Linear Programming:
2: Theory and Extensions

George B. Dantzig
Mukund N. Thapa

Springer



Springer Series in Operations Research

Editors:
Peter W. Glynn Stephen M. Robinson

Springer
New York
Berlin
Heidelberg
Hong Kong
London

Milan

Paris

Tokyo



This page intentionally left blank



George B. Dantzig Mukund N. Thapa

Linear Programming

Q: Theory and Extensions

With 45 lllustrations

) Springer



Professor George B. Dantzig

Department of Management Science
and Engineering

Computer Science Department

Stanford University

Stanford, CA 94305

USA

George@L inearProgram.com

Series Editors:

Peter W. Glynn

Department of Management Science
and Engineering

Terman Engineering Center

Stanford University

Stanford, CA 94305-4026

USA

glynn@leland.stanford.edu

Dr. Mukund N. Thapa

President and CEO

Optical Fusion Inc.

P.O. Box 60478

Palo Alto, CA 94306-0478

President and CEO

Stanford Business Software, Inc.

P.O. Box 60398

Palo Alto, CA 94306-0398

Consulting Professor

Department of Management Science
and Engineering

Stanford University

Stanford, CA 94305

USA

Mukund@L inearProgram.com

Stephen M. Robinson

Department of Industrial Engineering
University of Wisconsin-Madison
1513 University Avenue

Madison, WI 53706-1572

USA

smrobins@facstaff.wisc.edu

The Library of Congress has catalogued the first volume as follows
Library of Congress Cataloging-in-Publication Data

Dantzig, George Bernard, 1914—

Linear programming 1 : introduction / George B. Dantzig

& Mukund N. Thapa.

p. cm. — (Springer series in operations research)

Includes hibliographical references and index.
ISBN 0-387-94833-3 (hardcover : ak. paper)

1. Linear programming. |. Thapa, Mukund Narain-Dhami. II. Title.

I11. Series.
T57.74.D365 1997
619.7"2—dc20

ISBN 0-387-98613-8

proprietary rights.
Printed in the United States of America
987654321

SPIN 10689385

96-36411

Printed on acid-free paper.

© 2003 George B. Dantzig and Mukund N. Thapa

All rights reserved. Thiswork may not be trandated or copied in whole or in part without the written permission
of the publisher (Springer-Verlag New York, Inc., 175 Fifth Avenue, New York, NY 10010, USA), except for
brief excerptsin connection with reviews or scholarly analysis. Use in connection with any form of information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to

Typesetting: Pages created by the authors using INTEX/TEX.

WWW.Springer-ny.com

Springer-Verlag New York Berlin Heidelberg

A member of BertelsmannSpringer Science+Business Media GmbH



ABOUT THE AUTHORS

George B. Dantzig received the National Medal of Science from the President
of the United States “for inventing Linear Programming and for discovering the
Simplex Algorithm that led to wide-scale scientific and technical applications to
important problems in logistics, scheduling, and network optimization, and to the
use of computers in making efficient use of the mathematical theory.” He is world fa-
mous for his twin discoveries; linear programming and the Simplex Algorithm, which
together have enabled mankind for the first time to structure and solve extremely
complex optimal allocation and resource problems. Among his other discoveries
are the Decomposition Principle (with Philip Wolfe) which makes it possible to de-
compose and solve extremely large linear programs having special structures, and
applications of these techniques with sampling to solving practical problems subject
to uncertainty.

Since its discovery in 1947, the field of linear programming, together with its
extensions (mathematical programming), has grown by leaps and bounds and is
today the most widely used tool in industry for planning and scheduling.

George Dantzig received his master’s from Michigan and his doctorate in math-
ematics from Berkeley in 1946. He worked for the U.S. Bureau of Labor Statistics,
served as chief of the Combat Analysts Branch for USAF Headquarters during World
War II, research mathematician for RAND Corporation, and professor and head of
the Operations Research Center at the University of California, Berkeley. He is cur-
rently professor of Management Science and Engineering and Computer Science at
Stanford University. He served as director of the System Optimization Laboratory
and the PILOT Energy-Economic Model Project. Professor Dantzig’s seminal work
has laid the foundation for the field of systems engineering, which is widely used
in network design and component design in computer, mechanical, and electrical
engineering. His work inspired the formation of the Mathematical Programming
Society, a major section of the Society of Industrial and Applied Mathematics, and
numerous professional and academic bodies. Generations of Professor Dantzig’s
students have become leaders in industry and academia.

He is a member of the prestigious National Academy of Science, the American
Academy of Arts and Sciences, and the National Academy of Engineering.



vi About the Authors

Mukund N. Thapa is the President & CEO of Optical Fusion, Inc., President of
Stanford Business Software, Inc., as well as a consulting professor of Management
Science and Engineering at Stanford University. He received a bachelor of tech-
nology degree in metallurgical engineering from the Indian Institute of Technology,
Bombay, and M.S. and Ph.D. degrees in operations research from Stanford Univer-
sity in 1981. His Ph.D. thesis was concerned with developing specialized algorithms
for solving large-scale unconstrained nonlinear minimization problems. By profes-
sion he is a software developer who produces commercial software products as well
as commercial-quality custom software. Since 1978, Dr. Thapa has been apply-
ing the theory of operations research, statistics, and computer science to develop
efficient, practical, and usable solutions to a variety of problems.

At Optical Fusion, Inc., Dr. Thapa is developing a multi-point IP-based video-
conferencing system for use over networks. The feature-rich system will focus pri-
marily on the needs of users and allow corproate users to seamlessly integrate con-
ferencing in everyday business interactions. At Stanford Business Software, Dr.
Thapa, ensures that the company produces high-quality turnkey software for clients.
His expert knowledge of user friendly interfaces, data bases, computer science, and
modular software design plays an important role in making the software practical
and robust. His speciality is the application of numerical analysis methodology to
solve mathematical optimization problems. He is also an experienced modeler who
is often asked by clients to consult, prepare analyses, and to write position papers.
At the Department of Management Science and Engineering, from time to time, Dr.
Thapa teaches graduate-level courses in mathematical programming computation
and numerical methods of linear programming.



TO

Tobias and Anja Dantzig, my parents, in memoriam
Anne S. Dantzig, my wife, and to
the great pioneers that made this field possible:
Wassily Leontief, Tjalling Koopmans, John von Neumann,
Albert Tucker, William Orchard-Hays, Martin Beale.

— George B. Dantzig

Radhika H. Thapa, my wife,
Isha, my daughter, and to
Devi Thapa & Narain S. Thapa, my parents.

— Mukund N. Thapa



This page intentionally left blank



Contents

LIST OF FIGURES XV
LIST OF TABLES xvii
PREFACE xix
DEFINITION OF SYMBOLS xxiii

1 GEOMETRY OF LINEAR INEQUALITY SYSTEMS AND THE

2

SIMPLEX METHOD 1
1.1 CONVEXITY AND LINEAR INEQUALITY SYSTEMS . ... .. 1
1.1.1 Affine & Convex Combinations . . . . . . .. ... ... ... 1
1.1.2 Two-dimensional Convex Regions . . . . . .. .. ... .... 3
1.1.3 Line Segments, Rays, and Half Lines . . . . . ... ... ... 5
1.1.4 General Convex Regions . . . . . . ... ... ... ...... 6
1.1.5 Hyperplanes and Half-Spaces . . . . .. ... .. ... .... 7
1.1.6  Convexity of Half Spaces and Hyperplanes . . . . . . . . . .. 8
1.1.7 Convexity of the Set of Feasible Solutions of an LP . . . . . . 9
1.1.8 Convex Polyhedrons, Polytopes, and Cones . . . . ... ... 9
1.1.9 Separating Hyperplane . . . . . . . .. ... ... ... .... 11
1.2 SIMPLEX DEFINED . .. .. ... ... ... ... ... . ..... 13
1.3 GLOBAL MINIMUM, EXTREME POINTS, AND EDGES . . . .. 14
1.4 THE SIMPLEX METHOD VIEWED AS THE STEEPEST DE-
SCENT ALONG EDGES . . . ... ... ... ... .. ...... 20
1.5 THE SIMPLEX INTERPRETATION OF THE SIMPLEX METHOD 24
1.6 NOTES & SELECTED BIBLIOGRAPHY . . . . ... ... .. ... 31
1.7 PROBLEMS . . . . . . . e 31
DUALITY AND THEOREMS OF THE ALTERNATIVES 43
2.1 THE DUALITY THEOREM . ... .. .. ... ... ... ..... 43
2.2 ADDITIONAL THEOREMS ON DUALITY . ... ... ...... 47
2.2.1 Unboundedness Theorem . . . .. ... ... .. ....... 47

2.2.2 Miscellaneous Theorems for the Standard Form . . . . . . .. 48

ix



CONTENTS

2.3 COMPLEMENTARY SLACKNESS . ... ... ... ........ 49
2.4 THEOREMS OF THE ALTERNATIVES . . ... ... ... .... 50
2.4.1 Gordan’s Theorem . . . . . . ... ... ... ... ...... 51
2.4.2 Farkas’s Lemma . .. .. ... ... L. 52
2.4.3 Stiemke’s Theorem . . . . . . . .. ... ... ... ...... 53
2.4.4 Motzkin’s Transposition Theorem . . . .. .. ... ... .. 54
2.4.5 Ville’s Theorem . . . . . . . .. .. ... L. 55
2.4.6  Tucker’s Strict Complementary Slackness Theorem . . . . . . 56
2.5 NOTES & SELECTED BIBLIOGRAPHY . . . . ... ... ... .. 58
2.6 PROBLEMS . ... .. . . .. e 59
EARLY INTERIOR-POINT METHODS 67
3.1 VON NEUMANN’S METHOD . . ... ... ... ... ....... 70
3.1.1 The von Neumann Algorithm . . . .. ... ... ... .... 73
3.1.2 Improving the Rate of Convergence. . . . . . . .. ... ... 81
3.1.3 Von Neumann Algorithm as a Variant of the Simplex Algorithm 83
3.2 DIKIN'SMETHOD . .. ... ... ... . ... ... ... 84
3.2.1 Dikin’s Algorithm . . . . ... ... oL 87
3.2.2  Convergence of Dikin’s Algorithm . . . ... ... ... ... 89
3.3 KARMARKAR’S METHOD . . ... ... ... .. ......... 100
3.3.1 Development of the Algorithm . . . ... ... ... ..... 100
3.3.2 Proof of Convergence . . ... ... ... ... ....... 105
3.3.3 The Algorithm Summarized . . . . . . . .. ... .. .. ... 114
3.3.4 Converting a Standard LP to a Starting Form for the Algorithm115
3.3.5 Computational Comments . . . . . .. ... ... ....... 116
3.3.6 Complexity of von Neumann versus Karmarkar Algorithms . 118
3.4 NOTES & SELECTED BIBLIOGRAPHY . . . .. .. ... ... .. 119
3.5 PROBLEMS . . ... .. . . e 121
INTERIOR-POINT METHODS 123
4.1 NEWTON'S METHOD . ... ... ... .. .. ... .. . ..... 123
4.2 THE LINEAR LEAST-SQUARES PROBLEM . ... ... ... .. 127
4.3 BARRIER FUNCTION METHODS . . ... ... . ... ...... 128
4.3.1 The Logarithmic Barrier Function . . . ... ... ... ... 128
4.3.2 Properties of Barrier Function Methods . . . . .. . ... .. 130
4.4 THE PRIMAL LOGARITHMIC BARRIER METHOD FOR SOLV-
ING LINEAR PROGRAMS . . . . . . .. .. .. ... 131
4.4.1 Details of the Method . . . . . .. ... ... ... ...... 131
4.4.2 Initial Feasible Solution . . . . .. .. ... ... ... .... 134
4.5 PRIMAL-DUAL LOGARITHMIC BARRIER METHODS . . . . . . 134
4.6 RECOVERING A BASIC FEASIBLE SOLUTION . . . . ... ... 137
4.7 COMPUTATIONAL COMMENTS . . . . . . ... ... ... .... 139
4.8 NOTES & SELECTED BIBLIOGRAPHY . . . . . .. .. ... ... 140

4.9 PROBLEMS . . .. . ... e 146



CONTENTS xi
5 DEGENERACY 149
51 EXAMPLES OF CYCLING . . . . . .. .. . . .. 149
5.2 ON RESOLVING DEGENERACY . . . .. ... ... ... ..... 153
5.3 DANTZIG’S INDUCTIVE METHOD . .. ... ... ........ 154
54 WOLFE'SRULE . . . . .. .. .. e 156
55 BLAND’SRULE . . . ... .. .. 158
5.6 KRISHNA’S EXTRA COLUMN RULE . . ... ........... 160
5.7 ON AVOIDING DEGENERATE PIVOTS . . . . ... ... .. ... 164
5.8 NOTES & SELECTED BIBLIOGRAPHY . . . . .. .. ... .... 166
59 PROBLEMS . .. .. . .. . 167
6 VARIANTS OF THE SIMPLEX METHOD 173
6.1 INTRODUCTION . . . . . . et 173
6.2 MAX IMPROVEMENT PER ITERATION . . ... .. ... .... 176
6.3 DUAL-SIMPLEX METHOD . . ... ... ... .. ......... 179
6.4 PARAMETRIC LINEAR PROGRAMS . . ... ... ... ..... 183
6.4.1 Parameterizing the Objective Function . . . . . . . . . .. .. 183
6.4.2 Parameterizing the Right-Hand Side . . . . . . ... ... .. 187
6.5 SELF-DUAL PARAMETRIC ALGORITHM . ... .. ... .... 188
6.6 THE PRIMAL-DUAL ALGORITHM . . ... ... ......... 191
6.7 THE PHASE I LEAST-SQUARES ALGORITHM . .. .. ... .. 197
6.8 NOTES & SELECTED BIBLIOGRAPHY . . . . .. .. ... ... .. 200
6.9 PROBLEMS . .. .. . . . .. .. 202
7 TRANSPORTATION PROBLEM AND VARIATIONS 207
7.1 THE CLASSICAL TRANSPORTATION PROBLEM . .. ... .. 207
7.1.1 Mathematical Statement . . . . . . ... .. ... 208
7.1.2 Properties of the System . . . . . ... .. ... ... ... .. 208
7.2 FINDING AN INITIAL SOLUTION . . .. ... ... ... ..... 213
7.3 FINDING AN IMPROVED BASIC SOLUTION . .. ... ... .. 214
7.4 DEGENERACY IN THE TRANSPORTATION PROBLEM . . . . . 216
7.5 TRANSSHIPMENT PROBLEM . . ... ... ... ......... 219
7.5.1 Formulation . . . . ... .. Lo 219

7.5.2 Reduction to the Classical Case by Computing Minimum Cost
Routes . . . . . . . . . 222

7.5.3 Reduction to the Classical Case by the Transshipment Pro-
cedure . . . ... 222

7.6 TRANSPORTATION PROBLEMS WITH BOUNDED PARTIAL
SUMS . . . e e 225
7.7 NOTES & SELECTED BIBLIOGRAPHY . . . . .. .. ... .... 227
7.8 PROBLEMS . .. .. . .. .. 228



xii CONTENTS
8 NETWORK FLOW THEORY 231
8.1 THE MAXIMAL FLOW PROBLEM . . . . . ... .. ... ..... 232
8.1.1 Decomposition of Flows . . . . .. ... .. ... .. ..... 233
8.1.2 The Augmenting-Path Algorithm for Maximal Flow . . . . . 234
81.3 CutsinaNetwork . . .. ... ... ... ... . ....... 239
8.2 SHORTEST ROUTE. . . .. .. .. . ... . . 241
8.3 MINIMUM COST-FLOW PROBLEM . . ... ... ... ...... 242
8.4 NOTES & SELECTED BIBLIOGRAPHY . . . . .. ... ... ... 243
8.5 PROBLEMS . . . . . .. . e 245
9 GENERALIZED UPPER BOUNDS 251
9.1 PROBLEM STATEMENT . .. .. ... ... ... ... . ..... 251
9.2 BASIC THEORY . . . . . . . .. e 253
9.3 SOLVING SYSTEMS WITH GUB EQUATIONS . . . . .. ... .. 253
9.4 UPDATING THE BASIS AND WORKING BASIS . . . . ... ... 257
9.5 NOTES & SELECTED BIBLIOGRAPHY . . . . . .. .. ... ... 264
9.6 PROBLEMS . . . . . .. .. . st 264
10 DECOMPOSITION OF LARGE-SCALE SYSTEMS 265
10.1 WOLFE’S GENERALIZED LINEAR PROGRAM . . .. ... ... 267
10.2 DANTZIG-WOLFE (D-W) DECOMPOSITION PRINCIPLE . . . . 280
10.2.1 D-W Principle . . . . . . . .. ... 284
10.2.2 D-W Decomposition Algorithm and Variants . . . . .. ... 289
10.2.2.1 The D-W Algorithm . . . . .. ... ... ... ... 289
10.2.2.2 Variants of the D-W Algorithm . . . . . . ... ... 290
10.2.3 Optimality and Dual Prices . . . . . .. .. .. .. ... ... 290
10.2.4 D-W Initial Solution . . . . . . ... ... ... ... .. ... 291
10.2.5 D-W Algorithm Illustrated . . . . . .. ... ... ... ... 292
10.3 BENDERS DECOMPOSITION . . . . . ... .. ... ... ..... 299
10.3.1 Dual of D-W Decomposition . . . .. ... ... ... .... 299
10.3.2 Derivation of Benders Decomposition . . . .. .. ... ... 300
10.4 BLOCK-ANGULAR SYSTEM . . . ... ... .. ... ...... 306
10.5 STAIRCASE STRUCTURED PROBLEMS . . ... ... ... ... 308
10.5.1 Using Benders Decomposition . . . . . . . ... .. ... ... 309
10.5.2 Using D-W Decomposition . . . . .. ... .. .. ... ... 310

10.5.3 Using D-W Decomposition with Alternate Stages Forming the
Subproblems . . . . ... ... L 312
10.6 DECOMPOSITION USED IN CENTRAL PLANNING . ... ... 313
10.7 NOTES & SELECTED BIBLIOGRAPHY . . . . . ... ... .... 315
10.8 PROBLEMS . . . . . . . 317



CONTENTS xiii

11 STOCHASTIC PROGRAMMING: INTRODUCTION 323
11.1 OVERVIEW . . . . . . e 324
11.2 UNCERTAIN COSTS . . . .. . . . e 326

11.2.1 Minimum Expected Costs . . . . . . . .. .. ... ... ... 326
11.2.2 Minimum Variance . . . . . . . . . . . .. .. ... ... ... 327
11.3 UNCERTAIN DEMANDS . . . . . . . . . ... ... 329
11.4 NOTES & SELECTED BIBLIOGRAPHY . . . . .. .. .. ... .. 332
11.5 PROBLEMS . . . . . . . e 332

12 TWO-STAGE STOCHASTIC PROGRAMS 335

12.1 THE DETERMINISTIC TWO-STAGE LP PROBLEM . . ... .. 335

12.2 THE ANALOGOUS STOCHASTIC TWO-STAGE LP PROBLEM . 336
12.3 LP EQUIVALENT OF THE STOCHASTIC PROBLEM (EQ-LP) . 337

12.3.1 LP Equivalent Formulation . . . .. .. ... .. ... .... 337
12.3.2 Geometric Description of Benders Decomposition Algorithm . 338
12.3.3 Decomposition Algorithm . . . . . ... ... ... ... ... 341
12.3.4 Theory behind the Algorithm . . . . . .. .. ... ... ... 348

12.4 SOLVING STOCHASTIC TWO-STAGE PROBLEMS USING SAM-
PLING . . . . e 349
12.4.1 Overview . . . . . . . o i 349
12.4.2 Naive Sampling . . . . . . . ... .. o 350
12.4.3 Sampling Methodology . . . . . . .. . .. ... ... ... .. 351
12.4.4 Estimating Upper Bound z,, for Min z given . = 2% . . . . . 351
12.4.5 Estimating Lower Bound z, , for Min 2 . . . . ... ... .. 352
12.5 USE OF IMPORTANCE SAMPLING . . . ... .. ... ...... 354
12.5.1 Crude (Naive) Monte Carlo Methods . . . . . .. .. ... .. 355
12.5.2 Monte Carlo Methods using Importance Sampling . . . . . . 356
12.6 NOTES & SELECTED BIBLIOGRAPHY . . . . .. .. .. .. ... 360
12.7 PROBLEMS . . . . . . . e 362
A PROBABILITY THEORY: OVERVIEW 367
A.1 BASIC CONCEPTS, EXPECTED VALUE, AND VARIANCE . . . 367

A.2 NORMAL DISTRIBUTION AND THE CENTRAL LIMIT THEO-
REM . . . . o e 370

A.3 CHI-SQUARE DISTRIBUTION, STUDENT’S ¢-DISTRIBUTION,
AND CONFIDENCE INTERVALS . . . . . .. .. ... ... .... 373
A.3.1 Chi-Square Distribution . . . . . .. ... ... ... ... .. 373
A.3.2 Student’s t-Distribution . . . . . ... ... L0 375
A.3.3 Confidence Intervals . . . . ... ... ... ... ....... 376
A.4 NOTES & SELECTED BIBLIOGRAPHY . . . . .. .. ... ... .. 377
REFERENCES 379

INDEX 439



This page intentionally left blank



List of Figures

1-1 Vector (z1,m2)T . . o o oo 2
1-2 Examples of Two-Dimensional Convex Regions . . . .. .. ... .. 3
1-3 Additional Examples of Two-Dimensional Convex Regions . . . . . . 3
1-4 Example of an Unbounded Two-Dimensional Convex Set and an
Unbounded Three-Dimensional Convex Set . . . ... ... ... .. 4
1-5 Examples of Two-Dimensional Nonconvex Regions . . . . . . .. .. 4
1-6 Points Common to Convex Sets . . . . . . . . .. .. ... ...... 5
1-7 Example of a Line Segment . . . . . .. . ... ... ... ... ... 6
1-8 A Three-Dimensional Simplex . . . . . . . ... ... .. ... .... 13
1-9 Local and Global Minima . . . . . . ... ... ... ......... 14
1-10 Extreme Points . . . . . .. ..o o 15
1-11 Joining Extreme Points . . . . . .. .. .. L0000 18
1-12 Geometrically the Iterates of the Simplex Algorithm Move Along the
Edges of the Convex Set . . . . . . . ... ... .. ... ....... 21
1-13 Geometric Picture of the Distance of a Point to a Boundary . . . . . 22
1-14 Movement of 6 . . . . . .. .. oL 24
1-15 Geometrically a Linear Program is a Center-of-Gravity Problem . . 26

1-16 Simplex Associated with an Iteration of the Simplex Algorithm (m = 2) 27
1-17 Geometry of the Simplex Algorithm for the Product Mix Problem . 28
1-18 Simplex Associated with an Iteration of the Simplex Algorithm (m = 3) 30

1-19 Hyperplane H; and Simplex S . . . . . ... ... ... ... .... 40
2-1 Tlustration of the Duality Gap . . . . . .. ... ... ... .... 45
2-2 Find Basic Feasible Solutions of Dual of Two Variable Primal . . . . 63

3-1 The Two-Dimensional Center-of-Gravity Problem: Find a Simplex

that Contains the Origin . . . . . . . .. .. ... ... ... .. 73
3-2 Finding an Improved Approximation . . . . . .. .. .. .. ... .. 74
3-3 Convergence under Existenceof aBall 5. . . . . ... ... ... .. T
3-4 Degenerate Two-Dimensional Case . . . . . . ... ... ... .... 79
3-5 Decreasing z! to Improve the Rate of Convergence . . . . .. .. .. 81
3-6 Ellipsoid Centered at (1,2) . . .. . ... ... ... .. ....... 86
3-7 Ellipsoid Subproblem Centered at y* . . . . .. ... ... ...... 87

XV



xvi

FIGURES

3-8 Comparison of a Move from a Point £ Near the “Center” Versus a
Point #' Near the Boundary . . . . . . .. .. ... ... ....... 101
3-9 Bound for éTy!*tt .. 105
4-1 Barrier Function Method: Approach of 2 (u) to 2* . . . . . . .. .. 129
7-1 Network Representation of the Transportation Problem . . .. ... 209
7-2 Example of Standard Transportation Array . . . .. ... ... ... 209
7-3 Cycling in the Transportation Problem . . . . . . . . ... ... ... 216
7-4 Perturbing the Transportation Problem . . . . .. .. ... .. ... 217
7-5 Example of a Standard Transshipment Array . . ... ... ... .. 219
7-6 The Transshipment Problem . . . . . . . . ... ... .. .. ..... 221
8-1 A Simple Directed Network . . . . . . ... ... ... ... ..... 232
8-2 Decomposition of Flows . . . ... .. ... ... ... 234
8-3 Original Network and Associated Network with @ Flow . . . . . . . . 236
8-4 Example to Show Matching . . . . .. ... ... ... L. 245
8-5 Data for a Max-Flow Problem . . . . . .. ... ... ... .. .... 246
10-1 Illustration of the Resolution Theorem . . . . . . . . . ... ... .. 283

12-1 Benders Decomposition Applied to EQ-LP . . . . . ... .. .. ... 339



List of Tables

2-1 Tucker Diagram (Partitioned) . . . . .. . ... ... ... ... ...

5-1 Hoffman’s Example of Cycling (Continued on the Right) . . . . . . .
5-2 Hoffman’s Example of Cycling (Continued from the Left) . . . . ..
5-3 Beale’s Example of Cycling . . . . ... ... ... ... .......
5-4 Inductive Method and Wolfe’s Rule Applied to Beale’s Example . . .

6-1 Primal-Dual Correspondences . . . . . . . . .. ... .. .. .....
6-2 Primal-Simplex and Dual-Simplex Methods . . . . . .. .. ... ..

9-1 An Example of GUB Constraints and Key Basic Variables . . . . . .
9-2 An Example of a Reordered Basis for GUB Constraints . . . . . . .

12-1 Data for the Grape Grower’s Dilemma . . . . . . .. .. .. .. ...
12-2 Data for Dinner Set Production Schedule . . . .. ... .. .. ...

xvii



This page intentionally left blank



PREFACE

Linear Programming 2 continues where Linear Programming 1 left off. We assume
that the reader has an introductory knowledge of linear programming, for example
has read Linear Programming 1: Introduction (or its equivalent) and has knowledge
of linear algebra (reviewed in the appendices in Linear Programming ). In this
volume, we prove all theorems stated and those that were sketched but not proved
in Linear Programming 1, and we describe various extensions.

Linear Programming 2 is intended to be an advanced graduate text as well as
a reference. Portions of Linear Programming 1 and Linear Programming 2 have
been used in a graduate-level course that we have taught together. The rest of the
discussion here summarizes the contents of this volume.

OUTLINE OF CHAPTERS

Chapter 1 (Geometry): In this chapter we study the geometry and properties
of linear inequality systems and how they are related to the Simplex Method,
which can be described as a movement along the edges of a convex polyhedral
set to obtain a global minimum of the objective function, generate a class
of feasible solutions for which the objective z — —oo, or determine that
the convex polyhedral set is infeasible. The important separating hyperplane
concepts are also discussed and proved.

Chapter 2 (Duality and Theorems of the Alternatives): We provide proofs
for the Weak and Strong Duality Theorems. This is followed by additional the-
orems on duality; that is, the Unboundedness Theorem and the Primal/Dual
Optimality Criteria. The chapter also discusses complementary slackness and
various Theorems of the Alternatives: Gordan’s Theorem, Farkas’s Lemma,
Stiemke’s Theorem, Motzkin’s Transposition Theorem, Ville’s Theorem, and
Tucker’s Strict Complementary Slackness Theorem.

Chapter 3 (Early Interior-Point Methods): In this chapter we trace the early
development of interior-point methods. The earliest known method is that
attributable to von Neumann [1948], followed by Frisch [1957] (only referenced
here), and Dikin [1967]. A theoretical breakthrough was due to Khachian
[1979] who devloped a polynomial-time ellipsoid algorithm (only referenced

Xix
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here). This was followed by Karmarkar’s [1984] polynomial-time interior-point
algorithm.

Chapter 4 (Interior-Point Methods): Since the development of Karmarkar’s
[1984] algorithm several new important practical interior-point algorithms
emerged. Among these are the primal logarithmic barrier method, primal-
affine algorithm, dual logarithmic barrier method, dual-affine algorithm, and
the primal-dual algorithm. All these algorithms are described. The optimal
solution obtained by an interior-point method is not necessarily at a vertex;
we describe a technique to make it into a vertex.

Chapter 5 (Degeneracy): When degeneracy occurs, it is possible for the Sim-
plex Algorithm to have an infinite sequence of iterations with no decrease
in the value of z. The chapter illustrates this with examples due to Hoff-
man, Beale, and Kuhn. Then various methods for resolving degeneracy are
presented: Dantzig’s Inductive Methods, Wolfe’s Rule, Bland’s Rule, and Kr-
ishna’s Extra Column Rule. This is followed by a technique that attempts
to avoid degenerate pivot by making use of an extra objective function and
resultant reduced cost calculation.

Chapter 6 (Variants of the Simplex Method): Over the years several vari-
ants of the Simplex Algorithm have been proposed as a way to reduce the
number of iterations. We start by describing an efficient way of determin-
ing an incoming column that yields the maximum improvement per iteration.
Next we describe the Dual-Simplex Method, Parametric Linear Programming,
Self-Dual Parametric Algorithm, Primal-Dual Algorithm, and a Phase I Least-
Squares Algorithm.

Chapter 7 (Transportation Problem and Variations): The Classical Trans-
portation Problem is stated, and various theorems are proved about it. An
example is provided for cycling under degeneracy when the most negative
reduced cost is used to select an incoming column. This is followed by a
discussion of the Transshipment Problem and transportation problems with
bounded partial sums.

Chapter 8 (Network Flow Theory): Theorems are proved about the Maximal-
Flow problem and the Shortest-Route problem.

Chapter 9 (Generalized Upper Bounds): In this chapter we discuss a varia-
tion of the Simplex Algorithm to efficiently solve linear programs that have
upper bounds on subsets of variables such that each variable appears in at
most one subset. Such constraints are called generalized upper bounds.

Chapter 10 (Decomposition): Decomposition is a term to describe breaking a
problem into smaller parts and then using a variant of the Simplex Algo-
rithm to solve the enire problem efficiently. The chapter starts by describing
Wolfe’s Generalized Linear Program (or a linear program with variable coef-
ficients). The Dantzig-Wolfe Decomposition Principle is described for solving
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this class of problems. This is followed by a description of Benders Decomposi-
tion which is the Dantzig-Wolfe Decomposition applied to the dual. Benders
Decomposition is used to solve Stochastic Programs. Next we describe the
application of Dantzig-Wolfe Decomposition to solving of Block-Angular sys-
tems. Then staircase structured problems are described; we show how to
solve such problems using Dantzig-Wolfe Decomposition and Benders Decom-
position. Finally, the possible use of decomposition to solve central planning
problems is described.

Chapter 11 (Stochastic Programming Introduction): Here we introduce the
concept of planning under uncertainty. Simple problems with uncertain de-
mand and uncertain costs respectively are illustrated. This is followed by a
discussion of the convexity property of multi-stage problems.

Chapter 12 (Two-Stage Stohastic Programs): An important class of optimi-
zation problems arise in dynamic systems that describe activities initiated at
time ¢ that have coefficients at time ¢ and time ¢ 4+ 1. Such problems, called
dynamic linear programs, typically have a nonzero submatrix with a staircase
structure. The simplest dynamic linear program has only two stages; this is
discussed in this chapter.

Appendix A (Probability Theory Overview): In this appendix we introduce
some basic concepts and notation of probability theory for use in solving
stochastic linear programs.

LINEAR PROGRAMMING 1.

In a graduate course that we have taught together at Stanford, portions of Linear
Programming 1: Introduction and Linear Programming 2: Theory & Extensions
have been used.

Professor George B. Dantzig Dr. Mukund N. Thapa
Stanford, California Palo Alto, California
USA USA
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DEFINITION OF
SYMBOLS

The notation described below will be followed in general. There may be some
deviations where appropriate.

e Uppercase letters will be used to represent matrices.
e Lowercase letters will be used to represent vectors.
e All vectors will be column vectors unless otherwise noted.

e Greek letters will typically be used to represent scalars.

R — Real space of dimension n.

c —  Coefficients of the objective function.

A —  Coefficient matrix of the linear program.

B — Basis matrix (nonsingular). It contains the basic
columns of A.

N — Nonbasic columns of A.

x —  Solution of the linear program (typically the current

one).
Zg — Basic solution (typically the current one).
Ty — Nomnbasic solution (typically the current one).
(z,9) — The column vector consisting of components of the

vector x followed by the components of y. This helps
in avoiding notation such as (z7, yT).

L — Lower triangular matrix with 1s on the diagonal.

U — Upper triangular matrix (sometimes R will be used).

R — Alternative notation for an upper triangular matrix.

D — Diagonal matrix.

Diag (d) — Diagonal matrix. Sometimes Diag (dy,da,... ,d,)
will be used.

D, — Diag(x).

1 — Identity matrix.

xxiii



xxiv DEFINITION OF SYMBOLS
€; jth column of an identity matrix.

e Vector of 1s (dimension will be clear from the
context).

E; Elementary matrix (jth column is different from the
identity).

[[v]] The 2-norm of a vector v; i.e., ||[v||2 = VvTov.

[[v]]1 The 1-norm of a vector v; i.e., |[v|[1 = > i, |vil.

[1V]] 00 The oo-norm of a vector v; i.e.,
|[v]]oo = maxi=1,....n |vi].

[|A]| The 2-norm of an m x n matrix A4; i.e.,
1All2 = /Aonax (ATA).

[|A|l1 The 1-norm of an m x n matrix A; i.e.,
1Al = maxj—1,...n 227 i)

[|A]] oo The co-norm of an m x n matrix A; i.e.,

[A]loo = maxi=1,..,m Y5, |aijl-

det (A) Determinant of the matrix A.

Adj jth column of A.

Ao ith row of A.

Bt The matrix B at the start of iteration t.

Blt] Alternative form for the matrix B?.

B Update from iteration ¢ to iteration ¢ + 1.

B! Element (i,j) of B~1.

XcyY X is a proper subset of Y.

XCY X is a subset of Y.

XUY Set union, that is, the set {w | w € X orw € Y}.

XxXny The set {w |w e X and w € Y}.

X\Y Set difference, that is, the set {w |w € X,w ¢ Y}

0 Empty set.

| Such that. For example, { z | Az < b} means the set
of all z such that Az < b holds.

a” A scalar raised to power n.

(A A square matrix raised to power n.

AT Transpose of the matrix A.

> Approximately equal to.

> (LK) Much greater (less) than.

= (<) Lexicographically greater (less) than.

— Store in the computer the value of the quantity on
the right into the location where the quantity on the
left is stored. For example, x «— x + ap.

O(v) Implies a number < kv, where k, a fixed constant

independent of the value of v, is meant to convey
the the notion that k is some small integer value less
than 10 (or possibly less than 100) and not something
ridiculous like k = 10190,
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argmin, f(z) — The value of x where f(z) takes on its global min-
imum value.

argmin,; 3; —  The value of the least index i where (3; takes on its
minimum value.

LP — Linear program.

sign () — The sign of a. It is +1 if @ > 0 and —1 if a < 0.
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CHAPTEHR ]_

GEOMETRY OF LINEAR
INEQUALITY SYSTEMS &

THE SIMPLEX METHOD

In this chapter we study the geometry and properties of linear inequality systems
and how they are related to the Simplex Method, which can be described as a
movement along edges of convex polyhedral sets to obtain a global minimum of
the objective function, generate a class of feasible solutions for which the objective
z — —00, or determine that the convex polyhedral set is infeasible.

1.1 CONVEXITY AND LINEAR
INEQUALITY SYSTEMS

We denote x € R™ to be either a point or a vector in n-dimensional space. As
a vector it is a directed straight line segment formed by joining the origin to the
point whose coordinates are (x1,%2,...,2, ). This is shown in Figure 1-1 for a
two-dimensional space.

Let o be a scalar. Then ax is the vector obtained by continuing, in the same
direction as z, a distance |« ||z|| if & > 0. On the other hand, if & < 0 then ax is
the vector obtained by continuing a distance |« ||z|| in the opposite direction of .

1.1.1 AFFINE AND CONVEX COMBINATIONS

A linear combination of k vectors z', 22, ... ¥ is

=12 + ax® + -+ apa® (1.1)

1
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Z2

T

Figure 1-1: Vector (z1,z2)7

where «; are real numbers. In Linear Programming 1, the set of all such linear
combinations was defined as a vector subspace generated by z*, 2%, ... ¥, If a; >0
for all j, then (1.1) is called a nonnegative linear combination.
Definition: An affine combination of !, 22,... , z¥ is:
z=a1z! + asz? + -+ apzh, (1.2)

where «; are real numbers that satisfy Z?Zl o = 1.

Definition (Affine Hull): The set of all such affine combinations (1.2) is called

the affine hull of z*,22,... 2.
Definition: A convez combination of vectors z!,22,... ,z¥ is:
z =z + asa® + -+ apa”, (1.3)

where o; > 0 are real numbers that satisfy Z?=1 o = 1.

Definition (Convezity Constraint): The condition
o+ ag+ - ap =1, a; >0, forj=1,... .k (1.4)
is called a convexity constraint on the «;.

Definition (Convexr Hull): The set of all such convex combinations (1.3) is

called the convex hull of z',22,... ,z".

> Exercise 1.1  Show that the convex hull C of a subset of R" has the property that every
convex combination of a convex combination of points in C is also in C.
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[ |
1 Nzx 1
1+ 19 =2

Figure 1-2: Examples of Two-Dimensional Convex Regions

(a) (b) ()

Figure 1-3: Additional Examples of T'wo-Dimensional Convex Regions

1.1.2 TWO-DIMENSIONAL CONVEX REGIONS

We begin by giving some simple examples of convex regions. The set of points
(21, x2) satisfying the relation
T +a2>2 (1.5)

consists of a region in two-dimensional space on one side of the line (see Figure 1-2):

1+ x2 = 2. (1.6)

This is an example of a convex region, or, what is the same thing, a convex set
of points. The region defined by the shaded area between two vectors indefinitely
extended (see Figure 1-2) is also a convex set. Various other examples of convex
regions in two dimensions can be constructed. For example, the region inside the
rectangle (Figure 1-3a), the circle (Figure 1-3b), or the polygon (Figure 1-3¢); but
not the L-shaped region in Figure 1-5. Examples of convex regions in three dimen-
sions are the volumes inside a cube and inside a sphere. Note that the latter regions
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Extreme point

Extreme point

\

< Extreme half-line

=

Extreme half-line

Figure 1-4: Example of an Unbounded Two-Dimensional Convex Set and an
Unbounded Three-Dimensional Convex Set

Figure 1-5: Examples of Two-Dimensional Nonconvex Regions

may include or exclude the boundary; sometimes they may include or exclude parts
of the boundary. The regions may be bounded in extent or unbounded. Exam-
ples of unbounded two-dimensional and three-dimensional convex sets are shown in
Figure 1-4.

Definition (Convex Set): A set of points is called a convex set if all points on
the straight line segment joining any two points in the set belong to the set.

> Exercise 1.2  Show that in the case of a sphere any part of the boundary may be
included or excluded without affecting the convexity of the region. Show that this is not
necessarily true for a cube.

Clearly not all regions are convex; for example, neither of the two sets of points
depicted by the shaded regions in Figure 1-5 is convex. The L-shaped region of
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Figure 1-6: Points Common to Convex Sets

Figure 1-5 is not convex because it is possible to find two points, say p and ¢, in
the set such that not all points on the line joining them belong to the set.

Definition: A closed convex set is one that includes its boundaries.

For example, a circle and its interior is a closed convex set; the interior of a circle
is a convex set, but it is not closed.

Note that the region common to the two circles in Figure 1-6 is convex, as is the
set of points belonging to the intersection of two or more regions defined by linear
inequalities (see Figure 1-6).

Exercise 1.3 Prove that the set of points common to two or more convex sets is convex.

1.1.3 LINE SEGMENTS, RAYS, AND HALF LINES

Definition: The line segment joining two points, p and ¢, with coordinates
(p1,p2,--.,0n) and (q1,q2,...,qn ), respectively, in n-dimensional space is
all points  whose coordinates are

x1 P1 q1
x2 D2 q2

=x| T +a=-N] (1.7)
In Pn qn

where ) is a parameter such that 0 < A < 1. Clearly all the convex combina-
tions of two points is a line segment joining them.

Example 1.1 (Line Segment) Consider the points p = (p1,p2) and ¢ = (¢1, ¢2) in two-
dimensional space: p = (1,2) and g = (5,4). The line segment joining p and q is displayed
in Figure 1-7. Next consider the point x, with coordinates (z1,z2). By definition, if = is
to be on the line segment joining p and ¢, then its components (x1,x2) satisfy:

1 =M1 + (1=XNg = 1A +5(1—-X) = —4\ + 5
z2 = Ap2 + (1—A)g2 = 22X + 4(1—X) = —2) + 4.

(1.8)
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x2

7 q:(5a4)

1 //x: (—4A +5,—2) + 4)

Figure 1-7: Example of a Line Segment

For example, let A\ = 1, then 1 = 1 and x2 = 2 and the point z is point p. Likewise let
A = 0, then x = g. For other X values (0 < A < 1) we get all points between p and q.
For example, when the parameter A = %, the coordinates of z become z1 = 3 and 2 = 3,
which is the point midway between p and q.

Exercise 1.4 Obtain the linear relationship between x1 and x2 by eliminating the
parameter A in Equation (1.8).

Definition (Ray and Half-Line): Let x,p,q € R™ and let § > 0. The ray
generated by ¢ € R" is the set of points { z | = f¢ } as the scalar parameter
0 varies from 0 to +0o. A half-line anchored at p € R™ is the set of points
{z | * = p+ 0q} as the scalar parameter 6 varies from 0 to +oo. It is
straightforward to see that every ray contains the origin and every half-line is
a translation of a ray.

Exercise 1.5 Show the set of points generated by a ray is convex. Graph the half-line
anchored at p = (1,1, 1) with the ray generated by ¢ = (1,1, 1).

1.1.4 GENERAL CONVEX REGIONS

In linear programming we will be dealing with linear inequalities involving many
variables, so it will not be possible to visualize the solution as a point in many
dimensions. Accordingly we must be able to demonstrate algebraically whether or
not certain sets are convex. The definition of a convex set requires that all points
on a straight line segment joining any two points in the set belong to the set.

With the definition of a line segment, Equation (1.7), it is often easy to determine
whether a given set is convex. For example, consider the region R defined by all
points whose coordinates satisfy

1+ 10 > 2. (1.9)
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To prove that this region is convex, let p = (p1,p2) and ¢ = (g1, ¢2) be any two
points in R. For p and ¢ to be in R their respective coordinates must satisfy (1.9),
whence

pL+p2 =2

q + g2 = 2. (1.10)

Then the coordinates (z1,x2) of an arbitrary point z, on the segment joining p to
q, are found by forming a convex combination of the coordinates of the two points,
that is,

z=Xp+(1—N)g (1.11)

where A is the ratio of the distance xq to pq.
To prove convexity for (1.9) we wish to show that x lies in R, which means its
coordinates should satisfy x1 + 2 > 2, or we need to show that

14 o= [Ap1+ (1= Nar] + [Ap2 + (1 = Nge] > 2. (1.12)

To prove this we multiply the first inequality of (1.10) by A > 0 and the second, by
1>1—X>0 to obtain

Ap1 + Apa > 2),
(T=Na + (1=XNg2 > 2(1 - A).

When added together, these two inequalities result in (1.12), which establishes
algebraically the convexity of R.

1.1.5 HYPERPLANES AND HALF-SPACES

Definition (Hyperplane): In n dimensions, the set of points x € R™ whose

coordinates (1, 2,... ,x, ) satisfy a linear equation
a1r1 + asxo + -+ apxy, =b (1.13)
where, for j = 1,...,n, at least one a; # 0, is called a hyperplane. More

precisely, it is an (n — 1)-dimensional hyperplane.

Definition (Independence of Hyperplanes): A system of hyperplanes is inde-
pendent if there exist no affine combination of the hyperplanes that results in
Oz = 0.

Definition (Dimension of Hyperplane Intersection): The intersection of p
independent hyperplanes in R" is called an (n — p)-dimensional hyperplane.

A k-dimensional hyperplane Hy, is called k-dimensional because we can choose

any point x° that lies on H; and find k independent vectors v',v?,...,v* such
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that 2° 4+ v7 lies in H},; moreover, it is easy to prove that all points € Hj, can be

represented as
k
x° + E Ajv?
j=1
for some chosen J;.

> Exercise 1.6 In the hyperplane (1.13), assume that a1 # 0. Choose a point z° on the
hyperplane and show how to find n — 1 independent vectors v, v?, ... ,v" ! such that the
point x° + Z?:_ll A;v? lies on the hyperplane for any choice of A\j, j=1,...,n— 1.

> Exercise 1.7  Choose any point 2° on the k-dimensional hyperplane Hy and prove that
there are k independent vectors v',v?, ... , v® such that such that the point m°+25=1 Ajv7
lies on the hyperplane for any choice of A;, j =1,... k.

> Exercise 1.8 Show that the lowest-dimensional intersection of hyperplanes containing
a set of points in R™ is a subset of the vector subspace formed by the same set of points.
Illustrate this in two dimensions.

> Exercise 1.9 Show that a straight line is the lowest-dimensional hyperplane containing
any two distinct points on it.

Definition (Half-Space): The set of points x € R whose coordinates satisfy
a linear inequality such as

a1, + asTo + -+ anxy, < b (1.14)

is called a half-space or, to be precise, a closed half-space because we include
the boundary. In two dimensions it is called a half-plane, and in one dimension
it is a half-line.

1.1.6 CONVEXITY OF HALF SPACES AND
HYPERPLANES

To prove the half-space defined by a linear inequality is convex, let p and ¢ be any
two points in the set, so that

alp (1.15)
(1.16)
Let 0 < A <1 be the value of the parameter associated with an arbitrary point z
on the line segment joining p to ¢; see (1.7). Multiplying (1.15) by A > 0 and (1.16)
by (1 — A) > 0 and adding, one obtains

INIA

a Tq

a p+a’(1-Ng<b (1.17)
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whence, factoring a’ and substituting z = A\p + (1 — \)q,
a’z < b. (1.18)

Hence, an arbitrary point x on the line segment joining any two points lies in the
half-space, establishing convexity.
To prove that a hyperplane is convex, let (1.13) be written as

b
" (1.19)

IV IA

alz
alx

Each of these inequalities defines a half-space, and their intersection defines a hy-
perplane. Since a half-space is a convex set, then, by Exercise 1.3 on Page 5, a
hyperplane is also a convex set. An m-dimensional space may contain many such
convex sets. By Exercise 1.3, the common intersection of two or more of these
convex sets is a convex set.

1.1.7 CONVEXITY OF THE SET OF FEASIBLE
SOLUTIONS OF AN LP

THEOREM 1.1 (Set of Feasible Points for an LP is Convex) The set of
points corresponding to feasible (or optimal feasible) solutions of the general linear
programming problem constitutes a conver set.

Exercise 1.10 Prove Theorem 1.1.

Thus, if p = (p1,p2; ... ,Pn, 2p) is a feasible solution and ¢ = (g1, 2, - - - , gn, 7q)
is another, the weighted linear combination of these two feasible solutions,

x=Ap+ (1-Ng, (1.20)

where A is a constant, 0 < A < 1, is also a feasible solution. Moreover, assigning
a fixed value for z, say z = zy, the set of points satisfying ¢’z = 2z and Az = b,
x > 0 is also a convex set. In particular, setting zp = min z, it is clear that the set
of minimal feasible solutions is also a convex set.

1.1.8 CONVEX POLYHEDRONS, POLYTOPES, AND
CONES

Definition (Convexr Polyhedron): A convex polyhedron is the set of points
common to one or more half-spaces.

Definition (Convex Polytope): A convex polyhedron that is bounded is called
a convez polytope.



10 GEOMETRY OF LINEAR INEQUALITY SYSTEMS ¢ THE SIMPLEX METHOD

Definition (Convex Polygon): A convex polygon is a two-dimensional convex
polytope.

> Exercise 1.11  Prove that for the intersection of a set of half-spaces in ®" to be bounded
it is necessary (but not sufficient) that their number must be n+1 or more. For the feasible
set for a linear program Az = b, z > 0, A € R™*" to be bounded, must m bear a special
relation to n?

> Exercise 1.12 Show that the set of optimal feasible solutions to a linear program is a
convex polyhedron.

> Exercise 1.13 Show that the convex combination of the set of optimal feasible solutions
to a linear program is a convex polytope.

Definition (Cone): A subset K C R™ is a cone if and only if € K implies
that ax € K for all @ > 0. In other words, K is a cone if and only if the ray
generated by any point in the cone lies entirely in the cone. A convex cone is
a cone that is also a convex set.

> Exercise 1.14  Construct an example to show that a cone in general need not be convex.

> Exercise 1.15 Prove that a cone is convex if and only if it contains every nonnegative
linear combination of any finite number of points in it.

> Exercise 1.16  Show that a convex cone is formed by the set C' of all points b =
(b1,b2,...,bm ) generated by all choices of z > 0 in the expression

Ax =b.

Definition (Convexr Polyhedral Cone): A convex polyhedral cone is a convex
cone K that is the intersection of a finite number of half-spaces, each of which
contains the origin.

Definition (Simplicial Cone): A simplicial cone of dimension m is defined to

be:
m
S = {b‘b:Zaipi; «; 20f01ri:1,...,m}7
i=1
where {p1,p2,... ,pm} are linearly independent.

> Exercise 1.17  Show that {b | b= Z:’:{l a;pi; o >0fori=1,...,m+ 1} in R™ is
not a simplicial cone.
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1.1.9 SEPARATING HYPERPLANE

An important property of convex regions is the concept of separating hyperplanes
and supporting hyperplanes.

Definition (Separating Hyperplane): Let C; and Cy be two convex sets in R™.
A hyperplane
aTr =5
with
aTu > 3 forallueC;
aTv < for all v € Co,

is called a separating hyperplane. It separates the convex set C; from the
convex set Co.

Definition (Supporting Hyperplane): Given a convex set C in R”, a hyperplane
alz = 3, is called a supporting hyperplane if all z € C satisfy o’z > 3 (or if
all z € C satisfy o’z < 3), with equality holding for at least one x € C.

LEMMA 1.2 (Separating Hyperplane for Half-Spaces) Let

C1:{$‘2a11$]2b1, Z:].,,k'} (121)
j=1

czz{x‘zaijszbi, i:k+1,...,m} (1.22)
j=1

be disjoint convex sets. Then there exists a separating hyperplane that separates Cq
from Cs.

Proof. By the hypothesis the combined set of inequalities that define C; and
Cs are infeasible. By the Infeasibility Theorem (see Linear Programming 1), there

exist nonnegative multipliers 71, mo, . . . , T, on the inequalities in C; and nonnegative
multipliers 741, Tkt2, ... , Tm on the inequalities in Coy so that
k m
Zﬂ'iaij—i- Z maijzo forj=1,....,n (1.23)
i=1 i=k+1
implying

k m
Zm—aij:f Z T Qg fOI'j:].,...,TL (124)
i=1 i=k+1

and

k
i—1

i=k+1
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implying
k m
> mibi+ Y mbi=06>0. (1.26)
i=1 i=k+1
Choosing any € > 0 and 1 > 0 such that § = € + 7, we rewrite this last equation as

k m
Zﬂ'ibi — €= — Z wib; + 1. (1.27)
i=1 i—ht1

Note that multiplying the inequalities in C; by m; > 0,4 =1,..., k, and summing

we obtain
n k

ZZwiaijxj 2 Zﬂ—zbz (128)

i=1 j=1 i=1
Clearly, subtracting € > 0 from the right-hand side and rearranging the summations
results in the strict inequality

n k k
Z <Z 71'“1@') T; > Zﬂ—zbz — € (129)
j=1 \i=1 i=1

which holds for all x € C;. Similarly, multiplying the inequalities in Cy by ;,

i=k+1,...,m, and summing we obtain
m n m
Z Zm—aijxj 2 Z 7T1b2 (130)
i=k+1 j=1 i=k+1

Clearly, multiplying by —1 and adding n > 0 on the right hand side, and rearranging
the summations, results in the strict inequality

i (‘ f: 771‘%‘) Tj < <— i 7Tibi> + 1. (1.31)

=1 i=k+1 i=k+1

Substituting (1.24) and (1.27) into (1.31) we obtain

n k k
> (Z Wz'%) Tj <Y mibi—e (1.32)

which holds for all z € C;. Hence we have constructed a separating hyperplane
defined by (1.29) and (1.32) which is:

n k k
Z (Z 771‘%‘) Tj = Zﬂ'ibi —¢ (1.33)

i=1
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N

Figure 1-8: A Three-Dimensional Simplex

2

> Exercise 1.18  Show that (1.33) is a separating hyperplane for any choice of 0 < € < §
that strictly separates C1 from Ca. If € = 0 it is a supporting hyperplane for C; but not for
Co, and if € = § it is a supporting hyperplane for C2 but not for C;.

THEOREM 1.3 (Separating Hyperplane for General Convex Sets) If
two convex sets C1 and Co in R™ are disjoint, there exists a separating hyperplane
that separates C1 from Cs.

Proof. Find a point 2! € C; that is closest to the points in Cs and find a point

22 € C, that is closest to the points in C;. Because the convex sets are disjoint

we can pick any point z° on the closed line segment of positive length joining x!
to 22 and construct a hyperplane that passes through z° perpendicular to the line
joining 2! to x2. This hyperplane separates C; from Cs. |

1.2 SIMPLEX DEFINED

There is a close connection between the Simplex Method and the the simplest
higher-dimensional polyhedral set, the simplex.

Definition (m-Dimensional Simplez): In higher dimensions, say m, the con-
vex hull of m + 1 points in general position (see definition below) is called an
m-dimensional simplex.

Thus
e a zero-dimensional simplex is a point;
e a one-dimensional simplex is a line segment;
e a two-dimensional simplex is a triangle and its interior;

e a three-dimensional simplex is a tetrahedron and its interior. (See Figure 1-8).
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f(x)
| Weak
| local
Local ..
(e | minimum
| minimum |
| Global |
| : minimum |
T1 X2 xs3 x
Figure 1-9: Local and Global Minima
Definition (General Position): Let A; = (a1, agj,..., Gm;) be the coordi-
nates of a point A; in m-dimensional space. Algebraically a set of m+1 points
[A1, Aa,..., An41] of points in m dimensions is said to be in general posi-
tion if the determinant of their coordinates and a row of ones, as in (1.34), is
nonvanishing,
1 1 ... 1
ai; a2 ... Glm+l
# 0. (1.34)
Am1 Am2 .. am,m+1

Definition (Algebraic Definition of an m-Dimensional Simplex): The set of
all points,
r=MA1+ A+ + Apt1Amt1, (1.35)

generated by all choices of A such that Z;’:ﬁl Aj =1, Aj > 0 is defined to be
an m-dimensional simplex if the determinant (1.34) is nonvanishing.

Definition (Vertices of a Simplex): The points & = A; in (1.35) are called
vertices or extreme points of the simplex.

1.3 GLOBAL MINIMUM, EXTREME
POINTS, AND EDGES

In the calculus we learned that if a function f(x), defined over an interval, has a
continuous derivative f’(x) and attains a minimum (or maximum) at a point xg
within the interval, then the derivative f’(x¢) = 0. However, having a derivative
f'(Z) = 0 does not necessarily imply that a minimum of f(z) is attained at f(Z).
See, for example, the point = 7 in Figure 1-9, where f(z) is minimum only in
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Figure 1-10: Extreme Points

the neighborhood of x7; this is called a local minimum. However, it will also be
noted that there is another local minimum at z = x5, where f(x) attains its lowest
value; this is called a global minimum. The point z = x3 is also a local minimum,
and so also are its neighboring points.

LEMMA 1.4 (A Local Minimum of an LP is Global) Any solution to
a linear programming problem that is a local minimum solution is also a global
minimum solution.

Proof. To see this, let p = (p1,p2,-.. ,Pn, 2p) be a local minimum solution and
assume on the contrary that it is not a global minimum solution, so that there
is another solution ¢ = (¢1,¢2,--. ,qn,2q) With 2z, < z,. Then any point z =

(X1,22,...,2n,2) = (1 = A)p+ Ag, 0 < A < 1, on the line segment joining these p
and ¢ points would be a feasible solution and its objective z = (1 — A)z, + Azq. In
this case the value of z decreases from z, to z, as A varies from 0 to 1. Thus all
such feasible points (including those in the neighborhood of p) would have z values
less than z, contrary to the hypothesis that p is a local minimum and not a global
minimum. This means that z, is a global minimum. |

Exercise 1.19 Prove that the point x which yields a global minimum for an LP is not
necessarily unique. Illustrate with an example.

Exercise 1.20 Suppose p and g are both local minima. Prove that for a linear program
all points on the line segment joining p and ¢ are global minima.

Definition (Extreme Point or Vertexr):  Any point x in a convex set C' that
is not a midpoint of the line segment joining two other distinct points in C' is
by definition an extreme point or verter of the convex set.

Example 1.2 (Degenerate and Nondegenerate Extreme Points) In Figure 1-10,
the corners of the polygonal region bounded by a square are extreme points, as is every
point on the circumference of a circle bounding a disk. The points where three or more
facets of a diamond (assumed to be flat on the bottom) come together are extreme points
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of the diamond. Notice also that the corners of the square facet on top of the diamond are
degenerate extreme points because more than three hyperplanes intersect to generate each
corner. Further note that none of the half-spaces defining these four degenerate extreme
points can be dropped without changing the polyhedral set, implying that there are no
redundant constraints.

Exercise 1.21 In Figure 1-10 find degenerate extreme points other than those described
in Example 1.2. Are there any redundant constraints associated with these degenerate
extreme points? Why?

Exercise 1.22  Given the coordinates (z1, z2) of the vertices of a simplex in R2:

e (E)e () (1)

1. Write down the relations defining the convex hull of Pi, P>, and Ps.

2. Use the FME process (see Linear Programming 1) to define the feasible region in
terms of x1 and z2 alone.

3. Plot the points P, P>, and Ps and verify your result.

Exercise 1.23 In Figure 1-10, let the coordinates of the extreme points of the square
facet be (1,1,1), (1,-1,1), (—1,1,1), and (=1, —1, 1) and the coordinates of the remaining
extreme points of the diamond be (—1.5,2,0), (1.5,2,0), (2,0,0), (1.5, —2,0), (—1.5,—-2,0),
and (—2,0,0). Determine algebraically the hyperplanes that represent the diamond by
reducing the system representing the convex hull of these extreme points to a system of
inequalites in nonnegative variables. Show that the basic solutions corresponding to the
extreme points where four hyperplanes intersect are degenerate.

Definition (Basic Solution): Consider the canonical system
Iz, + Az, = b. (1.36)

The special solution obtained by setting the independent variables z, equal
to zero and solving for the dependent variables z,, is called a basic solution.

THEOREM 1.5 (Basic Feasible Solution is an Extreme Point) A basic
feasible solution to a linear program Ax = b, x > 0, c'x = min corresponds to an
extreme point in the conver set of feasible solutions to the linear program.

Proof. We assume that the rank of the system is m (see Exercise 1.25). It is
easy to show that a basic feasible solution corresponds to an extreme point. By
relabeling the indices, let ° = (b, ba,..., bm,0,...,0) be a basic feasible solution
with respect to basic variables x1,%2,...,%,;,. By definition the columns of A

corresponding to these variables are independent. Suppose, on the contrary, that
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x° is not an extreme point. Then, by definition, it is the average of two other distinct
feasible solutions p = (p1,p2,. .., Pmy---,Pn) > 0and ¢ = (q1,92, - s Gm, -+ -, qn) >

0. It follows for all j corresponding to the nonbasic variables j =m + 1,...,n that
, 1
zj = §(pj +4¢;) =0, (1.37)

where p; > 0 and g; > 0. But this is possible only if p; = ¢; = 0 for j =
m+ 1,...,n. Thus p, ¢, and z° have the same values (namely zero) for their
components corresponding to nonbasics. Since the values of the basic variables
are uniquely determined by the values of the nonbasics (independent variables), we
must have p = g = x°. This proves that x° cannot be the average of two solutions
p and ¢ distinct from z° and hence, by definition, z° is an extreme point. ]

COROLLARY 1.6 (Extreme Point is a Basic Feasible Solution) FEach
extreme point corresponds to one or more basic feasible solutions. If one of the basic
feasible solutions is nondegenerate an extreme point corresponds to it uniquely.

Proof. We again assume that the rank of the system is m (see Exercise 1.25). By
relabeling the indices, let @ = (9, ... ,:cg, 0,...,0) > 0 be an extreme point, where
z§ > 0 for 1 < j < k. Then, the first k¥ columns must be linearly independent,
because, if not, for some column k,

k—1
A.k = Z yjA.j.
j=1

This would imply that the class of solutions
z(0) = (25 — Oyr, 25 — Oya, ..., x5 — Oyp_1,2% +6,0,...,0)" (1.38)

are feasible solutions for some range —0° < 6 < 6°, where 6° > 0. Therefore,

o __ 1 o 1 o

x 72:3( 9)+2x(0)
is a midpoint of two other feasible solutions, a contradiction if z° is an extreme

point.

Since the maximum number of independent columns is m, this implies that
k < m. If kK = m, then, by definition of a basis, x° is a basic feasible solution
and the only one corresponding to the extreme point. However, if k& < m, we can
augment the independent columns j = 1,...,k by m — k additional independent
columns with indices jx+1, jk+2,---,Jm that can be used to construct the feasible
basis. (such additional columns exist because we assumed the rank of the system
is m). The corresponding (degenerate) basic feasible solution is obtained by letting
Tjppr = Tjyyn =+ = T4, = 0. In general, this augmentation by m — k independent
columns is not unique. ]
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A

Figure 1-11: Joining Extreme Points

> Exercise 1.24  Show in the preceding proof that the class of solutions x(6) given by
Equation (1.38) are feasible solutions for some range —e < 6 < ¢, where ¢ > 0.

> Exercise 1.25 Modify the proofs of Theorem 1.5 and of Corollary 1.6 if the rank of the
system is r < m.

Definition (Edge): An edge of a convex polyhedron C is the straight line
segment joining two extreme points such that no point on the segment is the
midpoint of two other points in C not on the segment.

Definition (Neighbors): Two distinct extreme points having an edge in com-
mon are said to be neighbors or adjacent to each other.

> Exercise 1.26  Why is the segment joining two extreme points AB in Figure 1-11 not
an edge, but AC is an edge?

THEOREM 1.7 (Movements Along Edges) The class of feasible solutions
generated by increasing the value 8 of a nonbasic variable and adjusting the values of
the basic variables, while maintainting feasibility, corresponds to a movement along
an edge of the convex set.

Proof. The case where the increase in 6 is unbounded is left as an exercise (see
Exercise 1.28). Let

p=(b1,b2,...,by; 0,0,...,0) >0
be the basic feasible solution for iteration ¢ and relabel the indices so that s =m + 1
is the index of the incoming variable. Then we know that if x,,11 = 0, the change
in the feasible solution is given by

Tr = (61 — 91]1,62 — 91]2, .. .,bm — va,H, 0,0, .. .,0) (139)

where v = B ' Aqpmy1 = Aemit is the representation of the incoming column
Aem+1 in terms of the basis. Let 6 be the maximum value of 6 such that z in
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(1.39) is nonnegative; by assumption 0 is finite. (Note that if 6 = 0; the problem is
degenerate and there is no change in the extreme point p but there is a change in the
set of basic variables that define the extreme point p.) Assuming nondegeneracy, we
let @ = bpy1 > 0 be the maximum value of 6. Relabel the indices so that r = 1 is
the index of the outgoing variable. Then it follows that by — évl =0 (or 0= by — v1).
Denote the new basic feasible solution by

q=(0,b2,...,bym,bms1,0,0,...,0),

where R o
bi:bi—evi fori:Z,...,m.

It is easy to see that x given by (1.39) satisfies
z=(1-Np+ig, 0<I<I, (1.40)

where A = 0/bpy1 =0/6 > 0 and (1 — \) = (byy1 — 0)/bms1 = (0 — 0)/0 > 0 (see
Exercise 1.27). Thus, increasing x,,+1 while keeping @42 = Tpmyz ==z, =0
is the same as increasing A from 0 to 1, which, in turn, is the same as moving along
the line segment joining p and q.

What is left to be shown is that the line segment joining p and ¢ is actually
an edge joining two adjacent extreme points. Clearly 0 < x,,11 < Bm+1, because
this is the range of values of the incoming variable that keeps all other variables
nonnegative. Furthermore, the (m + 1)th component of any point u on the line
segment joining p and ¢ satisifies 0 < upp1 < 6m+1 and Upmyo = Umps = - =
uy = 0. Conversely let y be any feasible point with the property that y,,4+2 =
Ym+s = -+ = yn = 0, then y must be on the line segment joining p and g because,
letting Y41 = 0 > 0, the value of y = z is given by (1.39). Thus, 0§ < l;erl must
be true for feasibility. Suppose next that u on the line segment joining p and ¢ is
the midpoint of some two other feasible points p’ and ¢’. Thus

1 / 1 /

u = 5 P+ 2q .
Note p; > 0 and ¢} > 0 for all components j because p’ and ¢’ are feasible points.
Clearly p’ = ¢; = 0 for j = m +2,m + 3,...,n because p; + ¢; = u; = 0 for
all j = m+2,m+3,...,n and pj; > 0 and ¢; > 0. But as we have just shown
such a y = p’ lies on the line segment joining p and ¢. Similarly ¢’ also lies on the
line segment joining p and ¢. By definition, an edge is a line segment having the
property that every point on the line segment, if it is the midpoint of two other
feasible points, has the property that these two points must also lie on the line
segment. ]

Exercise 1.27  Verify that = given by Equation (1.39) satisfies Equation (1.40). Prove
conversely that if  lies on the line segment joining p and ¢ then it satisfies (1.39) for some
choice of 6.
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Exercise 1.28 Prove Theorem 1.7 for the case where the increase in 6 is unbounded so
that the movement is along an edge that is an extreme half-line.

1.4 THE SIMPLEX METHOD VIEWED AS
THE STEEPEST DESCENT ALONG
EDGES

It can be shown in general that the Simplex Algorithm can be viewed as a steepest
descent “gradient” technique in which a “gradient direction” is defined in the space
of nonbasic variables, say %,,+1, Tm+2,..., Tn. This gradient direction differs
from the one usually used in the Calculus. Translating the origin to some trial
solution point, the usual steepest gradient direction is defined by finding the limiting
direction as p — 0 from this origin to a point on the spherical surface

$$n+1+$$n+2++xi:p2; x]ZO; (141)

where some function z = f(z) is minimized. In contradistinction, the Simplex
Algorithm’s steepest gradient direction is found using a planar surface (instead of
a spherical surface)

Tt + Ty + -+ Tp = p, x; > 0. (1.42)

In other words, in defining the gradient, the usual (Euclidean) distance (1.41) from
the origin (located at some trial solution point) is replaced by (1.42), one based on
the sum of the nonnegative values of the coordinates of the independent (nonbasic)
variables.

THE SPECIAL CASE OF n =m + 2

Consider a linear programming problem with n = m + 2 that has a basic feasible so-
lution with respect to some m basic variables, say x3, x4,..., Tm42. The canonical
form with respect to these variables is

c1xr1 + Caxo = 2—2

anr + aperz + T3 =b

anx1 + G222 + x4 = by (1.43)
Am1T1 + GmaT2 + 0+ Tg2 = by

with b; > 0 and where the problem is to find z; > 0 and min z satisfying (1.43).
The convex set of feasible solutions satisfying (1, za,... 2z, ) > 0 will be denoted
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1121 + @ox2 = by

@11 + Ao = by

/
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x
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~C1Z1 + C2x2 = (g

Figure 1-12: Geometrically the Iterates of the Simplex Algorithm Move Along the
Edges of the Convex Set

by C. This is equivalent to finding values of z; and z2 and the smallest constant

@ = z — 20 satisfying the system of linear inequalities

c1r1 + CoXo
a11T1 + A12%2
a21T1 + Q222

INIA I
e

(1.44)

Am1%1 + AmaT2
I

IV IV IA

T2

We may graph these m + 2 relations in the two-dimensional space of the nonbasic
or independent variables 1 and xo as illustrated in Figure 1-12. The convex region
formed by the half-spaces (in this case half-planes) @;1z1 + Gjoxe < b; is denoted
by K. The boundaries of I are the solid lines shown in Figure 1-12.

The optimal solution is found by moving the dotted line ¢1x1 + éaxa = &y
parallel to itself until the line just touches the convex set K and ¢° is minimum.
(If ¢, and é are both less than zero this would be in the direction away from
the origin.) Associated with every point P in K is a unique feasible solution to
(1.43). In fact, such a point P must satisfy all the inequalities (1.44) and the
slacks, which are the nonnegative differences between the values on the left-hand
side of (1.44) and the right-hand side are the unique values of the basic variables
in (1.43) when the nonbasic variables z; and x5 have the specified values (29, 29).
The value z;42 = 2, , of the ith basic variable is equal to the distance of the point
P = (29,29) from the boundary of the ith constraint times a factor (a2 + a%)?
because, from analytic geometry, the distance d; of P from a;1x1 + Gjoxs = b; is
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3 — .0
Distance = k;z{,,

ainx1 + aGppre = b;
b= (x(fv LBS)

Figure 1-13: Geometric Picture of the Distance of a Point to a Boundary

given by (1.45) fori=1,...,m,

N =~ 0 ~ 0
b — anx] — @y

_ s 1
@ + %)

distance =d; = = kizl, ,, (1.45)

where k; = (a4 + a%)~=. If the point (29,29) satisfies the inequality, then the
geometric picture of the distance of a point from the boundary is shown in Figure 1-
13.

If the slack variables x; o are replaced by y; = k;x;42 for ¢ = 1,...,m, and the
coordinates of a point P are the values of the independent variables, then the value
of the ith basic variable is just the distance from the point P to the corresponding
ith constraint.

Every basic solution to (1.43) has at least two x; = 0; hence the corresponding
P is at the same time a point in K and at zero distance to two distinct boundary
lines of K. It is intuitively evident (and we show this rigorously below) that such
a P is a vertex of . In particular, the basic feasible solution with respect to the
canonical form (1.43) is associated with the point (z§ = 0,29 = 0) in Figure 1-12,
hence the origin is always in the convex K.

LEMMA 1.8 (Extreme Points) Associated with every extreme point in the
convex set of feasible solutions to the original linear program in standard form,
(1.43), is an extreme point of K and conversely; where K is formed by dropping
the basic feasible variables in the canonical form (1.43) and replacing equations by
inequalities to get (1.44).

Proof. Let P = (29,29,) and Q = (z},z}) be any two points in K, and let
the corresponding feasible solutions satisfying (1.43) be p = (¢, z3,...,2%) and
qg=(z},2,,... 2} ), which, as we saw in Theorem 1.1, lie in a convex set C. It is
easy to see that any point AP + (1 — A\)@ on the line joining P to @ corresponds
to a point Ap + (1 — A)g that satisfies (1.43), and conversely. Hence line segments
in the convex set C of solutions satisfying (1.43) correspond to line segments in i,

and in particular the midpoint of a segment in C corresponds to the midpoint in I
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and conversely. It follows that nonextreme points must correspond to each other
and it follows that extreme points (basic feasible solutions) to (1.43) correspond to
extreme points of K and conversely. |

LEMMA 1.9 (Movement from One Vertex to the Next) The movement
along the edge corresponding to the class of feasible solutions generated by increasing
a nonbasic variable and adjusting the values of the basic variables in the shift from
one basic solution to the mext, corresponds to a movement around the boundary of
K from one vertex to the next.

Proof. Let p and ¢ be successive distinct extreme points corresponding to basic
feasible solutions obtained by the Simplex Method under nondegeneracy, so that
the line segment joining p to ¢ is an edge in C. If the corresponding vertices P and
Q@ in K were not neighbors, there would be a point X on the segment joining P
to @ that would be the midpoint of two points P’ and Q' in X, but not on the
segment. We shall show, however, that P’ and Q' must lie on the line joining P
to Q. We have shown that z, corresponding to X must be the midpoint of p’ and
q' corresponding to P’ and Q’. However, x must also be on the line joining p to
q since X was on the line joining P to Q). It follows, since the segment pq is an
edge (see Theorem 1.7), that p’ and ¢’ must both be on this edge and hence their
corresponding points P’ and @’ must lie on the line joining P to (. This shows
that edges in the convex set of feasible solutions to (1.43), correspond to edges in
Figure 1-12. |

Thus, in the nondegenerate case, the Simplex Method proceeds from one vertex
to the next in the convex region K in the space of some initial set of nonbasic
variables. Starting with the vertex at the origin and moving successively from one
neighboring vertex to another, each step decreases the value of ¢ until a minimum
value for ¢ is obtained, as shown by the arrows in Figure 1-12.

Exercise 1.29 Modify Figure 1-12 to illustrate the degenerate case and modify the
preceding discussion to correspond to your drawing.

THE GENERAL CASE

Although our remarks have been restricted to the case of n = m + 2 for simplicity,
they hold equally well for n = m + k. In the general case, the values of k =n —m
of any set of nonbasic variables become the coordinates of a point in k& dimensions.
In this geometry the convex set IC of feasible solutions is defined as before by a set
of m inequalities formed by dropping the basic variables in the canonical form and
by k inequalities x; > 0 where x; are the nonbasic variables. Each basic feasible
solution corresponds to a vertex of K. In the general (nondegenerate) situation,
there are n —m edges leading from each vertex to n —m neighboring vertices; these
correspond to the n — m basic solutions obtained by introducing one of the n —m
nonbasic variables in place of one of the basic variables.
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0 \ 1
\z =C1x1 + Cox2

Figure 1-14: Movement of 6

STEEPEST DESCENT ALONG EDGES

The simplex criterion of choosing ¢; = miné; < 0 followed by an increase in xs
corresponds to a movement along that edge of the convex set that induces the greatest
decrease in z per unit change in the variable introduced.

For example, for n = m + 2 (see Figure 1-14), if & < ¢ then any movement
for a distance 6 along the zi-axis produces a greater decrease in z than an equal
movement of 6 along the x9-axis and therefore the steepest descent direction using as
boundary the planar surface (line) 1 +x2 = p, 1 > 0, 2 > 0, and ¢121 + éaze = 2,
is in the direction (1,0). In general, use

T+ X2+ -0+ Tn = P, ijO
cix1 + Coxo + - + Crxy = 2

> Exercise 1.30  Consider the problem of minimizing f(z) = Z?:m_H ¢jx; subject to
(1.42) for fixed p where x; > 0. Show that the solution is to choose zs = p and all other
z; = 0 where ¢; = min¢;. Compare this steepest descent direction with that obtained
using (1.41) instead of (1.42). Does this steepest descent direction depend on the value of
p?

> Exercise 1.31  Consider the problem of minimizing f(z) = Z?:m_H ¢jx; subject to

(1.41) for fixed p where z; is unrestricted in sign. Show that the solution is to choose

xj = &p/\/ > 2. What is the steepest gradient direction as p — 0?7 Does this steepest

gradient direction depend on the value of p?

1.5 THE SIMPLEX INTERPRETATION OF
THE SIMPLEX METHOD

While the Simplex Method appears to be a natural one to try in the n-dimensional
space of the variables, it might be expected, a priori, to be inefficient as there
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could be considerable wandering on the outside edges of the convex set of solutions
before an optimal extreme point is reached. This certainly appears to be true when
n —m = k is small as in Figure 1-12, where k = 2. However, empirical experience
with thousands of practical problems indicates that the number of iterations is
usually close to the number of basic variables in the final set that were not present
in the initial set. In practical applications for an m-equation problem with m
different variables in the final basic set, the number of iterations may possibly run
from m as a minimum to 2m, and very rarely to more than 3m. The number is
usually less than 3m/2 when there are fewer than 50 equations and 200 variables
(to judge from informal empirical observations). Some believe that for a randomly
chosen problem with fixed m, the number of iterations grows in proportion to n.

W. M. Hirsch conjectured in 1957, that, by proper choice of variables to enter
the basic set, it is always possible for linear programs with bounded solution sets to
pass from any basic feasible solution to any other in m or fewer pivot steps, where
each basic solution generated along the way must be feasible. For the cases m <5
the conjecture is known to be true. For m > 5, the problem is a famous unsolved
conjecture.

When the Simplex Method is viewed in the m-dimensional space associated
with the columns of coefficients of the variables, as will be done in this section, the
method appears to be quite efficient. It was in this geometry that the method was
first seriously proposed, after it had been set aside earlier as apparently unpromising
when viewed in the geometry of the rows.

GEOMETRY OF THE CASE m = 2

In Linear Programming 1, both the Blending Model II and the Product Mix Model
were graphically solved using, as the coordinates of a point, the coefficients of a
variable in one of the equations and the cost form. In both examples, one of the
equations of the model was a convexity constraint of the form

1+ x4+, =1, x5 >0, : o (1.46)
leaving, for the case m = 2, one other equation and cost form

a1r1 + asxo + -+ apTy, = b DT (1.47)

c1x1 + coxa + -+ + cpy = z (min), (1.48)

where 7y and 7; are the corresponding dual multipliers. The variables z; were
interpreted as nonnegative weights to be assigned to a system of points A; = (a;, ¢;)
in two dimensional space (u,v) so that their weighted average (center of gravity)
is a point R = (b, minz); that is, the ; > 0 are chosen so that the center of
gravity lies on the “requirement line” u = b (constant) such that the v coordinate
is minimum (see Figure 1-15).

In Figure 1-15, the shaded area C represents the set of all possible centers of
gravity G formed by assigning different weights x; to the points A;. It is easy to
prove that these form a convex region C, called the convexr hull (see Section 1.1
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v Requirement line: u = b —

Iy — e As

A

Figure 1-15: Geometrically a Linear Program is a Center-of-Gravity Problem

for the definition of a convex hull) of the set of points A;. To see this, let G’ be
any point in C obtained by using nonnegative weights wj, w},..., w}, and let G”
be any other point obtained by using nonnegative weights wY, wf,..., w!. Let
G* = \G' + (1 — \)G", where 0 < X < 1, be any point on the line segment joining
G’ to G". Tt follows that G must also lie in C because it can be obtained by using
weights w* = A+ (1=MNw] for j =1,...,n. Moreover, if w; > 0,w} > 0,3 w) =
1, Zwé’ =1and 0 <\ <1, then uf; >0, ij = 1. This establishes the convexity
of C.

It is also easy to see that any column (activity) corresponding to a point A,
that is not an extreme point of the convex hull can be dropped from the linear
programming problem. Thus the points Az, A4, and Ag in the interior of C in
Figure 1-15 and A7 on an edge can be dropped; that is, one can set x3 = x4 = x¢ =
x7 = 0 and still obtain a feasible solution with just as low a minimum value.

A basic feasible solution corresponds to a pair of points, say A; and Ag in
Figure 1-15, such that the line joining A; to Ag intersects the constant line u = b
in a point G on the line segment between A; and Ag. For this to be true we would
want

)\al—l—(l—)\)a@:bl, (OS)\Sl)

But this corresponds to the basic feasible solution to (1.46) and (1.47) found by
setting 1 = A\, x6 = (1 — ) and z; = 0 for all other j.

To improve the solution, the Simplex Method first computes the relative cost
factors ¢; by eliminating the basic variables from the cost equation. We shall now
show that this is the same as first computing the line joining A; to Ag, which we
will refer to as the solution line, and then substituting the coordinates of a point
A; into the equation of the line to see how much (if any) in the v-direction it is
above or below the line (see Figure 1-16).

In the Simplex Method the basic variables x; and zg are eliminated from the
cost equation (1.48) by multiplying (1.46) by 7y and multiplying (1.47) by m; and
subtracting from (1.48). Thus mp and 7; must be chosen so that the relative cost
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Figure 1-16: Simplex Associated with an Iteration of the Simplex Algorithm (m = 2)

factors for basic columns 1 and 6 are zero:

c1 — (TFQ + 771@1) =0 (149)

Ce — (71'0 + 71'1(16) =0 (150)
The relative cost factors ¢; for the remaining j are given by

EjZCj—(W0+W1aj). (1.51)

Let us compare this with what we need to do geometrically. First we need to
compute the equation of the line joining A; to Ag in (u,v) space. Let

V=T + mUu (152)

be the equation of the line, where constants my and 7 are chosen so that the line
passes through the points A; = (a1,¢1) and Ag = (ag,cs). Substituting v = a1
and v = ¢; into Equation (1.52) gives the condition that A; lies on this line, and
substituting u = ag, v = ¢g yields the condition for Ag to be on this line. But these
are precisely conditions (1.49) and (1.50). To determine how much a point with
coordinates u = a;, v = ¢; is above or below the solution line in the v-direction, we
first determine the ordinate of the point where the line u = a; cuts v = 7o + mu,
namely at v = my + m1a;, and then subtract this value from the ordinate c; of A;
which is exactly what we did to compute ¢; in (1.51). Thus A; is above, on, or
below the line according to whether ¢; > 0, ¢; = 0, or ¢; < 0 is true.

The condition that a basic feasible solution be minimal is that ¢; > 0 for all
nonbasic variables ¢;. Geometrically it states that a basic feasible solution is optimal
if all points A; lie on or above the solution line corresponding to some pair of A;s.
For example, in Figure 1-15, the requirement line u = b cuts the line segment joining
As to Ay, and all other points A; lie above the extended support line joining these
two points; hence the minimal solution is obtained by using x5 and x1¢ as basic
variables.
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Figure 1-17: Geometry of the Simplex Algorithm for the Product Mix Problem

On the other hand, if there is a point A;, as in Figure 1-16, below a given solution
line, then join A; to A; and to Ag and consider the convex figure S formed by the
points Ay, Ag, and A;. This is the convexr hull of three points in general position in
m = 2 dimensions, which is a two-dimensional simplex. If A; is below the solution
line, every point of this simplex S is on or below the solution line. Recall that G
is the intersection of the requirement line with the solution line. If G is not at a
vertex, there is a segment GG on the requirement line belonging to S with points
below the solution line with G the lowest point on the requirement line in S. Thus
there exists a new solution line passing through G* — it is either A1 A or AgA;
depending on whether A; is on the right or left of u = b. We are now able to repeat
the iterative process with the pair of points A;, A; or Ag, A;.

In Figure 1-17, we illustrate these steps of the Simplex Algorithm geometrically
on (1.53) below, which is the Product Mix Problem of Linear Programming 1. Find
min z, y; > 0, such that

. 1.53
—24y; — 2.0y2 — 1.8y3 — .8ys + Oys + Oy = z (min) (1.53)

and the convexity constraint
Y1+ Y2+ ys+ys+ys +ye =1 (1.54)

Let the coordinates of a point A; in Figure 1-17 be the coefficients of y; in the
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third and first equations:

2

Al = (_24) ’ A2 =
.8

A4 - (_08) ) A5 -

1
(—2.0)  As

0.0
(0.0) i As

-(3)
- (a0)-

The simplex iterations may be summarized as follows:

Iteration Basic Solution Simplex
variables | line through vertices
0 Ys, Ys A57A6 }A5,A6,A1
1 Y1, Y6 A1, Ag
2 Y1, Ya Ay, Ay }A4’ Ag, Ax
> Exercise 1.32  Consider the system of equations:
a1yt + a2y2 + -+ + aipyn =0
a21y1 + a2y2 + -+ + a2pyn = 0 (1.55)
y1 + y2 + -+ Yn = 1
where a%j + agj =1for j=1,...,n. Plot the column coefficients of (1.55) as points in *

and show that the problem geometrically is to find weights on a set of n points lying on a
unit circle with center at the origin so that the weighted center of gravity of the n points

is the origin.

THE GEOMETRY OF THE CASE m =3

For m = 3 dimensions, consider the problem of finding z; > 0 and min z satisfying
linear constraints, where one of the equations of the model is a convexity constraint,

T+ T2+t a, =1,

leaving two other constraints and a cost equation.

ai1ry + ajpxe +
a21r1 + Q222 +
cazry + cx2 +

(z; >0). :mo

ATy, = b1 i

s+ GopTy
e + CnTn

b2 LT
zZ.

(1.56)

(1.57)

Define as coordinates (u1,u2,v) of a point the coefficients of z; in (1.57); thus
A; = (a1j,a25,¢j). The requirement line is u1 = bi,us = bya. A basic feasible
solution corresponds to a two-dimensional simplex with vertices, say Ay, Ay, Az such
that the requirement line intersects this two-dimensional simplex at some interior
point G as shown in Figure 1-18. Let v = my + m1u1 + mous be the equation of the
current solution plane, that is, the plane passing through the vertices A;, Ao, and
As of the simplex. If A; is a point below this solution plane, then algebraically the
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Requirement line:
uy = b1, U = bg.

Starting solution
plane.

As New solution plane

o (b1, b2,0)

U1

Figure 1-18: Simplex Associated with an Iteration of the Simplex Algorithm (m = 3)

difference ¢; = ¢; — (mo +ma1j+m2az;) < 0 is the vertical distance that A; is below
the plane. In this case, a three-dimensional simplex with vertices A;, A1, Ao, and Az
can be formed and a point G* found where the requirement line pierces the simplex
at its lowest point. Then G* is on one of the three faces A1AA;, ArAsAj, A1AsA;,
depending on the position of A;. In Figure 1-18, G™ lies on the face A1 AsA; and
these three vertices A;, A3, A; are used to determine the new two-dimensional
simplex.

The simplex criterion used to select a new basic variable x; does not select an
arbitrary x; corresponding to an A; below the solution plane, but an A, = A; that
is a mazimum distance ¢; = min¢; below the plane. Inspection of figures such as
Figure 1-15 and Figure 1-16 give credence to the belief that choosing such a point
would result in the point having a good chance of being in the optimal solution. If
the point chosen on each iteration is not dropped on some later iteration, then no
more than m iterations would be required to obtain an optimal solution. Empirical
evidence on thousands of problems confirms this choice criterion as a pretty good
practice, particularly when one notes that the computational work per iteration is
low. In Chapter 6 other criteria will be presented for selecting the incoming column
that result in fewer iterations and/or fewer computations than the simplex criterion
used here.

> Exercise 1.33  Study Figure 1-12 and Figure 1-14. Construct an example to show for
n = m + 2 that the simplex criterion ¢s = min¢; could cause a maximum number of
iterations to be performed.
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1.6 NOTES & SELECTED BIBLIOGRAPHY

Klee & Minty [1972] created special examples (see Linear Programming 1) to show that
the Simplex Algorithm, using the criterion ¢; = min¢; to select the incoming column,
would in the worst case pass through every extreme point before termination. However,
computational experience on many thousands of practical problems using this criterion has
demonstrated that the Simplex Algorithm required less than 3m steps. See, for example,
Klotz [1988], Lustig [1987], and Gill, Murray, Saunders, & Wright [1989].

The results reported in Gill, Murray, Saunders, & Wright [1989] for 53 problems drawn
from practical situations and varying sizes (m = 28 to m = 2263; and n = 32 to n = 9799)
show that: 23 of the problems are solved in less than m iterations; 14 are solved in between
m and 2m iterations; 3 are solved in between 2m and 3m iterations; and 13 required
more than 3m iterations. For many years the explanation for this observed efficiency
of the Simplex Method remained a mystery. Papers that began to appear in the early
1980s provided a partial theoretical explanation for randomly generated problems solved
by the Simplex Algorithm and its variants; see Borgwardt [1982a, 1982b, 1987a, 1987b)]
and Smale [1982]. For example, Smale showed that when the linear program min z = T,
x >0, Az > bis solved by the self-dual parametric algorithm (see Section 6.5), the average
number of iterations grows proportional to n when m is fixed. Borgwadt showed, for the
linear program min z = —c’z, x > 0, Az < e, where e = (1,1,..., 1)T and where ¢ and the
rows of A are assumed to be independently, and identically distributed, and symmetrically
distributed under rotation about the origin, that the expected number of iterations (by a
variant of the Simplex Algorithm) grows proportional to ntmt/ (=1,

In 1957, W. M. Hirsch conjectured that, by proper choice of variables to enter the basic
set, it is always possible for linear programs with bounded solution sets to pass from any
basic feasible solution to any other in m or fewer pivot steps, where each basic solution
generated along the way must be feasible. For the cases m < 5 the conjecture is known
to be true. For m > 5, the problem is a famous unsolved conjecture. Klee and Walkup
[1967] have constructed examples to show that the Hirsch conjecture is false if the set of
feasible solutions is unbounded. They have also proved that the Hirsch conjecture is true
for all polytopes for which n —m < 5. Todd [1980] has provided a counter-example for
the Monotonic Bounded Hirsch conjecture.

The concept of separating hyperplanes and the theorems of the alternatives can be
used to prove many important results in mathematical theorems. For further discussions
on separation theorems see Avriel [1976], Berge [1963], and Rockafellar [1970]. Tucker
[1955] is recommended as reading for Section 1.3 which discusses properties of the Simplex
Method.

1.7 PROBLEMS

1.1 Review: Define the following terms:

(a) Convex set, extreme point of a convex set.

(b) Polytope, polyhedron.
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1.2
1.3

1.4

(c)

(d)

Degenerate basic feasible solution for:

Minimize Tz

=z
subject to Az = b
x>0

Convexity constraint.

Review the relationship between convex sets and linear programming.

Look at the feasible region defined by:

—
o
Nag

1 + 222 < 6

21 + x2 < 6

21 + 222 < 7 (158)
z1, w2 > 0.

Set up an initial tableau with three slack variables.

Draw the feasible region in (21, x2)-space. Label the constraints.

Notice that, including nonnegativity, we have five constraints and five vari-
ables. We can associate each variable with a constraint, so that for each
extreme point of the feasible region there corresponds a basic feasible so-
lution, and so that the extreme point is the intersection of the constraints
associated with the nonbasic variables of the solution. What is this asso-
ciation, i.e., what variables do we associate with what constraints? What
is the basic feasible solution corresponding to each extreme point of the
feasible region?

Suppose we add the constraint:

z1 < 3. (1.59)

In your diagram, the extreme point (3,0) of the feasible region is now the
intersection of three constraints, and any two of them will uniquely specify
that extreme point. Thus there are three distinct bases that correspond
to that extreme point. What are the basic variables in each of these three
bases? Is it still true that there is a one-to-one correspondence between
basic feasible solutions and extreme points of the feasible region? Show
that the basic feasible solutions corresponding to the extreme point (3,0)
are all degenerate.

In part (d) we created an example of degeneracy by using a redundant
system of inequalities. The redundancy can be seen in the diagram in that
we could remove one of the constraints without changing the feasible region.
Give an example of degeneracy with a nonredundant system of inequalities.
Draw a picture to demonstrate this.

Dantzig [1963].

(a)
(b)

Show that the set of possible values of any variable zj, of a linear program
forms a convex set, in this case, a straight line segment a < zj < b.

Show that the set of possible values of two variables, say (x1,x2) or (z1, z)
satisfying a linear program, forms a convex set in two dimensions.
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1.5

1.6

1.7

1.8

1.9

1.10

(¢) As a corollary to part (a), show if zy is treated as a parameter and can take
on a range of possible values, then the value of min z becomes a convex
function of zy.

Let F={x € R"| Az < b}. For each z € F, let T(z) = {i | Aiex = b; } be
the “tight” constraints of . Show that z is an extreme point of F' if and only
if the rank of Ap(,ye is n.

Given the coordinates (1, 2z2) of five points in R

@) (). () 2= () o-(3)

(a) Write down the relations defining the convex hull of Pi, P>, P3, Py, and Ps.

(b) Use the FME process (see Linear Programming 1) to define the feasible
region in terms of x1 and z2 only.

(c) Plot the points Pi, Pa, Ps, P4, and Ps and verify your result.

The hypercube
0<z;<1 forj=1,...,n

is expressed through 2n inequalities. If expressed as a convex hull of its extreme
points, show that there are 2™ variables A; > 0 and n variables z; in n + 1
constraints.

Dantzig [1963].

(a) The process of increasing the variable z; in the Simplex Algorithm, while
holding the other independent variables fixed at zero, generates a class of
solutions corresponding to an edge in a convex polyhedron of feasible so-
lutions in the case that the vertex corresponds to a nondegenerate basic
feasible solution. What can happen in the case that the vertex is degener-
ate?

(b) If a basic solution is nondegenerate, there are precisely n — m neighbors of
its corresponding extreme point, and these are generated by increasing one
of the n — m independent variables while holding the remainder fixed at
zero. What can happen if the basic solution is degenerate?

Dantzig [1963]. Devise a method for finding the second best basic feasible solu-
tion. Generalize to the third best, fourth best, etc. Discuss any complications.
Dantzig [1963]. Show that if r variables have unique and nonnegative values
when the remaining variables are set equal to zero, the feasible solution is an
extreme-point solution.

Dantzig [1963]. Given an extreme-point solution (wvi,vz,..., v, ), show that if
the variables x; are set equal to zero corresponding to v; = 0, then the remaining
variables are uniquely determined and x; = v; > 0.

W. M. Hirsch Conjecture, [1957, Private Communication with Dantzig], un-
solved. Does there exist a sequence of m or less pivot operations, each gener-
ating a new basic feasible solution, which starts with some given basic feasible
solution and ends with some other given basic feasible solution, where m is the
number of equations? Expressed geometrically:
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Given a bounded convex region in (n — m)-dimensional space de-
fined by n half-planes, is m an upper bound for the minimum-length
chain of adjacent vertices joining two given vertices? If not, what is
the minimum length chain of adjacent vertices joining the two given
vertices.

1.13 Gale in Dantzig [1963]. Prove that a square homogeneous linear inequality
system always has a nontrivial solution.

1.14  Dantzig [1968]. Suppose Pi, Ps,... , Px,... is an infinite collection of points in
m-dimensional space. Let C be the set of points generated by forming nonneg-
ative linear combinations of finite subsets of these points. Let C’ be the set of
points generated by forming nonnegative linear combinations of subsets of m or
fewer of these points. Show that C and C’ are identical convex cones.

1.15  Ph.D. Comprehensive Exam, June 15, 1967, at Stanford. Let

C={m6R"|Am:b, x>0, chzzmm}
where Tmin > —o0 is the minimal value of z in the linear program
Minimize 2z =c'z subject to  Ax =1b, z > 0.

(a) Prove that C is a convex set in R".
(b) What is true about C if the solution to the linear program is unique?
(¢) Prove that

(fz{(b,z)|Am:b, x>0, ¢’z = 2, for some x}

is a convex set.
(d) Prove that

@:{(6,2)|Min "z =% for Az ="b, x>0 and each ﬁxedb}

is a convex set.
(e) Prove that z in part (d) can be regarded as a convex function of b.

1.16  Carry out the steps of the Simplex Method both algebraically and geometrically
on

(a) The Product Mix Problem (Linear Programming 1):

Minimize —12x1 — 20x2 — 18x3 — 40x4 =z
subject to 4y + 9x2 + Tx3z + 10x4 + x5 = 6000
1 + T2 + 3x3 + 4024 + x6 = 4000

2;>0,j=1,...,6.
(b) The Blending Problem (Linear Programming 1):

Minimize the Objective
4.1x1 +4.3x2 +5.8¢3 +6.004 +7.6x5 + 7.526 +7.3x7 +6.908 +7.329 = 2
subject to
1+ 224+ a3+ wa+ x5+ x6+ xr+ a8+ x9=1
2x1+ DSro+ 3xz3+ 3xa+ 3Brs5+ b6xe+ 4dxrr+ laxs+ lxg=.3
Bx1+ Adxe+ 2x3+ A4dxa+ 3Bxs+ 3w+ Dxr+ Bxrs+ lxg=.3
brr+ dxs+ DSrs+ 3xa+ Adrs+ dxe+ dxzr+ b6xs+ 8rg=.4
and z; >0, j=1,...,9.
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Show the correspondence between the algebraic and geometric methods.
1.17  Dantzig [1963].

(a)

(b)

(c)

Use the Fourier-Motzkin Elimination procedure (see Linear Programming 1)
to solve

3y1 + 4y2 = v (max)
21 + Y2 <2
=3y1 + y2 < -3

y1 —2y2 < 6

3y1 +9y2 < 1
—Y < -2

Solve the preceding, using the following variant of the Simplex Method: for
those with positive right-hand sides introduce slack variables y; > 0; for
those with nonpositive right-hand sides introduce artificial excess variables
y; > 0. Apply the usual Simplex Method to minimizing the sum of artificial
variables, in this case y4 + y7 = w. However, note that y; and y2 are not
restricted in sign; see part (c).

Invent a variant of the Simplex Method that permits specified variables to
be unrestricted in sign. Apply this to part (b).

1.18  Dantzig [1963]. Solve

3y1 + 4y2 = v (max)
2y1 + y2 < 2
y1 — 2y2 <6
3y1 + 91 <1
Y1 >0
Y2 2 0.

using the Simplex Method. Interpret geometrically the simplex steps in the
two-dimensional space of y1 and yo.
1.19  Dantzig [1963].

(a)

Given a system

cz1 + cew2 + -+ + cpp = 2z (min)
a1x1 + azxr2 + -+ + anxTn =0b
T+ m 4 -+ wp=1 (z; >0)

show that the solution line v = 71'3 + WTu associated with the minimal basic
solution must satisfy

’T% + ﬂ'Tb = min z
¢; — (o + 7ia;) >0
Prove in part (a) that the convex hull of points A; = (aj,c;) lies on or

above some given line v = mo + mu, if
cj — (71'0 +7r1a]-) > 0.

Use this to show that such a line must cut the requirement line v = b; in a
point, whose ordinate v < min z.
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1.20

1.21

1.22

1.23

1.24

Dantzig [1963]. Note that the dual of a standard linear program is a system
of inequalities in unrestricted variables. Suppose one is given a system in the
latter form; review how its dual may be used as a third way to get a standard
linear program from a system of linear inequalities. Find the standard linear
program of which this is the dual:

mo + 2m < —24
mo + dm > —=2.0
m + .3m < —1.8
T + .8m < —.8
™o <0
m + ™ <0
o <w.

Solve the dual, by using the Simplex Method and also by using the elimination
method, and prove that max v = min z of the dual original system.

Dantzig [1968]. If v = wo + w1u1 + mou2 represents the solution plane associated
with A1, A2, Az in Figure 1-18, interpret the conditions

v — (ﬂ'o + mai; + 772(12]') =0 for j=123

and the quantities
v — (71'0 + mai; + 7Ta2j) =Cj

both algebraically in the Simplex Method and geometrically.

Wolfe [1960]. A third geometry of the Simplex Method can be obtained by
regarding a column j as representing a line mo + a;m1 = ¢; in (mo, w1)-space.
Thus, this procedure can be interpreted to be in the same space as the space
of independent variables w9 and w1 of the dual linear programming problem
mo 4+ bm = v (max), mo + ajm1 < ¢j, for j = 1,...,n. Show that the simplex
procedure for solving the dual is different from the interpretation of the simplex
procedure for solving the original problem in this geometry. (The procedure
of Kelley, see Wolfe [1960], for solving nonlinear programs is based on this
geometry.)

(a) Interpret the problem: Find z; >0, j = 1,...,4, and min z satisfying

r1 + 222 + 3x3 + 44 = 2 (Min)
z1 + a2+ x3+ T4 = 4
1 + 222 + 3x3 + 4xy = —2

as a Center-of-Gravity-Problem, see Section 1.5

(b) Dualize and graph the dual problem.

(c) Solve the dual using the Fourier-Motzkin Elimination Method (see Linear
Programming 1).

(d) Solve the primal using the Simplex Method. Trace the steps of the proce-
dure as graphed in (a) and (b).

Minkowski [1896]. Theorem: A feasible solution of a bounded linear program

can be expressed as a nonnegative linear combination of basic feasible solutions.
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1.25

1.26

1.27

1.28

1.29

Geometrically stated, a point of a bounded convex polyhedron C, defined as
the intersection of finitely many half-spaces, can be expressed as a nonnegative
linear combination of extreme points of C.

Show that the theorem is false if C is unbounded.

Steinitz [1913]. Theorem: Let M be a given set of points in a Euclidean (m—1)-
dimensional space and let Q) be in the conver hull of M. It is possible to find
m points P, Pa, ..., Py (not necessarily different) of M, and m real numbers
Z1...Tm SO that x; > 0, Z;n z; =1, and Z;n . P = Q.

Dantzig [1963]. Theorem: Let M be a given infinite set of points in Euclidean
m-dimensional space and let Q be in the convex cone spanned by M. It is
possible to find m points Pi, Pa,..., Py (not necessarily different) of M, and
m real numbers x1 > 0,...,xm > 0, so that ZT ;P = Q.

Hint: Establish this theorem for any point @) representable as a nonnegative
finite linear combination of points P; € M. Show that all such points @) define
the convex cone spanned by M.

For the following system, is (4,9,0,3,0,0)” an extreme point? If so, why? If
not, is it on an edge?

r1 + X2 — 324 + 325 + g = 4
xr1 + 2x2 — bxy + bxs + 36 = 7

— X2 + T3 + 224 — 525 + x6 = —3
z; >0, 5=1,...,6.

Consider a polyhedron in n-dimensions defined by the following set of linear
constraints

{z| Az <b}
Suppose that we wish to embed this polyhedron in the “smallest” possible rect-
angle whose sides are parallel to the coordinate axes. Discuss how linear pro-
gramming can be used to solve this problem.
Let Py, Ps, ..., P, be points in "™ where m and n are finite positive integers
and P; are distinct points in ™.

(a) Prove
S = {P|P:ZP]'CIZ’]',Z.T]'=1,CE’]' 20} eR”
j=1 j=1

is a convex set.

(b) Prove S is a bounded convex set in R™.

(¢c) Prove S is a bounded polyhedral set (i.e., polytope) in ™.

(d) Prove that there are no extreme points of S other than some subset of the
Py, P,,...,P,.

(e) Prove that S has only a finite number of extreme points.

(f) Prove that S has at least one extreme point.

(g) Given some P;, say Pi, how would you determine whether or not P; is an
extreme point?

(h) If the system

ij = 1 where z; >0for j=2,...,n,

j=2
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1.30

1.31

n
Z Pjx; = P,
=2

is infeasible, prove that there exist (mo, )7 such that
mo+7 P >0 forj=2,...,n
0 + 7TTP1 < -1

Also prove that every point Pj, j > 1, is separated from P; by two parallel
hyperplanes a distance greater than A where

A= r;lin (mo 4+ 7 P;) — (w0 + 7" Py).
j=
What is used to measure distance? What would be the formula if the

FEuclidean distance was used?
(i) Given two polytopes Ci and Cz in R™ defined by

C = {P|P:ZPJ'JL']',Z:L']':1,$J’ZO}E?Rm
j=1 j=1
PieR" forj=1,...,n
Co = {Q|Q:ZQkymzykzlyyk20}€§Rm7
k=1 k=1

QreR" fork=1,...,7,

how would you determine whether C; and Cs have points in common?
(j) Given two nonempty polyhedral sets C; and C2 in ™ defined by:

C={z|Az>b}, A:mxn,
Cy = {x|[lm2b}, A:mxn,

how would you determine whether the ployhedral sets C1 and C2 have a
point x = z° in common?

Bazarra, Jarvis, € Sherali [1990]. Let S be a nonempty open set; i.e., if zo € S
then there exists an € > 0 such that ||z — xo|| < € implies that z € S. Show
that the problem

Minimize c'r = 2

subject to x €S,
with ¢ # 0 possesses no optimal solution.
Ph.D. Comprehensive Exam, September 21, 1974, at Stanford. Solve the follow-
ing problems:

(a) Consider the set
X={z|Az <a}
where A is an m X n matrix. The dimension of X is defined to be the
dimension of the highest-dimensional hyperplane whose interior lies in X.
Suppose there is a point £ € X such that

AT < a;



1.7 PROBLEMS 39

1.32

1.33

1.34

where A; denotes the ith row of A. Let
Y={y|By<b}

where [B, b] is obtained from [A, a] by deleting its ith row. Prove that the
sets X and ) have the same dimension.
(b) Devise a scheme to determine the dimension of the set

Z={z|Cz=¢,2>0}, where C is a m x n matrix.
Assume the set Z is nonempty.

Ph.D. Comprehensive Exam, September 21, 1974, at Stanford. Let A = [ai;]
denote a positive matrix of order m X n, i.e.,

ai; >0, i=1,...,m, j=1,...,n.

Prove, given r; > 0,¢=1,...,mand ¢; >0, j=1,...,n with

m
E Ty =
i=1

that there exists u; > 0,9=1,...,m,v; >0, j =1,...,n such that

n
E Ui Qi5V5
Jj=1

m
E u;aijv; = acj, j=1,...,n.
i=1

hE

Cj

j=1

T, i=1,...,m,

Ph.D. Comprehensive Exam, September 27, 1975, at Stanford. In a paper sub-
mitted for publication in an operations research journal, the author considered
a set

S:{(m,y)|Am+Bch, x>0, yZO}
where A is an m X n matrix, B is a positive semi-definite m X m matrix and
¢ € R™. The author explicitly assumed the set S is compact in "™, A
reviewer of the paper pointed out that the only compact set of the above form
is the empty set. Prove the reviewer’s assertion.
Ph.D. Comprehensive Exam, September 1982, at Stanford. Given two sets

S={zeR"|Az=b,2 >0},
T={zeR"| Az <b}.

(a) Prove S is a convex set.

(b) Set up a linear program for determining whether S and 7 have a point in
common.

(¢) Show how to use the Simplex Method for determining a separating hyper-
plane when S and 7 have no point in common. That is, find a hyperplane

7Ty = 7, such that

iy <7, forallz €S and #wlz>m, forallzeT.
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Hyperplane Hj
corresponding
to column j

Figure 1-19: Hyperplane H; and Simplex S

Ph.D. Comprehensive Exam, September 26, 1987, at Stanford. Yinyu Ye [1987]
proposes a criterion that, if satisfied by column j on iteration t of the Simplex
Method, allows one to drop the column because it cannot be in any optimal
basis.

The PRIMAL linear program is

Minimize &r =z
subject to  Ax = b, b>0, A:mxn,
z >0

Assume we are in iteration ¢ and the system is in canonical form so that

A = [I,N], note that b > 0,
¢ = [0,¢x],
where N refers to the nonbasic column of A, & the corresponding relative cost

factors, and I is the identity matrix.
The DUAL problem is

Maximize 7T
. T
subject to 7

3
INIA

o ol

Assume z, 5 is a known finite lower bound for the primal system.

(a) Prove (or cite a theorem) that an optimal primal feasible solution exists.

(b) Prove z,5 < max z.

(¢) Prove that dual optimal m = 7 satisfies conditions 77b > 2,5, m < 0,
T < 0,...7mm < 0.

(d) Prove that conditions on 7 described in (c) form a simplex S in the dual
m-~dimensional space of 7.

(e) Prove (or cite a theorem) that the set of m that satisfies the set of dual
conditions,

T Ae; < &, ji=1,...,n,

form a convex set in m-space where A,; is column j of A.

(f) Prove that a basic feasible solution to the primal problem corresponds to
the point in 7-space where m hyperplanes,

Hj = {71’ | WTA.J' :Ej}
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for some j = ji,j2,...,jm, intersect. Show that the origin m = 0 is such a
point 7. Show that the orign 7 = 0 lies in the simplex S, and in fact is one
of the vertices of S. See Figure 1-19.

Prove that optimal basic feasible solution to the primal problem corresponds
to a point 7 in space where certain m of the hyperplanes H; intersect.
Prove ©° C S.

Prove that if a column j corresponding to a hyperplane n74,; = & does
not intersect simplex S, column j cannot be a basic column of any optimal
basic feasible solution and therefore can be dropped.

Specify exactly what the m coordinates of each of the m + 1 vertices of S
are. Devise an algebraic test for checking that H; does not intersect S.
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CHAPTEHR

2

DUALITY AND THEOREMS
OF THE ALTERNATIVES

2.1 THE DUALITY THEOREM

The primal problem for a linear program stated in von Neumann “symmetric” form

is:
T

Minimize cxr =z
PRIMAL: subject to Az > b, A: mxn, (2.1)
xz >0,
and the dual problem is
Maximize by =wv
DUAL:  subject to ATy < ¢, A: mXxn, (2.2)
y = 0.

The von Neumann symmetric form is actually not symmetric but skew-symmetric
because the full system of relations is:

0 A-b Y 0
—AT 0 ¢ z|>(0], x>0, y>0. (2.3)
b —c 0 1 0

The Duality Theorem is a statement about the range of possible z values for the
primal versus the range of possible v values for the dual. This is depicted graphically
in Figure 2-1, for the case where the primal and dual are both feasible.

Von Neumann stated but did not prove the Duality Theorem: If the primal (2.1)
and dual (2.2) have feasible solutions, then there exist optimal feasible solutions to

43
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both the primal and the dual that are equal. We shall formally state and prove
the Duality Theorem using the Infeasibility Theorem, which is proved using the
Fourier-Motzkin Elimination Process; see Linear Programming 1. Here we state
the Infeasibility Theorem without proof.

THEOREM 2.1 (Infeasibility Theorem) The system of linear inequalities
n
Zaijszbj fori=1,...,m (24)
=1

is infeasible if and only if there exists a nonnegative linear combination of the in-
equalities that is an infeasible inequality. In matriz notation, the system Ax > b
is infeasible if and only if there exists a vector y > 0 such that y"Azxz > yTb is an
infeasible inequality, namely one where y"A =0 and y'b > 0.

Exercise 2.1  State the Infeasibility Theorem in terms of the system

Az = b
: (2.5)

I\/ H

and apply Phase I of the Simplex Algorithm to prove the Infeasibility Theorem.

COROLLARY 2.2 (Infeasible Equation) If a system of linear equations in
nonnegative variables is infeasible, there exists a linear combination of the equations
that is an infeasible equation in nonnegative variables.

Assuming that primal and dual solutions exist, the weaker form of the Duality
Theorem, which follows, is obvious.

THEOREM 2.3 (Weak Duality Theorem) If z° is any feasible solution to
the primal (2.1) and y° is any feasible solution to the dual (2.2), then

yOTb =% < 2% = cTx°. (2.6)
Proof. We have
Ax°® > b yOTA < T
cho = 20 yoTb = 2°

Multiplying Az° > b by v°7 on the left and multiplying y°7A < ¢” by z° on the
right we obtain

yOTAJ,‘O > oTb —°
YT Az® < "o = 2°
Therefore,
v° = y°Th < y°TAz < Ta® = 2°.

This concludes our proof. |
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COROLLARY 2.4 (Bounds on the Objectives) Ewvery feasible solution y°
to the dual yields a lower bound y°Tb to values of z° for feasible solutions z° to the
primal. Conversely, every feasible solution x° to the primal yields an upper bound
cTz° to values of v° for feasible solutions y° to the dual.

> Exercise 2.2  Prove Corollary 2.4.
COROLLARY 2.5 (Optimality) Ifv° = z° then v® = max v and z° = min z.

We can depict the relationship by plotting the points v° and z° on a line as
shown in Figure 2-1.

supv inf 2z z

l¢— Duality Gap —

Figure 2-1: Illustration of the Duality Gap

We are now ready to formally state and prove Von Neumann’s Duality Theorem
which states that if feasible solutions to the primal and dual exist then the duality
gap (depicted in Figure 2-1) is zero and supv is actually attained for some choice
of y, and inf z is attained for some choice of x.

THEOREM 2.6 (Strong Duality Theorem)  If the primal system minz =
'z, Az > b, x > 0 has a feasible solution and the dual system maxv = bly,
ATy < ¢, y > 0 has a feasible solution, then there exist optimal feasible solutions
z =a and y = y* to the primal and dual systems such that

bTy* = maxv = min z = "2, (2.7)

Proof. Consider the system of inequalities and corresponding infeasibility mul-
tipliers:

Ar > b 7 (2.8)

Iz > 0 i (2.9)

— ATy > —c T (2.10)
Iy > 0 0 (2.11)
by —cle > 0 0 (2.12)

We first show that (2.8) through (2.12) is a feasible system from which it fol-
lows by the Weak Duality Theorem 2.3 that strong duality holds. Assume, on the
contrary, that (2.8) through (2.12) is an infeasible system. In general, if Ms > d
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is an infeasible system, then, by the Infeasibility Theorem, there exist infeasibility
multipliers 7 > 0 such that (77M)s > 77d is an infeasibility inequality, i.e., one
where 77M = 0 and 77d > 0. These multipliers are not unique; because of the
homogenity, m may be replaced by any scalar multiple Aw > 0, where A > 0.

Let the infeasibility multipliers be g7 > 0, 47 > 0, £ > 0, 77 > 0, and 6 = 1 for
(2.8) through (2.12), respectively, where we assume that the multipliers have been
rescaled so that § = 1. Note that it must be true that the scalar 8 > 0 because
6 = 0 would imply that there is no feasible solution to the system (2.8) through
(2.11), contrary to the hypothesis that Az > b, x > 0 and ATy < ¢ and y > 0 are
feasible systems.

Applying the infeasibility multipliers on the left of (2.8) through (2.12) and
summing, we obtain the relations:

—#TAT +5TT+ 0T =0 or  Ai>b (2.13)
GA+a T —c" =0 or grA< T (2.14)
TR >0 or  gb>clE (2.15)

If we multiply (2.13) on the left by 47 and (2.14) on the right by #, we obtain
§7b < gTAZ < ¢TF which contradicts (2.15). Hence we see that (2.8) through (2.12)
is always a feasible system.

Since the system (2.8) through (2.12) is feasible, let z, y be any feasible solution
satisfying (2.8) through (2.12). Multiplying (2.8) on the left by y7 > 0 and (2.10)
on the left by 27 > 0, we obtain

yTb < yTAz = 2TATy < 2%c = Tx.

Comparing this with yZb > ¢’z from (2.12) we conclude that b7y = c¢Tz. Therefore
every feasible solution of (2.8) through (2.12) satisfies the conditions of the Duality
Theorem. |

> Exercise 2.3  Show that the proof of the Strong Duality Theorem 2.6 is essentially a
proof that there is no separating hyperplane between the inequalities defining the primal
feasible region and the dual feasible region when both the primal and dual systems are
feasible.

THEOREM 2.7 (Primal/Dual Interchange Theorem) For every theorem
involving primal and dual problems there is an analogous theorem in which the word
dual (meaning dual system) is replaced by the word primal (meaning primal system,)
and the word primal (meaning primal system) is replaced by the word dual (meaning
dual system,).

> Exercise 2.4 Prove the Theorem 2.7.

> Exercise 2.5 Why does Theorem 2.7 not apply to the theorem: “the dual of the dual
is the primal.”
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2.2 ADDITIONAL THEOREMS ON DUALITY
2.2.1 UNBOUNDEDNESS THEOREM

Definition (Homegeneous Inequalities and Solution): A system of linear in-
equalities Az > b is homogeneous if the right-hand side vector is b = 0. A
solution z = z is called a homogeneous solution associated with Az > b if
Azl > 0.

A fundamental property of homogeneous solutions of linear systems of inequali-
ties is that any scalar multiple of a homogeneous solution to the system of linear
inequalities is a homogeneous solution.

Definition: A homogeneous solution is called nontrivial if 2" # 0.

THEOREM 2.8 (Unboundedness) Consider the primal (2.1) and dual (2.2)
systems.

1 If a feasible solution to the primal system exists, but not to the dual, there
exists, for the primal, a class of solutions © = 2™ + X", z = 2* + A\z" such
that Ax™ > b, 2 > 0, Az > 0, 2" > 0, and 2" = Tx" < 0, such that
z— —00 as A — 00.

17 If a feasible solution to the dual system exists, but not to the primal, there
exists, for the dual, a class of solutions y = y* + My, v = v* + Mo" such that
ATy <, y* >0, ATy" <0, y* > 0, and v" = bTy" > 0, such that v — oo as
A — 00.

IIT  If neither the primal nor dual system has a feasible solution there exist non-
negative homogeneous solutions x™, y", to the primal and dual systems such
that 2" = cTah < 0 and v" = bTy" > 0.

Proof.

I For the dual AyT < ¢, y > 0 to be infeasible, there must (by the Infeasibility
Theorem) exist multipliers " > 0 such that Az" = 0, T2 < 0. Thus Part I
follows.

II We prove Part II by applying Theorem 2.7 to Part I. We replace the word
primal with the word dual, the word dual with the word primal, and change
the objective so that we are minimizing.

III  To prove Part III we note that if the primal problem is not feasible, we can
make it feasible by replacing b with b = Ae, where e = (1,1,...,1)T. Such
transformations of the right-hand side have no affect on the feasibility or non-
feasibility of the dual. Since the dual system is still infeasible, it follows from
Part I that we can find a 2" such that 2" = ¢’z" < 0. In an analogous way
we can apply Part II to show that we can find a y” such that v* = b7y > 0.
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This completes the proof. ]

> Exercise 2.6  Apply the Simplex Algorithm to the primal problem, assuming the case
of a degeneracy rule to resolve degeneracy (see Chapter 5), to prove Part I of Theorem 2.8.

2.2.2 MISCELLANEOUS THEOREMS FOR THE
STANDARD FORM

In this section we state theorems for a primal system in standard form:

T,

Minimize c'r =z
subject to  Ax = b, A: mxn, (2.16)
xz >0,
and its dual:
Maximize Vo =w
subject to  ATr < ¢, A: mxn, (2.17)
z > 0.

THEOREM 2.9 (Primal/Dual Optimality Criteria) Let (27, ...
a feasible solution to a primal linear program in standard form and (7%, ..., i V)
be a feasible solution to its dual, satisfying:

& =c— AT >0, bt =0" (2.18)
Then a necessary and sufficient condition for optimality of both solutions is

& =0 for ;>0 (2.19)

Proof. Let z; > 0 be any feasible solution satisfying the primal problem (2.16),
and 7 be any multipliers satisfying the dual problem (2.17). Thus, ¢ = ¢— ATmr > 0.
If Az = b in (2.16) is multiplied on the left by 77 and subtracted from the z-form,
we get

dr=z2—v. (2.20

~

By the sufficiency hypothesis, there is a particular feasible solution z; = xj

0,z = 2°, and particular multipliers, m; = wf satisfying 5; > 0, such that 5'; =0, if
:cj > 0. Substituting these values in (2.20), the left-hand side vanishes term by term
and v* = Z*. Applying Corollary 2.5 we conclude that maxv = v* = z* = min 2.
This proves the sufficient part of the theorem.

To show the necessary part, by the Duality Theorem, we have v* = z*. Substi-
tuting this into (2.20), the left-hand side must be zero. Since ¢ > 0 and x; > 0 by
hypothesis, the left-hand side is nonnegative term by term, and hence for it to be

zero all terms on the left must vanish, which means c'*;- =0 for xj > 0. |

Y
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THEOREM 2.10 (Existence of a Primal Optimum) If a feasible solution
exists for the primal and z has a finite lower bound, an optimal feasible solution
exists.

Exercise 2.7 Prove Theorem 2.10 by proving that the dual is feasible and then applying
the Strong Duality Theorem.

Exercise 2.8 Prove that Theorem 2.10 is an immediate consequence of applying the
Simplex Method to the primal problem.

COROLLARY 2.11 (Existence of a Dual Optimum) If an optimal feasible
solution exists for the primal, there exists an optimal feasible solution to the dual.

Exercise 2.9 Show that Corollary 2.11 is a special case of Theorem 2.10.

Exercise 2.10  Prove Corollary 2.11 by showing that the terminal conditions of the
Simplex Method generate an optimal feasible solution to the dual.

2.3 COMPLEMENTARY SLACKNESS

When the primal and dual systems are expressed in von Neumann symmetric form,
as systems of inequalities in nonnegative variables, Theorem 2.9 takes on a more
elegant symmetric form.

Let z; > 0 be any feasible solution satisfying (2.1) and y; > 0 be any feasible
solution satisfying (2.2); we assume here that feasible solutions exist. We rewrite
the former in standard equality form by substituting a vector of slack variables x:

T,

Minimize c'xr =z
subject to Az — Izs = b (2.21)

T >0
where T3 = (Zp1,Tna2s .- Tnim). > 0 are variables that measure the extent of
inequality, or negative slack, between the left and right-hand sides of the inequalities.
It will be convenient to let ys = (Ym+1, Ym+2 - - - Ym+tn) > 0 measure the positive

slack in the inequalities of the dual system. Then (2.2) in standard equality form
becomes:

Maximize b7y =
subject to ATy + Iy, = ¢ (2.22)
Yy >0

where ¥s = (Ym+1, Ym+2, - - - 7ym+n)T = 0.
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Let (z, x5, z) be any feasible solution to the primal system (2.21) and let (y, ys, v)
be any feasible solution to the dual system (2.22). Multiplying Az — Iz, = b on the
left by T and subtracting from the z form in (2.21) we get

e —yTAx + yTxy = 2 — y'b. (2.23)

Multiplying A™y + Iy, = c on the left by 27 and subtracting the v form of equa-
tion (2.22) from it, we get

—bly + 2TATy + 2Ty, = 2Tc —v. (2.24)
Adding (2.23) and (2.24) and cancelling we obtain
yle +yle, =2 —v. (2.25)

The left-hand side of (2.25) is nonnegative term by term, hence 0 < z —v or v < z.
Since we are assuming that primal and dual solutions exist, the hypothesis of the

Duality Theorem is satisfied and there exist optimal feasible solutions, (z,zs,z) =

(2, 2%, 2%) and (y, ys,v) = (¥, y¥,v"), to both systems with z* = v*. Hence

() "2 + (y") "2 = 0. (2.26)

Since (2*,2%) > 0 and (y*,y%) > 0, the left-hand side of (2.26) vanishes term by
term:

[yt}jmﬁzo forj=1,...,n

yj[a:t]Lzo fori=1,...,m

establishing the following theorem.

THEOREM 2.12 (Complementary Slackness)  For optimal feasible solu-
tions of the primal (2.1) and dual (2.2) systems, whenever the kth relation of either
system is slack, the kth variable of its dual is zero; if the kth variable is positive in
either system, the kth relation of its dual is tight, i.e.,

TkYm+k =0 k=1,....n and YkTm+k =0 k=1,...,m. (2.27)

Comment: By a “slack constraint” we mean that the value of the slack variable in
the optimum solution is positive. By a “tight constraint” we mean that the value
of the slack variable is zero.

Comment: The primal variable z and dual slacks y, (similarly, the dual variables y
and primal slacks x) are called complementary variables.

2.4 THEOREMS OF THE ALTERNATIVES

Although we state the various theorems of the alternatives using the term dual
linear program, these theorems (except Tucker’s) predate 1947-1948 when linear
programming was formulated and the term dual was first used. Instead the authors
of these theorems referred to the dual system in homogeneous form as adjoint or
transpose systems.
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2.4.1 GORDAN’S THEOREM

THEOREM 2.13 (Gordan [1873])  FEither a linear homogeneous system of
equations Ax = 0 possesses a montrivial solution in nonnegative variables or there
erists an equation, formed by taking some linear combination of the equations, that
has all positive coefficients. That is, either there exists an x = x° such that

Az’ =0, 0#2a°>0 (2.28)

or there exists a ™ such that
7TA > 0. (2.29)

Proof. If (2.28) has a solution, then so does

(ﬁ)x—(?) 23>0, (2.30)

where e = (1,1,...,1)%. If (2.30) has no solution, then by Corollary 2.2 of the
Infeasibility Theorem, there exist (7, 7) such that

#TA+ne” =0, #0+4+n>0. (2.31)

Since 1 > 0 by (2.31), this implies
#TA = —neT <0. (2.32)
Substituting 7 = —#, we obtain 774 > 0. ]

Example 2.1 (Illustration of Gordan’s Theorem) The system

2.T1 — 3:13’2 ZO
3.%'1 — 2:L'2 :0

has only a trivial solution z; = 0, and x2 = 0. Therefore, according to Gordan’s theorem,
there must exist a 7 such that 774 > 0. It is easy to verify that one such 7 is m = —1,
w2 = 1. On the other hand, the system

r1 — 229 + x3 = 0
$2—$3=O

has the nontrivial solution 1 = 1, z2 = 1, x3 = 1, implying, according to Gordan’s
theorem, that 774 > 0 results in an infeasible system. It is easy to verify that this is

indeed the case:
T >0

—2m + w2 >0
T — w2 > 0.

> Exercise 2.11  Prove the converse of Gordan’s Theorem, namely, if (2.29) is true then
this implies that the only feasible solution to Az =0, z > 0is z = 0.
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2.4.2 FARKAS’S LEMMA

THEOREM 2.14 (Farkas’s Lemma [1902]) If a linear homogeneous inequal-
ity
bIr <0 (2.33)

holds for every m satisfying a system of homogeneous inequalities
ATr <0, (2.34)

then the inequality bm < 0 is a nonnegative linear combination x > 0 of the in-
equalities of the system ATm <0, that is,

Ax=0b, x>0. (2.35)

Proof. Assume the hypothesis is true but, on the contrary assume, that there
exists no nonnegative linear combination x of (2.34) that yields (2.33). Then there
exists no feasible solution to the system (2.35). By Corollary 2.2 of the Infeasibility
Theorem, there exist multipliers m; = 7, that, when applied to (2.35), yield an
infeasible equation; the coefficients and right hand side of this equation are

ATre <0,
bIre > 0,

contrary to our hypothesis. |

Example 2.2 (Illustration of Farkas’s Lemma) Note by adding the system of in-
equalities

m 4+ 2w <0

m + m <0
the linear homogeneous inequality

211 + 3m2 <0

holds for every 7 satisfying the inequalities. It is easy to verify the statement of Farkas’s
lemma that there exists z > 0 satisfying

x1 + x2 = 2
21 + x2 = 3,

namely z; = 1 and z2 = 1.

> Exercise 2.12  Prove that the following is an equivalent statement of Farkas’s Lemma.
Either:

1. there exists an z > 0 for which Az = b,
2. or there exists a m for which ATr > 0 and 6™ < 0.
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Exercise 2.13  State and prove the analogue of Farkas’s Lemma for linear equation
systems.

Exercise 2.14 Show that Farkas’s Lemma implies the Infeasibility Theorem 2.1.

Exercise 2.15 Apply the FME algorithm (Linear Programming 1) to prove Farkas’s
Lemma.

2.4.3 STIEMKE’S THEOREM

THEOREM 2.15 (Stiemke [1915]) FEither a linear homogeneous system Ax =
0 possesses a solution with all variables positive or there exists a linear combination
of the equations that has all nonnegative coefficients, one or more of which are
positive. That is, either there exists an x = x° such that

Az? =0, z°>0, (2.36)

or there exists a w such that
0# Afm > 0. (2.37)

Proof. If the homogeneous system possesses a strictly positive solution, there
exists, by positive rescaling, a solution to the system

Az =0
r>e, wheree=(1,1,...,1)T. (2.38)
Replacing x with 2’ + e, where =’ > 0, results in the system
A(El = 7Ae
x>0 (2.39)

Either this system possesses a feasible solution or there exist, by Corollary 2.2 of
the Infeasibility Theorem, multipliers 7 such that the resulting linear combination

(7TA)z’ = —(xTA)e (2.40)

is an infeasible equation in nonnegative variables. That is, 774 > 0 and —77Ae < 0;
but 77Ae > 0 implies that at least one component of 774 is > 0 establishing the
theorem. |

Example 2.3 (Illustration of Stiemke’s Theorem) The linear homogeneous system

.T1—.T2=O
2:13’1—.%220
z1 >0, 22 >0
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Primal
Variables | 1 >0 T >0 || 41 >0 zn > 0 | Rel | Const
st a1l ak A1k+1 a1in = 0
T2 a21 a2k Q2k+1 azn = 0
Dual :
Tm am1 Amk Amk+1 Amn - 0
Relation < < < <
Constants 0 0 0 0

Table 2-1: Tucker Diagram (Partitioned)

has no solution. Therefore, according to Stiemke’s Theorem, there must exist a 7w such
that 0 # 7TA > 0. It is easy to verify that one such 7 is m = —1, ma = 1, resulting in

r (1 2\ [(-1\_ (1
v (a3 )-6)
On the other hand, the system

xr1 — 2x2 + x3 = 0
1’2—:13’3:0
1 >0, z2 >0, z3 >0

has a solution z1 = 1, x2 = 1, z3 = 1, implying, according to Stkemke’s theorem, that
0 # 7wTA > 0 does not hold. It is easy to verify that this is indeed the case because

T >0
—2m + 72 >0
71'1—71'220

implies T = 0, T2 =0, or ATr = (8)

2.4.4 MOTZKIN’S TRANSPOSITION THEOREM

The pair of homogeneous systems Az = 0, > 0, and A”7 < 0 may be viewed as
dual linear programs with zero-coefficient objectives 07z = min and 077 = max.
These are displayed in the Tucker Diagram shown in Table 2-1. We assume each
column has at least one nonzero coefficient.

THEOREM 2.16 (Motzkin [1936]) Consider any arbitrary subset of k col-
umns; for example the first k columns shown as a partition in the diagram (see
Table 2-1) to the left of the vertical double line. FEither there exists a solution to
the dual system ATm <0, such that all inequalities corresponding to the subset hold
strictly, or the primal system Az = 0, x > 0 has a solution such that at least one
corresponding variable of the subset has a positive value.
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Proof. If there exists a solution to the primal system with the requisite property,
then one exists such that

o b Tt b = 1 (2.41)
where j = 1,...,k is the assumed subset. The remainder of the proof parallels the
proof of Gordan’s Theorem (See Theorem 2.13). |

Exercise 2.16 Complete the proof of the Motzkin Transposition Theorem.
Example 2.4 (Illustration of Motzkin’s Theorem) Consider the system:

x1 + x2 — x3 =0

X2 = 0.
The dual system satisfies:
™ <0
m 4+ w2 <0
— < 0.

The dual clearly implies that m; = 0 and 72 can take on any nonpositive value.

If we choose as the subset the variables x1 and x2, the first inequality in the dual
corresponding to this subset cannot hold strictly because m1 = 0 as we have just shown.
Hence, according to Motzkin’s theorem there must exist x > 0 such that 1 +x2 > 0. This
is clearly true, because one solution is x1 =1, x2 = 0, x3 = 1.

On the other hand, if we choose as the subset only the variable x2, the dual inequality
corresponding to this subset can be made strict by choosing 2 < 0. In this case, according
to Motzkin’s theorem, x2 = 0, which is indeed the case.

COROLLARY 2.17 (Complementary Pair) Consider the von Neumann pri-
mal/dual pair of homogeneous systems Ax > 0, x > 0 and ATy < 0, y > 0 with
zero-coefficient objectives, where A is m x n. If we subtract slack variables u > 0
in the primal to obtain Ax — Iv = 0, x > 0, then given an index p there exists a
pair of complementary solutions (vP,yP) such that either

vy >0, yb =0,

or
vy =0, yb > 0.

Exercise 2.17  Prove Corollary 2.17.

2.4.5 VILLE’S THEOREM

THEOREM 2.18 (Ville [1938]) Consider the dual homogeneous programs with
all zero-coefficient objective forms,

Ax
ATy

IN IV
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Let either system be the primal and the other the dual. FEither there exists a solution
to the primal where all inequalities hold strictly or there exists a nontrivial solution
to the dual.

Example 2.5 (Illustration of Ville’s Theorem) Consider the primal and dual ho-
mogeneous linear programs with zero-coefficient objectives:

1 + 22 >0 and 1 <0
1’120,%‘220 y120.

Clearly, there exists a solution that satisfies the primal problem with all inequalities holding
strictly, namely, 1 = 1, z2 = 1. Then by Ville’s theorem the dual has only a trivial
solution, i.e., y1 = 0, which is indeed the case. On the other hand, consider the primal
and dual homogeneous linear programs with zero-coefficient objectives:

1 + 22 >0 Y1 <0
—x2 >0 and y1 — y2 < 0
z1 20, z2 >0 y1 >0, y2 > 0.

The second inequality in the primal cannot hold strictly because clearly 2 = 0. Then by
Ville’s theorem we must have a nontrivial solution to the dual, which is the case because,
for example, y1 = 0, y2 = 1, satisfies the dual.

> Exercise 2.18 Show that Ville’s Theorem 2.18 is a special case of the Motzkin’s Trans-
position Theorem 2.16 by introducing slack variables into the primal system.

2.4.6 TUCKER’S STRICT COMPLEMENTARY
SLACKNESS THEOREM

Sharper forms of the various Theorems of Alternatives can be obtained by judi-
cious application of Motzkin’s Transposition Theorem; in particular Tucker’s The-
orem 2.21.

Definition (Complementary Pair): Let Ax — Iv = 0, x > 0, v > 0 and
ATy +Tu =0,y >0, u >0 be a pair of homogeneous primal/dual linear pro-
grams with all zero coefficient objectives and slacks added. The corresponding
(xj,u;) and (y;,v;) are called complementary pairs.

LEMMA 2.19 (Complementary Slackness for Homogeneous Case) Ewv-
ery solution to the homogeneous primal (2.42) and dual (2.43) systems is optimal
and the products of all complementary pairs vanish.

LEMMA 2.20 (Combining Solutions) If (z°,4°) and (x!,y') are two pairs
of feasible solutions to (2.42) and (2.43) then (z° + x',9y° + y') are also feasible
solutions to (2.42) and (2.43) and satisfy the complementary slackness property.

> Exercise 2.19 Prove Lemmas 2.19 and 2.20.
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THEOREM 2.21 (Tucker [1956]) There exist solutions to the homogeneous
primal (2.42) and dual (2.43) programs that have all zero coefficient objectives such
that every wvariable in one system and its complementary slack in the other system
have one positive and one zero value.

Comment: Tucker’s Theorem is also known as the Strict Complementary Slackness
Theorem because it states that optimal solutions can be found such that in every
complementary pair exactly one variable is positive and the other variable is zero.

Proof. We prove the theorem by demonstrating strict complementary slackness
for the pairs (y,v). Then, by interchanging the role of the primal and dual in the
proof, we can find a solution that also satisfies strict complementary slackness for
the pairs (z,u).
Augment the primal system Ax > 0, x > 0 with slack variables v > 0 to obtain
the system
Az —ITv=0, >0, v>0

and add slack variables © > 0 to the dual to obtain
ATy +Tu=0, y>0, u>0.

Find any feasible solution (x,v) = (Z°,7°) to the primal and any feasible solution
y = ¢° to its dual; by Lemma 2.19 these are optimal and satisfy complementary
slackness.

If strict complementary slackness holds for each pair (79, 9¢) fori = 1,...,m, we
are done. Otherwise, we find the first index ¢ = p for which ;) = 0 and g, = 0. Next,
partition the primal system so that Motzkin’s subset (see Section 2.4.4) consists of
one slack variable, v, then by Corollary 2.17, either there exists a solution in which
vp > 0 for the primal system or y, > 0 for the dual. In the first case find a
primal solution (z,v) = (2P,v?) with v§ > 0 and set (y,u) = (y*,u?) = (0,0).
In the second case find a dual solution y = y?, u = u? = 0 with y§ > 0 and set
(z,v) = (2P, vP) = (0,0). Next add the current two solutions to obtain:

' = 2°+a?
T T
-1 _ -o D
y =y +y
a' = a®+uP

which is also a feasible solution to the primal/dual system by Lemma 2.20. By
Lemma 2.19 (2%, 9') and (g', ') are optimal and also satisfy complementary slack-
ness. We know that none of the values (Z°,9°) and (§°) have decreased because we
have added nonnegative numbers. Hence, if p < m, we have examined the solution

(#1,91) and (g, @') from components i = p+1,...,m to find if any pair of ¢}, o}
fails to meet strict complementary slackness. If any pair fails, repeat the process
=k =k

iteratively until a solution (z*, %), (g, @*) is obtained where all pairs g¥, o¥ satisfy
strict complementary slackness. ]
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Example 2.6 (Illustration of Strict Complementary Slackness) Consider the pri-
mal and dual homogeneous programs with zero-coefficient objectives:

x1 + 22 >0 yr —y2 <0
—T >0 and Y1 <0
z1 20, 220 y1 >0, y2 > 0.

A solution to the primal is

(-0 (-0

and a solution to the dual is

= (n)-(0) = (2)-0)

It is easy to verify Tucker’s strict complementary slackness.

Exercise 2.20 Consider the primal problem (with vacuous objective)

1+ x2 + 23 >0
X1 —$320
ZT1 207 fL'QZO, fL'3ZO

Write down its dual and show there exists a nontrivial primal solution that does not satisfy
strict complementary slackness. Show how to modify your solution, by adding to it one
or more solutions according to the proof of Tucker’s theorem, to obtain one that satisfies
strict complementary slackness.

Exercise 2.21  Consider the primal homogeneous system Az > 0, z > 0 with all zero
coefficient objective and A given by

1.0 -0.5 -0.6
A= -0.1 1.0 -0.1]).
-0.3 -0.2 1.0

What does Tucker’s Strict Complementary Slackness Theorem say about its dual?

Exercise 2.22  For the primal (2.42) and dual (2.43) systems show how to obtain a
strictly complementary solution by formulating and solving one linear program.

2.5 NOTES & SELECTED BIBLIOGRAPHY

As noted in this chapter, associated with every linear programming problem is another
linear programming problem called the dual. The fundamental notion of duality and the
term was introduced by John von Neumann (in conversations with George Dantzig in Oc-
tober 1947) and appears implicitly in a working paper he wrote a few weeks later (von
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Neumann, [1947]). George Dantzig’s report, A Theorem on Linear Inequalities, dated
January 5, 1948, contains the first known rigorous (unpublished) proof of the Duality
Theorem. Subsequently Gale, Kuhn, & Tucker [1951] independently formulated the Du-
ality Theorem which they proved by means of a classical lemma due to Farkas [1902].
This theorem (see Theorem 2.14), known as Farkas’ Lemma, first appeared as a lemma
in Farkas’s 1902 paper. A constructive proof of the Duality Theorem using the Simplex
Method can be found in Dantzig [1963]. J. Abadie in verbal communications [1965] with
one of the authors showed how to use the Infeasibility Theorem to prove von Neumann’s
Strong Duality Theorem. Our proof is a more concise version of Abadie’s.

Tobias Dantzig, mathematician and author, well known for his books popularizing the
history of mathematics, suggested around 1955, to his son George, the term primal as the
natural antonym to dual since both primal and dual derive from the Latin.

A systematic presentation of theoretical properties of dual linear programs can be
found in Gale [1951] and Goldman & Tucker [1956a,b]. A review of von Neumann’s
contributions can be found in Kuhn & Tucker [1958]. Today everyone cites von Neumann as
the originator of the Duality Theorem and credits Gale, Kuhn, & Tucker as the publishers
of the first rigorous proof.

As already noted, there are several important duality-type results, known as “Either
Or” theorems of the alternatives, that predated the linear programming era: Farkas [1902],
Gordan [1873], Motzkin [1936], Stiemke [1915], and Ville [1938]. The earliest known
result on feasibility is one concerning homogeneous systems, Gordan [1873]. Tucker [1956]
presented a sharper form of the Theorem of Alternatives as presented in this chapter.

A natural question to ask is why not use the classical method of Lagrange multipliers
to solve the linear programming problem. If we were to do so we would be required to
find optimal multipliers (or prices 7), which, if they exist, must satisfy a “dual” system
with the property that the ¢; (or relative cost factors) and optimal z; satisfy ¢;z; = 0 for
j=1,...,n. The latter leads to 2" possible cases of either ¢; = 0 or z; = 0. It is here that
this classical approach breaks down, for it is not practical to consider all 2" possible cases
for large n. In a certain sense, however, the Simplex Method can be viewed as a systematic
way to eliminate most of these cases and to consider only a few. Indeed, it immediately
restricts the number of cases by considering only those with n—m of the x; = 0 at one time
and such that the coefficient matrix of the remaining m variables is nonsingular; moreover
the unique value of these variables is positive (under nondegeneracy). The conditions
¢jzj = 0 tell us that &; = 0 for x; > 0 and this determines uniquely 7; and the remaining
¢;. If it turns out that not all ¢; > 0, the case is dropped and a special new one is examined
on the next iteration, and so on.

2.6 PROBLEMS

2.1 Assuming Farkas’s Lemma is true, derive the Duality Theorem.

2.2 Ph.D. Comprehensive Exam, September 21, 1991, at Stanford. Given the linear
program, find xz; > 0, min z, satisfying, in detached coefficients
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2.3

2.4

2.5

—z T To T3 T4 Ts Te | b |
1 4 3 2 1 0 —-1]0
1 -5 -4 1 2
—.2 1 -5 1 3
-3 =2 1 1|4

(a) Prove every basic feasible solution satisfies
X1T4 = 07 X225 = 07 X3Te = 0.
(b) Prove that the set of feasible x is bounded.

In this exercise we examine a different proof of the Duality Theorem 2.6 which
also uses the Infeasibility Theorem 2.1. Refer to the von Neumann symmetric
form (2.1) and (2.2).

(a) Consider the primal system

Ax > b
Ix 0

—cTz —supv (ie., dr < supv < inf z)

>

>
where v = bTy, ATy < ¢, and y > 0. Show in a detailed step-by-step way
that assuming this system is infeasible leads to a contradiction.

(b) Consider in an analogous way the dual system

yTA S CT
—yTr <o
—y'b < —infz (ie., y'b > inf z > supv)

where z = ¢Tz, Az = b, and & > 0. Show in an analogous detailed step-by-
step way that assuming this system is infeasible leads to a contradiction

(c) Conclude from (a) and (b) that the Duality Theorem 2.6 is true.

(d) Redo the proof of part (b) by viewing the dual system as a primal problem
and applying the conclusions that we have already arrived at for the primal
problem. Therefore show that is not necessary to go through a detailed
step by step proof to arrive at an analogous conclusion for the dual.

Ph.D. Comprehensive Exam, September 21, 1991, at Stanford. Consider the two

linear programs (i) 07z = min z subject to Az > 0, z > 0, and (ii) 07y = maxv

subject to ATy <0, y > 0.

(a) Prove that either program is the dual of the other.

(b) Prove that either there exists an « > 0 such that Az > 0 or there exists a
nontrivial solution to the dual linear program.

Consider the problem:

Minimize Az + g%y = 2
subject to Az =b
—Bzx + Fy =4d

T >0

y > 0.
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2.6

2.7

2.8

2.9

2.10

2.11

2.12

We are given a point x = z° that satisfies Az° = b, z° > 0. We wish to
determine whether there exists a y = y* such that (mo,y*) is optimal for the
full problem. Let 71 and 72 be the multipliers on Az = b and —Bx + Fy = d
respectively. We perform a number of checks:

(a) Az°=0b, z° > 0 is satisfied. However, we note that z° is not a basic feasible
solution.

(b) Solve min g7y subject to Fy = d + Bx°, y° > 0. The optimal solution is
Y= y* with optimal multipliers m2 = .

(¢) Solve min (¢ + BTr3) Tz subject to Az = b. The optimal solution is = = z*
with optimal multipliers m; = ﬂ(.

Prove that (x°, y*) is an optimal solution to the original system and (ﬂ(, Wﬂg) is
the optimal dual solution if

(c + BTr5)Ta® = b7r}.
Dantzig [1963]. The Fourier-Motzkin Elimination method permits one to drop
a variable by increasing the number of inequalities. Dualize the procedure and
find a method for decreasing the number of inequalities by increasing the number
of variables.
Suppose there exists a solution to a homogeneous system of inequalities, Az > 0,
each of which is satisfied strictly. Show that there exists a solution to Az > e,
where e = (1,1,..., )7
Consider the linear program:

Minimize Tz
subject to Az > b, A: mxn, (2.44)
z > 0.

Suppose that z = 2" is a basic feasible optimal solution for this program and
that =& > 0, i.e., the optimal basic feasible solution is nondegenerate. Show
that the dual to this linear program has a unique optimal solution.

Show that the set {x | Az > b} # ¢ is unbounded if and only if there exists an
x # 0 such that Az > 0.

Consider von Neumann’s primal-dual pair of LPs, (2.1) and (2.2). Show that it
is impossible for the primal’s feasible region (set of feasible solutions) and the
dual’s feasible region to be both nonempty and bounded.

Devise an efficient way to test that a given solution z = 7 is an optimal solution
for a linear program in standard form by considering the following cases:

(a) @ >0,for k=1,...,m+1, where 0 <! <n —m; if columns 1,...,m are
nonsingular and also if they are singular;
(b) zx >0,for k=1,...,m—1, where 0 < < m.

Clearly explain your approach.

Show that the primal has a unique solution if the dual is nondegenerate and
that the dual has a unique solution if the primal is nondegenerate. Note that
the dual max bTr, subject to ATr < ¢, of a linear program in standard form is
defined to be nondegenerate if for any 7, with A7r < ¢, we have ¢ — ATr with
at most m zeros.
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2.13

2.14

2.15

2.16

Dantzig [1963].

(a) Suppose that an optimal solution with respect to a given objective form z
is not unique and that it is desired to introduce an alternative objective Z
and to minimize 2, given that z is minimum. Show that an optimal solution
exists that is basic in the restraint system, excluding the z and Z forms.
Prove that this solution can be obtained by first dropping all variables z;,
such that ¢; > 0 at the end of Phase II, and then replacing the z form by
the Z form.

(b) Generalize the usual Phase I, Phase II procedure to find a solution that is
as “feasible as possible” (minw) and given that it is and is not unique, find
the one that minimizes z, given that w = minw.

Dantzig [1963].

(a) Show that it is not possible for z — —oo, if no positive combination of
activities vanishes. Discuss what this means in a practical situation if a
positive combination vanishes except for a positive reduced cost, a negative
reduced cost, a zero reduced cost.

(b) Show that if 2 — —oo, there exists a homogeneous feasible solution to the
system. Show that it is possible to have z — +o00 and z — —oo in the same
system.

(¢) Does a column with all negative entries in the original tableau imply that
(if feasible solutions exist) a class of solutions exists such that z — —oo?

Dantzig [1963]. Prove that if an optimal solution z§ > 0, z = 2° = min z exists
to a linear program, then the system of equations formed by dropping all z;,
such that =7 = 0 and setting z = 2° is redundant.

Ph.D. Comprehensive Exam, June 15, 1967, at Stanford. Given the system

n
Yoy =1,
=1

J
3 2.45
Sajy; <M fori=1,...,m, (2.45)
Jj=1

y; >0 forj=1,...,n.

Systems such as these have application in “game” theory.

(a) Show that the problem of finding the minimum M satisfying (2.45) is a
linear program.
(b) Show that the dual of the linear program in part (a) is of the form

Maximize N,

subject to Sai=1
i=1 (2.46)

(¢) Prove

N < izmiauw <M
i=1 j=1
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Level
curve
of Tz

Figure 2-2: Find Basic Feasible Solutions of Dual of Two Variable Primal

2.17

2.18

2.19

2.20

and
max N = min M.

(d) Show that primal and dual feasible solutions for the linear programs (2.45)
and (2.46) always exist.
(e) Why is max N = min M positive, if all a;; > 07

Ph.D. Comprehensive Exam, June 15, 1967, at Stanford. We know that linear
programming problems whose variables have lower and upper bounds permit a
special variant of the Simplex Method.

(a) State the variant
(b) Considering a problem of this type as primal, state the associated dual
problem.

Ph.D. Comprehensive Exam, March 31, 1969, at Stanford. Let
Sz{x|Am2b,x20} and T={y|ATy§c,y20}

be the set of feasible solutions of primal and dual linear programs. Prove that
if S and 7 are nonempty, then at least one of them must be unbounded. Could
both of them be unbounded?

Ph.D. Comprehensive Exam, September 25, 1971, at Stanford. Consider a two-
variable linear programming problem of the form

Maximize T

=z
subject to  Ax < b,
z > 0,

for which the constraint set X and the objective function are as indicated in
Figure 2-2. Use the figure to determine the number of basic feasible solutions
of the dual problem.

Ph.D. Comprehensive Exam, September 27, 1975, at Stanford. Von Neumann’s
Minimax Theorem for a two-person zero-sum game (see Problem 2.16) is as
follows.
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2.21

2.22

Von Neumann’s Minimax Theorem. Given > " z; =) "oy =1,
=1 j=1 J
i >0 fori=1,....mandy; >0 forj=1,...,n:

m n m n
max min E E Gi;T;Y; = Max min E E Qi TiY;
z {ylz} 4 - vy A{=ly} 4 -
i=1 j=1 i=1 j=1
where {y | ©} means y given x.

Prove that von Neumann’s Minimax Theorem for finite two-person zero-sum
games is a special case of the Duality Theorem for linear programs.
Ph.D. Comprehensive Exam, September 1979, at Stanford. Given

Ax =b
Bx + Gy =d (2.47)
with > 0 and y > 0. Suppose x = z° > 0 satisfies Az° = b, but that

Gy =d— Bzx°, y > 0, is infeasible.
(a) Prove there exists a m = 7° such that
G™r° <0 and (d— Bz°)"x° >0. (2.48)

(b) How can you use Phase I of the Simplex Method to find such a w°7
(c) Show that every feasible solution to (2.47) must satisfy

Ax = b, x>0,

(’TFO)TB{L' > dT’TrO, (249)

and that the current solution x = z° violates the latter condition.
(d) Suppose & = z* satisfies (2.49) and ((WO)TB)m* = d'r° (i.e., tight). Sup-
pose
Gy=d- Bz, y>0, (2.50)
is now feasible. Prove that every basic feasible solution to the system (2.50)
is degenerate.

Ph.D. Comprehensive Exam, September 24, 1988, at Stanford. Given a linear
program
>0, Az=0b, z=z (min),

let ™ denote the dual variables.

(a) State the dual problem in terms of 7.

(b) Given alleged solutions z = z* to the primal and 7 = 7 to the dual, state
the conditions that must be satisfied by z* and 7" in order to be optimal
feasible solutions to the primal and the dual, respectively.

(c) Assume B is an optimal feasible basis. Partition A, ¢, and z into basic and
nonbasic components, thus:

Apzp + Ayzy = b, T = (vaxN)TZ 0,
cLry + chay = 2 (min)

Let BTr" = cg where B = Ag. Restate the optimality conditions in terms
of the partitioned structure.
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(d) Assume 2* = (25,24 = 0) is an optimal basic feasible solution and that

(e)

NT7* < ¢ where N = Ay (note the strict ineqality). Prove z" is the unique
optimal primal feasible solution.

Assume further that x5 in part (d) is degenerate. Prove that 7 is an
optimal dual feasible solution but is not the unique optimal dual feasible
solution. Show how to go about numerically constructing another optimal
dual solution.
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CHAPTEHR

3

EARLY INTERIOR-POINT
METHODS

An interior-point algorithm is one that improves a feasible interior solution point of
the linear program by steps through the interior, rather than one that improves by
steps around the boundary of the feasible region, as the classical Simplex Algorithm
does. The earliest interior-point method is due to the famous mathematician John
von Neumann. His method for finding a feasible solution to a linear program with a
convexity constraint is notable for its simplicity and remarkable convergence prop-
erties; see Section 3.1. Since a general linear program combined with its dual can
be reformulated into a feasibility problem of this restricted form, von Neumann’s
algorithm may be viewed as a method for solving the general linear program.

Just like there are many variants of the Simplex Method (which we refer to
as pivot step algorithms), so there are many variants of interior methods such as
projective and/or potential reduction, affine, and path-following.

1. Projective and Potential Reduction Methods. These methods measure the ap-
proach toward an optimal solution by the reduction of the value of a potential
function rather than the reduction of the value of the linear objective. For
example, Karmarkar’s agorithm is typically based on projective geometry but
uses a potential function to measure progress of the solution towards opti-
mality. The potential function is typically designed to ensure the following:
(a) the objective function decreases at each iteration, (b) the solution point
stays in the interior of the feasible space, and (c) the algorithm converges in
polynomial time. In practice, these methods have not done well.

2. Affine Methods. These methods approximate the feasible region, at each iter-
ation, by an ellipsoid and optimize over the ellipsoid. The implementation of

67
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such methods is easy as we saw in the discussion of one such method in Linear
Programming 1: Introduction. In this chapter, we discuss Dikin’s method, an
early affine method. In practice these methods perform quite well but not as
well as the path-following methods.

3. Path-Following Methods. These methods follow a certain path as the optimal
solution is approached. The linear program is first transformed into an uncon-
strained nonlinear optimization problem, called a logarithmic barrier function.
The logarithmic barrier function typically consists of the objective function
and one or more additional terms, multiplied by a scalar positive parameter,
that increase in value as the iterates approach the boundary. In effect, the
additional terms throw up a barrier at the boundary. The unconstrained op-
timization problem is solved and the parameter value reduced for the next
iteration. The optimal values of the sequence of unconstrained problems ap-
proach the optimal solution of the linear program along a path through the
interior of the feasible region.

Path-following methods have performed the best in theory and practice in
recent times. In Chapter 4 we will describe the primal logarithmic barrier
method and the primal-dual logarithmic barrier method.

Some other interior-methods inscribe an ellipsoidal ball in the feasible region
with its center at the current iterate, or first transform the feasible space and then
inscribe a hypersphere with the current iterate at the center. Then an improving
direction is found by joining the current iterate to the point on the boundary of
the ellipsoid or sphere that maximizes (or minimizes) the linear objective function
(obtained by solving a least-squares problem). A point is then selected on the
improving direction line as the next current iterate. Sometimes this iterate is found
along a line that is a linear combination of the improving direction and some other
direction.

In 1967 Dikin proposed an affine method that in its original form is not a finite
method but one that converges in the limit. In particular, Dikin’s method as de-
scribed in Section 3.2, has an asymptotic rate of convergence of 1 — 1/4/m. This
method has the distinction of having been rediscovered by many; for example, the
primal affine method is the same as Dikin’s method.

During the period 1979-2003, there has been intense interest in the development
of interior-point methods. These methods are related to classical least-square meth-
ods used in numerical analysis for making fits to data or fitting simpler functional
forms to more complicated ones. Therefore interior research can tap into the vast
literature of approximation theory. A theoretical breakthrough came in 1979: the
Russian mathematician L. G. Khachian (based on the work of Shor, 1971-1972)
discovered an ellipsoid algorithm whose running time in its worst case was signifi-
cantly lower than that of the Simplex Algorithm in its worst case. Its iterates are
not required to be feasible. Other theoretical results quickly followed, notably that
of N. Karmarkar, who discovered an interior-point algorithm whose running-time
performance in its worst case was significantly lower than that of Khachian’s. This



69

was followed by the theoretical results of others that improved on the upper-bound
estimates of the worst-case performance as the dimensions of the problems and the
amount of input data increased indefinitely.

The algorithm best suited for solving a particular problem or a special class of
problems may not be the same algorithm best suited for solving any problem from
the broad class of problems defined by Az > b, x > 0, ¢’z = min. One criterion
used for comparing algorithms is upper bounds on worst-case performance times as
the dimensions of the problem grow indefinitely in size. This criterion turns out
to be totally misleading for deciding which algorithm to use for practical problems
because these theoretical upper-bound estimates are many many times greater than
any experienced with practical problems.

Attempts to characterize in a simple way the class (or classes) of practical prob-
lems from which one might be able to derive a theoretical explanation of the excellent
performance times of some of the algorithms used in practice have, in general, failed.
In special cases, such as the shortest-path problem, the performance of shortest-
path algorithms for the entire class of shortest-path problems is comparable to that
observed on actual problems. There has been progress proving that average perfor-
mance on classes of randomly generated problems using a parametric variant of the
Simplex Method resembles that obtained on practical problems, but no one claims
these randomly generated problems are representative of the class of practical linear
programs.

Because the theoretical results can be totally misleading as to what algorithm
to choose to solve a practical problem, an emperical approach is used. The linear
programming profession has accumulated a large collection of test problems drawn
from practical sources. These are used to compare the running times of various
proposed algorithms. The general goal of these efforts is to find the algorithm that
surpasses the performance of all other algorithms in the collection.

For example, Karmarkar claimed (when he developed his method) that on very
large problems his technique would be significantly faster. As of this writing, as
far as the authors can ascertain, there appears to be no one algorithm that is a
clear winner, i.e., that solves all (or almost all) of the test problems faster than
all the other proposed methods. On problems with many bounding hyperplanes in
the neighborhood of the optimum point, an interior method will probably do better
than an exterior method. On problems with relatively few boundary planes (which
is often the case in practice) an exterior method will be hard to beat. For this reason,
it is likely that the commercial software of the future will be some sort of a hybrid
because one does not know which kind of problem is being solved or because one
wishes to obtain an extreme-point solution. Many specialized efficient codes have
been proposed for solving structured linear programs such as network problems,
staircase problems, block-angular systems, and multi-stage stochastic systems.

Definition (Polynomial Time):  Let the problem data size (length of the in-
put data stream) be £, the total number of bits required to store the data of a
linear program in m equations and n variables in the computer. An algorithm
is said to have a polynomial worst-case running time if the algorithm’s execu-
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tion time (in, say, seconds) to find an optimal solution on the computer is less
than some polynomial expression in £, m, and n. Otherwise the algorithm is
said to be NP (nonpolynomial).

Worst-Case Measures Can be Misleading. For example, given a linear program in
m equations and n variables, it may be stated that a method requires less than
O(nPm?) iterations, where O(nPm?) means some fixed constant times n?m?. If
the constant for the worst-case bound were huge, say 10'°° (which may be larger
than the number of all the electrons in the universe), then such a bound would be
ridiculous. Implicit in such statements about a worst-case bound is the assumption
that the fixed constant is small, say 10 or 100. Usually this assumption is valid,
and it has become common practice to compare worst-case bounds of algorithms as
if the fixed constants for each of the algorithms are the same.

In general, given a linear program in m equations and n variables, projective
methods require less than O(n) iterations. Path-following methods require less than
O(y/n) iterations. Each of these also require O(n3) arithmetic operations per iter-
ation to solve a linear least-squares subproblem in order to find a steepest descent
direction. However, with refinements (such as rank-one updates) it is possible to
solve each least-squares problem in O(n®/?) arithmetic operations instead of O(n?).
When the number of operations is multiplied by the bound on the number of itera-
tions, we find that Karmarkar’s projective method is bounded by O(n7/ 2) arithmetic
operations while path-following methods are bounded by O(n?) arithmetic opera-
tions to obtain an optimal solution within a tolerance € > 0. The time required to
carry out the arithmetic operations depend on L, the digits of input data. Thus
the bound on the time to execute Karmarkar’s algorithm is O(n"/2L).

Because the number of arithmetic operations (and iterations) can depend crit-
ically on € > 0, the bound on the accuracy of the computed optimal solution, we
will use the following definition of a polynomial-time algorithm.

Definition (e-Optimal Polynomial Time): An algorithm to solve a linear
program in m rows and n columns is said to have a polynomial worst-case
running time (measured in seconds, say) if the time to execute it is less than
some polynomial expression in £, m, n, ¢ = —log;y€, where L is the total
number of bits required to store the problem’s data in the computer, ¢ is the
number of significant decimal digits of accuracy of the optimal solution, and
the tolerance € is some measure of how much the calculated solution differs
from the true optimal objective value, or an approximate feasible solution to a
feasibility problem differs from the right-hand side of a true feasible solution.

3.1 VON NEUMANN’S METHOD

Von Neumann, in a discussion with George Dantzig in 1948, proposed the first
interior algorithm for finding a feasible solution to a linear program with a convexity
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constraint recast in the form:
2>0, Y xj=1, Y Pz;=0, [[Plla=1 forj=1,...,n. (3.1)
1 1

He provided no proof of its convergence properties. In a follow-up letter to von
Neumann, Dantzig proved that if the problem is feasible, it has the remarkable
property that, independent of the number of rows m and columns n, it is guaranteed
to generate in less than t iterations an approximate feasible solution with a precision
1

Ehve (3.2)
where €2 is the sum of the squares of errors of the fit of the left-hand side of the
equations to their right-hand side.

In the worst-case scenario, which gives rise to (3.2), all the points P; lie on,
or on one side of, a hyperplane through the origin. This, as we will see, causes
the algorithm to have an exponentially slow rate of convergence, namely an upper
bound on iterations ¢+ = 1024, which is not a polynomial expression in (m,n,q), to
achieve ¢ decimal digits of accuracy. However, when the convex hull of the points
P; contains the origin in its interior, we will prove a very strong result, namely, the
algorithm generates in less than ¢ iterations an approximate feasible solution with
a precision,

e< (=" o<r<u, (3.3)
in the worst case, where the fized constant r is the radius of the largest ball centered
at the origin that is contained in the convex hull of the Pjs. In this case the
polynomial expression for the number of iterations ¢ is linear in ¢, independent of
the m and n, namely:

2log;q € 2q

= logyp(1—r2) _1og10(1 —r?)

The work per iteration is approximately mn multiplications and additions; see Ex-
ercise 3.17.

Exercise 3.1 Show that the general linear program min ¢’z, Az > b, > 0 with
feasible primal and dual solutions is equivalent to Az > b, ATy < ¢, bTy > Tz, « > 0,
y > 0.

Exercise 3.2 Show that the number of iterations to attain an approximate feasible
solution whose Euclidean distance ¢ = 10™? from the origin is ¢ < 16q if » = 0.5. Show
that t < 113q if r = 0.2.

Exercise 3.3 Show that a feasibility problem Axz = b, x > 0 can be reduced to a
feasibility problem with a convexity constraint by adding a relation Ej T+ xo = M
where M is sufficiently large.
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Consider the general linear program feasibility problem with a convexity con-
straint: Find y = (y1,92,... ,Yn ) > 0 such that

n
Zijj = b, where Q; € R™
j=1

n
(3.4)
D=1,
j=1
y; >0 forj=1,...,n.
This system is equivalent to
Z@jyj = 0, where Qj = Qj —b
=1
(3.5)

J
n
doui =1,
j=1
y; =20 forj=1,...,n,

which we will refer to as the Center of Gravity Problem, which can be transformed
into a Center of Gravity Problem with Normalized Columns ||P;|| = 1 for j =
1,...,n: Find « = (x1,22,...,2, ) > 0 such that

n
ijmj =0, where P; e R™, |[|P||=1
=1

n (3.6)
Z(Ej = 1.
j=1
This is done by setting: R
) = 9 (3.7)
11Q51
and noting that if x = x° solves (3.6) then y = y° solves (3.4) where
22/]|1Q 5
= TN .
> k=1 T/ 1| Qkl
Conversely, if y = y° solves (3.4) then z = z° solves (3.6) where
o Gl )

i =Sn 1A Lo
Zk:l ||Qk||yk

> Exercise 3.4  Verify that if = x° solves (3.6), then y = y° solves (3.4) and conversely.

> Exercise 3.5 Prove that if there exists a nondegenerate basic feasible solution, the
convex hull of the P;s contains a ball of positive radius centered at the origin.
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P,

Figure 3-1: The Two-Dimensional Center-of-Gravity Problem: Find a Simplex that
Contains the Origin

3.1.1 THE VON NEUMANN ALGORITHM

Given n points P; € 2™ located on the surface of an m-dimensional sphere S of unit
radius centered at the origin O, the problem is to find nonnegative weights z; = xj
to assign to the points P; such that their weighted center of gravity is the origin,
or prove that no such weighting exists; (3.10) states this problem algebraically. See

Figure 3-1 for a two-dimensional example.

Exercise 3.6  Given the coordinates of n points P; on a circle, devise a very efficient
algorithm for solving the 2-dimensional center of gravity problem on a computer. Try to
generalize your procedure to higher dimensions.

By an approzimate solution G to a Center of Gravity Problem (3.10) with nor-
malized columns, we mean any nonnegative weighted linear combination of points
P; whose weights z; > 0 sum to one.

G=> Pa;=0 Y x;=1, P/P;=1, forj=1,...,n. (3.10)
j=1 j=1
The von Neumann Algorithm iteratively finds improving approximations

G'.G? ... ,G' G ...
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vy=a+p<7/2

e, Gt+1

/

Gt

Figure 3-2: Finding an Improved Approximation

whose distances ||G?|| from the origin O decrease toward zero if the problem is
feasible. Given an € > 0, the algorithm terminates in a finite number of iterations ¢
with 0 < ||G"|| < € or terminates on satisfying a certain condition that implies no
feasible solution exists.

Von Neumann’s algorithm is initiated with the approximate solution G' = P,
or any arbitrary convex linear combination:

G'=) Pl > al=1, 2;>0 forj=1,...,n. (3.11)
j=1 j=1

Given an approximate solution for iteration t,

n n

G'=> Pal, Y al=1 a}>0forj=1,...,n, (3.12)
the von Neumman algorithm either generates the next approximate:
n n
G =N Pttt S ettt =1, 2t >0 forj=1,...,n, (3.13)
j=1 j=1

with the property
1G] < llc| (3.14)

or terminates with the condition that implies no feasible solution exists.
On iteration ¢, von Neumman selects P, as the direction P; that makes the
sharpest angle v; with the direction —G'/||G!|| for j =1,...,n.

LEMMA 3.1 (Properties of Improved Solution G!*') If v, < 7/2, the
improved solution is G+ (see Figure 3-2), the point closest to the origin O on the
line joining Ps to Gt. The point G**1 satisfies |G| < ||GY|].
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Proof. We must show two things. First that G**! is a convex combination of
Py, Py, ..., P, and second that ||G'TY|| < ||GY]|.

By assumption s < 7/2. Since 7, the exterior angle of the triangle OG? P, is
greater than the interior angle o, the angle « is acute implying G**! is an interior

point on the line (P;)TG! and hence is a convex combination of Py, P, ..., P,.
Finally ||G**!|| < ||G?|| because

|G| = ||GY||sine < [|GY). (3.15)

|

LEMMA 3.2 (Infeasibility Condition) If v, = min;~y; > 7/2 on some iter-
ation t, there exist no feasible solution to the linear program.

Proof. If v, > m/2, then the angles v, of all P; with —G" are greater than
7/2, implying all points P; lie strictly on one side of the hyperplane through the
origin orthogonal to the direction —G* and hence every convex combination G of
the points P; lies strictly on the same side as G* implying there exists no convex
combination G = 0. |

Exercise 3.7 Convert the geometric proof of Lemma 3.2 into an algebraic proof.

THEOREM 3.3 (Convergence to an Optimal) If v < /2 for all itera-
tions t, then
|G| =0 as t— +oc.

Proof. Let v =v,=7/2—A, A > 0; see Figure 3-2. Then noting v = a + 3,
||G*| = sin 3 = sin(y — a) = sin(7/2 — A — a) = cos(A + «)

< cosa (3.16)
G+
e (3.17)
Squaring (3.16) and (3.17), and summing
||G1H_1||2 t4112 . 9 9
W+||G || <sin®a+cos®a =1
Therefore . :
1G] 2 +1< GP for all ¢t. (3.18)

Starting with G* = P; and ||G!|| = 1, summing the preceding relations from t = 1
tot =T — 1 and cancelling the corresponding terms on each side of the inequality,
we obtain

1
T < ;
IGT?

1
|GT]| < —= — 0 as T — +o0. (3.19)
VT
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THEOREM 3.4 (Convergent Subsequence when ||Gt|| — 0) If G' =

Y Pl Yl =1, 2" > 0 and [|G'|| — 0 as t — oo, then there exists a sub-

sequence t = ti,to,t3,... such that 0 = G* = ZP]'QC?, where i — 2% > 0 for

J j
ji=1,...,n andZaf;:L

Exercise 3.8 Prove Theorem 3.4.

THEOREM 3.5 (Convergence When Sharpest Angle Always < 7/2) If
the sharpest angle is < some 7* < /2 for all t, then

|G| < (sin’y*)t+1 —0 as t— 4oo.

Proof. In Figure 3-2, exterior angle 4* > a; therefore

1G] = |G| sina < [|G*||sins < [|G*||siny;
whence, assuming ||GY|| =1, |G| < (sin'y*)lpr1 — 0 ast — +o0. 1
Exercise 3.9 Prove ||G!|| — 0, if an infinite subsequence t = t1,ta,%s,... satisfies

Ve, S -

THEOREM 3.6 (Convergence If Ball Contains Origin)  Given the class
of normalized feasibility problems (3.6) with the property that the convex hull of the
Pjs contains a ball B centered at the origin with positive radius 0 < p < 1 then

G < (1 =p)' =0 as t— +oo,

and the rate of convergence to the origin is linear, i.e., the number of iterations t
required for |G| <1077 is t < (—log(1 — p2))_1q.

Proof. In Figure 3-3, the vertical dotted line through @ represents the hyperplane
H through @ orthogonal to direction —G*/||G*||, where @ is a point on the surface
of ball B at a distance p from the origin. Because (Q C B, it is a convex combination
of the Pjs. We claim for all ¢, on each iteration ¢, Ps, the direction P; that makes
the sharpest angle with —G?/||G*||, lies on the opposite side of H from the origin O.
If this is true, this implies distance

OR =cosys > p forallt>1. (3.20)

Assume, on the contrary, cosys = max;cosvy; < p. Then all cosy; < p and all
P; lie on the origin side of H. This implies that B, the ball containing all convex
combinations of P;, including @, lie strictly on the origin side of (), which contradicts
the fact that @ lies on the hyperplane H. We conclude that (3.20) is true. The rest
of the proof is straightforward.

1G] = [|GY] sina < ||GY|| sinys = [|GY|V/1 — cos? 75 < /1 — p2.
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l— Hyperplane H
[

vy=a+p<7/2

Figure 3-3: Convergence under Existence of a Ball B

> Exercise 3.10 Convert the geometric proof of Theorem 3.6 into an algebraic proof.

THEOREM 3.7 (Linear Rate of Convergence under Nondegeneracy) If
a nondegenerate basic solution to the feasibility problem (3.6) exists, then the iterates

lG*|| < (1—7“2)t/2 —0 ast—oo forallt>1
where r > 0 is the largest ball centered at the origin in the finite set of simplices

associated with the nondegenerate basic feasible solutions.

> Exercise 3.11 Prove Theorem 3.7. How is finiteness of the number of simplices used
to prove linear rate of convergence?

> Exercise 3.12  If the radius of the largest ball in the convex hull centered at the origin
has radius r = 0, all basic feasible solutions to the linear program are degenerate.

> Exercise 3.13 Construct a two-dimesional example in which all basic feasible solutions
are degenerate but the largest ball centered at the origin contained in the convex hull has
positive radius.

> Exercise 3.14 Construct a two-dimensional example whose convex hull contains a ball
of positive radius that contains the origin, and every basic solution is degenerate.

We have described the von Neumann algorithm geometrically. We now describe
it algebraically. The iterative process is repeated with iteration counter ¢ set equal
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to t + 1. The direction P; can be computed by:

_(Gt)TP
s = argmax{ cosvy; } where cosvy; = ———-. (3.21)
i=1,m ! TGN
Since ||G*|| and || P;|| in the denominator are independent of j (recall that || P;|| = 1),
we can simplify the determination of Py by
s = argmax{ —(G")'P; }, (3.22)
Jj=1,...,n
and setting
(GTP,
COSYg = ——————. (3.23)
legiaival

To algebraically determine the point G**! closest to the origin on the line joining
P, to G*, set Gt = AP, + (1 — \)G*, and determine the value of the scalar A = \
that minimizes

G = [IGIIP + 2MG") T (Ps = G*) + N*|| P = G*|?, (3.24)
by setting 9||G**1||2/OX = 0. This yields
(GHT(P, = G + \||P. =G> =0 (3.25)

nd G2 — ()"
_ P,
= TG SR T (3.26)

>l

Exercise 3.15 Show that A = X yields the minimum and not the maximum of the
expression for G*™ in (3.24).

Hence we determine the new approximation
Gt = AP, + (1 - NG (3.27)

Replacing \ in (3.24) by optimal A and subtracting A times (3.25) from (3.24) and
rearranging terms we obtain

Min ||G*H2 = (1 - N)||G|]? + \(GH)TP;. (3.28)
The next step is to update the weights = as follows:

a;;"‘l = (1- S\)xé for all j # s

ot = (1 - Nzt + A

Comment: Since —(G*)TP; > 0, it follows from (3.26) that 1 > X >0, (1 —X) >0

and therefore from (3.29) and mt > 0, that x”l > 0 for all j; also Z] 1 ;*1 =1

We have already shown that ||Gt+1|| < ||Gt|| This can also be seen by rewriting
(3.28) as

(3.29)

Min [|G"* = |IG*]]* = A(|G"|* = (G")"P) (3.30)
and noting —(G*)TPs > 0.
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P =(0,1)=G"!

P;=(—1,0) e » o » P, = (1,0
(-1.0) 1 s (1,0
Figure 3-4: Degenerate Two-Dimensional Case
> Exercise 3.16 Prove that as 7, varies between 0 and 7/2 that
G*|? N G|
— e <A< 3.31
G +1 == e+ 1 (331

> Exercise 3.17 Define § to be the nonzero coefficient density, i.e., the ratio of the number
of nonzeros to the total number of elements in the coefficient matrix. Show that the work
of the various steps per iterations is:

Multiplications | Additions | Comparisons
Step 1 omn omn n
Step 3 2m+n—+9 m+ 8 1

Exercise 3.18 Suppose system (3.4) has a nonzero coefficient density of § and b is 100%
dense. Then the coefficient density of system (3.5) will also turn out to be 100% dense.
Show, however, that you can replace the computation of —(G*)*P; of the algorithm with
one that preserves the sparsity of the original @; by replacing P; by Q; — b in (3.5).

Convergence Rate in the Degenerate Two-Dimensional Case. Apply the
von Neumann algorithm to the Center of Gravity Problem (3.6) with n = 3; see
Figure 3-4. The Pjs are

A= (D) () (3

G'=P,or G' = P,

the von Neumann algorithm converges in one iteration. However, starting on iter-

ationt =1 at
1_p = 0
G— 1—<1 5

Starting with
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the von Neumann algorithm, on even iterations ¢, arrives at

: cos 0, . )
G' = uy ( sin 9t> where u; = cos 6, > 0; (3.32)
and on odd iterations arrives at
Gt = cos b, ( oS Or1 ) where upr1 = cosfirq > 0, (3.33)
sin 641

because the iterates have the property that the angle OGP, = 7/2. On the next
odd iteration G**! is obtained by joining G* to P, and dropping a perpendicular
from the origin O. Therefore angle OG*P; = 7/2. Angle P,OG? is denoted by 0;
and angle PsOG**! is denoted by ;.

The distance G to P; is denoted by d;, where, for t > 2

d? = (us cos Oy +1)% + u?sin?® 0, = u? + 2uzcos Oy + 1 = 3u? + 1.
The angle ;1 is related to 0; by (see the dotted line G'H! = G®H? in Figure 3-4):
G'H' = dysin(1/2 — 0441) = ugsinby

dy cosbyy1 = uysiné,
1 (1+3u))t?
upr u(l—ud)t/?

From this it follows for ¢ > 2 that

1 1 4
= — . 3.34
ut2+1—u% ( )

2
Uit

For t > ty, because u; < uy,,

Lo 4 i—t bt (3.35)
— ort = )
u%+1 = ’ll,% 1 _ thO o0y Yo Y
If we sum the relations (3.34) from ¢t = ¢, to t =T — 1 for T > t, we obtain
1 1 4T —t)
— < —= 3.36
uy T oui * 1—uf ( )

Starting with G? = (1/2,1/2)7, u3 = 1/2, from (3.35), u3 = 1/10. Leting t, = 3,
ui =1/10 and

1 40T — 30
— < ——  or wu,>3/V40T — 30. (3.37)

In other words, u,. is converging to 0 more slowly than 3/1/407 — 30 in T iterations.
Letting €, = 3/4/40T — 30 = 10~*, to obtain an approximate solution to k decimal
digits of accuracy will require the number of iterations T' to satisfy

107% > 3/v/40T — 30
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Ps = (cos~s,sinys)

s = argmax{; | 2§ >0}
J

a>m/2

Gt 1 Vs Gt = Z?:l P]$§

1@ od

H*1 = AP, + (1 - \G!

Figure 3-5: Decreasing z¢ to Improve the Rate of Convergence

implying
T > 10%k=065 (3.38)

iterations, which is an exponential expression in (m,n, k); and therefore in this de-
genreate case, starting at P;, the von Neumann convergence rate is nonpolynomial.

3.1.2 IMPROVING THE RATE OF CONVERGENCE

In Section 3.1.1, we showed that the von Neumann algorithm, when applied to
the degenerate two-dimensional example P, = (0,1), P, = (1,0), P3 = (—1,0),
and initiated with G' = Py, converges exponentially slowly; see Figure 3-4 and
Equation (3.38). In general, its convergence rate can be sped up significantly by
decreasing the weight ! > 0 for some term j = s in the approximation G* =
23;1 ijz» and adjusting the remaining weights :C§ proportionally upward so that
their weights re-sum to one.
This improvement can be striking in the degenerate case.

Definition (Degenerate Problem): A problem is degenerate by definition if
there are no points P; on one side of some hyperplane through the origin.

The previous example is degenerate because letting P; = (u;,v;) there are no points
below the line v = 0. At the end of iteration 3, G® = Pia3 + Pz} + P3x3 where
23>0, 23 > 0, 23 > 0. Reducing 3 to 0 and increasing x3, ¥3 to pz3, pr3, where
p=1/(1—z3), results in G* = 0 on the next iteration.

Algorithm 3.1 (Improved von Neumann Algorithm) Given P; € R", ||P;]| = 1,
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and €, the algorithm converges to an e-optimal solution, if one exists, to the problem:

n n
ZijjZO, ijzl, z; >0 forj=1,...,n. (3.39)
j=1 j=1
Initiate the approximation G* = E;;l Pz, at t =1 as follows. Let E* = ||G"||* measure

the square of the error of the approximation G* and set

te1, G'«— P, a1, 25« 0frj>1 E « |G =1 FLAG 1.

1.

Determine s, the Index of rs. For j = 1,...,n compute
6 = —(GH'P;. (3.40)
Set
argmin{J; } if FLAG =1
J

argmax{Jd; |z} >0} if FLAG = —1 (3.41)
J

Terminate Infeasible. If FLAG = 41 and §s > 0, no feasible solution exists. STOP.

Find Adjustments for Next Approximation. Determine A that minimizes the norm
of the next approximation ||[APs + (1 — A\)G'||; i.e.,

E? -4,
- o o1 (3.42)

Adjust X so that the updated zi™ > 0. If FLAG = —1 and A < —z%/(1 — ), then

xl

7
1—x%

A—— (3.43)
Update Approximation.
Set:

E? — (1= )E> 4 2X(1 = \)ds + \°
G — AP+ (1 - NG
m;'H — (1=MN)az} forall j#s
T — 1= Nal + A
FLAG «— —FLAG
t— t+ 1.

5. Loop Back. If E > € return to Step 1.

6. Terminate e-Feasible. If E < e, STOP and report the iteration count ¢, the value

E? = ||G"|)?, and the e-feasible solution z".
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3.1.3 Von Neumann Algorithm as a Variant of the Simplex
Algorithm

The Improved von Neumann Algorithm may be interpreted as a variant of the
Simplex Algorithm with a separable quadratic objective. We illustrate this for the
case m = 3.

At iteration ¢ of the Improved von Neumann Algorithm,

t

n 91
G'=> Pal, G'=|gi|, af=0forj=1,...n (3.44)
=1 g4

The equivalent problem for solution by the Simplex Algorithm is:

Find Min z, v >0, 2fv + Az; > 0, for j = 1,...,n,

such that
397 + 395 + 393 =z :Multipliers
n
—01 + gfv + Z(luAiCj =0 :7gi
j=1
n
- 92 + gév + Z(lle(Ej =0 ngé (345)
j=1
n
- g3+ glv + Zalemj =0 1 —gh
j=1
n
o+ Y Az =1 |Gt
j=1

where a;; are the coefficients from the original problem.
The current basic variables are gt = 0, g = 0, g4 = 0, and v = 1, and the
nonbasic variables are Az; =0, for j =1,...,n.

> Exercise 3.19 Prove that (3.45) is equivalent to the original problem.

> Exercise 3.20 Prove that the simplex multipliers 7w associated with the basis is

= (g, g5, g5, IG'II°).

> Exercise 3.21  Assume that all Ax; except Az, are fixed at Az; = 0 and the adjusted
values of z, g;, v are expressed as a function of Axs.

1. Determine the range of Az, such that x§.+1 >0 for all j.

2. Determine Az that minimizes z subject to x§.+1 > 0 for all j.
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> Exercise 3.22 The Simplex Algorithm “prices” out the columns to determine which
column j = s to increase (or decrease). Show that this results in the criterion that z will
decrease with an infinitesimal decrease in z; if (P;)"G* < ||G*||* or with an infinitesimal
increase in z; if (P:)"G* > ||G"||* and 2! > 0.

> Exercise 3.23 Let B = (P, Pj,,..., Pj, ) be k independent columns and let P, =1
for all j;. Prove that B = (Pj,, Pj,, ..., Pj,, Ps) is an augmented set of k£ + 1 independent
columns if 7P, # 1.

> Exercise 3.24 Let B = (P;,,Pj,,...,Pj, ) be k independent columns. Prove that
BTB is a k x k nonsingular matrix that can be used to find y such that By is closest to b
in the least-squares sense.

> Exercise 3.25 Let B=(Pj,,Pj,,...,P;, ) be k independent columns. Show how BTB
can be used to determine By closest to the origin b = 0 where eTy =1, e = (1,1,..., 1)T.
Note that if P;, is very sparse, then BB is likely to be sparse and likely to make it
computationally efficient to solve a system BBTu = e. Whereas if

5_ (P P o Py

then BTB is 100% dense; verify that BTB is 100% dense.

> Exercise 3.26 If P; are m component vectors and B = (Pj,, Pj,,...,Pj,, ) are m
independent columns, show how the inverse of B instead of the inverse of BYB can be
used to determine By closest to the origin b = 0 where ey =1, e = (1,1,..., 1)T.

3.2 DIKIN’S METHOD

We are concerned with the linear program whose primal form is

Minimize z=clx
(P) subject to =z € {fc e R ‘ Ax =b, x > O} (3.46)
where c € R, A € R™*", and 0 # b € R™ are given. Its dual form is
. . _ T
Maximize v =b'y (3.47)

(D) subject to ye{ye%m‘c—ATyEO}.
We denote the dual slack variables by

u=c— Aty >0. (3.48)
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When feasible solutions exist for both (P) and (D), then feasible solutions z = 2
and (y,u) = (y*,u*) exist and are optimal for (P) and (D) if and only if (see
Section 2.2) the complementary conditions

ujz; =0 forj=1,...,n (3.49)
are satisfied. It is convenient to define D = [D;;] as the diagonal matrix
D = Diag (u),

where Fi
o _Joiti#g,
D;; = { wi if i = j. (3.50)
It is easy to verify that the condition
Dx=0 (3.51)

is a convenient way to write the complementary conditions (3.49) in matrix notation.
We therefore seek feasible solutions for (P) and (D), see (3.46) and (3.47), satisfying
the complementary conditions (3.51).

Recall some definitions: A primal solution is any x satisfying Az = b; it is
feasible if ¥ > 0. A dual solution is any (y,u) satisfying ATy + u = ¢; it is feasible
if ATy < cor u > 0. Neither primal nor dual solutions need be feasible in general,
however, all dual solutions we will be generating in Dikin’s affine algorithm, will
be required to be feasible but primal solutions will not necessarily be required to
be feasible. A partition of indices j = 1,...,n into two sets consisting of any m
indices and the remaining (n — m) indices will be denoted by {B,N}. The set A,
of columns corresponding to B we will later assume to be nonsingular and hence it
will form a basis in the space generated by linear combinations of the columns of
A. The basic primal and dual solutions associated with some partition {B, N'} will
be denoted by & and (g, @), respectively. In other words, the bar over the symbol
denotes that the solution is basic.

By definition, the primal solution & = (Z,, Z, ) associated with {B, N} is basic,
if £, = 0. The basic primal solution is nondegenerate if

|Z;| >0 forall jeB. (3.52)

By definition, the dual solution (g, @) associated with {8, N'} is basic if 4, = 0. The
dual basic solution is nondegenerate if |a;| > 0 for all j € N. A dual basic solution
is nondegenerate and feasible, if and only if

iy > 0. (3.53)

The primal and dual basic solutions & and (g, @) are called complementary because
|uj| > 0 implies z; = 0 and |x;| > 0 implies u; = 0; see (3.51).

Definition (Interior Solution): A solution (y,u) is said to be an interior
solution for the dual (D) if uw > 0, implying that interior solutions are strictly
in the interior of the u space.
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Figure 3-6: Ellipsoid Centered at (1,2)

Recall that quadratic expressions, such as y? + y3 and y? + y192 + y5 or more
generally y?My, are positive-definite if and only if y"My > 0 for all y # 0.

Definition (Ellipsoid):  Let M be any positive-definite matrix; then the set
of points

{y c %TU

@yﬂﬁwwngk}7 E>0,  (354)

defines an ellipsoid with center at y°. Another way to express an ellipsoidal
region is by the set of points

{ye%m\ WF@yﬂnsE}, F 0, (3.55)

where A is any m X n matrix of rank m and m < n.

> Exercise 3.27  Show that the set of y given by (3.55) is the same as the ellipsoidal
region defined by (3.54) with M = AA” and k = k*. Prove that if A is of rank m, then
M is positive-definite. If rank (M) < m, then prove that M is positive semi-definite; i.e.,
yTMy > 0 for all y.

> Exercise 3.28 Prove that if M in (3.54) is positive semi-definite then (3.54) defines an
ellipsoid in a lower-dimensional space than R™.

> Exercise 3.29 Show that the expression

(=12 = (g1 — D(y2—2) + (12 —2)> <4
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= max over C

¢ ={y[ATy<e}

= max over £
{y|IID7'AT(y -y <1}

Figure 3-7: Ellipsoid Subproblem Centered at y*

defines a two-dimensional ellipsoid whose boundary is an ellipse
(i =1 = =Dy —2) + (12 —2)* =4

having a center y° = (1,2)”. The shaded region in Figure 3-6 is a graph of this ellipsoid.

> Exercise 3.30 Find the translation and a rotation about the origin that transforms the
ellipse in Exercise 3.29 so that its resulting equation is in the form

2
x T
2t 5=1L
ay a3

3.2.1 DIKIN’S ALGORITHM
Each iteration ¢ of Dikin’s affine algorithm applied to the dual problem starts

with an interior solution y* to the dual (D), and looks for an interior point y = y**+!
(see Figure 3-7) where the objective b%y is maximized over an ellipsoidal region &
centered at y', that is,

s:{yewl 1D ATy — )] s1}, (3.56)

where D = Dt = [ij] is the diagonal matrix
D = Diag (u").

The matrix D has a positive diagonal u! > 0 corresponding to the current interior
solution (y*,u). A fundamental property of this ellipsoid, which we will prove later
(Lemma 3.9), is that it lies strictly in the interior of the feasible dual region

C={yerm|ATy<c} (3.57)
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(except under very special circumstances it may not be strictly in the interior,
that is, it may touch the boundary; see Exercises 3.31 and 3.37). Once (y'*!,
uttl = ¢ — ATy!*!t > 0) is found, a new ellipsoid is constructed and the process
is repeated. This generates a sequence of points y', %2, ..., v, which we will show
converges to y*, the optimal dual solution. We will show that the difference between
the optimal value of the objective v* = bTy* and the value of the objective at the
current iterate v; = b’y' decreases asymptotically by a factor p that approaches
1—-1/y/m ast — oo.

Exercise 3.31  Graph the two-dimensional ellipsoid defined by (3.56) and centered at
y° = (0,0) for the dual feasible region defined by y1 < 1 and y2 < 1. Show analytically
that this ellipsoid is not strictly in the interior of the dual feasible region but touches its
boundaries.

Exercise 3.32  Graph the two-dimensional ellipsoid defined by (3.56) and centered at
Yy’ = (0,0) when the feasible region is the square region defined by —1 < y; < 1 and
—1<y <1

Algebraically, the ellipsoid subproblem (£P), shown in (3.58), at iteration ¢ is
to find y = y**t! € ®™, which

Maximizes v = bTy

(£P) subject to  ||[D7tAT(y —y)|| < 1.

(3.58)

The algorithm is iterated with (y'*1, u'*1) replacing (y¢,u?). The iterate also com-
putes a primal (not necessarily feasible) solution z' in addition to the maximizing
point »**! in the ellipsoid. These iterates 2t and y**! are computed as shown in
Algorithm 3.2.

Algorithm 3.2 (Dikin’s Algorithm) Given a dual interior solution (y°,u°) where
u° > 0. Given a convergence tolerance € > 0. Set ¢t — 0.

1. Find a Search Direction p:
p=(AD2AT)"'p, D = D' = diag(u). (3.59)
2. Determine a Primal Solution x':
et =D"?ATp (3.60)
3. Update the Dual Solution for the Next Iteration:

vy =y =y +|0)Vp, (3.61)
u'tt = c— ATyt (3.62)

4. Convergence Test: If
Iy =yl <e

t+17 ut+l)

stop and report the primal solution x* and dual solution (y as “optimal.”
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5. Set t «+— t+ 1 and go to Step 1.

> Exercise 3.33  Show that y'T! given by (3.61) is the optimal solution to the ellipsoid
problem (3.58).

> Exercise 3.34 If the dual has an unbounded maximum, i.e., it is primal infeasible, then
Step 4 of Algorithm 3.2 will never test optimal. Suggest a modification that detects this.

> Exercise 3.35  Suggest a method for determining an initial (starting) dual interior
solution (y°,u°). If the dual were infeasible, how would you detect it in your technique?

We will prove that y'*! lies in the interior of (C) when n > m and that a?,
the primal solution, satisfies Az® = b but not necessarily zt > 0. As t — oo, we
will show that x! tends toward the unique optimal basic feasible solution under our
nondegeneracy assumption and (3¢, u') tends towards its complementary optimal-
dual basic feasible solution. Until convergence the dual solution is strictly in the
interior and is given by:

ut =c— ATyt > 0. (3.63)

Comment: In practical applications, in order to speed up the rate of convergence
one often takes bigger steps than p = ‘(pr)_l/Q‘p. Instead of (3.61),

adjusted "' = y' + o (0'p)"2[p, a1,

where « is chosen so that the adjusted y*! is, say, .9 of the way in the direction p
from the unadjusted y'*! to the boundary of C; see (3.57). The proof of convergence
is almost exactly the same. For our development, however, we will assume o = 1.

3.2.2 CONVERGENCE OF DIKIN’S ALGORITHM

In this section, to simplify the proof, we prove that Dikin’s algorithm converges
under the following rather restrictive assumptions:

Al b+# 0, c#0,n>m, and every subset of m columns from A has rank m.
A2 An interior feasible dual solution y° is given.

A3 A feasible primal solution exists but is not specified.

A4  Every feasible dual basic solution is nondegenerate.

A5 Every primal basic solution, feasible or not, is nondegenerate.

We first show that the steps of Dikin’s algorithm are valid; we do this by using
two lemmas that show several interesting properties of the steps of Dikin’s algo-
rithm. Next we show that the algorithm converges to an optimal feasible solution
by proving several interesting lemmas.
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THE STEPS OF DIKIN’S ALGORITHM ARE VALID
LEMMA 3.8 (Properties) In Dikin’s algorithm the following hold:

D1 exists. (3.64)
(AD2AT)=1 exists and is positive-definite. (3.65)
Azt =b. (3.66)
||[Dxt||> = pTb > 0. (3.67)
p= ‘(pr)’l/Q‘p is an improving direction, i.e., b7yttt > bTyt. (3.68)
uttt =l — || Dat||71(D%at). (3.69)

Proof. We first show (3.64). We are given inductively by (3.63) that y' is an
interior point meaning u! = ¢ — ATy® > 0. Thus D = Diag(u') has a positive
diagonal and therefore D! and D~2 exist and have positive diagonals.

We next show (3.65). The rank of A by (A1) is m and so the rank of AD™!
(which rescales the columns j of A by (1/u}) > 0) is also of rank m; hence AD~2A"
is an m by m symmetric positive-definite matrix of rank m (see Exercise 3.27),
implying (AD~2AT)~1 exists.

To show (3.66), we note that the iterates satisfy certain important relationships.
First

Azt = b, (3.70)

which is obtained by substituting the expression for p from (3.59) into (3.60) and
multiplying by A, thus:

Azt = (AD2ZATY(AD2AT) b =10 (3.71)

which are valid steps since D~! and (AD72AT)~1 exist.
To show (3.67), we note that o' # 0 because if ' = 0 in (3.70) it would imply
b =0 contrary to (Al). Since u* > 0 and z* # 0:

Dzt = (ulzt, ubal, ,u;x;)T £ 0, = ||[Dxt|| > 0. (3.72)
Also note that

0 < ||Dzt|]* = (2")T D?a!

= (pPAD™?)D*(D2ATp) (3.73)
= p'(AD™2AT)p

= b (AD2AT) "1 (AD2AT)p (3.74)
= bTp, (3.75)

where (3.73) follows from (3.60), and (3.74) follows from (3.59).
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To show that (3.68) is true, note that (3.67) implies that it is legal to use
|(pr)*1/2| as a factor in (3.68) and in the computation of y'** by (3.61) since
pTb > 0. Multiplying (3.61) on the left by b”" and noting (3.67), we get

byt — b7yt = |(67p)" 2| = [|Da"]| > 0, (3.76)
that is, p = ‘(pr)_l/Q‘p is a strictly improving direction.

Finally, to show (3.69), multiply (3.61) on the left by AT and substitute ¢ — u?
for ATyt and ¢ — u!*t! for ATy!*! to obtain from (3.63):

Wttt = ot — AT|(pr)71/2‘p (377)
= u' —||Da'|| 71 ATp (3.78)
— uf — ||Dat|| " (D22 (3.79)

where (3.78) follows from (3.75), and (3.79) follows by multiplying (3.60) by D?.
Hence (3.69) is true. |

LEMMA 3.9 (The Ellipsoid is Strictly in the Dual Interior) The dual
iterates are feasible and lie strictly in the interior and satisfy:

0 < u'tt <20t (3.80)

Proof. We first show that 0 < u!*! < 2u!, by showing first 0 < u!*! < 2u and
next that the feasible region of (£) is contained in the interior of the feasible region
of the dual feasible region (C).

Let § # y* be any point that lies in the ellipsoid € and let & = ¢ — A7j). Then
by the definition of the ellipsoid £ given by (3.56):

<1 (3.81)

From (3.81) and the equation for u, (3.63), it follows that

n (s )2
(a; — Uj)

~1 Il <. (3.82)

2y

This implies for each component j:

(4, — u)?

(ut.)QJ <1, (3.83)
J

— u§ <a;— u§ < “37 (3.84)
0 < d; < 2u. (3.85)
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We next show that @ > 0. Assume on the contrary, that ¢ is on the boundary
of the dual feasible region (C), then there exists a component j = s of &t = ¢ — AT
such that

0=1ds=c, — AL (3.86)

But 45 = 0 holding implies
(s —ul)? (0 —ul)?
Wy Cowr " (357

Since the sum of all the terms in (3.82) must be less than or equal to 1, and, from
(3.87) the term for j = s equals 1 this implies that all the terms except for j = s
must vanish. Therefore, applying (3.63):

0=ul—a; =A@ —y"), Vi#s. (3.88)

However, choosing B to be any basic set of m indices j, which excludes j = s, we
have by the nonsingularity of A, (see assumption (Al)):

Alg-yHy=0 = §=4"

However, our contrary assumption that ¢ is a boundary point of (C) implies that
y! = § is also a boundary point, which contradicts the assumption that 3' is an
interior point of (C). Therefore §j, which is any point that lies in the ellipsoid (£) is
an interior point of (C), i.e., @ > 0. In particular, § = y**! is not on the boundary
of (C) implying u'*! > 0. This, together with (3.85), implies:

0 <ult =c— ATyt < 20t (3.89)

This establishes what we set out to prove. |

> Exercise 3.36 Prove in Lemma 3.9 that in fact u‘T! < 2ut.

> Exercise 3.37  Since we just proved that the ellipsoid (&) lies strictly in the interior
of the dual feasible region and we know from Exercise 3.31 that if n = m this may not
be true, discover where in the proof for Lemma 3.9 we made use of the assumption that
m < n.

> Exercise 3.38 Note that in the proof of Lemma 3.9 we have not made use of the primal
nondegeneracy assumption (A5). Suppose in assumption (A1) we allow m < n. Prove that
the optimal solution 3'*! to (3.58) would be strictly in the interior of the dual feasible
region if assumption (A5) holds.

THEOREM 3.10 (Steps of Dikin’s Algorithm are Legal) Steps (3.59),
(3.60), and (3.61) of Dikin’s algorithm are legal and hence can be executed iteratively.

> Exercise 3.39 Apply Lemmas 3.8 and 3.9 to prove Theorem 3.10.
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PROOF OF CONVERGENCE

Having completed the proof that the detailed steps of Dikin’s algorithm are legal,
we will now use Lemmas 3.8 and 3.9 to prove convergence of the algorithm. Before
formally proving the theorem we will sketch the proof.

We start by showing that the primal-dual iterates generated by Dikin’s algo-
rithm are complementary. We next use this to show that, given a basic/nonbasic
partition, if convergence of the primal basic variables occurs, or of the primal non-
basic variables, or of the dual nonbasic variables, or of the dual basic variables, then
in fact convergence occurs to a basic primal solution and a corresponding basic dual
feasible solution. Next we show that convergence does in fact occur and that, in
fact, the primal basic solution and basic dual feasible solutions are complementary.
What is left to show is that the basic primal solution is feasible and that the solution
is optimal.

About each of the dual basic feasible solutions (extreme points) we construct
a ball of radius &, where § is chosen so small that none of the balls overlap. We
claim that only a finite number of iterates 3 lie outside all of the balls because if
an infinite number lay outside the balls a subset of them would converge to a point
not in any of the balls, but, as we have already shown, convergence of the subset
must be to an extreme point, which is a contradiction. Therefore every convergent
subsequence must be to the extreme point centers of some balls. However, we show
that there cannot be two subsequences converging to two or more different extreme
points. We, next show that the extreme point it converges to is in fact primal
feasible and primal/dual optimal.

THEOREM 3.11 (Complementarity of Primal-Dual Iterates) The primal-
dual iterates {ut,z'} tend toward complementarity, i.e., for each j =1,...,n

uizh —0 as t— oo. (3.90)

Proof. Note that b7y is strictly monotonically increasing by (3.68), Lemma 3.9,
and has a finite upper bound because by assumption (A3) primal feasible solutions
exist. Therefore from (3.76) we have

blyttt —pTyt = ||[Dxt|| =0 as t— oo. (3.91)

where |[Da'||* = 377 (ufa?)? from (3.72). This implies that ufaz — 0 for all

components j. |

Note that our assumptions (A1l)—-(A5) do not imply that the dual space is
bounded; and, that we do not require boundedness of the dual feasible space for
our proofs as do some proofs (of Dikin’s algorithm) in the literature.

Definition (Using t in S): Let S = {t1,t2,...,t;,...} be an increasing
infinite subsequence of iterations t = {1,2,...}. By the phrase using t in S,
we mean choosing some increasing infinite subsequence of the subsequence S.



94 EARLY INTERIOR-POINT METHODS

THEOREM 3.12 (Convergence to Basic Solutions) Given some partition
(B,N) of the column indices of A. Using t in S, if a2t — Z,, or at, — &, or
ul, — iy, or ul, — iy, then (T,,Ty) is a basic primal solution and (i, ) is a
basic dual feasible solution.

Proof. The proof consists in showing the implications outlined in the following

figure:
¢

= t =

Ty — Ty — Ty — Ty =0
U Using t in S T

ul, >, =0 = ul, — iy >0

We will show each implication separately.
1. Suppose x}, — &, = 0 using ¢ in S; then we get
xt =B (b— Ayal) — B7'b =z using t in S,
where B =A,.

2. Suppose x!, — T, using t in S. By the nondegeneracy assumption A5, |Z;| > 0
for all i € B. Hence |z| > € > 0 for all ¢t > some fixed t°. Then by the
Complementarity Theorem 3.11 we get ul, — 0 = .

3. Suppose that uf, — @, = 0 using ¢ in S, then

Tr— T T -1 T _ -
ulfl =Cy — ((CB - ufg) B 1AN) — Cy — ((CBB )AN) = Upy-
Since u!, > 0, this implies @, > 0 and this in turn implies by nondegeneracy

of the dual solution (assumption A4), that @, > 0 and u}, > € > 0 for some €
for t >t in S.

4. Suppose that u!, — 4, > 0 using ¢ in S, then by the Complementarity Theo-
rem 3.11 we get zf, — 7, = 0.

This completes the proof. ]

LEMMA 3.13 (Convergence of Dual Iterates) Let u!,u?,... uf,... be the
infinite sequence of u' generated by Dikin’s algorithm. Let So = {1,2,...,...,t,...}.
Then there exists an infinite subsequence S, = {5, t5,...} D Sy such that for each

component j using t in Sy either u§ — 0 or u§ > €x for some fized €, > 0.

Proof. Let n be the number of columns of A. Define inductively for j = 1,2,...,n
the nested set of infinite subsequences Sp O S1 D Sy--- D S, as follows. For the
first component j = 1 of the u?, let ¢; = inf u! using ¢ in Sp. Clearly ¢; > 0 since
ut > 0. If ¢ > 0 then u} > € for all t and we set S; = Sp. If, on the other hand,
€1 = 0, then there exists a subsequence S; C Sy such that u’i — 0 using t in S7.
The process is then repeated for component j = 2 with S, instead of Sy generating
€2 = infub using ¢ in Sy. If €3 > 0, then we set So = Sy; if e = 0 using ¢ in S}
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then we set Sy C S such that u{ — 0 using ¢ in S3. In this manner, we obtain
for components j = 1,...,n, €1,€,...,€6, and subsequence S1 2 Sy O --- D 5.
Letting €. = min ¢; for ¢; > 0 and letting S, = S, we obtain the desired result. I

Comment: The proof is an existence proof. Since it involves finding the inf (infi-
mum) of an infinite sequence, it cannot be executed as an algorithm on a computer
in a finite lifetime.

THEOREM 3.14 (Convergence to Complementary Basic Solutions) Let
So be any infinite subsequence of iterations. There exists a partition {B,N} and

infinite subsequence S, = {t5,t5,...,} contained in Sy such that x* = (x%,,zt,) tends

to the primal basic solution (T, T, = 0) and (y';ul, ul,) tends to the complementary
dual basic feasible solution (g;u, = 0,4, > 0) using t in S,.

Proof. In Lemma 3.13, let m be the number of indices j such that ué — (0 using
t in S,. For the remaining n — m indices j, u§ > e, >0 for all t in S,. One of the
following two cases holds.

Case 1: m > m of the u;s tend to 0.
Case 2: n —m >n —m of the u;s are bounded away from 0.

We will show that in either case the (z¢,u!) converge to complementary basic
feasible solutions using ¢ in S, where the basic partition {8, N'} is defined as follows.

Case 1: Since m > m, there exists a subset B of m indices such that for j € B,
u§ — 0 using ¢ in S.. The basic partition {B, N} is then defined by letting
N denote the remaining indices j.

B N

‘00 --- 00" 0 + + - + +

Case 2: Since n —m > n —m, there exists a subset N of n —m indices j such that
for j € N, u} > e, for all t in S,. The basic partition {B, N} is then defined
by letting B denote the remaining indices j.

B | N

In Case 1 there is a basic partition {B, N’} such that u!, — 0 = 1, using ¢ in S,.
The result follows from Theorem 3.12.

In Case 2 there is a basic partition {B, N'} such that for j € N that u} > €. >0
for all ¢t in Si. The result follows from Theorem 3.12. [ |
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Convergence as t — oo: Letting Sy be any arbitrary infinite subset t; < to < -+ <
00, we have shown convergence to a basic primal solution Z* and its complementary
dual basic feasible solution (7*,@") using ¢ in some infinite subset S, C Sp. Our
goal (see Theorem 3.19) will be to show that zt, (yt,u?) converge to &*, (7*,a") and
T* is basic feasible and primal optimal as is (§*,¥") dual basic feasible and optimal

using {t} ={1,2,...}.
But first some definitions and easy to prove lemmas.

Definition (Lying in a Ball): In Theorem 3.14, choose Sp = {1,2,...,00} and
let T, = S. be the subsequence obtained for this choice of Sy where zt, (¢, u')
converge to a primal basic solution and a complementary dual feasible solution.
Let (£, 7*) be the basic (which we will show is not necessarily feasible) primal
solution and complementary basic dual feasible solution that (x!,y') converge
to using ¢ in 7.

Denote by (z,¢") for v = 1,...,q the finite set ¢ of all other basic (not
necessarily feasible) primal and complementary basic dual feasible solutions.
Let 2y be the shortest distance between any two distinct extreme points g;
ie.,

do = (1/2) min||g" — ||, i #J, (3.92)
where 4,7 € {x,1,...,q}.
We say that all points y that are within a § > 0 distance of an extreme point

y are lying in a ball of radius § with a center at g or lying in a d-neighborhood
of § denoted by Ns(g):

Ns(@) ={y:lly-all<d}. (3.93)
An iterate y' is said to lie outside the nonoverlapping balls Ns(y") if

lly! —7”|| > 6 forall v = *,1,...,q.

> Exercise 3.40 Show that for 0 < § < do defined in (3.92) the d-neighborhoods of the
extreme points g* and §” for v = 1,...,q have no points in common.

LEMMA 3.15 (Count of y* that are Outside of the Balls is Finite.) Given
any §, 0 < & < &g, where oy defined by (3.92) and given balls Ns(g”) where §* is
one of the dual basic feasible solutions for v =x,1,...,q. Then the count of y*, for
t=1,2,...,00, that are outside of the balls is finite.

Proof. Let Yy = {y™,y",...,} be the subsequence of all y* lying outside the
balls and let Sy = {t1,t2,...,} be the corresponding subsequence of ¢. If, on the
contrary, the count of ¢ in .Sy is infinite, then by Theorem 3.14 there would be an
infinite subsequence S, C Sy such that, using ¢ in S,, y* — "°, for some dual basic
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feasible solution #*°. This implies an infinity of ¢ in Sy whose y* are in the ball
lly — 4*°|| < 6, contrary to the construction of Yy as the set of y* lying outside all
the balls Ns(g"), for v =x,1,...,q. ]

LEMMA 3.16 (Iterates y' Converge to an Extreme Point §*°) If the count
of y* is infinite in the ball Ns,(§*°) for some extreme point §*°, then y* — §*° using
yt in the ball.

Proof. Let Yj be the subsequence of 3! lying in the ball N5, (7"°) for some extreme
point g, but outside some smaller concentric ball N5(g*°), 0 < § < dp. From
Lemma 3.15 the subsequence Yy must be finite whatever be & < dy. It follows that
if the count of y* in N, (7"°) is infinite, then given any §, 0 < § < 4y, there exists a
ts such that for all ¢ > t45 all y* in N, (7"°) are also in Ns(y*°). By definition, this
is what we mean when we say y* — 7*° using y* in Ns, (5°°). ]

LEMMA 3.17 (Iterates y* Converge to a Primal Basic Solution and Dual
Basic Feasible Solution g*) If for t in So, y* does not converge ast — oo to the
same limit §° using t in T, then for some v # % there exists an infinite subsequence
Ty = {t1,t2,...} and a successor subsequence To = {t1 + 1,t2 + 1,...} such that
yt — 7" using t =ty in Ty and y*Tt — §¥ using t =t + 1 in Ty.

Proof. Assume that y* — 7" is not true. Generate infinite subsequences T| =
{tx} and Ty = {t, + 1} and {v}} as follows:

initialize k := 1; s; := first ¢ such that y* € N, (7");
while j < co do begin
ty, := first t > s;, such that y* € Ns,(7*) and y'*' € N5, (§*) for some v # *;

Vi = Vj
sg := first ¢ > t;, such that y* € N5, (7%);
k:=k+1,;

end while;

Referring to the definition of T (see Page 96), note that si always exists since
yt — 7" using ¢t in T,. Under the contrary assumption that y* 4 7" it follows
that ¢; must also exist; otherwise s, sg11,8k12,... would all belong to Ng,(7%),
implying by Lemma 3.15 that y* — 7* as t — oo. Therefore, since the subsequence
{vx} is infinite and there are at most ¢ different values that the vy can assume,
there exists a v # * such that there is an infinite subsequence of ¢ € T whose y*
are in N, (") and whose successor subsequence y**! are in N, (). Hence, there
exists a subsequence T7 C T} of ¢, and successor sequence To C Ty of ¢ + 1 such
that y* — 7" using ¢ in T} and 3**! — §¥, where v #  using ¢ in T. ]

THEOREM 3.18 (Iterates y' Converge to the Same Extreme Point) A
subsequence yt and a successive subsequence ytt! cannot tend to different limits §*
and §¥, v # * implying as t — oo, (xt,y') converge to primal basic and comple-
mentary dual basic feasible solutions (T*, 7).
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Proof. Let {B, N} be the basic partition associated with 7*, @* = ¢ — AT§* and
let (g, ./\7) be the basic partition associated with 7¥, @¥ = ¢ — AT§” where v # * as
implied under the contrary assumption that y? does not converge. Since B # [3\7 let
j = be an index in B that is not in B. Then, since for ¢ in 77 (from Lemma 3.17),
yt* — g as k — oo, and y**T! — 7, we have

uik = Cr — ATrytk — Cr — ATrg* = ﬁ‘t =0, (394)
ufjﬁ_l = Cp — ATrytk+1 — Cr — Afrgu = ’(Z;f >0, (3'95)

where @ > 0 since r is nonbasic with respect to (g , N ) and the dual basic solution
is nondegenerate by assumption (A4). Since ul* — 0, as k — oo, it follows from
ult < 2ul (see Equation (3.80)) that uf*™' — 0, contrary to (3.95). Since the
contrary assumption y* — 7 and y't' — 7, v # * leads to a contradiction, we
conclude that y* — ¢* from which it follows from Theorem 3.12 that (x!,y?, ut) —

(%, 9", a"), where @,* > 0. (]

THEOREM 3.19 (Convergence to Optimal Solution) Dikin’s algorithm
converges to optimal basic primal and dual solutions.

Proof. If we can prove that z* — &* is feasible, then by Theorem 3.18 we have
convergence in the limit to optimal solutions to the primal and dual problems. Since
Azt = b, we only need to prove that x§ — zj >0 for all j. At the tth iteration, we
have from (3.79)

t\2,.t t .t
TN O ) Uyt

D = D' = diag (u!). On the contrary, let us assume for some basic index r, that

z! — 75 < 0 ast — oo. There exists a finite  such that for all ¢t > £, ! < 0 and

therefore, because uf. > 0:

ulxt _
——= >1 forall t>t. (3.97)
|[Dat]]
Hence, from (3.96), for all ¢t > ¢
ultt >l (3.98)
Thus, we have ul. strictly increasing for t = t+1,£+2,. .., 00, contradicting ul. — 0
by Theorem 3.11 for basic index r. This completes the proof. ]

The next theorem tells us how fast Dikin’s algorithm converges to an optimum.

THEOREM 3.20 (Ratio of Convergence) Let v; = bTy' and v* = b7y be
the values of the dual objective on iteration t and in the limit as t — oo. Then the
ratio of convergence p; satisfies

v = 1 1/2

t+1 * . ¢
=—<1—-(—+ , <v, D =Dia , 3.99
Pt F v, <m Gt) vy <V iag (u') ( )
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where e, — 0 as t — 00, i.c., py is asymptotically < 1 — (1/m)'/2.

Proof. Let {B,N} be the basic partition associated with optimal (£*,7*). We
rewrite (3.99) as
bTytJrl _ bTyt ||Dxt||

— _ t\T*
pr=1— ng* _ bTyt =1- (ué)Tf;’ (UB) Tp > 0, (3100)

where the numerator follows from (3.76) and the denominator follows from A,Z} =
b, Alyt = (¢, — ul) and A" = c,; that is,

V(7" —y') = (@) ALT" —v") = (7)) (s — (¢, —u))
= (u)TZ >0 (3.101)

because uf, > 0 by (3.80) and Z; > 0 by nondegeneracy. Relabeling the indices
B=(1,...,m) then

n 1/2 m 1/2
10a = (Se?) = (Ytately?) (3102)
j=1 i=1
(up) 7y =) ufdy. (3.103)
k=1
Thus,
™ (utxt)? 1/2
o1 L) s
k=1 YTk
Noting that u! > 0 and 2} > 0, define \; by
m m
wl =N ukd, > Ai=1, A>0, i=1,....m (3.105)
k=1 i=1

If, in (3.104), we were to replace z! in the numerator by its limit x‘f and then
substitute ulz; = \; S_) | ul 7} then the factor >, uf ¥} will cancel out with the
denominator obtaining:

m

1/2
asymptotically p; <1 — (Z()\f)2> <1—(1/m)/? (3.106)
i=1

because > " A\; = 1.

(2
To make this “proof” a little more rigorous, we rewrite u‘z! in the numerator

of (3.104) as

zt — 7t
o = uiat (14 50 ) e o)

Ty

<L ok

m

_ A(Zu*) (148
k=1
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where ); is defined by (3.105), % > 0, and 6! = (z! — z})/&; — 0 as t — oo. This
yields

m 2

<l [z (OO (14507

i=1

2

IN

- [Z )+ 30 ()7 + )

i=1 i=1

(1 )1/2
1-— — 4+ €&
m

where Y7, (AH)? > 1/m because 327" AL = 1, Al > 0, and

IN

€ = Z()\ﬁ)Qéf(Q +0) —0ast— oo

i=1

because 0 < A\l < 1. ]

3.3 KARMARKAR’S METHOD

We will present a variation of Karmarkar’s method and a simpler proof. His algo-
rithm, like Dikin’s, moves through the interior of a polytope. However in deciding
at each iteration ¢ how to make a move from z? to z'*!, in Karmarkar’s method,
the coordinate system is temporarily changed so that the current iterate x* becomes
yt at the polytope’s “center” in the transformed space and the ellipsoid becomes a
hypersphere. The algorithm has a polynomial bound of O(n7/2£) on the number
of arithmetic operations, where n is the number of variables and £ is the number
of bits required to represent the problem data on the computer.

The rationale for the approach is based on the following observations. When
minimizing, one is first tempted to move from the current solution z! in the direc-
tion of steepest descent of the objective function (i.e., in the negative gradient of the
objective function, which is the same as moving orthogonal to the objective hyper-
plane ¢’z = constant). If the current iterate 2! is an interior point so that x? > 0,
such a move will in general violate the constraints Az = b. To adjust for this,
one typically moves instead in the direction given by the projection of the negative
gradient of the objective onto the hyperplanes Az = b. However, if z¢ is close to
the boundary hyperplanes, as x¢ = #! is in Figure 3-8, very little improvement will
occur. On the other hand, if the current iterate happens to be near the “center,”
such as ! = ! in Figure 3-8, there could be a big improvement.

3.3.1 DEVELOPMENT OF THE ALGORITHM

One of Karmarkar’s key ideas is to view the current iterate #' > 0 in a different
coordinate system as being at the center of the polytope. This is done by trans-
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T

c'x = constant

Figure 3-8: Comparison of a Move from a Point £ Near the “Center” Versus a
Point Z! Near the Boundary

forming the coordinates x = (z1,22,... ,2Zn ) to y = (y1,Y2,... ,Yn ) by means of
the mapping 7 defined by:

zj/a :
Y =Ne=m———— Tforj=1,...,n, (3.107
T wi/a )
where the current iterate ' = a > 0. Transformations such as (3.107) above

or its inverse (3.109) below are called projective transformations; for this reason
Karmarkar’s algorithm is often referred to as a projective algorithm. If we sum
(3.107) for j = 1,...,n, we obtain, whatever z is,

n
>y =n. (3.108)
j=1

The inverse mapping can be written
Y;a;
Z?:1 Yit;

provided the original x;s of the linear program always satisfy

forj=1,...,n, (3.109)

LB]':TL

> x;=n. (3.110)

In matrix notation, letting D = Diag (z*) = Diag (a), the transformation 7 and
its inverse are defined by:

D1 D
y= nix and 4

= =n— 11
eTD-1x v neTDy (3.111)

> Exercise 3.41  Verify that (3.107) and (3.109) are inverse maps provided (3.108) and
(3.110) hold.
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> Exercise 3.42 Prove (see Section 1.2 for the definition of a simplex) that the set of
relations:

S > mj=n, w;>0forj=1,...,n (3.112)
j=1
defines an (n — 1)-dimensional simplex S C R". What are the coordinates of the vertices
of §7

> Exercise 3.43 Show that the center of the simplex S defined earlier is e = (1,1,...,1)T.
Show that the transformation (3.111) maps the simplex onto itself and maps the feasible
interior point ' € S into the center y* = e € S.

> Exercise 3.44 Let S be a simplex defined by (3.112). Show that the radius of the
smallest circumscribed sphere is R = /n(n — 1) and the radius of the largest inscribed
sphere is 7 = y/n/(n — 1). Show that the vertices of the simplex S are of the form ne®
where ¥ = (0,...,0,1,0,... ,O)Tis the kth unit vector. Prove that the furthest points from
the center e are the vertices ne® and their distances from the center are R = y/n(n — 1).

Karmarkar assumes that the original linear program is of the form ¢/ = z (min),

eTt =1, Az = b, £ > 0, which can always be written in the equivalent special form

(see Exercise 3.45):

Minimize e =z
subject to Az =0, AeRm*n
) . (3.113)
z >0

He also makes certain additional assumptions:

Al A minimizing solution 2 exists and is such that the minimum value of the
objective function is zero, i.e., ¢Tz™ = 0.

A2 A starting feasible interior solution 2° > 0, Az° = 0, e’2° = n is given. We
denote ¢Tx° = 2.

A3 The solution process generates feasible interior iterates x¢; a feasible solution
2 = 2t will be declared an “optimal” solution if

Tt —q
ze c'x e
20 crx° g°
where ¢° = (x§x§ - 'x%)l/” is the geometric mean of z¢,z%,... ,29, ¢ is a

given positive constant, and e is the base of the natural logarithm.

One way to transform the general linear program without a convexity constraint
to (3.113) and obtain a starting feasible solution will be discussed in Section 3.3.4.
It assumes that we know a finite upper bound on the sum of the variables at an
optimal solution, which is often known for a particular problem.
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> Exercise 3.45 Show that a linear program with a convexity constraint, namely, é'¢ =
Z (min), AT = b, ™% = 1, Z > 0 is equivalent to the linear program of the form ¢’z =
z (min), Az = 0, e’z = n, £ > 0, see (3.113), where & = nZ, ¢ = &/n, Aej = n(Ae; — b)
forj=1,...,n.

Applying 7 at iteration ¢, problem (3.113) is transformed to:

Minimize — nély/ a/T\y =z

subject to Ay = 0,
J eTz . (3.115)
y =0,

where a = #, ¢ = D¢, A = AD, and D = Diag (') = Diag (a). Iterate 2! becomes
y* = e > 0, where e = (1,1,...,1)”. Letting the map of optimal z* be ¢*, note

that, by assumption Al on Page 102, ¢Ty* = 0.

> Exercise 3.46 Show that x = ' is mapped into y' = e satisfying A\yt =0, Tyt = n,
Tyt = éTe = 2, and y* > 0.
However, Karmarkar’s next key idea is to avoid solving (3.115) with its frac-
tional objective by considering the alternative problem (3.116), which has the same
optimal solution 4* > 0 and the same initiating solution y = e > 0:

Minimize Ty = 3
subject to Ay =0
’ 3.116
A (3.116)
y = 0.

> Exercise 3.47 Show that 2z; = z;.

> Exercise 3.48 Ph.D. Comprehensive Exam, September 26, 1992, at Stanford. Prove if
«* is optimal for (3.113), then its map is optimal for (3.116) and conversely if y" is optimal
for (3.116) then its inverse map 2" is optimal for (3.113).

Problem (3.116) is never completely solved to obtain y = ¢* instead only an
improved solution y = y**! is obtained by moving some distance p from y* = e in
the direction of steepest descent of ¢Ty subject to the equality constraints, i.e.,

P _
[Ipll

P

y =y +p
[Ipl]

e+p (3.117)

where the steepest direction p is the negative of the gradient ¢ projected onto the
null space of F' = (:}) and p = p; > 0 may be chosen arbitrarily so that y**! > 0.

Later, for theoretical reasons, we choose p = 1/2.
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The equality constraints for (3.116) can be written as:

Fy—(fT)y—<2>. (3.118)

In order for y = e + ap to be feasible, we need, in addition to e + ap > 0,

Fe+aFp= (2)

or
Fp=0.

This implies that the direction p must be in the null space of F. Any vector can
be projected into the null space of F' by multiplying it on the left by the projection
matrix:

P.=1-FYFFT)'F. (3.119)
The steepest descent direction projected onto the null space of F is
p=—P.Dec. (3.120)

Hence, the steepest descent direction is computed by:

- 1
p=- {I — AT(AAT) 1A - EeeT}é (3.121)

= —¢— ET( AET)_lzzl\é—i- e(z¢/n).

> Exercise 3.49  Verify that P,z projects z into the null space of F. Show that P, = PY
and that Pf Pp = Pp Py = Pr.

> Exercise 3.50 Show that

Po=1—AT(AAT) ' A — Zee” (3.122)
> Exercise 3.51  Prove (3.121).

> Exercise 3.52 Prove A\p =0and eTp =0.

Iterative Step: The solution y'*! is then mapped back to the z space by z!*! =
nDy**1 /eTDy'*! and the iterative process is repeated with ¢t « ¢ + 1.
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Ball with radius p
0<p<l1

Simplex &

Figure 3-9: Bound for ¢Tyt*+!

3.3.2 PROOF OF CONVERGENCE

Because the current iterate y* = e is at the center e of the simplex
n
(S) > yj=mn, y; >0, forj=1,...,n, (3.123)
j=1

we can inscribe a hypersphere of radius p < \/n/(n — 1) (see Exercise 3.44) as our
ellipsoid in S and consider the hypersphere problem

Minimize Ty = 3
subject to Ay = 0,

(H) J eTg?j o (3.124)
ly —ell < p.

This problem is a variant of the classical least-squares problem subject to constraints
and is trivial to solve; the optimal solution is

Y =yt Lop (3.125)

where the steepest direction p is the negative of the gradient ¢ projected onto the

null space of (:}) and 0 < p < y/n/(n—1). Aslongas p < y/n/(n — 1), we know

that the ball ||y — e|| < p lies strictly in the interior of S, i.e., y > 0. Therefore all
y satisfying (3.124) are strictly interior feasible solutions of (3.116).

> Exercise 3.53 Prove (3.125).
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Exercise 3.54 The “ball” shown in Figure 3-9 is the intersection of the n-dimensional
ball |ly —e|| < p with the hyperplane » . y; = n. Show that this intersection is an
(n — 1)-dimensional hyperspheroid with radius p.

Exercise 3.55 Assume A is of full rank. Show that the intersection of the n-dimensional
ball ||y —e|| < p with the hyperplanes Ay = 0 and } . y; = n is an (n—m — 1)-dimensional
hyperspheroid with radius p.

The iterative step is to move to y'*!, the optimal solution to (#) for some choice
of p < y/n/(n —1). For reasons that will become clear later we will choose p = 1/2.
This minimizing point y**! lies on the boundary surface of the hypersphere. To see
why, note that an optimal point 4™ of (3.116) exists that is an extreme point and
hence lies on the boundary of the simplex S and hence lies outside the interior of
the sphere. If on the contrary, y**! were an interior point of the hypersphere, an
improved solution lying on the boundary of the sphere could be found along the
line joining y**! to 3, a contradiction. Without explicitly computing p by (3.121)
and ¢Ty!t1 by (3.125), it is easy to prove the following important result.

LEMMA 3.21 (Bound on é7ytt!)
Tyt < (1 —p/v/n(n—1) )zt < (1= p/n)z. (3.126)

Proof. It follows from y'™' being a minimizing point on the boundary of the
ball that é%y*t! < é75 where § is any other point on this boundary. In particular,
this is true for § defined as the intersection of the ball’s boundary with the line
segment joining the center of the ball e to y* where 4™ corresponds to an optimal
extreme point 2 (see Figure 3-9). By assumption Al on Page 102 and Exercise 3.48,
cT2* = 0 implies ¢7y* = 0. Because 3", 7, and e are on a straight line (see Figure 3-

9), we have

J=e +(1-N\y where A = [|y" — g|/|ly" — el|
g = AéTe + (1 = N)éTy* = AéTe

where éTy* = 0 and éTe = 2,. Therefore

* 5 * _ N
|ly* = ell |ly* = ell

IIﬂell)A ( P )
= (11— s = (1- —F— )z (3.128)
( ly* —ell )™ ly —ell )™

p )
1—-— 3.129
( ||nek—e||>z“ (3.129)

IN
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where ||ne* — e]| is the distance of a vertex ne* of the simplex S from its center e,
see Exercise 3.44. Since ||ne® — e|| = y/n(n — 1) we have finally

Tyttt < 6T < (1 —p/v/n(n—1) )2,5 < (1= p/n)z,

where Z; = z; (see Exercise 3.47). This completes our proof. [ |

Having fixed p at some value, say p = 1/2, and found 3'*! by (3.125), the next
step is to determine z'™! as the inverse map by (3.109):

t+1
41 _ Dy

xT =N
eTDyt+1

n
= Dy't! <n7>, D = Diag («") (3.130)
Sy byt
T t+1

and to repeat the iterative process with 2!*! > 0, 2,41 = ¢z

At this point, we ask in what way the solution z!*! is an improvement over x?
Just because éTy!Tt/éTyt < 1 — p/n does not imply c’z'™! < cIzt. To see why,
multiply (3.130) by ¢ = ¢TD~! and then divide by cZz? on the left and ¢y = cTa?

on the right obtaining

Tyttt B éTyt+1 n (3 131)
cTret C”Tyt ZZL:1 mﬁyf“ . .

It is possible for the factor n/ Y"1 zty!t! to be so large that ¢Tzt*! > Tzt in
which case z;41 > 2; and there would be no improvement.
While this possibility may happen on some iterations, Karmarkar proved that
Tzt — T7* = 0 by finding a function that bounds z;, namely,
T,.t —yt/n
% < € ’YO/ for some fixed v > 0, (3.132)
clr g

where ¢° = (2929 ---22)'/™ is the geometric mean of z9,z3,... , 9

o. To this end,
he defines

u(z) = nlog(clr) — Zlog(xj)

(3.133)

-

Il
-

v(y) = nlog(¢'y) — ) log(y;)

J
as corresponding potential functions if x maps into y by the projective transfor-
mation (3.111) for iteration ¢. (Functions of type (3.133) are used in physics and
chemistry to measure the potential energy of physical systems, hence the term po-
tential function.) He uses v(y') — v(y'*!) to measure the “improvement” of the
solution (y'*1,2,11) over that of (y,2;), and similarly he uses u(z!) — u(x'*?) to
measure the corresponding “improvement” of (x'*1, 2, 1) over that of (x?, z).

LEMMA 3.22 (Improvement in Transformed Space Equals Improvement
in Original Space) If y is the map of z, then an improvement measured by a
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decrease in the potential function v(y) in the transformed space corresponds to an
equal improvement measured by a decrease in the potential function u(zx) in the
original space.

Proof. We will first show that the value of the potential function u(z) differs
from v(y) by a constant that depends on 2%, i.e.,

v(y) —u(x) = Zlog(xé-). (3.134)

Indeed, from the definitions (3.133) of the potential functions u(x) and v(y) and
from (3.111) the transformation 7 of x — y,

u(y) = nlog(¢Ty) — Zlog(yj)

c'DD g " iﬁg/fU;
s (o) P (i)
n n

= nlog(c’x) — Zlog(a:j) + Zlog(m?)

j=1 j=1

I
£
&
~
_|_
—
o
PER
&
[N
~

If (y*™1, v11) is any solution to (3.115) with improvement v,y — v, = 1 < 0, it
follows that it maps back into a solution (z!*1, u!*!) that equally improves (x?, u),
ie., uttt —ul =4 <0. |
Iterative Cycle: Assuming the move from (y*,v;) to (y'*!, vey1) is made by
(3.125), (3.121) for some fixed p then the change of coordinates (z*,u') — (y*,u')
and the change of coordinates back of the improvement (y‘*! v, 1) satisfy:

(xt,ult)  — (y' = e, vy = nlogéle)
(@, ut ) (4", vps1)

where u!t! — ut = v, 1 — vy

> Exercise 3.56 Prove v; = v(e) = nlog e = nlog 2, = nlog 2.

THEOREM 3.23 (Bounds on Potential Function Decrease) The corre-
sponding iterates 1, y**1 and the corresponding potential decreases uzyq — us =
V1 — vy satisfy the following inequalities at each iteration

>0, yitl >0, (3.135)
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U1 — Ut = Vg1 — Vg S -y = -1+ 10g(2) ~ —0307, (3136)

where the iterate y't1 is defined to be the point that minimizes é1y subject to ely =
n, Ay =0, and ||y —el|| = p for p=1/2.

Proof. Since y* = e and éTyt = 2; we get v; = nlog 2;. Therefore

vi+1 — v = nlog(é T tH Zlog t+1 —nlog 2,
< nlog((1 - p/n)z) Zlog 1) —nlog 3 (3.137)

= nlog(l —p/n) — Zlog i

n

= nlog(l —p/n) — Zlog(l —€5), (3.138)
j=1
where (3.137) follows from Lemma 3.21 and we have set yt'H =1—¢;. Since y'*!

satisfies e’y*T! = n and belongs to the boundary of the ball of radlus p, € must
satisfy the following:

n

=0, Y &=p"<1, [ <p. (3.139)
j=1 j=1
From the definition of log(1 — 6) for |0| < 1, i.e.,
1 1
log(1 — §) = —(9+§92+§93+---) for 0] < 1 (3.140)

and (3.139) we get

- 1
Vg1 — v < nlog(l—p/n)—l—Z(ej e +§€J+ )
j=1

IN

1
nlog(l—p/n —|—Z(—€ +_€]p+4 ]p2+)

1 1. 1
= nlog(l — e K. SR R
n log( p/n)+<2p VAT >
= nlog(l — p/n) — p —log(1 —p)
< —2p —log(1 — p). (3.141)

Finally, we see that the minimum for the upper bound (3.141) for vi4q1 — vy is
achieved if we choose the radius p = p* by setting the derivative of the right-hand
side to zero:

—2+4 = 0. (3.142)

1—p*
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Clearing fractions, we get p* = 1/2. Substituting p* = 1/2 into (3.141), we obtain
U1 — Ut = Vg1 — U < -1+ 10g(2) = -y = —0.307. (3143)

This ~ results in a somewhat sharper bound than that found by Karmarkar.
> Exercise 3.57 Prove nlog(l — p/n) < —p.

> Exercise 3.58 Prove that a sharper bound can be obtained by setting the derivative of
nlog(l — p/n) — p to zero and substituting the value of p = p* so obtained to compute ~.

THEOREM 3.24 (Bound on Objective Function Ratio) Letting g° =
(x9x5 - - 22)Y/™ be the geometric mean of the coordinates x$,29,. .. 22,

Tyt e—'yt/n

(3.144)

)

CTQEU < g°
where v =1 — log(2) =~ 0.307.

Proof. Summing ugi1—ur < —7 fromk =0to k =t—1, we obtain u;—u, < —7t.
Hence we have from (3.133) the definition of u;, that:

—t > Up — U = nlog Zlog nlog )+ Z log(x

Because log(¢) is a concave function, we have

n

(1/m) Y log(at) < log(Y_(w}/m) =0

j=1
thus
—~t > nlog(clz?) — nlog(c”: Zlog

Dividing by n and rearranging terms this implies that

Tt
10g< 7 O> < fﬁfZIOg

j=1

from which (3.144) follows. |

COROLLARY 3.25 (Polynomial Time Bound) The algorithm is guaranteed
to stop int < n(q — 1og(g0))/'y iterations.
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Proof. Apply (3.114), the termination condition, assumption A3 on Page 102,
and Theorem 3.24. [ |

If some of the components x¢ are very small then it is clear that the factor 1/g°
can be very large, implying poor convergence. One way to avoid this is as follows.
Suppose that the original problem is min ¢’z, s.t. Az = 0, e’ = n, £ > 0 and
we are given a starting a feasible solution £ = £° > 0. Instead of optimizing this
problem, we first convert the problem by applying a projective transformation 7 to
the constraints of the original problem. This mapping of Z to = transforms the linear
objective function ¢’Z to a fractional objective function né’Dz/eTDx. Suppose we
“throw away” the denominator divided by n and solve instead the problem min ¢’z
st. Az = 0, eTx = n, > 0 where ¢ = D¢, A = AD with D = Diag(z°). Then
we solve this converted problem with the interior-point method just described with
starting solution 2° = e > 0. Let 2 = 2™ be optimal. Since the geometric mean of
the components of z° is now ¢° = 1, (3.144) now reduces to

Tt
% < et/ (3.145)

It would appear that we could obtain a much better upper bound for usy; —
uy = vpy1 — vy if we had a sharp upper bound for — Z;Lzl log(1 —¢;) in (3.138).
Lemma 3.26 will provide such a bound but, as we will see later, it differs very little
from —2p —log(1 — p).

LEMMA 3.26 (Sharp Upper Bound) Given 7 ¢; =0, 37, e =%

n
F=- Zlog(l —€5)
j=1

—1og<1—p n;l) —(n—l)log(l—i—p”ﬁ).

This upper bound is sharp and is attained by setting €, = p\/(n—1)/n and €1 =
€0 =" = €p_1 = 7/)/,/71(717 ]_)

Proof. To find max F subject to Y7 ;¢; = 0, 37 ¢f = p* we form the
Lagrangian

n n 1 n
L:—Zlog(l—ej)—)\Zej—§uZe? (3.146)
j=1 j=1 j=1

and set its partials 0L/0e; = 0, obtaining for some fixed choices of A and p:

1
].76]'

IN

—A—pe; =0, for j=1,...,n (3.147)

Multiplying by (1 — ¢;), we see that each ¢; is equal to either the positive or the
negative root of the quadratic

pes + (A= pej + (1= A) =0. (3.148)
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Thus €; are functions of A and p and the fixed values of A and p are adjusted so
that > e; =0 and e? = p2. To this end we sum (3.148) for j = 1,...,n and
set ), e? = p? and >_;€j = 0 obtaining 1 — A = —p?u/n. Dividing (3.148) by pu:

A—p p?
2 _
€5 + < p >€j - = 0. (3.149)

At this point we know that some integer k£ of the ¢; all have the same value €; =
u > 0 and that the remaining [ = n — k of the ¢; have the same value ¢; = -4 < 0
and that the product of the roots (—u)u = —p?/n. Therefore we wish to find u > 0,
@ > 0 and integers k > 0, [ > 0 to obtain

max F = k:[— log(1 — u)} —l—l[— log(1 + ﬂ)]

where
k+1=n, (3.150)
ku—lu = 0, since zn:ej =0 (3.151)
4n
ku® + la* = p?, since Z 6? =p° (3.152)
ui = p?/n. (3.153)

Although it appears that we have four relations (3.150), (3.151), (3.152), and (3.153)
with which to determine (u, @) > 0 and integers (k,1) > 0, it turns out that (3.153)
is redundant, which can be seen by solving (3.150), (3.151), and (3.152) for u and

U:
__r i __p\/E f__pz
\/ﬁ\/;’ U \/ﬁ Ik Ul o (3.154)

We are thus left with one degree of freedom with which to maximize F'. The relation
ku — lu = 0 implies for some « that k = au, | = au. Substituting into the relation
k+1=n we obtain & = n/(u + @) and therefore we wish to choose u and @ so that

F —alog(l—u)—ulog(l+a ’
F_zalg(l—w) —ulogll+a) oo (3.155)
n U+ u n

where the range of v and @ are restricted by the range of integers k and [ in (3.154),

. iﬁff JWF—¢__ (3.156)

We will prove that F in (3.155) monotonically increases with u and therefore at

max F we have u = py/( nfl )/n, @ = p/+/n(n — 1), which corresponds to k = 1




3.8 KARMARKAR’S METHOD 113

and [ =n — 1. To get a better separation of variables, we divide (3.155) on the left
by p?/n and the right side by ui = p?/n obtaining

L. 710g(1u— uw _ log(l; ﬂ)}/(quﬂ). (3.157)

Instead of trying to show that dF/du > 0, we get a more symmetric treat-
ment of the terms involving u and @ if we let w = logu and show that dF/dw >
0 & dF/du > 0. To see this, note that du/dw = u, du/dw = —a, and dF/du =
(dF/dw)(dw/du) = (dF/dw)(1/u) > 0 when dF/dw > 0 since u > 0. Differ-
entiating (3.157) with respect to w, setting du/dw = w, di/dw = —i, and then
multiplying both sides by the resulting denominator (u + %)? we obtain

Lo (U Y ST T [
P

. {log(l —u) log(1+ ﬁ)} w4
. {log(lz W, 1og(1:+ ﬁ)} 1

l—u 144
+ 2log(1l — u) — 2log(1 + @)

1—u 14u 1-—-u
=21 -
Og(1+a)+1u 1+

- [ o la - a-w)

1
= 2logf + 5 — 0 = g(0),

where § = (1 — u)/(1 + @). Note for any w such that p/y/n(n—1) < u <
py/(n —1)/n that the corresponding 0 satisfies 0 < § < 1. For any 6, 0 < 6 < 1
the function g(f) = 2log# — 6 + 1/6 is positive because first of all its deriva-
tive 2/0 — 1 —1/6? = —(1/6 — 1)* < 0, implying g(f) is decreasing in the range
(0 < # < 1), and second, at § = 1, g(f) = 0. Finally g(f) > 0 implies dF/dw =
(p?/(u+@)?)g(6) > 0 for any u in its admissible range.

Thus F achieves its maximum at the maximum of u = (p/\/n)+/1/k, which is
when £ =1 and [ = n — 1. This completes the proof of the Lemma. ]

To improve the bound obtained in Theorem 3.23, we have just shown

vip1 — v < nlog(l —p/n) — 1og(1 —pv/(n— 1)/71)

—(n— 1)10g(1—|—p/\/n(n— 1)) (3.158)

Again we are free to choose any radius p < 1 so we choose p = p*, which yields the
smallest upper bound for v,; — v;. We find p = p* by setting to 0 the derivatives
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of the bound with respect to p obtaining:

-1 vin-/m Y-/ _
L=p*/n 1—p/(n=1)/n  1+5/\/nn—1)

Clearing of fractions and solving for p* we obtain

*

1
pr= . (3.159)
1+ (n—=2)/y/n(n-1)
In the limit
pr~05 as n— oo, (3.160)

which yields the same approximation as that obtained from (3.142).
Exercise 3.59 Show (3.160).

Exercise 3.60 Compute p* using (3.160) with n = 1000. Substitute this value of p" in
(3.158) and compute the upper bound. How does this compare with —0.307, the bound
in (3.136)7

3.3.3 THE ALGORITHM SUMMARIZED

According to the theory developed in the previous section, to decrease the potential
u(x) = log(clz) — E?:l x; by at least v = 0.307, we can do so by moving in the
transformed space from e in the direction p, where p is the projection of ¢ onto the
null space of the equality constraints (3.116). The steps of the algorithm applied to
(3.113) are then as follows.

Algorithm 3.3 (Karmarkar’s Algorithm) Given a linear program in the standard
form (3.113) that satisfies assumptions A1-A3 (see Page 102) and has a feasible interior
point x° = e.

1. Initiate with ¢ = 0 and the feasible interior point z° = e.

2. If ¢"z° = 0 stop with 2™ = z° as optimal.

3. Check for Convergence. Given the current point z°, test for termination:
T t
c'r —q
cIze s

If the test is satisfied stop with ™ = z* declared as optimum.

4. Compute the Search Direction.

(a) Let
D = Diag (z").
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(b) Let

(c) Compute
p'=—[I - F(FFT)"'F|Dc
as the direction of decrease for ¢’Dy from the center of the simplex S in the
transformed space.

(d) Set p" =p"/||p"ll-
5. Compute the New Point y'™' in the Transformed Space. Set

gt = ot + arpt,
where y* = e, r = \/n/(n — 1) is the radius of the largest inscribed sphere in the
simplex in the transformed space, and a € (0, 1) is a fixed constant, ar = p may be
fixed at p = 0.5 according to the proof of Theorem 3.23. In practice ar = p can be
chosen even larger, for example, ar = 0.9.

6. Compute the New Point '™ in the Original Space: Finally, transform the coordi-
nates back to the original space using (3.111), i.e.,

t+1
t4+1 Dy

- neTDyH-I :
7. Set t «— t+ 1 and return to Step 3.

Comment: Since we want to maximize the decrease of the potential function it
is advantageous to determine the ar = p that minimizes the potential function
along the direction p! in Step 5. An efficient technique for doing this is based on
developing a line search using a cubic fit.

3.3.4 CONVERTING A STANDARD LP TO A STARTING
FORM FOR THE ALGORITHM

One way to transform the general linear program to (3.113) and obtain a starting
feasible solution is as follows. Consider the linear program in standard form

Minimize y = 2
subject to Ay = b, A: (m—1)x(n—23), (3.161)
y = 0.

We do not know whether a feasible solution exists, and if it exists, whether there
exists an optimal solution that is bounded.

For the purpose of transforming (3.161) to a starting form, assume that a feasible
solution exists and an optimal feasible solution exists that satisfies

ely <o(n—1), (3.162)
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for some prespecified o, a large number. (If it turns out that this assumption is
incorrect we will discover this in the course of solving the problem; see Section 3.3.5.)

First we rescale y by defining
_ 1
T = (—) Y, (3.163)

g

where £ € R"~3. This gives:

Minimize oflz = 2
subject to Az = (1/o)b (3.164)
>0
which can in turn be written in the form
Minimize Tz z
subject to Az — (1/0)bxy—2 =0
Tn—2 =1 (3.165)
elz + Tp—2 + Tp—1 ="n

(fa Tn—2, xnfl) 2 0.

Note that z,_ = 1 and z,,_1 is the value of the slack in the equation e’z < n — 1.
Furthermore, the objective function has been rescaled by dividing by o.

In order to have a starting feasible solution we introduce an artificial variable x,,
and assign to it a large cost coefficient M in the objective and assign the remaining
coefficients as shown in (3.166).

Minimize Tz + Mz, =
subject to AT — (1/0)bxyp—2 + ((1/o)b— Ae)x,, =

I = O W

T2 (3.166)
Tf + Tn—2 + Tn-1 + Ty =

e
(: Tpn—2,Tn—1, xn) > 0.

Note that x = (T, 22, Tn_1,2,) = e = (1,1,...,1)T is a starting feasible solution

to (3.166). As a final step, subtracting 1/n times the last equation from the second-
from-last equation puts the problem in the required form except for the optimal
objective being 0.

3.3.5 COMPUTATIONAL COMMENTS

Comment 1: If at the optimal solution of (3.166) it turns out that z,, is zero (i.e.,
very small in practice), the original linear program (3.161) is feasible. If it
turns out that, in addition to x,, being zero, z,,_; = 0 at the optimal solution
to (3.166) then this implies that (3.162) is satisfied as an equality implying
that o was not chosen sufficiently large. If ¢ was in fact chosen extremely large
it could be interpreted that the linear program is unbounded for all practical
purposes.
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Comment 2: If at the optimal solution of (3.166) it turns out that x,, is not zero
(i.e., not very small in practice), then either M was not chosen large enough or
our assumption that (3.165) is feasible is incorrect. At this point we can decide
either to quit or to try again by increasing o, or to try again by increasing
M, or to try again by increasing both M and o.

> Exercise 3.61 Construct an example that shows that if o is not chosen large enough,
problem (3.165) may be infeasible even if the original linear program (3.161) is feasible.

Comment 3: The requirement that the objective function be zero is equivalent to
assuming that an optimal value z = z* is known because it is easy to convert
an objective whose minimum is z* to one whose minimum is zero. All we have
to do is replace z = ¢’z by:

2= (c— (z*/n)e)Ta:

as the new objective.

However, since we do not know the minimum z* in general, a method needs
to be devised to handle this situation. One approach is to use an estimate of
Z* of the original problem, namely, Z. The objective after the transformation
is

2= (c—(z/n)e)Tx.

One way to update this estimate as the iterations proceed is to identify a dual
solution at each iteration and let Z be the objective value of the dual problem,
which we know is a lower bound for the primal objective value. It turns out
that it is very easy to find a feasible dual solution when Az = 0 and e’z = n.
Suppose that the primal problem is of the form:

Minimize cy =z
subject to Ay = 0,
Ty = n, (3.167)
y > 0.
The dual of (3.167) is to
Maximize nv (3.168)

subject to  ATr 4+wve < ¢

One way to find a feasible dual solution (m,v) is to choose any 7 and set
v =min;{(c; — mTA.;)}. It is equally straightforward to examine the dual in
the transformed space, i.e., for (3.116).

However for some variants of Karmarkar’s method to converge, one needs
to find a 7w such that (m,v)s converge to an optimal dual feasible solution.
One approach to do this is shown next without proof. The dual problems
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considered here are generated in the transformed space. Start by obtaining
7° as the least-squares solution to:

DA™7° = De, (3.169)

where D = Diag (2°). Set v, = min;{(c; — A.Tjwo)}. Then on subsequent
iterations, say at the start of iteration k + 1, update the dual variables. First
solve the least squares problem obtained from the dual to the primal problem

whose objective has been replaced by (¢ — vre)’z, i.e.,

DATZMY = D(c — wye), (3.170)

where D = Diag(z¥) and e = (1,1,...,1)". Set o = min;{(¢c; — AT7")}.
If ¥ < v then we have not improved our solution and we set vip41 = vg.
Otherwise, if ¥ > vy, set vi41 = ¥ and revise the estimate of 7**! by solving:

DAT7F = D(c — vire), (3.171)
where D = Diag (2*) and e = (1,1,...,1)T.

Comment 4: In most practical cases it appears that the number of iterations
performed by interior-point methods is remarkably small and grows slowly
with problem size. Note, however, that each iteration requires solving a large
linear least-squares problem (see, for example, Step 3(b) of Algorithm 3.3).
It is clear that the key to computational efficiency is being able to solve such
least-squares problem quickly. Certain classes of practical models give rise
to least-squares problems that can be solved very quickly because the linear
programs have specially structured coefficient matrices.

Comment 5: A practical numerical difficulty is that the least-squares problems
become more and more ill-conditioned as the optimal solution is approached.
This is especially true in the degenerate case, which almost always occurs in
practice.

Comment 6: Finally, note that interior-point methods almost never find a vertex
solution when the linear program does not have a unique optimum solution.
This can have serious implications for sensitivity analysis and when the dual
solution is important.

3.3.6 COMPLEXITY OF VON NEUMANN VERSUS
KARMARKAR ALGORITHMS

To attain a precision of ¢, Karmarkar’s Algorithm has an upper bound of

n(—log. €)/y

iterations where v = 1 —log, 2 ~ 0.3. The work per iteration for his algorithm is
considerably higher than a von Neumann iteration. To load the dice in favor of
the Karmarkar algorithm, we will assume the work per iteration is the same. The
comparison is therefore for the same precision e:
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Algorithm Upper Bound on Operations

1
Karmarkar (ﬁ) (—log, e)n(mn +2m+n+9)

1
Von Neumann (—2> (mn+2m+n+9)
€

For a precision €, say € = 107!°, the von Newmann method has an upper bound on
the number of arithmetic operations which is lower than that for Karmarkar when
the number of vairables

h > .3(—log,€)/e® = 1.3 x 10'® for e = 10717,

The polynomial complexity of Karmarkar as simplified here is 3 (actually 3.5) while
that of von Newmann is 2, but the latter has a 10'® constant factor to obtain a
precision of 10710,

3.4 NOTES & SELECTED BIBLIOGRAPHY

Interior-point methods are not recent; they have been around for a very long time. For
example, von Neumann [1947] (see Dantzig [1992a]), Hoffman, Mannos, Sokolowsky, &
Wiegmann [1953], Tompkins [1955, 1957], Frisch [1957], Dikin [1967]. (Fiacco & Me-
Cormick [1968] further developed Frisch’s Barrier Method approach to nonlinear program-
ming.) None of these earlier methods, up to and including Khachian’s [1979] ellipsoidal
polynomial-time method, turned out to be competitive in speed to the Simplex Method
on practical problems.

Von Neumann, in a private communication with Dantzig in 1948, proposed the first
interior algorithm for finding a feasible solution to a linear program with a convexity
constraint. Dantzig [1992a] proved it has the remarkable property that independent of
the number of rows m and columns n, it generates in less than 1/€? iterations a feasible
solution with a precision e (where € is the sum of the squares of errors of the fit of the
left-hand side of the equations to the right-hand side) when the general problem is recast
in the form:

>0, > z;=1, Y Pw;=0, |[Pllz=1 forallj.
1 1

For a comparison of the complexity of von Neumann’s versus Karmarkar’s algorithms see
Section 3.3.6.

The modification to improve the rate of convergence was developed by Dantzig in 1997
and not published. Another approach that attempts to improve the rate of convergence is
one that exploits a “bracketing” idea. Analogous to gunners firing trial shots to bracket a
target in order to adjust direction and distance, we demonstate that it is sometimes faster
not to apply an algorithm directly, but to approximately solve several perturbations of
the problem and then combine these rough approximations to get an exact solution. This
is described in Dantzig [1992b]. Such an approach may also be a way to speed up other
infinitely converging methods.

Dikin’s [1967] method has the distinction of having been rediscovered by many; for ex-
ample, the primal affine method is the same as Dikin’s method. Later, Dikin [1974] proved
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convergence of his method under primal nondegeneracy. Proofs of convergence of Dikin’s
iterates discussed in Section 3.2 can also be found in Adler, Resende, Veiga, & Karmakar
[1989], Barnes [1986], Dantzig [1988a], Dantzig & Ye [1990], Monma & Morton [1987],
Vanderbei, Meketon, & Freedman [1986], and, under somewhat weaker assumptions, in
Vanderbei & Lagarias [1988].

In 1979, Khachian presented an algorithm, based on a nonlinear geometry of shrinking
ellipsoids, with a worst-case polynomial-time bound of O(n°®L£?), (where £ is the number of
bits required to represent the input data on a computer). Given an open set of inequalities
of the form Ax < b, where A is m X n with m > 2, n > 2, Khachian’s algorithm either finds
a feasible point if the system is nonempty or demonstrates that no feasible point exists.
Assuming that the inequalities have a feasible solution, the method starts by defining a ball
that is assumed to have a radius large enough to contain a sufficiently large volume of the
feasible space defined by the inequalities Az < b. If the center of the ball is within the open
set of inequalities, a feasible solution has been found and the algorithm terminates. If a
feasible solution is not obtained, the method proceeds to the next iteration by constructing
an ellipsoid of smaller volume which contains the feasible space of the inequalities contained
in the previously drawn ball. If the center of the ellipsoid is in the feasible space of Az < b
we have found a feasible solution; otherwise the method proceeds to the next iteration by
constructing another ellipsoid of smaller volume, and so on.

The theory developed by Khachian states that if a feasible solution exists, then the
center of some ellipsoid will lie in the feasible space within a number of iterations bounded
by some polynomial expression in the data. Although Khachian’s ellipsoid method has
nice theoretical properties, unfortunately, it performs poorly in practice. First, the number
of iterations tends to be very large, and second, the computation associated with each
iteration is much more than needed with the Simplex Method. Khachian’s work specialized
to linear programming is based on earlier work done by Shor [1971a, 1971b, 1972a, 1972b,
1975, 1977a, 1977b] for the more general case of convex programming. Other work that
was influenced by Shor and preceded Khachian was due to Judin & Nemirovskii [1976a,
1976b, 1976¢]. Predating all this was an article by Levin [1965] for convex programming.
For detailed proofs of Khachian’s polynomial-time complexity results see, for example,
Papadimitriou & Steiglitz [1982] and Grotschel, Lovasz, & Schrijver [1988].

In 1984, Karmarkar presented his interior-point ellipsoid method with a worst-case
polynomial-time bound of O(n*®£?), where £, as defined here, is the number of bits re-
quired to represent the input data on a computer. Claims by Karmarkar that his method is
much faster (in some cases 50 times faster) than the Simplex Method stimulated improve-
ments in the simplex-based algorithms and the development of alternative interior-point
methods. More than a thousand papers on interior methods have been published during
the period 1984-2003. See Kranich [1991] for a bibliography, and M. Wright [1992] for a
review of interior-point methods. Also see Lustig, Marsten, & Shanno [1994] for a review
of the computational aspects of interior-point methods. Until 2003 no method has been
devised to our knowledge that is superior for all problems encountered in practice.

The upper bound of v = —0.307 developed in Section 3.3 is a sharper bound than that
found by Karmarkar. However, an even sharper bound is claimed by Anstreicher [1989)
and independently by McDiarmid [1990], namely:

U1 — Up = Vg1 — v < — log(2) = —0.69 = —7. (3.172)

Anstreicher [1989] and McDiarmid [1990] further showed that the bound on the potential
decrease approaches 0.7215 in the limit as the size of the problem tends towards oo when
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a step-size close to 1 is taken. Karmarkar’s algorithm and its variants, when applied to
practical problems, take much fewer iterations than the theoretical worst-case polynomial-
time bound.

Powell [1991] showed a potentially serious computational difficulty by constructing
an example with n variables where the actual number of iterations is O(n). Gonzaga
[1991] devised a potential-reduction method that avoids the necessity of using projective
transformations; variants of this method allow large steps to be taken. For some other
theoretical results, see Freund [1988a, 1988b, 1991a].

Tomlin [1987] proposed an approach in 1985 to convert a linear program in standard
form to a standard form for Karmarkar’s algorithm, see (3.113). His approach, as described
in this chapter, also provides a way to generate an initial starting feasible strictly interior
solution. Gay [1987] and de Ghellinck & Vial [1986] also show how to apply Karmarkar’s
method to a linear program in standard form. Another approach to determine an initial
feasible interior point is described in Section 4.4.2.

The method of estimating and updating the estimate Z of the optimal 2* described
through equations (3.169), (3.170), and (3.171) is due to Todd & Burrel [1986]; their paper
describes a variant of Karmarkar’s algorithm. They prove that the dual feasible solutions
converge and thus the estimate z converges to z*. Todd and Burrel also show that instead
of using o = 0.9, one could perform a line search on the potential function

v—nlogce+o¢p Zlogl+o¢p3

i.e., along the direction p = p/||p|| computed in Step 5 of Algorithm 3.3.

Bahn, Goffin, Vial, & Merle [1994], Goffin & Vial [1990], and Mitchell & Todd [1992]
have used a projective interior-point algorithm for cutting plane algorithms. Yamashita
[1986] implemented a projective algorithm applied to the dual. Additional computational
results are reported by Anstreicher & Watteyne [1993], Fraley & Vial [1989], and Todd
[1990a]. Anstreicher & Watteyne [1993] indicate that the reason projective methods do
not perform as well as affine-scaling and primal-dual methods (see Chapter 4) is because
of the necessity of generating upper and lower bounds on the optimal value. The poor
performance is particularly noticeable when the dual has no feasible interior. Todd [1994a]
draws the same conclusion.

3.5 PROBLEMS

3.1 Construct examples in m = 2 and m = 3 dimensions to show that the convex
hull contains the center in its interior but there exists no nondegenerate basic
feasible solution.

3.2 Solve, by hand, the following problem by the variant of Karmarkar’s method
described in this chapter:

Minimize 4r1 — 2x2 + 313 = 2
subject to r1 + 22+ w3 =3
(3.173)
21 — X2 — T3 =

and 1 >0, z2 >0, z3 > 0.
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3.3
3.4

3.5

3.6

Solve (3.173) by hand by Dikin’s Method as described in this chapter.
Ph.D. Comprehensive Exam, Fall 1985, at Stanford. This question is based on
issues raised in Karmarkar’s “nonlinear algorithm” for linear programming. Let
N(z) = Fz,e=(1,1,..., 1) be the operator that

maps {meiﬁn | eTm>O}t0{m€%” | eszl}.
(a) Is N a linear or affine function? Justify your answer.
(b) Let A be a convex subset of R' containing at least two points. Let

L={b+Xd | XeA}

be a line segment in the domain of N. What is N(L) like? Justify your
answer.
(¢) Does N carry convex sets to convex sets? Justify your answer.

Based on Ph.D. Comprehensive Exam, Fall 1985, at Stanford. This question
is based on issues raised in Karmarkar’s “nonlinear algorithm” for linear pro-
gramming. Let A and B be m x n and k x n matrices of full row rank. Assume
ABT = 0. Define the sets

A= {m | A:c:O},
B = {m | BaL‘zO}7
C = {m | A:c:O,B:c:O}.

Given y € R" let u € A, v € B, and w € C, be the three points closest to y
in the least-squares sense. In addition, let U, V', and W be the three functions
that send y to u, v, and w respectively.

a) Does ATA have an inverse?

(

(b) Does AAT have an inverse?

(¢) Is U a linear or affine function of y?

(d) Derive an explicit formula for U.

(e) Does UU =U?

(f) Does VU = W?

(g) Does UV =VU?

Consider a “generalized” ellipsoid with coordinates (y1,y2,... ,yn ) defined by:
>y -1 = ot (3.174)
j=1

(a) Inscribe the largest such generalized ellipsoid into the simplex

&) D w=n oy >0forj=1,..,n (3.175)
j=1

and find the point on the generalized ellipsoid closest to a vertex.

(b) Prove that this point is invariant whatever power of k is used.

(c) Does the generalized ellipsoid for power k include the generalized ellipsoid
for power k — 17
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4

INTERIOR-POINT
METHODS

In this chapter, we concentrate on path-following methods. We describe the primal
logarithm barrier method and the primal-dual algorithm for solving linear programs.
These methods are based on Newton’s method, a logarithm barrier method, and the
methods used to solve least-squares problems. Hence, we start by briefly describing
Newton’s method, the barrier function method, and the least-squares problem.

4.1 NEWTON’S METHOD

In this section our discussion will concern the minimization of a specified scalar-
valued function f(z), usually called an objective function. The following notation
will be used throughout. Let g(x), a column vector, denote the gradient vector of
f(z), that is,

e
f(x)/0x
g(a) = V() = o

Of (x)/On

If f(z) has continuous second derivatives (i.e., it is twice-continuously differen-
tiable), the symmetric matrix G(x) of second partial derivatives will denote the
Hessian matrix of f(x). That is, G(x) is the symmetric matrix of second partial
derivatives of f, whose ijth element is given by

_ Pf(x)
- aLZ aLJ '

Gij(z)

123



124 INTERIOR-POINT METHODS

Newton’s method appears in a variety of forms depending on the applications.
The model algorithm that follows is a generalized outline for minimizing an un-
constrained nonlinear function. Certain details are omitted such as tolerances for
convergence, method for defining a descent search direction, and description of an
efficient method for determining the steplength. After the model algorithm is de-
scribed, we explain how to obtain a Newton search direction.

Algorithm 4.1 (Outline of an Algorithm to Solve mingex» f(z)) In order to min-
imize a nonlinear function f(x), the algorithm starts with some x° and produces a series
of iterates 1, z2,..., 2%, ...

1. Test for When to Stop. If, on iterate k, the conditions for stopping are satisfied,
the algorithm terminates with z* declared a local minimizer of f(z). The tests are
divided into two categories:

(a) Standard Test. Three tests usually must be passed simultaneously to decide
when to stop: (i) the norm of the gradient of f(z) at z*, denoted by ¢* =
g(z*), is sufficiently small; (ii) the function values f(z*~'), f(z*) are getting
sufficiently close together; and (iii) the iterates 2Pt 2 are getting sufficiently

close together.

(b) Pathological Case Test. To handle the case where z° is the minimizer or z*

happens to be very close to a local minimizer but z*~! is not, replace the
preceding three tests by a test to terminate if the norm of the gradient is less
than the bound on the absolute accuracy in the computation of the function
value at any point.

2. Compute a Search Direction. Compute a nonzero vector p*, satisfying (pk)Tgk < 0.
Along such a direction the function value is decreasing in the neighborhood of xy,
and therefore f(z" + ap®) < f(z*) for some a > 0. Such a direction is called a
descent direction.

3. Compute a Steplength. Compute a positive scalar a = ay, the steplength, that is a
minimizer of the one-dimensional problem min, f(z* + ap®). This usually requires
too much computational effort; instead «y is chosen to satisfy somewhat looser
criteria. An easy to implement, but not very efficient, way to estimate a4 is to start
with o = 1 and then keep dividing by 2 until the gradient of f(z* + ap®) with
respect to a is sufficiently reduced from that at o = 0 and f(z* + aup®) < f(z*).

4. Update the Estimate of the Minimum. Set a*t! — 2% + ayp®; k — k + 1; and go
back to Step 1.

CLASSICAL STEEPEST DESCENT

A classical search direction is the steepest descent direction p¥ = —g*, where ¢*
is the gradient of f(z) at #*. Methods that use it have the very nice theoretical
property of guaranteed convergence from any starting point z° to a local minimizer
if one exists. Unfortunately, in practice, these methods have an extremely poor rate
of convergence and hence are not recommended.
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NEWTON DIRECTION

A much better way, than the steepest descent direction, is a Newton direction,
which is based on a quadratic approximation of the objective function at the current
point 2¥. We use the Taylor series expansion of the function to three terms to obtain
a quadratic model of the function around z*, i.e.,

Fla* +p) & f(*) +pTglah) + 5p"GaM)p (1)

which has an error term of O(||p||?). The matrix G* = G(a*) is symmetric and
is called the Hessian matriz. The minimum of the right hand side of (4.1) will be
achieved if p¥ is the solution of the problem

L 1
Minimize  Q(p) = fi + p'g" + 5p'G p, (4.2)
where fi, = f(z¥) is a fixed scalar, g* = g(2*) is a fixed vector and G¥ = G(2*)
is a fixed symmetric matrix. A stationary point of Q(p) is given by the solution of
VQ(p) =0, i.e., the solution of the linear system of equations:

GFpF = —g". (4.3)

An algorithm for minimization that uses (4.3) to define a search direction p* is
classified as a Newton’s method algorithm.

HESSIAN IS POSITIVE-DEFINITE

If G* is positive-definite, so is (G¥)~1, and hence the search direction p* obtained
using the system of equations (4.3) is a descent direction, because g¥ # 0 and

(")p* = —(gM"(G") 1" <.

If G* is positive-definite, 21 = ¥ + p* solves (4.3), as the exact minimizer of the
right-hand side of (4.1).

Even if G* is positive-definite, the quadratic model may be a very poor ap-
proximation to the objective function. In particular, it is a poor approximation if
f(xF + pF) exceeds f(x*), which violates the descent condition. Thus, a steplength
procedure must be included according to some acceptable criteria to construct a
convergent algorithm. When Newton’s Method is used with a steplength algorithm
it is sometimes termed a damped Newton’s method because the “natural” steplength
of unity is not taken. Finally, note that the steepest descent direction is the vector
p that solves the minimization problem

_(g")p
r o |lpll2

(4.4)
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It turns out that the Newton direction defined by (4.3) is a “steepest descent” direc-
tion when the norm is defined with respect to G*, the positive-definite symmetric
Hessian matrix, i.e., p solves

kNT,
min g) P (4.5)
v |lpllen
Exercise 4.1 Let C be any symmetric positive-definite matrix. Then ||z||? = 27Cx is
a norm.

1. The Cauchy-Schwartz inequality for any two n-vectors x,y is |JcTy|2 < (2Tz) (yTy).
Use this to derive the inequality

(9"p)* < (¢"C ' g)(p"Cp).

2. Use (1) to show that the solution of the problem

T
Minimize gp
perm||plle

where ¢%p < 0, is given by p = —C™1g.

HESSIAN IS NOT POSITIVE-DEFINITE

So far, we have considered the case when G¥ is positive-definite. Difficulties arise if
G* is not positive-definite, because it is no longer clear what the quadratic model
is telling us. In particular, if G* is indefinite, the quadratic model indicates that
Q(ap) — —oo0 as @ — oo, indicating that an infinite step should be taken when
applied to f(z) at z¥. Unfortunately, there is no universal agreement on how
to define a Newton direction when the Hessian matrix G* is indefinite. Various
strategies exist that seem “reasonable” in this case, such as replacing p* by —pF,
finding a direction of negative curvature, i.e., (p¥)7G*¥p* < 0, or modifying the
Hessian matrix, if necessary, to ensure that the modified Hessian matrix is positive-
definite. In the latter case, if G¥ is not “sufficiently” positive-definite, construct a
“related” positive-definite matrix G¥, and solve for the search direction using

GFpF = —gF.

In this way the resulting search direction is a descent direction; furthermore, the
search direction will not be altered if the Hessian matrix is sufficiently positive
definite.

CONVERGENCE

We expect good convergence from Newton’s method, when the quadratic function
is a good approximation to the nonlinear function being minimized. In fact, for a
general nonlinear function f(x), Newton’s method has a quadratic rate of conver-
gence to 2* if z0 is sufficiently close to 2™, if the Hessian matrix is positive-definite
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at 2, and if the steplengths {az} converge to unity. A method is said to have a
quadratic rate of convergence to x* if there exists a constant 0 < v < oo such that

[[a* 1 — o]

7= A

k—o0
where, limy,_, o 2% = 2.

The outstanding local convergence properties of Newton’s method make it a po-
tentially attractive algorithm for unconstrained minimization. A further benefit of
having the second derivatives available is that sufficient conditions for a minimum
can be verified, namely, that the Hessian is positive-definite. In fact, Newton’s
method is often regarded as a standard against which other algorithms are mea-
sured. However, difficulties and even failure can occur if the quadratic model is not
a good-enough approximation of f(z).

If a modification G* of the Hessian matrix is used to ensure positive-definiteness,
then starting at 2° (not necessarily “close” to a local minimizer z*) and using G*
coupled with an appropriate steplength approach, Newton’s method converges to
some =, a local minimizer, provided that f (x) is twice continuously differentiable,
g(z) is uniformly continuous on the level set £( f(20)) and that ||G(z)|| is uniformly
bounded on the level set £(f (o))

Definition (Level Set): For any function f and scalar 3, the level set L(3) is
the set of points x such that f(z) < S.

4.2 THE LINEAR LEAST-SQUARES
PROBLEM

The linear least-squares problem is to

Minimi d— A3 4.6
inimize || 72, (4.6)

where A is an m X n matrix, d is an n-vector, and subscript 2 refers to the 2-norm.
The least-squares solution 7* satisfies

AATT* = Ad. (4.7)

If we let
P =d— ATr" (4.8)

denote the optimal residual then from (4.7) and (4.8) we obtain
Arf = Ad — AATT* = 0. (4.9)

Note that AT7* is the projection of d € R" onto the space of the columns of AT
and Equation (4.9) states that the residual 7" lies in the null space of A. Rewriting
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equations (4.8) and (4.9) in matrix notation we get

(2 5)()- () a

Exercise 4.2  Show that the optimal residual s given by

*

7 =Pd  where P =1 - AT(AAT)"'A

is called the projection matriz because it projects any m-vector into the null space of A.
Show that an alternative expression for the optimal residual ris given by:

7 =2z72", (4.11)

where Z is an n x (n — m) orthonormal matrix whose columns form a basis for the null
space of the matrix A.

4.3 BARRIER FUNCTION METHODS

An idea for solving a minimization problem with inequalities is to replace the in-
equalities by a term, called a barrier term, appended to the objective function
with a weight on it. The barrier term, as a function of z, has the property that
it approaches +o0o as any feasible interior point x approaches the boundary of the
feasible region. Because we are minimizing, this property prevents the feasible it-
erates from crossing the boundary and becoming infeasible. However, the optimal
solution to the original problem is typically a point on the boundary. To obtain
such a boundary point solution, it is necessary to keep decreasing the parameter u
of the barrier function to 0 in the limit.
In this section we shall only consider the logarithmic barrier function.

4.3.1 THE LOGARITHMIC BARRIER FUNCTION

Consider the nonlinear inequality constrained problem

Minimize f(z)

subject to ¢ () (4.12)

IVl

z
0,i=1,...,m,

where ¢;(x) > 0 are nonlinear constraints. The logarithmic barrier function is
defined by

m

B(z,u) = f(z) — len(ci(m)), > 0. (4.13)
i=1
Note that In(c;(z)) is not defined for ¢;(z) < 0 and that for ¢;(z) > 0,

—In(ci(z)) — 400 as c¢;(z) — 0.
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2" (1.0)

27(0.2)
¥— 2% (0.02)
o
——> Feasible region
r=1

Figure 4-1: Barrier Function Method: Approach of z*(p) to «*

If we let 2*(y) denote an unconstrained minimizer of B(z, ), then under mild
conditions it can be shown that for g > 0 there exists a nonempty set S such that

lin}) () =2, pes, (4.14)
n—

where * can be shown to be a local minimizer of (4.12).

Example 4.1 Consider the following univariate problem

Minimize
subject to

T

2

z
1

IV

which has the unique solution z* = 1. The barrier function for fixed u for this problem is

given by

B(z,pu) = 2 — pln(z — 1)

and the unconstrained minimizer of B(z, u) for fixed p is

2 (1) = 1/2+1/24/1 + 2.

The approach of the barrier function minimizers z (1) to the unique solution z=11is

illustrated in Figure 4-1.

Definition (Stationary Point): A stationary point of a function f(x) is the

point = & where the Vf(z) = 0.

Exercise 4.3 Show in Example 4.1 that z(p) = 1/2+1/2,/T + 2p are stationary points
of B(z, ) for fixed p and that 2 (p) = 1/2 + 1/2\/T F 2.
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4.3.2 PROPERTIES OF BARRIER FUNCTION
METHODS

Successive minima 2 (p) of the Barrier function B(z, ) can be shown to have the
following properties. Let @i < u for sufficiently small u, then

1. B(2" (i), 1) < B(a* (1), p).-

2. 1(* (@) < £(* ().

3. —Zln(ci(a:*(ﬂ)) > —Zln(ci(x*(u)).

See the Notes & Selected Bibliography Section (Section 4.8) where references to
proofs can be found.
Given a fixed pu, at each iteration k with iterate z* (i), the Newton direction is
given by
V2B(a" (), u)p = —VB(z* (1), p).-

Unfortunately, as u goes to 0, the Hessian matrix at 2¥(u) becomes increasingly
more ill-conditioned with singularity occurring in the limit. This makes it necessary
to use some modification of the Hessian matrix to ensure positive-definiteness.

Exercise 4.4 Determine the Hessian matrix of B(z, 1) in Example 4.1 and show that
it becomes increasingly ill-conditioned as @ — 0.

Furthermore, because of ill-conditioning in this approach, a specialized linesearch
is required to take care of the case of an ill-conditioned Hessian matrix near the
boundary. Thus, the unconstrained problems in general become more and more
ill-conditioned and hence more and more difficult to solve.

If the feasible region is bounded and f(z) is bounded from below over the feasible
region then the barrier function is bounded from below over the feasible region.
However, if the objective is unbounded over the feasible region, there is danger of
the barrier function being unbounded, possibly leading to further complications.

At 2*, a minimizer of (4.12),

g(a*) = Zai(x*nif, (4.15)

where X; are the Lagrange multipliers. Estimates of the Lagrange multipliers can
be easily obtained by observing that at the solution x* () of B(z, i), the gradient

m

ﬂmngmwwb@%w (4.16)
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where a; (2% (11)) is the gradient of ¢;(z) evaluated at 2™ (y1). Thus, comparing (4.15)
and (4.16) estimates of the Lagrange multipliers are given by

M) = s (4.17)

Under mild conditions, it can be shown that
o — P
n=0 ¢; (2*(n))

where S is the same subset as that defined in (4.14).

=X, pes, (4.18)

4.4 THE PRIMAL LOGARITHMIC BARRIER
METHOD FOR SOLVING LINEAR
PROGRAMS

In this section, we apply a barrier function approach (combined with Newton’s
method for computing a search direction) to solve a linear programming problem

in standard form.

Minimize dr = 2

subject to  Ax =b (4.19)
x>0,

where z € R", A is an m X n matrix, and b is an m-vector, with m < n. This
method is called the primal logarithmic barrier method. Each iteration requires the
solution of a linear least-squares problem.

4.4.1 DETAILS OF THE METHOD

Replacing the objective in (4.19) by the logarithmic barrier function, we get the
linearly constrained problem.

Minimize — f(z) = clz —pu Z log(z;)
j=1

subject to Ax = b.

(4.20)

Note that the conditions x; > 0 are no longer needed because In(x;) is not a real-
valued function if z; < 0 and because, starting with xz; > 0, In(z;) — —oo as
xj — 0. This latter property means that In(x;) serves as a barrier discouraging z;
from going to 0.

The first and second derivatives of the barrier function are given by:

g(x) =c—puD;'e and G(z) = puD,?, (4.21)

where
D, = Diag (x) (4.22)
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and e = (1,1,...,1)T. Note that the gradient g(z) and Hessian G(x) are defined
only for x; > 0 for all j.

Exercise 4.5 Show that G(z) is positive-definite.

Let x = Z > 0 satisfying Az = b be an initial feasible solution to (4.20). As we
have seen, in Equation (4.1), to obtain a Newton search direction Az from & we
first approximate f(x) by a quadratic at &, i.e.,

Q(Ax) = g(&)Ax + %AxTG(a’:)Ax (4.23)

where g(z) and G(x) are given by (4.21), and we minimize this quadratic to ob-
tain Az. However, (4.20) requires we minimize Q(Azx) subject to Az satisfying
A(Z + Az) = b. Hence we obtain Az as the solution to

Minimize — Q(Az) = g(2)TAz + 1 A2TG(z)Ax

subject to AAz = 0, (4.24)

with g(z) and G(z) defined by (4.21). If we let 7, denote the Lagrange multipliers
for the constraints AAz = 0, then the Lagrangian is

1
L(z,7,) = g(2)TAz + §AxTG(f)Ax — rrAA. (4.25)

Because the Hessian matrix G(Z) is positive-definite, we obtain the conditions for
optimality by setting the partials with respect to Az of the Lagrangian to zero,

namely,
9(7) + G(z) Az = AT, (4.26)

Thus, at an optimum, the gradient VQ(Ax) = ¢(Z) + G(Z)Az is a linear combina-
tion 7, of the rows of A. Substituting for g(z) and G(z) from (4.21), we obtain

c—pD; e+ uD2Ax = A'r,,
which, after rearranging, becomes
uD;%(—Ax) 4+ ATr, = ¢ — uD te. (4.27)

Thus the solution of (4.24) satisfies the following equations:

pD;% AT ~Az\  [(c—pD;le
If we define a vector 7, by
Dzr, = —pAx, (4.29)

(ap, 750 ) ()= (). (430)

we get
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This system may be too large to solve directly in practice. Comparing (4.30) with
(4.6) and (4.10), we see that an alternative way to obtain r, is by solving the
least-squares problem

Minir;[rlize ||Dzc — pe — Dz ATr||3 (4.31)

for m and setting
Ty = Dyc — pe — Dy ATr. (4.32)
An efficient and numerically stable way to solve (4.31), the least-squares problem,
is by using the QR factorization.
The Newton barrier direction is then given by

Ax = —(1/p)Dzry. (4.33)

Thus, the search direction at each iteration is obtained as the solution of the linear
least-squares problem defined by (4.31). Letting 2* = &, the new approximation to
the solution of (4.20) is then given by

oF = 2P ¢ A, (4.34)

where «, the steplength, is obtained by a steplength algorithm (such as the one
described in Step 3 of Algorithm 4.1). Finally, note that because we could use a
steplength algorithm to determine «, we could redefine the search direction (4.33)
by

Az = —D,r, (4.35)

for 4 > 0. In this case, the iterative process is terminated when the iterates are
geting “close” or when the duality gap is “sufficiently small.”

Exercise 4.6 Show that the Newton search direction for the primal logarithmic barrier
method can be written as

1
Az = —;D;CPDQCC + D, Pe, (4.36)
where e = (1,1,...,1)T and where P, called the projection matrix, is
P =1-D,AT(AD2AT) ' AD,. (4.37)

Definition (Affine Transformation): Let M be an n X n nonsingular matrix
and let d € R™. The transformation y = Mx + d is called an affine transfor-
mation of x into y.

Instead of (4.36), some authors have proposed the search direction
Az = —D,PDy,c, (4.38)

that is the direction of Az in the limit © — 0. In the literature, a method that uses
Ax is called a primal affine method or Dikin’s method.

Exercise 4.7 Develop a Newton barrier method for the dual of the linear program in
standard form. What is the dual affine direction, i.e., the direction as pu — 0.
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4.4.2 INITTIAL FEASIBLE SOLUTION

So far we have assumed that an initial feasible interior-point solution is available.
If an initial feasible interior solution is not available, we can easily generate one by
picking an x° > 0 and setting up the following linear program with one artificial
variable x, and associated large cost M:

Minimize cTr + Mx, = z

subject to Az + (b— Ax°)z, = b x>0, 2, > 0. (4.39)

Then z = 2° > 0 and x, = 1 is clearly a feasible solution to (4.39). On application
of an algorithm, if M is sufficiently large, then at an optimal solution we must
have x, = 0. Refer to the comments in Section 3.3.5 to see how the choice of M
plays a role in practice.

Exercise 4.8 Show that for M sufficiently large, asssuming a feasible solution to Az = b,
x > 0 exists, then the set of optimal solutions to (4.39) is the same as that for the
corresponding linear program in standard form.

While any 2° > 0 can be chosen it would be nice to choose a “good” starting z°.
If something is known about the problem, then it is possible that a very good
educated guess can be made for a choice of z°. On the other hand, if this is not at
hand, then one possibility might be to choose £° by

#° = AT(AAT) ™'y, (4.40)

which has the property that Az° = b but not necessarily £° > 0. If z° > 0 then

set % = 6 where 6 > 0 is chosen arbitrarily. That is, to ensure an x° > 0, set the

components

Lo — zy it >0
J 0 ifzy <0

Of course, if all :2"]0 > 0 then the artificial variable z, is not needed.

(4.41)

Exercise 4.9 Show how to generate an artificial initial feasible interior solution for the
dual of a linear program in standard form if an initial feasible interior solution is not given.

4.5 PRIMAL-DUAL LOGARITHMIC
BARRIER METHODS

Primal-dual logarithmic barrier algorithms have been reported to outperform the
Simplex Algorithm on very large-scale linear programs. To derive the algorithm we
apply the barrier method to the dual of the linear program in standard form. Recall
that an LP in standard form is min ¢’z subject to Az = b, x > 0, and its dual
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is to find max b7y, subject to ATy < c. Letting u > 0 be a given fixed parameter
(which is decreased during the course of the algorithm) and inserting slack variables
$=1(81,...,8jy---,8n)T >0, the barrier method formulation of the dual is:

Maximi bt In(s;
aximize y + ujz::l n(s;) (4.42)

subject to ATy + s =c.

Note that the conditions s; > 0 are no longer needed because In(s;) is not a real-
valued function if s; < 0 and because, starting with s; > 0, In(s;) — —occ as s; — 0.
This latter property means that In(s;) serves as a barrier discouraging s; from going
to 0.

Denoting by x the vector of Lagrange multipliers, the Lagrangian of the preced-
ing problem is:

n
L(z,y,s,1) = by +p»_In(s;) — 2" (ATy + 5 — o). (4.43)
j=1
To write the first-order necessary conditions for a minimum, we set the partial

derivatives of the Lagrangian with respect to z, y, and s to zero. This results in
the following three sets of equations:

Aly+s=c (4.44)
Az = b (4.45)
D,Dge = pue (4.46)

where (4.46) is the same as uD; e = D, e rewritten with
D, =Diag(s) and D, = Diag(z). (4.47)

Note that (4.44) is the usual dual feasibility condition with s > 0 omitted and (4.45)
is the usual primal feasibility condition with « > 0 omitted. Note that (4.46) states
that x;s;, = p for i = 1,...,n and thus, in the limit as u — 0, results in the usual
complementary slackness conditions.

To initiate we pick p > 0, say p = 1, and assume we have a starting interior dual
feasible solution (y,s) = (y°, s°) with s° > 0 available, as well as a primal feasible
solution z = z° available. Since p is arbitrarily chosen equal to 1, the solution will in
general not satisfy (4.46). In this case we determine a search direction (Ax, Ay, As)
satisfying (4.44), (4.45) and (4.46). Any movement « > 0 along such a direction
satisfies the feasibility conditions (4.44) and (4.45) but does not necessarily maintain
the nonnegativity of 2° + Az and s° + As. In place of the current solution (z,y, s),
we substitute the proposed new solution (x + Az,y + Ay, s + As) in (4.44) and
(4.45), to obtain the Newton equations:

ATAy 4+ As = 0 (4.48)
AAz =0 (4.49)
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Substituting the new solution into (4.46) we obtain
(x; + Azy)(si + Asj) =p for i=1,...,n. (4.50)

In order to satisfy the computations we ignore the second-order term Ax;As; for
i =1,...,n, we obtain the first-order approximation to (4.50) as

xfs? + xfAs; + s} Ax; = p,
which in matrix notation is
DSOAJ) + D;COAS = pe — onDsoe. (451)

We next solve this linear system of equations (4.48), (4.49), and (4.51) for
(Az, Ay, As). From (4.48) we obtain

As = —ATAy. (4.52)

From (4.51) we obtain, after noting that D;,' D,. = D, . D!

x° T 59
Az = D2 (pe — DyoDyoe) — Do DM As. (4.53)

Next, noting AAz = 0, we multiply (4.53) on the left by A and substitute As =
—ATAy, from (4.52), in it to obtain:

0= AAx = AD (e — Do Dgoe) + AD,. Dt ATAY

Hence 1
Ay = —(AD,.D'A") " AD'(ne — D, D,.e). (4.54)

Because we have a separate search direction Ax in the primal space and a sepa-
rate search direction (Ay, As) in the dual space we can have a separate steplength
a, for Az and «a, for (Ay, As) respectively. One possible way to compute the
steplengths is to compute the maximum step o*** that maintains z + a***Az > 0
and the maximum step o' that maintains s + a'**As > 0. Next choose a mul-
tiple p < 1 of the maximum steplength

ap = pap®™ if o™ <=1, elsea, =1. (4.55)
a, = pa™ if o <=1, else a, =1. (4.56)

In practice p is chosen very close to 1, for example, 0.99995. Note that a,, = 1 or
o, = 1 corresponds to an unconstrained Newton step.

The only items that remain to be discussed are when to terminate and when
to decrease the parameter p. At some iteration, assume that we have a feasible
primal solution & > 0 satisfying AZ = b and a dual feasible interior solution (7, 5)
with s > 0 and ATy + 5 = c¢. If the duality gap ¢’Z — by is deemed sufficiently
close to 0 we terminate. (Note that, because p is a user-defined parameter a duality
gap equal to 0 does not imply satisfaction of (4.46) because p may not be small;
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however, satisfaction of (4.46) for very small p always implies a duality gap that
is very small.) If; on the other hand, the duality gap is not close to 0 and (4.46)
holds with p not sufficiently close to zero, then we are at a stationary point of the
Lagrangian but not at an optimal solution to the linear program. Then, in order
to continue, we decrease u by some specified factor, for example, pu < 0.1 X pu; this
means that (4.46) is no longer satisfied and the iterative process can be continued.

Note that an affine variant of the algorithm can be developed by setting 1 = 0 in
the equations for (Az, Ay, As). In computing steplengths, affine variants typically
use a somewhat smaller value of p, for example p = 0.95.

Exercise 4.10 Show how to generate an initial feasible interior solution for the primal-
dual approach using artificial variables (see Section 4.4.2).

Exercise 4.11 In the preceding discussion, do not assume that we have a feasible
solution (z°,y°, s°) to (4.44) and (4.45). Derive the Newton search directions (Az, Ay, As)
in this case.

How are the primal log barrier, dual log barrier, and primal-dual log barrier
methods related to the first-order condition (4.46)7 See Exercise 4.12.

Exercise 4.12  Notice that the condition D,D, = pe can also be written as Dse =
uD;te, Dye = pDile, or e = uD;'D;'e. Therefore the second-order terms can be
dropped in four different ways leading to four different algorithms: The primal-dual loga-
rithmic method we have just seen and the other three:
1. If we use the form Dye = uD; e, show that we obtain the primal log barrier method
of Section 4.4.
2. If we use the form D,e = uD; e, show that we obtain the dual log barrier method
of Exercise 4.7.

3. Develop a barrier method associated with e = pD; D e.

4.6 RECOVERING A BASIC FEASIBLE
SOLUTION

When the optimal solution is unique, an interior-point method will terminate with
the unique extreme-point optimal solution. However, in the more likely case of non-
uniqueness (dual degeneracy), an interior-point method will typically not terminate
at an extreme-point (basic feasible) solution; instead it will typically terminate at
a point somewhere on the optimal face of the feasible region.

Although a nonextreme point solution may be acceptable in some applications,
there are other situations when it is desirable to obtain a basic feasible solution.
For example, when attempting to obtain integer solutions by using linear program
relaxations, it is desirable to have a basic feasible solution because it will have fewer
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nonzeros than an interior-point solution. In commercial applications, too, it is de-
sirable to have plans that require fewer nonzero activity levels. In some commercial
applications several activities are bundled together to reduce the number of po-
tentially different activities that may result with nonzero levels. Many commercial
applications require the solution of several related linear programs; in this case the
optimal solution of one linear program can be used to start the optimization process
for a subsequent linear program. Typically, in such situations, the Simplex Method
can solve such problems very efficiently and quickly. If so, it may make sense to
solve the initial problem with an interior-point method; convert the solution to a
basic feasible solution, and use the corresponding basis to solve subsequent linear
programs by the Simplex Method.

Hence it is important to know how to recover an optimal basic feasible solution
from an optimal interior-point solution, assuming one exists. The recovery of a basic
feasible solution can be done by an approach discussed by Dantzig as an exercise in
his 1963 book. Assuming the linear program is in standard form and an interior-
point solution has been found, start by throwing away all the columns that have
zero activity levels. Next pick a basic set of columns (or create a basis with all
artificial variables). Then, for each of the remaining columns j not already in the
basis attempt to bring it into the basis. It will either enter the basis and drive a
current basic column to zero or be driven to zero. Clearly the number of iterations
in this procedure is bounded by the number of positive activity level columns not
in the basis (at most n). The approach is summarized in the following algorithm.

Algorithm 4.2 (Convertlng an Optimal Solution to a Basic Optlmal Solution)

leen an optimal solution £ > 0 satisfying A* = = b, delete the columns A.J corresponding
to mj = 0. Let the resulting coefficient matrix be denoted by A and the corresponding

solution by z*, where 2™ > 0 satisfies Az = b.
1. Initialize. Set k «— 0, z* — .

2. Pick a basis B from among the columns of A assuming that A is of full row rank.
Let B*¥ = (Aej;, Aejy, Aejy ). (See Exercise 4.13 for how to handle the degenerate
case and less-than-full-rank-case.)

3. Pick Nonbasic Columns. Let N* be the set of nonbasic columns of A.

4. Check for Termination. If N* = 0, stop and report z* as the optimal basic feasible
solution and report B* as the corresponding optimal basis.

5. Select Incoming Column. Pick any s € N such that =¥ > 0.

6. Select Outgoing Column. Decrease ° > 0 as much as possible and adjust the basic
variables to maintain feasibility while all remaining nonbasics are held fixed. The
detailed steps are as follows.

(a) Determine y as the solution to B¥y = Aes.
(b) Set Omax = Maxg [(mf —-0)>0, (:I:f1 +0y1) >0, (xfm + Oym) > O,]
7. Update Basis and Nonbasic Set.

(a) If ernax = xs, set B*Tt = B, xffl = a%j; + 0y; for i = 1,...,m, and
NFEFL = —{s}.
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(b) If zj, + Bmaxyr = 0, replace the basic variable j, by s and set x?r =z® — Opax

and set mi = x?l + Omaxys for all ¢ # r. (If r is not unique then choose the
smallest such r.) Set N**1 = A% — {s}.

8. Update an Loop Back. Set k +— k + 1 and go to Step 4.

> Exercise 4.13 Here we address the issues of rank and degeneracy.
1. If the coefficient matrix A is not of full rank, then we cannot pick a basis B in the

algorithm from the columns of A. Show, in this case, how to modify the algorithm
in one of two ways:

(a) By augmentation with artificial variables.

(b) By dropping the redundant row.

2. Suppose that the linear program has a degenerate primal optimal solution. Show
how to modify the algorithm to take degeneracy into account.

> Exercise 4.14  Suppose we are given an interior-point solution Z that is not basic and
not necessarily optimal. Show how to modify Algorithm 4.2 to construct a basic feasible
solution & in n or fewer steps such that ¢’¢ < ¢’Z. Consider both the degenerate and the
nondegenerate cases.

4.7 COMPUTATIONAL COMMENTS

Computational comments 4, 5, and 6 made in the context of Karmarkar’s algorithm
in Section 3.3.5 also apply to interior-point methods in general.

Besides being able to obtain a solution with fewer iterations than Simplex
iterations, the key to being able to develop a computationally efficient interior-
point method lies in being able to solve, at each iteration, a problem of the form
AD?*ATp = d, where D = Diag(x) is a diagonal matrix with positive diagonal
terms. Although the systems are similar for the various interior-point methods, the
diagonal matrix and the right-hand side tend to be different. Depending on the
method, one of the following three systems is solved at each iteration:

AD?*ATp = ADd (4.57)
AD?ATp = d (4.58)
ADp = d, and p chosen as min ||p||. (4.59)

System (4.57) is solved at each iteration in projective methods and in the primal log
barrier Newton methods. System (4.59) is solved at each iteration in the dual log
barrier and primal-dual log barrier methods. System (4.58) is used to find an initial
point; see Section 4.4.2. The techniques for solving these systems are similar but
the numerical properties can be quite different. Numerical difficulties can arise due
to AD becoming increasingly ill-conditioned because many of the diagonal elements
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in D tend to zero as the optimal solution is approached. Numerically, the solution
to (4.59) is “better defined” than the solution to (4.58), which, in turn, is “better
defined” than the solution to (4.57). By “better defined,” we mean that small
changes in the values of the parameters cause less fluctuation in the solution.

In order for an interior method to be considered efficient, systems such as
AD?ATp = d need to be solved very accurately and fast with low storage require-
ments. One approach that is fast and uses low storage is the Cholesky factorization,
which is defined for a positive-definite and symmetric matrix. The matrix AD?AT
is clearly symmetric; it is positive definite if A is full rank and D has a strictly
positive diagonal. The Cholesky Factorization of the symmetric positive-definite
matrix AD2AT is of the form

AD*AT = LLT (4.60)

where L is lower triangular. An alternative, equivalent way to write the Cholesky
factorization is

AD*AT = ITLT (4.61)

where L is a unit lower-triangular matrix (i.e., it is a lower-triangular matrix with
all ones on the diagonal) and I is a diagonal matrix of all positive diagonal elements.
This latter form is preferred because it avoids computing square roots.

Exercise 4.15  Suppose we write the LU factorization of AD?AT as LOU where L is
unit lower-triangular, © is a diagonal matrix, and U is unit upper-triangular. Show in this
case that the factors L = L, © =T, and U = LY (that is, the LU factors are the same
as the Cholesky factors), provided that interchanges of rows ¢ and j are accompanied by a
corresponding interchange of columns ¢ and j for the same pairs in both factorizations.

Better numerical stability is achieved using the QR factorization, i.e.,
DAT = QR (4.62)

where @ is an orthornormal square matrix and R is an upper-triangular matrix.
Then AD?AT = RTR. The computational work to do a QR factorization is usually
two to three times more than for a Cholesky factorization.

4.8 NOTES & SELECTED BIBLIOGRAPHY

For proofs on convergence of various iterative algorithms, see, for example, Ortega &
Rheinboldt [1970]. For details and computational results using the Projected Newton
Barrier Method, see Gill, Murray, Saunders, Tomlin, & Wright [1986]; this paper also shows
that the projected Newton Barrier method and Karmarkar’s method are related. Renegar
[1988] showed polynomial time convergence for a Newton-type algorithm applied to the
linear program min c’x, subject to Ax > b. Gonzaga [1989] and Shanno & Bagchi [1990)
showed that Karmarkar’s method is just a special case of the logarithmic barrier function
method; Karmarkar showed polynomial complexity for his method but Shanno and Bagchi
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did not for theirs. Anstreicher [1990] has shown that the application to linear programs of
Frisch’s [1957] logarithmic barrier approach (as developed by Fiacco & McCormick [1968])
has polynomial complexity. See also Freund [1991a] for results on the theoretical efficiency
of a shifted barrier function approach.

The primal-affine method, developed by Barnes [1986] and Vanderbei, Meketon, &
Freedman [1986], defines the search direction by p = —D,;PD,c where D, = Diag ()
and P is defined by (4.37). It also turns out that this method is the same as the method
proposed earlier by Dikin [1967, 1974]. Several interesting results on Dikin’s method have
appeared since its rediscovery and reclassification as the primal-affine method. Saigal
[1993a] and Tsuchiya & Monteiro [1996] have shown that the primal-affine method con-
verges superlinearly. Examples have been constructed by various researchers to show that
the primal-affine method does not converge when the primal problem is degenerate. Mas-
carenhas [1993] has constructed an example in which the method does not converge to an
optimal solution if a steplength of o = 0.999, called the long-step, is used because when
a steplength of a = 0.999 is used the iterates stay too close to the boundary. Hall &
Vanderbei [1993] have constructed an example where the dual iterates failed to converge
if steplength o > 2/3 is used; see Problem 4.2 on Page 146. Saigal [1993b] describes a
variant of the method called the power variant of the primal-affine method.

Notice, in the limit as u — 0, the Newton search direction (4.36) is p = —DzPDqc,
the primal-affine method search direction. An explanation of the relationship between the
primal logarithmic Newton barrier method and primal affine method is as follows. The
idea of an interior-point method is to keep the iterates in the interior of the feasible region
defined by inequalities. As described by Sonnevend [1986], we can find the “analytic
center” of the feasible region by solving the problem: min—z:;:1 In(z;), subject to
Az = b. For this problem, the Newton direction is p = D, Pe, where D, = Diag(x)
and P is defined by (4.37). This is reflected in the Newton direction (4.36), which is a
combination of an affine term that points in the direction of optimality and a centering
term that causes the iterates to stay away from the boundary. Hertog & Roos [1991] have
shown, in their survey of search directions for interior-point methods, that most of these
methods use search directions that are a combination of a component that points toward
an optimal solution and a centering term.

The approach described in Section 4.4.2 to determine an initial feasible interior z° is
described in Lustig, Marsten, & Shanno [1994].

Another class of interior-point methods operates on max bTy subject to ATy < ¢, the
dual of a linear programming in standard form. Huard’s [1970] method of centers was first
applied to this problem by Renegar [1988], who obtained an algorithm that takes O(y/nL)
iterations, where n is the dimension of z and L is the total number of bits required to store
the problem’s data in the computer. Later Gonzaga [1992] showed that this was a special
case of the logarithmic barrier function method. Notice that the dual of a linear program
has no equality constraints, hence the use of a logarithmic barrier function results in the
following unconstrained problem:

max b’y + p E In (Cj - A.ij), (4.63)
y
=1

where A,; is the jth column of the coefficient matrix A. Letting s = ¢ — ATy, the first and
second derivatives of the barrier function are given by

g(y) =b—pAD;'e and G(y) = —pAD;*AT, (4.64)
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where
D, = Diag (s) = Diag (¢ — ATy), (4.65)

and e = (1,1,...,1)". Note that g(y) and G(y) are defined only if s; = ¢; — ALy > 0 for
all j. The Newton search direction (see Exercise 4.7) is given by

Ay = —%(AD;QAT)‘IH (AD;QAT)_IADS_I& (4.66)

The first term of this search direction Ay points toward optimality and the second term
does the centering. A dual-affine variant search direction can be found by letting p — 0,
namely

Ay, = —(AD72AT) b, (4.67)

Shortly after the publication of Karmarkar’s [1984] result, Adler, Resende, Veiga, &
Karmarkar [1989] implemented an interior-point method, called the dual-affine variant,
to solve the dual problem. The implementation demonstrated superiority over an ear-
lier version of MINOS, a simplex-based code, on a class of problems distributed by Gay
[1985]. A description of the data structures used in the approach can be found in Adler,
Karmarkar, Resende, & Veiga [1990]. Later McShane, Monma, & Shanno [1989] demon-
strated similar results using a primal-dual path-following algorithm. Marsten, Saltzman,
Shanno, Ballinton, & Pierce [1989] did further interesting computational work using the
dual-affine approach. Tsuchiya & Muramatsu [1995] prove convergence of the primal-affine
and dual-affine scaling methods without the nondegeneracy assumptions. Their proof is
based on Dikin’s [1990, 1992] results. Since then, simpler proofs have been developed by
Monteiro, Tsuchiya, & Wang [1993] and Saigal [1992].

Megiddo [1986, 1988] first devised the theory for primal-dual interior-point methods
(see Section 4.5 for details of the method), which has performed very well in practice.
Based on Megiddo’s theory, Kojima, Mizuno, & Yoshise [1989a] developed an O(nL) al-
gorithm, where £ is the total number of bits required to store the problem’s data in
the computer. Shortly thereafter, Lustig, Marsten, & Shanno [1990, 1991a, 1991b, 1992a,
1992b, 1992c| implemented and reported promising results for various versions of a primal-
dual algorithm. Primal-dual algorithms were first implemented with different steplengths
in the primal and dual spaces by McShane, Monma, & Shanno [1989]. Lustig [1991] and
Lustig, Marsten, & Shanno [1994] showed how to derive directions (without the need for
artificial variables) when an initial feasible solution is not easily available for application
of the primal-dual algorithm. Choi, Monma, & Shanno [1990] show how to conveniently
handle upper and lower bounds on variables in primal-dual interior-point methods. Lustig,
Marsten, & Shanno [1994] show that it is possible to handle free (unrestricted) variables
in a primal-dual interior-point method by splitting it into the difference of its positive
and negative parts (similar to the way discussed in Linear Programming 1, for the regular
Simplex Method) and then at each iteration setting the smaller of the two variables to
a constant thereby shifting the origin of the unrestricted variable. Shortly after Lustig,
Marsten, & Shanno’s [1991a] implementation of the primal-dual interior-point method,
Mehrotra [1992a] devised a predictor-corrector method, that utilizes a combination of
three search directions: the predictor, the corrector, and the centering direction. Assum-
ing that the current solution (z,y, s) does not necessarily satisfy the first-order corrections
of optimality we substitute (z+ Az, y+ Ay, s+ As) in place of the current solution (z,y, s)
in (4.44), (4.45), and (4.46) to obtain the Newton equations

ATAy+As = c— ATy —s (4.68)



4.8 NOTES & SELECTED BIBLIOGRAPHY 143

AAz = b— Az (4.69)
DAz + DyAs = pe — DyDse — DagDase. (4.70)

Mehrotra proposed first solving the above system with p set to 0 and DazDase
dropped. The resulting solution (Ax, Ay, As) = (Az, Ay, As) is then used to substitute
for the product Da,Das and the system re-solved. In this method u is adjusted to be
small when the affine direction produces a large decrease in complementarity (see (4.46))
from the previous iteration, and p is adjusted to be large when the affine direction produces
a small decrease in complementarity. The iterative process of substituting for DazDase
described earlier can be repeated to obtain a better search direction (Az,Ay, As) but
requires a lot more work. Carpenter, Lustig, Mulvey, & Shanno [1993] have examined
this multiple corrections procedure and concluded that for a general primal-dual algorithm
one such iteration works best in terms of overall execution time. Lustig, Marsten, &
Shanno [1992a] prove that the algorithm will have guaranted convergence if the predictor-
corrector approach is used. They further show how to determine whether a regular primal
step should be taken or a correction step performed. They report that the test has little
computational effect on the problems even though it is necessary to prove guaranteed con-
vergence. In another paper, Lustig, Marsten, & Shanno [1992c| describe an implementation
of the primal-dual algorithm with a slightly modified Mehrotra [1992a] predictor-corrector
method. Mitchell & Borchers [1992] have applied the primal-dual interior-point algorithm
in a cutting-plane setting.

For Megiddo’s [1986, 1988] primal-dual method, Monteiro & Adler [1989a] and Kojima,
Mizuno, & Yoshise’s [1989b] improved Kojima, Mizuno, & Yoshise’s [1989a] result to
O(y/nL) complexity, where £ is the total number of bits required to store the problem’s
data in the computer; unfortunately in their algorithm p is being reduced so slowly that
in practice the algorithm is very inefficient. Lustig, Marsten, & Shanno [1990] present
empirical evidence that their implementation appears to result in O((log n)E) iterations.
Todd [1994Db] proves that a long-step primal-dual algorithm similar to an earlier version of
the Lustig, Marsten, Shanno [1994] OB1 algorithm may require O(n'/?) iterations before
achieving a reasonable constant improvement in the duality gap.

All the complexity results mentioned so far for primal-dual algorithms are for algo-
rithms using strictly feasible points. In 1991, Kojima, Megiddo, & Mizuno [1993] showed
global convergence for an infeasible primal-dual method under special conditions. Mizuno
[1992] and, earlier in 1992, Zhang [1994] provided a polynomial time complexity bound
for the Kojima-Megiddo-Mizuno infeasible interior-point algorithm. Lustig, Marsten, &
Shanno [1992a] show global convergence for the predictor-corrector algorithm. Complexity
bounds for variants of the Mehrotra predictor-corrector method are established by Zhang
& Zhang [1995]. Mizuno, Kojima, & Todd [1995] developed an infeasible interior-point
primal-dual potential reduction algorithm that is polynomial time bounded.

Superlinear convergence of a primal-dual algorithm has been shown by S. Wright [1993].
Zhang, Tapia, & Dennis [1992] give sufficient conditions for superlinear and quadratic
convergence of primal-dual algorithms in terms of the centering parameter and the step
size chosen. Among others, Ye, Giiler, Tapia, & Zhang [1993] and Mehrotra [1993] de-
scribe methods that attain superlinear and quadratic convergence together with polyno-
mial bounds on complexity. El-Bakry, Tapia, & Zhang [1991] compare local convergence
strategies and point out that theoretical asymptotic superlinear and quadratic convergence
usually translate into fast linear convergence in practice. Typically infeasible interior-point
methods detect infeasibility by not being able to converge to optimality (or, as in the case
of artificial variables, having one or more not equal to zero even though a high objective
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coefficient is attached to them); in fact, guaranteed detection of infeasibility is available
theoretically only if the method is started from a very inefficient initial point. In 1992, Ye,
Todd, & Mizuno [1994] developed a homogeneous and self-dual formulation that treats
optimality and infeasibility more symmetrically for the purpose of being able to detect
infeasibility.

Clearly, the implementation of an efficient interior-point algorithm requires an efficient
Cholesky factorization that also minimizes the storage requirement for the lower triangu-
lar matrix L. Sparsity is maintained in L by first determining an ordering of the rows
of AD?AT and then using a sparse column Cholesky factorization. Two heuristics for
permuting the rows of AD?>A” to minimize the fill-in in L are the multiple minimum de-
gree ordering (see, for example Liu [1985]); and the minimum local fill-in ordering, (see,
for example, Markowitz [1957] and Duff, Erisman, & Reid [1986]). In practice the min-
imum fill-in local ordering produces a sparser L than the minimum degree ordering but
requires more computational time. The Cholesky factors are obtained through the use
of a sparse column Cholesky factorization procedure; for details see George & Liu [1981].
If A has relatively few dense columns then the Cholesky factors will also have few dense
columns. Techniques for handling such dense columns can be found for general cases in
Grear [1990], for general linear programs in Vanderbei [1991], and for stochastic linear
programs in Lustig, Mulvey, and Carpenter [1991].

Eventually the matrices AD?AT get very ill-conditioned leading to problems in com-
puting the Cholesky factors. Omne technique to reduce the effect of ill-conditioning is
preprocessing. Another possibility is regularization, which is the perturbing of the linear
program problems to make them “easier” to solve. Yet another possibility is refinement,
which is iteratively solving modified prolems to ensure that the error in the solution process
is small. For a discussion of regularization and refinement, see Gill, Murray, Ponceleén, &
Saunders [1995].

As noted in this chapter, the use of the QR factorization can improve numerical sta-
bility at the expense of computational speed. However, there is still the possibility of a
large amount of fill-in (additional nonzeros being created) in R. One possibility is to solve
instead a system of equations whose coefficient matrix is:

-D;? (AD,)"
(ADJC ) (4.71)

For details on the solution of such systems see Fourer & Mehrotra [1993], Vanderbei
[1995, 1992], and Vanderbei & Carpenter [1993]. In the context of finite element analysis,
Vavasis [1993, 1994] to ensure stability when solving (4.71) suggests caution be exercised
and proposes a stable method. M. Wright [1992], on the other hand, proposes working
with an unsymmetric Jacobian matrix, found in primal-dual methods, of the form

D, -D,AT
(5 oy, )

Other options for reducing fill-in are that of incomplete or partial Cholesky factoriza-
tions. For a discussion on incomplete factorizations, see for example, Axelsson & Munks-
gaard [1983], Jones & Plassmann [1995], Meijerink & van der Vorst [1981], Munksgaard
[1980], and Thapa [1984b]. Mehrotra [1992b] has experimented with using an incomplete
Cholesky factorization for use in a preconditioned conjugate gradient method; however, his
results were not very promising. Iterative methods can also be used to solve the Newton
equations (4.48), (4.49), and (4.51); see Kim & Nazareth [1994].
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For a review of methods with a focus on computational results, see, for example, Gill,
Murray, & Saunders [1988] and Lustig, Marsten, & Shanno [1994]. The latter paper
reports that test results have demonstrated the following: (i) problems where the sum of
the rows and columns is less than 2000 are more likely to be solved faster by the Simplex
Method; (ii) for problems where the sum of the number of rows and columns is between
2000 and 10000, simplex codes and interior-point codes compete evenly; and (iii) problems
larger than the latter are more likely to be solved faster by interior-point codes. Of course,
the structure of the models plays a very important role and even very large problems may
very easily be solved faster by very good implementations of the Simplex Method.

The first-order conditions were derived through the use of a Lagrangian, however, we
should note that these are simply the Karush-Kuhn-Tucker (KKT) conditions. As noted in
Section 4.5, the primal log barrier method uses D, = uD; ‘e, the dual log barrier method
uses Dy = pD;'e, and the primal-dual log barrier method uses D,D.e = pe, where
e = (1,1,...,1)T. Gill, Murray, Ponceleén, & Saunders [1995], among others, suggests
also looking at the fourth possibility of D;'D;* = pe. They further suggests research on
the development of solvers that would directly solve the resulting Jacobian equations if
each of the four options is used in turn in place of (4.46) in the first order conditions. The
associated Jacobians are:

I uD;? uD;% T
Jp = [ AT 5 Jd - I AT )
A A

D, D, D;'D;' D;*D;t
Jpa=| 1 AT |, J= I AT ).

A A

See Gill, Murray, Ponceleén, & Saunders [1994] for a discussion of these systems and for
global convergence proofs and guarantees of nonsingularity in each of the above Jacobians.

Several papers have appeared that suggest the superiority of solving reduced KKT
systems because of better sparsity control, more direct handling of free variables, and
the application of static preordering schemes for factorization. For example, see Forsgren
& Murray [1990], Fourer & Mehrotra [1992], Gill, Murray, Ponceleén, & Saunders [1994],
Vanderbei [1995, 1992, 1994], and Vanderbei & Carpenter [1993]. As an example of reduced
KKT systems consider the first-order conditions for von Neumann’s symmetric primal (2.1)
and dual (2.2) systems:

Az —w = b
ATy+s=c¢
D;Dse = pe
DyD,e = pe

where e = (1,1,...,1)7,
D, = Diag(z), Ds=Diag(s), Dy =Diag(y), Dw = Diag(w).

Application of Newton’s method results in:

D, Dy As pe — Dz Dge
D, Dy Aw | | pe—DyDye
I AT Az | | e—ATy—s

—I A Ay b— Az +w
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The first two sets of equations can be used to solve for As and Aw respectively, and
substituted in the next two sets to give us the reduced KKT system:

—-D.D; ! AT Az\  [c— ATy —uD;'e
A DwD;1 Ay | bfA:c+,uDyfle ’

As mentioned earlier, it is likely that the best commercial software of the future will
be some sort of a hybrid of the Simplex Method and an interior-point method. A prob-
lem with interior-point methods has been the inability to quickly obtain a basic feasible
solution (or extreme point). Algorithm 4.2 on Page 138 addresses this issue; it, together
with Exercise 4.14 on Page 139 is based on Problem 11 on Page 145 of Dantzig [1963].
For additional details on obtaining a basic feasible solution, see Andersen & Ye [1995],
Bixby, Gregory, Lustig, Marsten, & Shanno [1992], Bixby & Saltzman [1994], Charnes &
Kortanek [1963], Kortanek & Zhu [1988], and Megiddo [1991].

For an introduction to nonlinear programming see, for example, Avriel [1976], Fiacco
& McCormick [1968], Gill, Murray, & Wright [1981], Kuhn & Tucker [1950], Wolfe [1967],
and Zangwill [1969]. For a thorough analysis of barrier function methods, see M. Wright
[1976].

In conclusion, over the years there have been significant improvements in Simplex
Method based codes. As a consequence, test results as of 2003 with interior-point codes
show superiority only on problems with several thousand rows and columns. Typically,
the results are superior on problems where a block-diagonal type structure exists.

4.9 PROBLEMS

4.1 Based on a problem in Dantzig [1963]. Suppose zo; ¢ > 0,25 > 0,...,z5 > 0
and x},, = --- = 7, = 0 constitutes a feasible solution to a linear program in
standard form.

(a) Show that if £ > m a new solution can be found with m or fewer variables
at positive values.

(b) Show that this reduction process can take up to k —m steps.

(¢) Show that the reduction can be done in such a way that the objective
function is not increasing at each step. Show also that a case can arise in
which a class of solutions is generated where z — —o0.

4.2 Hall & Vanderbei [1993]. This problem demonstrates that the dual iterates of
the affine scaling algorithm do not converge when o > 2/3. Consider the primal
problem:

Minimize r1 + x2 + x3 =z
subject to  x1 + 2 + 3 — x4 = 0 (4.73)
1’120, 1'220, 1’320, 1’420.

(a) Write down the dual of the problem.

(b) Start with the primal interior point # = (10, 10, 19, 1)T and use a
steplength size of & = 0.995 to demonstrate that the primal affine algo-
rithm generates dual iterates that do not converge but generates primal
iterates that do converge to the unique primal minimum P (0,0,0, O)T.
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(¢) Which of the assumptions required in the proof of convergence of Dikin’s
algorithm is violated?
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CHAPTER 5

DEGENERACY

We have seen that if degeneracy occurs, then it is possible to have a sequence of
iterations with no decrease in the value of z. Under such circumstances, it may
happen that a basic set will be repeated, thereby initiating an endless cycle of
such repetitions. It turns out, for reasons not fully understood, that in practice
almost all problems are degenerate and some are highly degenerate, but that in
spite of degeneracy, cycling almost never happens. This is why early commercial
software packages did not include any degeneracy resolving schemes. When there is
degeneracy or “near” degeneracy it tends to slow the solution process, and this has
given rise to a number of anti-cycling or degeneracy resolving schemes that have
been very successfuly used in commercial software packages to reduce the number
of iterations.

5.1 EXAMPLES OF CYCLING

Example 5.1 (Hoffman) In 1951, A. J. Hoffman constructed an ingenious example
to show that cycling can occur under degeneracy; it involves three equations and eleven
variables; see Table 5-1 and Table 5-2. He showed, in the case of degeneracy, that if one
resolved the ambiguity of choice regarding which variable to drop from the basic set by
the rule of selecting the first among them, then the tableau at iteration 10 would turn
out to be the same as that at iteration 0. Notice in Tables 5-1 and 5-2 that column 1,
associated with the relation z1 = 1, remains in the basis for all iterations. Next notice
that the tableau for iteration 2 is exactly the same as that of iteration 0 if we relabel the
indices (2,3,4,...,11) of iteration 0 as (4,5,6,...,11;2,3). Hence, eight more iterations
will repeat iteration 0. It follows, in this case, using the first choice rule, that the same
basic set would be repeated every ten iterations and the Simplex Algorithm would cycle
forever without converging to an optimal solution.

149
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| T1 | T2 T3 | T4 | 5 6

Iteration 0

—(1 —cos0)/cosb w
1
1 —w cos 6 cos 26
1 sinf tan 0/w cos 6 tan 6 sin 20 /w
Iteration 1
(1 —cos®)/cos? 6 w(2cos @ — 1)/cosf —2sin 6 tan 0
1
sec 6 1 —w 4cos?6—3
—tan? 0 /w 1 tan2 0 /w
Iteration 2
4sin?6 | w(1 — 2cos ) —(1 —cosB)/ cos
1
cos 0 w cos 6 1
—tanfsinf/w cos 6 1 sin 6 tan 6 /w

Where 6 = 27/5, w > (1 — cos6)/(1 — 2 cos )

Table 5-1: Hoffman’s Example of Cycling (Continued on the Right)

> Exercise 5.1 The purpose of this exercise is to demonstrate how many of the relations
in Hoffman’s examples are determined assuming that 6 = 27/5.

1. Show that cos 26 = cos 36.

2. Show that sin 260 = — sin 36.

3. Use (1) to show that cos 260 + cos 6 = cos 6 cos 26.

4. Use (1) and (3) to show that on iteration 1 the objective coefficient for z¢ is
—2sin 6 tan 6.

5. Use (1) to show that the coefficient az¢ = 4cos?H — 3.

Example 5.2 (Beale’s Three Equation, Seven Variable Example) In 1955,
E. M. L. Beale constructed a second example, a version of which is shown in Table 5-3,
which is remarkable for its simplicity. It also has three equations but only seven variables.
Using the same rule for resolving a tie, the tableau at iteration 6 is the same as that at
iteration 0; it has the same basic variables in the same order. It is conjectured that this is
the simplest not totally degenerate example of cycling; i.e., none can be constructed with
fewer variables regardless of the number of equations.

Example 5.3 (Tucker’s Totally Degenerate Example) The following example,
due to Tucker, is said to be the simplest of all examples constructed so far. However, this
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x7 T8 | T9 | T10 | T11 | RHS |

Iteration 0

2w 4sin? 6| —2w cos 20 45sin® 6 w(l — 2cosh) | z(min)
1
—2w cos? 6 cos20| 2wcos?6 cos 6 w cos 0 0
cos 26 —25sin? 0/w cos20 | —tan6sinf/w cos 6 0

Iteration 1

2wcos @ | (cos@ — 1)/ cos 6 3w 2sinftanf | —w(4cos? 6 — 3) z

1

—2w cos 0 4cos?6—3 2w cos 6 1 w 0

1 2sinftan@/w | 4cos?  — 3| —2sin @ tan 0/w 4cos?0 -3 0
Iteration 2

+w 2w 4sin? 0 —2w cos 260 z

1

—wcos 6 cos20 | —2wcos? 6 cos 260 2w cos? 6 0

cos 6 tan 0 sin 26 /w cos 260 —2sin? 0/w cos 26 0

Where 0 = 27/5, w > (1 — cos 0) /(1 — 2 cos )

Table 5-2: Hoffman’s Example of Cycling (Continued from the Left)

example has a totally degenerate solution (see Exercise 5.4).

Minimize —2x7 — 322 + x3 + 1224 = 2
subject to —2r1 — 922 + 23+ 924 <0
5.1
§$1+ $2—%$3—2$4§ (5.1)

and 1 >0, x2 >0, x3 > 0, x4 > 0.

On adding slack variables x5 > 0 and z¢ > 0, a feasible solution is readily available as the
slacks (x5, z6) = (0,0). Choose the initial basic variables as the slacks s, 6.

1. Assume the index s of the incoming variable is chosen as the nonbasic variable with
the most negative reduced cost.

2. Assume the index j, of the outgoing variable is determined by looking at all a;s > 0
as specified in the Simplex Algorithm and choosing r = i as the smallest index such
that a;s > 0.

Then the basic sets of indices generated at each iteration for the first six iterations are:
{5,2}, {1,2}, {1,4}, {3,4}, {3,6}, and {5, 6}, respectively. Observe that the basis repeats
on the sixth iteration, leading to an endless cycle of iterations.

> Exercise 5.2  Apply the tableau form of the Simplex Algorithm to Tucker’s example,
the linear program (5.1), to show that it cycles endlessly.
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Basics || —z T To T3 T4 Ts5 T X7 | RHS |
Iteration 0
—z 1 —3/4 150 —1/50 6 0
T5 1/4 —60 -1/25 9 1 0
Te 1/2 —90 —1/50 3 1 0
T7 1 1 1
Iteration 1
—z 1 —-30 —7/50 33 3 0
T 1 —240 —4/25 36 4 0
T 30 3/50 —-15 —2 1 0
T7 1 1 1
Iteration 2
—z 1 —2/25 18 1 1 0
T 1 8/25 —84 —12 8 0
T2 1 1/500 -1/2 -1/15 1/30 0
i 1 1 1
Iteration 3
—z 1 1/4 -3 —2 3 0
T3 25/8 1 —525/2 —-75/2 25 0
Ta —1/160 1 1/40 1/120 -1/60 0
T7 —25/8 525/2 75/2 —25 1 1
Iteration 4
—z 1 -1/2 120 -1 1 0
T3 —125/2 10, 500 1 50 —150 0
T4 —-1/4 40 1 1/3 —2/3 0
T7 125/2  —10,500 —50 150 1 1
Iteration 5
—z 1 —7/4 330 1/50 -2 0
5 —5/4 210 1/50 1 -3 0
T4 1/6 -30 —1/150 1 1/3 0
T7 1 1 1

Table 5-3: Beale’s Example of Cycling



5.2 ON RESOLVING DEGENERACY 153

Exercise 5.3  The software DTZG Simplex Primal (Linear Programming 1) does not
use any anti-cycling procedures. Run it on Tucker’s example, the linear program (5.1), to
verify that it also cycles endlessly.

Exercise 5.4 Show by introducing slack variables x5 and zs, and an equation z7 = 1
that this becomes a not totally degenerate example similar to that of Beale in size, degree,
and number of iterations before cycling. Show that by deleting the last row and last
column in Beale’s example it becomes a totally degenerate example, similar to Tucker’s
example, that cycles endlessly.

5.2 ON RESOLVING DEGENERACY

Since cycling in the Simplex Algorithm is only possible under degeneracy, it is
pertinent to ask how degeneracy can occur, how frequently it is encountered in
practice, and how often it implies cycling. Degenerate solutions are possible only
when the constants, b; of the original right-hand side bear a special relation to the
coeflicients of the basic variables. This is clear because the process of reduction to
one of the finite set of canonical forms depends only on the coefficients and not on
the right-hand side; the final values b; are weighted sums of the original b;s where
the weights depend only on the coefficients in the basis. If all the b;s were selected
at random, it would be something of a miracle if one or more of the constants b; of
the canonical system should vanish.

Nevertheless, it is common experience, based on the solutions of thousands of
practical linear programming problems by the Simplex Method, that nearly every
problem at some stage of the process is degenerate. It might be thought that, since
degeneracy happens all the time, there should be many observed cases of cycling.
However, to date, there have been very few known cases of cycling other than the
specially concocted examples of Hoffman, Beale, and others. Apparently, cycling is
a very rare phenomenon in practice. For this reason, most software for computers
until the 1980s did not include special code for resolving (avoiding) degeneracy in
order to prevent the possibility of cycling. Since the 1980s anti-cycling schemes
have been used in some commercial software not only to prevent cycling but, more
importantly, to reduce the number of iterations in degenerate and “near”-degenerate
cases.

From a mathematical point of view, the phenomenon of cycling is fascinating.
Long before Hoffman discovered his example, it was conjectured that cycling could
happen and simple devices were proposed to avoid degeneracy and thus avoid the
possibility of cycling. The goal of the early efforts was to devise a way of avoiding
degeneracy that involved as little extra work as possible. The first proposal along
these lines was by Dantzig and his student Edmondson; it involved perturbing the
right-hand sides in such a way that on each iteration:

1. the basic feasible solution of the perturbed problem is nondegenerate, and
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2. the basic solution for the corresponding unperturbed problem is feasible.

Another early proposal involving perturbation is due to Charnes; see Problems 5.9,
5.11, and 5.12 for methods that perturb the right-hand side.

The perturbation may be viewed as a rule that guides the proper choice of
variables to drop from the basic set in case of ties. Many other rules have been
developed over the years. Five well-known ones will now be described.

5.3 DANTZIG’S INDUCTIVE METHOD

We first present the inductive method that was initially thought to be difficult to
implement because it appears to require a complicated bookkeeping scheme to keep
track of a hierarchy of subproblems. Philip Wolfe, however, discovered a very simple
rule, which we will describe in Section 5.4, that requires the updating of only one
extra column of indices d that keeps track of this hierarchy.

The induction will be on the number of rows m. To initiate the induction, we
begin with a one equation (m = 1) linear program in canonical form:

—Zz -+ E C_jl'j :72t
JEN

xj1+zd1jxj= by, z; >0, j=1,...,n.
JEN

(5.2)

If by > 0 (i.e., the problem is nondegenerate) then after a pivot the updated b; > 0
because b; = by /a@;s and a;s > 0. It follows for m = 1 that the Simplex Algorithm
with a positive right-hand side will terminate in a finite number of iterations.

If, on the other hand, the one-equation (m = 1) problem is degenerate, i.e.,
by = 0, create an auxiliary problem that is the same as problem (5.2) in every respect
except that by = 1. Perform identical pivot steps on both problems. Clearly, both
remain basic feasible; the only difference is that the updated by = 0 for the original
unperturbed problem. Furthermore, both terminate at the same time because the
termination condition depends on the left-hand side of the problems only. Since the
auxiliarly problem is nondegenerate, the Simplex Algorithm will terminate after a
finite number of steps, and thus the original problem will also be solved in a finite
number of steps.

Exercise 5.5 Show that if an LP in standard form is totally degenerate, i.e., b; = 0 for
all 4, it will remain so after pivoting. Also show that if the LP is not totally degenerate,
i.e., b # 0, then after pivoting updated b # 0.

At this point we have shown that we can solve an m = 1 problem in a finite
number of pivot steps. Next we shall demonstrate an inductive proof of finiteness
of the Simplex Algorithm using the ideas that we have just discussed.
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THEOREM 5.1 (Finiteness of the Inductive Method) If for all k < m
there exist rules Ay for choosing to pivot in the Simplex Algorithm that solves a
k-equation linear program in a finite number of pivot steps, then for k = m there
exists a rule Ay, for choosing to pivot in the Simplex Algorithm which solves an
m-equation linear program in a finite number of pivot steps, terminating with ¢ > 0
or, for some s, ¢; < 0 and Aqs < 0.

Proof. We are given algorithms Ay for £k = 1,...,m — 1 that solve any linear
program with £ < m rows in a finite number of steps. We wish to use these
algorithms to generate an algorithm A,,, for solving any m-row linear program in a
finite number of feasible pivot steps.

Consider first an m-equation linear program in canonical form:

—z + E Cjxj = —Zt,

JEN

l‘ji—FZdijl‘j: 0 fori=1,...,k, (53)
JEN

xji+zdijxj: Z;i, bi>0forz‘:k'+1,...,m.
JEN

Call the restricted linear program Rj the one obtained by setting aside for the
moment the m — k rows of (5.3) in which b; > 0.

Case 1:  Suppose k < m. Since Ry has k < m rows, we have an algorithm Ay
that makes a finite sequence P of row-column choices of pivots that
terminates with either ¢ > 0 or, for some s, ¢; < 0 and a;s < 0 for ¢
restricted to the rows of Ry.

Simultaneously apply these same pivot choices P (restricted to the rows
of R) to (5.3), except when we pivot we do the elimination on all the
rows of (5.3). Note this elimination does not affect feasibility because b;.
of the pivot row is 0 and hence there is no change to the value of b;.
Although the updated ¢ changes from iteration to iteration, the change
in ¢ of the restricted problem Ry is the same as that for (5.3).

If Ag results in ¢ > 0 on some iteration then we have a finite sequence
of feasible steps that solves (5.3). On the other hand, if A results, on
some iteration, with updated ¢; < 0 and a;s < 0 for ¢ restricted to the
rows of Ry, then choose for pivot on the full system a,s > 0 for a row r
among the rows not in Ry in the usual manner. If no such r exists then
we can construct a class of solutions such that z — —oo. Otherwise
we pivot on @5 on some row where by > 0, and this results in a strict
decrease of the objective function. After the pivot update we repeat this
process generating a new restricted problem. We know that there can
only be a finite number of strict decreases of the objective function z
(because there is only a finite number of distinct canonical forms). We
call the set of pivots used to solve (5.3), Algorithm A,,.
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Case 2: Suppose that the & = m problem is totally degenerate. Create an
auxilliary problem by setting the right-hand sides b; > 0, for exam-
ple b = e = (1,1,...,1)”. This auxilliary problem can be solved by
Algorithm A, of Case 1. The latter will also terminate in a finite
number of pivot steps with either ¢ > 0 (in which case we terminate
the corresponding pivoting on the original system with an optimal so-
lution) or a situation where ¢; < 0 and Aes < 0 and we have an un-
bounded solution for the auxilliary problem. If this is the situation then
we solve the corresponding totally degenerate problem by applying the
same pivot steps that solved the auxilliary problem and generate the
same unbounded class of solutions for the original system.

This completes the proof. |

Exercise 5.6 Show, except for the updating of the right-hand side of R, that no extra
work is involved to maintain the restricted problems.

5.4 WOLFE’S RULE

Except for the work of inductively generating the where to pivot rules Ag, the
inductive method requires no extra work. It was originally thought that the method
was impractical because of the work involved to generate the rules Ax. Wolfe
observed that if an auxilliary problem R; is degenerate its auxilliary problem Ro
is a subset of R; and therefore the set of auxilliary problems at any point in the
algorithm form a hierarchy that can be kept track of and updated by a single
m vector of integers. We first solve a simple example using the inductive method
and Wolfe’s Rule.

Example 5.4 (Inductive Method and Wolfe’s Rule) We illustrate the Inductive
Method and Wolfe’s Rule by applying it to Beale’s example of cycling. In Table 5-4, the
column b is the modified right-hand side for the restricted problem and column d keeps
track of the hierarchy of restricted problems. Iteration 0 has the first two right-hand sides
equal to 0; as a result di = d2 = 1, d3 = 0, and by = by = 1, implying that the first
restricted problem Ri consists of the rows 1 and 2. The pivot is next chosen from among
the restricted problem rows 1 and 2 using the right hand side b. Using the usual rules,
the pivot is on column 1 and row 2, shown in boldface. Next the pivot is performed on
the entire problem using the original right-hand side. In addition, the right-hand side
b is updated for the restricted problem Ri only. No new b; become 0 and the pivoting
process continues using R1. This time, the incoming column is x3 which has all negative
coefficients a@;3 in R1. Hence, we look at the remaining rows and attempt to find a pivot.
A pivot is found in row 3; on pivoting, on the entire problem it turns out that an optimal
solution is found. This process is formalized in Algorithm 5.1.
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‘ Basics H —z T To T3 T4 Ts Te T7 ‘ RHS ‘ b ‘ d ‘

Iteration 0: d; = 1 for Ry

—z 1 -3/4 150 —1/50 6 0
5 1/4  —-60 —1/25 9 1 0 1)1
Te 1/2 -90 —1/50 3 1 0 1)1
i 1 1 1
Iteration 1
—z 1 15 —1/20 21/2 3/2 0
s —-15 —=3/100 15/2 1 1/2 0f-1/2|1
1 1 —-180 —2/50 6 2 0 211
X7 1 1 1 0
Iteration 2: Optimal
—z 1 15 21/2 3/2  1/20 1/20
s -15 15/2 1 1/2 3/100 | 3/100 | —1/2 | 1
T 1 —180 6 2 2/50| 2/50 2|1
T3 1 1 1 0

Table 5-4: Inductive Method and Wolfe’s Rule Applied to Beale’s Example

Algorithm 5.1 (Wolfe’s Rule for Selecting a Pivot) Consider a linear program in
feasible canonical form:

—Zz + c"TxN = —Z
Iz + Azy = b,
where z; are the basic variables and x, are the nonbasic variables. Let d be a m-vector
that keeps track of the hierarchy of restricted problems. For example, suppose the a-
component of d is do = 3. This states that equation a belongs to a restricted problem
Rs ={i|di > 3}, which in turn is a subset of a restricted problem Ro = {i | d; > 2},
and so on. Perform the following steps:
1. Initialize d = 0.

2. For all 4, if b; = 0 then set d; — d; + 1 and b; = 1.
3. Let D be the restricted subset {¢ | d; = maxy di }.
4

. Find
s = argmin ¢;, (5.4)
J

where s is the index j (argument) where ¢; attains a minimum, that is,
€s = min ;. (5.5)
J

5. Test for Optimality. If ¢ > 0, set b; = 0 for d; > 0 and report the basic feasible
solution as optimal and stop.
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6. If ¢s < 0, then s is the index of the incoming basic variable.

7. Test for Unbounded z. If &, < 0 and Ap, < 0 then let

d* — max d; if a;s > 0;
T —1 otherwise.

(a) If d* = —1 then A.s < 0. Set b; = 0 for all ¢ such that d; > 0 and terminate
with solutions such that z — —oo.

(b) If d® > 0then set b; = 0 and d; = d* for all 5 such that d; > d*. Next redefine
D:{i | di:mandk}.

8. Use the usual rules for selecting the pivot row r restricted to rows in D. Do a full
pivot on all rows 4, for s = 1, ..., m and the objective function, except do not modify

b; for i € D or the value of z; on the objective row.

9. Go to Step 2.

> Exercise 5.7 How is Wolfe’s Rule related to the inductive method?

5.5 BLAND’S RULE

Except possibly for the Random Choice Rule, Robert Bland’s Rule is the simplest
to implement.

Rule 5.2 (Bland) Whenever the regular choice for selecting the pivot in the Simplex
Method would result in a 0 change of objective value of the basic solution then, instead of
the regular choice, do the following;:

1. Incoming Column. Choose the pivot column j = s with relative cost ¢; < 0 having
the smallest index j.

2. QOutgoing Column. Choose the outgoing basic column j, among those eligible for
dropping with the smallest index j;.

THEOREM 5.2 (Finite Termination Using Bland’s Rule) Cycling is im-
possible using Bland’s Rule.

Proof. We will prove the theorem for a linear program in standard form min ¢’z

subject to Az = b, x > 0, where A is an m X © matrix.

Assume on the contrary that applying Bland’s Rule for some LP results after a
number of iterations in a repeat of an earlier canonical form and hence would cycle
thereafter.

Some columns may have remained nonbasic throughout the entire cycle; we drop
them from the LP as dropping them will not result in a different choice of incoming
column when applying Bland’s Rule. It may also happen that there may be some
basic column with index j;, which remained in as the ith basic column throughout
the cycle; we drop all such basic columns with indices j; and their corresponding
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ith equations as this will not affect the choice of outgoing column. Maintaining
the original ordering of the columns and rows, relabel the indices of the columns
from j = 1,...,n and the indices of the equations from ¢ = 1,...,m. After these
deletions, each column of the adjusted LP has the property that on at least one
iteration of the cycle it is basic and at another iteration it is nonbasic.

Therefore, on some iteration t,, column A,,, is basic as the rth basic column, that
is, j» = n, and is replaced on the next iteration by some other column s. We denote
by C, the canonical form of iteration ¢, and its basic indices by ji,...,Jrs- -, Jm
where j. = n is the outgoing column. Clearly

Cs <0, s<n, (5,6)
and, because n > j; for all i # r, we have by Bland’s outgoing basic column rule,

ars > 0, where j, =n,

@ <0, foralli#r (5.7)

According to our contrary assumption, on some future iteration ¢, the column
A,y is nonbasic and is the candidate for reentering the basic set, which by Bland’s
incoming column rule, can only happen if its reduced cost is negative while all other
reduced costs are nonnegative, i.e.,

¢ép < 0 and

¢; > 0forall j<n. (5-8)

Now the canonical system C; at t; was obtained from the canonical system C,

at t, by a sequence of pivoting. Therefore the objective coefficients ( é1,éa, ... ,é,)
of C1 can be obtained by multiplying the rows of C, by the simplex multipliers
(71,72, ... ,m ), summing, and subtracting from the objective row (¢, éa,... , ¢ )

of C,. These snnplex multipliers are unique and are obviously
(7‘(1,7‘(2, . ,7Tm) = (—le, —Cjgy .- ,—ij)

because the corresponding columns of C, are basic and its columns are the identity
in the canonical form. Hence, in particular, we can apply the values of 7 to column s
of C, to obtain the reduced cost ¢ of column s in C; as:

m

Cs = Cs — § Ti@is = Cs + § C]lazs

Rearranging we obtain
m

> b =~ + G (5.9)
i=1

Because ¢, < 0 by (5.6) and és > 0 by (5.8) since s < n, the right-hand side of (5.9)
is positive:
—Cs + ¢ > 0.
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On the other hand, by (5.7)

and by (5.8)
CAjT =é, <0, éji >0,

implying that the left-hand side of (5.9) is negative:

m
E Cj, Qs < 0,
=1

which is a contradiction. Hence we conclude that our assumption that cycling can
occur using Bland’s Rule is false. |

Comment: Bland’s Rule is clearly very easy to implement and, as we have just
shown, guaranteed to prevent cycling. Its chief drawback is that its choice of in-
coming column may not be a very good one. Another reason is that it does not
appear to be amenable to partial pivoting schemes that will be discussed Linear
Programming 4: Implementation.

Exercise 5.8 State Bland’s Rule in the context of a linear program with upper and
lower bounds on the variables.

Exercise 5.9  State Bland’s Rule in the context of an inequality constrained linear
program.
Minimize Tz =
subject to  Ax > b, A: mXxn.

I\

(5.10)

5.6 KRISHNA’S EXTRA COLUMN RULE

The canonical system on iteration ¢ has an extra degeneracy resolving column

(_%) “tacked” onto its right-hand side:

Bt
(—2) e me=—F (5.11)
Ith + Atht - Bt; Bt

The extra column has the property that if it replaced the right-hand side (Zi)

it would never have a 3¢ with a zero component. Therefore, ~; is strictly decreasing
on each iteration, implying there can be no repeat of a canonical form.
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Let s, the incoming column, be chosen by some rule such as s = argmin, ¢;, with
¢; < 0. Let R" be the set of rows k on iteration ¢ that are tied for pivot choices:

bt bt
Rt—{k d%g%, bt >0, at, >0, a,, >0, i—l,...,m}. (5.12)
ks 1S

Then the outgoing column j, is chosen by:

r= argmin(ﬂ—;) (5.13)

i€eRt \ g
Pivoting is then done (as before) using a'. x; as the pivot term. The extra column
Mt
ﬁt

is updated. To initiate, the canonical form for ¢ = 0 is partitioned into basic and

is updated the same way that any other column j or the right hand side

nonbasic parts with an extra column (‘&g) tacked on:
o T _ 3 _
(—2) + Gro Tyo = —Zoy —Yo - . (5.14)
Iz, + Ay = b°, (°, b° >0, B¥ > 0;
where 7, and 3° = (3¢,...,8%)7 are defined by Krishna’s Rule
% =0,
8% = FRAC(7) = FRAC(3.1415926...) = .1415926 .. ., (5.15)
B¢ = FRAC(BY_ ), fori=2,...,m,

where FRAC(«) is defined to be the fractional part of a. Clearly Krishna’s rule can
never be implemented because it requires an infinite number of digits of 7. In prac-
tice one could make do with the accuracy of the machine (without the theoretical
guarantee of no cycling).

Exercise 5.10 Prove that g7 >0 fori=1,...,m.

Krishna’s Rule is based on the fundamental property of transcendental numbers,
such as m, that it can never be the root of a polynomial equation with all rational
coefficients; more precisely,

Qo+ a1+ am? - ™ #0 (5.16)

whatever be the choice of rational a; not all zero. It follows (see Exercise 5.11),
that ¢ defined by (5.15) has the property

17 + @y + -+ amfy, #0 (5.17)

whatever be the choice of rational &; not all zero.
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Exercise 5.11  Prove that (5.17) follows from (5.16) and the definition of 37 given in
(5.15). Prove that 8 >0 fori=1,...,m.

LEMMA 5.3 (Properties of the Extra Column Rule) Given that all coef-
ficients af; are rational, v is the row chosen for pivot by (5.13) and R is the set
of rows i on iteration t that are tied for pivot by the ratio l;§ Jat, criterion given in
(5.12). The extra column [ rule has the following properties for every iteration t:

Property (1): [t #0, fori=1,...,m;

Property (2): pt/aL, < Bt/at, for allie R, i #r;
Property (3): Ifbt =0, then 3¢ > 0;

Property (4): 1If Ziy1 = Zi, then vi41 < .

Proof. To prove Property (1) note that the canonical form (Iz,, +A'x . = b', 5%)
for iteration ¢ can be generated from (A°z = Iz, + A°x. = b°, 3°) by multiplying
the latter by a nonsingular matrix M = [A%,]! and reordering the columns:

MA° = A, My =0b', MB° =/, (5.18)

because M A%, = Ab, = I (the identity). Moreover since A%, is a nonsingular
matrix with all elements rational, M is nonsingular with all elements rational. It
follows from (5.17) and (5.18) that

B = Mu By + Miaf3 + -+ + M B2, # 0 (5.19)

because &; = M;; are rational and at least one M;; # 0 in row ¢ of M (since, if
row i were all zero, M would be a singular matrix). This proves Property (1).

To prove Property (2), note by definition of R that a%; > 0 and aj,, > 0 for
j,k € Rt. We have from Property (1) that

B; = Mjlﬁf + MjQBg + -+ Mjmﬁyon 7& 0

Bk = M1 + M55 + - + My 3y, # 0
and that 3
. 615
7 70
ajs Aps
because M M
i ki
a. a0
js ks

are rational and not zero for at least one ¢ because no two columns of M are
proportional. Therefore one of the ratios must be the smallest and j = r by (5.13)
is chosen by definition as the smallest.
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The proof that Property (3) holds is inductive. To initiate the inductive step,
note that for ¢ = 0, Property (3) obviously holds since 5° > 0 by construction, see
Exercise 5.11. We assume that the relations in Property (3) are true up to some ¢,
and we will prove that they hold for ¢ + 1.

On iteration t consider the following six terms of the canonical form:

dt bt ﬁt
o Eﬁ 5 (5.20)

where 7 is the pivot row for generating iteration ¢ + 1 from ¢ and i # r. After the
pivot on a.s, the corresponding right-hand-side terms for ¢t + 1 are:

ht t
6t+1 — br ﬁt'i‘l — ﬁr
T —t r —t
aT‘S aTS (5 21)
ht =t t ot ’
P+l — pt _ by g+l — gt _ rQis
(2 7 K] 2

Uy at,

We assume inductively, if b2 = 0 then 8% > 0. It is easy to see that 4t+1 > 0 when
b+l = 0 because bt! = 0 implies bt = 0 since a’, > 0, which in turn implies, by
induction, 8% > 0 and Bi*! > 0 easily follows. Therefore Property (3) holds for
i =r. We wish now to show Property (3) for i # r.

If at, < 0 and b'™' = 0, the latter can only happen if b = 0 and b. = 0 since
EfH in (5.21) is the sum of two nonnegative terms. In this case inductively 3¢ > 0
and 8L > 0. Thus B! > 0 since it is the sum of two positive terms in (5.21).

If at, > 0 and b = 0, this can only happen if

_ bt bt
b = (— - —) 0, (5.22)

in other words, 7 and r are tied and so both i and 7 are in R?, see (5.12). In this
case by (5.13), r is chosen so that, rewriting the expression for 8+,

t t
t+1 o4 (B B
ﬂiJr = Qs <_tz - =

At
Ay

>. (5.23)

the bracket term is positive (zero is not possible because of properties (1) and (2)).
Finally, if at, = 0, then b™' = bt and B! = B¢ so that property (3) holds for
t + 1 if it holds for ¢. Therefore EEH = 0 implies ﬁf“ > 0.
To prove Property (4) note that

- bt 46t
= = ks T
Zt41 = 2t T Cos Ykl = Ve T Cos

T8 a'TS

where ¢ < 0, so that either z;; < z if b% > 0 or Z;1 = % if b. = 0 in which case
Y41 < Y4 since BL > 0 in this case. ]
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THEOREM 5.4 (Finite Termination Using Krishna’s Rule) The Simplex
Algorithm will terminate in a finite number of iterations.

Proof. It is clear that as long as Z strictly decreases from iteration to iteration,
each canonical form generated must be different from all others previously gener-
ated. When Z does not decrease it is said to stall. It can only remain stalled a finite
number of iterations because for the sequence of ¢ stalled, b. = 0 and 7 is strictly
decreasing, implying that their corresponding canonical forms are all different. |

Exercise 5.12 Why does the nonrepetition of the canonical forms imply a finite number
of iterations?

Exercise 5.13 The order of degeneracy is defined as the number of basic variable values
equal to zero on iteration ¢. Prove that if the order of degeneracy is at most 1 on every
iteration ¢, the Simplex Method, implemented without any rule for resolving ties, will
always converge in a finite number of iterations.

Exercise 5.14  Show that if the auxilliary problem right-hand side for Wolfe’s Rule is
modified using Krishna’s Rule, then d; > 1 is not possible.

5.7 ON AVOIDING DEGENERATE PIVOTS

So far we have discussed how to avoid cycling under degeneracy. A related issue
is how to avoid degenerate pivots so that we can get a nonzero decrease in the
objective function. Although it is not possible to totally avoid such pivots in the
Simplex Method, we can attempt to bypass some of them.

For simplicity of exposition, consider a linear program in standard form rather
than one with bounded variables. The choice of variable entering a basis is based
on computing the reduced costs o, as the solution to:

oy = ¢y — NTr, where BTr =¢,,.

In the Revised Simplex Method, we pick a o; < 0 and compute a search direction
ps by solving Bp; = —Aes. Then we find the variable to leave the basis by finding
the largest @ > 0 such that feasibility is maintained, i.e., z, + apg > 0. If, for some
Z7

(25)i =0 and [p;]: <O

then o = 0. This results in a degenerate pivot with no change to the objective. If
possible we would like to avoid such a step. Thus, if we could foresee in advance that
a particular search direction would result in a step a = 0, we could, by selecting a
different direction, succeed in bypassing a degenerate pivot. One obvious way to do
this is to scan j such that o; < 0, one by one, stopping when a direction is found
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that results in a step a > 0 or, if no such direction is found, then one of these
directions is chosen whose o = 0. However, this method is computationally very
expensive if many o; < 0. Fortunately it is possible to efficiently determine that
some of the directions will definitely cause degenerate pivots. Then we can choose
among the remaining directions and hope for the best. This approach requires
computing an additional vector «,, analogous to computing the reduced costs o,
such that if v; < 0 we know for sure that the associated direction p? will result in
a degenerate pivot step and thus this j should be avoided if possible. The new rule
for column selection would then be

0s = min{ o; < 0 such that v; > 0}. (5.24)
J

if such an s exists.
To create such a v, we define an additional “objective” function f = d”x where

di:{11fz€l’5'andxi=0 (5.25)

0 otherwise.

We use the “objective” f to compute the simplex multiplier p with respect to d by
BTp = d,,, and the relative costs v, as follows:

Yy =dy — NTp=—-NTp (5.26)
since d, = 0 by definition. We now show that v, provides us with information that
allows us to not consider some of the directions p’ that would result in degenerate
pivot steps. To see this, substitute p = (BT)~1d, in (5.26):

= =NTp = —(B'N)d,.

Thus, for each j € N,

vi=—(B7 A d, =) d, = Y 1l (5.27)
{i€B|z;=0}
where p,g is the solution to Bp,g = —A.j, or in tableau form p% = ffl.j.

From (5.27), we see that +y; is the sum over all the components of p/ that
correspond to basic variables at 0. Thus, if 7, < 0 it implies that at least one
element of p% is negative such that the corresponding component of z, is zero.
That is, from (5.27), 7; < 0 implies that there exists an iy € B such that x;, =0
and p;, < 0. This implies a step of @ = 0. Thus, in order to attempt to avoid the
possibility of degenerate steps we choose the incoming variable z; by (5.24). If no
such o, exists we choose o, as the minimum over the o; only. Note that if v; > 0 it
is still possible that one or more pg < 0 and z; = 0 for ¢ € B implying a degenerate
pivot. However, in practical applications it has been observed that the use of (5.24)
reduces the number of pivot steps significantly.
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5.8 NOTES & SELECTED BIBLIOGRAPHY

In 1951, A. J. Hoffman [1953] constructed an example to demonstrate cycling in a linear
program involving three equations and eleven variables. E. M. L. Beale[1955a] constructed
a second example, that is remarkable for its simplicity. Hoffman’s and Beale’s examples
displayed in this chapter are adapted from Dantzig [1963]. A. W. Tucker constructed an
even simpler, but totally degenerate, example to demonstrate cycling. See also Kotiah &
Steinberg [1977, 1978] and Marshall & Suurballe [1969].

Dantzig [1963] proved that the Random Choice Rule prevented cycling with probabil-
ity 1, see Problem 5.1. Earlier, in 1951, Dantzig proposed a method of perturbation of the
right-hand side (row i was perturbed by the addition of € for any 0 < €' < e*) as a way of
avoiding degeneracy when using the Simplex Method, the proofs of which he outlined and
gave as homework exercises to classes he was teaching at the time. Edmondson turned in
a proof in March 1951, see Edmondson [1951] and Dantzig [1951b]; also see Problem 5.9.
In the summer of 1951, Philip Wolfe, then a student at Berkeley, spent the summer with
Dantzig at the Pentagon and proposed a lexicographic interpretation of the perturbation
idea (which later Dantzig, Orden, & Wolfe [1955] published as a joint paper), see Prob-
lem 5.12. The basic idea was to consider attaching an identity matrix to the right-hand
side; then ties were broken by applying the min ratio test to the first column of the ba-
sis inverse, followed by the second column, etc. Independently, at about the same time,
A. Charnes (see Charnes [1952]) developed a different perturbation scheme. Years later,
Wolfe [1963], see Section 5.4, proposed a third way based on Dantzig’s[1960a] inductive
proof of the Simplex Method that is very elegant because it resolves degeneracy using only
one extra column of index pointers. The approach of Section 5.6 for attaching an extra
column [ for resolving degeneracy is due to A. Krishna [1989].

For details on Bland’s method see Bland [1977]. Harris’s procedure can be found in Har-
ris [1975]. Gill, Murray, Saunders, & Wright [1989]. developed a practical “anti-cycling”
procedure. The paper also shows that their method can be viewed as a modification of
Wolfe’s procedure. A version of their “anti-cycling” procedure is implemented by Murtagh
and Saunders in the popular optimization software MINOS.

The approach presented in Section 5.7 for avoiding degenerate pivots was first shown by
Kalan [1976]. For additional work on this and related approaches, see Greenberg [1978c],
Klotz [1988], and Nazareth [1987]. Klotz [1988] has run many test problems that show
that the computational time can be reduced significantly by using degeneracy resolving
schemes.

Dantzig [1988b] developed a simple anti-cycling device that avoids dual degeneracy
of the parameterized objective with probability “one.” This approach shows that it is
not necessary to use row selection rules for resolving degeneracy; instead it shows that
independent of what tieing row is selected to choose the outgoing variable, the Gass &
Saaty [1955b] parametric method applied to the objective function can be used to choose
the incoming column. Tests run on a set of nine problems showed 56% improvement in the
number of iterations and a CPU time reduction of approximately 48%. On a computer,
most impementations use partial pricing; an adaption of this approach to partial pricing
that guarantees finite convergence is an open problem.

In addition to the already mentioned researchers, many others have suggested anti-
cycling techniques; see, for example, Balanski & Gomory [1963], Benichou, Gauthier,
Hentges, & Ribiére [1977], and Rockafellar [1984]. Fletcher [1985, 1987] developed a
method for resolving degeneracy that is designed to display favorable properties in the
presence of rounding error.
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Whether any degeneracy avoiding scheme is needed in practice has never been settled.
It has been observed, however, that even when there is no degeneracy, there is a high
probability of “near”-degeneracy. This suggests that pivot-selection criteria should be de-
signed to seek feasible solutions in directions away from degenerate and “near”-degenerate
basic feasible solutions, or better yet, driven by dual feasibility considerations. Doing so
has been observed to reduce the total number of iterations in highly degenerate cases.
The practical benefits of anti-cycling are many. For a discussion on this see, for example,
Faulkner [1988], Gill, Murray, Saunders, & Wright [1989], and Ryan & Osborne [1988].

5.9 PROBLEMS

5.1 Random Choice Rule. This rule states that the outgoing basic variable at any
iteration of the Simplex Algorithm is chosen from among those r satisfying

" — Min bi

Ars i:@35>0 Ajs

S

with equal probability.

(a) Show that the Simplex Algorithm, using the Random Choice Rule, will
terminate in k iterations with probability

=0

where m is the number of equations and k is the longest of the shortest
chain leading to an optimal canonical form.

(b) Show that, using the Random Choice Rule, the probability of failing to
reach an optimum in N iterations tends to zero as N — oo.

5.2 Solve Tucker’s cycling example (see Example 5.3) using Wolfe’s Rule.

5.3 Solve Tucker’s cycling example (see Example 5.3) using Bland’s Rule.

5.4 Solve Tucker’s cycling example (see Example 5.3) using Krishna’s Rule, where
instead of 7, the approximation 3.1415926 is used.

5.5 Solve Tucker’s cycling example (see Example 5.3) using a Random Choice Rule.

5.6 Solve Beale’s cycling example (see Example 5.2) using Bland’s Rule.

5.7 Solve Beale’s cycling example (see Example 5.2) using Krishna’s Rule, where
instead of 7, the approximation 3.1415926 is used.

5.8 Solve Beale’s cycling example (see Example 5.2) using a Random Choice Rule.

5.9 Dantzig [1951b] & Edmondson [1951] Perturbation Method. Consider a linear
program in canonical form:

Minimize Tz
subject to Az = b, A: mXxn, (5.28)
z > 0,

where A is a rectangular matrix of dimension m x n, b > 0 is a column vector
of dimension m, ¢ is a column vector of dimension n, and x is a column vector
of dimension n. For i = 1,...,m, perturb each right-hand side b; by adding €’
where 0 < € < € and ¢ is a small number.
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(a)

Show that on subsequent iterations, the right-hand sides will become poly-
nomial expressions in € of the form

— -1 €
b=B - (5.29)

Em

Letting B;; denote element (4, j), show that for each i there exists a k such
that B;x # 0.

Show that no two rows of the inverse are proportional to each other.
Consider the m-order polynomial

fle) =ao+are+ -+ ame™. (5.30)

Show that there exists a ¢ > 0 such that f(¢) > 0 for all 0 < ¢ < € if and
only if not all a; = 0 and the nonzero term with the lowest index ¢ has a
positive coefficient.

Given two polynomials

=) aic,  gle=)Y be, (5.31)
=0 1=0

then for some range 0 < e < e, f(e) < g(e) if for some k

ai =b;, fori=1,...,k—1
ar < by

and a;, b; arbitrary fori=k+1,...,m

From part (a) we know that for any iteration ¢, each polynomial expression
in € in (5.29) has at least one nonzero term. Show that if the first term is
positive for every i, then there is a range of values 0 < € < ¢; such that for
any fixed € in the range, the values of all basic variables are positive.

Lexicographic Rule. The maximum value Zs of the entering variable x
and the choice of which variable j, to drop from the basic set is determined

by
b b; " Bie”
5, = T_(e) — Min { +Zf:1ﬁk€ }
Qrs a;s>0 Qis

(=

(5.32)

Show that the minimum of several polynomial expressions is found by first
comparing the constant terms; if there are ties, then the vector of coefficients
corresponding to € are used in the comparison; if there are still ties, then
the vector of coefficients corresponding to €® are used in the comparison;
and so on. Show that it is not possible to have a tie at the end of the
process.

Show that there exists a common range of values 0 < € < € such that
for any finite number of iterations of the Simplex Method as applied to any
perturbed problem within the range, the values of all basic variables remain
positive and the choice of the variable entering and leaving the basic set is
unique and independent of the particular value of € in the range.
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5.10

5.11

5.12

(i)
@

Show that the Simplex Algorithm as applied to the perturbed problem
terminates in a finite number of iterations.

Show that the optimal basic feasible solution of the perturbed problem will
yield the corresponding solution for the unperturbed problem by setting
e =0in (5.29).

Dantzig [1963].

(a)

Is it possible to construct a class of perturbed problems that are infeasible,
but the corresponding class of unperturbed problems are feasible?

Can the class of perturbed problems be feasible, but the unperturbed prob-
lem infeasible?

Can the class of perturbed problems have a finite lower bound for z, but
not the unperturbed?

Can the class of perturbed problems have a lower bound of —oo for z, but
not the unperturbed?

Charnes [1952] Perturbation Method. Show how to develop an alternative
perturbation scheme where the right-hand sides are replaced by polynomial
expressions b;(€), i.e.,

bz(e) =b; + Zaijej. (533)
j=1

Dantzig, Orden, & Wolfe’s [1955] Lezicographic Method.

(a)

An m-component vector A is said to be lexico-positive, denoted by A = 0,
if at least one component is nonzero and the first such is positive. The term
lezico is a word suggested by A. W. Tucker because of its analogy to sorting
of names in alphabetical order. A vector A is said to be lexico-greater than
B, written A > B, if A— B > 0. The smallest of several vectors will be
denoted by Lexico-Min. Prove that this lexicogrphic ordering of vectors is
transitive, in other words

A>B and B> C = A= C.

Instead of perturbing constraints, suppose that the constants b; are replaced
by vectors:

bl = (b1,1,0,...,0)
b = (b2,0,1,...,0)

b2 = (bm,0,0,...,1).

(a) Show, analogous to (5.29), that the vector of basic variables and objec-
tive value on some subsequent iteration are replaced by matrix b and
vector Z where

=l
I

B™'s, B!

T
Zt, T

|
I
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5.13

5.14

5.15

5.16

(b) Show that the basic variable j, chosen to be dropped is selected so that

b
T . . 3
— = Lexico-Min { —
Qrs Qis

and the choice of r is unique.

(c) Prove that b; = 0 for all iterations implying zo = 21 = 22 > ...
(i.e., a strictly lexico decreasing sequence of vectors), implying that no
canonical form can repeat.

S

Suppose you have a linear program with three constraints and you wish to use
lexicography (see Problem 5.12) to resolve degeneracy. Instead of adding a 3 x 3
identity matrix to the right-hand side, you decide to add the matrix:

110
021].
141

Can you still guarantee that all ties will be broken on the current and all sub-
sequent iterations. Why or why not?
Ph.D. Comprehensive Exam, September 21, 1991, at Stanford.

(a) Most commercial software packages for solving linear programs by the Sim-
plex Method have no protection against cycling. Why is this a safe proce-
dure in practice?

(b) On the other hand, some commercial software packages for solving linear
programs by the Simplex Method do have anti-cycling procedures. Does it
have any purpose other than avoiding cycling?

(c) State the names of a number of ways that cycling can be avoided.

(d) Outline a proof of why one of the anti-cycling rules works.

Ph.D. Comprehensive Exam, March 30, 1970, at Stanford. Let ( P, Pa,... , Pn)
be m linearly independent vectors in m-space, and let Py be any other m-vector.
Prove that if we let

1P +x2P+ o+ 2 P = Po +
om
then there exists an €9 > 0 such that for e satisfying 0 < € < &y,
i #0 foralli=1,...,m.
Ph.D. Comprehensive Exam, September 23, 1972, at Stanford. The system
Az =b, >0, AeR™" (5.34)

is said to be nondegenerate if it is feasible and if each solution x has at least
m positive components. A k-dimensional bounded polyhedral convex set P is
said to be regular if each extreme point is adjacent to exactly k other extreme
points.
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5.17

(a) f P={2>0]| Az = b} is nonempty and bounded, does regularity of P
imply nondegeneracy of (5.34), or vice versa, or are they equivalent?

(b) Assuming (5.34) is feasible, when can one perturb the right-hand side b to
obtain nondegeneracy?

(¢) View the set P defined in part (a) as the convex hull of its extreme points.
Can P be made regular by perturbing these extreme points?

Ph.D. Comprehensive Exam, September 26, 1980, at Stanford. Consider a linear
program of the form
Minimize Tz

subject to  Ax = b,
xz > 0.
where the matrix A is m xn. Let 8 = {j1,72,...,jm} denote a basic set of

indices for which the corresponding basic solution z° is feasible but degenerate
with 27, = 0. Suppose that for every choice of nonnegative values of the nonbasic
variables (ezcept all zero) the value of z;, is negative.

(a) Prove that the basic feasible solution z° is optimal.
(b) Find a way to obtain dual prices that prove the optimality of z°.
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6

VARIANTS OF THE
SIMPLEX METHOD

By a wariant of the Simplex Method (in this chapter) we mean an algorithm consist-
ing of a sequence of pivot steps in the primal system using alternative rules for the
selection of the pivot. Historically these variants were developed to take advantage
of a situation where an infeasible basic solution of the primal is available. In other
applications there often occurs a set of problems differing from one another only in
their constant terms and cost factors. In such cases, it is convenient to omit Phase
I and to use the optimal basis of one problem as the initial basis for the next.

6.1 INTRODUCTION

Several methods have been proposed for varying the Simplex Algorithm to reduce
the number of iterations. This is especially needed for problems involving many
equations in order to reduce the computation time. It is also needed for problems
involving a large number of variables n, for the number of iterations in practice
appears to grow roughly proportional to n.

For example, instead of using the selection rule ¢; = min ¢;, one could select
j = s such that introducing x, into the basic set gives the largest decrease in the
value of z in the next basic solution. This requires computing, for ¢; < 0, the largest
in absolute value of ¢;0;, where 0; is determined so that if x; replaced z;,. then the
solution will remain feasible. This rule is obviously not practical when using the
revised Simplex Method with multipliers. Even using the standard canonical form,
considerably more computations would be required per iteration. It is possible,
however, in the nondegenerate case, to develop a modification of the canonical form
in which the coefficient of the ith basic variable is allowed to be different from unity

173
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in the ith equation but b; = 1. In this form the selection of s by the steepest descent
criterion would require a little more effort; moreover (by means of a special device),
no more effort than that for the standard Simplex Algorithm would be required
to maintain the tableau in proper modified form from iteration to iteration (see
Section 6.2 for details).

The simplest variant occurs when the new problem differs from the original in
the cost coefficients alone. In this case, the cost coefficients are replaced by the new
ones, and Phase II of the Revised Simplex Method is applied. Another possibility
is to use the parametric objective method to be described in Section 6.4.

An important variant occurs when the new problem differs from the original in
the constant terms only. In this case the optimal basis of the first problem will
still price out dual feasible, i.e., ¢; > 0, for the second, but the associated primal
solution may not be feasible. For this situation, we could use the Dual-Simplex
Algorithm, which is the variant of the standard Primal-Simplex Algorithm, to be
discussed in Section 6.3, or the paramteric right-hand-side method to be described
in Section 6.4, or the Primal-Dual method of Section 6.6.

However, when the problems differ by more than either the constant terms or the
cost coefficient terms, the old basis may be neither primal feasible nor dual feasible.
When neither the basic solution nor the dual solution generated by its simplex
multipliers remains feasible, the corresponding algorithm is called composite. The
Self-Dual parametric algorithm discussed in Section 6.5 is an example of such a
composite algorithm.

Correspondence of Primal and Dual Bases.

In 1954, Lemke discovered a certain correspondence between the bases of the primal
and dual systems that made it possible to interpret the Simplex Algorithm as applied
to the dual as a sequence of basis changes in the primal; this interpretation is
called the Dual-Simplex Algorithm. From a computational point of view, the Dual-
Simplex Algorithm is advantageous because the size of the basis being manipulated
in the computer is m x m instead of n x n. In this case, however, the associated
basic solutions of the primal are not feasible, but the simplex multipliers continue
to price out optimal (hence, yield a basic feasible solution to the dual). It is good
to understand the details of this correspondence, for it provides a means of easily
dualizing a problem without transposing the constraint matrix.
Consider the standard form

Minimize I =2
subject to Az = b, A: mxn, (6.1)
z >0,
and the dual of the standard form:
Maximize b = 6.2)
subject to  ATr < ¢, A: mXxn, '
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| PRIMAL-DUAL CORRESPONDENCES |

Primal Dual
: 5 BT 0
Basis B B = ( NT I)
Basic variables Zg T, Yy = Cy
Nonbasic variables Ty Yy = Cy
Feasibility condition | Ax =b, x >0 c>0

Table 6-1: Primal-Dual Correspondences

where 7; is unrestricted in sign. We assume A is full rank. Adding slack variables
y > 0 to the dual problem (6.2) we get:

Maximize s =
subject to  ATw + Iy = ¢, A: mxn, (6.3)
y = 0.

Clearly the dual has n basic variables and m nonbasic variables. The variables 7
are unrestricted in sign and, when A is full rank, always constitute m out of the
n basic variables of the dual. The basis for the primal is denoted by B and the
nonbasic columns are denoted by N. Note that y = ¢ — ATm = ¢ > 0 when the
dual is feasible and that ¢, = 0 and ¢, > 0 when the primal is optimal. The basic
and nonbasic columns for the dual are denoted by B, an n x n matrix, and N, an

n X m matrix .
— B 0 = I,
a= (50 ) w=(%), 64

where I, is an (n —m)-dimensional identity matrix and I, is an m-dimensional
identity matrix. Thus, (7,y, ) as basic variables and y,, as nonbasic variables con-
stitute a basic solution to the dual if and only if y, = 0.

> Exercise 6.1 Show that thei determinant of B has the same value as that of B. Also
show that if B~ exists, then B~! exists.

It is now clear that there is a correspondence between primal and dual bases.
These correspondences are shown in Table 6-1. With these correspondences in mind,
we shall discuss variations of the Simplex Method.

> Exercise 6.2 How is the concept of complementary primal and dual variables related
to the correspondence of primal and dual bases?

Definition (Dual Degeneracy): We have already defined degeneracy and non-
degeneracy with respect to the primal. A basis is said to be dual degenerate
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if one or more of the ¢; corresponding to nonbasic variables z; are zero and
to be dual nondegenerate otherwise.

6.2 MAX IMPROVEMENT PER ITERATION

In this section we present an alternative canonical form for efficiently determining
the incoming column that yields the maximum improvement per iteration. It has
been observed on many test problems that this often leads to fewer iterations. We
will assume, to simplify the discussion, that all basic feasible solutions that are
generated are nondegenerate.

Assume z; > 0 for j =1,...,n and x; for j = 1,...,m are basic variables, in
the standard canonical form:

—z + Cm+1Tmt1t++ Gt 5n$n=—§0
T1 + G1,m+1Tmt1+ -+ Q1T+ QpTr = b1
_ ’ _ _ = (6.5)
Lp + Apmt1Tmyr+ ot ApjZi et Gppn = bp
xm+dm7m+1xm+1+"'+dmjxj+"'+dmnxn: bm
where a;;, ¢;, b;, and Z, are constants and we assume that b; > 0fori=1,...,m. If

there are two or more ¢; < 0, our problem is to find which j = s among them has the
property that putting column s into the basis and driving some column j = r out
of the basis gives the greatest decrease in z while preserving feasibility. Using the
standard canonical form (6.5), the main work is that of performing ratio tests for the
several columns j such that ¢; < 0, plus the update work of pivoting, which takes
mn operations where each operation consists of one addition (or subtraction) plus
one multiplication. To do this more efficiently, consider the alternative canonical
form:

—Z + C_m+1xm+1+' ot CpTn=—20
Q1121 + A1mt1Tm+1+ 0+ QipXp = 1
: : (6.6
QppTp + apmt1Tmt1 o+ oppp= 1 )
ammxm+am,m+1xm+1 +- -t amnTy, = 1

formed by rescaling the rows by dividing them by b; > 0 for all i = 1,...,m. In
this format we scan column j such that ¢; < 0 and find for each such j the row

T; = argmax Q.
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If a5 < 0 for any j such that ¢; < 0 then a class of solutions can be constructed so
that z — —oo in the usual way. If c,.,; > 0 for all j such that ¢; < 0, then the best
choice for maximum decrease of the objective value in the next iteration is j = s
where
s = argmin (¢j/ay ;). (6.7)
{ile; <0}
The corresponding pivot row is
r=rs. (6.8)

The pivot operations require mn operations but the rescaling of the rows such
that the right hand sides are all ones requires an additional mn multiplications so
that this format is inferior to (6.5) in that it requires considerably more work per
iteration.

We can, however, perform the operations efficiently by considering the following
revised alternative canonical form that is generated from (6.6) by subtracting some
row p, called a key row, from other rows i # p:

_Z + Cm+1Tmy1t+ o+ ChZn=—%0
6111‘1 + 61]71‘17 + 61,m+1$m+1+' -+ 61”1‘71: 0

' ' 6.9

Bovty + Bpmt1Zmi1+ + Bpnn= 1 (6.9)

BmpTp + Brm@Tm + Bmm+1Zm+1 + -+ BnZn= 0
where (3;; = ai; — oypj for @ # p and Bp; = oy;. Let

7; = argmax «;; = argmax (o;; — Qpj) = argmax [;;.

i#£p i#p 7D
Note that )
po_ 1P if ap; > agyj,
J 7; otherwise.
Therefore:

1. The work to find the pivot row s and the corresponding pivot row r = r4 from
the revised alternative canonical form (6.9) is about the same as it was to find
it from the alternative canonical form (6.6).

2. The work to update (6.9) for doing the pivot turns out, as we will see next,
to be about the same as that for the standard canonical form (6.5), so that
(6.9) is the preferred canonical form.

The updating of (6.9) is done in the following two steps:

1. If  # p, modify the 8 matrix before pivoting by making row p, where 1
appears on the right-hand side, the same as the pivot row r as follows. Make

p=rby
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(a) first subtracting row r of (6.9) from every other i # p. The adjusted 3;;
for i # r and i # p are

Bij — Bij — Brj = (aij — o) — (onj — ap;) = (eij — oury).
(b) Next add row p to row r. The adjusted 3,; are
Bri — Brj + Bpj = (rj — apj) + apj = auj.

(c) Then subtract the adjusted row r from row p. The adjusted [3,; is given
by

Bj — Bpj = Brj = apj — arj.
This step requires mn subtractions/additions.
2. The pivot update consists of

(a) multiplying row r by 1, and

(b) multiplying rows ¢ # r by —0,s/0is provided B;s # 0; if B;s = 0 we
multiply row ¢ by 1. (The proof is given by the proof to Lemma 6.1.)

This step requires mn multiplications.

LEMMA 6.1 (Relation for Updated 3;;) Ifp = r, the updated B3;; = fij,
for i # r, and Bis # 0, is obtained by multiplying B;; for all j by the same ratio
(Brs/ﬂis); namely, ﬂij = 761']' (ﬂrs/ﬂis)'

Proof. At iteration ¢, the a format of Equation (6.9) for equation r and equation 4
is
Q121 + - 4 arjx] + - 4 ApsTs + - 4+ Qpp, = ]_

After pivoting

a1y + o+ Gy o+ Qs + o+ g = 1
Qs

@i1$1+"'+6@j$j+"'+ Oxs + -+ + Qip = 1 —
Qpg

where

for j # s.

OAéij = OG5 — Oy Qi
Qrg
Dividing by 1 — a;s/a,s so that the right-hand side is 1, the updated coefficient «;;
of the jth term is
Q5 — Qpj (ais/ars)
1- (ais/ars)

C_Yij =
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Subtracting the equation r so that the right hand side is zero and clearing fractions,
we get the updated f;; as

[vij — arj (s /ars)] — arj [1 — (ciis /aurs)]

5, =
/ 1-—- (ais/ars)
_ 7041‘]' — Oérja
Qjs — Qg "
Brs
= —fij (5_ . (6.10)

> Exercise 6.3 Show that Brj = Brj for all j and that for all i for which 8;s = 0, we have
ﬁij = ﬁij for all ]

> Exercise 6.4 In the 8 format (6.9) show how to get a,;; after updating 3;;.
> Exercise 6.5 Show how to update the relative cost factors in the § format (6.9).

> Exercise 6.6 Modify the approach of maximum improvement per iteration for the
degenerate case.

6.3 DUAL-SIMPLEX METHOD

In practice, after a solution to a linear program is obtained, it often happens that an
adjustment is required for a slight modification of the original problem. If it turns
out that this modified problem is primal infeasible but still prices out optimal, the
Dual-Simplex Method can be used to efficiently find a feasible optimal solution to
the original problem.

Recall that the Primal-Simplex Algorithm maintains primal feasibility at each
iteration while trying to decrease the primal objective function. It does this at
each iteration by reducing the infeasibility of the dual variable ¢, < 0 by pivoting
column s into the basis in place of some basic column j, while maintaining primal
feasibility. The Dual-Simplex Algorithm, as we shall see, maintains dual feasibility
at each iteration while trying to increase the dual objective function. It does this
at each iteration by reducing the primal infeasibility of x; = b, < 0 to z;. =0
by pivoting column j,. out of the basis and bringing into the primal basis some
column s.

We know by the Weak Duality Theorem 2.3 that when the dual problem is known
to be feasible, the primal problem cannot be unbounded. Thus, the Dual-Simplex
Method, that is usually applied to a problem which is dual feasible, will terminate
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Primal-Simplex Method

Dual-Simplex Method

Ery = 2— 2 Ay = 2— 2
Applied to Ixg + Ayzy = b Ixg + Ayzy = b
z >0 z >0
Optimality criterion c>0 b>0
Selection of incoming | If ¢; = mij\r} ¢j < 0 then choose | If by = min b; < 0 then choose
new basic variable e . . ‘. .
Ts, i.e., pivot in column s. Zr, 1.6, pivot in row r.
b, b; é
Selection of outgoing | If —— = min — >0, drop | If 2 — min =~ >0,
Ars a;s>0 Qis —Qrs —ap;>0 —Qrj

basic variable

Z,; pivot in row 7

drop xs; pivot in column s

Pivot element

drs

d’rs

Objective function

T
z = cyZn + 2o decreases

T .
Z = CyTn + Zo Increases

Table 6-2: Primal-Simplex and Dual-Simplex Methods

with an optimal solution or go unbounded, implying that the primal problem is
infeasible.

In the Dual-Simplex Method, when viewed in terms of the primal variables,
one first decides which basic variable to drop and then which nonbasic variable to
introduce in its place. The relations between the Primal-Simplex Method applied
to a linear program in standard form and the Dual-Simplex Method applied to its
dual are discussed next (see Table 6-2 for a summary).

1. Optimality Criterion.

The Dual-Simplex Method operates with the same tableau as the Primal-
Simplex Method. However, the relative cost factors are nonnegative from
iteration to iteration (¢; > 0 instead of b; > 0). The primal problem is feasible
and optimal if in the canonical form ¢ > 0 and b > 0. These conditions also
imply feasibility and optimality for the dual. The dual is feasible if ¢ > 0 and
is optimal if

b>0. (6.11)

2. Selection of the Outgoing Basic Variable.

In the primal method the incoming column is selected first. Since the dual
essentially works on the transpose, we select the pivot row or outgoing variable
first. If the optimality criterion is not satisfied for the dual, then a pivot row
r can be selected such that b, < 0. A commonly used criterion is to pick row
r such that b, is the most negative of the b;, i.e.,

b= min b; <O0.

{i=1,....m}

(6.12)
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3. Selection of the Incoming Basic Variable.

In the Dual-Simplex Method the incoming variable s is selected after the
outgoing variable r has been selected. After pivoting on an element, say s,
in row  we need b, /ayrs, the value of the modified right-hand side to become
positive. Thus, we must have a,s < 0 since b, < 0. At the same time, we wish
to maintain dual feasibility by ensuring that ¢ > 0 after the pivot step. That
is, we need:

_ _ Qrj .
Cj — Cs >0 forj=1,...,n.

Qrs

If it turns out for r that a,; > 0 for all j € A, then the problem is primal-
infeasible (see Exercise 6.7 that follows). Otherwise we pick the incoming
column s such that

Cs Cj

(6.13)

— = min =

—Qrs {JlieN, ar;<0} —0rj
and pivot on a,s;. Note that this pivot step is dual-degenerate if it turns out
that ¢; = 0.

> Exercise 6.7 Why is it obvious that if in selecting an incoming variable, it turns out
for r that a,; > 0 for all j € N, then the problem is primal-infeasible.

Just as with the Primal-Simplex Method, the Dual-Simplex Method can take
degenerate steps and cycle indefinitely. One of the many primal degeneracy resolv-
ing techniques can be modified and used to prevent cycling in the Dual-Simplex
Method.

> Exercise 6.8 Construct a degeneracy resolving scheme to prevent cycling in the Dual-
Simplex Method.

> Exercise 6.9 For the primal method, the incoming column s can be represented in
terms of the basis by Aes. Referring to (6.4) show that the outgoing column r of B in the
primal corresponds, in the dual, to a unit column of N with component r equal to unity
and the representation of this column in terms of B is

-1 _ _ _
Bro y —0r,m+4+1, —Gr,m+42,.-., —Qr,n- (614)

We will illustrate the Dual-Simplex Method first when there are no artificial
variables and then when artificials are present.

Example 6.1 (Illustration of the Dual-Simplex Method) Suppose a system has
been transformed to yield

(—2) + x4 + 2z5 + dx6 = =5
1 + 2x4 — bxs + D16 = 9
To — 3xy4 + 625 — 36 = —3 (6.15)

T3 + x4 4dxs + 2x¢ = 2.
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Since all ¢; but not all constant terms, are nonnegative, we apply the Dual-Simplex
Method. Thus, first we drop the basic variable, x2, because

Er Ib_g zmin b_z = —3.

Next we introduce x4 into the next basic set, because j = 4 is determined by the criterion,

C. Ce 4
:argmin{ “ < :—}:4.

Cj 1
7 —Qa24 37 —aog 3

s = argmin
{jlagj<o} —a2j

After pivoting, the system becomes (6.16). Since all b; and ¢; are nonnegative, the basic
solution is now feasible and optimal.

(—2) + %xg + 4x5 + 36 = —6
z1 + 2z — las + 3z6 =
1 3 2 5 6 (6.16)
— 3T2 + x4 — 225 + w6 =
+ tx2 + 3 —2r5 + x6 = 1.

We now consider the case when artificials are present. Conceptually, any artifi-
cial basic variable, x;, whose value is positive in the basic solution, may be replaced
by —xg = x;, so that the basic solution becomes “infeasible,” which allows the ap-
plication of the Dual-Simplex Method. In practice, it is probably better not to make
the formal substitution, z; = —x;-, for artificial variables of positive value, but to
modify the rules of the procedure to produce the same effect. The next example

illustrates the Dual-Simplex Method when artificial variables are present.

Example 6.2 (Dual-Simplex Method with Artificial Variables) Suppose, for Ex-
ample 6.1, that x2 and z3 are artificial, meaning we seek a solution in which x2 = 0 and
x3 = 0. We shall proceed as before; however, we shall disregard all artificial variables once
they drop out of the basic set. Thus x2, which is artificial, will be dropped from the system
in (6.16). The basic solution is still not feasible because x3 is artificial; thus replacing x3
by —z}%, we have

(—2) 4xs + 3x6 = —6
T1 — las + 326 = 7

+ x4 — 225 + w26 = 1 (617)
+ x5 + 225 — 1xg = —1.

After pivoting on —1z¢, the next iteration results in an optimal solution, as shown in the
tableau below.

(—2) + 3z4 + 10zs = -9

x1 + 325 + bxs = 4
L ~ (6.18)

— x4 — x5 4+ x¢ = 1.

. . o /. . .y
According to our rules, since artificial x3 is nonbasic, terms in x3 are dropped from the
problem.

As we have pointed out, many problems have a feasible solution to the dual
readily available. For example, if the equations are weighted by the multipliers of a
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previously optimized system having the same matrix of coefficients, a;; and ¢;, and
if the equations are weighted by the multipliers and their sum is subtracted from
the z-equation, the coefficients, c;-, of the transformed z-equation are nonnegative.
After augmentation of the new system with artificial variables, the system is

e in canonical form with respect to the artificial basis, and

/

e its relative cost factors, ¢;, are nonnegative.

Hence, optimizing via the Dual-Simplex Algorithm provides an optimum to the
primal system without the usual Phase L.

Even in cases where the minimizing form has a few negative coeflicients, it
is expedient to replace each negative c} by c} = 0 and then to optimize by the
Dual-Simplex Algorithm. This will provide a basic feasible solution to the original
system (not necessarily optimal), which may then be used with the true values of

¢; to initiate the usual Phase II of the Primal-Simplex process.

Exercise 6.10 Discuss how to recover the true values of ¢ in the case when ¢} is set
to 0.

Exercise 6.11 Prove that no more than k iterations are required to eliminate k artificial
variables from a basic set while maintaining feasibility of the dual. Note that the primal
problem may be infeasible at the end. What is the dual of this exercise?

6.4 PARAMETRIC LINEAR PROGRAMS

The term parametric linear programming is applied to the situation where the co-
efficients of the objective function and/or the right-hand-side constants are allowed
to vary with a parameter, say 6. In this section, we shall first examine the effect
of varying the coefficients of the objective function and then examine the effect of
varying the right-hand-side constants.

6.4.1 PARAMETERIZING THE OBJECTIVE FUNCTION

In this case, the objective function coefficients c; are assumed to change simultane-
ously at given rates ;. Thus, the class of linear programs of interest is:

Minimize (¢ + 0y)Tz = 2(0)
subject to Az = b, A: mxn, (6.19)
z > 0,

where v = (71,72, ,Yn )T are the given fixed rates of change of the objective
function coefficients ¢ = (¢1,¢a,... ¢y )T per unit of the scalar parameter 6 > 0.
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We shall examine the behavior of (6.19) as 6 varies. Without loss of generality we
have assumed @ > 0 because the case of § < 0 is equivalent to replacing § by —6.

The feasibility of problem (6.19) is clearly independent of the objective function;
thus, we shall only examine the case when the problem is feasible. Let us first assume
that the objective function has a finite optimum when # = 0 and the optimal basis
is B. Let m be the optimal prices for a basis B when 6§ = 0 and #(0) = = + 6p for
some 6 > 0. Then, for a given value of 8, we can determine 7 and p from

BT#(0) = BY(7 + 0p) = ¢, + 0, (6.20)
i.e., m and p are solutions to

BTr = ¢, and BTp=~,. (6.21)
Next we determine the reduced costs 6(0) with respect to B from

5(0) = ¢y + 0y, — NT7(0)
= ¢, — N+ 0(y, — N7p). (6.22)

We are interested in the range of § > 0 for which B is an optimal basis. In particular
by the assumed optimality of B for § = 0, we have

ey =6(0)=cy — NTx >0, (6.23)

The range of § > 0 for which B is an optimal basis is the range for which 6(8) > 0.
From Equation (6.22), we require

5(0) = &, + 67, >0, (6.24)

where
v =" — N'p. (6.25)

Then from (6.24), the basis B remains optimal for 0 satisfying the vector relation
— 03, <¢&,, where ¢, >0. (6.26)
Two cases arise in determining the range of # that maintains optimality:
1. If 4, > 0 then the basis B is optimal for all values of § > 0.

2. If one or more components 7; < 0 for j € N/, then the basis B is optimal for
all # in the range 0 < 0 < 61 where

0= min -~ (6.27)
{JENF; <0} —75

For 6 = 6, + ¢, where € > 0, the basis B will no longer be optimal, and one or
more nonbasic variables will become candidates for entering the basis.
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For the rest of this discussion, assume that we are solving the problem in the
canonical form of the Simplex Method. If § > 61, then one or more nonbasic
variables will be candidates for entering the basis B. It is clear that if any candidate
variable x; has coefficients @;; < 0 for ¢ = 1,...,m, the problem is unbounded for
all § > 6, because we have found a ray along which the objective function can be
made arbitrarily small. When this happens, we terminate with the class of solutions
T, =b— ales, Ts = >0, z; =0 for j € N and j # s where the corresponding
z — —00 as o — 0.

LEMMA 6.2 (Nonnegativity of Relative Cost Factors) When there is only
one eligible candidate x to enter the basis at 0 = 61 + € > 0, € > 0, and there are
one or more coefficients a;s > 0 then the relative cost factors with respect to the
new basis at @ = 01 defined by (6.27) are nonnegative and remain nonnegative for
some range of 6 > 0.

Proof. It is evident that ¢s + 6195 = 0 and ¢; + 617, > 0 for j € N and j # s
because we are assuming only one candidate x4. If we pivot on a,s assuming 6 > 61,
we get the new reduced costs for column s equal to zero and, for the remaining
nonbasic columns we get

d .
=0 +07 — (6 +0%), jeN, j#s5. (6.28)

TS

Noting that ¢ + 6175 = 0, we rewrite Equation (6.28) as

Grj 75) . (6.29)

Qrs

(¢j +617;) + (0 — 61) (%‘ -

Because, by assumption, ¢; + 617, > 0 for j € N, j # s, the first term dominates
the second term for some range 6 > 6. ]

Exercise 6.12 Extend Lemma 6.2 to the case when there is more than one candidate for
entering variable at § = 1. Resolve the tie by solving a restricted linear program involving
only the basic columns and the tied columns with new objective coefficients (0 —601)%;. Let
B be the optimal basis of the restricted problem. Show that the new relative cost factors
with respect to B are nonnegative for some range of > 6; for all j = 1,...,n.

THEOREM 6.3 (When Minimizing, the Optimal Value is a Continuous
Piecewise Linear Concave Function) The optimal value of the parametric
objective function for the linear program (6.19) is a continuous piecewise linear
concave function of the parameter 6.

Proof. Let 0 <8 < 6" be the range of values for 6 for which a finite minimum
exists for the objective function. As 6 increases from 0 to 6y, as defined by (6.27),
the basis does not change and thus the basic feasible solution (x,,z, = 0) does
not change. Hence the objective function value changes linearly with 6 in this
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range. Similarly, for 8; < 6 < 05 there is a new basis and the objective function
also changes linearly with # until the next point 65, where the next optimal basis
change is reached. However, under nondegeneracy, the slope vz with respect to
6 is different beyond #; because the optimal solution z? in the new interval is not
the same as the optimal solution z! in the previous interval. (Under degeneracy, it
is possible that 22 = z!, implying the slopes are the same.) Thus, in general, the
function is clearly piecewise linear and continuous.

Let @ and 6” be any two points in the interval 0 < # < 6* and let 2/ and
2" be the corresponding feasible optimal solutions to (6.19) with optimal objective
function values z(0") and z(6”), respectively. Pick any A in the range 0 < A <1
and define 6* = A0’ + (1 — \)0". Let the optimal solution at #* be denoted z* and
the optimal objective value by z(6*). Then

2(0%) = (c+ 0T = M+ 09) T2 + (1 = M) (e + 0") Tz
> M (0) + (1— N)=(0")

where the last line follows from the optimality of z(6’) and z(#"”). This proves
that the function is concave and we have already shown that it is piecewise linear
continuous. ]

COROLLARY 6.4 (When Maximizing, the Optimal Value Is a Continu-
ous Piecewise Linear Convex Function) If the objective function of the para-
metric linear program defined by (6.19) is mazimized instead of minimized, then the
optimal value is a continuous piecewise linear convexr function of the parameter 6.

COROLLARY 6.5 (When Minimizing, the Optimal Value Is a Contin-
uous Piecewise Linear Concave Function) If the objective function of the
parametric linear program defined by (6.19) is of the form z(0) = (1 —0)cTw + 07Tz,
the optimal value is a continuous piecewise linear concave function of the parameter

0.
Exercise 6.13 Prove Corollaries 6.4 and 6.5.

Exercise 6.14 Construct a linear program with a parametric objective function (c +
6~)Tz such that the objective has a finite minimum for all —1 < 0 <1, butat § =1+e¢
and at § = —1 — e the objective function z — —oo for a class of feasible solutions where
€ > 0 is arbitrarily small. If so, also prove that z — —oo for all € > 0 arbitrarily large.

Exercise 6.15 Apply parametric programming to revise the optimal solution to a linear
program when the cost coefficients x are replaced by new cost coefficients.

In practice, parametric linear programming problems are solved using two ob-
jective functions, z = ¢’r and y7z. Pricing operations are carried out on both
functions. The relative cost factors ¢ + 67 are never explicitly computed but x is
determined by (6.27) where ¢; and 7, are determined from the simplex multipliers
7 and p, which are the solutions to BTm = ¢, and BTp = v, for the current updated
basis B.
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6.4.2 PARAMETERIZING THE RIGHT-HAND SIDE

In this case the right-hand side constants b; are assumed to change at given rates
B;. Thus, the class of linear programs of interest is:

Minimize  cfz = 2(¢)
subject to Az = b+ ¢0, A: mxn, (6.30)
z >0,

where 5= (01,02,...,0m )T are the given fixed rates of changes to the right-hand
side per unit of the scalar parameter ¢. Once again, without loss of generality, we
restrict ¢ > 0 because looking at ¢ < 0 is equivalent to replacing ¢ by —¢. It can
easily be verified that if § does not lie in the range space of the coefficient matrix
A, the linear program is feasible only for ¢ = 0.

> Exercise 6.16 If Ax =b, x > 0 is feasible and Ax = 3, > 0 is also feasible, show that
Ax = b+ ¢/ is feasible for all choices of ¢ > 0. Also show that if a constraint is redundant
for some ¢ > 0 then it is redundant for all values of ¢ > 0.

Assume that the linear program is feasible for both b and 5. Then the optimal
basis B at ¢ = 0 stays feasible for the range of ¢ for some range ¢ > 0, namely, ¢
satisfying:

B~ b+ ¢B7'p > 0. (6.31)
Therefore, letting b = B~'b and § = B~'3, the basis B remains primal feasible for

all ¢ satisfying the vector relation:

— 9B <b. (6.32)

> Exercise 6.17 Show that if the optimal basic feasible is nondegenerate then B stays
feasible and optimal for some range [0, ¢1] where ¢1 > 0.

Two cases arise in determining the range of ¢ that maintains feasibility:

1. If 3 > 0 then the optimal basis B results in a feasible solution for all values of
¢ > 0. The values of the basic variables and the objective are the only ones
that change; the basic set of columns remain unchanged.

2. If, on the other hand, one or more components 3; < 0, then the range of ¢
that maintains feasibility is 0 < ¢ < ¢1, where

b,
o1 = min L.
{ilieB, pi<o} —PFi

(6.33)

At ¢ = ¢1 + €, where € > 0, the problem is primal-infeasible but is still
dual-feasible since ¢,, > 0 does not depend on the right-hand side b.
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The analysis of the parametric right-hand-side case is similar to the parametric
cost function case discussed in the previous section, except that now we apply the
Dual-Simplex Method of Section 6.3 to bring back primal feasibility.

Exercise 6.18 Show that a linear program with a parametric right-hand side whose
objective is being minimized is a dual of a linear program with a parametric cost function
whose objective is being maximized and vice versa.

THEOREM 6.6 (When Minimizing, the Optimal Value Is a Continu-
ous Piecewise Linear Convex Function) The optimal value of the objective
function z(@) for the linear program (6.30) is a continuous piecewise linear convex
function of the parameter ¢.

Exercise 6.19 Prove Theorem 6.6 using either Corollary 6.5 and duality or a proof
similar to Theorem 6.3.

Exercise 6.20 Develop the theory for the parametric right-hand side analogous to that
of the parametric cost case.

6.5 SELF-DUAL PARAMETRIC
ALGORITHM

The self-dual parametric algorithm, sometimes referred to as the criss-cross method,
is applied to a linear program where both the objective function and the right-hand
side are functions of a parameter §. One application of this method is in the case
when neither the basic solution nor its complementary dual solution is feasible. It
is then a simple matter to increase all the negative b; and ¢; to nonnegative values
by adding some constant € to all of them. (A variant is to add a vector ¢3 to the
right-hand side and 6+ to the objective coefficients.)

The modified problem is now optimal. Next we will consider ways to maintain
the feasibility of the primal and dual systems as the constants and cost coeffi-
cients are gradually changed linearly as a function of 6 toward their original values.
Depending on whether the basic solution of the dual or the primal first becomes
infeasible as 6 moves toward zero, the Primal-Simplex or the Dual-Simplex pivot
choice criterion is employed. The method is illustrated in the following example.

Example 6.3 (Illustration of a Self-Dual Parametric Algorithm) In the following
canonical system, the original problem is obtained by setting 8 = 0; the associated basic
solutions are infeasible for both the primal and dual.

(—2) 8xy + (0 —4)zs = 0
1 + x4 + s = 8
T2 — 224 + 1X5 = -—-1+86 (634)

T3 + 314 225 = —1+ 0.
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On the other hand, if 8 > 4, the associated solutions are both feasible. If we start with
0 = 5, say, and then let § approach zero, the associated solutions will remain feasible down
to the critical value § = 4. Just below 6 = 4, the primal solution still remains feasible,
but the dual solution becomes infeasible since ¢3 = 6 — 4 is negative. Hence, for 6 less
than 4 but “very close” to it, we use the Primal Simplex Algorithm, introducing x5 while
maintaining the feasibility of both systems. The variable to be dropped is determined
from the minimum of the ratios b;/@;s for a;s positive:

by b,

ais azs
Since in the neighborhood of § = 4 the second ratio is minimal, x> is to be dropped from
the basic set at the next iteration. The new canonical system, after pivoting on a5 = 1,
is

(—2) + (4 —0)x2 + 20z4 = (4-0)(-1+0)
1 —lwg + 3z4 =9—-90
T2 — 24+ x5 = 140 (6.35)
2r2 + 3 — 1xy — —34+30

which remains feasible for all € in the range 1 < 6 < 4. Below the critical value § = 1,
the primal basic solution becomes infeasible. For 6 less than 1 but very close to it, basic
variable x3 < 0; therefore we use the Dual-Simplex Algorithm to drop x3 as a basic
variable. The variable to be introduced is given by the minimum of the ratios ¢;/(—as;)
for j such that as; < 0; in this case, the only variable in row 3 with a negative coefficient
is 4. Pivoting on as4 = —1, we obtain

(—2) + (44 30)z2 + 20z3 (4—0)(—1+0) +20(—3 + 30)

T1 +5x0 + 3x3 = 0+ 80
—3x0 — 2x3 + x5 = 5 —50 (636)
—2x9 —  x3 + T4 = 3-230

which is feasible for both the primal and dual systems for 0 < § < 1. Hence, the optimal
solution to the original problem is obtained by setting 6 = 0.

In general, it is not necessary to add the same parameter, 6, to all of the negative
constants, b; and ¢;, as was done in (6.34). Several different parameters could be
added and each allowed to tend toward zero according to some prespecified rules as
to how they move relative to each other. Either way, the net result is the successive
application of either the Primal-Simplex or Dual-Simplex rules to change the basis.

In order to show that such a process will terminate in a finite number of steps,
we now prove two theorems for the case of a single parameter, 6.

THEOREM 6.7 (Feasibility of Complementary Bases) It is not possible
to have the same complementary bases feasible in the primal and dual for two values
0, < O3, unless the pair is also feasible for all values in the range 61 < 0 < 05.

Proof. Note that for any fixed primal basis the values of the primal-basic or
dual-basic variables are linear functions of 6 so that, clearly, when a variable is
nonnegative for both § = 6; and § = 05, then it is nonnegative throughout the
interval ;1 < 0 < 6. 1
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THEOREM 6.8 (Finite Termination) If each change in basis is accompanied
by a positive decrease in 6, there can only be a finite number of iterations.

Proof. Suppose that as § decreases there is a change of feasible basis from B°
to B! at some critical value @ = 0;. After the change in basis, suppose B! remains
feasible for all 8, < 68 < #;. The basis Bi cannot be a repeat of some earlier basis
that was feasible at 6 > 6 because B! = B by Theorem 6.7 would have been feasible
for all 5 < 0 < 6 and therefore #1 would not have been a critical value; this is a
contradiction. |

THEOREM 6.9 (Positive Decrease With Only One Degeneracy) If there
is only one degeneracy in the primal and dual solutions before and after pivoting at
a critical value of 0 = 0y, then after the pivot there will be a positive decrease in 6.

Proof. Since 0 = 0y is critical, there is at least one degeneracy in either the
primal or dual systems. If a degeneracy occurs in the primal we assume there are
no others in the primal and dual systems and, similarly, if a degeneracy occurs in
the dual we assume there are no others in the primal and dual systems. We now
assume dual degeneracy occurs at § = 6y. If we prove the theorem for the case of
dual degeneracy, the proof for a primal degeneracy will follow by duality. Suppose
that dual degeneracy occurs at ¢, at a critical value of § = 6, and for 6, < 6§ < 0,+9
we have ¢, = ¢ = d(6 — 6p) > 0, where d > 0. All other nonbasic ¢ can now be
expressed linearly in €, by substituting 8 = 6y + €/d; thus ¢; = o + € where, by
hypothesis, «; is strictly positive for nonbasic j # s. By hypothesis, at € = 0, the
primal solution is nondegenerate before and after x, displaces some variable, x; ,
in the basic set. Under these conditions the new values of the relative cost factors
for nonbasic ¢; will be

ij _ ?(I/gzjjééTs)e ot afane i s (6.37)

Since «; is positive for all updated nonbasic j, except j,, there clearly is a range of
values, €y < € < 0, for some fixed ¢y < 0, for which ¢; remains positive for all j # 7.
For j # j, it also follows that ¢;, > 0 because € < 0 in this range and @, > 0. 1

THEOREM 6.10 (Range of § Over Which Feasible Solutions Exist) If
a feasible solution to the primal and dual systems exists for 8 =0 and 6 = 0y, then
feasible solutions exist for all 8 in the interval 0 < 0 < 6.

Exercise 6.21 Prove Theorem 6.10.

Exercise 6.22 Prove that Theorem 6.10 also implies that the solution set (x,7) gen-
erated by all vectors of constant terms, b;, and cost terms, ¢;, for which both the primal
and dual problems remain feasible simultaneously, is a convex polyhedron.
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6.6 THE PRIMAL-DUAL ALGORITHM

Like the Dual-Simplex method (see Section 6.3), the Primal-Dual Algorithm starts
with a feasible solution to the dual already at hand. It iteratively decreases the
infeasibility form of the primal and improves the feasible dual solution in such a
manner that, if a feasible basic solution is finally obtained, it will already be optimal.

Associated with each iteration is a subproblem with fewer columns called the
column-restricted primal, which is optimized by a primal method (for example, the
Phase I Simplex Algorithm). When the optimal solution of the column-restricted
primal has been obtained, the optimal dual solution to this restricted primal is
used to generate an improved dual solution to the original problem. This gives
rise to a new column-restricted primal to be optimized. After a finite number of
improvements an optimal solution is obtained for the original problem, or a class of
feasible dual solutions with unbounded objective is obtained, establishing that the
original primal problem is infeasible.

Once again consider a linear program in standard form (6.1) and its dual (6.2).
Then, as we have seen before, y = é = ¢ — A”7 is a vector of dual slack variables
and v = b”7 is the value of the dual objective.

After adding a full set of artificials, 4 = Znt1, ..., Tntm, to (6.1), we have the
following usual Phase I problem:

0Tz + €Tz, = w (min)

Ar + Iz, = 0. (6.38)
Suppose an initial dual feasible solution 7 = 7! is known in advance; let
& =c—ATrt >0, 21 = blml. (6.39)

For convenience, assume that we have reordered the original variables so that C’Jl =0
for j =1,...,1, and c_} >0for j=1+1,...,n. The problem (6.38) is then solved
by the usual Phase I procedure, except we restrict the choice of columns entering
the basis to those whose c’} = 0. This Phase I problem is called a column-restricted
Phase I problem. As artificial variables drop out of the basis we drop them from
the problem. At the end of Phase I, we get the simplex multipliers v = ~! with
respect to the Phase I objective and a solution z, = 21, r = 2!, and 2z = z;.
THEOREM 6.11 (Optimality Condition) If, at the end of Phase I, w; =0,
then the solution x* > 0 is an optimal feasible solution for the primal (6.38), and
the solution 7' is an optimal solution for the dual of the original system.

Proof. By assumption w; = minw = 0, therefore, the artificial variables all have
zero values in the basic solution. After dropping them, the primal feasible solution
z =x' >0 has C’Jl =0 for le > 0 and c’} > ( for a:Jl = 0, which fulfills the condition
of the optimality of = «! for the original system. |

Therefore, if w; = 0 at the end of Phase I, we terminate with an optimal solution
to the original problem. On the other hand, if w; > 0, then we can get an improved
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dual-feasible solution 72 to the original system (6.1) for some § > 0 by:
72 =7l + 0yt (6.40)
For 72 to result in an improved dual-feasible solution, we need for some 6 > 0
F=c—-An? =c— Al(r' + 04" = +0d* >0, (6.41)

where d' = — ATy

We already have J} >0, for 5 =1,...,1 because this is a condition of optimality
of the column-restricted primal; for these j, we clearly have c’? > 0 for all & > 0.
If all the factors, J}, are nonnegative for j = [+ 1,...,n then, since w; > 0, and
d; > 0 for all j, (6.40) and (6.41) constitute a class of feasible solutions to the dual
objective of the original problem, whose value,

v = 21 + Owr, (6.42)

tends to +oo with increasing 6, implying no feasible solution to the primal exists.
If one or more of the d}, for j =1+1,...,n are negative then for dual feasibility
we pick 0 to satisfy:

=l
C:
=06 = min —L >0, (6.43)
{jldi<0} —d;
since c’} >0 for j =1+1,...,n. The resulting 72 = 7! + 6,;d" and corresponding

& = ¢— ATr? are then dual feasible; furthermore, zo = 21 +6,w1 > 21 since wy > 0.

> Exercise 6.23 Refer to Theorem 5.1 on Page 155 concerning a degenerate basic fea-
sible solution obtained using the Simplex Algorithm. Then a restricted linear program
R is optimized, corresponding to rows where b; = 0. Develop an anology between this
restricted-row problem and the restricted-column problem of this section.

> Exercise 6.24 Let 0; be given by (6.43) and & = &' +6d". Letting j,, where 1 < j, < 1,
correspond to a basic column, prove c"?o = 0. Prove, for j =1+ 1,...,n, there is at least
one c’? =0.

All columns j = 1,...,n whose c’? = 0 and all artificial columns that have not
been dropped consititute the columns associated with the new restricted primal
problem. Since there is at least one c’? = 0 and CZ} <0Oforj=101+1,...,n at
the end of the previous restricted problem (see Exercise 6.24), we know there are
new candidates for entering the basis in the Phase I process applied to the new
column-restricted primal and permitting the iterative process to continue.

> Exercise 6.25 Show that the optimal basis of the previous restricted problem can be
used as the starting basis for the new restricted problem.
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Exercise 6.26 In the Primal-Simplex Algorithm, the pivot steps can sometimes result
in no improvement when the basic solutions are degenerate. In the Primal-Dual Algo-
rithm there is improvement of the dual and strict decrease of primal infeasibility on every
iteration. Does degeneracy play a role? If so, where?

At first glance it may appear that we might not have been able to initiate the
algorithm if all c_jl were positive for j = 1,...,n. However, in this case, we view the
basic set of artificials as the full set of variables of the restricted primal. Clearly, the
artificial columns are the optimal basic columns and their optimal multipliers are
vt = (1,1,...,1). The algorithm can then be initiated after finding an improved

dual solution by computing 6 by (6.43).

Exercise 6.27 Suppose that no 7! was given but the original problem satisfied c¢; > 0

for all j. How would you initiate the Primal-Dual Algorithm?

Example 6.4 (Illustration of Primal-Dual Algorithm) We illustrate the Primal-
Dual Algorithm on the problem of finding z1 > 0, z2 > 0, ..., 5 > 0, min z, and artificial
variables, ¢ = x7 = xs = w = 0, satisfying

(—w) + 26 + 27 + 28 = 0
(—=2) + 2z1 + 5z2 + 1025 + 44 + 2825 =0
x1 + 222 + 2x3 + Oxy — 4dxs5 + x4 = 8 (6.44)
x1 — 4xo + 4dx3 — 4x4 + 4das + x7 =12
+ x2 + 0z3 + 274 + 225 + x5 = 2.

Since all the ¢;s are positive, a feasible dual solution is 7 = (0,0, 0)T and therefore &° = c.
The initial simplex multipliers with respective to the Phase I objective are v° = (1,1,1)7.
This 7° can then be used to generate the w-equation in terms of the original variables as
the difference between the first equation and the sum of the last three equations:

— 221 + 22 — 623 + 224 — 225 = w — 22. (6.45)

Letting J;? be the coefficients of z; in this new expression for w, we determine the largest
number, § = 6,, such that ¢! = & + 6,d° > 0 has all nonnegative components. In this
case, § = 0, = 1. Thus, the new z-equation (6.46) is obtained by adding the z-equation in
(6.44) to the w-equation in (6.45); where we have dropped the w variable because all we
are really doing is adding to the z-equation a linear combination of the original equations,
which have no artificial variables:

O0x1 + 6x2 + 4x3 + 624 + 3025 = z — 22. (6.46)
Note that in (6.46), x¢, x7, and zs are already basic, and, besides these, only z1 has a

relative cost factor of zero. Thus, the first column-restricted primal is obtained by choosing
variables x1 and artificials xs, 27, and xs that have not been dropped; see columns with ]
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in (6.47).

Iteration 1: Initiate First Column-Restricted Primal: (xe, 27, xs;x1)

(—w) — 2z1 + 2 — 6x3 + 224 — 215 = 22
1X1 + 222 + 223 + Oy — 4dxs5 + x4 = 8
x1 — 4xo + 4z — 4x4 + 4as + x7 = 12 (647)
+ ®2 + Ozs + 2z4 + 2m5 + xg = 2
T T 7 T

O0x1 + 6x2 + 4x3 + 624 + 3025 * * * = z—22

The only variable z; in the column-restricted primal (i.e., those with 1) with negative J;
in the w-equation is df = —2. Pivoting on 1z in the second equation, xs drops from the
basic set and is dropped from the problem since it is artificial; the updated w-equation
then becomes:

(—w) 4+ 0z1 + 5x2 — 223 + 224 — 1025 = —6. (6.48)

Thus an optimal solution to the column-restricted problem (zs,z7,zs; z1) is obtained in
one iteration because le > 0 for the restricted j.

We are now ready to set up the second column-restricted primal. To do so we adjust
the z-equation by determining the largest value of § = ; such that & = & + 6d* > 0,
where ¢' are the coefficients of z; in the z-equation in (6.47) and le are the coefficients
of z; in the w-equation in (6.48) respectively. Now 6; = 2, so that the new z-equation,
which again does not contain w because all we are really doing is adding to the z-equation

a linear combination of the original equations that have no artificial, is:
0x1 + 1622 + 0x3 + 1024 + 1025 = 2 — 34. (6.49)

Since €3 = 0 in this equation, the variables of the new restricted primal are the variables
x1, r3, and the artificials that have not been dropped, x7 and xs. The basic variables are
z1, 27, and xg. The variable z3 is now admissible as an incoming nonbasic variable in the
next column-restricted primal.

Iteration 2: Initiate Second Column-Restricted Primal: (x1,x7,%6;T3)

(—w) S5x2 — 2x3 + 2x4 — 10z5 = —6
r1 + 2x9 + 2x3 + Oxy — 4dzs = 8
— 6x2 + 2xg — 4dxs + 8xs + x7 = 4 (6.50)
+ 22+ Oz3 + 2m4 + 2x5 + vs =
T T T T

0x1 + 1622 + Ox3z + 10x4 + 10z5 * * = z—34

The only negative 0@1 in the w-equation for the column-restricted primal is d§ = —2.
Pivoting on 2z3 in the third equation, 7 drops from the basic set and is dropped from
the problem since it is artificial; the updated w-equation becomes:

(—w) + 0z1 — 1z + Ozz — 224 — 225 = —2. (6.51)

Thus an optimal solution to the column-restricted problem (z1, z7, zs; x3) is again obtained
in one iteration because d? > 0 for the restricted j.
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We are now ready to set up the third column-restricted primal. To do so we adjust
the z-equation by determining the largest value of § = 6 such that & = & + 62d° > 0,
where ¢ are the coefficients of ; in the z-equation in (6.50) and Jf are the coefficients
of z; in the w-equation in (6.51) respectively. Now 62 = 5, so that the new z-equation,
which again does not contain w because all we are really doing is adding to the z-equation
a linear combination of the original equations that have no artificial, is:

Ox1+ 1lxs + 0x3 + O0xg + Ox5 = 2 — 44. (6.52)

Note that this time we have generated an extra zero in the z-equation because there was a
tie in columns 4 and 5 in generating 2 = 5. Therefore the corresponding column-restricted
primal is (z1, z3, Ts; T4, Ts5), since both x4 and x5 have zero cost factors. Notice that, in
this example, except for x2, all the original variables now belong to the column-restricted
primal.

Iteration 3: Initiate Third Column-Restricted Primal: (z1,%3,%s;T4,T5)

(—w) — 1z — 224 — 2x5 = -2
r1 + 8xo + 4dx4 — 12z5 = 4
— 322 + x3 — 224 + 4xs = 2 (6.53)
+ 22 + 2x4 + 275 + 28 = 2
T T T T T

O0x1 + 1lxe + Oxs + Oxq4 + Oxs *x = z—44

To minimize w for the new column-restricted primal, we now introduce x4 into the basic
set by pivoting on 2z4 in the fourth equation, dropping xs from the basic set and from
the problem since it is artificial, and obtaining the system:

Iteration 4: (Optimal)

(—w) + O0z1 + Ox2 + Ozs + Ozs + Oxs =0
1 + 622 — 165 = 0
— 2x2 + w3 6xs = 4 (6.54)
+ 0.5x2 + x4 + x5 = 1
+ 1lz2 =z—44

whose associated solution is (0,0,4,1,0) and w = 0. Since w = 0 it means that the values
of z; > 0 constitute a feasible solution to the original unrestricted problem. Since the x;
basic in the column-restricted problem corresponds to ¢; = 0 and beacuse ¢; > 0 for all j
has been maintained throughout, it follows that this basic solution is feasible and optimal
for the original problem. The minimum value of z = 44 is obtained from the z-equation
in (6.54).

Algorithm 6.1 (Primal-Dual Algorithm at Iteration ¢t) The steps are repeated for
t=1,2,...

1. Minimizing Infeasibility of the Column-Restricted Primal.

At the start of cycle ¢, it is assumed that we are given a dual feasible solution,

& =ct — ATr? > 0, to the original problem generated by some 7 = 7*. We assume

that the column-restricted primal problem consists of ¢ > 1 artificials that, together
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with possibly some columns of the original problem, form a basis. All columns j
whose c? = 0 belong to the column-restricted problem, and all columns j whose
c'tj > (0 are not in this restricted problem. It is further assumed that there is at least
one nonbasic x; that belongs to the column-restricted problem; if no such z; exist,
go to Step 3.

Using only the columns of the restricted primal problem for pivot choice, the Simplex
Algorithm with a degeneracy-resolving scheme is applied to minimize w. Artificial
variables are dropped from the system when they become nonbasic. During this
step, which may consist of several Phase I simplex iterations, the values of the
multipliers, %, are not modified. The simplex multipliers, v*, associated with the
w-objective, change, of course, at each Phase I Simplex Algorithm iteration until w
is “minimized;” that is, until d; is nonnegative for each z; of the column-restricted
primal.

2. Termination Condition.
(a) If minw = 0, terminate with a basic solution that is feasible and minimal for
the original problem.

(b) Ifminw > 0, and d} > 0 for j = 1,...,n+gq, terminate and report an infeasible
original problem because no primal feasible solution exists.

(c) Otherwise, go to Step 3 with the optimal ~*.

3. Improving the Dual Solution (Finding a New Column-Restricted Primal).

An improved solution of the dual and a new column-restricted primal is found by
using new multipliers,

it = nl 4 04! fori=1,...,m, (6.55)
and max 6 = #® which generate nonnegative cost factors,

&t =& +0d, forj=q+1,...,n+q. (6.56)

J
The scalar max 0 = 0" is a strictly positive number defined by
~ ~t

> = min s, (6.57)

— gt —
s di<o d]

9t =

The new column-restricted primal is obtained by using all the basic variables and
those nonbasic variables whose cost factors, c'tj*'l7 are zero. In this step, at least one
new variable appears in the new column-restricted primal, namely, x5, as determined
by (6.57). Note also that ds < 0, so that at least one iteration must take place before
w is minimized within the new column-restricted primal.

Comment. Given a feasible solution to the dual, the Primal-Dual algorithm assumes
we have at hand a routine that solves the column-restricted problem by minimizing
the sum of the artificial variables. It terminates with either proving that no fea-
sible solution exists or finding an improved primal feasible solution to the original
problem. Thus the algorithm terminates after a finite number of iterations.
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6.7 THE PHASE I LEAST-SQUARES
ALGORITHM

In this section we describe a Phase I algorithm to obtain a strict improvement at
each iteration even if degeneracy is present. It is different from other variants that
try to recognize and avoid degenerate steps in the Simplex Method. As we shall
see, this algorithm solves a nonnegative least-squares problem at each iteration in
order to find a feasible solution.

In each iteration it obtains a better fit to the right-hand side by solving a simple
two-variable least-squares subproblem to select an incoming column to augment a
set of independent columns (called basic) in order to get a better least-squares fit
to the right-hand side. Because a strict improvement is obtained at each iteration,
cycling cannot occur and convergence is guaranteed. It is closely related to a number
of other algorithms proposed for nonnegative least-squares and quadratic programs.

The general Phase I problem is:

n
Find 2; >0, Y Pjz;=b, Pj€R™, beR™ (6.58)
j=1

Both the Simplex Algorithm and the Least Squares (LSQ) Algorithm augment this

system by a set of artificial slack (errors) variables el = (€1, €, ... , €, ) unrestricted
in sign:
n
Find 2; >0, Y Pjzj+Ile=b, P € R™, beR™ (6.59)
j=1

Both seek to minimize the absolute values of the ¢;s. The Simplex Algorithm
objective z is to determine x; > 0 and ¢; to minimize

z=ler| + |e2] + - + |eml- (6.60)

The LSQ objective z is to determine z; > 0 and ¢; to minimize

1
z:i(ef+6§+~-+efn). (6.61)

Each iteration of LSQ starts with an improved solution to the right-hand side:
P
9= Pz, 7;,>0 €=b—g' (6.62)
i=1

which is first tested to see if it is the best least-squares fit to b. If not the best, a
strictly improved feasible approximation is found next.

Definition (Basis): A set of independent columns B = [Pkl,PkQ, . .,qu}
is called a basis. The matrix R = B”B is called the basis norm and R~ =
(BTB)~1 is the inverse of the basis norm.
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Definition (Least-Squares Approximation): q = B¢ is a basic (or least-
squares) approzimation to b if B is a basis and & minimizes ||b — B¢||2.

Definition (Basic Feasible Approzimation): ¢ = B¢ is called a basic feasible
approzimation to b if £ is a basic approximation that satisfies £ > 0. In Phase I
we seek a basic feasible approximation ¢ such that ¢ = b.

Algorithm 6.2 (The Phase I Least-Squares Algorithm) The algorithm maintains
an update of the basis norm that is used to generate strictly improved basic feasible
approximate solutions 7. It begins by finding an initial basis, an approximate least-squares
solution, and Lagrange multipliers (prices) as follows. Let s = argmax; Pij be the index

of the incoming column Ps. If PTe < 0, then terminate with the optimal approximate
solution x = 0:

1.

Initialize. The initial basis is B = [Ps] and set R = B'B = ||Ps||>. Then R™' =
1/||Ps||*;n=R" (BTb). The initial approximation satisfies > 0.
Begin Cycle. Set

g=Bn, e=b—g. (6.63)
Determine Index s of Incoming Column.

§ = argmax PjTe. (6.64)
J

Optimality Test. If PTe < 0 terminate. If € = 0, a basic feasible solution 7 has been
found; if € # 0, report the problem infeasible, and g = Bn as the best approximate
solution, and the error = ||¢]|.

Add Column to Basis. The updated basis B is

B =[B, Ps]. (6.65)
The updated basis norm is
- BB B'P, R C
_ T _ s _
R_BB_(PSTB PSTPS>_(CT d), (6.66)

where C = BTP, and d = PSTPS. The update of the inverse of the basis norm
71 ~~
- <RO 8) +(1/d) (_Cl) (€T 1) (6.67)

where C = R™'C and d = d — C*C.

. Obtain Next Approzimation If 7 > 0. Set

7 =R"(B™b) (6.68)
If 7 > 0 then n « 7, B+ B, R+ R and go to Step 2.

. Drop Pj. from Basis. If 7, = 0, drop corresponding columns P;, from B, adjust

R™', then go to Step 6. See the Exercises for an efficient way to adjust R™' if one
or more components 7; = 0.
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8. Delete Column from Basis. If 7 > 0 is not true, determine the maximum A such
that

772(1—)\)(8)+)\7720. (6.69)

Go to Step 6.

> Exercise 6.28 Prove s # j,, where s is the index of the incoming column (Step 3) and
jr is the index of the outgoing column (Step 7).

THEOREM 6.12 (Optimality Test) A feasible approzimation

gt = Zij;, >0, €=b—g (6.70)
J

cannot be improved if
P]-Tet <0 for all j and P]-Tet =0 for all z% > 0. (6.71)

THEOREM 6.13 (Improvement Possible) If the optimality test fails for
some j, an improved approrimation can be found.

> Exercise 6.29 Prove Theorems 6.12 and 6.13.

> Exercise 6.30 If the p columns of the approximation (6.62) are not independent, show
how to generate an approximation

q
gt = Z Py, @h,, @r, >0, q<p, (6.72)
i=1

where B = [Pkl,PkQ, . qu] are a subset of independent columns of Pj;,. Note that g*
and € = b — g* are the same g' and €' as in (6.62).

THEOREM 6.14 (Least-Squares Approximation) The £ that minimizes
||b — BE||? can be computed by solving

(B"B)¢ = B™b. (6.73)
> Exercise 6.31 Prove Theorem 6.14.

> Exercise 6.32 If B is a ¢g-column basis, BTB is a ¢ X ¢ square, symmetric nonsingular
matrix.

THEOREM 6.15 (e Orthogonal to Columns of B) IfB= [Pk1 s Pryy oot qu}
is a basis and & minimizes ||b — BE||?, then ¢ = b — B satisfies P,g:e = 0 for
1=1,...,q.
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Exercise 6.33  Prove Theorem 6.15. Consider the problem: Find £ > 0, €, minz
satisfying BE + Ie = b, z = 3:1 €2. Prove that the basic approximation is optimal if

& >0, e =b— BE. Prove this implies, by the optimality conditions (6.71), that P,g;e =0
fori=1,...,q.

THEOREM 6.16 (Incoming Column Is Independent of Basic Columns) If
e'P, £ 0, [Pk.l,PkQ, ey Pk.q,Ps} = B is an independent set of columns.

Exercise 6.34 Prove Theorem 6.16.

Exercise 6.35 Show how to apply R_, the inverse of the updated B, to determine the
basic approximation § = B where ¢ = £ minimizes ||b — BE||*.

Exercise 6.36 Given € = b— B¢ (see Exercise 6.35) and € = b— B¢ (see Theorem 6.16),
prove that €7 Ps < 0 implies ||€]|? < ||¢||?.

Exercise 6.37 Given 77 from Step 8 of the LSQ algorithm, prove § = Bé, é=b—B¢is
an improved feasible approximation; i.e., ||¢||* < ||¢]|?.

Exercise 6.38 Show that the improvement step can only be repeated at most ¢ times
before an improved feasible approximation is obtained.

Exercise 6.39 Prove that the LSQ algorithm terminates after a finite number of iter-
ations
n n n

6.8 NOTES & SELECTED BIBLIOGRAPHY

Over the years, a number of investigations have been systematically gathering empirical
data on the comparative efficiency of various proposals for choosing incoming columns in
the Simplex Method, such as the steepest descent criterion. Harold Kuhn of Princeton
and Philip Wolfe of RAND (independently) were particularly active doing this in the
early 1960s. Based on their preliminary findings, criteria independent of the units of the
activities or of the items appear to be well worth the additional effort. Computational
results on some new steepest edge Simplex Algorithms by Forrest & Goldfarb [1992] show
that the computational time savings can be significant; see also Bixby [2002] for additional
computational results.

Lemke [1954] developed the Dual-Simpler Algorithm as a variant of the standard
Primal-Simplex Algorithm; see also, Dantzig [1954a]. The dual problem is a linear program
and therefore can be solved by the steps of the Simplex Algorithm. These steps can be
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simplified by eliminating the identity submatrix. This results in an algorithm analogous to
the Primal-Simplex Method with criteria for choosing the outgoing basic columns and then
the incoming basic variables. For a variant, see Forrest & Goldfarb [1992] who propose a
steepest-edge criterion for choosing the outgoing variable during a Dual-Simplex iteration;
this has worked very well in practice, see Bixby [2002].

Gass & Saaty [1955a, 1955b, 1955¢], in their papers on the parametric objective, studied
the case of fixed constant terms and varying cost coefficients. Other variants, computa-
tionally similar, are the “Method of Leading Variables”, by E. M. L. Beale [1954a] and the
“PLP (Parametric Linear Programming)”, by W. Orchard-Hays [1956], and Orchard-Hays,
Cutler, & Judd [1956],.

The proof of Theorem 6.9 under the assumption of a single degeneracy at a break
point in the dual basic solution is due to Gass & Saaty [1955a, 1955b, 1955¢]. The proof
of Theorem 6.9 under the assumption of a single degeneracy at a break point in the
primal basic solution is due to Orchard-Hays [1956]. Some of the early pioneering work
on parametric programming was done by Manne [1956].

The parametric programming procedure described in Section 6.4 sometimes takes a lot
of work to find all ranges of 6 for which optimal bases are available. Consider the following
example by Murty [1980], which is closely related to the one by Klee & Minty [1972] for
the Simplex Method:

n
Minimize Z(@ —2" Nz = 2

Jj=1

n
subject to T +2 Z z; < 4" i=1,...,m,
j=i+1
x > 0.

It can be shown that this problem has 2" basic feasible solutions, each of which is a unique
optimal solution for a suitably chosen value of the parameter . Therefore, any parametric
programming procedure would, in the course of varying €, enumerate 2" solutions; clearly
this is impractical for this particular contrived problem when n is large.

The Self-Dual algorithm of Section 6.5 is an example of a composite algorithm. For
example, see Orchard-Hays [1954, 1956]. This algorithm is related to Newton’s method and
has been used by Smale [1983] for investigating the worst-case complexity of the Simplex
Method. For a discussion of the worst-case behavior of the Self-Dual Simplex Algorithm,
see Murty [1980].

The Primal-Dual method was first developed by Ford & Fulkerson [1956] for trans-
portation problems. Experiments indicate that the technique is very efficient for solving
such problems. It is closely related to the work of H. Kuhn [1955], who developed a special
routine for solving assignment problems, called the “Hungarian Method,” based on inves-
tigations by the Hungarian mathematician Egervary [1931]. The Hungarian method was
generalized by J. Edmonds to a method called the blossom algorithm for solving weighted
matching problems in undirected networks (see, for example, Papadimitriou & Steiglitz
[1982]).

The Primal-Dual Method of Ford & Fulkerson was later extended to the general linear
program by Dantzig, Ford & Fulkerson [1956]; this is discussed in Section 6.6. These
alterations of the algorithm apply when the old basis still prices out optimally in the
new system and thus constitutes a feasible starting solution for the new dual. What
markedly distinguishes the Ford-Fulkerson algorithm for distribution problems from the
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more general case discussed here is that the former method uses a method of optimization
of the restricted primal, which appears to be more efficient for distribution problems than
the Simplex Method. The generalization to general linear programs, as originally published
in 1956, used the Simplex Method to solve the column-restricted subproblems, because it
was the the most efficient one available at that time. As pointed out in the text, any
method for solving the column-restricted problems will do. It turns out that the Primal-
Dual Algorithm may be viewed as a condensed sequence of simplex pivot steps. According
to R. Gomory (private communication), the Primal-Dual Algorithm is a simplex variant
whose number of iterations in practice is quite often fewer than that required by the
Dual-Simplex Method.

The Phase I Least-Squares Algorithm described in this chapter is based on a strictly
improving linear programming Phase I algorithm due to Leichner, Dantzig, & Davis [1993].
It is closely related to algorithms described, for example, by Bjorck, /&[1987]7 Lawson &
Hanson [1974], Dantzig [1963], and van de Panne & Whinston [1969].

6.9 PROBLEMS

6.1 Review the following results:

(a) Show that if a linear programming problem has a finite lower bound for
some given right-hand side, then it has a finite lower bound for any right-
hand side for which a feasible solution exists.

(b) Suppose that a feasible linear programming problem is augmented with ar-
tificial nonnegative variables whose sum is bounded below by a constant
(not necessarily zero). If z is minimized. prove that the minimum is not
necessarily finite even though min z of the original problem is finite. How-
ever, if the artificials are bounded from above, then min z is finite or infinite
depending on whether min z of the original problem is finite or infinite.

6.2 Develop the rules for the Dual-Simplex Method for a linear program in standard
form with upper and lower bounds on the variables.

6.3 Adapted from Hadley [1972]. The following procedure was suggested by Lemke
for getting started with the Dual-Simplex Method. Given a linear program
in standard form: min z = ¢z, subject to Az = b, > 0, find m linearly

independent columns from A. Let b be any positive linear combination of

these m vectors. Next solve instead the problem with b replaced by b*. If the
minimum is —oo, prove that no feasible solution to the dual exists. If a finite
optimal solution is found, replace b* with b. This gives a basic not necessarily
feasible solution to the original problem and a dual feasible solution. The Dual-
Simplex Method can now be used.

(a) Why does this procedure work?

(b) Do you think that this is a practical procedure for getting started with the
Dual-Simplex Method?

(¢) Compare this procedure with the one discussed in this chapter.
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6.4 Develop a Phase I procedure to generate a feasible starting solution to a linear
program in standard form by adding a new row in such a way that it generates
an obvious starting dual-feasible solution. Show that this is the dual of the
Phase I procedure of adding one artificial variable.

6.5 Show that no basis can reoccur in the parametric linear programming procedure.
What assumption is made about degeneracy?

6.6 Solve the following LP by the Dual-Simplex Method

Minimize xr1 + 4xo + 223
subject to 21 + 3x2 — 223 < 14
xr1 — 2.T2 — 2:13’3 S 6
—T1 — 2.T2 S —10

and x1 > 0,22 > 0,23 > 0.

6.7 Compute
f(6) = min{c"z | Az = b+ 60d,xz > 0}
for all § € (—oo,00) where ¢ = (1,2,2,0,0,0)T and

—2 2 -1 1 0 O 2 -1
A= 1 -1 30 1 0], b= 1], d=[-1].
1 1 1 0 1 1 10 -1
6.8 Compute

g(0) = min{(c + 0d)"x | Az = b,z > 0}
for all 8 € (—o0,00) where ¢ = (1, 2,0,0,0,0)7, d = (5,—5,-5,0,0,0)7, and

2 -1 21 0 0 1
A= -1 2 -1 010}, b=1[1].
-1 1 1 011 1

6.9 Solve the following LP by the self-dual parametric algorithm.

Minimize 21 — 3x2 = 2
subject to r1 + x2 < 6
—2x1 + 4dae < —1

2:13’1 — 6.T2 S -2

and x1 > 0, xz2 > 0.

6.10  Solve the following LP by the Primal-Dual Algorithm.

Minimize 3r1 + x2 + 3x3 + T4 = 2
subject to 1 + 22 — 23+ 24 =0
21 — 222 + 3x3 + 314 = 9
T1 — X2 + 223 — T4 = 6

and 1 >0, 2 >0, 3 >0, 4 > 0.

6.11  Add slacks to von Neumann’s primal-dual pair of LPs, minc¢Tz, Az > b, z > 0,
and max by, ATy < ¢, y >0, to get:

Minimize T Maximize bTy
subject to Ax — Izs = b subject to  Iys + ATy =c
3:’, Ts 2 0 y57 y Z O
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6.12

6.13

6.14

Let a and 8 be complementary subsets of S = {1,...,m + n}. In other words,
aCS8,8CS, auB=38,and anB = (. Suppose also that o has m elements
(and hence @ has n elements). Show that the square submatrix (A, —1I)s is
nonsingular if and only if the square submatrix (I, AT)g is nonsingular. Thus
every basic solution to the primal has a corresponding complementary basic
dual solution. (These solutions need not be feasible).

(Hint: Let oz and (1 be complementary subsets of 1,...,m and a2 and (2
be complementary subsets of m + 1,...,m + n such that & = a1 U a2 and
B =01UpB2).

Ph.D. Comprehensive Exam, March 31, 1969, at Stanford. We know that a lin-
ear programming problem whose variables have upper and lower bounds permit
a special variant of the Simplex Method. It follows that the dual must also
permit a special variant.

(a) State the variant.
(b) Characterize the class of duals.
(c) State the special variant for the dual problem within the above framework.

Adapted from Ph.D. Comprehensive Exam, September 25, 1976, at Stanford.

(a) Given two vectors a = (a1, az,...,an)" and b = (b1,bz2,... b, )" where
a; and b; are real and b; > 0. Given 0 real, when is the index k that

- a;
Maximizes —
i=1,...,n bl

the same as the index k that

Maximizes a; + 0b;.

i=1,..., n

(b) Describe a simplex-like algorithm for solving the fractional linear program

T
Maximize %
subject to Az = d,

z >0

assuming b’z 4+ 3 is positive for all feasible z. Here a and b are n x 1.
Hint: This problem can be solved by using part (a) or it can be solved by
performing a change of variable to obtain an equivalent linear program in
(n + 1) variables where the linear program a¥r = max, Az =d, z >0, is
feasible and has a finite upper bound. See if you can develop the theory
about how to solve the fractional program when the linear program a7z =
max, Ar = d, x > 0, is feasible and has an infinite upper bound.

Ph.D. Comprehensive Exam, September 26, 1992, at Stanford. Consider the
linear program

Minimize e =z
subject to  Ax = b, A: mXxn,
x>0
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6.15

6.16

6.17

(a)
(b)

Suppose that b is a linear function of a scalar parameter 6. Show, in general,
that z is then a convex function of 6.

Show, however, that the value of some variable, such as x4 in the following
example, need not be either a convex or a concave function of 6.

41 + 2x9 + x4 =z (Min)
T — 3 + T4 =0
1 + X2 =0
T1 — I3 + x5 =1
T2 + x5 =1

x; >0forj=1,...,6.

Ph.D. Comprehensive Exam, September 23, 1978, at Stanford. Consider the
function f : R — R! defined by:

(a)
(b)

£(0) = Sup{(c' +0c®) x| Az =b' +0b>,0 > 0}

Describe carefully the nature of f including the cases of ¢ = 0 or b*> = 0.
How would you generate the graph of f7

Adapted from Ph.D. Comprehensive Exam, September 1981, at Stanford.

(a)

Suppose it is known that any feasible solution to a linear program has the
property that xx > 0 for some value of k (for example, if in equation p,
all ap; < 0 except apr = 1). Pivot on any nonzero coeflicient of z in any
equation to eliminate xj from the remaining equations and the objective
equation. Prove that the resulting linear program in one less equation and
one less variable can be solved instead. Show how to use it to find an
optimal solution to the original linear program.

If it is known in advance that a solution to a linear program cannot be
optimal unless xx > 0, show that this variable can be eliminated and the
reduced system with one less equation and one less variable can be solved in
its place. Show how to use the reduced problem to find an optimal solution
to the original linear program.

If the procedure of (b), to eliminate some x, is applied to the linear program
min ¢z, Az = b, x > 0, and we obtain a solution in which z; < 0, this
implies that either at least one feasible optimal solution of the original
problem has x; = 0 or the original problem is infeasible.

Outline a possible algorithm that could make practical use of the concepts
of (a) and (b) to solve a linear programming problem that is a scenario, i.e.,
a variant of problem already solved and for which it is reasonable to assume
that most of the basic variables of the optimum solution of the scenario will
turn out to be the same (i.e., positive) as that of the originating problem
but a few (not known in advance) will turn out not to be in the optimal
solution.

Ph.D. Comprehensive Exam, Fall 1985, at Stanford. Consider the polyhedral

convex set

X ={xz|Az <b},
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6.18

6.19

where A is an m X n matrix and b is an m-vector. Assume that X is nonempty.
Let 0 denote an arbitrary real number. By definition:

0X ={0z|zec X}
(a) Show that for any positive real number 6:
0X ={z| Az < 6b}.

(b) If the linear program

Maximize €Ty =z
subject to Az + y = 0b (6.74)
x free
0<y<e 021
where e = (1,1,..., 1)T € ™ has a feasible solution for some choice of

0 > 1, it has an optimal solution.
(c) Write the dual of the linear program (6.74).
(d) Suppose that we want to know whether the set

B(X)={i|[Az]; =b; forallz € X' }

is nonempty and, if so, what its elements are. Assuming exact arithmetic,
show that this can be done by solving the linear program (6.74) and inter-
preting its solution.

Show that if no artificial variables remain in the basic set using the Primal-Dual
Algorithm, the solution is optimal.

The following technique can be used to generate a starting dual feasible solution
for the Primal-Dual and the Dual-Simplex Method. For convenience, assume
that the variables have been relabeled so that the first m variables are basic and
variables T+1,...,Z, are nonbasic. If a dual feasible solution is not available
then construct an augmented problem by adding an artificial variable zo with
cost coefficient 0 and an artificial constraint of the form

Lo+ Tmp1+ - Fan=M

where M is a very large number. Next pick ¢; = min ¢; < 0; we know such a ¢;
exists because the current basis is not dual feasible. Show that by pivoting on
xs we generate a dual feasible solution. Prove that if the augmented problem is
primal-infeasible then so is the original problem. Suppose that after applying
the Dual-Simplex Method the algorithm terminates with an optimal solution.
Discuss the properties of the solution to the original problem in the cases when
the optimal solution to the augmented problem contains x¢ and when it does
not contain xg.



CHAPTEHR

7

TRANSPORTATION
PROBLEM AND
VARIATIONS

The general case of the transportation problem (TP) is the minimum-cost capaci-
tated network-flow problem

Minimize Tz
subject to Az = b, A: mxn, (7.1)
I <z <u,

where each column A,; has at most one positive coefficient +1 and at most one
negative coefficient —1. This matrix structure implies that every basis is triangular
and that all basic solutions have integer values if the right-hand side and upper and
lower bounds have integer values.

7.1 THE CLASSICAL TRANSPORTATION
PROBLEM

The classical transportation problem, described here, can be shown to belong to
the class of the general minimum-cost capacitated network-flow problem.

207
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7.1.1 MATHEMATICAL STATEMENT

The classical transportation problem is as follows:

m n
Minimize E E CijTij = %

i=1 j=1
n
subject to inj =a;, t=1,...,m, (72)
J=1 ’
m
Zmij:ij j:L...,’I’L7
i=1
zi; 20, a=1,...,m, j=1,...,n,
where

m n

Zai = Zb] = :Zj7 a; Z 0, b]‘ 2 0. (73)

i=1 j=1

Note that in this chapter, the symbols m and n denote the number of sources and
demand centers, respectively, and are not the symbols used to denote the number
of constraints and variables for a general linear program. In this case the number of
equations is m + n and the number of variables are mn. A network representation
of the classical transportation problem is shown in Figure 7-1.

7.1.2 PROPERTIES OF THE SYSTEM
RANK OF THE SYSTEM

LEMMA 7.1 (Rank of the Transportation Problem) The rank of the sys-
tem (7.2) is exactly m+n — 1. Furthermore, each equation is a linear combination
of the other m +n — 1 equations so that any one equation may be called redundant
and may be discarded if convenient to do so.

COROLLARY 7.2 (Number of Basic Variables) There are exactly m+n—1
basic variables x;;.

> Exercise 7.1 Prove Lemma 7.1 and Corollary 7.2.

COMPACT REPRESENTATION

The special structure of the transportation problem allows us to compactly represent
the variables x;; in an m x n array such that the sum across the rows correspond to
the demand constraints and the sums across the columns correspond to the supply
constraints. A rectangular array suitable for solving such a transportation problem
is shown in Figure 7-2 for a 3 x 5 case.

In Figure 7-2 the column of cells to the right of the double vertical lines is called
the marginal column and the row of cells below the double horizontal lines is called
the marginal row. The rest of the cells is referred to as the rectangular array.
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Figure 7-1:

nEHOQISOW

Demand

b

by
D
E
S

b T
I
N
A
T
I
O
N
S

bn

Network Representation of the Transportation Problem

T11 T12 T13 T14 T15 ai

C11 C12 C13 Cl4 C15 Ui
T21 T22 x23 T24 T25 a2

C21 C22 C23 C24 C25 U2
31 32 33 T34 I35 as

C31 C32 C33 C34 C35 usg

by by b3 by bs
U1 V2 U3 V4 Us

Figure 7-2: Example of Standard Transportation Array
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BASIS TRIANGULARITY

A fundamental property of a transportation (or network-flow) problem is that every
basis is triangular.

Definition (Triangular Matriz): We give the following two equivalent defini-
tions of a triangular matrix:

1. A square matrix is said to be triangular if it satisfies the following prop-
erties.
(a) The matrix contains at least one row having exactly one nonzero
element.
(b) If the row with a single nonzero element and its column are deleted,
the resulting matrix will once again have this same property.

2. Equivalently, we can define a square matrix to be triangular if its rows
and columns can be permuted to be either an upper triangular or lower
triangular matrix.

Before we prove that every basis is triangular, we establish the following three
lemmas.

LEMMA 7.3 (At Least One Basic Entry) FEvery row and column has at
least one basic variable.

Proof. By Lemma 7.1 we can drop any one of the equations as redundant without
affecting the solution and the rank of the system is m +n — 1. It then follows that
each of the m +n — 1 equalities must have at least one basic variable with a +1
coefficient. |

LEMMA 7.4 (Exactly One Basic Entry) There is at least one row or column
in the transportation array with exactly one basic entry.

Proof. Assume, on the contrary, that no row or column has exactly one basic
variable. By Lemma 7.3, every row and column has at least one basic entry. Hence,
all columns (or rows) under our contrary assumption must have two or more basic
entries.

The total number of basic entries in the array is m +n — 1 by Lemma 7.1; let

k=m+n-—1. (7.4)
Then since there are at least two such entries per column, we must have
k > 2n.
Similarly, there are at least two such entries per row, and thus we must have

k > 2m.



7.1 THE CLASSICAL TRANSPORTATION PROBLEM 211

Summing these two, we get the number of basic entries k£ must satisfy
k>m+n. (7.5)

This contradicts (7.4). Therefore the contrary assumption is false, implying that
there must be at least one row or column with exactly one basic variable. |

LEMMA 7.5 (Single Basic Entry Exists after Deletion) The subsystem
obtained by removing any redundant equation from the original system will still
contain an equation with exactly one basic variable.

Proof. Drop some equation as redundant, say the last row equation. Once again
make the contrary assumption, that no row or column has exactly one basic variable.
Let &’ be the total number of basic variables in all but the last row. It is clear that

K > 2(m—1). (7.6)

Since there is at least one basic entry in the last row, we have

k>Fk +1, (7.7)
and
k> 2n. (7.8)
Adding the relations we get
2k > 2m +2n — 1, (7.9)
or )
k2m+n—§, (7.10)
contradicting the fact that k = m 4+ n — 1. This proves the lemma. ]

THEOREM 7.6 (Fundamental Theorem: TP Basis Is Triangular) Every
basis of the transportation problem (7.2) is triangular.

Proof. Consider a standard transportation array, such as Figure 7-2, with m
rows and n columns and with arbitrary marginal constants, a; and b;. Consider
any particular set of basic variables and substitute the value zero for each of the
nonbasic variables. Now, starting with the original array, we set the value of the
basic variable in the column or row with a single basic variable (by Lemma 7.4 we
know such a row or column exists) equal to its marginal value. We then obtain
a Reduced Array by deleting the row or column having a single basic entry and
reduce the value of the mariginal value of its column or row by its value. We next
repeat the argument for the reduced array (by Lemma 7.5), thereby establishing
the theorem. |
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INTEGER SOLUTION PROPERTY

THEOREM 7.7 (Integrality Property of Basic Variables) All the basic
variables have integer values if the row and column totals a; and b; are integers.

Proof. It is not possible to obtain fractional values when the right-hand sides of
the equations have integer values, because the nonzero coefficients of +1 imply that
all the variables are either set equal to the right-hand side or evaluated by simple
subtractions. |

THEOREM 7.8 (Integral Property of Multipliers) When the unit costs,
cij, are integers and any one simplex multiplier (u; or v;) is given an arbitrary
integral value, then all the simplex multipliers will be integers.

Proof. Since the basis is triangular and of rank m + n — 1, so is its transpose.
Hence, once we assign an arbitrary integral value to the multiplier of a redundant
row, the values of the remaining u; and v; satisfying

cij = u; +v; for z;; basic

can be obtained uniquely in the same manner as the values of the basic variables; i.e.,
by looking for one equation in one unknown, etc. Since the coefficients in the basis
are either unity or zero and one of the multipliers is arbitrarily assigned an integral
value, the values of u; and v; will be sums and differences of ¢;; corresponding to
basic variables. |

From the proof it is easy to show that the A matrix is unimodular as defined
below.

Definition (Unimodular): An m x n matrix A of rank r is said to be unimod-
ular if and only if every element of it is an integer and every square submatrix
of size r has a determinant of +1, —1, or 0.

Definition (Totally Unimodular): An m X n matrix A is said to be totally
unimodular if and only if every element of it is an integer and every square
submatrix has a determinant of +1, —1, or 0.

It is obvious that if a matrix is totally unimodular then all the entries are either

+1, —1, or 0.

> Exercise 7.2  Consider the linear program ¢’z subject to Az = b, x > 0. Show that if
A is totally unimodular and b is an integer vector then every basic solution is integral.

> Exercise 7.3  For the transportation problem (7.3) or its dual, show that the coefficient
matrix is totally unimodular.
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Exercise 7.4 Construct a totally unimodular matrix that is not the coefficient matrix
of a transportation problem or its dual.

Exercise 7.5 Show that the inverse of a basis for the transportation problem has only
—1, 0, or +1 as its elements.

7.2 FINDING AN INITIAL SOLUTION

We have shown that every basis in the classical transportation problem is triangular.
This fact makes it easy to generate a starting basic feasible solution. The simplest
way to generate a starting basic feasible solution is by the following triangularity
rule (algorithm), also described in Linear Programming 1.

Triangularity Rule: Choose arbitrarily any variable z,, as the candidate for the
first feasible basic variable. Make x,, as large as possible without violating the row
and column totals, i.e., set

Tpg = min { ap, by }. (7.11)

The next variable to be made basic is determined by this same procedure after
reducing the rectangular array depending on which of the following three cases
arises:

1. If ap < by, then all the other variables in the pth row are given the value zero
and designated as nonbasic. Next the pth row is deleted, and the value of b,
in column ¢ is reduced to (by — ap).

2. If ap > by, then all the other variables in the gth column are given the value
zero and designated as nonbasic. Next the gth column is deleted and the value
of a, in row p is reduced to (a, — by).

3. If a, = by, then randomly choose either the pth row or the gth column to be
deleted, but not both. However, if several columns, but only one row, remain
in the reduced array, then drop the gth column, and conversely, if several rows
and one column remain in the reduced array, drop the pth row. If the pth row
is deleted, the value of b, in column ¢ is reduced to 0. If the gth column is
deleted, the value of a,, in row p is reduced to 0.

If after deletion of a row or column there remains only one row or one column,
then all remaining cells are basic and are evaluated in turn as equal to the residual
amount in the row or column. On the last step exactly one row and one column
remain, and both must be dropped after the last variable is evaluated. Thus, this
Triangularity Rule will select as many variables for the basic set as there are rows
plus columns, less one, i.e., m +n — 1.
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Exercise 7.6 Show that every reduced array retains the property that the sum of the
remaining demand (or marginal row total) is equal to the sum of the remaining supply (or
marginal column total). This implies that the last remaining variable can acquire a value
consistent with the totals for the single row and column still remaining in a final reduced
array.

THEOREM 7.9 (Triangularity Rule Creates a Basic Set) The set of can-
didate variables chosen for an initial solution by the Triangularity Rule constitutes
a basic set, and conversely every basic set could have been generated by such a rule.

Proof. The variables picked out by the Triangularity Rule and called “basic” will
be true basic variables if we can find values for them when we set the remaining
variables equal to zero and arbitrarily choose the values of the right-hand-side equa-
tions excluding one that is redundant. The rule actually decides which equation is
redundant, namely either row or column associated with the last “basic” variable
evaluated. Then arbitrarily choose the values of a; and b; except for this redundant
row or column in the transportation array. If marginal b, — a, was used to evaluate
Zpq then use the modified by — a,, to evaluate x,q even if it is negative, etc. To prove
the converse, we note that we have already shown that the basis is triangular and
therefore the evaluation process of finding a row or column with a single entry is
exactly what the rule would find if we mark in advance the cells that are basic. NI

COROLLARY 7.10 (Totals as Partial Sums) FEvery row total of a reduced
array 1s equal to some partial sum of the a; minus some partial sum of the bj,
whereas every column total of the reduced array is some partial sum of the b; minus
some partial sum of the a;.

Exercise 7.7 Use induction to prove Corollary 7.10.

Each basic variable was chosen arbitrarily in the original and subsequent reduced
arrays. Several authors have suggested Emperical rules that provide a “good” basic
solution to start Phase II of the Simplex Method. See Linear Programming 1 for
several such rules, for example: Northwest Corner Rule, The Least Remaining Cost
Rule, Vogel’s Approximation Method, and Russel’s Approximation Method.

7.3 FINDING AN IMPROVED BASIC
SOLUTION

To distinguish the multipliers corresponding to the rows from those of the columns
of the transportation array, let u; represent the multiplier for the ith-row equation,
and let v; represent the multiplier for the jth-column equation instead of using 7y
for all equations k as we did earlier.
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In order for a basic column (%, j) to price out to zero, we must have
cij = u; +v; for x;; basic, (7.12)

because column (i,5) has exactly two nonzero coeflicients: +1 corresponding to
equation ¢ in the demand equations and +1 corresponding to equation j in the
supply equations; see (7.2).

The reduced costs ¢;; are given by

Gij = cij — (u; +vj5) fori=1,....m, j=1,...,n. (7.13)

The ¢;; corresponding to the basic variables are all zero by (7.12). The basic feasible
solution is optimal if ¢;; > 0 for all the nonbasic variables, that is

Cij > Ui + vj fori=1,....mand j=1,...,n. (7.14)

Thus if for some r and s
Crs < Up + Vs, (7.15)

then a new basic feasible solution can be obtained by increasing the value of the
nonbasic variable x4, if possible, and adjusting the values of the basic variable to
compensate.

THEOREM 7.11 (Changes in Values of Basic Variables) In the trans-
portation problem (7.2), if the value of a nonbasic variable x4 is allowed to increase,
with the other nonbasic variables remaining at zero, the value of any basic variable
Tpq will change from xj,, to

b =gl 4 dpgal,, (7.16)

qu

where §pq = —1, 0, or +1.

Proof. Given a basis B, for a linear program in standard form, as the nonbasic
variable x, is allowed to increase, the value of the ith basic variable is given by
Ty, = by — Qisxs
where b is obtained by solving Bb = b and A, is obtained by solving BAes = Aas.
Note the index pair (r,s) for the incoming basic variable z,s, corresponds to
index s for the incoming variable of the general linear program; and the index pair
(p,q) for the outgoing variable x,, corresponds to the index j, for the outgoing
basic variable of the general linear program. For the transportation problem, the
coefficients of the terms involving x,; are unity in the rth-row equation and in
the sth-column equation, and zero elsewhere. Hence, the coefficient of x,s in the
canonical form can be obtained by solving for the values imposed on the basic
variables when the constants are replaced by a, = 1 and bs; = 1, while all other a;
and b; are zero (this is equivalent to solving BA,, = A, for a linear progam in
standard form). By Corollary 7.10, the value of a basic variable is the difference
(positive or negative) between some partial sum of the a; (which in this case can
only be unity or zero because only a, = 1), and some partial sum of the b; (also
unity or zero because only b, = 1). This difference must clearly be +1, 0, or —1.
This completes the proof. ]
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T11 T12 13 T14 1

T21 T22 T23 T24 1

31 T32 33 T34 1

T41 T42 T43 Ta4 1
13 13 13 17 U4

V1 V2 VU3 V4

Figure 7-3: Cycling in the Transportation Problem

7.4 DEGENERACY IN THE
TRANSPORTATION PROBLEM

Degeneracy may lead to cycling in the transportation problem if the entering vari-
able is always chosen with a negative reduced cost but not necessarily the most
negative reduced cost; see Example 7.1. It is not known if cycling can occur in a
transportation problem if the entering variable is always chosen by the usual rule of
picking the one which has the most negative reduced cost. See Section 5.1 for non-
transportation examples where cycling occurred using the most negative reduced
cost rule.

Example 7.1 (Cycling When Not Using the Most Negative Reduced Cost
Rule) Consider the transportation problem defined by the transportation array in Fig-
ure 7-3. Recall that the z;; are in the upper-left corner and the specified costs ¢;; are in
the lower-right corner of the cells in the rectangular array; the specified row availabilities
a; are in the upper-left corner and the row multipliers u; are in the lower-right corner of
the marginal column; the specified column demands b; are in the upper-left corner and
the column multipliers v; are in the lower-right corner of the marginal row.

An initial basic feasible set of variables is {z11, 22, 33, T44,T12, 23, T34 }. All pivot
steps in this problem are degenerate pivot steps and the problem cycles after 12 iterations
if the entering and leaving variable pairs at each iteration are: {zi3,z23}, {Za2,z12},
{zs2,x34}, {Ta1, a2}, {was, z13}, {21,241}, {®31, 232}, {24, x21}, {®23, xa3}, {14, T24},
{zs4, 231}, {Z12,214}. Notice that in the last four iterations xi2, x23, and z34 come back
into the basis, thus repeating the initial basis. Note that the first four variables never leave
the basic set.

It is interesting from a theoretical perspective to develop a guaranteed anti-
cycling scheme for the transportation problem. The earliest such scheme for pre-
venting cycling in the transportation problem is based on a simple perturbation.

If any a; = 0 (or b; = 0) we can drop row ¢ (column j) and the variables in
its row (column) from the problem: therefore we can assume that all a; and b; are
positive. Degeneracy in the transportation problem can be avoided by considering
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1 1

€ 14+€ ||14 2¢
dropped

14+€ |1+4e€

1—0 |6 1

e+0 [14+e—0 |1+ 2
dropped

1+e |1+4+€

Figure 7-4: Perturbing the Transportation Problem

the class of perturbed problems

Minimize

subject to

For the discussion that follows,

m

n

E E CijTi5 = 2

i=1 j=1

n
E Tijj = Qg,
j=1
n
E Tmj = Qm + NE,
Jj=1

m
E LL'Z']' = b]‘ +6,
i=1

zi5 > 0,

1=1,.
J=1
1=1,.

corresponding to a,,) is dropped as redundant.

Cycling can be prevented as follows. Assume, to initiate the algorithm, that an
arbitrary basic solution is chosen by the Triangularity Rule described in Section 7.2,
except that no x,,; is selected for a basic variable until all other rows i # m have
been eliminated (see the left part of Figure 7-4). On any subsequent iterative step,
if there is a tie as to which basic variable to drop from the basis when € = 0, cycling
may occur. Cycling can be prevented by letting ¢ # 0 and choosing to drop the
basic variable with the smallest coefficient of € among those tied. We will prove
that the (¢, 7) associated with the smallest coefficient is unique. See the right part
of Figure 7-4, where the smallest coefficient of €, among those tied, is for x1;.

Exercise 7.8

Exercise 7.9

(7.17)

we assume that the last row equation (i.e., the row

Work out the details of Example 7.1 to show that the choice of entering
variable is not based on the most negative reduced cost rule.

Show that using the most negative reduced cost rule, the algorithm does
not cycle on Example 7.1.
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Exercise 7.10 Prove that the Triangularity Rule can be applied to generate a basic
feasible solution without choosing x,,; for basic variables until all other rows i # m have
been eliminated.

THEOREM 7.12 (Basic Feasible Solution Is Nondegenerate for Perturb-
ed Problem) Fuvery basic feasible solution for the perturbed problem is nonde-
generate for all 0 < e < € for some € > 0.

Proof. Let p be the coefficient of ¢ in any row total (excluding the last row
total because the last row has been dropped) of the reduced array and let ¢ be the
coefficient of € in any column total of the reduced array.

We first establish that p is either zero or negative and that ¢ is strictly positive
in the reduced array. The coefficient of € in any row total of the original or reduced
array (excluding row m) is either zero or negative, because it is composed of a non-
vacuous partial sum of the a;, minus a (possibly vacuous) partial sum of the b; + €.
Similarly, the coefficient of € for any column total of the original or reduced array is
always positive, because it is composed of a (nonvacuous) partial sum of the b; + €
minus a (possibly vacuous) partial sum of the a; (since we are excluding a,, + ne).

We next establish that the initial basic solution is nondegenerate for a positive
range of € in the neighborhood of ¢ = 0. To do this we will prove that at any
stage of evaluating the values of the basic variables in using the Triangularity Rule,
the reduced row totals for rows with coefficient of ¢ = 0 are strictly positive and
the reduced column totals for columns with coefficient of ¢ = 0 are nonnegative.
Initially all a; and b; are positive; however for the inductive proof all we need
is all a; positive and all b; nonnegative. Suppose inductively that for some step
of the Triangularity Rule for forming the initial solution it is still true for some
reduced array, that a; = a — pe (where « is positive and p is nonnegative), and
that b’ = 8 + ge (where 3 is nonnegative and g is positive). If z;; becomes a basic
variable, then its value is min [(a —pe), (B+ qe)] For the case o < 3, the row total
is satisfied and the new column total becomes (6 — ) + (p + ¢)e, where (6 — «)
is nonnegative and (p + ¢) is positive. On the other hand, if 5 < «a, then, for € in
some range 0 < € < €, the column total is satisfied, and the new row total becomes
(a— ) — (p+q)e, with (e — 3) and (p + ¢) both positive. In either case x;; > 0 for
0 < € < € for some € > 0.

We now show that the basic solution for any subsequent iteration ¢ of the Simplex
Method is nondegenerate for some positive range of €. At the start of the iteration
we pick the incoming variable and then an outgoing basic variable (we shall see that
the latter choice is unique for 0 < € < ¢;). We have already seen that the basis
(formed by excluding the last row equation) is triangular, and, from Theorem 7.9,
we can solve for the values by using the Triangularity Rule to obtain a feasible
solution. Thus we have that the values of the new basic variables are of the form
v + ve, where (by a repetition of the same argument) either v > 0 and v arbitrary,
or v =0 and v > 0. Hence, the new basic solution must be nondegenerate for some
range 0 < € < €.
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+&11 —T12 —T13 =d

—T21 +£90 —To3 = da

—T31 —I32 +233 =ds3
b | b | b

Figure 7-5: Example of a Standard Transshipment Array

In general, for any sufficiently small ¢, there will be a positive (nonzero) decrease
in the value of z associated with the basic solution after each iteration. It can be
shown that no basic feasible solution can be degenerate if 0 < € < 1/n. (See
Exercises 7.11 and 7.12.) Thus, no basis can be repeated, and the algorithm will
terminate in a finite number of steps. |

> Exercise 7.11 (Orden [1956]) Prove that if a;, b; are integers for ¢ = 1,...,m,
j=1,...,nand if b; are replaced by b;+(1/n) and am by am +1, then every basic feasible
solution of the new problem is nondegenerate and the corresponding basic solution for the
original unperturbed problem is always feasible. How can this be used to guard against
the possibility of cycling?

> Exercise 7.12 (Orden [1956]) With reference to Exercise 7.11, show that fractions
can be avoided in applying the Simplex Algorithm if the original b; are replaced by nb; + 1
and a; by na; except am by nam + n.

7.5 TRANSSHIPMENT PROBLEM

7.5.1 Formulation

In the classical Hitchcock transportation problem, shipments are made only from
cities where goods are produced (origins) to cities where goods are consumed (desti-
nations); shipments do not take place between origins or between destinations, nor
from destinations to origins. In practice, however, the best method of distribution
may be through intermediate points (each of which may also serve as a source or as
a destination). Shipments through intermediate points are called transshipments.
Here we shall consider a generalized transportation model in which transship-
ment through intermediate cities and local production and local consumption are
permitted. See Figure 7-5 for an example of a 3 x 3 transshipment array. It states
that for each city (4, j) there is a material-balance equation stating that the amount
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shipped out minus that shipped in is equal to the net amount produced there (if
positive), or net amount consumed there (if negative). For every city j this implies
forj=1,...,n:
Gross Supply (£;;) = Total Amount Shipped Out (z,) + Consumed (53)
= Total Amount Shipped In(z;;) + Produced(d;)

or, in equation form, for j =1,...,n,
i‘jj = Z Tik + Bj
Py
7 (7.18)
=D i +dj,
i
where

£;; = gross supply at j, £;; >0, ¢;; =0,

x;; = total quantity shipped from ¢ to j for ¢ # j, x;; > 0.
b; = the consumption at city j, l;j > 0.

= the production at city j, a; > 0.

S
<
|

The transshipment problem consists in finding z;; > 0 and min z satisfying (7.18)

and the objective equation
n n
Z Z CijTi5 = Z. (719)

i=1 j=1
G

Excluding the cost factor, each column in standard LP format contains only two
nonzero coefficients, either both +1 or both —1 (or one nonzero coeficient +1). The
standard transportation model is clearly a special case of this formulation. However,
in Section 7.5.3 we shall show that the general transshipment problem is equivalent
to the classical transportation problem. More generally, if we allow surplus or
shortage, then the rows include slack variables whose corresponding columns contain
only one nonzero coefficient +1 or —1.

Exercise 7.13  Show that no feasible solutions exist for the transshipment model shown
unless the total production equals the total consumption. Show, however, if we allow
surplus or shortage this is no longer true.

Exercise 7.14  Write down the detached coefficient form for the transshipment problem
given by equations (7.18) and (7.19).

Let a; be the net production (referred to as the net amount available) in city j
and let b; be the net consumption (referred to as the net amount required) in
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Destination

Destination
(bs =2)

Figure 7-6: The Transshipment Problem

the city. Then the following relationships hold between net production a; and net
consumption b; and gross production d; and gross consumption b; at city (node) j:

a; = dj — min(dj, Bj), (720)
b; = bj — min(dy, b;). (7.21)

The transshipment problem defined by equations (7.18) and (7.19), in standard
LP format, contains n(n — 1) columns corresponding to the number of ways to ship
from each city to any other city. If, however, all shipments are routed from one city
to another by means of a chain of links between neighboring cities, then we need
consider only the network composed of such local links and need not need to find
minimum path costs from every node i to every node j. All the variables dealing
with shipments to non-neighboring cities can be ignored; that is, all variables x;;
not corresponding to a local link are inadmissible.

Example 7.2 (Shipping Costs) In the network shown in Figure 7-6, the cost ¢;;, of
shipping a ton of goods from 4 to a neighboring point j, is shown on the relevant links:
thus csg = 13 is the cost from 3 to 6. We have not shown cg3, the cost from 6 to 3, because
in this example we assume each c¢;; equals c¢j;. The theory we will develop, however, is
valid even when c¢;; # cji.

Although freight rates between two cities are often the same regardless of the
direction of shipment, there may be a good economic reason why they might be
different. A situation in which ¢;; is not equal to c¢;; might actually arise in a
pipeline system if i is at the top of a mountain and j is in a valley because it costs
less to pump downhill than up. Also, as a stabilizing influence in certain economic
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applications, it would be in the public interest to have differing rates to encourage
use of a highway at times of least use.

7.5.2 REDUCTION TO THE CLASSICAL CASE BY
COMPUTING MINIMUM COST ROUTES

In formulating the transshipment model, we assumed no knowledge of costs except
between a subset of pairs of cities (defined to be neighboring cities; and the arcs are
defined to be local links), but we assume that the shipping costs between any pair of
non-neighboring cities can be obtained by finding the minimum sum of costs along
chains of local links which connect the two cities through all possible intermediate
points. For small problems, it may not be too difficult to determine all the minimum
costs merely by inspecting the network. The actual freight rate between a pair of
cities is defined to be the least-cost obtained by this additivity process. If this is
less than the local link, then another arc is added to this transshipment network
with this lower cost.

Example 7.3 (Cheapest Way to Ship) For instance, the cheapest way to ship from
1 to 6 in the network example of Figure 7-6 is along the link from 1 to 2 and then to 6.
Hence, we can set cig = c12 + c26 = 9+ 12 = 21. In this way the transshipment problem
can be reduced to the following classical transportation problem:

T12 T16 18 a1 =7
9 21 29

T52 T56 58 az =3
9 6 13

by = |bo= |bs=

4 4 2

Exercise 7.15  Verify that the cheapest cost route in Figure 7-6 from sources 1 and 5
to destinations 2, 6, and 8 is as shown in Example 7.3. Solve the transportation problem
and interpret the results to determine the actual shipping routes. Put these amounts back
in Figure 7-6 and verify that the conservation-of-flow conditions are satisfied.

7.5.3 REDUCTION TO THE CLASSICAL CASE BY THE
TRANSSHIPMENT PROCEDURE

In this section our purpose is to show an alternative approach to the minimum-cost
approach of converting the transshipment problem to the classical transportation
problem, which has certain advantages:

1. It avoids the necessity of determining a least-cost route for every origin-
destination pair.

2. It permits treatment of problems in which certain arcs of the network have
fixed capacities bounding the flows over these arcs.
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3. It may involve fewer variables, because the number of arcs of a network is
often considerably less than the number of origin-destination pairs.

We shall modify the problem to include the amount transshipped x;; through
point j instead of the gross supply £;; at point j. In order to define z;;, there are
two cases to consider: the production at j is greater than the consumption there,
i.e., a; > b;, or vice versa. Note that

aj:dj—lsj lfdJZZ;],

bj ij—dj ifdj<6j.

It is straightforward to see that the following relations hold:

Tj; = :ﬁjj — (i]' if (i]' Z Bj, (722)
Tj; = i‘jj — I;j if dj < Bj. (723)

These equations imply that
xjj = if'jj — Cij — l;j —+ min(dj, B]) (724)

Susbtituting (7.24) in (7.18), the transshipment problem can be stated as:

n n
Minimize Z Z CijTi5 = Z
i=1 j=1
n
subject to Zmij—m” =a;, i=1,...,n,
=1 (7.25)

Gi

n
inj—%‘j =bj, Jj=1...,n,
i=1
i
z;; > 0, 1=1,...,n, 3=1,...,n,

with ¢j; = 0 for all j. At this point it is still not in the form of a classical trans-
portation problem.

> Exercise 7.16  Write down the standard array (see Figure 7-5) for the transshipment
problem displayed in (7.25).

THEOREM 7.13 (Triangularity of Basis) FEvery basis for the transshipment
problem is triangular.

> Exercise 7.17 Prove Theorem 7.13.

THEOREM 7.14 (Diagonal Entries Are Part of the Basic Set) For the
transshipment problem (7.18), the diagonal variables, x;; or &;;, are a part of every
basic feasible set.
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Proof.  Consider a new transshipment problem for which @; and b; in (7.18) is
replaced by d; + € and l;j + € respectively, where € is an arbitrary positive number,
and :cgj = x;; are the new values of the variables for i # j and :c;-j = &j; +€> e for
i = j. Hence the diagonal variables, ;;, are positive and therefore must form part
of every basic feasible set. ]

From a procedural point of view, it is not desirable to transform the problem
explicitly, since we can accomplish the same end simply by allowing the supply vari-
ables £;; an unrestricted range of values. They will then be retained in the basic set,
once they have entered it, even though their values may be zero. The same applies
to the transshipment variables x;; since they are in one-to-one correspondence.

THEOREM 7.15 (Relationship For Implicit Prices) The implicit prices,
uj and vj, for the transshipment problem can be made to satisfy the relation

—u; =v; forj=1,...,n (7.26)

Proof. The costs ¢;; = u; + v; for all basic variables x;;. Since c;; = 0, and
according to Theorem 7.14 x;; is basic, it follows that —u; = v;. |

Note: It is common practice to use 7; to denote the common values —u; and v;.

The transshipment problem (7.25) differs from the classical transportation prob-
lem in that feasible solutions exist in which z;; — oo. To see this consider the
values in a 2 x 2 diagonal submatrix formed by the intersection of rows i and j with
columns ¢ and j. These values can be increased by an arbitrary constant -y, since
the row and column sums of the resulting subarray remain unchanged, as in

<_m” xij) is equivalent to <_(x” ) (@ 7)> - (7.27)
Tji  —Tjj (zji +7) —(z55+7)

If all costs ¢;; > 0 for i # j (recall that ¢;; = 0), it clearly never pays to transship
an amount greater than the total available from all sources. However, if ¢;; < 0 for
some i # j, there may be no lower bound for the objective function z. For example,
if ¢;; + ¢ < 0, then z — —oo for the class of solutions generated by v — 400 in
(7.27). More generally, it would pay to have such a circulation in the flow of the
network whenever the sum of the ¢;; around some loop is negative.

Exercise 7.18 In the transshipment problem (7.25) show that if Z?zl a; # Z?zl b;

then no feasible solutions exist, and that if > " a; = Y "

j—1 b, then feasible solutions
exist.

THEOREM 7.16 (Optimal Amount Transshipped Is Bounded Case) If
the sum of c;; around every loop in the network is positive, then in any optimal
solution, if one exists, the amount transshipped, x;;, is bounded, and

n n
Tjj < Zai = Zb] = Q. (728)
i=1 j=1
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> Exercise 7.19 Prove Theorem 7.16.

> Exercise 7.20 Defining transshipment slack by
Tj; = o — xjj, (7.29)
where a = ZZ a; = Zj bj, reduce the transshipment problem (7.25) to a classical trans-

portation problem.

> Exercise 7.21  Consider the classical transportation problem with three sources and
four destinations

3 7
Minimize E E CijTij = %
i=1 j=4

7
subject to inj =a; fori=1,2,3, (7.30)
j=4

3
D wiy = by for j=4,5,6,7.
i=1

Show how to convert it to a transshipment problem of the form (7.25) with seven trans-
shipment nodes x;;. Show that z;; = 0 for all j.

7.6 TRANSPORTATION PROBLEMS WITH
BOUNDED PARTIAL SUMS

A transportation problem with upper bound on the variables is called a capacitated
transportation problem:

m n
Minimize E E CijTij = %

i=1 j=1

n
subject to Zazij =a;, t=1,...,m,
= (7.31)

n
E $ij:bj, j=1,...,n,
i=1

ngijghij, izl,...,m,jzl,...,n.

A. S. Manne formalized a way to bound partial sums of variables of which simple
bounds on variables is a special case. For simplicity, we consider a case with only
one such partial sum; for example, in the scheduling of jobs, a condition such as
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x11 < 40 might be interpreted to mean that at most one man can be assigned to
job 1 in week 1. In some problems a more involved condition might be desired, such
as x11 + x31 + re1 < 40, expressing the circumstance that jobs 1, 3, and 6 can be
assigned only to individual 1. Similarly, a condition such as 11 +x12+x13 > k might
mean that at least k£ hours must be worked on job 1 during the first three weeks.
Similar to a capacitated transportation problem, a transportation problem subject
to a bounded partial sum of variables in a row, or in a column of a transportation
array (See Figure 7-2), can be reduced to a standard transportation problem. To
see this, consider system (7.31) with the added condition

Ty + T2+ ...+ 2186 < (7.32)

If we introduce a slack variable x19 and a variable y19 = x11 + 12 + - - - + 1% the
problem can be written in the standard form by splitting the first row and adding
a new column as follows.

10| 11 - Tlk «@
Y10 T1,k+1 ° Tin || Q1
To1 T2k T2 k+1 Ccc T2n || G2
Tml " Tmk Tmk+1 " Tmn||Am
o« | by - bp bpy1i - bn

The squares where there are no variables displayed will be inadmissible squares in
the transportation array. In equation form, the problem can be stated as:

m n

Minimize E E CijTij = %
i=1 j=1
k
subject to T10 + E T1; = «,
j=1
n
Y10 + E Tij = ap,
j=k+1

n
E Tij = Qq, 222,...,m,
Jj=1

T10 + Y10 = @,

n
E $ij:bj, j:L...,’I’L7
=1

0§xij§hzj, izl,...,m,jzl,...,n,
z10 2 0, y10 = 0.

(7.33)

Note that each z;; appears in at most one row equation and in one column equation.
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Clearly any number of conditions of the form (7.32) can be added to the system
by using the ideas just discussed. For example, an added condition on column 2,

12 + Ta2 + 272 < B, (7.34)

can be handled by splitting column 2 and using a second slack variable x5y and the
variable yo9. There could also be other conditions on column 2, such as

Tog + x32 + w52 < 7, (7.35)

that do not involve the same variables; this could be handled similarly. There could
also be more than one condition on the same variables in the same column, for
example, condition (7.34) and

T2+ 272 <0 (7.36)

can be taken care of by further splitting the column associated with the variables
T12, T42, and z7a.

THEOREM 7.17 (Reduction to a Transportation Problem) A trans-
portation problem with added partial sum conditions in rows and columns can be
reduced to a standard transportation problem, if any two conditions in a column (or
row) either have no variables in common or the variables of one of the conditions
are a subset of the variables of the other condition.

THEOREM 7.18 (Basis Need Not Be Triangular) Consider a transporta-
tion problem with added partial sums of variables. If a bounded partial sum of
variables contains two variables x;; and xy; such that ¢ # k and j # 1, the basis
need not be triangular, so that nonintegral basic solutions can be obtained.

Exercise 7.22 Prove Theorems 7.17 and 7.18.

7.7 NOTES & SELECTED BIBLIOGRAPHY

As noted in Section 7.4, it is not known if cycling can occur in transportation problems if
the entering variable is chosen based on the usual rule of picking the one that has the most
negative reduced cost. The very contrived example of cycling in Section 7.4, due to L.
Johnson, can be found in Gassner [1964] and Murty [1983]. Other examples along the same
lines can be found in Cunningham [1979] and Cunningham & Klincewicz [1983]; see also
Chvaétal [1983] for a cycling example due to Cunningham. A. Orden [1956] proposed a first
order perturbation scheme to avoid cycling in transportation problems; see Exercises 7.11
and 7.12. Cunningham [1979] also proposed an elegant and simple way to avoid cycling in
networks.

A. Orden [1956] first proposed a generalized transportation model in which trans-
shipment through intermediate cities is permitted. As a stabilizing influence in certain
economic applications, Koopmans [1947] and Koopmans & Reiter [1951], have suggested
that it would be in the public interest to have differing rates to encourage demands in the
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direction of least use between two cities. For the transshipment problem (7.25), Koopmans
& Reiter [1951] call 7; the “potential” of point ¢ in the network, because it is analogous
to the electrostatic potential of an electrical network.

7.8 PROBLEMS

7.1 (a) Derive a Dual-Simplex Algorithm for the classical transportation problem.
(b) Derive a Primal-Dual Algorithm for the classical transportation problem.

7.2 (a

N IR

Generalize the transshipment model to allow for the storing of excesses at

a city when the total of amounts shipped-in plus produced may possibly

exceed the total of amounts shipped-out plus consumed.

(b) Show that, in this generalized model, no feasible solution exists if ) a; <
> b;. Interpret the result.

(¢) Why is 3 > 0 implied by the standard transshipment array?

(d) In any transshipment problem, prove that if x;; exceeds ZZ ai, then there

is a circularity in the flow pattern, and show that such a solution cannot

be optimal if all ¢;; are positive.

7.3 Is the following statement true or false?

In a transportation problem, if the demands and supplies are all even
integers, then there is always an optimal solution with even integers.

Justify your answer.

7.4 Suppose that for an n x n assignment problem all the unit right-hand-side com-
ponents are changed to an integer v > 1. Prove that in any basic feasible
solution, exactly n basic variables are nonzero.

7.5 Let P be a T x T identity matrix. Partition the T' rows arbitrarily into m mu-
tually exclusive adjacent sets R; and partition the columns into n mutually
exclusive adjacent sets Cj. Let x;; be the sum of the 1s that are in the intersec-
tion of the row set R; and the column set C;. Prove that no more than m+n—1
of the z;; are nonzero. Replace P by a permutation matrix and prove the same
theorem.

7.6 Ph.D. Comprehensive Exam, Fall 1984, at Stanford. Given a linear program

Minimize chxj =z
j=1
n 7.37
subject to Zijj =0, ( )
j=1

and lj S Tj S h]',

where ¢j, [;, and h; are known scalars; P; are known vectors of dimension m;
and z; are unknown scalars to be determined.

Let B = [Py, P, ..., Py] be nonsingular and let z° = (29, ..., Zpt1,-- -, Z5)
satisfy E;;l Pjzi =0,1; <xj < hjfor j =1,...,m and z = either [; or h;
forj=m+1,...,n.
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(a)
(b)

Someone asserts x° is the unique minimizer for z. How would you prove
this assertion or demonstrate (on the contrary) that it is false?

Assume for j = 1,...,n that [; # h; and B as defined above is nonsingu-
lar. Consider the class of 2"~™ (not necessarily primal feasible) solutions,
Z?:l Pjx; = 0 where z; is set equal to either [; or h; for j =m+1,...,n.
State conditions that imply that exactly one of the 2"~ solutions is dual-
feasible.

How would you “reduce” a linear program in standard form to the linear
program (7.37)7

How would you “reduce” a capacitated transportation problem to the linear
program (7.37)7
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CHAPTER 8

NETWORK FLOW THEORY

Network theory concerns a class of linear programs having a special network struc-
ture. The combinatorial nature of this structure has resulted in the development
of very efficient algorithms that combine ideas on data structures from computer
science with mathematical concepts from operations research.

Networks arise in a wide variety of situations. For example, the transportation
problem discussed in Chapter 7 is a network representing the shipment of goods
from sources to destinations. Network problems arise naturally in the distribution
of electric power in the design of electric circuits, in communications networks, and
in hydro-systems in which water flows from conduits from various points to others.
Typically, the analysis of a network requires finding a maximal-flow solution when
there are capacity constraints on the arcs, a shortest-path solution when there are
lengths assigned to arcs, a minimum spanning-tree solution, a least-cost solution, or
determining the optimal sequence of tasks to be performed. The ability to obtain,
under certain conditions, integer-valued solutions has made it possible to extend
network analysis to many different areas such as facilities location, project planning
(PERT, CPM), and resource management.

We shall illustrate some definitions and concepts of directed networks by refer-
ring to Figure 8-1, which displays a simple directed network.

In the figure, recall that the circles numbered 1, 2, 3, and 4 are called nodes;
the lines joining them are called arcs; and the arrowheads on the arcs show the
direction of flow. In all, there are four nodes and six directed arcs.

We shall use the following notation:

Af(k) = {j e Nd | (k,j) € Ac}, (8.1)
Bf(k) = {i e Md| (i, k) € Ac}, (8.2)

where Af(k) stands for “after” (or “out of”) node k, Bf(k) stands for “before”
(“into”) node k, Nd is the set of nodes in the network, and Ac is the set of arcs in
the network.

231
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Figure 8-1: A Simple Directed Network

8.1 THE MAXIMAL FLOW PROBLEM

Consider a network with a single source node, s = 1, and a single destination node,
t = m, connected by several intermediate nodes. Except for the nodes 1 and m (the
source and destination nodes), the flows into and out of each node &k must balance;
such relations are called conservation of flows (in physics, the condition that the
quantity of electrons flowing into a point of an electrical network must equal the
amount flowing out is referred to as Kirchoff’s Law). That is, for an intermediate
node k:

Z Tik — Z xg; =0, fork=2,...,m—1, (8.3)

i€ Bf (k) JEAf (k)

where the first summation is over all directed arcs that have node & as a head node,
and the second summation is over all directed arcs that have node k as a tail node.
If we denote F' as the ezogenous flow into the source s = 1 from outside the network,
then

F— Z z1; =0 (8.4)
JEAf(1)
because there are no other flows (or flows on arcs) incoming into the source node.

If we denote H as the exogenous flow from its destination node ¢ to outside the
network, then

> i —H=0. (8.5)

If we sum the m — 2 relations in (8.3) and (8.4) then each variable z;; appears
in exactly two equations with opposite signs (recall the node-arc incidence matrix)
and hence cancels, resulting in F' = H. Therefore:

> @i —F=0. (8.6)

1€ Bf(m)
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8.1.1 DECOMPOSITION OF FLOWS

The next theorem shows that a flow can be decomposed into simpler components
that involve simple paths and circuits. It is useful because it shows that a solution
to a flow problem or a transshipment problem corresponds to our intuitive notion
that items start from nodes of surplus and move from one node to the next without
losing their identity until arriving finally at some node of deficit.

THEOREM 8.1 (Decomposition of Flow)  Consider a network (Nd, A)
where the capacity constraints are 0 < x;; < hy; for (i,j) € Ac. An incoming
ezogenous flow of F'> 0 and a set of flows x;; = xf; that satisfy the capacity con-
straints and conservation equations (8.3)—(8.6) can be decomposed into a sum of
path flows from source to destination and circuit flows such that the direction of
these flows in any common arc is the same as that of the directed arc in Ac.

Proof. By hypothesis the incoming flow is F' > 0. Begin to generate a path
starting at the source node s = 1 with an initial arc (1,41), satisfying

i1 = argmax x7;. (8.7)
1€Af(1)

Note that x{; > 0 follows from F' > 0 and the conservation relation
F= Z x9;.
1€Af(1)

Next repeat the procedure starting at node 7; instead of s = 1, and generate 45, the
second node along the path by

iy = argmax ;. (8.8)
i€ Af(i1)

Again by conservation of flows at i; and the previous result of z{; > 0, it follows
that z7 ;. > 0.
If we continue the process of generating nodes along the path, we either

1. generate a path that returns to a node arrived at earlier, thus forming a circuit,
or

2. complete a path to the destination.

If a circuit C is generated we subtract a constant K from each z7; for arcs (i,7) that
belong to the circuit, where

K= min zf. >0. 8.9

{Gecy Y (89)
At the node where the path first formed a circuit there must have been a positive
input flow, and therefore starting again at this node, the path-generation procedure
can be continued with the adjusted z7; values. Only a finite number of circuits can
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Figure 8-2: Decomposition of Flows

be removed from the solution by this procedure, since each new solution generated
by a circuit removal creates at least one more z7; whose adjusted value is zero.
Hence, after a finite number of circuit removals, a path from origin to destination
can finally be constructed with positive flow along it. A value 8 then can be assigned
to the path P by setting

¢= min_ a7 >0. (8.10)
{(.)eP}

A new feasible solution is now constructed by setting x}j = af; — 0 for (i,j) € P
and xj; = x; otherwise; its flow value is Fy = F — 6.

The entire path augmentation procedure can now be repeated with the new
problem if F; > 0. Again we note that there can only be a finite number of path

removals because each new solution has at least one more adjusted a:}j that is zero.

Finally, if ), = 0, for some k and some adjusted xfj > 0, starting with node
¢ and arc (i,7), the procedure can be followed to construct a circuit that can be

removed. In a finite number of steps, all residual circuits can be removed. ]

> Exercise 8.1 Apply the algorithm suggested by the proof of Theorem 8.1 to decompose
the flows in Figure 8-2.

> Exercise 8.2 Show that the knowledge of the capacities on the arcs is never used other
than to verify that the initial flows do not violate the capacities.

8.1.2 THE AUGMENTING-PATH ALGORITHM FOR
MAXIMAL FLOW

The maximal-flow problem for a network is to find the maximum amount that can
be transferred from the source to the destination given arc-capacity constraints
0 < 45 < hy; and the existence of a feasible flow x = x°. It is clear that solving the
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maximal flow problem is the same as solving the linear program

Maximize F
subject to Z x1; = —F,
JEAf(1)
Z Tik — Z Tp; = 0, fork=2,...,m—1, (8.11)
i€ Bf (k) JEAS (k)
Z Tim = Fa
i€ Bf(m)

0< Tij < hij, for all (’L,j) € A.

Definition (Flow Value): The variable F, the exogenous flow into the system,
is called the flow value.

Before we describe an algorithm for finding the maximal flow, we state and prove
two theorems.

THEOREM 8.2 (Existence of a Positive Maximal Flow) In a network
with bounds 0 < x;; < hyj for all (i,5) € A, the mazimal flow is positive if and
only if there exists a chain of arcs joining the source to the destination such that a
positive 0-flow along the associated flow path is possible.

Proof. The if part of the theorem is obvious. To prove the only if part, assume
on the contrary that the maximal flow F > 0 even though there exists no path with
a positive flow from the source to the destination. Let z;; = «f; with 0 < zf; < hy;
be the arc flows corresponding to this maximal flow F' > 0. By Theorem 8.1 it is
possible to decompose this positive maximum flow into a sum of path flows and
circuit flows, with at least one positive path flow. Along such a positive flow path
with positive flow 6 > 0 we must have

0<9§xioj§hija

because the method of decomposition is such that each z7; > 0 is represented as a
sum of nonnegative path flows along the directed arc joining 7 to j, contrary to our
assumption that no such path exists. ]

THEOREM 8.3 (Existence of an Improving Flow) Consider a network
(N, Ac) with arc-capacities 0 < x;; < hyj for all (i,j) € Ac. Given a feasible
flow z = af; with F = F,, a flow value F' > F, can be found if and only if there
exists a chain of arcs joining the source to the destination such that a positive 0-flow
augmentation along the associated flow path is possible.

Proof. The if part of the theorem is obvious. To prove the only if part construct
an associated network as follows. Subtract zf; from the upper bound h;; on arc

capacity to obtain a new upper bound h;; — z7; on the arc capacity. Add a reverse
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(a) Original network (b) Associated network with 6 flow

Figure 8-3: Original Network and Associated Network with 6 Flow

arc (j,4) with an upper bound x7; on arc capacity. (For example, see Figure 8-3
with capacitiesh;; shown near the nodes, and where the inclusion of a reverse arc is
shown with a positive capacity in the reverse direction.) If z7; = 0, the reverse arc
(4, 1) may be omitted.

We will now show that the two networks are equivalent. For the associated
network, let u;; represent the flow on the arc (4, j) corresponding to the arc (¢, j)
in the original network; and let v;; represent the flow on arc (j,1) if a reverse arc
(4, 1) was added to the associated network. Note that corresponding to the flow xy;
in the original network is the flow u;; = 0, vj; = 0 in the associated network. Then
if &;; is any feasible flow on the original network we can construct a corresponding
feasible flow on the associated network as follows:

_ o — i o
Ui = &j — Ty, Uji = 0, if Tij < gij < hija

. 8.12

Uij = 0, Vji = LBZQ]- — gij; if gij < :ij. ( )
Conservation of flow clearly holds in the associated network (see Exercise 8.3). On
the other hand, if we are given a feasible flow, u;;, v;;, on the associated network,
then we can construct a corresponding feasible flow &;; on the original network as
follows:

&ij = wij — vji + 7). (8.13)

Conservation of flow clearly holds in the original network (see Exercise 8.3).

Now we are ready to prove the only if part of the theorem. By equivalence of
the two networks, if a feasible flow with value F' + Fy > Fj exists for the original
network, then a feasible flow with value F’ > 0 exists for the associated network. By
the Decomposition of Flow Theorem 8.1 we know that this feasible flow with value
F’ can be decomposed into sum of positive 6 path flows from source to destination
and circuit flows such that the direction of these flows in any common arc is the
same as that of the directed arc. By equivalence of the two networks, it is easy to
see that any positive 6 path flow in the associated network corresponds to a positive
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f augmentation flow path along a chain of arcs joining the source to the destination
in the original network; where u;; = 6 corresponds to an increase in the flow along
arc (i,7) of the original network and v;; = 6 corresponds to a decrease in the flow
along arc (4,7) in the original network. ]

Exercise 8.3 In the proof of Theorem 8.3, show that conservation of flow holds when
converting the flows in the original network to flows in the associated network.

An algorithm used to find the maximal flow is the Augmenting Path Algorithm.
This algorithm is described in Linear Programming 1. Instead of adjusting the flows
in the network until an optimal flow is obtained, it adjusts the arc capacities by
the flow on each augmenting path. Upon termination, the optimal flows can be
obtained as the difference between the original and final arc capacities.

THEOREM 8.4 (Finite Termination with Integer Capacities) If the arc
capacities are all integers and a mazximal flow exists, the Augmenting Path Algo-
rithm will generate only a finite number of path augmenting flows whose algebraic
sum is the maximal flow.

Proof. Since the arc capacities h;; are assumed to be integers, the path flow § > 0
at each iteration must also be an integer § > 1. Therefore F' must be increased
by at least 1 in each iteration. Furthermore, the adjusted arc capacities for each
successive associated network must also be integral. We are given that the maximal
flow is finite, therefore the algorithm must terminate in a finite number of iterations
with the maximal flow. |

COROLLARY 8.5 (Finite Termination with Rational Capacities) If the
arc capacities are all rational numbers and a mazimal flow exists, the Augmenting
Path Algorithm will construct only a finite-number of path flows whose algebraic
sum is the maximal flow.

Exercise 8.4 Prove Corollary 8.5.

A systematic procedure (which is a variation of the shortest-path algorithm
discussed in Section 8.2) for finding augmenting paths is the fanning out (or breadth-
first unblocked search) procedure (see Linear Programming 1). Note that an arc is
said to be blocked if the flow on the arc cannot be increased because the arc flow is
equal to the arc capacity. This requires forming a tree of all the nodes j that can
be reached from the source s by a flow-augmenting path. At the end we obtain an
augmenting path with the smallest number of arcs.

THEOREM 8.6 (Edmonds-Karp Max-Flow Theorem) If a mazimal flow
exists, the Augmenting Path Algorithm, when used with the Breadth-First Unblocked
Search Algorithm to find the augmenting paths, will construct at most mn/2 path
flows whose algebraic sum is the mazimal flow, where n is the number of arcs and m
is the number of nodes.
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Proof. Let l;; = 0 and h;; be the original lower and upper bounds on arc flow
x;5. (Note that we assume for convenience a lower bound of I;; = 0 on all arc flow;
the proof does not rely on this, the lower bound could be any I;; < h;;.) Let 2° be
the feasible initial flow vector and let 7, 7 = 1, 2,.. ., be the flow vector at the end
of iteration 7; that is, 27 is the sum of 2° and the 7 maximum augmenting path
flows. Let AP, be the 7th augmenting path.

A breadth-first search implies that for all 7, given "~ !, the path AP, chosen
is any augmenting path with the minimum number of arcs. Finding such an aug-
menting path by the breadth-first unblocked search algorithm is similar to finding
the shortest path (see Section 8.2) and is done by assigning arc lengths of 1 to all
unblocked arcs and ignoring all blocked arcs.

Define for any iteration 7, given 271,

n-(k,1) = The smallest number of arcs from node k& to node ! in
paths P passing through nodes k£ and [ along which aug-
menting flow is possible from k to [. If no such P exists,
then n,(k,1) = co.

Then for any ¢ and any iterations (7,7 + 1),

n-(8,1) < Nrg1(s, 1)
n‘r(ivt) S 7]-,—+1(i,t).

The result is clearly true if in iteration 7 4+ 1 the arcs of the augmenting path
are either totally different or if these arcs are in the same direction as those in
iteration 7. Suppose that in iteration 7 + 1 arc («, 3) is traversed in the reverse
direction from that in iteration 7 and it is the first arc for which this happens on
the path. The distance to [ is clearly greater for iteration 7 4+ 1. The distance
from « to i is also clearly greater for iteration 7 + 1 because the argument can be
repeated for other arcs traversed in the reverse direction.

We say that (i,7) has become upper-blocked on iteration 7 if (i,5) € AP, and
x]; = h;j. Suppose (i,j) € AP, were upper-blocked on iteration 7 and (i, j) € APx,
xfj < hj; for 7 > 7, then there exists an [, where 7 < I < 7, such that (7,j) € AP,
and méj < hjj. This is clearly true because if an arc were upper-blocked then it
can never be part of the augmenting path AP: in the same direction unless it was
traversed in the opposite direction at some prior iteration and the flow reduced so
that it was no longer upper-blocked.

We say that (4,7) has become lower-blocked on iteration 7 if (i,j) € AP, and
zj; = 0. Analogously suppose (i,7) € AP, were lower-blocked on iteration 7, and
(i,5) € AP;, mfj > 0 for 7 > 7, then there exists an [, where 7 < | < 7, such that
(i,j) € AP, and xﬁj > (. This follows from arguments similar to those give above.

Next we show that if, for 7, some fixed (i,5) € AP, such that arc (i,7) is
upper-blocked (lower-blocked) and for 7 > 7, the same (i,j) € APz, then

Nr(s,t) +2 < (s, t).
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We will show the result for the upper-blocked case, the other follows by a similar
argument. As we have discussed previously, arc (4, ) must then be traversed in the
opposite direction at some iteration 7 < [ < 7 and the path lengths at iteration 7
are clearly greater than the path lengths at iteration [ which are clearly greater
than the path lengths at iteration 7. Clearly

77%(5,,7) Z n‘r(svi) +777'(iaj) = nT(svi) +1
n7 (i) > 0 (i, 7) + 0 (3,1) = 1+ 075, 1)

because 7, (i,7j) = 1 since it is the length of an arc (4,5). Adding the above two
inequalities we get

77%(57.7) + n?(ivt) > nT(S’i) + 777(]? t) +2.

Adding the equality nz(j,i) = n-(i,7) to the above inequality, we get

n=(8,7) +n=(3,3) +nz(i,t) > nr(s,9) + -4, 5) + -4, 1) + 2

or
n=(s,t) > n(s,t) + 2

where 7z (s,t) is the number of arcs in the shortest path from s to t at iteration 7
and 7, (s,t) is the number of arcs in the shortest path from s to ¢ at iteration 7.
We next show that the algorithm terminates by constucting mn/2 augmenting
paths or less, where n is the number of arcs and m is the number of nodes. If there
are n arcs, clearly we can do at most n iterations before one of the arcs must be
traversed again (or the maximal flow has been found). In this case the path length
must increase by at least 2 from the length at the start of the cycle of n iterations.
Because the maximum path length is m — 1, the maximum number of cycles of n
iterations is m/2; thus the algorithm terminates by constucting mn/2 augmenting
paths or less. |

8.1.3 CUTS IN A NETWORK

The search for an augmenting path can be time-consuming, especially in large net-
works. Thus, it would be nice to be able to recognize optimality without doing an
exhaustive search for an augmenting path that may not exist. It turns out that
it is sometimes possible to prove that no such path exists by verifying that the
conditions of the Ford-Fulkerson Maz-Flow Min-Cut Theorem (Theorem 8.8) are
satisfied. These conditions make use of the notion of a cut and its value.

Definition (Cut): A cut Q = (X,X) in a network is a partition of the node
set into two nonempty subsets X and its complement X = Nd\ X. If X
contains the source node s and X contains the destination node ¢, the cut is
said to separate node s from node t.
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Definition (Cut Value): 1f 0 < z;5 < hyj for all (i,7) € Ac, then the cut value
C ofacut Q= (X, X) is the sum of the capacities of the arcs that start in

set X and end in set X; i.e.,

C= > hij. (8.14)

{ (i,4)eAcliex jeX }

Definition (Saturated Arc): An arc is said to be saturated if it is used to full
capacity, i.e., z;; = hsj.

LEMMA 8.7 (Flow Value < Cut Value) The flow value F, of any feasible
solution, is less than or equal to the value C of any cut separating the source s from
the destination t.

Proof. Let Q = (X,X) be any cut separating the source node s from the des-
tination node ¢. Next sum the conservation relations (8.3), (8.4), and (8.6) for all
the nodes k of the set X'. By definition, x;; = —x;;. Therefore variables x;; and z;
cancel if both ¢ and j are in X. What remains is only the sum,

F= > T — > Tk (8.15)

{(k,j)eAclkeX jeX } {(i,k)EAc|kEX i€ X }

Next noting that 0 < z;; < h;j, we get

F< Z hi; —0=C. (8.16)
{(k,j)EAc|lkEX jEX }

THEOREM 8.8 (Ford-Fulkerson: Min-Cut = Max-Flow)  The maz-flow
value is equal to the min-cut value.

Proof. Lemma 8.7 says that any flow value F' is a lower bound for any cut value C'
and C' is an upper bound for F. Therefore it follows that if we can find an F' = Fy,
C = Cj such that Fy = Cy, then max F' = Fy and min C = Cy, the theorem will
then follow.

Assume we have found a maximal flow z = z° with flow value F' = Fj. Create
a cut Q = (X, X) by placing in the set X all the nodes that can be reached from
the source node by one or more flow-augmenting paths. In the set X, place all the
remaining nodes. The set X must be nonempty and contain ¢ because if ¢ belonged
to X there would be a flow-augmenting path from s to ¢ that could be used to
augment the flow contrary to the assumption that the flow is maximal. All directed
arcs (i, ), joining a node i € X to a node j € X, must be saturated; i.e., xg; = hij,
for otherwise j could be reached from the origin via some flow-augmenting path
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contrary to the construction of the cut. Moreover all directed arcs (j,1), joining a
node j € X to a node i € X, must have the arc flow z3; = 0, for otherwise j could
have been reached from the origin via some flow-augmenting path passing through 4
implying that j € X, contrary to the construction of the cut.

We next show that the cut value of Q is Cy = Fy. Sum the conservation
relations (8.3), (8.4), and (8.6) for all the nodes k of the set X. Variables z;; and

x;; cancel if both ¢ and j are in X. What remains is only the sum,

Fy = > T — > Tik- (8.17)

{ (k,j)EAc|keX jEX } {(i,k)EAc|keX ic X }

Since the (i,7) are all the arcs of the cut Q, and since, as we have just shown,
xj; = hij for i € X and j € X, and zf; = 0 for 7 € X and j € X, we have

Fy = > ap; = > hi; = Co, (8.18)

{(k.j)eAclkeX, jeX } {(k.j)eAclkeX jeX }

and the theorem min C' = max F is proved. |

Exercise 8.5 (Duality) Show that the dual of the maximal flow problem is the min-cut
problem. Hint: Set up the maximal flow problem as a linear program. Set up the dual
by letting u; be the multipliers corresponding to the nodes and let w;; be the multipliers
corresponding to the upper bounds on arc flows, and show that the system is redundant.
Show that the redundancy is such that we can set u; = 0, where ¢ is the destination node;
show that this implies that us = 1, where s is the source node. Next show that all the
remaining multipliers are each 0 or 1. Then show that for arc (i,j), we have w;; = 1 if
and only if u; = 1 and u; = 0. Use this last result to define the cut.

Exercise 8.6 If each such arc (7,7) has a lower bound l;;, not necessarily zero, on the
arc flow x;;, then show that the cut value is

C = > hij — > Lij. (8.19)

{G,j)eAcliex,jeX } {(,i)eAc|jeX icX }

8.2 SHORTEST ROUTE

The shortest-route problem is that of finding the minimum total “distance” along
paths in an undirected connected network from the source (or origin) node s = 1
to the destination node ¢ = m. The distances along arcs in the network can be
measured in some units such as actual miles, the cost or time to go between nodes,
and so on.

A simple method to solve such a problem assuming all arc distances are non-
negative distances (or costs) is a branching-out iterative procedure that fans out
from the source. Starting from the source it always picks on the next iteration the
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closest node i to the source either directly or via a node whose minimum distance
to the source has already been determined and records its distance. The algorithm
is terminated when the shortest distance from the source node to the destination
node is recorded.

LEMMA 8.9 (Validity of Dijkstra’s Algorithm) Dijkstra’s Algorithm (see
Linear Programming 1) finds the shortest path from the source to all nodes in the
network.

Proof. Recall that at each iteration 7, the nodes are paritioned into two subsets:

e The set of nodes S such that the shortest path from the source node s =1 to
each node j € S has been determined, and p; € S is the predecessor to node j
along the shortest path to node j.

e The remaining set of nodes Nd \ S such that the shortest path from each
k € Nd\ S to the source s has been determined via the nodes of S and py, € S
is the node along the path that is its predecessor node.

On iteration 7 + 1, the algorithm determines k* = argmin;ec ay s 7j- It next aug-

ments the set S to S U {k*} and deletes k™ from NVd \ S. Next it adjusts zj for the
remaining nodes k € Nd \ &

if Zpx + dk*k < 2, then set z; = Zx + dk*k and pr = K.

The proof then consists of showing that the shortest path from the source s to
K" is through px € S. Suppose that the shortest path was not through p,x but
instead thorugh some other node i € Nd \ S. By our selection procedure, zx < 2
and the distance along the path from i to k* is nonnegative. Hence it follows that
the distance to the source via i is greater than or equal to the distance to the source
via p.x. The algorithm then uses node k* to modify the labels of adjacent nodes
belonging to Md \ S and hence restores the property of NVd \ S. ]

Exercise 8.7 Construct an example to show that Dijkstra’s Algorithm can fail if there
are negative arc distances. Construct an example with some negative arc distances but
where the sum of distances around every cycle is nonnegative. Construct an example
with some negative arc distances but where the sum of distances around every cycle is
nonnegative. Demonstrate that Dijkstra’s Algorithm in the latter case finds the shortest
route from the source to destination.

8.3 MINIMUM COST-FLOW PROBLEM

The minimum cost-flow problem is to find flows z;; through a directed network
G = (M, Ac) with m nodes indexed 1,...,m and n arcs such that the total cost
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of the flows is minimized. This is a standard linear program with a very special
structure:

Minimize Z CijTij = %
(i,5)EAc
subject to Z Thi — Z xjr = by for all k € M, (8.20)
i€ Af (k) JEBf (k)
lij < Tij < hij for all (Z,j) S .AC,

where ¢;; is the cost per unit flow on the arc (i, 7); by is the net flow at node k; ;;
is a lower bound on the flow in arc (i,5); h;; is an upper bound on the flow in arc
(1,9); Af(k) ={j e Nd | (k,j) € Ac}; and Bf (k) = {i € Nd | (i, k) € Ac. Note that
by, takes on values that depend on the type of node k:

>0 if k is a source (supply) node;
b is ¢ <0  if kis a destination (demand) node;
=0 if k is a node for transshipment only.

The Network Simplex Method for solving the minimum cost flow applied is
described in detail in Linear Programming 1.

8.4 NOTES & SELECTED BIBLIOGRAPHY

Network optimization theory is a very beautiful field grounded on graph-theoretical meth-
odology. For further details on networks and their applications, see, for example, Ahuja,
Magnanti, & Orlin [1993], Bertsekas [1991], Ford & Fulkerson [1962], Lawler [1976], and
Linear Programming 1.

The min-cut max-flow theorem was first observed to be true for planar networks at
RAND in 1954 and published by Dantzig & Fulkerson [1956]. Soon thereafter the theorem
was established by Ford & Fulkerson [1956] for general networks. It was also discovered
independently by Elias, Feinstein, & Shannon [1956]. A comprehensive treatment of the
maximal-flow problem and related matters can be found in Ford & Fulkerson [1962].

The classical augmenting-path method for finding a maximum flow through a network
was developed by Ford & Fulkerson [1957] based on earlier work by Kuhn [1955] and
Egervary [1931]. Fulkerson & Dantzig [1955] and Dantzig & Fulkerson [1956] developed a
tree method for solving maximal flow problems which is also described in Dantzig [1963].
The approach constructs two subtrees, one branching out from the source and the other
branching out from the destination so that every intermediate node is reached by just one
of the trees. Then a connecting arc between the two trees and an associated path from
source to destination is found and the maximum flow along the path is determined.

J. Edmonds & R. M. Karp [1972] showed that an augmenting-path method called first-
labeled first-scanned finds a maximum flow in no more than mn/2 iterations, where n is
the number of arcs and m is the number of nodes in the network, regardless of what the
upper bounds h;; are on the arcs. This method then finds the maximal flow in O(n?m)
operations because it can be shown that each iteration of the augmenting-path method
takes only O(n) comparisons to find an augmenting path. A proof of Theorem 8.6 can also
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be found in Edmonds & Karp [1972]. Around the same time as Edmonds & Karp’s results,
Dinic [1970] independently designed a faster algorithm that requires O(m?n) operations.
Later Malhotra, Kumar, & Maheshwari [1978] developed an algorithm that requires O(m?)
operations. For networks that have n < m?, an algorithm designed by Galil [1978] takes
O(m®*n*?), and an algorithm designed by Sleator [1980] takes only O(nm logm) steps.

Shortest-path problems come up often in practice and arise as subproblems in many
network problems. Dantzig was among the first to propose a method for finding the
shortest path from a source node to a destination node in a network; see Dantzig [1960a]
based on an earlier RAND research memorandum. About the same time, Dijkstra [1959]
independently proposed a refined version of the same algorithm for finding the shortest
directed paths from a node to all other nodes. Both forms of the algorithm require at most
m(m—1)/2 comparisons; See also Bellman [1958]. Independently, Whiting & Hillier [1960]
also developed a shortest route algorithm. Johnson [1977] has shown that this bound can
be further reduced to O(nlog, m) operations, where k = max(2,n/m); see also Denardo
& Fox [1979], Dial [1969], Moore [1959], and Pape [1974]. A summary of various classical
algorithms can be found in Gallo & Pallottino [1988]. Improvements have continued to
be made in shortest-path algorithms; see, for example, Ahuja, Mehlhorn, Orlin, & Tarjan
[1990], Fredman & Willard [1994], Gabow & Tarjan [1989], Goldberg [1993], and Goldberg
& Radzik [1993]. Under the assumption that arc lengths are integers between 0 and L
where L > 2, Ahuja, Mehlhorn, Orlin, & Tarjan’s algorithm runs in O(n + m+/log L). For
theory and experimental evaluation of shortest-path algorithms, see Cherkassky, Goldberg,
& Radzik [1996]. In their paper they show that some algorithms behave in exactly the
same way on two networks, one of which is obtained from the other by replacing the arc
lengths by the reduced costs with respect to a potential function; that is, the algorithms
are potential-invariant. This implies, for example, that a shortest-path problem with no
negative cycles is equivalent to one with nonnegative arc lengths.

For additional details, including implementation details on the Network Simplex Meth-
od, see, Ali, Helgason, Kennington, & Lall, [1978], Bradley, Brown, & Graves [1977],
Chvétal [1983], Cunningham [1979], and Mulvey [1978].

An example of cycling in the Network Simplex Method can be found in Cunningham
& Klincewicz [1983]. To the authors’ knowledge, cycling, as a result of degeneracy, has
not been encountered on any practical problem. It is not known if cycling can occur in
minimum-cost network-flow problems if the entering variable is chosen based on the usual
rule of picking the one which has the most negative reduced cost. The interested reader
can find strategies used to prevent the possibility of cycling, for example, in Bazaraa,
Jarvis, & Sherali [1990] and Chvatal [1983].

The Network Simplex Method is very efficient in practice; in fact, this network adap-
tation of the Simplex Method for networks is typically 200 to 300 times faster than the
Simplex Method applied to a general linear programs of the same dimensions encountered
in practice. However, pathological examples can be constructed in which the Network
Simplex Method can take a very large number of iterations. Zadeh [1973] has constructed
a sequence of transshipment problems such that the kth problem has only 2k + 2 nodes
but if we choose the incoming arc by picking the most negative reduced cost, the Network
Simplex Method takes 2% + 28=2 — 2 iterations.

An area that we have not covered is that of project planning, scheduling, and coor-
dination of various activities. Methods to do this are called PERT (Program Evaluation
and Review Techniques) and CPM (Critical Path Method). Many references exist for such
methods; see Hillier & Lieberman [1995]. One such reference relating this to networks is
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Figure 8-4: Example to Show Matching

by Elmaghraby [1977].

8.5 PROBLEMS

8.1

8.2

Bertsekas [1991]. Consider a bipartite graph that consists of two sets of nodes
S and 7 such that every arc in the graph has its tail node in S and its head
node in 7.

(a) A matching is defined to be a subset of the arcs such that no two arcs are
incident to the same node; for example, arc (a, e) in Figure 8-4. A mazimal
matching is defined to be a matching with a maximal number of arcs; for
example, arcs (a,d) and (c,e) in Figure 8-4. Show that the problem of
finding a maximal matching can be formulated as a max-flow problem.

(b) A cover C is defined to be a subset of S U T such that for each arc (i, j)
in the graph either ¢ € C or j € C (or both). A minimal cover is defined
to be a cover with a minimal number of nodes. Show that the number of
arcs in a maximal matching and the number of nodes in a minimal cover
are equal. Hint: Use the max-flow/min-cut theorem.

(¢) Consider an n X n assignment problem of assigning persons to jobs where
not every man is eligible for every job. Prove that this assignment problem
is not feasible if and only if there is a subset of jobs ¢ that are the only jobs
p persons are eligible for, and p > q.

Minimum-Cost Multi-Commodity Flow Problem. Consider a network with M
source-terminal pairs (sg,tr) and let the required flow value between s, and
ty be Fy for k = 1,..., M; that is, the flow between each pair (sg,tx) can be
thought of as the flow of a different commodity. Suppose that each arc (i,7)
of the network has arc capacity h;; that is an upper bound on the total flow
of all commodities on the directed arc (i,7). Let ¢;; be the cost per unit total
flow on arc (4,7). Assuming that all arcs are directed arcs and all flows are
nonnegative on these arcs, the goal is to find a minimum-cost feasible flow that
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8.3

8.4

8.5

8.6

Source Destination

Figure 8-5: Data for a Max-Flow Problem

can be decomposed into M feasible flows Fj. Formulate this problem.

Set up the maximal-flow problem shown in Figure 8-5 as a minimum cost-flow
problem and solve it by the Network Simplex Method.

Given any feasible solution x, not necessarily integral, to the minimum cost-
flow problem (8.20) with integer b; and integer lower and upper bounds on z;;,
show that it is possible to find an integral feasible solution y that is a close
approximation to x in the sense that

|yi]- — CIZ’ijl <1, for all (’L,]) € A.
David Morton [1995]. Let A'c C Ac. Let 2} be the optimal solution to

Maximize Tis = 21
subject to Z Thj — Z i = 0 for all k € Md,
JEAF(k) i€ Bf (k)
0 S Tij
Tij

< wi; for all (i,7) € Ac\ Ac
<0 forall (i,5) € A%

and let 75 be the optimal solution to

Maximize Tts — Z Tij = 22
(i,5) € A¥e
subject to Z Thj — Z zg = 0 for all k € N,
JEAf(K) i€ Bf (k)

0 < x5 for all (4, j) € Ac\ A'c.

IN
S
<.

Prove z*f = zg.
Ph.D. Comprehensive Exam, September 25, 1976, at Stanford. Given a network
flow problem

Ax=b, >0 (8.21)

where each column has exactly two nonzero coefficients of which one is +1 and
the other —1. It is assumed b has all integer components and that the program
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8.7

8.8

is feasible. The objective function is of the form
Z ¢;(z;) = min, (8.22)
j=1

where ¢;(z;) are convez functions.

(a) Show that in general the optimal solution can have fractional values for z;.

(b) Suppose an optimal solution is desired in integers. Prove that if the ¢;(z;)
are replaced by the broken line fit ¢;(x;) where the breakpoints occur at
integral values of z;, that system (8.21) and (8.23),

Zd_)j(xj) = min, (8.23)

solves to yield an integer solution if unique.
(¢) How would you solve (8.21) and (8.23) for an optimal integral solution?
(d) Consider the program

> 6(a5) = 2 (min)
" Fi(z) =0 fori=1,...,m,

where F;(z) are general convex functions in z and ¢;(z;) are convex in x;.
Let ¢;(z;) > ¢j(z;) and ¢;(z;) = ¢;j(x;) for all integral x;. Prove, if the
system

> ¢i(z;) = z (min)
=1
Fi(z) =0 fori=1,...,m,

solves and yields an integer solution, that this is the optimal integral solu-
tion to

5" 65(;) = = (min)
j=1
Fi(z) =0 fori=1,...,m.

(e) What is the relationship between questions (c¢) and (d).

Ph.D. Comprehensive Exam, September 24, 1988, at Stanford. Consider a di-
rected graph (Nd, Ac) with m nodes and n arcs. Assume each arc (i,j) € A
can be traversed in unit time at a cost c;;. Invent an O(m?n) running-time
algorithm for finding a simple circuit (i.e., a directed simple cycle) in the graph
for which the ratio of the cost to traverse the circuit to the time to traverse it
is as small as possible. Be sure to justify your answer.

Ph.D. Comprehensive Exam, September 23, 1989, at Stanford. Let Nd be the
node set and let Ac be the arc set of a directed network (NVd, Ac). Let s and t be
two nodes. For arc (4,j) € Ac let d;; (which may be positive, zero, or negative)
be its specified “length.”
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8.9

We desire to find the shortest directed route from s to ¢ that does not use any
arc more than once. Is the following linear program a proper formulation of this
shortest-route problem?

Minimize Z dl‘jxi]‘
(i,5)€Ac

subject to Y @iy = > ik, JF St
i k

Z:L’Sk =1
k
Tij 2 0.

If you are not satisfied with the formulation, state why. Can you do better? Ar-
gue your case. Comment on the difficulty of the problem; under what conditions
is the problem easier?

Ph.D. Comprehensive Exam, September 22, 1990, at Stanford. Given a network
G = (V, E) with node-set V' and edge-set E, and given specified nodes s and ¢,
a flow z from s to t means x = (z; | j € E) > 0 such that

Yooay = > a;=0 forallieV\{st}, (8.24)

{71H(5)=i} {17 (5)=4}

where H(j) denotes the head of edge j and T'(j) denotes the tail of edge j. The
amount f(z) of the flow is defined to be either the net flow out of the terminal

node
f@y= Y wm— >

{41H(5)=t} {iIT ()=t}
or the net flow into the source node
f@)y=—= > @+ >
{i1H(5)=s} {i1T(5)=s}

Given lower bounds 8 = (8; | j € E) > 0, we say that flow x satisfies the lower
bounds if x; > (3; for all j € E. For S C V, let §(S) be the set of directed arcs
from S to V'\ S and let §(V \ S) be the set of directed arcs from V \ S to S.
By definition

5(S)={jeE|T()eS H(G)eV\S}
S(V\S) ={jeE|T()eV\SH() eV}

(a) Prove algebraically that if x = (z; | j € E) is a flow from s to ¢ satisfying
the lower bounds, and if 6(V \ S) =0

f@)> > 8

J€(9)

(b) Assume that there is a directed path from t to s (i.e., there is no cut
separating s from ¢ such that §(V \ S) = @) and assume z = (z; | j € E)
is a flow from s to t satisfying the lower bounds. How can you obtain flows
x’ satisfying the lower bounds such that f(x) — —oc.
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8.10

(¢) Give an algorithm for the following: Given a flow x from s to ¢ of amount
f(z) > 0 satisfying the lower bounds, find a flow z’ from s to ¢ of amount
f(z") < f(z) satisfying the lower bounds or else find a cut (S, V \ S) sepa-
rating s from ¢ such that 6(V \ S) = 0 and

f@) =" B (8.25)

JES(S)

(d) Use (a) and (c) to prove: If G has a flow from s to ¢ satisfying the lower
bounds, and a cut (S,V \ S) separating s from ¢ such that §(V \ S) = 0,

then
*
F*=max ) B, (8.26)
JES(S)

where F* is the min flow from s to ¢ satisfying the lower bounds.
(e) Given costs ¢ = (¢; | j € E), the cost of flow z is

T _— . .
cr= CiT;

{jeE}

by definition. Given dual prices (multipliers) y = (y; | ¢ € V), define
reduced costs ¢; by

G =6 +YrG) — Yuw
for j € E. Let 2" = (acj< | j € E) be a flow from s to t satisfying the
lower bounds, i.e., x’j > ;. Suppose there are prices y = (y; | @ € V),
¢j = ¢j + Yr@) — Yuqy such that

() ¢ >0foralljeE,
(0) a5>8=¢=0

e Prove that ¥ minimizes ¢’z over all flows z from s to ¢ of amount
f(z*) satisfying the lower bounds.

e Prove that 2* also minimizes ¢’z over all flows z from s to ¢ of amount
f(z*) satisfying the lower bounds.

Ph.D. Comprehensive Exam, September 21, 1991, at Stanford.

Konig-Egervdry Theorem: Let M be a (0, 1) matrix with m rows and n columns.
The Konig-Egervary theorem states that the largest cardinality of a set of 1s
in M, no pair of which is in the same row or column, is equal to the smallest
cardinality of a set of rows and columns containing all 1s in M.

Philip Hall’s Theorem of Distinct Representatives: Let Xi,Xa,..., Xy, be k
given finite sets. The collection {z1,z2,...,zx} of one element z; from each X;
is a sytem of distinct representatives if x; € X; for all ¢ and z; # x; for i # j.
No such system of distinct representatives exists if and only if there exists an
index set N' C {1,...,k} such that the number of elements in U;en X; is less
than the number of elements in N.

Dilworth’s Theorem on the Decomposition of a Finite Partially Ordered Set
into Chains: For a given partial ordering S, a chain of elements is a sequence
$1,82,... ,8m where the elements satisfy s; < s;4+1. The minimum number of
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chains, such that every element is contained in at least one chain, is equal to
the maximum number of incomparable elements; i.e., where by definition s; and
s; are incomparable elements if neither s; < s; nor s; < s;.

(a) Ilustrate the Konig-Egervéry theorem for the matrix

01011010
00100001
00000100
M= 00110000
00000100
00010000

(b) Do three of the following:

e Prove the Konig-Egervédry theorem from the max-flow min-cut theo-
rem.

e Sketch a proof of the Konig-Egervary theorem using linear program-
ming duality.

e Show how Philip Hall’s theorem on systems of distinct representatives
is a consequence of the Konig-Egervary theorem.

e Show how Dilworth’s theorem on the decomposition of a finite partially
ordered set into chains is a consequence of the Kénig-Egervary theorem.



CHAPTER 9

GENERALIZED UPPER
BOUNDS

Large-scale systems typically have a special structure that can be exploited to gain
computational advantage. It is routine, in practice, to take advantage of the large
percentage of zeros in a large-scale problem. In other instances, there are linear
programs that have upper bounds on subsets of variables such that each variable
appears in at most one subset. Such constraints are called generalized upper bounds.

Quite often, linear programs have a set of general constraints and a set of con-
straints that are upper bounds on partial sums of variables such that each variable
appears in at most one of these partial sums. Such partial sum upper-bound con-
straints are called generalized upper bounds or GUB constraints. In practice, the
GUB constraints are typically much more than the other constraints.

9.1 PROBLEM STATEMENT

Consider a linear program with m + [ constraints with the properties that:
1. Each variable has at most one nonzero coefficient in the last [ constraints.
2. All of these nonzero coefficients are positive.
3. The last [ constant terms (right-hand sides) are positive.

> Exercise 9.1 Show that the variables can be rescaled so that all the coefficients in the
last [ equations are 1 and the constants in the last [ equations are also 1.

251
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For convenience we assume that the rescaling of Exercise 9.1 has been done.
Furthermore, if some of these last [ constraints were < inequalities, we convert
them to equations by the introduction of slack variables.

Definition (GUB Set): For i = 1,...,1, let S; be the ith GUB set, i.e., the
set of indices of variables with a coefficient of 1 in the (m + i)th row. Also let
So be the set of indices corresponding to variables with only zero coefficients
in the rows m + 1 through m + [. These definitions imply that each variable
index j belongs to exactly one set S; for i =0,1,...,1.

A linear program with generalized upper bounds can then be written as:

Minimize Z cjrj + Z czr; + -0+ chxj =z

J€So JEST JES;

subject to E a;x; + E ai;T; + -0+ E ayxz; = b
JjE€So JES1 JES;

E a2;T; + E azjr; + -+ + E az;T; = ba
jESo JES1 JES;

: : : : : (9.1)
Z AmiTj + Z AmjT; + - + Z AmjTj = b
J€So JES1 JES|
>
JES1

Z:szl

JES;
z > 0.

The last | equations are the GUB constraints. In matrix notation, it can be written
as:

l

Minimize E cjxj + E E CjT; = 2

JE€So =1 j€ES;
l (9.2)
) Aej A (b
subject to Z<0)xj+zz<€z‘>xj<€>
JESo i=1 jES;
x>0
where e; is an [-vector with a 1 in position j and Os elsewhere, b = (b1, b2, ... , by, ),
and e = (1,1,...,1)T is an l-vector. Next, without loss of generality, we assume

that the equations are linearly independent.
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9.2 BASIC THEORY

LEMMA 9.1 (Each GUB Set Contains at Least One Basic Variable) Gi-
ven a basic solution to (9.2), then for each GUB set S;, fori=1,...,1, there exists
at least one j € S; such that x; is basic.

Exercise 9.2 Prove Lemma 9.1.

Exercise 9.3 Construct an example that demonstrates that it is not necessary to have
any basic variable z; such that j € So.

THEOREM 9.2 (Bound on the Number of GUB Sets with More Than
One Basic Index) The number of sets S; for 1 < i <1 containing two or more
basic indices is at most m.

Proof. There are m+1 variables that are basic. Of these, [ indices are in different
sets by Lemma 9.1. Thus, of the remaining m basic indices, p can be distributed to
So and at most m —p to S;, i = 1 < i < [. Thus at most m — p GUB sets can have
two or more basic indices. By Exercise 9.3, p can be zero. |

Definition (Plural (or Essential) and Singleton (or Inessential)): For 1 <
i <, the GUB set S; is said to be a plural (or essential) set with respect to
a basic set B if it contains two or more basic variable indices; all other GUB
sets are singleton (or inessential) sets since by Lemma 9.1 they have exactly
one basic variable index. With this definition, Theorem 9.2 can be restated:
the maximum number of plural sets is m.

Definition (Key Basic Index/Variable, Artificial): For each GUB set S; we
choose one basic variable index j € S; to be designated as a key basic index and
its corresponding basic variable x; as a key basic variable. For the singleton
sets, there is exactly one basic index so this choice for key basic is unique. For
plural sets, the choice as to which one is designated as the key is arbitrary.

For an example in detached coefficient form see Table 9-1 where the basic variable
are denoted by e above and the key variables are denoted by “key” below. Notice
that if the columns of the basis are rearranged so that the columns corresponding
to the key basic variables are moved to the right, then the basis has an identity in
the lower-right corner.

9.3 SOLVING SYSTEMS WITH GUB
EQUATIONS

In practice, (9.2) will have many GUB constraints; in fact, often [ > m; for example,
m = 50 and [ = 1000. By taking advantage of the structure we shall see that
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[ ] [ ] [ ] [} [ ] [ ] [ ] [ ]
r1 X2 r3 T4 X5 Tg 7 X8 T9 Z10 b
1 0 2 0 3 4 5 1 -1 —-12|15
1 1 -1 0 2 1 4 2 -3 6 7
0 0 0o 1 0 0o 0 O 0 0 0O
1 1 1 1
1 1
1 1
1 1 1
1 11 1

k k k k k

€ € € € e

y y y vy y

Table 9-1: An Example of GUB Constraints and Key Basic Variables

T1 T3 Tq | T2 T5 Te T7 X9
1 2 00 3 4 5 -1
1 -1 01 2 1 4 =3
o o0 1{ 0 O O O O
1 1] 1
1
1
1
1

Table 9-2: An Example of a Reordered Basis for GUB Constraints

we solve m X m equations on each iteration of the Simplex Algorithm instead of
(m+1) x (m +1) equations.
Suppose the columns of a basis for (9.2) have been reordered so that the last [

F
I E
correspond to the nonkey basic variables. The basis then has the following special
form:

columns (G> correspond to the key basic variables and the first m columns

m
m: F G

where [; is an identity matrix of dimension [ because it corresponds to the key basic
variables, and F has a special form, i.e., each column has at most one 1 and all the
rest 0; see, for example, Table 9-2.
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Note that E can be eliminated by multiplying B on the right by the matrix

m
v="" (I"?E 2) (9.4)
This results in FoaE G —
BV—< 70 Iz)_<0 Il>' (9.5)
Exercise 9.4 Show that
vl= (Ig 2) (9.6)

Exercise 9.5 Show that because of the special structure of E, the matrix multiplication
GE can be performed very efficiently on a computer.

Let the basic indices be j; for £k = 1,...,m 4+ [; S; be the gth GUB set for
1 < ¢ <1, Sp be the set of indices not in any of the GUB sets; and k, € S, be the
key basic index in set S;. Then the matrix W = F — GE, called the working basis,
has the following form for any column k of W:

W — { Aejy, — Agi, if ji € Sy for some 1 < g <1; (9.7)

A’jk if ji € So.

THEOREM 9.3 (Working Basis Is Nonsingular) The matric W = F—GE
is an m X m nonsingular matriz.

Proof. Since B is nonsingular and V' is nonsingular, their product BV is non-
singular, implying that W is nonsingular. |

Using equation (9.5), a system of equations whose matrix of coefficients is either
B or BT can be solved very efficiently. First consider the system:

BJ?B:<2), 6262(1715"'71)T) (98)

where x,, the basic solution, is of dimension m + . Multiplying B on the right by
V and letting y = V~1z,, we get

BVV 1z, = (V([)/ g) y = (2) (9.9)

Let y = (y,,, v, ) where y,, consists of the first m components of y, and y, consists of
the last [ components of y. Given W ™! or some factorization of the working basis
W, we can easily solve for y by setting y, = e and then solving

Wy, =b—Ge=b— > A (9.10)
JjEK
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where K is the set of [ indices corresponding to the key basic variables. Then z, is
obtained from:
Yu
z, =Vy= . 9.11
s =Vy (yL - EyM) (9.11)
Because of the special structure of E, the operation Ey,, amounts to computing
partial sums of the components of y,,; that is, the kth component of the product
Ey,, is given by
[EyM]k = Z [yM]’i’ (9'12)
i€y,
where T, = {i | j; € BN Sk, ji not key,i =1,....,m+1}, and j1,..., jm+ are all
the indices of the basic variables.
Using the Revised Simplex Method, if the incoming column s € S, for some

1 < g <1, determine the reresentation of (i's ) in terms of the basis by p obtained
q

Bp= (A's) :
€q
This computation can be done in a manner similar to that for z,. Let p = Vy;

then, in this case, y, = e, and y,, is the solution to

WyM = Aes — Geq = Aes — Goq~ (913)

as the solution to

The vector p is then obtained by computing Vy.

Exercise 9.6 How would the computations for determining p change if the incoming
column s is in the set Sp?

Similarly we can easily compute the reduced costs o,, = ¢, — N1 by first solving
BTr = ¢,. In order to do this, first multiply through by V7T to give VIBTr = Ve,.
This gives

(5 ) ()= e (b Elk) o

where once again the subscripts M and L on ¢, imply the first m components and
the last | components of ¢, respectively. As before, the special structure of E
makes the multiplication E”[c,], on the right-hand side of (9.14) easy, because each
column of E (or row of ET) has at most one nonzero component, which is unity.
For notational convenience, let y = E7[c,],, then

S leglmar if i € Sk;

Yi = { 0 otherwise; (9-15)
fori =1,...,1. Given W1 or some factorization of W, the system (9.14) is easy
to solve. The vector m,, is first obtained by solving WTr,, = [c,],, — E¥[c,], and

then 7, is obtained by substitution from the last [ equations in (9.14) as

T, = [CB]L - GTFM' (916)
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Once 7 is obtained, the reduced costs o, can be obtained as follows:
oy =cy— Nr=c, — AL m,, — HL 7, (9.17)

where H is the matrix of coefficients of the last [ equations. Since the columns of H
are all zeros except possibly one equal to +1, the third term in Equation (9.17) can
be computed very efficiently.

Exercise 9.7 Show how to compute (Hey) 7, efficiently.

9.4 UPDATING THE BASIS AND WORKING
BASIS

So far, we have shown, given a factorization of W, that the steps of the Simplex
Algorithm can be performed very efficiently. At each iteration of the Simplex Al-
gorithm we need only maintain a factorization of W that is a matrix of size m x m
instead of a factorization of B that is a matrix of size (m +1) x (m + 1) where [ is
the number of the GUB constraints, which can be very large relative to m.

Now we need only show that we can efficiently obtain a new basis representation
= . F
B from the old basis B = (E I
factorization) of W can be computed efficiently from the inverse (or factorization) of
W. For simplicity of exposition, let j, be the index of the outgoing variable where r
is the rth column of B and let s be the index of the incoming variable where s € S;

) at the next iteration such that the inverse (or

for some i =1,...,l or s € Sy. Then <12°Ss> is the incoming column where

(9.18)

g Jew a unit [-vector if j € Sy for some k=1,...,1,
1 0 a zero l-vector if j € Sp.

There are three cases to consider depending on whether z; is a non-key basic
variable, x;_is a key basic variable belonging to a singleton set, or x;, is a key basic
variable belonging to a plural set.

Case 1: z;, leaving the basis is non-key. In this case 1 < r < m (because of
the reordering of the basic columns, the non-key basics are in the first m
columns of B). The new basis B is given by

_ a F = F+ (Aes — Au; )eT,
B— (Pf G), in £ T EH e = Asi)ey
E 1, E=E+ (& —d)e,

(9.19)

where e, is an m-dimensional unit vector whose rth component is 1 and all
other components are 0. Now F can be eliminated from the matrix B in (9.19)
by multiplying B on the right by the matrix

V:(I’% 2) (9.20)
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Thus ~ ~ -
= = F-GE @G W G
BV_( 0 Il)_(o Iz)’ (9.21)
where
W =F—-GE
= W+ [(Aes — Gd®) = War]el, W =F—GE (9.22)

Equation (9.22) implies that W is obtained from W by substituting for its
rth column W,,., the column Aes — Gd®, a rank-one change. Thus, the inverse
of W can be easily obtained from the inverse of W; or the LU factors of W
can be easily obtained from the LU factors of W (see Linear Programming 4
for details). For the purpose of examples in this section, we shall use W~! to
obtain W~!. Letting

h=W " Ae — Gd®) = W h, (9.23)

we have

W= (1 (= e)el) W= (1o - e)ed Wt 020

T
(
> Exercise 9.8  Show that Wa, = F.,. — Gd’" and verify (9.22).

> Exercise 9.9  Verify (9.24).

Case 2: z; leaving the basis is key in a singleton set. In this case the in-
dex r satisfies m < r < m+1 (because of the reordering of the basic columns,
the key basics are in the last [ columns). Let # = r —m, then j, € Sy, the rth
GUB set. Since r is from a singleton set, we know that E;e is a zero row. Now
we also know by Lemma 9.1 that at least one variable from each GUB set S;
must be basic for i = 1,...,l. Therefore, because z;_ is from a singleton set,
the incoming variable 2, must be such that s € S;. Then B is the same as B
except column 7 of G is replaced by A,ss; thus

B=(E C) with G =G4 (Aes—Guop)el (9.25)
E I r

where e; is an [-dimensional unit vector whose 7#th component is 1 and all other
components are 0. Note that Ger = A,j, in the equation (9.25). Because, in
this case, there is no change to E, the matrix V used to multiply B on the
right in order to eliminate E from B is the same as V, i.e.,

V:V:<I% 2) (9.26)
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__ (F-GE G\ (W @&
BV( 0 Il)(o Iz)’ (9.27)

W =F —GE — (Aes — Asj.)ef E =W

Thus

where

since egE = Fre = 0, a zero-row vector because x;, is a key basic variable in
a singleton set. Thus, there is no change to the working basis W.

Case 3: z; leaving the basis is key in a plural set. In this case the index r
satisfies m < r < m + [ (because of the reordering of the basic columns, the
key basics are in the last [ columns). Let # = r — m, then j,. € Sz, the rth
GUB set. Recall that the selection of a variable as a key basic variable was
arbitrary. Therefore this case can be handled by redesignating one of the
other basic variables belonging to the plural set as the key basic and then
applying Case 1. To do this first select a column k from the first m columns
of B with the property that ji € Sy and designate ji as the new key basic
variable for set S;. Then z;. is no longer a key basic variable and the basis
can be updated by Case 1.

To redesignate ji € S; as the key basic variable instead of j. € Sy, we
interchange columns k and 7 of the basis B to obtain

) G = G+ (Fop — Gos)e
,  where _

~ T
(F G o) (9.28)
F=F+ (GO’F - ok)eza

B =
E I

where ey is an [-dimensional unit vector whose 7th component is 1 and all
other components are 0, and e; is an m-dimensional unit vector whose kth
component is 1 and all other components are 0. The updated matrix F is the
same E because a 1 in column k is replaced by another 1 from the identity
matrix column 7. Thus the matrix V used to multiply B on the right to
eliminate F from B is the same as V, i.e.,

T I, 0
vv<E Il)' (9.29)

Multiplying B on the right by V =V we get

BV = (ﬁOéE f) = (? g) (9.30)

The matrix W is related to the original matrix W in a very simple way. The
original nonkey columns W,; for j; € Sy are:

Wei = Foi — Gop for j; € S5.
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including non-key column k, which will be designated as the new key variable.
Switching columns & and r in the basis B means that we switch columns F,
and Ges. This results in

Wok:Gof_ ok — —VWek

Wei = Fai — Fap = Wa; — Wap, for j; € Sp and i # k.

In matrix notation, the matrix W can be represented as
W=wT (9.31)

where T is a row elementary matrix whose kth row, T,, is defined by:

_ —1 if jz S Sf;
T _{ 0 otherwise. (932)

That is, T is an elementary matrix of the row form with —1 at the intersection
of the kth row and diagonal and —1 or 0 elsewhere in the kth row.

Once the new B is obtained, we apply Case 1 since now the outgoing variable
is no longer a key basic variable.

Once again, it is possible to update W~! to W~! or obtain the LU factors
of W from the LU factors of W. In order to obtain W~!, first compute
T='W=1 = TW~! (see Exercise 9.11). Next use Equation (9.24) to apply
Case 1 to obtain the final updated inverse.

For updating the LU factors, let h = Aq,s — Gd®, apply Case 1 with r being
replaced by k, 1 < k < m, to obtain

W= (W +(h— [WT].k)e{T)T, (9.33)

which is in a form suitable for updating the LU factorization (see Linear
Programming 4).

> Exercise 9.10  Derive the general form W = WT of equation (9.31).

> Exercise 9.11 Show that 77! =1T.

LEMMA 9.4 (T? =T) Every matriz T that is a row (or column) elementary
matriz where the diagonal element is —1 has the property that T? = I.

> Exercise 9.12  Prove that the column elementary matrix of Lemma 9.4 is of the form
T=1- Qekef + uef — ukekef (9.34)

for some vector u.
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Exercise 9.13 Prove Lemma 9.4 using Exercise 9.12.
Exercise 9.14  Prove (9.33).

Exercise 9.15 Suppose that the variables in the last | constraints have at most one
nonzero coefficient each. Show how to generalize the GUB theory to this class of problems.

Exercise 9.16  Suppose that instead of the last [ constraints we have [ sets of the
constraints, each of the form

Zafnh,jxj < ban, fork=1,...,K;, i=1,...,L

JES;
Show how to generalize the GUB theory to this class of problems. Illustrate for K; = 2
fori=1,...,L.

Example 9.1 (Illustration of GUB Procedure) Consider an example with m = 3
and [ = 5 to minimize z = —z; subject to the following constraints in detached coefficient
form where the basic columns are designated by e above and the key basic columns are
denoted by “key” below in (9.35).

[ ) [ ] [ ) [ ] [ ) [ ] [ ) [ ]
Tr1 X2 T3 X4 Ts X X7 Ty Ty  T1o b
1 0 2 0 3 4 5 1 -1 —-12 |15
1 1 -1 0 2 1 4 2 =3 6| 7
0 0 0 1 0 0 0 0 0 0 O
1 1 1 1
1 1 (9.35)
1 1
1 1 1
1 1 1
k k k k k
e e e e e
y y y y y
The columns associated with the GUB sets .S; are:
So 51 SQ 53 54 55
Aol | Aez Aez Aes| Aes | Aes | Aer Aes | Aeg Aeio | b (9.36)
0 el el el €2 €3 €4 €4 €5 €5

Let the initial basic set be B = {1,2,3,4,5,6,7,9} and let the key basic variables be
T2, x5, Te, X7, Tg. Then the basic set can be rewritten as

B={j1,j2,--.,js} ={1,3,4;2,5,6,7,9}
and, the basis is written as:

F| G Aol AQ3 Ao4 |A02 Aos AoG Ao7 AOQ
B = = .
E|I; 0 e e e1 e es es e
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The working basis W is then given by

1 2 0
W=F—GE=(Aa Aw—Aw Au—Aw)= <1 -2 —1>.

0 0 1
/2 1/2  1/2
W= (1/4 —1/4 —1/4).

Its inverse is

0 0 1
On solving Bz = b using equations (9.8), (9.9), (9.10), and (9.11), we get
T
1 1
= -0,-,1,1,1,1) .
Tp (37270a27 » Ty >

Next using (9.14) we get the prices

1 1 11
71-:(7.‘-M77TL): _57_57_5;57

) )

N ©

T
7_2> )

and from (9.17) we find that the reduced costs corresponding to zs and z19 are (—3, —1),

thus the smallest reduced cost occurs corresponding to xs. The representation, p, of
AQB
€4

we get

N | Ot
N | Ot

in terms of the basis is obtained by solving Bp = (é'g ) . Using equation (9.13)
4

T
11
p=(-3-2,0= 1,0 .
p ( 37 270127070707 70)

Next we determine the variable leaving the basis by

0, = [11]11n0 [E%]Z =1 which gives r =4 or r = 7.
pli> i

There is a tie, and we break it by arbitrarily choosing r = 7 and, in this case, j, = 7.
Now j, € S4, where Sy is a singleton set for the current basis. This is Case 2, where the
working basis does not change.

We replace x7 by xs as the key basic variable and thus obtain the new basic set as
B=1{1,3,4;2,5,6,8,9}. The new G matrix is given by

G = [Ae2, Aes, Aes, Aes, Aeg].
The new basic solution is then
xz = (6,1,0;0,1,1,1,1).
The new multipliers 7 are given by:

1 1 11
71-:(7.‘-M77TL): _57_57_5;57

N Ot
N| Ot
N[ o

) )

T
,_2) .

Notice that m,, does not change because W has not changed and [cz]a has not changed;
also notice that only one component (the 4th) of 7, changes. After computing the reduced
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costs for the nonbasic variables x7 and x10, we find that they are (3, —1) and thus z1 is

Ae10

a candidate to enter the basis. Solving Bp = ( P >, using equation (9.13) we get
5

p=(-1,-5,0;50,0,0,1)".

Next we determine the variable leaving the basis by

. [-TB]'L
0, = min —— =
[2):>0 [Pl

The new basic set is B = {1, 3,4;10,5,6,8,9}. However, z2 is a key basic variable; this
is Case 3. We first designate another variable in the set, x3, as the key basic variable (in
place of x2) so that the new basic set will be B = {1,10,4;3,5,6,8,9}. This is done by
postmultiplying W by T, which is defined by (9.32) and in this case is

1 0 0
T=10 -1 -1]|.
0 0 1

We can easily update W ! by premultiplying it by 7! which is the same as premultiplying
it by T. The new W' matrix is

/2 1/2  1/2
TW‘1:<—1/4 1/4 —3/4).
0 0 1

0, with r =4 or j, = 2.

From (9.23) we compute h (with the new r = 2 and j. = 2) by

h=TW ' (Aeo — Gd"°) = (-1,5,0)".
Then from equation (9.24) we get
) 1 1/5 0 12 1/2  1/)2 9/20 11/20  7/20
wl=(0 1/5 o[ -1/4 1/4 —3/4 |=|-1/20 1/20 —3/20 |.
0 0 1 0 0 1 0 0 1

The new G matrix is
G = [Ao37 A057 A067 A087 A‘9]~

The new basic feasible solution is
zp = (6,0,0;1,1,1,1, l)T where B ={1,10,4;3,5,6,8,9}.

The new prices are

(.9 m 7 7 a9 a7 31 42\"
o\ 200 207 20°20°20°20°20" 20/ °

After pricing out, we find that the reduced costs corresponding to the nonbasic variables x2
and z7 are, respectively, (4/5,13/2) > 0. Hence the above solution zj is optimal.
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9.5 NOTES & SELECTED BIBLIOGRAPHY

The generalized upper bounding (GUB) technique was developed by Dantzig & Van Slyke
[1967]. Example 9.1 is the same as the one discussed in their paper. A generalization
of this method, which replaces each of the GUB constraints by a rectangular block of
constraints involving the same subset of variables, has been carried out by Kaul [1965].
Similar approaches have been investigated by Bennet [1963], Charnes & Lemke [1960],
Rosen [1964], Sakarovitch & Saigal [1967], and others. Brown & Thomen [1980] developed
an algorithm for automatically identifying generalized upper bounds in a linear program.

In all our discussions we have assumed that the bounds or generalized bounds are
fixed. Several interesting papers have appeared that handle variable upper bounds and
generalized variable upper bounds (GVUB). See, for example, Bastian [1984], Schrage
[1975], and Todd [1982, 1983].

9.6 PROBLEMS

9.1 Consider a linear program with GUB constraints having some negative coeffi-
cients —1 instead of all +1. How would the development of the solution proce-
dure and the updates to the working basis change?

9.2 Extend the GUB technique where the nonnegativity constraints on (9.2) are
replaced by upper and lower bounds on z, i.e., l <z < u.



CHAPTEHR

10

DECOMPOSITION OF
LARGE-SCALE SYSTEMS

Large-scale linear programming systems typically have special structures that can
be exploited to gain computational advantage, for example, those having a very
large percentage of zero coefficients. It is routine to take advantage of this sparsity
of nonzero coefficients. In this Chapter we discuss how specialized versions of the
Simplex Method can be used to solve systems that have a special block-matrix
structure. We begin with the simple case of a system that, except for the objective
function, consists of two independent subsystems that have no variables in common,
for example:

ni n
Minimize E cjxj + E CjT; = 2
Jj=1 j=ni+1

ni
subject to ZAijLL'j =b; i=1...,m (10.1)
J=1 n
Z Aijxj =b, i=mi+1,...,m
Jj=ni1+1
z; 20, j=1,...,n.

Since there is no connection between the blocks except for the objective function,
it is obvious that the solution to the linear program (10.1) can be found by solving
the two linear programs (one for each block) separately and adding the objectives
to obtain z.

265
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> Exercise 10.1  Show that if there are K subsystems, each of dimension K, that are
independent of each other, except for the objective function, then it would take approxi-
mately 1/K? times the effort to solve the full system, assuming, in general it takes less than
~ym? arithmetic operations to solve a linear program in m equations for some constant ~.

The block-angular system (10.2) is a generalization of (10.1); it has K indepen-
dent blocks and one set of coupling constraints:

Minimize  (¢*)Tz° + (c)Ta! + - + (K)T2K = 2
subject to A%+ Algl + ... 4 AKK =
Flgl _

(10.2)

FKmK:.fK
z° >0, 21 >0,...,25 > 0.

A possible application of a block angular system might be for a company with K
almost independent factories k = 1,..., K. Each factory has many constraints
that are independent of the constraints of the other factories. There are a few
constraints, however, such as shared budget, skilled labor, and a profit function
that the K factories must share. In (10.2), z* is the vector of activity levels of the
kth factory and z° is the set of activity levels of the headquarters that are not a
part of the activities of any factory. The first equation is the objective function, the
second line the m constraints expressing the sharing of m scarce resources across
the board, the third line the m; constraints that involve the first factory only, and
the last line the m, constraints that involve the Kth factory only.

The structure of the block-angular system (10.2) suggests that we try to break
the problem into K independent parts and then adjust the solution to take into
account the interconnections. One way to do this, popular with economists, is to
begin by arbitrarily assigning prices to the scarce resources and let each factory
optimize its activities assuming that it has to pay for scarce resources according
to these prices. The scarce resources that the headquarters and each factory will
demand in general will be out of kilter with b, the resources available to the system,
and the problem becomes one of finding an efficient algorithm to adjust the prices
(Lagrange multipliers). In this chapter we show how to do this in a finite number
of iterations using the Dantzig- Wolfe (D-W) Decomposition Principle.

This algorithm was first proposed in technical papers of the RAND Corpora-
tion around 1958 and first published in technical journals in 1960. Because of its
potential application to decentralized planning it was enthusiastically received by
economists. However, contrary to expectations, in initial trials on certain classes
of practical problems, the algorithm turned out to be disappointingly slow. Later,
when the initial implementations were replaced by codes prepared by skilled math-
ematical programmers, it turned out to be very efficient. Unfortunately, the initial
incorrect reports that the algorithm is inefficient still persist in the literature.

Another class of problems encountered in practice, amenable to decomposition
methods, are the staircase systems, which differ from block-angular systems (10.2)
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in that the activities associated with any step of the staircase share input/output
resources with those on the step below it on the staircase. For example, (10.3)
depicts a staircase system with four steps:

Minimize  (¢})Ta! + (®)T2? + ()23 + (D)2t = 2

subject to Allg! =l
AQll‘l + A221‘2 — b2
A3222 4 A33,3 — 3 (10.3)

A43£C3 + A44£C4 — b4

Staircase systems often arise in the study of processes through time in which the
activities of one period (or stage) directly affect or are affected by the preceding
and following periods (or stages) but with no others. Such systems arise in man-
ufacturing where the production at one stage of the process is affected by that of
the previous stage and affects the products of the following stage only. In such
problems, it is often the case that several of the submatrices A” along the diagonal
are all the same and several of the A»*~! along the subdiagonal are also all the
same; when true it is possible to take advantage of it.

Another more general type of system that can be solved using decomposition
methods are the lower block-triangular systems such as the four-stage one displayed
in (10.4) below:

Minimize  (c})Ta! + (2)T2? + ()23 + (D)2t = 2

subject to  Allz! =p!
AQll‘l + A221‘2 — b2
Al 4 A3232 4 A33,8 =5 (10.4)

A411‘1 + A421,‘2 + A43J)3 + A44J,‘4 — b4
2t >0, 22>0, 22 >0, 22 >0,

where stage 1 directly affects stages 2, 3, and 4; stage 2 directly affects stages 3 and
4; and stage 3 directly affects stage 4.

10.1 WOLFE’S GENERALIZED LINEAR
PROGRAM

When a production system is being modeled, it may happen that the input and
output coefficients of one or more activities are not in fixed proportions (as is the
case for linear programs), but each column of coefficients may be freely chosen
as any point from a convex set C;. This important class of problems is called a
“Generalized Linear Program.” These were first studied by Philip Wolfe.
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Definition: A generalized linear program is a problem stated in standard
linear programming problem format:

T,

Minimize c'r =z
subject to Az = b, A: mxn, (10.5)
xz >0,

Cj
A,;
convex set Cj, 7 =1,...,n.

where each column < ) may be freely chosen to be any point in a given

By simple extension, the fixed right-hand-side vector b may also be replaced by a
vector picked from a convex set Cp.

THEOREM 10.1 (Equivalent Generalized Linear Program) The gener-
alized linear program (10.6) is equivalent to the generalized program (10.7) generated
at some iteration of Wolfe’s algorithm.

Original Generalized Linear Program:

n
Minimize chfj =2z
j=1
n 10.6
subject to ZAija?j =b;, fori=1,....m ( )
j=1
£; >0, forj=1,...,n,
where (jij) € C; are freely chosen vectors in convezx sets C;.
Equivalent Generalized Linear Program:
n T;
Minimize Z (cja:j + Z cza:;) =z
j=1 t=1
n (10.7)

T
subject to Z(Az‘j%' + ZAZZ;) =1b;, fori=1,....m
j=1 t=1

z; >0, forj=1,...,n,

; t
where <£Jj) € C; are freely chosen vectors in convex sets C; and <£g ) € Cy,
. ®J

t=1,...,7; are T} fized points in C;.

Lo cj . c? N
Tj = uj, (A.j>_<x4‘.’j>’ Min 2

Proof. Let
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be an optimal solution to (10.6). Let

t t Cj Ct4 .
Tj =vj, T; =104 Asj = A{j , Minz

be an optimal solution to (10.7). Note (z; = u;, # = 0, Min 2) is a feasible solution
to (10.7). Therefore Min z < Min 2. Note that the optimal solution to (10.7) can
be rewritten as a feasible solution to (10.6):

n
Minimize E Cjv; = Z
j=1

LI 10.8
subject to ZAZ-]-UJ- =b;, fori=1,...,m ( )
j=1
v; >0, forj=1,...,n,
where
T
v; = vj + Z’u;
t=1
* + t
C.: Vi c V.
J 'l 2L if v 0
(C_j>_ (A:kj)vj_‘_(A{j) J o #
Aei ) *
! <1§;) if 5; = 0
oj
Therefore Min z > Min 2. This and Min z < Min 2 imply Min z = Min 2. |

In the following discussion, we further assume that the convex sets are defined
by systems of linear inequalities; however, the method can be easily extended to
the situation where the convex sets are general.

Example 10.1 (Generalized Linear Program) An example of a generalized linear
program is to find z; > 0, ys4, Min z such that

6x1 + 4z2 + x3 + yoaxrsa = z (min)
1 + x2 — 4xz + Yyuars = 5
10.9
—z1 + X2 — x3 + Yyouxs =1 ( )
1 >0, 2 >0, 23 >0, x4 > 0,

where the coefficients yes = (Y04, Y14, y24), are not fixed but must be chosen to be a point
in the convex set:

Cs = {y.4 | 3yoa + Y14 + 2y24 = 2 with y;4 >0 for i =0,1,2 } (10.10)

This is an example of a nonlinear system. However, we will show that by a suitable change
of variables, the problem can be reformulated as a linear program. Multiply 3yos + y14 +
2y24 = 2 by x4 to obtain

3YoaZa + Y14%a + 2y24xs = 224. (10.11)
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Substitute variables uo = yoaTa, U1 = Y14T4, U2 = Y244 into (10.9) and (10.11) to obtain
the linear program:

6x1 + 4z + x3 + wo = Z (min)
r1 + x2 — 4x3 —+ w1 =5
-1+ x2 — 3 + uz =1 (10.12)

3up + u1 + 2u2 = 214
1’120, .TQZO, 1’320, 1’420, UOZO, u120, UQZO.

Our immediate goal is to prove that Wolfe’s nonlinear program (10.10) and the linear
program (10.12) are equivalent in the sense that if £1, &2, &3, 24, Go, U1, U2, £ is optimal
for (10.12) and :f’4 ;é O, then xr1 = .f1, Tr2 = i’g, xr3 = i’g, T4 = i’4, Yoa = ﬂo/:f’z;, Y14 = ﬂ1/£f’4,
Y2a = U2 /24, z = Z is optimal for the generalized program (10.9).
Proof Abbume an optimal solution to Wolfe’s nonlinear program (10.9) is z , ml, 13;,
mg, $4, y047 y147 y24, then a feablble wlutlon to the linear program (10.12) is xl, xg, x3,
954: Uy = y04m4, Ul = y14xj, Uz = y24m4, z=2"

Conversely assume the minimal solution to the linear program (10.12) is &1, 2, &3, Z4,
o, U1, U2 Z = 2. Then a feasible solution to Wolfe’s generalized LP is x1 = %1, 2 = 2,
x3 = &3, Ta = £4, Yoa = Go /T4, Y14 = G1/%a,y24 = Go/E4 under the assumption of £4 # 0.
We conclude that (10.9) and (10.12) have the same optimal solution. |

Exercise 10.2 If it turns out that in optimizing (10.12) x4 = £4 = 0, then show by
(10.13) that the optimal solution to the generalized program is not necessarily found by
setting x4 = 0 in (10.9) and optimizing (10.9). Find z; > 0, ys4, Min z such that

6x1 + 4x2 + x3 + Yoala = 2 (min)
1 + x2 — 4z3 + Yyuars =5
-1 + T2 — x3 + yuazs =1

1 >0, z2 >0, x3 >0, x4 >0,

(10.13)

where the coefficients yes = (Yoa, Y14, Y24), are not fixed but must be chosen to be a point
in the convex set:

Cs = { You | 3Yos — Y14 + 2y24 = 2 with ys4 >0 for i =0,1,2 }. (10.14)

Show that the associated linear programming solution cannot be used to solve the original
system.

Exercise 10.3 In Example 10.1 multiply (10.10) by x4, replace each y;a24 by u;, reduce
the system to a linear program, and solve by hand or by using the DTZG Simplex Primal
(Linear Programming 1)) software option. Can this solution be used to solve the original
system? Show that in this case the linear program is equivalent to the original generalized
linear program in a certain sense.

THEOREM 10.2 (Generalized LP and Equivalent LP)  The generalized
linear program

Minimize e + Yo,n+1Znt+1 = 2
subject to0 AT + Yent1Tni1 = b, A: mxn, (10.15)
(xaanrl) = (xlaan sy Tl ) > 0;
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where the coefficients (Yo,n+1, Yen+1) are not fized but must be chosen to be a point
in the convex set:

m

Cn+1 = {yi,n+1 | Z QYin+1 = 1, Yin+1 Z 0 fO’f’ 1= 0, [N 0% } (10.16)
=0

has the same optimal solution as the linear program

Minimize cTr + wuo = w
subject to Az + u = b, A: mxn,
zm: B (10.17)
QUin+1 = Tnt1
=0
T1,T2,-- 3, Tn+1 > 07 UQ, ULy - s Um > 0

where W; = Y nt+1Tn+1 under the assumption that the optimal solution to (10.15)
has Tni1 = 2,y > 0.

Proof. We will prove that the optimal solutions are the same for (10.15) and
(10.17) by showing that the optimal solution for (10.15) is a feasible solution to
(10.17) and vice versa.

Let z = 2*, T; = a:f-, for j =1,...,n+ 1 with xTL_H > 0, and yjnt1 = yf,nﬂv
for i = 0,...,m be an optimal feasible solution to (10.15). The values x; = xj
forj=1,....n+1 and u; = yj’nﬂmiﬂ i =0,...,m+ 1, are clearly feasible for
(10.17); i.e.,

Minimize %2 + 4§, 42544 = "
subject to  Az" + yfn_‘_lelﬂ = b, A: mxn

m (10.18)
* * *
Zaiyi,n+1mn+1 = Tnp1
i=0
Therefore z* < w*.

Next suppose that w® is not optimal but there exists another set of values
w=w,z; =25 forj=1,...,n+1and u; =, 7=0,...,m+ 1, that result in an
optimal feasible solution for (10.17). Since Z, 11 > 0 by our assumption, we compute
Tint1 = Uint1/Tnt1 for ¢ = 0,...,m. The solution z; = &; for j =1,...,n+1
with Yin+1 = Gins1 for ¢ = 0,...,m is clearly feasible for (10.15) and therefore
w < Z. Hence the optimal solutions for the two systems are the same. ]

> Exercise 10.4  Suppose that the optimal solution to (10.15) has xzn4+1 = :cle = 0.
Show that systems (10.15) and (10.17) are not equivalent in this case.

Returning to the general case (10.5), for now assume that

Ca
<AJ.) = Yoj = (ijaylja---vymj)T
)
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may be freely chosen to be any point in a convex set C; defined by a system of
linear inequalities in the variable coeflicient parameters y;; for ¢ = 0,1,...,m, and
possibly auxiliary variables ym41,j,Ym+2,5,--- » Ym+k,j independent of the rest of
the system. Problem (10.5) can be restated as a linear program in z; and u;; by
multiplying the relations of C; by x; > 0 and substituting u;; = y;;x;, unrestricted
in sign, as new variables. If this substitution generates a linear program that yields
a solution in which x; # 0 then it is easy to back-substitute and get an optimal
feasible solution to the original system.

Exercise 10.5 Suppose after the substitution, that the resulting linear program in wu;;
and mJ generates a solution with the property that whenever z; = 0 that u;; = 0 for
i = 1,...,m. Show how this property can be used to find a solution to the original
system (10.5).

Exercise 10.6  Suppose that a solution is obtained for the new linear system in w;; and
x; with z; = 0; show that a solution y;:z¢ # 0 is still possible. Construct an example to
show how this can happen. Show that this case can only happen if C; is an unbounded
convex set. Furthermore show that we can get a sequence of solutions to the original
problem in which y;;: /4 0 and z; — 0.

The reduction of a generalized program to a linear program is not recommended
as a solution technique. Instead we recommend solving it by a series of adjustments
of the values of y;; obtained by sequentially solving certain auxiliary programs
or subprograms in y;;. In effect, a large linear program with variable coefficients is
decomposed into smaller linear programs, each of which can be solved very efficiently.
We shall now illustrate the method.

Example 10.2 (Illustration of Wolfe’s Method) Consider the problem defined by
equations (10.9) and (10.10) and restated here for convenience.

6x1 + 4z2 + x3 + Yyoaxsa = z (min)
1 + x2 — 4z3 + Yyuars =5
10.19
—T1 + T2 — T3 + yauws =1 ( )

mlzoy x220, 1'320, "1,'4207

where the coefficients yes = (Y04, Y14, Y24), are not fixed but must be chosen to be a point
in the convex set:

Cs = { You | 3Yos + Y14 + 2y24 = 2 with ys4 >0 for i =0,1,2 }. (10.20)

If we pick a starting basic set of variables (—z,x1,22), the basic feasible solution corre-
sponding to this set is

(—2) =24, 21 =2, 22 =3, x3=24=0. (10.21)

To test if this basic feasible solution is optimal, we compute the simplex multipliers by
solving BTr = ¢; to obtain
= (5-1)".
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= ~ = T
We use 7 to compute the reduced costs ¢3 and ¢4, where ¢; = ¢; — 7" Aqj:

¢ = 20
C4 = Yoa — OY14 + Y24.

where (yoa, Y14, y24) € Ca; see (10.10).

Note this basic solution (10.21) is minimal, if ¢; > 0 for all j. In this case ¢3 > 0 and
¢4 may be less than zero depending on the choice of the variable coefficient parameters
Yo4, Y14, and yo24. In order to determine if ¢4 can be < 0, we minimize the value for ¢4
subject to conditions (10.10); i.e., we solve the subprogram associated with subset Cs:

Minimize Yoa — DY1a + Yo2u = Cu
subject to  3yos + Y14 + 2y24 = 2, (10.22)
Yyoa > 0, y14 > 0, y24 > 0.

Observe in this case that the minimal solution is yo4s = 0, Y14 = 2, y24 = 0, and &1 = —10.
Therefore the basic solution (10.21) fails to pass the test for optimality for the original
problem.

We next obtain an improved solution to (10.19) by allowing x4, with column coefficients
yéi) =0, yﬁ) =2, yéi) = 0, to become an incoming basic variable. Once we introduce z4
into the basic set of (10.19), z1 drops out, resulting in the new basic feasible solution:

(_2)2_47 ro=1, x4 =2, x1 =x3=0.

However, we need to provide for the possibility of revising the values of y;4 to obtain a
still lower value of z. This is done by rewriting the program (10.9) in the equivalent form:

6x1 + 4z2 + w3 + Omf) + Yoaxrs = z (min)
(1) _

1 + x2 — 4dxs + 2z, + T4 =5
1 2 3 ?1) Y14T4 (10.23)

—z1 + 22 — x3 + 0zy’ + yo2axs =1

21 >0, 22>0, 23>0, i >0, 24 >0,

where y;4 satisfy the same relations (10.10) as before, i.e.,

3yoa +y1a + 2y24 =2 and ya >0 for i =0,1,2. (10.24)

The column (yo4, Y14, y24)T will be referred to as the generic column. It may seem that
we have changed our original problem; however, we know by Theorem 10.1 that the new
problem (10.23) is equivalent to the original one (10.19).

The new basic feasible solution to (10.23) is

(—2)=—4, z2=1, 2" =2, 21 =3 =24 =0. (10.25)
The new simplex multipliers obtained from B”r = ¢, are:
= (0,4)".
We next obtain the reduced costs from éy = ¢y — N as

é1 =10, é3 =5, &1 = yosa — 4y24.
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The reduced costs ¢;1 and €3 are nonnegative; in order to determine if ¢4 < 0 is possible,
we solve the subprogram

Minimize Yod — 4yay = ¢4
subject to  3yos + Y14 + 2y24 = 2, (10.26)
Yoa > 0, y14 > 0, y2a > 0,

which is the same problem as (10.22) except it has a different objective expression for
¢;. On solving (10.26) we obtain ¢ = —4, yoa = 0, y14 = 0, and yasa = 1. Thus, the
solution (10.25) fails again to pass the test for optimality of the equivalent problem. The
variable x4 is the only nonbasic with a negative cost; bringing it into the basis causes z2
to drop out and the new basic feasible solution is

(—2z) = —4, x4 —5/2 ra=1, 1 =xz2=23=0.

However, again we need to be careful. We construct a new augmented equivalent
program (10.27), which allows for the possibility of y;4 to be revised:

6x1 + 4z0 + x3 + Oxfll) + 01’512) + Yoaxrs = z (min)
1 + x2 — 4x +2x +0x + T4 =5
1 2 3 4 ?) Y1424 (10.27)
—z1 4+ @2 — a3 + 02 4+ 12 + yoazs = 1
1 >0, xz2 >0, x3 >0, xfll) >0, ch) >0, x4 >0,
The new basic feasible solution is
(=2)=0, 2" =5/2, 2P =1, 21 =20 =25 = 24 = 0. (10.28)

The new simplex multipliers obtained from BTr = ¢, are:
=(0,0)".
We once again obtain the reduced costs from é= ¢y — Nr;
c1 =6, a2 =4, ¢z=1, 1 = yoa.

As before, in order to see if ¢4 < 0 is possible, we solve the subprogram with the revised
objective:

Minimize Yo4 = C4

subject to  3yos + Y14 + 2y2q = 2 (10.29)

Yoa =0, y14 2 0, y24 > 0.

On solving (10.29) we obtain ¢z = 0, yoa = 0, y14 = 2, and y24a = 0. Since & = 0, the
solution (10.28) is optimal because all the reduced costs are nonnegative for all feasible
values of ye4. The optimal solution to (10.9) and (10.10) can be derived from the solution

to (10.27) and (10.29) as follows: z =0, 21 =22 =23 =0, x4 = xfll)—l—xf) =5/241="7/2,

You O )
Y4 | = Z/S;)% + yﬁf%
M @ 20 4+ 2

Y24 1'4 4

0\ 5 [0Y, 0
= <2>?+<0>?_ <10/7>. (10.30)
0 1 2/7
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What to Do If the Subprogram has an Unbounded Solution

In general we must allow for the possibility for some incoming column j = s such
that yes s a convexr combination of one or more extreme points plus a nonnegative
combination of one or more homogenous solutions (see Theorem 10.5). Thus, in
general, when we solve the subprogram, two cases can arise:

1. If an extreme-point solution yes = y¢, € Cs is obtained to the subprogram
that prices out negative, bring it into the basis of the original problem.

2. If a class of solutions yes = y<, + Oyl, € Cs, where y¢, is an extreme-point
solution and yZ, is a homogeneous solution with 6 > 0 a scalar parameter, is
obtained, then introduce only the homogeneous part y%, into the basis of the
original problem.

The intuitive reason for this is as follows. It is clear that increasing 6 makes
Yes Price out more negative and hence more attractive to introduce yes as a
column into the basis of the original problem. If we rewrite yoss as

1
Yoss = (Yos +Oyas)ts = (5ny + yfs>9fﬂs (10.31)
it is clear that that the nonhomogeneous part becomes negligible relative to
the homogeneous part as 6 increases. Example 10.3 illustrates this.

> Exercise 10.7  Suppose the “optimal” solution to the generalized program example
using Wolfe’s procedure has some positive weights =% on yh, associated with homogeneous
solutions to the subproblem Cs and has zero weights x7 on each extreme-point solution y¢,
associated with the subproblem Cs. Let z = 2°. Prove, if the final basis is nondegenerate,
there exists a class of feasible solutions with positive weights on all extreme solutions and
extreme homogeneous solutions such that z — 2. Show, if the basis is degenerate, that
none of the class of solutions need to be feasible but they tend to feasibility in the limit.

Example 10.3 (Subprogram Has an Unbounded Solution) We illustrate the sit-
uation where the subprogram has an unbounded solution. Consider the following example
of a generalized linear program:

Ox1 + Ox2 + 3x3 + YoaTa = 2 (min)
1 + yuars = 1
T2 + y2axa = 1 (10.32)
T3 + yars = 1

1'120, 1’220, 1'320, .%'420

where o4, Y14, Y24, and ys34 may be chosen to have any values satisfying

Yod =2
— 0.5y14 + Y24 =0
10.33
— 0.5y14 4+ y3a =1 ( )

yoa 2 0, y14 >0, y2a > 0, yza > 0.
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If we pick a starting basic set of variables to be (—z,x1, z2, z3), the basic feasible solution
is
(=2)==3, 21=3, z2=1, z3 =1, z4=0. (10.34)

In order to determine if this basic feasible solution is optimal, we first compute the simplex
multipliers by solving BTr = ¢; to obtain

7 =(0,0,3)".
We next obtain the reduced costs & from &y = ¢y — N
Ca = Yoa — 3Yy3a Wwith yoa = 2. (10.35)

The test for a minimum is ¢ > 0 for all j. In this case, only ¢, as defined by (10.35),
may be less than zero depending on the values of the parameters yos and ys4. In order to
determine if ¢ < 0 is possible, we minimize the value for ¢4 subject to (10.33); i.e., we
solve the subprogram:

Minimize Yo — 3ysa = &4
subject to — (1/2)y1a + you =0
10.36
S /2us o+ oy = (10:36)
Yoa = 2, Y14 > 0, y24 > 0, yza > 0.
On applying the Simplex Method, we find the class of solutions
2 0
e h 0 1
Yor =Yes T O0ys= | o [+O | /2 (10.37)
1 1/2

and ¢4 = —1—(3/2)0 — —oco as § — oo. Since ¢4 < 0for all § > 0, the basic solution (10.34)
does not satisfy the test for optimality for the original problem (10.32) whatever be 6 > 0.
We obtain an improved solution by introducing the homogeneous part to (10.37) as a

new column yf, = (y(’}4 =0,y =198 = 1/2,yhy = 1/2)T into the basis of (10.32):

0x1 + Ozo + 3x3 + 0zh = 2 (min)
x1 + 1$2 =1
T2 + (1/2)zh =1 (10.38)
xz3 + (1/2)zh =1
.%'120,:1)220,1’320,1‘420.

It is straightforward to see that the variable z; leaves the basis and the new basic feasible
solution is:
(—2) = =3/2, 22 =1/2, 23 =1/2, af =1, z1=0. (10.39)
However, again we need to be careful. We construct a new augmented program (10.40)
that allows for the possibility that the values of ye4 may need to be revised to obtain a
lower value for z:

Ox1 + Oz2 + 3x3 + 0zh + YoaTs = 2z (min)
1 + leh + yazy = 1
T2 + (1/2)zh + yoazs = 1 (10.40)
T3 + (1/2)1‘2 + ysaxg =1

1 >0, z2 >0, z3 >0, 2§ >0, 24 >0,
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where the ye4 satisfy the same relations (10.33) as before. From (10.39) the new basic
feasible solution is:

(—2) = —3/2, 2o =1/2, 253 =1/2, & =1, z1 =24 =0.
In order to determine if it is optimal we compute the simplex multipliers:
T =(-3/2,0,3)".
We next obtain the reduced costs ¢ and ¢4 as
& =3/2, G = yos + (3/2)y14 — 3ys4, with yos = 2. (10.41)
The test for a minimum is ¢; > 0 for all j. In this case, only ¢4 may possibly be less than
zero depending on the values of the parameters yoa4, y14, and ys4. In order to determine if

¢4 < 0 is possible, we replace only the objective of (10.36) by the updated ¢4 from (10.41)
and solve the new subprogram:

Minimize yoa + (3/2)y14 — 3yss = ¢4
subject to — (1/2)y1a + yo2u =0
10.42
— (1/2)y14 + ysa =1 ( )

Yoa = 27 Y14 2 07 Y24 2 07 Y34 2 0.

On applying the Simplex Method, we find the minimal value is ¢4 = —1 < 0 with y§, = 2,
yia = 0, y5, = 0, and y5, = 1. Thus, once again the solution fails to pass the optimality
test for the original problem. The variable x4 is the only nonbasic with a negative cost;
bringing it into the basis causes x3 to drop out and the new basic feasible solution is

(72):717 1'2:1/27 '(L'Z:]w .’L'Z:l/27 1'1:.’1,'3:0,

However, again we need to be careful here. We construct a new augmented pro-
gram (10.43), which allows for the possibility of yes to be revised:

O0x1 + Oz2 + 3z3 + 0z + 225 + yoaws = 2 (min)
T + Lzl + 02§ + yuws = 1
2 + (1/2)2] + 02§ + yoaws = 1 (10.43)
zs + (1/2)2% + 12§ + ysaza = 1
2120, 32 20, 23>0, 24 20, 2§ >0, 24 >0,
where the ye4 satisfy the same relations (10.33) as before. The new basic feasible solution
is:
(—2)=—1, 22 =1/2, @}l =1, 2§ =1/2, 21 = 23 = 24 = 0. (10.44)

In order to determine if it is optimal we compute the simplex multipliers
m=(-1,0,2)".
We next obtain the reduced costs ¢i1, ¢2, and ¢4 as

c1 =1, &3 =1, ¢4 =yYoa + Y14 — 2y3a with yos = 2.
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The test for a minimum is ¢; > 0 for all j. In this case, only ¢4 may possibly be less than
zero depending on the values of the parameters yo4, y14, and ys4. In order to determine if
¢4 < 0 is possible, we solve the subprogram:

Minimize Yoa + Y14 — 2ysqs = €4
subject to — (1/2)y1a + you =0
10.45
~ Dy A oy =0 (1043)

Yoa = 2, Y14 > 0, y24 > 0, y34 > 0.

On applying the Simplex Method, we find the the minimal value is ¢1 = 0 with yos = 2,
y1a = 0, y24 = 0, and y23 = 2. Since ¢4 = 0, the solution (10.44) is optimal because all the
reduced costs are nonnegative for all feasible values of ye4.

Exercise 10.8 From the final solution (10.44) derive the optimal solution to (10.32)
and (10.33).

Exercise 10.9 In Example 10.3 change yos = 2 to be yos = 8 in equations 10.33 and
re-solve the problem.

Exercise 10.10  This exercise is designed to show how the homogeneous part of the
solution can dominate and drive out the extreme-point part of the solution. Solve the
following generalized linear program:

21 + 0z2 + Oxzs = z (min)

1 + yizxz = 3
10.46
T2 + ya3x3 = 1 ( )
1’120, .TQZO, 1’320,
where yo3 = c¢3 = 0, y13, and y23 may be chosen to have any values satisfying
— Y13 + 2y23 =2 Wlth Yi3 2 0 fOI‘ 1= 1, 2 (1047)

by the following three approaches:
1. Use the method of substituting w4 = y;ax:a as described in Example 10.1.
2. Use the method of Example 10.3.

3. Use the method of Example 10.3, except that when a class of solutions ye: = ye; +
Oyl e C;, where y¢, is an extreme-point solution and 2, is a homogeneous solution
with 6 > 0 a scalar parameter is obtained, insert it into the basis of the original
problem together with the parameter 6; see (10.31).

Comment on the three methods and the solutions thus obtained.
Exercise 10.11  Modify the steps of the algorithm to take care of the case when for
some j = s the subproblem Cs turns out to be infeasible.

We shall now formalize the concepts discussed so far and prove that the algo-
rithms just described converge.
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Definition: The Restricted Master Program at the kth stage of the algorithm

(k)
consists of variables xg.k') with specified columns of ye; = < Cj( I ) drawn from

o)
the convex set Cj.

The optimal solution of the restricted master program determines values for the
simplex multipliers, 7 = 7°, for use in subprograms.

Definition: The jth subprogram at any stage is to find ye; € C; which
minimizes the linear form ¢; = yo; — Y1 yi;j7¢ where m = 7° are the known
simplex multipliers from the restricted master program.

If the jth subprogram has a finite optimal solution y.; = yfj, it generates an
additional specified column of coefficients for the next restricted master program.
If it has an unbounded class of solutions, ys; = yg; + Oyl,, 0 > 0, then y2, is used to
generate an additional specified column of coefficients for the next restricted master
program. If the subproblem turns out to be infeasible, set x; = 0 permanently and
set a flag not to solve the subproblem j on any subsequent iteration or find some
other way to tell the computer to drop z; and its column of coefficients from the
problem.

THEOREM 10.3 (Optimality Check) A solution (xj,yf]) forj=1,....n
is optimal if there exists multipliers m, such that ¢; > 0 for all ye; € Cj and ¢; =0
for all z5 >0 or x? > 0.

THEOREM 10.4 (Finite Termination) The Simplex Algorithm will termi-
nate in a finite number of iterations if each basic feasible solution is improved until it
is no longer possible to find either an extreme point yes = Y5, € Cs or a homogeneous
extreme direction yes = Y2, of Cs to introduce into the basis such that

Yej GCj
j=1,..., n

m
Cs = min ¢; = yoj — Zyijﬂ-io <0, (1048)
i=1

where w are the simplex multipliers of the basis in the master program.

Proof. In order to show finiteness of the algorithm it is easy to show that the
columns of any basis of the master program must be drawn from a finite class. Each
C; is a convex set defined by a finite number of linear inequalities; therefore it can
be represented by a finite number of extreme points and a finite number of extreme
homogeneous directions (see Theorem 10.5 on Page 281). |

Exercise 10.12 In the discussion so far we have assumed that b is fixed. Show how to
modify the approach so that b can be chosen freely from a convex set Cj.
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Exercise 10.13 Reduce to a generalized linear program the problem: Find vector ye; €
C; CR™ and b € C, C R" such that

> e =b. (10.49)
=1

Exercise 10.14  Referring to Example 10.1 on Page 269, suppose that
Ca={yea | You +yla +y2s <1} (10.50)

Show that this condition also results in a generalized linear program. Apply the methods
of this section to solve the problem; contrast it with the polyhedral case. Suppose that
instead of (10.50)

Ca={yea | Yos +yla +y2a =1} (10.51)
Prove that the method of this section would still be applicable even though C4 is no longer
a convex set.

Comment: Once a generated column of the basis of the master program is dropped,
we have the option of keeping it as a nonbasic column of the master program or
dropping it because it can always be regenerated if needed later on as an extreme
point or as the direction of an extreme half-line of some C;. Experiments show that
if the restricted master problem has not grown too large it is clearly advantageous
to keep all such dropped generated columns as nonbasic columns of the master.
However, the size of the restricted master program may grow too large and, if it
does, we can reduce the size by dropping some of its nonbasic columns by using
some rule such as dropping those that price out the most positive or dropping those
that have remained nonbasic for the longest consecutive number of iterations.

10.2 DANTZIG-WOLFE (D-W)
DECOMPOSITION PRINCIPLE

The Dantzig-Wolfe Decomposition Principle is based on the Resolution or Repre-
sentation theorem for convex polyhedra (see Theorem 10.5). Before stating and
proving the resolution (or representation) theorem, we define a normalized extreme
homogeneous solution.

Definition: The normalized extreme homogeneous solutions associated with
the basic feasible solutions of a convex polyhedral set

Ax =D

2> 0 (10.52)
are the basic feasible solutions to the following system of equations
Ay =0
ely =1 (10.53)

y=>0
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where e = (1,1,...,1)T.

In (10.53), the first set of m equations, Ay = 0, implies that y is a homogeneous so-
lution; the convexity and nonnegativity constraints on y state that the solutions are
nonzero and the variables are normalized to sum to 1. The number of basic feasible
solutions are clearly finite for (10.53). (Note that the reason that we normalize the
homogeneous solutions is to get a finite number of them).

Exercise 10.15 If the set of feasible solutions to (10.52) is unbounded, prove it has at
least one extreme homogeneous solution.

Exercise 10.16 Construct an example to show it is possible for (10.53) to have a feasible
solution while (10.52) has none.

THEOREM 10.5 (Resolution) Fuvery feasible solution of a convex polyhedral
set of the form Ax = b, x > 0, can be represented as a convex combination of the
finite set of its extreme points and a nonnegative linear combination of the finite set
of its normalized extreme homogeneous solutions (i.e., the finite set of directions of
its extreme half-line solutions).

Proof. The theorem states that every feasible solution x = ¥ of

Ax =D

s> 0, (10.54)
can be represented in the form

L _ M
T = Zaiuz + ZBJUJ

i=1 j=1

L (10.55)
1= ZO@L‘

i=1

o; >0fori=1,...,L, 8;>0forj=1,..., M,

where {u’} are the finite set of all extreme points, and {v7} are the finite set of all
normalized extreme homogeneous solutions.

First, suppose that = Z is defined by (10.55) for some choice of o, i = 1,..., L
and 3;, j = 1,..., M. Note that x = & > 0 because ; > 0, 5; > 0, u’ >0, v/ >0
for all 7, j. Moreover, since Au* =bfori=1,...,Land Av =0forj=1,.... M
we have

L M L M
AT = A ot + A B =) ai(Aut) + ) Bi(Av)
i=1 j=1 i=1 j=1

L M
= aib+ ) B(0)=b.
i=1 j=1



282 DECOMPOSITION OF LARGE-SCALE SYSTEMS

Next, we show conversely that given any feasible solution z = & > 0 of (10.54),
there exist o; > 0, §; > 0 satisying (10.55). To show this assume on the contrary,
that there exist no oy, (; that satisfy

L M
E au’ + E B! =
i=1 j=1

L
i=1
a; >0,i=1,...,L,
B; >0,j=1,...,M.
This implies, by the Infeasibility Theorem (see Linear Programming 1), that there
exists at least one set of multipliers @ = (71, T2, ... ,Tn )T and v = 7, not all zero,
such that )
(a) alut +~4>0 fori=1,...,L
(b) alyl >0 forj=1,....M (10.57)
(c) 7lz + 75 <0,

has a feasible solution.
We now show that (10.57) is in fact infeasible, contrary to our assumption that
(10.56) is infeasible. We do this by examining the following linear program

Minimize 7lw
subject to  Aw
w

b, (10.58)
0,

vVl

whose objective coefficients are the 7 satisfying (10.57), and whose set of extreme
point solutions {u'}, satisfying Au® = b, and extreme homogeneous solutions {v7},
satisfying Av? = 0, are the same as those for (10.54). This linear program (10.58)
is feasible since w = 7 is a feasible solution by hypothesis.

The linear program (10.58) clearly has a finite minimum because every extreme
homogeneous solutions satisfies 7707 > 0 by (10.57b); i.e., the objective is nonde-
creasing along every extreme homogeneous solution. This implies that the minimum
value of the objective must occur at an extreme point. On subtracting the third re-
lation of (10.57¢) from the first set of relations (10.57a) for each i = 1,..., M we
obtain the relations

7Tyt > 775 fori= 1,..., M.
Clearly a contradiction since this states that objective value at the given feasible
point w = & > 0 is strictly smaller than the objective value at every extreme point.
Therefore, we conclude that there must exists a; > 0, §; > 0 satisfying (10.56). 1

Example 10.4 (Illustration of the Resolution Theorem) This illustrates how a
feasible solution of a convex polyhedral set can be represented as a convex combination
of the finite set of extreme points and a nonnegative linear combination of the finite set
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(0,1) ¢

Figure 10-1: Illustration of the Resolution Theorem

of normalized extreme homogeneous solutions as proved in Theorem 10.5. Consider the
polyhedral set

P={zeR|z1+22>0, 21>0, 22>0} (10.59)
shown in Figure 10-1. From the figure we see:
Extreme Points: (1,0), (0, 1)
Half-Lines: (£1 >0, 22 =0), (z1=0,22 > 0)

Extreme Directions Away from Origin (Normalized): (1,0)7,(0,1)T

The Resolution Theorem 10.5, in this case, states that any point £ € P can be expressed

" e (1) o (2) o () ()

where a1 + s =1, a1 >0, a2 >0, 1 > 0, B2 > 0. For example & = (2.1,1.5)” can be
represented with a1 =0, a2 =1, 1 =2.1, B2=050r a1 =1, a2 =0, f1 = 1.1, B2 = 1.5
or any convex combination of these two.

Exercise 10.17  Consider the convex polyhedral set in ®% given by x; > 0, z2 > 0,
and x3 unrestricted. Show that it has no extreme points. Write it in an equivalent form
Ay =1b,y >0, with y € R*.

THEOREM 10.6 (D-W Transformation) FEwvery feasible solution of a convex
polyhedral set in R™ can be represented as a conver combination of a finite set of
feasible solutions and a nonnegative linear combination of the finite set of normalized
extreme homogeneous solutions (i.e., the finite set of directions of the extreme half-
line solutions).

Exercise 10.18 Prove Theorem 10.6 by showing that every convex polyhedral set of
y € R" can be represented in the form

Ax
T

b

0. (10.60)

AVl

where z € R” with 7 > n and applying the Resolution Theorem 10.5.
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10.2.1 D-W PRINCIPLE

We illustrate the Dantzig-Wolfe Decomposition Principle by applying it to a general
linear program in standard form:

T,

Minimize cr =z
subject to  Ax = b, A:m xn, (10.61)
xz > 0.

Let Az = b be arbitrarily partitioned into two sets of equations A'x = b' and
A2%x = b? where A is m; x n and A2 is mo x n and m = mq + my. That is,

T,

Minimize cxr =z
subject to Az = bl Al imy xn,
A%x = b2, A2 :mg x n, (10.62)
x > 0.
In this case, we view the problem as
Minimize Tr =z, (10.63)
subject to  A'x = bl Al imy xn, :
subject to the additional constraints
A%z = b2, A? :mg X n, (10.64)

xz > 0.

From the Resolution Theorem 10.5, we know that any feasible solution to (10.64)
can be written as a convex linear combination of the L possible extreme points (basic
feasible solutions) = u’ and a nonnegative linear combination of the M possible
normalized extreme homogeneous solutions z" = v/ of (10.64), i.e.,

L M
=Y o'+ v, (10.65)
i=1 j=1

WhereziLzlozizl,aizO,izl,...,L, and 8, >0,j=1,..., M.

THEOREM 10.7 (Equivalent Full Master Program) Substituting (10.65)
into (10.63) transforms the original m x n linear program into an equivalent linear
program with fewer rows (my1 + 1) and possibly many more columns (L+M), where
my is the number of rows of A, and where L is the number of extreme solutions and
M is the number of normalized homogeneous solutions of {x | A%z = b% 2 > 0};
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that is:

FULL MASTER PROGRAM
Find minimum z, o; >0, 1 =1,...,L, 3; 20, j=1,..., M, such that

L M
Z(cTui)ai + Z(chj)ﬁj =z
i=1 j=1
. " (10.66)
(Alu)a; + Y (A'))B; = bt
i=1 j=1
L
Zai =1
=1

> Exercise 10.19 Prove Theorem 10.7.

Definition (Full Master Program or the Extremal Problem): The linear pro-
gram obtained from the extreme point solutions * = u* and normalized ex-
treme homogeneous solutions 2 = v7 of (10.64) is called the equivalent full
master program or the extremal problem. Note that the rows, other than the
convexity constraint, of this master program are in one-to-one correspondence
with the rows of the first partition.

THEOREM 10.8 (Feasible and Optimal Solution) Any «; and (3; satisfy-
ing (10.66), determines an x by (10.65) which is a feasible solution to (10.62). If,
in addition, z is the minimum of (10.66) for a; = o} and B = ﬂ?, then by (10.65)
these generate an optimal feasible solution x = x* to (10.61). If this optimal feasible
solution to (10.61) is not unique, then 2 need not be basic feasible solution to the
original problem (10.61).

> Exercise 10.20 Prove Theorem 10.8.

To simplify notation, denote the linear transforms G* and H” of v’ and v7 by:

Gt = Alyt
i — Al (10.67)

and the associated scalar costs g; and h; by:

g9i = cu’

hj = chvi. (10.68)
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The original linear program is then equivalent to:
FULL MASTER PROGRAM
Find minimum z,a; >0, ¢ =1,...,L, §; >0, j=1,..., M, such that
L M
Zgiai + Z h;B; =z : Dual Variables
i=1 7j=1

(10.69)
bt e

L M
ZGiai + ZHjﬂj
i=1 . j=1

Zai =1 Ty
=1

So far we have transformed the original problem (10.61) to (10.69), a linear pro-
gram, called the full master program, of lower row dimension. Unfortunately this
transformation usually results, in practice, with many, many more columns corre-
sponding to all M basic feasible solutions and all L normalized extreme nonnegative
homogeneous directions of (10.64). In practice it is usually impractical to generate
a full master program consisting of L extreme points plus M extreme homogeneous
directions. What is done instead is to generate at each iteration of the Simplex
Algorithm just that column of the full master program, which the Algorithm would
have selected to try to bring into the basis.

Definition:

The program obtained by dropping all but a subset L of the L columns associ-
ated with a; and a subset M of the M columns associated with 3; for (10.69)
is called a Restricted Master Program.

Let us suppose after a number of iterations that we have generated a restricted
master program whose columns correspond to a basic feasible solution to the full
master problem with values of the basic variables ; = of,i =1,...,k, and 38; = 37,
j=1,...,1 Since (10.69) has m; + 1 rows (excluding the objective), k+1 = mq +1.
(Later, in Section 10.2.4, we will discuss how to obtain such a starting basic feasible
solution).

Next, let the simplex multipliers associated with this basic feasible solution be
(7,7%) where the components of 7 correspond to m; rows of by and 7 is the the
simplex multiplier of the convexity constraint be denoted by . To test whether
this basic feasible solution is an optimal solution of the Full Master problem we use
these multipliers to “price out” all M + N of its columns.

Key Idea: We will now show how to generate only the column having the most
negative reduced cost without having to generate and price out all the remaining
columns of the master.

The simplex multipliers by definition satisfy the following equations:

v+ (GYr =g i=1,...,k

, ‘ 10.70
(H)Tw = h;  j=1,...,1 (10.70)
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If we used the commonly used rule of selecting the most negative reduced cost we
would first need to determine i = ¢* and j = j* such that

g —(Gl Yz -5 = _gm {g: — (G")'7} — 7 (10.71)
and .
hax — (H )7 = j:riq‘r}’M{hj — (H))"=}. (10.72)

where i* and j* are the indices i and j at which these minima are achieved. We
would then choose the minimum of (10.71) and (10.72) to be the index of the column
to introduce into the basis. If we define as Adjusted Costs

p=c— (AHTx (10.73)

and substitute G* = A'u? and H? = A7, we can rewrite the above two reduced-
cost pricing-out equations (10.71) and (10.72) as

zr{nn {9:— (GY7} -7 = r{ln {cTu' — (A'u')7} — 5

. \NT 4 _
= yin {(e— (AY"7) '} -
:izrf@HL{pTui -5 (10.74)

and

_ . T, i (ALl i\T=
Jrlnm {h; — (H)™=} = _min {c"? — (A") 7T}

= min {ﬁij}. (10.75)

At this point in the algorithm we do not know if there are any extreme points or
normalized extreme solutions that price out negative. To determine (10.74) without
having to evaluate all the extreme point solutions to (10.64) that price out negative,
we determine instead z = «*, which solves

Minimize Pl = 20 +7
subject to  A2x = b2 (10.76)
z >0,

where p = ¢ — (A!)T7 satisfies (10.73) and where 7 is the value of the simplex
multiplier of the convexity constraint of the Restricted Master Problem.

If after using the Simplex Method, the optimal solution is a basic feasible solution
z = u*, then we have found a column with the smallest reduced cost for the Full
Master Program. If v* is optimal, and if

min zo < 0 (10.77)
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we augment the columns of the restricted master program by

G* Al
g | = M (10.78)
1 1

with index *, relabeled appropriately, then augment the restricted master program
by this column and reoptimize the augmented restricted master program. On the
other hand, if min 25 = 0 then all the reduced costs for the full master program
(10.69) will be nonnegative. In this case we are at an optimal solution of the full
master program (see Theorem 10.9), and (10.65) can be used to compute an optimal
solution to (10.61).

Earlier we set aside the possibility that there are extreme homogeneous solu-
tions. We now assume that after solving the subprogram (10.76) by the Simplex
Method an extreme homogeneous solution 2" = v* is obtained. In this case, ac-
cording to the theory, we are interested in obtaining the best normalized extreme
homogeneous solution. This can be done without having to evaluate all the normal-
ized extreme homogeneous solutions to (10.64) that price out negative by solving the
linear program:

Minimize ple = 2
subject to A%z =0
Ty 1. (10.79)
z >0,
where e = (1,1,...,1)T, p satisfies (10.73), and z% is the value associated with

the optimal normalized homogeneous solution. Because setting up and solving this
new subprogram (10.79) requires additional work, typically this linear program is
not solved. Instead we accept any homogeneous solution z" = v* of (10.76) that
prices out negative without bothering to normalize it and compute and augment
the restricted master program by

H* Aly*
e = " (10.80)
0 0

with index x*, relabeled appropriately, and bring this column into the basis of the
augmented restricted master program and then reoptimize the augmented restricted
master program.

Exercise 10.21  Why is it not necessary to normalize the homogeneous solution o
before augmenting the restricted master program?

The D-W decomposition algorithm is sometimes also referred to in the litera-
ture as a Delayed Column Generation Procedure (we prefer to call it Wait-and-See
Column Generation Procedure) since we generate only the column of the full master
program that is coming into the basis. In summary, at each iteration we solve a
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restricted master program that provides the information used to generate the new
objective for the subprogram. The subprogram is then re-solved in order to generate
a new incoming column for the next iteration of the restricted master.

10.2.2 D-W DECOMPOSITION ALGORITHM AND

VARIANTS

10.2.2.1 The D-W ALGORITHM

So far we have described one iteration of the Dantzig-Wolfe algorithm. In this
section we formalize its steps.

Algorithm 10.1 (Dantzig-Wolfe Algorithm)

1.

An initial restricted master program with a starting basic feasible solution is given
with one nonbasic column.

Solve the restricted master program. If a finite optimal solution is obtained go to
Step 3. Otherwise report the original problem as unbounded (see Exercise 10.22)
and stop.

The optimal basic feasible solution of the restricted master program provides us

with simplex multipliers (g) The nonbasic column is dropped.

The subprogram (10.76) is then solved.

If an optimal basic feasible solution is obtained to (10.76) and min z2 < 0, see (10.77);
then a new column (10.78) is added to the restricted master program and the process
is continued by going to Step 2.

If an extreme nonnegative homogeneous solution is obtained to (10.76), a new col-
umn (10.80) is added to the restricted master and the process is continued by going
to Step 2.

If min 2o = 0, the solution is declared to be optimal for the original problem. The
optimal solution is then given by (10.65) where a1, a2, as,... and B1, B2, 0s,... is
an optimal feasible solution to the final restricted master program, which is also an
optimal feasible solution to the full restricted master program.

> Exercise 10.22 Show how to display an unbounded solution to the original problem.

> Exercise 10.23  Given an optimal solution a1, a2, as, ... and (1, B2, 03, . .. to the Mas-
ter Problem (10.69), show how to construct an optimal solution to the original problem.

> Exercise 10.24  Show that if the original problem does not have a unique optimal solu-
tion, then the optimal solution to the Master Problem (10.69) may be a convex combination
of several optimal basic feasible solutions to the original problem.



290 DECOMPOSITION OF LARGE-SCALE SYSTEMS

Computational Note: On each iteration of the D-W algorithm, we can start the
solution of the new subprogram from the last basic solution of the preceding itera-
tion. Thus, no Phase I procedure is necessary for any subprogram except the first.
It has been observed in practice that most of the time only a few iterations are
necessary to re-solve the subprogram. Some authors, especially Beale, question the
need at each iteration to fully optimize each subproblem with respect to the current
optimal prices m = 7 of the Restricted Master. They report good results, returning
to the Restricted Master with improving, but not necessarily optimal, basic feasible
solutions to the subproblems.

10.2.2.2 VARIANTS OF THE D-W ALGORITHM

As various columns of the full master program are generated for the restricted
master program, each column that drops from the current basis of a restricted
master is also dropped from the current restricted master program. Instead, one of
the following two variants can be used.

1. Each column that drops from the current basis of a restricted master is re-
tained as a supplementary column in the current restricted master program.
This variant of retaining the nonoptimal “dropped” columns is recommended
unless these retained columns become too numerous.

2. The restricted master program is augmented by each new column and each
column that drops out of the basis is retained until the available computer
memory is used up. At this point, a subset of the columns that price out the
most positive is dropped from the current restricted master program.

10.2.3 OPTIMALITY AND DUAL PRICES

THEOREM 10.9 (Optimality and Finiteness under Nondegeneracy) An
optimal basic feasible solution of the restricted master program is also optimal for
the full master program if

min zp = 7, (10.81)

see (10.76). If each restricted master program is nondegenerate such an optimum
will be reached in a finite number of iterations.

Proof. The first part follows from the optimality conditions for a linear pro-
gram. If the restricted master programs are nondegenerate the introduction of a
new column into the restricted master program will decrease the objective function
by a finite amount. Hence none of the finite number of bases of the full master
program (10.69) can reappear, implying the iterative procedure is finite. |

COROLLARY 10.10 (Finiteness under Degeneracy) If some anticycling
scheme is used, Theorem 10.9 also holds if the restricted master programs are de-
generate.
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Exercise 10.25 Prove Corollary 10.10.

THEOREM 10.11 (Lower Bound on Optimal Objective Value) Let o =
a®, B = [3° be the current basic feasible solution and let @ = 7, v = 7 be the
multipliers at this solution. Then a lower bound on the optimal objective value is
given by:

min z > z, + min 2o (10.82)

where min zy s an extreme-point solution to (10.76).

Exercise 10.26 Prove Theorem 10.11.

LEMMA 10.12 (Dual-Feasible Solution) Let m! be the multipliers on the

first set of my constraints of the master program and let w2 be the multipliers for
1

the mo constraints of the subprogram (10.64). Then (:2> consitutes a feasible

dual solution of the original linear program (10.61).

Exercise 10.27 Prove Lemma 10.12.

THEOREM 10.13 (Optimal Basic Feasible Solution Representation) An
optimal basic feasible solution to the original linear program (10.61) can be repre-
sented as a convex combination of k basic feasible solutions and a nonnegative com-
bination of | extreme homogeneous solutions of the subprogram where mi =k +1 is
the dimension of b'.

Exercise 10.28 Prove Theorem 10.13.

10.2.4 D-W INITIAL SOLUTION

So far we have assumed that an initial feasible solution is available to the full
master program. In this section we show how to obtain an initial feasible solution
by a Phase I procedure.

To start the process, we obtain a feasible solution u! to the subprogram (10.64).
If no such feasible solution exists, quit. Defining G' = A'u' we set up the following
restricted master program with artificial variables &;.

my
Minimize ZEL =w
i=1
mi
subject to  Glag + Zie’fi = bt (10.83)
i=1
a1 =1

a1207 5220; i:]-v"';mla
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where e’ is the ith column of an m; x m; identity matrix for ¢ = 1,...,m;. Note
that for feasibility a; must equal 1. Hence, to ensure feasibility —+e; is used if
bl — G} > 0 and —e; is used if b} — G} < 0. The variables oy, &1,&,... ,&m,
constitute a basic set of variables for the restricted master (10.83). This Phase I
problem is then solved by the procedure discussed in Section 10.2.2.1. At the end
of Phase I either a feasible solution is obtained to the original problem or the
problem is infeasible. If Phase I ends with a feasible solution, all nonbasic artificial
variables are dropped and all basic artificial variables are maintained at 0 by setting
their upper bounds to 0. Next the Phase I objective coefficients are replaced for
the columns in the Restricted Master and the Restricted Master is re-solved. The
process then continues.

10.2.5 D-W ALGORITHM ILLUSTRATED

In this section, we illustrate the D-W algorithm using first the full master problem
and then the steps of the D-W algorithm by generating the columns of the D-W
algorithm using the prices generated by the Restricted Master Problem.

Example 10.5 (Illustration of the Full Master Problem) Consider the following
linear program:

T1 X2 T3 T4 X5z Te X7 T8 T9 T T11  Ti2 Ti3  T1a

1 2 3 4 5 6 1 2 3 4 5 6 7 -10 =z (min)

3 2 1 6 5 4 8 5 7 3 4 1 1 2 = 64

1 8 3 7 1 4 5 2 5 3 2 6 3 4 = 63

1 1 1 = 3

1 1 1 = 4

1 1 = 2

1 1 = 1

1 1 = 4

1 1 1 = 4

1 1 1 = 9

1 1 = 3

1 1 = 3

1 1 = 3

1 -1 1

where z; > 0for j = 1,...,14. The problem can be thought of as consisting of the following
partitions: the objective function, followed by two equality constraints, two transportation
problems (called Subl and Sub2) whose variables are

1 T2 T3 X7 X8 X9
and
T4 T Te T10 T11 T12



10.2 DANTZIG-WOLFE (D-W) DECOMPOSITION PRINCIPLE 293

and an equality constraint (called Sub3). That is, the problem can be partitioned into the
form

(Tt + (AT2? + ()2 = 2 (min)

Azt +  A%2? 4+ A3 = b
Flgl _ 1
o - }”2 (10.84)
F3 f3
' >0, 22>0, 2°>0
which is redisplayed below.
ol @y wy wi xy x| xf 23 2 xl 2} 2f | 2 ad
1 2 3 4 5 6 1 2 3 4 5 6 7 -10 | = | #z (min)
3 2 1 6 5 4 8 5 7 3 4 1 1 2| = |64
1 8 3 7 1 4 5 2 5 3 2 6 3 4| =163
1 1 1 =13
1 1 1 =14
1 1 =2
1 1 =11
1 1 =14
1 1 1 =14
1 1 1 =15
1 1 =13
1 1 =13
1 1 =13
1 1 =101
The entire set of basic solutions for Subl is
2 1 4 2 -3 4 2 1 0
4 4 4
1 2 1 2 1
0 4 0 4 1 3
- 4 1 2
-1 01 2 2 2 2
-1 3 3
3 1 2 -2 4 2 1 1

where the double-lined boxes are the basic feasible solutions excluding one degenerate case.
(For example,

1’12—2, .%‘2:1, :E'g.:47
:E'4=47 .%‘5:0,1'6:0
is a basic (infeasible) solution.)

The entire set of basic solutions for Sub2 are
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-2 3 3 3 -2 3 3 3 -2

5 5 5
1 3 3 1 3 1
2 3 2 3 3 2
4 1 1
-1 3 3 3 2 3 2
1 3 4 4
2 3 3 -1 3 3 3 -1

where again the double lined boxes are the basic feasible solutions. The third subproblem
has one basic solution 13 = 1, 14 = 0, and one homogeneous solution z13 = 1, z14 = 1.
The full master problem in the order corresponding to the basic feasible cases is:

ai ap oy oy of of of of of of of B
28 28 28 28 33 33 33 33 38 33 7 -3 = 2 (mn)
24 24 24 24 32 40 45 43 33 47 1 3 = o4
26 18 36 28 35 39 38 30 32 32 3 7 = 63
T 1 1 1 = 1
11 1 1 11 - 1
1 = 1

> Exercise 10.29 In Example 10.5, solve the original problem and the full master problem
to verify that they produce the same optimal solution.

Example 10.6 (Illustration of the D-W Algorithm) We will now show how to solve
the linear program shown in Example 10.5 by the D-W algorithm. We start by trying to
generate a basic feasible solution to each of the three subproblems. If no such solution
exists to any of the subproblems then the entire linear program is infeasible. The particular
objective function we choose at this stage is not important; we assume that we use the
actual objective costs for each subproblem. That is we solve:

Minimize lx1 + 222 + 3x3 + 424 + Bx5 + 66 = 21
subject to r1 + x2 + x3 =3
z4 + x5 + 6 =4
(Sub 1) : x1 + x4 =2 (10.85)
T2 + x5 =1
T3 + x6 = 4
x; >0, for j=1,...,6,
Minimize la7r + 228 + 3z9 + 4210 + dx11 + 6212 = 22
subject to T7 + x8 + T9 =4
Ti0 + T1i1 + T2 =5
(Sub 2) : X7 + 10 =3 (1086)
s + zn =3
T9 + x12 =3

x; >0, for j=7,...,12,
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and
Minimize 7$13 — 10:13’14 = Z3
(Sub 3) : subject to 13 — 2z = 1 (10.87)
z13 > 0, x14 > 0.

The optimal basic feasible solutions to the three subproblems are:

Subl:uil=2 wil =1, ui' =0, uit =4.
Sub2: wli' =1, u3' =3, u3' =3, v =2. (10.88)
Sub 3: ud! =1.

As noted on Page 285, the solutions obtained from the subproblems are transformed
when put into the Master Problem. The Phase II objective evaluation will be done using
as objectives:

1 1
2 2
1|3 2 |3 3 7
=141 =141 ¢’ = (_10) (10.89)
5 5
6 6
The Phase I objective evaluation will be done using:
0 0
0 0
1|0 2 |10 3 (0
w=f4| w =141 w —<0>. (10.90)
0 0
0 0

and the Restricted Master Problem coefficient matrix transformations will be done using

3216 5 4
A = (1 8 3 7 1 4) (10.91)
8 5 7 3 4 1
A" = (5 2 5 3 2 6) (10.92)
A?’:(é Z) (10.93)

This results in

21 _ 42 21 _ (43
G =AW = 30
GPl— 43,80 — ;

and

gll _ (wl)Tull =0
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21 2\T 21
g7 = (w)u" =
931 (wB)TUSI — O

The corresponding associated objective coefficients are set to zero for Phase I. The
Phase I Restricted Master Problem is then

Minimize Oai1 + Oagr + Oasi + lziz + lz14a = w
subject to 2811 + 43a21 + a3 — 13 = 64
26a11 + 3021 + 3as1 + w14 = 63

Q11 = 1 (10.94)
a1 =1
Q31 = 1

A 2 07$j 2 0.

On solving the Phase I restricted Linear Program (10.94), all five variables are basic and
we obtain the following multipliers:

) -2
fr:(_1>, and ﬁ=<13>. (10.95)
-2

The multipliers are used to obtain the adjusted costs for the subproblem objectives as
follows:

pl=w'—AN""=(2 -6 -2 -1 4 16)7
PP=w'—AH""=(3 3 2 0 2 —5)"
ﬁB :wS _ (AB)Tﬁ' — (_2 _2)T

After solving the three subproblems with the above objective coefficients repectively, we
obtain the following solutions:

Subl:wui?=1 ul>=2 ul?=2 u®>=2, =z =-12.
Sub2:uf?=1, u3>=3, ui’=2, ug> =3, 2z =-3. (10.96)

Sub 3: v$? = 1,03 = 1. Homogeneous Solution.

Note that
21 <1, 22 <%2, z3<%3. (1097)

Hence we transform and insert each of the solutions into the Restricted Master Problem.

The transformations are
12 4112 [ 24
G =Au" = ( 36)

22 42 20 [ 32
G” =A%u —<35>

32 433 (3
H =A% —<7>
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and

<
|

The new Phase I Restricted Master Problem is then

Minimize Oc11 + Oaie + Oaor + Oase + Oazi + Oaze + lx1z + lax1s = w

subject to  28ai1 + 2412 + 43a21 + 32022 + az1 + 3031 — T13 = 64
2611 + 36ai2 + 3021 + 35a2e + 3asi + 7031 + x4 = 63
a1l + o1z =1
21 + Qo2 =1
a3 =1
ar; > 0,831 > 0, artificials z13 > 0, z14 > 0.
(10.98)

After solving this, we obtain a basic feasible solution with all artificials out of the basis.
We start Phase II with replacing the objective coefficients by the transformed coefficients:

g (01)Tu11 — o8
g = ()T = 28
g — ()T = 33
g — (M7 = 33
g — (A2 =7
— (A2 = 3

On optimizing the modified Phase II Restricted Master, the multipliers are:
41.2391
7= (_8;?22) and = | 50.7717 |. (10.99)
' 8.2391

The new multipliers are used to obtain the adjusted costs for the subproblem objectives
as follows:
pt=c' —(AYTR = (1.8477 5.1956 4.2391 7.4889 6.1737 8.0868)"
p°=c — (AHTr = (4.0975 3.5324 5.9345 5.5651 6.3694 8.3152)7
PP = —(AHTr = (8.2391 —8.2391)7

After solving the three subproblems with the above objective coefficients repectively, we
obtain the following solutions:

Sub1l:ui®=2 ui*=1, ut® =1, uf® =3, 2z =38.3636
Sub2:u¥ =3 uB3 =1 u3=3 ul=2 2=-3 (10.100)
Sub3:u¥® =1 23 =83201

Note that
z1 <71, z2<7%2, Z3=7%3. (10.101)
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Hence we transform and insert the solutions of subproblems 1 and 2 into the Restricted
Master Problem. The transformations are

13 41 13 (24
G°=Au _<18>

23 42923 _ (33
G = A%u —(32)

and

13 — (CI)TUIS — 928

23 — (cQ)Tu23 — 33

The new Restricted Master Problem is

Minimize 2811 + 2812 + 2813 + 3321 + 33co2 + 333 + Tazr + —3ase

subject to  28a11 + 24aue + 24013 + 43a21 + 32a02 + 3303 + az1 + 3031 = 64
2611 + 3612 + 181z + 30a21 + 3b5awe + 323 + 3asi + 7031 = 63

ail + o2+ aag =
21 + o2 + Q23 =
31 =
ar; > 0,631 > 0,2; > 0.
(10.102)
On optimizing the Restricted Master, the multipliers are:
37.0000
7= <8'ggig> and 7§ = <48.2367> (10.103)
' 8.2632

Once again, the new multipliers are used to obtain the adjusted costs for the subproblem
objectives as follows:

pl=c' —(AYT7 = (1.6315 5.3164 4.2633 7.2370 5.7893 7.8940)"
PP =c — (A7 = (3.6052 3.1841 5.5263 5.4211 7.8940 8.4477)"
PP = — (A7 = (8.2632 8.2632)"

Upon solving the three subproblems with the above objective coefficients repectively, we
obtain the following solutions:

Subl:ui*=2 ul*=1, ul*=1, ut*=3, 2z =37.0000
Sub 2: w3' =1, ud* =3, ui* =3, ui' =2, 2, =48.6327 (10.104)
Sub3: ud =1 23 =28.2632

Since
2=, Z2=7%2, 23=73, (10.105)

the solution is optimal.

— = =
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10.3 BENDERS DECOMPOSITION

Benders decomposition is Dantzig-Wolfe decomposition applied to the dual. Un-
der this approach, the number of variables is reduced at the expense of usually
adding many new inequalities. Analogous to generating columns of the D-W mas-
ter only when needed, the inequalities of the Benders master are generated only
when needed. Thus, it is a Delayed Row-Generation Procedure. Benders decompo-
sition plays a central role in the solution of multistage stochastic linear programs
(see Chapter 12). In this section we develop the theory of Benders decomposition
as applied to solve a linear program of the following form.

Maximize  (bY)Tnl + (0*)T72 =9
subject to  (ANHTr! + (A%)Tr2 < ¢

(10.106)

where A is m; x n and A2 is mg x n. Although developed independently of the
D-W algorithm, its arithmetic steps turn out to be identical to solving by applying
the D-W algorithm to its dual

Minimize e =z
subject to Az = b!, Al i my x n,
A%z = b2, A2 mg x n, (10.107)
z >0,

and interpreting its optimal conditions as the optimal solution of (10.106).

The D-W decomposition transforms a system (10.107) of (m; + m2) equations
in n variables x into a system of m1 + 1 equations and usually many more variables.
Benders decomposition transforms a system of n inequalities in m; + mo variables
(!, 72) into a system in m; + 1 variables and usually many more inequalities. We
sometimes refer to Benders decomposition as a way to eliminate variables. We shall
describe the steps and the justification of the steps of Benders decomposition from

these two perspectives.

10.3.1 DUAL OF D-W DECOMPOSITION

The first way of deriving the algorithm is a straightforward implementation of the
following lemma:

LEMMA 10.14 (Benders Decomposition is Dual of D-W Decomposition)
Solving the original problem by applying the D-W Decomposition procedure to the
dual of the original linear program (10.106) results in a procedure that is identical
to the Benders Decomposition Procedure described in Section 10.3.2.

Thus, the elimination of the my components of 72 in (10.106) can be done by
eliminating the last mo equations of its dual (10.107) using the D-W decomposition
algorithm.

> Exercise 10.30 Prove Lemma 10.14.
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10.3.2 DERIVATION OF BENDERS DECOMPOSITION

We will now present another way of deriving the Benders Decomposition Algorithm.
It is the one usually found in the literature. For ease of exposition, we assume that
(10.106) is feasible and has a finite optimum.
By moving the terms in (10.106) corresponding to 7! to the right-hand side of
the inequality (see Exercise 10.31), we get:
Maximize  (b')"n! + max (b%)7n?
LS w2 |mt (10.108)
subject to (AHTr? < e — (AH)TrL.

Holding 7! fixed, we wish to:

Maximize — (b?)"? = tpo(r?)
e (10.109)
subject to  (A?)T7? < ¢ — (ANl

To simplify the discussion, we assume that there always exists some w2 such that
given 7', (w1, w?) is feasible for the original problem. We shall now show how to
obtain a solution to (10.109) under this assumption. Letting = be the dual variables
corresponding to (10.109), we obtain:

Minirlnilze (c— (Al)Tﬂl)Tx = y(mh)
2 (10.110)
0.

subject to A2z
x

VIl

The Full Benders Master Program is found by expressing every feasible solution
of (10.110) as a convex linear combination of the extreme-point solutions {u‘}, for
i=1,...,L plus a nonnegative linear combination of normalized extreme homoge-
neous solutions {v7}, for j = 1,..., M of (10.110). The Resolution Theorem 10.5
tells us that any feasible solution x of (10.110) can be written as:

L M
=Y o'+ v, (10.111)
i=1 j=1
for some choice of a; > 0, i = 1,..., L, where ZZ—LZI oy =1,and B; >0, j =

1,...,M.

Substituting (10.111) into (10.110) and noting that A%u’ = b%, A%v/ = 0 for
all ¢ and j whatever be a; > 0, >~ «a; = 1, 8; > 0, we obtain the following linear
program.

Given 7', find minimum 2 (7"), and o; >0, B; >0, such that
L M
Z [(c - (Al)Tm)Tui}ai + Z {(c - (Al)Tﬁl)ij}gj
i=1 j=1
L
Z Qi = 1.
i=1

I
<
M)

=]H
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Next, for (10.112) we note the following:

e Because of our feasibility assumptions of the original linear program, the op-
timal solution of (10.112) must be bounded for our choice of 7!; otherwise
(10.109) would be infeasible. Thus, feasibility of (10.109) implies that 7!
satisfies

(c—(AYT) v >0 forall j=1,..., M. (10.113)

e Given that 7! satisfies (10.113), an optimal solution must then occur at an
extreme point of (10.110), that is
0 1 : N \T i
= — (A . 10.114
P (m) @1&(6 (A7) (10.114)

Therefore the original linear program (10.106), which is the same as (10.109), is
equivalent to

S 1N\T_1 . AT N\ g
Maximize [(b)w +121£1L(c (A)w)u}

’T - (10.115)
subject to (c — (Al)Twl) vi. >0
It is easy to see that this then reduces to:
Maximize (BHTrl + v
ey
subject to (¢ — (Al)Tﬂl)Tui - >0 i=1,...,L, (10.116)
(c—(Al)Tﬂl)ij >0 j=1,...,M,
where (c — (Al)Twl)ij >0,7=1,..., M, are the additional constraints to ensure

that the choice of 7! has the property, which we assumed, that there exists some 72

such that (7!, 72) is feasible for the original problem. Substituting the definitions

G = Al?, HI = A,

Pa—— hy = ¢, (10.117)
into (10.116) we obtain:
THE FULL BENDERS MASTER PROGRAM
Find maximum v, 7', « unrestricted in sign, such that
)Tt + v = (10.118)
(GHYIrl + v < g, i=1,...,L,
(HI) "7t <h;, j=1,...,M.

THEOREM 10.15 (Benders Transformation Into an Equivalent LP) Be-
nders Full Master Program (10.118) transforms the original n x (my + mg) linear
program into an equivalent linear program with fewer columns and possibly many
more inequalities, namely, an (L + M) x (my1 + 1), where my is the number of rows
of A', L is the number of extreme solutions, and M is the number of normalized
homogeneous solutions of { x| A%z = b2,z > 0}, that is, linear program (10.118).
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Exercise 10.31  Prove that (10.106) is equivalent to (10.108).

Exercise 10.32 Prove that the assumption that the original problem (10.106) has a
finite optimal feasible solution implies that (10.110) has feasible solutions and has an
optimal feasible solution when 7! has the property that there exists some w2 such that
(m',7?) is feasible for the original problem (10.106).

Just as in the D-W decomposition, it is usually impractical to express explicitly
the full set of basic feasible solutions and normalized extreme homogeneous solu-
tions, so in Benders it is usually impractical to express explicitly the full set of
inequalities for (10.118). To initiate an iterative step, assume that we have already
inherited from earlier iterations a set of inequalities that is a subset L of the first
set of L inequalities and a subset M of the second set of M inequalities (10.118).
The linear program with L+ M inequalities is called the Benders Restricted Master
Program. The inequalities themselves are called cuts (a term derived from Integer
Programming, where each inequality generated “cuts off” a region in the feasible
space where no integer solutions of interest lie).

Assuming that the L + M inequality Benders Restricted Master has an optimal

solution 7! = 7! and v = 7, we generate a new inequality by letting the Adjusted
Costs be
p=c— (AHT7! (10.119)
and solving:
Minimize ﬁTx =2
subject to A%z = b? (10.120)
xz > 0.

The solution of (10.120) gives rise to one of two cases:

1. Optimality Cut. If a finite optimal solution x = «* is obtained for (10.120),
then it generates a new inequality

(GE YT 4y < g, (10.121)

where GEF1 = AL* and Jpi1 = ¢Tu*. This inequality is called an optimality
cut.

2. Feasibility Cut. On the other hand, if an extreme homogeneous solution =" =

v"™ is obtained for (10.120), then it generates a new inequality

(HMO Tl < py, (10.122)
where HM+1 = Aly* and Py = ¢Tv*. This inequality is called a feasibility
cut.

After augmenting the Benders Restricted Master Program by either the new
optimality cut or feasibility cut indexed by ¢ = L+ 1 or j = M + 1, it is re-solved.
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LEMMA 10.16 (Original Problem Infeasible) If, after augmenting the Ben-
ders Restricted Master Program by a new feasibility cut and re-solving, we find that
it is infeasible, then the original linear program is infeasible.

Exercise 10.33 Prove Lemma 10.16.
THEOREM 10.17 (Optimality) If the new optimality cut is feasible for m =

7l and v =7, then (nt,w2) = (71, 72) is an optimal solution to the original linear

program, where w2 = 7% is an optimal dual solution to (10.120).

Exercise 10.34 Prove Theorem 10.17.

Example 10.7 (Illustration of Benders Decomposition) Consider the following
linear program

x1 T2 T3 T4 T T6
1 1 1 3 2 1 =z (min)
1 2 3 = 6
3 2 1 = 6 (10.123)
1 1 1 4 -1 1 =9
3 2 1 3 2 1 = 15
4 -1 1 1 1 1 =9

where z; > 0 for j =1,...,6. The problem is in the following form

A + Ty = 2
Ax =5b
Bx + Dy =d
x>0,y >0,

(min)

where 2" = (z1,22,23), ¥y = (y1,92,43) = (za,25,26), ¢ = (1,1,1), fT = (3,2,1),
dT =(9,15,9),

1 11 4 -1 1
A:(é ; ?), B:<3 2 1), and D:(?) 2 1).
4 -1 1 1 11
To solve the problem by Benders decomposition, we start by creating the Initial Restricted
Master Problem
'z 4+ 60 = z (min)
Az =b (10.124)
x>0,
where § = 0 if there are no optimality cuts and 6 = 1 if there is at least one optimality cut.
In this case § = 0, because there are no optimality cuts so far. Given a solution = = z°,
to the Master Problem, we solve the subproblem

[y = w (min)
Dy = d — Ba®
y 2 0.

(10.125)
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The solution of this is then used to define cuts for the Master Problem.
The solution to

Minimize r1 + x2 + 3 z

subject to xr1 + 2x2 + 3x3 = 6
3x1 4+ 222 + x3 6
>0

ise=2"= (1.5,0, 1.5)T. Using this we first compute the right-hand side to the subproblem

(10.125) as
9 1 11 1.5 6.0
d— Bz" = <15> - <3 2 1) <0.o> = <9.0>,
9 4 -1 1 1.5 1.5

and then solve the sub problem:

Minimize 3y1 + 2y2 + y3 = w
subject to  4y1 — y2 + y3 = 6.0
3yr + 2y2 + y3 = 9.0
y1 + y2 +y3 =15
y > 0.
This problem is infeasible and so we use its infeasibility multipliers to create an infeasibility
cut. The infeasibility multipliers are:

—0.2
= 1.0
2.2

Next we compute the infeasibility cut G'z > g' by computing
G'=#"Y'B=(-6 4 —-14)"

and
g'=(")d=-66
The new Benders Restricted Master is:

Minimize r1 + x2 + r3 + 00 = 2z
subject to xr1 + 2x2 + 3xs3 =6
3x1 + 2x2 + €T3 =6

—6x1 + 4re — l.4xs > —6.6

z >0,

where § = 1 because there still is no optimality cut. The optimal solution to this is z' = 3.0,
' = (1.207792 0.584416 1.207792). Using this we first compute the right-hand side to
the new subproblem as

9 1 1 1 1.207792 6.0
d—-Bz'=(15]-13 2 1 0.584416 | = 9.0
9 4 -1 1 1.207792 3.545456

and then solve the subproblem:

Minimize 3yir + 2y2 + y3 = w

subject to  4y1 — y2 + y3 6.0
3y1 + 2y2 + ys = 9.0
y 2> 0.
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This subproblem solves to optimality: w = w" = 9.0, y = " = (1.9091 1.6364 0.0 )T
with optimal multipliers
0.0
= <1.0> .
0.0

Next we compute the optimality cut G?z + 6 > g? by computing
G*=(*)"B=(30 20 10)

and
g = (7*)"d =15.

The new Benders Restricted Master is:

Minimize r1 + x2 + z3 + 0 = 2
subject to 1 + 222 + 3z3 =6
3x1 + 2x2 + T3 =6

—6x1 + 4xo — l.4x3 > —6.6
3x1 + 2x2 + 3 + 0 > 15

z > 0.

The optimal solution to this is 2% = 12.0, z* = (1.207792 0.584416 1.207792), #* = 9.
Since 62 = w" = 9 we are optimal and we terminate.

Exercise 10.35 Solve (10.123) to verify that the solution obtained by Benders decom-
position is correct.

Exercise 10.36  Write down an outline of an algorithm to solve the linear program
(10.106) by Benders decomposition.

Exercise 10.37 If at iteration k of the Restricted Master the optimal value of 6% is
equal to the sum of the optimal objective values of the subproblems, prove that we have
found an optimal solution to the linear program.

Exercise 10.38 Show that the Benders Decomposition algorithm terminates after a
finite number of steps with one of the following: a feasible optimal solution, an indication
that there exists no feasible solution, or an unbounded solution consisting of a feasible
solution plus a feasible homogeneous solution.

As we keep adding cuts and solving the Benders Restricted Master augmented
by the new cuts, some of the inequalities may no longer remain tight at an optimal
solution of the restricted master. Then to reduce the computational effort or not
exceed computer memory, some or all the inactive inequalities may be discarded
because they can always be regenerated as and when needed. However, practical
implementations have shown that discarding all such inactive inequalities typically
results in many more iterations than if some inactive inequalities were retained, as
a part of the restricted master. See Section 10.2.2.2 for some ideas of criteria for
deciding which inactive inequalities to retain.
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10.4 BLOCK-ANGULAR SYSTEM

In this section we shall show how to use the D-W decomposition principle to solve
the block-angular problem (10.126), namely:

Minimize  (¢)T2° + (¢)Ta! + -+ + (K)T2K = 2
subject to A% +  Algl + ... 4 AKEK =
Flgl -

(10.126)

FKmK::fK
z°>0, 21 >0,...,25 > 0.

For our discussion it will be convenient to think of problem (10.126) as solving

Minimize  (¢*)Tz° + (c)Ta! + - + (K)T2K = 2
subject to AVzo + Algl 4+ ... 4 AEKEK —p (10.127)
z° >0

subject to the additional constraints:
(Sp): Frab =fk  2F>0, fork=1,..., K. (10.128)

Assume for the moment that all the basic feasible solutions and all the extreme
homogeneous solutions for S; to Sk for (10.128) are available. In practice, of
course, these are usually too numerous to be all at hand. When this is the case,
our goal will be to show how to generate just those solutions among them that are
needed.

From the Resolution Theorem 10.5 any solution x* > 0 to (S) for k=1,..., K
can be written in the form

Ly M,
b = apuf + B0, (10.129)
i=1 j=1
where
Ly
daki=1, g >0, i=1,..., L, (10.130)
=1
Brj >0, j=1,..., M, (10.131)
and where u* for i = 1, ..., Lj, are the full finite set of basic feasible solutions for Sy,
and v* for j = 1,..., L, are the full finite set of normalized extreme homogeneous

solutions for Sy. Conversely any solution represented by (10.129) is feasible for Sy.

> Exercise 10.39  Rewrite problem (10.126) in terms of a; and [Bg;.
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Denote the linear transforms of G** of u** and H*/ of v*7 by:

Gk = Akuki,
HEi — Akyki (10.132)
and denote the associated scalar costs by:
_ (R\T, ki
gri = (c) us (10.133)

hi; = (&) Tk,

> Exercise 10.40 Write down the original linear program in terms of the transforms
defined by (10.132) and (10.133). Note: The resulting linear program is called the Full
Master Program.

Assume for the following exercises that we have an initial basic feasible solution
to a Restricted Master Program and let the simplex multipliers associated with
the m + K rows of the restricted master program be 7, v1,72,... ,7, where 7 is
the m-vector of multipliers associated with the first m constraints of the Restricted
Master Program and ~;, K = 1,..., K, are the scalar multipliers associated with
the K convexity constraints (10.130) of the Restricted Master Program.

> Exercise 10.41 Show how to compute the simplex multipliers and how to determine
the reduced costs.

> Exercise 10.42 Show that in order to obtain the lowest reduced cost, we must solve
the subproblems:

Minimize  (7")Tz* = 2
subject to  FFzF = f* (10.134)
z" > 0,

where ", the Adjusted Costs, satisfy
o= — (AN (10.135)
fork=1,..., K.

If, at some iteration, basic feasible solutions are obtained to the subprograms
such that all the reduced costs for the full master program are nonnegative, we
are at an optimal solution of the full master program, and (10.129) can be used to
compute an optimal solution to (10.126). Otherwise we bring a new column into
the basis for the master program.

> Exercise 10.43  Specify the conditions under which we bring in G** or H** for k =
1,..., K into the basis of the restricted master problem.

> Exercise 10.44  Analogous to Algorithm 10.1, write down the steps of the Dantzig-
Wolfe algorithm for solving a linear program in the Block-Angular form.
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> Exercise 10.45 State and prove a Theorem analogous to Theorem 10.9 for the Block
Angular system. Also state and prove an analogous Corollary 10.10 for the Block Angular
system.

> Exercise 10.46 State and prove a Lemma analogous to Lemma 10.12.

> Exercise 10.47 Consider the following two stage block-angular problem which for con-
venience has been written in a form suitable for decomposing into one master problem,
consisting of one equation and one convexity constraint, and two subprograms.

Minimize 1 — i — 3z + 32} + 2002 + 3022 + T2+ 22+ zi=2
subject to 3z —x3 —3xi+22i+ i+ 2224025 — i+ 22=1
i+ xh— i+ x =3
Ozt +x3— 23— ) =4

i+ 23+ 234+ zi402E=1
207+ w3 —223402F+ 22=2
andz} >0, i=1,...,4and 23 >0,j=1,...,5.

Solve this problem using the D-W decomposition principle.

> Exercise 10.48 For the Block-Angular system show how to obtain an initial feasible
solution by a Phase I procedure.

> Exercise 10.49 State and prove a theorem analogous to Theorem 10.13 for the Block
Angular system.

> Exercise 10.50 Can the coeficients of the objective be modified in such a way that a
class of feasible solutions exist such that z is unbounded below? If yes, apply the Benders
Decomposition Algorithm to the modified problem.

10.5 STAIRCASE STRUCTURED PROBLEMS

A staircase linear program has a square partitioned structure consisting of K x K
submatrices all of whose elements are zero except possibly the elements of the
submatrices on and just below the main diagonal; for example

Minimize  (¢})Ta! + (®)T2? + (3)T2? + (¢H)Ta* = 2

subject to  Allg! = bl
A2l 4222 — 2
A32,2 4 4333 — (10.136)

A43x3 + A44$4 — b4
z* >0, k=1,...,K, where K = 4.
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We will call the successive steps from the top of the stairs down as the time periods
t=1t=2,t=3, and t = 4, although in certain applications the steps may be
stages of a production process or partitions of a physical structure. The methods
to be described are quite general and can be used to solve any K-step problem. In
this section we sketch three ways that either the D-W or Benders Decomposition
Principle can be applied recursively using a nested decomposition approach.

10.5.1 USING BENDERS DECOMPOSITION

One way to nest the partitions of x is forward-in-time starting with the variables x
into {x'}, {22, 23, 21} which results in a Benders subproblem to be solved for some
fixed z':

Minimize  (¢?)T2? + (¢3)T2® + (¢M)Tat = ¢
subject to A2 = b2 — A%t
A3222 4 A33,3 —p3 (10.137)
A43x3 + A44x4 — b4
¥ >0, k=234

This subproblem is solved by nesting the partition corresponding {z?, 2%, 2%} into
{22}, {23, 2*} and so forth. Each nesting recursively decreases the number of steps
until the remaining subproblem has only one step.

The Benders Restricted Master corresponding to the first partition has a form
similar to (10.118) that, in vector notation, is

(cH)Izt + 41 = 2z (Min)
e =

GTxl —+ €1 Z g, (]-a]-v"'a]-)T? (10 138)
HTy! >h |
ot > 0.

where G = (GY,G?,...,), 97 = (g1,92,...,), H = (H' H? ...,), and hT =
(h1,h2,...,). The Restricted Masters for the successive subproblems are defined
in an analogous way.

Exercise 10.51 Complete the description of the Benders Decomposition approach for
K = 4. Specify all the Restricted Master and Sub Problems. Write down all the steps to
solve the entire problem.

Exercise 10.52 Show (using Benders Decomposition in a forward direction in time as
just described) that the optimal first-period activity levels are determined by prices on
items produced in the first period for use in the second and subsequent periods. Show,
however, that these prices are not unique and therefore multiple cuts will be needed to
determine the optimal first-period activity levels.
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> Exercise 10.53 Consider the following staircase system:

(El)T‘fl + (Cl)TfL'l + (0—2)Tx—2 + (CQ)T{L'2 + (53)ng + (CB)T.Z'B + (04)T$4 = 5 (Mln)
Allfl + Allfljl bl
A21£IZ’1 + AQQSIZ’_Q + A22£IZ’2 b2
A32 113’2 + ASSfB + A33$3 — b3
A43.Z'3 + A44.Z'4 — b4

¢ >0, k=1,...,4, & >0 j=1,...,3.

1. Show that the structure when viewed forward-in-time is identical to the structure
when viewed backward in time, i.e., relabeling the indices (1,2,3,4) to (4,3,2,1).
The variables x' link the first and second periods, the variables =2 link the second
and third periods, and the variables z® link the third and fourth periods. Assume
that the linking variables have very few components (for example, 1 or 2), while ',
Z2, ° have many components. Show how this information can be used to develop

a more efficient algorithm.

2. Suppose that (:1?17 2, :1?3) is each a scalar variable. Apply a backward-in-time dyna-

mic-programming recursion approach to effectively solve the problem.

> Exercise 10.54  Apply Benders Decomposition to (10.136) by the backward-in-time
partitioning « into {z*, z? z®}, {z*} to form the first nested subproblem

Minimize — (¢*)%z* = ~
subject to A¥gt = pt — A%3,3 (10.139)
z* > 0.

Then partition {z',z? 2®} into {z', 2%}, {z®} and finally partition {z',2®} into {z'},
{2} to recursively nest. Compare this way to doing the nesting with the forward-in-time
nesting way discussed at the start of this section. Why is the forward-in-time way to be
preferred?

> Exercise 10.55 Apply Benders Decomposition to (10.136) by partitioning x into the
sets {2', 2%}, {z3 2*} to form a Restricted Master corresponding to {z*,z*} and sub
corresponding to {z',z?}. Next partition {z',2?} into {z'}, {2} to form a Restricted
Master with {2?} and a sub with {'}. Compare this with the approach in Exercise 10.54.

10.5.2 USING D-W DECOMPOSITION

Using D-W Decomposition, we partition the rows into time steps {t = 1}, {t=2,
t=3, t=4}, then we solve

Minimize  (¢})Tal + (®)T2? + ()23 + (¢H)T2? = 2

subject to  Allz! =p! (10.140)
>0, k=1,...,4.
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subject to the additional constraints

A21£B1 + A22£B2 — b2
A32£B2 + ASBIES — b3
A43{E3 + A44{E4 — b4

>0, k=1,...,4.

(10.141)

Then using the Resolution Theorem 10.5, any solution x of (10.141) can be written
as:

21 i uil Ny Vil
22 w2 072
e= 1] = Za s | T Zﬂj i3 (10.142)
2 =1 it J=1 "z
where
L
ai=1, a;20,i=1,....,L, §;>0, j=1,..., M, (10.143)
i=1
and where u' = (u™,u’? v, u™) for i = 1,..., L are the full finite set of basic
feasible solutions for (10.141) and v/ = (v/1, 072,073 v4) for j = 1,..., M are the

full finite set of normalized extreme homogeneous solutions for (10.141). Then the
Full Master Program is:

M=

Minimize [(Cl)Tuil + (CQ)TuiQ + (63)Tui3 + (04)Tui4} a;
i=1
4 [(cl)T,Ujl + (CQ)T,UjQ + (CB)T’UJB—F (04)T’Uj4}ﬁj = 2
7j=1
L _ M _ (10.144)
subject to Z Atuta; + Z Altoltg; =0

.
I

1 j=1

(67} =1

M=

1
a;>0,i=1,....L, 3;>0,j=1,...,M.

.
I

Because it is impractical in general to generate the Full Master Program, we in-
stead use the optimal prices 7! of the Restricted Master Program to determine the
objective for subproblem (10.141). The subproblem with the adjusted objective is
then solved to determine the next incoming column:

T

Minimize (¢! — (7})TAM) 2! + (2)T2? + ()2 + ()72t = 2
subject to Agl + A22,2 = b?
A3222 1 A33,3 = p3 (10.145)
A43x3 + A44$4 — b4
>0 k=1,...,4
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This subproblem is now in a form similar to the original problem that can be
decomposed by partitioning the rows into time steps {t = 2}, {t = 3,¢t = 4}, and so
forth.

Exercise 10.56 Complete the description of the D-W Decomposition approach. Specify
all the Restricted Master Problems and corresponding subproblems. Write down all the
steps to solve the entire problem.

Exercise 10.57  Apply D-W Decomposition to (10.136) by partitioning the rows into
time steps {t = 1,t = 2,¢ = 3}, {t = 4} with {¢ = 4} used to form the subproblem. Then
partition {t = 1,¢ = 2,t = 3} into {t = 1,¢t = 2}, {¢t = 3} with {t = 3} used to form the
subproblem, and finally partition {¢ = 1,t = 2} into {¢t = 1}, {t = 2} with {¢ = 2} used to
form the subproblem. Compare the two ways to do the partitioning and discuss why the
first way is preferred.

10.5.3 USING D-W DECOMPOSITION WITH
ALTERNATE STAGES FORMING THE
SUBPROBLEMS

We start the decomposition process by making a subprogram of every other stage.
We arbitrarily let the master problem correspond to the second and fourth stages
of (10.136) to form the master program and let the first and third stages form the
subprograms. That is we wish to solve

Minimize  (¢})Tal + (®)T2? + ()23 + (¢H)T2? = 2
subject to Al 4 A2 =2

A43x3 + A44$4 — b4 (10146)
z* > 0.
subject to the additional two independent sets of constraints
(S1) : Azt =pt 2t >0 (10.147)
and
(S2) : A2 4 A8 =03, 22 >0, 23>0 (10.148)

Assuming that there are no homogeneous solutions, substituting the convex
combination of extreme points 2, i = 1,..., My of (10.147) and 2%, j = 1,..., Mo
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(10.148) into (10.146), and letting (¢/)T = d/, we generate the Master problem
Find Min z, A\; > 0, pt; > 0, such that
Z(dlm”)& + Z(dQ:cQj +dP¥\u; +  dia* = z(Min)

i J
Z(AQILL’M)AZ' + Z(A22$2j)ﬂj = p!

i J

S _ (10.149)
Z(AQSij)uj + A44$4 _ b2
J
> w =1
J

Note that the Master Problem is again a staircase problem with half the number
of steps. In general, we can partition the steps of a staircase problem into two sets
of equations, making one set the Sub and the equations of the resulting Master
corresponding to the other set plus one convexity constraint. If the Sub consists
of, for example, the subset of even steps, then equations of each even step will be
independent of those of any other even step, and each will give rise to an independent
convexity constraint in the Master; see (10.149).

> Exercise 10.58 Extend the theory to include homogeneous solutions.

THEOREM 10.18 (Decomposition of a 2K-Stage Problem) Given a 2K -
step staircase problem, each step consisting of m equations. Making the set of K
even steps, the subproblem will give rise to a Master Problem equivalent to the
original problem that is a staircase problem of K steps, each step consisting of
m + 1 equations, one of which is a convexity constraint.

> Exercise 10.59 Prove Theorem 10.18. Restate and prove Theorem 10.18 for the case
when the staircase problem has an odd number of steps.

> Exercise 10.60 Provide details for the nested decomposition approach using alternate
stages to form the subproblems.

10.6 DECOMPOSITION USED IN CENTRAL
PLANNING

The theory developed for decomposition makes it possible to plan the overall opera-
tion of an organization without the central office staff having any detailed knowledge
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of the technology of each plant. Instead the Master Problem can be used to perform
the centralized planning task of allocating scarce resources.

Suppose that a corporation has K plants and each plant k has constraints on
the production each of which is independent of the production of the other plants:

kak:fk) l‘k ZO) k:]‘?"')K7 (10'150)

where 2 is the vector of activity levels for plant k. However, all the plants must
share a number of scarce resources which the Central Office controls. This sharing
of resources is expressed by a set of constraints on the activity levels of the various
plants and on the activity levels 2° of the Central Office itself:

APz 4 Alg! 4. 4 AKK =, (10.151)

The planners want to maximize their profit or equivalently minimize the overall
cost. This results in the following block-angular linear program

Minimize — (¢)T2° + (e¢)Ta! + -+ + (K)T2K = 2
subject to AVze + Algl ... 4 AKK =)
Flgl -

(10.152)

FKmK::fK
z°>0, 21 >0,...,25 > 0.

If all the data are available at the Central Office it could be fed into a modern
computer and the Central Office could use it to determine the optimal allocation
of scarce resources to each plant. It could also provide each plant with the levels of
activity 2 to operate optimally.

Suppose, however, that the Central Office wants the plants to do their own
planning and does not want to know about the details of the plant operations.
What the Central Office would like to do is to give each plant k an optimal allocation
vector G* of scarce resources and let each plant solve its own problem

Minimize  (c*)Ta* = 2,
subject to Akgk = GF
Fhghk — fk

zk > 0.

(10.153)

Unfortunately the Central Office does not have the optimal G* to furnish the
plants and needs to have a procedure for finding them without having to solve the
whole detailed problem (10.152). Let us suppose that what Central Office has for

each plant k are the historical records (é’;) = (gﬁ) that it has allocated two

time periods in the past, t = 1 and ¢ = 2, say (é’?cll > and <é’?€22) fork=1,..., K.
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With these it can set up a Restricted Master Program:

(e)T2° + zy1a11 + z12012 + -+ 204, + 2,0, = 2 (Min)
A%z° + GMagy + GPags + -+ + GKlaKl + GKQOzK2 =b
a1, + a =1
H - (10.154)
aKl + aK? = 1

ak1207 ak‘2207 k:157K

We assume, to simplify the discussion, this Restricted Master problem is feasible.
Its optimal solution ax; = @k1, aga = age provides us with allocation vectors
GF = ap G + apoG*? for k =1,... K. Let 1 =7, % = Y, for k =1,..., K
be the optimal prices associated with the Restricted Master Problem. We, the
Central Office, now wish to use these prices to determine if these G¥ are the optimal
allocation vectors, and, if not, how they can be improved. To this end we instruct
the plants k to solve their own detailed program by tentatively assuming that # = 7
are the prices for the scarce resources.

Minimize — (c* — (4%)T7) T2k = 0,
subject to Flgk = fk (10.155)
x

A sufficient test for our tentative allocation to be optimal is, according to Theo-
rem 10.9 on Page 290,
0p =7, fork=1,...,K, (10.156)

where 7, are the optimal multipliers on the convexity constraints of (10.154).

For those k that fail the test, the Central Office requires the plant to determine
the costs zj of their tentative plan 2% = ¥ and its corresponding use G* of scarce
resources:

kg = (cF) Tk

GkS — Akfk (10'157)

which the Central Office uses as additional columns in the Restricted Master Pro-
gram with weights ags. The iterative process is repeated until the optimality test
is passed.

10.7 NOTES & SELECTED BIBLIOGRAPHY

The generalized linear program of Section 10.1 was first developed in the joint work of
Philip Wolfe and George Dantzig on a decomposition principle for large-scale block-angular
programs (discussed in Section 10.2), the origin of which is discussed in the next para-
graph. Wolfe suggested that the procedure there could be viewed as a special case of the
generalized linear program discussed in Section 10.1.

Kuhn & Tucker [1950] considered a broad class of nonlinear programing problems
whose objective function is a general convex function and the constraints are of the form
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fi(z) <0, where the f;(z) were convex functions; Dantzig [1963] proved that this general
class of nonlinear problems is a special case of Wolfe’s Generalized Program.

For details on the Resolution Theorem 10.5 and properties of convex polyhedral sets,
upon which the Decomposition Principle and Generalized Programming are based, see
Goldman [1956], Goldman & Tucker [1956a, 1956b], and Hoffman & Hirsch [1961].

The decomposition principle for linear programs was first developed by Dantzig &
Wolfe [1960, 1961]; the two papers present two different ways of looking at the decomposi-
tion principle. Historically, the special case (10.2) gave rise to the more general concept of
decomposition as applied to a generalized linear program (Dantzig & Wolfe [1960, 1961]).
According to Dantzig [1963], the decomposition approach was inspired by the proposals
of Ford & Fulkerson [1958b] for solving multistage commodity network problems. Jewell
[1958] also used similar approaches to that of Ford & Fulkerson. Later Benders [1962]
developed an approach that when applied to the dual was the same as the Dantzig-Wolfe
approach applied to the primal problem. Benders (dual) decomposition has been used ex-
tensively to solve stochastic programs; it is the method of choice for solving linear programs
under uncertainty (see Chapter 12).

The decomposition principle stirred up a lot of interest at first, but interest waned
when it was observed in practice, that, while the method generated good approximations
in a reasonable amount of iterates, it was slow to converge to a very close approximation
to the optimal. The convergence rate increased dramatically once the initial software
was replaced by software written by skilled numerical analysts. For a discussion of the
behavior of decomposition-based algorithms see Adler & Ulkiicii [1973], Beale, Hughes, &
Small [1965], Bradley, Hax, & Magnanti [1977], and Ho [1984].

Modern implementations of the Simplex Algorithm take advantage of sparsity to effi-
ciently solve large-scale problems. For even larger systems, refinements of a decomposition
algorithm together with a very good sparse representation are promising. For an advanced
implementation of the Dantzig-Wolfe decomposition approach, see, for example, see Ho &
Loute [1981]. See also Entriken [1989] for decomposition of linear programs using parallel
computing.

For staircase structured problems it is most common to use a decomposition approach
recursively as a nested-decomposition approach. This approach was first suggested by
Dantzig [1963]. Since then there has been work by a considerable number of authors.
For discussions of the nested decomposition approach see, for example, Dantzig [1963],
Dantzig, Dempster, & Kallio [1981], Glassey [1971], Ho [1974], and Ho & Manne [1974].
Such a primal nested decomposition approach has been applied to large-scale modeling
problems in the European Common Market by Ho & Loute [1981]. See also Bisschop &
Meeraus [1981], Dantzig & Perold [1978], Fourer [1982, 1983a, 1984], and Nishiya [1983].

A linear program solved by decomposition has very different numerical characteristics
than if solved without decomposition. The numerical properties of the decomposition
process are not yet fully understood. Some characterisitics that have been observed are:

1. A linear program can be well-scaled as initially formulated but can become very
badly scaled after the decomposition principle is applied.

2. In spite of possible ill-conditioning of a decomposed problem, it usually turns out
that its “optimal solution” is “close” to the true optimal solution.

3. In most practical implementations the basic feasible solutions and extreme homoge-
neous solutions of the subprograms are not stored; instead, G* and H?, the products
of a matrix times these solutions, are used. Thus, at the end of the algorithm, the so-
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lutions to the original linear program have to be reconstructed by solving additional
systems of equations. This can lead to numerical errors.

For further details and examples on the numerical behavior of decomposition algorithms

see Nazareth [1984, 1987]. For convergence of decomposition algorithms see Ho [1984].

10.8 PROBLEMS

10.1

10.2

10.3

10.4

Dantzig [1963]. The coordinator, “Staff,” of the Central Agency must pro-
cure tankers to assist his distributor, “Sub,” in the shipping of their prod-
uct from two plants to four terminals. Sub has the following transportation
cost/availability /requirement array

where the right most column contains the availability at each plant, the last
row represents the requirements at each terminal, and the remaining entries are
the costs of shipping from each plant to each terminal. The shipments from
plant 1 to terminal 3 and from plant 2 to terminal 2 are made via tankers, with
each unit of product requiring two tankers. All other shipments are made via
pipeline. Staff is not interested in the Subs details but does know that there are
nine tankers available for use.

(a) Solve Sub’s transportation problem.

(b) Re-solve Sub’s transportation problem after putting in an arbitrarily high
cost for the use of tankers.

(c) Set up Staff’s problem (restricted master) from the two solutions obtained
from Sub.

(d) Solve the entire problem using the D-W decomposition algorithm. At each
iteration obtain an estimate of a lower bound on the objective function.

Show that the feasible solutions generated by the Dantzig-Wolfe decomposition
algorithm can lie in the interior of the original linear program.

The Dantzig-Wolfe method yields the optimal multipliers which are then used to
generate the primal variables. Show how to apply the Dantzig-Wolfe algorithm
to the dual of a problem in order to generate the primal variables directly and
the multipliers indirectly.

Consider a network with M source-terminal pairs (s;, ;) and let the flow value
between s; and t; be F; for ¢ = 1,..., M; that is, the flow between each pair
(si,ti) can be thought of as the flow of a different commodity. Suppose that
each arc (4, 7) of the network has arc capacity h;; which is an upper bound on
the total flow of all commodities on the directed arc (4,j). Let ¢;; be the cost
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10.5

10.6

per unit total flow on arc (4,5). Assuming that all flows can be positive on
directed arcs, the goal is to find a minimum-cost feasible flow.

1. Formulate this problem.

2. If this Minimum-Cost Multi-Commodity Flow is to be solved by the D-W
Decomposition procedure, what are the subproblems?

Ph.D. Comprehensive Exam, March 30, 1970, at Stanford. Let x, y, and z be
unknown vectors; A, A%, B!, B?, B® known matrices; b', b2, b, and ¢ known
column vectors. Suppose that a Dantzig-Wolfe decomposition model has two

subproblems.
L1 ={z| Az =0b2>0},

L2 = {y] A% =¥y >0}, (10.158)
Suppose further that the master problem is written in the form:
Maximize Tz
subject to Blz 4+ B*y+ B3z = b®
x € L1 (10.159)
y € L2
z > 0.

(a) Formulate both the master and the subproblems as linear programs.

(b) Are £ and L3 defined by (10.158) convex sets?

(¢) How does your formulation of the Master Problem handle the case in which
either £1 or L2 is an unbounded set?

(d) Suppose that both £1 and L2 are bounded, and that we have one basic
feasible solution to the master problem. Applying just one simplex solution
to each of the subproblems, how may we calculate both a lower and an
upper bound on the maximand of (10.159)?

(e) Suppose that both £, and L2 are bounded and that we wish to solve the
following problem:

Maximize Tz

subject to  Blz + B%y+ B3z = b®
x is an extreme point of £y (10.160)
y is an extreme point of Lo
z >0

Now suppose that we have specified arbitrarily one extreme point in L1,
another in L7, and that we have then solved the linear program for z. How
may the information from this simplex solution be used to calculate both a
lower and an upper bound on the maximand of (10.160)?

(f) Show that (10.160) is a mixed-integer programming problem; i.e., where
some of the variables are forced to be integers.

Ph.D. Comprehensive Exam, September 24, 1977, at Stanford. Assume that a
linear program of the form

ca' + P2? + FA2® = 2z (min)

I:  Alal + A%? = (', 2%, 2%) >0
II: A%% 4 A3 = P
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10.7

10.8

is solved by the decomposition principle. Equations II constitute the subprob-

lem and the “master” equations correspond to Equations I. There are three

questions to be answered: (a), (bl), (b2).

(a) Show that the optimal prices to the master problem are also the optimal
prices 7! = #', m? = #? associated with the original problem I and II and
also the optimal values ! = &' but that optimal values for z? and z*
are not available nor can they be reconstructed from the solution of the
master problem but can be reconstructed if complete records are kept of
the extreme solution to the subproblem of the tth cycle, i.e., the vectors
(2, 23) = (x>, 23") for t = 1,2,..., and not just their linear transforms
used to form the master.

(b) Using the known optimal value of ' = #' from the solution of the master
problem, suppose we now solve

I': A%? bt — Azt

Ir:  A?2® + A%2® = b
Az? + A3 = min
as a linear program to find optimal z2 and z5.

(bl)  Show that the optimal prices associated with I’ and II" are, in gen-
eral, not unique even when #' and 42 are unique for I and II.

(b2)  Describe computational difficulties that might arise in solving I and
IT" due to small round-off errors in the forming of b* — A'#'.

Show that solving

(Tt + 0 = z (min)
Alg? = b
0 — (02)T$2 > 0 (10161)
Blml + AQ"I]Q — b2
is equivalent to solving
(Tz' + (c®)Tz® = 2 (min)
Algt = b (10.162)

Bla' + A%? = b2
Next show that adding the constraint
GH" +0> g (10.163)

to (10.161), where G* = (B")r? and g1 = (b*)Tn? for any given 7* such that
(A%)Tr? < % is also equivalent to solving (10.162).

Ph.D. Comprehensive Exam, September 24, 1983, at Stanford. Consider the
following linear program to find ' > 0, § > 0, 2> > 0, and min z:

(HTz' + 0 = z (min)
Alg! =0
(GYHTz + 0 > g (10.164)
Blml + AQ"I]Q — bQ
+ 6 — (A)™2* >0
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where G* = (BY)r? and g1 = (b*)"n? for any given 72 such that (A2?)Tn? < 2.
Assume that ¢? > 0 and that this system is feasible and optimal solutions exist
and for the latter, min z = zmin.

Also assume that an optimal solution &', 0, wmin exists for the system (10.165):

(Tt + 0 = w (min)
ALyl —
10.165
(GI)T[EI + 9 2 g1 ( )
' >0, 6>0.
For the optimal solution to (10.165), assume that
A’z =b* -~ B'i@', 2 >0 (10.166)

is feasible.

All parts of this question should be easy for you to prove.
(a) Prove there exists an 2% = #% > 0 and n* = #2 such that

AQ.CE'Q — bQ—Bli'l,
(A2)T7¢r2 S 027 (7%2)TA2{I§2 — (02)T{Ij'2.

b) Prove for all feasible solutions to (10.164): z > zmin.

c) Prove for all optimal feasible solution to (10.165): Wmin < Zmin.

d) Define 0° = (¢*)T42. Prove that #', 6%, 22 is a feasible solution to (10.164).
Prove that (¢')T&! 4+ 6% > zmin > ()72 4 6.

Prove that 6 = 6 implies (&1, g, #?) is optimal.

g) Prove that if § < %, then 6 < (c*)722.

h) Show that (#%)TB 'z + 6 > (7#%)Tv? for all feasible (2*, 0, z?).

Show that (#2)TB'z! + 6% = (72)Tp%.

Show that a necessary condition for (z',8) to be part of an optimal feasible
solution to (10.164) is

G*ct' +60>g, where G?=(#*)"B' and g = (7°)"b
and this inequality is not satisfied for (&', é) except if 6 = 6; that is,
#)TB'#' + 6 < (#)b?if 6 < 6"
(k) Discuss how adjoining inequalities to (10.165) of the type above leads to a
finite iterative process for solving a partitioned system providing the 72 of

part 1 are extreme dual solutions.

Ph.D. Comprehensive Exam, September 22, 1990, at Stanford. Given a linear
program (10.167) with the following structure

Minimize  (c')Tz' + (*)T2? = 2
subject to Alg! = bt

J _Bl2z' & A2 — 2 (10.167)
zh,z? >0
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where A' is m1 x n1 and A% is ma X np. It happens that m; and ma are so
large that it is not feasible to solve the problem with your software.

Someone tells you that (ml‘o, :1:2’0) is an optimal solution but you wish to verify
it. Your software can solve linear programs with m; equations and mz equations
but not with mi 4+ ms2 equations.

You derive the following procedure:

(a) You test whether or not x' = 20 is feasible for A'z' = b*, ' > 0 and
discover 210 is feasible but not a basic solution to Alz! = b, z! > 0. How
did you discover that it was not a basic solution?
Why, in general, given (z'*,z%*), an optimal feasible solution to (10.167),
would you expect z!'* to be not basic for A'z! =b', 2! > 07

(b) You optimized

min (¢2)Tz? = 2 — (c")Tz'°
A%z? = b* + Blg™° (10.168)
2 >0

2,0
2,0

and discovered that z? = 22 is indeed an optimal solution and the opti-
mal dual prices are 72 = 7>°. Keeping in mind that an optimal solution
need not be unique, how did you discover that *° was an optimal feasible
solution?

Why, in general, would you expect an optimal solution to be degenerate

and the corresponding basic prices not unique, when (2%, *°) is optimal
for (10.167)7?
(¢) You next optimized
min (Cl + (7r2,O)TBl)Tm1 = 2 — (720)Tp?
Alg! = bt (10.169)
T Z 0

and discovered that z'° is an optimal feasible solution even though not a
basic solution. How were you able to ascertain it was optimal for (10.169)7
(d) Having ascertained that (2, 2*?) is feasible for (10.167), and (2>°, 7>°)
are optimal primal and dual solutions for (10.168) given z! = 2% and hav-
ing ascertained that 2! = 2" is optimal for (10.169), prove that (z*?, )

is indeed an optimal feasible solution to (10.167).
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CHAPTEHR ]_]_

STOCHASTIC
PROGRAMMING:
INTRODUCTION

Stochastic Programming, is the Art and Science of deciding on the best plan of ac-
tion (in some expected-value sense) while hedging against the myriad of possible
ways the best laid plans can go awry. Stochastic Mathematical Programming be-
longs to the general field of Planning Under Uncertainty which includes such topics
as: Dynamic Programming, Decision Trees, Simulation, Stochastic Processes, and
Chance Constrained Systems. It differs from deterministic mathematical programs
only in that some of the parameters (coeflicients and right-hand sides) may not be
known at the time the decision is made.

Most important real-world models have some degree of uncertainty in the values
of some of its model parameters and can often make a significant difference when
these uncertainties are properly taken into account. Although deterministic math-
ematical programs are routinely solved by industry and government, which often
involve thousands of variables with a linear or nonlinear objective and many thou-
sands of inequality constraints, typically these are formulated as if the values of the
coefficient matrix and the values of the constant terms are known with certainty.
The solutions obtained are often ignored by those doing planning because these
results do not properly hedge against future contingencies that might arise.

Each decade from the 1950s on has witnessed the development of more and
more powerful techniques that properly incorporate uncertainty in the values of
coefficients and right-hand side directly as part of the model formulation. The
particular form of stochastic programs that we will consider is that of finding an
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“optimal” solution to a linear program whose coefficients and constant terms are
not known at the time the decision is made but whose probability distributions are
known or have been estimated based on historical experience. In this and the next
chapter, we will discuss some old ideas and some exciting new ideas.

11.1 OVERVIEW

Historically, planners have used various devices such as sensitivity analysis as a way
to determine how robust proposed solutions are to changes. For example, sometimes
planners hedge against running out of stock by overstating what they need, i.e., by
incorporating lots of fat in the system. If plans are made by overstating actual
needs and understating actual availabilities, then, should the disastrous happen, it
is highly unlikely for the planned optimal set of activities to turn out to be infeasible.
Consumption rates, production rates, and the like are all estimated on the high side
so that whatever the extreme values of the demand turn out to be, the planners’
solution will still remain feasible. The effect of an unfavorable future event (should
it happen) can also be further reduced by deliberately understating the amount
of exogeneous scarce resources available to the system. It turns out these ways
often lead to an infeasible program. Historically, a new program would have to be
developed based on a slower time schedule. This slowed down the demand until
supply caught up. Often this ran the risk of entering the battle with too little too
late. In World War II proper planning could have ended the war at least one year
earlier, with the saving of millions of lives.

Adding fat, understating resource availability, and allowing delays are ways to
hedge against uncertainty but at a price; typically the resulting plans are very very
inefficient because they are too costly or too late to do any good. This chapter
is concerned with finding solutions that have low expected costs, while hedging
against contingencies that may arise, and also taking advantage of favorable events
that may arise.

Research started in 1955 with George Dantzig’s paper and, independently, one
by Martin Beale, and an application paper by Ferguson and Dantzig that was pub-
lished a year later. This was about the same time that computers became reliable.
Earlier in 1952 and then in 1959 Harry Markowitz began in earnest developing
Portfolio Analysis, the first successful application of Stochastic Programming for
which, years later, he received the Nobel Prize. Most of the field’s early pioneers
did their research in isolation, unappreciated and undersupported. The stochastic
programming field grew at a snail’s pace until the late 1980s when parallel com-
puters, powerful workstations and PCs became a reality. This availability spurred
researchers to try their hand at solving practical uncertainty problems. To ev-
eryone’s surprise, using a combination of techniques such as large-scale methods,
D-W and Benders Decomposition, Importance Sampling, and Sampling-Space Par-
titioning, it turned out to be possible to solve many important practical cases. By
”solve”, we mean in the practical sense of determining strategic decisions that are
demonstrably superior to those obtained by ways that fail to properly take uncer-
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tainty fully into account—shortcuts, such as replacing the technological structure
of a model by one easier to optimize; or by making up ground rules that allow one
to optimize over a reduced set of possible alternatives.

Plans that properly hedge against future risks can make a significant improve-
ment. On some real and some realistic test problems these improvements are man-
ifested in many ways, such as increases in safety, reliability, saving of lives, prof-
itability, or control of risk.

On the other hand, failure to properly plan under uncertainty can be disastrous.
Here are some examples:

1. A single car breaks down on the freeway and hundreds are caught in a horrific
traffic jam. This happens all the time and keeps getting worse.

2. A single circuit breaker tripped in a storm in upstate New York blacked out
for days the whole Eastern Seaboard. There was a significant peak in the
birth rate nine months later.

3. A power failure in Idaho cascaded into a series of power failures from Canada
to Mexico.

4. A single satellite went out of sync, blacking out communications over a large
area of North America.

5. Our homes and offices depend on electric power from a single source, yet few
of us have emergency generators in our homes.

6. Vivid in our memory are scenes of death and destruction due to earthquakes,
floods, hurricanes, and sabotage of buildings and subways.

All of these disasters could have been significantly mitigated by better system design
and recovery strategies, particularly those generated by models that properly hedge
against the myriad of possible contingencies that might arise.

Often it is not some single event but the simultaneous occurrence of two or
more rare events that start a cascade of events that becomes a major disaster. Two
examples:

1. A weak transformer, hot weather, and an improper shift of load in a power
system.

2. Doors locked blocking escape, poorly trained emergency personnel, panic, and
the late arrival of fire trucks due to a traffic jam.

A key reason why plans have failed in the past is that planners did not know
how to develop and implement strategies that properly adapt to a spate of unusual
emergencies that might arise in the future. At best, they knew how to hedge against
one or two of the myriad of possible ways that the best-laid plans of mice and men
(to paraphrase the poet Robert Burns) can go awry.
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Mitigating World Crisis: With the methodolgy developed so far, it is possible to
develop adaptive strategic plans that, if implemented, would go a long way toward
mitigating some of the world’s chronic crises such as over-population, resource deple-
tion, floods, starvation, plague (AIDS), drought, and worldwide economic malaise.

So far, all of these truly global disasters are still out of control. Perhaps
we humans are incapable of ever getting our act together, and the only way that
we humans will ever come to a sustainable equilibrium with nature will be (as in
the past) by war, famine, and plague.

While we may not be able to stop an earthquake or a flood from happening, it
is possible, by applying our methodology, to mitigate its disastrous effects before,
during, and after disaster strikes by developing and implementing adaptive strategic
plans that hedge against the many possible contingencies that can arise in the
future. These chronic crises can be mitigated by developing flexible strategic plans
that hedge against the myriad of contingencies that might arise and by adaptively
reoptimizing future plans as events unfold in the future. While it may be possible to
mitigate chronic crises by adaptive strategic plans, we will never be able to achieve
this goal unless we find a way to bring about close cooperation between planners
charged with finding a solution and those researchers who know how to apply the
techniques.

11.2 UNCERTAIN COSTS
11.2.1 MINIMUM EXPECTED COSTS

We will illustrate the basic concepts, using as our example the nutrition problem.
A housewife wishes to buy a diet for her family. The vector A,; is the assumed
vector of calories, proteins, fats, carbohydrates, vitamins, and minerals per unit
of purchase; c; is the cost per unit of purchase; and b is the vector of material
requirments.

Deterministic Case: If the values of all the parameters are known in advance of

T
the purchase, then the housewife obtains the matrix CA from, say the Internet,
and inputs the vector of nutritional requirements b of her family and asks the
computer to find the diet © = (x1,22,...,7, ) that minimizes the cost z = c’r;
that is

Minimize e = 2
subject to  Ax = b, A: mxn, (11.1)
x>0

Stochastic Case: Assume that parameters A and b are known in advance of
making a decision x, but the costs c; for each item j are not known with certainty.
For example, a housewife must decide what diet to buy for her family before she
knows what the latest prices are. However, she does have some idea what the
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expected price E[c;] for each item j is likely to be. Having chosen an z satisfying
Ax = b, z > 0, the total cost z is Z;Lzl cjrj, a weighted sum of random variables c;.
Then, since her purchase of x; of items j will be too small to effect the market
price ¢;, then the expected cost is given by (11.4) where ¢ is the probability density
distribtution on c;:

/ /d) C1,Co,. .. ,cn)ch:cjdcld02~-~dcn (11.2)

J=1

Zc] {/ /d) €1,€2, ... ¢ )derdes - - - dey | T (11.3)

1

ECH
I

Elcjla;, (11.4)

Il

j=1

We have thus proved the following lemma.

LEMMA 11.1  If the distribution ¢ (c1,¢2, ... ,¢n ) of the costs cj to buy a unit
amount of j is independent of the amount x;, then the minimum expected total
cost of purchases 23;1 cjz; is obtained by finding x > 0 satisfying Ax = b and
minimizing 35, Elcjlz;.

Suppose next that the costs ¢; do depend/ on z; but are independent of zj, for
k # j. We then write ¢;z; = ¢;(x;). In this case, the expected cost is

ZE [0 (x5)2;] Zf] (z;) (11.5)

where f;(z;) is not necessarily linear in ;. In this case special separable nonlinear
optimization methods will be needed to solve the resulting problem. When f;(z;)
are convex functions, the method discussed in Linear Programming 1 can be applied
to solve the problem.

Exercise 11.1  Discuss situations where unit cost c¢; goes up with increasing z; and
other situations where ¢; goes down with increasing z;. Show that ¢;(z;)z; is a convex
function of z; if ¢;(z;) is increasing with increasing x; but is no longer convex if ¢;(x;)
is decreasing with increasing x;.

11.2.2 MINIMUM VARIANCE

In a number of applications it is desirable to minimize the risk, i.e., variance of the
expected costs. For example, a stockbroker might advise a client to buy a portfolio
of stocks j, some of which historically have had low return r; with low variability
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and other stocks that have high return r; with high variability. A typical objective
would be to buy a portfolio of stocks that gives at least a desired level r, of expected
return while minimizing the overall variability. In order to help us determine such
a portfolio of stocks we would set up a portfolio optimization model as follows.

Let E[r;] = 7, E[(r; —7;)?] = 07, and E[(r; — ) (rk — )| = 0j0kpjk = Ojk.
Assuming that the costs are independent of the x;, the variance of is :c?ajj and
the covariance between rjx; and rypzy is xjxp0j0,p5. Thus, it follows that the
variance of the objective function is the quadratic:

<zn:(7”j - Fj)$j>2] = z”: ” T;TROj = =Mz, (11.6)

Jj=1 j=1k=1

Q=FE

where M;, = My; = o;1. Then we solve the problem

n n
Minimize E E Tixpoje = Q

j=1k=1
subject to . Ax = b, A: mxn, (11.7)
ijxj > To,
j=1
x > 0.

> Exercise 11.2  Prove that @ is a positive semi-definite quadratic form in z;.
There are three cases to consider.

Case 1: Q'/2 Is Linear. If the cost coefficients are so highly correlated that the
correlation coefficient pj, ~ 1 for all j # k then o, = o0k, and

Q% A T101 + To0g + -+ Tpon. (11.8)

We solve problem (11.7) by minimizing the linear function Q'/? subject to
Ax = b, Z?:l Elrjlz; > ro, > 0. The effect on Q of varying 7, can then be
studied by solving a standard parametric programming problem.

Case 2: @ Is a Sum of Squares. If, on the other hand, the correlation between
cost coefficients are p;, = 0 for all j # k, then

Q=230 + 2305 + -+ 2202, (11.9)
In this case, @) is convex separable and the convex functions xf may be ap-
proximated by piecewise linear functions or by applying a convex quadratic
programming algorithm. This again reduces to a standard parametric pro-
gramming problem if we wish to study the effects of changing r, on Q.
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Case 3: Q is general. In this case Q = "Mz where M is positive semi-definite.
Then @ can be reduced to Case 2 by a suitable transformation. For example,
by factoring M = DD. Then (11.7) can be written as min 3’y such that
Ax = b, E?Zl 7T > 7o, Dx —y =0, x > 0. We can then solve this by the
piecewise linear approximation method discussed in Linear Programming 1.

Comment: Typically the variances and covariances o; are not available but can
be estimated from historical returns. Let r} be the returns in historical period ¢ for
i=1,...,t for stocks j for j = 1,...,n, and let 7; = (1/t) 22:1 7“§ be the mean
return. We can compute the variance-covariance matrix M = [0j;] by forming
M = (1/t)RTR, xwhere

ri—7 rd—7 rl— 7,

_ 7“%7771 7“577“2 r%ffn

R= , , , . (11.10)
rt—7r1 b — 7y rt — 7y,

11.3 UNCERTAIN DEMANDS

Scheduling to meet an uncertain right-hand side, such as demand, is a special case
of a more general two-stage problem to be discussed later in this chapter. In the
first stage a decision is made regarding how much, for example, to ship prior to
knowing what the demands in the second stage will be. We assume instead that we
know what the distribution of the demand for each of the various items will be.

Example 11.1 (Uncertain Demand) Suppose that a factory has an inventory of 100
units of some kind, of which z < 100 must be shipped to an outlet at a shipping cost of
$1 per unit to meet an uncertain demand of d units, where the distribution of d is known.
In this oversimplified example, the revenues from selling the item are the same in any
scenario. It is also assumed that the value of any leftover supply is written as zero. The
shipping is done before the demand for the item is known, and hence it is possible that the
demand will be less than the amount shipped; if so, let ¢t denote the amount oversupplied.
In the event, however, that the demand exceeds supply, it is required, in order not to lose
the customer to the competition, that s items be purchased on the open market to meet
the shortage at a cost of $2 per unit. The equations that must be satisfied are then:

T + 2s =C

T +y = 100

- b os—t—d (11.11)
(z,y,5,t) >0

where z is the number of units shipped from the factory, y is the number stored at the
factory, s (shortage) is the number purchased on the open market, ¢ (too much) is the
excess supply over demand, d is the unknown demand with a known probability of demand
distribution, and C' is the total cost. The problem is to determine how much to ship in
order to minimize expected cost. This example belongs to a more general class of two-stage
problems, which we will discuss in Example 11.2.
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Exercise 11.3 For Example 11.1, suppose that the costs are given by
C =z +2Max(0,d — x)

where d is uniformly distributed between 70 and 80. Determine how much to ship in
order to minimize expected cost. Hint: Determine the expected cost E[C] explicitly as a
function of z and then determine the value of x that minimizes this function.

Example 11.2 (Two-Stage Problem) In the first stage, z; > 0 and ur > 0 are
determined such that

n

Sayz; =bi,  i=1,...,m, (11.12)
j=1

n

Sz =u, k=11 (11.13)
j=1

where b;, the initial inventories of raw materials, known in advance, are transformed by
the technology matrices [as;], [ar;] and activity levels z; into finished products uy to meet
an uncertain demand dj, in the second stage. The quantities x; are decisions in the first
stage that result in the quantities ux, k = 1,...,[ being available in the second stage. If
the amount supplied uy is less than the demand di then let s > 0 be the shortage; on
the other hand, if uy is greater than the demand dx, let ¢; be the excess. Then

drx = ug + Sk — tk, (11.14)

where either s, = 0 or t, = 0 or both sz = 0, tx = 0; dj is the uncertain demand with a
known probability distribution (where (di,d2,... ,d, ) may be independent or dependent
random variables); sy is the shortage of supply of k; and t; is the excess of supply of k
over demand of k.

To simplify the discussion, in this example we assume that it is not possible to make
purchases on the open market in the case of shortages s;. It clearly pays to sell as much
of the supplied amount, ux, as possible, that is, min(ug, dx) = dr — sk. Therefore the total
cost is

n 1
C= chxj — ka min(ug, di), (11.15)
j=1 k=1

where c¢; is the cost of one unit of activity j and fi is the revenue obtained by satisfying
one unit of demand of item k.
For every fixed value of xx, and hence by (11.13), for every fixed value of uy, the

expected cost is:
n

!
BIC)=) ez — Y fiF[min(ug, di)). (11.16)

j=1 k=1

Since the expectation E[min(u;€7 dk)] is taken with respect to the distribution of demand,
it is some function

¢r(ux) = E [min(ug, di)]. (11.17)
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When, for fixed k, the values of d = dj, are discrete and can take on R discrete values
g1 < g2 < --- < gr with probabilities p1, po, ... Y where Zilpi = 1, the computation
of p(u) = E[min(u, d)}7 for any u = ug, d = dy, is straightforward. To see this, note that

. u if d > u;
min(u, d) = { difd<u (11.18)

For a given u let r be such that g,—1 < u < g, holds for some r = 1,..., R where by
definition go = 0. Then:

o(u) = E[min(u7 d)} = uP[d > u] + Zng[d = g,]

R r—1
“Zpi + Zgjpj
i=r j=1
r—1 r—1
u(l —Zpi) +Zgjpj. (11.19)
i=1 =1

Exercise 11.4 Suppose that di takes the values 1 and 2 with probabilities 1/4 and 3/4,
respectively. Compute the expected value F [d)k (uk)}

Exercise 11.5 Plot the ¢(u), the expected revenue, as a function of the amount sup-
plied u.

We see that ¢(u) is a broken line function starting at w = 0 with initial slope 81 = 1;
at u = g1 the slope decreases by p1 to B2 =1 — p1; at u = g2 the slope decreases by ps2 to
B3 =1 —p1 — p2; etc. Thus, —¢(u) is a convex function because the slopes are increasing.
We have thus shown the following.

THEOREM 11.2 (Convexity of Total Expected Costs) Under uncertain de-
mand, the total expected cost is a convex separable function

n

l
E[C] =) cim;— Y fadn(u) (11.20)
k=1

j=1

where ¢ (ux) is a piecewise linear function whose slope between two successive demands
di = gr—1,k and di, = gr,; 15 equal to the probability 1 — Z:ll pik of exceeding the demand
gr—1,k-

Then to minimize expected costs we minimize the convex separable functions (11.20)
subject to the constraints (11.12) and (11.13); see Linear Programming 1.
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11.4 NOTES & SELECTED BIBLIOGRAPHY

For an introduction to probability theory, see Feller [1957, 1969]. A minimum variance
portfolio selection problem was first considered by Markowitz [1952]. The incorporation
of uncertainty into linear programs was proposed independently by Dantzig [1955a] and
Beale [1955a). From then on, various individuals have tried to extend the methods of
linear programming to handle the problem of optimizing an objective function whose con-
stants are subject to random variations. Early references are Ferguson & Dantzig [1956],
Madansky [1959], and Dantzig & Madansky [1961]. Over the years, different approaches
have been used to attack this problem. See, for example, Birge [1985a, 1985b], Birge &
Wallace [1988], Birge & Wets [1986], Ermoliev [1983], Frauendorfer [1988], Frauendorfer
& Kall [1988], Higle & Sen [1991], Kall [1979], Pereira, Pinto, Oliveira, & Cunha [1989],
Rockafellar & Wets [1989], Ruszczynski [1986], Van Slyke & Wets [1969], and Wets [1984].
A survey of different ways to solve stochastic linear programs can be found in Ermoliev
& Wets [1988], and an introduction to stochastic programming can be found in Birge &
Louveaux [1997].

The two-stage case was first studied by Dantzig [1955a, 1963] and subsequently devel-
oped by Van Slyke & Wets [1966, 1969] and Wets [1984].

Example 11.1 is adapted from Dantzig [1963]. Theorem 11.2 was verbally communi-
cated to Dantzig by H. Scarf. An important pioneering application of Stochastic Program-
ming is Alan Manne’s [1974] paper, “Waiting for the Breeder.”

11.5 PROBLEMS

11.1 Dantzig [1963]. Solve the problem of Example 11.1 using the discrete distribu-
tion d = 70, 71,...,80 with probability 1/11 each.
11.2 Dantzig [1963]. Consider the following transportation problem:

3
2 3 4 1
2
7 2 5 1
5
4 3 2 2
dq do ds dy

Solve the transportation problem

(a) When the demands di = 3, d2 = 3, d3 = 2, and ds = 2 are certain; i.e.,
occur with probability 1.
(b) When the demands have the following probability distribution

d1 = 2,3,4 with equal probabilities 1/3.
d2 = 2, 3,4 with equal probabilities 1/3.
ds = 1,2,3 with equal probabilities 1/3.
ds = 1,2,3 with equal probabilities 1/3.
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11.3

Dantzig [1963]. Consider a linear program in which all the coefficients are

uncertain. Find z; > 0, for j =1,...,n:
n
€(x) = Zaojxj = z(Min),
j=1
n
€i(z) = Zaijmj +a,<0. fori=1,...,m
j=1

The minimum z is desired, but unfortunately all the x; must be selected prior
to a random choice of the coefficients a;; whose distributions are, however,
known.

(a) Denote by o;(z) the standard error of €;(z). Show that

n n 1/2
oi(z) = <Z Zxﬂka [(ai; — aij)(aix — aik)]) :

=1 k=1

(b) Suppose we solve the program

€ () + tooo(x) = z(Min),
€(x) = tioi(z) <0 fori=1,...,m,
x>0

where t; = 3, say, means that we have built in a safety factor so that & (),
the expected value of €;(x), is three standard errors below zero. Prove that
this is a convex program.

(¢) Show by Tchebychefl’s inequality that

1
Prob [e;(z) > 0] < =

What is the probability if ¢;(z) is approximately normally distributed?
(d) Show that if a;; are independent and normally distributed, then €;(x) is
normally distributed.
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CHAPTER

12

TWO-STAGE STOCHASTIC
PROGRAMS

An important class of optimization problems arise in dynamic systems that describe
activities initiated at various times t,,t, + 1,...,t,...,T. Those initiated at time ¢
have coefficients at time ¢ and t+ 1. Such problems, called dynamic linear programs,
have a staircase structure. In the deterministic case, the coefficient matrices,
constants, and cost coefficients for each stage are known with certainty. Often in
practice, initial decisions must be made prior to random events that might occur
in the future, such as the possible failure of equipment or the possible introduction
of new technologies. This is the stochastic case in which the coefficient matrices,
constants, and cost coefficients for stage ¢ + 1 become known only after stage t has
taken place.

The simplest dynamic linear program has only two stages, which we will now
consider; the techniques discussed here can be extended to the multistage problem.
To simplify the notation for two-stage stochastic linear programs, we shall depart
from treating all vectors as column vectors and subscripts as meaning a component
of a vector.

12.1 THE DETERMINISTIC TWO-STAGE LP
PROBLEM

Find minimum z, z > 0, y > 0, such that

1st Stage: cx + fy =z
2nd Stage: Az =b (12.1)
Bx + Dy = d,

335
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where, in the deterministic case, the components of the vectors and matrices ¢, A,
b, B, D, d, f are all known with certainty.

12.2 THE ANALOGOUS STOCHASTIC
TWO-STAGE LP PROBLEM

Find minimum 2z, >0, y = (y1,42,--. , %, ) > 0, such that:

cx + Eu[foyn] = 2
Az —b (12.2)
Box + Dyy, =d,, w=1,...,W,

where p, > 0, szzlpw = 1, the probability p, of the random event w € Q =
{1,..., W} occurring is given, and

w
0=FE, [fwyw] = pr(fwyw) (12.3)

measures the expected second-period cost. Assuming some iterative algorithm on its
final iteration k has arrived at a final first-stage decision o = z*, we are interested
in measuring how good a solution z = z* is compared with the optimal solution
r =

At the time t,, when the first-stage decision z is made, all the components c,
A, b are known with certainty. It is also assumed that there exists x that satisfies
Ax = b, x > 0. For each possible future event w = 1,..., W, the values of B = B,,,
D =D, d=d, f= f,are also assumed known at time t,; only the event
w is unknown. Assuming some first-stage decision x = x* is made, one of the
possible events (scenarios, contingencies) w € {2 happens at time ¢; with probability
Pw > 0, so that by the time of the second-stage decision t; > t,, the scenario w
with parameter values of B = B,, D = D,, d = d,, f = f., have all become
certain. We will assume, in order to simplify the presentation, that whatever be

x® > 0 satisfying Az = b, optimal y,, = y* exist. Therefore, given w and z = x*,
the optimal second-stage decision y,, = y%, can be found by solving:
SUBPROBLEM w given x = x*:
. _ k >
Find y,, =y, > 0 that (12.4)

minimizes  foyo
subject to Dy, = d,, — Boa”,

where each second-stage subproblem w is solved with z = z¥. The dual multipliers,
given = %, are denoted by 7. The optimal primal solution to the subproblem is
denoted by v, = y* and its optimal dual multipliers ., = 7*. Then by the Duality
Theorem:

oDy < fu,  (fo—mEDu)yl =0,  yb>o0. (12.5)
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The first-stage decision & = 2* must be made before knowing what the outcome

of the random event w will be; however, what we assume is known is the probability
distribution p,, > 0, ZZV:l pw = 1 of the random events w occurring. Therefore the
MINIMUM EXPECTED COST 0 = E[f,y.] of the second-stage decision at time
t, can be calculated given any decision x:

w
0= Ew[fwyw] = pr(fwyw)- (12-6)

In particular, if x = z* and g, = y* from (12.4), then the expected minimum cost

w
0" = o[xk] = pr(fwyf;); (12'7)

can be calculated for any proposed x = z* where we use the notation 6[z*] to
emphasize that 6 is a function of z¥. Our goal is to analyze and develop techniques
to solve the STOCHASTIC PROBLEM: Find 2 = 2* that minimizes

z = cx + 0x], (12.8)
i.e., minimizes the first-stage cost plus minimum expected second-stage cost given

the first-stage decision =x.

Exercise 12.1  Show that for the two-stage problem under uncertainty

w
Z Pwlw = z(Min)
w1

Azx =b x>0
Box + Yo = do, w=1,..., W,

where p., > 0, 23/:1 pw = 1, the probability p., of the random event w € @ = {1,..., W}
occurring in the second stage is given, the optimal x can be determined by optimizing

: <§p3> .

Az =b, x>0.

z(Min)

Is the statement still true in general if the conditions y,, > 0 are imposed.

12.3 LP EQUIVALENT OF THE STOCHASTIC
PROBLEM (EQ-LP)

12.3.1 LP EQUIVALENT FORMULATION
THEOREM 12.1 (Equivalent Formulation) The linear program equivalent
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of the stochastic LP (12.2) is:

Find min z, >0, y, > 0, for allw € Q ={1,...,W} such that:

cr + 0 <z
=0+ pi(fiye) + -+ po(fuye) + - + Py (fwtn) = 0
Ax =b
B D =
-137 + 1Y1 dy (12.9)
wa + Dwyw = dw
B x + Dy yy = d,

where p, >0, ZZV:l Pw = 1, is the probability that the second-stage scenario w may
arise.

Proof. Given any x = 2¥ > 0, A2* = b, it is clear that in order to minimize z,
we must minimize 6 = EZVZI Pw(fuyw) subject to y, > 0, Dyy, = d, — Bya* for
w € Q. This latter problem separates into solving W independent sub problems:
Find gy, = yf, > 0 which minimizes f,y. subject to Dy, = d,, — B,x* for each
w=1,...,W. It follows that ¥ = min 0 = szzlpw(fwyf) and z = cx® + 6*
are all functions of 2* and the problem is the same as that stated earlier: namely
choose x* so as to minimize z* = ca® + 0%, where 0% = 0[z*] is a function of 2*. I

> Exercise 12.2  Formulations (12.1) and (12.3) of the two-stage problem express the
objective in the form z = cx + 0 whereas (12.9) expresses the objective in the form
z > cx + 6. In what sense are the two ways to formulate the stochastic linear program
equivalent?

We denote by C the convex set of all feasible solutions to (12.9). An optimal
solution to (12.9) will be denoted by

S =minz xz=2" 60=6, yw:y?; for all w € Q. (12.10)

12.3.2 GEOMETRIC DESCRIPTION OF BENDERS
DECOMPOSITION ALGORITHM

Benders algorithm is the Dantzig-Wolfe Primal Decomposition applied to the dual.
In Figure 12-1, the epigraph region on and above the curve depicts, in the two-
dimensional case, the convex set C of all feasible solutions to the Equivalent Linear
Program (EQ-LP), i.e.,

C:{m,z|zzca:+9, Ax:b,a:EO}, (12.11)

where 0 = ZZV: Puw ( fwyw) is the expected minimum second-stage costs given = as
the first-stage decision. (The lower boundary curve of C is not smooth as depicted
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C: Convex feasible region (z,z) € R*+!
satisfying (12.9)

Cut (7):

r e R”

Figure 12-1: Benders Decomposition Applied to EQ-LP

in Figure 12-1 but is a collection of broken line segments, in the two-dimensional
case, that are the envelope of the inequalities). At the start of iteration k, iterations
i=1,...,k — 1 have generated z = 2 > 0 satisfying Az® = b and a point (2%, z°)
in C with the property that of all the points (z¢, z) in C, ' = min 2. At (2%, z%), a
tangent (in general, a hyperplane) z = (¢ — G*)z + ¢* is found that passes through
(2%, 2%).

Because of the convexity of C, the tangent hyperplanes have the property that
the corresponding half-spaces z > (¢ — G*)z + ¢g* contain C and their boundaries
z = (c—G")x+g" each have at least one point in common with C. Such hyperplanes
are called tight supporting hyperplanes or tight supports. Their associated half-spaces
are called tight cuts, because each iteration generates a linear inequality that cuts
away a portion of the (z, z)-space that does not contain C. We denote by C*~! the
set of points common to the first k—1 cuts. Note that C*~' c C*2c ... cC?> c C.
(The symbol C* C C* means that the set C* is strictly contained in the set C*.) The
next iterate determines (z*, 2¥) and the supporting hyperplane z > (c — G*)x + g*,
which is tight at (z¥, 2¥). For the algebraic formulas for computing G* and g*, see
(12.19).

Geometrically, Cut (k) is generated in three steps: The first step views the
convex set of points C¥~1 satisfying the (k — 1) cuts as an approzimation to C and
determines (r,z) = (2%, 2*) the minimum 2 in C¥~!. This is done by solving a
linear program, called Benders Master Program (k).

The second step determines the point (2%, 2¥) in C by fixing the first-stage deci-
sion at £ = 2* and finds zF = cz* + Ezvzl P foyw Where each y, = y* minimizes
the second-stage subproblems w given x = z¥; see (12.4).

The third step generates Cut (k), the supporting half-space that is tight at
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(x*,z%). This is done by first multiplying equation w,
B,z + Dyy, = dg, (12.12)
by p.7E, to obtain

pw(wﬁBw)x + pw(wﬁDw)yw = pw(ﬂﬁdw). (12.13)

where 7% are the optimal dual-feasible solutions to subproblem (12.4) given z =

Next, adding to it the identity

k

— Po(foyw) + Pu(fulye) =0 (12.14)

and rearranging terms, we obtain

Pw (Wf;Bw)x + Dw (fwyw) — Pw (fw - W(IEDw)yw = Pw ('n—fjdw) (12]—5)
Dropping the term p,,(f.,—7~ D)y, > 0 (because f,—7% D,, > 0 by dual-feasibility,

and p, > 0, y, > 0), we obtain the cut associated with w and the optimal dual-

feasible solution 7, = 7%, given x = x*:

pw(TrZZBW)m + o (fulw) > pw(TrZZdW)- (12'16)

To generate Cut (k), in the space of x and ¢, we sum (12.16) for all w € €2 to obtain

w w w
ZPW(WZZBW)‘CC + pr(fwyw) > pr('ﬂf,dw), (1217)
w=1 w=1 w=1

or
GFe 460 > gF, (12.18)

where we denote
w w w
G = "pu(ntB.),  ¢" =) pu(rhd,), 0= pu(fov.). (12.19)
w=1 w=1 w=1

To generate tight Cut (k) in the space of x and z, we eliminate 6 from (12.18) by
subtracting it from cx + 6 < z, see (12.9). Rearranging terms, we obtain the cut in
the form displayed in Figure 12-1 and (12.20) below:

Cut (k): z>(c—GHz+ g (12.20)
THEOREM 12.2 (Cut (k) Is a Tight Support) If the cut is generated using

T, = 7%, the optimal dual-feasible solutions to the subproblem w given x = z*, then
Cut (k) defined by inequality (12.20) is a tight lower bound to C at (z*,z%).
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Proof. The inequality Cut (k) (12.20) contains C because it is generated by a
nonnegative combination of inequalities and equations, each of which is satisfied by
every feasible point (x,%) in C, in particular (z¥,y*) C C where y* are the optimal
primal solutions to subproblems w given z = z*.

If we substitute y,, = y*, 7, = 7¥ the optimal primal and dual solutions to sub-
problem w given x = x* in (12.15), then, by the Duality Theorem, (f, —7% D, )y* =
0, see (12.5). Summing in this case (12.15) for all w € 2 we obtain

w w w
> pu(EBL)aF + > pu(fuyl) =D pu(rhdy), (12.21)
w=1 w=1 w=1
which, see (12.19), we denote by
GFak + ok = g~ (12.22)
Because 6% = Min 6 given x = 2", we also have by the definition of z*
ca® 4 0% =z~ (12.23)
Subtracting (12.23) from (12.22) to eliminate 8% results in
ZF = (c — Gk + ¢ (12.24)

which proves that the lower boundary point (2%, z*) of C lies on the hyperplane
boundary of the Cut (k). |

12.3.3 DECOMPOSITION ALGORITHM
Algorithm 12.1 (Benders Algorithm for Solving EQ-LP)

1. Initialization.

(a) Set iteration count k = 1.
(b) Set tolerance level = TOL.
(c) Optimize
BENDERS MASTER to generate z*:
Minimize cr = z
subject to Az =b, x>0

If no feasible solution exists, terminate else find optimal z = z*.

2. Begin Iterative Loop. For each w € ), optimize

SUBPROBLEM w given x = z*:
Find extreme points y, = y© > 0 and corresponding optimal duals 7% that
minimizes folw
subject to Dy = dw — Boz".

Note: To simplify the discussion, we assume that all the subproblems are feasible.
In practice, if a subproblem is not feasible either “feasibility cuts” are adjoined to
the master or “penalty terms” are adjoined to the subs (see Exercise 12.3).
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3. Calculate the expected minimum second-stage costs given = = x*:

w
0" = po(fuul)

and expected first-stage plus second-stage costs given x = z*

_k k k
zZi=cx" +6".

4. Create Cut (k):
Gz 40> gk

where

w w
G" = pu(alB.); ¢ = pu(rid.).
w=1 w=1

5. Adjoin Cut (k) to Benders Master Program and reoptimize:

BENDERS MASTER (k) to generate z"**:
Find min z = 2", 2 = " >0, 6 = %11, such that
cx + 0 = z
Az =5b
Gz + 60 >4, fori=1,... k.

6. Set L = argmin z’, z* = Min 7.
7. If 2" 4+ TOL < 2* set k « k + 1 and LOOP BACK to Begin Iterative Loop at
Step 2.

8. If 2" + TOL > 7*, declare z = 2z~ as “close enough” to the minimum objective
value and declare z" as a first stage decision whose objective value z" is “close
enough” to the minimum objective value; and STOP.

> Exercise 12.3  Show how to generate cuts for the Master problem when one or more
subproblems are infeasible. Show that these infeasiblity cuts take the form Giz > g¢.
Show how this affects Step 5. Show how to incorporate penalty terms instead into such
subproblems so that even an infeasible problem can be replaced by a feasible one having
a high cost (penalty).

> Exercise 12.4  Interpret geometrically, in Figure 12-1, the steps of the algorithm for
iterations i < k, j < k, and iteration k.

> Exercise 12.5 Change the position of z* in Figure 12-1 so that z"*! > z* illustrating
that the upper bounds do not always monotonically decrease with increasing k.
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Example 12.1 (Benders Algorithm for Solving EQ-LP Illustrated) Consider the
following stochastic linear program:

Minimize
1+ z2 + x3 + 0.5% (Byi1 + 2y12 + yi13) + 0.5 % 2y11 + 4yi2 + Oyiz) = =z

subject to

1 + 2z2 + 3x3 =60
31 + 272 + T3 =6
1 + x2 + w3 + 4y11 — w12 + Y13 =9
3x1 + 222 + 23 + 3y11 + 2y12 + yi3 =15
41 — x2 + x3 + Y11 + Y12 + Y13 =9
21 — 22 + 3 + 2y21 — 2y22 + Y23 = 3

dxo + w3 + 6y21 + y23 =15
671 + T3 + 4y22 + y23 =15

where x; > 0 for j =1,2,3, yor > 0 for w=1,2, £k = 1,2,3. The problem is clearly in the
following standard EQ-LP form:

c'r + p1f1Ty1 + pzngyQ = 2z (min)

Az =b
Biz + Diys = d1,
Box + Doy = do,
x>0,y >0,

where 7 = (z1,22,73), yT = (y11,y12,%13), ¥3 = (y21,%22,%23), ¢& = (1,1,1), ff =

(3,2,1), f =(2,4,0), di =(9,15,9), d3 = (3,15,15),
1 1 1 4 -1 1
A:(; ; i’) Blz<3 2 1>,D1:<3 2 1),
4 -1 1 1 1 1
2 -2 1 2 -2 1
Bo=|0 4 1|,D:=|6 0 1].
6 0 1 0 4 1

Initialize the tolerance TOL = 10~". To apply Benders decomposition, we start by creating
the Initial Restricted Master Problem:

'z 4+ 0 = z (min)
Az b, (12.26)
>0, 0=0.

Given a solution z = z' to the Master Problem, we solve the subproblems for w = 1, 2:

T = v, (min)
Dy, = do — Boz!, (12.27)
y > 0.

The solutions of these subproblems are then used to define cuts for the Master Problem.
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The solution to

Minimize T1 + x2 + w3 + 60 =2
subject to xr1 + 222 + 3x3 =6

3x1 + 222 + x3 =6
z>0,0=0,

is 2! =3, 2 = 2! = (1.5,0,1.5)7, 9 = ' = 0. Using this, we first compute the right-hand
side to the subproblem w = 1:

9 1 11 1.5 6.0
di—Biz'=(15]-13 2 1 00| =190
9 4 -1 1 1.5 1.5

and then solve the first subproblem:

Minimize 3yi1 + 2u12 + yi3 = wi
subject to  4y11 — w12 + Y13 = 6.0
3y11 + 2y12 + y13 = 9.0
yi1 + yi2 + yiz = 1.5
y1 20

This problem is infeasible, so we set z' = 400 and determine L = argminz' = 1, or
zF = +o0.
Next we use the multipliers to create an infeasibility cut. The multipliers are:

—0.2
= 1.0
—2.2

Next we compute the infeasibility cut G'a > ¢! by computing
G'=)"™Bi=(-6 4 14)

and
g' = (r1)"d1 = 6.6

Next we set 2! = 400 and determine L = argmin 2! = 1, or z“ = 4o00.
The new Benders Restricted Master is:

Minimize 1 + x2 + 3 + 0 = 2
subject to T1 + 222 + 3x3 =6
3x1 + 222 + T3 =6

—6x1 + 4x2 — l.4xs > —6.6

The optimal solution to this is 22 = 3.0, z% = (1.207792 0.584416 1.207792), 6 = 0.
Clearly z? + TOL < 7" and therefore we continue with creating and solving the modified
set of subproblems.

Set the iteration counter k = 2 and first compute the right-hand side to the subproblem
for w=1 as

9 1 11 1.207792 6.0
di—Biz>=[15 ] -3 2 1 0.584416 | = 9.0
9 4 -1 1 1.207792 3.545456
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and then solve the subproblem:

Minimize 3y11 + 2y12 + yiz = wa
subject to  4y11 — wyi12 + y13 = 6.0

3y11 + 2y12 + yi3 = 9.0

Y11 + Y12 + yi13 = 3.545456
y1 >0

This subproblem solves to optimality: wi = 9.0, y1 = (1.9091 1.6364 0.0) with the

multipliers

0.0
=110
0.0

Next we set up and solve the subproblem for w = 2. We first compute the right-hand side

3 2 =21 1.207792 0.545456
do—Boz?’=[15])—-1(0 4 1 0.584416 | = | 11.454544
15 6 01 1.207792 6.545456

and then solve the subproblem:

Minimize 2y21 + 4y22 + Oyaz = w%

subject to  4y21 — y22 + yo23 = 0.545456
3y21 + 2y22 +  yo3 11.454544
Y21 + Y22 +  yo3 = 6.545456

y2 >0

This subproblem solves to optimality: w2 = 10.3636, y2 = (1.9091 1.6364

multipliers
-2.0
nf:( 1.0)
0.0

The expected first-stage plus second-stage costs are:
72 = 2% + prwi 4 pawi =34 0.5% 9 + 0.5 % 10.3636 = 12.6818
We compute the new upper bound by determining
L = argmin{z', 2>} = {400, +12.6818} = 2

and therefore z" = 12.6818.
Next we compute the optimality cut G2z 4+ 6 > g2 by computing

G? = p1(n}) By + pa(73)"Ba = (—0.5 5.0 0.0)

and
P =p (Wf)le +p2(w§)Td2 =12.0

The new Benders Restricted Master at the end of iteration 2 is:

Minimize r1 + T2 + r3 + 0 = 2
subject to 1 + 222 + 3z3 =6
3x1 + 2x2 + €T3 =6

—6x1 + 4re — l.4xs > —6.6

—0.5 + 522 + Ozz + 6 > 12.0

0.0) with
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The optimal solution to this is z = z* = 0.0, > = (0.0 3.0 0.0), § = 6> = —3.0.
Clearly z* + TOL < 7" = 12.6818, and therefore we continue with creating and solving
the modified set of subproblems.

Using this, we first compute the right-hand side to the subproblem for w =1 as

9 1 11 0.0 6.0
d-BizP=[15]-13 2 1 30 )= 90
9 4 -1 1 0.0 12.0

and then we solve the subproblem:

Minimize 3y11 + 2y12 + y13 = wy
subject to  4y11 — w12 + y13 = 6.0
3y11 + 2y12 + yi3 9.0
yi1 + Y12 + yiz = 12.0

y1 >0

This problem is infeasible. So we set Z> = 400 and hence we know that the current upper
bound is unchanged with L = 2 and z" = 12.6818.
Next we use the multipliers to create an infeasibility cut. The multipliers are:

-1/3
T = ( 2/3)
1

Next we compute the infeasibility cut G3z > ¢ by computing
G* = (79)"B1 = (1.666667 —2.666667 0.0)

and
93 = (W?)Td1 =—-4.0

The new Benders Restricted Master at the end of iteration 3 is:

Minimize T + To + r3 + 0 = 2
subject to 1 + 2x2 +  3x3 =6
3r1 + 2xs + T3 =6

—6x1 + 4y — 1.4z > —6.6

—-0.5 + 5z + Oxz3 + 6 > 12.0

1.666667x1 — 2.666667x2 + Ox3 > —4.0

xz > 0.

The optimal solution to this is z = 2* = 6.0, z* = (0.5714285 1.857143 0.5714285),
6* = 3.0. Clearly z* + TOL < 7" = 12.6818 and therefore we continue with creating and
solving the modified set of subproblems.

Using this, we first compute the right-hand side to the subproblem for w =1 as

9 1 11 0.5714285 6.0
di—Biz*=(15] -3 2 1 1.857143 | = 9.0
9 4 -1 1 0.5714285 8.0
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and then we solve the subproblem:

Minimize 3y + 212 + yiz = wi

subject to  4y11 — w12 + yi3 = 6.0
3y11 + 2y12 + yi3 = 9.0
y11 + yi2 + y13 = 8.0
y1 >0

This subproblem solves to optimality: w{ = 9.0, y1 = (0.0 1.0 7.0) with multipliers

0.0
=110
0.0

Next we set up and solve the subproblem for w = 2. We first compute the right hand side

3 2 -2 1 0.5714285 5.0
do—Boz*=|15|-10 4 1 1.857143 | = 7.0
15 6 0 1 0.5714285 11.0

and then solve the subproblem:

Minimize 2y21 + 4y22 + Oya3 = wg

subject to  4ya1 — o2 + Y23 = 5.0
3y21 + 2y22 +  yo3 7.0
Y21 + Y22 + w23 = 11.0

y2 >0
This subproblem solves to optimality: w3 =4, y2 = (0.0 1.0 7.0) with multipliers
—1.1428571
7= | 0.7142857
0.4285714
The expected first-stage plus second stage costs are:
z2 :cT:c4+p1w‘11+p2w§ =34+05%x9+4+0.5%x4=9.5
We compute the new upper bound by determining
L = argmin{z', 2, 2°, '} = {400, +12.6818, +00,9.5} = 4
and, therefore, " = 9.5.
Next we compute the optimality cut G*z 4+ 6 > g* by computing
G* = p1(7)) "By + pa(73) By = (1.6428571  3.5714285 0.5)
and
g* = pi(m3)Tdy + pa(m3)dy = 14.3571426

The new Benders Restricted Master at the end of iteration 4 is:

Minimize 1 + To + r3 + 0 = 2
subject to 1 + 2x0 + 33 =6
31 + 2xo + T3 =6
—6x1 + 4y — 1.4z > —6.6
—0.5 + 522 + Oxs + 6 > 12.0
1.666667x1 — 2.666667r2 + Oxs > —4.0
1.6428571x1 + 3.5714285x2 + 0.5x3 + 6 > 14.3571426
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The optimal solution to this is z° = 9.5, z® = (0.5714285 1.857143 0.5714285), 6° =
6.5. Now z° + TOL > z* = 9.5 and we stop and report the optimal values for z.

12.3.4 THEORY BEHIND THE ALGORITHM

Given z*, let (2%, y*, 2¥) be the output of the kth iterate of the algorithm. Let C
be the set of feasible points satisfying the original problem (12.9). Denote by M (k)
the set of all feasible points of the updated Benders Master with k cuts.

LEMMA 12.3 (Lower Bound on z*) At each iteration k,

ZF > min 2. (12.28)

Proof. Since (2*,y*, z¥) is a feasible point in C, then obviously

7= min z < z" (12.29)
|

LEMMA 12.4 (Point with Smallest z)  The point in M(k—1) with smallest z,
namely, (z*,2*), satisfies

2P <2F = min 2 < Minz < 2 = min z°. (12.30)
Ck gk c i<k

Proof. It is clear, as we have noted earlier, that all the points on the lower
boundary of C are contained in the half-space of every cut including the latest

Cut (k): 2> (c—GF)ax+g". (12.31)

Let P* be any point on the lower boundary of C and let P¥ = (a:k',yk', 2"'). Given
x = 2%, then y, = y* > 0 minimizes f,y. subject to

Doy, =dy, — Byaz®, y,>0, forw=1,....,W (12.32)
and therefore
w
2 =min (2 |z = 2") = ca® + pr(fwyﬁ). (12.33)
w=1
Then (z*, 2%) satisfies (12.31) with equality; see the proof of Theorem 12.2. |

Definition (Almost Optimal First-Stage Decision):

If TOL > 3" — Zh+1 > 38 — 2% (12.34)

then z*, the first-stage cost plus minimum second-stage cost given x = z*
is deemed as “close enough” to min z for x = z* to be declared an “almost

optimal” first-stage decision.
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LEMMA 12.5 (Optimal First-Stage Decision) Let L = argminz’.
i<k

If 281 = 2 decision © = 2% is optimal. (12.35)

Proof. The proof is obvious; see (12.30). |

THEOREM 12.6 (Cut Chops off Part of the Feasible Region) Ifz* < z*,
then Cut (k) “chops off” all points (z*,z*) of the feasible region of M(k — 1),
implying that all the cuts differ from one another.

Proof. That each new cut chops off part of the feasible region is evident from
Figure 12-1 if z* < z* because the segment on the line 2z = ¥ between z* and z*
lies in the feasible set of M(k — 1) but not in that of M (k). |

THEOREM 12.7 (Finite Termination) There are only a finite number of
cuts when extreme 7% are used to generate the cuts, implying that the iterative

process terminates after a finite number of iterations.

Proof. To prove that the iterative process is finite and terminates in an optimal
solution for some finite k with (z*, z¥), we note this must be because 7% is chosen
from the finite class of dual extreme solutions of the subproblems. With only
a finite set of 7% to choose from, only a finite number of different cuts can be
generated. When this finite number k is reached (if not before) z**! = z& (where
L = argmin; ., z%), because if not, a new different cut would be generated contrary
to the fact that no more cuts can be generated, establishing the theorem. ]

12.4 SOLVING STOCHASTIC TWO-STAGE
PROBLEMS USING SAMPLING

12.4.1 OVERVIEW

When W is huge, it is no longer practical, given some x = x*, to solve all the second-
stage subproblems in order to determine the expected minimum second-stage costs

9 fwyw pr fwyw (1236)

where y% denotes the optimal second-stage decision for some w given x = 2*. To
see why W can be huge in practice, suppose an electric power system has 20 gen-
erators and 10 transmission lines, any one or combination of which could be non-
operational. Then altogether there are 220 x 219 = 230 possibilities; i.e., there are
over one billion possible states of the system. If we also consider the effects of vari-
able demand patterns at different demand points due to weather conditions, then
the possible number of cases to consider becomes truly astronomical!
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Even though W typically is huge, we can still make progress using sampling to
estimate the expected minimum second-stage cost given a first-stage decision z*. We
assume that the sampling procedure consists of independent trials with replacement.
Naive Sampling can be used to estimate gk by randomly sampling the w proportional
to p, and averaging arithmetically over w in the sample S the observed minimum
second-stage costs f,y~.

Instead of sampling w proportional py, > p, = 1, p, > 0, another way is to
sample w proportional to some g, # p., where > g, = 1, ¢, > 0, and averaging
over w in the sample (p,,/q.)(f.yk), i.e., the minimum second-stage costs (f.,yk)
weighted by (p.,/q.). If q. is chosen to be roughly proportional to p,,(f.y¥), it will
sample more frequently (compared to Naive Sampling) those outcomes w having
extremely low probability p, but extremely high cost (f,y%). When this is the
case, the latter technique, called Importance Sampling, can often reduce by many
orders of magnitude the size of the sample required to attain a given accuracy of
estimate of @%.

12.4.2 NAIVE SAMPLING

For the discussion that follows, we assume the Naive Sampling procedure is used.
According to statistical theory of sampling, which we review in Appendix A, an
unbiased estimator of 6% is: 1
0" =5 D fovls (12.37)
weS
where S is a random sample of size N with replacements.
The variance of the sampled observations is:

S (1239)

weS

where N is the sample size. However, if (12.38) is used to estimate the true variance
of the population, (¢%)2, it can be shown to underestimate it. On the other hand,

(6%)? = ﬁ Z (fuyl — 9k)2 (12.39)
wEeS,
can be shown to be an unbiased estimator of (o*)2.
The expected value of the set of all means of size N is also % and an unbiased
estimate of the variance of all sample means of size N based on random samples
with replacements of size N is

1
N

m ST (furl - 07 (12.40)

wES,

(&k)Q _

Notation: When z = z*, we denote y* as an optimum y,, given z = 2*. We denote
the expected minimum second-stage costs by 6¥. When a sample S; is used to
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estimate 6%, we denote the estimated expected minimum second-stage costs by éf
Thus

w
~ 1 ,
ok = E[fwyiﬂ = E pw(fwyff,) and 0F = N E fwyf, (12.41)
w=1 weS;

where §; is a random sample of size N of the ws. In particular, on iteration k of
the iterative process we are given x = 2* and we generate only one corresponding
random sample S = Sj on iteration &, then, see (12.41), the estimated second-stage
cost is 0,’3, and the estimated first-stage and expected second-stage costs are denoted
k= cab 4 0k

k= k-

12.4.3 SAMPLING METHODOLOGY

In applications of stochastic two-stage linear programs, as noted earlier, the number
of scenarios W is typically huge, for example, W > 10% or W > 10°. We assume
that the Decomposition Algorithm (see Section 12.3.3) has been applied with the
following replacements:

W 1
prfwyw by N Z Jolw
w=1 WwESK

s 1
prwfdw by N Z rhd,
w=1 wWESK

w

1
g prFf)Bw by N E ﬂf)Bw
w=1 WwESK

for iterations 1,..., k. We assume, at iteration k, that the iterative process has been
stopped because of Step 8 of Algorithm 12.1 (as modified for sampling) or because
a preassigned maximum number k of iterations has been reached.

To measure how good this final solution z* is, we determine a 95% upper-bound
estimate for zF = ca® + EZVZI POk and a 95% lower-bound estimate for Min z,
meaning a 95% probability that the upper-bound estimate is higher than the true
2% and a 95% probability that the lower-bound estimate is lower than the true Min z.
The difference between these two bounds will be our measure of the “goodness” of

the first-stage solution z*.

12.4.4 ESTIMATING UPPER BOUND z,, FOR MIN =z

An unbiased estimator of 6% is

oF = % >0, (12.42)

wESk
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where 6 is the minimum second-stage cost f.,y., given x = z¥. An unbiased “95%”
upper-bound estimate of cx® + 6% is

czF + ok + )\0,955’53, (12.43)

where the area from —oo to A\g.g5 under the normal curve with mean 0 and standard
deviation 1 is 0.95 and

@0 = g O (05" (12.44)
wWESK

12.4.5 ESTIMATING LOWER BOUND ¢z, , FOR MIN ¢z

To obtain a “95%” lower-bound estimate of Min z, we note that the objective value v
of any feasible solution to the Dual of (12.9) provides a true lower bound v < Min z.
Unfortunately because W is huge, we must estimate v by sampling. To insure that
the lower-bound estimate is independent of the upper-bound estimate, we choose
another independent random sample Sj, of size N.

Dual of (12.9): Find max v, p, 1, such that:

w
pb + prwwdw = v (Max)
vt (12.45)
pA + prﬂ'wa <c
w=1
m,D, < fo, forw=1,... . W.
One such feasible solution to (12.45) is to set 7, = 7¥ for w = 1,..., W where ¥

are the optimal dual multipliers to the second-stage problems given x = z*. These
satisfy the last set of inequalities of (12.45). To obtain p = p¥, substitute m,, = 7%
into the first two sets of inequalities of (12.45) and solve this single-stage linear

program to determine p and v, a lower bound for Min z, namely,

Given 7, = 7T£, find Max v < Min z, such that:

w
pb + pomrd, = v (Max
wz::l Cren ) (12.46)
W
pA + prwf,Bw <c
w=1

Rather than optimizing the dual single-stage linear program (12.46) to obtain
Max v, a lower bound for Min z, it turns out to be more convenient to approx-
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imately optimize the primal of this dual problem:

Find &, Min z, ,, such that

w w
pr’frﬁdw + <C prﬂ—f)Bw>
A

(12.47)

By duality Minz,; = Max v < Min z.

Exercise 12.6  State conditions that guarantee the existence of p satisfying (12.46).
What do these imply about its dual (12.47)? Conversely, will these conditions always
be satisfied if the second-stage problems of (12.9) are always feasible with finite minima
whatever be z* satisfying Az = b, © > 0?7

Denoting the constant term and coefficients of the objective of (12.47) by

w W
Yo = Zpoﬂrf}dw, v = pr(cj —77B,;), forj=1,...,n, (12.48)
w=1 w=1

where B,,; denotes the jth column of the matrix B,,, we use an independent random
sample S, of size N to infer a distribution of possible values of the constant term
vo and the coefficients v; for j = 1,...,n of the objective of (12.47) where the true
means are (12.48).

The sampled means in (12.49) are unbiased estimates of the true means (12.48)
based on a sample S, of size N:

_ 1 N 1 .
Yo =5 Z PoTrd,, A= N Z (¢; —mEB,;), forj=1,...,n. (12.49)

weSy, weS;,

For sample sizes sufficiently large (say N > 200), the “likelihood” that the ob-
served vector of sample means (J,,%1,...,%,) from their vector of true means
(Yos Y15 -+ yn) can be reasonably assumed to follow very closely a multivariate
normal distribution centered at the origin. Our immediate goal is to calculate an
unbiased estimate of the true variance-covariance matrix based on the sampled ob-
servations about the sample means. If we denote the vector of deviations of the
sampled observations from their sampled means by

Swo = Thdy — Ak, 0w = (¢j — " By;) — (¢; —7;) forj=1,...,n, (12.50)

and let M be the matrix whose rows are defined by Bue = [0wos0wis- -« 0wnls
for w € &j, then the estimated wariance-covariance matrix of the multivariate
normal distribution about the sampled means (12.49) is (1/N)MTM. However,
this estimate is biased. An unbiased estimate of the variance-covariance matrix
about the true means (12.48) is (1/(N — 1))MTM. Finally an unbiased estimate of
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the variance-covariance matrix of the means of samples of size N about their true
means, based on a sample S;, is:

1
———M"M. 12.51
N(N -1) ( )
If we write the terms of the objective (12.47) plus a correction term &y, d1, ... , On

so that the constant term and coefficients agree with their true values displayed in
(12.47)

% Z Wﬁdw+(5o + Z <Cj -+ Z 7T¢]ZBwj +5]> fj = Zi5 (Mm)
j=1

A WES) (12.52)
A =b
§=>0,
then we are asserting that the vector § = (d,,01,...,d,) is a random vector drawn

from the multi-variate normal distribution centered at the origin with estimated
variance-covariance matrix (1/N(N — 1))MTM. For each random choice of the
vector (0p,01,...,0,), the linear program (12.52) is optimized and a minimum
value z, , is obtained. Thus z,, is a random variable that depends on the choice
of the vector (dy,01,...,0,) drawn from a multivariate normal distribution with
variance-covariance matrix based on sample Sj,. It is recommended in practice that
at least S;, > 200 independent random choices of the vector (do,61,...,d,) from
multivariate normal distribution be made, and for each such choice the one-stage LP
(12.52) be optimized. This results in an empirical distribution of S}, estimates of z, .
These 200 or more z, ;s are next ranked from low to high and the lower bound z,
for Min z is chosen as that z, , that is located 5 percentile points from the bottom
(which is at the 95% probability point according to the empirical distribution that
2, < Min z).

Exercise 12.7 Find a way to generate a random point of a multivariate distribution.

12.5 USE OF IMPORTANCE SAMPLING

One weakness in using the “naive” sampling procedure is that it may fail to sample
any of the rare but high-cost catastrophic events w havin‘%a very low probability p,,
of happening. Let g, be any distribution of w, ie., > _,q, =1, g, > 0. If we

rewrite
w » w
0" = qu (—“’fwf) ;Y =1, ¢ >0, (12.53)
w=1 o w=1

and then sample w proportional to g, and average (pu/qu)fwyS over a randomly
drawn sample S¢ of size N drawn from the distribution q,,, then

0" = % Z (z_:) JwYo (12.54)

weSd
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is also an unbiased estimator of 6°.

Question: Is there some way to choose g, so that sampling w proportional to ¢, to
estimateﬂk is superior to estimating #*¥ using p,, in the sense that for some fixed
size N, 0% has a smaller variance? Later we will discuss classes of problems where
the answer to this question is yes.

12.5.1 CRUDE (NAIVE) MONTE CARLO METHODS

The main computational difficulty in solving the two-stage stochastic linear pro-
gram (12.9) is the evaluation of the expected cost of the second stage when W
is huge. If so, it will not be feasible to evaluate all the w = 1,..., W terms of
the expected-value expression. The best, numerically efficient way to approximate
expected values (which are, by definition, higher-dimensional multiple integrals or
sums), according to expert numerical analysts, is by Monte Carlo techniques. These
use a random sampling of the v-dimensional domain of the function being integrated
to approximate its expected value. The computational effort is often relatively in-
dependent of v, the dimension of the space, whereas the computational effort of
classical techniques that subdivide the v-dimensional sampling space grows propor-
tional to the number of subdivisions that (in turn) grows with the power of v. Note
that v denotes the dimension of the space while N is the number of discrete points w
in the sample.

Let us suppose that our stochastic linear program (12.2) is a very complex
model of an electric power distribution system. Many of the possibly hundreds or
thousands of coefficients and constant terms of the second period are known with
certainty, but many others are dependent on a small number, v, of independent
random variables V.= (V1,Va,... , Vo).

For example V; for ¢ = 1,...,30 measures the repair state of the ith electric
power generator. If V; = 1 for generator 4, it means it is in service, and if V; = 0
it means it is out of service with known probabilities. In addition, assume there
are two other random variables V3; that measure the annual rainfall and V3, that
measure the prices of oil, and that V3; and V3, each can take on five values with
known probabilities. Assuming independence of the random variables, the number
of scenarios W that model (12.2) has in this case in the second period is W =
230 x 5 x 5 > 26 billion, a very large number.

Instead of sampling from the more than 26 billion scenarios as if it were one
long sequence, we choose w by independently random sampling each of the small
number v = 32 distributions V; and using these to evaluate the B, (,5), Dy (i,7),
d, (7).

Suppose that a point w in a sample space €2 results in the w outcome of a stochas-
tic vector V.= (V1,Va,... |V, )T. We are interested in estimating the expected value
of some function ¥(V) over the sample space:

Y= E[\I/(Vﬂ = Z Pwuws (1255)

weN
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where p, = p(vY,vy,...,v¥) is the joint probability distribution of the point w
in the sample space. For example, 1, could be the minimum second-stage costs of
subproblem w given some first-stage decision x, and some random outcome of the
stochastic vector V, i.e.,

Y, = Min f,y, subject to Dyy, =d, — Byx, yo, > 0. (12.56)

Suppose we take a sample S of N points (scenarios), v*, such that the likelihood
of choosing w is proportional to their joint probability distribution (or mass) func-

tion p, = p (v¢¥,v5,...,v%). An unbiased estimator of the mean ¢ of ¥(V) is:
~ 1
V=5 z&;ww. (12.57)

The variance o2 for the distribution p,, is

o =Var[U(V)] = > pu(v — ). (12.58)

weN

An unbiased estimator of o2 is

7= s S D) (12.59)

weS

The variance of the means of samples of size N is 02/N. Therefore its unbiased
estimator is

1. 1 ~
Ngz S NN-D ;G;(il)w - )% (12.60)

By the Central Limit Theorem, the distribution of such means 1), as sample size
N — o0, tends to the normal distribution about the true mean with variance ¢2. In
practice, the distribution of ¢ is approximately normal for moderate size N, say N
greater than 200. If it turns out that the unbiased sample variance (estimate of the
standard error squared) is too high, the sample size N will need to be increased
until the error of the estimate is acceptable.

This approach for approximating multiple integrals and summations is used to
estimate the expected minimum second-stage costs ¥ = ¢ and their variances, and
to estimate the expected values g*, G* of Cut (k) of the iterative algorithm, and to
estimate the variances of g¥ or G*.

12.5.2 MONTE CARLO METHODS USING
IMPORTANCE SAMPLING

In practice the Crude Monte Carlo approach described earlier often has a very slow
rate convergence to the normal distribution as sample size N — oo, namely, of
the order N—1/2. (Note: Each evaluation of a sample point, in our case, involves
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the optimizing of the subproblem w.) This makes it very desirable to develop
and apply inexpensive variance reduction techniques for the estimation of 1, the
expected value of U(V). We shall describe importance sampling, which is a classical
variance-reduction technique for increasing the efficiency of Monte Carlo techniques.
We then apply the idea to reducing the error of approximation of the expected value
of the second-stage cost 6% given the first-stage decision z = z*, and to estimate
how far cz® + 6% = 2* is from Min z of the stochastic linear program.

Importance sampling changes the sampling procedure so that rare events that
have catastrophic costs are sampled with greater frequency. Thus, for example, to
evaluate the integral ffooo f(z)dz, the method of importance sampling chooses a
probability density ¢(u) and then evaluates the equivalent integral

/_Z f(z)dz = /_O:O {%] q(u)du = E,[f(U)/q(U)] (12.61)

where U is a random variable with probability density function gq. The probability
density function ¢ is chosen so that it is approximately proportional to |f(u)|, i.e.,

q is large in regions where |f (u)| is large. Thus, the procedure is to sample from the
distribution ¢ of U and to estimate the integral ffooo f(z)dz as the sample mean of

fF(U0)/q(U).

Exercise 12.8 Suppose that f(u) > 0 for all u and g(u) = Af(u) where A > 0 is a fixed
constant chosen so that ffooo g(u)du = 1. Prove that ffooo f(x)dzx = X; i.e., knowing the

value of A is the same as determining the value of the integral ffooo f(z)dz.

Exercise 12.9  Suppose g(u) = Af(u) is a probability distribution and the expected
value of f(U)/q(U) is estimated by a random sample drawn from the distribution g(u).
Show that, regardless of what random sample of f(U)/q(U) is taken and then averaged,
the sample mean is A and therefore the sample estimates the ffooo f(x)dz with standard
error estimate o = 0.

Exercise 12.10 Suppose f(u) > 0 for all u and g(u) is “roughly proportional” to f(u).
Show that the ratio R(u) = f(u)/q(u) satisfies (1 — e)A < R(u) < (1 + €)X for some
0 <e<1, A >0. Prove that the Importance Sampling will estimate the integral divided
by A with an error < e.

Exercise 12.11  Suppose the likelihood of a major outage of an electric power system
is 1/1000, i.e., one day in 1000 days, but the social cost is enormous when it does happen.
On a typical day, when it does not happen, the social cost is zero. Demonstrate why it is
better to use importance sampling instead of crude Monte Carlo sampling,.

In general, we are interested in computing

0=> pwF(w) (12.62)

weN
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where F(w) = f,y. and p(w) is the distribution of the random vector V. By
choosing a distribution ¢(w) we obtain

=y R P () = E, [L])F(U)] (12.63)
weN

where U = (Uy,Us, ... ,U, )T is a random vector with distribution ¢. We approxi-
mate 6 by random sampling from the distribution ¢ to obtain an unbiased estimator
of 8 by

N J
Z plu F (12.64)

The unbiased estimator of the variance of 0 is now:

N NF(w)  \° .
Var,[0] = Nl— 1 ; (p(uq()zi'() - 0> 1)
1 pUFWU)?PT 5
- <Eq[ T } g ) (12.65)

We now address the question of how to choose ¢ so that Vary[f] is as small as
possible for a given sample size N. Assuming F'(u) > 0 the obvious optimal choice

N F(u)p(u)
> oeo F@)p(@)’

because (see Exercises 12.8 and 12.9) with such a choice of g, the variance Var,[0]

is zero. Using q(u) = ¢*(u) from (12.66) in (12.64) generates a 6 that is a perfect
estimate of the expected value of 0, because in this case (12.64) reduces to

6= Flwpw)

weN

q(u) = ¢" (u) where q (u) = (12.66)

Moreover, this perfect estimate is one that could have been obtained with exactly
one observation N = 1! Unfortunately, while this ideal optimal choice is perfect,
it is useless because, as we have already seen, the denominator of q*(u) in equa-
tion (12.66) is the very quantity that we are trying to estimate in the first place.
Nevertheless, this observation suggests a good heurestic for determining q.

1. Choose a g(w) that is roughly proportional to |p(w)F'(w)|; and

2. at the same time choose a ¢(w) that permits carrying out the calculations
efficiently.

Two possible ways to choose a ¢ that have been found to be very efficient for certain
classes of important applications and requires only the evaluation of one-dimensional
integrals or summations (which in general requires substantially less computational
effort than evaluating a general multidimensional one).
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Multiplicative Assumption

First, let us assume that F(w) = F (V¥ V5, ..., V¥) is roughly multiplicative in
its arguments, namely:

Fw)=F (V& Ve, .. VE) = F(vf)Fa(vy) - F(vy). (12.67)

Obviously the further away F'(w) is from being multiplicative, the rougher will be
the approximation ¢ and the higher will be the variance of the estimator of . Under
this assumption, we choose the distribution ¢(w) to also be multiplicative

o(w) = (Fl(vf;i?l(vi")) (Fz(vé’}ih(v‘ﬁ))) (Fu(vf}f2(v‘5’)) (12.68)

where F; = E [Fb(vf)} . The quantity F; (depending on the application) is estimated
by using either calculus to perform v independent one-dimensional integrations or
by Monte Carlo sampling of the one-dimensional distributions V;. Once ¢ is defined
in this way, sample points v* are chosen by independently choosing components
V; according to their marginal distributions F;(v;)p;(v;)/F;. An estimate for @ is

obtained as the arithmetic mean of Fj(v;)p;(v;)/F; for j=1,...,N.

Additive Assumption

It turns out that in certain applications, such as the calculation of financial portfolios
and electric power distribution, a multiplicative approximation is not as good for
integrating the function that measures cost as the one that is roughly additive in
its arguments. We are assuming here that F(w) is roughly additive of the form:

F(w) ~ Z Fi(v¥) (12.69)

Specifically, we are assuming that g(w) takes the additive form:

w) = p(w) 3y Fivy) ol Y Fi, Fz(})f)
) S o o A );(kak)( 2 ) (12.70)

where F; = F [E (Uf)] The quantity F; is once again easily estimated by sampling
the marginal distribution of V;. Finally we can write

o) = zzj(sz) (pi(“f i) gpmw). (12.71)

The expected value E[Zg (V)} = 29 = 0 then becomes

-2 (sm)m [ ] 272

i=1
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where E; means that the component vf of sample point v/ is to be independently
sampled according to the marginal distribution of ¢;(vy), i.e.,

o) = Iw (12.73)

i (v

and all other components j # i according to the marginal distribution pj("u;?). Note
that @ is these expectations E; in (12.72) weighted by F;/ > Fj. Thus, an estimate
6 of 6 can be obtained when each Ej; is itself estimated by sampling one-dimensional
distributions.

The extent of variance reduction clearly depends on how good the true cost
surface can be represented by an additive representation; if the fit is poor then the
variance estimate of the mean of the sample will be high.

Estimation of F;(w;)

The quantities F;(vy) can be estimated by evaluating the cost function on a rel-
atively small lattice of points, namely, a set of lattice points along v-coordinate
directions:

Fi (’Uw

Z—)%F(Tl,...,Ti_l,U;J,Ti+1,...,Td) —F(Tl,...,Ti_l,Ti,Ti+1,...,Td) (12.74)

where the values 71, 72,...,7, are arbitrarily chosen at some fixed set of values.

This determines the quantities up to an additive constant. We can get rid of this
additive constant by writing

Fw)=F(m,72,...,7 )+ AF(w).

Now the new function AF'(w) is again of additive form but has the advantage that
we know a priori that we may take AF;(7;) = 0 and thus eliminate the additive
constant entirely.
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sense, problems whose parameters are not known with certainty. Early references are
Dantzig & Madansky [1961], Ferguson & Dantzig [1956], and Madansky [1959]. Over the
years, different approaches have been used to attack such problems. See for example,
Birge [1985a,b], Birge & Holmes [1992], Birge & Wallace [1988], Birge & Wets [1986,
1987], Dantzig & Infanger [1992a], Ermoliev [1983], Frauendorfer [1988], Frauendorfer &
Kall [1988], Higle & Sen [1991], Kall [1979], Pereira, Pinto, Oliveira, & Cunha [1989],
Rockafellar & Wets [1989], Ruszczynski [1986], Van Slyke & Wets [1969], and Wets [1984].
A survey of different ways to solve stochastic linear programs can be found in Ermoliev
& Wets [1988] and an introduction to stochastic programming can be found in Birge &
Louveaux [1997].
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The two-stage case was first studied by Dantzig [1955a, 1963] and subsequently devel-
oped by Van Slyke & Wets [1966, 1969] and Wets [1984]. The solution method described
in this Chaper began with Birge [1980] and Dantzig, [1982a] followed by major studies
by Abrahamson [1983], Wittrock [1983], and Scott [1985]. It is based on Benders De-
composition (see Benders [1962] and Geoffrion [1970]); and using Importance Sampling
based on Dantzig & Glynn [1990]. and Glynn & Iglehart [1989]. The discussion of im-
portance sampling applied to stochastic linear programs presented in this chapter also is
based on these references. This approach has turned out to be very powerful in prac-
tice; see Infanger [1991] and Dantzig & Infanger [1992a], which report on the remarkable
computational results obtained for several large-scale problems with up to 52 stochastic
parameters. These stochastic problems, if reexpressed in standard linear programming
format, could each have several billion constraints. The justification of the lower-bound
estimates of the confidence interval have been criticized on theoretical grounds. However,
the theory presented in this chapter provides a theoretical way to validate these earlier
lower-bound estimates.

Dantzig & Infanger [1993] show how to apply the concepts of stochastic linear programs
to portfolio optimization. In Dantzig & Glynn [1990] an extension of this approach for
the multistage problem is proposed using parallel processors. For details on planning
under uncertainty, see Infanger [1994]. See also Entriken [1989] for decomposition of linear
programs using parallel computing.

Berry-Esséen (in Hall [1985]) gives upper bounds on the rates of convergence based
on the Central Limit Theorem. If the algorithm described in this chapter terminates with
an approximation far from optimal, the only remedy is to increase the sample size and
try again. Morton [1993] develops a theory of augmenting the original sample and trying
again.

Experimental results for electric power facilities by Nakayama (reported in Dantzig,
Glynn, Avriel, Stone, Entriken, & Nakayama [1989]), based on the additive approach
described in this chapter, showed importance sampling to be very effective. It turned out
that a sample size 1/20000 smaller was required to obtain the same-size confidence interval
with the same degree of confidence of covering the true minimum value using importance
sampling than would have been the case using “crude” sampling.

For Monte Carlo approaches to computing multiple integrals or multiple sums, see
Davis & Rabinowitz [1984] and Dedk [1988]. For a description of Monte Carlo Sampling
Techniques, see Hammersly & Handscomb [1964]. An extensive review of methods of
approximation, together with a list of references, can be found in Birge & Wets [1989] and
Chapter 1 of Ermoliev & Wets, Eds. [1988].

A technique proposed by other researchers for computing the approximate integrals or
sums for the continuous two-stage case provides upper and lower bounds by discretizing the
sample space €2 into cells and summing the function values at representative points within
the cells over all cells; see, for example, Birge [1985a], Birge & Wets [1986], Frauendorfer &
Kall [1988], Huang, Ziemba, & Ben-Tal [1977], Kall & Stoyan [1982], and Kall & Wallace
[1994]. In these cases, lower bounds are obtained easily by applying Jensen’s inequality
(see, for example, Kall & Wallace [1994]). Upper bounds, however, require an exponential
number of function evaluations with respect to the dimension d of the sample space 2.
Birge & Wets [1989] proposed a scheme for obtaining upper bounds that requires solving
O(m2) linear progams instead. Their method replaces partitioning into cells by a method
that seeks out an approximation using a small number of “positive” basis representations
that span the space of columns assoicated with the second stage. Another technique for
doing the approximations is to sample from 2 randomly and to use sample information to



362

TWO-STAGE STOCHASTIC PROGRAMS

guide the optimization algorithm. Among these methods are the stochastic quasi-gradient
methods of Ermoliev [1988] and Gaivoronski [1988]. Their methods provide asymptotic
convergence in the continuous case as the size of the sample s — oo, but fall short of
providing a practical way to compute the accuracy of the bounds.

12.7 PROBLEMS

12.1

Suppose that in tomato season there are three canneries under one management
that ship cases of canned tomatoes to five warehouses. The number of cases
processed at each cannery during the tomato season is known in advance as
shown in the table below together with the cost to ship per case to each of the
warehouses.

Availability Shipping Cost ($/case) to
of Warehouse Dump
Canneries Cases a b C d e
1 50,000 09 20|18 | 17|25 1.0
2 75,000 06|16 |14 |18 ] 25 1.0
3 25,000 27118 |15 ] 10|09 1.0

The last column is the cost per case of dumping unshipped tomatoes. The sea-
sonal demand, however, at each of the warehouses is uncertain. The probability
distribution of demand is shown in the table below:

Demand at Probability
Warehouse .15 .55 .30
15,000 | 20,000 | 30,000
16,000 | 20,000 | 28,000
17,000 | 20,000 | 26,000
18,000 | 20,000 | 24,000
19,000 | 20,000 | 22,000

o A0 T

Cases left over at the end of the season cannot be stored until next year because
the food in the cans will spoil. They must be shipped to the dump at a loss
of $1 per case. Failure to supply all of the warehouses demands is penalized
at $0.25 per case, the discounted estimated loss of all future sales. (Turning
a customer away runs the risk that the customer will become the customer
of another supplier.) What shipping schedule will optimize the sum of total
shipping cost plus expected net revenues? Solve the problem in the following
ways:

(a) Formulate this as an equivalent deterministic linear program (EQ-LP). How
many equations does this EQ-LP have? Solve this EQ-LP using any avail-
able software.

(b) Solve EQ-LP using the method of Section 12.3.

(c) Solve the problem using Benders Decomposition with crude Monte Carlo
methods.

(d) Solve the problem using Benders Decomposition with Monte Carlo methods
using importance sampling.
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12.2

12.3

12.4

A farm comprises 240 acres of cropland. The acreage to be devoted to corn pro-
duction and the acreage for oats production are the decision variables. Profit per
acre for corn production and oats production under varying climate conditions
are shown with probabilities below:

Profit ($/acre)
Climate | Prob Corn| Oats

Poor 0.20 15 20
Average | 0.55 40 30
Good 0.25 55 40

An additional resource restriction is that the total labor hours available during
the production period is 320. Each acre of land in corn production uses 2 hours
of labor during the production period, whereas production of oats requires only
1 hour. Formulate and solve an LP that maximizes the expected profit. Com-
pare your solution with the one obtained using Bender’s decomposition.

Birge & Louveaux [1997]. Northam Airlines is trying to decide how to partition
a new plane into economy-, business-, and first-class seats for its Chicago-Detroit
route. The plane can seat 200 economy-class passengers. A section can be
partitioned off for first-class seats but each of these seats takes the space of 2
economy-class seats. A business class section can also be included, but each of
these seats takes as much space as 1.5 economy-class seats. The profit on a first
class ticket is, however, three times the profit of an economy ticket. A business-
class ticket has a profit of two times an economy ticket’s profit. Once the
plane is partitioned into these seating classes, it cannot be changed. Northam
knows, however, that the plane will not always be full in each section. They
have decided that three scenarios will occur with about the same frequency:
(1) weekday morning and evening traffic, (2) weekend traffic, and (3) weekday
midday trafic. Under Scenario 1, they think they will have a demand for 20 first-
class tickets, 50 business-class tickets, and 209 economy tickets. Under Scenario
2, these figures are 10, 25, and 175. Under Scenario 3, they are 5, 10, and 150.
You can assume they cannot sell more tickets than seats in each of the sections.
(In practice, airlines allow overbooking and have passengers with reservations
who do not appear for the flight (no-shows).) The problem of determining how
many passengers to accept under these circumstances is part of the field called
yield management. For one approach to this problem of yield management, see
Brumelle & McGill [1993].

A grape grower has just purchased 1,000 acres of vineyards. Due to the quality
of the soil and the excellent climate in the region, he can sell all that he can
grow of cabernet sauvignon, chardonnay, and sauvignon blanc grapes. He would
like to determine how much of each variety to grow on the 1,000 acres, given
various costs, profits, and manpower limitations, as shown in Table 12-1. The
probabilities of bad, average, and good weather are 0.3, 0.5, and 0.2, respectively.
Suppose he has a budget of $100,000 and staff available to provide 8,000 man-
days.

(a) Formulate the problem as a linear program.

(b) Solve it using the DTZG Simplex Primal (Linear Programming 1) software
option.
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12.5

Variety Man-days Cost Profit ($/acre)
per acre | $/acre | Bad | Average | Good
Cabernet Sauvignon 20 115 30 70 80
Sauvignon Blanc 10 90 40 50 60
Chardonnay 15 200 70 120 130

Table 12-1: Data for the Grape Grower’s Dilemma

Week Demand Production | Production Storage
Low | Average | High Limit | cost ($/set) | cost ($/set)

1 2 4 6 10 20 1
2 4 6 7 25 30 1
3 7 10 14 20 25 1
4 5 8| 10 4 40 N/A

Table 12-2: Data for Dinner Set Production Schedule

(c) Being curious about other possibilities in the future, the grape grower would
like to know whether he should grow the Merlot variety of grapes, which
requires 12 man-days/acre, cost $80 per acre, and produces a profit of
$45/acre, $55/acre, and $65/acre depending on whether the weather is
bad, average, or good. Without rerunning the problem, determine whether
it makes sense to try to grow Merlot. If it does make sense, re-solve the
linear program with the new grape variety included in the formulation.

(d) In order to obtain some initial cash, the grape grower decides to sell fu-
tures (at a lower profit) of the yield from 25 acres of Sauvignon Blanc and
150 acres of Cabernet Sauvignon grapes. How does this change the optimal
solution?

Your wife has recently taken a ceramics class and discovered that she has a
talent for making elegant dinner sets. A specialty store around the corner from
the class has recently sold a couple of sets on her behalf. Besides the fact that
these sets have been well received, the store’s four other suppliers have moved
out of town and the store owner has offered your wife the job of supplying dinner
sets for the next four weeks to meet the store’s demand. With a new baby, it
would be difficult for her to meet the demand on her own. As a result she has
arranged to hire help over the four weeks. The hired help have different skills and
hence different rates. Your wife, on looking over the required demand schedule,
availability of firing time at the ceramics class and the cost of inventory storage
at the class has realized that the problem is nontrivial. She decides to approach
you to see whether your claimed expertise in operations research can help her.
The demand, schedule, and costs are displayed in Table 12-2 You immediately
realize that it can be set up as a linear program. However, on closer examination
you notice that it can be formulated as a transportation problem that can be
solved very efficiently.
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12.6

12.7

12.8

(a) Formulate this problem as a transportation problem. Hint: Let z;; be the
number of dinner sets produced in week ¢ to satisfy demand in week j.

(b) Solve it by hand.

(¢) Solve it by the Transportation software option to verify your solution.

Prove that the problem:

Minimize cTr + %flvl + %fg’l)g =z
subject to Az =0
—Bixz + Fivn = di
—Box + Fhuo = ds
with x >0, v1 >0, v2>0
is equivalent to
Minimize 'z + LAV 4+ A0 + Lfve = 2
subject to Az =b
—Bix + Fﬂji = di
—Bix + Fﬂ)il = d;
—Bsx + Fhuo = ds
with > 0, v; >0, vy >0, va > 0.
Show how to convert the problem:
J
Minimize T+ ijfjvj =z
j=1
subject to Az =b
—Bjr + Fyjvj =d; j=1,...,J
J
where ij =1,p; >0,5=1,...,J and
j=1

x>0,v;>0forj=1,...,J

where p; = N; /N, Z;-]:1 N; = N, and N; > 0 are integers, to a problem of the
form:

K
Minimize o+ 3 fogn = 2
k=1
subject to Az =b
—Brx + Fryr = di, k=1,....K

withx >0, y» >0for k=1,... K.

Ph.D. Comprehensive Exam, June 15, 1967, at Stanford. An individual is inter-
ested in choosing a portfolio of securities (stocks, bonds). Let X; be the value
of the ith security after one year per dollar invested today, ¢ = 1,...,n. The
variables X1, X2,...,X, are assumed to be random variables with a known
joint distribution. The individual has total current wealth A, to be distributed
among the n securities. Let Y be the total value of his portfolio of securities
after one year. Assume his aim is to maximize E[U(Y)}, the expected value
of U(Y'), where U(Y) is called the von Neumann-Morgenstern utility indicator.
(It is the value he places on the outcome Y which measures his risk aversion;
assume U(Y') is a concave increasing function).
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(a)
(b)

Derive in as simple a form as possible the equations and inequalities char-
acterizing the optimal portfolio.

Suppose that an optimal allocation has been made, and that subsequently
an additional security, 7 = n + 1, becomes available. Suppose further that
the end-of-year value, X, +1, is a random variable independent of the ran-
dom variables X1, Xs,... , X,. State the necessary and sufficient condition
that the optimal portfolio will be revised to include some portion of the
new security.



APPENDIX

A

PROBABILITY THEORY:
OVERVIEW

In this appendix we introduce some basic concepts and notation of probability
theory for use in solving stochstic linear programs.

A.1 BASIC CONCEPTS, EXPECTED VALUE,
AND VARIANCE

We begin by paraphrasing some basic definitions and concepts found in W. Feller’s
book Introduction to Probability Theory and Applications.

Definition (Event, Sample Point, Sample Space): An event is defined to
be the outcome of an experiment or an observation about the state of some
system. A simple event, which is a single outcome of a single experiment or
observation, is called a sample point and will be denoted by w. The aggregrate
of all possible sample points is referred to as the sample space and will be
denoted by the symbol €.

Associated with points w in a sample space is a function p(w) > 0 that is referred to
as the probability of a simple event w happening. The sum of these p(w) is unity. For
example, if we have an urn containing balls labeled with either a 0 or a 1, we might
assign the probability of “randomly” choosing a 0 ball as equal to the proportion of
0 balls to the total balls in the urn. In this case, the sample space may be thought
of as comnsisting of two points lying on a line such that one point has coordinate 0
and the other point has coordinate 1 with probabilities p(0) = «, p(1) = 3, where
8=1-a.

367
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Definition: A discrete sample space is one consisting of only a finite number
of points, say n.

Another example of a discrete sample space is the toss of a coin, is where the
probability of observing a head is 1/2 and the probability of observing a tail is 1/2.
We ignore the very remote possibility of a coin landing on its edge.

The probability of an event being observed in a subset of the sample space is
assumed to be simple additions of probabilities in the subset of the sample points
associated with the event.

Definition (Random Variable): A random variable X is not a variable but a
function defined over a sample space.

In particular, a discrete random variable X is a function that takes on a discrete
set of values with values x1,x2,...,x,, where x; can be a sample point w itself,
an event, or, more generally, it can be a function of a set of sample points. The
probability that a discrete random variable X can take on a value x; is denoted by
PIX = ;] = p;.

Definition (Probability Distribution): The set of these probabilities for all the
outcomes of a discrete random variable X is called a probability distribution
(or density) of the random variable. Clearly,

p; >0, > pi=1 (A1)
j=1

Definition (Expected Value or Mean): The expected value or mean of a dis-
crete random variable X is

BE[X] =) pja;. (A.2)
j=1

Often the expected value is denoted by pu, or simply 1 when the association
with X is clear. In general, the expected value of a function of X, say h(X),
is

Elh(X)] = ijh(xj)~ (A.3)

Definition (Variance and Standard Deviation): The variance of a random
variable X is denoted by o2 or simply o2 when the association with X is
clear. It is defined as the expected squared deviations of an observation x;
from its expected values; i.e.,
n
2 2
o = > pi(z; — BIX])” = E[X?] - (B[X])".

J=1

(A4)
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Its positive square root, denoted by o, is called the standard deviation.

Definition (Independent Random Variables): If P[X = z;] = p; and P[Y =
y;] = ¢;, then random variables X, Y are said to be independent if their joint
probability distribution P[(X, Y) = (z, y])} = Digj.

Definition (Correlation Coefficient): The correlation coefficient between the
two variables X and Y is defined to be
_ B[(X - BX])(Y - E[Y])] _ E[XY]- E[X]E[Y] A
Pry = = : (A.5)

Ox 0y Ox 0y

The correlation coefficient satisfies —1 < p,,, < +1. If the random variables
X and Y are independent p,, = 0. The covariance between random variables
X and Y is defined to be

UXY = O—XJYpXY' (A"6)

In a more general setting, a random variable V' can be a vector function consist-
ing of d components V' = (V1,V,...,Vy) with outcomes v* = (vf,v§,...,v¥ ).
The probabilities associated with v will be denoted by p(v*) or simply by p(v).

Definition (Independent Components): 1If the joint density probability distri-
bution p (v1,ve,... ,v, ) satisfies
p ( V1,V2,...,Un ) = Pl(Ul)P2(’02) T 'pn(vn)v (A7)

the components of the random variable V' are said to be independent.

If the components of the random variable V' are independent, the sample space
) is obtained by crossing the sets of outcomes for each component of the vector
entry, i.e.,

Qzﬂl><ﬂg><'“><ﬂd. (Ag)
Then the expectation of a function h(V) is of the form:
ERV)] =33 - > h(o)pi(v1)pz(v2) - pu(vn). (A.9)
V1 v2 Vd

A random variable that is continuous is treated in much the same way except
that we now use integrals.

Definition (Probability Density Function): If X is a continuous random vari-
able, we associate with it a probability density function f(x) with the property
that

f(z) >0, /Qf(x) dx = 1. (A.10)

We shall often use the shorter form density function to mean a probability
density function.
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In the general case of a continuous random vector V', the expectation of a function
h(V') is given by

E[nV)] = /Q1 /92 /Ql h(v) f(v)dvidvs - - - duy. (A.11)

Sometimes an expectation is defined in terms of a Stieltjes integral; that is, the
expected value of a function g(x) of a random variable X, which is a combination
of continuous and discrete elements, can be expressed as

EX] = / ~ y(@)dF () (A.12)

— 00

where F(z) = P[X < z] is the cumulative density function.

Stochastic linear programs are hard to solve, in part because of the expense
and difficulty involved in evaluating multiple integrals or multiple sums. The com-
putation of the expected value typically involves a very large number of function
evaluations, and each function evaluation may require solving a very large linear
program.

A.2 NORMAL DISTRIBUTION AND THE
CENTRAL LIMIT THEOREM

Many techniques in statistics are based on the normal probability distribution.

Definition (Normal Distribution): A random variable X is said to be dis-
tributed normally if its density function f(z) is a normal distribution, i.e., it

is of the form: )
f) = e~ (@m0, (A.13)

2mo

where —o0o < g < oo is the mean and ¢ > 0 is the standard deviation of
the normal distribution. The normal distribution of (A.13) is often denoted
by N (1, 7).

Definition (Standardized Normal Random Variable): A normally distributed
random variable with mean g = 0 and standard deviation o = 1, is called a
standardized normal random variable. A standardized normal distribution is

denoted by N(0,1).

Normal distributions play an important role when sampling techniques are used
because, according to the Central Limit Theorem, to be stated soon, the distribution
of the mean of a sample of size n approaches a normal distribution as n — oc. For
this purpose, we need to define what is meant by a random sample, sample mean,
and sample variance.
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Definition (Random Sample): The random variables X7, Xo, ..., X, are de-
fined to be a random sample from a population with probability density f(x)

if X1, Xo,...,X, are independent identically distributed random variables;
i.e., if their joint probability density function satisfies
9(@1, 2, . an) = f(@1)f(@2) - f(@n), (A.14)

where f(z;) is the density function of each of the random variables Xj;.

Often the form of the density function of a random variable is known; for ex-
ample, we may know that it is normally distributed. However, the density function
may have parameters such as p and o, which are not known. The problem is then
to estimate these unknown parameters through the use of a statistic.

Definition: A statistic is a function of a random sample of size n that is
used to estimate an unknown parameter of a density function. For example,
X = (1/n) X1, X; is a statistic used to estimate the mean of a distribution.

LEMMA A.1 (Mean and Variance of a Random Sample) Consider a
population with density function f(z), which has mean u and variance o%. Let
X1,Xo, ..., X, be arandom sample from this population and let X = (1/n)>"" ; X;.
Then

_ 1
EX]=px=p and Var[X]=o0% = 502. (A.15)

Exercise A.1 Prove Lemma A.1.

When sampling, we often can guess at the form of the probability density func-
tion but do not know its parameters, nor do we know its mean or variance. We can
use one of several different ways to estimate the parameters; however, we typically
would like the expected value of an estimator of a parameter to be equal to the true
value of the parameter. Estimators that satisfy this property are called unbiased
estimators.

Definition (Unbiased Estimator): An unbiased estimator ~y of a function g(6)
of a parameter # has the property F[y] = g(0). For example, the mean p and
variance o2 are parameters of a distribution. An unbiased estimator X of p
is the mean of a sample of size n:

X=- (A.16)

S|+~
>

Definition (Sample Variance): The sample variance of a random sample of
size n is by definition:

%Z@g — %) (A.17)
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A biased estimator of o2 is the sample variance because

E

n

% Zn:(xi - X)Q] e (A.18)
i=1

Therefore an unbiased estimator of o2 is

1
n—1

zn:(Xi - X)% (A.19)

Definition (Unbiased Sample Variance): We shall refer to (A.19) as the un-
biased sample variance for estimating o2.

> Exercise A.2 Prove (A.18).

THEOREM A.2 (Chebyshev’s Weak Law of Large Numbers)  Let X be
the sample mean of a random sample of size n drawn from a probability density
f(x) with mean p and variance 0. Then in order for

Pl-e<X —p<e>1-4§ (A.20)
for some specified 0 < § < 1 and € > 0, choose sample size n > o2 /€25.

The weak law of large numbers tells us how large we must take the sample size n
in order to have a probability greater than 1 — § for |X - u‘ < €, where X is the
sample mean.

Example A.1 (Sample Size Using Weak Law of Large Numbers) How large must
the size n of the sample drawn from a population with known mean p = 0 and standard
deviation o = 1000 be in order that the probability is > 1 — § = 0.95 that the observed
sample mean will be within € = 10 of the true mean 0?7 According to the weak law of large
numbers, the sample size n should be chosen as n = 100%/10%(0.5) = 200,000.

THEOREM A.3 (Central Limit Theorem) Let X1,Xo,...,X, be a ran-
dom sample from a probability density function f(x), which has mean p and variance
o?. Define the random variable Z, as a function of the sample mean X as:

_X—E[X'] _X—u
" Var[X] B o/vn’

Then the distribution of Z, approaches that of a standardized normal distribution
as n — oo.
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Example A.2 (Sample Size Using the Central Limit Theorem) If in Exam-
ple A.1,

, _X-u__ X
" oy/n 1000/4/n’
then since
+1.96
/ L o—32q = 0.95
196 V2T 7
we have
- —-10 X —u 10
P-10< X <10|=P < > 0.95.
[ =X <10 [1000/\/5 ~ o/y/n ~ 1000/\/n| ~
Then ﬁ = 1.96 or v/n > 196 or sample size should be chosen n > 1962 = 38,416.

The sample size n obtained using the Central Limit Theorem is much smaller than that
obtained using Chebyshev’s Weak Law of Large Numbers.

The Central Limit Theorem is one of the most important theorems in probability
and statistics. It basically tells us that as the sample size grows the distribution of
the sample mean X approaches that of a normally distributed random variable.

A.3 CHI-SQUARE DISTRIBUTION,
STUDENT"S t-DISTRIBUTION, AND
CONFIDENCE INTERVALS

The “solution” of a stochastic linear program will be a decision = that is feasible.
Its associated objective cost z is a random variable that depends on x and on the
outcome of a random event w. The problem is to choose x = # such that the
expected value of zz is minimum. If sample space € is too large, so that it is not
possible to evaluate all w € , then our goal will be given € and ¢ to choose = = &
and a sample size n such that P[E[zz] < Elzz] + €] > 1 — 4. With this in mind we
define the chi-square distribution, Student’s ¢-distribution, and confidence intervals.

A.3.1 CHI-SQUARE DISTRIBUTION

A probability distribution, called the chi-square distribution plays an important role
in determining the distribution of the unbiased sample variance.

Definition (Chi-Square Distribution): A random variable X is said to have
a chi-square distribution with k degrees of freedom if its density function is of
the form

1 1 k/2
f(.]? | k?) = W (5) J)k/271671/2, 0<x<oo. (A21)
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where T'(u) is the gamma function:

I(u) = / " te dx for u >0 (A.22)
0

Integrating by parts results in the property
D(u+1) =ul'(u).

Hence if u is an integer, say u = n, then I'(n + 1) = nl. Note that I'(u) is defined
by (A.22) for any w, integer or noninteger, for example,

1-3-5---(2n—1)

T(n+1/2) = o Nz

and I'(1/2) = /7, ['(3/2) = (1/2)y/7. A random variable with a chi-square distri-
bution with k& degrees of freedom has E[X]| = k and Var[X] = 2k.

Exercise A.3 Show that E[X] = k and Var[X]| = 2k for a random variable X that has

a chi-square distribution with & degrees of freedom.

Next we discuss some properties of random samples.

LEMMA A.4 (Sample Mean from a Normal Distribution) Let X be the
sample mean of a random sample X1, Xa, ... , Xy, drawn from a normal distribution
N(u,0%). Then X is itself normal with mean p and variance o2 /n.

LEMMA A.5 (Chi-Square Distribution) Let U be a random variable defined

by:
k 2
Xi —
U= E —_—

where the X; are normally and independently distributed with means p; and variance

2

o;. Then U has a chi-square distribution with k degrees of freedom.

COROLLARY A.6 Let Sx be the unbiased sample variance (A.19) of a random

sample X1, Xs,..., X, from a normal distribution with mean p and variance .
Then
U (n—1)S%
o2

has a chi-square distribution with (n — 1) degrees of freedom.



A.3 CHI-SQUARE AND STUDENT’S t-DISTRIBUTION, CONFIDENCE INTERVALS 375

A.3.2 STUDENT’S t-DISTRIBUTION

The Student’s t-distribution also plays a very important role in estimation.

Definition (Student’s t-Distribution): A random variable X is said to have
a Student’s t-distribution with k degrees of freedom if its probability density
function is of the form

L(k+1]/2) 1 1

I = TRy Vs G @ mE

(A.23)

where T" is the gamma function defined by (A.22).

LEMMA A.7 (Student’s ¢-Distribution) Let Z be a random variable with a
standardized normal distribution and let U be an independent random variable with
a chi-square distribution with k degrees of freedom. Then the random variable

Z

has a Student’s t-distribution with k degrees of freedom, stu(x | k).

Let X1, X5, ..., X, be arandom sample from a normal probability density func-
tion with mean p and variance 2. Define

(X —p)
o/\v/n
U= ( ! > > (X - X)% (A.26)

2
g
i=1

Z = (A.25)

Then, from Lemma A.4, it is easy to see that Z has a standardized normal distri-
bution and, from Corollary A.6, U has a chi-square distribution with n — 1 degrees
of freedom.

LEMMA A.8 (Independence of Z and U) The random variables Z defined
by (A.25) and U defined by (A.26) are independent.

Because Z and U are independent by Lemma A.8, from Lemma A.7 it follows

that
(X — w)/(o/ V) VI DE s o
VAo T (X = X2/ —1) /S0, (X — X)?

has a Student’s t-distribution with n — 1 degrees of freedom, stu(z | n — 1).
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A.3.3 CONFIDENCE INTERVALS

Before formally defining a confidence interval, we illustrate the subject of confidence
intervals through an example.

Example A.3 (Illustration of Confidence Intervals) Suppose that we would like to
estimate the mean p of a normal distribution with known standard deviation o = 1. We
can sample from the distribution and construct the sample mean X as an estimate of the
unknown mean p. However, often we are more interested in constucting an interval that
is guaranteed to cover the unknown mean p with specified probability even though we do
not know what the fixed value of p is. For example, we may be interested in the interval
that gives a probability of 0.9554 of covering the unknown mean p. In order to do this,
observe that, for a sample of size n, the random variable

X-p X—p
~o/yn 1/yn

has a standardized normal distribution. Now from the probability tables we know that

(A.28)

2

Pl-2<Z<2 = e/ = 0.9554 (A.29)

1
—2 2w
to four decimal places. Substituting (A.28) into (A.29) we obtain

0.9554

P[—2<Z<2]:P[—2<X“<2}

1/vn
=P[X-2/Vn<p<X+2/Vn]. (A.30)
In particular, for n = 100,
P[X -02<p<X+02] =09554 (A.31)

Then P[X —0.2 < p < X +0.2] = 0.9554 measures our “confidence” that the unknown true
mean lies in the open interval (X —2/v/n, X +2/+/n), which is called the 95.54% confidence
interval. Notice that the interval (X — 0.2, X + 0.2) is a random interval that covers the
unknown true mean p with probability 0.9554. That is, if random samples of size 100
were repeatedly drawn from the population and the random intervals (X — 0.2, X + 0.2)
repeatedly computed, then the fraction of times that the interval actually covered the
mean would approach 0.9554 as the number of repetitions tends toward infinity. At this
point we would also like to point out that often a particular realization of an interval (i.e.,
for one sample size of 100) is also called a confidence interval for estimating p.

We now formalize the definition of a confidence interval.

Definition (Confidence Interval, Confidence Limit, Confidence Level): Let
X1, X5, ..., X, bearandom sample from a probability density function f(x;#)
parameterized by a constant € whose unknown value we wish to estimate. Let
L<H,where L=L(X1,X5,...,X,), H=H(X1,Xs,...,X,), be statis-
tics for 6 such that P[L < 6 < H] = v where 7 does not depend on 6. Then
(L, H) is defined to be a 100~y percent confidence interval for € and -y is called
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the confidence level. Furthermore, the random variable L is called the lower
confidence limit and the random variable H is called the upper confidence
limit for 6. A particular realization (I, h) of (L, H) is also called a 100y per-
cent confidence interval for estimating 6. In a similar manner one can define
upper and lower one-sided confidence intervals.

In order to derive a confidence interval for estimating the unknown mean p of a
distribution whose variance is also unknown, we note that

K- wflofi) X
\/Z?:l(XL —X)Q/(’n— 1)0’2 S?Z/\/ﬁ

has a Student’s t-distribution with (n — 1) degrees of freedom, stu(z | n — 1). For
some choice of ¢; and g9, typically g1 = q2, let

1
P[ q1<5§?/\/ﬁ<q2 =7.
Then (X —q2(5%/v/n), X+q1(S%/y/n)) is a 1007 percent confidence interval for y.
In a similar manner we can derive a confidence interval for estimating the un-
known variance o2 of a distribution whose mean is also unknown. In order to do
this we note that
S =X (n-1)S%

- 2

o? o
has a chi-square distribution with n — 1 degrees of freedom, f(z | n — 1). For some
choice of ¢; and g2, let

(n— 1)S§—<

Pl < 3 < q| =7.
g

Then ((n —1)5% /g2, (n — 1)5% /q1) is a 1007 percent confidence interval for the

variance o2.

A.4 NOTES & SELECTED BIBLIOGRAPHY

For an introduction to probability theory, see Feller [1957, 1969].
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