance-covariance matrix M = [σjk] by forming
M = (1/t)R̄TR̄, xwhere

R̄ =


r11 − r̄1 r12 − r̄2 · · · r1n − r̄n

r21 − r̄1 r22 − r̄2 · · · r2n − r̄n

...
... · · ·

...
rt
1 − r̄1 rt

2 − r̄2 · · · rt
n − r̄n

 . (11.10)

11.3 UNCERTAIN DEMANDS

Scheduling to meet an uncertain right-hand side, such as demand, is a special case
of a more general two-stage problem to be discussed later in this chapter. In the
first stage a decision is made regarding how much, for example, to ship prior to
knowing what the demands in the second stage will be. We assume instead that we
know what the distribution of the demand for each of the various items will be.

Example 11.1 (Uncertain Demand) Suppose that a factory has an inventory of 100
units of some kind, of which x ≤ 100 must be shipped to an outlet at a shipping cost of
$1 per unit to meet an uncertain demand of d units, where the distribution of d is known.
In this oversimplified example, the revenues from selling the item are the same in any
scenario. It is also assumed that the value of any leftover supply is written as zero. The
shipping is done before the demand for the item is known, and hence it is possible that the
demand will be less than the amount shipped; if so, let t denote the amount oversupplied.
In the event, however, that the demand exceeds supply, it is required, in order not to lose
the customer to the competition, that s items be purchased on the open market to meet
the shortage at a cost of $2 per unit. The equations that must be satisfied are then:

x + 2s = C
x + y = 100
x + s − t = d
(x, y, s, t) ≥ 0

(11.11)

where x is the number of units shipped from the factory, y is the number stored at the
factory, s (shortage) is the number purchased on the open market, t (too much) is the
excess supply over demand, d is the unknown demand with a known probability of demand
distribution, and C is the total cost. The problem is to determine how much to ship in
order to minimize expected cost. This example belongs to a more general class of two-stage
problems, which we will discuss in Example 11.2.



330 STOCHASTIC PROGRAMMING: INTRODUCTION

� Exercise 11.3 For Example 11.1, suppose that the costs are given by

C = x+ 2 Max(0, d− x)

where d is uniformly distributed between 70 and 80. Determine how much to ship in
order to minimize expected cost. Hint : Determine the expected cost E[C] explicitly as a
function of x and then determine the value of x that minimizes this function.

Example 11.2 (Two-Stage Problem) In the first stage, xj ≥ 0 and uk ≥ 0 are
determined such that

n∑
j=1

aijxj = bi, i = 1, . . . ,m, (11.12)

n∑
j=1

ākjxj = uk, k = 1, . . . , l, (11.13)

where bi, the initial inventories of raw materials, known in advance, are transformed by
the technology matrices [aij ], [ākj ] and activity levels xj into finished products uk to meet
an uncertain demand dk in the second stage. The quantities xj are decisions in the first
stage that result in the quantities uk, k = 1, . . . , l being available in the second stage. If
the amount supplied uk is less than the demand dk then let sk ≥ 0 be the shortage; on
the other hand, if uk is greater than the demand dk, let tk be the excess. Then

dk = uk + sk − tk, (11.14)

where either sk = 0 or tk = 0 or both sk = 0, tk = 0; dk is the uncertain demand with a
known probability distribution (where ( d1, d2, . . . , dn ) may be independent or dependent
random variables); sk is the shortage of supply of k; and tk is the excess of supply of k
over demand of k.

To simplify the discussion, in this example we assume that it is not possible to make
purchases on the open market in the case of shortages sk. It clearly pays to sell as much
of the supplied amount, uk, as possible, that is, min(uk, dk) = dk− sk. Therefore the total
cost is

C =

n∑
j=1

cjxj −
l∑

k=1

fk min(uk, dk), (11.15)

where cj is the cost of one unit of activity j and fk is the revenue obtained by satisfying
one unit of demand of item k.

For every fixed value of xk, and hence by (11.13), for every fixed value of uk, the
expected cost is:

E[C ] =

n∑
j=1

cjxj −
l∑

k=1

fkE
[
min(uk, dk)

]
. (11.16)

Since the expectation E
[
min(uk, dk)

]
is taken with respect to the distribution of demand,

it is some function

φk(uk) = E
[
min(uk, dk)

]
. (11.17)
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When, for fixed k, the values of d = dk are discrete and can take on R discrete values
g1 ≤ g2 ≤ · · · ≤ gR with probabilities p1, p2, . . . , p

R
where

∑R

i=1
pi = 1, the computation

of φ(u) = E
[
min(u, d)

]
, for any u = uk, d = dk, is straightforward. To see this, note that

min(u, d) =

{
u if d > u;
d if d ≤ u. (11.18)

For a given u let r be such that gr−1 ≤ u < gr holds for some r = 1, . . . , R where by
definition g0 = 0. Then:

φ(u) = E
[
min(u, d)

]
= uP [d > u] +

r−1∑
j=1

gjP [d = gj ]

= u

R∑
i=r

pi +

r−1∑
j=1

gjpj

= u

(
1−

r−1∑
i=1

pi

)
+

r−1∑
j=1

gjpj . (11.19)

� Exercise 11.4 Suppose that dk takes the values 1 and 2 with probabilities 1/4 and 3/4,
respectively. Compute the expected value E

[
φk(uk)

]
.

� Exercise 11.5 Plot the φ(u), the expected revenue, as a function of the amount sup-
plied u.

We see that φ(u) is a broken line function starting at u = 0 with initial slope β1 = 1;
at u = g1 the slope decreases by p1 to β2 = 1− p1; at u = g2 the slope decreases by p2 to
β3 = 1− p1 − p2; etc. Thus, −φ(u) is a convex function because the slopes are increasing.
We have thus shown the following.

THEOREM 11.2 (Convexity of Total Expected Costs) Under uncertain de-
mand, the total expected cost is a convex separable function

E[C] =

n∑
j=1

cjxj −
l∑

k=1

fkφk(uk) (11.20)

where φk(uk) is a piecewise linear function whose slope between two successive demands
dk = gr−1,k and dk = gr,k is equal to the probability 1−

∑r−1

i=1
pik of exceeding the demand

gr−1,k.

Then to minimize expected costs we minimize the convex separable functions (11.20)
subject to the constraints (11.12) and (11.13); see Linear Programming 1.
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11.4 NOTES & SELECTED BIBLIOGRAPHY
For an introduction to probability theory, see Feller [1957, 1969]. A minimum variance
portfolio selection problem was first considered by Markowitz [1952]. The incorporation
of uncertainty into linear programs was proposed independently by Dantzig [1955a] and
Beale [1955a]. From then on, various individuals have tried to extend the methods of
linear programming to handle the problem of optimizing an objective function whose con-
stants are subject to random variations. Early references are Ferguson & Dantzig [1956],
Madansky [1959], and Dantzig & Madansky [1961]. Over the years, different approaches
have been used to attack this problem. See, for example, Birge [1985a, 1985b], Birge &
Wallace [1988], Birge & Wets [1986], Ermoliev [1983], Frauendorfer [1988], Frauendorfer
& Kall [1988], Higle & Sen [1991], Kall [1979], Pereira, Pinto, Oliveira, & Cunha [1989],
Rockafellar & Wets [1989], Ruszczynski [1986], Van Slyke & Wets [1969], and Wets [1984].
A survey of different ways to solve stochastic linear programs can be found in Ermoliev
& Wets [1988], and an introduction to stochastic programming can be found in Birge &
Louveaux [1997].

The two-stage case was first studied by Dantzig [1955a, 1963] and subsequently devel-
oped by Van Slyke & Wets [1966, 1969] and Wets [1984].

Example 11.1 is adapted from Dantzig [1963]. Theorem 11.2 was verbally communi-
cated to Dantzig by H. Scarf. An important pioneering application of Stochastic Program-
ming is Alan Manne’s [1974] paper, “Waiting for the Breeder.”

11.5 PROBLEMS

11.1 Dantzig [1963]. Solve the problem of Example 11.1 using the discrete distribu-
tion d = 70, 71, . . . , 80 with probability 1/11 each.

11.2 Dantzig [1963]. Consider the following transportation problem:

2 3 4 1

7 2 5 1

4 3 2 2

3

2

5

d1 d2 d3 d4

Solve the transportation problem

(a) When the demands d1 = 3, d2 = 3, d3 = 2, and d4 = 2 are certain; i.e.,
occur with probability 1.

(b) When the demands have the following probability distribution

d1 = 2, 3, 4 with equal probabilities 1/3.
d2 = 2, 3, 4 with equal probabilities 1/3.
d3 = 1, 2, 3 with equal probabilities 1/3.
d4 = 1, 2, 3 with equal probabilities 1/3.
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11.3 Dantzig [1963]. Consider a linear program in which all the coefficients are
uncertain. Find xj ≥ 0, for j = 1, . . . , n:

εo(x) =

n∑
j=1

aojxj = z(Min),

εi(x) =

n∑
j=1

aijxj + ao ≤ 0. for i = 1, . . . ,m

The minimum z is desired, but unfortunately all the xj must be selected prior
to a random choice of the coefficients aij whose distributions are, however,
known.

(a) Denote by σi(x) the standard error of εi(x). Show that

σi(x) =

(
n∑

j=1

n∑
k=1

xjxkE [(aij − āij)(aik − āik)]

)1/2

.

(b) Suppose we solve the program

εo(x) + toσo(x) = z(Min),
εi(x) = tiσi(x) ≤ 0 for i = 1, . . . ,m,
x ≥ 0,

where ti = 3, say, means that we have built in a safety factor so that ε̄i(x),
the expected value of εi(x), is three standard errors below zero. Prove that
this is a convex program.

(c) Show by Tchebycheff’s inequality that

Prob [εi(x) > 0] <
1

t2

What is the probability if εi(x) is approximately normally distributed?

(d) Show that if aij are independent and normally distributed, then εi(x) is
normally distributed.
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TWO-STAGE STOCHASTIC

PROGRAMS

An important class of optimization problems arise in dynamic systems that describe
activities initiated at various times to, to + 1, . . . , t, . . . , T . Those initiated at time t
have coefficients at time t and t+1. Such problems, called dynamic linear programs,
have a staircase structure. In the deterministic case, the coefficient matrices,
constants, and cost coefficients for each stage are known with certainty. Often in
practice, initial decisions must be made prior to random events that might occur
in the future, such as the possible failure of equipment or the possible introduction
of new technologies. This is the stochastic case in which the coefficient matrices,
constants, and cost coefficients for stage t+ 1 become known only after stage t has
taken place.

The simplest dynamic linear program has only two stages, which we will now
consider; the techniques discussed here can be extended to the multistage problem.
To simplify the notation for two-stage stochastic linear programs, we shall depart
from treating all vectors as column vectors and subscripts as meaning a component
of a vector.

12.1 THE DETERMINISTIC TWO-STAGE LP
PROBLEM

Find minimum z, x ≥ 0, y ≥ 0, such that

1st Stage: cx + fy = z
2nd Stage: Ax = b

Bx + Dy = d,
(12.1)

335



336 TWO-STAGE STOCHASTIC PROGRAMS

where, in the deterministic case, the components of the vectors and matrices c, A,
b, B, D, d, f are all known with certainty.

12.2 THE ANALOGOUS STOCHASTIC
TWO-STAGE LP PROBLEM

Find minimum z, x ≥ 0, y = ( y1, y2, . . . , yW ) ≥ 0, such that:

cx + Eω

[
fωyω

]
= z

Ax = b
Bωx + Dωyω = dω , ω = 1, . . . ,W,

(12.2)

where pω > 0,
∑W

ω=1 pω = 1, the probability pω of the random event ω ∈ Ω =
{1, . . . ,W} occurring is given, and

θ = Eω

[
fωyω

]
=

W∑
ω=1

pω(fωyω) (12.3)

measures the expected second-period cost. Assuming some iterative algorithm on its
final iteration k has arrived at a final first-stage decision x = xk, we are interested
in measuring how good a solution x = xk is compared with the optimal solution
x = x∗.

At the time to, when the first-stage decision x is made, all the components c,
A, b are known with certainty. It is also assumed that there exists x that satisfies
Ax = b, x ≥ 0. For each possible future event ω = 1, . . . ,W , the values of B = Bω,
D = Dω, d = dω, f = fω are also assumed known at time to; only the event
ω is unknown. Assuming some first-stage decision x = xk is made, one of the
possible events (scenarios, contingencies) ω ∈ Ω happens at time t1 with probability
pω > 0, so that by the time of the second-stage decision t1 > to, the scenario ω
with parameter values of B = Bω, D = Dω, d = dω, f = fω have all become
certain. We will assume, in order to simplify the presentation, that whatever be
xk ≥ 0 satisfying Ax = b, optimal yω = yk

ω exist. Therefore, given ω and x = xk,
the optimal second-stage decision yω = yk

ω, can be found by solving:

SUBPROBLEM ω given x = xk:
Find yω = yk

ω ≥ 0 that
minimizes fωyω

subject to Dωyω = dω −Bωx
k,

(12.4)

where each second-stage subproblem ω is solved with x = xk. The dual multipliers,
given x = xk, are denoted by πk

ω . The optimal primal solution to the subproblem is
denoted by yω = yk

ω and its optimal dual multipliers πω = πk
ω. Then by the Duality

Theorem:
πk

ωDω ≤ fω, (fω − πk
ωDω)yk

ω = 0, yk
ω ≥ 0. (12.5)
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The first-stage decision x = xk must be made before knowing what the outcome
of the random event ω will be; however, what we assume is known is the probability
distribution pω > 0,

∑W
ω=1 pω = 1 of the random events ω occurring. Therefore the

MINIMUM EXPECTED COST θ = E[fωyω] of the second-stage decision at time
to can be calculated given any decision x:

θ = Eω[fωyω] =
W∑

ω=1

pω(fωyω). (12.6)

In particular, if x = xk and yω = yk
ω from (12.4), then the expected minimum cost

θk = θ[xk] =
W∑

ω=1

pω(fωy
k
ω), (12.7)

can be calculated for any proposed x = xk where we use the notation θ[xk] to
emphasize that θ is a function of xk. Our goal is to analyze and develop techniques
to solve the STOCHASTIC PROBLEM: Find x = x∗ that minimizes

z = cx+ θ[x], (12.8)

i.e., minimizes the first-stage cost plus minimum expected second-stage cost given
the first-stage decision x.

� Exercise 12.1 Show that for the two-stage problem under uncertainty

W∑
ω=1

pωyω = z(Min)

Ax = b, x ≥ 0
Bωx + yω = dω, ω = 1, . . . ,W,

where pω > 0,
∑W

ω=1
pω = 1, the probability pω of the random event ω ∈ Ω = {1, . . . ,W }

occurring in the second stage is given, the optimal x can be determined by optimizing

−

(
W∑

ω=1

pωBω

)
x = z(Min)

Ax = b, x ≥ 0.

Is the statement still true in general if the conditions yω ≥ 0 are imposed.

12.3 LP EQUIVALENT OF THE STOCHASTIC
PROBLEM (EQ-LP)

12.3.1 LP EQUIVALENT FORMULATION

THEOREM 12.1 (Equivalent Formulation) The linear program equivalent
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of the stochastic LP (12.2) is:

Find min z, x ≥ 0, yω ≥ 0, for all ω ∈ Ω = {1, . . . ,W} such that:
cx + θ ≤ z
− θ + p1(f1y1) + · · · + pω(fωyω) + · · · + pW (fWyW ) = 0

Ax = b
B1x + D1y1 = d1

...
. . .

...
Bωx + Dωyω = dω

...
. . .

...
B

W
x + D

W
y

W
= d

W

(12.9)

where pω > 0,
∑W

ω=1 pω = 1, is the probability that the second-stage scenario ω may
arise.

Proof. Given any x = xk ≥ 0, Axk = b, it is clear that in order to minimize z,
we must minimize θ =

∑W
ω=1 pω(fωyω) subject to yω ≥ 0, Dωyω = dω − Bωx

k for
ω ∈ Ω. This latter problem separates into solving W independent sub problems:
Find yω = yk

ω ≥ 0 which minimizes fωyω subject to Dωyω = dω − Bωx
k for each

ω = 1, . . . ,W . It follows that θk = min θ =
∑W

ω=1 pω(fωy
k
ω) and z = cxk + θk

are all functions of xk and the problem is the same as that stated earlier: namely
choose xk so as to minimize zk = cxk + θk, where θk = θ[xk] is a function of xk.

� Exercise 12.2 Formulations (12.1) and (12.3) of the two-stage problem express the
objective in the form z = cx + θ whereas (12.9) expresses the objective in the form
z ≥ cx + θ. In what sense are the two ways to formulate the stochastic linear program
equivalent?

We denote by C the convex set of all feasible solutions to (12.9). An optimal
solution to (12.9) will be denoted by

z∗ = min z, x = x∗, θ = θ∗, yω = y∗ω for all ω ∈ Ω. (12.10)

12.3.2 GEOMETRIC DESCRIPTION OF BENDERS
DECOMPOSITION ALGORITHM

Benders algorithm is the Dantzig-Wolfe Primal Decomposition applied to the dual.
In Figure 12-1, the epigraph region on and above the curve depicts, in the two-
dimensional case, the convex set C of all feasible solutions to the Equivalent Linear
Program (EQ-LP), i.e.,

C =
{
x, z | z ≥ cx+ θ, Ax = b, x ≥ 0

}
, (12.11)

where θ =
∑W

ω= pω

(
fωyω

)
is the expected minimum second-stage costs given x as

the first-stage decision. (The lower boundary curve of C is not smooth as depicted
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Cut (j): z ≥ (c−Gj)x+ gj

Cut (i):

z ≥ (c−Gi)x+ gi

Cut (k): z ≥ (c−Gk)x+ gk

Figure 12-1: Benders Decomposition Applied to EQ-LP

in Figure 12-1 but is a collection of broken line segments, in the two-dimensional
case, that are the envelope of the inequalities). At the start of iteration k, iterations
i = 1, . . . , k − 1 have generated x = xi ≥ 0 satisfying Axi = b and a point (xi, z̄i)
in C with the property that of all the points (xi, z) in C, z̄i = min z. At (xi, z̄i), a
tangent (in general, a hyperplane) z = (c−Gi)x+ gi is found that passes through
(xi, z̄i).

Because of the convexity of C, the tangent hyperplanes have the property that
the corresponding half-spaces z ≥ (c − Gi)x + gi contain C and their boundaries
z = (c−Gi)x+gi each have at least one point in common with C. Such hyperplanes
are called tight supporting hyperplanes or tight supports. Their associated half-spaces
are called tight cuts, because each iteration generates a linear inequality that cuts
away a portion of the (x, z)-space that does not contain C. We denote by Ck−1 the
set of points common to the first k−1 cuts. Note that Ck−1 ⊂ Ck−2 ⊂ · · · ⊂ C2 ⊂ C1.
(The symbol Ct ⊂ Cs means that the set Ct is strictly contained in the set Cs.) The
next iterate determines (xk, z̄k) and the supporting hyperplane z ≥ (c−Gk)x+ gk,
which is tight at (xk, z̄k). For the algebraic formulas for computing Gk and gk, see
(12.19).

Geometrically, Cut (k) is generated in three steps: The first step views the
convex set of points Ck−1 satisfying the (k − 1) cuts as an approximation to C and
determines (x, z) = (xk, zk) the minimum z in Ck−1. This is done by solving a
linear program, called Benders Master Program (k).

The second step determines the point (xk, z̄k) in C by fixing the first-stage deci-
sion at x = xk and finds z̄k = cxk +

∑W
ω=1 pωfωyω where each yω = yk

ω minimizes
the second-stage subproblems ω given x = xk; see (12.4).

The third step generates Cut (k), the supporting half-space that is tight at
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(xk, z̄k). This is done by first multiplying equation ω,

Bωx+Dωyω = dω , (12.12)

by pωπ
k
ω, to obtain

pω(πk
ωBω)x+ pω(πk

ωDω)yω = pω(πk
ωdω). (12.13)

where πk
ω are the optimal dual-feasible solutions to subproblem (12.4) given x = xk.

Next, adding to it the identity

− pω(fωyω) + pω(fωyω) = 0 (12.14)

and rearranging terms, we obtain

pω(πk
ωBω)x + pω(fωyω)− pω(fω − πk

ωDω)yω = pω(πk
ωdω). (12.15)

Dropping the term pω(fω−πk
ωDω)yω ≥ 0 (because fω−πk

ωDω ≥ 0 by dual-feasibility,
and pω > 0, yω ≥ 0), we obtain the cut associated with ω and the optimal dual-
feasible solution πω = πk

ω, given x = xk:

pω(πk
ωBω)x+ pω(fωyω) ≥ pω(πk

ωdω). (12.16)

To generate Cut (k), in the space of x and θ, we sum (12.16) for all ω ∈ Ω to obtain

W∑
ω=1

pω(πk
ωBω)x+

W∑
ω=1

pω(fωyω) ≥
W∑

ω=1

pω(πk
ωdω), (12.17)

or
Gkx+ θ ≥ gk, (12.18)

where we denote

Gk =
W∑

ω=1

pω(πk
ωBω), gk =

W∑
ω=1

pω(πk
ωdω), θ =

W∑
ω=1

pω(fωyω). (12.19)

To generate tight Cut (k) in the space of x and z, we eliminate θ from (12.18) by
subtracting it from cx+ θ ≤ z, see (12.9). Rearranging terms, we obtain the cut in
the form displayed in Figure 12-1 and (12.20) below:

Cut (k): z ≥ (c−Gi)x+ gi. (12.20)

THEOREM 12.2 (Cut (k) Is a Tight Support) If the cut is generated using
πω = πk

ω, the optimal dual-feasible solutions to the subproblem ω given x = xk, then
Cut (k) defined by inequality (12.20) is a tight lower bound to C at (xk, z̄k).
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Proof. The inequality Cut (k) (12.20) contains C because it is generated by a
nonnegative combination of inequalities and equations, each of which is satisfied by
every feasible point (x, y) in C, in particular (xk, yk) ⊂ C where yk

ω are the optimal
primal solutions to subproblems ω given x = xk.

If we substitute yω = yk
ω, πω = πk

ω the optimal primal and dual solutions to sub-
problem ω given x = xk in (12.15), then, by the Duality Theorem, (fω−πk

ωDω)yk
ω =

0, see (12.5). Summing in this case (12.15) for all ω ∈ Ω we obtain

W∑
ω=1

pω(πk
ωBω)xk +

W∑
ω=1

pω(fωy
k
ω) =

W∑
ω=1

pω(πk
ωdω), (12.21)

which, see (12.19), we denote by

Gkxk + θk = gk. (12.22)

Because θk = Min θ given x = xk, we also have by the definition of z̄k

cxk + θk = z̄k. (12.23)

Subtracting (12.23) from (12.22) to eliminate θk results in

z̄k = (c−Gi)xk + gi (12.24)

which proves that the lower boundary point (xk, z̄k) of C lies on the hyperplane
boundary of the Cut (k).

12.3.3 DECOMPOSITION ALGORITHM

Algorithm 12.1 (Benders Algorithm for Solving EQ-LP)

1. Initialization.

(a) Set iteration count k = 1.

(b) Set tolerance level = TOL.

(c) Optimize

BENDERS MASTER to generate xk:
Minimize cx = z
subject to Ax = b, x ≥ 0

If no feasible solution exists, terminate else find optimal x = xk.

2. Begin Iterative Loop. For each ω ∈ Ω, optimize

SUBPROBLEM ω given x = xk:
Find extreme points yω = yk

ω ≥ 0 and corresponding optimal duals πk
ω that

minimizes fωyω

subject to Dωyω = dω −Bωx
k.

Note: To simplify the discussion, we assume that all the subproblems are feasible.
In practice, if a subproblem is not feasible either “feasibility cuts” are adjoined to
the master or “penalty terms” are adjoined to the subs (see Exercise 12.3).



342 TWO-STAGE STOCHASTIC PROGRAMS

3. Calculate the expected minimum second-stage costs given x = xk:

θk =

W∑
ω=1

pω(fωy
k
ω)

and expected first-stage plus second-stage costs given x = xk

z̄k = cxk + θk.

4. Create Cut (k):

Gkx+ θ ≥ gk

where

Gk =

W∑
ω=1

pω(πk
ωBω); gk =

W∑
ω=1

pω(πk
ωdω).

5. Adjoin Cut (k) to Benders Master Program and reoptimize:

BENDERS MASTER (k) to generate xk+1:

Find min z = zk+1, x = xk+1 ≥ 0, θ = θk+1, such that
cx + θ = z
Ax = b
Gix + θ ≥ gi, for i = 1, . . . , k.

6. Set L = argmin
i≤k

z̄i, z̄L = Min
i≤k

z̄i.

7. If zk+1 + TOL < z̄L set k ← k + 1 and LOOP BACK to Begin Iterative Loop at
Step 2.

8. If zk+1 + TOL ≥ z̄L, declare z = z̄L as “close enough” to the minimum objective
value and declare xL as a first stage decision whose objective value z̄L is “close
enough” to the minimum objective value; and STOP.

� Exercise 12.3 Show how to generate cuts for the Master problem when one or more
subproblems are infeasible. Show that these infeasiblity cuts take the form Gix ≥ gi.
Show how this affects Step 5. Show how to incorporate penalty terms instead into such
subproblems so that even an infeasible problem can be replaced by a feasible one having
a high cost (penalty).

� Exercise 12.4 Interpret geometrically, in Figure 12-1, the steps of the algorithm for
iterations i < k, j < k, and iteration k.

� Exercise 12.5 Change the position of z̄k in Figure 12-1 so that z̄k+1 > z̄k, illustrating
that the upper bounds do not always monotonically decrease with increasing k.
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Example 12.1 (Benders Algorithm for Solving EQ-LP Illustrated) Consider the
following stochastic linear program:

Minimize
x1 + x2 + x3 + 0.5 ∗ (3y11 + 2y12 + y13) + 0.5 ∗ (2y11 + 4y12 + 0y13) = z

subject to
x1 + 2x2 + 3x3 = 6

3x1 + 2x2 + x3 = 6

x1 + x2 + x3 + 4y11 − y12 + y13 = 9
3x1 + 2x2 + x3 + 3y11 + 2y12 + y13 = 15
4x1 − x2 + x3 + y11 + y12 + y13 = 9

2x1 − 2x2 + x3 + 2y21 − 2y22 + y23 = 3
4x2 + x3 + 6y21 + y23 = 15

6x1 + x3 + 4y22 + y23 = 15
(12.25)

where xj ≥ 0 for j = 1, 2, 3, yωk ≥ 0 for ω = 1, 2, k = 1, 2, 3. The problem is clearly in the
following standard EQ-LP form:

cTx + p1f
T
1 y1 + p2f

T
2 y2 = z (min)

Ax = b
B1x + D1y1 = d1,
B2x + D2y2 = d2,
x ≥ 0, y ≥ 0,

where xT = (x1, x2, x3), y
T
1 = (y11, y12, y13), y

T
2 = (y21, y22, y23), c

T = (1, 1, 1), fT
1 =

(3, 2, 1), fT
2 = (2, 4, 0), dT

1 = (9, 15, 9), dT
2 = (3, 15, 15),

A =

(
1 2 3
3 2 1

)
, B1 =

(
1 1 1
3 2 1
4 −1 1

)
, D1 =

(
4 −1 1
3 2 1
1 1 1

)
,

B2 =

(
2 −2 1
0 4 1
6 0 1

)
, D2 =

(
2 −2 1
6 0 1
0 4 1

)
.

Initialize the tolerance TOL = 10−7. To apply Benders decomposition, we start by creating
the Initial Restricted Master Problem:

cTx + θ = z (min)
Ax = b,
x ≥ 0, θ = 0.

(12.26)

Given a solution x = x1 to the Master Problem, we solve the subproblems for ω = 1, 2:

fT
ωx = vω (min)

Dωyω = dω −Bωx
1,

y ≥ 0.
(12.27)

The solutions of these subproblems are then used to define cuts for the Master Problem.
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The solution to
Minimize x1 + x2 + x3 + θ = z
subject to x1 + 2x2 + 3x3 = 6

3x1 + 2x2 + x3 = 6
x ≥ 0, θ = 0,

is z1 = 3, x = x1 = (1.5, 0, 1.5)T, θ = θ1 = 0. Using this, we first compute the right-hand
side to the subproblem ω = 1:

d1 −B1x
1 =

(
9

15
9

)
−

(
1 1 1
3 2 1
4 −1 1

)(
1.5
0.0
1.5

)
=

(
6.0
9.0
1.5

)
and then solve the first subproblem:

Minimize 3y11 + 2y12 + y13 = w1
1

subject to 4y11 − y12 + y13 = 6.0
3y11 + 2y12 + y13 = 9.0
y11 + y12 + y13 = 1.5

y1 ≥ 0

This problem is infeasible, so we set z̄1 = +∞ and determine L = argmin z̄1 = 1, or
z̄L = +∞.

Next we use the multipliers to create an infeasibility cut. The multipliers are:

π1
1 =

(−0.2
1.0
−2.2

)

Next we compute the infeasibility cut G1x ≥ g1 by computing

G1 = (π1
1)

TB1 = (−6 4 1.4 )

and
g1 = (π1

1)
Td1 = −6.6

Next we set z̄1 = +∞ and determine L = argmin z̄1 = 1, or z̄L = +∞.
The new Benders Restricted Master is:

Minimize x1 + x2 + x3 + θ = z
subject to x1 + 2x2 + 3x3 = 6

3x1 + 2x2 + x3 = 6
−6x1 + 4x2 − 1.4x3 ≥ −6.6

x ≥ 0, θ = 0,

The optimal solution to this is z2 = 3.0, x 2 = (1.207792 0.584416 1.207792 ), θ2 = 0.
Clearly z2 + TOL < z̄L and therefore we continue with creating and solving the modified
set of subproblems.

Set the iteration counter k = 2 and first compute the right-hand side to the subproblem
for ω = 1 as

d1 −B1x
2 =

(
9

15
9

)
−

(
1 1 1
3 2 1
4 −1 1

)(
1.207792
0.584416
1.207792

)
=

(
6.0
9.0

3.545456

)
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and then solve the subproblem:

Minimize 3y11 + 2y12 + y13 = w1

subject to 4y11 − y12 + y13 = 6.0
3y11 + 2y12 + y13 = 9.0
y11 + y12 + y13 = 3.545456

y1 ≥ 0

This subproblem solves to optimality: w2
1 = 9.0, y1 = ( 1.9091 1.6364 0.0 ) with the

multipliers

π2
1 =

(
0.0
1.0
0.0

)
Next we set up and solve the subproblem for ω = 2. We first compute the right-hand side
as

d2 −B2x
2 =

(
3

15
15

)
−

(
2 −2 1
0 4 1
6 0 1

)(
1.207792
0.584416
1.207792

)
=

(
0.545456

11.454544
6.545456

)
and then solve the subproblem:

Minimize 2y21 + 4y22 + 0y23 = w2
2

subject to 4y21 − y22 + y23 = 0.545456
3y21 + 2y22 + y23 = 11.454544
y21 + y22 + y23 = 6.545456

y2 ≥ 0

This subproblem solves to optimality: w2
2 = 10.3636, y2 = ( 1.9091 1.6364 0.0 ) with

multipliers

π2
1 =

(−2.0
1.0
0.0

)
The expected first-stage plus second-stage costs are:

z̄2 = cTx2 + p1w
2
1 + p2w

2
2 = 3 + 0.5 ∗ 9 + 0.5 ∗ 10.3636 = 12.6818

We compute the new upper bound by determining

L = argmin{z̄1, z̄2} = {+∞,+12.6818} = 2

and therefore z̄L = 12.6818.
Next we compute the optimality cut G2x+ θ ≥ g2 by computing

G2 = p1(π
2
1)TB1 + p2(π

2
2)

TB2 = (−0.5 5.0 0.0 )

and
g2 = p1(π

2
1)

Td1 + p2(π
2
2)

Td2 = 12.0

The new Benders Restricted Master at the end of iteration 2 is:

Minimize x1 + x2 + x3 + θ = z
subject to x1 + 2x2 + 3x3 = 6

3x1 + 2x2 + x3 = 6
−6x1 + 4x2 − 1.4x3 ≥ −6.6
−0.5 + 5x2 + 0x3 + θ ≥ 12.0

x ≥ 0.
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The optimal solution to this is z = z3 = 0.0, x 3 = ( 0.0 3.0 0.0 ), θ = θ3 = −3.0.
Clearly z3 + TOL < z̄L = 12.6818, and therefore we continue with creating and solving
the modified set of subproblems.

Using this, we first compute the right-hand side to the subproblem for ω = 1 as

d1 −B1x
3 =

(
9

15
9

)
−

(
1 1 1
3 2 1
4 −1 1

)(
0.0
3.0
0.0

)
=

(
6.0
9.0

12.0

)

and then we solve the subproblem:

Minimize 3y11 + 2y12 + y13 = w3
1

subject to 4y11 − y12 + y13 = 6.0
3y11 + 2y12 + y13 = 9.0
y11 + y12 + y13 = 12.0

y1 ≥ 0

This problem is infeasible. So we set z̄3 = +∞ and hence we know that the current upper
bound is unchanged with L = 2 and z̄L = 12.6818.

Next we use the multipliers to create an infeasibility cut. The multipliers are:

π3
1 =

(−1/3
2/3

1

)

Next we compute the infeasibility cut G3x ≥ g3 by computing

G3 = (π3
1)

TB1 = ( 1.666667 −2.666667 0.0 )

and

g3 = (π3
1)

Td1 = −4.0

The new Benders Restricted Master at the end of iteration 3 is:

Minimize x1 + x2 + x3 + θ = z
subject to x1 + 2x2 + 3x3 = 6

3x1 + 2x2 + x3 = 6
−6x1 + 4x2 − 1.4x3 ≥ −6.6
−0.5 + 5x2 + 0x3 + θ ≥ 12.0

1.666667x1 − 2.666667x2 + 0x3 ≥ −4.0
x ≥ 0.

The optimal solution to this is z = z4 = 6.0, x4 = ( 0.5714285 1.857143 0.5714285 ),
θ4 = 3.0. Clearly z4 + TOL < z̄L = 12.6818 and therefore we continue with creating and
solving the modified set of subproblems.

Using this, we first compute the right-hand side to the subproblem for ω = 1 as

d1 −B1x
4 =

(
9

15
9

)
−

(
1 1 1
3 2 1
4 −1 1

)(
0.5714285
1.857143

0.5714285

)
=

(
6.0
9.0
8.0

)
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and then we solve the subproblem:

Minimize 3y11 + 2y12 + y13 = w4
1

subject to 4y11 − y12 + y13 = 6.0
3y11 + 2y12 + y13 = 9.0
y11 + y12 + y13 = 8.0

y1 ≥ 0

This subproblem solves to optimality: w4
1 = 9.0, y1 = ( 0.0 1.0 7.0 ) with multipliers

π4
1 =

(
0.0
1.0
0.0

)
Next we set up and solve the subproblem for ω = 2. We first compute the right hand side
as

d2 −B2x
4 =

(
3

15
15

)
−

(
2 −2 1
0 4 1
6 0 1

)(
0.5714285
1.857143

0.5714285

)
=

(
5.0
7.0

11.0

)
and then solve the subproblem:

Minimize 2y21 + 4y22 + 0y23 = w4
2

subject to 4y21 − y22 + y23 = 5.0
3y21 + 2y22 + y23 = 7.0
y21 + y22 + y23 = 11.0

y2 ≥ 0

This subproblem solves to optimality: w4
2 = 4, y2 = ( 0.0 1.0 7.0 ) with multipliers

π4
1 =

(−1.1428571
0.7142857
0.4285714

)
The expected first-stage plus second stage costs are:

z̄2 = cTx4 + p1w
4
1 + p2w

4
2 = 3 + 0.5 ∗ 9 + 0.5 ∗ 4 = 9.5

We compute the new upper bound by determining

L = argmin{z̄1, z̄2, z̄3, z̄4} = {+∞,+12.6818,+∞, 9.5} = 4

and, therefore, z̄L = 9.5.
Next we compute the optimality cut G4x+ θ ≥ g4 by computing

G4 = p1(π
4
1)

TB1 + p2(π
4
2)

TB2 = ( 1.6428571 3.5714285 0.5 )

and
g4 = p1(π

4
2)

Td1 + p2(π
4
2)

Td2 = 14.3571426

The new Benders Restricted Master at the end of iteration 4 is:

Minimize x1 + x2 + x3 + θ = z
subject to x1 + 2x2 + 3x3 = 6

3x1 + 2x2 + x3 = 6
−6x1 + 4x2 − 1.4x3 ≥ −6.6
−0.5 + 5x2 + 0x3 + θ ≥ 12.0

1.666667x1 − 2.666667x2 + 0x3 ≥ −4.0
1.6428571x1 + 3.5714285x2 + 0.5x3 + θ ≥ 14.3571426

x ≥ 0.
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The optimal solution to this is z5 = 9.5, x5 = ( 0.5714285 1.857143 0.5714285 ), θ5 =
6.5. Now z5 + TOL > z̄L = 9.5 and we stop and report the optimal values for x.

12.3.4 THEORY BEHIND THE ALGORITHM

Given xk, let (xk, yk, z̄k) be the output of the kth iterate of the algorithm. Let C
be the set of feasible points satisfying the original problem (12.9). Denote byM(k)
the set of all feasible points of the updated Benders Master with k cuts.

LEMMA 12.3 (Lower Bound on z̄k) At each iteration k,

z̄k ≥ min
C
z. (12.28)

Proof. Since (xk, yk, z̄k) is a feasible point in C, then obviously

z∗ = min
C

z ≤ z̄k (12.29)

LEMMA 12.4 (Point with Smallest z) The point inM(k−1) with smallest z,
namely, (xk, zk), satisfies

zk−1 ≤ zk = min
Ck|xk

z ≤Min
C
z ≤ z̄L = min

i≤k
z̄i. (12.30)

Proof. It is clear, as we have noted earlier, that all the points on the lower
boundary of C are contained in the half-space of every cut including the latest

Cut (k): z ≥ (c−Gk)x+ gk. (12.31)

Let P k be any point on the lower boundary of C and let P k =
(
xk, yk, z̄k

)
. Given

x = xk, then yω = yk
ω ≥ 0 minimizes fωyω subject to

Dωyω = dω −Bωx
k, yω ≥ 0, for ω = 1, . . . ,W (12.32)

and therefore

z̄k = min (z | x = xk) = cxk +
W∑

ω=1

pω(fωy
k
ω). (12.33)

Then (xk, z̄k) satisfies (12.31) with equality; see the proof of Theorem 12.2.

Definition (Almost Optimal First-Stage Decision):

If TOL ≥ z̄L − zk+1 ≥ z̄L − z∗, (12.34)

then z̄L, the first-stage cost plus minimum second-stage cost given x = xL

is deemed as “close enough” to min z for x = xL to be declared an “almost
optimal” first-stage decision.
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LEMMA 12.5 (Optimal First-Stage Decision) Let L = argmin
i≤k

z̄i.

If zk+1 = z̄L, decision x = xL is optimal. (12.35)

Proof. The proof is obvious; see (12.30).

THEOREM 12.6 (Cut Chops off Part of the Feasible Region) If zk < z̄k,
then Cut (k) “chops off” all points

(
xk, zk

)
of the feasible region of M(k − 1),

implying that all the cuts differ from one another.

Proof. That each new cut chops off part of the feasible region is evident from
Figure 12-1 if zk < z̄k because the segment on the line x = xk between zk and z̄k

lies in the feasible set of M(k − 1) but not in that ofM(k).

THEOREM 12.7 (Finite Termination) There are only a finite number of
cuts when extreme πk

ω are used to generate the cuts, implying that the iterative
process terminates after a finite number of iterations.

Proof. To prove that the iterative process is finite and terminates in an optimal
solution for some finite k with (xk, z̄k), we note this must be because πk

ω is chosen
from the finite class of dual extreme solutions of the subproblems. With only
a finite set of πk

ω to choose from, only a finite number of different cuts can be
generated. When this finite number k is reached (if not before) zk+1 = z̄L (where
L = argmini≤k z̄

i), because if not, a new different cut would be generated contrary
to the fact that no more cuts can be generated, establishing the theorem.

12.4 SOLVING STOCHASTIC TWO-STAGE
PROBLEMS USING SAMPLING

12.4.1 OVERVIEW

When W is huge, it is no longer practical, given some x = xk, to solve all the second-
stage subproblems in order to determine the expected minimum second-stage costs

θk = E
[
fωyω

]
=

W∑
ω=1

pω(fωy
k
ω), (12.36)

where yk
ω denotes the optimal second-stage decision for some ω given x = xk. To

see why W can be huge in practice, suppose an electric power system has 20 gen-
erators and 10 transmission lines, any one or combination of which could be non-
operational. Then altogether there are 220 × 210 = 230 possibilities; i.e., there are
over one billion possible states of the system. If we also consider the effects of vari-
able demand patterns at different demand points due to weather conditions, then
the possible number of cases to consider becomes truly astronomical!
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Even though W typically is huge, we can still make progress using sampling to
estimate the expected minimum second-stage cost given a first-stage decision xk. We
assume that the sampling procedure consists of independent trials with replacement.
Naive Sampling can be used to estimate θ̃k by randomly sampling the ω proportional
to pω and averaging arithmetically over ω in the sample S the observed minimum
second-stage costs fωy

k
ω.

Instead of sampling ω proportional pω,
∑
pω = 1, pω > 0, another way is to

sample ω proportional to some qω �= pω, where
∑
qω = 1, qω > 0, and averaging

over ω in the sample (pω/qω)(fωy
k
ω), i.e., the minimum second-stage costs (fωy

k
ω)

weighted by (pω/qω). If qω is chosen to be roughly proportional to pω(fωy
k
ω), it will

sample more frequently (compared to Naive Sampling) those outcomes ω having
extremely low probability pω but extremely high cost (fωy

k
ω). When this is the

case, the latter technique, called Importance Sampling, can often reduce by many
orders of magnitude the size of the sample required to attain a given accuracy of
estimate of θk.

12.4.2 NAIVE SAMPLING

For the discussion that follows, we assume the Naive Sampling procedure is used.
According to statistical theory of sampling, which we review in Appendix A, an
unbiased estimator of θk is:

θ̃k =
1
N

∑
ω∈S

fωy
k
ω, (12.37)

where S is a random sample of size N with replacements.
The variance of the sampled observations is:

1
N

∑
ω∈S

(
fωy

k
ω − θ̃k

)2
, (12.38)

where N is the sample size. However, if (12.38) is used to estimate the true variance
of the population, (σk)2, it can be shown to underestimate it. On the other hand,

(σ̃k)2 =
1

N − 1

∑
ω∈So

(
fωy

k
ω − θ̃k

)2 (12.39)

can be shown to be an unbiased estimator of (σk)2.
The expected value of the set of all means of size N is also θk and an unbiased

estimate of the variance of all sample means of size N based on random samples
with replacements of size N is

1
N

(σ̃k)2 =
1

N(N − 1)

∑
ω∈So

(
fωy

k
ω − θ̃k

)2
. (12.40)

Notation: When x = xk, we denote yk
ω as an optimum yω given x = xk. We denote

the expected minimum second-stage costs by θk. When a sample Si is used to
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estimate θk, we denote the estimated expected minimum second-stage costs by θ̃k
i .

Thus

θk = E
[
fωy

k
ω

]
=

W∑
ω=1

pω(fωy
k
ω) and θ̃k

i =
1
N

∑
ω∈Si

fωy
k
ω (12.41)

where Si is a random sample of size N of the ωs. In particular, on iteration k of
the iterative process we are given x = xk and we generate only one corresponding
random sample S = Sk on iteration k, then, see (12.41), the estimated second-stage
cost is θ̃k

k , and the estimated first-stage and expected second-stage costs are denoted
z̃k

k = cxk + θ̃k
k .

12.4.3 SAMPLING METHODOLOGY

In applications of stochastic two-stage linear programs, as noted earlier, the number
of scenarios W is typically huge, for example, W > 106 or W > 109. We assume
that the Decomposition Algorithm (see Section 12.3.3) has been applied with the
following replacements:

W∑
ω=1

pωfωyω by
1
N

∑
ω∈Sk

fωyω

W∑
ω=1

pωπ
k
ωdω by

1
N

∑
ω∈Sk

πk
ωdω

W∑
ω=1

pωπ
k
ωBω by

1
N

∑
ω∈Sk

πk
ωBω

for iterations 1, . . . , k. We assume, at iteration k, that the iterative process has been
stopped because of Step 8 of Algorithm 12.1 (as modified for sampling) or because
a preassigned maximum number k of iterations has been reached.

To measure how good this final solution xk is, we determine a 95% upper-bound
estimate for zk = cxk +

∑W
ω=1 pωθ

k
ω and a 95% lower-bound estimate for Min z,

meaning a 95% probability that the upper-bound estimate is higher than the true
zk and a 95% probability that the lower-bound estimate is lower than the true Min z.
The difference between these two bounds will be our measure of the “goodness” of
the first-stage solution xk.

12.4.4 ESTIMATING UPPER BOUND zUB FOR MIN z

An unbiased estimator of θk is

θ̃k =
1
N

∑
ω∈Sk

θk
ω, (12.42)
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where θk
ω is the minimum second-stage cost fωyω given x = xk. An unbiased “95%”

upper-bound estimate of cxk + θk is

cxk + θk + λ0.95σ̃
k
UB , (12.43)

where the area from −∞ to λ0.95 under the normal curve with mean 0 and standard
deviation 1 is 0.95 and

(σ̃k
UB)2 =

1
N(N − 1)

∑
ω∈Sk

(
θk

ω − θ̃k
)2
. (12.44)

12.4.5 ESTIMATING LOWER BOUND z
LB

FOR MIN z

To obtain a “95%” lower-bound estimate of Min z, we note that the objective value v
of any feasible solution to the Dual of (12.9) provides a true lower bound v ≤ Min z.
Unfortunately because W is huge, we must estimate v by sampling. To insure that
the lower-bound estimate is independent of the upper-bound estimate, we choose
another independent random sample S′k of size N .

Dual of (12.9): Find max v, ρ, πω, such that:

ρb +
W∑

ω=1

pωπωdω = v (Max)

ρA +
W∑

ω=1

pωπωBω ≤ c

πωDω ≤ fω, for ω = 1, . . . ,W .

(12.45)

One such feasible solution to (12.45) is to set πω = πk
ω for ω = 1, . . . ,W where πk

ω

are the optimal dual multipliers to the second-stage problems given x = xk. These
satisfy the last set of inequalities of (12.45). To obtain ρ = ρk, substitute πω = πk

ω

into the first two sets of inequalities of (12.45) and solve this single-stage linear
program to determine ρ and v, a lower bound for Min z, namely,

Given πω = πk
ω, find Max v ≤ Min z, such that:

ρb +
W∑

ω=1

pωπ
k
ωdω = v (Max)

ρA +
W∑

ω=1

pωπ
k
ωBω ≤ c.

(12.46)

Rather than optimizing the dual single-stage linear program (12.46) to obtain
Max v, a lower bound for Min z, it turns out to be more convenient to approx-
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imately optimize the primal of this dual problem:

Find ξ, Min zLB, such that
W∑

ω=1

pωπ
k
ωdω +

(
c−

W∑
ω=1

pωπ
k
ωBω

)
ξ = zLB (Min)

Aξ = b
ξ ≥ 0.

(12.47)

By duality MinzLB = Max v ≤ Min z.

� Exercise 12.6 State conditions that guarantee the existence of ρ satisfying (12.46).
What do these imply about its dual (12.47)? Conversely, will these conditions always
be satisfied if the second-stage problems of (12.9) are always feasible with finite minima
whatever be xk satisfying Ax = b, x ≥ 0?

Denoting the constant term and coefficients of the objective of (12.47) by

γo =
W∑

ω=1

pωπ
k
ωdω , γj =

W∑
ω=1

pω(cj − πk
ωBωj), for j = 1, . . . , n, (12.48)

where Bωj denotes the jth column of the matrix Bω, we use an independent random
sample S′k of size N to infer a distribution of possible values of the constant term
γo and the coefficients γj for j = 1, . . . , n of the objective of (12.47) where the true
means are (12.48).

The sampled means in (12.49) are unbiased estimates of the true means (12.48)
based on a sample S′k of size N :

γ̃o =
1
N

∑
ω∈S′

k

pωπ
k
ωdω, γ̃j =

1
N

∑
ω∈S′

k

(cj − πk
ωBωj), for j = 1, . . . , n. (12.49)

For sample sizes sufficiently large (say N > 200), the “likelihood” that the ob-
served vector of sample means (γ̃o, γ̃1, . . . , γ̃n) from their vector of true means
(γo, γ1, . . . , γn) can be reasonably assumed to follow very closely a multivariate
normal distribution centered at the origin. Our immediate goal is to calculate an
unbiased estimate of the true variance-covariance matrix based on the sampled ob-
servations about the sample means. If we denote the vector of deviations of the
sampled observations from their sampled means by

δωo = πk
ωdω − γ̃k, δωj = (cj − πk

ωBωj)− (cj − γ̃j) for j = 1, . . . , n, (12.50)

and let M be the matrix whose rows are defined by Bω• = [δωo, δω1, . . . , δωn],
for ω ∈ S′k, then the estimated variance-covariance matrix of the multivariate
normal distribution about the sampled means (12.49) is (1/N)MTM . However,
this estimate is biased. An unbiased estimate of the variance-covariance matrix
about the true means (12.48) is (1/(N − 1))MTM . Finally an unbiased estimate of
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the variance-covariance matrix of the means of samples of size N about their true
means, based on a sample S′k, is:

1
N(N − 1)

MTM. (12.51)

If we write the terms of the objective (12.47) plus a correction term δo, δ1, . . . , δn
so that the constant term and coefficients agree with their true values displayed in
(12.47)

1
N

∑
ω∈Sk

πk
ωdω + δo +

n∑
j=1

(
cj +

∑
ω∈Sk

πk
ωBωj + δj

)
ξj = z

LB

(
Min

)
Aξ = b
ξ ≥ 0,

(12.52)

then we are asserting that the vector δ = (δo, δ1, . . . , δn) is a random vector drawn
from the multi-variate normal distribution centered at the origin with estimated
variance-covariance matrix (1/N(N − 1))MTM . For each random choice of the
vector (δo, δ1, . . . , δn), the linear program (12.52) is optimized and a minimum
value z

LB
is obtained. Thus z

LB
is a random variable that depends on the choice

of the vector (δo, δ1, . . . , δn) drawn from a multivariate normal distribution with
variance-covariance matrix based on sample S′k. It is recommended in practice that
at least S′k ≥ 200 independent random choices of the vector (δo, δ1, . . . , δn) from
multivariate normal distribution be made, and for each such choice the one-stage LP
(12.52) be optimized. This results in an empirical distribution of S′k estimates of zLB.
These 200 or more z

LB
s are next ranked from low to high and the lower bound z

LB

for Min z is chosen as that zLB that is located 5 percentile points from the bottom
(which is at the 95% probability point according to the empirical distribution that
z

LB
≤ Min z).

� Exercise 12.7 Find a way to generate a random point of a multivariate distribution.

12.5 USE OF IMPORTANCE SAMPLING

One weakness in using the “naive” sampling procedure is that it may fail to sample
any of the rare but high-cost catastrophic events ω having a very low probability pω

of happening. Let qω be any distribution of ω, i.e.,
∑W

ω=1 qω = 1, qω ≥ 0. If we
rewrite

θk =
W∑

ω=1

qω

(
pω

qω
fωy

k
ω

)
,

W∑
ω=1

qω = 1, qω ≥ 0, (12.53)

and then sample ω proportional to qω and average (pω/qω)fωy
o
ω over a randomly

drawn sample Sq
o of size N drawn from the distribution qω, then

θ̃k =
1
N

∑
ω∈Sq

o

(
pω

qω

)
fωy

o
ω (12.54)
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is also an unbiased estimator of θo.
Question: Is there some way to choose qω so that sampling ω proportional to qω to
estimate θk is superior to estimating θk using pω in the sense that for some fixed
size N , θ̃k has a smaller variance? Later we will discuss classes of problems where
the answer to this question is yes.

12.5.1 CRUDE (NAIVE) MONTE CARLO METHODS

The main computational difficulty in solving the two-stage stochastic linear pro-
gram (12.9) is the evaluation of the expected cost of the second stage when W
is huge. If so, it will not be feasible to evaluate all the ω = 1, . . . ,W terms of
the expected-value expression. The best, numerically efficient way to approximate
expected values (which are, by definition, higher-dimensional multiple integrals or
sums), according to expert numerical analysts, is by Monte Carlo techniques. These
use a random sampling of the ν-dimensional domain of the function being integrated
to approximate its expected value. The computational effort is often relatively in-
dependent of ν, the dimension of the space, whereas the computational effort of
classical techniques that subdivide the ν-dimensional sampling space grows propor-
tional to the number of subdivisions that (in turn) grows with the power of ν. Note
that ν denotes the dimension of the space while N is the number of discrete points ω
in the sample.

Let us suppose that our stochastic linear program (12.2) is a very complex
model of an electric power distribution system. Many of the possibly hundreds or
thousands of coefficients and constant terms of the second period are known with
certainty, but many others are dependent on a small number, ν, of independent
random variables V = ( V1, V2, . . . , Vν ).

For example Vi for i = 1, . . . , 30 measures the repair state of the ith electric
power generator. If Vi = 1 for generator i, it means it is in service, and if Vi = 0
it means it is out of service with known probabilities. In addition, assume there
are two other random variables V31 that measure the annual rainfall and V32 that
measure the prices of oil, and that V31 and V32 each can take on five values with
known probabilities. Assuming independence of the random variables, the number
of scenarios W that model (12.2) has in this case in the second period is W =
230 × 5× 5 > 26 billion, a very large number.

Instead of sampling from the more than 26 billion scenarios as if it were one
long sequence, we choose ω by independently random sampling each of the small
number ν = 32 distributions Vi and using these to evaluate the Bω(i, j), Dω(i, j),
dω(i).

Suppose that a point ω in a sample space Ω results in the ω outcome of a stochas-
tic vector V = (V1, V2, . . . , Vν )T. We are interested in estimating the expected value
of some function Ψ(V ) over the sample space:

ψ̄ = E
[
Ψ(V )

]
=

∑
ω∈Ω

pωψω, (12.55)
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where pω = p ( vω
1 , v

ω
2 , . . . , v

ω
n ) is the joint probability distribution of the point ω

in the sample space. For example, ψω could be the minimum second-stage costs of
subproblem ω given some first-stage decision x, and some random outcome of the
stochastic vector V , i.e.,

ψω = Min fωyω subject to Dωyω = dω −Bωx, yω ≥ 0. (12.56)

Suppose we take a sample S of N points (scenarios), vω, such that the likelihood
of choosing ω is proportional to their joint probability distribution (or mass) func-
tion pω = p ( vω

1 , v
ω
2 , . . . , v

ω
ν ). An unbiased estimator of the mean ψ̄ of Ψ(V ) is:

ψ̃ =
1
N

∑
ω∈S

ψω. (12.57)

The variance σ2 for the distribution pω is

σ2 = Var
[
Ψ(V )

]
=

∑
ω∈Ω

pω(ψω − ψ̄)2. (12.58)

An unbiased estimator of σ2 is

σ̃2 =
1

N − 1

∑
ω∈S

(ψω − ψ̃)2. (12.59)

The variance of the means of samples of size N is σ2/N . Therefore its unbiased
estimator is

1
N
σ̃2 =

1
N(N − 1)

∑
ω∈S

(ψω − ψ̃)2. (12.60)

By the Central Limit Theorem, the distribution of such means ψ̃, as sample size
N →∞, tends to the normal distribution about the true mean with variance σ2. In
practice, the distribution of ψ̃ is approximately normal for moderate size N , say N
greater than 200. If it turns out that the unbiased sample variance (estimate of the
standard error squared) is too high, the sample size N will need to be increased
until the error of the estimate is acceptable.

This approach for approximating multiple integrals and summations is used to
estimate the expected minimum second-stage costs θk = ψ and their variances, and
to estimate the expected values gk, Gk of Cut (k) of the iterative algorithm, and to
estimate the variances of gk or Gk.

12.5.2 MONTE CARLO METHODS USING
IMPORTANCE SAMPLING

In practice the Crude Monte Carlo approach described earlier often has a very slow
rate convergence to the normal distribution as sample size N → ∞, namely, of
the order N−1/2. (Note: Each evaluation of a sample point, in our case, involves
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the optimizing of the subproblem ω.) This makes it very desirable to develop
and apply inexpensive variance reduction techniques for the estimation of ψ̄, the
expected value of Ψ(V ). We shall describe importance sampling, which is a classical
variance-reduction technique for increasing the efficiency of Monte Carlo techniques.
We then apply the idea to reducing the error of approximation of the expected value
of the second-stage cost θk given the first-stage decision x = xk, and to estimate
how far cxk + θk = zk is from Min z of the stochastic linear program.

Importance sampling changes the sampling procedure so that rare events that
have catastrophic costs are sampled with greater frequency. Thus, for example, to
evaluate the integral

∫∞
−∞ f(x)dx, the method of importance sampling chooses a

probability density q(u) and then evaluates the equivalent integral∫ ∞

−∞
f(x)dx =

∫ ∞

−∞

[
f(u)
q(u)

]
q(u)du = Eq

[
f(U)/q(U)

]
(12.61)

where U is a random variable with probability density function q. The probability
density function q is chosen so that it is approximately proportional to |f(u)|, i.e.,
q is large in regions where |f(u)| is large. Thus, the procedure is to sample from the
distribution q of U and to estimate the integral

∫∞
−∞ f(x)dx as the sample mean of

f(U)/q(U).

� Exercise 12.8 Suppose that f(u) > 0 for all u and q(u) = λf(u) where λ > 0 is a fixed
constant chosen so that

∫ ∞
−∞ q(u)du = 1. Prove that

∫∞
−∞ f(x)dx = λ; i.e., knowing the

value of λ is the same as determining the value of the integral
∫ ∞
−∞ f(x)dx.

� Exercise 12.9 Suppose q(u) = λf(u) is a probability distribution and the expected
value of f(U)/q(U) is estimated by a random sample drawn from the distribution q(u).
Show that, regardless of what random sample of f(U)/q(U) is taken and then averaged,
the sample mean is λ and therefore the sample estimates the

∫∞
−∞ f(x)dx with standard

error estimate σ = 0.

� Exercise 12.10 Suppose f(u) > 0 for all u and q(u) is “roughly proportional” to f(u).
Show that the ratio R(u) = f(u)/q(u) satisfies (1 − ε)λ ≤ R(u) ≤ (1 + ε)λ for some
0 < ε < 1, λ > 0. Prove that the Importance Sampling will estimate the integral divided
by λ with an error < ε.

� Exercise 12.11 Suppose the likelihood of a major outage of an electric power system
is 1/1000, i.e., one day in 1000 days, but the social cost is enormous when it does happen.
On a typical day, when it does not happen, the social cost is zero. Demonstrate why it is
better to use importance sampling instead of crude Monte Carlo sampling.

In general, we are interested in computing

θ̄ =
∑
ω∈Ω

p(ω)F (ω) (12.62)
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where F (ω) = fωyω and p(ω) is the distribution of the random vector V . By
choosing a distribution q(ω) we obtain

θ̄ =
∑
ω∈Ω

p(ω)F (ω)
q(ω)

q(ω) = Eq

[
p(U)F (U)
q(U)

]
(12.63)

where U = (U1, U2, . . . , Uν )T is a random vector with distribution q. We approxi-
mate θ̄ by random sampling from the distribution q to obtain an unbiased estimator
of θ̄ by

θ̃ =
1
N

N∑
j=1

p(uj)F (uj)
q(uj)

. (12.64)

The unbiased estimator of the variance of θ is now:

Varq[θ̃] =
1

N − 1

N∑
j=1

(
p(uj)F (uj)
q(uj)

− θ̃
)2

q(uj)

=
1

N − 1

(
Eq

[
p(U)2F (U)2

q(U)2)

]
− θ̃2

)
. (12.65)

We now address the question of how to choose q so that Varq[θ̃] is as small as
possible for a given sample size N . Assuming F (u) ≥ 0 the obvious optimal choice
is

q(u) = q∗(u) where q∗(u) =
F (u)p(u)∑

ω∈Ω F (ω)p(ω)
. (12.66)

because (see Exercises 12.8 and 12.9) with such a choice of q, the variance Varq[θ̄]
is zero. Using q(u) = q∗(u) from (12.66) in (12.64) generates a θ̃ that is a perfect
estimate of the expected value of θ, because in this case (12.64) reduces to

θ =
∑
ω∈Ω

F (ω)p(ω).

Moreover, this perfect estimate is one that could have been obtained with exactly
one observation N = 1! Unfortunately, while this ideal optimal choice is perfect,
it is useless because, as we have already seen, the denominator of q∗(u) in equa-
tion (12.66) is the very quantity that we are trying to estimate in the first place.
Nevertheless, this observation suggests a good heurestic for determining q.

1. Choose a q(ω) that is roughly proportional to |p(ω)F (ω)|; and

2. at the same time choose a q(ω) that permits carrying out the calculations
efficiently.

Two possible ways to choose a q that have been found to be very efficient for certain
classes of important applications and requires only the evaluation of one-dimensional
integrals or summations (which in general requires substantially less computational
effort than evaluating a general multidimensional one).
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Multiplicative Assumption

First, let us assume that F (ω) = F (V ω
1 , V

ω
2 , . . . , V

ω
ν ) is roughly multiplicative in

its arguments, namely:

F (ω) = F (V ω
1 , V

ω
2 , . . . , V

ω
ν ) ≈ F1(vω

1 )F2(vω
2 ) · · ·Fν(vω

ν ). (12.67)

Obviously the further away F (ω) is from being multiplicative, the rougher will be
the approximation q and the higher will be the variance of the estimator of θ. Under
this assumption, we choose the distribution q(ω) to also be multiplicative

q(ω) =
(
F1(vω

1 )p1(vω
1 )

F̄1

)(
F2(vω

2 )p2(vω
2 )

F̄2

)
· · ·

(
Fν(vω

ν )p2(vω
ν )

F̄ν

)
(12.68)

where F̄i = E
[
Fi(vω

i )
]
. The quantity F̄i (depending on the application) is estimated

by using either calculus to perform ν independent one-dimensional integrations or
by Monte Carlo sampling of the one-dimensional distributions Vi. Once q is defined
in this way, sample points vω are chosen by independently choosing components
Vi according to their marginal distributions Fi(vi)pi(vi)/F̄i. An estimate for θ is
obtained as the arithmetic mean of Fj(vj)pj(vj)/F̄j for j = 1, . . . , N .

Additive Assumption

It turns out that in certain applications, such as the calculation of financial portfolios
and electric power distribution, a multiplicative approximation is not as good for
integrating the function that measures cost as the one that is roughly additive in
its arguments. We are assuming here that F (ω) is roughly additive of the form:

F (ω) ≈
ν∑

i=1

Fi(vω
i ) (12.69)

Specifically, we are assuming that q(ω) takes the additive form:

q(ω) =
p(ω)

∑ν
i=1 Fi(vω

i )∑
ω∈Ω p(ω)

∑d
k=1 Fk(vω

k )
= p(ω)

ν∑
i=1

(
F̄i∑
k F̄k

)(
Fi(vω

i )
F̄i

)
. (12.70)

where F̄i = E
[
Fi(vω

i )
]
. The quantity F̄i is once again easily estimated by sampling

the marginal distribution of Vi. Finally we can write

q(ω) =
ν∑

i=1

(
F̄i∑
k F̄k

)(
pi(vω

i )Fi(vω
i )

F̄i

∏
k �=i

pk(vω
k )

)
. (12.71)

The expected value E
[
Z2(V )

]
= z2 = θ then becomes

θ =
ν∑

i=1

(
F̄i∑
k F̄k

)
Ei

[
c(Y )p(Y )
q(Y )

]
, (12.72)
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where Ei means that the component vj
i of sample point vj is to be independently

sampled according to the marginal distribution of qi(vω
i ), i.e.,

qi(vω
i ) =

pi(vω
i )Fi(vω

i )
F̄i

(12.73)

and all other components j �= i according to the marginal distribution pj(vω
j ). Note

that θ is these expectations Ei in (12.72) weighted by F̄i/
∑

j F̄j . Thus, an estimate
θ̄ of θ can be obtained when each Ei is itself estimated by sampling one-dimensional
distributions.

The extent of variance reduction clearly depends on how good the true cost
surface can be represented by an additive representation; if the fit is poor then the
variance estimate of the mean of the sample will be high.

Estimation of Fi(ωi)

The quantities Fi(vω
i ) can be estimated by evaluating the cost function on a rel-

atively small lattice of points, namely, a set of lattice points along ν-coordinate
directions:

Fi(vω
i ) ≈ F (τ1, . . . , τi−1, v

ω
i , τi+1, . . . , τd)− F (τ1, . . . , τi−1, τi, τi+1, . . . , τd) (12.74)

where the values τ1, τ2, . . . , τν are arbitrarily chosen at some fixed set of values.
This determines the quantities up to an additive constant. We can get rid of this
additive constant by writing

F (ω) = F ( τ1, τ2, . . . , τν ) + ∆F (ω).

Now the new function ∆F (ω) is again of additive form but has the advantage that
we know a priori that we may take ∆Fi(τi) = 0 and thus eliminate the additive
constant entirely.

12.6 NOTES & SELECTED BIBLIOGRAPHY
The incorporation of uncertainty into linear programs was proposed independently by
Dantzig [1955a] and Beale [1955a]. From then on various individuals have tried to extend
the methods of linear programming to handle the problem of optimizing, in some defined
sense, problems whose parameters are not known with certainty. Early references are
Dantzig & Madansky [1961], Ferguson & Dantzig [1956], and Madansky [1959]. Over the
years, different approaches have been used to attack such problems. See for example,
Birge [1985a,b], Birge & Holmes [1992], Birge & Wallace [1988], Birge & Wets [1986,
1987], Dantzig & Infanger [1992a], Ermoliev [1983], Frauendorfer [1988], Frauendorfer &
Kall [1988], Higle & Sen [1991], Kall [1979], Pereira, Pinto, Oliveira, & Cunha [1989],
Rockafellar & Wets [1989], Ruszczynski [1986], Van Slyke & Wets [1969], and Wets [1984].
A survey of different ways to solve stochastic linear programs can be found in Ermoliev
& Wets [1988] and an introduction to stochastic programming can be found in Birge &
Louveaux [1997].
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The two-stage case was first studied by Dantzig [1955a, 1963] and subsequently devel-
oped by Van Slyke & Wets [1966, 1969] and Wets [1984]. The solution method described
in this Chaper began with Birge [1980] and Dantzig, [1982a] followed by major studies
by Abrahamson [1983], Wittrock [1983], and Scott [1985]. It is based on Benders De-
composition (see Benders [1962] and Geoffrion [1970]); and using Importance Sampling
based on Dantzig & Glynn [1990]. and Glynn & Iglehart [1989]. The discussion of im-
portance sampling applied to stochastic linear programs presented in this chapter also is
based on these references. This approach has turned out to be very powerful in prac-
tice; see Infanger [1991] and Dantzig & Infanger [1992a], which report on the remarkable
computational results obtained for several large-scale problems with up to 52 stochastic
parameters. These stochastic problems, if reexpressed in standard linear programming
format, could each have several billion constraints. The justification of the lower-bound
estimates of the confidence interval have been criticized on theoretical grounds. However,
the theory presented in this chapter provides a theoretical way to validate these earlier
lower-bound estimates.

Dantzig & Infanger [1993] show how to apply the concepts of stochastic linear programs
to portfolio optimization. In Dantzig & Glynn [1990] an extension of this approach for
the multistage problem is proposed using parallel processors. For details on planning
under uncertainty, see Infanger [1994]. See also Entriken [1989] for decomposition of linear
programs using parallel computing.

Berry-Esséen (in Hall [1985]) gives upper bounds on the rates of convergence based
on the Central Limit Theorem. If the algorithm described in this chapter terminates with
an approximation far from optimal, the only remedy is to increase the sample size and
try again. Morton [1993] develops a theory of augmenting the original sample and trying
again.

Experimental results for electric power facilities by Nakayama (reported in Dantzig,
Glynn, Avriel, Stone, Entriken, & Nakayama [1989]), based on the additive approach
described in this chapter, showed importance sampling to be very effective. It turned out
that a sample size 1/20000 smaller was required to obtain the same-size confidence interval
with the same degree of confidence of covering the true minimum value using importance
sampling than would have been the case using “crude” sampling.

For Monte Carlo approaches to computing multiple integrals or multiple sums, see
Davis & Rabinowitz [1984] and Deák [1988]. For a description of Monte Carlo Sampling
Techniques, see Hammersly & Handscomb [1964]. An extensive review of methods of
approximation, together with a list of references, can be found in Birge & Wets [1989] and
Chapter 1 of Ermoliev & Wets, Eds. [1988].

A technique proposed by other researchers for computing the approximate integrals or
sums for the continuous two-stage case provides upper and lower bounds by discretizing the
sample space Ω into cells and summing the function values at representative points within
the cells over all cells; see, for example, Birge [1985a], Birge & Wets [1986], Frauendorfer &
Kall [1988], Huang, Ziemba, & Ben-Tal [1977], Kall & Stoyan [1982], and Kall & Wallace
[1994]. In these cases, lower bounds are obtained easily by applying Jensen’s inequality
(see, for example, Kall & Wallace [1994]). Upper bounds, however, require an exponential
number of function evaluations with respect to the dimension d of the sample space Ω.
Birge & Wets [1989] proposed a scheme for obtaining upper bounds that requires solving
O(m2) linear progams instead. Their method replaces partitioning into cells by a method
that seeks out an approximation using a small number of “positive” basis representations
that span the space of columns assoicated with the second stage. Another technique for
doing the approximations is to sample from Ω randomly and to use sample information to
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guide the optimization algorithm. Among these methods are the stochastic quasi-gradient
methods of Ermoliev [1988] and Gaivoronski [1988]. Their methods provide asymptotic
convergence in the continuous case as the size of the sample s → ∞, but fall short of
providing a practical way to compute the accuracy of the bounds.

12.7 PROBLEMS

12.1 Suppose that in tomato season there are three canneries under one management
that ship cases of canned tomatoes to five warehouses. The number of cases
processed at each cannery during the tomato season is known in advance as
shown in the table below together with the cost to ship per case to each of the
warehouses.

Availability Shipping Cost ($/case) to
of Warehouse Dump

Canneries Cases a b c d e

1 50,000 0.9 2.0 1.8 1.7 2.5 1.0
2 75,000 0.6 1.6 1.4 1.8 2.5 1.0
3 25,000 2.7 1.8 1.5 1.0 0.9 1.0

The last column is the cost per case of dumping unshipped tomatoes. The sea-
sonal demand, however, at each of the warehouses is uncertain. The probability
distribution of demand is shown in the table below:

Demand at Probability

Warehouse .15 .55 .30

a 15,000 20,000 30,000
b 16,000 20,000 28,000
c 17,000 20,000 26,000
d 18,000 20,000 24,000
e 19,000 20,000 22,000

Cases left over at the end of the season cannot be stored until next year because
the food in the cans will spoil. They must be shipped to the dump at a loss
of $1 per case. Failure to supply all of the warehouses demands is penalized
at $0.25 per case, the discounted estimated loss of all future sales. (Turning
a customer away runs the risk that the customer will become the customer
of another supplier.) What shipping schedule will optimize the sum of total
shipping cost plus expected net revenues? Solve the problem in the following
ways:

(a) Formulate this as an equivalent deterministic linear program (EQ-LP). How
many equations does this EQ-LP have? Solve this EQ-LP using any avail-
able software.

(b) Solve EQ-LP using the method of Section 12.3.

(c) Solve the problem using Benders Decomposition with crude Monte Carlo
methods.

(d) Solve the problem using Benders Decomposition with Monte Carlo methods
using importance sampling.
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12.2 A farm comprises 240 acres of cropland. The acreage to be devoted to corn pro-
duction and the acreage for oats production are the decision variables. Profit per
acre for corn production and oats production under varying climate conditions
are shown with probabilities below:

Profit ($/acre)
Climate Prob Corn Oats

Poor 0.20 15 20

Average 0.55 40 30

Good 0.25 55 40

An additional resource restriction is that the total labor hours available during
the production period is 320. Each acre of land in corn production uses 2 hours
of labor during the production period, whereas production of oats requires only
1 hour. Formulate and solve an LP that maximizes the expected profit. Com-
pare your solution with the one obtained using Bender’s decomposition.

12.3 Birge & Louveaux [1997]. Northam Airlines is trying to decide how to partition
a new plane into economy-, business-, and first-class seats for its Chicago-Detroit
route. The plane can seat 200 economy-class passengers. A section can be
partitioned off for first-class seats but each of these seats takes the space of 2
economy-class seats. A business class section can also be included, but each of
these seats takes as much space as 1.5 economy-class seats. The profit on a first
class ticket is, however, three times the profit of an economy ticket. A business-
class ticket has a profit of two times an economy ticket’s profit. Once the
plane is partitioned into these seating classes, it cannot be changed. Northam
knows, however, that the plane will not always be full in each section. They
have decided that three scenarios will occur with about the same frequency:
(1) weekday morning and evening traffic, (2) weekend traffic, and (3) weekday
midday trafic. Under Scenario 1, they think they will have a demand for 20 first-
class tickets, 50 business-class tickets, and 209 economy tickets. Under Scenario
2, these figures are 10, 25, and 175. Under Scenario 3, they are 5, 10, and 150.
You can assume they cannot sell more tickets than seats in each of the sections.
(In practice, airlines allow overbooking and have passengers with reservations
who do not appear for the flight (no-shows).) The problem of determining how
many passengers to accept under these circumstances is part of the field called
yield management. For one approach to this problem of yield management, see
Brumelle & McGill [1993].

12.4 A grape grower has just purchased 1,000 acres of vineyards. Due to the quality
of the soil and the excellent climate in the region, he can sell all that he can
grow of cabernet sauvignon, chardonnay, and sauvignon blanc grapes. He would
like to determine how much of each variety to grow on the 1,000 acres, given
various costs, profits, and manpower limitations, as shown in Table 12-1. The
probabilities of bad, average, and good weather are 0.3, 0.5, and 0.2, respectively.
Suppose he has a budget of $100,000 and staff available to provide 8,000 man-
days.

(a) Formulate the problem as a linear program.

(b) Solve it using the DTZG Simplex Primal (Linear Programming 1) software
option.
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Variety Man-days Cost Profit ($/acre)
per acre $/acre Bad Average Good

Cabernet Sauvignon 20 115 30 70 80
Sauvignon Blanc 10 90 40 50 60
Chardonnay 15 200 70 120 130

Table 12-1: Data for the Grape Grower’s Dilemma

Week Demand Production Production Storage
Low Average High Limit cost ($/set) cost ($/set)

1 2 4 6 10 20 1
2 4 6 7 25 30 1
3 7 10 14 20 25 1
4 5 8 10 4 40 N/A

Table 12-2: Data for Dinner Set Production Schedule

(c) Being curious about other possibilities in the future, the grape grower would
like to know whether he should grow the Merlot variety of grapes, which
requires 12 man-days/acre, cost $80 per acre, and produces a profit of
$45/acre, $55/acre, and $65/acre depending on whether the weather is
bad, average, or good. Without rerunning the problem, determine whether
it makes sense to try to grow Merlot. If it does make sense, re-solve the
linear program with the new grape variety included in the formulation.

(d) In order to obtain some initial cash, the grape grower decides to sell fu-
tures (at a lower profit) of the yield from 25 acres of Sauvignon Blanc and
150 acres of Cabernet Sauvignon grapes. How does this change the optimal
solution?

12.5 Your wife has recently taken a ceramics class and discovered that she has a
talent for making elegant dinner sets. A specialty store around the corner from
the class has recently sold a couple of sets on her behalf. Besides the fact that
these sets have been well received, the store’s four other suppliers have moved
out of town and the store owner has offered your wife the job of supplying dinner
sets for the next four weeks to meet the store’s demand. With a new baby, it
would be difficult for her to meet the demand on her own. As a result she has
arranged to hire help over the four weeks. The hired help have different skills and
hence different rates. Your wife, on looking over the required demand schedule,
availability of firing time at the ceramics class and the cost of inventory storage
at the class has realized that the problem is nontrivial. She decides to approach
you to see whether your claimed expertise in operations research can help her.
The demand, schedule, and costs are displayed in Table 12-2 You immediately
realize that it can be set up as a linear program. However, on closer examination
you notice that it can be formulated as a transportation problem that can be
solved very efficiently.
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(a) Formulate this problem as a transportation problem. Hint : Let xij be the
number of dinner sets produced in week i to satisfy demand in week j.

(b) Solve it by hand.

(c) Solve it by the Transportation software option to verify your solution.

12.6 Prove that the problem:

Minimize cTx + 2
3
f1v1 + 1

3
f2v2 = z

subject to Ax = b
−B1x + F1v1 = d1

−B2x + F2v2 = d3

with x ≥ 0, v1 ≥ 0, v2 ≥ 0

is equivalent to

Minimize cTx + 1
3
f1v

′
1 + 1

3
f1v

′′
1 + 1

3
f2v2 = z

subject to Ax = b
−B1x + F1v

′
1 = d1

−B1x + F1v
′′
1 = d1

−B2x + F2v2 = d3

with x ≥ 0, v′1 ≥ 0, v′′1 ≥ 0, v2 ≥ 0.

12.7 Show how to convert the problem:

Minimize cTx +

J∑
j=1

pjfjvj = z

subject to Ax = b
−Bjx + Fjvj = dj j = 1, . . . , J

where

J∑
j=1

pj = 1, pj ≥ 0, j = 1, . . . , J and

x ≥ 0, vj ≥ 0 for j = 1, . . . , J

where pj = Nj/N ,
∑J

j=1
Nj = N , and Nj > 0 are integers, to a problem of the

form:

Minimize cTx + 1
N

K∑
k=1

fkyk = z

subject to Ax = b
−Bkx + Fkyk = dk, k = 1, . . . ,K

with x ≥ 0, yk ≥ 0 for k = 1, . . . , K.

12.8 Ph.D. Comprehensive Exam, June 15, 1967, at Stanford. An individual is inter-
ested in choosing a portfolio of securities (stocks, bonds). Let Xi be the value
of the ith security after one year per dollar invested today, i = 1, . . . , n. The
variables X1,X2, . . . ,Xn are assumed to be random variables with a known
joint distribution. The individual has total current wealth A, to be distributed
among the n securities. Let Y be the total value of his portfolio of securities
after one year. Assume his aim is to maximize E

[
U(Y )

]
, the expected value

of U(Y ), where U(Y ) is called the von Neumann-Morgenstern utility indicator.
(It is the value he places on the outcome Y which measures his risk aversion;
assume U(Y ) is a concave increasing function).
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(a) Derive in as simple a form as possible the equations and inequalities char-
acterizing the optimal portfolio.

(b) Suppose that an optimal allocation has been made, and that subsequently
an additional security, j = n+ 1, becomes available. Suppose further that
the end-of-year value, Xn+1, is a random variable independent of the ran-
dom variables X1,X2, . . . ,Xn. State the necessary and sufficient condition
that the optimal portfolio will be revised to include some portion of the
new security.



A P P E N D I X A

PROBABILITY THEORY:

OVERVIEW

In this appendix we introduce some basic concepts and notation of probability
theory for use in solving stochstic linear programs.

A.1 BASIC CONCEPTS, EXPECTED VALUE,
AND VARIANCE

We begin by paraphrasing some basic definitions and concepts found in W. Feller’s
book Introduction to Probability Theory and Applications.

Definition (Event, Sample Point, Sample Space): An event is defined to
be the outcome of an experiment or an observation about the state of some
system. A simple event, which is a single outcome of a single experiment or
observation, is called a sample point and will be denoted by ω. The aggregrate
of all possible sample points is referred to as the sample space and will be
denoted by the symbol Ω.

Associated with points ω in a sample space is a function p(ω) ≥ 0 that is referred to
as the probability of a simple event ω happening. The sum of these p(ω) is unity. For
example, if we have an urn containing balls labeled with either a 0 or a 1, we might
assign the probability of “randomly” choosing a 0 ball as equal to the proportion of
0 balls to the total balls in the urn. In this case, the sample space may be thought
of as consisting of two points lying on a line such that one point has coordinate 0
and the other point has coordinate 1 with probabilities p(0) = α, p(1) = β, where
β = 1− α.

367



368 PROBABILITY THEORY: OVERVIEW

Definition: A discrete sample space is one consisting of only a finite number
of points, say n.

Another example of a discrete sample space is the toss of a coin, is where the
probability of observing a head is 1/2 and the probability of observing a tail is 1/2.
We ignore the very remote possibility of a coin landing on its edge.

The probability of an event being observed in a subset of the sample space is
assumed to be simple additions of probabilities in the subset of the sample points
associated with the event.

Definition (Random Variable): A random variable X is not a variable but a
function defined over a sample space.

In particular, a discrete random variable X is a function that takes on a discrete
set of values with values x1, x2, . . . , xn, where xi can be a sample point ω itself,
an event, or, more generally, it can be a function of a set of sample points. The
probability that a discrete random variable X can take on a value xj is denoted by
P [X = xj ] = pj.

Definition (Probability Distribution): The set of these probabilities for all the
outcomes of a discrete random variable X is called a probability distribution
(or density) of the random variable. Clearly,

pj ≥ 0,
n∑

j=1

pj = 1. (A.1)

Definition (Expected Value or Mean): The expected value or mean of a dis-
crete random variable X is

E[X ] =
n∑

j=1

pjxj . (A.2)

Often the expected value is denoted by µ
X

or simply µ when the association
with X is clear. In general, the expected value of a function of X , say h(X),
is

E
[
h(X)

]
=

n∑
j=1

pjh(xj). (A.3)

Definition (Variance and Standard Deviation): The variance of a random
variable X is denoted by σ2

X or simply σ2 when the association with X is
clear. It is defined as the expected squared deviations of an observation xj

from its expected values; i.e.,

σ2
X =

n∑
j=1

pj

(
xj − E[X ]

)2 = E[X2]−
(
E[X ]

)2
. (A.4)
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Its positive square root, denoted by σX , is called the standard deviation.

Definition (Independent Random Variables): If P [X = xi] = pi and P [Y =
yj ] = qj , then random variables X , Y are said to be independent if their joint
probability distribution P

[
(X,Y ) = (xi, yj)

]
= piqj .

Definition (Correlation Coefficient): The correlation coefficient between the
two variables X and Y is defined to be

ρXY =
E
[(
X − E[X ]

)(
Y − E[Y ]

)]
σXσY

=
E[XY ]− E[X ]E[Y ]

σXσY

. (A.5)

The correlation coefficient satisfies −1 ≤ ρXY ≤ +1. If the random variables
X and Y are independent ρ

XY
= 0. The covariance between random variables

X and Y is defined to be
σXY = σXσY ρXY . (A.6)

In a more general setting, a random variable V can be a vector function consist-
ing of d components V = (V1, V2, . . . , Vd ) with outcomes vω = ( vω

1 , v
ω
2 , . . . , v

ω
d ).

The probabilities associated with vω will be denoted by p(vω) or simply by p(v).

Definition (Independent Components): If the joint density probability distri-
bution p ( v1, v2, . . . , vn ) satisfies

p ( v1, v2, . . . , vn ) = p1(v1)p2(v2) · · · pn(vn), (A.7)

the components of the random variable V are said to be independent.

If the components of the random variable V are independent, the sample space
Ω is obtained by crossing the sets of outcomes for each component of the vector
entry, i.e.,

Ω = Ω1 × Ω2 × · · · × Ωd. (A.8)

Then the expectation of a function h(V ) is of the form:

E
[
h(V )

]
=

∑
v1

∑
v2

· · ·
∑
vd

h(v)p1(v1)p2(v2) · · · pn(vn). (A.9)

A random variable that is continuous is treated in much the same way except
that we now use integrals.

Definition (Probability Density Function): If X is a continuous random vari-
able, we associate with it a probability density function f(x) with the property
that

f(x) ≥ 0,
∫

Ω

f(x) dx = 1. (A.10)

We shall often use the shorter form density function to mean a probability
density function.
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In the general case of a continuous random vector V , the expectation of a function
h(V ) is given by

E
[
h(V )

]
=

∫
Ω1

∫
Ω2

· · ·
∫

Ωl

h(v)f(v)dv1dv2 · · · dvl. (A.11)

Sometimes an expectation is defined in terms of a Stieltjes integral; that is, the
expected value of a function g(x) of a random variable X , which is a combination
of continuous and discrete elements, can be expressed as

E[X ] =
∫ ∞

−∞
g(x)dF (x) (A.12)

where F (x) = P [X ≤ x] is the cumulative density function.
Stochastic linear programs are hard to solve, in part because of the expense

and difficulty involved in evaluating multiple integrals or multiple sums. The com-
putation of the expected value typically involves a very large number of function
evaluations, and each function evaluation may require solving a very large linear
program.

A.2 NORMAL DISTRIBUTION AND THE
CENTRAL LIMIT THEOREM

Many techniques in statistics are based on the normal probability distribution.

Definition (Normal Distribution): A random variable X is said to be dis-
tributed normally if its density function f(x) is a normal distribution, i.e., it
is of the form:

f(x) =
1√
2πσ

e−(x−µ)2/2σ2
, (A.13)

where −∞ ≤ µ ≤ ∞ is the mean and σ > 0 is the standard deviation of
the normal distribution. The normal distribution of (A.13) is often denoted
by N (µ, σ).

Definition (Standardized Normal Random Variable): A normally distributed
random variable with mean µ = 0 and standard deviation σ = 1, is called a
standardized normal random variable. A standardized normal distribution is
denoted by N (0, 1).

Normal distributions play an important role when sampling techniques are used
because, according to the Central Limit Theorem, to be stated soon, the distribution
of the mean of a sample of size n approaches a normal distribution as n→∞. For
this purpose, we need to define what is meant by a random sample, sample mean,
and sample variance.
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Definition (Random Sample): The random variables X1, X2, . . . , Xn are de-
fined to be a random sample from a population with probability density f(x)
if X1, X2, . . . , Xn are independent identically distributed random variables;
i.e., if their joint probability density function satisfies

g(x1, x2, . . . , xn) = f(x1)f(x2) · · · f(xn), (A.14)

where f(xi) is the density function of each of the random variables Xi.

Often the form of the density function of a random variable is known; for ex-
ample, we may know that it is normally distributed. However, the density function
may have parameters such as µ and σ, which are not known. The problem is then
to estimate these unknown parameters through the use of a statistic.

Definition: A statistic is a function of a random sample of size n that is
used to estimate an unknown parameter of a density function. For example,
X̄ = (1/n)

∑n
i=1Xj is a statistic used to estimate the mean of a distribution.

LEMMA A.1 (Mean and Variance of a Random Sample) Consider a
population with density function f(x), which has mean µ and variance σ2. Let
X1, X2, . . . , Xn be a random sample from this population and let X̄ = (1/n)

∑n
i=1Xj.

Then
E[X̄] = µX̄ = µ and Var[X̄ ] = σ2

X̄ =
1
n
σ2. (A.15)

� Exercise A.1 Prove Lemma A.1.

When sampling, we often can guess at the form of the probability density func-
tion but do not know its parameters, nor do we know its mean or variance. We can
use one of several different ways to estimate the parameters; however, we typically
would like the expected value of an estimator of a parameter to be equal to the true
value of the parameter. Estimators that satisfy this property are called unbiased
estimators.

Definition (Unbiased Estimator): An unbiased estimator γ of a function g(θ)
of a parameter θ has the property E[γ] = g(θ). For example, the mean µ and
variance σ2 are parameters of a distribution. An unbiased estimator X̄ of µ
is the mean of a sample of size n:

X̄ =
1
n

n∑
i=1

Xi. (A.16)

Definition (Sample Variance): The sample variance of a random sample of
size n is by definition:

1
n

n∑
i=1

(Xi − X̄)2. (A.17)
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A biased estimator of σ2 is the sample variance because

E

[
1
n

n∑
i=1

(Xi − X̄)2
]

=
n− 1
n

σ2 �= σ2. (A.18)

Therefore an unbiased estimator of σ2 is

1
n− 1

n∑
i=1

(Xi − X̄)2. (A.19)

Definition (Unbiased Sample Variance): We shall refer to (A.19) as the un-
biased sample variance for estimating σ2.

� Exercise A.2 Prove (A.18).

THEOREM A.2 (Chebyshev’s Weak Law of Large Numbers) Let X̄ be
the sample mean of a random sample of size n drawn from a probability density
f(x) with mean µ and variance σ2. Then in order for

P [−ε < X̄ − µ < ε] ≥ 1− δ (A.20)

for some specified 0 < δ < 1 and ε > 0, choose sample size n > σ2/ε2δ.

The weak law of large numbers tells us how large we must take the sample size n
in order to have a probability greater than 1 − δ for

∣∣X̄ − µ∣∣ < ε, where X̄ is the
sample mean.

Example A.1 (Sample Size Using Weak Law of Large Numbers) How large must
the size n of the sample drawn from a population with known mean µ = 0 and standard
deviation σ = 1000 be in order that the probability is ≥ 1 − δ = 0.95 that the observed
sample mean will be within ε = 10 of the true mean 0? According to the weak law of large
numbers, the sample size n should be chosen as n = 1002/102(0.5) = 200,000.

THEOREM A.3 (Central Limit Theorem) Let X1, X2, . . . , Xn be a ran-
dom sample from a probability density function f(x), which has mean µ and variance
σ2. Define the random variable Zn as a function of the sample mean X̄ as:

Zn =
X̄ − E[X̄ ]√

Var[X̄]
=
X̄ − µ
σ/
√
n
.

Then the distribution of Zn approaches that of a standardized normal distribution
as n→∞.
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Example A.2 (Sample Size Using the Central Limit Theorem) If in Exam-
ple A.1,

Zn =
X̄ − µ
σ
√
n

=
X̄

1000/
√
n
,

then since ∫ +1.96

−1.96

1√
2π
e−

1
2 t2dt = 0.95,

we have

P [−10 ≤ X̄ ≤ 10] = P

[
−10

1000/
√
n
≤ X̄ − µ
σ/
√
n
≤ 10

1000/
√
n

]
≥ 0.95.

Then 10
1000/

√
n

= 1.96 or
√
n ≥ 196 or sample size should be chosen n ≥ 1962 = 38,416.

The sample size n obtained using the Central Limit Theorem is much smaller than that
obtained using Chebyshev’s Weak Law of Large Numbers.

The Central Limit Theorem is one of the most important theorems in probability
and statistics. It basically tells us that as the sample size grows the distribution of
the sample mean X̄ approaches that of a normally distributed random variable.

A.3 CHI-SQUARE DISTRIBUTION,
STUDENT’S t-DISTRIBUTION, AND
CONFIDENCE INTERVALS

The “solution” of a stochastic linear program will be a decision x that is feasible.
Its associated objective cost z is a random variable that depends on x and on the
outcome of a random event ω. The problem is to choose x = x̂ such that the
expected value of zx̂ is minimum. If sample space Ω is too large, so that it is not
possible to evaluate all ω ∈ Ω, then our goal will be given ε and δ to choose x = x̂
and a sample size n such that P

[
E[zx̃] < E[zx̂] + ε

]
≥ 1− δ. With this in mind we

define the chi-square distribution, Student’s t-distribution, and confidence intervals.

A.3.1 CHI-SQUARE DISTRIBUTION

A probability distribution, called the chi-square distribution plays an important role
in determining the distribution of the unbiased sample variance.

Definition (Chi-Square Distribution): A random variable X is said to have
a chi-square distribution with k degrees of freedom if its density function is of
the form

f(x | k) =
1

Γ(k/2)

(
1
2

)k/2

xk/2−1e−x/2, 0 < x <∞. (A.21)
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where Γ(u) is the gamma function:

Γ(u) =
∫ ∞

0

xu−1e−xdx for u > 0 (A.22)

Integrating by parts results in the property

Γ(u + 1) = uΓ(u).

Hence if u is an integer, say u = n, then Γ(n + 1) = n!. Note that Γ(u) is defined
by (A.22) for any u, integer or noninteger, for example,

Γ(n+ 1/2) =
1 · 3 · 5 · · · (2n− 1)

2n

√
π

and Γ(1/2) =
√
π, Γ(3/2) = (1/2)

√
π. A random variable with a chi-square distri-

bution with k degrees of freedom has E[X ] = k and Var[X ] = 2k.

� Exercise A.3 Show that E[X] = k and Var[X] = 2k for a random variable X that has
a chi-square distribution with k degrees of freedom.

Next we discuss some properties of random samples.

LEMMA A.4 (Sample Mean from a Normal Distribution) Let X̄ be the
sample mean of a random sample X1, X2, . . . , Xn drawn from a normal distribution
N (µ, σ2). Then X̄ is itself normal with mean µ and variance σ2/n.

LEMMA A.5 (Chi-Square Distribution) Let U be a random variable defined
by:

U =
k∑

i=1

(
Xi − µi

σi

)2

where the Xi are normally and independently distributed with means µi and variance
σ2

i . Then U has a chi-square distribution with k degrees of freedom.

COROLLARY A.6 Let SX̄ be the unbiased sample variance (A.19) of a random
sample X1, X2, . . . , Xn from a normal distribution with mean µ and variance σ2.
Then

U =
(n− 1)S2

X̄

σ2

has a chi-square distribution with (n− 1) degrees of freedom.
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A.3.2 STUDENT’S t-DISTRIBUTION

The Student’s t-distribution also plays a very important role in estimation.

Definition (Student’s t-Distribution): A random variable X is said to have
a Student’s t-distribution with k degrees of freedom if its probability density
function is of the form

stu(x | k) =
Γ
(
[k + 1]/2

)
Γ(k/2)

1√
kπ

1
(1 + x2/k)(k+1)/2

, (A.23)

where Γ is the gamma function defined by (A.22).

LEMMA A.7 (Student’s t-Distribution) Let Z be a random variable with a
standardized normal distribution and let U be an independent random variable with
a chi-square distribution with k degrees of freedom. Then the random variable

X =
Z√
U/k

(A.24)

has a Student’s t-distribution with k degrees of freedom, stu(x | k).

Let X1, X2, . . . , Xn be a random sample from a normal probability density func-
tion with mean µ and variance σ2. Define

Z =
(X̄ − µ)
σ/
√
n

(A.25)

U =
(

1
σ2

) n∑
i=1

(Xi − X̄)2. (A.26)

Then, from Lemma A.4, it is easy to see that Z has a standardized normal distri-
bution and, from Corollary A.6, U has a chi-square distribution with n− 1 degrees
of freedom.

LEMMA A.8 (Independence of Z and U) The random variables Z defined
by (A.25) and U defined by (A.26) are independent.

Because Z and U are independent by Lemma A.8, from Lemma A.7 it follows
that

(X̄ − µ)/(σ/
√
n)√

(1/σ2)
∑n

i=1(Xi − X̄)2/(n− 1)
=

√
n(n− 1)(X̄ − µ)√∑n

i=1(Xi − X̄)2
(A.27)

has a Student’s t-distribution with n− 1 degrees of freedom, stu(x | n− 1).
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A.3.3 CONFIDENCE INTERVALS

Before formally defining a confidence interval, we illustrate the subject of confidence
intervals through an example.

Example A.3 (Illustration of Confidence Intervals) Suppose that we would like to
estimate the mean µ of a normal distribution with known standard deviation σ = 1. We
can sample from the distribution and construct the sample mean X̄ as an estimate of the
unknown mean µ. However, often we are more interested in constucting an interval that
is guaranteed to cover the unknown mean µ with specified probability even though we do
not know what the fixed value of µ is. For example, we may be interested in the interval
that gives a probability of 0.9554 of covering the unknown mean µ. In order to do this,
observe that, for a sample of size n, the random variable

Z =
X̄ − µ
σ/
√
n

=
X̄ − µ
1/
√
n

(A.28)

has a standardized normal distribution. Now from the probability tables we know that

P [−2 < Z < 2] =

∫ 2

−2

1√
2π
e−x2/2 = 0.9554 (A.29)

to four decimal places. Substituting (A.28) into (A.29) we obtain

0.9554 = P [−2 < Z < 2] = P

[
−2 <

X̄ − µ
1/
√
n
< 2

]
= P

[
X̄ − 2/

√
n < µ < X̄ + 2/

√
n
]
. (A.30)

In particular, for n = 100,

P
[
X̄ − 0.2 < µ < X̄ + 0.2

]
= 0.9554 (A.31)

Then P [X̄−0.2 < µ < X̄+0.2] = 0.9554 measures our “confidence” that the unknown true
mean lies in the open interval (X̄−2/

√
n, X̄+2/

√
n), which is called the 95.54% confidence

interval. Notice that the interval (X̄ − 0.2, X̄ + 0.2) is a random interval that covers the
unknown true mean µ with probability 0.9554. That is, if random samples of size 100
were repeatedly drawn from the population and the random intervals (X̄ − 0.2, X̄ + 0.2)
repeatedly computed, then the fraction of times that the interval actually covered the
mean would approach 0.9554 as the number of repetitions tends toward infinity. At this
point we would also like to point out that often a particular realization of an interval (i.e.,
for one sample size of 100) is also called a confidence interval for estimating µ.

We now formalize the definition of a confidence interval.

Definition (Confidence Interval, Confidence Limit, Confidence Level): Let
X1, X2, . . . , Xn be a random sample from a probability density function f(x; θ)
parameterized by a constant θ whose unknown value we wish to estimate. Let
L ≤ H , where L = L (X1, X2, . . . , Xn ), H = H (X1, X2, . . . , Xn ), be statis-
tics for θ such that P [L < θ < H ] = γ where γ does not depend on θ. Then
(L,H) is defined to be a 100γ percent confidence interval for θ and γ is called
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the confidence level. Furthermore, the random variable L is called the lower
confidence limit and the random variable H is called the upper confidence
limit for θ. A particular realization (l, h) of (L,H) is also called a 100γ per-
cent confidence interval for estimating θ. In a similar manner one can define
upper and lower one-sided confidence intervals.

In order to derive a confidence interval for estimating the unknown mean µ of a
distribution whose variance is also unknown, we note that

(X̄ − µ)/(σ/
√
n )√∑n

i=1(Xi − X̄)2/(n− 1)σ2
=

X̄ − µ
S2

X̄
/
√
n

has a Student’s t-distribution with (n − 1) degrees of freedom, stu(x | n − 1). For
some choice of q1 and q2, typically q1 = q2, let

P

[
−q1 <

X̄ − µ
S2

X̄
/
√
n
< q2

]
= γ.

Then
(
X̄−q2(S2

X̄
/
√
n ), X̄+q1(S2

X̄
/
√
n )

)
is a 100γ percent confidence interval for µ.

In a similar manner we can derive a confidence interval for estimating the un-
known variance σ2 of a distribution whose mean is also unknown. In order to do
this we note that ∑n

i=1(Xi − X̄)2

σ2
=

(n− 1)S2
X̄

σ2

has a chi-square distribution with n− 1 degrees of freedom, f(x | n− 1). For some
choice of q1 and q2, let

P

[
q1 <

(n− 1)S2
X̄

σ2
< q2

]
= γ.

Then
(
(n − 1)S2

X̄
/q2, (n − 1)S2

X̄
/q1

)
is a 100γ percent confidence interval for the

variance σ2.

A.4 NOTES & SELECTED BIBLIOGRAPHY
For an introduction to probability theory, see Feller [1957, 1969].
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Comptes Rendus de l’Académie des Sciences U.S.S.R. 184, 52–53; translated by
Leonard J. Savage in Econometrica, 21, 101–115, January 1953.



384 REFERENCES

Borgwardt, K.H. (1982a). “The Average Number of Pivot Rules Required by the Simplex
Method is Polynomial,” Zeitschrift für Operations Research 26,157–177.

Borgwardt, K.H. (1982b). “Some Distribution Independent Results About the Asymptotic
Order of the Average Number of Pivot Steps in the Simplex Method,” Mathematics
of Operations Research 7, 441–462.

Borgwardt, K.H. (1987a). The Simplex Method: A Probabilistic Analysis, Springer-Verlag,
Berlin and New York.

Borgwardt, K.H. (1987b). “Probabilistic Analysis of the Simplex Method,” in Operations
Research Proceedings 16th Dgor Meeting, 564–576.

Bradley, G.H., Brown, G.G., and Graves, G.W. (1977). “Design and Implementation of
Large Scale Primal Transshipment Algorithms,” Management Science 24, 1–34.

Bradley, S.P., Hax, A.C., and Magnanti, T.L. (1977). Applied Mathematical Programming,
Addison-Wesley Publishing Company, Reading, Massachusetts.

Brearley, A.L., Mitra, G., and Williams, H.P. (1975). “Analysis of Mathematical Programs
Prior to Applying the Simplex Algorithm,” Mathematical Programming 8, 54–83.

Brent, R. P. (1973a). “Reducing the Retrieval Time of Scatter Storage Techniques,”
Communications of the Association for Computing Machinery 16:2, 105–109.

Brent, R.P. (1973b). Algorithms for Finding Zeros and Extrema of Functions Without
Calculating Derivatives, Prentice-Hall, Inc., Englewood Cliffs, New Jersey.

Brickman, L. (1989). Mathematical Introduction to Linear Programming and Game The-
ory, Springer-Verlag, Berlin and New York.

Brooke, A., Kendrick, D., and Meeraus, A. (1988). GAMS: A User’s Guide, Scientific
Press, South San Francisco, California.

Brown, G.G. and McBride, R.D. (1984). “Solving Generalized Networks,” Management
Science 30, 1497–1523.

Brown, G.G. and Thomen, D.S. (1980). “Automatic Identification of Generalized Upper
Bounds in Large-Scale Optimization Models,” Management Science 26, 1166–1184.

Brown, G.G. and Wright, W. (1981). “Automatic Identification of Embedded Structure in
Large-Scale Optimization Models,” in H. Greenberg and J. Maybee (eds.), Computer
Assisted Analysis and Model Simplification, Academic Press, London and New York,
369–388.

Brown, G.G. and Wright, W. (1984). “Automatic Identification of Embedded Network
Rows in Large-Scale Optimization Models,” Mathematical Programming 29, 41–56.

Brumelle, S.L. and McGill, J.I. (1993). “Airline Seat Allocation with Multiple Nested Fare
Classes,” Operations Research 41, 127–137.

Broyden, C.G. (1973). “Some Condition Number Bounds for the Gaussian Elimination
Process,” Journal of the Institute of Mathematics and Its Applications 12, 273–286.

Bunch, J.R. and Parlett, B.N. (1971). “Direct Methods for Solving Symmetric Indefinite
Systems of Linear Equations,” SIAM Journal on Numerical Analysis 8, 639–655.

Bunch, J.R. and Kaufman, L.C. (1977). “Some Stable Methods for Calculating Inertia
and Solving Symmetric Linear Equations,” Linear Algebra and Its Applications 34,
341–370.



REFERENCES 385

Burks, A.W., Goldstine, H.H., and von Neumann, J. (1946). “Planning and Coding of
Problems for an Electronic Computing Instrument,” Parts 1 and 2, Institute for Ad-
vanced Study, Princeton, New Jersey. Reprinted in Datamation 8:9, 24–31, Septem-
ber, 1962 and Datamation 8:10, 36–41, October, 1962.

Businger, P.A. (1968). “Matrices Which can be Optimally Scaled,” Numerische Mathe-
matik 12, 346–348.

Buzbee, B.L. (1986). “A Strategy for Vectorization,” Parallel Computing 3, 187–192.

C

Cariño, D.R., Kent, T., Myers, D.H., Stacy, C., Sylvanus, M., Turner, A.L., Watanabe, K.,
and Ziemba, W.T. (1994). “The Russel-Yasuda Kasai Model: An Asset/Liability
Model for a Japanese Insurance Company Using Multistage Stochastic Program-
ming,” Interfaces 14:1, 29–49.

Carpenter, T.J., Lustig, I.J., Mulvey, J.M., and Shanno, D.F. (1993). “Higher Order
Predictor-Corrector Interior Point Methods with Applications to Quadratic Objec-
tives,” SIAM Journal on Optimization 3, 696–725.

Carpento, G., Martello, S., and Toth, P. (1988). “Algorithms and Codes for the Assign-
ment Problem,” in B. Simeone, P. Toth, G. Gallo, F. Maffioli, and S. Pallotino
(eds.), FORTRAN Codes for Network Optimization, Annals of Operations Research
13, 193-224.

Chambers, J.M. (1977). Computational Methods for Data Analysis, John Wiley and Sons,
New York.

Chan, T.F. (1985). “On the Existence and Computation of LU Factorizations with Small
Pivots,” Mathematics of Computation 42, 535–548.

Charnes, A. (1952). “Optimality and Degeneracy in Linear Programming,” Econometrica,
20, 160–170.

Charnes, A., Cooper, W.W., and Mellon, B. (1952). “Blending Aviation Gasoline—A
Study of Programming Interdependent Activities in an Integrated Oil Company,”
Econometrica, 20, 135–139.

Charnes, A. and Kortanek, K.O. (1963). “An Opposite Sign Algorithm for Purification to
an Extreme Point Solution,” Memorandum No. 89, Office of Naval Research.

Charnes, A. and Lemke, C. (1960). “Multi-Copy Generalized Networks and Multi-Page
Programs,” R.P.I. Math Report No. 41, Rensselaer Polytechnic Institute; Troy, New
York.

Cheng, M.C. (1985). “Generalized Theorems for Permanent Basic and Nonbasic Vari-
ables,” Mathematical Programming 31, 229–234.

Cheng, M.C. (1987). “General Criteria for Redundant and Nonredundant Linear Inequal-
ities,” Journal of Optimization Theory and Applications 53, 37–42.

Cherkassky, B.V., Goldberg, A.V., and Radzik, T. (1996). “Shortest Path Algorithms:
Theory and Experimental Evaluation,” Mathematical Programming 73, 129-174.

Choi, I.C., Monma, C.L., and Shanno, D.F. (1990). “Further Developments of a Primal-
Dual Interior Point Method,” Operations Research 40, 885-897.



386 REFERENCES
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in Théorie des Graphes, International Symposium, Rome, Italy, July 1966, 91–92,
published by DUNOD, Paris.

Dantzig, G.B. (1966c). “On Positive Principal Minors,” Technical Report 67-1, Depart-
ment of Operations Research, Stanford University, Stanford, CA, January.

Dantzig, G.B. (1967). “Large-Scale Linear Programming,” Technical Report 67-8, De-
partment of Operations Research, Stanford University, Stanford, CA, November;
also in “Large-Scale Systems and the Computer Revolution,” in H.W. Kuhn (ed.),
Proceedings of the Princeton Symposium on Mathematical Programming, Princeton
University Press, Princeton, New Jersey, August 1967, 51–72. Also in G.B. Dantzig,
and A. F. Veinott, Jr. (eds.), Mathematics of the Decision Sciences, the American
Mathematical Society Summer Seminar, Providence, RI, 1968, 77–92.

Dantzig, G.B. (1969a). “Complementary Spanning Trees,” Technical Report CS 126,
Department of Computer Science, Stanford University, Stanford, CA, March; also
in J. Abadie (ed.), Integer and Nonlinear Programming, North-Holland, Amsterdam,
the Netherlands, 1970, 499–505.

Dantzig, G.B. (1969b). “A Hospital Admission Problem,” Technical Report 69-15, De-
partment of Operations Research, Stanford University, Stanford, CA, December.

Dantzig, G.B. (1970a). “On a Model for Computing Round-Off Error of a Sum,” Technical
Report STAN-CS-70-156, Department of Computer Science, Stanford University,
Stanford, CA.

Dantzig, G.B. (1970b). “A Control Problem of Bellman,” Technical Report 70-15, Depart-
ment of Operations Research, Stanford University, Stanford, CA, September. Also
in Management Science: Theory 16, May 1971, 542–546.

Dantzig, G.B. (1972a). “Health Care in Future Cities,” Technical Report 72-22, Depart-
ment of Operations Research, Stanford University, Stanford, CA, September.

Dantzig, G.B. (1972b). “On the Relation of Operations Research to Mathematics,” Techni-
cal Report 72-23, Department of Operations Research, Stanford University, Stanford,
CA, October.



REFERENCES 391

Dantzig, G.B. (1972c). “The Price Lecture on Compact City,” Price Lecture Series Uni-
versity of Pittsburgh.

Dantzig, G.B. (1973a). “The ORSA New Orleans Address on Compact City,” Management
Science 19, 1151-1161.

Dantzig, G.B. (1973b). “Solving Staircase Linear Programs by a Nested Block-Angular
Method,” Technical Report 73-1, Department of Operations Research, Stanford Uni-
versity, Stanford, CA, January.

Dantzig, G.B. (1973c). “Drews’Institutionalized Divvy Economy,” Technical Report 73-7,
Department of Operations Research, Stanford University, Stanford, CA, Septem-
ber. Revised, International Institute for Applied Systems Analysis, December 1973.
Revised 1974, as Technical Report TR 74-14. Also in “An Institutionalized Divvy
Economy,” Technical Report SOL 75-17 (revision of TR 74-14), Department of Op-
erations Research, Stanford University, Stanford, CA. Also in Journal of Economic
Theory 11, 1975, 372–384.

Dantzig, G.B. (1974a). “On a Convex Programming Problem of Rozanov,” Applied Math-
ematics and Optimization 1, 189-192; also entitled “A Generalized Programming So-
lution to a Convex Programming Problem with a Homogeneous Objective,” IIASA
Research Report RR-73-21, December 1973; also in Symposia Mathematica, Mon-
graf, Italy, Vol. XIX, Academic Press, 1976, 209–214.

Dantzig, G.B. (1974b). “On the Reduction of an Integrated Energy and Interindustry
Model to a Smaller Linear Program,” Technical Report SOL 74-20, Department
of Operations Research, Stanford University, Stanford, CA, December; also in The
Review of Economics and Statistics LVIII, May 1976, 248–250.

Dantzig, G.B. (1974c). “Formulating a PILOT Model for Energy in Relation to the Na-
tional Economy,” Technical Report SOL 75-10, Department of Operations Research,
Stanford University, Stanford, CA, April.

Dantzig, G.B. (1975). “Note on the Objective Function for the PILOT Model,” Technical
Report SOL 75-20, Department of Operations Research, Stanford University, Stan-
ford, CA, August; also in A. Prekopa (ed.), Survey of Mathematical Programming,
Proceedings, IX International Symposium on Mathematical Programming, Publish-
ing House of the Hungarian Academy of Sciences, Budapest, 1980, 325–328.

Dantzig, G.B. (1976). “Linear Programming: Its Past and Its Future,” in Salkovitz,
Edward I. (ed.), Science Technology, and the Modern Navy, Thirtieth Anniversary,
ONR-37, Office of Naval Research, 84–95.

Dantzig, G.B. (1977). “Large-Scale Systems Optimization with Application to Energy,”
Technical Report SOL 77-3, Department of Operations Research, Stanford Univer-
sity, Stanford, CA, April; also in Proceedings of Symposia in Applied Mathematics,
American Mathematical Society, Providence, RI.

Dantzig, G.B. (1978). “Are Dual Variables Prices? If Not, How to Make them More So,”
Technical Report SOL 78-6, Department of Operations Research, Stanford Univer-
sity, Stanford, CA, March; also in Franco Angeli (ed.), Mathematical Programming
and its Economics Applications, Milano, Italy, 1981, 135–148.

Dantzig, G.B. (1979a). “The Role of Models in Determining Policy for Transition to
a More Resilient Technological Society,” IIASA Distinguished Lecture Series /1,
Vienna, June 12, International Institute for Applied Systems Analysis, Laxenburg,
1979.



392 REFERENCES

Dantzig, G.B. (1979b). “Comments on Khachian’s Algorithms for Linear Programming,”
Technical Report SOL 79-22, Department of Operations Research, Stanford Univer-
sity, Stanford, CA, November. Also in SiamNews 13, October 1980.

Dantzig, G.B. (1980a). “Expected Number of Steps of the Simplex Method for a Linear
Program with a Convexity Constraint,” Technical Report SOL 80-3, Department of
Operations Research, Stanford University, Stanford, CA, March (revised October
1980).

Dantzig, G.B. (1980b). “Time-Staged Methods in Linear Programming; Comments and
Early History, Technical Report SOL 80-18, Department of Operations Research,
Stanford University, Stanford, CA, June; also in in G.B. Dantzig, M.A.H. Dempster,
and M.J. Kallio. (eds.), Large-Scale Linear Programming, Vol. 2, CP-81-51, IIASA
Collaborative Proceedings Series, Laxenberg, Austria, 1981, 3–16; also in “Large
Scale Systems.,” in Haims, Y.Y. (ed.), Studies in Management Science and Systems,
Vol. 7, North-Holland Publishing Company, Amsterdam, 1982, 19–30.

Dantzig, G.B. (1980c). “Time-Staged Linear Programs,” Technical Report SOL 80-28,
Department of Operations Research, Stanford University, Stanford, CA, October.

Dantzig, G.B. (1981a). “Reminiscences About the Origins of Linear Programming,” Tech-
nical Report SOL 81-5, Department of Operations Research, Stanford University,
Stanford, CA, April; also in Contemporary Mathematics, American Mathematical
Society; also in R.W. Cottle, M.L. Kelmanson, B. Korte (eds.), Mathematical Pro-
gramming, Proceedings of the International Congress on Mathematical Program-
ming, Rio de Janeiro, Brazil, April 6–8, 1981, North-Holland Publishing Co., Am-
sterdam, 1984, 105–112; also in Operations Research Letters 1, 43–48, April 1982.
Also in in A. Bachem, M. Grotschel, and B. Korte (eds.), Mathematical Program-
ming: The State of the Art, Bonn 1982, Springer-Verlag, Berlin and New York,
78–86. Also in Australian Society for OR Bulletin, 1986.

Dantzig, G.B. (1981b). “Concerns About Large-Scale Models,” Technical Report SOL
81-27, Department of Operations Research, Stanford University, Stanford, CA, De-
cember; also in Large-Scale Energy Models, AAAS Selected Symposia Series 73,
Westview Press, Inc. Boulder, CO, for the Amer. Assoc. for the Adv. of Sc., Wash-
ington, DC, 15–20, 1983.

Dantzig, G.B. (1981c). “The PILOT Energy-Economic Model for Policy Planning,” Tech-
nical Report SOL 81-26, Department of Operations Research, Stanford University,
Stanford, CA, December; also in in T. Nejat Veziroglu (ed.), Energy Programs Policy
Economics, Proceedings of the 4th Miami International Conference on Alternative
Energy Sources, Volume 8, Ann Arbor Science Publishers, Ann Arbor Michigan,
1982, 409–415.

Dantzig, G.B. (1981d). “Contributions of Mathematics to Planning During and Immedi-
ately After World War II,” working paper, November. Also in History of Mathemat-
ics in World War II, MAA Series.

Dantzig, G.B. (1982a). “Time-Staged Methods in Linear Programs,” in Y.Y. Haims (ed.),
Studies in Management Science, Vol. 7: Large-Scale Systems, North-Holland, Ams-
terdam, the Netherlands, 19–30.

Dantzig, G.B. (1982b). “Mathematical Programming and Decision Making in a Techno-
logical Society,” Technical Report SOL 82-11, Department of Operations Research,
Stanford University, Stanford, CA, August; also in Information Processing Society
of Japan 24, May 1983 (in Japanese).



REFERENCES 393

Dantzig, G.B. (1983). “Can Leontief and P-Matrices be Rescaled Positive Definite,” Tech-
nical Report SOL 83-23, Department of Operations Research, Stanford University,
Stanford, CA, November.

Dantzig, G.B. (1984). “Economic Growth and Dynamic Equilibrium,” Technical Report
SOL 84-8, Department of Operations Research, Stanford University, Stanford, CA,
October.

Dantzig, G.B. (1985a). “Deriving a Utility Function for the Economy,” Technical Report
SOL 85-6, Department of Operations Research, Stanford University, Stanford, CA,
June; revised April 1986.

Dantzig, G.B. (1985b). “Impact of Linear Programming on Computer Development,”
Technical Report SOL 85-7, Department of Operations Research, Stanford Univer-
sity, Stanford, CA. Revised version, Stanford University, July 1986, in D.V. Chud-
novsky and R.D. Jenks (eds.), Proceedings Computers in Mathematics, Lecture Notes
in Pure and Applied Mathematics, Marcel Dekker, Inc., 1990, 233–240; also in ORMS
Today 14, August 1988, 12–17.

Dantzig, G.B. (1986). “Need to do Planning under Uncertainty and the Possibility of Using
Parallel Processors for this Purpose,” Technical Report SOL 86-11, Department of
Operations Research, Stanford University, Stanford, CA, April.

Dantzig, G.B. (1987a). “Simplex Method for Solving Linear Programs,” The New Pal-
grave: A Dictionary of Economic Theory and Doctrine, Macmillan, London.

Dantzig, G.B. (1987b). “Linear Programming,” The New Palgrave: A Dictionary of Eco-
nomic Theory and Doctrine, Macmillan, London, to appear.

Dantzig, G.B. (1987c). “Planning Under Uncertainty Using Parallel Computing,” Tech-
nical Report SOL 87-1, Department of Operations Research, Stanford University,
Stanford, CA, January; also in Annals of Operations Research 14, 1988, 1–16.

Dantzig, G.B. (1987d). “Origins of the Simplex Method,” Technical Report SOL 87-5,
Department of Operations Research, Stanford University, Stanford, CA, May; also
in Nash, S.G. (ed.), Proceedings of the ACM Conference on a History of Scientific
Computing, ACM Press, Addison-Wesley Publishing Company, 1990, 141–151.

Dantzig, G.B. (1988a). “Dikin’s Interior Method for Solving LP,” manuscript, Department
of Operations Research, Stanford University, Stanford, CA.

Dantzig, G.B. (1988b). “Making Progress During a Stall in the Simplex Algorithm,”
Technical Report SOL 88-5, Department of Operations Research, Stanford Univer-
sity, Stanford, CA, February; also in Linear Algebra and Its Applications 114/115,
1989, 251–259.

Dantzig, G.B. (1989). “Decomposition Techniques for Large-Scale Electric Power Systems
Planning Under Uncertainty,” in R. Sharda, B.L. Golden, E. Wasil, O. Balci, and
W. Steward (eds.), Impact of Recent Computer Advances on Operations Research
North Holland, 3–20.

Dantzig, G.B. (1990). “The Diet Problem,” Interfaces 20:4, July/Aug, 43–47.

Dantzig, G.B. (1991). “Converting a Converging Algorithm into a Polynomial Bounded
Algorithm,” Technical Report SOL 91-5, Department of Operations Research, Stan-
ford University, Stanford, CA, March.



394 REFERENCES

Dantzig, G.B. (1992a). “An ε-Precise Feasible Solution to a Linear Program with a Con-
vexity Constraint in 1/ε2 Iterations Independent of Problem Size,” Technical Report
SOL 92-5, Department of Operations Research, Stanford University, Stanford, CA,
October.

Dantzig, G.B. (1992b). “Bracketing to Speed Convergence Illustrated on the von Neumann
Algorithm for Finding a Feasible Solution to a Linear Program with a Convexity Con-
straint,” Technical Report SOL 92-6, Department of Operations Research, Stanford
University, Stanford, CA, October.

Dantzig, G.B. (1995). Working paper.

Dantzig, G.B., Cottle, R.W., Eaves, B.C., Golub, G.H., Hillier, F.S., Manne, A.S., Wilde,
D.J., and Wilson, R.B. (1973). “On The Need for a Systems Optimization Lab-
oratory,” in T.C. Hu and S.M. Robinson (eds.), Mathematical Programming, Pro-
ceedings of an Advanced Seminar Conducted by the Mathematics Research Center,
University of Wisconsin, September 1972, Academic Press, London and New York,
1–31; previously published in September 1972 in Technical Report 72-11, Depart-
ment of Operations Research, Stanford University, Stanford, CA, September.

Dantzig, G.B. and Adler, I. (1971). “Maximum Diameter of Abstract Polytopes,” Techni-
cal Report 71-12, Department of Operations Research, Stanford University, Stanford,
CA, August; also in Harry Williams (ed.), IDA Economics Papers, January 1972;
also in Mathematical Programming Study 1, 1974, 20–40.

Dantzig, G.B., Adler, I., and Murty, K. (1970). “Existence of x-Paths in Abstract Poly-
topes,” Technical Report 70-1, Department of Operations Research, Stanford Uni-
versity, Stanford, CA, March.

Dantzig, G.B., Adler, I., and Murty, K. (1974). “Existence of A-Avoiding Paths in Ab-
stract Polytopes,” Mathematical Programming Study 1, 41–42.

Dantzig, G.B., Avi-Itzhak, B., Connolly, T.J., McAllister, P.H., and Winkler, W.D.
(1982a). “A Dynamic Equilibrium Model for Energy-Economic Planning,” Tech-
nical Report SOL 82-2, Department of Operations Research, Stanford University,
Stanford, CA, March.

Dantzig, G.B., Avi-Itzhak, B., Connolly, T.J., McAllister, P.H., and Winkler, W.D.
(1982b). “Mathematical Appendix: A Dynamic Equilibrium Model for Energy-
Economic Planning,” Technical Report SOL 82-3, Department of Operations Re-
search, Stanford University, Stanford, CA, March.

Dantzig, G.B., Avi-Itzhak, and Iusem, A. (1983). “The Consumers Energy Services Model
of the PILOT System,” in Benjamin Lev (ed.), Energy Models and Studies, Studies
in Management Science and Systems 9, North-Holland Publishing Co., Amsterdam,
195–220.

Dantzig, G.B., Beale, E.M.L., Watson, R.D. (1986). “A First Order Approach to a Class of
Multi-Time-Period Stochastic Programming Problems,” Mathematical Programming
Study 27, 103–117.

Dantzig, G.B. and Avriel, M. (1976). “Determining Prices and Monetary Flows of the
PILOT Energy Model,” Technical Report SOL 76-28, Department of Operations
Research, Stanford University, Stanford, CA, October.



REFERENCES 395

Dantzig, G.B., Bigelow, J., Golub, G., Gordon, R., Montalbano, M., Pinsky, P., Sahberwal,
F., Wirth, N., and Witzgall, C. (1967). “Mathematical Programming Language,”
Technical Report 67-4, Department of Operations Research, Stanford University,
Stanford, CA, June,

Dantzig, G.B., Bigelow, J., Golub, G., Gordon, R., Montalbano, M., Pinsky, P., Sahberwal,
F., Wirth, N., and Witzgall, C. (1968). “Mathematical Programming Language,”
Technical Report CS 119, Department of Computer Science, Stanford University,
Stanford, CA.

Dantzig, G.B. and Blattner, W.O., and Rao, M.R. (1966a). “Finding a Cycle in a Graph
with Minimum Cost to Time Ratio with Application to a Ship Routing Problem,”
Technical Report 66-1, Department of Operations Research, Stanford University,
Stanford, CA, November; also in Theorie Des Graphes, International Symposium,
Rome, Italy, July 1966, 77–84, published by DUNOD, Paris.

Dantzig, G.B. and Blattner, W.O., and Rao, M.R. (1966b). “All Shortest Routes from
a Fixed Origin in a Graph,” Technical Report 66-2, Department of Operations Re-
search, Stanford University, Stanford, CA, November; also in Theorie Des Graphes,
International Symposium, Rome, Italy, July 1966, 85–90, published by DUNOD,
Paris.

Dantzig, G.B., Connolly, T.J., and Parikh, S.C. (1977). “Stanford PILOT Energy/Econo-
mic Model,” Technical Report SOL 77-19, Department of Operations Research, Stan-
ford University, Stanford, CA, July; also in Advances in the Economics of Energy
and Resources, Volume 1 – The Structure of Energy Markets, JAI Press, 1979, 77–
103; also in El Mallakh, R. and El Mallakh, D.H. (eds.), Proceedings of the 4th In-
ternational Conference on Energy Options and Conservation, October 17–19, 1977,
The International Research Center for Energy and Economic Development, Boulder,
Colorado, 1978, 87-119. Policy Analysis and Information Systems 2, 1978, 23–51.

Dantzig, G.B., Connolly, T.J., and Parikh, S.C. (1978). “Stanford PILOT Energy/Econo-
mic Model,” EA-626, Volumes 1 and 2, Interim Report, Electric Power Research
Institute, Palo Alto, California, May.

Dantzig, G.B., Connolly, T.J., Parikh, S.C., Riddel, J.M. (1978). “A Description and
Demonstration of the Stanford PILOT Energy/Economic Model,” Stanford PILOT
Energy/Economic Model, EA-626, Volumes 1 & 2, Electric Power Research Institute,
May, 1–40; also in Proceedings of Second US-USSR Symposium on Econometric
Modeling, Skyland, Virginia, 1978, University of Maryland, College Park, Maryland
1980.

Dantzig, G.B. and Cottle, R.W. (1963). “Positive (Semi-) Definite Matrices and Mathe-
matical Programming,” Technical Report RR-35, Operations Research Center, Uni-
versity of California, Berkeley; also in “Positive (Semi-) Definite Programming,” in
in J. Abadie (ed.), Nonlinear Programming, North-Holland, Amsterdam, the Nether-
lands, 55–73.

Dantzig, G.B. and Cottle, R.W. (1967). “Complementary Pivot Theory of Mathematical
Programming,” Technical Report 67-2, Department of Operations Research, Stan-
ford University, Stanford, CA, April; also in G.B. Dantzig, and A. F. Veinott, Jr.
(eds.), Mathematics of the Decision Sciences, the American Mathematical Society
Summer Seminar, Providence, RI, 1968; also in Linear Algebra and Its Applications
1, 103–125; also in G. B. Dantzig and B. C. Eaves (eds.), Studies in Optimization,



396 REFERENCES

MAA Studies in Mathematics, Vol. 10, Mathematical Association of America, 1974,
27–51.

Dantzig, G.B. and Cottle, R.W. (1968). “A Generalization of the Linear Complementarity
Problem,” Technical Report 68-9, Department of Operations Research, Stanford
University, Stanford, CA;. also in Journal of Combinatorial Theory 8, January
1970, 79–90.

Dantzig, G.B. and Cottle, R.W. (1974). “Optimization, Mathematical Theory of (Linear
and Nonlinear Programming),” Encyclopaedia Britannica, Vol. 13, 628–632.

Dantzig, G.B., Collen, M.F., Rubin, L., Neyman J., Baer, R.M., and Siegelaub, A.B.
(1964). “Automated Multiphasic Screening and Diagnosis,”, American Journal of
Public Health 54, 741–750.

Dantzig, G.B. and DeHaven, J. (1961). “On The Reduction of Certain Multiplicative
Chemical Equilibrium Systems to Mathematically Equivalent Additive Systems,”
P-2419, The RAND Corporation, August; also Journal of Chemical Physics 36,
May, 1962, 2620–2627.

Dantzig, G.B., DeHaven, J., and Sams, C.F. (1960). “A Mathematical Model of the Respi-
ratory System,” in Proceedings, Fourth Air Pollution Medical Research Conference,
San Francisco, December, 72–95; also in P-2048, The RAND Corporation, July
1960.

Dantzig, G.B., DeHaven, J., and Sams, C.F. (1961a). “A Mathematical Model of the
Chemistry of the External Respiratory System,” in J. Neyman (ed.), Proceedings 4th
Berkeley Symposium on Mathematical Statistics and Probability, 1961, University of
California Press, Berkeley, California, 181–196.

Dantzig, G.B., DeHaven, J., and Sams, C.F. (1961b). “A Mathematical Model of the
Human External Respiratory System,” Perspectives of Biology and Medicine IV (3),
Spring 1961, 324–376.

Dantzig, G.B., Dempster, M.A.H., and Kallio, M.J. (eds.), (1981). Large-Scale Linear
Programming, Vol. 1, CP-81-51, IIASA Collaborative Proceedings Series, Laxenberg,
Austria.

Dantzig, G.B., Dempster, M.A.H., and Kallio, M.J., editors (1981). Large-Scale Linear
Programming, Vol. 2, CP-81-51, IIASA Collaborative Proceedings Series, Laxenberg,
Austria.

Dantzig, G.B. and Eaves, B.C. (1972). “Fourier-Motzkin Elimination and Its Dual,” Tech-
nical Report 72-18, Department of Operations Research, Stanford University, Stan-
ford, CA, June 1972; also in Journal of Combinatorial Theory 14, May 1973, 288–
297; also in B. Roy (ed.), Combinatorial Programming: Methods and Applications,
D. Reidel Publishing Co., Boston, 1975, 93–102.

Dantzig, G.B. and Eaves, B.C., editors (1974). Studies in Optimization, MAA Studies in
Mathematics, Vol. 10, Mathematical Association of America.

Dantzig, G.B., Eaves, B.C., and Gale, D. (1976). “An Algorithm for a Piecewise Linear
Model of Trade and Production with Negative Prices and Bankruptcy,” Technical
Report SOL 76-19, Department of Operations Research, Stanford University, Stan-
ford, CA; also in Mathematical Programming 16, 1979, 190–209.



REFERENCES 397

Dantzig, G.B., Eaves, B.C., and Rothblum, U. (1983). “A Decomposition and Scaling-
inequality for Line-sum-symmetric Nonnegative Matrices,” Technical Report SOL
83-21, Department of Operations Research, Stanford University, Stanford, CA, De-
cember; also in SIAM Journal on Discrete Mathematics 6, April 1985.

Dantzig, G.B., Eisenberg, E., and Cottle, R.W. (1962). “Symmetric Dual Nonlinear Pro-
grams,” Technical Report RR-35, Operations Research Center, University of Cali-
fornia, Berkeley; also in Pacific Journal of Mathematics 15, 1965, 809–812.

Dantzig, G.B., Eisenstat, S., Magnanti, T.L., Maier, S., McGrath, M., Nicholson, V.,
and Reidl, C. (1970). “MPL: Mathematical Programming Language Specification
Manual for Committee Review,” Technical Report STAN-CS-70-187, Department of
Computer Science, Stanford University, Stanford, CA.

Dantzig, G.B., Folkman, J., and Shapiro, M. (1965). “On the Continuity of the Minimum
Set of a Continuous Function,” The RAND Corporation, June; also in Journal of
Mathematical Analysis and Applications 17, March 1967, 519–548.

Dantzig, G.B., Ford, L.R., and, Fulkerson, D.R. (1956). “A Primal-Dual Algorithm for
Linear Programs,” in H.W. Kuhn and A.W. Tucker (eds.), Linear Inequalities and
Related Systems, Annals of Mathematics Study No. 38, Princeton University Press,
Princeton, New Jersey, 171–181; also, RM-1709, The RAND Corporation, May.

Dantzig, G.B., Friel, J., Golightly, R., Harvey, R.P., and McKnight, R.D. (1975). “Solu-
tion of a Large-Scale Air Force Ordnance Planning Problem by Mathematical Pro-
gramming,” Proceedings of the Fire Support Requirements Methodology Workshop,
Ketron, Inc., August.

Dantzig, G.B. and Fulkerson, D.R. (1955). “Computation of Maximal Flows in Networks,”
Naval Research Logistics Quarterly, 2, 277–283.

Dantzig, G.B. and Fulkerson, D.R. (1954). “Minimizing the Number of Tankers to Meet
a Fixed Schedule,” Naval Research Logistics Quarterly, 1, 217–222.

Dantzig, G.B. and Fulkerson, D.R. (1956). “On the Max-Flow Min-Cut Theorems of
Networks,” in H.W. Kuhn and A.W. Tucker (eds.), Linear Inequalities and Related
Systems, Annals of Mathematics Study No. 38, Princeton University Press, Prince-
ton, New Jersey, 215–221.

Dantzig, G.B., Fulkerson, D.R., and Johnson, S.M. (1954). “Solution for a Large-Scale
Traveling Salesman Problem,” Journal of Operations Research Society of America
2, 393–410.

Dantzig, G.B., Fulkerson, D.R., and Johnson, S.M. (1959). “On a Linear Programming
Combinatorial Approach to the Traveling Salesman Problem,” Operations Research
7, 58–66.

Dantzig, G.B. and Glynn, P.W. (1990). “Parallel Processors for Planning Under Uncer-
tainty,” Annals of Operations Research 22, 1–21; also in Technical Report SOL 88-8,
Department of Operations Research, Stanford University, Stanford, CA, June.

Dantzig, G.B., Glynn, P.W., Avriel, M., Stone, J.C., Entriken, R., and Nakayama, M.
(1989). “Decomposition Techniques for Multi-Area Transmission Planning Under
Uncertainty,” Report EL-6484, Electrical Systems Division, Electric Power Research
Institute, Palo Alto, California.



398 REFERENCES

Dantzig, G.B., Harvey, R.P., McKnight, R.D., and Smith S.S. (1969). “Sparse Matrix
Techniques in Two Mathematical Programming Codes,”, Technical Report 69-1,
Department of Operations Research, Stanford University, Stanford, CA; also in D.J.
Rose and R.A. Willoughby (eds.), Sparse Matrices and their Applications, Plenum
Press, New York, , Proceedings of the Symposium on Sparse Matrices and Their
Applications IBM RA-1, IBM Watson Research Center, September 1968), March
1969, 85–100.

Dantzig, G.B., Harvey, R.P., Lansdowne, Z.F., Maier, S.F., and Robinson, D.W. (1977a).
“Computational Experience with a Continuous Network Design Code,” GSBA Work-
ing Paper 236, Graduate School of Business Administration, Duke University, NC,
December.

Dantzig, G.B., Harvey, R.P., Lansdowne, Z.F., Maier, S.F., and Robinson, D.W. (1977b).
“Formulating and Solving the Network Design Problem by Decomposition,” GSBA
Working Paper 215, Graduate School of Business Administration, Duke University,
Durham, NC, January 1977; also in “A Convex Network Design Model Based on a
Decomposition Procedure,” Transportation Research B, 13B, 1979, 5–17,

Dantzig, G.B., Harvey, R.P., Lansdowne, Z.F., and Muth, R. (1979). “Framework for a
System of Transportation Spatial Form Research Tools,” Report DOT-TSC-RSPA-
79-12, Final Report to U.S. Department of Transportation, Washington, DC, April.

Dantzig, G.B., Harvey, R.P., Lapin, L.L., and Uren, J. (1966). ”An Integer Branching
Algorithm for Locating Warehouses,” Standard Oil Company of California Report,
Operations Research Division, October (revised December 1968).

Dantzig, G.B., Harvey, R.P., and McKnight, R. (1964). “Updating the Product Form of
the Inverse for the Revised Simplex Method,” Technical Report 64-33, Operations
Research Center, University of California, Berkeley; also in Association for Comput-
ing Machinery Proceedings, August 1965; and Abstract in Journal of the Association
for Computing Machinery, October 1965.

Dantzig, G.B., Hax, R, Pomeroy, R., Sanderson, R., and van Slyke, R. [with contributions
by G. Buerk, I. Durrer, B. Laurent, S. Mukerjee] (1970). “Natural Gas Transmission
System Optimization,” American Gas Association, Inc., April.

Dantzig, G.B. and Hirsch, W. (1954). “The Fixed Charge Problem,” P-648, The RAND
Corporation; also in Naval Research Logistics Quarterly, 15, 413–424.

Dantzig, G.B., Ho, J.K., and Infanger, G. (1991). “Solving Stochastic Linear Programs
on a Hypercube Multicomputer,” Technical Report SOL 91-10, Department of Op-
erations Research, Stanford University, Stanford, CA, August.

Dantzig, G.B. and Hoffman, A. (1956). “Dilworth’s Theorem on Partially Ordered Sets,” in
H.W. Kuhn and A.W. Tucker (eds.), Linear Inequalities and Related Systems, Annals
of Mathematics Study No. 38, Princeton University Press, Princeton, New Jersey,
207–213; also in “New Directions in Mathematical Programming,” RAND Sympo-
sium on Mathematical Programming, March 16-20, 1959, RAND R-351, page 1.

Dantzig, G.B. Hoffman, A.J., and Hu, T.C. (1983). ”Triangulations (Tilings) and Certain
Block Triangular Matrices,” Technical Report SOL 83-17, Department of Opera-
tions Research, Stanford University, Stanford, CA, September; also in Mathematical
Programming 31, 1985, 1–14.



REFERENCES 399

Dantzig, G.B. and Holling, C.S. (1974). “Determining Optimal Policies for Ecosystems,”
Technical Report 74-11, Department of Operations Research, Stanford University,
Stanford, CA, August.

Dantzig, G.B., Holling, C.S., Baskerville, C., Jones, D.D., and Clark, W. C. (1975). “A
Case Study of Forest Ecosystem/Pest Management,” Prepared for Proceedings In-
ternational Canadian Conference on Applied Systems Analysis, 1975, WP-75-60, In-
ternational Institute for Applied Systems Analysis, Laxenburg, Austria, June 1975.

Dantzig, G.B., Holling, C.S., Clark, W.C., Jones, D.D., Baskerville, G., and Peterman,
R.M. (1976). “Quantitative Evaluation of Pest Management Options: The Spruce
Budworm Case Study,” in D.L. Wood (ed.), Proceedings of the XVth International
Congress of Entomology, August; also in in W.E. Waters (ed.), Current Topics in
Forest Entomology, U.S. Government Printing Office, Washington, DC, February
1979, 82–102.

Dantzig, G.B., Holling, C.S., and Winkler, C. (1986). “Determining Optimal Policies for
Ecosystems,” TIMS Studies in the Management Sciences 21, 1986, 453-473.

Dantzig, G.B. and Infanger, G. (1992a). “Large-Scale Stochastic Linear Programs: Impor-
tance Sampling and Benders Decomposition,” in C. Brezinski and U. Kulisch (eds.),
Computational and Applied Mathematics I—Algorithms and Theory, Proceedings
of the 13th IMACS World Congress, Dublin, Irfeland, July 22–26, 1991, North Hol-
land, 111-120; also Technical Report SOL 91-4, Department of Operations Research,
Stanford University, Stanford, CA.

Dantzig, G.B. and Infanger, G. (1992b). “Approaches to Stochastic Programming with
Applications to Electric Power Systems,” in K. Frauendorfer, H. Glavitsch, and R.
Bacher (eds.), Optimization in Planning and Operations of Electric Power Systems,
Lecture Notes of the SVOR/ASRO Tutorial, October 15-16, 1992, Thun, Switzer-
land, Physica Verlag, 125–138.

Dantzig, G.B. and Infanger, G. (1993). “Multi-Stage Stochastic Linear Programs for
Portfolio Optimization,” Annals of Operations Research 45, 59–76; also in Tech-
nical Report SOL 91-11, Department of Operations Research, Stanford University,
Stanford, CA, September; also in Proceedings of the Annual Symposium of RAMP
(Research Association on Mathematical Programming), Tokyo, 1991.

Dantzig, G.B. and Iusem, A. (1981). “Analyzing Labor Productivity Growth with the
PILOT Model,” Technical Report SOL 81-4, Department of Operations Research,
Stanford University, Stanford, CA, March; also in Energy, Productivity and Eco-
nomic Growth, A Workshop sponsored by the Electric Power Research Institute,
Oelgeschlager, Gunn & Hain, Cambridge, Mass., 1983, 347–366.

Dantzig, G.B. and Jackson, P. (1979). “Pricing Underemployed Capacity in a Linear
Economic Model,” Technical Report SOL 79-2, Department of Operations Research,
Stanford University, Stanford, CA, February; also in R. W. Cottle, F. Giannessi, and
J.L. Lions (eds.), Variational Inequalities and Complementarity Problems: Theory
and Applications, John Wiley and Sons, Ltd., London, 1980, 127–134.

Dantzig, G.B. and Johnson, D.L. (1963). “Maximum Payloads per Unit Time Delivered
Through an Air Network,” Report D1-82-0265, Boeing Scientific Research Labora-
tories, June; also in Operations Research 12, 230–236.



400 REFERENCES

Dantzig, G.B. and Johnson, S. (1955). “A Production Smoothing Problem,” Proceedings,
Second Symposium on Linear Programming, National Bureau of Standards and
Comptroller, U.S.A.F. Headquarters, January, 151–176.

Dantzig, G.B., Johnson, S., and Wayne, W. (1958). “A Linear Programming Approach to
the Chemical Equilibrium Problem,” Management Science 5, 38–43.

Dantzig, G.B., Kawaratani, T.K., and Ullman, R.J. (1960). “Computing Tetraethyl-Lead
Requirements in a Linear-Programming Format,” Operations Research 8, 24–29.

Dantzig, G.B., Leichner, S.A., and Davis, J.W. (1992). “A Strictly Improving Phase I
Algorithm Using Least-Squares Subproblems,” Technical Report SOL 92-1, Depart-
ment of Operations Research, Stanford University, Stanford, CA, April.

Dantzig, G.B., Levin, S., and Bigelow, J. (1965). “On Steady-State Intercompartmental
Flows,” Technical Report 65-26, Operations Research Center, University of Cali-
fornia, Berkeley; also in Journal of Colloid and Interface Science 23, April 1967,
572–576.

Dantzig, G.B. and Madansky, A. (1961). “On the Solution of Two-Staged Linear Programs
Under Uncertainty,” in J. Neyman (ed.), Proceedings 4th Berkeley Symposium on
Mathematical Statistics and Probability, 1961, University of California Press, Berke-
ley, California, 165–176; also in P-2039, The RAND Corporation.

Dantzig, G.B., Magnanti, T.L., and Maier, S. (1972). “The User’s Guide to MPL/T.1
(Revised),” GSBA Working Paper 76, Graduate School of Business Administration,
Duke University, Durham, NC, December 1972.

Dantzig, G.B., Maier, S.F., and Lansdowne, Z.F. (1976). “The Application of Decomposi-
tion to Transportation Network Analysis,”, DOT Report, Control Analysis Corpo-
ration, Palo Alto, California, March.

Dantzig, G.B. and Manne, A. (1974). “A Complementarity Algorithm for an Optimal
Capital Path with Invariant Proportions,” International Institute for Applied Sys-
tems Analysis, Laxenburg, Austria; also in Technical Report 74-1, Department of
Operations Research, Stanford University, Stanford, CA, March; also in Journal of
Economic Theory 9, November, 312–323.

Dantzig, G.B., McAllister, P.H., and Stone, J.C. (1985). “Changes Made for the PILOT-
1983 Model,” Technical Report SOL 85-12, Department of Operations Research,
Stanford University, Stanford, CA, July.

Dantzig, G.B., McAllister, P.H., and Stone, J.C. (1988a). “Deriving a Utility Function for
the U.S. Economy,” Technical Report SOL 88-6, Department of Operations Research,
Stanford University, Stanford, CA, April. Parts I, II, III, in Journal for Policy
Modeling 11, 1989, 391–424 and Parts IV, V in Journal for Policy Modeling 11,
1989, 569–592.

Dantzig, G.B., McAllister, P.H., and Stone, J.C. (1988b). “Analyzing the Effects of Tech-
nological Change: A Computational General Equilibrium Approach,” Technical Re-
port SOL 88-12, Department of Operations Research, Stanford University, Stanford,
CA, July.

Dantzig, G.B., McAllister, P.H., and Stone, J.C. (1990). “An Interactive Model Man-
agement System: User Interface and System Design,” Technical Report SOL 90-3,
Department of Operations Research, Stanford University, Stanford, CA, January.



REFERENCES 401

Dantzig, G.B. and Orchard-Hays, W. (1953). “Alternate Algorithm for the Revised Sim-
plex Method Using Product Form for the Inverse (Notes on Linear Programming:
Part V),” RM-1268, The RAND Corporation, November.

Dantzig, G.B. and Orchard-Hays, W. (1954). “The Product Form for the Inverse in the
Simplex Method,” Mathematical Tables and Other Aids to Computation VIII, April,
64–67.

Dantzig, G.B. and Orden, A. (1952). “A Duality Theorem Based on the Simplex Method,”
Symposium on Linear Inequalities and Programming, Report 10, Project SCOOP,
Planning Research Division, Director of Management Analysis Service, Comptroller,
U.S.A.F. Headquarters, April, 51–55.

Dantzig, G.B. and Orden, A. (1953). “Duality Theorems (Notes on Linear Programming:
Part II),” RM-1526, The RAND Corporation.

Dantzig, G.B., Orden, A., and, Wolfe, P. (1955). “The Generalized Simplex Method for
Minimizing a Linear Form Under Linear Inequality Constraints (Notes on Linear
Programming: Part I),” Pacific Journal of Mathematics 5, 183–195; also in RM-
1264, The RAND Corporation, April 5, 1954.

Dantzig, G.B. and Pace, N. (1963a). “Molecular-Sized Channels and Flows Against the
Gradient,” Technical Report 63-14, Operations Research Center, University of Cal-
ifornia, Berkeley.

Dantzig, G.B. and Pace, N. (1963b). “A Model for Sodium-Potassium Transport in Red
Cells,” Technical Report 63-26, Operations Research Center, University of Califor-
nia, Berkeley.

Dantzig, G.B. and Parikh, S.C. (1975). “On a PILOT Linear Programming Model for As-
sessing Physical Impact on the Economy of a Changing Energy Picture,” Technical
Report SOL 75-14, Department of Operations Research, Stanford University, Stan-
ford, CA, June 1975 (revised SOL 75-14R, August 1975); also in F.S. Roberts (ed.),
Energy: Mathematics and Models, Proceedings of a SIMS Conference on Energy, held
at Alta, Utah, July 7–11, 1975, SIAM, 1976, 1–23; also in IIASA Conference ’76,
May 10–13 1976, 183–200; also in Proceedings of Symposia in Applied Mathematics,
Vol. 21, American Mathematical Society, 1977, pp. 93–106.

Dantzig, G.B. and Parikh, S.C. (1976). “Energy Models and Large-Scale Systems Opti-
mization,” Technical Report SOL 76-23, Department of Operations Research, Stan-
ford University, Stanford, CA, November; also in W.W. White (ed.), Computers and
Mathematical Programming, Proceedings of the Bicentennial Conference on Mathe-
matical Programming, November 1976; also in NBS Special Publication 502, Febru-
ary 1978, 4–10.

Dantzig, G.B. and Parikh, S.C. (1977). “At the Interface of Modeling and Algorithms
Research” Technical Report SOL 77-29, Department of Operations Research, Stan-
ford University, Stanford, CA, October. Proceedings of Nonlinear Programming
Symposium 3, University of Wisconsin, July 1977, Academic Press, 1978, 283–302.

Dantzig, G.B. and Parikh, S.C. (1978). “PILOT Model for Assessing Energy-Economic
Options,” in Bagiotti, T. and Franco, G. (eds.), Pioneering Economics, Edizioni
Cedam - Padova, Italy, 271–276.

Dantzig, G.B. and Pereira, M.V.F. (1988). “Mathematical Decomposition Techniques for
Power System Expansion Planning,” EPRI EL-5299, Volumes 1–5, February 1988,
Electric Power Research Institute, Palo Alto, CA.



402 REFERENCES

Dantzig, G.B. and Perold, A.F. (1978). “A Basic Factorization Method for Block Trian-
gular Linear Programs,” SOL78-7, April; also in I.S. Duff and G.W. Stewart (eds.),
Sparse Matrix Proceedings, SIAM, Philadelphia, 1979, 283–312.

Dantzig, G.B. and Ramser, J.H. (1959a). “Optimum Routing of Gasoline Delivery Trucks,”
Proceedings, World Petroleum Congress, Session VIII, Paper 19, 1959.

Dantzig, G.B. and Ramser, J.H. (1959b). “The Truck Dispatching Problem,” Management
Science 6, 80–91.

Dantzig, G.B. and Reynolds, G.H. (1966). “Optimal Assignment of Computer Storage by
Chain Decomposition of Partially Ordered Sets,” Technical Report 66-6, Operations
Research Center, University of California, Berkeley.

Dantzig, G.B. and Saaty, T.L. (1973). Compact City, Freeman, San Francisco.

Dantzig, G.B. and Sethi, S.P. (1981). “Linear Optimal Control Problems and Generalized
Linear Programming,” Journal of the Operational Research Society 32, 467–476.

Dantzig, G.B. and Shapiro, M. (1960). “Solving the Chemical Equilibrium Problem Using
the Decomposition Principle,” P-2056, The RAND Corporation, August.

Dantzig, G.B., Stone, J.C., and McAllister, P.H. (1986). “Using the PILOT Model to
Study the Effects of Technological Change,” Technical Report SOL 86-16, Depart-
ment of Operations Research, Stanford University, Stanford, CA, December; also in
B. Lev, J. Bloom, A. Gleit, F. Murphy, and C. Shoemaker (eds.), Strategic Planning
in Energy and Natural Resources, Studies in Management Science and Systems, Vol.
15, Proceedings of the 2nd Symposium on Analytic Techniques for Energy, Natu-
ral Resources and Environmental Planning April 1986; North-Holland, Amsterdam,
1987, 31–42.

Dantzig, G.B., Stone, J.C., and McAllister, P.H. (1988). “Formulating an Objective for
an Economy,” Proceedings of the Martin Beale Memorial Symposium, Mathematical
Programming 42, (Series B), 11–32.

Dantzig, G.B. and Tomlin, J.A. (1987). “E.M.L. Beale, FRS: Friend and Colleague,”
Technical Report SOL 87-2, Department of Operations Research, Stanford Univer-
sity, Stanford, CA, January 1987; also in Mathematical Programming 38, 117–131.

Dantzig, G.B. and Van Slyke, R.M. (1964a). “Generalized Upper Bounded Techniques for
Linear Programming — I,” Technical Report 64-17, Operations Research Center,
University of California, Berkeley; also in Proceedings IBM Scientific Computing
Symposium, Combinatorial Problems, March 16–18, 1964, 249–261.

Dantzig, G.B. and Van Slyke, R.M. (1964b). “Generalized Upper Bounded Techniques for
Linear Programming — II,” Technical Report 64-18, Operations Research Center,
University of California, Berkeley.

Dantzig, G.B. and Van Slyke, R.M. (1967). “Generalized Upper Bounding Techniques,”
Journal of Computer and System Science 1, 213–226.

Dantzig, G.B. and Van Slyke, R.M. (1971). “Generalized Linear Programming,” in David
Wismer (ed.), Optimization Methods and Applications for Large Systems, McGraw-
Hill, New York, 75–120.

Dantzig, G.B. and Veinott, A.F. (eds.), (1967). Mathematics of the Decision Sciences,
Proceedings of the American Mathematical Society Summer Seminar, Providence,
RI.



REFERENCES 403

Dantzig, G.B. and Veinott, A.F., editors (1968a). Lectures in Applied Mathematics,
Vol. 11, American Mathematics Society, Providence, RI.

Dantzig, G.B. and Veinott, A.F. (1968b). “Integral Extreme Points,” Technical Report 67-
7, Department of Operations Research, Stanford University, Stanford, CA, Novem-
ber; also in SIAM Review 10, 371–372.

Dantzig, G.B. and Veinott, A.F. (1977). “Discovering Hidden Totally Leontief Substitu-
tion Systems,” Technical Report SOL 77-17, Department of Operations Research,
Stanford University, Stanford, CA, June. Revised for Mathematics of Operations
Research 3, May 1978, 102–103.

Dantzig, G.B. and Wald, A. (1951). “On the Fundamental Lemma of Neyman and Pear-
son,” Annals of Mathematical Statistics 22, 87–93.

Dantzig, G.B. and Wolfe, P. (1960). “Decomposition Principle for Linear Programs,”
Operations Research 8, 101–111; also in P. Wolfe (ed.), RAND Symposium on Math-
ematical Programming, March 1959, RAND R-351, page 5; also in in G. B. Dantzig
and B. C. Eaves (eds.), Studies in Optimization, MAA Studies in Mathematics, Vol.
10, Mathematical Association of America, 1974.

Dantzig, G.B. and Wolfe, P. (1961). “The Decomposition Algorithm for Linear Program-
ming,” Econometrica, 29, 767–778.

Dantzig, G.B. and Wolfe, P. (1962). “Linear Programming in a Markov Chain,” Operations
Research 10, 702–710; also RM-2957-PR, The RAND Corporation, April.

Dantzig, G.B. and Wood, M.K. (1951). “Programming of Interdependent Activities, I:
General Discussion,” Econometrica, 17, 193–199; also in in T.C. Koopmans (ed.),
Activity Analysis of Production and Allocation, July–October 1949, Cowles Commis-
sion Monograph 13, Proceedings of Linear Programming Conference, June 20–24,
1949, John Wiley and Sons, New York, 15–18.

Dantzig, G.B. and Ye, Y. (1990). “A Build-Up Interior Method for Linear Programming:
Affine Scaling Form,” Technical Report SOL 90-4, Department of Operations Re-
search, Stanford University, Stanford, CA, March.

Davidon, W.C. (1979). “Variable Metric Methods for Optimization,” Atomic Energy Com-
mission (AEC) Research and Development Report ANL-5990, Argonne National
Laboratory, Argonne, Illinois.

Davis, K.D. and McKeown, P.G. (1981). Quantitative Models for Management, Kent
Publishing Company, Boston, Massachusetts.

Davis, P.J. and Rabinowitz, P. (1984). Methods of Numerical Integration, Academic Press,
London and New York.

Day, J. and Peterson, B. (1988). “Growth in Gaussian Elimination,” The American Math-
ematical Monthly 95, 489–513.

de Boor, C.W. (1971). “CADRE: An Algorithm for Numerical Quadrature,” in J. Rice
(ed.), Mathematical Software, Academic Press, London and New York, 417–449.

Deák, I. (1988). “Multidimensional Integration and Stochastic Programming,” in Y. Er-
moliev and R.J.B. Wets (eds.), Numerical Techniques for Stochastic Optimization,
Springer-Verlag, Berlin and New York, 187–200.

Dembo, R.S. and Steihaug, T. (1983). “Truncated Newton Methods for Large Scale Un-
constrained Optimization,” Mathematical Programming 26, 190–212.



404 REFERENCES

Demmel, J.W. (1987). “On the Distance to the Nearest Ill-Posed Problem,” Numerische
Mathematik 51, 251–289.

Denardo, E.V. and Fox, B.L. (1979). “Shortest-Route Methods: 1. Reaching, Pruning,
and Buckets,” Operations Research 27, 161–186.

Dennis, J.E., Jr. (1977). “Nonlinear Least Squares,” in D. Jacobs (ed.), The State of the
Art in Numerical Analysis, Academic Press, London and New York, 269–312.
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Dennis, J.E. and Moré, J.J. (1974). “A Characterization of Superlinear Convergence and
its Application to Quasi-Newton Methods,” Mathematics of Computation 28, 549–
560.

Dial, R.B. (1969). “Algorithm 360: Shortest Path Forest with Topological Ordering,”
Communications of the Association for Computing Machinery 12, 632–633.

Dijkstra, E. (1959). “A Note on Two Problems in Connection with Graphs,” Numerische
Mathematik 1, 269–271.

Dikin, I.I. (1967). “Iterative Solution of Problems of Linear and Quadratic Programming,”
Doklady Akademiia Nauk USSR 174, 747–748, translated in Soviet Mathematics
Doklady 8, 674–675.

Dikin, I.I. (1974). “On the Convergence of an Iterative Process,” Upravlyaemye Sistemi
12, 54–60.

Dikin, I.I. (1990). “The Convergence of Dual Variables,” Technical Report, Siberian En-
ergy Institute, Irkutsk, Russia.

Dikin, I.I. (1992). “Determination of an Interior Point of one System of Linear Inequali-
ties,” Kibernetika and System Analysis 1, 74–96.

Dikin, I.I. and Zorkaltsev, V.I. (1980). Iterative Solution of Mathematical Programing
Problems: Algorithms for the Method of Interior Points, Nauka, Novosibirsk, USSR.

Dilworth, R.P. (1950). “A Decompositon Theorem for Partially Ordered Sets,” Annals of
Mathematics 51, 161–166.

Dinic, E.A. (1970). “Algorithm for Solution of a Problem of Maximum Flow in a Network
with Power Estimation,” Soviet Mathematics Doklady 11, 1277–1280.

Dixon, L.C.W. (1972a). “Quasi-Newton Methods Generate Identical Points,” Mathemat-
ical Programming 2 383–387.

Dixon, L.C.W. (1972b). “Quasi-Newton Methods Generate Identical Points. II. The Proof
of Four New Theorems,” Mathematical Programming 3 345–358.

Dodson, D.S. and Lewis, J.G. (1985). “Proposed Sparse Extensions to the Basic Linear
Algebra Subprograms,” SIGNUM Newsletter 20, 22–25.

Doig, A.G. and Belz, M.H. (1956). “Report on Trim Problems for May, 1956.” Depart-
ment of Statistics, University of Melbourne, Australia. The report is addressed to
Australia Paper Manufacturers, Melbourne, Australia, July 31, 1956.

Doig, A.G. and Land, A.H. (1960). “An Automatic Method of Solving Discrete Program-
ming Problems,” Econometrica, 28, 497–520.

Dongarra, J.J., Bunch, J.R., Moler, C.B., and Stewart, G.W. (1979). “LINPACK Users
Guide,” SIAM, Philadelphia.



REFERENCES 405

Dongarra, J.J., DuCroz, J., Hammarling, S. and Hanson, R.J. (1985). “A Proposal for an
Extended Set of Fortran Basic Linear Algebra Subprograms,” SIGNUM Newsletter
20, 2–18.

Dongarra, J.J., DuCroz, J., Hammarling, S. and Hanson, R.J. (1988a). “An Extended Set
of Fortran Basic Linear Algebra Subprograms,” ACM Transactions on Mathematical
Software 14, 1–17.

Dongarra, J.J., DuCroz, J., Hammarling, S. and Hanson, R.J. (1988b). “Algorithm 656 An
Extended Set of Fortran Basic Linear Algebra Subprograms: Model Implementation
and Test Programs,” ACM Transactions on Mathematical Software 14, 18–32.

Dongarra, J.J., DuCroz, J., Hammarling, S. and Hanson, R.J. (1988c). “A Set of Level 3
Basic Linear Algebra Subprograms,” Report ANL-MCS-TM-88, Argonne National
Laboratory, Argonne, Illinois.

Dongarra, J.J., Duff, I.S., Sorensen, D.C., and van der Vorst, H.A. (1991). Solving Linear
Systems on Vector and Shared Memory Computers, SIAM, Philadelphia.

Dongarra, J.J. and Eisenstat, S. (1984). “Squeezing the Most out of an Algorithm in Cray
Fortran,” ACM Transactions on Mathematical Software 10, 221–230.

Dongarra, J.J., Gustavson, F.G., and Karp, A. (1984). “Implementing Linear Algebra
Algorithms for Dense Vectors on a Vector Pipeline Machine,” SIAM Review 26,
91–112.

Dongarra, J.J. and Hinds, A. (1979). “Unrolling Loops in Fortran,” Software Practice and
Experience 9, 219–229.

Duff, I.S. (1976). “A Survey of Sparse Matrix Research,” Report AERE CSS 28, Atomic
Energy Research Establishment, Harwell, England.

Duff, I.S. (1977). “MA28—A Set of Fortran Subroutines for Sparse Unsymmetric Linear
Equations,” Report AERE AERE R8730, Atomic Energy Research Establishment,
Harwell, England.

Duff, I.S. (1981). “An Algorithm for Obtaining a Maximum Transversal,” ACM Transac-
tions on Mathematical Software 7, 315–330.

Duff, I.S., Erisman, A.M., and Reid, J.K. (1986). Direct Methods for Sparse Matrices,
Oxford University Press, Oxford and New York.

Duff, I.S. and Reid, J.K. (1978). “An Implementation of Tarjan’s Algorithm for the Block
Triangularization of a Matrix,” ACM Transactions on Mathematical Software 4,
137–147.

Duff, I.S. and Stewart, G.W. (eds.) (1979). Sparse Matrix Proceeedings, SIAM, Philadel-
phia.

Duffin, R.J. (1974). “On Fourier’s Analysis of Linear Inequality Systems,” Mathematical
Programming Study 1, 71–95.
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