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PREFACE

Linear Programming deals with the problem of minimizing or maximizing a
linear function in the presence of linear inequalities. Since the development of
the simplex method by George B. Dantzig in 1947, linear programming has been
extensively used in the military, industrial, governmental, and urban planning
fields, among others. The popularity of linear programming can be attributed to
many factors including its ability to model large and complex problems, and the
ability of the users to solve large problems in a reasonable amount of time by
the use of the simplex method and computers.

During and after World War II it became evident that planning and coordi-
nation among various projects and the efficient utilization of scarce resources
were essential. Intensive work by the U. S. Air Force team SCOOP (Scientific
Computation of Optimum Programs) began in June 1947. As a result, the
simplex method was developed by George B. Dantzig by the end of summer
1947. Interest in linear programming spread quickly among economists,
mathematicians, statisticians, and government institutions. In the summer of
1949 a conference on linear programming was held under the sponsorship of the
Cowles Commission for Research in Economics. The papers presented at that
conference were later collected in 1951 by T. C. Koopmans into the book
Activity Analysis of Production and Allocation.

Since the development of the simplex method many people have contributed
to the growth of linear programming by developing its mathematical theory,
devising efficient computational methods and codes, exploring new applications,
and by their use of linear programming as an aiding tool for solving more
complex problems, for instance, discrete programs, nonlinear programs, combi-
natorial problems, stochastic programming problems, and problems of optimal
control.

This book addresses the subjects of linear programming and network flows,
The simplex method represents the backbone of most of the techniques pre-
sented in the book. Whenever possible, the simplex method is specialized to take
advantage of problem structure. Throughout we have attempted first to present
the techniques, to illustrate them by numerical examples, and then to provide
detailed mathematical analysis and an argument showing convergence to an
optimal solution. Rigorous proofs of the results are given without the theorem-
proof format. Even though this may bother some readers, we believe that the
format and mathematical level adopted in this book will provide an adequate
and smooth study for those who wish to learn the techniques and the know-how
to use them, and for those who wish to study the algorithms at a more rigorous
level.

The book can be used both as a reference and as a textbook for advanced
undergraduate students and first-year graduate students in the fields of in-
dustrial engineering, management, operations research, computer science,
mathematics, and other engineering disciplines that deal with the subjects of
linear programming and network flows. Even though the book’s material re-
quires some mathematical maturity, the only prerequisite is linear algebra. For
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vi PREFACE

convenience of the reader, pertinent results from linear algebra and convex
analysis are summarized in Chapter two. In a few places in the book, the notion
of differentiation would be helpful. These, however, can be omitted without loss
of understanding or continuity.

This book can be used in several ways. It can be used in a two-course
sequence on linear programming and network flows, in which case all of its
material could be easily covered. The book can also be utilized in a one-semester
course on linear programming and network flows. The instructor may have to
omit some topics at his discretion. The book can also be used as a text for a
course on either linear programming or network flows.

Following the introductory first chapter and the second chapter on linear
algebra and convex analysis, the book is organized into two parts: linear
programming and networks flows. The linear programming part consists of
Chapters three to seven. In Chapter three the simplex method is developed in
detail, and in Chapter four the initiation of the simplex method by the use of
artificial variables and the problem of degeneracy are discussed. Chapter five
deals with some specializations of the simplex method and the development of
optimality criteria in linear programming. In Chapter six we consider the dual
problem, develop several computational procedures based on duality, and dis-
cuss sensitivity and parametric analysis. Chapter seven introduces the reader to
the decomposition principle and to large-scale programming. The part on
network flows consists of Chapters eight to eleven. Many of the procedures in
this part are presented as a direct simplification of the simplex method. In
Chapter eight the transportation problem and the assignment problem are both
examined. Chapter nine considers the minimal cost network flow problem from
the simplex method point of view. In Chapter ten we present the out-of-kilter
algorithm for solving the same problem. Finally, Chapter eleven covers the
special topics of the maximal flow problem, the shortest path problem, and the
multicommodity minimal cost flow problem.

We thank the graduate students at the School of Industrial and Systems
Engineering at the Georgia Institute of Technology who suffered through two
earlier drafts of this manuscript and who offered many constructive criticisms.
We express our appreciation to Gene Ramsay, Dr. Jeff Kennington, Dr.
Michael Todd, and Dr. Ron Rardin for their many fine suggestions. We are
especially grateful to Silleyman Tiifek¢i for preparing the solutions manual and
to Carl H. Wohlers for preparing the bibliography. We also thank Dr. Robert N.
Lehrer, director of the School of Industrial and Systems Engineering at the
Georgia Institute of Technology, for his support during all phases of the
preparation of the manuscript. Special thanks are due to Mrs. Alice Jarvis, who
typed the first and third drafts of the manuscript; and to Mrs. Carolyn Piersma,
Mrs. Amelia Williams, and Miss Kaye Watkins, who typed portions of the
second draft.

Mokhtar S. Bazaraa
John J. Jarvis
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ONE: INTRODUCTION

In 1949 George B. Dantzig published the “simplex method” for solving linear
programs. Since that time a number of individuals have contributed to the field
of linear programming in many different ways including theoretical develop-
ment, computational aspects, and exploration of new applications of the subject.
The simplex method of linear programming enjoys wide acceptance because of
(1) its ability to model important and complex management decision problems
and (2) its capability for producing solutions in a reasonable amount of time. In
subsequent chapters of this text we shall consider the simplex method and its
variants, with emphasis on the understanding of the methods.

In this chapter the linear programming problem is introduced. The following
topics are discussed: basic definitions in linear programming, assumptions
leading to linear models, manipulation of the problem, examples of linear
problems, and geometric solution in the feasible region space and the require-
ment space. This chapter is elementary and may be skipped if the reader has
previous knowledge of linear programming.



2 INTRODUCTION

1.1 THE LINEAR PROGRAMMING PROBLEM

A linear programming problem is a problem of minimizing or maximizing a
linear function in the presence of linear constraints of the inequality and /or the
equality type. In this section the linear programming problem is formulated.

Basic Definitions

Consider the following linear programming problem.

Minimize ¢, x,+ cx,+ -+ + ¢,x,
Subject to a;,x;+ apx,+ - - + a;,x,> b,
ay X+ apx;+ 0 - +ay,x, > b,
A X1t ax,+ - - 0 +a,,x,2 b,
X1, Xy, .. x,> 0
Here ¢, x, + ¢;x, +, ..., + c,x, is the objective function (or criterion function)

to be minimized and will be denoted by z. The coefficients ¢, c,, . . ., ¢, are the
(known) cost coefficients and x,, x,, . . ., x, are the decision variables (variables,
or activity levels) to be determined. The inequality 27_,a,x; > b, denotes the ith
constraint (or restriction). The coefficients a; for i=1,2,...,mj=
1,2,...,n are called the technological coefficients. These technological

coefficients form the constraint matrix A given below,

a4 Ain

a; Aaxp Ay
A= | . .

aml am2 amn

The column vector whose ith component is b, which is referred to as the
right-hand-side vector, represents the minimal requirements to be satisfied. The
constraints x,, x,, ..., x, > 0 are the nonnegativity constraints. A set of vari-
ables x,, ..., x, satisfying all the constraints is called a feasible point or a
feasible vector. The set of all such points constitutes the feasible region or the
feasible space.

Using the foregoing terminology, the linear programming problem can be
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stated as follows: Among all feasible vectors, find that which minimizes (or
maximizes) the objective function.

Example 1.1

Consider the following linear problem.

Minimize 2x,+5x,

vV

Subjectto x,+ x,> 6
—x;—2x,>—18

0

\Y

X1, X

In this case we have two decision variables x, and x,. The objective function to
be minimized is 2x, + 5x,. The constraints and the feasible region are
illustrated in Figure 1.1. The optimization problem is thus to find a point in the
feasible region with the smallest possible objective.

Feasible
region

Figure 1.1. lllustration of the feasible region.

Assumptions of Linear Programming

In order to represent an optimization problem as a linear program, several
assumptions that are implicit in the linear programming formulation discussed
above are needed. A brief discussion of these assumptions is given below.

1. Proportionality. Given a variable x;, its contribution to cost is ¢;x; and its
contribution to the ith constraint is a;x;. This means that if x; is doubled,
say, so is its contribution to cost and to each of the constraints. To
illustrate, suppose that x, is the amount of activity j used. For instance, if
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x; = 10, then the cost of this activity is 10¢;. If x; = 20, then the cost is
20c;, and so on. This means that no savings (or extra costs) are realized by
using more of activity j. Also no setup cost.for starting the activity is
realized.

2. Additivity. This assumption guarantees that the total cost is the sum of the
individual costs, and that the total contribution to the ith restriction is the
sum of the individual contributions of the individual activities.

3. Divisibility. This assumption ensures that the decision variables can be
divided into any fractional levels so that noninteger values for the decision
variables are permitted.

To summarize, an optimization problem can be cast as a linear program only
if the aforementioned assumptions hold. This precludes situations where econo-
mies of scale exist; for example, when the unit cost decreases as the amount
produced is increased. In these situations one must resort to nonlinear programs.
It should also be noted that the parameters ¢ Ay and b, must be known or
estimated.

Problem Manipulation

Recall that a linear program is a problem of minimizing or maximizing a linear
function in the presence of linear inequality and/or equality constraints. By
simple manipulations the problem can be transformed from one form to another
equivalent form. These manipulations are most useful in linear programming, as
will be seen throughout the text.

INEQUALITIES AND EQUATIONS

An inequality can be easily transformed into an equation. To illustrate, consider
the constraint given by X%_,a,x; > b, This constraint can be put in an equation
form by subtracting the nonnegative slack variable x,, ; (sometimes denoted by
5;) leading to X7_,a,x; — x,,, = b, and x,,, > 0. Similarly the constraint
27_1a;x; < b; is equivalent to X7_,a,x, + x,,;, = b, and x,,, > 0. Also an

equation of the form 37_,a,x, = b; can be transformed into the two inequalities

2a;x; < byand 37_\a;x;, > b,

NONNEGATIVITY OF THE VARIABLES

For most practical problems the variables represent physical quantities and
hence must be nonnegative. The simplex method is designed to solve linear
programs where the variables are nonnegative. If a variable x; is unrestricted in
sign, then it can be replaced by x/ — x” where x/ > 0 and x” > 0. If x; > [,

then the new variable x/ = x; — / is automatically nonnegative. Also if a
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variable x; is restricted such that x; < uw; where u; < 0, then the substitution

x; = u; — x; produces a nonnegative variable x;.

MINIMIZATION AND MAXIMIZATION PROBLEMS

Another problem manipulation is to convert a maximization problem into a
minimization problem and conversely. Note that over any region

Maximum Gx;= — minimum

1

G
1

T M=
M=

So a maximization (minimization) problem can be converted into a minimiza-
tion (maximization) problem by multiplying the coefficients of the objective
function by —1. After the optimization of the new problem is completed, the
objective of the old problem is —1 times the optimal objective of the new
problem.

Standard and Canonical Formats

From the foregoing discussion we see that a given linear program can be put in
different equivalent forms by suitable manipulations. Two forms in particular
will be useful. These are the standard and the canonical forms. A linear program
is said to be in standard format if all restrictions are equalities and all variables
are nonnegative. The simplex method is designed to be applied only after the
problem is put in the standard form. The canonical form is also useful especially
in exploiting duality relationships. A minimization problem is in canonical form
if all variables are nonnegative and all the constraints are of the > type. A
maximization problem is in canonical format if all the variables are nonnegative
and all the constraints are of the < type. The standard and canonical forms are
summarized in Table 1.1.

Linear Programming in Matrix Notation

A linear programming problem can be stated in a more convenient form using
matrix notation. To illustrate, consider the following problem.
Minimize

| GX;

\Il'Mx

Subject to 2 a;x; = by i=12,...,m
j=1

x>0 j=1,2...,n



Table 1.1 Standard and Canonical Forms

Standard
Form

Canonical
Form

MINIMIZATION PROBLEM

MAXIMIZATION PROBLEM

——

n n
Minimize D, CX; Maximize X,
Jj=1 Jj=1
n n
Subject to >, agx; = b, 1,...,m | Subjectto >, a;x; = b, i=1, ,m
Jj=1 Jj=
xj>0 I,...,n x>0 j=1 ,n
n n
Minimize D, X; Maximize D, X,
Jj=1 j=1
n n
Subject to 2 agx; > b, 1,...,m | Subject to 2 a;x; < b i=1, , m
j=1 j=1
x;, > 0 I,...,n x>0 Jj=1, LR

NOILONQOUINI
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Denote the row vector (¢, ¢5, . . ., ¢,) by ¢, and consider the following column
vectors x and b, and the m X n matrix A.

Xy b any 4 ... G,

X2 b, a; ap cee gy
x = b = . A = .

'xn bm (L] am2 e amn

Then the above problem can be written as follows.
Minimize c¢x
Subjectto Ax=b

x>0

The problem can also be conveniently represented via the columns of A.
Denoting A by [a,, a, . . ., a,] where a; is the jth column of A, the problem can
be formulated as follows.

n
Minimize 21 X
=

Subjectto >, a,x;=b
j=1

x>0 J=12...,n

1.2 EXAMPLES OF LINEAR PROBLEMS

In this section we describe several problems that can be formulated as linear
programs. The purpose is to show the varieties of problems that can be
recognized and expressed in precise mathematical terms as linear programs.

Feed Mix Problem

An agricultural mill manufactures feed for chickens. This is done by mixing
several ingredients, such as corn, limestone, or alfalfa. The mixing is to be done
in such a way that the feed meets certain levels for different types of nutrients,
such as protein, calcium, carbohydrates, and vitamins. To be more specific,
suppose that n ingredients j = 1,2, ...,n and m nutrients i = 1,2, ..., m are

considered. Let the unit cost of ingredient j be ¢; and let the amount of
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ingredient j to be used be x;. The cost is therefore 216 If the amount of the
final product needed is b, then we must have E”_ X = b Further suppose that

a; is the amount of nutrient i present in a umt of ingredient j, and that the
acceptable lower and upper limits of nutrient ; in a unit of the chicken feed are
I/ and u/ respectively. Therefore we must have the constraints /b < X7_,4,x; <
u/b for i = 1,2, ..., m. Finally, because of shortages, suppose that the mill
cannot acquire more than u units of ingredient j. The problem of mixing the
ingredients such that the cost is minimized and the above restrictions are met,
can be formulated as follows.

Minimize e Xt Xyt + X,
Subject to X+ x4+ x,=b
bll < ayx;+apxy- - +a,x,< buj
bl; € ayx;+ aypx, - - +ay,x,< buj
’
bl < a,,x,*a,x, -+ +a,,x,< bu,
0<x, <y

Production Scheduling: An Optimal Control Problem

A company wishes to determine the production rate over the planning horizon
of the next T weeks such that the known demand is satisfied and the total
production and inventory cost is minimized. Let the known demand rate at time
t be g(¢), and similarly denote the production rate and inventory at ¢ by x(z) and
y(t). Further suppose that the initial inventory at time O is y, and that the
desired inventory at the end of the planning horizon is y,. Suppose that the
inventory cost is proportional to the units in storage, so that the inventory cost is
given by ¢, [ OT y(t) dt where ¢, > 0 is known. Also suppose that the production
cost is proportional to the rate of production, and so is given by ¢, x(¢) dt.
Then the total costis [][c, y(¢) + c,x(#)] dt. Also note that the inventory at any
time is given according to the relationship

Y =y, +j(;t[x(7) — g(T)] dar t E[O, T]
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Suppose that no backlogs are allowed; that is, all demand must be satisfied.
Further suppose that the present manufacturing capacity restricts the production
rate so that it does not exceed b, at any time. Also the available storage restricts
the maximum inventory to be less than or equal to b,. Hence the production
scheduling problem can be stated as follows.

Minimize f eyy(r) + ex(n)] dt
0

Subjectto  »(f) = v +j(;’[x(7) —g(r)]dr t€[0,T]

y(T)=yr
0< x(1) < b t €[0, T]
0< y(t) < b, t €0, 7]

The foregoing model is a linear control problem, where the control variable is the
production rate x(¢) and the state variable is the inventory level y(¢). The
problem can be approximated by a linear program by discretizing the continu-
ous variables x and y. First the planning horizon [0, T] is divided into n smaller
periods [0, A], [A, 24], .. ., [(n — 1)A, nA] where nA = T. The production rate,
the inventory, and the demand rate are assumed constant over each period. In
particular let the production rate, the inventory, and the demand rate on period j
be x;, ;, and g; respectively. Then the production scheduling problem above can
be approximated by the following linear program (why?).

Minimize > (cid)y; + > (c28)x;
1 i=1

j=

Subjectto  y, =y;,_; + (x;, — g)A j=12...,n
yn=yT
0 < x <) j=12 ... n
O<_yj<b2 j=1,2,...,n

Cutting Stock Problem

A manufacturer of metal sheets produces rolls of standard fixed width w and of
standard length /. A large order is placed by a customer who needs sheets of
width w and varying lengths. In particular, b, sheets with length / and width w
for i=1,2,...,m are ordered. The manufacturer would like to cut the
standard rolls in such a way as to satisfy the order and to minimize the waste.
Since scrap pieces are useless to the manufacturer, the objective is to minimize
the number of rolls needed to satisfy the order. Given a standard sheet of length
/, there are many ways of cutting it. Each such way is called a cutting pattern.
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The jth cutting pattern is characterized by the column vector a;, where the ith
component of a;, namely g, is a nonnegative integer denoting the number of
sheets of length / in the jth pattern. For instance, suppose that the standard
sheets have length / = 10 meters and that sheets of lengths 1.5, 2.5, 3.0, and 4.0

meters are needed. The following are typical cutting patterns:

0
0
s a3= 3

3 o0 .

SO ~CO

0

Note that the vector a; represents a cutting pattern if and only if X7_,a;/ </
and each g is a nonnegative integer. The number of cutting patterns  is finite.
If we let x; be the number of standard rolls cut according to the jth pattern, the
problem can be formulated as follows.

n
Minimize ) x;
J=1
n
Subject to 2 a,x; >b; i=1,2...,m
Jj=1

xj>0 Jj=1L2...,n

x; integer J

,2,...,n

If the integrality requirement on the x’s is dropped, the abovementioned
problem is a linear program. Of course the difficulty of this problem is that the
number of possible cutting patterns n is very large, and also it is not computa-
tionally feasible to enumerate each cutting pattern and its column a, beforehand.
The decomposition algorithm of Chapter 7 is particularly suited to solve the
preceding problem where a new cutting pattern is generated at each iteration
(see also Exercise 7.25). In Section 6.7 we suggest a method for handling the
integrality requirements.

The Transportation Problem

The Brazilian coffee company processes coffee beans into coffee at m plants.
The coffee is then shipped every week to n warehouses in major cities for retail,
distribution, and exporting. Suppose that the unit shipping cost from plant i to
warehouse j is ¢;. Further suppose that the production capacity at plant i is g,
and that the demand at warehouse j is b;. It is desired to find the production-
shipping pattern that minimizes the overall shipping cost. This is the well-known
transportation problem. The essential elements of the problem are shown in the
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Plants Warehouses

Figure 1.2. The transportation problem.

network of Figure 1.2. The transportation problem discussed above can be
formulated as the following linear program.

m n
Minimize 2 2 Xy

i=1 j=1

n
Subjectto X} x; < g,
j=1

Capital Budgeting Problem

A municipal construction project has funding requirements over the next four
years of $2 million, $4 million, $8 million, and $5 million respectively. Assume
that all of the money for a given year is required at the beginning of the year.
The city intends to sell exactly enough long-term bonds to cover the project
funding requirements, and all of these bonds, regardless of when they are sold,
will be paid off (mature) on the same date in a distant future year. The
long-term bond market interest rates (that is, the costs of selling bonds) for the
next four years are projected to be 7 percent, 6 pgrcent 6.5 percent, and 7.5
Percent respectively. Bond interest paid will commeénce one year after the
Project is completed and will continue for 20 years, after which the bonds will be
paid off. During the same period the short-term interest rates on time deposits
(that is, what the city can earn on deposits) are projected to be 6 percent, 5.5
percent, and 4.5 percent respectively (the city will clearly not invest money in
short-term deposits during the fourth year). What is the city’s optimal strategy
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for selling bonds and depositing funds in time accounts in order to complete the
construction project?

To formulate this problem as a linear program, let x;, j =1, ..., 4 be the
amount of bonds sold at the beginning of each year j. When bonds are sold,
some of the money will immediately be used for construction and some money
will be placed in short-term deposits to be used in later years. Let y,, j =
1,...,3 be the money placed in time deposits at the beginning of year j.
Consider the beginning of the first year. The amount of bonds sold minus the
amount of time deposits made will be used for the funding requirement at that
year. Thus we may write

Xp—y =2

We could have expressed the constraint as >. However, it is clear in this case
that any excess funds will be deposited so that = is also acceptable.

Consider the beginning of the second year. In addition to bonds sold and
time deposits made, we also have time deposits plus interest becoming available
from the previous year. Thus we have

1.06y, + x, —y, =4

The third and fourth constraints are constructed in a similar manner.

Ignoring the fact that the amounts occur in different years (that is, the time
value of money), the unit cost of selling bonds is 20 times the interest rate. Thus
for bonds sold at the beginning of the first year we have ¢, = 20(0.07). The
other cost coefficients are computed similarly.

Finally, the linear programming model becomes as follows.

Minimize  20(0.07)x, + 20(0.06)x, + 20(0.065)x; + 20(0.075)x,

Subjectto  x; — Y1 =2
1.06y, + x, — Vs =4

1.055y,+ x5 — V3 =38

1.045y, + x,= 5

X1, Xpy X3, X, V1, V2, V3 2 0

Tanker Scheduling Problem

A shipline company requires a fleet of ships to service requirements for carrying
cargo between six cities. There are four specific routes that must be served daily.
These routes and the number of ships required for each route are as follows.
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ROUTE # ORIGIN DESTINATION NUMBER OF SHIPS PER DAY NEEDED

1 Dhahran New York 3
2 Marseilles  Istanbul 2
3 Naples Bombay 1
4 New York  Marseilles 1

All cargo are compatible, and therefore only one type of ship is needed The
travel time matrix between the various cities is shown below.

172}
8 4 B z
w 2 2 O <
n o /A > & <
2 171 Z, o} /m
s £ 2z %
5§ z 2 & §
Naples o 1 2 14 7 7
Marseilles 1 0 3 13 8 8
Istanbul 2 3 015 5 5 , hatrix (days)
New York 14 13 15 0 17 20 VY
Dhahran 7 8 5 17 0 3
Bombay 7 8 5 20 3 0

It takes one day to off-load and one day to on-load each ship. How many ships
must the shipline company purchase?

In addition to nonnegativity there are two types of constraints that must be
maintained in this problem. First, we must ensure that ships coming off of some
route get assigned to some (other) route. Second, we must ensure that each route
gets its required number of ships per day. Let x,, be the number of ships per day
coming off of route i and assigned to route j. Let b, represent the number of
ships per day required on route i.

To ensure that ships from a given route get assigned to other routes we write
the constraint

4
Dx;=b i=1...,4 -
j=1

To ensure that a given route gets its required number of ships we write the
constraint

4
zxki=bi l=1’,4
=1
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Computing the cost coefficients is a bit more involved. Since the objective is to
minimize the total number of ships, let ¢, be the number of ships required to
ensure a continuous daily flow of one ship coming off of route i and assigned to
route j. To illustrate the computation of the c;’s, consider c,;. It takes one day to
load a ship at Marseilles, three days to travel from Marseilles to Istanbul, one
day to unload the cargo at Istanbul, and two days to head from Istanbul to
Naples—a total of seven days. This implies that seven ships are needed to ensure
that one ship will be assigned daily from route 2 to route 3 (why?). In particular,
one ship will be on-loading at Marseilles, three ships on route from Marseilles to
Istanbul, one ship off-loading at Istanbul, and two ships on route from Istanbul
to Naples.
In general ¢; is given as follows:

¢, = one day for on-loading + number of days for transit on route /

+ one day for off-loading
+ number of days for travel from the destination of
route i to the origin of route j

Therefore the tanker scheduling problem becomes as follows.

Minimize 36x,; + 32x, + 33x,;3 + 19x,, + 10x,; + 8x,5, + Txy;
+ 20xy, + 12x5, + 17x5, + 16x53 + 29x,, + 23x,,
+ 15x,, + 16x4; + 28x,,

4
Subject to 2 x; = b i=12234
j=1

4
zxki=bi i=1’253’4
=1

x., =20 l',j=1,2’354

where b, =3, b, =2,b; =1, and b, = 1.

It can be easily seen that this is another application of the transportation
problem (it will be instructive for the reader to form the origins and destinations
of the corresponding transportation problem).

1.3 GEOMETRIC SOLUTION

We describe here a geometric procedure for solving a linear programming
problem. Even though this method is only suitable for very small problems, it
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provides a great deal of insight into the linear programming problem. To be
more specific, consider the following problem.

Minimize c¢x

Subjectto Ax> b

x>0

Note that the feasible region consists of all vectors x satisfying Ax > b and
x > 0. Among all such points we wish to find a point with minimal ¢x value.
Note that points with the same objective z satisfy the equation ex = z, that is,

716X = Z. Since z is to be minimized, then the plane (line in a two-dimen-
sional space) 27_,c;x; = z must be moved parallel to itself in the direction that
minimizes the objective most. This direction is —c¢, and hence the plane is
moved in the direction —c¢ as much as possible. This process is illustrated in
Figure 1.3. Note that as the optimal point x* is reached, the line ¢,x, + ¢,x, =
z*, where z* = ¢ x} + c,x}, cannot be moved farther in the direction —¢ =
(—¢;, — ¢,) because this will lead to only points outside the feasible region. We
therefore conclude that x* is indeed the optimal solution. Needless to say, for a
maximization problem, the plane ex = z must be moved as much as possible in
the direction c.

The foregoing process is convenient for problems with two variables and is
obviously impractical for problems with more than three variables. It is worth

X2

x&
~ xz*
T~ —__~ Optimal
\\
-
~
-~ /
7
~—_ / /// /
T ] / Objective
— ‘//// decreases
- e ok ///. X4
T~ TTham ton =n, 5 <
-
T ok tox, Ty

Figure 1.3. Geometric solution.
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noting that the optimal point x* in Figure 1.3 is one of the five corner points
that are called extreme points. We shall show in Section 3.1 that if a linear
program has a finite optimal solution, then it has an optimal corner (or extreme)
solution.

Example 1.2
Minimize —x,—3x,
Subject to X+ x,<6
—x;+2x,< 8

X, >0

The feasible region is illustrated in Figure 1.4. The first and second con-
straints represent points “below” lines 1 and 2 respectively. The nonnegativity
constraints restrict the points to be in the first quadrant. The equations — x,
— 3x, = z are called the objective contours and are represented by dotted lines
in Figure 1.4. In particular the contour — x, — 3x, = z = 0 passes through the
origin. The contours are moved in the direction —c¢ = (1, 3) as much as possible
until the optimal point (4/3, 14/3) is reached.

X4

c= (-1 -3)
Figure 1.4. Numerical example.
In this example we had a unique optimal solution. Other cases may occur

depending upon the problem structure. All possible cases that may arise are
summarized below (for a minimization problem).

1. Unique Finite Optimal Solution. If the optimal finite solution is unique,
then it occurs at an extreme point. Figures 1.5a¢ and b show a unique
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optimal solution. In Figure 1.5a the feasible region is bounded; that is,
there is a ball around the origin that contains the feasible region. In Figure
1.5b the feasible region is not bounded. In each case, however, the unique
optimal solution is finite.

Pl -~
Unique _~ P e
; -
optimal -~ . ~
e Unigue -~
- ; ~ s
/ 7 optimal _
-~
s / P P -
- 9 P P
e A, _
//
~ -
~ - e
< -
- -
-
(7
// //
b
e (a) ¢ (b}

Figure 1.5. Unique finite optimal solution: (2) Bounded region. (#) Unbounded
Region.

2. Alternative Finite Optimal Solutions. This case is illustrated in Figure 1.6.
Note that in Figure 1.6a the feasible region is bounded. The two corner
points x} and x% are optimal, and also any point on the line segment
joining them. In Figure 1.6b the feasible region is unbounded but the
optimal objective is finite. Any point on the “ray” with vertex x* in Figure
1.65 is optimal.

~ Optimal
Alternative ray —
optima

¢ (b}

Figure 1.6. Alternative finite optima: (a) Bounded Region. () Unbounded Region.
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\ Objective contours can
be moved indefinitely
p in the direction —¢

\ \ \
\

c

Figure 1.7. Unbounded optimal solution.

3. Unbounded Optimal Solution. This case is illustrated in Figure 1.7 where
both the feasible region and the optimal solution are unbounded. For a
minimization problem the plane ¢x = z can be moved in the direction —¢
indefinitely while always intersecting with the feasible region. In this case
the optimal objective is unbounded with value — oo.

4. Empty Feasible Region. In this case the system of equations and/or in-
equalities defining the feasible region is inconsistent. To illustrate, consider
the following problem.

Minimize — 2x,+3x,

Subjectto —x;+2x,< 2
2x,— x,<3

x,> 4

Xy, X,20

Examining Figure 1.8, it is clear that there exists no point (x,, x,) satisfying
the above inequalities. The problem is said to be infeasible, inconsistent, or
with empty feasible region.

1.4 THE REQUIREMENT SPACE

The linear programming problem can be interpreted and solved geometrically in
another space usually referred to as the requirement space.
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—> x, >0

Figure 1.8. An example of an empty feasible region.

Interpretation of Feasibility

Consider the following linear programming problem in standard form.
Minimize c¢x

Subjectto Ax =b
x>0
where A is an m X n matrix whose jth column is denoted by a;. The problem
can be rewritten as follows.
n

Minimize 21 ;X
j=

n

Subject to >, ax=>b

Jj=1
x> 0 j=12, ,h
Given the vectors a,a,...,a, we wish to find nonnegative scalars
X}, X, ..., x, such that 27_,ax, = b and such that X7_,¢x, is minimized.

Note, however, that the collection of vectors of the form 2}.1ax;, where
X, X ..., X, > 0, is the cone generated by a,, a,,...,a, (see Figure 1.9).
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(a) (b)

Figure 1.9. Interpretation of feasibility in the requirement space: (a) Feasible
region is not empty. (b) Feasible region is empty.

Thus the problem has a feasible solution if and only if the vector b belongs to
this cone. Since the vector b usually reflects requirements to be satisfied, Figure
1.9 above is usually referred to as the requirement space.

Example 1.3

Consider the following two systems.

System 1
2x1+ x,+x, =2
- x,+3x, +x,=3

X1, X9 ,X3,X%X420

System 2
2x+ xy+x, =-1
—x,;+3x, +x,= 2

Xy, Xp,X3,x,2 0

Figure 1.10 shows the requirement space of both systems. For System 1 the

vector b belongs to the cone generated by the vectors [ 2 ], [ 1 ], [ 1 , and

-1 3 0

[(” and hence admits feasible solutions. For the second system, b does not

belong to the cone and the system is hence inconsistent.
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(a) (b)

Figure 1.10. lllustration of the requirement space: (a) System 1 is feasible. (b)
System 2 is inconsistent.

The Requirement Space and Inequality Constraints

We now illustrate the interpretation of feasibility for the inequality case.
Consider the following inequality system:

> ax <b
j=1
x>0 j=L1L2...,n
Note that the collection of vectors X7_,a,x; where x; > Oforj =1,2,...,n1s
the cone generated by a,, a,, . . ., a,. If a feasible solution exists, then this cone

must intersect the collection of vectors that are less than or equal to the
requirement vector b. Figure 1.11 shows both a feasible system and an infeasible
system.

Optimality

We have seen above that the system Ej=lajxj = b and x; > Oforj=1,2,...,n
is feasible if and only if b belongs to the cone generated by a,, a,, . .., a,. The
variables x,, x,, . .., x, must be chosen so that feasibility is satisfied and also
27_1¢x; is minimized. Therefore the linear programming problem can be stated
as follows. Find nonnegative x, x,, . . ., x, such that

¢ ) c, z
el {2l
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Cone generated by a4, a,, and ag Cone generated by
a1, @y, and a3

a3
a4 %

% /
214 . 3
R 55‘ \\\\\\'\\

G "&“ \\

Collection of Collection of
vectors < b vectors < b
(a) (b)

Figure 1.11. Requirement space and inequality constraints: (a) System is feasible.
(b) System is infeasible.

where the objective 7 is to be minimized. In other words we seek to represent the
c

vector [ IZ) ] for the smallest possible z, in the cone spanned by the vectors { al ],
1

[ [
[ 22 }, ..., and [ a" ] The reader should note that the price we must pay for
2 n

including the objective function explicitly in the requirement space is to increase
the dimensionality from m to m + 1.

Example 1.4
Minimize — 2x,—3x,
Subject to X, +2x,< 2

X, x,20

Add the slack variable x; > 0. The problem is then to choose x;, x,, x3 > 0 such
that

ISR i e



1.4 THE REQUIREMENT SPACE 23

Minimal
value 2% = —

Points of the

form |2 -‘
2

d

Figure 1.12. Optimal bounded objective in the requirement space.

where z is to be minimized. The cone generated by the vectors [ _% ], [ —; ],

and [ (1) is shown in Figure 1.12. We want to choose a vector [; ] in this cone
with minimal z. This gives the optimal solution z* = —4 with x} =2 and

* — * =
x}=x;=0.

Example 1.5

Minimize — 2x,—3x,

Subject to X +2x,> 2

X, x,20

Obviously the optimal solution is unbounded. We illustrate this fact in the
requirement space. Subtracting the slack variable x, > 0, the problem can be
restated as follows: Find x,, x,, x; > 0 such that

e e[V

such that z is minimized. The cone generated by [ _% ], [ _g ], and [ 3 (1)] is

Z } in this cone with smallest possible

2

z. Note that we can find points of the form [;]

small z. Therefore the optimal solution is unbounded with value — oo.

shown in Figure 1.13. We want to choose [

in the cone with arbitrarily
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Points of the

z
form [2]

S0,

Figure 1.13. Optimal unbounded objective in the requirement space.

1.5 NOTATION

Throughout the text we shall utilize notation that is insofar as possible consistent
with generally accepted standards for the field of mathematics and operations
research. In this section we indicate some of the notation that may require
special attention either because of its infrequency of use in linear programming
literature or else because of the possibility of confusion with other terms.

In Chapter 2 we shall present review material on vectors and matrices. We
indicate vectors by lowercase, boldface Greek or Roman letters or numerals,
such as a, b, x, 1, A; matrices by uppercase, boldface Greek or Roman letters,
such as A, B, N, ®; and all scalars by Greek or Roman letters or numerals that
are not boldface, such as a, b, 1, e. Column vectors are generally denoted by
subscripts, such as a;, unless clear in the context. When special emphasis is
required, row vectors are indicated by superscripts, such as a'.

In calculus, the partial derivative, indicated by 9z /9x, represents the expected
rate of change in the variable z with respect to a unit change in the variable x.
We shall also utilize the symbol 9z /0x to indicate the vector of partial deriva-
tives of z with respect to each element of the vector x. That is, if x =
(x5 X5, . .+, X,), then

0z _ (02 03z 9z
ox ax; " dx, 77 9x,
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Also, we shall sometimes consider the partial derivative of one vector with

respect to another vector, such as dy/ox. If y=(y,», ...,5,) and x =
(x5 X3 + - -, Xx,,) then
BT TR 7
ax, dx, dx,
O PR
dy =| 9x, dx, ax,
ox
W W Wom
3, o, o,
Note that if z is a function of the vector x = (x|, x,, ..., x,), then 9z/9x is

called the gradient.

We shall, when necessary, use (a, b) to refer to the open interval a < x < b,
and [a, b] to refer to the closed interval a < x < b. Finally we shall utilize the
standard set operators U, N, C, and € to refer to union, intersection, set
inclusion, and set membership respectively.

EXERCISES

1.1 An agricultural mill manufactures feed for cattle, sheep, and chickens. This
is done by rnixing the following main ingredients: corn, limestone,
soybeans, and fish meal. These ingredients contain the following nutrients:
vitamins, protein, calcium, and crude fat. The contents of the nutrients in
each kilogram of the ingredients is summarized below.

NUTRIENT
INGREDIENT VITAMINS PROTEIN CALCIUM CRUDE FAT
" Corn 8 10 6 8
Limestone 6 5 10 6
Soybeans 10 12 6 6
Fish meal 4 8 6 9

The mill contracted to produce 10, 6, and 8 (metric) tons of cattle feed,
sheep feed, and chicken feed. Because of shortages, a limited amount of the
ingredients is available—namely, 6 tons of corn, 10 tons of limestone, 4
tons of soybeans, and 5 tons of fish meal. The price per kilogram of these
ingredients is respectively $0.20, $0.12, $0.24, and $0.12. The minimal and
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maximal units of the various nutrients that are permitted is summarized
below for a kilogram of the cattle feed, the sheep feed, and the chicken
feed.

NUTRIENT
o VITAMINS PROTEIN CALCIUM CRUDE FAT
PRODUCT MIN MAX MIN MAX MIN MAX MIN MAX
Cattle feed 6 o0 6 o0 7 o0 4 8
Sheep feed 6 ) 6 ) 6 %) 4 6
Chicken feed 4 6 6 o0 6 o0 4 6

Formulate this feed-mix problem so that the total cost is minimized.

1.2 The technical staff of a hospital wishes to develop a computerized menu-

planning system. To start with, a lunch menu is sought. The menu is
divided into three major categories: vegetables, meat, and dessert. At least
one equivalent serving of each category is desired. The cost per serving of
some suggested items as well as their content of carbohydrates, vitamins,
protein, and fats is summarized below.

CARBOHYDRATES VITAMINS PROTEIN FATS COST IN

§/sErvING
Vegetables
Peas 1 3 1 0 0.10
Green beans 1 5 2 0 0.12
Okra 1 5 1 0 0.13
Corn 2 6 1 2 0.09
Macaroni 4 2 1 1 0.10
Rice 5 1 1 1 0.07
Meat
Chicken 2 1 3 1 0.70
Beef 3 8 5 2 1.20
Fish 3 6 6 1 0.63
Dessert
Orange 1 3 1 0 0.28
Apple 1 2 0 0 042
Pudding 1 0 0 0 0.15
Jello 1 0 0 0 0.12

Suppose that the minimal requirements of carbohydrates, vitamins, protein,
and fats per meal are respectively 5, 10, 10, and 2.
a. Formulate the menu-planning problem as a linear program.
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1.3

1.4

b. Many practical aspects have been left out in the foregoing model. These
include planning the breakfast, lunch, and supper menus together,
weekly planning so that different varieties of food are used, and special
menus for patients on particular diets. Discuss in detail how can these
aspects be incorporated in a comprehensive menu-planning system.

Consider the problem of locating a new machine to an existing layout
consisting of four machines. These machines are located at the following x,

and x, coordinates: (?))’ ( _ g), ( _%), and (‘11) Let the coordinates of

X
the new machine be ( xl). Formulate the problem of finding an optimal
2

location as a linear program for each of the following cases.
a. The sum of the distances from the new machine to the four machines is

C . . X
minimized. Use the street distance; for example, the distance from (xl)
2

to the first machine located at (?)) is |x; — 3| + |x,].

b. Because of various amounts of flow between the new machine and the
existing machines, reformulate the problem where the sum of the
weighted distances is minimized, where the weights corresponding to the
four machines are 5, 7, 3, and 1 respectively.

c. In order to avoid congestion, suppose that the new machine must be
located in the square {(x,, x,) : — 1 < x; < 2,0 < x, < 1}. Formulate
(a) and (b) with this added restriction.

d. Suppose that the new machine must be located so that its distance from
the first machine does not exceed 3/2. Formulate the problem with this
added restriction.

Consider the following problem of launching a rocket to a fixed altitude b
in a given time T, while expending a minimum amount of fuel. Let u(t) be
the acceleration force exerted at time ¢ and let y (¢) be the rocket altitude at
time ¢. The problem can be formulated as follows.

. . T
‘ Minimize f |u(t)| dt
0

Subject to JyO=ult)—g
y(T)y=b
y(® >0 t €[0, T]

where g is the gravitational force and y is the second derivative of the
altitude y. Discretize the problem and reformulate it as a linear program-
ming problem. In particular formulate the problem where 7 = 10, b = 15,
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and g = 32. (Hint. Replace the integration by proper summation and the
differentiation by difference equations. Make the change of variable || =
x; and note that x; > u and x; > — u).

A company wishes to plan its production of two items with seasonal
demands over a 12-month period. The monthly demand of item 1 is
100,000 units during the months of October, November, and December;
10,000 units during the months of January, February, March, and April;
and 30,000 units during the remaining months. The demand of item 2 is
50,000 during the months of October through February and 15,000 during
the remaining months. Suppose that the unit product cost of items 1 and 2
is $5.00 and $8.00 respectively, provided that these were manufactured
prior to June. After June, the unit costs are reduced to $4.50 and $7.00
because of the installation of an improved manufacturing system. The total
units of items 1 and 2 that can be manufactured during any particular
month cannot exceed 120,000. Furthermore, each unit of item 1 occupies 2
cubic feet and each unit of item 2 occupies 4 cubic feet of inventory.
Suppose that the maximum inventory space allocated to these items is
150,000 cubic feet and that the holding cost per cubic foot during any
month is $0.10. Formulate the production scheduling problem so that the
total production and inventory costs are minimized.

Fred has $2200 to invest over the next five years. At the beginning of each
year he can invest money in one- or two-year time deposits. The bank pays
8 percent interest on one-year time deposits and 17 percent (total) on
two-year time deposits. In addition, West World Limited will offer three-
year certificates at the beginning of the second year. These certificates will
return 27 percent (total). If Fred reinvests his money available every year,
formulate a linear program to show him how to maximize his total cash on
hand at the end of the fifth year.

A steel manufacturer produces four sizes of I beams: small, medium, large,
and extra large. These beams can be produced on any one of three
machine types: A, B, and C. The lengths in feet of the I beams that can be
produced on the machines per hour are summarized below.

MACHINE
BEAM A B C
Small 300 600 800
Medium 250 400 700
Large 200 350 600

Extra large 100 200 300
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1.8

1.9

Assume that each machine can be used up to 50 hours per week and that
the hourly operating costs of these machines are respectively $30.00,
$50.00, and $80.00. Further suppose that 10,000, 8,000, 6,000, and 6,000
feet of the different-size I beams are required weekly. Formulate the
machine scheduling problem as a linear program.

A cheese firm produces two types of cheese: Swiss cheese and sharp cheese.
The firm has 60 experienced workers and would like to increase its working
force to 90 workers during the next eight weeks. Each experienced worker
can train 3 new employees in a period of two weeks during which the
workers involved virtually produce nothing. It takes one hour to produce
10 pounds of Swiss cheese and one hour to produce 6 pounds of sharp
cheese. A work week is 40 hours. The weekly demands (in 1000 pounds)
are summarized below.

WEEK

CHEESE TYPE 1 2 3 4 5 6 7 8

Swiss cheese 12 12 12 16 16 20 20 20
Sharp cheese 8 8 10 10 12 12 12 12

Suppose that a trainee receives full salary as an experienced worker.
Further suppose that overaging destroys the flavor of the cheese so that
inventory is limited to one week. How should the company hire and train
its new employees so that the labor cost is minimized? Formulate the
problem as a linear program.

A lathe is used to reduce the diameter of a steel shaft whose length is 36 in.
from 14 in. to 12 in. The speed x, (in revolutions per minute), the depth
feed x, (in inches per minute), and the length feed x; (in inches per minute)
must be determined. The duration of the cut is given by 36/x,x,. The
compression and side stresses exerted on the cutting tool are given by
30x, + 4000x, and 40x, + 6000x, + 6000x; pounds per square inch re-
spectively. The temperature (in degrees Fahrenheit) at the tip of the cutting
tool is 200 4+ 0.5x; + 150(x, + x;). The maximum compression stress, side
stress, and temperature allowed are 150,000 psi, 100,000 psi, and 800°F. It
is desired to determine the speed (which must be in the range from 600 to
800 rpm), the depth feed, and the length feed such that the duration of the
cut is minimized. In order to use a linear model the following approxima-
tion is made. Since 36/ x,x; is minimized if and only if x,x; is maximized,
it was decided to replace the objective by the maximization of the mini-
mum of x, and x3. Formulate the problem as a linear model and comment
on the validity of the approximation used in the objective function. (We
ask the reader to solve this problem in Exercise 3.22.)
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1.10 An oil refinery can buy two types of oil: light crude oil and heavy crude

1.12

1.13

oil. The cost per barrel of these types is respectively $11 and $9. The
following quantities of gasoline, kerosene, and jet fuel are produced per
barrel of each type of oil.

GASOLINE KEROSENE JET FUEL
Light crude oil 04 0.2 0.35
Heavy crude oil 0.32 04 02

Note that 5% and 8% of the crude are lost respectively during the refining
process. The refinery has contracted to deliver 1 million barrels of gasoline,
400,000 barrels of kerosene, and 250,000 barrels of jet fuel. Formulate the
problem of finding the number of barrels of each crude oil that satisfy the
demand and minimize the total cost as a linear program. (We ask the
reader to solve this problem in Exercise 3.23.)

A company manufactures an assembly consisting of a frame, a shaft, and a
ball bearing. The company manufactures the shafts and frames but
purchases the ball bearings from a ball bearing manufacturer. Each shaft
must be processed on a forging machine, a lathe, and a grinder. These
operations require 0.5 hours, 0.2 hours, and 0.3 hours per shaft respectively.
Each frame requires 0.8 hours on a forging machine, 0.1 hours on a drilling
machine, 0.3 hours on a milling machine, and 0.5 hours on a grinder. The
company has 5 lathes, 10 grinders, 20 forging machines, 3 drillers, and 6
millers. Assume that each machine operates a maximum of 2400 hours per
year. Formulate the problem of finding the maximum number of assem-
bled components that can be produced as a linear program. (We ask the
reader to solve this problem as Exercise 3.40.)

A television set manufacturing firm has to decide on the mix of color and
black-and-white TV’s to be produced. A market research indicates that at
most 1000 units and 4000 units of color and black-and-white TV’s can be
sold per month. The maximum number of man-hours available is 50,000
per month. A color TV requires 20 man-hours and a black-and-white TV
requires 15 man-hours. The unit profits of the color and black-and-white
TV’s are $60 and $30 respectively. It is desired to find the number of units
of each TV type that the firm must produce in order to maximize its profit.
Formulate the problem. (We ask the reader to solve this problem in
Exercise 3.41.)

A manufacturer of plastics is planning to blend a new product from four
chemical compounds. These compounds are mainly composed of three
elements A, B, and C. The composition and unit cost of these chemicals are
shown below.
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1.14

1.15

CHEMICAL COMPOUND 1 2 3 4
Percentage of A 30 20 40 20
Percentage of B 20 60 30 40
Percentage of C 40 15 25 30
Cost /kilogram 20 30 20 15

The new product consists of 20% element A, at least 30% element B, and at
least 20% element C. Owing to side effects of compounds 1 and 2, they
must not exceed 30% and 40% of the content of the new product. For-
mulate the problem of finding the least costly way of blending as a linear
program. (We ask the reader to solve this problem in Exercise 5.25.)

A production manager is planning the scheduling of three products on four
machines. Each product can be manufactured on each of the machines.
The unit production costs (in $) are summarized below.

MACHINE
PRODUCT 1 2 3
1 4 4 5 7
2 6 7 5
3 12 10 8 11

The time (in hours) required to produce each unit product on each of the
machines is summarized below.

MACHINE
PRODUCT 1 2 3 4
1 03 | 025 02 0.2
2 0.2 03 0.2 0.25
3 0.8 0.6 0.6 0.5

Suppose that 4000, 5000, and 3000 units of the products are required, and
that the available machine-hours are 1500, 1200, 1500, and 2000 respec-
tively. Formulate the scheduling problem as a linear program. (We ask the
reader to solve this problem in Exercise 8.19.)

A furniture manufacturer has three plants, which need 500, 700, and 600
tons of lumber weekly. The manufacturer may purchase the lumber from
three lumber companies. The first two lumber manufacturers virtually have
unlimited supply, and because of other commitments the third manufac-
turer cannot ship more than 500 tons weekly. The first lumber manufac-
turer uses rail for transportation and there is no limit on the tonnage that
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can be shipped to the furniture facilities. On the other hand, the last two
lumber companies use trucks that limit the maximum tonnage that can be
shipped to any of the furniture companies to 200 tons. The following table
gives the transportation cost from the lumber companies to the furniture
manufacturers ($ per ton).

FURNITURE FACILITY

LUMBER

COMPANY 1 2 3
1 2 3 | 5
2 25 4 | 48
3 3 36 32

Formulate the problem as a linear program. (We ask the reader to solve
this problem in Exercise 8.32.)

A corporation has $30 million available for the coming year to allocate to
its three subsidiaries. Because of commitments to stability of personnel
employment and for other reasons, the corporation has established a
minimal level of funding for each subsidiary. These funding levels are $3
million, $5 million, and $8 million respectively. Owing to the nature of its
operation, subsidiary 2 cannot utilize more than $17 million without major
new capital expansion. The corporation is unwilling to undertake such
expansion at this time. Each subsidiary has the opportunity to conduct
various projects with the funds it receives. A rate of return (as a percent of
investment) has been established for each project. In addition, certain of
the projects permit only limited investment. The data for each project are
given below.

SUBSIDIARY PROJECT RATE OF RETURN UPPER LIMIT OF INVESTMENT

1 8% $6 million
1 2 6% $5 million

3 % $9 million

4 5% $7 million
2 5 8% $10 million

6 ) 9% $4 million
3 7 10% $6 million

8 6% $3 million

Formulate this problem as a linear program. (We ask the reader to solve
this problem in Exercise 9.46.)
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1.19

1.20

A ten-acre slum in New York City is to be cleared. The officials of the city
must decide on the redevelopment plan. Two housing plans are to be
considered: low-income housing and middle-income housing. The types of
housing can be developed at 20 and 15 units per acre respectively. The unit
costs of the low- and middle-income housing are $13,000 and $18,000. The
lower and upper limits set by the officials on the number of low-income
housing units are 60 and 100. Similarly, the number of middle-income
housing units must lie between 30 and 70. The combined maximum
housing market potential is estimated to be 150 (which is less than the sum
of the individual market limits due to the overlap between the two
markets). The total mortgage committed to the renewal plan is not to
exceed $2 million. Finally, it was suggested by the architectural adviser that
the number of low-income housing units be at least 50 units greater than
one-half the number of middle-income housing units.
a. Formulate the minimal cost renewal planning problem as a linear
program and solve it graphically.
b. Resolve the problem if the objective is to maximize the number of
houses being constructed.

A region is divided into m residential and central business districts. Each
district is represented by a node and the nodes are inter-connected by links
representing major routes. People living in the various districts go to their
business in the same and/or at other districts so that each node attracts
and /or generates a number of trips. In particular, let a; be the number of
trips generated at node / with final destination at node j and let b; be the
time to travel from node i/ to node j. It is desired to determine the routes to
be taken by the people living in the region.

a. Illustrate the problem by a suitable network.

b. Develop some measures of effectiveness for this traffic assignment prob-

lem and for each devise a suitable model.

Consider the problem of scheduling court hearings over a planning horizon
consisting of n periods. Let b, be the available judge-hours at period j, A; be
the number of hearings of class / arriving at period j, and a; be the number
of judge-hours required to process a hearing of class i. It is desired to
determine the number of hearings x;; of class i processed at period ;.

a. Formulate the problem as a linear program.

b. Modify the model in part a so that hearings would not be delayed for

too long.

Suppose that there are m sources which generate waste and n disposal sites.
The amount of waste generated at source i is @, and the capacity of site ; is
b;. It is desired to select appropriate transfer facilities from among K
candidate facilities. Potential transfer facility & has fixed cost f,, capacity
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qx> and unit processing cost o, per ton of waste. Let ¢, and ¢; be the unit
shipping costs from source i to transfer station £ and from transfer station
k to disposal site j respectively. The problem is to choose the transfer
facilities and the shipping pattern that minimize the total capital and
operating costs of the transfer stations plus the transportation costs. For-
mulate this distribution problem.

(Hint. Let y, be 1 if transfer station k is selected and 0 otherwise.)

A governmental planning agency wishes to determine the sources of

purchase of fuel for use by n depots from among # bidders. Suppose that

the maximum quantity offered by bidder / is a;, gallons and that the

demand of depot j is b, gallons. Let ¢, be the unit delivery cost of bidder i

to the jth depot.

a. Formulate the problem of minimizing the total purchasing cost as a
linear program.

b. Suppose that a discount in the unit delivery cost is offered by bidder i if
the ordered quantity exceeds the level ;. How would you incorporate
this modification in the model developed in part a?

The quality of air in an industrial region largely depends on the effluent

emission from z plants. Each plant can use m different types of fuel.

Suppose that the total energy needed at plant j is b; british thermal units

per day and that ¢ is the effluent emission per ton of fuel type / at plant /.

Further suppose that fuel type i costs ¢, dollars per ton and that each ton of

this fuel type generates a;; british thermal units at plant j. The level of air

pollution in the region is not to exceed b micro-grams per cubic meter.

Finally, let vy, be a meteorological parameter relating emissions at plant j to

air quality at the region.

a. Formulate the problem of determining the mix of fuels to be used at
each plant.

b. How would you incorporate technology constraints that prohibit the use
of certain mixes of fuel at certain plants?

¢. How could you ensure equity among the plants?

1.23 Consider the following linear programming problem.

Minimize x,;—2x,—3x,

Subjectto x;+ x,+ x;< 6
X1+2x,+4x3>12
X|— X+ x32 2

Xy, X, X, unrestricted
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a. Reformulate the problem so that it is in standard format.
b. Reformulate the problem so that it is in canonical format.
c. Convert the problem into a maximization problem,

1.24 Consider the following problem.

1.25

1.26

Maximize 2x,+5x,

Subjectto  x;+2x,<16
2x,+ x,<12

0

\%

X1, X

a. Sketch the feasible region in the (x,, x,) space.

b. Identify the regions in the (x,, x;) space where the slack variables x,
and x, are equal to zero.

c. Solve the problem geometrically.

d. Draw the requirement space and interpret feasibility.

Sketch the feasible region of the set {x : Ax < b} where A and b are given
below. In each case state whether the feasible region is empty or not, and
whether it is bounded or not.

1 1 6
a A=|2 -1 b=|6
K 1 2
[ -1 0] [0
_| 0 -1 _| 0
b. A 5 3 b D
L 1 —1] L 5
1 1] [ 4
-1 0 | i 0
Consider the following problem.
Maximize 2x,+3x,
Subjectto  x;+ x,<

2
4x,+6x,< 9
0

\%

Xy, X
a. Sketch the feasible region.
b. Find two alternative optimal extreme (corner) points.

c. Find an infinite class of optimal solutions.
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1.27 Consider the following problem.

Maximize 3x,+ x,

Subject to —x,;+2x,< 6

x,< 4

a. Sketch the feasible region.
b. Verify that the problem has an unbounded optimal solution.

1.28 Consider the following problem.
Minimize —x,—x,+2x;+x,

Subjectto  x;+x,+ x3+x,> 6
X —X,—2x3+x,< 4

X|,Xy, X3,X420

a. Introduce slack variables and draw the requirement space.

b. Interpret feasibility in the requirement space.

¢. You are told that an optimal solution can be obtained by having at most
two positive variables while all other variables are set at zero. Utilize this
statement and the requirement space to find an optimal solution.

1.29 Consider the problem: Minimize cx subject to Ax > b, x > 0. Suppose that
one component of the vector b, say b, is increased by one unit to b, + 1.
a. What happens to the feasible region?
b. What happens to the optimal objective?

1.30 From the results of the previous problem, assuming 9z*/9b, exists, is it
£0,=0,0r > 07

1.31 Solve Exercises 1.29 and 1.30 above if the restrictions Ax > b are replaced
by Ax < b.

1.32 Consider the problem: Minimize ¢x subject to Ax > b, x > 0. Suppose that
a new constraint, m + 1, is added to the problem.
a. What happens to the feasible region?
b. What happens to the optimal objective z*?

1.33 Consider the problem: Minimize ex subject to Ax > b, x > 0. Suppose that
a new variable, n + 1, is added to the problem.
a. What happens to the feasible region?
b. What happens to the optimal objective z*?
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1.34 Consider the problem: Minimize ¢x subject to Ax > b, x > 0. Suppose that
a constraint, say constraint /, is deleted from the problem.
a. What happens to the feasible region?
b. What happens to the optimal objective z*?

1.35 Consider the problem: Minimize cx subject to Ax > b, x > 0. Suppose that
a variable, say x,, is deleted from the problem.
a. What happens to the feasible region?
b. What happens to the optimal objective z*?

NOTES AND REFERENCES

1. Linear programming and the simplex method were developed by Dantzig in
1947 in connection with planning of the military. A great deal of work has
influenced the development of linear programming, including World War II
developments and the need for scheduling of supply and maintenance opera-
tions as well as the need for training of flying personnel, Leontief’s input-out-
put model [311], Von Neumann’s Equilibrium Model {451], Koopman’s
Model of Transportation [290], the Hitchcock transportation problem [240],
the work of Kantorovich [271], Von Neumann-Morgenstern game theory
[454], and the rapid progress in electronic computing machines.

2. Linear programming has found numerous applications in the military, the
government, industry, and urban engineering,

3. Linear programming is also frequently used as a part of general computa-
tional schemes for solving nonlinear programming problems, discrete pro-
grams, combinatorial problems, problems of optimal control, and program-
ming under uncertainty.



TWO: RESULTS
FROM LINEAR
ALGEBRA AND
CONVEX ANALYSIS

In this chapter we review some basic results from linear algebra and convex
analysis. These results will be used throughout the book. The reader may skip
any sections of this chapter, according to his familiarity with the subject
material. Sections 2.1 and 2.2 review some elementary results from vector and
matrix algebra. In Section 2.3 we discuss solvability of a system of linear
equations and introduce the important notion of basic solutions. The remaining
sections discuss results from convex analysis, including the notions of convex
sets, convex and concave functions, convex cones, hyperplanes, and polyhedral
sets. The sections on polyhedral sets and their representation in terms of extreme
points and extreme directions are very important in linear programming, and
hence they deserve a thorough study. The last section treats Farkas’s Theorem,
which will be used to prove the optimality criteria in linear programming.

38
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2.1 VECTORS

An n vector is a row or a column array of n numbers. For example, a =
(1,2,3, — 1, 4)is a row vector of sizen =5, and a =( i) is a column vector

of size n = 2. Row and column vectors are denoted by lowercase boldface
letters, such as a, b, c. Whether a vector is a row or a column vector will be clear
from the context. Figure 2.1 shows some vectors in a two-dimensional space.
Each vector can be represented by a point or by a line from the origin to the
point, with an arrowhead at the end point of the line.

Figure 2.1. Some examples of vectors.

Special Vectors

ZERO VECTOR

The zero vector, denoted by 0, is a vector with all components equal to zero.
This vector is also referred to as the origin.

iTH UNIT VECTOR
This is a vector with zero components, except for a 1 in the ith position. This
vector is denoted by e; and is sometimes called the ith coordinate vector.

ith position
2
e,=(00...,1,...,0,0)
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SUM VECTOR

This is a vector with each component equal to one. The sum vector is denoted
by 1.

Addition and Multiplication of Vectors

ADDITION

Two vectors of the same size can be added, where addition is performed
componentwise. To illustrate, let a, and a, be the following two n vectors:

a = (ay, @y, -+ -5 )

a, = (a ap, - - -, 4p)
Then the addition of a, and a,, denoted by a, + a,, is the following vector:
atay=(a; t+apatay ..., a,+a,)

The operation of vector addition is illustrated in Figure 2.2. Note that a, + a, is
the diagonal of the parallelogram with sides a; and a,.

Figure 2.2. Vector addition.

SCALAR MULTIPLICATION

The operation of multiplying a vector a with a scalar k is performed component-
wise. If a = (a, a5, ..., a,), then the vector ka = (ka,, ka,, . .., ka,). This
operation is shown in Figure 2.3. If k£ > 0, then ka points in the same direction
as a. On the other hand if & < 0, then ka points in the opposite direction.
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ka, k > 0

¢ Figure 2.3. Scalar multiplication.

Inner Product

Any two n vectors a and b can be multiplied. The result of this multiplication is
a real number called the inner product of the two vectors. It is defined below:

n
ab=a\b, + a,b,- - - + a,b, = X ab,
j=1

For example, if a = (1, — 1) and b =( _%), then ab = —3.

Norm of a Vector

Various norms (measures of size) of a vector can be used. We shall use here the
Euclidean norm. This norm is the square root of the inner product of the vector
and itself. In other words, the norm of a vector a, denoted by ||a||, is given by

37.1a? . Note that

lla + bjj* = ja|* + |ibl|* + 2ab
for any two vectors a and b of the same size.
Schwartz Inequality

Given two vectors a and b of the same size, the following inequality, called the
Schwartz inequality, holds:

|ab| < |ja]| |Ib]

To illustrate, let a = (0, 2) and b = (3, 4). Then ab = 8, whereas ||a|| = 2 and
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(bl = 5. Clearly 8 < 2 X 5. In fact, the “discrepancy” between the inner prod-
uct ab and }|a|| ||b|| measures the angle 6 between the two vectors. In particular,
cos = ab/||a|| ||b]|. Of course, if ab = 0, then cos 8 = 0; that is, the two vectors
a and b are orthogonal. Figure 2.4 shows two orthogonal vectors a and b.

a= (-1, 3)

b = (6, 2)

Figure 2.4. Orthogonal vectors,

Euclidean Space

An n-dimensional Euclidean space, denoted by E”, is the collection of all vectors
of dimension n. Addition and scalar multiplication of vectors in E” are defined
above. Also, associated with any vector in E” is its norm, and associated with
any two vectors in E” is their inner product, defined above.

Linear Combination

A vector b in E" is said to be a linear combination of a,, a,, . .., a, in E" if
= Sk
b = 27_Aa;, where A, A,, ..., A, are real numbers.

Linear Independence

A collection of vectors a, a,, ..., a, of dimension » is called /inearly indepen-
dent if

k

Aa. = 0implies that\, = Oforj =1,2,...,k
< T J
j=

For example, let a;, = (1, 2) and a, = (—1, 1). These two vectors are linearly
independent because A((1, 2) + A,(—1, 1) = (0, 0) implies that A, = A, = 0.

A collection of vectors is called linearly dependent if they are not linearly
independent. Therefore a,, a,, ..., a, are linearly dependent if there exist
AL Ay ..., A, not all zero, such that 2;‘=1)\jaj = 0. For example, let a, =
(1,2,3), a,=(—1,1, — 1), and a; = (0, 3, 2). These three vectors are linearly
dependent because Aja; + A2, + Aza; =0forA; =A, =land ;= —1.



2.1 VECTORS 43

Spanning Set

A collection of vectors a,, a,, . . ., a, in E” is said to span E™ if any vector in E”
can be represented as a linear combination of a;, a,, ..., a,. In other words,
given any vector b in E”, we must be able to find scalars A}, A,, . .., A, such
that b = j_l)\ a.

To illustrate, letn = 2, and consider a, = (1, 0),a, = (— 1, 3), and a; = (2, 1).
The vectors aj, a,, 2, span E? since any vector b in E? can be represented as a
linear combination of these vectors. For example b = (b, b,) can be represented
as Aa; + A4, + Aja; where A| = b, + $b,, A, = 1 by, and A, = 0. In this case
the representation is not unique. Another representation is given by letting
A= b, —2by, A\, =0, and A; = b,.

Basis

A collection of vectors a;, a,,...,a, forms a basis of E" if the following
conditions hold:

1. a,a, ...,a, span E".
2. If any of the vectors is removed, the remaining collection of vectors does
not span E”.

It can be shown that the foregoing conditions are equivalent to the following
two requirements: k = n and a,, a, ...,a, are linearly independent. To

(}) and a, =((1)) in E% These two

vectors form a basis of E? since k = n = 2, and a, and a, are linearly indepen-
dent.

Given a basis of E”, say a, a,,...,a, any vector b in E” is uniquely
represented in terms of this basis. If b= 37_,Aa; and also b = 27_ Aja; then

j=10\ — A)a; = 0, which implies that A, = A/ for each j, since otherwise we

would v1olate the linear independence of a,, az, S, A,

Since a basis in E" must always have n vectors, then the dimension of a basis
is unique, namely n. But a basis itself is not unique, since any set of n vectors
that are linearly independent will form a basis.

illustrate, consider the two vectors a,

Replacing a Vector in the Basis by Another Vector

In the simplex method, different bases will be generated, where one vector from
the last basis is replaced by another vector. We have to be careful in choosing
the vectors entering and leaving the basis, because otherwise the new vectors
may not be linearly independent, and hence will not form a basis. To illustrate,
the vectors a;, = (1, 2, 1), a, = (3,0, 1), and a, = (2, — 2, 1) are linearly inde-
pendent, and hence form a basis of E3. We cannot replace a, by (2, — 2, 0),
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because a;, a,, and (2, — 2, 0) are linearly dependent and do not form a basis.
This leads to the following natural question: If we have a basis of E”, what is
the condition that will guarantee that if a vector of the basis, say a;, is replaced
by another vector, say a, then the new set of vectors still forms a basis?
Let aj, a,, . .., 2, form a basis of E”. We want to replace a; by a. Since
a,,...,a, form a basis, then a can be represented as a linear combination of
these vectors, that is,

a= 2 Aa,

i=1

Suppose that A # 0. We shall show that the vectors a; a,...,a

Y- 1>
a,a,,...,a, are linearly independent, and hence form a basis. Suppose that
there exist u and (i # j), such that

2 pa; + pa =0
i)

Substituting a = 27_ Aa,, we get

2.‘#314‘#2}‘;3:‘:0

i) i=1
2 (i + pA)a, + pha, =0
i*j
But since a;, a,,...,a,...,a, are linearly independent, then pA, =0, and

i + pA; = 0 for i % j. Since A, # 0 by assumption, then u = 0. But this implies
that y, = 0 for i # j. In other words, 2, a;, + pa = 0 is only possible if u = 0
and y, = 0 for / # j, and hence a and a,(i 5 j) are linearly independent and
must form a basis. From this discussion it is obvious that the condition A; # 0 is
sufficient for the new set of vectors to be linearly independent. Obviously the
condition is also necessary, because if A, were zero, then a — ¥, Aa, = 0, and

[ M |
hence a, and a,(i # j) would be linearly dependent.

2.2 MATRICES

A matrix is a rectangular array of numbers. If the matrix has m rows and n
columns, it is called an m X n matrix (reads “m by n”). Matrices will be denoted
by capital boldface letters, such as A, B, C. An example of a 3 X 2 matrix is
given below.
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The entry in row i and column j is denoted by a,; for example, a;; = —1 and
a3, = 3. Anm X n matrix A can be represented by its columns or by its rows. If
we denote the columns of A by a;, a,,...,a,, then A =][a}, a,, ..., a,] Simi-
larly, A can be represented as

where a', a%, ..., a™ are the rows of A. Note that every vector is a matrix, but
not every matrix is a vector.

Addition of Matrices

The addition of two matrices of the same dimension is defined componentwise;
that is, if A and B are m X n matrices, then C = A + B is defined by letting

cy=a;+bfori=12 ..., mandj=12,...,n

Multiplication by a Scalar

Let A be an m X n matrix and let k be a scalar. Then kA is an m X n matrix
whose ij entry is ka;.

Matrix Multiplication

Let A be an m X n matrix and B be an n X p matrix. Then the product AB is
defined to be the m X p matrix C with

n
CU=2a’.kbkj fori=1,....,m j=1...,p
k=1

In other words, the ij entry of C is determined as the inner product of the ith
row of A and the jth column of B. Let

1 11 5 0
A=14 -2 5 and B=|{3 0
2 0 1 1 1
Then
1 -1 11]|5 0 3 1
C=AB=|4 -2 53 0|=[19 5
2 0 1]f1 1 11 1
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The following points need to be emphasized. If A is an m X n matrix and B is a
p X g matrix, then

1. AB is defined only if » = p. AB is then an m X g matrix.

2. BA is defined only if ¢ = m. BA is then an p X n matrix.

3. Even if AB and BA are both defined (if m = n = p = ¢), then AB is not
necessarily equal to BA. Note that AB in the foregoing example is defined
but BA is not defined.

Special Matrices

ZERO MATRIX

An m X n matrix is called the zero matrix if each entry in the matrix is zero.

IDENTITY MATRIX

A square n X n matrix is called the identity matrix, denoted by I (sometimes the
notation I, is used to denote the size), if it has entries equal to one on the
diagonal and zero entries everywhere else. Note that AI, = A and I, A = A for
any m X n matrix A.

TRIANGULAR MATRIX

A square n X n matrix is called an upper triangular matrix if all the entries below
the diagonal are zeros. Similarly an # X n matrix is called a lower triangular
matrix if all elements above the diagonal are zeros.

Transposition

Given an m X n matrix A with g; as its ij entry, the transpose of A, denoted by
A’, is an n X m matrix whose ij entry is a;. In other words, A’ is formed by
letting the jth column of A be the jth row of A’ (similarly by letting the jth row
of A be the jth column of A’). A square matrix A is called symmetric if A = A’
and skew-symmetric if A = —A’. The following results are obvious.

1. (A = A.
2. If A and B have the same dimension, then (A + B) = A’ + B'.
3. If AB is defined, then (AB) = B'A’.

Partitioned Matrices

Given an m X n matrix A, we can obtain a submatrix of A by deleting certain
rows and/or columns of A. Hence we can think of a matrix A as being
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partitioned into submatrices. For example, consider

a; ap | 43 Gy

Ay A | Gy G4

Here A has been partitioned into four submatrices, A, A, A,;, and A,
therefore

Ay | Ap
A=
Ay | Ay
where
a;; ap a;3 dig
A, =|08a 9n A, =|d3 0y
a3 as 33 d3y
' Ay =[% 4] Ay =[3 Gu)

Now suppose that A and B are partitioned as follows:

n,on, 9 B 4
A= A | Ap m, _ B, | B, | By P
Az | Ap 2 By | By | By P2

Then AB is defined by

A ’ Ap
A, ‘ Ay

Bll | B12 | B13

AB =
B, l Bzz, By

AllBll + A12B21 l A11B12 + A12B22 | AllBl3 + A12B23
A21Bll + A22B21 } A21Bl2 + A22B22 ’ A21B13 + A22B23

Note that we must have n, = p, and n, = p,, so that the product of the
submatrices is well defined.

Elementary Matrix Operations

Given an m X n matrix A, we can perform some elementary row and column
operations. These operations are most helpful in solving a system of linear
equations and in finding the inverse of a matrix (to be defined later).
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An elementary row operation on a matrix A is one of the following operations:

1. Row i and row j of A are interchanged.
2. Row i is multiplied by a nonzero scalar &.
3. Row i is replaced by row i plus k times row j.

Elementary row operations on a matrix A are equivalent to premultiplying A by
a specific matrix. Elementary column operations are defined similarly. Elementary
column operations on A are equivalent to postmultiplying A by a specific
matrix.

Example 2.1

2 1 1 10
LetA=] — 1 2 1 8 |
1 -1 2 2

We shall perform the following elementary operations on A. Divide row 1 by 2,
add the new row 1 to row 2, and subtract it from row 3. This gives

1 3 3 5
0 >3 13
0 -3 3 -3

Now multiply row 2 by %, multiply the new row 2 by 3 and add to row 3. This
gives ’

1 1
7 1 5
3 26
0 1 : 3
24 24
0 0 % =

Divide row 3 by 2. This gives

i 1 5
01 3 ¥
o 0o 1 2

Note that the matrix A is reduced to the foregoing matrix through elementary
row operations.

Solving a System of Linear Equations by Elementary Matrix Operations

Consider the system Ax = b of m equations in n unknown, where Ais an m X n
matrix, b is an m vector, and x is an n vector of variables. The following fact is
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helpful in solving this system: Ax = b if and only if A’x = b’, where (A’, ) is
obtained from (A, b) by a finite number of elementary row operations. To
illustrate, consider the following system:

2x,+ x,+ x;=10
=X, +2x,+ x3= 8

X — Xp+2x3= 2

1 10

2 1
(A,b) =] -1 2 1 8
1 -1 2 2

This matrix was reduced in Example 2.1 above through elementary row opera-
tions to

1%%5
01 3 %
o o0 1 2

Therefore x solves the original system if and only if it solves the following
system.

1 1. _
X, +3x t3x;3=35

3. _ 2
Xy t5x3=7%

S Xy =2

Note that A’ is upper triangular, and we can solve the system by back substitu-
tion. From the third equation x, = 2, and from the second equation x, = 4, and
from the first equation x;, = 2. The process of reducing A into an upper
triangular matrix with ones on the diagonal is called Gaussian reduction of the
system.

Matrix Inversion

Let A be a square n X n matrix. If B is an n X n matrix such that AB = I and
BA =1, then B is called the inverse of A. The inverse matrix, if it exists, is
unique and is denoted by A~!. If A has an inverse, A is called nonsingular;
otherwise A is called singular.

CONDITION FOR EXISTENCE OF THE INVERSE

Given an n X n matrix A, it has an inverse if and only if the rows of A are

linearly independent or, equivalently, if the columns of A are linearly indepen-
dent.
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CALCULATION OF THE INVERSE

The inverse matrix, if it exists, can be obtained through a finite number of
elementary row operations. This can be done by noting that if a sequence of
elementary row operations reduce A to the identity, then the same sequence of
operations will reduce (A, I) to (I, A™"). In fact, this is equivalent to premultiply-
ing the system by A~!. Further, if (A, B) is reduced to (I, F) by elementary row
operations, then F = A~ !B.

In order to calculate the inverse, we adjoin the identity to A. The matrix A is
reduced to the identity by elementary row operations. This will result in
reducing the identity to A~'. Of course, if A™' does not exist, then the
elementary row operations will fail to produce the identity. This discussion is
made clear by the following two examples.

Example 2.2 (A~ exists)

Consider the matrix A below.

2 I 1
-1 2 1
I -1 2

A=

To find the inverse, form the augmented matrix (A, I). Reduce A by elementary
row operations to the identity. The matrix in place of Iis A™".

2 1 1} 1 0 O
-1 2 1) 01 0
I -1 200 0 1

Divide the first row by 2. Add the new first row to the second row and subtract
it from the third row.

(=
N N[ D=
Njw NDjw N|—
B = W= N|—
(=
- O O

Multiply the second row by . Multiply the new second row by — 1 and add to
the first row, and multiply the new second row by 3 and add to the third row.

1 0 — 0
0 1 0
0 0

u.l; VW -
W= = Wi
W N W]

1
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Multiply the third row by % Multiply the new third row by — % and add to the
second row, and multiply the new third row by — } and add to the first row.

[ R
S~ O
—_ O O
Slw Sle glw
Sl Slw 5=

Bl= Blw Sle

Therefore the inverse of A exists and is given by

5 =3 -1
3 3 -3
-1

-1 _ 1
A -2

3 5

Example 2.3 (A™! does not exist)

Consider the matrix A below.

I 1 2
2 -1 1

1 2 3

A=

The inverse does not exist since a; = a, + a,. If we use the foregoing procedure,
the elementary matrix operations will fail to produce the identity.

1 1 211 0 O
2 -1 1{0 1 O
2 0 0

1 3 1

Multipty the first row by —2 and add to the second row, and multiply the first
row by —1 and add to the third row.

1 1 2 1 0 O
0 -3 -3 1-2 10
0 1 1 -1 0 1

Multiply the second row by — % Then multiply the new second row by ~ 1 and
add to the first row, and multiply the new second row by —1 and add to the
third row.

1 0 1 i 3 0
0 1 1 2 -3 0
0 0 0 |-3 !
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There is no way that the left-hand-side matrix can be transformed into the
identity matrix by elementary row operations, and hence the matrix A has no
inverse.

The following facts about matrix inversion are useful.

1. If A is nonsingular, then A’ is also nonsingular, and (A")~' = (A7),

2. If A and B are both n X n nonsingular matrices, then AB is nonsingular,
and (AB)"' =B 'A"L

3. A triangular matrix (either lower or upper triangular) with nonzero diago-
nal elements has an inverse. This can be easily established by noting that
such a matrix can be reduced to the identity by a finite number of
elementary row operations.

4. Let A be partitioned as follows, where D is nonsingular.

nyon
I|C n,
A —
O
Then A is nonsingular, and

A_l = I _CD_I
0 D!

Determinant of a Matrix

Associated with each square n X n matrix is a real number, called the determi-
nant of the matrix. Let A be an n X n matrix whose jj element is a;. The
determinant of A, denoted by det A, is defined as follows:

det A = D a,4,

i=1

where A4, is the cofactor of a;, defined as (—1)*' times the determinant of the
submatrix of A obtained by deleting the ith row and first column. The determi-
nant of a 1 X | matrix is just the element. To illustrate, consider the following
example.

1
—3| =14, + 24, — 34,
1

det

W N =
N - O

o1 -3 0 1] 0o 1
det[2 1] 2det[2 1] 3det[l _3]
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Note that the foregoing definition reduces the calculation of a determinant of an
n X n matrix to n determinants of (n — 1) X (n — 1) matrices. The same defini-
tion can be used to reduce a determinant of an (n — 1) X (n — 1) matrix to
determinants of (n — 2) X (n — 2) matrices, and so forth. Obviously, by the
above definition, the determinant of a 2 X 2 matrix, say A’ ={Z;: ZZ ], is
simply a,1ay — a5y,

To summarize, the determinant of an n» X n matrix can be calculated by
successively applying the foregoing definition. The determinant of A above is
therefore given by 1(1 + 6) — 2(0 — 2) — 3(0 — 1) = 14. We summarize below
some important facts about determinants of square matrices.

1. In the definition above, the first column was used as a reference in
calculating det A. Any column or row can be used as a reference in the
calculations; that is,

detA=2a,.jA,.j forany j=1,2,...,n

i=1

and similarly

n

detA= D a.A

Ay forany i=12,...,n
J=1

where A, is the cofactor of a; given as (—1)'*/ times the determinant of

the submatrix obtained from A by deleting the ith row and jth column.

det A = det A’.

3. Let B be obtained from A by interchanging two rows (or columns). Then
det B = —det A.

4. Let B be obtained from A by adding to one row (column) a constant times
another row (column). Then det B = det A.

5. Let B be obtained from A by multiplying a row (or column) by a scalar k.
Then det B = & det A.

6. Let A be partitioned as follows, where B and C are square.

3

Then det A = det B - det C.

7. Let A and B be n X n matrices. Then det (AB) = det A - det B.

8. det A 0 if and only if the columns (and rows) of A are linearly
independent. Equivalently, det A = 0 if and only if the rows (columns) of
A are linearly dependent. Therefore a square matrix A has an inverse if
and only if its determinant is not zero.

d
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9. Let A be an n X »n matrix whose determinant is not zero. Then A™! exists
and is given by

where B is the transpose of the matrix whose ij entry is 4, the cofactor of

a;. Here B is called the adjoint matrix of A.

10. Consider the system Ax = b where A is n X n, b is an n vector, and x is
an n vector of unknowns. If A has an inverse (that is, if det A % 0), then
the unique solution to this system is given by

ij»

det A
%7 det A

for j=12...,n

where A, is obtained from A by replacing the jth column of A by b. This
method for solving the system is called Cramer’s rule.

11. The determinant of a triangular matrix is the product of the diagonal
entries.

The Rank of a Matrix

Let A be an m X n matrix. The row rank of the matrix is equal to the maximum
number of linearly independent rows of A. The column rank of A is the
maximum number of linearly independent columns of A.

It can be shown that the row rank of a matrix is always equal to its column
rank, and hence the rank of the matrix is equal to the maximum number of
linearly independent rows (or columns) of A. Thus it is clear that rank (A) <
minimum (m, n). If rank (A) = minimum (m, n), A is said to be of full rank. It
can be shown that the rank of A is k& if and only if A can be reduced to

{ £ Q ] through a finite sequence of elementary matrix operations.
010

2.3 SIMULTANEOUS LINEAR EQUATIONS

Consider the system Ax = b and the augmented matrix (A, b) with m rows and
n + 1 columns. If the rank of (A, b) is greater than the rank of A, then b cannot
be represented as a linear combination of a,, a,, . . ., a,, and hence there is no



2.3 SIMULTANEOUS LINEAR EQUATIONS 35

solution to the system AXx = b (and in particular there is no solution to the
system Ax = b, x > 0).

Now let us suppose that rank (A) = rank (A, b) = k. Possibly after rearrang-
ing the rows of (A, b), let

(A b) =

A b
A, b,

where A, is kK X n, b; is a k vector, A, is an (m — k) X n matrix, b, isan m — k
vector, and rank (A|) = rank (A, b)) = &.

Note that if a vector x satisfies A;x = b,, then it satisfies A,;x = b, automati-
cally. Thus we can throw away the “redundant” or “dependent” constraints
A,x = b,, and keep the independent constraints Ajx = b,. Since rank (A)) = &,
we can pick k linearly independent columns of A,. Possibly after rearranging the
columns of A, let A; = (B, N), where B is a k£ X & nonsingular matrix, and N is
k X (n — k). Note that such a matrix B exists since A, has rank k. Here B is
called the basic matrix (since the columns of B form a basis of E¥) and N is
called the nonbasic matrix. Let us decompose x accordingly into x, and xy,
where x, is composed of x,, x,, ..., x, and x, is composed of x, |, ..., x

n*

X
Now A x = b, means that (B, N)[ XE ] = b,; that is, Bxg; + Nxy = b,. Since B
N

has an inverse, then we can solve x, in terms of x,, by premultiplying by B~ 1
and we get

x; = B"'b, — B~'Nx,

In the case k = n, N is vacuous, and we have a unique solution to the system
A;x = b,, namely x;, = B™'b, = A;'b,. On the other hand, if n > &, then by
assigning arbitrary values to the vector x,, we can uniquely solve for x, by the

equation x, = B~'b, — B"'Nx,, to obtain a solution

Xp
to the system
N

Al'x = b,. In this case we have an infinite number of solutions to the system
A,x = b, (and hence to the system Ax = b). Note that the notion of decompos-
ing A, into B and N and solving x, = B™'b, — B 'Nx,, can be interpreted as
follows. We have a system of k equations in n unknowns. Assign arbitrary
values to n — k of the variables, corresponding to x,, and then solve for the
remaining system of k equations in k& unknowns. This is done such that the k
equations in k unknowns have a unique solution, and that is why we require B to
have an inverse. Such a solution obtained by letting x,, = 0 and x, = B~ 'b, is
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called a basic solution of the system A;x = b,. Let us now summarize the
different possible cases that may arise:

1. Rank (A, b) > rank (A) and hence Ax = b has no solution.
2. Rank (A, b) = rank (A) = k& = n, and there exists a unique solution to the
system Ax = b.
3. Rank (A, b) = rank (A) = k < n, and we have an infinite number of so-
lutions to the system Ax = b.
Example 2.4

Consider the following system:
X, +2x,+ x3—2x,=10
=X, +2x,— X3+ x4= 6
X+ X3 =2
We shall solve this system by matrix inversion and Gaussian reduction.

1. Matrix Inversion. Reduce 3 columns of A to the identity [this is possible
since rank (A) = 3]

1 2 1 -2 10
-1 2 -1 1 6
0 1 1 0 2
Add the first row to the second row.
1 2 1 =2 10
0 4 0 -1 16
0 1 1 0 2

Divide the second row by 4. Multiply the hew second row by —2 and add
to the first row. Multiply the new second row by —1 and add to the third

TOW.

1 01 =3} 2
01 0 —-%| 4
0 0 1 tl-2
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Multiply the third row by — 1 and add to the first row.

Xy Xy X3 Xy

-0 O
Hl— b= &

[
(= )

The original system has been reduced to the system above. Equivalence of
the two systems is assured since the new system is obtained from the
original system after performing a finite number of elementary row opera-
tions. The solution to the system is as follows. Assign x, arbitrarily, say
x,=AThenx, =4+ A\, x,=4+ ;A and x; = =2 — A,

2. Gaussian Reduction.

1 2 1 -2 10
-1 2 -1 1 6
0 1 1 0 2
Add the first row to the second row.
1 2 1 -2 10
0 4 0 -1 16
0 1 1 0 2

Divide the second row by 4. Subtract the new second row from the third
row.

Xp Xy X X4

1 2 1 -2 10
01 0 -3 4
0 0 1 T =2

The foregoing matrix has an upper triangular submatrix. Let x, be equal to
an arbitrary value A. Then x; = —2 — zA, x, =4 + 4\, and x; = 10 +
IN=-2x—x;=4 + %)\. This gives the same general solution obtained
earlier.
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2.4 CONVEX SETS AND CONVEX FUNCTIONS

In this section we consider some basic properties of convex sets, convex
functions, and concave functions.

Convex Sets

A set X in E” is called a convex set if given any two points x,; and X, in X, then
Ax; + (1 — A)x, € X for each A € [0, 1].

Note that Ax; + (1 — A)x, for A in the interval [0, 1] represents a point on the
line segment joining x; and x,. Any point of the form Ax, + (1 — A)x, where
0 < A < 1, is called a convex combination (or weighted average) of x, and x,. If
A € (0, 1), then the convex combination is called strict. Hence convexity of X
can be interpreted geometrically as follows. For each pair of points x; and x, in
X, the line segment joining them, or the convex combinations of the two points,
must belong to X.

Figure 2.5 below shows an example of a convex set and an example of a
nonconvex set. In the latter case, we see that not all convex combinations of x,
and x, belong to X. The following are some examples of convex sets.

L {(x), X)) x3 + x3 < 1).
2. {x:Ax = b}, where A is an m X n matrix and b is an m vector,

3. {x:Ax=Db, x > 0}, where A is an m X n matrix and b is an m vector.

4.
1 1 -1
x:x=AO|+N21+A] 2], A +AM+A=1 ALALA; > 0p
0 1 -3

>

A Convex Set
A Nonconvex Set

Figure 2.5. Example of convex and nonconvex sets.
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Extreme Points

The notion of extreme points plays an especially important role in the theory of
linear programming. A point x in a convex set X is called an extreme point of X,
if x cannot be represented as a strict convex combination of two distinct points
in X. In other words, if x =Ax, + (1 — A)x, with A € (0, 1) and x,, x, € X,
then x = x, = x,.

Figure 2.6 shows some examples of extreme and nonextreme points of convex
sets. Note that x, is an extreme point of X whereas x, and x; are not.

X

Xy

Figure 2.6. Extreme and nonextreme points.

Hyperplanes and Halfspaces

A hyperplane in E” generalizes the notion of a straight line in £2 and the notion
of a plane in E3. A hyperplane H in E" is a set of the form {x : px = k} where p
is a nonzero vector in E”, and & is a scalar. Here p is usually called the normal to
the hyperplane.

Equivalently, a hyperplane consists of all points x = (x,, x,, . . ., x,) satisfy-
ing the equation 27_, p;x; = k. The constant k can be eliminated by referring to
a fixed point x, on the hyperplane. If x, € H, then pxy, = k, and for any x € H,
we have px = k. Upon subtraction we get p(x — x,) = 0. In other words, H can
be represented as the collection of points satisfying p(x — x) = 0, where x; is
any fixed point in H. A hyperplane is a convex set.

Figure 2.7 shows a hyperplane and its normal vector p. Note that p is
orthogonal to x — x, for each x in the hyperplane H.

Direction of p

Hyperplane H

Direction of x — x,

Figure 2.7. Hyperplane.
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A hyperplane divides E” into two regions, called halfspaces. Hence a half-
space is a collection of points of the form {x : px > k}, where p is a nonzero
vector in E” and k is a scalar. A halfspace can also be represented as a set of
points of the form {x : px < k}. The union of the two halfspaces {x : px > k}
and {x:px < k} is E”. Referring to a fixed point x, in the hyperplane de-
fining the halfspace, the latter can be represented as {x : p(x — x;) > 0} or as
{x : p(x — xo) < 0} as shown in Figure 2.8.

Direction of p Hyperplane H

X — Xg

' ////”’4'!

HalfSpace'//
Halfspace\\\

Figure 2.8. Halfspaces.

Rays and Directions

Another example of a convex set is a ray. A ray is a collection of points of the
form {x, + Ad : A > 0}, where d is a nonzero vector. Here X, is called the verrex
of the ray, and d is the direction of the ray.

Directions of a Convex Set

Given a convex set, a nonzero vector d is called a direction of the set, if for each
X in the set, the ray {x, + Ad : A > 0} also belongs to the set. Clearly if the set
is bounded, then it has no directions.

Consider the nonempty polyhedral set X = {x : Ax =b, x > 0}. Then a
nonzero d is a direction of X if and only if

Ax+Ad) =D
x+Ad =0
for each A > 0 and each x € X. Since x € X, then Ax = b and the above

equation reduces to Ad = 0. Also, since x + Ad has to be nonnegative for A
arbitrarily large, then d must be nonnegative. To summarize, d is a direction of
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X if and only if

d>0,d+0, and Ad=10

Similarly, it can be shown (see Exercise 2.42) that d is a direction of the
nonempty set X = {x: Ax > b,x > 0} ifand onlyifd # 0,d > 0, and Ad > 0.
The set of directions forms a convex set.

Example 2.5
Consider the set X = {(x,x) 1 x;, —2x, > —6, x, —x, 2 =2, x; 2 0,

x, > 1} depicted in Figure 2.9. Let x, =( ;C') be an arbitrary fixed feasible
2
. _ dl . . . . . dl O
point. Then d = is a direction of X if and only if #* and
d, d, 0
x; + Ad,

X + Adz) belongs to X for all A > 0. Therefore

x0+)\d=(

x1=2x,+Nd, — 2d,)) > —6
X;— X+ANd, — dy) > =2
X+ Ad, > 0

X, +Ad, > 1

for all A > 0. Since the last two inequalities must hold for the fixed x,; and x,
and for all A > 0, we conclude that d, and &, > 0 (why?). Similarly, from the
first two inequalities we conclude that d, — 2d, > 0 and d, — d, > 0 (why?).

Since d, and d, > 0, then d, > 2d, implies that d, > d,. Therefore d‘ is a
2
direction of X if and only if
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X

1
4 .
[o:l\é Directions of X
dy

—
=2 Mo,

0 o

Figure 2.9. Directions of convex sets.

This collection of vectors is shown in Figure 2.9 and can be normalized such that
each direction has norm (or length) equal to 1.

EXTREME DIRECTIONS OF A CONVEX SET

The notion of extreme directions is similar to the notion of extreme points. An
extreme direction of a convex set is a direction of the set that cannot be
represented as a positive combination of two distinct directions of the set. Two
vectors, d; and d,, are said to be distinct or not equivalent if d, cannot be
represented as a positive multiple of d,. In the foregoing example, after normali-
zation, we have two extreme directions d, = (1, 0) and d, = 2/V5,1/V5).
Any other direction of the set, which is not a multiple of d, or d,, can be
represented as A, d; + A, d, where A, A, > 0. Any ray that is contained in the
convex set, and whose direction is an extreme direction, is called an extreme ray.

Convex Cones

A special important class of convex sets is convex cones. A convex cone C is a
convex set with the additional property that Ax € C for each x € C, and for
each A > 0. Note that a convex cone always contains the origin by letting A = 0,
and also that given any point x € C, the ray or halfline {Ax : A > 0} belongs to
C. Hence a convex cone is a convex set that consists entirely of rays emanating
from the origin. Figure 2.10 shows some examples of convex cones.

Since a convex cone is formed by its rays, then a convex cone can be entirely
characterized by its directions. In fact, not all directions are needed, since a
nonextreme direction can be represented as a positive combination of extreme

directions. In other words, a convex cone is fully characterized by its extreme
directions.
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VvV ®

Origin Origin
Figure 2.10. Some examples of convex cones.

As an example, consider the convex cone whose extreme directions are (L, 1
and (0, 1). From Figure 2.11 it is clear that the convex cone must be the set
{(xp, x9) 1 x; 2 0, x; < x,}.

Given a set of vectors a;, a,, ..., a,, we can form the convex cone C
generated by these vectors. This cone consists of all nonnegative combinations
of a;, a,, . . ., 4, that is,

k
c={2>\jaj:>\j>o for j=12...,k
j=1

Figure 2.11 shows the convex cone generated by the points (0, 1) and (1, 1).

Convex
cone

dy = (0, 1)

Figure 2.11. Characterization of convex cones in terms of extreme directions.
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Convex and Concave Functions

Convex and concave functions play an important role in optimization problems.
These functions naturally arise in linear optimization problems when dealing
with parametric analysis.

A function f of the vector (x;, x,, . . ., x,) is said to be convex if the following
inequality holds for any two vectors x; and x,:

Fx; + (1 = A)x) <M(x))+ (1 —A)f(x;) forall Ae[0,1]

Figure 2.12a below shows an example of a convex function. Note that the
foregoing inequality can be interpreted as follows: Af(x;) + (1 — A)f(x,) where
A € [0, 1] represents the height of the chord joining (x,, f(x,)) and (x,, f(x;)) at
the point Ax; + (I — A)x,. Since Af(x)) + (I — N f(x,) > f(Ax; + (1 — A)xy),
then the height of the chord is at least as large as the height of the function itself.

f

' f

fixy) g /
/f(XZ) \1 x,)
fixq) / fix,
f

Xy Xz Xy X2 X X2

(a) (b)” {c)

Figure 2.12. Examples of convex and concave functions: (a) Convex function. (b)
Concave function. (¢) Neither convex nor concave.

A function f is concave if and only if — f is convex. This can be restated as
follows:

FOx; + (1 = 2)x) > M(x)) + (1 =N f(x,) forall Ae€[0,1]

for any given x, and x,. Figure 2.125 shows an example of a concave function.
An example of a function that is neither convex nor concave is depicted in
Figure 2.12¢.

2.5 POLYHEDRAL SETS AND POLYHEDRAL CONES

Polyhedral sets and polyhedral cones represent important special cases of
convex sets and convex cones. A polyhedral set is the intersection of a finite
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number of halfspaces. Since a halfspace can be represented by an inequality of
the type a’x < b, then a polyhedral set can be represented by the system
ax < b, for i=1,...,m. Hence a polyhedral set can be represented by
{x: Ax < b} where A is an m X n matrix whose /th row is a’ and b an m vector.
Since an equation can be written as two inequalities, a polyhedral set can be
represented by a finite number of linear inequalities and/or equations. As an
example, consider the polyhedral set defined by the following inequalities:

—2x;+x,< 4

X, +x,<

N

\%
S O N W

X1

X1

\%

X3

The intersection of these five halfspaces gives the shaded set of Figure 2.13.
Clearly the set is a convex set. We can see a distinct difference between the first
inequality and the remaining inequalities. If the first inequality is disregarded,
the polyhedral set is not affected. To differentiate between the first inequality
and the remaining inequalities, we say that the hyperplanes corresponding to the

-~/ ©

X2

Figure 2.13. Polyhedral set.
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second, third, fourth, and fifth inequalities, namely {(x,, x,) : x; + x, = 3},
{(x}, xp) : x; = 2}, {(x;, x) : x; = 0}, and {(x, x,) : x, = 0}, are faces of the
“polyhedral set.

A Special class of polyhedral sets is polyhedral cones. A polyhedral cone is the
intersection of a finite number of halfspaces, whose hyperplanes pass through
the origin. In other words, C is a polyhedral cone if it can be represented as
{x : Ax < 0}, where A is an m X n matrix. Note that the ith row of the matrix
A is the normal vector to the hyperplane defining the ith halfspace. Figure 2.11
shows an example of a polyhedral cone.

2.6 REPRESENTATION OF POLYHEDRAL SETS

In this section we discuss the representation of a polyhedral set in terms of
extreme points and extreme directions. This alternative representation will prove
very useful throughout the book. The proof of the representation theorem is
given in the Appendix. The reader may want to delay studying the Appendix
until he develops more confidence with the notions of extreme points and
extreme directions by the end of Chapter 3.

Bounded Polyhedral Sets

Consider the bounded polyhedral set (recall that a set is bounded if there is a
number k such that ||x|| < k for each point x in the set) of Figure 2.14, which is
formed as the intersection of five halfspaces. We have five extreme points,
namely X;, X,, X3, X,, and x,. Note that any point in the set can be represented as
a convex combination, or a weighted average, of these five extreme points. To
illustrate, choose the point x shown in Figure 2.14. Note that x can be
represented as a convex combination of y and x,, that is,

x=Ay + (1 — A)x, where A € (0, 1)

X4

X3

X2

X4

Figure 2.14. Representation in terms of extreme points.
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But y can itself be represented as a convex combination of x; and x,, that is,
y=ux, + (1 — p)x, where p € (0, 1)

Substituting, we get

x = Aux; + Al — p)x, + (1 — A)x,

Since A € (0, 1) and p € (0, 1), then Ag, A(1 — p), and (1 — A) € (0, 1). Also
Ap + A1 — ) + (1 = A) = 1. In other words, x can be represented as a convex
combination of the extreme points X,, X,, and x,. In general, any point in a
bounded polyhedral set can be represented as a convex combination of its
extreme points.

The above discussion is made more precise by the following theorem. The
theorem is a special case of a more general result that will be stated later in the
section.

Theorem 1 (Representation Theorem for the Bounded Case)

Let X = {x: Ax = b, x > 0} be a nonempty bounded (polyhedral) set. Then
the set of extreme points is not empty and has a finite number of points, say x,,

X,, . . ., X;. Furthermore, x € X if and only if x can be represented as a convex
combination of x,, . . ., X,, that is,
k
Xx= Ax;
j=1

Unbounded Polyhedral Sets

Let us now consider the case of an unbounded polyhedral set. An example is
shown in Figure 2.15. We see that the set has three extreme points x,, X,, and x;,
as well as two extreme directions d, and d,. From Figure 2.15 it is clear that in
general we can represent every point in the set as a convex combination of the
extreme points, plus a nonnegative linear combination of the extreme directions.
To illustrate, consider the point x in Figure 2.15. The point x can be represented
as y plus a positive multiple of the extreme direction d,. Note that x — y points
in the direction d,. But y itself is a convex combination of the extreme points x,
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§:2 A

Figure 2.15. Representation of polyhedral sets in terms of extreme points and
extreme directions.

and x,, and hence
x=y+ pd,

=Ax; + (I = A)x; + pd,
where A € (0, 1), and p > 0.

This discussion is made more precise by the following theorem, a proof of
which is provided in the Appendix. The theorem applies whether the set is
bounded or not. Of course if the set is bounded, then it has no directions, and
the theorem reduces to the previous representation theorem.

Theorem 2 (Representation Theorem for the General Case)

Let X = {x : Ax =b, x > 0} be a nonempty (polyhedral) set. Then the set of
extreme points is not empty and has a finite number of points, say x,,
X, . . ., X,. Furthermore, the set of extreme directions is empty if and only if X
is bounded. If X is not bounded, then the set of extreme directions is nonempty
and has a finite number of vectors, say d,, d,, . . ., d,. Furthermore, x € X if
and only if it can be represented as a convex combination of x,, ..., x, plus a
nonnegative linear combination of d,, . . ., d,, that is,

k i
Xx= Ax; + > pd;
J=1 J=1

-k
S =1
j=1

Aj

0
By 0

Vv Vv
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Example 2.6

Consider the polyhedral set formed by the following inequalities:

The set is illustrated in Figure 2.16. The extreme points and extreme directions
are given below:

w= () sl %= (0)
a-()) «-(3)

Letx = ( g) and note that x belongs to the above polyhedral set. Then x can be

represented as follows:

(3) = (3) 2 e ns(E) + mly) + 2)

where A, =\, = 3, A; =0, 4, = 1, and p, = 0. Note that the representation is
not unique. By letting A\, = 3, A, = 0,A, = , o, = 2, and p, = 0, we get another
representation of x.

Figure 2.16. Numerical example.
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2.7 FARKAS’S THEOREM

Farkas’s theorem represents an important result that will be used to develop the
Kuhn-Tucker optimality conditions for linear programs. In this section we state
the theorem and discuss its geometric interpretation. Farkas’s theorem deals
with solvability of two systems of equations and inequalities.

Theorem 3 (Farkas’s Theorem)

One and only one of the following two systems has a solution.

System 1: Ax <0 and cx >0
System2: wA=¢ and w2>0

where A is a given m X n matrix, and ¢ a given n vector.

Praaf

The variables in the two systems are x and w respectively. The theorem can be
restated as follows. If there exists an x with AXx < 0 and cx > 0, then there is no

> 0 with wA = c. Conversely, if there exists no x with Ax < 0 and ¢x > 0,
then there exists a w > 0 such that wA = c.

Suppose that System 2 has a solution w such that wA = ¢ and w > 0. Let x be
such that Ax < 0. Then cx = wAx < 0 since w > 0 and Ax < 0. This shows
that ex cannot be positive and so System 1 has no solution. Now suppose that
System 2 has no solution. This means that ¢ & S = {wA : w > 0}. Note that S
is a closed convex set (why?). Applying Lemma 1 of the Appendix, we conclude
that there exists an x such that ex > wAx for all w > 0. By letting w = 0, we
conclude that ex > 0. Furthermore, since w can be chosen arbitrarily large, then
we must have Ax < 0 (why?). This shows that System 1 has a solution and
Farkas’s theorem is proved.

Geometric Interpretation of the Theorem

Denote the ith row of A by a', i = 1,2,..., m. Let us consider System 1, in
which Ax < 0 means that a’x < 0 for each i. That is, the “angle” between x and
each row vector a’ is greater than or equal to 90°. Then ¢x > 0 requires that the
angle between x and ¢ be less than 90°. Therefore System 1 has a solution if the
intersection of the cone {x : Ax < 0} and the open halfspace {x : ¢x > 0} is not
empty. Figure 2.17 shows a case where System 1 has a solution, with any x in the
shaded area as a solution of System 1.

Now let us consider System 2. Here wA = ¢ and w > 0 simply means that
c=237 wa', w,>0 for i=1,2,...,m. In other words, System 2 has a
solution if and only if ¢ belongs to the cone generated by the rows of A, namely
the vectors a, a%, ..., a™.
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Cone \ Open halfspace

7

Figure 2.17. System 1 has a solution.

Open halfspace

Cone

Figure 2.18. System 2 has a solution.

Figure 2.18 shows an example where System 2 has a solution. Note that if ¢
belongs to the cone generated by the rows of A, then the intersection of the cone
{x : Ax < 0} and the open halfspace {x : ¢x > 0} is empty, and hence System 1
has no solution.

Other Forms of Farkas's Theorem

F'arkas’s theorem can be presented in various other forms. We present here a
different form of Farkas’s theorem, and we shall ask the reader to state and
prove some other forms of the theorem in Exercise 2.52.
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Corollary 1 {Alternate Form of Farkas's Theorem)

One and only one of the following two systems has a solution.

System 1: Ax

0,x <0andecx >0
System 2: wA < ca

<
< candw > 0.

This form can be easily deduced from the format above by changing System 2

into equality form. Since wA < ¢ and w > 0 is equivalent to (w, v)( ) = ¢ and

(w, v) > (0, 0), then System 1 must read (I)x < (g) and cx > 0, that is,
Ax € 0,x €0, and ex > 0.

EXERCISES

2.1 Which of the following collection of vectors form a basis of E3, span E?, or

neither?
R R AR
a. 2, a, = , a=0
1 -1 1
SHES
b. a 3 a,=|0
2 5
1 0 1 -3
C. [ 21, az=[1 s a3—[2}, a4—[ 2]
3 0 3 4
1 -3 -5
el we[) el
1 2 5
e R
41, a=|-4|, a3=[l}
2 -1 0
2.2 Let

-1 3 5
a = 2 a, =2/, and a;=| -2
0 5 5

Are these vectors linearly independent? Do they span E3?

| S

23 Letay, a,, ..., a, form a basis for E”. Show thata,, a,, . . ., a, are linearly
independent. Also show that k = n.



EXERCISES 73

2.4 Show that the vectors

1 0 1)
a, =0/, a,=|1], and a;= |5

0 0

form a basis for E3. Supposing that a, is replaced by | 1 |, indicate whether

L0
the new set of vectors still forms a basis of E3.
2.5 Suppose that a;, a),...,a, form a basis of E” and y = Aja, + A,a,
+ -+ +Aa,with A, = 0. Prove thata,, ... ,a,_,,y,a,,,...,a, do not

form a basis of E”.

2.6 Let B be an invertible matrix. Show that B~! is unique.

2.7 Let
A= B|O
T| 1

where B is an m X m invertible matrix, I is a k X k identity matrix, 0 is an
m X k zero matrix, and T is an arbitrary k& X m matrix. Show that A has
an inverse and that

A-l=|_ B! 0}
-TB ' 1

2.8 Find the inverse of the following triangular matrix.

SO O~

2.10 Let A be an n X n invertible matrix. Show that A’ has an inverse and that
(A =@
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2.11

2.12

2.13

2.14

2.15

2.16

2.17

2.18

2.19

2.20

RESULTS FROM LINEAR ALGEBRA AND CONVEX ANALYSIS
Show that if A and B are n X n matrices that are both invertible, then
(AB)"!' =B 'A"".

LetA = (a;, a,...,a,...,a,)bean invertible m X m matrix. Show that

A“aj = e;, where ¢, is a vector of zeros except for a 1 at position /.

If the ith row of a square nonsingular matrix B is multiplied by a scalar
A # 0, what changes would result in B~ !?

If the ith column of a square nonsingular matrix B is multiplied by a scalar
A % 0, what changes would result in B~ !?

Let B be an invertible matrix with nonnegative entries. Show that every
row of B™! has at least one positive entry.

Let A be an n X n matrix. Suppose that B is an n X n matrix such that
AB = L. Is it necessarily true that A has an inverse? Is it necessarily true
that B = A"1?

Find the determinants of the following matrices.

(1 0 1
aA=|2 1 -1
0 2

] 2
1 0 -2 1
| 21 -1 1
ba=l_5 2 2
| 1 3 1 5
-2

c. A

1 1
2 1 5
3 -2 2
Find the rank of the following matrices.
0 1 1
2 4 -1
1 0 5 3

[—1 1 o
A=| 1 4 5

2 35

>
I
—_ N —

Show that the determinant of a square triangular matrix is the product of
the diagonal entries.

Solve the following system by Cramer’s rule.
2x;,+ x, =6

5x, —2x,=4
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2.21 Demonstrate by enumeration that every basis matrix of the following
system is triangular.

X;+ X, — X3 =1
—x; + x5+ x, =3
- X, —x, + x5=13

2.22 Solve the following system of equations.

X1 +2x,+x;= 1
- X+ Xy—Xx3= 3
2x,+3x,+ x3=—4
Without resolving the system, what is the solution if the right-hand side of
the first equation is changed from 1 to 2?

2.23 Construct a general solution of the system Ax = b where A is an m X n
matrix with rank m.

2.24 What is the general solution of the following system?

X, +2x+x; =3
—x;+5x,+x;=06

2.25 Find all basic solutions of the following system.

- X, txtx;+ x,—2x5=4

X, — 2x, +x,— x5=13

2.26 Determine whether the following system possesses: (a) no solution, (b) a
unique solution, or (¢) many (how many?) solutions.
x4+ 3x,+ x;—x,=1
S5x,—6x3+x,=0
X, — 2x,+4x, =1
2.27 Consider the system Ax =b where A={[a,a, ...,a,] is an m X n

matrix of rank m. Let x be any solution of this system. Starting with x,
construct a basic solution. (Hint. Suppose that x,,...,x, #0 and
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X415+ +» X%, = 0. If p > m, represent one of the columns a; for j =
1,2,...,p asalinear combination of the remaining vectors. This results in
a new solution with a smaller number of nonzero variables. Repeat the
process.)

2.28 Which of the following sets are convex and which are not?
Alxp x) i xt+ x2 < 1)
{xp X X3) i+ x, <1, x) — x3 € 2)
A x) 1 xy — x] =0}
(X Xy X3) P Xy 2 XE X+ Xy + X3 € 6)
{(x1, %) 1 xy = 1, | x| < 4}
{(x1, X3 x3) 2 x5 = |x)], x; < 4)

-0 po o

2.29 Show that a hyperplane H = {x : px = k) and a halfspace H* = {x :
px > k} are convex sets.

2.30 Consider the set {(x,, x)): — x; + x, <2, x; +2x, <8, x; >0,
x, > 0}. What is the minimum distance from (4, 4) to the set? What is the
point in the set closest to (4, 4)?

2.31 Consider the set X = {(x}, x;) : x|, X, > 0, x; + x, > 2, x, < 4). Find a
hyperplane H such that X and the point (—2, 1) are on different sides of
the hyperplane. Write the equation of the hyperplane.

2.32 Let a, =((1)), a, =(§), a, =( *‘11), a, =(§) and a; =( _g) Mustrate

geometrically the collection of all convex combinations of these five points.

2.33 Show that the set of feasible solutions to the following linear program
forms a convex set.

Minimize e¢x

Subject to Ax=b

x>0

2.34 Which of the following functions are convex, concave, or neither?
a. f(x) = x?2
b. f(x), xp) = e M™% 4+ xI — 2x,
c. f(x;, x,) = Maximum (f,(x,, x,), f,(x,, x,)) Where f,(x, X,) = xi + x3
and f,(x,, x,) = 2x? — x,
d. f(xp, Xp x3) = — x3 — 2x3 — X2 + 2x,x, — Xp%3 + 2x, + 5x,
e f(xp, X)) = xF +2x2 = 2xx, + x,

2.35 Show that f is convex if and only if its epigraph = {(x,y): x € E",
yEEL,y>f (x)} is a convex set. Similarly show that f is concave if and
only if its hypograph = {(x,y) : x € E",y € E',y < f(x)} is a convex set.
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2.36 Show that a differentiable function f is convex if and only if the following
inequality holds for each fixed point x4 in E”: f(X) > f(Xo) + Vf(xx)(x —
xg)for all x € E”, where Vf(x,) is the gradient vector of f at x, given by

( f (X)) (%) 9f (%) )

> s et e
9x, dx, dx,

237 If S is an open set, show that the problem
Maximize c¢x

Subjectto x € §
where ¢ # 0 possesses no optimal point. (Note. S is open if for each x, € §
there is an € > 0 such that ||x — xy|| < € implies that x € S.)

2.38 Show that if C is a convex cone, then C has at most one extreme point,
namely the origin.

2.39 Show that C is a convex cone if and only if x and y € C imply that
Ax + py € C for all A >0 and p > 0.

2.40 Find all extreme points of the following polyhedral set.
X={(x},xpx3) i X+ X+ x3 <1, —x; +2x, <4 x;, % x3 >0}
2.41 Find the extreme points of the region defined by the following inequalities.

x,+x,+ x3<

5
—x;+x,+2x;<6
0

\Y

Xy s X2, X3

(Hint. Introduce slack variables and consider basic solutions to the result-
ing system.)

2.42 Consider the nonempty polyhedral set X = {x : Ax < b, x > 0}. Show
that d is a direction of the set if and only if d # 0, Ad < 0, and d > 0.
Obtain analogous results if the inequality Ax < b is replaced by Ax = b,
and if it is replaced by Ax > b.

243 Let X = {x : Ax < b} and let x, be such at Ax, < b. Show that x, cannot
be an extreme point of X.

2.44 Prove that a polyhedral set X is bounded if and only if it has no directions.
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2.45 Does the following set have any directions? Why?

246 Let X = {x: Ax =b, x > 0} where A is an m X n matrix with rank m.
Show that d is an extreme direction of X if and only if d is a positive
multiple of the vector (—y/,0,0,...,1,0,...,0) where

y,=B7'a; <0
A =[B, N]| where B is an m X m invertible matrix

a,=a column of N

the 1 appears in position j
Illustrate by the following system.

—x;+ x+x; =2
—x;+2x,  +x,=6

X{, Xy, X3, X432 0

2.47 Show that an unbounded polyhedral set of the form {x : Ax = b, x > 0}
has at least one extreme direction. (Hint. Start with any direction and
reduce it to the direction characterized in Exercise 2.46 above.)

2.48 You are given the following polyhedral set. Identify the faces, extreme
points, extreme directions, and extreme rays of the set.

X;— X+ x3<10
2x;— x;+2x;<40
3x,—2x;+3x; <50
X1, Xy, X320

(Hint. Introduce slack variables and examine the basic solutions of the
resulting system and the directions given in Exercise 2.46.)
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2.49 Consider the polyhedral set X = {x : px = k} where p is a nonzero vector
and k is a scalar. Show that X has neither extreme points nor extreme rays.
How do you explain this in terms of the general representation theorem?

2.50 Let X = {(x), x)) : x; — %, €£3,-2x, + x, <4, x; > —3). Find all ex-
treme points of X and represent x = (0, 1) has a convex combination of the
extreme points.

2.51 Find all extreme points and extreme directions of the following polyhedral
set:
X o= {(x1 Xp, X3o Xg) 1 X1 Xy X3, X4 2 0, =X+ X+ x3 =1, x, + x4 =2}

Represent x = (1, 3, %, 1) as a convex combination of the extreme points
of X plus a nonnegative combination of the extreme directions of X.

2.52 Suppose that the following system has no solution.
Ax =0, x>0, and ex >0

Devise another system that must have a solution. (Hint. Use Farkas’s

theorem.)
1 1
253 Let A = 0 2| and ¢ = (1, 4). Which of the following two systems
-1 4

has a solution?

System 1: Ax <0 ex >0
System2: wA=c¢c w>0

Illustrate geometrically.
2.54 Consider the following problem, where A is an m X n matrix.
Minimize c¢x
Subjectto Ax=Db
x>0
Let x* be an optimal solution. Show that there is a w such that

wA<c
(WA —¢o)x* =0

These are the Kuhn-Tucker optimality conditions of linear programming.
(Hint. Suppose that xf,...,x} >0and x* =0forj=p+1,...,n
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NOTES AND REFERENCES

Show that the system

Ax =0
—cx>0
Xypppoevs X, =0

has no solution. Then use Farkas’s theorem.)

NOTES AND REFERENCES

1.

2.

Sections 2.1 through 2.3 present a quick review of some relevant results of
vector and matrix algebra.

Sections 2.4 and 2.5 give some basic definitions and properties of convex sets,
convex cones, and convex functions. For more details the reader may refer to
Eggleston [134], Mangasarian [319], and the more advanced text of Rockafel-
lar [377].

. Correspondence between bases and extreme points is established in Section

3.2, and characterization of extreme directions is presented in Exercise 2.46
(also see the Appendix).

The representation theorem for polyhedral sets evolved from the work of
Minkowski [335] and Goldman and Tucker [200]. The result is also true for
(nonpolyhedral) convex sets which contain no lines. See Rockafellar [377]
and Bazaraa and Shetty [26].

. In Section 2.7 Farkas’s theorem is presented. The theorem was published by

Farkas [142] in 1902 and is used extensively in the literature of mathematical
programming. More specifically, Farkas’s theorem is used to establish opti-
mality conditions, duality relationships, and other theorems of the alternative.
The reader may refer to Kuhn and Tucker [295], and Mangasarian [319].



THREE: THE SIMPLEX
METHOD

In this chapter the simplex method for solving a linear programming problem is
developed. We first show that if an optimal solution exists, then an optimal
extreme point also exists. Extreme points are then characterized in terms of
basic feasible solutions. We then describe the simplex method for improving
these solutions until optimality is reached, or else until we conclude that the
optimal value is unbounded. The well-known tableau format of the simplex
method is also discussed. This is a key chapter, fundamental to the development
of many other chapters in the book.

3.1 EXTREME POINTS AND OPTIMALITY

We observed from Figure 1.3 that when an optimal solution of a linear
Programming problem exists, an optimal extreme point also exists. This observa-
tion is always true, as will be shown shortly.

a1
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Consider the following linear programming problem.
Minimize c¢x

Subject to Ax=Db

x>0
Let x,, X,, ..., X, be the extreme points of the constraint set, and let d,,
d,, .. ., d, be the extreme directions of the constraint set. Recall that any point

x such that Ax = b and x > 0 can be represented as

k /
X =D AX + 2 4,
J=1 J=1
where
k

A0 j=1,2...,k
w>0 j=1,2...,1

Therefore the linear programming problem can be transformed into a prob-
lem in the variables A, A,, ..., A, gy, - . ., Wy, Tesulting in the following
linear program.

Minimize 2 (ex A + 2 (cd)) g,

j=1

k
Subject to X; A, =

j=1
A0 j=12...,k
w >0 j=12...1

Since the g’s can be made arbitrarilv large, the minimum is — o0 if ed; < 0 for
somej=1,2,...,/ Ifed; > Oforallj=1,2,...,/ then the correspondlng 1
can be chosen as zero. Now in order to minimize E"_ i(ex)) )\ overA, A, ... A,
satisfying A, > O forj =1,2,..., k, and Ek_ A =1, we 51mply find the Mini-
mum cx;, say cx,, let A, =1, and all other )\ s equal to zero.
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To summarize, the optimal solution of the linear problem is finite if and only
if cd; > O for all extreme directions. Furthermore, if this is the case, then we find
the minimum point, by picking the minimum objective value among all extreme
points. This shows that if an optimal solution exists, we must be able to find an
optimal extreme point. Of course, if the Minimum cx; occurs at more than one
index, then each corresponding extreme point is an optimal point, and also each
convex combination of these points is an optimal solution (why?).

Example 3.1

Consider the region defined by the following constraints:
- x,+ x,<2
—x,+2x,<6

X, x,20

Note that this region has three extreme points x,, X,, and x,, and two extreme
directions d, and d, (see Figure 3.1). These are

EHEHEH

ooft] ot

Now suppose that we are minimizing x, — 3x, over the foregoing region. We see
from Figure 3.1a that the optimal is unbounded and has value — cc. In this case
we have

01

=(1, -3 =0
cX, (, )LO_
cx2=(1,—3)-(2)-=—6
cx3=(1,—3)Li—=_10
4=, -3 1]=
cd, = (1, 3)0 =1
cd2=(1,—3)-%-=_1
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Objective
decreases
indefinitely

Xy

Objective
c=(1,-3) decreases
(a) (b)

Figure 3.1. Extreme directions and optimality: (¢) Unbounded optimal solution.

(b) Bounded optimal solution.

The problem is equivalent to the following.
Minimize OA;—6A,— 10\, + p, — p,

Subject to A+ A+ A, =1
As A A, o >0

Since c¢d, = — 1 < 0 and pu, can be made arbitrarily large without violating the
foregoing constraints, the optimal is achieved by letting p, = oo, giving an
unbounded objective of —cc. Then u, can be chosen equal to zero. Any set of
nonnegative A, A, A, adding to 1 satisfies the foregoing constraints, for
example, A, = 1, A, = A; = 0. This illustrates the necessary and sufficient condi-
tion for unboundness, namely ¢d < O for some extreme direction.

Now consider the problem of minimizing 4x, — x, over the same region.

.
From Figure 3.15 the optimal solution is the extreme point x, = [ (2)} In this
case we have

ox, = (4, — 1)_8] ~0
ox, = (4, — 1)P(2’} =2
ex; = (4, — l)i] =4
od, = (4, — 1):(1)] ~4
cd, = (4, — 1)Pﬂ =17
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The problem is therefore equivalent to the following,
Minimize OA,—2A,+4A;+4p,+7p,

Subject to A+ A, + A4 =1

Ao A A gy, =0

Since the coefficients of g, and g, in the objective function are positive, we let
gy = #o = 0. In order to minimize the expression OA; — 2A, + 4A; subject to
AM+A,+A =1land A, A, A; > 0, welet A, = 1 and A; = A; = 0. This shows

that the optimal solution is the extreme point x, =( (2))

Minimizing ¢x corresponds to moving the plane cx = constant in the direc-
tion —c as far as possible. When ¢ = (1, — 3) we can move the plane indefi-
nitely while always intersecting the feasible region, and hence the optimal value
is —oo. When ¢ = (4, — 1) we cannot move the plane indefinitely and we must
stop at the point x,; otherwise we “leave” the feasible region.

3.2 BASIC FEASIBLE SOLUTIONS

We have developed, in the previous section, a necessary and sufficient condition
for an unbounded solution. We also showed that if an optimal solution exists,
then an optimal extreme point also exists. The notion of an extreme point is a
geometric notion, and an algebraic characterization of extreme points is needed
before they can be utilized from a computational point of view.

In this section we introduce basic feasible solutions, and show that they
correspond to extreme points. Since an algebraic characterization of the former
(and hence the latter) exists, we shall be able to move from one basic feasible
solution to another until optimality is reached.

Definition (Basic Feasible Solutions)

Consider the system Ax = b and x > 0, where A is an m X n matrix and b is an
m vector. Suppose that rank (A, b) = rank (A) = m. After possibly rearranging
the columns of A, let A = [B, N] where B is an m X m invertible matrix and N is

X
an m X (n — m) matrix. The point x = [ xﬂ] where
N
xz =B7!b
Xy =0

is called a basic solution of the system. If x; > 0, then x is called a basic feasible
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solution of the system. Here B is called the basic matrix (or simply the basis) and
N is called the nonbasic matrix. The components of x are called basic variables,
and the components of x, are called nonbasic variables. If xp > 0, then X is
called a nondegenerate basic feasible solution, and if at least one component of x
is zero, then x is called a degenerate basic feasible solution.

The notion of a basic feasible solution is illustrated by the following two
examples.

Example 3.2 (Basic Feasible Solutions)

Consider the polyhedral set defined by the following inequalities (and
illustrated in Figure 3.2):

X, +x, <6
x, <3
x, X320

By introducing the slack variables x; and x,, the problem is put in the following
standard format:

X+ x,+ x5 =6
Xy +x,=3

X|, Xy X3 X420

Note that the constraint matrix A = [a,, a,, a5, 8,] = {(1) i 1

0 (1)] From the

X2

R )

Figure 3.2. Basic feasible solutions.
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foregoing definition, basic feasible solutions correspond to finding a 2 x 2 basis
B with nonnegative B~'b. The following are the possible ways of extracting B
out of A. K

1. B=[a,,az]=[(1) ”

o RS TN C B E S b B

2. B=[al,a4]=[(1) (1)]

os[a]=eesfo 2] [S]-BL = [2]-[3)

3. B=[az,a3]=“ (‘)]

R N IR

4. B=Jaya]= ! (1)]

R RS I N HE I AN EH

5.B =[aa,] =| | 0]

= Blog-tp=|1 O 6]_|[6 _[*]_Jo
"”_[%} == ] [S]-[5) w [Xz} o
Note that the points corresponding to 1, 2, 3, and 5 above are basic feasible
solutions. The point obtained in 4 is a basic solution, but is not feasible because

it violates the nonnegativity restrictions. In other words, we have four basic
feasible solutions, namely

Il
WANOCO

X . X3 =

6
0

X
0 4
3

S W Wwo

These points belong to E* since after introducing the slack variables we have
four variables. These basic feasible solutions, projected in E?—that is, in the
(xy, x,) space—give rise to the following four points:

HERH I
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These four points are illustrated in Figure 3.2. Note that these points are
precisely the extreme points of the feasible region.

In this example, the possible number of basic feasible solutions is bounded by
the number of ways of extracting two columns out of four columns to form the
basis. Therefore the number of basic feasible solutions is less or equal to

4y 4
(2)'2!2!‘6'

Out of these six possibilities, one point violates the nonnegativity of B~ 'b.
Furthermore, a, and a, could not have been used to form a basis since
1 1

0
qualify as a basis. This leaves four basic feasible solutions. In general, the

number of basic feasible solutions is less than or equal to

.
a =a = (1) are linearly dependent, and hence the matrix does not

n n!
(m) = saren =yt

There is another intuitive way of viewing basic solutions and basic feasible
solutions. Each constraint, including the nonnegativity constraints, can be
associated uniquely with a certain variable. Thus x, > 0 can be associated with
the variable x,, and the line x;, = 0 is the boundary of the halfspace correspond-
ing to x, > 0. Also, x, + x, < 6 can be associated with the variable x;, and
x, = 0 is the boundary of the halfspace corresponding to x; + x, < 6. Graphi-
cally portraying the boundary of the various constraints, we get the graph of
Figure 3.3. Now, basic solutions correspond to the intersection of two lines in
this graph. The lines correspond to the nonbasic variables. In the graph there are
five intersections corresponding to five basic solutions. Note that there is no
intersection of the lines x, = 0 and x, = 0 and thus no basic solution corre-

\x.,:O

Figure 3.3. Associating basic solutions
with nonbasic variables.
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sponding to these two variables being nonbasic. As soon as the feasible region is
identified, we can distinguish the basic solutions from those that are also basic
feasible solutions.

Example 3.3 (Degenerate Basic Feasible Solutions)

Consider the following system of inequalities:

X+ x,<6
x, <3
x,+2x,<9

x;, %20

This system is illustrated in Figure 3.4. Note that the feasible region is precisely
the region of Example 3.2 above, since the third restriction x; + 2x, <9 is
- “redundant.” After adding the slack variables x,, x,, and x;, we get

X+ x,+x, =6
X, txy =3
x,+2x, +x,=9

X1 Xy, X3, Xg, x5> 0

BN
7 ¢

Figure 3.4. Degenerate basic feasible solutions,
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Note that

1 1 1 0 O
A=[a,a,a,3a,a]=/0 1 0 I O]
1 2 0 0 1

Let us consider the basic feasible solution with B = [a,, a,, a,].

-1
X 1 1 1 6 0 -2 1 6 3

Xpg=|X2|=|0 1 0 31=|0 1 0 3(=|3
X3 1 2 0 9 1 1 -1 9 0
_|*s] _]0

"”"L‘s]'[O]

Note that this basic feasible solution is degenerate since the basic variable
x; = 0. Now consider the basic feasible solution with B = [a, a,, a,].

A B
wela]=[o]

Note that this basic feasible solution gives rise to the same point obtained by

B = [a,, a,, a;]. It can be also checked that the basic feasible solution with basis
B = [a,, a,, a5] is given by

X, 3 N o
= - 3
I I B x”={x4}=[o]
Xs 0
Note that all three of the foregoing basic feasible solutions with different bases
are represented by the single extreme point (x,, x,, x,, x4, X5) = (3, 3, 0, 0, 0).
Each of the three basic feasible solutions is degenerate since each contains a

basic variable at level zero. The remaining extreme points of Figure 3.4 corre-
spond to nondegenerate basic feasible solutions (why?).

Correspondence Between Basic Feasible Solutions and Extreme Points

We shall now show that the collection of basic feasible solutions and the
collection of extreme points are equivalent. In other words, a point is a basic
feasible solution if and only if it is an extreme point. Since a linear programming
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problem, with a finite optimal value, has an optimal solution at an extreme
point, an optimal basic feasible solution can always be found.
Consider the following problem.

Minimize c¢x

Subject to Ax=b

x>0

where A is an m X n matrix with rank m. Let x be an extreme point of the
feasible region. We shall show that x is also a basic feasible solution of the
system Ax = b, x > 0. Possibly after rearranging the components of x and the
columns of A, let x, x,, ..., X, be positive and Xppls oo X, be zero. We first
show that a, @y, ..., a, are linearly independent. By contradiction, if these
vectors were not linearly independent, then there must exist scalars v,
Y - - - » ¥, not all zero, such that X#_,y,a, = 0. We now exhibit two distinct
feasible solutions x' and x” such that x = 1x’' + 3x”, which violates the
assumption that x is an extreme point. Let x” and x” be the following vectors:

, x;+Ay j=12...,p
x; =
/ 0 j=p+1,...,n
o = xj—)\yj j=0L2 ...,p
/ 0 j=p+1,...,n
Since x; > 0 forj = 1,2,...,p, then regardless of the values of v, y5, ..., ¥,
we can choose A > 0 such that x/ and x > 0forj=1,2,...,p. Noting that
the y;’s are not identically zero, then x’ % x”. Furthermore
P P P P
Ax'= Y ax =Y a(x+Ay)= D ax +A ay
Jj=1 Jj=1 Jj=1 j=1
=b+0=0>b

Similarly, Ax” = b. Therefore, x’ and x” are distinct feasible solutions, and

= %x’ + %x”, which violates the fact that x is an extreme point. Therefore, a,,
@, ..., a, are linearly independent. Since A has full rank, we can extract m — p
vectors from a,.,,...,a, which together with a,...,a, form a linearly
independent set. Possibly after rearranging the columns, let these vectors be
As--.,a, LetB=[a,a,...,a,a ..., a,] Note that the columns of
B are linearly independent and hence B is a basis. Further, x can be decom-
posed into x, and xy where x,, =0 and x5 = (x}, X3, ..., %,,0,0,...,0)".
Finally Ax = b, and hence x is indeed a basic feasible solution.
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Conversely, suppose that x is a basic feasible solution of the system Ax = b,
x > 0. We want to show that x is an extreme point. Let B be the basis

X
corresponding to x and accordingly let x = OB . Suppose that x = Ax’ +

(1 —A) x” where 0 < A < 1 and x’ and x” are feasible. To show that x is an

. . . )'¢
extreme point, it suffices to show that x = x' = x”. Let x ={ , ] and
XN

x" ={ f} Note that x), > 0 and xj > 0. But since
X

N
314
0 Xy
and xj, x5 > 0, then xj, = x}, = 0. Now b = Ax’ = Bx;; + Nx}, = Bxj; and
hence x3 = B™'b. In other words, xj = Xz, and since Xy = x,y = 0, then
x’ = x. Similarly x” = x. Therefore, x is an extreme point. This shows that every
basic feasible solution is an extreme point and conversely.

Note that every basic feasible solution is equivalent to an extreme point. But
there may exist more than one basic feasible solution corresponding to the same
extreme point. This case will occur in the presence of degeneracy (as illustrated
in Example 3.3). In reference to the preceding proof, this case corresponds to
that of an extreme point where the number of positive variables is p < m. In this

case we can extract m — p vectors to complete the basis. Each possible choice
represents a basic feasible solution.

”

+(1-N 2| o<a<1
x

Existence of Extreme Points (Basic Feasible Solutions)

We shall show that every nonempty polyhedral set of the form X = {x: Ax
= b, x > 0} has at least one basic feasible solution. Without loss of generality,
suppose that rank (A) = m and let x be a feasible solution. Further suppose that

Xy,...,%,>0and thatx,, = -+ =x,=0.Ifa,...,a, are linearly inde-
pendent, then x is a basic feasible solution (why?). Otherwise there exist scalars
Y- --» Y, With at least one positive y; such that 3#_,va, = 0. Consider the

following point x’:
= x—Ay j=1...,p
0 j=p+1,...,n

where

. Xj Xk

A = Minimum{ = :y,>0; = — >0
Y Yk

Letj€(l,...,p}). If y, <0, then x/ > 0 since both x; and A are positive. If
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y; > 0, then by the definition of A we have x;/y;, > A and hence x] = x; — Ay,
> 0. Thus x’ > 0. Furthermore, x; = 0 (why?) and hence x’ has at most p — 1
positive components. Also Ax' = X?_,x/a, = XF_ (x; — Ay)a; = 2 xa —
)\E};lyjaj =b — 0 = b. To summarize, we have constructed a feasible point x’
(since Ax’ =b and x’ > 0) with at most p — 1 positive components. If the
columns corresponding to these positive components are linearly independent,
then x’ is a basic feasible solution. Otherwise the process is repeated. Eventually
a basic feasible solution will be obtained.

Let us summarize some of the important facts about the following linear

programming problem, where A is an m X n matrix with rank m.
Minimize c¢x

Subject to Ax=b
x>0

Theorem 1

The collection of extreme points corresponds to the collection of basic feasible
. solutions, and both are nonempty, provided that the feasible region is not
empty.

Theorem 2

Assuming that the feasible region is nonempty, a finite optimal solution exists if
and only if ed; > 0 for j = 1,2,...,1, where d,,...,d, are the extreme
directions of the feasible region. Otherwise, the optimal solution is unbounded.

Theorem 3

If an optimal solution exists, then an optimal extreme point (or equivalently an
optimal basic feasible solution) exists.

Since the number of basic feasible solutions is bounded by ( ":l ), one may
think of simply listing all basic feasible solutions, and picking the one with the
minimal objective value. This is not satisfactory, however, for a number of
reasons. Firstly, the number of basic feasible solutions is bounded by (":l),
which is large, even for moderate values of m and n. Secondly, this simple
approach does not tell us if the problem has an unbounded solution that may
occur if the feasible region is unbounded. Lastly, if the feasible region is empty,
and if we apply the foregoing “simple-minded procedure,” we shall discover that
the feasible region is empty, only after all possible ways of extracting m columns
out of n columns of the matrix A fail to produce a basic feasible solution, on the
grounds that B does not have an inverse, or else B~'b # 0.
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The simplex method is a clever procedure that moves from an extreme point
to another extreme point, with a better (at least not worse) objective. It also
discovers whether the feasible region is empty and whether the optimal solution
is unbounded. In practice, the method only enumerates a small portion of the
extreme points of the feasible region.

3.3 IMPROVING A BASIC FEASIBLE SOLUTION

Given a basic feasible solution, we shall describe a method for obtaining a new
basic feasible solution with a better objective value. This is the foundation of the
simplex method.

Consider the following linear programming problem.

Minimize cx

Subject to Ax=b

x>0

where A is an m X n matrix with rank m. Suppose that we have a basic feasible

solution (B;b whose objective value z; is given by
_1 —_
2y = c(B b) = (cp cN)(B Ib) =c;B”'b (3.1)
0 0
X
Now let x = XB) be an arbitrary feasible solution. Then x, > 0, x, > 0, and

b = Ax = Bx; + Nx,. Multiplying by B~! and rearranging the terms, we get
5 =B7'b — B"!Nx,

=B b - B“‘ajxj 3.2)
JjER
where R is the current set of the indices of the nonbasic variables. Noting

Equations (3.2) and (3.1), and letting z denote the objective function at x, we get

zZ =CcX

CpXp + CuXy

cB(B"b -> B“'ajxj) + 2 gx /
J

JER i ER

-2 (5~ ¢) (3:3)

JER
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where z; = ¢,B ™ 'a, for each nonbasic variable.

Equation (3.3) can guide us in the process of improving the current basic
feasible solution. Since we are to minimize z, it would be to our advantage to
increase x; (from its current level of zero) whenever z; — ¢; > 0. The following
rule will be adopted. Fix each nonbasic variable x; at zero, except for one
nonbasic variable x, with a positive z, — ¢,(z; — ¢, is the most positive z, — ¢,
say). From Equation (3.3), the new objective value z is given by

2=z — (2 — )% (3.4

Since z, — ¢, > 0, it would be to our benefit to increase x, as much as possible.
As x, is increased, the current basic variables must be modified according to
Equation (3:2), and hence x; =B~'b — B la x, =b —y,x,, where y, =

B~'a, and b=B"'b. Denoting the components of xp and b by x,,

Xg, .- .,Xxp and by, b,, . .., b, the preceding vector equation reads as follows:
[ A r _ ! . 1
Xp, 1 Yik
Xp, b, Yok
=l -] | (355)
xBr b" Ve
_'xB,,,J -bm_ _ymkj

If y, <0, then xp increases as x, increases and so xp conmtinues to be
nonnegative. If y, > 0, then x, will decrease as x, increases. In order to satisfy
nonnegativity, x, is increased until the first point at which a basic variable xg
drops to zero. Examining Equation (3.5), it is then clear that the first basic
variable dropping to zero corresponds to the minimum of 5,/y, for positive y,.
More precisely,

b, b,
= = Minimum{ -y—' Vg > O} = X (3.6)
ik

Ve 1<i<m

In the absence of degengracy b, > 0, and hence x;, = b,/y, > 0. From Equa-
tion (3.4) and the fact that z, — ¢, > 0, it then follows that z < z,, and the
objective function strictly improves. As x, increases from level 0 to b,/y,., a new
feasible solution is obtained. Substituting x, = b, /y,, in Equation (3.5) gives the



96 THE SIMPLEX METHOD

following point:

xB=b_,-—ﬂl;, i=12, , m
! yrk

b—, 37
x —3 .
=5 37

all other x;’s are zero

From Equation (3.7) above, x; = 0 and hence at most m variables are positive.

The corresponding columns are ag,ap,...,a; ,a,,a5 ,...,a; . Note that

. i 2 r—1 1 m

these columns are linearly independent since y, # 0. (Recall that if ag, ...,
ap,...,ap are linearly independent, and if a, replaces ag, then the new

columns are linearly independent if and only if y, # 0; see Section 2.1).
Therefore the point given by Equation (3.7) is a basic feasible solution.

To summarize, we have described a procedure that moves from a basic
feasible solution to another basic feasible solution. This is done by increasing
the value of a nonbasic variable x, with positive z, — ¢, and adjusting the
current basic variables. In the process, the variable xp drops to zero. The
variable x, is said to enter the basis and x; is said to leave the basis. In the
absence of degeneracy the objective function value strictly decreases and hence
the generated points are distinct. Since there is only a finite number of basic
feasible solutions, the procedure would terminate in a finite number of steps.

Example 3.4
Minimize x,+ x,

Subject to x;+2x, <4
x, <1 -

Xy, x,20

Introduce the slack variables x; and x, to put the problem in a standard form.
This leads to the following constraint matrix A:

Acmmal <[y 34 0]

Consider the basic feasible solution corresponding to B = [a,, a,]. In other
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words, x, and x, are the basic variables while x; and x, are the nonbasic

el 21 (gD 2 (40

we=ln]=[0]

This point is shown in Figure 3.5. In order to improve this basic feasible
solution, calculate z; — ¢ for the nonbasic variables.

— = —lg.
z3— ¢c3=czB 7 'a; — ¢,

=0l ") -0

1
=(1,1
0:1o)
=1
zg—cg=¢czB a, — ¢,

[
~_
Y—
—
N
—
— N
| ISS——
——
—O
~—
|
=]

[
~
—
—
P
——
I
o
v
|
o

X3

Moving toward a better
basnc feasible solution

1]

Figure 3.5. Improving a basic feasible solution.

Xy
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Since z; — ¢; > 0, then the objective improves by increasing x,. The modified
solution is given by

xz = B7'b — B 'a;x;

Xl _12] 11

)=o)
The maximum value of x; is 2 (any larger value of x; will force x, to be
negative). Therefore the new basic feasible solution is

X, Xy X3, X4) = (0, 1,2,0
1> X2, X3

Here x; enters the basis and x, leaves the basis. Note that the new point has an
objective value equal to 1, which is an improvement over the previous objective
value of 3. The improvement is precisely (z; — ¢3)x3 = 2. The reader is asked to
continue the improvement process starting from the new point.

Interpretation of Entering and Leaving the Basis

We now look more closely at the process of entering and leaving the basis, and
their interpretation.

INTERPRETATION OF z, — ¢,

The criterion z, — ¢, > 0 for a nonbasic variable x, to enter the basis, will be
used over and over again throughout the text. It will be helpful at this stage to
review the definition of z,, and make a few comments on the meaning of the
entry criterion z, — ¢, > 0. Recall that z = ¢zb — (2, — ¢,)x,, where

=czB~ ak = CpYr = 2 €8k (3-8)

i=1

and c, is the cost of the ith basic variable. Note that if x, is raised from zero
level, while the other nonbasic variables are kept at zero level, then the basic

variables xp, xp, ..., xz must be modified according to Equation (3.5). In
other words if x, is mcreased by 1 unit, then xz, xp,...,and xp_will be
decreased respectively by y ., Youo - - -, Y, UDItS (1f Yie <0, then xp will be

increased). The saving (a negative saving means more cost) that results from the
modification of the basic variables, as a result of increasing x, by 1 unit, is
therefore, X7 cyy, which is z, (see Equation 3.8). However, the cost
of increasing x, itself by 1 unitis ¢,. Hence z, — ¢, is the saving minus the cost
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of increasing x, by 1 unit. Naturally, if z, — ¢, is positive, it will be to our
advantage to increase x,. For each unit of x,, the cost will be reduced by an
amount z, — ¢, and hence it will be to our advantage to increase x, as much as
possible. On the other hand, if z; — ¢, < 0, then by increasing x,, the net saving
is negative, and this action will result in a larger cost. So this action is
prohibited. Finally if z, — ¢, = 0, then increasing x, will lead to a different
solution, with the same cost. So whether x, is kept at zero level, or increased, no
change in cost takes place.

Now suppose that x, is a basic variable. In particular, suppose that x, is the
tth basic variable that is, xk = Xp, ¢, = cg, and a, = ap. Recall that z, =
c;B 'a, = c;B 'a,. But B~ aB is a vector of zeros except for one at the sth
position (see Exerc1se 2.12). Therefore, z; = cg, and hence z; — ¢, = ¢z — ¢,
= 0.

1

Leaving the Basis and the Blocking Variable

Suppose that we decided to increase a nonbasic variable x, with a positive
z, — ¢, From Equation (3.4), the larger the value of x,, the smaller is the
objective z. As x, is increased, the basic variables are modified according to
Equation (3.5). If the vector y, has any positive component(s), then the corre-
sponding basic variable(s) is decreased as x, is increased. Therefore the nonbasic
variable x, cannot be indefinitely increased, because otherwise the nonnegativity
of the basic variables will be violated. The first basic variable x, that drops to
zero is called the blocking variable because it blocked further increase of x,.

Thus x, enters the basis and x, leaves the basis.
Example 3.5

Minimize 2x,-x,

Subject to — x, +x, <2

2x,+x,<6

Xy, X,20

Introduce the slack variables x; and x,. This leads to the following constraints:
=X+ X, + x4 =2
2x, + x, + x,=6

X1 X2, X3, X4 >0
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Consider the basic feasible solution with basis B = [a,, a,] = [ -1 T and

2 1

WIN W=

[E——
| ——]
[« 00\
| S

I

| eee—

|

WIN W=

W= W=

[
=[§0}—[‘§}x3—[ﬂx4 (39)

Currently x; = x, = 0, x, =5 and x, = . Note that

Z4 7 = CBB—134 —c=(2 - 1){ -

WIN w|—
W)= Wi—

Hence the objective improves by introducing x, in the basis. Then x, is kept
at zero level, x, is increased, and x, and x, are modified according to Equation
(3.9). We see that x, can be increased to 4, at which instant x, drops to zero.
Any further increase of x, results in violating the nonnegativity of x,, and so x,
is called the blocking variable. With x, = 4 and x; = 0, the modified values of x,
and x, are 0 and 2 respectively. The new basic feasible solution is

(X1, X3 X3, X4) = (0, 2, 0, 4)

Note that a, replaces a,; that is, x, drops from the basis and x, enters the basis.
The new set of basic and nonbasic variables are given below:

S REEEA IR REH

Moving from the old to the new basic feasible solution is illustrated in Figure
3.6. Note that as x, increases by 1 unit, x, decreases by 3 unit and x, decreases
by 3 unit; that is, we move in the direction (— 3> — %) in the (x;, x,) space.
This continues until we are blocked by the nonnegativity restriction x, > 0. At
this point x, drops to zero and leaves the basis.
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Blocking constraint

> x5 >0 4
3
10

X3

x, leaves

Xy

Bl H

Figure 3.6. Blocking variable (Constraint).

3.4 TERMINATION: OPTIMALITY AND UNBOUNDEDNESS

We have discussed a procedure that moves from one basic feasible solution to
an improved basic feasible solution, by introducing one variable into the basis,
and removing another variable from the basis. The criteria for entering and
leaving are summarized below.

1. Entering: x, may enter if z, — ¢, > 0
2. Leaving: xp may leave if

b, . b,
= Minimum { — :y, >0
Yik

yrk 1<i<m

Two logical questions immediately arise. What happens if each nonbasic vari-
able x; has z; — ¢; < 0? In this case no nonbasic variable is eligible for entering
the basis. Second, suppose that z, — ¢, > 0, and hence x, is eligible to enter the
basis, but we cannot find any positive component y,, that is, y, < 0. As the
reader may have suspected, the first case says that we have already reached the
optimal solution, and the second case says that the optimal solution is un-
bounded. These cases will be discussed in more detail in this section.

Termination with an Optimal Solution

Consider the following problem, where A is an m X n matrix with rank m.
Minimize ¢x
Subject to Ax=b

x>0
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~1
Suppose that x* is a basic feasible solution with basis B; that is, x* = BO b}
Let z* denote the objective of x*, that is, z* = ¢;B~'b. Suppose further that

z; — ¢; < 0 for all nonbasic variables, and hence there are no nonbasic variables
that are eligible to enter the basis. Let x be any feasible solution with objective
value z. Then from Equation (3.3) we have

¥ —z = 2 (z; — ¢)x; (3.10)

jER

Since z; — ¢; < 0 and x; > 0 for all variables, then z* < z. This holds for every
feasible vector x and therefore x* is an optimal basic feasible solution.

Unique and Alternative Optimal Solutions

We can get more information from Equation (3.10). If z; — ¢; < 0 for all
nonbasic components, then the current optimal solution is unique. To show this,
let x be any feasible solution that is distinct from x*. Then there is at least one
nonbasic component x; that is positive, because if all nonbasic components are
zero, x would not be distinct from x*. From Equation (3.10) it follows that
z > z* and hence x* is the unique optimal solution.

Now consider the case where z; — ¢; < 0 for all nonbasic components, but
z, — ¢, = 0 for at least one nonbasic variable x,. As x, is increased, we get (in
the absence of degeneracy) points that are distinct from x* but have the same
objective value (why?). If x, is increased until it is blocked by a basic variable,
we get an alternative optimal basic feasible solution. The process of increasing
x, from level zero until it is blocked generates an infinite number of alternative
optimal solutions.

Example 3.6

Minimize — 3x,+ x,

Subject to X +2x,+ x5 =4
-x+ x,+  x,=1
X, Xy X3, X420

Consider the basic feasible solution with basis B = [a,, a,] =[ 1 0} and

-1 1

B! =[ i (” The corresponding point is given by

R HES A HEREEEHEH
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and the objective value is —12. To see if we can improve this solution, calculate
z, —cyand z; — ¢4

2, — ¢, =B la, — ¢,
-csof} 1]
- coof3]

-1 _
czB a; — oy

500 V]lo] -0

Z3 — C3

Since both z, — ¢, <0 and z; — ¢; < 0, then the basic feasible solution
(x, X35 X5, Xg) = (4, 0, 0, 5) is the unique optimal point. This unique optimal
solution is illustrated in Figure 3.7a. Now consider a new problem where the
objective function —2x, — 4x, is to be minimized over the same region. Again,
consider the same point (4, 0, 0, 5). The objective value is — 8. Calculate z, — ¢,

ﬁ

o wln

)4

| /™

(X1

Family of alternative
optimal solutions

(a) (b)

Figure 3.7. Termination criterion: (a) Unique optimal. (5) Alternative optima.
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and z; — c3 as follows:
z,— ¢, =czB 7 'a, — ¢,
=(—2,0)[2] +4
3
=0

= -l
z;— c3=c¢cgB 7 'a; — ¢3

(-2, 0)[ } ] -0

= -2
In this case, the given basic feasible solution is optimal, but it is no longer a
unique optimal solution. We see that by increasing x, a class of optimal

solutions is obtained. Actually, if we increase x,, keep x; = 0, and modify x,
and x,, we get

[x‘ } =B b~ B 'a,x,

]2l

For any x, < 3, the solution

X, 4 —2x,
Xl _ L)
xy | 0
X4 5 — 3x2

1s an optimal solution with objective —8. In particular, if x, =3, we get an
alternative basic feasible optimal solution, where x, drops from the basis. This is
illustrated in Figure 3.75. Note that the new objective function lines are parallel
to the hyperplane x; + x, = 4 corresponding to the first constraint. That is why
we obtain alternative optimal solutions.

Unboundedness

Suppose that we have a basic feasible solution of the system Ax = b, x > 0, with
objective value z,. Now let us consider the case when we find a nonbasic
variable x, with z; — ¢, > 0 and y, < 0. This variable is eligible to enter the
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basis since increasing it will improve the objective function. From Equation (3.3)
we have

=2y~ (z — )%

Since we are minimizing the objective z, and since z, — ¢, > 0, then it is to our
benefit to increase x, indefinitely, which will make z go to — co. The reason that
we were not able to do this before was that the increase in the value of x, was
blocked by a basic variable. This puts a “ceiling” on x, beyond which a basic
variable will be negative. But if blocking is not encountered, there is no reason
why we should stop increasing x,. This is precisely the case when y, < 0. Recall
that from Equation (3.5) we have

x; =B7'b -y, x,

and so if y, < 0, then x, can be increased indefinitely without any of the basic
variables becoming negative. Therefore the solution x (where x, = B™'b —
Vi Xy, X, i8 arbitrarily large and other nonbasic components are zero) is feasible
and its objective value z = z; — (z, — ¢;)x,, which approaches —oo as x,
approaches + co.

To summarize, if we have a basic feasible solution with z, — ¢, > 0 for some
nonbasic variable x,, and meanwhile y, < 0, then the optimal is unbounded
with objective —oo. This is obtained by increasing x, indefinitely and adjusting
the values of the current basic variables, and is equivalent to moving along the
ray:

B~'b [ =V |

0 0
J O + x, | ix, > 0p
o | L o | J

-1
Note that the vertex of the ray is the current basic feasible solution (B 0 b) and

the direction of the ray is
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where the 1 appears in the kth position. It may be noted that
ed= (cg ep)d = —cpy, + ¢, = —z, + ¢

But since ¢, — z; < 0 (because x, was eligible to enter the basis), then c¢d < 0,
which is the necessary and sufficient condition for unboundedness. In Exercise
3.28 we ask the reader to verify that d given above is indeed an (extreme)
direction of the feasible region.

Example 3.7 (Unboundedness)
Minimize — x, —3x,

Subject to x,—2x,<4
—x;+ x,<3
X, X220
The problem, illustrated in Figure 3.8, clearly has an unbounded optimal
solution. After introducing the slack variables x; and x,, we get the constraint

1 -2 1 0
-1 1 0 1

whose basis B is [a;, a,] = [ (1) (1) }

R P EHEH A MR

matrix A =[ ] Now consider the basic feasible solution

X2 Increase x,

{unblocked)

Optimal is unbounded
along this ray

Increase x,
(blocked by x4)

. S :

c=(-1,-3)

Figure 3.8. Unbounded optimal.
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Calculate z;, — ¢, and z, — ¢, as follows:

= —lg
z,— ¢, =czB a — ¢

(0,0)[_”+1
=1

= -1, _
z,— ¢ =czgB7a, — ¢,

=(0,0)[ ‘ﬂ +3

=3
So we increase x, with the most positive z; — ¢, Note that x; =B~'b —
B~ 'a,x,, and hence

X3 _f4]_[-2
[M } s Je
The maximum value of x, is 3, at which instant x, drops to zero. Therefore the
new basic feasible solution is (x,, x,, x5, x,) = (0, 3, 10, 0). The new basis B is

1 2
0

[a;, a,] =[ - 2} with inverse

0 " . Calculate z, — ¢, and z, — ¢, as

follows:

- = —lq
zp— ¢ =cgB a, — ¢

=(0,—3)[(1) f”_”ﬂ

=(0,—3){:H+1
=4

= —lp _
z,—c¢,=czgB a, — ¢4

0-3[3 190

=(o,—3)[ﬂ

=-3
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Note that z;, —¢; >0and y, =B 'a, = [ —Tl< { O]. Therefore the optimal

-1 0
solution is unbounded. In this case, if x, is increased and x, is kept zero, we get
the following solution:

xz = B7'b — B 'a;x,

MEEIE

x, =0

10 + x,
3+ x,

Note that this solution is feasible for all x, > 0. In particular,
X1 —=2x,+ x3=x;, — 23+ x))+ (10 + x|) =4,

and
- X+ x+x=-x+0B+x)+0=3

Furthermore, z = —9 — 4x,, which approachés —o0 as x; approaches oo.
Therefore the optimal solution is unbounded by moving along the ray

{(0,3,10,0) + x(1, 1, 1, 0) : x; > 0}

Again note that the necessary and sufficient condition for unboundedness holds,
namely

cd=(—1,-3,0,0) =—4<0

1
1
1
0

3.5 THE SIMPLEX METHOD

All the machinery that is needed to describe the simplex algorithm, and to prove
its convergence in a finite number of iterations (in the absence of degeneracy),
has been generated. Given a basic feasible solution, we can either improve it if
z;, — ¢, > 0 for some nonbasic variable x,, or stop with an optimal point if
z; — ¢, < O for all nonbasic variables. If z, — ¢, > 0, and the vector y, contains
at least one positive component, then the increase in x, will be blocked by one
of the current basic variables, which drops to zero and leaves the basis. On the

other hand, if z;, — ¢, > O and y, < 0, then x, can be increased indefinitely, and
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the optimal solution is unbounded and has value — co. This discussion is exactly
what the simplex method does.

We now give a summary of the simplex method for solving the following
linear programming problem.

Minimize e¢x

Subject to Ax=b

x>0

where A is an m X n matrix with rank m (the requirement that rank (A) = m
will be relaxed in Chapter 4).

The Simplex Algorithm (Minimization Problem)

INITIALIZATION STEP

Choose a starting basic feasible solution with basis B. (Several procedures for
finding an initial basis will be described in Chapter 4.)

MAIN STEP

1. Solve the system Bx, =b (with unique solution x, = B™'b =b). Let
Xg =b, Xy, =0, and z = ¢px,.
2. Solve the system wWB = ¢, (with unique solution w = czB~'). Calculate

Z;— ¢ =wa — G for all nonbasic variables. Let

Z, — ¢ = Maj)_(ér%um ;-G
where R is the current set of indices associated with the nonbasic variables.
If z, — ¢, <0, then stop with the current basic feasible solution as an
optimal solution. Otherwise go to step 3.
3. Solve the system By, = a, (with unique solution y, = B~ 'a)). If y, <0,
then stop with the conclusion that the optimal solution is unbounded along
the ray ‘

|

where e, is an n — m vector of zeros except for a 1 at the kth position. If
Yi %F 0, go to step 4.
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4. Here x, enters the basis and the blocking variable xp leaves the basis,
where the index r is determined by the following minimum ratio test:

b, b,
= Minimum { — 1y, >0
Yrk I<i<m Yik

Update the basis B where a, replaces a,, the index set R and repeat step 1.

Modification for a Maximization Problem

A maximization problem can be transformed into a minimization problem by
multiplying the objective coefficients by —1. A maximization problem can also
be handled directly as follows. Let z, — ¢, instead be the minimum z, — ¢, for j
nonbasic; the stopping criterion is that z; — ¢, > 0. Otherwise, the steps are as
above.

Finite Convergence of the Simplex Method in the Absence of Degeneracy

Note that at each iteration (one pass through the main step) one of the following
three actions is executed. We may stop with an optimal extreme point if
z, — ¢, < 0; we may stop with an unbounded solution if z, — ¢, > 0 and
Y. < 0; or else we generate a new basic feasible solution if z, — ¢, > 0 and
Y« $ 0. In the absence of degeneracy, b, > 0 and hence x, = b,/y, > 0.
Therefore the difference between the objective values at the previous iteration
and the current iteration is x, (z, — ¢,) > 0. In other words, the objective
function strictly decreases at each iteration and hence the basic feasible solu-
tions generated by the simplex method are distinct. Since there is only a finite
number of basic feasible solutions, the method would stop in a finite number of
steps with a finite optimal solution or with an unbounded optimal solution.
From this discussion the following theorem is obvious.

Theorem 4 (Finite Convergence)

In the absence of degeneracy, the simplex method stops in a finite number of
iterations, either with an optimal basic feasible solution or with the conclusion
that the optimal is unbounded.

In the presence of degeneracy, it is possible that 5, = 0, and hence the
maximum increase in the entering variable x, is 0. In this case the objective
value remains the same as that of the previous iteration. It is therefore possible,
though highly unlikely in practice, that during the simplex procedure, we move
indefinitely through a sequence of bases, all corresponding to the same extreme
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point and having the same objective value. This is called cycling and will be
discussed in more detail in Chapter 4.

Example 3.8

Minimize —x,— 3x,
Subject to 2x;+ 3x,<6
—x;+ x,<I
X, Xx,20

The problem is illustrated in Figure 3.9. After introducing the nonnegative slack
variables x; and x,, we get the following constraints:

2x,+3x,+x;, =6

—-x;+ x;+ x,=1

onjoo nles
—

x

Figure 3.9. Example of the simplex method.

Iteration 1

Let B = [a,, a,] = lt(l) (” and N = [a,, a,] =[ % ?} Solving the system
Bx; =b leads to x5 = x3 =6 and xz = x, = 1. The nonbasic variables
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are x, and x, and the objective z = czx, = (0, O){? 0. In order to de-

I

termine which variable enters the basis, calculate z; —

— ¢;. First we find w by solving the system wB = ¢,:

—1 _ -
c;B 'a, — ¢, = wa,

(W, wz)[(l) ﬂ (0,0) = w; = w, = 0

zZp—c;=wa, —c¢; =1
Zy—C,=wWa, — ¢, =3

Therefore x, is increased. In order to determine x, we need to calculate y, by
solving the system By, = a,:

1 0] V2| _[3 _ _
[o 1”)’22]_[1}:))12_3 and vz =1

The variable x; leaving the basis is determined by the following minimum ratio
test:

- . bl b2 e 6 1
Minimum{ —, —= ) = Minimum{s, 7} =1
Y12 Y

Therefore the index r = 2; that is, x5, = x, leaves the basis. This is also obvious
by noting that

S ENEE 311
[m] MEHEHE G
and x, first drops to zero when x, = 1.

Iteration 2

The variable x, enters the basis and x, leaves the basis:

B=[a3,az]={(1) :H and N=[al,a4]‘=[_% (1)]

Now x5 can be determined by solving Bx, = b or simply by noting that x, = 1

in Equation (3.11).
wl=[o]
Xa 0

MENEH
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The objective value is z = —3. Calculate w by wB = c,:
1 3] . _ - = —
(W Wa) 0o 1 =0, -3)=>w =0 and w,= -3
z, — ¢ =wa — ¢
=(0,—3){_H+1=4
The variable x, left the basis in the previous iteration and cannot enter the basis

in this iteration since z, — ¢, < 0 (see Exercise 3.33). Therefore x, is increased.
Solve the system By, = a;:

1 30 Y] _ 2 _ -
3 3] 2)ornms o e

Since y,; < 0, then xp = x, leaves the basis as x, is increased. This is also clear
by noting that

xBl _ X3 - 3 _ 5 x
*8, X2 [ 1 } l: -1 } :
and x; drops to zero when x, = 2.

lteration 3

Here x, enters the basis and x; leaves the basis:

B=[al,az]=[ 2 ?J and N=[a3,a4]=[(1) OJ

MENEHEEMEH

The objective value z = =Z . Calculate w by wB = c,:

|
—

—
oo L|w

(wl,wz)[_f i’}=(*1,—3)=>wl=_—‘5‘ and w, =2

The variable x; left the basis in the last iteration and cannot enter the basis in
this iteration (because z; — ¢; < 0).

2, — Cy=Wa, — ¢,

= (% )] -0=3
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Therefore z; — ¢; < 0 for all nonbasic variables, and the current point is opti-
mal. The optimal solution is therefore

(X1 Xp X3, x4) = (2, £,0,0)

with objective value — . Figure 3.9 displays the sequence of steps that the
simplex method took to reach the optimal point.

3.6 THE SIMPLEX METHOD IN TABLEAU FORMAT

At each iteration the following linear systems of equations need be solved:
Bx, = b, wB = ¢, and By, = a,. Various procedures for solving and updating
these systems will lead to different algorithms that all lie under the general
framework of the simplex method described above. In this section we describe
the simplex method in tableau format. In subsequent chapters we shall describe
several procedures for solving the preceding systems for general linear programs
as well as for problems with special structure such as network flow problems.

Suppose that we have a starting basic feasible solution x with basis B. The
linear programming problem can be represented as follows.

Minimize z
Subject to Z— CpXpg —CyXy =0 (3.12)
Bxy; + Nx, =b (3.13)
Xz, xy 20
From Equation (3.13) we have
x; + BT'Nxy =B'b (3.14)

Multiplying (3.14) by ¢ and adding to Equation (3.12), we get
z+ 0x5 + (cgB7'N —¢y)xy =¢zB7'b (3.15)

Currently xy = 0, and from Equations (3.14) and (3.15) we get x; = B~ 'b and
z=czB7'b. Also, from (3.14) and (3.15) we can conveniently represent the
current basic feasible solution in the following tableau. Here we think of z as a
(basic) variable to be minimized. The objective row will be referred to as row 0
and the remaining rows are rows 1 through m. The right-hand-side column
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(RHS) will denote the values of the basic variables (including the objective
function). The basic variables are identified on the far left column.

z Xp Xy RHS

z | 1] 0 B 'N-cy | ¢B b | Rowo
- NP
|

xz | O L I B~'N | B7b Rows 1 through m

Not only does this tableau give us the value of the objective function e¢z;B~'b
and the basic variables B 'b on the right-hand side, but it also gives us all the
information we need to proceed with the simplex method. Actually the cost row
gives us ¢;B~'N — ¢,, which consists of the z; — ¢;’s for the nonbasic variables.
So row zero will tell us if we are at the optimal solution (if each z;— ¢ < 0), and -
which nonbasic variable to increase otherwise. If x, is increased, then the vector
Y, = B 'a,, which is stored in the tableau in rows 1 through m under the
variable x,, will help us determine by how much x, can be increased. If y, < 0,
then x, can be increased indefinitely without being blocked, and the optimal
objective is unbounded. On the other hand, if y, { 0, that is, if y, has at least
one positive component, then the increase in x, will be blocked by one of the
current basic variables, which drops to zero. The minimum ratio test (which can
be performed since B~'b =b and y, are both available in the tableau) de-
termines the blocking variable. We would like to have a scheme that will do the
following.

1. Update the basic variables and their values.
2. Update the z; — ¢; values of the new nonbasic variables.
3. Update the y; columns.

Pivoting

All of the foregoing tasks can be simultaneously accomplished by a simple
pivoting operation. If x, enters the basis and xp leaves the basis, then pivoting
on y,. can be stated as follows.

1. Divide row r by y,,.

2. Fori=1,2,...,m and i # r, update the ith row by adding to it —y,
times the new rth row. '

3. Update row zero by adding to it ¢, — z, times the new rth row. The two
tableaux of Tables 3.1 and 3.2 represent the situation immediately before
and after pivoting.
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Table 3.1 Before Pivoting

z Xg, Xp Xp X X, RHS
z ryo --- 0 0 z;— ¢ S Zp TGt czb
xp, [0 1 - 0 o 0 Yy Yk b,
xp |0 |0 1 0 vy @ . b—r
)CB’" 0 0 Cor 0 LRI 1 y,,y- Y mk l;m
Table 3.2 After Pivoting
Z X, Xg Xg, X RHS
\ Ck ™ Zk ‘ - —r
z rro .- 0 (z; — ¢) 0 regh — (2, — ¢) —
Yrk ‘ rk
NP
Z, — ¢
N S R
Yk Yyj ~ Yik -
x5, | 0| 1 ” 0 ry =5 0 { b=,
x 0o - 1 ce 0 7 1
Yrk Yk ? yrk
. . . __-j)n‘l . --))’.v . i _ -yn‘l _
Xp 0 0 a 1 Y mi —= Yk 0 bm - . br
" ' Yrk Yrk ; Yik
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Let us examine the implications of the pivoting operation.

1. The variable x, entered the basis and x, left the basis. This is illustrated on
the left-hand side of the tableau by replacing xp with x,. For the purpose
of the following iteration, the new xz is now x,.

2. The right-hand side of the tableau gives the current values of the basic
variables (review Equation 3.7). The nonbasic variables are kept zero.

3. Suppose that the original columns of the new basic and nonbasic variables
are B and N respectively. Through a sequence of elementary row opera-
tions (characterized by pivoting at the intermediate iterations), the original
tableau reduces to the current tableau with B replaced by I. From Chapter
2 we know that this is equivalent to premultiplication by B~ ! Thus,
pivoting results in a new tableau that gives the new B~'N under the
nonbasic variables, an updated set of z; — ¢’s for the new nonbasic

variables, and the values of the new basic variables and objective function.

The Simplex Method in Tableau Format (Minimization Problem)

INITIALIZATION STEP

Find an initial basic feasible solution with basis B. Form the following initial
tableau.

z Xp Xy RHS
T
| —
:o 1 |0 eBTN-ey b
{ —
Xp 0 i I ! B~ 'N : b

MAIN STEP
Let z, — ¢, = Maximum(z, — ¢;:j € R}. If z;, — ¢, < 0, then stop; the cur-

rent solution is optimal. Otherwise examine y,. If y, < 0, then stop: the optimal
solution is unbounded along the ray

(3]s & Jexmo)

where e, is a vector of zeros except for a 1 at the kth posmon If y, €0,
determine the index r as follows:

Ve 1<i<m

b . b,
= Minimum { — :y, >0
Yik
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Update the tableau by pivoting at y,,. Update the basic and nonbasic variables
where x, enters the basis and x, leaves the basis, and repeat the main step.
Example 3.9

Minimize x,;+x,—4x,

Introduce the nonnegative slack variables x,, x5, and x4 The problem becomes
the following.

Minimize x,+x,—4x;4+0x,+0x,+0x,

Subject to  x;+x,+2x;+ x, =9
X Hx,— x4 + x =2
—Xx,tx,+ X3 + x6=4

X, Xy X3p X4, X5, X220

Since b > 0, then we can choose our initial basis as B = [a,, a5, a] = I;, and we
indeed have B~'b = b > 0. This gives the following initial tableau.

lteration 1

z X Xy X3 Xy Xs Xg RHS
z 1 -1 -1 4 0 0 0 0
X, 0 1 1 1 0 0 9
Xs 0 1 1 -1 0 1 0 2
x | 0 | -1 1 ® o o 1 4
Iteration 2

z Xy Xy X3 X4 X5 Xe RHS
z 1 3 -5 0 0 0 -4 |—16
X, | O ® -1 0 1 0o -2 1
x5 0 0 2 0 0 1 1 6
X3 0 -1 i 1 0 0 1 4
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lteration 3

z X X, X3 Xy X5 Xg RHS
z 0 -4 0 -1 0 -2 -7
1 2
x) 0 I -3 0 3 0 3 3
Xs 0 0 2 0 0 1 1 6
X3 0 0 2 1 ] 0 3 =

This is the optimal tableau since z — ¢; < 0 for all nonbasic variables. The
optimal solution is given by

_ 1 = — 13
X =3,%=0x=3

z=—17

Note that the current optimal basis consists of the columns a,, a;, and a;, namely

1 O 2
1 1 -1
-1 0 1

Interpretation of Entries in the Simplex Tableau

B=[a,a;a]=

Consider the following typical simplex tableau and assume nondegeneracy.

z Xp Xy RHS
z 1 0 | ¢;B"'N—c¢y - BT
X, 0o 1 B~'N B

The tableau may be thought of as a representation of both the basic variables x,
and the cost variable z in terms of the nonbasic variables x,. The nonbasic
variables can therefore be thought of as independent variables, whereas x, and z
are dependent variables. From row zero we have

z=czB7'b— (¢;B7'N — ¢y)xy

cBB_lb + 2 (cj — zj)xj

JER

and hence the rate of change of z as a function of a typical nonbasic variable x;,
namely 9z /9x;, is simply ¢ — z;. In order to minimize z, we should increase x; if
9z /9x, < 0, that is, ifzj -¢ >0
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Also, the basic variables can be represented in terms of the nonbasic variables
as follows:

xz =B 'b — B"'Nx,

=B b~ X B 'ax
JER

=B 'b- 2 VX,
JER

Therefore 9x,/0x; = —y;; that is, —y, is the rate of change of the basic
variables as a function of the nonbasic variable x;. In other words, if x; increases
by I unit, then the ith basic variable x; decreases by an amount y;, or simply
dxp /0x; = — y,. A column y; can be alternatively interpreted as follows. Recall
that By, = a;, and hence y,; represents the linear combination of the basic
columns that are needed to represent a,. More specifically,

m
a = 2 ap Y
i=1

The simplex tableau also gives us a convenient way of predicting the rate of
change of the objective function and the value of the basic variables as a
function of the right-hand-side vector b. Since the right-hand-side vector usually
represents scarce resources, we can predict the rate of change of the objective
function as the availability of the resources is varied. In particular,

z=cB7'b - X (3 - ¢)x

JER

and hence 9z/9b = ¢;B™'. If the original identity consists of slack variables
with zero costs, then the elements of row zero at the final tableau under the
slacks grve c;B” 1-0= cBB ! which is 8z/8b More specifically, if we let
w = c;B™, then 0z/0b, =

Similarly, the rate of change of the basic variables as a function of the
right-hand-side vector b is given by

In particular, dxg,/0b is the ith row of B™!, 3x,/9b, is the jth column of B™!,
and dxp /0b, is the (i, j) entry of B! If the tableau corresponds toa degenerate
basic feasible solution, then as a nonbasic variable x; increases, at least one of
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the basic variables may become immediately negative (see Equation 3.5) de-
stroying feasibility. In this case a change of basis is necessary to restore
feasibility, leading to nondifferentiability of the objective value as a function of
x;. The advanced reader will note that, in this case, the quantities given in this
section correspond to one-sided directional derivatives.

Identifying B~ from the Simplex Tableau

The basis inverse matrix ¢an be identified from the simplex tableau as follows.
Assume that the original tableau has an identity matrix. The process of reducing
the basis matrix B of the original tableau to an identity matrix in the current
tableau, is equivalent to premultiplying rows 1 through m of the original tableau’
by B~! to produce the current tableau (why?). This also converts the identity
matrix of the original tableau to B~'. Therefore, B~ can be extracted from the
current tableau as the submatrix in rows 1 through m under the original identity
columns.

Example 3.10

To illustrate the interpretations of the simplex tableau, consider Example 3.9
at iteration 2. Then

9z dz 0z
= =-3 = =5 —=4
ax, T odx, dxg
ox ox 9x
Ao 3 2= 2 =1
ax; 0x, 04
0Xp 1
| 2

2 -1
9z 9z 9z
b,  ab,  ob,
0x 0x
Rt R, 1, —4 = 9
ab, 0b,

B—l

1 0 -2 h
0 1 1
0 0 1

The vector a, can be represented as a linear combination of the basic columns as
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follows: a, = —la, + 2a; + a;. At iteration 3 we have
0z 0z
— = —_— 2
0x, 4 Ox,
0xs Oxs 9x4 )
ax, 7 axg O ax, 3
1
X _ ;
[
3
dz 0z 0z
=1, ==0, - —= -2
b, > 0b, " 0b,
3 =2
X 3
R T
0b, X
3
dx, 04

1 1
9, 3’ b, 3

|
[N

1
B'=|o

o - O
ul»—-»—-‘u}

The vector a, can be represented as a linear combination of the basic columns as
follows: a, = — }a, + 2a5 + 3a,.

3.7 BLOCK PIVOTING

Throughout this chapter we have considered the possibility of entering a single
nonbasic variable into the basis at each iteration. Recall that whenever a
nonbasic variable enters the basis we must ensure that the new set of variables,
the current basic set minus the exit variable plus the entering variable, (1) also
forms a basis, (2) remains feasible, that is, x; > 0 for all i, and (3) the value of
the objective function either remains constant or decreases (for a minimization
problem). It is possible to enter sets of nonbasic variables so long as the same
three conditions above are satisfied. The process of introducing several nonbasic
variables simultaneously is called block pivoting. However, in the case of multi-
ple entries, the foregoing conditions become harder to ensure.
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Suppose that we enter several nonbasic variables into the basis in such a way
that condition 2 above is maintained. Note that

z=c;B b~ X (z; — ¢)x
JER

If we, for example, use the entry criterion that z; — ¢; > 0 for all entering
variables, we shall ensure that the value of z will either remain constant or else
decrease.

With respect to the question whether the new set still forms a basis, we must
extend the rule that the pivot element be nonzero. Consider the basic equations
before pivoting:

x; =B 'b — B7!Nx,

X3,

_ x
Letb=B"'b, Y, =B~ N, x, =(XB ), Xy =(x:‘) where the vector x,, en-

2
ters and the vector x, leaves the basis. Here x, and x, each contain the

same number of variables (why?). On partitioning the basic system, we get

le
XN2

I, 0 (xgl)_ b,
0 I, |\ X3 52

On rearranging, we get

YNn Yle

YN2| Ysz

I Yy,
0 Y

(XBI)_ l_)1 _ 0 Yle (sz)
Xy, 52 L Yy, XN,

Now, the new set of variables, x5 and Xy, will form a basis if and only if the

Ny

Il YNn
0

matrix is invertible. From Chapter 2 we know that this matrix is invertible if and
only if the determinant of the square matrix Y, is nonzero. This is a natural
extension of the rule for one variable entry. The new rule for maintaining a basis
is as follows. Consider the square submatrix formed by the elements in the
leaving rows and entering columns of the current tableau. If the determinant of
this submatrix is nonzero, the new set will form a basis.

Rules for checking feasibility of the new basic set are more involved. Except
in special circumstances, such as network flows, the rules for feasibility are
difficult to check. This is primarily the reason why block pivoting is generally
avoided in practice.

matrix [ J can be converted into the identity matrix; that is, if this

Niz
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EXERCISES

3.1

3.2

33

Consider the linear program: Minimize cx subject to Ax < b, x > 0, where
¢ is a nonzero vector. Suppose that the point x, is such that Ax, < b and
Xg > 0. Show that x; cannot be an optimal solution.

Consider the following linear programming problem.

Maximize x,+3x,
Subjectto —x;+ x,< 4
—x,+2x,<12
x,+ x,<10

a. Sketch the feasible region in the (x|, x,) space and identify the optimal
solution. :

b. Identify all the extreme points and reformulate the problem in terms of
the convex combinations of the extreme points. Solve the resulting
problem.

c. Suppose that the third constraint is dropped. Identify the extreme points
and directions and reformulate the problem in terms of convex combi-
nations of the extreme points and linear combinations of the extreme
directions. Solve the resulting problem, identify the optimal solution of
the original problem, and interpret the solution.

d. Is the procedure described in (b) and (c) above practical for solving
larger problems? Discuss.

Consider the region defined by the constraints Ax > b, where A is an
m X n matrix where m > n. Further suppose that rank (A) = n. Show that
X, 18 an extreme point of the region if and only if the following decomposi-
tion of A and b is possible.

A,

A=
A2

n rows [ b, } n rows

m — nrows b, |m — nrows

Ale = bl’ A2X0 > bz

rank (A)) = n
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3.4

35

3.6

Consider the following linear programming problem.
Maximize 2x;+ x,— x4

Subject to  x;+ x,+2x;<6
x;+4x,— x;<4

X, X3, x320

Find the optimal solution by evaluating the objective function at all
extreme points of the constraint set. Show that this approach is valid in this
problem. Now suppose that the first constraint is replaced by x, + x, —
2x; < 6. Can the same approach for finding the optimal point be used?
Explain why.

Consider the following linear programming problem.
Maximize  x;+2x,+4x, +5x5+ xg

Subject to  2x,+6x,4+3x;+2x,+ 3x5+4x, <600

X1, Xy, X3, X4, X5, Xg20

This problem has one constraint in addition to the nonnegativity con-
straints, and is called a knapsack problem. Find all basic feasible solutions
of the problem, and find the optimal by comparing these basic feasible
solutions.

Consider the following constraints.

a. Draw the feasible region.
b. Identify the extreme points, and at each extreme point identify the basic
and nonbasic variables.

c
¢. Suppose that a move is made from the extreme point “4)] to the

14

extreme point ; in the (x,, x,) space. Specify which variable entered

2 )
the basis and which variable left the basis.
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3.7 Consider the polyhedral set consisting of points (x,, x,) such that
x; + x,<1
Xy, X, unrestricted

Verify geometrically, and algebraically that this set has no extreme points.
Formulate an equivalent set in a higher dimension where all variables are
restricted to be nonnegative. Show that extreme points of the new set
indeed exist.

3.8 Show that, in the absence of degeneracy, there is one-to-one correspon-
dence between feasible bases and extreme points. Develop similar results in
the presence of degeneracy. Give an example.

3.9 Consider the following system.
X, + x,<2
-x; +2x, <3
X, >0

The point (4, 1) is feasible. Verify whether it is basic. If not, use the
method described in the text for reducing it to a basic feasible solution.

3.10 Solve the following problem.

Maximize 5x,+4x,

Subject to  x;+2x,

a. Graphically.
b. By the simplex method.

3.11 Solve the following linear programming problem by the simplex method, at
each iteration identifying B and B!

Maximize 3x,+2x,
Subject to  2x;—3x,<3
—x;+ x,<5

x,, x,20
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3.12 Solve the following problem by the simplex method starting with the basic
feasible solution (x,, x,) = (4, 0).

Maximize —x;+2x,

Subject to 3x,+4x,=12
2x,— x,<12

X, x32 0

(Hint. Identify the initial basis and find its inverse.)

3.13 Consider the following problem.
Maximize —3x,—2x,

Subjectto  —x;+ x,< 1
6x,+4x,<24

X >0

X,z 2

a. Solve the problem graphically.

b. Set up the problem in tableau form for the simplex method, and obtain
an initial basic feasible solution.

¢. Perform one pivot. After one pivot
i.  indicate the basic vectors
ii. indicate the values of all variables
iti. is the solution optimal?

d. Draw the requirements space representation.
i.  give the possible bases
ii. give the possible feasible bases

e. Relate each basis in d (i) to a point in a.

3.14 Consider the constraints AX =b, x > 0 and assume that they form a
bounded region. Consider the following two problems, where x, is the nth
component of x.

Minimize x
Subjectto Ax =b

Maximixe x
Subject to Ax =
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3.16
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Let the optimal objectives of both problems be x/ and x,. Let x, be any
number in the interval [x, x,/]. Show that there exists a feasible point
whose nth component is equal to x,,

Suppose we have a basic feasible solution of the system Ax = b, x > 0 with
basis B. Suppose that z; — ¢, > 0 and x, is introduced into the basis and
xp is removed from the basis. Denote the new basis by B. Show algebrai-
cally that after pivoting:
a. The column under x; is (B) 'a,.
b The right-hand side is (B)~'b.

. The new cost row is composed of (c;)(B)~ 'a, — ¢
(Hint. Suppose

e

B=(a,a,...,a,...,a,)

B=(a,a,... a,)

First show that B = BE, and (B)~! = E~'B~!, where

,ak,-..,

l—rth column
10y, 0 |
0 1 Yok 0
E=lo o , 0 |~ rthrow
] 0 o0.. Yok e 1

This form is usually called the product form of the inverse and is discussed
in more detail in Section 5.1).

Suppose that we have a basic feasible solution that is nondegenerate.
Further, suppose that an improving nonbasic variable enters the basis.
Show that if the minimum ratio criterion for exiting from the basis occurs
at a unique index, then the resulting basic feasible solution is also nonde-
generate.

3.17 Solve the following problem by the simplex method.

Maximize x,—2x,+x,
Subject to  x;+ x,+x;<12
2x1+ x;—x;3< 6
—x;+3x, <9
X1, X3 X320
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3.18 Consider the problem

Maximize 2x,+ x,—3x;+5x,

N

6
12

Subject to  x;+2x,+4x;— x,

N

2x,+3x3— x4+ x4

X + x;+ x,< 4
0

\%

X, X9, X3, X4

Find a basic feasible solution with the basic variables as x,, x,, and x,. Is
this solution optimal? If not, then starting with this solution find the
optimal solution.

3.19 Use the simplex method to solve the following problem. Note that the
variables are unrestricted in sign.

Minimize 3x,— x;

Subject to —-3x,>-3
2x1+3x2 —6
2x+ x,< 8
4x1— x2< 16

3.20 An agricultural mill produces feed for cattle. The cattle feed consists of
three main ingredients: corn, lime, and fish meal. These ingredients contain
three nutrients: protein, calcium, and vitamins. The following table gives
the nutrient contents per pound of each ingredient.

Ingredient
~ NUTRIENT CORN LIME 'FISH MEAL.
Protein 25 15 25
Calcium 15 30 20
Vitamins 5 12 8

The protein, calcium, and vitamins content per pound of the cattle feed
must be in the following intervals respectively: [18, 22], [20, o), and [6, 12].
If the selling prices per pound of corn, lime, and fish meal are respectively
$0.10, $0.08, and $0.12, find the least expensive mix.

(Hint. First find a basis B such that B™'b > 0.)

3.21 A firm makes three products 1, 2, and 3. Each product requires production
time in three departments as shown below.
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3.22

3.23

324

3.25

3.26

3.27

3.28
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PrRODUCT DEPARTMENT 1 DEPARTMENT 2 DEPARTMENT 3
1 3 hr/unit 2 hr/unit 1 hr /unit
2 4 hr/unit 1 hr/umt 3 hr/unit
3 2 hr/unit 2 hr/unit 3 hr/unit

There are 600, 400, 300 hours of production time available in the three
departments, respectively. If each unit of products 1, 2, and 3 contribute
$2, $4, and $2.5 to profit respectively, find the optimal product mix.

Solve Exercise 1.9 as a linear model by the simplex method. Find the
objective 36/x,x; corresponding to the optimal point obtained from the
simplex method. By trial and error see if you can find a feasible point
whose objective 36/x,x, is better than the objective obtained above.

Solve Exercise 1.10 to find the number of barrels of each crude oil that
satisfy the demand and minimize the total cost.
(Hint. First find a basis B with B™'b > 0.)

A nut packager has on hand 150 pounds of peanuts, 100 pounds of
cashews, and 50 pounds of almonds. The packager can sell three kinds of
mixtures of these nuts: a cheap mix consisting of 80% peanuts and 20%
cashews; a party mix with 50% peanuts, 30% cashews, and 20% almonds;
and a deluxe mix with 20% peanuts, 50% cashews, and 30% almonds. If the
12-ounce can of the cheap mix, the party mix, and the deluxe mix can be
sold for $0.90, $1.10, and $1.30 respectively, how many cans of each type
would the packager produce in order to maximize his return?

Suppose, a priori, we know that a solution cannot be optimal unless it
involved a variable at a positive value. Show that this variable can be
eliminated and that the reduced system with one less equation and variable
can be solved in its place. [llustrate by an example.

Consider the linear program: Minimize cx subject to Ax > b, x > 0.
Converting the inequality constraints to equality constraints, suppose that
the optimal basis is B. Show that w = ¢;B~' > 0.

Suppose that some tableau for a linear programming problem exhibits an
indication of unboundedness. Considering only the basic vectors and the
nonbasic vector corresponding to the column giving the unboundedness
indication, demonstrate which quantities, if any, satisfy the definition of an
extreme point. Also demonstrate which quantities, if any, satisfy the
definition of an extreme ray. Give an example.

A necessary and sufficient condition for unboundedness of the objective
value of a minimization problem is that there exists a direction of the
feasible region such that c¢d < 0. A condition for unboundedness in the
simplex method is the existence of an index j such that z; — ¢; > 0 and
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y; < 0. Discuss in detail the correspondence between the two conditions.

(Hint. Let
r -y, ]
0

0

L .

where the 1 appears at the jth position. Show that d is a direction of the set
and that c¢d = ¢; — z;. Can you show that d is an extreme direction?)

3.29 Consider the following problem.

Maximize 3x,+2x,— x,+ x,

A

Subject to 2x,—4x,— x;+ x,< 8
X+ x,+2x3—3x,<10
X,— xy—4x;+ x,<

3
0

\%

Xy, X5, X3, Xy

Use the simplex method to verify that the optimal solution is unbounded.
Make use of the final simplex tableau to construct a feasible solution with
an objective of at least 3000. Make use of the final tableau to construct a
direction d such that c¢d > 0.

3.30 Prove or give a counterexample. In order to have a basic variable in a
particular constraint, that variable must have a nonzero coefficient in its
original column and the particular row.

3.31 We showed in the text that z; — ¢, = 0 for a basic variable. Interpret this
result.

3.32 Consider the linear programming problem: Maximize ex subject to Ax = b,
X > 0 where A is an m X p matrix of rank m. Suppose an optimal solution
with basis B is at hand. Further, suppose that b is replaced by b + Ad
where A is a scalar and d is a fixed nonzero vector of dimension m. Give a
condition such that the basis B will be optimal for all A > 0.

3.33 Show that in the simplex method if a variable x; leaves the basis, it cannot
enter the basis in the next iteration.

3.34 Can a vector that is inserted at one iteration in the simplex method be
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removed immediately at the next iteration? When can this occur and when
is it impossible?

3.35 Find a nonbasic feasible optimal solution of the following problem.

Maximize Tlx,+ 2x,— x5+ 3x,+4x5+x,
Subject to S5x+ x,— x3+ 2x,+ x =12
— 14x,— 3x,+ 3x;— 5x, +x,= 2
1. 1 1 5
21+ 3% = 3 X3t 3%, <3
3x,+ 3x,+ 1.+ 3x, < 3
X1, Xy, X3, X4 X5, Xg2 O

(Hint. Let the initial basis consist of xs, x,, and the slack variables of the
last two constraints. Then find alternative optimal solutions of the prob-
lem.)

3.36 The following mathematical formulation describes a problem of allocating
three resources to the annual production of three commodities by a
manufacturing firm. The amounts of the three products to be produced are
denoted by x,, x,, and x;. The objective function reflects the dollar
contribution to profit of these products.

Maximize 10x;+15x,+5x,

Subjectto  2x,+ x, <6000
3Ix,+ 3x,+ x;<9000
x;+ 2x,+2x, <4000

X1, X3, x32 0

a. Without using the simplex method, verify that the optimal basis consists
of the slack variable of the first constraint, x,, and x,.

b. Make use of the information in (a) to write the optimal tableau.

c. The Research and Development Department proposes a new product
whose production coefficients are represented by [2, 4, 1). If the con-
tribution to profit is $12 per unit of this new product, should this
product be produced? If so, what is the new optimal program?

d. What is the minimal contribution to profit that should be expected
before production of this new product would actually increase the value
of the objective function?
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3.37

3.38

3.39

Write a precise argument showing that in the absence of degeneracy, and
assuming feasibility, the simplex method will provide an optimal solution,
or show unboundedness, of a linear program in a finite number of steps.

Consider the following linear program.
Minimize —x,—2x,+x,

Subject to  2x;+ x,+x,<6
2x,—x5<3
X{, Xy, x320

a. Find the optimal solution by the simplex method. At each iteration
identify B, N, B~!, B™'N, ¢;B~/, and the z; — ¢s.

b. At optimality, find 9x,/9x, dx,/9x,, 9z/9xs5, 9x,/3x,, where x, and
x5 are the slack variables. Interpret these values.

c. Suppose that ¢, is changed from —1 to —1 4+ A, and ¢, is changed
from -2 to —2 + A,. Find the region in the (A, A;) space that will
maintain optimality of the vector you obtained in (a).

d. Suppose a new activity x4 is considered. Here ¢, = —3, a;, = 3, and
a,, = 3. Is it worthwhile to produce the activity? If your answer is yes,
find the new optimal solution.

e. Suppose that b, is changed from 6 to 6 + A. Find the range of A that
will maintain optimality of the basis found in part (a).

f. Make use of the final tableau to represent the column a, as a linear
combination of a; and a,.

Consider the following linear programming problem.
Maximize 2x,+12x,+7x,

Subject to  x;+ 3x,+2x,<10,000
2x,+ 2x,+ x;< 4,000

X{, Xy, X3 0

The optimal solution is shown below, where z is the objective function, and
x4 and x; are the slack variables.

z X, X, X X4 Xs RHS
z 1 | 12 0 0 0 7 28,000
X4 0 -3 —1 0 1 -2 2,000
X5 0 2 2 1 0 1 4,000
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a. What are the rates of increase of the objective as a function of the
right-hand side of the first and second constraints respectively?

b. Suppose that the right-hand side of the second constraint is changed to
4000 + A. What is the range of A that will keep the basis of the
foregoing tableau optimal?

¢. Find explicitly the optimal value z as a function of A.

d. Suppose that increasing the right-hand side of the second constraint
involved expanding a manufacturing department. This will involve a
fixed cost as well as a variable cost that is a function of A. In particular
the cost as a function of A is

0 ifA=0
h(A) =
) {3000+3A ifA>0

What is the break-even point, where the cost and the added profit will
balance? What do you recommend for the optimal value of A?

3.40 Solve Exercise 1.11 by the simplex method.

3.41 Solve Exercise 1.12 by the simplex method. Suppose that extra man-hours
can be obtained by allowing overtime at the average of $12 per hour.
Would it be profitable to increase the man-hours? If so, by how much?
How would this increase the profit?

3.42 The starting and current tableaux of a given problem are shown below.
Find the values of the unknowns a through /.

Starting Tableau

z X, Xy X X4 Xs RHS

I a 1 -2 0 0o © 0
L L S

0 b c d 1 o | 6

0o | -1 3 e 0 I I

Current Tableau

z X, Xy X5 Xy X5 RHS

1 0 7 j k I 9 ]
0 g 2 -1 2 o | f

0 h i 1 o P! 4

343 The following is the current simplex tableau of a given maximization
problem. The objective is to maximize 5x, + 3x,, and the slack variables
are x; and x4. The constraints are of the < type.
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3.44

345

346

z X, X, X5 X, RHS
z 1 b 1 f g 10
X5 0 ¢ 0 1 3 2
X, 0 d e 0 1 a

a. Find the unknowns a through g.

b. Find B~ .

c. Find dx,;/0x,, 0z/03b,, 8z/0x,, 0x,/db,.
d. Is the tableau optimal?

The following is the current simplex tableau of a linear programming
problem. The objective is to minimize —28x, — x5 — 2x,, and x, x,, and
X are the slack variables.

z X X, X4 X, Xs Xg RHS
z 1 b ¢ 0 0 -1 g | —14
X 0 3 0 - 0 1 1 ‘ a
X, 0 6 d 2 0 2 0 | 5
x, |0 0 e f 1 0 0 | 0
a. Find the values of the unknowns a through g in the tableau.
b. Find B~
c. Find 9x,/0x,, 9z /9x,, dx,/0b5.
d. Without explicitly finding the basic vectors a,, a,, a,, give the repre-
sentation of the vector a5 in terms of these basic vectors.
Consider the problem: Maximize ex subject to Ax = b, x unrestricted in

sign. Under what conditions does this problem have a bounded optimal
solution?

Consider a linear programming problem in which some of the variables are
unrestricted in sign. What are the conditions for a bounded optimal
solution? Without introducing additional variables, show how the entry
and exit criteria of the simplex method can be modified such that the
unrestricted variables are handled directly. How does the simplex method
recognize reaching an optimal solution in this case? Illustrate by solving the
following problem.

Minimize —2x,+x,
Subject to X, +x,<4
X —X,<6
x; 20

x, unrestricted
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3.47 Consider the following simplex tableau for a minimization problem (the
constraints are of the < type and x,, x,, and x5 are the slacks).

z X X, X5 X4 X5 RHS

1 0 0 b 0 ]
0 1 -2 0 4 0 ﬂ c

0 0 -1 1 5 o | d

0 0 0 0 7 1| e

Suppose thata < 0, b < 0,and ¢,d, e > 0

a. Find B~

b. Find B.

c. Is the tableau optimal?

d. Give the original tableau.

e. From the tableau identify ¢;B~' and give its interpretation.

Now suppose thata > 0,5 < 0; and ¢, d, e > 0.

f. Is the new tableau optimal?

g. Give an extreme direction.

h. Leta = 5 and f = —10. Give a feasible solution with z = —200.

3.48 Construct a detailed flow diagram of the simplex method. What are the
number of operations (additions, subtractions, multiplications, divisions)
that are needed at each simplex iteration? Using FORTRAN (or another
language), convert the flow diagram into a simplex code.

NOTES AND REFERENCES

1. This chapter describes the simplex algorithm of Dantzig (developed in 1947
and published at a later date in 1949 [86]). The material of this chapter is
standard and can be found in most linear programming books.

2. In Section 3.1 we proved optimality at an extreme point via the representa-
tion theorem. The reader may note that the simplex algorithm itself gives a
constructive proof of this fact. .

3. The material on block pivoting is due to Tucker [440]. For further reading on
block pivoting, see Dantzig [97] and Lasdon [305].



FOUR: STARTING
SOLUTION AND
CONVERGENCE

In the previous chapter, we developed the simplex method with the assumption
that an initial basic feasible solution is at hand. In many cases, such a solution is
not readily available, and some work may be needed to get the simplex method
started. In this chapter we describe two procedures (the two-phase method and
the big-M method), both involving artificial variables to obtain an initial basic
feasible solution to a slightly modified set of constraints. The simplex method is
used to eliminate the artificial variables and to solve the original problem. We
also discuss in more detail the difficulties associated with degeneracy. In
particular we show that the simplex method converges in a finite number of
steps, even in the presence of degeneracy, provided that a special rule for exiting
from the basis is adopted.

4.1 THE INITIAL BASIC FEASIBLE SOLUTION

Recall that the simplex method starts with a basic feasible solution and moves to
an improved basic feasible solution, until the optimal point is reached or else

137
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unboundedness of the objective function is verified. However, in order to
initialize the simplex method, a basis B with b = B~'b > 0 must be available.
We shall show that the simplex method can always be initiated with a very
simple basis, namely the identity.

Easy Case

Suppose that the constraints are of the form Ax < b, x > O where Aisanm X n
matrix and b is an m nonnegative vector. By adding the slack vector x_, the
constraints are put in the following standard form: Ax + x;, = b, x > 0,x, > 0.
Note that the new m X (m + n) constraint matrix (A, I) has rank m, and a basic
feasible solution of this system is at hand, by letting x, = b be the basic vector,
and x = 0 be the nonbasic vector. With this starting basic feasible solution, the
simplex method can be applied.

Some Bad Cases

In many occasions, finding a starting basic feasible solution is not as straight-
forward as the case described above. To illustrate, suppose that the constraints
are of the form Ax < b, x > 0 but the vector b is not nonnegative. In this case,
after introducing the slack vector x;,, we cannot let x = 0, because x; = b
violates the nonnegativity requirement.

Another situation occurs when the constraints are of the form Ax > b, x
where b > 0. After subtracting the slack vector x,, we get Ax — x, = b, x
and x, > 0. Again, there is no obvious way of picking a basis B from the matrix
(A, =D withb=B"'b > 0.

In general, any linear programming problem can be transformed into a
problem of the following form.

> 0,
>0

>

Minimizes cx

Subject to  Ax=b

x>0

where b > 0 (if b, < 0, the ith row can be multiplied by —1). This can be
accomplished by introducing slack variables and by simple manipulation of the
constraints and variables. If A contains an identity matrix, then an immediate
basic feasible solution is at hand, by simply letting B = I, and since b > 0, then
B7'b =b > 0. Otherwise, something else must be done.
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Example 4.1

a. Consider the following constraints:
x;+ 2x, < 4

—-x+ x, <1
X, X,20

After adding the slack variables x; and x,, we get

x1+ 2.x2+X3 =4
-x; +x, +x4=1
Xy, Xy, X3, X420

An obvious starting basic feasible solution is given by X, =[;Cj} = {‘” and
wela]- [0
b. Consider the following constraints:
x; +x, tx;<6
— 2x4 3x,+ 2x3> 3
Xy, X320
Note that x, is unrestricted. So the change of variable x; = x;* — x| is made.

Also the slack variables x, and x; are introduced. This leads to the following
constraints in standard form:

"= x4 x4 x4+ x, =6
—2xF - =
2x; +2x7 +3x,42x, —x5=3
+ -
X, Xy, Xy X3 X4 X520

Note that the constraint matrix does not contain an identity and no obvious
feasible basis B can be extracted.
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¢. Consider the following constraints:
X +x,— 2x3€ —3
—2x;+x,+ 3x;< 7
X1, Xy, X320

Since the right-hand side of the first constraint is negative, the first inequality
is multiplied by —1. Introducing the slack ‘variables x, and x; leads to the
following system:

—X; =X, +2x;—x, =3
=2, +x, + 3x;3 +x5=17
X, Xy X3 XgXx5 20

Note again that this constraint matrix contains no identity.

Artificial Variables

After manipulating the constraints and introducing slack variables, suppose that
the constraints are put in the format Ax = b, x > 0 where A is an m X n matrix
and b > 0is an m vector. Further suppose that A has no identity submatrix (if A
has an identity submatrix then we have an obvious starting basic feasible
solution). In this case we shall resort to artificial variables to get a starting basic
feasible solution, and then use the simplex method itself to get rid of these
artificial variables.

To illustrate, suppose that we change the restrictions by adding an artificial
vector x, leading to the system Ax + x,=b, x >0, x, > 0. Note that by
construction, we forced an identity matrix corresponding to the artificial vector.
This gives an immediate basic feasible solution of the new system, namely
x, =band x = 0. Even though we now have a starting basic feasible solution,
and the simplex method can be applied, we have in effect changed the problem.
In order to get back to our original problem, we must force these artificial
variables to zero, because Ax = b if and only if Ax + x, = b with x, = 0. In
other words, artificial variables are only a tool to get the simplex method started,
but we must guarantee that these variables will eventually drop to zero.

At this stage, it is worthwhile to note the difference between slack and
artificial variables. A slack variable is introduced to put the problem in equality
form, and the slack variable can very well be positive, which means that the
inequality holds as a strict inequality. Artificial variables, however, are not
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legitimate variables, and they may be introduced to facilitate the initiation of the
simplex method. These artificial variables, however, must eventually drop to
zero in order to attain feasibility in the original problem.

Example 4.2

Consider the following constraints:

\Y

X, + 2x,

- 3x, + 4x,

\Y

2x; + x,

N
=2~ N VN N

\Y

X1, Xo

Introducing the slack variables x;, x,, and x,, we get

X, + 2x, — x4 =4

— 3x, + 4x, — X4 =35
2x, + x, +x5=6
X, Xy X3, X4 X520

This constraint matrix has no identity submatrix. We can introduce three
artificial variables to obtain a starting basic feasible solution. Note, however,
that x, appears in the last row only, and it has coefficient 1. So we only need to
introduce two artificial variables x, and x,, which leads to the following system.

Legitimate variables Artificial variables
X +2x,— x4 + x =
— 3x,+4x, - X, +x;=5
2x,+ x, + x5 =
'xl s 'x2 s 'x3 s X4 X5, .x6, .x7 20

Now we have an immediate starting basic feasible solution of the new system,
namely x5 = 6, x, = 4, and x, = 5. The rest of the variables are nonbasic and
have value zero. Needless to say, we eventually would like for the artificial
variables x4 and x, to drop to zero.
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4.2 THE TWO-PHASE METHOD

There are various methods that can be used to eliminate the artificial variables.
One of these methods is to minimize the sum of the artificial variables, subject to
the constraints Ax + x, = b, x > 0 and x, > 0. If the original problem has a
feasible solution, then the optimal value of this problem is zero, where all the
artificial variables drop to zero. More importantly, as the artificial variables
drop to zero, they leave the basis, and legitimate variables enter instead.
Eventually all artificial variables leave the basis (this is not always the case,
because we may have an artificial variable in the basis at level zero; this will be
discussed later in greater detail). The basis then consists of legitimate variables.
In other words, we get a basic feasible solution of the original system Ax = b,
x > 0, and the simplex method can be started with the original objective cx. If,
on the other hand, after solving this problem we have a positive artificial
variable, then the original problem has no feasible solutions (why?). This
procedure is called the two-phase method. In the first phase we reduce artificial
variables to value zero, or conclude that the original problem has no feasible
solutions. In the former case, the second phase minimizes the original objective
function starting with the basic feasible solution obtained at the end of the phase
I. The two-phase method is outlined below.

Phase |

Solve the following linear program starting with the basic feasible solution x = 0
and x, = b.

Minimize 1x,

Subjectto Ax+x,=b

X, x, >0

If at optimality x, # 0, then stop; the original problem has no feasible solutions.
Otherwise let the basic and nonbasic legitimate variables be x; and x,,. (We are
assuming that all artificial variables left the basis. The case where some artificial
variables remain in the basis at zero level will be discussed later.) Go to phase II.

Phase 1l

Solve the following linear program starting with the basic feasible solution
Xz =B 'band x, = 0.

Minimize  ¢czxp + cyXy

Subject to x5 + B"!Nxy,=B~'b

Xg, Xy=0
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The optimal solution of the original problem is given by the optimal solution of
the foregoing problem.

Example 4.3

Minimize x,—2x,

Subjectto x;+ x,>2

—x1+ x>1
x, <3
Xy, Xx,20

The feasible region and the path taken by phase I and phase II to reach the
optimal point are shown in Figure 4.1. After introducing the slack variables x,,
X4 X5, the following problem is obtained.

Minimize x,—2x,

Subject to  x;+ x,—x; =2
—x1+ x5 — X, =1

Xy +x5=3

X1, Xy, X3, X4, X520

An initial identity is not available. So introduce the artificial variables x, and x,
(note that the last constraint does not need an artificial variable). Phase I starts
by minimizing x, = x4 + x,.

X

Figure 4.1. Example of the two-phase method.
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PHASE |
ARTIFICIALS
Xo X Xy X3 Xy X5 Xg X5 RHS
1 0 0 0 0 0 -1 -1 0
0 1 1 -1 0 0 1 0 2
0 -1 1 0 -1 0 0 1 1
0 0 1 0 0 1 0 0 3

Add rows 1 and 2 to row 0 so that z, — ¢ = z; — ¢, = 0 will be displayed.

X0
X1
X3
Xs

Xg X Xy X3 X4 Xs Xg Xq RHS
1 o 2 -1 -1 0 0 0| 3
0 1 1 -1 0 0 1 0| 2
ol -1 Q@ 0 -1 0 0 1 1
0 0 1 0 o 1 0 0| 3

X X Xy X3 X4 Xs X Xq RHS
1 2 0 -1 1 0 0 -2 1
0 @ o -1 1 0 -1 1
0| -1 1 0 -1 0 0 1 1
0 10 0 1 0o -1 2

Xg Xy X, X3 X4 X5 X Xq RHS
1 0 0 0 o o0 -1 -1 0
0 10 -3 ;0 I T2 7
0 o 1 -1 -1 9 ; ;| 3
0 0 0 7 7 e 7

This is the end of phase I. We have a starting basic feasible solution,
(x1, xp) = (3, %). Now we are ready to start phase II, where the original
objective is minimized starting from the extreme point (%, 2) (see Figure 4.1).
The artificial variables are disregarded from any further consideration.
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PHASE Il
z X Xy X5 X4 X5 RHS
1 -1 2 0 0 0 0
0 1 0 -1 x 0 3
0 0 1 -1 -1 0 3
0 0o : P }

Multiply rows 1 and 2 by 1 and —2 respectively and add to row 0 producing
Zp—¢=2z,— ¢, =0.

z Xy Xy X3 Xy Xs RHS
z 1 0 0 1 2 0 -3
x, | O 0 —4 @ 0 1
4P) 0 1 -3 -3 0 3
x5 |0 o 1 L :

z X Xy X3 X4 Xs RHS
z 1 -3 0 2 0 0 -4
X4 0 2 0 -1 1 0 1
Xy 0 1 1 -1 0 0 2
x5 | 0O -1 0 ® 0 1 1

zZ X1 Xa X3 X4 x5 RHS
z 1 -1 0 0 0 -2 -6
X4 0 1 0 0 1 1 2
Xy 0 0 1 0 0 1 3
X4 0 -1 0 1 0 1 1

Since z; — ¢; < 0 for all nonbasic variables, the optimal point (0, 3) with
objective — 6 is reached. Note that phase I moved from the infeasible point
(0, 0), to the infeasible point (0, 1), and finally to the feasible point (4, 3). From
this extreme point, phase IT moved to the feasible point (0, 2), and finally to the
optimal point (0, 3). This is illustrated in Figure 4.1. The purpose of phase I is to
get us to an extreme point of the feasible region, while phase II takes us from

this feasible point to the optimal point.
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Analysis of the Two-Phase Method

At the end of phase I either x, 7 0 or else x, = 0. These two cases are discussed
in detail below.

Case A: x, # 0

If x, # 0, then the original problem has no feasible solutions, because if there
X
0
and 0(x) + 1(0) = 0 < 1x,, violating optimality of x,,.

is an x > 0 with Ax = b, then ( ) is a feasible solution of the phase I problem

Example 4.4 (Empty Feasible Region)

Minimize — 3x, +4x,

N

Subjectto  x;+ x,< 4
2x,+3x,>18
0

\Y

X1 X3

The constraints admit no feasible points, as shown in Figure 4.2. This will be
detected by phase I. Introducing the slack variables x; and x, we get the
following constraints in standard form:

X+ x4 x5 =4
2x,+3x, —-x,=18
X, Xy, X3, X, 0

Since no convenient basis exists, introduce the artificial variable x5 into the
second constraint. Phase I is used to get rid of the artificial.

Xz

S ©
A

Figure 4.2. Empty feasible region.
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PHASE |
Xo X Xy X3 Xy X5 RHS

1| 0 0 0 0 -1 0

0 1 1 1 0 0 4

0 2 3 0 -1 1 18

Add row 2 to row 0 so that z; — ¢5 = 0 is displayed.

X X, Xy X5 X4 X5 RHS
Xo 1 2 3 0 -1 0 18
X3 0 1 O 1 0 0 4
x5 0 2 3 0 -1 1 18

X X, Xy X5 X4 Xs RHS
Xo 1 —1 0 -3 ~1 0 6
x 0 1 1 1 0 0 4
X 0 -1 0o -3 -1 1 6

The optimality criterion of the simplex method, namely z; — ¢; < 0, holds for all
variables; but the artificial x; > 0. We conclude that the original problem has
no feasible solutions.

Case B: x, =0

This case is further divided into two subcases. In subcase Bl all the artificial
variables are out of the basis at the end of phase I. The subcase B2 corresponds
to the presence of at least one artificial in the basis at zero level. These cases are
discussed below.

Subcase B1 (All Artificials Are Qut of the Basis)

Since at the end of phase I we have a basic feasible solution, and since x,, is
out of the basis, then the basis consists entirely of legitimate variables. If the
legitimate vector x is decomposed accordingly into X, and x,, then at the end of
phase I we have the following tableau.

X, Xp Xy X, RHS
Xg 1 { 0 0 -1 0
X5 0 { I B-IN B! B b

Now phase II can be started, with the original objective, after discarding the
columns corresponding to x,. (These columns may be kept for the purpose of
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bookkeeping since they would present B~ ! at each iteration. Note, however, that
an artificial variable should never be permitted to enter the basis again.) The
z; — ¢;’s for the nonbasic variables are given by the vector ¢;B~'N — ¢, which
can be easily calculated from the matrix B™'N stored in the final tableau of
phase 1. The following initial tableau of phase II is constructed. Starting with
this tableau, the simplex method is used to find the optimal solution.

z Xp Xy RHS
z 1 0 c;B"'N —¢, c;B”'b
Xp 0 1 B'N B~'b

Subcase B2 (Same Artificials Are in the Basis at Zero Level)

In this case we may proceed directly to phase II, or else eliminate the
artificial basic variables, and then proceed to phase II. These two actions are
discussed in further detail below.

PROCEED DIRECTLY TO PHASE Ii

First eliminate the columns corresponding to the nonbasic artificial variables of
phase I. The starting tableau of phase II consists of some legitimate variables
and some artificial variables at zero level. The cost row consisting of z; —¢’sis
constructed for the original objective function so that all legitimate variables
that are basic have z; — ¢; = 0. The cost coefficients of the artificial variables
are given value zero (justify!). While solving the phase II problem by the simplex
method, we must be careful that artificial variables never reach a positive level
(since this would destroy feasibility). To illustrate, consider the following
tableau, where for simplicity we assume that the basis consists of the legitimate

variables x|, x,, . . ., x, and the artificial variables x, |, . . ., X, (the artifi-
cial variables x,,,, . .., X, left the basis during phase I).

ZoXp ot X Xt X Xy Xyppr 00 Xpym RHS
z 110 e 0 Zj —- (,‘j 0 . e 0 cz
X, 1 Yy 0 o 0 | b
X3 1 Yy 0 T 0 2
X 1 Vi 0 -+ 0 b
Xntk+1 o - 0 Yk+1,j 0
X, 0 0 Ve 1 0
Xn.+m o ... ) );mj 1 0
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Suppose that z; — ¢; > 0, and so x; is eligible to enter the basis. If y; > 0 for
i=k+1, ..., m, then the artificial variable x,; will remain zero as x; enters
the basis and the usual minimum ratio test is performed. If, on the other hand,
at least one component y,, <0 (r=4k+1,..., or m), then the artificial
variable x,,, becomes positive as x; is increased. This action must be prohibited
since it would destroy feasibility. This can be done by pivoting at y,; rather than
using the usual minimum ratio test." Even though Y, <0, pivoting at y,; would
maintain feasibility since the right-hand side at the corresponding row is zero. In
this case x; enters the basis and the artificial x,,, leaves the basis, and the
objective value remains constant. With this slight modification the simplex
method is used to solve phase II.

FIRST ELIMINATE THE BASIC ARTIFICIAL VARIABLES AT THE END OF PHASE |

Rather than adopting the preceding rule, which guarantees that artificial vari-
ables will always be zero during phase II, we can eliminate the artificial
variables altogether before proceeding to phase II. The following is a typical
tableau (possibly after rearranging) at the end of phase 1. The objective row and
column do not play any role in the subsequent analysis and are hence omitted.

BASIC NONBASIC NONBASIC BASIC
LEGITIMATE LEGITIMATE ARTIFICIAL ARTIFICIAL
VARIABLES VARIABLES VARIABLES VARIABLES
X)X X M Xy Xy Xk Xpphal T Xawm RHS
X, 1 0o 0--- 0 b,
X, 1 R, R, o 0-.--- 0 2
X, 1 0o 0 --- 0 by
Xoehe | OO0 - 0 1 0
. R, R, 1 0
Xt m 0 0 0 1 0

We now attempt to drive the artificial variables x,, ., - - - , X,4,, Out of the
basis by placing m — k of the nonbasic legitimate variables x, |, . . ., x, into
the basis. For instance, x,,, ., can be driven out of the basis by pivoting at any
nonzero element of the first row of R,. The corresponding nonbasic legitimate
variable enters and x,,,,, leaves the basis, and the tableau is updated. This
process is continued. If all artificial variables drop from the basis, then the basis

YActually, if any one of the y,’s is positive for r = & + 1,.

.., m, then we may use the usual
minimum ratio test as X will enter the basis at zero level.
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would consist entirely of legitimate columns, and we proceed to phase II as
described in subcase B1. If, on the other hand, we reach a tableau where the
matrix R, = 0, none of the artificial variables can leave the basis by introducing
Xga1s Xg4s - -5 O X,. Denoting (x|, x,, ..., x.) and (x, ., ..., x,) by x,

A A
and x, respectively, and decomposing A and b accordingly into [ 11 A12 }
21 22

b
and l bl }, it is clear that the system
2

k n—k

k Ay A
m—k| Ay | Ap

HEN
X b, ]
is transformed into
k n—k
k IR, x1:| _ b,

m—\4klg| o |LX 0
through a sequence of elementary matrix operations. This shows that rank
(A, b) = k < m; that is, the last m — k equations are mathematically redundant

and R, = A;;'A,, and b, = A[;'b;. The last m — k rows of the last tableau can
be thrown away, and we can proceed to phase II without the artificial variables.

The basic variables are x,, x,, ..., x, and the nonbasic variables are
Xg41r - - - » X,. The starting tableau of phase II is depicted below, where ¢z =
(Cpr € o v o5 C)

Z Xyttt Xy X 41 " " Xp RHS

1 0 cgA AL — ¢y b,
0 1 1 AalAlz = Rl Bl

Example 4.5 (Redundancy)

Minimize —x,;+2x,—3x,

Subject to X+ x+ x3= 6
—x;+ x,+2x;= 4
2x,+3x,=10
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We need to introduce a slack variable x,. The constraint matrix A is given
below:

A=

O N = —
_ ) N —
—_o O O

1
-1
0
0

Note that the matrix is not of full rank. Actually if we add the first two row of
A, we get the third row; that is, any one of the first three constraints is
redundant and can be thrown away. We shall proceed as if this fact were not
known, however, and introduce the artificial variables x, x, and x,. The phase [
objective is: Minimize x, = x5 + x4 + x,. Phase I proceeds as follows.

PHASE |
Xo X Xy X5 X4 X5 Xg X7 RHS
1 0 0 0 o -1 -1 -1 0
1 1 1 1 0 1 0 0 6
0 -1 1 2 0 0 1 0 4
0 0 2 3 0 0 0 1 10
0 0 0 1 1 0 0 0 2

Add rows 1, 2, and 3 to row 0, to display z5 — ¢ =z, — ¢ = 2z, — ¢; = 0.

X0 X Xy X3 Xy X5 Xg X4 RHS

X 1 0o 4 6 0o 0 0 0 20
xs 0 1 1 1 0 1 0 0 6
Xg 0| -1 1 2 0 0 1 0 4
X 0 0o 2 3 o 0 0 1 10
X, 0 o o (O 1 0 0 0 2
Xq X, Xy X3 X, X5 Xg X;  RHS

X 1 o 4 0 -6 0 0 0 8
x5 | 0 1 1 0o -1 1 0 0 4
X o | -1 @O o -2 0 1 0 0
x, |0 o 2 o0 -3 0 0 1 4
X 0 0 0 1 1 0o 0 0 2
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Xq Xy X, X3 Xg4 X5 Xg Xq RHS
x, | 1| 4 0 0 2 0 -4 0 8 |
xx o] ®@ o o 1 1 -1 0 4
xx | o |-1 1 0 -2 0 1 0 0
x; | 0| 2 0 0 1 0 -2 1 4
x3 | ol O 0 1 1 0 0 0 2

Xo Xy Xy X3 Xy Xs X6 X7  RHS
xo | 1 0 0 0 0 -2 =2 0 0
x, | 0 1 0 0 i T 0 2
x, | O 0 1 o -2 ! : 0 2
x; | 0 0 0 o o -1 -1 1 0
x3 |0 |0 0 1 1 0 0 0 2

Since all the artificial variables are at level zero, we may proceed to phase 11
with a basic feasible solution of the original problem. We can either proceed
directly with the artificial x, into the basis at zero level, or attempt to eliminate
x, from the basis. The only legitimate nonbasic variable is x,, and it has zero
coefficient in row 3 corresponding to x,. This shows that the third row (con-
straint of the original problem) is redundant and can be thrown away. This will
be done as we move to phase II.

PHASE I

Obviously z; — ¢, = z, — ¢, = z3 — ¢; = 0. Thus x, and x, are nonbasic artifi-
cial variables and will not be introduced in the phase II problem. In order to
complete row 0 we need to calculate z, — ¢,:

= —1, _
zg— ¢, =cgB 2, — ¢,

(—1,2, - 3)| _

—_— Nl N
|
o

Since we are minimizing and z, — ¢, < 0 for the only nonbasic variable, then
we stop; the solution obtained from phase I is optimal. The tableau below
displays the optimal solution.
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z X Xy X4 X4 RHS
z 1 0 0 0 -2 -4
X, 0 1 0 0 z 2
x, | 0 0 1 0 -3 2
x5 | O 0 0 1 1 2

Organization of the Tableauv in the Two-Phase Method

To eliminate the need for recomputing the z; — ¢;’s when the phase I objective
function is replaced by the phase II (original) objective function, an extra row
could be added to the tableau representing the original cost coefficients. The
following represents the setup of the initial tableau (not yet in basic form).

ARTIFICIALS
Pttt arr———
z X0 X Xp Xpp1' ' " Xpym RHS
z{1,0|=-¢--"=¢, 0 ---0 0 |« Phase II Objective
Xo| 0|1 o --- o0—-1----1 0 | < Phase I Objective
Xpt1l 0 0 a, - t a,, - 0 bl
'xn+‘m 0 0 a;nl e a,'m, O LR 1 bm

To convert this tableau to basic form (that is, unit vectors for all basic variables)
we must perform preliminary pivoting to obtain zeros for x,,, through x, ., in
the x, (phase I objective) row. This is done by successively adding every row
(except the z row) to the x; row.

Once the initial tableau has been converted to basic form, the simplex method
is applied to the resulting tableau using the x, row as the (phase I) objective
function row until optimality is achieved. During phase I the z row is trans-
formed just as any other row of the tableau would be, to maintain unit vectors
for the basic variables. Note, however, that during phase I the basis entry is
solely determined by the entries in row x,,.

At the end of phase I, if x, is positive the problem is found to be infeasible
and the process is terminated. Otherwise, the x, row and x, column are deleted
and phase II is initiated (after possibly eliminating artificial variables), with the
values in the z row being the correct values of z; — ¢; (why?) for the phase 11
objective.
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4.3 THE BIG-M METHOD

Recall that artificial variables constitute a tool that can be used to initiate the
simplex method. However, the presence of artificial variables at a positive level,
by construction, means that the current point is an infeasible solution of the
original system. The two-phase method is one way to get rid of the artificials.
However, during phase I of the two-phase method the original cost coefficients
are essentially ignored. Phase I of the two-phase method seeks any basic feasible
solution, not necessarily a good one. Another possibility for eliminating the
artificial variables is to assign coefficients for these variables in the original
objective function in such a way as to make their presence in the basis at a
positive level, very unattractive from the objective function point of view. To
illustrate, suppose that we want to solve the following linear programming
problem, where b > 0.

Minimize c¢x

Subject to Ax=b
x>0

If no convenient basis is known, we introduce the artificial vector x,, which
leads to the following system:

Ax + x,=b

X, x,> 0

The starting basic feasible solution is given by x, = b and x = 0. In order to
reflect the undesirability of a nonzero artificial vector, the objective function is
modified such that a large penalty is paid for any such solution. More specifi-
cally consider the following problem.

Minimize ecx+M1x,

Subject to Ax+x,=b

X, Xx,2> 0

a

where M is a very large positive number. The term M 1x, can be interpreted as a
penalty to be paid by any solution with x, = 0. Even though the starting
solution x = 0, x, = b is feasible to the new constraints, it has a very unattrac-
tive objective value, namely M 1b. Therefore the simplex method itself will try to
get the artificial variables out of the basis, and then continue to find the optimal
solution of the original problem.
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The big-M method is illustrated by the following numerical example. Valida-
tion of the method and possible complications will be discussed later.

Example 4.6
Minimize x;—2x,

Subject to  x;+ x,>2

—x;+ x,>1
x, <3
Xy, X, 20

This example was solved earlier by the two-phase method (Example 4.3). The
slack variables x;, x,, x5 are introduced and the artificial variables x, and x, are
incorporated in the first two constraints. The modified objective function is
z=x; = 2x; + Mxg + Mx,, where M is a large positive number. This leads to
the following sequence of tableaux.

z X1 Xy X3 X4 X5 Xe .x7 RHS
1 -1 2 0 0O 0 - M -—-M 0
0 1 I -1 0 0 1 0 2
0 -1 1 0o -1 0 0 1 1
0 0 1 0 o 1 0 0 3
Multiply rows 1 and 2 by M and add to row 0.
z X, X, X5 X, Xs Xg X RHS
z 1 -1 242M -M -M O 0 0 iM
x| 0 1 1 -1 0 0 1 0 2
x, | 0 -1 @ 0 -1 0 0o 1 1
xs | O 0 1 0 0 1 0 0 3
z Xy Xy X3 X4  Xs Xg X5 RHS
z 1 1+2M 0 —-M 2+M O 0 -2-2M | -2+M
xs | O @ 0 -1 1 0 1 -1 1
x, | 0 -1 1 0 -1 0 0 1 1
x5 | O 1 0 0 1 1 0 -1 2
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z X, X, X4 X4 X5 X X, RHS

z |1l o o I 3 0 —i-M -3-M] -3
x, |0 ) 0 1 -1 1
[0 0 1 -3 -3 0 3 3 3
3

x5 | 0 0 0 : 1 1 -1 2 2
z X, Xy X4 X4 X5 X X, RHS

: [1] =3 0 2 0 0 -2-M -—-M | -4
x, | O 2 0 -1 1 0 1 -1 1
x, | 0 11 -1 0 0 1 0 2
x50 -1 0 (D) o0 1 -1 0 | 1
4 X Xy X5 X4 X5 Xg X5 RHS

: [1] -1 o 0 0 -2 - M -M | -6
x, | O 1 0 0 1 1 0 -1 2
x, | 0 0o 1 0 0 1 0 0 3
x3 |0 =1 0 1 0 1 -1 0 1

Since z; — ¢; < 0 for each nonbasic variable, the last tableau gives the optimal
solution. The sequence of points generated in the (x,x,) space is illustrated in
Figure 4.3.

B2}

c

Figure 4.3. Example of the big-M method.
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Analysis of the Big-M Method

We now discuss in more detail the possible cases that may arise while solving the
big-M problem. The original problem P and the big-M problem P (M) are
stated below, where the vector b is nonnegative.

Problem P: Minimize c¢x

Subject to Ax =b

x 20
Problem P(M): Minimize c¢x +MIx,

Subjectto Ax +x,=b

Since problem P (M) has a feasible solution (say x = 0 and x, = b), then while
solving it by the simplex method one of the following two cases may arise.

1. We shall arrive at an optimal solution of P (M).
2. Conclude that P (M) has an unbounded optimal solution, that is, z — — co.

Of course, we are interested in conclusions about problem P and not P(M).
The following analysis will help us to draw such conclusions.

Case A: Finite Optimal Solution of P (M).

Under this case, we have two possibilities. First, the optimal solution to
P (M) has all artificials at value zero, and second, not all artificials are zero.
These cases are discussed below.

Subcase Al: (x*, 0) is an optimal solution of P (M).

In this case x* is an optimal solution to problem P. This can be easily verified
as follows. Let x be any feasible solution to problem P, and note that (x, 0) is a
feasible solution to problem P(M). Since (x* 0) is an optimal solution of
problem P (M), then cx* + 0 < cx + 0, that is, ex* < ex. Since x* is a feasible
solution of problem P, then x* is indeed an optimal solution of P. This case was
illustrated by Example 4.6 above.

Subcase A2: (x*, x*) is an optimal solution of P (M) and x} # O.

If M is a very large positive number, then we conclude that there exists no
feasible solution of P. To illustrate this case, suppose on the contrary that x was
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a feasible solution of P. Then (x, 0) would be a feasible solution of P(M) and
by optimality of (x*, x}) we have

ex*+ MIx* <cx +0=cx
Since M is very large, x* > 0 and x* % 0, and since x} corresponds to one of
the finite number of basic feasible solutions, the preceding inequality is impossi-
ble (why?). Therefore x could not have been a feasible solution of P. A formal
proof is left as Exercise 4.13.

Example 4.7 (No Feasible Solutions)

Minimize — x; —3x,+ x;

Subject to  x;+ x,+2x;< 4
- X + x;> 4

x3> 3

Xy, X5 x320

Introduce the slack variables x,, x5, and x4 Also, introduce the two artificial
variables x, and x; for the last two constraints with cost coefficients equal to M.
This leads to the following sequence of tableaux.

z X X5 X4 X4 X5 X X5 Xg  RHS
1 1 3 -1 0 0 0 -M —-M| 0
0 1 1 2 1 0 0 0 0 4
0 —1 0 1 0o —1 0 1 0o, 4
0 0 0 1 0 0 -1 0 1 3

Multiply rows 2 and 3 by M and add to row 0.

z X, Xy X3 Xy Xs X
z 1] 1-M 3 —-1+2M 0 -M -M
xg|0) 1 1 ©) 1 0 0
x, [0 —1 0 1 0o -1 0
xg | O 0 1 0 0 -1

z X X, X3 X4 Xs Xg X5 Xg  RHS
z |1|3-2M I-M 0 i-M -M -M O 0 |2+43M
x3|0] 1 1 1 L 0 0o 0 0} 2
x, |0 =3 -1 0o -3 -1 0 1 0 2
x |0 -+ =1 o -1 0 -1 0 1 1
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Since M > 0 is very large, then z; — ¢; < O for all nonbasic variables; that is,
the simplex optimality criteria hold. Since the artificials x, and x, still remain in
the basis at a positive level, then we conclude that the original problem has no
feasible solutions.

Case B: P(M) has an unbounded optimal solution, that is, z > — 0.

Suppose that during the solution of the big-M problem, the updated column
y, is < 0, where the index k is that of the most positive zZ; — ¢ Then problem
P (M) has an unbounded optimal solution. In the meantime, if all artificials are
equal to zero, then the original problem has an unbounded optimal solution.
Otherwise, if at least one artificial variable is positive, then the original problem
is infeasible. These two subcases are discussed in more detail below.

Subcase Bl : zg — ¢, = Maximum (z;, — ¢) > 0, y, < 0, and all artificials are equal
to zero.

In this case we have a feasible solution of the original problem. Furthermore,
since problem P (M) is unbounded, then there is a direction, (d,, d,) > (0, 0) of
the set {(x, x,) : AX + x, = b, x > 0, x, > 0} such that cd, + M 1d, < O (recall
that this is the necessary and sufficient condition for unboundedness of P (M)).
Since M is very large and d, > 0, then c¢d, + M1d, < 0 implies that d, = 0 and
hence ed; < 0. Thus we have found a direction d, of the set {x : Ax = b, x > 0}
such that cd, < 0 (why?). This implies that problem P has an unbounded
optimal solution.

Example 4.8
Minimize —x,—x,

Subject to X|—X— X3 =1
—x;+x,+2x3— x,= 1

X{, X5, X3, X420

Introduce the artificial variables x5 and x, with cost coefficient M. This leads to
the following sequence of tableaux.

z Xy X, X3 X4 X5 Xg RHS
1 1 1 0 0 -M -M 0
0 1 - -1 0 1 0 1
0 -1 2 -1 0 1 1
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Multiply rows 1 and 2 by M and add to row 0.

z X Xy X3 X4 X X¢  RHS
z 1 1 1 M -M 0 0 sz
xs | O 1 -1 -1 0o - 1 0 1
xg | 0| —1 1 @ -1 0 1] 1
zZ .xl .X2 X3 X4 x5 .x6 RHS

z |1 1+l 1-im 0 -im 0 —%}\/ﬂ M

xs | O @ ~3 0 -3 1 3 2
x| 0 -3 : 1 -3 0 2 | 2
z X, X, X3 X, X X¢  RHS
z 1 0 2 0 1 -M-2 -M-1-3
x| 0 1 -1 0 -1 2 1 3
x3 | O 0 0 1 - 1 1 2

The most positive z; — ¢; corresponds to x, and y, < 0. Therefore the big-M
problem is unbounded. Furthermore, the artificial variables x5 and x, are equal
to zero, and hence the original program has an unbounded optimal solution

along the ray {(3,0,2,0) + A(1, 1,0,0) : A > 0}.

Subcase B2: z, — ¢, = Maximum (z;, —¢) > 0, y, < 0, and not dll artificials are
equal to zero.

In this case we show that there could be no feasible solution of the original
problem. To illustrate, suppose that the basis consists of the first m columns,
where columns 1 through p are formed by real variables and columns p + 1
through m are formed by artificial variables. The corresponding tableau is
depicted below.

Xyttt X Xy X X+l X; ++ -+ X, RHS
T -
Y b,
Yoy
Yo P
yp+1,j bp+l
ymj bm
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Noting that¢, = Mfori=p + 1,...,m, thenforj=m+ 1,..., n we get
p m
zj—cj=2c,.y,.j+M(2 y,.j)—cj (4.1)
i=1 i=p+1
First note that 27"=p+1y,.j < Oforallj=m+ 1,...,n Toshow this, first recall

that y, < 0 and hence 27, |y, < 0 holds trivially. By contradiction, suppose
that 27 ,;y; > 0 for some nonbasic variable x;. From Equation (4.1) and
since M is very large, then z; — ¢; is a large positive number, violating the
definition of z, — ¢, (recall that z, — ¢, = Maximum (z; — ¢;) and y, < 0).
Therefore 7. ,,,y,; <0 for all j=m + 1,..., n. Summing the last m — p
equations of the above tableau, we get

m n m m _
2 x; + 2 xj( 2 y,.j) = 2 b (4.2)
i=p+1 Jj=m+1 i=p+1 i=p+1

By contradiction, suppose that problem P has a feasible solution. Then x; = 0
for all artificial variables and hence x, =0 for i =p + 1,..., m. Also x; > 0
and 2L, y; <0 forj=m+1,...,n as shown above. Therefore the left-

hand side of Equation (4.2) is < 0. But the right-hand side is positive since not
all artificials are equal to zero. This contradiction shows that there could be no
feasible solution of the original problem.

Note that we cannot conclude that the original problem is inconsistent if
some z; — ¢; > 0, y; < 0 and not all artificials are zero. It is imperative that we
use the most positive z; — ¢;. See Exercise 4.21.

Example 4.9
Minimize —x,—x,

Subject to  x;—x,> 1
—x+x,> 1

Xy, X,2 0

X2

Figure 4.4. Empty feasible region.
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This problem has no feasible solutions, as shown in Figure 4.4. We shall show
that the optimal solution of the big-M problem is unbounded. Introduce the
slack variables x, and x, and the artificial variables x5 and x.

Xs

X6

z X, Xy X4 X, X5 Xg RHS
1 1 1 0 0 -M -M | 0
0 1 -1 -1 0 1 0 | 1
0 -1 1 0 -1 0 1 1
Multiply rows 1 and 2 by M and add to row 0.

z X X5 X4 X4 Xs Xg RHS
1 1 1 -M -M 0 0 2M
0 1 -1 -1 0 1 0 1
0 -1 1 0 -1 0 1 1
z X, X, X4 X4 Xs Xg RHS
1 [ o 2 1-M -M -1 0| 2M-1
0 1 -1 -1 0 1 0 1
0 0 -1 -1 1 1 2

X6

The last tableau indicates unboundedness since z, — ¢, > 0 and y, < 0. Note,
however, that x, is positive, so we conclude that the original problem has no

Subcase A1l

Optimal is
finite

Solve P(M) for a
very large positive M

Optimal is
unbounded

Subcase A2  Subcase BNSE B2

x, = 0. Optimal
solution of
P is found

x, # 0. P has
no feasible
solutions

X

. = 0. Optimal
solution of P
is unbounded

x; + 0.
Pis
inconsistent

Figure 4.5. Analysis of the big- M method.
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feasible solutions. This is also clear by examining the second row, which reads
Xst xg =2+ X3+ x4

Since x;, x, > 0, then x5+ x, will always be positive, indicating that the
original system is inconsistent.

The possible cases (Al, A2, Bl, and B2) that may arise during the course of
solving problem P (M) are summarized in Figure 4.5.

Comparison of the Two-Phase and Big-M Methods

The big-M method has two important disadvantages in comparison to the
two-phase method. First, in order to conduct the big-M method we must select a
value for M. Without solving the linear program it is difficult to determine just
how large M should be in order to ensure that the artificial variables are driven
out of the basis. In Exercise 4.18 we ask the reader to consider this question.

The second major difficulty with the big-M method is that a large value of M
will completely dominate the other cost coefficients and may result in serious
round-off error problems in a computer.

4.4 THE SINGLE ARTIFICIAL VARIABLE TECHNIQUE

Thus far we have described two methods to initiate the simplex algorithm by the
use of artificial variables. In this section we discuss a procedure that requires
only a single artificial variable to get started. Consider the following problem.

Minimize c¢x
Subject to Ax=Db

x>0

Suppose that we can partition the constraint matrix A into A = [B, N], where B
is a basis matrix, not necessarily feasible. This can certainly be done if the
constraints were originally inequalities (that is, Ax > b or Ax < b) by utilizing
the slacks as basic variables. Index the basic variables from 1 to m.

Multiplying the constraints by B~ ! (which would be *+1 for slack variables),
we get

Ix, + B"'Nx, =b

whereb = B 'band b # 0 (if b > 0, we have a starting basic feasible solution).
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To this system let us add a single artificial variable, x,, with a coefficient of —1
in each constraint:

Ix, + B-'Nx, — 1x, = b

Now, introduce x, into the basis by selecting the pivot row r as follows:

b, = Minimum {b_,}

I<i<m

Note that b_, < 0. On pivoting in row r (that is, inserting x, and removing x,), we
get the new right-hand-side values

b = ~b,(>0)

bj = b~ b,(> 0)
Thus by entering x, and exiting x, we have constructed a basic feasible solution
to the enlarged system (the one including the artificial variable). Starting with
this solution, the simplex method can be used, employing either the two-phase or

big-M method.

Example 4.10

Minimize 2x,+3x,

Subject to Xt x>

3
—2x+ x> 2
0

\%

Xy Xy

Subtracting the slack variables x; and x, and multiplying by —1, we get the
basic system

- X =Xt x; =-3

2x;—x,+  x,= -2

Appending a single artificial variable x5 with activity vector ( : 11 ) to the initial
tableau of the phase I problem, we get the following tableau.
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X X, Xy X4 X4 X5 RHS
X 1 0 0 0 0 -1 0
X3 0 ~1 -1 1 0 @ -3
x4 0 2 -1 0 1 1| -2

Pivoting in the x; row and x5 column, we get the following tableau.

Xg X Xy X3 Xy X5 RHS
x |1 1 T -1 0 0 3
x5 | 0 1 I -1 0 1 3

The tableau above is ready for application of the two-phase method. Subsequent
tableaux are not shown.

An analysis of the two-phase method and the big-M method for the single
artificial variable technique discussed in this section can be made similar to the
analysis of Sections 4.2 and 4.3. The details are left to the reader in Exercise
4.28.

4.5 DEGENERACY AND CYCLING

In Chapter 3 we developed the simplex method with the assumption that an
initial basic feasible solution is known. We then described in this chapter how to
obtain such a starting basic feasible solution. In Chapter 3 we also showed that
the simplex method converges in a finite number of steps provided that the basic
feasible solutions visited were nondegenerate. In the remainder of this chapter
we examine the problems of degeneracy and cycling more closely and give a rule
that prevents cycling, and hence guarantees finite convergence of the simplex
algorithm.

We have seen that the simplex algorithm moves among basic feasible solu-
tions until optimality is reached, or else unboundedness is verified. Since the
number of basic feasible solutions is finite the simplex method would converge
in a finite number of steps, provided that none of the bases are repeated. Now
suppose that we have a basic feasible solution with basis B. Further suppose that
we have a nonbasic variable x, with z, — ¢, > 0 (for a minimization problem).
Therefore x, enters the basis and x, leaves the basis, where the index r is
determined as follows: '

b

r

b
= Minimum{ — Y > O]
Vrk 1I<i<m Yik
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where b = B~'b and y, = B~ 'a,. Column a, enters the basis and a, leaves the
basis. The basic feasible solutions before and after pivoting are given by the
following,

Before pivoting After pivoting
b b b
= X —_ —_
B Yor Yi
0 b 3
X, = X = 4.
k KT (4.3)

all other xj’s =0 all other x’s =0

Furthermore, the difference in the objective function before and after pivoting is
given by (b / V(2 = ¢;)- In the absence of degeneracy we have b=B"'b>0.

In particular b, > 0. Since y,, > 0 and z, — ¢, > 0, then the objective function
strictly decreases at each iteration, which in turn implies that the basic feasible
solutions generated are distinct (why?). Now suppose that b, = 0 (which can
occur only in the presence of degeneracy). In this case the objective function
remains constant. Furthermore, examining the values of all the variables in
Equation (4.3), it is evident that we have the same extreme point before and
after pivoting, represented by different bases, however (since a, entered and ag
left the basis). As the process is repeated, it is conceivable that another
degenerate pivot is taken, resulting in the same extreme point with a different
basis representation. It is therefore possible, though highly unlikely, that we may
stay at a nonoptimal extreme point, and pivot through a sequence of bases B,
B,, ....B, where B, = B,. If the same sequence of pivots is used over and over
again, we shall ¢ycle forever among the bases B, B,,..., B, = B, without
reaching the optimal solution. Example 4.11 below illustrates this problem of
cycling.

Example 4.11 (Cycling)

Consider the following example given by Beale.

Minimize — 3x, +20x,— 3x6+ 6x,
Subject to  x, +ix— 8x5— xg+ 9x,=0
X,  +3x,—12x5— Lx.+ 3x,=0
X3 + x4 =1
XisXpX3,  Xgy X5, X, X720



4.5 DEGENERACY AND CYCLING 167

The optimal solution is given by x, =3, x, = x, = | and all other variables
equal to zero. The optimal objective value is — 3. The following rules are
adopted. The entering variable is that with the most positive z; — ¢;, and the
leaving variable is determined by the minimum ratio test, where ties are broken
arbitrarily.

z Xy Xy X3 Xy Xs X X5 RHS
z 1 0 0o o0 3 -2 3 -6 0
—
X |0 0 0 -8 -1 9| 0
x, | O 0 1 o 1 -1 -1 3 0
x; | 0 0 0 1 0 0 1 0| 1
z X X, X3 X4 Xs X X7 RHS
z |1 -3 0 0 O 4 I =33 o0
x, | 0 4 o o 1 -3 -4 36| 0
x, | 0] -2 i o o (@ : -15 0
x; | O 0 0 1 0 0 1 0| 1
z X Xy X3 X4 Xs X X4 RHS
z -1 -1 0 0 0 2 -—-18 | 0
x| 0 |-12 8 0 0 -84 | 0
x5 | 0 | =3 i 0 o0 1 2 210
x3 | 0O 0 0o 1 0 0 1 0 1
z X, Xy X3 Xy Xs Xg X5 RHS
z 2 -3 0 -} 0 0 3,0
x¢ | 0 | -3 1 0 3 0 1 - 0
X5 0 % - % 0 - éi 1 0
x; | O 5 -1 1 —3 0 0 e 1
z X Xy X3 Xy X5 Xg X5 RHS
z |1 1 -1 o0 3 -—16 0 0| O
x |0 @ -6 o -3 56 1 0 0
x, | 0 i =2 0 —1 ® 0 1 0
x3 | 0 -2 6 1 3 =56 0 0 1
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4 X Xy X3 X4 X5 X X5 RHS
z 1 0 2 0 1 -4 -] 0 0
x, | 0 1 -3 0 -3 28 3 0 0
x, | 0 o & o ¢ -4 -3 1. o0
x; | 0O 0 o 1 o 0 1 0 1

z X, Xy X3 X4 X5 Xg X5 RHS
z 1 0 0o o0 3 -2 ! -6 0
x, |0 1 o 0 i -8 -1 9 0
x, |0 0 1 o 1 -12 -1 3 0
Xy | 0 0 0o 1 0 0 1 0 1

We see that the last tableau above is identical to the first tableau. All the
tableaux correspond to the extreme point (0, 0, 1, 0, 0, 0, 0) with different bases.
The foregoing sequence of pivots generated the bases B,, B,, B;, B,, B;, B, and
B,, where B, = B, = [a,, a,, a,]. If the same sequence of pivots are used over
and over again, the simplex algorithm will cycle forever among these bases
without reaching the optimal point. -

A Rule that Prevents Cycling

Even though cycling is very unlikely, and actually it is not an easy task to
formulate a problem that cycles, it is of theoretical interest to develop a rule that
prevents cycling. We give such a rule here, and illustrate it by the problem of
Example 4.11. Validation of the rule is postponed until the next section.
Consider the following linear programming problem.

Minimize c¢x

Subject to Ax=b

x>0

where A is an m X n matrix of rank m. Since the simplex method is usually
started with the initial basis as the identity matrix (corresponding to slack
and /or artificial variables), we shall assume that the first m columns of A form
the identity. The following rule, which specifies the variable leaving the basis if
the simplex minimum ratio test produces several candidates, will guarantee
noncycling.
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Exiting Rule

Given a basic feasible solution with basis B, suppose that the nonbasic variable
x, is chosen to enter the basis (say 0 < z; — ¢, = Maximum z; — ¢;). The index
r of the variable x, leaving the basis is determined as follows. Let

b, b
Iy={r: = Minimum { — :y, >0

yrk I<i<m yik

If 1, is a singleton, namely /, = {r}, then x, leaves the basis. Otherwise form I,
as follows:

yr . . yi
I, =4r: 1=M1mmum{—l}
Yk iely Yik

If 7, is singleton, namely I, = {r}, then x, leaves the basis. Otherwise form 7,.
In general /; is formed from 7,_; as follows:

Vi Vi
I = {r: ? =Minimum[ -7 }}

Yk i€l Vi

Eventually, for some j < m, I; will be a singleton (why?). If I, = {r}, then xp
leaves the basis.

Before we illustrate the preceding rule, let us briefly discuss its implications.
First we use the usual minimum ratio test as an exiting criterion. If this test gives
a unique index, then the corresponding variable leaves the basis. In case of a tie
we try to break it by replacing the right-hand side in the minimum ratio
calculation by the first column y,, and by only using the rows corresponding to
the tie. If the tie is still not broken, the second column is used, and so forth.
When or before column m is reached, the tie must be broken, for if this were not
the case, we have two rows of the matrix B~ = (V- ¥25 - - - » ¥)» Which are
proportional (why?). This is impossible, however, in view of linear independence
of the rows of B™!.

Example 4.12

We now solve the problem of Example 4.11 using the additional rule for
exiting from the basis.
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z X Xy X3 Xy Xs Xg X7 RHS
z 1 0 0 0o 3 -20 : - 0
x, [ 0] 1 0 0 -8 -1 9 0
x23 | 0] 0 1 0 -2 -} 3 0
x; |0 | 0 0 1 0 0 1 0 1

Here I, = {1, 2}, I, = (2}, and therefore x5 = x, leaves the basis. Note that in
Example 4.11, x, left the basis during the first iteration.

z X Xy X3 X4 Xs Xg X RHS
z | 1] 0 -3 0 0 -2 e
x, | O 1 -1 0 0 -2 =3 L 0
x, | 0 0 2 o 1 -2 -1 6 0
x3 [ 0] 0 0 1 0 o @ 0 1

Here I, = {3}. Therefore xp = x; leaves.

z X, X, X3 Xy X5 Xg X RHS
z [1] o -3 -3 o -2 0 EIR )
x, | 0 1 -1 2 0 -2 0 L 3
x, | 0] O 2 11 -2 0 6 1
x |0 0 0 10 0 1 0 1

The foregoing tableau gives the optimal solution, since z;— ¢ <0 for all
nonbasic variables.

4.6 LEXICOGRAPHIC VALIDATION OF CYCLING PREVENTION

In this section we show that the rule adopted in the previous section indeed
prevents cycling. We do this by showing that none of the previous bases visited
by the simplex method are repeated. In view of the finite number of bases, this
automatically guarantees stopping in finite number of iterations.

Lexicographically Positive Vectors

In order to facilitate the proof of finite convergence, it will be convenient to
introduce the notion of a lexicographically positive vector. A-vector x is called
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lexicographically positive (denoted by x > 0) if the following two requirements
hold:

1. x is not identically zero.
2. The first nonzero component of x is positive.

For example, (0,2, — 1,3), (2,1, — 3, 1), and (0,0, 1, — 1) are lexicographi-
cally positive vectors whereas (—1, 1, 2, 3), (0, 0, 0, 0), and (0, 0, — 2, 1) are not.
A lexicographically nonnegative vector, denoted by > 0, is either the zero vector
or else a lexicographically positive vector. In order to prove that none of the
bases generated by the simplex method is repeated, we first show that each row
of the m X (m + 1) matrix (b, B™!) is lexicographically posmve at each itera-

tion, where b = B 'b. Indeed, in the absence of degeneracy b > 0, and there-
fore each row of (b, B™") is clearly lexicographically positive.

First recall that the original basis is I, and since b > 0, then each row of the
matrix (b, B™!) = (b, I) is lexicographically positive. (If a feasible basis that is
different from the identity is available, we still have a starting solution that
satisfies the lexicographic positive condition. See Exercise 4.48.) In view of this,
the preceding result will be proved, if we can show the following: if each row of
(b, B~!) is > 0, then each row of (b, B~") is > 0 where B is the new basis
obtained after pivoting and b = B~'b. Consider the following two tableaux
before and after introducing x,, and recall that the first m columns (ignoring the
z column) in these tableaux represent B~ and B! respectively (since the first m
columns of the original problem form the identity). Here z denotes the objective
value cgzb before pivoting.

Before Pivoting

z X ce X Xy Xmad X, X, RHS
zilizy—¢ v =6 0z, 7 ¢, 2 — G Z
xp |0\ vy oy o Yim T Yik e b
Xp, 0 Vi yij Yim Yik br

Xg 0 Yl PN yny' . Yo P Yok e bm




(4]

Xp

XB

Xk

Xp

After Pivating

z X x; X, S X RHS
]
(zl cl) (zj - cj) (zm - cm)
yrl y’] yrm - r
1| - Z — ¢ - —(z —c — (2 — ¢ -0- z— — (2 — )
o (z — &) S G %) e (Zx — &) Vi (2 — ¢
Y y’j Yrm - b_r
0 Yn — I Yik Yy~ I ik Yim — I Yik 0 b, y_rkylk
Vi y’j Ym - b_r
0 »yu——— Yy T T i Yim = Vi 0- by — —
! Yric g Y Yrk g Yrk , ‘ rk *
0 Y Yrj Yrm o1 br
Yrk Yrk Yrk Yrk
yrl y’j yrm 7 b_r
O ym —_ym ym'— ym ymm—_—ym .O' bm—- ym
! Yrk * v Yrk * Yrk k Yrk k
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Consider a typical row i of (B, ﬁ_l). From the foregoing tableau this row is
given by

_ , Yr1 Y .
(b,- e T e R yik) LET (44)

Ve Ve Ve
b, Yrm
, L, i=r (45
Yrk Yrk Yrk

Since y,, > 0 and the rth row is > 0 before pivoting, then from Equation (4.5)
the rth row after pivoting is also > 0. Now consider i/ # r. There are two
mutually exclusive cases: either i & I, or else i € I, First suppose thati & I, If
Y < 0, then from Equation (4.4) we see that the ith row after pivoting is given
by

Vi

(o v+ vim) = 5 (B Yoo Yom)

which is the sum of two vectors that are lexicographically positive and lexico-
graphically nonnegative (why?), and is hence > 0. Now suppose that y, > 0.
By definition of I, and since i & I, then b, /Y < b,/y4 and hence b, —
(b,/Y4)Yu > 0. From Equation (4.4) the ith row is > 0. Now consider the case
i € I,. Then y, > 0 and b, — (b, /¥,.)Vu = 0. There are two mutually exhaus-
tive cases: either / & I,, or else i € I,. In the former case, by definition of 7,
Yio = (Vi /Y)Yy > 0 and from Equation (4.4) the ith row is > 0. If, on the
other hand, i € I, then y;;, — (¥,1/Vw)Vu = 0 and we examine whether i € I,
or not. This process is continued until termination in at most m + 1 steps, with
the conclusion that each row of (b, B~!) is > 0.

The foregoing analysis shows that each row of (B~'b, B~!) is lexicographi-
cally positive at any given iteration. This fact will be used shortly to prove finite
convergence. First note, by examining row 0 before and after pivoting, that

— ¢

(csB~'b, c;B") — (csB by esB) = EK (5 p v D)

Yk

Note that (b,,7,,, - . . , ¥ is the rth row of (b, B™') and is therefore > 0. Since
z; — ¢ > 0and y,, > 0, it is therefore evident that

(c;B7'b,czB™") — (c;B7'b,c;B™T) > 0
Now we are ready to show that the rule of Section 4.5 will indeed prevent

cycling. We do this by showing that the bases developed by the simplex method
are distinct. Suppose by contradiction that a sequence of bases B;, B,, ..., B, is
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generated where B, = B,. From the preceding analysis we have

(csB; b B ") — (c5 Biibcy BLY) >0 forj=12...,1-1
Adding overj = 1,2, ..., ¢t — | and noting that B, is assumed equal to B,, we

get 0 > 0, which is impossible. This contradiction asserts that the bases visited
by the simplex algorithm are distinct. Since there is but a finite number of bases,
convergence in a finite number of steps is established.

EXERCISES
4.1 Solve the following problem by the two-phase simplex method.
Maximize 2x,— x,+ X3

Subject to x4+ x,—2x;<8
4x,— x;+ x322
2x,43x,— x3>4

X, Xy, X320

4.2 Consider the following linear programming problem.

Maximize x,+2x,

Subject to  x,;+ x,>1

—x+ x,<3
X, <5
Xy, X320

a. Solve the problem geometrically.

b. Solve the problem by the two-phase simplex method. Show that the
points generated by phase I correspond to basic solutions of the original
system.

4.3 Phase I of the two-phase method can be made use of to check redundancy.
Suppose that we have the following three constraints:

Xp— X, 22
2x, +3x, > 4

3, +2x,2 6
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Note that the third constraint can be obtained by adding the first two
constraints. Would phase I detect this kind of redundancy? If not, what
kind of redundancy will it detect? Is the type of redundancy of the
foregoing problem equivalent to degeneracy? Discuss.

4.4 Solve the following problem by the two-phase simplex method.

Minimize  x;+3x,—x;

Subjectto  x;+ x,+x3>3
—Xx;+2x, >2
—x+5x,+x;<4

Xy, X9, X320

4.5 Show how phase I of the simplex method can be used to solve n simulta-
neous linear equations in n unknowns. Show how the following cases can
be detected:

a. Inconsistency of the system.

b. Redundancy of the equations.

¢. Unique solution.

Also show how the inverse matrix corresponding to the system of equations
can be found in (c). Illustrate by solving the following system.

X, +2x,+ x; =4
—X; — X;+2x3=13
X — X3+ x3=2

4.6 Solve the following problem by the two-phase method.

Maximize —x;—2x,

Subjectto  3x;+4x,<20
2x,— x> 2
X, X2 0
4.7 Solve the following problem by the two-phase method.

Maximize S5x,—2x,+ x5

Subject to  x;+4x,+ x3<

6
2x+ x3+3x;> 2
0

\%

X15 X3

x3 unrestricted
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4.8 Solve the following problem by the two-phase method.
Maximize 4x;+5x,—3x;

Subjectto  x;+ x,+ x3=10
X\ — X, > 1
2x,+3x,+ x3<20

Xy, X, X320

4.9 Use the big-M method to solve the following problem.
Minimize — 2x,+2x,+x5+ x,

Subject to X +2x,+x3+ x,<2
X — X+ X3+ 5x,>4
2x1— X+ x4 >2

X, Xg, X3, X420

4.10 Use the big-M method to solve the following problem.
Maximize x,— x,+ x5

Subject to  x;+ x,+2x3>4
x1—2x2+ X3 <2

Xy, X, X320

4.11 Is it possible that the optimal solution of the big-M problem be unbounded
and in the meantime the optimal solution of the original problem be

bounded? Discuss in detail.

4.12 Consider the problem: Maximize ex subject to Ax = b, x > 0, where A is
an m X n matrix and b > 0. Add the artificial vector x, and consider the
following big-M problem: Maximize ¢x — M 1x, subject to Ax + x, = b,
X > 0, x, > 0. Show that there exists an M > 0 such that forall M > M
either the basic feasible solution (x*, x*) solves the big-M problem or else
the solution of the big-M problem is unbounded along the ray {(x*, x}) +
A(d*, d*) : A > 0} where (d*, d¥) is an extreme direction. Interpret both
cases. (This establishes the fact that for M larger than some number,
regardless of whether the original problem has a feasible region or not, the
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solution of the big-M problem is achieved at some fixed extreme point or
along some fixed ray.)

4.13 Suppose that a linear programming problem admits feasible points. Utilize
the result of Exercise 4.12 to show that if M is large enough, then a finite
optimal solution of the big-M problem must have all artificials equal to
zero. Give all details.

4.14 TIs it possible that the region in E” given by

Ax=b
x>0

is bounded, whereas the region in E”*™ given by

Ax+x,=Db

x, x, >0

is unbounded? What are the implications of your answer on using the
big- M method as a solution procedure?

4.15 Solve the following problem by the big- M method.
Minimize 2x;+4x, — x4

Subject to  x;+2x,— X3+ x,< 2

2x,+ x,+2x;+3x,=4

X, — X3+ x,> 3
X1, Xy, x42> 0
X4 unrestricted

4.16 Solve the following problem by the big-M method.

Maximize 2x,+4x,+4x;—3x,

Subject to x4+ x,+ 'x3 =4
x;+4x, +4x,=8
X;,  Xg X3y X420

4.17 Indicate whether the following statement is true or false. If M is chosen
extremely large, then the two-phase method and the big-M method will
generate the same sequence of bases. Discuss in detail.
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4.18

4.19

4.20

4.21

4.22

423

STARTING SOLUTION AND CONVERGENCE

Compare the two-phase and the big-M methods. What are the advantages
and disadvantages of each? How large should M be chosen?

Suppose that either phase I is completed or the bounded optimal solution
of the big-M problem is found. Further suppose that there exists at least
one artificial at a positive level indicating that the original system Ax = b
and x > 0 has no solution. Can you differentiate between the following
two cases?

a. The system Ax = b is inconsistent.

b. The system Ax = b is consistent but Ax = b implies that x 3 0.

Suppose that the big-M method is used to solve a linear programming
problem. Further suppose that z; — ¢, = Maximum (z; — ¢;) > 0. Show
that the original problem is infeasible if not all artificials are equal to zero
and y, < O for each i such that x, is an artificial variable. (Note that this
gives a more general result than Subcase B2 of Section 4.3.)

Show that problem P could have an unbounded optimal solution even if
during the solution of the big-M problem a nonbasic variable x; is found
such that z; — ¢, > 0, y; < 0 and not all artificials are zero. (This shows
that it is important to examine the most positive z; — ¢;). (Hint. Consider
Example 4.8 and introduce x, rather than x, in the first iteration.)

Geometric redundancy occurs when deletion of a constraint does not alter
the feasible set. How can geometric redundancy be detected? (Hint. Con-
sider the objective of minimizing x, where x, is a particular slack variable.)

Geometrically
redundant
constraint

Suppose that at some iteration of the simplex method the slack variable x,
is basic in the ith row. Show that if Yy < 0,j=1,...,n,j % s, then the
constraint associated with x, is geometrically redundant. Also show that
the ith constraint and variable x; may be deleted from the current tableau
without changing the feasible set.
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4.24 Solve the following linear program by both the two-phase method and the
big-M method.

Minimize 3x,—2x,+5x,
Subject to X +2x,+ x325

- 3x,+ x,— x;<4
X, X5 X320
4.25 Solve the following problem by the big-M method.
Minimize 3x,+2x,+4x;+8x,
Subject to X1+ 2x,+5x;+6x,> 8
—2x;+5x,+3x;—5x,< 3
X1, Xy X3, X420
4.26 Solve the following problem by the big-M method.
Maximize 2x;—x,
Subject to  x,+x,<3
—x;+x,21
X, X,20
4.27 Solve the following problem by the big-M method.
Maximize 5x,—2x;+ x4
Subject to  x;+4x,+ x3<6
2x+ x3+3x;>2
Xy, x5 20

X, unrestricted

4.28 Discuss in detail all the possible cases that may arise when using the single

artificial variable technique with both the two-phase method and the big-M
method.
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4.29 Use the single artificial variable technique to solve the following problem.

Maximize 4x,+5x,+7x3— x4

Subject to x4+ x,+2x;— x4> 1
2x,—6x3+3x3+ x,<—3
X, +4x,+3x34+2x,=— 5
Xy, Xy, X420

X3 unrestricted

4.30 Use the single artificial variable technique to solve the following linear
programming problem.

Minimize — x;—2x,+ x;
Subject to X1+ xX+x3> 4
2x, —x32> 3
Xyt x,< 2
X1, X3 X320

4.31 Discuss the advantages and disadvantages of using a single artificial
variable compared with a method using several artificial variables.

4.32 Suppose it is possible to get the constraints of a linear program to the form
Ix; + B'Nxy = b, where b=B~'b } 0. Show that a single artificial
variable x, with activity vector b (where b < b) can be added and a basic

feasible solution would be easily obtained.

4.33 Construct detailed flow diagrams of the two-phase method and the big-M
method. Using FORTRAN (or another language), code either of the two
methods.

4.34 A manufacturer wishes to find the optimal weekly production of items A,
B, and C that maximizes his profit. The unit profit and the minimal weekly
production of these items are respectively $2.00, $2.00, and $4.00; and 100
units, 60 units, and 60 units. Products A, B, and C are processed on three
machines. The hours required per item per machine are summarized below.
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4.35

4.36

4.37

ITEM

MACHINE A B C
1 0 1 2

2 1 1 1

3 2 1 1

The number of hours of machines 1, 2, and 3 available per week are 240,
400, and 360 respectively. Find the optimal production schedule.

A farmer has 200 acres and 18,000 man-hours available. He wishes to
determine the acreage allocated to the following products: corn, wheat,
okra, tomatos, and green beans. The farmer must produce at least 250 tons
of corn to feed his hogs and cattle, and he must produce at least 80 tons of
wheat, which he precontracted. The tonnage and labor in man-hours per
acre of the different products are summarized below.

CORN WHEAT OKRA TOMATOS BEANS

Tons /acre 10 4 4 8 6
Man-hours /acre 120 150 100 80 120

The corn, wheat, okra, tomatos, and beans can be sold for $120.00,
$150.00, $60.00, $80.00, and $55.00 per ton. Find the optimal solution.

A company manufactures stoves and ovens. The company has three
warehouses and two retail stores. Sixty, 80, and 50 stoves and 80, 50, and
50 ovens are available at the three warehouses respectively. One hundred
and 90 stoves and 60 and 120 ovens are required at the retail stores
respectively. The unit shipping costs, which apply to both the stoves and
ovens, from the warehouses to the retail stores are given below.

WAREHOUSE

1 2
1 3 5
2 2 3
3 6 3

Find the shipping pattern that minimizes the total transportation cost by
the simplex method.

A manufacturer wishes to plan the production of two items A and B for the
months of March, April, May, and June. The demands that must be met
are given below.
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MARCH APRIL May JUNE
Item A 400 500 600 400
Item B 600 600 700 600

S

uppose that the inventory of A and B at the end of February is 100 and

150 respectively. Further suppose that at least 150 units of item B must be
available at the end of June. The inventory holding costs of items A and B

d

uring any month are given by $1.00 and $0.80 times the inventory of the

item at the end of the month. Furthermore, because of space limitation, the
sum of items A and B in stock cannot exceed 250 during any month.
Finally, the maximum number of items A and B that can be produced
during any given month is 500 and 650 respectively.

a.

Formulate the production problem as a linear program. The objective is
to minimize the total inventory cost (the production cost is assumed
constant).
. Find the optimal production/inventory pattern.
Management is considering installing a new manufacturing system for
item B at the end of April. This would raise the maximum items that can
be produced per month from 650 to 700 and meanwhile would reduce
the unit manufacturing cost from $8.00 to $6.50. Assess the benefits of
this system in reducing the total manufacturing plus inventory costs. If
you were a member of the management team, discuss how you would
assess whether the new system is cost effective.
. Suppose that management decided to introduce the new system. A
market research indicated that item B can be backlogged without
serious dissatisfaction of customers. It was the management’s assessment
that each unit of unsatisfied demand during any month must be charged
an additional $1.00. Formulate the production/inventory problem and
find the optimal solution by the simplex method.

A trucking company owns three types of trucks, type I, type II, and type
ITI. These trucks are equipped to haul three different types of machines per
load according to the following chart.

TRUCK TYPE
I 11 m
Machine A 1 1 1
Machine B 0 1 2
Machine C 2 1 1

Trucks of type I, II, and III cost $400, $600, and $900 per trip, respectively.
We are interested to find how many trucks of each type should be sent to
haul 12 machines of type A, 10 machines of type B, and 16 machines of
type C. Formulate the problem and then solve it by the simplex method.
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4.39

(This is an integer programming problem; you may ignore the integer
requirements.)

A company produces refrigerators, stoves, and dishwashers. During the
coming year, sales are expected to be the following:
QUARTER
PRODUCT 1 2 3 4
Refrigerators 1500 1000 2000 1200
Stoves 1500 1500 1200 1500
Dishwashers 1000 2000 1500 2500

The company wants a production schedule that meets the demand require-
ments. Management also has decided that the inventory level for each
product must be at least 150 units at the end of each quarter. There is no
inventory of any product at the start of the first quarter.

During a quarter only 18,000 hours of production time are available. A
refrigerator requires 2 hours, a stove 4 hours, and a dishwahser 3 hours of
production time. Refrigerators cannot be manufactured in the fourth
quarter because the company plans to modify tooling for a new product
line.

Assume that each item left in inventory at the end of a quarter incurs a
holding cost of $5. The company wants to plan its production schedule
over the year, in such a way that meets the quarterly demands and
minimizes the total inventory cost. Formulate the problem and then solve it
by the simplex method.

4.40 A manufacturer of metal sheets received an order for producing 2000

sheets of size 2’ X 4" and 1000 sheets of size 4 x 7'. Two standard sheets
are available of sizes 10 x 3000’ and 11’ X 2000'. The engineering staff
decided that the following four cutting patterns are suitable for this order.
Formulate the problem of meeting the order and minimizing the waste as a
linear program and solve it by the simplex method.

Pattern 1 Pattern 2

l(——)'(———-)' leste >|
4 7' o7 7' |

Pattern 3 Pattern 4
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4.41 Solve the following problem, using the additional exiting rule for noncy-
cling.

Maximize x,+2x,+ x4

Subject to  x,+4x,+6x;<4
—x;+ x+4x;<1
X +3x,+ x3<6

Xy, X, X320

4.42 Consider the following region.

X, Xo X3 2

Recall that d is a direction of the region if Ad < 0,d > 0, and d is nonzero.
Thus, in order to find directions of the region, we may solve the following
problem.

Maximize d,+d,+ d,

Subject to  d,—d,+ d3<0

—d,\+d,—2d,<0

4d,+d,—5d;<0

di+d,+ d;<1

d, d,, d;>0
The constraint d;, + d, + d; < | is added for normalization; otherwise the
optimal objective may reach + oo. Solve this direction-finding problem by
the simplex method with the additional exiting rule. Does this procedure
generate extreme directions? Why or why not? Can the normalization
constraint d;, + d, + d, < 1 be deleted? If so, describe how to find direc-

tions if the simplex method indicates unboundedness. Illustrate by deleting
this constraint and resolving the problem.

4.43 Show that cycling can never occur even in the presence of degeneracy
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provided that a unique minimum is obtained in the computation

b
Minimum{ — Yy > O}
1<i<m YVie

where b = B™'b, y, = B™'a,, and x,_ is the entering variable.

4.44 Consider the following problem.

4.45

4.46

4.47

Maximize 3x,+4x,

Subject to  2x;+ x,<8
—x;+2x,<6
x;+ x,<6

Xy, X320

a. Solve the problem geometrically and verify that the optimal point is a
degenerate basic feasible solution.

b. Solve the problem by the simplex method.

c. From (a), identify the constraint that causes degeneracy and resolve the
problem after throwing this constraint away. Note that degeneracy
disappears and the same optimal solution is obtained.

d. Can you show in general that degenerate basic feasible solutions can be
made nondegenerate by throwing some constraints away without affect-
ing the feasible region?

The additional rule for exiting from the basis is designed to specify which
variable leaves the basis if the minimum ratio test results in a tie or several
ties. Show in detail that the exiting rule would specify a unique variable to
leave the basis after at most m + 1 columns are examined, namely

b, y,¥, ..., and y,..

We showed that the row vector (czB~'b, ¢;B™") is lexicographically de-
creasing from one iteration to another. Give an economic interpretation of
this fact. (Hint. Note that z = ¢;B~'b and that 9z/3b = ¢;B 1)

Suppose that we have an optimal extreme point of a minimization linear
programming problem. In the presence of degeneracy, is it possible that
this extreme point corresponds to a basic feasible solution such that
z; — ¢; > 0 for at least one nonbasic variable? If this were the case, are we
guaranteed of another basic feasible solution corresponding to the same
extreme point where z = ¢ < 0 for all nonbasic variables? Why or why

not? Illustrate by a numerical example,
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4.48

4.49

4.50
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In order to prove finite convergence of the simplex method using the
noncycling rule, we assumed that the first m columns of the constraint
matrix form the identity. Show that this assumption can be relaxed pro-
vided that we have any basic feasible solution. (Hint. Let B be the starting
basis and consider the following equivalent problem.)

Minimize 0x,+(cy — csB7'N)x,

Subject to  Ixg+ B 'Nx, =B7'b

Xg, xy >0
Consider the following problem.
Minimize (cx, cY)

Subjectto  A(x,Y) = (b, I)
x,Y) =0

where A is an m X n matrix, ¢ is an n vector, and the variables are the n
vector x and the n X m matrix Y. The objective function is a row vector,
and the minimization is taken in the lexicographic sense, that is, (cx,, cY,)
< (exy, €Yy) if and only if (cx,, cY) — (cx,, cY,) > 0. Each row of the
matrix (x, Y) is restricted to be lexicographically nonnegative, which means
that each row is zero or > 0.

a. Let x be a basic feasible solution of the system Ax = b, x > 0 with basis

B. Show that x =(B;1b) and Y =(0B_l) is a feasible solution of the

foregoing problem provided that (B~'b, B™!) > 0.

b. Show that the simplex method with the exiting rule of Section 4.5
generates the sequence (x,,Y,), (x5, Y,)... where (ex;_, cY; ) —
(cx;, cY;) > 0 for all j. Interpret this fact emphasizing the relationship
between the bases generated by the simplex method and the foregoing
problem.

Consider the following problem.
Minimize c¢x

Subject to Ax=b

x >0

Assume that the first m columns of A form the identity and assume that
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b > 0. Given a basis B, the corresponding basic feasible solution is nonde-
generate if B~'b > 0. Consider the following perturbation procedure of
Charnes. Replace b by b + 2}"=lajef where € is a very small positive
number. Now suppose that we have a basis B, where B~ '(b + Soael) =
b + 2}”=1yjej > 0. Suppose that x, is chosen to enter the basis and the
following minimum ratio test is made:

— m )
b + 2 y,-jef
j=1

Minimumy —— ik >0
I1<i<m Vik

a. Show that the minimum ratio occurs at a unique index r. Show that the
method of finding this index is precisely the rule of Section 4.5.

b. Show that the new right-hand side after pivoting is positive and the
objective function strictly improves even in the presence of degeneracy.

c. Show that cycling will not occur if the rule in (a) is adopted. Interpret
this in terms of the perturbed problem.

d. Show that all the computations can be carried without explicitly replac-
ing the right-hand side with b + X7 lajef and without explicitly assign-
ing a value to e.

NOTES AND REFERENCES

L.

2.

The use of artificial variables to obtain a starting basic feasible solution was
first published by Dantzig [87] in 1951.

The single artificial variable technique of Section 4.4 can be viewed as the
dual of a similar technique that adds a new row to obtain a starting basic
dual feasible solution. The latter is discussed in Section 6.6.

. The cycling example of Section 4.5 is due to Beale [27]. The proof of the
cycling prevention rule via lexicographic ordering was published by Dantzig,
Orden, and Wolfe [112] in 1954. The cycling prevention rule can also be
interpreted as a perturbation technique, as briefly described in Exercise 4.50.
This technique was independently devised by Charnes [61] and published in
1952.



FIVE: SPECIAL
SIMPLEX FORMS
AND OPTIMALITY
CONDITIONS

In this chapter we describe some special methods for using the simplex proce-
dure, or slight modifications of it. The formats considered here will prove
advantageous in later chapters. The revised simplex method, which proceeds
through the same steps as the simplex method but keeps all pertinent informa-
tion in a smaller array, is described in Section 5.1. In Section 5.2 we describe a
slight modification of the simplex method for dealing with lower and upper
bounds of the variables without introducing slack variables. The remainder of
the chapter is devoted to some geometric aspects of the simplex method. In
particular the Kuhn-Tucker optimality conditions are discussed.

5.1 THE REVISED SIMPLEX METHOD

The revised simplex method is a systematic procedure for implementing the steps
of the simplex method in a smaller array, thus saving storage space. Let us begin
by reviewing the steps of the simplex method.

188
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Steps of the Simplex Methed (Minimization Problem)

Suppose that we are given a basic feasible solution with basis B (and basis
inverse B~ ). Then:

1. The basic feasible solution is given by x; = B™'b = b and x, = 0. The
objective z = ¢z;B™'b = ¢;b.

2. Calculate w = ¢;B~!. For each nonbasic variable, calculate Z—¢ =
czB7'a; — ¢, =wa; — . Let 2y — ¢, = Maximum z — ¢;. If z, — ¢, < 0,
then stop; the current solution is optimal. Otherwise go to step 3.

3. Calculate y, = B™'a,. If y, < 0, then stop; the optimal solution is un-
bounded. Otherwise determine the index of the variable x, leaving the
basis as follows:

b b
= Minimum Y >0
Yk I<icm Yik

Update B by replacing ag with a, and go to step I.

Examining the preceding steps, it becomes clear that the simplex method can
be executed using a smaller array. Suppose that we have a basic feasible solution
with a known B~'. The following array is constructed where w = c;B~! and
b=B"'b.

BASIS INVERSE RHS
w } c;b
B! l b

Note that the right-hand side denotes the values of the objective function and
the basic variables. Since w is known, step 2 above can be performed (outside
the tableau) in order to determine whether to stop or to introduce a new variable
into the basis. Suppose that z; — ¢, > 0. Using B™! we may compute y, =
B~'a,. If y, < 0, we stop with an unbounded optimal solution. Otherwise the
k% } is inserted to the right of the above array, leading to the

column [
Ye

following tableau.
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BASIS INVERSE RHS X
w l c Bl—) Z — G
} b_ 1 Yk
2 Yok
B -1
I br yrk
{ bm ymk

The index r of step 3 can now be calculated by the usual minimum ratio test.
More importantly, pivoting at y,, gives the new values of w, B~ !, b, and czb, and
the process is repeated. We leave it as an exercise to the reader to verify that
pivoting indeed updates the (m + 1) X (m + 1) array.

The revised simplex method converges in a finite number of steps provided
that a noncycling rule for determining the exit variable in case of a tie is
adopted. This is obvious since the revised simplex method carries exactly the
same steps of the simplex method, with the exception that only a part of the
tableau is presented and other information is generated only as required. The
following is a summary of the revised simplex method.

Summary of the Revised Simplex Method in Tableav Format
(Minimization Problem)

INITIALIZATION STEP

Find an initial basic feasible solution with basis inverse B~ L. Calculate w =
cz;B~1, b = B~'b, and form the following array.

BASIS INVERSE RHS

MAIN STEP

For each nonbasic variable, calculate z; — ¢, =wa, — ¢;. Let z — ¢ =

Maximum z;— ¢ If z; — ¢, <0, stop; the current basic feasible solution is

optimal. Otherwise calculate y, = B 'a,. If y, < 0, stop; the optimal
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Z — ¢

solution is unbounded. If y, € 0, insert the column { y } to the right of
k

the tableau leading to the following tableau.

BASIS INVERSE RHS X,
w cgb Z, — G
B! b A

Determine the index r as follows:

b, . b
= Minimum{ — :y, >0
Yk 1<i<m Vi

Pivot at y,,. This updates the tableau. Now the column corresponding to x, is
completely eliminated from the tableau and the main step is repeated.

Example 5.1
Minimize —x, —2x,+ x;—x,—4x5+2x4
Subjectto x;+ x,+ x3+x,+ x5+ x4<6
2x,— xy3—2x3+x, <4
X3t xa+2x5+ x4< 4

Xy, X3, X3, X4, X5, Xg=20

Introduce the slack variables x;, xg, x5. The initial basis is B = [a,, ag, a5] = L.
Also,w =cz;B~! = (0,0,0) and b = b.

Iteration 1

BASIS INVERSE RHS
z 0 0 0 0
b 1 0 0 6
Xg 0 1 0 4
Xg 0 0 1 4
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Here w = (0, 0, 0). Noting that z; — ¢, = wa, — ¢, we get
Z1—c=lzy—c,=2,z3~¢c3=—1,

Zg— =l zs—cs=4,z5 — cg= —2

Therefore k = 5 and x5 enters the basis:

1 0 0 1 1
ys=B'la,=|0 1 o}{lo|=|0
0 0 1 2 2

Insert the vector

4
Sl
Ys 0

2

to the right of the above tableau and pivot at y;5 = 2.

BASIS INVERSE RHS Xs
z 0 0 0 0 4
X, 1 0 0 6 1
xg | O 1 0 4 0
xo | 0 0 1 4 @
BASIS INVERSE RHS
z 0 0 -2 -8
X, 1 0 -3 4
xg | 0 1 0 4
xs 0 0 3 2
Iteration 2

Here w = (0, 0, — 2). Noting that z; — ¢, = wa, — ¢, we get
zZi—c=lz,—¢c,=2,z3~ ¢y = —3,
Zg—Ca= =1,z — cg = —4,

Zg— €y = —2.
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Therefore £ = 2 and x, enters the basis:

1 0 —3 1 1
y,=B7la,={0 1 0| -1]=| -1
[0 0 3 0 0

Insert the vector
2

{ 22 - 6‘2 :| _ 1
Y2 -1

0

to the right of the above tableau and pivot at y,,.

BASIS INVERSE RHS Xy
z 0 0 -2 | -8 2
x5 1 0 -1 4 Q)
xg | O 1 0 4 —1
X5 0 0 3 2

BASIS INVERSE RHS
z | =2 0 -1 —16
X, 1 0 -4 4
Xg 1 1 -3 8
Xs 0 0 3 2
lteration 3

Here w = (=2, 0, — 1). Noting that z; — ¢, = wa, — ¢;, we get
zZp—¢=—-lz3—¢c;=—4,z,— ¢, = =2,

Zg = Cg= —5z24— cg= —1.

Since z; — ¢ < 0 for all nonbasic variables (x, just left the basis and so

Z3 — ¢ < 0), we stop; the basic feasible solution of the foregoing tableau is
optimal.
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Comparison Between the Simplex and the Revised Simplex Methods

It may be helpful to give a brief comparison between the simplex and the revised
simplex methods. For the revised method we need an (m + 1) X (m + 2) array
as opposed to an (m + 1) X (n + 1) array for the simplex method. If n is
significantly larger than m, this would result in a substantial saving in computer
core storage. The number of multiplications (division is considered a multiplica-
tion) and additions (subtraction is considered an addition) per iteration of both
procedures are given in Table 5.1 below. In Exercise 5.3 we ask the reader to
verify the validity of the entries of the table.

Table 5.1 Comparison of the Simplex and the Revised Simplex Methods

OPERATION

METHOD PIVOTING z; —¢'s TOTAL
Multipli- '

Simplex |cations |(m + 1)}(n — m + 1) m(n— m)+n+ 1
Additions| m(n— m + 1) T\ mnh—m+ 1)

- . _— ¢ -

. Multipli- |
I;ev1sled cations (m + 1)? m(n — m) |m(n— m)+ (m+ 1y
PR |Additions]  m(m+1) | mn—m) | m(n + 1)

From Table 5.1 we see that the number of operations required during an
iteration of the simplex method is slightly less than those required for the revised
simplex method. Note, however, that for most practical problems the density d
(number of nonzero elements divided by total number of elements) of nonzero
elements in the constraint matrix is usually small (in many cases d < 0.05). The
revised simplex method can take advantage of this situation while calculating
z; — ¢;. Note that z; = wa; and we can skip zero elements of a, while performing
the calculation wa, = 7. ,w,a;. Therefore the number of operations in the
revised simplex method for calculating the z; — ¢/s is given by d times the
entries of Table 5.1, substantially reducing the total number of operations. While
pivoting, for both the simplex and the revised simplex methods, no operations
are skipped because the current tableaux usually fill quickly with nonzero
entries, even if the original constraint matrix was sparse.

To summarize, if n is significantly larger than m, and if the density 4 is small,
the computational effort of the revised simplex method is significantly smaller
than that of the simplex method. Also, in the revised simplex method, the use of
the original data for calculating the z; — ¢;’s and the updated column y, tends to
reduce the cumulative round-off error.
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Product Form of the Inverse

We now discuss another implementation of the revised simplex method where
the inverse of the basis is stored as the product of elementary matrices (an
elementary matrix is a square matrix that differs from the identity in only one
row or one column).

Con51der a basis B composed of the columns ag, ag,...,ap and suppose
that B™' is known. Now suppose that the nonbasic column a, replaces ap,
resulting in the new basis B. We wish to find B! in terms of B~". Noting that
a, = By, and a; = Be; where e; is a vector of zeros except for 1 at the ith
position, we have

~

B = (aBl, aﬂz, e e ey aB’_I, a,, aB’+I, ey aBm)
= (Be;, Be,,...,Be,_,,By,,Be, . ,,...,Be,)
= BT

where T is the identity with the rth column replaced by y,. The inverse of T,
which we shall denote by E, is given below.

rth column
2
- -
1 0 T 0 —yu/Vu O T 0
0 1 T 0  —yu/Vu O T 0
E=| : : : :
6 o .- 0 1/y, o .- 0 | « rthrow
L 0 0 T 0 = Vu/Vu O e 1
Therefore B™! = T~'B~! = EB~! where the elementary matrix E is specified

above. To summarize, the basis inverse at a new iteration can be obtained by
premultiplying the basis inverse at the previous iteration by an elementary
matrix E. Needless to say, only the nonidentity column g and its position » need
be stored to specify E.

Let the basis B, at the first iteration be the identity I. Then the basis inverse

B, ' atiteration 2is B; ' = E;B; ! = E|1 = E, where E, is the elementary matrix
corresponding to the first iteration. Similarly B;' = E,B;' = E;E,, and in
general

Bl—l = El—lEl—z Tt E2El (5.1)
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Equation (5.1), which specifies the basis inverse as the product of elementary
matrices, is called the product form of the inverse. Using this form, all the steps of
the simplex method can be performed without pivoting. First, it will be helpful
to elaborate on multiplying a vector by an elementary matrix.

POST MULTIPLYING

Let E be an elementary matrix with nonidentity column g appearing at the rth
position. Let ¢ be a row vector. Then

position r
v
1 0 ... g ... 0
o 1 ... g ... 0
cE = (¢, ¢y .56 0 : )
oo ... g, ... lJ
= (Cl’ € v s Gy 2 Ci&> Cryr - - cm)
i=1

= (€1t G, €8 €y v v Cp) (52)

In other words, cE is equal to ¢ except that the rth component is replaced by

cg.

PREMULTIPLYING

Let a be an m vector. Then

[ 1 g - 0]0ra ]

Ea 0 é, 0 a,

0 " L]
(a,+ga ] [a ] _glw
g;ar = O + a, é,
antga | Lan| |l
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In other words,

~

Ea=4+ag (5.3)

where 4 is equal to a except that the rth component a, is replaced by zero.

With the foregoing formulas for post- and premultiplying a vector by an
elementary matrix, the revised simplex method can be executed without pivot-
ing. The following discussion elaborates on the simplex calculations.

COMPUTING THE VECTOR w = ¢,B~!

At iteration t we wish to calculate the vector w. Note that
— -1 _
w=oczB " =cE_JE,_, - EJF,

Computing w can be iteratively performed as follows. First compute ¢;E,_,
according to Equation (5.2). Then apply (5.2) to calculate (czE,_))E,_,, and so

forth. After w is computed, we can calculate z; — ¢, = wa;, — ¢; for nonbasic

variables. From this we either stop or else decide to introduce a nonbasic
variable x,.

COMPUTING THE UPDATED COLUMN y, AND THE RIGHT-HAND-SIDE b

If x, is to enter the basis at iteration ¢, then y, is calculated as follows:
-1
e =B, a, =E_E_,- - EE3

This computation can be executed by successively applying Equation (5.3). If
¥, < 0, we stop with the conclusion that the optimal solution is unbounded.
Otherwise the usual minimum ratio test determines the index r of the variable x5
leaving the basis. Thus x, enters and xp leaves the basis. A new elementary
matrix E, is generated where the nonidentity column g is given by

Y1k
yrk
yrk

YV mk

L yrk
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and appears at position r. The new right-hand side is given by

B b =EB b

1+1

Since B, 'b is known from the last iteration, then a single application of
Equation (5.3) updates the right-hand-side vector b.

UPDATING THE BASIS INVERSE

The basis inverse is updated by generating E, as discussed above. It is
worthwhile noting that the number of elementary matrices required to represent
the basis inverse increases by 1 at each iteration. If this number becomes large, it
would be necessary to reinvert the basis and represent it as the product of m
elementary matrices (see Exercise 5.7). It is emphasized that each elementary
matrix is completely described by its nonidentity column and its position.
Therefore an elementary matrix E could be stored as [E} where g is the

nonidentity column and r is its position.
Example 5.2
Minimize —x,—2x,+ X,

Subject to  x;+ x,+ x;3<

2x,+ x,

N

4

- x;+2x,—2x;< 6
5

0

\%

X1, X2, X3

Introduce the slack variables x,, x;, and x,. The original basis consists of x,, xs,
and xg.

lteration 1
_ 4
b=|6
5
*8, X4 4 X 0
Xp = -’CB2 =|Xs | =|6 Xy = X1 =0
Xp, X6 5 X3 0
z=0
w=cz=(0,00)
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Note that Z;— ¢ =wa — . Therefore
zZi—c=lz,—¢c,=2,z3—cy= —1
Thus, & = 2, and x, enters the basis.

1
2
1

Here x; leaves the basis where r is determined by

Y.=8=

b, b, b
Minimum{-—1 2 3

, , =Minimum{£,§,—5—}=3
Yizo Y V3 172

1
Therefore r = 2; that is, x5 = x5 leaves the basis and x, enters the basis. The
nonidentity column of E, is given by

r 1

Y12

Y2
S

Yn
B V3

L Y L

1
]

l

g
I
I

and E, is represented by { § ]

lteration 2

Update b. Noting Equation (5.3), we have

) 4] [4 ~3 1
b=E|6|=|0|+6 1][=|3
5 5 _% 2

xB, X4 ] 1 X 0
xB = sz = x2 = 3 xN £ .XS = O
Xp, Xe | |2 X3 0

=0~ by(z;—¢;) = =6
w=cgE; = (0, — 2, 0)E,.
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Noting Equation (5.2), then w = (0, — 1,0). Note that z — ¢, =wa, — ¢,
Therefore

= =2,2z3—c¢;=1
Thus, &k = 1 and x, enters the basis. Noting Equation (5.3),
1 3
1 1 2 2
yi=Ea=E| -1,=|0|— % =| -3
2 2 _1 5
2 2

Then xp leaves the basis where r is determined by
b, b
Minimum 1 R eI G Minimum[ i } = z
Yu o Vs 3

Therefore r = 1; that is, x5 = x, leaves and x, enters the basis. The nonidentity
column of E, is given by

1 [ 2]
Y 3
Y21 _ 1
&~ yn | 3
s -2
Y L 3

Also, E, is represented by { & ]

—

lteration 3

Update b. Noting Equation (5.3), we have

2 2
~ 1 0 3 3
b=E)3|={3|+1 % = ?
2 2 _5 1

3 3

e

]

|

X % X
P

I
—
X = =
NN =
|

[
ul—-ulawlw

e

z

[
—
P sl
[PV N
| SE—

I
—
(e e ]
[

Z=_6‘b_1(21_"1)=_2

w = cBE2El = (_ 1, - 2, O)E2E1



5.2 THE SIMPLEX METHOD FOR BOUNDED VARIABLES 201
Applying Equation (5.2) twice, we get
csE, = (- 32 0)

w=(c;E)E, = (—%, —5,0)

Note that z; — ¢ =wa; — C. Therefore

— = _ 3 — = 1
Z3 T C03= 73,25 0= T3

Since z; — ¢; < O for all nonbasic variables, then the optimal solution is at hand.

The objective value is — 2 and

2 1 1
('xlﬁ x2, X3, X4, x59 x6) = (5! TO, O, Oa 09 3)

5.2 THE SIMPLEX METHOD FOR BOUNDED VARIABLES

In most practical problems the variables are usually bounded. A typical variable
x; is bounded from below by / and from above by u. If we denote the lower and
upper bound vectors by I and u respectively, we get the following linear program
with bounded variables.

Minimize cx
Subjectto Ax=b

I<x<u

If 1 = 0, the usual nonnegativity restrictions are obtained. In fact, any lower
bound vector can be transformed into the zero vector by using the change of
variables x’ = x — 1. The most straightforward (and the least efficient) method
of handling the constraints 1 < x < uis to introduce the slack vectors x, and x,,
leading to the constraints x + x; = u and x — x, = . This increases the number
of equality constraints from m to m + 2n and the number of variables from » to
3n. Even if 1 = 0 or is transformed into 0 as discussed above, the slack vector x,
is needed, which increases both the constraints and variables by n.

From the foregoing discussion it is clear that the problem size (and hence the
computational effort) would increase significantly if the constraints 1 < x < u
are treated in the usual manner by introducing slack vectors. The simplex
method with bounded variables handles these constraints implicitly in a fashion
similar to that used by the simplex method to handle the constraints x > 0. The
algorithm of this section moves from a basic feasible solution to an improved
basic feasible solution of the system Ax =b, |1 € x < u, until optimality is
reached or unboundness is verified.
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Definition (Basic Feasible Solutions)

Consider the system Ax = band 1 < x < u, where A is an m X n matrix of rank
m. The vector x is a basic feasible solution of the system if A can be decomposed
into [B, N, N,], where the matrix B has rank m, and l; <B™7'b — B_'NllNl -
B 'Nyu, = x5 <ug, xy =1y,and x, =u,.The matrix B is called the basis,
Xy are the basic variables, and x, and x, are the nonbasic variables at their
lower and upper limits respectively. If, in addition, 1; < x5 < uy, then x is
called a nondegenerate basic feasible solution; otherwise it is called a degenerate
basic feasible solution.

Note that a basic feasible solution is obtained by assigning n — m of the
variables at their lower and/or upper bounds, and then solving uniquely for x,,
such that x, lies between its lower and upper limits. Therefore a nonbasic
variable x; is equal either to its lower bound or to its upper bound.

Example 5.3

Consider the region given by

First introduce the slack variables x; and x,. This gives the following system
(note that close examination of the system shows that u; and u, can be replaced
by 6 and 10 respectively):

X+ Xy4+x5 =35
—x,+2x, +x,=4

0< x,<4

|
N

x,<4

N

X3 <0

(=
N

X, <0

We would like to find all the basic feasible solutions of this system. This can be
accomplished by extracting a basis of the first two constraints, solving the basic
variables in terms of the nonbasic variables, and then assigning the nonbasic
variables at their lower or upper bounds. To illustrate the method select, say, a,
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and a, as the basic vectors. Then

T

Multiplying the first two constraints by B™!

right-hand side, we get

and transferring x, and x; to the

X, = 5= x;— X4
Xg=—64+3x; +2x;

Now assign x, at its lower and upper bounds and x; at its lower bound and
solve for x, and x,.

l. x, =0, x; =0 = x, =5 and x, = —6. Since x, < 0, this is not a basic
feasible solution.
2.x,=4, x3=0 = x,=1 and x, = 6. Therefore (x,, x,, x; x,) =

(4, 1, 0, 6) is a basic feasible solution.

The other basic solutions can be obtained in a similar manner. If all of the
possible bases were enumerated, we would see that the basic feasible solutions
are (2,3,0,0), (0, 2,3,0), (4, 1,0,6), (0, — 1,6, 6), and (4, — 1, 2, 10). Project-
ing these points in the (x,, x,) space, we get the extreme points shown in Figure
5.1. In other words, in this example the basic feasible solutions and the extreme
points of the system Ax = b, 1 < x < u are equivalent. This result is true in
general, and the proof is very similar to the case Ax = b and x > 0, and is hence
left as an exercise for the reader (see Exercise 5.11).

-
2
2 wu

Figure 5.1. Basic feasible solutions.

Improving a Basic Feasible Solution

We now know how to characterize a basic feasible solution, and we also know
that an optimal basic feasible solution exists provided that the feasible region is
not empty and the optimal is finite (why?). Note, however, that the number of
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basic feasible solutions is large (The number of basic feasible solutions is
bounded above by ( ) 2"~ _For each possible way of extracting a basis there
are 2"~ ways of fixing the nonbasic variables at their lower and/or upper
bounds). Therefore a systematic way of moving among the basic feasible
solutions is needed.

Now suppose that we have a basis B and suppose that the nonbasic matrix is
decomposed into N, and N,, that is, A = [B, N,, N,]. Accordingly, the vector x
is decomposed into [xg, Xy , Xy,] and ¢ is decomposed into [cs, ¢y, €y ]. Both
the basic variables and the objective function can be represented in terms of the
independent (that is, nonbasic) vectors x, and x,, as follows:

xz =B7'b —B7'Nyx, — B7'Nyx,, (5.4)

N
|

= cpXp T ¢y Xy, +Cy Xy,

-1 -1 —_B-!
cB(B b-B 'Nx, —B Nszz) + ey Xy, ey Xy,

c;B7'b + (cy, — ¢;B7IN)xy + (cy, — ¢;B7INY)x,, (5.5)

Suppose that we have a current basic feasible solution where x, =1,
Xy, = Uy, and lz < xp < up This solution is represented by the following
tableau. The right-hand- side column gives the true values of z and x, (denoted
by £ and b) where x v, = ly, and xy = u, are substituted in Equations (5.4) and
(5.5). We emphasize that this column does not give c;B~'b and B™'b.

z Xp Xy, Xy, RHS
z 1 0 B 'N,—¢c,, B 'Ny—c, |

. . -
Xp 0 I BN, B~ 'N, |

Now we try to improve the objective by investigating the possibility of
modifying the nonbasic variables. From Equation (5.5) and noting that ¢, —
c;B7'N, and ¢y, — ¢;B7'N, give the ¢; — z values of the lower and upper
bounded nonba51c variables respectlvely, we get

= 28]

=c;Bb— X () — 2 (3 — o)x (5.6)

JER, JER,

where R, is the set of indices of nonbasic variables at their lower bounds and R,
is the set of indices of nonbasic variables at their upper bounds. Forj € R, and
z; — ¢; > 0 it would be to our benefit to increase x; from its current value of /.
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Similarly, for j € R, and z; — ¢; < 0, it would be to our benefit to decrease x;
from its current value of ;. As in the simplex method, we shall modify the value
of only one nonbasic variable while all other nonbasic variables are fixed. The

index k of this nonbasic variable is determined as follows. First examine

Maximum( Maximumz, — ¢, , Maximumc, — z.)
B J 7 : 7 J
JER, JERy

If this maximum is positive, then & is the index where the maximum is achieved.
If it corresponds to R,, then x, is increased from its current level of /, and if it
corresponds to R,, then x, is decreased from its current level of wu,. If the
maximum is < 0, then z; — ¢, < Oforallj € Ry and z; — ¢; > O for allj € R,.
Examining Equation (5.6), this indicates that the current solution is optimal.

To summarize, given a basic feasible solution, if z; — ¢; < 0 for all nonbasic
variables at their lower bounds, and if z; — ¢; > 0 for all nonbasic variables at
their upper bounds, then we stop with the conclusion that the current solution is
optimal. Otherwise we choose a nonbasic variable x, according to the foregoing
rule. If x, is at its Jower bound, then it is increased; otherwise it is decreased.
These two cases are discussed in detail below.

Increasing x, from its Current level J,

Let x, = [, + A, where A, is the increase in x, (currently A, = 0). Noting that
all other nonbasic variables are fixed and that the current value of x; and z are
respectively b and Z, substituting x, = /, + A, in Equations (5.4) and (5.6), we
get

xz; =B7'b —B"'N|l, — B "'Nu, — B 'aA,

=b -y (57
z=c;B7'b— X (7 — ) — 2 (7~ ¢)u; — (% — )iy
JERy JER,
== (54— ) (5-8)

Since z, — ¢, > 0 (why?), then from Equation (5.8) it is to our benefit to
increase A, as much as possible. However, as A, increases, the basic variables
are modified according to Equation (5.7). The increase in A, may be blocked as
follows.
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1. A BASIC VARIABLE DROPS TO ITS LOWER BOUND

Denote the value of A, at which a basic variable drops to its lower bound by v,
From Equation (5.7) we have l; < x5 = b — y,A,. Therefore y,A, < b — 1. If
¥, <0, then A, can be made arbitrarily large without violating this mequality
and so y, = oo (that is, no basic variable drops to its lower bound). Otherwise y,
is given by the minimum ratio shown below. Therefore

b —

1

Ip
typ >0 =

B’ .
Yk (59)

Y1 = I<i<m

Minimum [

The basic variable that reaches its lower bound is a candidate for x, .

2. A BASIC VARIABLE REACHES ITS UPPER BOUND

Denote the value of A, at which a basic variable reaches its upperbound by v,.
From Equation (5.7) b — y,A, = X, < u, and hence —y,A, < u, —b. If y, >
0, then A, can be made arbitrarily large without violating this inequality and so
y, = oo (that is, no basic variable reaches its upper bound). Otherwise, v, is
given by the minimum ratio shown below. Therefore

uB - l;i uB - br
Mini ‘ g <O0p = —— ify, #0
Y, = llgllrill;:'m ¥ Yik ~Vu 1y, * (510)

The basic variable that reaches its upper bound is a candidate for x.

3. x, ITSELF REACHES ITS UPPER BOUND

The value of A, at which x, reaches its upper bound u, is obviously u, — /.

These three cases give the maximum increase in A, before being blocked by a
variable or by x, itself. Obviously A, is given by

= Minimum(y,, v,, 4 — £) (5.11)

If A, = oo, then the increase in x, is unblocked and by Equation (5.8) the
optimal solution is unbounded. If, on the other hand, A, < o0, a new basic
feasible solution is obtained where x, = /, + A, and the basic variables are
modified according to Equation (5.7).
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Updating the Tableav When the Nonbasic Variable Increases

The current tableau must be updated to reflect the new basic feasible solution. If
A, = w, — I, then no change of basis is made and x, is still nonbasic, except
this time it is at its upper bound. Only the RHS column is changed to reflect the
new value of the objective function and the new values of the basic variables.
According to Equations (5.8) and (5.7), £ is replaced by Z — (z, — ¢,)A, and b is
replaced by b— ¥, Ag. On the other hand, if A, is given by y, or y,, then x,
enters the basis and x, leaves the basis, where the index r is determined
according to Equation (5.9) if A, = y; or according to (5.10) if A, = y,. The
tableau except the RHS column is updated by pivoting at y,,. Note that y,, may
be either positive or negative. Since the right-hand side is computed separately,
this should cause no alarm. The right-hand-side column is updated according to
Equations (5.8) and (5.7) except that the rth component of the new vector b is
replaced by /, + A, to reflect the value of x,, which has just entered the basis.

Alternately, the right-hand-side vector can be updated directly with the rest
of the tableau. This, however, requires three distinct operations (which may be
performed in any order). First, we multiply the nonbasic entering column by its
current value (either /. or u,) and add the result to the RHS vector. Next, we
multiply the basic leaving column by the value it will assume (either /; or up)
and subtract the result from the RHS. Finally, we perform a normal pivot
operation on the adjusted RHS vector.

Decreasing x, from its Current Level v,
This case is very similar to that of increasing x, and is only discussed briefly. In
this case z, — ¢, < 0 and x, = u, — A,, where A, > 0 denotes the decrease in
x,. Noting Equations (5.4) and (5.6), we get
xp =b +y,4, (5.12)
z = 2 + (Zk - Ck)Ak (5-13)

The maximum increase in A, is given by Equation (5.11) where y, and y, are
specified below:

M 1;, - lB- l;r - lB

inimum - iy <0) = - if 0

Y = 1H<n"<'” ik Vi < T Vrk iy, (5.14)
OO0 *+ ¢ cr e e et e e e e e if A\ >0
M up, — b, ug, — b,

Y2 = 1121irglrfzm Yik Vi > Yrk iy, 4 (5-15)

OO0 * ¢+ s e e he aee e e lfyk<0
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If A, = oo, then the decrease of x, is unblocked and by Equation (5.13) the
optimal solution is unbounded. If A, < oo, then a new basic feasible solution is
obtained where x, = 4, — A, and the basic variables are modified according to
Equation (5.12).

Updating the Tableau When the Nonbasic Variable Decreases

If A, = u, — [, then x, is still nonbasic but at its lower bound. The tableau is
unchanged except for the RHS column, which is updated according to Equa-
tions (5.13) and (5.12). If A, is given by y, or y,, then x, enters the basis and x
leaves the basis where r is determined by Equation (5.14) if A, = y, and by
(5.15) if A, = v,. The tableau except for the RHS is updated by pivoting at y,,.
Again y, could be either positive or negative. The RHS column is updated
according to Equations (5.13) and (5.12) except that the rth component of the
new vector b is replaced by u, — A, to reflect the value of x, which has just
entered the basis. We may also again utilize the alternative method, described
before, to update the RHS vector.

Getting Started

If no basic feasible solution is conveniently available, we may start the lower-up-
per bound simplex method with artificial variables. This is accomplished by (1)
setting all of the original variables to one of their bounds, (2) adjusting the RHS
values accordingly, (3) multiplying rows, as necessary, by —1 to get b: > 0, and
(4) adding artificial columns. The two-phase or the big-M method may be
employed to drive the artificial variables out of the basis.

We now have all the ingredients of the simplex method with bounded
variables. In the absence of degeneracy, note that the procedure described above
moves from one basic feasible solution to an improved basic feasible solution
and therefore must stop in a finite number of iterations. Verification of this fact
and the handling of the degenerate case are left as an exercise for the reader (see
Exercise 5.15). We give below a summary of the algorithm.

Summary of the Simplex Method for Bounded Variables (Minimization Problem)

INITIALIZATION STEP

Find a starting basic feasible solution (use artificials if necessary). Let x; be the
basic variables and let x w, and x,, be the nonbasic variables at their lower and
upper bounds respectlvely Form the following tableau where Z = c¢;B7'b
+ (cy, = ;B 'NDly, + (cy, — ¢;B"'Npu, and b=B"'b - B-INJ, N, T
B~ 'Nyuy, .
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z Xp Xy, Xy, RHS
z 1 J 0 c;B7'N, — ¢y, c;B7'N, — ¢, 5
x; | 0 | 1 B-'N, BN, b
MAIN STEP

LLIfz—¢ < 0 for nonbasic variables at their lower bound and z,—¢ >0
for nonbasic variables at their upper bound, than the current solution is
optimal. Otherwise if one of these conditions is violated for the index &,
then go to step 2 if x, is at its lower bound and step 3 if x, is at its upper

bound.
2. The variable x, is increased from its current value of /, to /, + A,. The

value of A, is given by Equation by (5.11) where vy, and v, are given by
Equations (5.9) and (5.10). If A, = o, stop; the optimal solution is un-
bounded. Otherwise the tableau is updated, as described previously. Repeat

step 1.
3. The variable x, is decreased from its current value of u, to u, — A,. The

value of A, is given by Equation (5.11) where y, and vy, are given by
Equations (5.14) and (5.15). If A, = oo, stop; the optimal solution is
unbounded. Otherwise, the tableau is updated as described previously.

Repeat step 1.

It will be helpful to distinguish between nonbasic variables at their lower and
upper bounds during the simplex iterations. This is done by flagging the
corresponding columns by / and u respectively.

Example 5.4

Minimize — 2x,—4x,— x4

Subjectto  2x;+ x,+x;<10
X+ x,—x3< 4
0< x,< 4
0< x,< 6
1< x3< 4
Introduce the slack variables x, and xs. These are bounded below by 0 and
bounded above by co. Initially the basic variables are x, and xs, and the

nonbasic variables at their lower bound are x, = x, = 0 and x; = 1. Note that
the objective is — 1 and the values of the basic variables x, and x; are given by

10 -1=9and4+1=5.
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Iteration 1
! I I
z X Xy X4 X, X5 RHS
z 1 2 4 1 0 o | -1
- — — ————————— —— -
X4 0 2 1 1 1 0 | 9
X5 0 1 O -1 0 1 5

The maximum value of z; — ¢; for lower bounded nonbasic variables is 4

1
1]
given by Minimum (y,, v,, 4, — I,) = Minimum (y,, v,, 6). Also vy, and vy, are
given according to Equations (5.9) and (5.10) as follows. First,

corresponding to x,. Therefore x, = x, is increased. Then y, = and A, is

Y, = Minimum{ 9—;—0 5;10 } =35
corresponding to x5 = x;, that is, 7 = 2. This means that A, can be increased to
value 5 before a basic variable drops to its lower bound. Second, v, = o0, which
means that A, can be increased indefinitely without any basic variable reaching
its upper bound.

Therefore A, = Minimum (5, o, 6) = 5. The objective is replaced by —1 —
(zy—cpA, = —-1—-4x 5= —2land

X4 9 9 1 4
= _ A - —_ = .
{XS] HEs HEH, [0]
The value of x, is given by A, = 5. Then x, enters and x; leaves. The tableau is
updated by pivoting at y,,.

Iteration 2
i i i
z X, X, X5 X4 X5 RHS
z 1 -2 0 5 0 — 4 -21 |
x, 0 1 0 2 1 -1 | 4
%, 0 I ) 0 1 5

All nonbasic variables are at their lower bounds and the maximum value of
2

z; — ¢; is 5, corresponding to x;. Therefore x; enters, y; = [ 1

by
A; = Minimum(y,, v5, 43 — /3) = Minimum(y,, v, 3)

] and A, is given
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The values of y, and v, are obtained from Equations (5.9) and (5.10) as follows.
First,

corresponding to x5 = xp = X,, that is, » = 1. This means that x, drops to its
lower limit as x, is increased. Second,

-6-5_
Y2 1 1
corresponding t0 Xz = xp = x,, that is, » = 2. This means that x, reaches its
upper bound as x; is increased. Therefore A; = Minimum (2, 1,3) = 1= y,.
Now x; =1+ A; = 2.

The objective is replaced by —21 — (z, — ¢3)A; = =21 — 5 X 1 = —26.

X4 4 4 2 2
) _ A = — )
]3] v =[] 3)-[E]
Here x; enters the basis and x, reaches its upper bound and leaves the basis.
The tableau (except the RHS, which was updated separately) is updated by

pivoting at y,, = y,3 = — 1. If we had chosen to use the alternative method for
updting the RHS column, we would first replace the RHS column of iteration 2

by
-21 5 0 —-16
4|+ 1 21 —6/0!= 6
5 -1 1 -2
Upon pivoting at y,; (= —1), we would obtain the right-hand-side column
below.
lteration 3
/ u /
z X, X, X5 X, Xs RHS
z I 3 5 0 0 1T —-26
x | o ® 2 0 I 1 ‘ 2
X 0o -1 — 1 1 0o -1 | 2

The maximum value of z,— ¢ for nonbasic variables at their lower bound is
3, corresponding to x,. Therefore x, is increased. Here y, =[ _ ﬂ and A, is
given by

Ay = Minimum(y,, v,, 4; — /) = Minimum(y,, y,, 4)
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The values of v, and y, are given by Equations (5.9) and (5.10) as follows. First,

2-0
'Yl=_3_

[VS3] S}

corresponding to xp = x5 = x,, that is, r = 1. This means that as A, is
increased to %, x, drops to its lower limit and drops from the basis. Second,

4 -2
72=T=2

corresponding to xz = x5 = x5, that is, r = 3. This means that as A, is
increased to 2, x, reaches its upper limit and drops from the basis.
Therefore A, = Minimum (2, 2, 4) = . So x;, = . The objective is replaced

by =26 — (z;, — ¢)A, = —26 — 3 X § = =28,

Xa] _[2 _[27_[ 312_]0
MEHEEEHE RS
Here x, enters the basis and x, leaves the basis.
The tableau is updated by pivoting at y,, = 3, and the RHS is updated

separately where z = —28, x, = %, and x; = %.
lteration 4
u / /
z X, X5 X5 X, X5 RHS
z 11 o 3 0 ~1 0 | -28
X 0 1 3 3 3 3
v ol o -4 Lo :

Since z; — ¢; > 0 for nonbasic variables at their upper bound and z; — ¢; < 0
for nonbasic variables at their lower bound, then the foregoing tableau gives
an optimal solution (is it unique?). The variables are given by (x, x,, X5, X4, Xs)
= (3,6, £,0,0) and the objective is —28.

5.3 THE KUHN-TUCKER CONDITIONS AND THE SIMPLEX METHOD

In this section we develop the necessary and sufficient Kuhn-Tucker optimality
conditions for a linear programming problem. These conditions will be used as a
general framework for many algorithms during the remainder of the book.
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The Kuhn-Tucker Conditions for Inequality Constraints

Consider the following linear programming problem.
Minimize ¢x

Subject to Ax> b

x>0

where ¢ is an n vector, b is an m vector, and A is an m X n matrix. The
Kuhn-Tucker conditions can be stated as follows. The vector x is an optimal
solution of the foregoing problem if there exist an n vector v and an m vector w
such that the following three conditions hold. Conversely, if the following three
conditions hold, then x is an optimal solution of the foregoing problem.

Ax > b, x>0 (5.16)
c—wWA—v=0, w>0v>0 (5-17)
w(Ax — b) = 0, v =0 (5.18)

Before proceeding any further, let us briefly discuss these three optimality
conditions. The first condition (5.16) merely states that the candidate point must
be feasible; that is, it must satisfy the constraints of the problem. This is usually
referred to as primal feasibility. The second condition (5.17) is usually referred to
as dual feasibility, since it corresponds to feasibility of a problem closely related
to the original problem. This problem is called the dual/ problem and will be
discussed in detail in Chapter 6. Here w and v are called the Lagrangian
multipliers (or dual variables) corresponding to the constraints Ax > bandx > 0
respectively. Finally, the third condition (5.18) is usually referred to as comple-
mentary slackness. Since w > 0 and Ax > b, then w(Ax — b) = 0 if and only if
either w;, is 0 or else the ith slack variable is 0. Similarly vx = 0 if and only if
either x; is 0 or else v; is 0.

The f‘ollowing example illustrates the Kuhn-Tucker conditions.

Example 5.5

Minimize — x, —3x,

Subjectto x;—2x,>—4
—Xx,— x,>—4
Xy, x,2 0
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——
WO WS
]

4
[0} Figure 5.2. Verification of the KT conditions.

Equations (5.16), (5.17), and (5.18) represent a useful tool in verifying whether a
certain point is optimal. To illustrate, suppose we were told that the optimal
solution of the foregoing problem is the point (0, 0). We see geometrically in
Figure 5.2, or by using the simplex method, that (0, 0) is not the optimal point.
First, inequality (5.16) holds since (0, 0) is indeed a feasible point. Since none of
the first two constraints is binding (that is, + x;, — 2x, > —4and —x, — x, >
—4), then w, = w, = 0, in order to satisfy Equation (5.18). Since w = 0, then
from Equation (5.17) we have to have ¢ = v, thatis, v = (—1, — 3). This violates
nonnegativity of v, however. Therefore, (0, 0) could not be an optimal solution
of this problem.

Now suppose that we were told that the optimal point is (%, g). In order to
check whether this is a true statement, we can use the Kuhn-Tucker conditions.
Since x,, x, > 0, then v; = v, = 0 in order to satisfy complementary slackness.
From Equation (5.17), w must satisfy the equations ¢ — wA = 0, that is,

Wl_W2=_1

- 2w —w,= -3

and hence w, = 2 and w, = 3. Note that w > 0 and Ax = b and hence w(Ax —
b) = 0. Therefore conditions (5.16), (5.17), and (5.18) hold and (3, %) is indeed
an optimal point.

Geometric Intepretation of the Optimality Conditions

Before proceeding to prove the Kuhn-Tucker conditions, let us examine their
geometric interpretation. As we mentioned earlier, condition (5.16) merely states
that the point x must be feasible. Now let us examine (5.17) and (5.18) more
carefully. Given a feasible point x, we can immediately determine the binding
(also referred to as active) and the nonbinding (also referred to as inactive)
constraints, that is, the constraints that hold as equalities and those that hold as
strict inequalities. If a constraint holds as a strict inequality, such as a’x > b,
(where a' is the ith row of A), then condition (5.18) requires that w, = 0, and



5.3 THE KUHN-TUCKER CONDITIONS AND THE SIMPLEX METHOD 25

similarly if x; > O then v, = 0. Since this is the case, then conditions (5.17) and
(5.18) reduce to

c=Dwa + 3 ve
i€l JEJS

w >0 iel

1

v; >0 jeJ

where

I={i:ax =5}, thesetof binding constraints
J={j:x = O}, the set of binding nonnegativity constraints

e; is a vector of zeros except for a 1 at the jth position.

From this discussion, it is clear that conditions (5.17) and (5.18) reduce to the
simple criterion that ¢, the gradient of the objective function, can be represented
as a nonnegative combination of the gradients of the binding constraints, where
a' is the gradient of the constraint a'x > b, and e, is the gradient of the
constraint x; > 0. In other words, the Kuhn-Tucker conditions hold if x is
feasible, and the gradient of the objective function ¢ lies in the cone generated
by the gradients of the binding constraints. Since the Kuhn-Tucker conditions
are both necessary and sufficient, then a point is optimal if and only if c lies in
the prescribed cone.

Example 5.6

Minimize — x, —3x,

Subject to  x; —2x,>—4
—x;— x,>—4
X, X2 0

The gradients of the objective function and the constraints are given below:

c=(-1,-3)

al = (1, - 2)
a?= (-1, - 1)
e, =(1,0)

e, =(0,1)

Let us consider the four extreme points of Figure 5.3.
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|
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Figure 5.3. Geometry of the KT conditions.

1. The extreme point x = (0, 0). The binding constraints are the nonnegativity
constraints. We see from Figure 5.3 that ¢ does not belong to the cone of
the gradients e, and e, of the binding constraints. Therefore (0, 0) is not
optimal.

2. The extreme point x = (0, 2). The binding constraints are x; — 2x, > —4
and x, > 0. Here ¢ does not belong to the cone generated by the gradients
a' and e, of the binding constraints. So (0, 2) is not optimal.

3. The extreme point (3, %). The binding constraints are x; — 2x, > —4 and
— x; — x, > —4. Here c belongs to the cone of the gradients a' and a? of
the binding constraints. Therefore (5, $) is an optimal point.

4. The extreme point (4, 0). The binding constraints are —x; — x, > —4 and
x, > 0. Here ¢ does not belong to the cone generated by the gradients a’
and e, of the binding constraints and hence is not optimal.

Proof of the Kuhn-Tucker Conditions

First let us show that the Kuhn-Tucker conditions are sufficient for optimality.
Suppose that x is a feasible solution of the problem and suppose that there exist
vectors w and v such that conditions (5.16), (5.17), and (5.18) hold. We shall
show that x is indeed an optimal solution. Let x’ be any feasible point satisfying
Ax’ > b and x’ > 0. From condition (5.17), ¢ — wA — v = 0 and we get

0=(c—wA —v)(x —x') = (cx — ¢cx’) — WAX — vX + wAX' + WX’
From condition (5.18), wAx = wb and vx = 0. Therefore
0= (cx — cx’) + w(Ax’ — b) + vx’

Since w > 0, AX’ —b >0, v > 0, and x’ > 0, the foregoing equation implies
that ex’ > cx. Since this is true for each feasible solution, then x is indeed an
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optimal solution of the problem. This shows that the Kuhn-Tucker conditions
are sufficient for optimality.

Conversely suppose that x is an optimal (and hence feasible) solution of the
problem. We shall now show that conditions (5.17) and (5.18) hold. Possibly

after rearranging the columns and rows of A, suppose that x;, x,, ..., x, are
A

positive, x,,,...,x, =0, Ax=b; and Ax >b, where A= Al ] and
2

b
b={b1]’A1 isk X n, Ayis (m — k) X n, b, is a k vector, and b, is an m — k
2

vector. Note that Ajd > 0, d,,,...,d, > 0 and cd < 0 has no solution. This
follows, since otherwise it can be easily verified that x + Ad is a feasible solution
with 4 better objective value, for A > 0 and sufficiently small, thus violating
optimality of x (see Exercise 5.33). The system Ad > 0, d,,,,...,d, > 0 can

be rewritten as Td < 0, where

—A k rows
T=[ 0 —1 |n— prows

and I is an (n — p) X (n — p) identity matrix. The system Td < 0 and ed < 0
therefore has no solution and applying Farkas’s Theorem (see Section 2.7), there
exists a nonnegative k vector w, and a nonnegative n — p vector v, such that
c— wA —(0,vy) = (0,0). Letting w, =0 and v, =0, we have ¢ — wA, —
w,A, — (v, Vo) = (0, 0), that is, ¢ — wA — v = 0, where w, v > 0. Furthermore,
note that x, =0 forj=p+1,...,nand y;=0forj=1,...,p, and hence
x,v; = 0 for all j and

Ax — b) = A b o 0 =0
W( X = )_(wl’ wz) Azx_b2 _(wl’ ) Azx__b2 -

This shows that conditions (5.16), (5.17), and (5.18) hold and hence the Kuhn-
Tucker conditions are also necessary for optimality.

The Kuhn-Tucker Conditions for Equality Constraints

Consider the following linear programming problem in equality form.
Minimize c¢x

Subject to Ax=Db

x>0
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By changing the equality into two inequalities of the form Ax > b and —Ax >
—b, the Kuhn-Tucker conditions developed earlier would simplify to

Ax = b, x>0 (5.19)
c—wA —-v =0, w unrestricted, v>0 (5.20)
vx =0 (5.21)

The main difference between these conditions and the conditions for the
inequality problem is that the Lagrangian multiplier vector (or dual vector) w
corresponding to the constraint Ax = b is unrestricted in sign.

Optimality at a Basic Feasible Solution

Consider the following problem.
Minimize ¢x

Subject to Ax=Db

x2 0

Assume that rank (A) = m, and let us reinvestigate how the simplex method
recognizes an optimal basic feasible solution. Suppose that we have a basic
feasible solution x with basis B and let us examine conditions (5.19), (5.20), and
(5.21). Obviously (5.19) holds. The condition ¢ — wA — v = 0 can be rewritten
as follows, where v is decomposed into v, and v, :

(c5, ex) — W(B, N) = (v5, vy) = (0, 0) (5-22)

If the complementary slackness condition vx = 0 is to hold, and since x,, = 0, it
sufficies to have v, = 0, in order to guarantee that vx = vpxp + vyxy = 0.
With v, = 0, Equation (5.22) reduces to the following two equations:

c; —wB=0
ey —WN—v, =0
From the first equation we get w = ¢;B ™', and from the second equation we get

vy =cy —wWN =¢c, — ;B !N,
To summarize, given a basic feasible solution, condition (5.19) automatically
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holds, (5.21) holds by letting v, = 0, and the condition ¢ — wA — v =10 is
satisfied by lettingw = c¢;B ! and vy, = ¢, — ¢;B~'N. The only possible source
of violation of the Kuhn-Tucker conditions is that v, may violate the nonnega-
tivity restrictions. Note, however, that v, consists of the ¢; — z;, values for the
nonbasic variables. Therefore the nonnegativity of v, in Equation (5.20) is
violated if ¢; — z; < O for some nonbasic variable. Of course, if ¢, — z; > 0 for
each nonbasic variable, then v, > 0 and all the Kuhn-Tucker conditions are
met. These are precisely the simplex termination criteria.

Reinterpretation of the Simplex Method

From the previous discussion, the simplex method can be interpreted as a
systematic procedure for approaching an optimal extreme point satisfying the
Kuhn-Tucker conditions. At each iteration, feasibility (called primal feasibility)
is satisfied, and hence condition (5.19) always holds. Also complementary
slackness is always satisfied since either a variable x; is nonbasic and has value
zero, or else v, = ¢, — z; =0, and hence v,x; = 0 for all j and vx =0. So
condition (5.21) is always satisfied during the simplex method. Condition (5.20)
(called dual feasibility; more on this in Chapter 6) is partially violated during the
iterations of the simplex method. Condition (5.20) has two portions, namely
¢ — WA — v =0,and v > 0. The first portion always holds by lettingw = ¢,B~!
and v = (v, vy) = (0, ¢y — c;B"'N). However, the second portion, namely
nonnegativity of ¢, — ¢;B !N (called dual feasibility), is violated, until of
course, the optimal solution is reached. To summarize, the simplex method
always satisfies primal feasibility and complementary slackness. Dual feasibility
is violated, and the violation is used to improve the objective function, by
increasing the nonbasic variable with the most negative ¢, — z;.

Finding the Lagrangian Multipliers From the Simplex Tableau

We already know that v; =0 and v, = ¢y — ¢;B7'N. Therefore the La-
grangian multiplier v, corresponding to the constraint x; > 0 can be easily
obtained from row 0 of the simplex tableau. More precisely, v, is the negative of
the z; — ¢; entry in row 0 under the x; column.

Now we turn to the Lagrangian vector w = ¢;B™ " corresponding to the
constraints Ax = b. The method for obtaining w from the simplex tableau was
discussed in Chapter 3. We shall elaborate on this further. Recall that row 0 of
the simplex method consists of z;— ¢ forj=1,..., n, which are given by the
vector ¢;B~'A — c. If the matrix A has an identity matrix as a portion of its
columns, then in row O under these columns, we have ¢;B ' — & =w — &,
where ¢ is the part of the cost vector ¢ corresponding to the identity columns in
the original problem. By simply adding the vector & to w — & in row 0, we get w.

1
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EXERCISES

5.1 Solve the following linear program by the revised simplex method.

Minimize —2x;, +x3

Subject to x; — 2x, +x; > —4
X+ x+x;< 9
2x; — x,—x3< 5
X, Xy X3 2 0

5.2 Solve the following problem using the revised simplex method.

Minimize x;+ 6x,—7x;+ x,+5x;

Subject to  x;— 3x,+2x;— 5 x, =5

1 3 -
— 32X+ 3x;— 3x,+ x,=15

X, Xy X3 Xg X520

5.3 Verify the entries in Table 5.1.
5.4 Solve Exercise 5.2 using the product form of the inverse.

5.5 Solve the following problem by the revised simplex method using the
product form of the inverse.

Maximize 3x,+4x,+ x;+7x,

Subject to  8x,+3x,+4x;+ x,< 7
2x,+6x,+ x3+5x,< 3
x;+4x,+5x;+2x,< 8

Xy, X3 X3 x420
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5.6 Apply the revised simplex method, with and without the cycling prevention

5.7

5.8

59

rule, to the following problem (this is, the example problem of cycling in

Chapter 4).
Minimize — 3 x4+ 20x,— Lxc+ 6x,
Subject to  x, +5x, — 8xs— x4+ 9x,= 0

X, +ax,— 12x5— 1 xg+ 3x,=0
X5 + x4 =1

X{,X9,X3,  Xgy X5, Xg x; 20

In the revised simplex method with product form of the inverse, the
number of elementary matrices increases by 1 at each iteration. If the
number of elementary matrices becomes excessive, it would be necessary to
reinvert B. Let B be a basis. Show how can B be reinverted such that B~ ! is
represented as the product of m elementary matrices. Illustrate by an
example.

Determine the number of multiplications and additions needed per itera-
tion of the revised simplex method using the product form of the inverse.
How can we take advantage of sparsity of nonzero elements in the matrix
A? Give a detailed comparison between the simplex method and the
revised simplex method using the product form of the inverse.

Use the simplex method for bounded variables to solve the following
problem.

Maximize X+ x5+ 3x;5

Subject to x;+x,+ x3<12

N

— X+ Xy

N

x5+ 2x,
0< x
0
0

N
N

X2

N
A N W o W

N
N

X3
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5.10 Use the simplex method for bounded variables to solve the following
problem.

Minimize X +2x,+3x3— x,
Subject to X — X3+ x3—2x,<6
—x;+ x,— x3+ x,<8
2x1+ xy3— x4 >2
0 3
1 4
0
2

N
N

X

N
=
N

2

A
(=

1

A
=

3

N

5

5.11 Consider the problem: Minimize cx subject to Ax = b, 1 < x < u. Show in
detail that the collection of extreme points and the collection of basic
feasible solutions as defined in Section 5.2 are equal.

A
=

4

5.12 Consider the problem: Minimize ex subject to Ax = b, 0 < x < u. Show
that the basic feasible solutions defined in Section 5.2, and the basic
feasible solutions that would be obtained if the constraint x < u is trans-
formed into x + x, = u and x, > 0, are equivalent.

5.13 Solve the following problem by the simplex method for bounded variables.

Maximize 2x,+3x,—2x,

Subjectto  x;+ x,+ x;<8
2x,+ x,— x323

x <4

5.14 Compare the simplex method of Chapter 3 with the lower-upper bound
simplex method. Indicate the number of operations (additions, subtrac-
tions, and so on) when each of the two methods is applied to the same
lower-upper bounded linear program.

5.15 Show in detail that the simplex method for bounded variables discussed in
Section 5.2 converges in a finite number of steps. Discuss in detail the
problem of degeneracy and devise a rule that prevents cycling. Give all
proofs.
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5.16 a. Solve the following (knapsack) problem.

Maximize 2x; + 3x, + 8x; + x, +x;

Subject to 3x, + 7x, + 12x; + 2x, +3x5 < 10
X, Xy X3 X4 X5 2 0

b. Give a generalized closed form solution for the following problem.

Maximize ¢ x;+ - - - +¢,x,
Subject to a;x;+ - - - +a,x,<b
X, 0, x,20

where ¢; and a, are positive scalars for each j.
c. What is the form of the optimal solution if ¢; and a; are allowed to be
any scalars in part (b)?

517 Let Q=(1,2,...,n}, P,C Q with LN P,=®forij=12...,r
and i % j, and ,
UP=0
i=1
Develop an efficient method to solve the following problem where ¢; > 0
for each .
Maximize 2 GX;
JEQ
Subjectto by < D x; < by
JEQ
bl < X x<b i=1l...,r
JEP;
O0<x,<uy JjEQ

Apply the method to the following problem.
Maximize  10x,+6x,+3x;+5x, + 8x;

Subject to 30<x,+ x,+ x5+ x, + x5<100

2<x1+ x, < 50
70 < X3+ x4+ x5< 80
0< xy, X4 x5 < 30
0< xpx3 < 25
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5.18 Solve the following problem by the simplex method for bounded variables.
Maximize 2x,;+6x,— x3—4x,+ x5

Subject to 2x,+ x,+4x;+ x,+x5=10

3x;+8x,—3x;+ x, =17

W

0<x, <

B

I<x,<

oo

0<x,;<

1<x,<

N

0<x5<20

5.19 Consider the following problem.
Minimize  x,+3x,+4x,
Subjectto —x;—2x,— x;<—12
—X;— X+2x35< —6
- 2x,— x,—4x;<—24

Xy, X5 X322 0

Let x, be an artificial variable with an activity vector b < b. Introducing
the restrictions 0 < x, < I and letting x, = 1 would lead to a starting basic
feasible solution of the new system. Use the bounded simplex method to
find a basic feasible solution of the original system.

5.20 Solve the following problem by the simplex method for bounded variables.

Maximize 6x;+4x,+2x,

N

Subject to 4x,—3x,+ x;< 8
X, +2x,+4x5,<10
3

N

0< x
0< x

0< xy
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5.21 Solve the following problem by the simplex method for bounded variables.
Minimize 6x;+2x,

Subject to  x;+3x,>3
S5x,+ x,2>4
x; 22

x,>1
5.22 Solve the following problem by the simplex method for bounded variables.
Maximize 6x,+4x,

Subject to 3x,+2x,<4
X, +2x,<9
0< x,<3

0< x,<4

5.23 Show that the following two problems are equivalent.

P,: Minimize c¢x P,: Minimize  cx
Subject to b, <Ax<b, Subject to Ax+s=b,
x>0 x>0
0<s<bh, — b

Use the lower-upper bound simplex method to solve the following.
Minimize 3x,—4x,

Subjectto 3 < x; +x,<5
2 < 2x,— 5x,<8

X, X, 20

(Note that it will be necessary to use artificial variables to get started.)

5.24 A government has allocated $1.5 billion of its budget for military purposes.
Sixty percent of the military budget will be used to purchase tanks, planes,
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5.25
5.26

5.27

5.28
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and missile batteries. These can be acquired at a unit cost of $600,000, $2
million, and $800,000 respectively. It is decided that at least 200 tanks and
200 planes must be acquired. Because of the shortage of experienced pilots,
it is also decided not to purchase more than 300 planes. For strategic
purposes the ratio of the missile batteries to the planes purchased must fall
in the range from } to 3. The objective is to maximize the overall utility of
these weapons where the individual utilities are given as 1, 3, and 2

respectively. Find the optimal solution.
Solve Exercise 1.13.

A farmer who raises chickens would like to determine the amounts of the
available ingredients that will meet certain nutritional requirements. The
available ingredients and their cost, the nutrients in the ingredients, and the
daily requirements are summarized below.

INGREDIENT MINIMUM DAILY
NUTRIENT CORN LIME ALFALFA . REQUIREMENT
Protein 8 4 4 10
Carbohydrates 4 2 4 6
Vitamins 2 3 4 5
$ cost 0.10 0.06 0.04

Find the optimal mix using the revised simplex method with the product
form of the inverse. Use only one artificial variable.

An automobile manufacturer has contracted to export 400 cars of model A
and 500 cars of model B overseas. The model A car occupies a volume of
12 cubic meters, and the model B car occupies a volume of 15 cubic
meters. Three ships for transporting the automobiles are available. These
arrive at the port of destination at the beginning of January, the middle of
February, and the end of March respectively. The first ship only transports
model A cars at $450 per automobile. The second and third ships transport
both types at a cost of $35 and $40 per cubic meter respectively. The first
ship can only accommodate 200 cars, and the second and third ships have
available volumes of 4500 and 6000 cubic meters. If the manufacturer has
contracted to deliver at least 250 and 200 cars of model A and B by the
middle of February and the remainder by the end of March, what is the
shipping pattern that minimizes the total cost? Use the revised simplex
method.

A manufacturing firm would like to plan its production/inventory policy
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5.29

for the months of August, September, October, and November. The prod-
uct under consideration is seasonable, and its demand over the particular
months is estimated to be 500, 600, 800, and 1200 units respectively.
Presently the monthly production capacity is 600 units with a unit cost of
$25. Management has decided to install a new production system with
monthly capacity of 1100 units at a unit cost of $30. However, the new
system cannot be installed until the middle of November. Assume that the
starting inventory is 250 units and that at most 400 units can be stored
during any given month. If the holding inventory cost per month per item
is $3, find the production schedule that minimizes the total production and
inventory cost using the bounded simplex method. Assume that demand
must be satisfied and that 100 units are required in inventory at the end of
November.

Consider the problem: Minimize cx subject to Ax = b, x > 0. Let B be a
basis. After adding the redundant constraints x, — x, = 0, the following
equations represent all the variables in terms of the independent variables
Xyt

Xy RHS
z ( c;B"'N - C, ] czb
Xp B~'N b
Xy | 0

The simplex method proceeds by choosing the most positive z; — ¢;, say
7z, — ¢,. Then x, enters the basis and the usual minimum ratio test
indicates that x, leaves the basis. The foregoing array can be updated by

column pivoting at y,, as follows.

1. Divide the kth column (pivot column) by —y,,.

2. Multiply the kth column (pivot column) by y, and add to the jth
column. _

3. Multiply the kth column by b, and add to the right-hand side.

4. Remove the variable x, from the list of nonbasic variables and add xp
instead in its place. Note that no row designations are changed.

This method of displaying the tableau and updating it is usually called the

column simplex method. Show that pivoting gives the representation of all

the variables in terms of the new nonbasic variables. In particular, show

that pivoting updates the tableau such that the new ¢;B~'N — Cys B 'N,

B~ 'b, and c¢;B~'b are immediately available.
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5.30 Referring to Problem 5.29, solve the following problem using the column
simplex method.

Maximize x;+2x,+3x,

Subjectto 3x;+2x,+ x3< 6

—x;+2x,+4x;< 8

N

2x+ X3 x4

2
0

\%

X1, Xy, X4
5.31 Referring to Problem 5.29, is it possible to extract the inverse basis from a
typical column simplex tableau? If so, how can this be done?

5.32 Write the optimality conditions for each of the following problems.
a. Maximize cx
Subject to Ax < b
>0

b. Maximize X

Subject to Ax > b
x>0
¢. Minimize cx
Subject to Ax < b
x>0
d. Minimize X
Subject to  A;x = b,
Ax > b,
x>0
e. Minimize cx
Subject to Ax=b
I<x<u

5.33 Consider the problem: Minimize ¢x subject to Ax > b, x > 0. Suppose that

X is an optimal solution. Further suppose thatx; > Oforj=1,2,...,p, x
A
=0forj=p+1,...,n Ax=Db, andA2x>b2whereA=[ Al and
2
b,
b= b . Show that the system Ad >0, d,,,,-..,d, > 0 and ed <0
2

has no solution d in E".

5.34 Consider the problem: Maximize cx subject to Ax < b, x > 0. Introducing
the slack vector x, we get the equivalent problem: Maximize cx subject to
Ax + x. =b,x > 0, x, > 0. Write the Kuhn-Tucker optimality conditions



EXERCISES 229

for both problems. Show equivalence of the optimality conditions, and
show that the Lagrangian multipliers corresponding to the nonnegativity
x, > 0 are equal to the Lagrangian multipliers of the constraints Ax + x,
= b and Ax < b.

5.35 Consider the following problem.
Maximize 2x,+x,

Subject to  x;+x,<4
x,<3

X, %320

The optimal point is (4, 0). Verify this statement by the Kuhn-Tucker
optimality conditions, and interpret your result geometrically.

5.36 Solve the following linear program by the simplex method, and show that
the solution satisfies the Kuhn-Tucker conditions. At each iteration, point
out the source of violating the optimality conditions.

Maximize 10x,+ 15x,+ 5x,

Subject to 2x,+ x, <6000
3x,+ 3x,+ x;<9000
x1+ 2x,+2x, <4000
X1s Xy, Xx32 0

5.37 Consider the linear programming problem: Minimize cx subject to Ax = b,
x > 0. It is well known that a feasible point x is an optimal solution if and
only if there exist vectors w and v such that

c—wA—-v=20

v>0

vx =0
Is it possible that x be optimal if v, > 0 for all i # j whereas v, < 0 and the
corresponding x; = 07 In other words, is it possible to have a degenerate
optimal solution with one of the Lagrangian multipliers (shadow prices) of
the nonnegativity constraints being negative? Explain why or why not.
Illustrate by a numerical example. (Hint. Construct a linear program with
an optimal degenerate basic feasible solution. Try different basis repre-
sentations.)
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5.38 Consider the problem: Minimize cx subject to Ax > b, x > 0. Let x* be an

A, .
and b is

optimal solution. Suppose that A is decomposed into [ A
2

decomposed into such that A;x* = b, and A,x* > b,. Show that x*

1
b,
is also an optimal solution of the problem: Minimize cx subject to A;x >
b,, x > 0, and to the problem: Minimize cx subject to A;x = b}, x > 0.

5.39 A manufacturer produces two items with unit profits $10.00 and $15.00.
Each unit of item 1 uses 4 man-hours and 3 machine-hours. Each unit of
item 2 uses 7 man-hours and 6 machine-hours. If the total man-hours and
machine-hours available are 300 and 500 respectively, find the optimal
solution and verify optimality by the Kuhn-Tucker conditions. Interpret
the optimality conditions geometrically. Give an economic interpretation of
the Kuhn-Tucker conditions at the optimal point. (Hint. Recall the eco-
nomic interpretation of w, and w,.)

5.40 Can a linear program be solved by writing down the Kuhn-Tucker condi-
tions and finding a solution to them? If yes, why is this not done?

5.41 Consider the problem: Minimize cx subject to Ax = b, x > 0. Leaving the
question of feasibility aside, show that starting from any point x, the
direction with norm 1, which best improves the objective function, is

—c/llef.
5.42 Consider the following problem.

Maximize x,—2x,+Xx;

Subjectto  x;+ x,+x3<6
2x,+ x, <4
- x;+2x,~x3<4
Xy, X3, x320

Solve the problem by the simplex method, illustrating at each iteration
source of violation of the Kuhn-Tucker conditions.

5.43 Consider the following problem.

Maximize 2x,+3x,

N

Subject to X+ x< 8

— 2x,+3x,<12
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a.

b.

Solve the problem geometrically. At each iteration identify the variable
that enters and the variable that leaves the basis.
Write the Kuhn-Tucker conditions and show that they hold at optimal-

1ty.

5.44 The following is an idea of a graphical example of the simplex method at
work.

VAN

Give the starting basis and each succeeding basis until the optimal point
is reached. Specify the entering and leaving vectors.

X4

. If the optimal point is unique, could the simplex method have gone in

the direction it did assuming that the entering variable is that with the
most positive z; — ¢;?

5.45 Consider the linear programming problem: Minimize cx subject to Ax = b,

X

proceeds by increasing the nonbasic variable with the most positive z; — ¢;.
a.

> 0. Let x be a basic feasible solution with basis B. The simplex method
Devise a procedure in which all nonbasic variables with positive z; — ¢;’s
are increased. How are the basic variables modified? By how much
would you increase the nonbasic variables? Interpret increasing several
variables simultaneously.

. At later iterations we may have more than m positive variables. How

would you represent the corresponding point in a tableau format? (Hint.
Let the basis consist of the largest m variables. Other nonbasic variables
may be either positive or zero.)

At later iterations you may have a positive nonbasic vasiable with
negative z; — ¢;. What happens if you decrease x;?

. Use the ideas of (a), (b), and (c) above to construct a complete

algorithm for solving linear programs where several nonbasic variables
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are simultaneously modified. How do you recognize reaching the opti-

mal solution? What are the advantages and disadvantages of your
procedure?

e. Illustrate your procedure by solving the following problem.

Minimize —x,—2x,— x;

Subject to  x;+ x,+3x,<12

x;+2x, <6
X, + x;< 8
X;, Xy X320

f. Consider the following alternative procedure for modifying the nonbasic

variables. For each nonbasic variable X; let

z;— ¢ ifx;, >0

Maximum (0, z; — ¢;) ifx; =0

7

Modify the nonbasic variables according to the d’s above and the basic
variables according to the relationship

xB=l;—}\2yja}

JER

where the vector b represents the current values of the basic variables
and A > 0 is to be determined. Interpret this method and compare it
with the method in (d). Solve the problem in (e) by this procedure.

5.46 The accompanying diagram depicts the region given by a,x, + a,x, < b

and x,, x, > 0. Let (x,, x,) be the shown point. The distance from the x,
and x, axes give the values x, and x, respectively. Indicate on the diagram

the value of the slack variable. How can you generalize the result to n
variables?

X3z

X

| x5

Xy
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5.47

5.48

5.49

Suppose that we are given an extreme point x of a polyhedral set X. An
extreme point y # x is called adjacent to x if there exists a hyperplane that
supports X and its intersection with X is the line segment joining x and y.
In the accompanying diagram, obviously x, and x, are extreme points of X
that are adjacent to x,, whereas x; and x, are not adjacent to x,. Now let X
consist of all points satisfying Ax =b and x > 0, where A is a m X n
matrix with rank m. Further suppose that X is bounded. Let x be a
nondegenerate basic feasible solution (extreme point). Characterize the
collection of adjacent extreme points. What is their number? What happens
if the nondegeneracy assumption is relaxed? In each case justify your
answer.

X4
X3

X2

X

Referring to Exercise 5.47, show that the simplex method moves from an
extreme point to an adjacent extreme point. (Hint. Suppose you have a
basic feasible solution x with basis B consisting of the first m columns of A.
Further suppose that x, entered the basis. Consider the hyperplane passing

through x and whose normal vector is (p, pB~'N + (1, 1,...,1,
0, 1, ..., 1)), where p is an arbitrary m vector and the zero component of
(1, 1,...,1,0,1,1,..., 1) appears at position k — m.)

Consider the collection of points satisfying x > 0 and Ax = b, where A is
an m X n matrix with rank m. Further suppose that the region is bounded.
Let x, be an extreme point of the region, and let x,, x,, .. ., X, be the
adjacent extreme points of the region (refer to Exercise 5.47). Let x be any
point in the region. Show that x can be represented as

k
X =X, + z,uj(xj—xo) where u, >0 for j=1,2,...,k
j=1

Interpret this result geometrically. [Hint. Let x, =[B9'bJ =[g] (the
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nonbasic variables are placed first for convenience). Show that

0
_b—_}\jyj_

forj=1,2,...,k=n— mwherey, = B™'a, and

b,
A, = Minimum{ — :y, > 0
7 1<i<m { )’,j yy } ]

5.50 Suppose that the boundedness restriction in Exercise 5.49 is dropped. Can
you generalize the foregoing result? Interpret your result geometrically.
(Hint. Introduce the notion of an adjacent direction. Then x in the region
can be represented as

X =X+ 21X — Xo) + 2 pd,
jEl jE€J

where u; > 0 forj € I U J, x; for j &€ 1 are adjacent extreme points and
d, for j € J are adjacent extreme directions.)

5.51 Show that an extreme point of a bounded polyhedral set has a minimal
objective if and only if it has an objective that is smaller than or equal to
that of any adjacent extreme point. Can you generalize the result to the
unbounded case? (Hint. Use Exercises 5.49 and 5.50)

5.52 Consider the problem: Minimize ex subject to Ax = b, x > 0. Let x* be an
unique optimal extreme point. Show that the second best extreme point
must be adjacent to x*. What happens if the uniqueness assumption is
relaxed?

NOTES AND REFERENCES

1. The revised simplex method was devised by Dantzig and Orchard-Hays [114]
in 1953 (also see Dantzig and Orchard-Hays [113] for the product form of the
inverse). For further reading on this topic, refer to Dantzig [97].
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2.

In Chapter 7 we describe the use of the revised simplex method in solving
large-scale problems in the context of decomposition by generating columns
at each iteration.

The simplex method for bounded variables was published by Dantzig [93] in
1955. The method was first developed at the RAND corporation to provide a
shortcut routine for solving a problem of assigning personnel. The method
was independently developed by Charnes and Lemke [71] in 1954,

. The Kuhn-Tucker optimality conditions for nonlinear programs were first

developed by Kuhn and Tucker [295] in 1950. These conditions are necessary
(and sufficient under suitable convexity assumptions) for optimality. Speciali-
zation of these conditions for linear programs is given in Section 5.3. For
further reading on the Kuhn-Tucker conditions the reader may refer to
Mangasarian [319] and Zangwill [486]. The Kuhn-Tucker conditions in linear
programming and the subject of duality are very closely associated. This fact
will become apparent after the reader studies Chapter 6.



SIX: DUALITY
AND SENSITIVITY

For every linear program there is another associated linear program. This new
linear program satisfies some very important properties. It may be used to
obtain the solution to the original program. Its variables provide extremely
useful information about the optimal solution to the original linear program. To
distinguish points of view in this and subsequent chapters we shall call the
original linear programming problem the primal (linear programming) problem.

We shall begin by formulating this new linear program, called the dua/ (linear
programming) problem, and proceed to develop some of its important proper-
ties. These properties will lead to two new algorithms, the dual simplex method
and the primal-dual algorithm, for solving linear programs. Finally, we shall
discuss the effect of variation in the data, that is, the cost coefficients, the
right-hand-side coefficients, and the constraint coefficients on the optimal
solution to a linear program.

6.1 FORMULATION OF THE DUAL PROBLEM

Associated with each linear programming problem there is another linear
programming problem called the dual. The dual linear program possesses many

236
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important properties relative to the original primal linear program. There are
two important forms (definitions) of duality: the canonical form of duality and
the standard form of duality. These two forms are completely equivalent.

Canonical Form of Duality

Suppose that the primal linear program is given in the form:
P: Minimize cx
Subject to Ax> b
x>0
Then the dual linear program is defined by:
D: Maximize wb

Subject towA < ¢

w>0

Note that there is exactly one dual variable for each primal constraint and
exactly one dual constraint for each primal variable. We shall say more about
this later.

Example 6.1

Consider the following linear program and its dual.
P: Minimize 6x,+8x,
Subject to 3x,+ x,> 4

Sxi+2x,> 7

Xy, x,20
D: Maximize 4w, +7w,

Subject to 3w, + 5w, < 6
w,+2w,< 8
wy, w20

Before proceeding further, try solving both,problems and compare their optimal
objective values. This will provide a hint of things to come.
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In the canonical definition of duality it is important for problem P to have a
“Minimization” objective with all “greater than or equal to” constraints and all
“nonnegative” variables. In theory, to apply the canonical definition of duality
we must first convert the primal linear program to the foregoing format.
However, in practice it is possible to immediately write down the dual of any
linear program. We shall discuss this shortly.

Standard Form of Duality

Another equivalent definition of duality applies when the constraints are equali-
ties. Suppose that the primal linear program is given in the form:

P: Minimize cx
Subject to Ax= b
x>0
Then the dual linear program is defined by:

D: Maximize whb

Subject to wA <c¢

w unrestricted

Example 6.2

Consider the following linear program and its dual.

P: Minimize 6x,+8x,

Subject to 3x,+ x,— x4 =4
S5x,+2x, —x,=71
X, Xy, X3, X420

D: Maximize 4w,+ 7w,

Subject to 3w, + Sw,<6

w,+ 2w,<8
—w, <0
—w,<0

w;,  w, unrestricted
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Given one of the definitions, canonical or standard, it is easy to demonstrate
that the other definition is valid. For example, suppose that we accept the
standard form as a definition and wish to demonstrate that the canonical form is
correct. By adding slack variables to the canonical form of a linear program, we
may apply the standard form of duality to obtain the dual problem.

P: Minimize c¢x D: Maximize wb
Subject to Ax —Ix;= b Subject to WA < ¢
x, x>0 -wI< 0

w unrestricted

But since —wl < 0 is the same as w > 0, we obtain the canonical form of the
dual problem.

Dual of the Dual

Since the dual linear program is itself a linear program, we may wonder what its
dual might be. Consider the dual in canonical form:

Maximize wh

Subject to wA< ¢

w> 0

Applying the transformation techniques of Chapter 1, we may rewrite this
problem in the form:

Minimize (—b")w'

Subject to (—A)YW > (—¢)
w> 0

The dual linear program for this linear program is given by (letting x* play the
role of the row vector of dual variables):

Maximize x‘(—c")

Subject to x'(—A") <(—b)

x>0
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But this is the same as
Minimize c¢x
Subject to Ax >b
x>0

which is precisely the original primal problem. Thus we have the following
lemma.

Lemma 1

The dual of the dual is the primal.

This lemma indicates that the definitions may be applied in reverse. The
terms “primal” and “dual” are relative to the frame of reference we choose.
Mixed Forms of Duality

In practice, many linear programs contain some constraints of the “less than or
equal to” type, some of the “greater than or equal to” type and some of the
“equal to” type. Also, variables may be “> 0,” “< 0,” or “unrestricted.” In
theory, this presents no problem since we may apply the transformation tech-
niques of Chapter 1 to convert any “mixed” problem to one of the primal or
dual forms discussed above, after which the dual can be readily obtained. In
practice such conversions can be tedious. Fortunately, it is not necessary
actually to make these conversions, and it is possible to give immediately the
dual of any linear program.
Consider the following linear program.

Minimize cx

Subject to A;x > b,
A,x=b,
A;x<h,

x>0
Converting this problem to the standard format, we get

Minimize  ¢x

Subjectto A x—Ix, = b,
A)x =b,
Ax +1Ix,= b,

X, X, x>0

5



6.1 FORMULATION OF THE DUAL PROBLEM

The dual of this problem is

Maximize w b, + w,b,+ w;b;

Subject to w,A, +w,A,+W;A;<c

N

—wl 0
0

N

w;l

w;, W, W, unrestricted

24

From this example we see that “greater than or equal to” constraints in the
minimization problem give rise to “ > 0” variables in the maximization problem.
Also, “equal to” constraints in the minimization problem give rise to “unre-
stricted” variables in the maximization problem; and “less than or equal to”

constraints in the minimization problem give rise to

13

< 0” variables in the

maximization problem. In Exercise 6.5 we ask the reader to consider the various
cases for variables and constraints in the minimization problem and their
counterparts in the maximization problem. The complete results may be

summarized in Table 6.1.

Table 6.1 Relationships Between Primal and Dual Problems

MINIMIZATION MAXIMATION

PROBLEM PROBLEM ‘2
g £
< >0 «—> < =
g <0 «— > g
> Unrestricted “—> = S
ﬁ 3
£ 5 — s >0 3
= < > <0 3
g = —> Unrestricted =t
Q >

We may utilize this table to develop the dual of any linear program without

first transforming it to the standard or canonical forms.

Example 6.3

Consider the following linear program.

Maximize 8x, +3x,

Subjectto x,—6x,> 2
Sx;+7x,=—4

X, < 0

x,2 0
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Applying the results of the table, we can immediately write down the dual.
Minimize 2w, —4w,

Subject to w,+5w,< 8
— 6w, +7w,> 3
w, <0

w, unrestricted

6.2 PRIMAL-DUAL RELATIONSHIPS

The definition we have selected for the dual problem leads to many important
relationships between the primal and dual linear programs.

The Relationship Between Objective Values

Consider the canonical form of duality and let x, and w, be feasible solutions to
the primal and dual programs respectively. Then Ax, > b, x, > 0, w,A < ¢, and
wy > 0. Multiplying Ax, > b on the left by wy > 0 and wyA < ¢ on the right by
xg > 0, we get

cXy > WoAX, > wob

The result is the following.

Lemma 2

The objective function value for any feasible solution to the minimization
problem is always greater than or equal to the objective function value for any
feasible solution to the maximization problem. In particular, the objective value
of any feasible solution of the minimization problem gives an upper bound on
the optimal objective of the maximization problem. Similarly, the objective value
of any feasible solution of the maximization problem is a lower bound on the
optimal objective of the minimization problem.

As an illustration of the application of this lemma, suppose that in Example
6.1 we select the feasible primal and dual solutions x,; = (3, 0) and w, = (2, 0).
Then ex, = % = 8.4 and wgb = 8. Thus the optimal solution for either problem
has objective value between 8 and 8.4. This allows.us to stop a linear program-
ming solution procedure with a near optimal solution.
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The following corollaries are immediate consequences of Lemma 2.

Corollary 1
If x, and w, are feasible solutions to the primal and dual problems such that
cx, = Wyb, then x; and w, are optimal solutions to their respective problems.

Corollary 2

If either problem has an unbounded objective value, then the other problem
possesses no feasible solution.

This corollary indicates that unboundedness in one problem implies infeasi-
bility in the other problem. Is this property symmetric? Does infeasibility in one
problem imply unboundedness in the other? The answer is “not necessarily.”
This is best illustrated by the following example.

Example 6.4

Consider the following primal and dual problems.
P: Minimize —x,—x,
Subject to  x,—x,>1
—x;+xy>1
Xp, X,20
D: Maximize w,+w,
Subjectto  w,—w,<—1
—w +w,<—1

wy, w2 O

Upon graphing both problems (in Figure 6.1) we find that neither problem
possesses a feasible solution.

Duality and the Kuhn-Tucker Optimality Conditions

Recall from Chapter 5 that the optimality conditions for a linear program state
that a necessary and sufficient condition for x* to be an optimal point to the
linear program Minimize cx subject to Ax > b, x > 0 is that there exists a vector
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X2

/ Figure 6.1. An example of infeasible primal and dual

V4 w
4/ ? problems.

w* such that

1. Ax* > b,x* >0
2. w*A<cwt>0
3. w*(Ax* —b)=0

(c — w*A)x* =0

Condition 1 above simply requires that the optimal point x* must be feasible to
the primal. In light of our discussion of duality we can now interpret condition
2. This condition indicates that the vector w* must be a feasible point for the
dual problem. From condition 3 above, we find that cx* = w*b. Hence w* must
be an optimal solution to the dual problem. The Kuhn-Tucker optimality
conditions for the dual problem imply the existence of a primal feasible solution
whose objective is equal to that of the optimal dual (why?). This leads to the
following lemma.

Lemma 3

If one problem possesses an optimal solution, then both problems possess
optimal solutions and the two optimal objective values are equal.

It is also possible to see how the Kuhn-Tucker optimality conditions naturally
give rise to the definition of the dual problem. Rather than solving for the
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optimal x* directly, one might reasonably choose to search over values of w
satisfying condition 2 above. Knowing that any feasible w, (condition 2) satisfies
wgb < ex* and that the optimal w* satisfies w*b = cx*, we would naturally be
led to the maximization of the linear form wh over all feasible values of w
satisfying condition 2.

By utilizing the foregoing results we obtain two important basic theorems of
duality. These two theorems will permit us to use the dual problem to solve the
primal problem and, also, to develop new algorithms to solve both problems.

The Fundamental Theorem of Duality

Combining the results of the lemmas, corollaries, and examples of the previous
section we obtain the following.

Theorem 1 (Fundamental Theorem of Duality)

With regard to the primal and dual linear programming problems, exactly one of
the following statements is true.

1. Both possess optimal solutions x* and w* with cx* = w*b.

2. One problem has unbounded objective value, in which case the other
problem must be infeasible.

3. Both problems are infeasible.

From this theorem we see that duality is not completely symmetric. The best
we can say is that (here optimal means finite optimal, and unbounded means
having an unbounded optimal objective):

P OPTIMAL < D OPTIMAL

P UNBOUNDED = D [INFEASIBLE

b UNBOUNDED = P INFEASIBLE

P  INFEASIBLE = D UNBOUNDED OR INFEASIBLE
D INFEASIBLE = P UNBOUNDED OR INFEASIBLE

Complementary Slackness

Let x* and w* be any pair of optimal solutions to the primal and dual problems
in canonical form respectively. Then

cx* > w*Ax* > w*b
But ex* = w*b (why?). Thus

cx* = w*Ax* = w*b



246 DUALITY AND SENSITIVITY

This gives w*(Ax* — b) = 0 and (¢ — w*A)x* = 0. Since w* > 0 and Ax* — b
> 0, then w*(Ax* — b) = 0 implies w*(a'x* — b) =0 for i =1,..., m. Simi-
larly (¢ — w*A)x* = 0 implies (c; — w*a)x* =0forj=1,...,n

Thus we have the following theorem.

Theorem2 (Weak Theorem of Complementary Slackness)

If x* and w* are any optimal points to the primal and dual problems in the
canonical form, then

(¢ —wra)x*=0 j=1...,n

and

Il
3

wr(ax* —b)=0 i

This is a very important theorem relating the primal and dual problems. It
obviously indicates that at least one of the two terms in each expression above
must be zero. In particular,

x¥>0 = w*aj=cj

* * —
w*a, < ¢ = X 0

w* >0 = ax*=}

ax* > b = wr=0

" The weak theorem of complementary slackness can also be stated as follows: at
.optimality “If a variable in one problem is positive, then the corresponding
;constraint in the other problem must be righ” and “If a constraint in one
iproblem is not tight, then the corresponding variable in the other problem must
.be zero.”
~ Suppose that we let x,,, =a'x — b, > 0,i=1,..., m be the m slack vari-
ables in the primal problem and letw,,,, = ¢, —wa; > 0,j=1,...,nbethen
slack variables in the dual problem (in Chapter 5 while stating the Kuhn-Tucker
conditions, w,,,; was denoted by v;). Then we may rewrite the complementary
slackness conditions as follows:

* * p— | —
Xfwy, = j=1 . n
wix* =0 i=1, , m

I n+i
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This relates variables in one problem to slack variables in the other problem.

It should be noted that if x* and w* are feasible to their respective problems
and satisfy the complementary slackness conditions, then they are optimal.

Using the Dual to Solve the Primal
We now have at hand powerful analysis tools, in the form of the two theorems

of this section, to utilize the dual problem in solving the primal problem. Let us
illustrate this potential usefulness by the following example.

Example 6.5

Consider the following primal and dual problems.

P: Minimize 2x,+ 3x,+ 5x;+2x,+ 3x;
Subjectto x4+ x,+2x3+ x,+3x524
2x,= 2%, 4 3x3+ x4+ x23
Xy, Xy X3 X, X520
D: Maximize 4w, +3w,

Subject to  w; +2w, <

N

wy;— 2w,

N

N
S W N WL W N

2w+ 3w,

wit w,

N

3w+ w,

Since the dual has only two variables, we may solve it graphically as shown in
Figure 6.2. The optimal solution to the dual is w¥ = %, wf =  with objective 5.
Right away we know that z* = 5. Utilizing the weak theorem of complementary
slackness, we further know that x} = x} = x} = 0 since none of the corre-
sponding complementary dual constraints are tight. Since w}, wi > 0, then
x} + 3x} = 4 and 2x} + x¥ = 3. From these two equations we get x} = 1 and
x# = 1. Thus the primal optimal point is obtained from the duality theorems
and the dual optimal point.
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Optimal

©)

Figure 6.2. Solving the dval problem graphically.

6.3 ECONOMIC INTERPRETATION OF THE DUAL

Consider the following linear program and its dual.

P: Minimize c¢x

Subject to Ax >b

x>0

If B is the optimal basis for the primal problem and c is the basic cost vector,

then we know that

z* =

D: Maximize wh

Subject to wA <c

w2>0

c;B7'b = w*b

Wy
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from which

*
%Lb =c,B7! = w*

Thus w}* is the rate of change of the optimal objective value with a unit increase
in the ith right-hand-side value. Since w* > 0, z* will increase or stay constant
as b, increases.

Economically, we may think of w* as a vector of shadow prices for the
right-hand-side vector. To illustrate, if the ith constraint represents a demand for
production of at least b, units of the ith product and cx represents the total cost
of production, then w* is the incremental cost of producing one more unit of the
ith product. Put another way, w* is the fair price we would pay to have an extra
unit of the ith product.

We may also interpret the entire dual problem economically. Suppose that
you engage a firm to produce specified amounts by, b,, . . ., b,, of m outputs or
goods. The firm may engage in any of n activities at varying levels to produce
the outputs. Each activity j has its own unit cost ¢;, and you agree to pay the
total cost of production. From your point of view you would like to have control
over the firm’s operations so that you can specify the mix and levels of activities
that the firm will engage in so as to minimize the total production cost. If a;
denotes the amount of product i generated by one unit of activity j, then
27=1a;x; represents the units of output i that are produced. These must be
greater than or equal to the required amount b,. Therefore you wish to solve the
following problem, which is precisely the primal problem.

n
Minimize D) ¢;x;
et

n
Subjectto D, ayx,>b,  i=12,...,m
j=

Instead of trying to control the operation of the firm to obtain the most
desirable mix of activities, suppose that you agree to pay the firm unit prices w;,
Wy ..., w, for each of the m outputs. However, you stipulate that these prices
announced by the firm must be fair. Since a; is the number of units of output i
produced by 1 unit of activity j, and since w; is the unit price of output i, then
27_,a,w, can be interpreted as the unit price of activity j consistent with the
prices w;, w,, ..., w,,. Therefore you ask the firm that the implicit price of
activity j, namely 27 a;w,, does not exceed the actual price ¢;. Therefore the
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firm must observe the constraints 7. ,a,w, < ¢; for j =1,2,..., n. Within
these constraints the firm would like to choose a set of prices that maximize his
return 7., w,b;. This leads to the following dual problem of the firm.

m
Maximize Y, w;b,

i=1

m
Subjectto X aw; < ¢ J

I
—_
»
3

i=1

w, 20 i=1...,m

1

The main duality theorem states that there is an equilibrium set of activities and
set of prices where the minimal production cost is equal to the maximal return.
That the two objectives are equal at optimality becomes intuitively clear by
noting that they represent the fair charge to the customer, where the primal
objective is derived by cost considerations and the dual objective is arrived at by
a pricing mechanism.

6.4 THE DUAL SIMPLEX METHOD

In this section we describe the dual simplex method, which solves the dual
problem directly on the (primal) simplex tableau. At each iteration we move
from a basic feasible solution of the dual problem to an improved basic feasible
solution until optimality of the dual (and also the primal) is reached, or else until
we conclude that the dual is unbounded and that the primal is infeasible.

Interpretation of Dual Feasibility on the Primal Simplex Tableau

Consider the following linear programming problem.
Minimize ¢x

‘Subject to Ax >b

x>0

Let B be a basis that is not necessarily feasible and consider the following
tableau.
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SLACK VARIABLES

e N -
z 'xl 'x2 'xn 'xn+1 e 'xn+m RHS
T p
1 % Zp =€ I T 6 P A TS e | Zntm — Cntm cBb
I ' —_—
: 0 \ Y Y12 Yin 1 Vi a+1 T Vi, ntm b,
0 | Yo Y Yan : Y2, n+1 P Y2, ntm b,
. 1 . . :
: : : | N
0 Ymi1 Ym2 T Ymn Ym, n+1 te Ym, n+m bm
The tableau presents a primal feasible solution if b_ >0fori=12,...,m;
that is, if b = B~ 'b > 0. Furthermore, the tableau is optrmal if zz —¢; <0 for
j=12,...,n+ m Definew=czB . Forj = 1,2,. nwehave
Z=g=cB 'y —¢=wa —¢
Hence z; —¢; <0 for j=1,2,...,n implies that wa; <0 for j=
1,2,...,n, whrch in turn 1mp11es that wA < c. Furthermore note that a,, ;, =
—eandc,,;=0fori=1,2,..., mand so we have
zn+i - Cy +iT= WA, “Cnti
=w(—e)— 0
=—w i=1,2, ,m
In addition, if z,,.; = ,,+, <0 for i=1,2,...,m, then w; >0 for i =
1,2,...,m and so w > 0. We have just shown that z; — ¢; < O for j =
1,2,...,n 4+ m implies that wA < ¢ and w > 0, where w = cBB . In other

words dual feasibility is precrsely the simplex optimality criteria z;, — ¢; < 0 for
all j. At optimality w* = ¢;B~' and the dual objective w*b = (cBB‘l)b =
cx(B7'b) = czb = z*; that is, the primal and dual objectives are equal. Thus we
have the following result.

Lemma 4

At optimality of the primal minimization problem in the canonical form (that is,
z; = ¢; < 0 for all j), w* = ¢;B~! is an optimal solution to the dual problem.

.- _ - _ =
Furthermore w* = —(z,,;, — ¢p0)) = — Z,4, fori=1,2... m.
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The Dual Simplex Method

Consider the following linear programming problem.
Minimize cx

Subject to Ax=b

x>0

In certain instances it is difficult to find a starting basic solution that is
feasible (that is, all b, > 0) to a linear program without adding artificial
variables. In these same instances it is often possible to find a starting basic, but
not necessarily feasible, solution that is dual feasible (that is, all z; — ¢; < 0 for a
minimization problem). In such cases it is useful to develop a variant of the
simplex method that would produce a series of simplex tableaux that maintain

dual feasibility and complementary slackness and strive toward primal feasibil-
ity.

z X X; X,
z |1 |z, —¢ z;— ¢ Zp — G
XB, 0 Yu T Yy T Yik
Xp, 0 Va1 tot Y2y T Yok
'xB, 0 Yn yr] . @
'xB,,, 0 ( Ymi T ymj T Ymk

Consider the above tableau representing a basic solution at some iteration.
Suppose that the tableau is dual feasible (that is, z; — ¢; < 0 for a minimization
problem). Then, if the tableau is also primal feasible (that is, all b, > 0) then we
have the optimal solution. Otherwise, consider some b, < 0. By selecting row r
as a pivot row and some column k such that y,, < 0 as a pivot column we can
make the new right-hand side 5, > 0. Through a series of such pivots we hope to
make all 5, > 0 while maintaining all z; — ¢; < 0 and thus achieve optimality.
The question that remains is how do we select the pivot column so as to
maintain dual feasibility after pivoting. The pivot column & is determined by the
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following minimum ratio test.

Z, — C Z; TG
a e minimum{ A 'y, < O] (6.1)
Yrk J 7

Note that the new entries in row 0 after pivoting are given by:

Yij
(z—¢)=(3—¢)~ — (2 — )
Yrk
If y,; > 0, and since z; — ¢, < 0 and y, <O, then (y,/y, Xz, — ¢,) > 0 and
hence (z; — ¢;)’ < z; — ¢;. Since the previous solution was dual feasible, then
z; — ¢, < 0 and hence (z; — ¢;)’ < 0. Now consider the case where y,; < 0. By

7 J 7
6.1 we have:

Zp T 6 45T

Yk Y

Muttiplying both sides by y,; < 0, we get (z; — ¢;) — (¥,;/Va )z, — ¢,) <0, that
is, (z; — ¢;)’ < 0. To summarize, if the pivot column is chosen according to
Equation (6.1), then the new basis obtained by pivoting at y,, is still dual
feasible. Moreover, the dual objective after pivoting is given by ¢;B~'b — (z, —
c)b, /v, Since z; — ¢, <0, b, <0, and y,, <O, then —(z, — ¢ )b, /v, > 0
and the dual objective improves over the current value of ¢;B~'b = wb.

We have just described a procedure that moves from a dual basic feasible
solution to an improved (at least not worse) basic dual feasible solution. To
complete the analysis we must consider the case when y,; > O for all / and hence
no column is eligible to be the pivot column. In this case the ith row reads:
2Y,x = b,. Since y,; > 0 for all j and x; is required to be nonnegative, then
> V% > 0 for any feasible solution. However, b, < 0. This contradiction shows
that the primal is infeasible and the dual is unbounded (why?). In Exercise 6.31
we ask the reader to show directly that the dual is unbounded by constructing a
direction satisfying the unboundedness criterion.

Summary of the Dual Simplex Method (Minimization Problem)

INITIALIZATION STEP

Find a basis B of the primal such that z;— ¢ =czB~ a < 0 for allj (in
Section 6.6 we describe a procedure for fmdmg such a ba51s if it is not
immediately available).
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MAIN STEP

1. Ifb=B"'b > 0, stop; the current solution is optimal. Otherwise select the
pivot row r with b, < 0, say b, = Minimum {5,}.

2. If y,; > 0O for allj, stop; the dual is unbounded and the primal is infeasible.
Otherwise select the pivot column & by the following minimum ratio test:

Z, — C Z; — ¢
a k:Minimum[ 4 j:yrj<()}

Y J ¥

3. Pivot at y,, and return to step 1.

Example 6.6

Consider the following problem.
Minimize 2x,+3x,+4x;

Subjectto x,;+2x,+ x323
2x,— x,+3x;>4

Xy, X x320

A starting basic solution that is dual feasible can be obtained by utilizing the
slack variables x, and xs. This results from the fact that the cost vector is
nonnegative. Applying the dual simplex method, we obtain the following series
of tableaux.

z X Xy X4 X4 Xs RHS
z 1 -2 -3 —4 0 0 0
X4 0 -1 ) -1 1 0o | -3
Xs 0 @ S -3 0 1 | -4

z X, Xy X3 X4 Xs RHS
z 1 0 —4 -1 0 -1 4
e B
0

N[= M=

—
I
N—
(YRR R ST
el
|
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z X, Xy X3 X4 X5 RHS

9 8 1 28

z 1 0 0 ~3 ~5 ~5 5
1 _2 1 2

X2 0 0 1 5 5 3 5
7 1 2 11

Xy 0 0 5 5 5 5

Since b > 0 and z; — ¢; < O for all /, the optimal primal and dual solutions are
at hand. In particular,

(xt, x3, x3, x5, x3) = (%, 3,0,0,0)

(Wi, wi) = (5, %)

Note that w{ and wy are respectively the negatives of the z; — ¢; entries under
the slack variables x, and x;. Also note that in each subsequent tableau the
value of the objective function is increasing, as it should, for the dual (maximiza-
tion) problem.

The Complementary Basic Dual Solution

Consider the following pair of primal and dual problems in standard form.

P: Minimize c¢x D: Maximize wb
Subject to Ax=b Subject to wA <c
x>0 w  unrestricted

Given any primal basis B, there is an associated complementary dual basis. To
illustrate, introduce the dual slack vector w, so that wA + w, = ¢. The dual
constraints can be rewritten in the following more convenient form:

A'w + 1w = ¢ (6.2)
w' unrestricted

w.>0

5
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Given the primal basis B, recall that w = c¢;B~'. Substituting in Equation (6.2),
we get

W o=c — A'w
=c¢ — A B,
ctB) (B’) -1\
= - (B~ e
(C'N N

0
ey - N(BY e,

Note that w = ¢;B~' and Equation (6.3) lead naturally to a dual basis. Since
both ¢;B~! and ¢, — N'(B~ )¢}, are not necessarily zero, then the vector w and
the last n — m components of w, form the dual basis. In particular the dual
basis corresponding to the primal basis B is given by

B 0

N’ Invm

The rank of the preceding matrix is n. The primal basis is feasible if B™'b > 0
and the dual basis is feasible if w, > 0; that is, if ¢y — c;B7'N > 0 (see
Equation 6.3). Even if these conditions do not hold, the primal and dual bases

are complementary in the sense that the complementary slackness condition
(WA — ¢)x = 0 holds as shown below:

(6.3)

(WA —c)x =wx = (0,cy — cBB_'N)(B;b) =0

To summarize, during any dual simplex iteration we have a primal basis that is
not necessarily feasible, and a complementary dual feasible basis. At termina-
tion primal feasibility is attained, and so all the Kuhn-Tucker optimality
conditions hold.

Finite Convergence of the Dual Simplex Method in the Absence of Dual Degeneracy

Note that the dual simplex method moves among dual feasible bases. Also re-
call that the difference in the dual objective between two successive iterations
is —(zy — ¢ )b,/ Note that b, <0, y, <0, and z, — ¢, < 0 and hence’

—(z, — ck)b—, /Y. = 0. In particular, if z, — ¢, <0, then the dual objective
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strictly increases and hence no basis can be repeated and the algorithm must
converge in a finite number of steps. By the foregoing characterization of the
complementary dual basis, and since x, is a nonbasic primal variable, then the
dual slack of the constraint wa, < ¢, is basic. Assuming dual nondegeneracy,
this dual slack variable must be positive so that wa, < ¢, that is z, — ¢, < 0.
As discussed above, this would prevent cycling since the dual objective strictly
increases at each iteration. In Exercise 6.33 we ask the reader to prove finite
convergence in the presence of degeneracy provided that a special rule for
choosing the pivot column is adopted.

6.5 THE PRIMAL-DUAL METHOD

Recall that in the dual simplex method we begin with a basic (not necessarily
feasible) solution to the primal problem and a complementary basic feasible
solution to the dual problem. The dual simplex method proceeds, by pivoting,
through a series of dual basic feasible solutions until the associated complemen-
tary primal basic solution is feasible, thus satisfying all of the Kuhn-Tucker
conditions for optimality.

In this section we describe a method, called the primal-dual algorithm, similar
to the dual simplex method, which begins with dual feasibility, and proceeds to
obtain primal feasibility while maintaining complementary slackness. An im-
portant difference between the dual simplex method and the primal-dual
method is that the primal-dual algorithm does not require a dual feasible
solution to be basic. Given a dual feasible solution, the primal variables that
correspond to tight dual constraints (so that complementary slackness is satis-
fied) are determined. Using phase I of the simplex method, we attempt to attain
primal feasibility using only these variables. If we are unable to obtain primal
feasibility, we change the dual feasible solution in such a way as to admit at
least one new variable to the phase I problem. This is continued until either the
primal becomes feasible or the dual becomes unbounded.

Development of the Primal-Dual Method

Consider the following primal and dual problems in standard form where b > 0.

P: Minimize cx D: Maximize whb
Subject to Ax=b Subject to wA <¢
x>0 w unrestricted

Let w be an initial dual feasible solution, that is, wa;, < ¢; for all j. By
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complementary slackness, if wa, = ¢, then x; is allowed to be positive and we
attempt to attain primal feasibility from among these variables. Let Q = {/j : wa,
— ¢; = 0}, that is, the set of indices of primal variables allowed to be positive.
Then the phase I problem that attempts to find a feasible solution to the primal
problem among variables in the set 0 becomes:

Minimize Y, Ox; + 1x,

JEQ
Subjectto > ax; + Ix, = b
JEQ
x; > Oforj e Q
X, >0

a

We utilize the artificial vector x, to obtain a starting basic feasible solution to
the phase I problem. The phase I problem is sometimes called the restricted
primal problem.

Denote the optimal objective value of the foregoing problem by x, At
optimality of the phase I problem either x, = 0 or x, > 0. When x, = 0, we
have a feasible solution to the primal problem since all artificials are zeros.
Furthermore, we have a dual feasible solution, and the complementary slackness
condition (wa; — ¢;)x; = 0 holds because either j € @ in which case wa, — ¢; =
0, or else j & Q in which case x; = 0. Therefore we have an optimal solution of
the overall problem whenever x, = 0. If x;, > 0, primal feasibility is not
achieved and we must construct a new dual solution that would admit a new
variable to the restricted primal problem in such a way that x, might be
decreased. We shall modify the dual vector w such that all the basic primal
variables in the restricted problem remain in the new restricted primal problem,
and in addition, at least one primal variable that did not belong to the set Q
would get passed to the restricted primal problem. Furthermore, this variable
would reduce x, if introduced in the basis. In order to construct such a dual
vector, consider the following dual of the phase I problem.

Maximize vb

Subject to va,<0 j € Q
v<l1

v unrestricted

Let v* be an optimal solution to the foregoing problem. Then, if a real
variable x; is a member of the optimal basis for the restricted primal, the
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associated dual constraint must be tight, that is, v*a; = 0. Also the criterion for
basis entry in the restricted primal problem is that the associated dual constraint
be violated, that is, v*a; > 0. However, no variable presently in the restricted
primal has this property since the restricted primal is optimal. For j & Q,
compute v*a. If v*a, > 0, then if x; could be passed to the restricted primal
problem it would be a candidate to enter the basis with the potential of a further
decrease in x, Therefore we must find a way to force some variable x; with
v*a; > 0 into the set Q.
Construct the following dual vector w’, where 8§ > 0:

W =w+ fv*
Then

wa, —c = (w+ 0va — ¢
= (wa;, = ¢;) + 0(v*a) (6.4)

Note that wa, — ¢; = 0 and v*a, < 0 forj € Q. Thus Equation (6.4) implies that
wa, — ¢; < 0forj € Q. In particular, if x; with j € Q is a basic variable in the
restricted primal, then v*a, =0 and w'a, — ¢, = 0, permitting j in the new
restricted primal problem. If j & Q and v*a, < 0, then from Equation (6.4) and
noting that wa, — ¢; < 0, we have wa, — ¢; < 0. Finally consider j & Q with
v*a; > 0. Examining Equation (6.4), and noting that wa; — ¢; < Oforj & Q, itis
evident that we can choose a § > 0 such that wa, — ¢; < 0 for j & Q with at

least one component equal to zero. In particular, define 8 as follows:

9 = —(la*ﬂ = Minimum ﬂ?———c’z tvda, >0( >0  (6.5)
v*a, J v*a,
By definition of § above and from Equation (6.4), we see that wa, — ¢, = 0.
Furthermore, for each j with v*a;, > 0, and noting Equations (6.4) and (6.5), we
have wa, — ¢ <0
To summarize, modifying the dual vector as detailed above leads to a new
feasible dual solution where wa, — ¢; < 0 for all j. Furthermore, all the vari-
ables that belonged to the restricted primal basis are passed to the new restricted
primal. In addition, a new variable x, that is a candidate to enter the basis, is
passed to the restricted primal problem. Hence we continue from the present
restricted primal basis by entering x,, which leads to a potential reduction in x,.

Case of Unbounded Dual

The foregoing process is continued until either x, = 0 in which case we have an
optimal solution, or else x, > 0 and v*a, < 0 for allj & Q. In this case consider
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w = w + dv*. Since wa, — ¢; < 0 for all j, and by assumption v*a;, < 0 for all /,
then from Equation (6.4) w is a dual feasible solution for all # > 0. Further-
more, the dual objective is

wb = (W + 8v*)b = wb + 6v*b

Since v*b = x, (why?), and the latter is positive, then w'b can be increased
indefinitely by choosing @ arbitrarily large. Therefore the dual is unbounded and
hence the primal is infeasible.

Summary of the Primal-Dual Algorithm (Minimization Problem)

INITIALIZATION STEP

Choose a vector w such that wa, — ¢; < 0 for all j.

MAIN STEP

1. Let Q = {/ : wa; — ¢, = 0} and solve the following restricted primal prob-
lem.

Minimize , Ox;+1x,
j€Q

Subject to D, ax+ x,=b
JEQ

x;> Oforje Q@

x, >0

Denote the optimal objective by x,. If x, = 0, stop; an optimal solution is
obtained. Otherwise let v* be the optimal dual solution to the foregoing
restricted primal problem.

2. If v*a, < 0 for all j, then stop; the dual is unbounded and the primal is
infeasible. Otherwise let

—(wa, — ¢,
6 = Minimum __(_,__,Z

*

:v*aj>0}>0

and replace w by w + @v*. Repeat step 1.



6.5 THE PRIMAL-DUAL METHOD 261

Example 6.7

Consider the following problem.
Minimize 3x;+4x,+6x;+7x,+ x5

Subject to 2x; — x,+ x34+6x,—5x5— x4 =
X1+ x+2x3+ x,+2xs —-x;=3

Xp, Xy X3, X4 Xs, Xg, X720

The dual problem is given by the following.

Maximize 6w;+3w,
Subject to 2w, + w,<3
—w;+ w,<4
w;+2w, <6
6w, + w,<7
- Sw, +2w,<1
—w, <0
- w,<0

w;, w, unrestricted

An initial dual feasible solution is given by w = (w,, w,) = (0, 0). Substituting w
in each dual constraint, we find that the last two dual constraints are tight so
that Q = {6, 7}. Denoting the artificial variables by x; and x,, the restricted
primal problem becomes as follows.

Minimize  xg3+xg
Subject to — x, +xg =6
- X, +x9=3

Xg, Xq, Xg, Xg20

The optimal solution to this restricted primal is clearly (xg4, X7, Xg X9) =
(0, 0, 6, 3) and the optimal objective x, = 9. The dual of the foregoing restricted
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primal is the following.

Maximize 6v,+3v,

Subject to — v, <0
- 1v,<0

v <1

v, <1

vy, v, unrestricted

Utilizing complementary slackness, we see that since xg and x4 are basic, the last
two dual constraints must be tight and v* = (vf, v3) = (1, 1). Computing v*a;
for each column j, we have v*a, = 3, v*a, = 0, v*a, = 3, v*a, = 7, and v*a, =
—3. Then 6 is determined as follows:

# = Minimum { —(=3), = (=$), — (=7)} =1
andw = (0,0) + I(1, I) = (1, ).
With the new dual solution w' we recompute Q and obtain Q = {1, 4}, giving

the following restricted primal:

Minimize xg+xq

Subject to 2x;+6x,+ x4 =6
xt+ x, +x4=3
X, X4 Xg, Xg20

This time an optimal solution to the restricted problem is given by
(x4, X4 Xg, X9) = (3,0, 0, 0)

with x, = 0. Thus we have an optimal solution to the original problem with the
optimal primal and dual solutions being

(x¥, x3, x3, x§, x5, x&, x3) = (3,0,0,0,0, 0, 0)

and

(wi, w3) = (L, 1).
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Tableav Form of the Primal-Dual Method

Let z; — ¢; be the row zero coefficients for the original primal problem and let

z‘j — ¢ be the row zero coefficients for the restricted primal problem. Then for
each real variable x; we have

Z;— ¢ =wa — ¢ and zj—cj=vaj—0=vaj
We also have
wa, — ¢ -
va; 576G

and

(wa, —¢) + 0va, =(z,—¢)+ 0(5 —¢)

We can carry out all of the necessary operations directly in one tableau. In this
tableau we have two objective rows; the first gives the z; — ¢’s and the second
gives the 7, — ¢’s. We shall apply this tableau method to the foregoing problem.

The initial tableau is displayed below. In this example w is initially (0, 0), so that

z;— ¢ =wa, — ¢ = — ¢ and the right-hand-side entry in the z-row is zero.

When w 5= 0, we still compute z; — ¢; = wa; — ¢, but also initialize the RHS

entry of the z-row to wb instead of zero. [Try starting the tableau with

= (1, 0)]

X Xy X, X4 Xs X4 X, Xg Xy RHS
-3 -4 -6 -7 -1 0 0 0 0 0
0 0 0 0 0 0 0 -1 -1 0
2 -1 1 6 -5 -1 0 1 0 6
1 1 2 1 2 0 -1 0 1 3

Since we begin with xg and x, in the basis for the restricted primal, we must
perform some preliminary pivoting to zero their cost coefficients in the phase I
objective. We do this by adding the first and second constraint rows to the
restricted primal objective row. Then %, — ¢ = 0 for the two basic variables xg
and x,. Let [] indicate the variables in the restricted primal problem, that is,
those for which z; — ¢; = 0. As the restricted primal problem is solved, only the

variables signaled with [J are allowed to enter the basis.
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(] (] O g

X, X, X3 X4 X5 X¢ Xq Xg X9 RHS
z | -3 -4 -6 -7 -1 0 0 0 0 0
o) 3, 0 3 7 -3 -1 -1 0 0 9
Xg 2 -1 1 6 -5 -1 0 1 o 6
Xo 1 1 2 1 2 0o -1 0 1| 3

Since Z; — ¢ < O for all variables in the restricted problem, we have an optimal
solution for phase I. Then 8 is given by

—(Z;, — C;
# = Minimum #A—’).zﬁ—ej>o}
Z; = ¢
Minimum{ - (= 3), = (= $), — (- 7))} =1

Thus we add 1 times the phase I objective row to the original objective row. This
leads to the following tableau. The phase I problem is solved by only utilizing
the variables in the set Q, that is, those with z;—¢ =0

O 0 O
X, X, X4 X4 Xs Xg X, Xg Xy RHS
z 0] -4 -3 0 -4 -1 -1 0 0] 9
x| 3 o 3 7 -3 -1 -1 0 0/ 9
Xg 2 | -1 1 (& -5 -1 0 1 0| 6
X, 1 1 2 1 2 0 -1 0 11| 3
U 0o 4
X Xy X4 X, Xs X X, Xg Xy RHS
z 0 -4 -3 0 -4 -1 -1 0 0] 9
X0 5 § 5 0 ¢ s —1 =3 0 2
x T2 -1 1 1 -3 -1 0 Ll 0 1
4 6 6 6 6 6 6
X ¢ ¢ 0 ¢ ¢ -1 - 12
U U 0 O
xl x2 x3 x4 .XS x6 X7 x8 x9 RHS
z 0] -4 -3 0 -4 -1 -1 0 0] 9
X/ 0/ 0 0 0o 0 0 0 —-1-1| 0
X | 0 -3 -3 1 -3 -3 : i —:| 0
Xy 1 L Tt Tk T
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Since x, = 0, then the optimal solution is found, namely,

(xF, x¥, x¥, x¥, x¥, x}, x¥)=(3,0,0,0,0,0,0)

whose objective is 9.

Finite Convergence of the Primal-Dual Method in the Absence of Degeneracy

Recall that at each iteration an improving variable is added to the restricted
primal problem. Therefore, in the absence of degeneracy in the restricted primal
problem, the optimal objective x, strictly decreases at each iteration. This means
that the set Q generated at any iteration is distinct from all those generated at
previous iterations. Since there is only a finite number of sets of the form @
(recall Q C {1,2,...,n)}) and none of them can be repeated, then the algo-
rithm terminates in a finite number of steps. In Exercise 6.48 we ask the reader
to consider the case of degeneracy of the restricted primal problem.

6.6 FINDING AN INITIAL DUAL FEASIBLE SOLUTION: THE ARTIFICIAL CONSTRAINT
TECHNIQUE

Both the dual simplex method and the primal-dual method require an initial
dual feasible solution. In the primal tableau this requirement of dual feasibility
translates to z; — ¢; < 0 for all j for a minimization problem. We shall now see
that this can be accommodated by adding a single new primal constraint.
Suppose that the first m columns constitute the initial basis and consider
adding the constraint 37_, , x; < M, where M > 0 is large. The initial tableau
is displayed below where x,, , , is the slack variable of the additional constraint.

P P I Xl ce X, X,+1 RHS
z 110 O 0 z,1—Cpysr " 2,—¢, O cBl—)
X110 10 O 0 1 1 1 M
'xl O 1 O O yl,m+1 T Vin O b_l
X2 00 1 0 Y2, m+1 Yan 0 b,
x, [0/0 0 --- 1 Vo s 1 Vo 0 | b,

This additional constraint bounds the nonbasic variables and thus indirectly
bounds the basic variables and thereby the overall primal problem. To obtain a
dual feasible solution in the new tableau we let

Zp — ¢ = Maxijmum{zj - ¢}
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Once column k has been selected, perform a single pivot with column & as an
entry column and column #n + 1 as an exit column. In particular, to zero z;, — ¢,
we shall subtract z, — c, times the new row from the objective function row.
Note that the choice of k and the single pivot described above ensure that all
new entries in row 0 are nonpositive, and thus we have a (basic) feasible dual
solution. With this solution available either the dual simplex method or the
primal-dual simplex method can be applied, eventually leading to one of the
following three cases.

1. The dual solution is unbounded.
2. The optimal primal and dual solutions are obtained with x*,, > 0.
3. The optimal primal and dual solutions are obtained with x*,, = 0.

In case 1 the primal problem is infeasible. In case 2 we have the optimal solution
to the primal problem. However, case 3 indicates that the new bounding
constraint is limiting the primal solution (recall that M is arbitrarily large) and
therefore the primal problem is itself unbounded. In Exercise 6.41 we ask the
reader to give a formal proof of this conclusion.

In Exercise 6.40 we ask the reader to show that applying the artificial
constraint technique to the primal problem is equivalent to applying the single
artificial variable technique (described in Chapter 4) with the big-M method to
the dual problem and vice versa.

Example 6.8

Suppose that we wish to apply the dual simplex method to the following
tableau.

z X, X4 X3 X4 X5 RHS
z 1 To 1 5 -1 0 0
x, | 0 1 2 —1 1 0 4
xs | 0] 0 3 4 -1 1 3

Adding the artificial constraint x, + x, + x, < M whose slack is x,, we get the
following tableau.

z X Xy X X4 X5 X RHS
z 0 1 5. -1 0 0 0
xs | 01 0 1 ©) 10 1 M
x, |01 2 -1 0 0 4
xs | 0| 0 3 4 -1 1 0 3
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From the tableau we find that Maximum z; — ¢; = z, — ¢; = 5. Pivoting in the
x, column and the x, row, we get a new tableau that is dual feasible. The dual
simplex method can now be carried out in standard form.

z X, X, X4 X4 X5 Xg RHS
z 11 0o -4 0 -6 0 -1 -5M
x3 | 0] 0 1 1 1 0 1 M
x, | 0| 1 3 0 2 0 1 M+4
xs | 0] 0 —1 0o -5 1 —4 | —4M+3

6.7 SENSITIVITY ANALYSIS

In most practical applications, some of the problem data are not known exactly
and hence are estimated as well as possible. It is important to be able to find the
new optimal solution of the problem as other estimates of some of the data
become available, without the expensive task of resolving the problem from
scratch. Also at early stages of problem formulation some factors may be
overlooked. It is important to update the current solution in a way that takes
care of these factors. Furthermore, in many situations the constraints are not
very rigid. For example, a constraint may reflect the availability of some
resource. This availability can be increased by extra purchase, overtime, buying
new equipment, and the like. It is desirable to examine the effect of relaxing
some of the constraints on the value of the optimal objective without having to
resolve the problem. These and other related topics constitute sensitivity analysis.
We shall discuss some methods for updating the optimal solution under different
problem variations.
Consider the following problem.

Minimize ex

Subject to Ax=Db
x>0

Suppose that the simplex method produced an optimal basis B. We shall
describe how to make use of the optimality conditions (primal-dual relation-
ships) in order to find the new optimal solution, if some of the problem data
change, without resolving the problem from scratch. In particular, the following
variations in the problem will be considered.

Change in the cost vector c.

Change in the right-hand-side vector b.
Change in the constraint matrix A.
Addition of a new activity.

Addition of a new constraint.
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Change in the Cost Vector

Given an optimal basic feasible solution, suppose that the cost coefficient of one
(or more) of the variables is changed from c, to ¢;. The effect of this change on
the final tableau will occur in the cost row; that is, dual feasibility may be lost.
Consider the following two cases.

Case I: x, is nonbasic

In this case ¢y is not affected, and hence z; = ¢gB~ 'a; is not changed for any
J. Thus z, — ¢, is replaced by z, — c;. Note that z, — ¢, < 0 since the current
point was an optimal solution of the original problem. If z, — ¢; = (z, — ¢,) +
(¢, — c;) is positive, then x, must be introduced into the basis and the (primal)
simplex method is continued as usual. Otherwise the old solution is still optimal
with respect to the new problem.

Case II: x, is basic, say x, = x,,

Here cp is replaced by cp. Let the new value of z; be z/. Then z; — ¢; is
calculated as follows:

N
|
O
I

‘—¢=czB 'a, —¢;=(c;B 'a, —¢)+(0,0,...,¢5 —c5,0,...,0),

~

(z; — ¢) + (g —cg)y, forallj

In particular for j = &, z, — ¢, = 0, and y,, = 1, and hence z; — ¢, = ¢; — ¢,.
As we should expect, z; — ¢ is still equal to zero. Therefore the cost row can be
updated by adding the net change in the cost'of x; = x, times the current ¢ row
of the final tableau, to the original cost row. Then z; — ¢, is updated to
2z, ~ ¢, = 0. Of course the new objective value ¢zB™'b=czB™'b + (¢ —

cB,)b—, will be obtained in the process.

Example 6.9

Consider the following problem.
Minimize —2x,+ x,—x,

Subject to X1+ X,+x3<6
- X+ 2x, <4

Xp, Xy, X320

The optimal tableau is given by the following.
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z X, Xy X3 X4 X5 RHS
z 1 0 -3 -1 -2 0 - 12
X, 0 1 1 1 1 0 6
Xs 0 | O 3 1 1 1 10
Suppose that ¢, = 1 is replaced by —3. Since x, is nonbasic, then z, — ¢} =
(z; — ¢)) + (¢; — ¢)) = —3 + 4 =1, and all other z; — ¢ are unaffected. Hence
x, enters the basis.
z X, Xy X5 X4 X5 RHS
z 1 0 1 -1 -2 0 - 12
X, 0 1 1 1 1 0 6
xs | 0 o O 1 1 1 10
The subsequent tableaux are not shown. Next suppose that ¢, = —2 is replaced

by zero. Since x, is basic, then the new cost row, except z; — c,, is obtained by
multiplying the row of x, by the net change in c, [that is, 0 — (—2) = 2} and
adding to the old cost row. The new z;, — ¢, remains zero. Note that the new
z3 — ¢4 is now positive and so x; enters the basis.

z X, Xy X4 X4 X5 RHS
z 1 | 0 =1 1 0 0 0
X, 0 1 1 ©) 1 0 6
Xs 0 0 3 1 1 1 10

The subsequent tableaux are not shown.

Change in the Right-Hand-Side

If the right-hand-side vector b is replaced by b, then B~ 'b will be replaced by
B~ 'b’. The new right-hand side can be calculated without explicitly evaluating
B~ 'b'. This is evident by noting that B~ ' = B~'b + B~ '(b’ — b). If the first m
columns originally form the identity, then B~ !(b’ — b) = 27 y(b — b) and
hence B-'b =b + 3 ™ 1y,(b] — b)). Since z; — ¢; < O for all nonbasic variables
(for a minimum problem), the only possible violation of optimality is that the
new vector B~'b’ may have some negative entries. If B~'b’ > 0, then the same
basis remains optimal, and the values of the basic variables are B~ 'b and the
objective has value c;B~'b’. Otherwise the dual simplex method is used to find
the new optimal solution by restoring feasibility.

Example 6.10

Suppose that the right-hand side of Example 6.9 is replaced by (i) Note
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that B_‘=“ ?]andhence B“‘b’=“ ?][i]=(3) Then B~'b > 0

and hence the new optimal solution is x; = 3, x5 =7, x, = x, = x, = 0.

Change in the Constraint Matrix

We now discuss the effect of changing some of the entries of the constraint
matrix A. Two cases are possible, namely, changes involving nonbasic columns,
and changes involving basic columns.

Case I: Changes in Activity Vectors for Nonbasic Columns

Suppose that the nonbasic column a; is modified to a}. Then the new updated
column is B™'aj and z/ — ¢; = ¢;B™'a} — ¢, If z/ — ¢, < 0, then the old solu-
tion is optimal; otherwise the simplex method is continued, after column j of the
tableau is updated, by introducing the nonbasic variable x;.

Case ll: Changes in Activity Vectors for Basic Columns

Suppose that a basic column a, is modified to a. This case can cause
considerable trouble. It is possible that the current set of basic vectors no longer
form a basis after the change. Even if this does not occur, a change in the
activity vector for a single basic column will change B~' and thus the entries in
every column.

Assume that the basic columns are ordered from 1 to m. Let the activity
vector for basic column j change from a; to aj. Compute y; = B“aj’. where B!
is the current basis inverse. There are two possibilities. If y;; = 0, the current set
of basic vectors no longer forms a basis (why?). In this case it is probably best to
add an artificial variable to take the place of x; in the basis and resort to the
two-phase method or the big-M method. However, if y; 7 0, we may replace
column j, which is currently a unit vector, by y; and pivot on yj. The current
basis continues to be a basis (why?). However, upon pivoting we may have
destroyed both primal and dual feasibility and, if so, must resort to one of the
artificial variable (primal or dual) techniques.

Example 6.11

Suppose that in Example 6.9, a, is changed from ( 1 ) to (2) Then

2 5
sewae (] 90)-()
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Thus the current optimal tableau remains optimal with column x, replaced by
(=527,

Next suppose that column a, is changed from ( _ i) to (

aeman (1 9C9-(

;B '8} — ¢, = (-2, 0)( _ (1’) ~(~2) =2

0

_ 1). Then

Here the entry in the x, row of yj is zero, and so the current basic columns no
longer span the space. Replacing column x, by (2,0, — 1) and adding the
artificial variable x, to replace x, in the basis, we get the following tableau.

z X, X, X5 X4 Xs Xg RHS
: [ 1 2 -3 -1 -2 0 -M | -1
x¢ | O 0 1 1 10 Q) 6
xs | 0| -1 3 1 11 0 10

After preliminary pivoting at row x, and column x, to get zy — ¢ = 0, that is, to
get the tableau in basic form, we may proceed with the big-M method.

Finally, suppose that column a, is changed from ( _ 1 ) to (3 ) Then

1 6
A —l/= 1 O 3)=(3)
Vi=B (1 1)(6 9

;B 'a) — ¢, = (-2, 0)(3) —(-2)= -4

In this case the entry in the x, row of y; is nonzero and so we replace column x,
by (—4, 3, 9), pivot in the x; column and x, row, and proceed.

z X X5 X3 X, Xs RHS
z 1 —4 -3 -1 -2 0 - 12
X, 0 @ 1 1 1 0 6
x5 |0 9 3 1 1 1 10

The subsequent tableaux are not shown.

Adding a New Activity

Suppose that a new activity x,,, with unit cost ¢,,, and consumption column
a,,, is considered for possible production. Without resolving the problem, we
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can easily determine whether producing x,,, is worthwhile. First calculate

Zyot1 — Coyr 2,01 — ¢, <0 (for a mlmmlzatlon problem), then x}, , =0

and the current solution is optimal. On the othe hand, if z, ., — ¢, ., > 0, then

X, . is introduced into the basis and the 51mp1ex method continues to find the

new optimal solution.

Example 6.12
Consider Example 6.9. We wish to find the new optimal solution if a new

activity x, > 0 with ¢ = 1, and a4 =( *é) is introduced. First we calculate
Zg = Cg!

Zg — Co = Wag — C¢
=(—2,0)(“)—1=1
2

S T SIE )

Therefore x4 is introduced in the basis by pivoting at the x; row and the x;
column,

z X, X, X5 X, X5 Xg RHS
z: |1 0o -3 -1 =2 0 1| -12
|0 [ 1 1 1 1 0o -1 6
x| 0 \ 0 3 1 11 D 10

The subsequent tableaux are not shown.

Adding a New Constraint

Suppose that a new constraint is added to the problem. If the optimal solution to
the original problem satisfies the added constraint, it is then obvious that the
point is also an optimal solution of the new problem (why?). If, on the other
hand, the point does not satisfy the new constraint, that is, if the constraint “cuts
away” the optimal point, we can use the dual simplex method to find the new
optimal solution. These two cases are illustrated in Figure 6.3.

Suppose that B is the optimal basis before the constraint a”*!x < b

m+1 is
added. The corresponding tableau is shown below.

z+ (B 'N —cy)xy = ;B 'b

x; + B"'Nx, = B~ b (6.6)
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New constraint New optimum

c c

Figure 6.3. Addition of o new constraint.

+1is Tewritten as a3t Ixy + alt Xy + x,., = b, .,
where a”*! is decomposed into (a5 *' a7*!) and x,,, is a nonnegative slack
variable. Multiplying Equation (6.6) by a%*! and subtracting from the new

constraint gives the following system:

The constraint a” *'x < b

m

c;B™'b

z+ (czB7IN = ¢p)x,y
xz + B"'Nx, =B7b

+1 m+ip—1 _ m+lp—1
(ap*t' —az*' B N)xy + x,,,=b,,, —a3 ' B"'b

m+
These equations give us a basic solution of the new system (why?). The only
possible violation of optimality of the new problem is the sign of b,,,, —
az*'B~'b. So if b,,, — a5 'B~'b > 0, then the current solution is optimal.

m+1
Otherwise, if b, ,, — a3*'B~'b < 0, then the dual simplex method is used to

restore feasibility.

Example 6.13

Consider Example 6.9 with the added restriction that — x; + 2x; > 2. Clearly
the optimal point (x;, x5 Xx3) = (6, 0, 0) does not satisfy this constraint. The
constraint —x; + 2x; > 2 is rewritten as x; — 2x; + xg = —2, where x4 is a
nonnegative slack variable. This row is added to the optimal simplex tableau of
Example 6.9 to obtain the following tableau.

z X Xy X3 X4 Xs . Xg RHS
2 [ 1 0 -3 -1 -2 0 0] —12
x, | 0 1 1 1 1 0 0 6
x5 | 0 0 3 1 1 1 0 10
x| 0 1 0o -2 0 0 1 -2
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Multiply row 1 by —1 and add to row 3 in order to restore column x; to a unit
vector. The dual simplex method can then be applied to the resulting tableau
below.

z X, X, X3 X4 Xs Xq RHS
: I T 0 -3 -1 -2 0 o] -2
x [ o | 1 1 1 I 0 o0 6
x | o] o 3 1 11 o 10
x| 0| o -1 @ ~1 0 1 8

Subsequent tableaux are not shown. Note that adding a new constraint in the
primal problem is equivalent to adding a new variable in the dual problem and
vice versa.

An Application of Adding Constraints in Integer Programming

The linear integer programming problem may be stated as follows.
Minimize c¢x

Subject to Ax=b
x>0

X integer

A natural method to solve this problem is to ignore the last condition, x integer,
and solve the problem as a linear program. At optimality, if all of the variables
have integer values, then we have the optimal solution to the original integer
program (why?). Otherwise consider adding a new constraint to the linear
program. This additional constraint should “cut off” the current optimal nonin-
teger linear programming solution without cutting-off any feasible integer solu-
tion. Adding the new constraint to the optimal tableau, we apply the dual
simplex to reoptimize the new linear program. The new solution is either integer
or not. The procedure of adding constraints is repeated until either an all integer
solution is found or infeasibility results (indicating no integer solution). How,
then, can such a cutting constraint be generated?

_ Consider the optimal simplex tableau when a noninteger solution results. Let
b, be noninteger. Assume that the basic variables are indexed from 1 to m. The
equation associated with b, is

n —
x, + 2 ydxji b,

Jj=m+l1

Let I, be the greatest integer that is less than or equal to y,; (1, is called the
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integer part of y;). Similarly, let 7, be the integer part of b_, Let F,; and F, be the
respective fractional parts, that is,

F,=y,—1; and F, =5 —1

rj
Then 0 < F; < 1 and 0 < F, < 1 (why?). Using this, we may rewrite the basic

equation for x, as

x,+ 2 (I;+ F;)x=1+F,

r r
j=m+1

Rearranging terms, we get

r r
jem+1 j=m+1

x, + 2 I,jxj—I=F— 2 F,jxj

Now the left-hand side of this equation will be integer for any feasible integer
solution (why?). The right-hand side is strictly less than 1, since F, < 1, F, > 0,
and x; > 0. But since the right-hand side must also be integer, because it equals
the left-hand side, we may conclude that it must be less than or equal to zero
(there are no integers greater than zero and less than one). Thus we may write

F,— 2 F,x<0

However, since x; is currently nonbasic (and hence x, =0) for j = m +
l,...,n and F, >0, the current optimal (noninteger) linear programming
solution does not satisfy this additional constraint. In other words, this new
constraint will cut-off the current optimal solution if added to the current
optimal tableau. The dual simplex method is then applied to obtain a new
optimal linear programming solution, which is again tested for integrality. Such
a procedure is called a cutting plane algorithm.

Example 6.14
Consider the following integer program.
Minimize 3x,+4x,
Subjectto 3x,+ x,>4
X+ 2x, >4

Xy,  x,20

x,, X, integer
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In Figure 6.4 we show the optimal linear programming and integer programming
solutions respectively.

Ignoring the integer conditions, the following tableau gives the optimal linear
programming solution.

z X X5 X3 X4 RHS
z 1 0 0 ~2 —2 ] 4
X, 0 1 0 —2 1 :
X 0 0 1 5 —3 s

Since this solution is noninteger, we may select a noninteger variable for
generating a cut (including z). Select x,. (Note. Selecting different variables may
generate different cuts.) The equation for the basic variable x, is

1 3 =8
X, F3X3 = 5% =3

From this we get

points
.

/ 4

' ‘ )
\r \/\1@

/ ' & /
@ Cut

Figure 6.4. The graphical solution.
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and the additional constraint becomes
sx3+ 3x, >3 (cut)

Adding this constraint with slack variable x5 to the tableau and applying the
dual simplex method, we get the following tableaux.

z X Xy X3 X4 X5 RHS
z 1 0 0 -2 -2 0 e
X 0 0 -3 5 0 H
X3 0 EI - % 0 %
xs 0 0 @ -2 1 -2

z X, Xy X3 X4 X5 RHS
z 1 0 0 0 -1 -2 10
x, 0 1 0 0 1 -2 2
x; 0 0 1 0 -1 1 1
X 0 0 0 1 2 -5 3

Hence we have obtained the optimal integer solution x* = (2, 1)’ with only one
cut. In other integer programs we might have to repeat the cutting plane process
many times. If in the foregoing tableau some variable had turned out nonin-
teger, we would have generated a new cut and continued.

It is interesting to examine the cut in terms of the original variables.
Substituting x; = 3x; + x, — 4 and x, = x, + 2x, — 4 into 1x;+ Zx, >3

and simplifying, we get
X1+ x, >3 (cut in terms of x, and x,)

It can easily be seen that the addition of this constraint to Figure 6.4 will yield
the required integer optimum.

6.8 PARAMETRIC ANALYSIS

Parametric analysis is used quite often in large-scale optimization and nonlinear
optimization, where one often finds a direction along which the objective
function or the constraints are perturbed, and then seeks to move along this
direction. So we seek the optimal solutions to a class of problems by perturbing
either the objective vector or the RHS vector along a fixed direction.
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Perturbation of the Cost Vector

Consider the following problem.
Minimize c¢x

Subject to Ax=b

x>0

Assume that B is an optimal basis. Suppose that the cost vector ¢ is perturbed
along the cost direction ¢/, that is, ¢ is replaced by ¢ + Ac’ where A > 0. We are
interested in finding the optimal points and corresponding objective values as a
function of A > 0. Decomposing A into [B, N}, ¢ into (cg, ¢y), and ¢ into
(¢, Cy), we get

z = (cg + Acp)Xg — (cy + Acy)xy =0
Bx, + Nx, =b

Updating the tableau and denoting cpy; by z/, we get

2+ 2 [(z—¢) + Nz — ¢)]x = czb + Aczb

JER

Xg+ 2 yx5=b
JER

where R is the set of current indices associated with the nonbasic variables. The
current tableau has A = 0 and gives an optimal basic feasible solution of the
original problem without perturbation. We would like to find out how far we
can move in the direction ¢’ while still maintaining optimality of the current
point. Let S = {j : (z/ — ¢/) > 0}. If § = ¢, then the current solution is optimal
for all values of A > 0 (why’?) Otherwise, calculate A as follows:

A = Minimum
jES

(6.7)

' r_ ot
z — ¢ z;, — ¢

{ —(3—¢) } _ ~ (2 — &)
Let A, = A. For A € [0, A] the current solution is optimal and the optimal
objective value is given by czb + Acyb = ¢z;B7'b + AcyB™'b. For A € [0, A|],
the shadow prices in the simplex tableau are replaced by (z;, — ¢;) + A(z] — ¢)).
At A = A, x, is introduced into the basis (if a blocking variable exists). After the
tableau is updated, the process is repeated by recalculating S and A and letting
A, =A For A e [A;» A,] the new current solution is optimal and its objective
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value is given by czb + Aczb = ¢zB™'b + Ac;B™'b where B is the current basis.
The process is repeated until S becomes empty. If there is no blocking variable
when x, enters the basis, then the problem is unbounded for all values of A
greater than the current value.

Example 6.15

Consider the following problem.
Minimize —x,—3x,

Subjectto  x;+ x,<6
—x,+2x,<6

X1, x>0

It is desired to find the optimal solutions and optimal objective values of the
class of problems whose objective function is (=1 + 2A, — 3 + A) for A > 0;
that is, we perturb the cost vector along the vector (2, 1). First we solve the
problem with A = 0 where x; and x, are the slack variables. The optimal tableau
for A = 0 is given by the following.

z X Xy X3 X4 RHS
z 1 0 0 -3 -2 - 14
x, 0 1 0 3 -1 2
X, 0 0 1 : ! 4

In order to find the range over which this tableau is optimal, first find
BN —¢,:

C’BB—IN - c}v = c,B(y:;, y4) - (C;, C‘,‘)

-

W— WiN
W= W=

Ex

= (3 -9 9

Therefore S = {3} and from Equation (6.7) Ais given by

— (23— ¢3) _ _(_%) _

25 — Cq 5
37 03 3

A= 1

Therefore A, = 1 and for A € [0, 1} the basis [a,, a,] remains optimal. The
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optimal objective value z(A) in this interval is given by

z(\) = czb + Acb
=—M+AQJ%3)=—M+8A

Noting Equation (6.8), the shadow prices of the nonbasic variables x; and x, are
given by

(z3—¢) + Nz —¢5) = =3+ 3A
(24— cg) Nz — ¢j) = — 2 — LA

Hence the optimal solution for any A in the interval [0, 1] is given by the
following tableau.

z X, Xy X3 X4 RHS
z 1{ 0 0 —3+3A —I-IX (1448
x, 0 1 0 2 -1 2
x, 0 0 1 ; i 4

At A = 1 the coefficient of x; in row 0 is equal to 0 and x, is introduced in the
basis leading to the following new tableau.

z X Xy X3 X4 RHS
z 1 0 0 0 -1 -6
X3 0 2 1 -3 3
x, 0| —3 1 0 : 3

We would now like to find the interval [1, A,] over which the foregoing tableau is
optimal. Note that

21_"1=ca)’1‘cl=(0’—3)(_

(ST NI
e
+
—

]
[N

Zg = cg=cgy,— ¢, = (0, *3)(*

(SIS
S
I
el
[
I
oW

2= ¢y =y — ¢ = (O, 1)(

Nf— W
S
|
[\

I
|
(S

Zi— ¢y =Yy — ¢4 = (O, 1)(‘

(SIS
S
|
el
Il
N]—
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Therefore the shadow prices for the nonbasic variables x, and x, are given by
(zy—e) + Mz =) =3 - 3A
(24 =) + M2y — i) = — 1+ 3\
Therefore for A in the interval [1, 3] the shadow prices are nonpositive and the

basis consisting of a; and a, is optimal. Note that A = 3 can also be determined
as follows:

—(24 = c4) _

z,— ¢y

S = {4} and A = =3

n\—-ln]u

Over the interval [1, 3] the objective function z(A) is given by
z(A) = cBB + Achb
= (0, - 3)(3) + A0, 1)(3) = -9+ 3

Hence the optimal tableau for A € [1, 3] is given below.

z Xy Xy X3 X4 RHS
z 1 2-32 0 0 —241x -9+
X, 0 2 0 1 -1 3
X, 0 -3 1 0 3 3

At A = 3 the coefficient of x, in row 0 is equal to zero, and x, is introduced in
the basis leading to the following tableau.

z X Xy X4 X4 RHS
z 1 -5 0 0 0 0
x; | O 1 1 1 0 6
x, | 0 -1 20 1 6

We would like to calculate the interval over which the foregoing tableau is
optimal. First calculate
2= o =cpy, — ¢ = =2

’

’__ [ A — —_
Zy—ca=chy, — ¢t = —1

Therefore S = ¢ and hence the basis [a,, a,] is optimal for all A € [3, o). Figure
6.5 shows the optimal points and the optimal objective as a function of A. Note
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Figure 6.5. Optimal objectives and optimal points as a function of A.

that this function is piecewise-linear and concave. In Exercise 6.60 the reader is
asked to show that this is always true. The break points correspond to the value
of A at which alternative optimal solutions exist.

Perturbation of the Right-Hand-Side

Suppose that the right-hand-side vector b is replaced by b + Ab’ where A > 0
This means that the right-hand side is perturbed along the vector b’. Since the
right-hand side of the primal problem is the objective of the dual problem,
perturbing the right-hand side can be analyzed as perturbing the objective
function of the dual problem. We shall now handle the perturbation directly by
considering the primal problem. Suppose that we have an optimal basis B of the
original problem, that is, with A = 0. The corresponding tableau is given by

z+ (c;B7'N —¢cy)xy =c,B7'b

xz + B"'Nx, = B~'b

where ¢,B~'N — ¢, < 0. If b is replaced by b + Ab/, the vector ¢;B™'N — ¢,
will not be affected; that is, dual feasibility will not be affected. The only change
is that B™'b will be replaced by B™'(b + Ab’), and accordingly the objective
becomes ¢;B~!(b + Ab’). As long as B~ !(b + Ab’) is nonnegative, the current
basis remains optimal. The value of A at which another basis becomes optimal,
can therefore, be determined as follows. Let § = {i : b/ < 0} where b’ = B~'b.
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If S = ¢, then the current basis is optimal for all values of A > 0. Otherwise let

A b, b,
A= Minimum{ — } = —= (6.9)

ieS

Let A, = A. For A € [0, A} the current basis is optimal, where x, = B~!(b +
Ab) and the optimal objective is ¢;B~ (b + Ab). At A, the right-hand side is
replaced by B™!(b + A,b), xp is removed from the ba51s and an appropriate
variable (according to dual 51mp1ex method criterion) enters the basis. After the
tableau is updated, the process is repeated in order to find the range [A,, A,] over
which the new basis is optimal, where A, = A from Equation (6.9). The process is
terminated when either S is empty, in Wthh case the current basis is optimal for
all values of A greater than or equal to the last value of A, or else when all the
entries in the row whose right-hand side dropped to zero, are nonnegative. In

this latter case no feasible solutions exist for all values of A greater than the
current value (why?).

Example 6.16

Consider the following problem.
Minimize —x;— 3x,

Subject to  x;+ x,<6
- x;+ 2x,<6

X, x>0

It is desired to find the optimal solution and optimal basis as the right-hand-side

‘}) that is, if b=(g) is replaced by

b+ Ab =(g) + )\( - i) for A > 0. The optimal solution with A = 0 is shown

below where x; and x, are the slack variables.

is perturbed along direction (

z X, Xy X3 X4 RHS
z 1 0 0 -3 -3 — 14
x, 0 1 0 2 -3 2
x, 0 0 1 L i 4
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In order to find the range over which the above basis is optimal, first calculate
b’:

b = B—lb/

W= WM
W | —

-1]_[ -1 }
1 0
Therefore S = {1} and from Equation (6.9) A, is given by

b, 2

A= —— = =
Yoo ()

2

Therefore the basis [a,, a,] remains optimal over the interval [0, 2]. In particular,
for any A € [0, 2] the objective value and the right-hand-side are given by

z(\) = cgb + Acgh’

() e 5( )

]

|
—_
-
+
>

X, Xy X3 X4 RHS
z 0 0 -3 -3 — 14+
x, 0 1 0 2 -1 2-A
x, 0 0 1 ! ! 4

At A =2, x5 = x; drops to zero. A dual simplex pivot is performed so that x,
leaves the basis and x, enters the basis leading to the following tableau.

z X, X, X3 X4 RHS
z 1 -2 0 -3 0 ~ 12
x4 0 -3 0 ) 1 0
x5 0 1 1 1 0 4
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In order to find the range [2, A,] over which this tableau is optimal, first find b
and b’

B=B"b=[*% H[g} =[_2]

v 3

1 0 1
Therefore S = {2} and A, is given by

b2 = 6 =
~-p,  — (=D

For A in the interval [2, 6] the optimal objective value and the right-hand-side
are given by

z(A) = cgb + Aegh/
05 rea(
= —18+ 3\
E+>\B'=[‘g]+>\[_ﬂ
13

The optimal tableau over the interval [2, 6] is depicted below.

z X, X, X3 X4 RHS
z 1 -2 0 -3 0 | - 1843\
X4 0 -3 0 -2 1 — 6+ 3\
x, 0 1 1 1 0 6 — A

At A = 6, x, drops to zero. Since all entries in the x, row are nonnegative, we
stop with the conclusion that for A > 6 there exist no feasible solutions. Figure
6.6 summarizes the optimal bases and corresponding objectives for A > 0. Note
that the optimal objective as a function of A is piecewise-linear and convex. In
Exercise 6.61 we ask the reader to show that this is always true. The break points
correspond to the values of A for which alternative optimal dual solutions exist.
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Figure 6.6. Optimal objectives and bases as a function of A.

EXERCISES
6.1 Consider the following problem.
Maximize —x,+2x,

Subjectto  3x,;+4x,<12

\Y)

2x,— x,

2
0

\%

X, Xy

a. Solve the problem graphically.

b. State the dual and solve it graphically. Utilize the theorems of duality to

obtain the values of all the primal variables from the optimal dual
solution.

6.2 Consider the following problem.
Minimize 2x;+3x,+5x;+6x,
Subject to X1+ 2x,43x3+ x,2 2
—2x;+ x3— x;+3x,<-3

X1, Xy, X3, X422 0
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a. Give the dual linear program.

b. Solve the dual geometrically.

c. Utilize information about the dual linear program and the theorems of
duality to solve the primal problem.

6.3 Solve the following linear program by a graphical method.
Maximize 3x,+ x,+4x;

Subject to  6x;+3x,+5x5 <25
3x;+4x,+5x, <20

X1 X2, X3> 0

(Hint. Utilize the dual problem.)

6.4 Give the dual of the following problem.
Minimize 2x,+3x,—5x,

Subject to x4+ x,— x3+x,> 5
2x, + x; < 4
Xyt x3+x,= 6

x, <0
Xy, X3 20
x, unrestricted

6.5 Use the standard form or the canonical form of duality to obtain the dual
of the following problem. Also verify the relationships in Table 6.1.

Minimize X1+ X+ €3X;

Subject to A x;+A X, +A3x32 b,
A, x;+ApX, +Apx; <b,
Az X +ApX, +Ayx;=by

x,; =0
x, <0
x; unrestricted
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6.6

6.7

6.8
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Consider the following problem.

Maximize 10x,+24x,+20x3+20x,+25x;

Subject to X+ x4+ 2x3+ 3x,4+ 5x5<19
2x,+ 4x,+ 3x3+ 2x,+  x5<57
Xy, Xy, X3 X4 X520
a. Write the dual problem and verify that (w,, w,) = (4, 5) is a feasible
solution.

b. Use the information in part (a) to derive an optimal solution to both the
primal and the dual problems.

Consider the following linear program.
P: Minimize 6x,+2x,

Subjectto  x;+2x,>3
x,20
x, unrestricted

State the dual of P.

Draw the set of feasible solutions for the dual of part (a).

c. Convert P to canonical form by replacing x, by x; — x{ with xj,
x} > 0. Give the dual of this converted problem.

d. Draw the set of feasible solutions for the dual of part (c).

e. Compare parts (b) and (d). What did the transformation of part (c) do

to the dual of part (a)?

o P

The following simplex tableau shows the optimal solution of a linear
programming problem. It is known that x, and x; are the slack variables in
the first and second constraints of the original problem. The constraints are
of the < type.

z X Xy X3 X4 X5 RHS
z 1 1 o -4 0 —4 -2 | —40
x; | 0 l 0 1 1 1 0 | H
x, | 0 1 -1 o -1 Lol

a. Write the original problem.

b. What is the dual of the original problem?

¢. Obtain the optimal solution of the dual problem from the above
tableau.
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6.9

6.10

6.11

6.12

6.13

6.14

Consider the following linear programming problem.
Maximize 2x,+3x,+6x,

X;— x+3x;<

6
0

\%

X1, X9, X3

a. Write the dual problem.

b. Solve the foregoing problem by the simplex method. At each iteration,
identify the dual variables, and show which dual constraints are
violated.

c. At each iteration, identify the dual basis that goes with the simplex
iteration. Identify the dual basic and nonbasic variables.

d. Show that at each iteration of the simplex method, the dual objective is
“worsened.”

e. Verify that at termination, feasible solutions of both problems are at
hand, with equal objectives, and with complementary slackness.

Consider the problem: Minimize cx subject to Ax = b, x > 0 where m = n,
c¢ = b’ and A = A’. Show that if there exists an x, such that Ax, = b, then
X, is an optimal point. (Hint. Use duality.)

Consider the problem: Minimize z subject to z —ex = 0, Ax = b, x > 0.
a. State the dual.
b. At optimality what will be the value of the first dual variable? Explain!

Consider the problem: Minimize ex subject to Ax = b, x > 0. Let B be a
basis that is neither primal nor dual feasible. Indicate how one can solve
this problem starting with the basis B.

Prove that if a given basic feasible solution to some linear programming
problem is optimal, the same basic vectors will yield an optimal solution
for any requirements vector that lies in the cone spanned by these basic
vectors.

The Sewel Manufacturing Company produces two types of reclining chairs
for sale in the Northeast. Two basic types of skilled labor are involved
—assembly and finishing. One unit of the top-of-the-line recliner requires
2 hours of assembly, 1 hour of finishing, and sells for a profit of $20. A
unit of the second-line recliner requires  hour of assembly, 3 hour of
finishing, and sells for a profit of $12. Presently there are 100 assembly
hours and 80 finishing hours available to the company. The company is
involved in labor negotiations concerning salary modifications for the
coming year. You are asked to provide the company with indications of the
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6.15

6.16

6.17

6.18
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worth of an hour of assembly worker’s time and an hour of finishing
worker’s time.

Show by duality that if the problem Minimize ex subject to Ax = b and
x > 0 has a finite optimal solution, then the new problem Minimize cx
subject to Ax = b’ and x > 0 cannot be unbounded, no matter what value
the vector b’ might take.

Show that if the primal problem Minimize ¢x subject to AX > band x > 0
has no feasible solutions, and if the dual problem has a feasible solution,
then the dual problem is unbounded. (Hint. Use Farkas’s lemma. If the
system Ax > b and x > 0 has no solutions, then the system wA < 0,
w > 0, wb > 0 has a solution.)

Consider the problem: Minimize cx subject to Ax = b, 1 < x < u.

a. Give the dual.

b. Show that the dual always possesses a feasible solution.

c. If the primal problem possesses a feasible solution, what conclusions
would you reach?

Consider the problem: Maximize ex subject to Ax = b, x > 0. Let z; — ¢,
»;» and b; be the updated entries at some iteration of the simplex algorithm.

Indicate whether each of the following statements is true or false. Discuss.

ax&
& V5= T Bx
7

9z

b. Zj— Cj= - g

¢. Dual feasibilityjis the same as primal optimality.

d. Performing row operations on inequality systems yields equivalent sys-
tems.

e. Adding artificial variables to the primal serves to restrict variables that
are really unrestricted in the dual.

f. Linear programming by the simplex method is essentially a gradient
search.

g. A linear problem can be solved by the two-phase method if it can be
solved by the big-M method.

h. There is a duality gap (difference in optimal objective values) when both
the primal and the dual programs have no feasible solutions.

1. Converting a maximization problem to a minimization problem changes
the sign of the dual variables.

J- If w, is a dual variable, then

- 0z
d ab.
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6.19

6.20

6.21

6.22

k. A linear program with some variables required to be greater than or
equal to zero can always be converted ihto one where all variables are
unrestricted, without adding any new constraints.

Use the main duality theorem to prove Farkas’s theorem. (Hint. Consider
the following pair of primal and dual problems.)

Minimize Ox Maximize wb
Subjectto Ax =b Subjectto wA < 0

x>0 w unrestricted

Consider a pair of primal and dual linear programs in standard form.

a. What happens to the dual solution if the kth primal constraint is
multiplied by a nonzero scalar A?

b. What happens to the dual solution if a scalar multiple of one primal
constraint is added to another primal constraint?

¢. What happens to the primal and dual solutions if a scalar multiple of
one primal column is added to another primal column?

Show that if a set of constraints is redundant, then the corresponding dual
variables can only be specified within a constant of addition (that is, if one
dual variable in the set is changed by an amount 8, then all dual variables
in the set would change by appropriate multiples of 4).

Two players are involved in a competitive game. One player, called the row
player, has two strategies available; the other player, called the column
player, has three strategies available. If the row player selects strategy i and
the column player selects strategy j, the payoff to the row player is ¢, and
the payoff to the column player is — ¢;. Thus the column player loses what
the row player wins and vice versa—a two-person zero-sum game. The
following matrix gives the payoffs to the row player.

1 2 3
1 2 -1 0
2 -3 1 1

Let x,, x,, and x5 be probabilities with which the column player will select
the various strategies over many plays of the game. Thus x, + x, + x; =
1, x|, x5, x3 » 0. If the column player applies these probabilities to the
selection of his strategy for any play of the game, consider the row player’s
options. If the row player selects row 1, then his expected payoff is
2x, — x,. If the row player selects row 2, his payoff is —3x, + x, + x3.
Wishing to minimize the maximum expected payoff to the row player, the
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column player should solve the following linear program.

Minimize z

Subject to X +x,+x3=1

2x,—x, <z

—3x,+x,tx;<z

X, X, x320

z unrestricted

Transposing the variable z to the left-hand side, we get the column player’s
problem:

Minimize :z
Subject to X +x+x3=1
Z2—2x;+x, >0
Z24+3x,—x,—x320
Xy, Xy, X320

z unrestricted

a. Give the dual of this linear program.

b. Interpret the dual problem in part (a). (Hint. Consider the row player’s
problem.) '

c. Solve the dual problem of part (a). (Hint. This problem may be solved
graphically.)

d. Use the optimal dual solution of part (¢) to compute the column
player’s probabilities.

e. Interpret the complementary slackness conditions for this two-person
Zero-sum game.

6.23 Show that discarding a redundant constraint is equivalent to setting the
corresponding dual variable to zero.

6.24 Let x* be an optimal solution to the problem: Minimize ex subject to

ax=b,i=1,...,m, x > 0. Let w* be an optimal dual solution. Show
that x* is also an optimal to the problem: Minimize (¢ — wj*a*)x subject to
ax=>5b,i=1,...,m,i%#k, x >0, where w’ is the kth component of

w*. Discuss!
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6.25 The following are the initial and current tableaux of a linear programming

6.26

problem.

z X, X, X3 X4  Xs Xg Xq RHS
z 1 1 6 -7 a 5 0 0 0
Xg 0 5 —4 13 b 1 1 0 20
P 0 1 -1 5 c 1 0 1 8

z X, Xy X4 Xy X5 X X;  RHS
:[1] 2 o o ¥ 3 7 -mTe
X3 0 - % 0 1 - % % - % % 17—2
w0 =% 1 0 -3 % -3 8]
a. Find a, b, and c.
b. Find B~".
c. Find 9x,/dxs.
d. Find 9x;/0b,.
e. Find 0z /9x,.
f. Find the complementary dual solution.
The following is an optimal simplex tableau (maximization and all <
constraints).

SLACKS
z X, Xy X4 X4 Xs X RHS

z 1 0 0 0 4 0 9 5
X, 0 1 1 0 2 0 1 2
X3 0 0 0 1 1 0 4 3
X 0 0 -2 0 1 1 6 1
a. Give the optimal solution.
b. Give the optimal dual solution.
¢. Find 0z/95b,. Interpret this number.
d. Find dx,/9x,. Interpret this number.
e. If you could buy an additional unit of the first resource for a cost of s

would you do this? Why?

Another firm wishes to purchase one unit of the third resource from
you. How much is such a unit worth to you? Why?

Are there any alternate optimal solutions? If not, why not? If so, give
one.



294 DUALITY AND SENSITIVITY

6.27 Solve the following problem by the dual simplex method.

Maximize —4x,—6x,—18x,
Subject to X, + 3x;23
X,+ 2x325
X1, X3, X320

Give the optimal values of all the primal and dual variables. Demonstrate
that complementary slackness holds.

6.28 Consider the following linear programming problem.
Maximize 2x,—3x,

Subjectto  x;+ x,>3
3x;+ x,<6

X, x>0

You are told that the optimal solution is x, = 2 and x, = 2. Verify this

statement by duality. Describe two procedures for modifying the problem
in such a way that the dual simplex method can be used. Use one of these
procedures for solving the problem by the dual simplex method.

6.29 Solve the following linear program by the dual simplex method.
Minimize  2x,+3x,+5x;+6x,

Subject to X1 +2x,+3x3+ x> 2
—2x+ x;— x3+3x,<-3

Xy, Xy, X3, X42 O
6.30 Consider the following problem.
Minimize 3x;+5x,— x;+2x,—4x;

Subject to  x;+ x,+ x3+3x,+ x;<6
=X = X+ 2x3+ x4~ x523

X1, Xp, X3, X4 Xg20
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6.31

6.32

6.33

6.34

6.35

6.36

a. Give the dual problem.
b. Solve the dual problem using the artificial constraint technique.
¢. Find the primal solution from the dual solution.

Show that, in the dual simplex, if b_, <Oandy, >0forj=1,...,n then
the dual is unbounded (and the primal is infeasible) by constructing a
suitable direction. (Hint. Consider w = ¢;B~' + A B’, where B’ is the rth
row of B™1)

Show that the dual simplex algorithm is precisely the primal simplex
algorithm applied to the dual problem. Be explicit.

Indicate how the lexicographic method can be implemented in the dual
simplex method to guarantee finiteness. (Hint. Here we are interested in
columns starting and continuing to be lexicographically negative.)

In Section 6.5 we showed that the complementary dual basis matrix is

given by
B'| 0 -
Nl In -m

Give the complete starting dual tableau.

Give the inverse of this basis matrix.

c. Use the result of part (b) to develop the dual tableau associated with
this basis matrix.

o

Suppose that an optimal solution to the problem Minimize ex subject to

Ax > b, x > 0, exists. Prove the following complementarity theorem.

a. A variable is zero for all primal optimal solutions if and only if its
complementary dual variable is positive for some dual optimal solution.

b. A variable is unbounded in the primal feasible set if and only if its
complementary dual variable is bounded in the dual feasible set.

c. A variable is unbounded in the primal optimal set if and only if its
complementary dual variable is zero for all dual feasible solutions.

d. A variable is positive for some primal feasible solution if and only if its
complementary dual variable is bounded in the dual optima/ set.

Consider the following problem.

P: Minimize 2x,—3x,

\Y

Subjectto  x;+ x,>

\%

- X,

2
—4
0

\Y

X1y Xy
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Solve P graphically.

Give the dual of P. Solve the dual graphically.

¢. Illustrate the theorem of the previous exercise for each primal and dual
variable, including slacks.

op

6.37 Consider the following problem.

P: Minimize —X,
Subjectto x;+x,> 2
_X2>—'4
X, X2 0

Solve P graphically.

Give the dual of P. Solve the dual graphically.

c. Illustrate the complementarity theorem of Exercise 6.35 for each primal
and dual variable, including slacks.

o

6.38 Apply the dual simplex method to the following problem.

Minimize Wy
Subjectto —zw,— 1w, <-3
8w, + 12w, < 20
Wi+ gwy—wi<— g
= 9w, — 3w, < 6
wy, W, wz> O

6.39 Apply the perturbation technique to the dual simplex method to ensure
finiteness. Specifically consider the perturbed problem

Minimize (c + Ox

Subject to Ax=b
x>0
where € = (¢!, €2, . .., €") is a vector formed from the powers of a positive

scalar e. Show that the derived procedure is not exactly the same as the one
produced by the lexicographic method developed in Exercise 6.33.
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6.40 Show that the artificial constraint technique applied to the primal problem
is precisely the single artificial variable technique (of Chapter 4) with the
big-M method applied to the dual problem and vice versa. (Hint. Consider
the dual of minimize 0x, + (c, — ¢zB~'N)x, subject to x; + B~ 'Nx,, =
B~'b, x5, x, > 0.)

6.41 Suppose that the artificial constraint technique is utilized to find a starting
dual solution. Show that if this constraint is tight at optimality, then the
primal problem is unbounded. How large should M be in order to reach
this conclusion?

6.42 Solve the following problem by the primal-dual algorithm.

Maximize x,+6x,

Subject to  x;+ x,22
x;+3x,<3
Xy, Xx,20
6.43 Apply the primal-dual method to the following problem.
Minimize 9x;+7x,+4x;+2x,+6x,+ 10x

Subject to x4+ x,+ x; =38

Xgt+ X+ x6=5

X, + x, =6
Xy + x4 =4

X5 + x4=3

X1, Xy, X3, X4, Xs,  Xe20

6.44 Solve the following problem by the primal-dual algorithm.
Minimize  x, +2x3— x4

Subject to  x;+x,+ x3+ x,<6
2x,—x,+3x3—3x,25

X1, X2, X3, X4 >0

6.45 Suppose that at the end of the restricted primal problem we have x;, > 0
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6.46

6.47

6.48

6.49
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and v*a; < 0 for all ;. Show directly that the primal problem has no
feasible solutions.

When is the primal-dual algorithm preferred to the dual simplex alogrithm,
and vice versa?

Apply the primal-dual algorithm to the following problem.

Maximize 7x;+2x,+ x;+4x,+6xs

Subject to  3x,+5x,—6x5+2x,+4x5=27

X1 +2x,+3x;—Tx,+6x5> 2

9x,—4x,+2x3+ 5x,—2x=16

X1, Xy X3, X4, X2 0
We have shown that the primal-dual algorithm converges in a finite
number of steps in the absence of degeneracy. What happens in the
degenerate case? How can we guarantee finite convergence? (Hint. Con-

sider applying the lexicographic simplex or the perturbation method to the
restricted primal problem.)

Consider the following linear programming problem and its optimal final
tableau shown below.
Maximize 2x,+ x,— X,
Subjectto  x;+2x,+ x;<8
—Xx+ x,—2x;<4
X1, X5, X320
Final Tableau
z X X, X3 X4 X5 RHS
z 1 0 3 3 2 0o | 16
X, 0 1 2 1 1 0 8
xs | O 0 3 -1 1 1 12

a. Write the dual problem and find the optimal dual variables from the
foregoing tableau.

b. Using sensitivity analysis, find the new optimal solution if the
coefficient of x, in the objective function is changed from 1 to 5.

¢. Suppose that the coefficient of x; in the second constraint is changed
from —2 to 1. Using sensitivity, find the new optimal solution.
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d. Suppose that the following constraint is added to the problem: x, + x,
> 2. Using sensitivity, find the new optimal solution.

e. If you were to choose between increasing the right-hand side of the first
and second constraints, which one would you choose? Why? What is the
effect of this increase on the optimal value of the objective function?

f. Suppose that a new activity x, is proposed with unit return 4 and

consumption vector a, = (1, 2)’. Find the new optimal solution.

6.50 Consider the following optimal tableau of a maximization problem where
the constraints are of the < type.

6.51

6.52

SLACKS
A
e ~
X, X, Xy X4 Xs Xg X X3  RHS
z |1 0 0 0 2 2 % 2|17
xx {0 1 o0 o0 -1 5 ;-1 3
x |0} 0 1 0 2 1 =1 0 ! 1
{0l 0o o 1 -1 -2 5 —-% 2| 1
a. Would the solution be altered if a new activity x4 with coefficients
(2,0, 3)' in the constraints, and price of 5, were added to the
problem?
b. How large can b, (the first constraint resource) be made without
violating feasibility?
Consider the tableau of exercise 6.50. Suppose that we add the con-

straint x, — x, + 2x; < 10 to the problem. Is the solution still opti-
mal? If not, find the new optimal solution.

A farmer has 500 acres of land and wishes to determine the acreage
allocated to the following three crops: wheat, corn, and soybeans. The
man-days, preparation cost, and profit per acre of the three crops are
summarized below.

CROP MAN-DAYS PREPARATION COST § PROFIT $§
Wheat 6 100 60
Corn 8 : 150 100
Soybeans 10 120 80

Suppose that the maximum number of man-days available are 5000 and

that the farmer has $60,000 for preparation.
a. Find the optimal solution.

b. Assuming an 8 hour work day, would it be profitable to the farmer to

acquire additional help at $3 per hour? Why or why not?
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c. Suppose that the farmer has contracted to deliver at least the equivalent
of 100 acres of wheat. Use sensitivity analysis to find the new optimal
solution.

A product is assembled from three parts that can be manufactured on two
machines A and B. Neither machine can process different parts at the same
time. The number of parts processed by each machine per hour are
summarized below.

MACHINE A MACHINE B
Part 1 12 6
Part 2 15 12
Part 3 —_ 25

Management seeks a daily schedule of the machines so that the number of

assemblies is maximized. Currently the company has three machines of

type A and five machines of type B.

a. Solve the problem.

b. If only one machine can be acquired, which type would you recommend
and why?

¢. Management is contemplating the purchase of a type A machine at a
cost of $100,000. Suppose that the life of the machine is 10 years and
that each year is equivalent to 2000 working hours. Would you recom-
mend the purchase if the unit profit from each assembly is $1? Why or
why not?

The tourism department of a certain country would like to decide which
projects to fund during the comming year. The projects were divided into
three main categories: religious, historical, and construction (hotels, roads,
nightclubs, and so on). Three proposals A, B, and C for restoring religious
sites are submitted, with estimated costs of $5, $7, and $3 million respec-
tively. Four proposals D, E, F, and G for the restoration of hisiorical sites
are submitted with estimated costs of §15, $12, $5, and $7 million. Finally,
five proposals H, I, J, K, and L for constructing new facilities are
submitted. These cost $2, $15, $22, $8, and $10 million respectively. In
order to determine relative priority of these projects, experts from the
tourism department developed a scoring model with the following scores
for proposals A, B, C, D, E,F, G,H,1,J,K L:5,6,2 8,11, 1, 7,2, 10,9,
5, and 4 respectively. The department decides that at least one project of
each category must be funded. Projects E and F represent a continuation
of a plan that started during the previous year, and at least one of them
must be funded. Furthermore, at most two historical and three construc-
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6.55

6.56

6.57

tion projects can be chosen. Which projects should the tourism department
fund in order to maximize the total score and not to exceed $80 million?
(Hint. Project j is chosen if x; = 1 and is not chosen if x; = 0. First solve
the continuous linear program by the bounded simplex method and then
add appropriate cuts.)

An airline company wishes to assign two types of its aircraft to three
routes. Each aircraft can make at most two daily trips. Furthermore, 3 and
4 aircraft of types A and B are available respectively. The capacity of type
A aircraft is 140 passengers and that of type B aircraft is 100 passengers.
The expected number of daily passengers on the three routes is 300, 700,
and 220 respectively.

The operating costs per trip on the different routes are summarized
below.

OPERATING COST FOR A GIVEN ROUTE

AIRCRAFT TYPE 1 2 3
A 3000 2500 2000
B 2400 2000 1800

a. Find the optimal solution of the continuous linear programming prob-
lem. Does this solution make any sense?

b. Using the cutting plane algorithm of Section 6.9, find the optimal
integer solution.

Consider the following optimal tableau of a maximization problem where
the constraints are of the < type.

SLACKS
e N
z X, X, X3 X4 X5 /x6 X7 xs\ RHS
z 1, 0 o0 o0 2 0 2 & 2 | 17
xx{o| 1 o 0o -1 0 i Lo—-1 73
x» | 0 0 1 o 2 1 -1 0 !
x;3 /] 0,0 0 I -1 =2 5 -3 2 17

Construct the sequence of optimal solutions for b] = b, — 8 where 8 varies
between 0 and co.

Consider Exercise 6.1. Suppose that the cost vector is modified in the
direction (— 1, — 1). Using parametric analysis on the cost vector, find the
sequence of optimal solutions.
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6.58 Consider the following problem.
Minimize —x,+ x,—2x;

Subject to  x;+ x,+ x;<6
—x;+2x,+3x;<9
X1, Xy, Xx320
a. Solve the problem by the simplex method.
b. Suppose that the vector ¢ = (=1, 1, — 2) is replaced by (—1, 1, — 2) +

A(2, 1, 1) where A is a real number. Find optimal solutions for all values
of A.

6.59 Consider the following problem.
Maximize 2x;+3x,+5x;

Subjectto  x;+ x,+2x5<8
X — X+ x3<4

Xy, Xy, X320

Find the optimal solution.

Find the new optimal solution if the cost coefficient ¢, changes from 3
to —4.

c. Find the optimal solution if the cost coefficient c, varies over the entire
real line (— o0, o).

o

6.60 Prove that parametric analysis on the cost vector in a minimization
problem always produces a piecewise-linear and concave function z(A).

6.61 Prove that parametric analysis on the RHS vector in a minimization
problem always produces a piecewise-linear and convex function z(A).

6.62 Prove that if K is a skew symmetric matrix (that is, K = —K') then the
system

Kx >0, x>0

possesses at least one solution x such that Kx + x > 0. (Hint. Apply
Farkas’s lemma to the system Kx > 0, x > 0, e;x > 0. Repeat for each j
and combine solutions by summing,)



EXERCISES 303

6.63 Apply the results of the previous problem to the system

a.

b.

Ax —rb > 0, x>0
—wA+rc>0, w2>0
wh —cx > 0, r >0

Use the results to derive the fundamental theorem of duality.

Use the results to prove that at optimality there exists at least one pair
of primal and dual optimal points with the property that if a variable in
one problem is zero, then the complementary variable in the other
problem is positive. This is called the strong theorem of complementary
slackness.

Illustrate the strong theorem of complimentary slackness geometrically.
(Hint. Consider a linear program where the objective function is parallel
to one of the constraints and alternate optimal solutions result.)

When must the solution to the strong duality theorem not occur at an
extreme point? (Hint. Consider part (c) above.)

6.64 Consider the following primal problem.

Minimize c¢x

Subjectto Ax>b
XEX

where X is a polyhedral set. (Often the set X consists of constraints which
are easy to handle.) Associated with the féregoing primal problem is the
following Lagrangian dual problem.

Maximize f(w)

Subjectto  w>0

where f(w) = wb + Minimum (c — wA)xX.
X €

a.

Show that if x, is feasible to the primal problem, that is, Ax, > b and
X, € X, and w, is feasible to the Lagrangian dual problem, that is,
wy > 0, then exy > f(w).

. Suppose that X is nonempty and bounded and that the primal problem
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possesses a finite optimal solution. Show that

Minimum cx = Maximum f(w)
Ax > b w>0
x€EX

6.65 Consider the problem: Minimize x, + 2x, subject to 3x, + x, >
X, <2, x;+x,<8 andx;, x, >0 Let X ={x: —x, +x, <
x, <8, x;,x, > 0}.

a. Formulate the Lagrangian dual problem.

b. Show that f(w) = 6w + Minimum {0, 4 — 2w, 13 — 14w, 8 — 24w}.
(Hint. Examine the second term in f(w) in Exercise 6.64 and enumerate
the extreme points of X graphically.)

c. Plot f(w) for each value of w.

d. From part (c) locate the optimal solution to the Lagrangian dual
problem.

e. From part (d) find the optimal solution to the primal problem.

6, —x, +
2, x +

NOTES AND REFERENCES

1. John Von Neumann is credited with having first postulated the existence of a
dual linear program. His insights came through his work in game theory and
economics together with a strong mathematical capability. Many individuals
have continued to develop and extend the basic duality theorems, notably
Tucker [438] and A. C. Williams [470].

2. The dual simplex method was first developed by Lemke [308].

3. The primal-dual algorithm was developed by Dantzig, Ford, and Fulkerson
[102]. This development was fostered out of the work of Kuhn [294] on the
assignment problem.



SEVEN: THE
DECOMPOSITION
PRINCIPLE

In practice, many linear programming problems are simply too large to fit into
today’s computers. It is not unusual in a corporate management model or in a
logistics model to produce a linear program with many thousands of rows and a
seemingly unlimited number of columns. In such problems some method must
be applied to convert the large problems into one or more smaller problems of
manageable size. Fortunately, there is a technique, called the decomposition
principle, that does exactly this.

Even if a linear program is of manageable size, certain of its constraints may
possess special structure that would permit efficient handling. In such cases we
would like to separate the linear program into one with general structure and
one with special structure where a more efficient method may be applied. Again,
the decomposition principle can be applied to such a linear program to achieve
the desired effect.

The decomposition principle is a systematic procedure for solving large-scale
linear programs or linear programs that contain constraints of special structure.
The constraints are divided into two sets: general constraints (or complicating

305
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constraints) and constraints with special structure. It will become apparent that
it is not necessary for either set to have special structure; however, special
structure, when available, enhances the efficiency of the decomposition princi-
ple.

The strategy of the decomposition procedure is to operate on two separate
linear programs: one over the set of general constraints and one over the set of
special constraints. Information is passed back and forth between the two linear
programs until a point is reached where the solution to the original problem is
achieved. The linear program over the general constraints is called the master
problem, and the linear program over the special constraints is called the
subproblem. The master problem passes down a new set of cost coefficients to
the subproblem and receives a new column based on these cost coefficients.

We shall begin by assuming that the special constraint set is bounded. Once
the decomposition principle is developed for this case and we have discussed
how to get started, we shall relax the boundedness assumption and also extend
the procedure to multiple subproblems.

7.1 THE DECOMPOSITION ALGORITHM

Consider the following linear program, where X is a polyhedral set representing
constraints of special structure, A is an m X n matrix, and b is an m vector.

Minimize c¢x

Subject to Ax=b

xXeX
To simplify the presentation, assume that X is bounded (this assumption will be
relaxed in Section 7.4). Since X is a bounded polyhedral set, then any point
X € X can be represented as a convex combination of the finite number of

extreme points of X. Denoting these points by x,, X,, . . ., X,, any X € X can be
represented as

i
x= AX;
j=1

Substituting for x, the foregoing optimization problem can be transformed into
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the following problem in the variables A, A,, . .., A,.

t
Minimize Y} (cx))A;
j=1

1

Subjectto D) (Ax)A, = b (7.1)
j=1
t
S =1 (7.2)
Jj=1
N0 j=12...0 (13

Since ¢, the number of extreme points of the set X, is usually very large,
attempting to explicitly enumerate all the extreme points x,, X,, . .., x,, and
explicitly solving this problem is a very difficult task. Rather, we shall attempt to
find an optimal solution of the problem (and hence the original problem)
without explicitly enumerating all the extreme points.

Application of the Revised Simplex Method

Consider solving the foregoing problem by the revised simplex method. Suppose
that we have a basic feasible solution A = (A,, A,). Further suppose that the
(m + 1) X (m + 1) basis inverse B~! is known (the process of initialization is
discussed in detail in Section 7.3). Denoting the dual variables corresponding to
Equations (7.1) and (7.2) by w and a, we get (w, a) = &,B ™, where &, is the cost
of the basic variables with ¢; = cx; for each basic variable A,. The basis inverse,
the dual variables, the values of the basic variables, and the objective function

are displayed below, where b = B~ ‘(b).

1
BASIS RHS
(w, a) ,éBB
B! b

The revised simplex method proceeds by concluding that the current solution is
optimal or else by deciding to increase a nonbasic variable. This is done by first
calculating

A . . . Ax;
2z, — ¢, = Maximum z; — ¢, = maximum (w, a) 7] —ex;
. 7 ; J
1< /<t 1</j<t 1

= maximum wAXx; + a — cX; (7.4)
1€ /<1t
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Since z; — ¢; = 0 for basic variables, then the foregoing maximum is > 0. Thus
if zz ~ ¢ =0, then z; = éj < 0 for all nonbasic variables and the optimal
solution is at hand. On the other hand, if z, — ¢, > 0, then the nonbasic
variable x, is increased.

Determining the index & using Equation (7.4) is computationally infeasible
because ¢ is very large and the extreme points x;’s corresponding to the nonbasic
A/’s are not explicitly known. Therefore an alternative scheme must be devised.
Since X is a bounded polyhedral set, the maximum of any linear objective can
be achieved at one of the extreme points. Therefore

I

Maximum (WA — ¢)x,+ a = Maximum (WA — ¢)X+ «a
I<j<t XEX

To summarize, given a basic feasible solution (Ag, A,) with dual variables (w, a),
solve the following linear subproblem, which is “easy” because of the special
structure of X.

Maximize (WA — ¢)x + a

Subjectto x € X

Note that the objective function contains a constant. This is easily handled by
initializing the RHS value for z to « instead of the normal value of 0. Let x, be
an optimal solution to the foregoing subproblem with objective value z, — ¢,. If
z;, — ¢, = 0, then the basic feasible solution (Ag, Ay) is optimal. Otherwise if
z, ~ €, > 0, then the variable A, enters the basis. As in the revised simplex

method the corresponding column (Af") is updated by premultiplying it by

B! giving y, = B“(Ai("). Note that y, < 0 cannot occur since X was

assumed bounded; producing a bounded master problem. The updated column

(z" ; C") is adjoined to the foregoing above array. The variable A, leaving the
. ,

basis is determined by the usual minimum ratio test. The basis inverse, dual

variables, and right RHS are updated by pivoting at y,,. After updating, the

process is repeated.

Now we have all the ingredients of the decomposition algorithm, a summary
of which is given below. Note that the master step gives an improved feasible
solution of the overall problem, and the subproblem checks whether z; — ¢, < 0
for all )\j, or else determines the most positive z, — ¢.
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Summary of the Decomposition Algorithm

INITIALIZATION STEP

Find an initial basic feasible solution of the system defined by Equations (7.1),
(7.2), and (7.3) (getting an initia] basic feasible solution is discussed in detail in
Section 7.3). Let the basis be B and form the following master array where

(w, a) = éBB_l (recall that (,“; = cxj), and l_) = B—l[ll) )
BASIS INVERSE RHS
(w, @) ézb

B! b

MAIN STEP

1. Solve the following subproblem.

Maximize (WA — ¢)x + «
Subjectto x € X

Let x, be an optimal basic feasible solution with objective value of z, — ¢,.
If z, — ¢, = 0 stop; the basic feasible solution of the last master step is an
optimal solution of the overall problem. Otherwise go to step 2 below.

2. Let y, = B“'[Ai"‘

~

and adjoin the updated column ( z"; c") to the
k

master array. Pivot at y,, where the index r is determined as follows:

b, b
= Minimum { — :y, >0

Yrk I<i<m+l Yik

This updates the dual variables, the basis inverse, and the right-hand side.
After pivoting, the column of A, is deleted and step 1 is repeated.

Some Remarks on the Decomposition Algorithm

1. Note that the foregoing algorithm is a direct implementation of the revised
simplex method except that the calculation z, — ¢, is performed by solving
a subproblem. Therefore the algorithm converges in a finite number of
iterations provided that a cycling prevention rule is used in both the master
step and the subproblem in the presence of degeneracy.
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2. At each iteration the master step provides a new improved basic feasible
solution of the system given by Equations (7.1), (7.2), and (7.3) by introduc-
ing the nonbasic variable A,, which is generated by the subproblem. At
each iteration the subproblem provides an extreme point x,, which corre-

zp — ¢ . .
sponds to an updated column | % k|, and hence this procedure is
k

sometimes referred to as a column generation scheme.

3. At each iteration a different dual vector is passed from the master step to
the subproblem. Rather than solving the subproblem anew at each itera-
tion, the optimal basis of the last iteration could be utilized by modifying
the cost row.

4. If the master constraints are of the inequality type, then we must check the
z; — ¢, for nonbasic slack variables in addition to solving the subproblem.
For a master constraint i of the < type with associated slack variables s,
we get

2o =ma)g) 0=

Thus, for a minimization problem a slack variable associated with a <
constraint is elegible to enter the basis if w, > 0. (Note that the entry
criterion is w; < 0 for constraints of the > type.)

S. At each iteration, the subproblem need not be completely optimized. It
is only necessary that the current extreme point x, satisfies z, — ¢, =

(WA — o)X, + a > 0. In this case A, is a candidate to enter the basis of the
master problem.

Calculation and Use of Lower Bounds

Recall that the decomposition algorithm stops when Maximum z; — ¢ = 0.
Because of the large number of variables A, A,, ..., A,, continuing the com-
putations until this condition is satisfied may be time-consuming for large
problems.

We shall develop a lower bound on the objective of any feasible solution of
the overall problem, and hence a lower bound on the optimal objective. Since
the decomposition algorithm generates feasible points with improving objective
values, we may stop when the difference between the objective of the current
feasible point and the lower bound is within an acceptable tolerance. This may
not give the true optimal point, but will guarantee good feasible solutions, within
any desirable accuracy from the optimal. Consider the following subproblem.

Maximize (WA —c)x + a
Subjectto x € X
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where w is the dual vector passed from the master step. Let the optimal objective
of the foregoing subproblem be z, — ¢,. Now let x be any feasible solution of
the overall problem, that is, Ax = b and x € X. By definition of z, — ¢ and
since x € X, we have

(WA —o)x + a <(z, — &)
Since Ax = b, then the above inequality implies that
cx>wa—(zk—c‘k)+a=wb+a—(zk—c‘k)=éBB—(zk—c'k)
Since this is true for each x € X with Ax = b, then

Minimum ex> &b — (2, — &)
Ax=b
xeX

In other words, éBl_) - (2, — &) is a lower bound on the optimal objective value
of the overall problem.

7.2 NUMERICAL EXAMPLE

Consider the following problem.

Minimize —2x;,— x,— x;+ x,

Subjectto  x, + x5 <2
X+ X, +2x,< 3

X, <2

X, +2x, <5

— x3t+ x,< 2

2x;+ x,< 6

Xy, X3, X3, X420

Note that the third and fourth constraints involve only x, and x,, whereas the
fifth and sixth constraints involve only x; and x, (we shall have more to say
about this special structure later). If we let X consist of the last four constraints,
in addition to the nonnegativity restrictions, then minimizing a linear function
over X becomes a simple process, since the subproblem can be decomposed into
two subproblems. Therefore we shall handle the first two constraints as Ax < b,
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where A = [ o 10 ], b = { 2 }, and the remaining constraints as X. Note

1 1 0 2 3
that any point (x,, x,, x5, x,) in X must have its first two components and its
last two components in the sets X, and X, shown in Figure 7.1.

b Xa

w|Swl
e~

[g] %

Figure 7.1. Representation of X by two sets.

I

Initialization Step

The problem is reformulated as follows, where x;, x,, . . ., X, are the extreme
points of X, § = ex; forj=1,2,...,1, and s > 0 is the slack vector.

Minimize éj)\j

1

T M-

t
Subject to >} (AX;) A, +s

Jj=1

[
=

t
> A=1
Jj=1

Az20 j=1,2,...,¢t

7

s>0

We need a starting basis with known B~ . Let the starting basis consist of s and
A, where x; = (0, 0, 0, 0) is an extreme point of X with e¢x; = 0. Therefore

1 0 0O
01 0

0 0 1

B =
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The vector (w, ) = ;B! = 0B~' =0, and b = B-l{ ‘I’J - [ b ] This gives

the following tableau. Note that the first three columns give (w;, w,, a) in row
0 and B™! in the remaining rows.

BASIS INVERSE RHS
z 0 0 0 0
K 1 0 0 2
S5 0 1 0 3
A 0 0 1 1
lteration 1
SUBPROBLEM

Solve the following subproblem.

Maximize (WA —¢)x + «
Subjectto x € X

Here (w;, w,) = (0, 0) from the foregoing array. Therefore the subproblem is as
follows:

Maximize 2x, + x, + x;— x, + 0
Subjectto x € X

This problem is separable in the vectors (x,, x,) and (x,, x,) and can be solved
geometrically. Using Figure 7.1, it is easily verified that the optimal solution is
X, = (2, %, 3, 0) with objective z, — ¢, = L. Since z, — ¢, =4 > 0, then A,
corresponding to x, is introduced. The lower bound = é&zb — (z, — é) =0
— 4. Recall that the best objective so far is 0.

MASTER STEP

~

_ — 17
22 02 =75

sefl 04 )

1

O W Nlw N
]
| — |
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Then
Ax,
-

is updated by premultiplying by B~ So

— N2

)
N
|
=~
|
—
— N~ N
I
ol
—_— N~ LN
[
— N N

Insert the column

| ——|
N
~N
=
N
S
N
—_)
1
— Nl W MG

into the foregoing array and pivot. This leads to the following two tableaux (the
A, column is deleted after pivoting).

BASIS INVERSE RHS A,
z 0 0 o | 0 z
- |
5, 1 0 0 2 ©)
55 0 1 0 I
A 0 0 1 1 1
BASIS INVERSE RHS
z | = 0 0 -2z
A, ] 0 0 2
S5 - = 1 0 g
A -1 0 1 2

The best-known feasible solution of the overall problem is given by
X = AX; + A,x,
=3(0.0,0,00+3(2,3,3,00=(%, 2, £,0)

The objective is — 2. Also (w,, wy, a) = (— i, 0, 0).
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Iteration 2

Since w, < 0, 5, is not eligible to enter the basis at this time.

SUBPROBLEM
Solve the following problem.

Maximize (WA — o)x + a
Subjectto x € X

0
wA—c=(—%,0)“ 01 (2’]—(—2,—1,—1,1)=(%,1,—%,—1)

Therefore the subproblem is

e 3 7
Maximize j5x; + x, — gxs — x4+ 0
Subjectto x E X

The problem decomposes into two problems involving (x, x,) and (x,, x,).
Using Figure 7.1, the optimal solution is x5 = (0, 3, 0, 0) with objective z; — &,
= 3. Since z; — é > 0, then A, is introduced.

The lower bound is &b — (z; — &) = — ¥ — 3 = —5.9. (Recall that the
best-known objective so far is —3.4.)

MASTER STEP

0
1 o 1 0]]3 0}
Ax —[ ] 2 | =
10 2|0 [g
0
1
5 0 0lfo 0
Ax A ;
SR E R AL
-1 01 1 1
Insert the column 23; 3| into the foregoing array and pivot. This leads
3

to the following two tableaux (the A; column is deleted after pivoting).
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BASIS INVERSE }\3

=
=
7]

17 _ 17 5

z Y O O l 5 —{ 3
}——T—‘— 2

A, B 0 0 5 0

_ 1 8 5

S2 10 1 0 5 2
3
A - % 0 1 5
BASIS INVERSE RHS
6 5 19
z ~s 0 —3 T
2
A, % 0 0 3
1 1 _3 1
S 5 2 0
3

The best-known feasible solution of the overall problem is given by
X = A%, + AX,
=12.3.3.0)+1(0.3.0.0= (%, #.%.0)

The objective is —4.9. Also (w,, w,, a) = (— %, 0, — %).

Iteration 3

Since w; < 0, s, is not eligible to enter the basis at this time.

SUBPROBLEM

Solve the following subproblem.

Maximize (WA — o)X + «
Subjectto x € X

1 01 O
WA—c=(—-g’O)[l 1 0 2]_(—2’_1,—'1,1)__—(%’1’—%’_1)

Therefore the subproblem is as follows.

Maximize 2x; + x, —ix;— x, — 3
Subjectto xe X
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Using Figure 7.1, the optimal solution is x, = (2, 2, 0, 0) with objective zy— €,
=2, and so A, is introduced. _

The lower bound is given by &b — (z, — é) = — 5o — 2 = —5.5. Recall
that the best-known objective so far is —4.9. If we are interested only in an
approximate solution, we could have stopped here with the feasible solution

x = (%, &, ¢, 0) whose objective is —4.9.

MASTER STEP

~

3
Z4 — €T3

1 01 0O
1 0 2

Ax4={1

S O ve N
I
| mnsnemsmne |

The updated column y, is given by

1 2
2 0 0 y) £
_B—l AX4 — ? 5 7 — 2
Ya= ' Bl it SR 3 | I Bl I
S

¢4

Insert the column (24 ; ) in the foregoing array and pivot. This leads to the
4

following two tableaux (the A, column is deleted after pivoting).

BASIS INVERSE RHS A4
6 5 49 3
z —3 0 -3 10 5
2 2
}\2 % 0 0 5 3
1 5 1
5 -3 1 -3 16 @
1 3 3
As -3 0 1 5 5
BASIS INVERSE RHS
z ~1 -1 0 -5
1 2 5 1
A 3 -3 3 3
1 5 25 1
Ay -3 3 - % 5
7 1
A 0 -1 1 !
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The best-known feasible solution of the overall problem is given by

X = A%, + AX; + Ax,

=3(2,3,3,0)+5(0, 5,0,0) + £(2, 3,0,0) = (1,2, 1,0)
The objective is — 5. Also (wy, wy, a) = (=1, — 1, 0).

lteration 4

Since w, < 0 and w, < 0, 5; and s, are not eligible to enter the basis at this time.
SUBPROBLEM

Maximize (WA —¢)x + a
Subjectto x e X

wA—c=(—1,—1)“ o (2’]—(—2,—1,—1,1)=(o,o,o,—3)

Therefore the subproblem is as follows.

Maximize Ox; + Ox, + Ox; — 3x,+ 0
Subjectto x € X

Using Figure 7.1, an optimal solution is x5 = (0, 0, 0, 0) with objective z5 — ¢é;
= 0, which is the termination criterion. Also note that the lower bound is
égb — (z5 — é) =—5 — 0 = —5, which is equal to the best (and therefore opti-
mal) solution known so far.

To summarize, the optimal solution (x,, x5, x5, x,) = (1, 2, 1, 0) with objec-
tive —5 is at hand. The progress of the lower bounds and the objective values of
the primal feasible solutions generated by the decomposition algorithm is shown
in Figure 7.2. Optimality is reached at iteration 4. If we were interested in an
approximate solution, we could have stopped at iteration 3, since we have a
feasible solution with an objective value equal to —4.9, and meanwhile are
assured (by the lower bound) that there exist no feasible solutions with an
objective less than —5.5.

The optimal point (x|, x,, X3, x,) = (1, 2, 1, 0) is shown in Figure 7.3 in the
two sets X, and X,. Note that (1, 2) is not an extreme point of X, and (1, 0) is
not an extreme point of X,. Note, however, that we can map the master
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1 2 3 4 Iteration
0.0 [ I I

Progress of primal objective value

—-3.4
-4.9

-5.0
-5.9 55

Progress of
lower bound

Primal objective value and
lower bound

-85

Figure 7.2, Progress of the primal objective value and the lower bound.

=

N o >
/

/4

~

N

[8] | [2]

<J

Figure 7.3. lllustration of the optimal point.

constraints
X, + x4 <2
X, + x, + 2x,<3

into the (x,, x,) space by substituting x; = 1 and x, = 0. This leads to the two
restrictions x; < 1 and x; + x, < 3, which are shown in Figure 7.3. We see that
(1, 2) is an extreme point of X intersected with these two additional constraints.
Similarly, in the (x,, x,) space, by substituting the values x, = 1 and x, = 2, the
master constraints reduce to x; < 1 and 2x, < 0. Again (1, 0) is an extreme
point of X, intersected with these additional constraints. It is worthwhile noting
that the decomposition algorithm may not provide an optimal extreme point of
the overall problem if alternative optima exist. The reader may refer to Exercise
7.19.
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7.3 GETTING STARTED

In this section we describe a method to obtain a starting basic feasible solution
for the master problem using artificial variables if necessary. These artificial
variables are eliminated by the use of phase I or by the big-M method. If at
termination there is a positive artificial variable, then the overall problem has no

feasible solution.

Inequality Constraints

Consider the following problem.

i
Minimize 3, (ex)A,

Jj=1

A
=8

t
Subject to D) (AX/)\,

Jj=1

ot

>
\%
=
S~
[
—_
»

If there is a convenient x; € X with Ax, < b, then the following basis is at
hand, where the identity corresponds to the slack vector s > 0.

B Il Ax, Bl = I| — Ax,
ol 1] ol 1

The initial array is given by the following tableau.

BASIS INVERSE RHS
z 0 cx, cX,
s I — Ax, b — Ax,
A, 0 1 1

Now suppose that there is no obvious x € X with Ax < b. In this case after
converting the master problem to equality form by adding appropriate slack
variables, the constraints are manipulated so that the RHS values are nonnega-
tive. Then artificial variables are added, as needed, to create an identity matrix.
This identity matrix constitutes the starting basis. The two-phase or big-M
methods can be used to drive the artificial variables out of the basis.
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Equality Constraints
In this case m + 1 artificial variables can be introduced to form the initial basis.

The artificial variables are eliminated by the two-phase or by the big- M method.

7.4 THE CASE OF UNBOUNDED REGION X

For an unbounded set X, the decomposition algorithm must be slightly mod-
ified. In this case points in X can no longer be represented as a convex
combination of the extreme points, but rather as a convex combination of the
extreme points plus a nonnegative combination of the extreme directions. In
other words, x € X if and only if .

t 4
X = zlijj+ 21 A,
= j=

AN>20 j=12,...,¢

w>0  j=12...,1
where X, x,, ..., x, are the extreme points of X and d,d,, ..., d, are the
extreme directions of X. The primal problem can be transformed into a problem
in the variables A|, A, .. ., A, and py, py, . . ., y, as follows:

!

!
Minimize ) (ex)\ + 2 (cd)
1

J= i=1
t !
Subject to X, (Ax)\,+ D, (Ad)p, =b (1.5
j=1 j=1
!
DA =1 (7.6)
Jj=1
A0 j=1,2...,1t
K>0  j=12...,1

Since ¢ and [ are usually very large, we shall attempt to solve the foregoing
problem by ‘the revised simplex method. Suppose that we have a basic feasible
solution of the foregoing system with basis B, and let w and a be the dual
variables corresponding to constraints (7.5) and (7.6) above. Further suppose

that B~ (W, a) = éBB“‘ (€5 is the cost of the basic variables), and b= B“(ll))
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are known and displayed below.

BASIS INVERSE RHS
(w: a) éﬂb
B! b

Recall that the current solution is optimal to the overall problem if z; — ¢ < 0
for each variable. In particular, the following conditions must hold at optimal-

ity:

Ax,
A nonbasic=0 > z; — ¢ = (W, a)( le) —cxX, = WAX, + a —cx; (7.7)

wAd, — cd, (7.8)

7

p; nonbasic =0 > z;, — & = (w, a)(A:J) —cd.

Since the number of nonbasic variables is very large, checking conditions (7.7)
and (7.8) by generating the corresponding extreme points and directions is
computationally infeasible. However, we may determine whether or not these
conditions hold by solving the following subproblem. More importantly, as the
subproblem is solved, if conditions (7.7) or (7.8) do not hold, a nonbasic variable
with a positive z, — ¢, and hence eligible to enter the basis, is found.

Maximize (WA — ¢)x + a
Subjectto x e X

First, suppose that the optimal solution of the subproblem is unbounded.
Recall that this is only possible if an extreme direction d, is found such that
(WA — od, > 0. This means that condition (7.8) is violated. Moreover, z, — &,

= (WA — ¢)d, > 0 and p, is eligible to enter the basis. In this case (A(()i") is

updated by premultiplying by B™' and the resulting column (zk; Ck) is
k

inserted in the foregoing array and the revised simplex method is continued.
Now consider the case where the optimal solution is bounded. A necessary and
sufficient condition for boundedness is that (wA — ¢)d; < 0 for all extreme
directions, and so Equation (7.8) holds. Now we check whether (7.7) holds. Let
X, be an optimal extreme point and consider the optimal objective, z, — ¢,, to
the subproblem. If z, — ¢, < 0, then by optimality of x,, for each extreme point
X, we have

(WA-o)x, +a<(WA—-¢o)x, ta=1z —¢ <0
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and hence condition (7.7) holds and we stop with an optimal solution of the
overall problem. If, on the other hand, z, — é, > 0, then A, is introduced in the

basis. This is done by inserting the column (z" ; c") into the foregoing array
k

and pivoting, where y, = B“(Ai"‘). Note that, as in the bounded case, if the

master constraints are of the inequality type, then the z; — ¢; values for the slack
variables must be checked before deducing optimality.

To summarize, solving the foregoing subproblem leads us either to terminate
the algorithm with an optimal solution, or else to identify an improving variable
to enter the basis. We now have all the ingredients for a decomposition
algorithm in the case of an unbounded set X. Example 7.1 below illustrates such
an algorithm. We ask the reader in Exercise 7.15 to write a step-by-step
procedure for this case.

Example 7.1

Minimize —x;—2x,— X,

Subject to  x;+ x,+x;<12

-x+ x, <2
- x,+2x, < 8
x3< 3

Xy, Xy x32 0

The first constraint is handled as Ax < b and the rest of the constraints are
treated by X. Note that X decomposes into the two sets of Figure 7.4. The
problem is transformed into A, . .., A and g, . . ., g, as follows.

!

!
Minimize ) (ex)A, + 2 (cd)p,

j=1 Jj=1

t !

S (Ax)A + X (Ad)y < b
] =1

>
\Y%
=
“~
I
J—‘
>~
-
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X2

—
>R,

.

o
Wiy

X X3

Figure 7.4. lllustration of the unbounded X.

Note that x; = (0, 0, 0) belongs to X and Ax, = 0 + 0 + 0 < 12. Therefore the
initial basis consists of A, (corresponding to x,) plus the slack variable s. This
leads to the following array, where w = a = 0.

BASIS INVERSE RHS

z 0 0 0
K} 1 0 12
A 0 1 1
lteration 1
SUBPROBLEM

Maximize (WA — ¢)x + «
Subjectto x € X

Since w = @ = 0 and A = (1, 1, 1), this problem reduces to the following.
Maximize x;+2x,+x;+0
Subjectto —x;+ x, <2
—x+2x, <8
x3<3

X, Xy, x320

Note that the problem decomposes into two problems in (x;, x,) and x;. The
optimal value of x; is 3. The other part of the problem can be solved geometri-
cally or by the simplex method below, where x, and x5 are the slack variables.
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z X, X, X4 Xs RHS
z 1 -1 -2 0 0 } 0
x, | © -1 O 1 o
x5 0 -1 2 0 1| 8

The optimal is unbounded by noting the x, column. Suppose that we continue
by introducing x, as the simplex method would normally proceed.

z X, Xy X, X5 RHS
z 1 [ -3 0 2 0 4
X, 0 —-1 1 1 0 2
xs | 0 O 0 -2 1 4

z X, Xy X, X RHS
z 1] 0 0 -4 3 16
X, 0 | 0 1 -1 1 6
x, 0 | 1 0 -2 1 4

Since the most negative entry in row 0 corresponds to negative entries in rows 1
and 2, then the optimal is unbounded. As x, increases by 1 unit, x, increases by
2 units and x, increases by 1 unit; that is, in the (x|, x,) space we have found a

direction d, = ( %) leading to an unbounded solution. In the (x,, x,, x3) space, d,
is given by (2, 1, 0) (why?). Also (WA — ¢)d, = 4 (the negative of —4 in row 0

under x,) and so g, is introduced in the basis.
MASTER STEP

z;— ¢, =4
2
Ad=(1,1, 1)|1]| =3
0

[ Ad
N8 l( 01)

where B™! is obtained from the initial array of the master problem. In particu-
lar,

n=lo 1]lo)=[s]
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Introduce the column (z‘ ~ G ) in the master array and pivot. The p, column is
1

eliminated after pivoting.

BASIS INVERSE RHS By
z 0 0 0 4
s 10 12 ©)
A 0 1 1 0
BASIS INVERSE RHS
z _4 0 | — 16
o 3 0 4
A 0 1 1
Iteration 2
w=—-3% and a=0

Since w < 0, 5 is not a candidate to enter the basis.

SUBPROBLEM

Maximize (WA — ¢)x + «
Subjectto x€ X

This reduces to the following.

Maximize — Jx,+ 3x,+0 Maximize — §x,
Subject to —x;+ x,<2 Subjectto 0 < x3< 3
—x+ 2x,<8
X5, X220

Here the value a = 0 is added to only one of the subproblems. Obviously
X3 = 0. The new problem in (x,, x,) is solved by utilizing the corresponding
tableau of the last iteration, deleting row 0, and introducing the new costs.
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z X, Xy X4 Xs RHS
z 1 3 -2 0 0 0
X, 0 0 1 - 1 6
x, 0 1 0 - 1 4

Multiply row 1 by % and row 2 by — 1 and add to row 0.

z X X, X4 X5 RHS
z 1 0 0 0 1 s
X 0 0 1 -1 1 6
x, 0 1 0 -2 1 4

The foregoing tableau is optimal (not unique). The optimal objective of the
subproblem is z, — é, = > 0 and so A, corresponding to x, = (x,, X5, X3) =
(4, 6, 0) is introduced.

MASTER STEP
7= 6= %

Ax, = 10
—1f Ax L ollio 1o
= B 1( 2) = 3 [ } = 3
Y2 1 [o 1} 1 1

Introduce (22; C2) into the master array and pivot. The A, column is
2

eliminated after pivoting.

BASIS INVERSE RHS A,
z _ 4 0 7! ~ 16 g
" ! 0 \ 4 K
A 0 1 1
! | @
BASIS INVERSE RHS
4 56
: [=3 ¢ [ -%
1 10 2
My 3 -3 3
A, 0 1 1
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lteration 3

Note that w = — 3 did not alter from the last iteration. So s is still not a
candidate to enter the basis. Also the optimal solution of the last subproblem
remains the same (see iteration 2). The objective value of £ was for the previous
dual solution with @ = 0. For a = — & we have z; — é; =% — § =0, which is
the termination criterion, and the optimal solution is at hand. More specifically,
the optimal x* is given by

X* =A%, + p,d,

16

4 2 3
=16|+31|=|
0 0 ’
0

The objective is — 3.

7.5 BLOCK DIAGONAL STRUCTURE

In this section we discuss the important special case when the set X has a block
diagonal structure. In this case, X can itself be decomposed into several sets

X, X5, ..., Xy, each involving a subset of the variables, which do not appear in
any other set. If we decompose the vector x accordingly into the vectors
X,, X,, . . ., X5, the vector ¢ into ¢, ¢,, . . ., ¢y, and the matrix A of the master

constraints Ax = b into the matrices A, A,, ..., A,, we get the following
problem.

Minimize ¢;X;+ X+ - - - +  ¢yXp
Subjectto Ax;+Ax,+ - - - + Apx,=b
B x| <b,
B,x, <p2
BTxT<bT
X, X cee, x>0
where X; = {x, : Bx, < b,x, >0} fori=12,...,T.

Problems with the foregoing structure arise frequently in network flows with
several commodities and in the allocation of scarce resources among competing
activities. Problems of this structure can be solved by the decomposition
algorithm of this chapter (see Section 7.2 and Example 7.1). However, this block
diagonal structure of X can be utilized further, as will be discussed in this
section.



7.5 BLOCK DIAGONAL STRUCTURE 329

For subproblem i, x; € X, if and only if

2 AjXy+ 2 pd;;

Jj=1

where the x,’s and the d,’s are the extreme points and the extreme directions (if

any) of X,. Replacing each x, by the foregoing representation, the original
problem can be reformulated as follows.

Minimize 2 2 (XN, + 2 2 (cd;)

i=1 ;=1 :=l/—1

Subject to 2 2 (Ax)\; + 2 2 (Ady)p; = b (7.9)

i=1 ;=1 i=1 j=1

S =1 i=1,2,...,T (7.10)
Jj=1
AU>O _1323‘ ’ti l=1” "T
AU‘U>O =1527 ali l=1” "T

Note the difference in the foregoing formulation and that of Section 7.2. Here
we allow different convex combinations and linear combinations for each
subproblem i since we have T convexity constraints [the constraints of Equation
(7.10)]. This adds more flexibility but at the same time increases the number of
constraints fromm + 1 tom + T.

Suppose that we have a basic feasible solution of the foregoing system with
an (m + T) X (m + T) basis B. Note that each basis must contain at least one
variable A, from each block i (see Exercise 7.17). Further suppose that B~', b =

ifb _ ~ —1 ~ .
B 1) W,a)=(w,...,w,a,...,ar) =B are known, where &, is

the cost of the basic variables (¢, = ¢;x;, for A, and &; = c¢d; for p;). These are
displayed below.

BASIS INVERSE RHS

(w, a) éBl_)

B! b
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for each basic variable). In particular the following conditions must hojld at
optimality:

This solution is optimal if z; — ¢, < 0 for each variable (naturally z; — ¢, =0

>\,.j nonbasic =0 > z, — ¢,

i ij WAlxlj + a,— - C,XU (7.11)

p; nonbasic =0 > z, — ¢,

wAd,; — cd; (7.12)

y

Whether conditions (7.11) and (7.12) hold or not, can be easily verified by
solving the following subproblems.

Maximize (WA, — ¢)x; + q
Subject to  x; € X,

If the optimal solution is unbounded, then an extreme direction d,; is found such
that (wA; — ¢)d,, > 0; that is, condition (7.12) is violated and introducing
will improve the objective function since z, — ¢, = (WA; — ¢)d, > 0. If the
optimal is bounded, then automatically condition (7.12) holds for subproblem i.
Let x, be an optimal extreme point. If the optimal objective value z, — ¢, =
wA;x, + o, — ¢x; < 0, then condition (7.11) holds for subproblem i. Otherwise
A, can be introduced in the basis. When all subproblems have z, — ¢, < 0,
then the optimal solution to the original problem is obtained. If the master
constraints are of the inequality type, then we must also check the z; — ¢; values
for the nonbasic slack variables (as we did in Section 7.1) before terminating.

To summarize, each subproblem i is sotved in turn. If subproblem i yields an
unbounded solution, then an extreme direction d,;, is found that is a candidate to
enter the master basis. If subproblem i yields a bounded optimal point and
WA;X;, + o, — ¢x; > 0, then the extreme point is a candidate to enter the
master basis. If neither of these conditions occurs, then there is currently no
candidate column to enter the master basis from subproblem i. If no subprob-
lem yields a candidate to enter the master basis, then we are optimal. Otherwise,
we must select one from among the various candidates to enter the master basis.
We may use the rule of the most positive z,, — ¢, the first positive z,, — ¢é,, and
so on. If we use the rule of the first positive z; — ¢,, then we may stop solving
the subproblems after the first candidate comes available. On selecting the
candidate, we update the entering column, pivot on the master array, and repeat
the process.
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Calculation of lower bounds for the case of bounded subproblems

Let x;, X,, . . ., X represent a feasible solution of the overall problem so that
x,E X, for each i and X,A;x; = b. By definition of z, — ¢, we have

(WA, —e)x; + a; < (2 — Cy)
or

C;X;

[

> WAX; + o — (2 — Cy).
Summing on ; we get

2 CX; > Wz Ax;+ 2 o — 2 (zie — Ci)-
i i i i

But X,¢;x; = ex and 3 ,A;x; = b. Thus we get

Lt e 4

cx > wh + al — > (z; — &)
i

or
ex > &b — D (24 — &)
i

This is a natural extension of the case for one bounded subproblem presented
earlier.

Example 7.2
Minimize —2x,—x,—3x;—x,

Subject to  x;+x,+ x3+x,<

X, +2x3+x,<

N

x;+x,

X3

N

— X3t x,

N N
=SV N ICO SR NI - N

X+ X,

\%

Xy, Xps X3, X4
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The first two constraints are handled by Ax < b, and the rest of the constraints
are treated by X. Note that X decomposes into two sets as shown in Figure 7.5.
The problem is transformed into the following.

1 L)
Minimize > (c,x)A;; + 2 (€Xy) Ay
1 Jj=1

j=

t iy
Subject to 2 (Alxlj))\lj + 2 (A2x2j)}\2j <b
j=1

Jj=1

j=1

f
Ay =1

Jj=1
Ay 20 j=1,2...,1
Ay >0 j=12...,1

where ¢, = (=2, — 1), ¢, = (=3, — 1), A, =[(1) } ,and A, =[é H Note
that x;; = (x, x,) = (0, 0) and x,, = (x5, x,) = (0, 0) belong to X, and X, and
satisfy the master constraints. Therefore we have a basic feasible solution of the
overall system where the basis consists of s, 5,, A;;, and A,, (s, and s, are the
slacks). This leads to the following master array.

Xy Xg

Figure 7.5. The region X.
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BASIS INVERSE RHS
z 0 0 0 0 0
s, 1 0 0 0 6
s 0 1 0 0 4
A 0 0 1 0 1
Ao 0 0 0 1 1

The first four entries of row 0 give w,, w,, a;, and a, respectively. Under these
entries B! is stored.

Iteration 1

Solve the following two subproblems.

SUBPROBLEM 1 SUBPROBLEM 2
Maximize (WA, — ¢c))x, + a; Maximize (WA, — )X, + a,
Subject to X, € X, Subject to X, € X,

Since w = (0, 0) and « = (0, 0), these reduce to maximizing 2x, + x, + 0 and
maximizing 3x; + x, + 0 over the two regions of Figure 7.5. The optimal
solutions are respectively x,, = (x;, x;) = (6, 0) with objective 12 and x,, =
(%3, x,) = (5, 0) with objective 15. Then (wA, — ¢)x, + a; = 12 and
(WA, — ¢,)X,, + a, = 15. Therefore A, and A,, are both candidates to enter.
Select A,, since z,, — é,, = 15 is the most positive.

MASTER PROBLEM

Zyp —Eép=15

Form the column

Ayx,,
0
1
Note that:
A 5
A =[1 1] 5J=[ 5 X210
271, 1o 10 (1) 0
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This column is updated by premultiplying by B~! = L. Insert this column along
with z,, — ¢é,, in the master array. Update the current basic feasible solution by
pivoting. After completion, throw column A,, away.

BASIS INVERSE RHS Ay
z 0 o 0 0 0 15
5 1 0 0 0 6 5
s, |0 1 0 o| 4
AL 0 o 1 0 1 0
A 0 0 0 1 1 1

BASIS INVERSE RHS
z 0 -3 0 0| —6

1 =

5 1 -3 0 0 4
Ap |0 % O 0 3
AL 0 o 1 0 1
Az 0 - 11_0 0 1 %
Note thatw, =0, w, = — 2, a, = a, = 0.
Iteration 2

Since s, just left the basis, it will not be a candidate to immediately reenter.

Solve the following two subproblems.

SUBPROBLEM 1 SUBPROBLEM 2
Maximize (WA, — c)x; + «a Maximize (WA, — c,))x, + a,
Subject to X, € X, Subject to X, €EX,

These problems reduce to the following.
Maximize 2x, —3x,+0  Maximize Ox, —1x,+ 0
Subject to  (x, x,) € X, Subject to  (x3, x,) € X,

The optimal solutions are respectively x,; = (x,, x,) = (6, 0) with objective
Zy3 = €13 = (WA| — ¢))X;; + a; = 12 and x,; = (x5, x,) = (5, 0) with objective

Zy; — Cy3 = (WA, — ¢,)X,; + a, = 0. Thus there is no candidate from subprob-
lem 2 at this time and A5 is a candidate to enter the master basis.
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MASTER PROBLEM
Z;3— €3 =12

Form the column

Ajxg;
1
0
Note that
6
A
Ax. <[l 1][6]_[6 ‘1’“3=o
P30 1410 0/ 1
0 0

Updating this column, we get

B Axy; (6)
Yiz = (1) =1
0

Insert this column along with z;; — é,; = 12 into the master array. Update the
current basic feasible solution by pivoting and then discard column A ;.

BASIS INVERSE RHS A
T
z 0 -3 0 0] -6 12
| ]
5 1 -1 0 o0 4 O
A2y 0 w0 0 2 0
Al 0 0 1 0 | 1 1
Ay 0 —-+% 0 1 | 2 0
BASIS INVERSE RHS
z -2 -3 0 0| -14
Ais -5 0 o 2
Ay 0 = 0 0 2
Ay - 5 1 0 1
A2 0 —-5% 0 1 2
Note that w, = =2, w, = — 1, a; =a, =0
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lteration 3

Since w, < 0 and w, < 0, neither s, nor s, are candiates to enter the basis.

Solve the following two subproblems.

SUBPROBLEM 1 SUBPROBLEM 2
Maximize (WA, — cx; + « Maximize (WA, — c)x, + ay
Subject to X, € X, Subject to X, € X,

These problems reduce to the following.

Maximize Ox, —3x, + 0 Maximize Ox; — 3x, + 0
Subject to  (x, x,) € X, Subject to  (x;, x,) € X,

From Figure 7.5, x,, = (x, xp) = (0, 0) with objective 0 and x,, = (x;, x,) =
(0, 0) with objective 0 are optimal solutions. Then (WA, — ¢)x,, + a; = (WA, —
¢))X,, + @, = 0 and the optimal solution is reached. From the master problem
the optimal point x* is given by

X
(xz) = ApXp Ay

5[0 3(6) -2

2(0) (313

Therefore x* = (x|, x,, x5, x,) = (4, 0, 2, 0) with objective —14.

Economic Interpretation

The decomposition algorithm has an interesting economic interpretation. Con-
sider the case of a large system that is composed of smaller subsystems
1,2,..., T. Each subsystem i has its own objective, and the objective function
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of the overall system is the sum of the objective functions of the subsystems.
Each subsystem has its constraints designated by the set X, which is assumed to
be bounded for the purpose of simplification. In addition, all the subsystems
share a few common resources, and hence the consumption of these resources
by all the subsystems must not exceed the availability given by the vector b.

Recall the following economic interpretation of the dual variables (La-
grangian multipliers). Here w; is the rate of change of the objective as a function
of b;; that is, if b, is replaced by b, + A, then the objective is modified by adding
w;A. Hence —w; can be thought of as the price of consuming one unit of the ith
common resource. Similarly, — o; can be thought of as the price of consuming a
portion of the ith convexity constraint.

With this in mind, the decomposition algorithm can be interpreted as follows.
With the current proposals of the subsystems, the superordinate (total system)
obtains the optimal weights of these proposals and announces a set of prices for
using the common resources. These prices are passed down to the subsystems,
which modify their proposals according to these new prices. A typical subsystem
i solves the following subproblem.

Maximize (wA; — ¢,)x;, + &
Subject to  x; € X,

or equivalently

Minimize (c; — WA)DX; — o
Subject to  x; € X,

The original objective of subsystem i is ¢x;. The term —wAx; reflects the
indirect price of using the common resources. Note that A x; is the amount of
the common resources consumed by the x; proposal. Since the price of using
these resources is —w, then the indirect cost of using them is —wAx,, and the
total cost is (¢; — wA,)x;. Note that the term —wAx; makes proposals that use
much of the common resources unattractive from a cost point of view. Subsys-
tem i announces an optimal proposal x,. If this proposal is to be considered,
then the weight of the older proposals x,’s must decrease in order to “make
room” for this proposal; that is, XA, must decrease from its present level of 1.
The resulting saving is precisely a;,. If the cost of introducing the proposal x,, is
less than the saving realized; that is, if (¢, — WA )x,;, — «, < 0, or (WA, — ¢,)X
+ o; > 0, then the superordinate would consider this new proposal. After all the
subsystems introduce their new proposals, the superordinate calculates the
optimum mix of these proposals and passes down new prices. The process is
repeated until none of the subsystems has a new attractive proposal; that is,
when (¢, — wA))x,;, — o, > O for each i.
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EXERCISES
7.1 Solve the following problem using the decomposition technique with one
convexity constraint. Show the progress of the lower bound and primal
objective,
Minimize —x;— x,—2x;—Xx,
Subjectto  x; +2x,+2x5+ x, <40

—-x;+ x+ x;+x,<10

x;+3x, <30
2x,+ X, <20
X4 <10

x, <10

X3+ x, <15

X1, Xy, X5, X422 0

7.2 Solve the following linear programming problem by the decomposition
method using one convexity constraint. Show the progress of the lower
bound and primal objective.

Minimize —x;—3x,+ Xx3— Xx,

Subjectto  x;+ x,+ X3+ x,< 8
X+ x, <6
x3+2x,<10

—x3+ x,< 4

Xy, X, X3, X420

7.3 Consider the problem: Minimize cx subject to Ax = b, x € X. Let x* be an
optimal solution of the overall problem. Is it possible that x* belongs to the
interior of X.? Interpret your answer geometrically. (Hint. Consider the
case WA — ¢ = 0 where w is the Lagrangian multiplier vector correspond-
ing to Ax = b.)

7.4 Cornsider the problem: Minimize cx subject to Ax =b, Dx =4d, x > 0.
Suppose that w§ and wj are the optimal dual vectors of the constraints
Ax = b and Dx = d respectively. Consider the problem: Maximize (WfA —
o)x subject to Dx = d, x > 0. Let x¥, x3, ..., x} be optimal solutions of
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the foregoing problem that are extreme points of the set {(x : Dx =d, x >
0}. Show that an optimal solution of the original problem can be repre-

sented as a convex combination of x¥, x%, .. ., X}, that is,

k

* — *

x* = > AX]
j=1
k

SA=1
j=1
A >0 j=12, .k

7.5 Consider the following problem.
Minimize 2x,—3x,—4x,
Subject to X+ x+ x;<6

X+ x,—2x322

0< x;, x; x3%3

a. Set up the problem so that it can be solved by the decomposition
algorithm.

b. Find a starting basis in the A-space.

c. Find the optimal solution by the decomposition algorithm and compare
with the bounded simplex method.

7.6 Consider the following (transportation) problem.
Minimize  2x;;+3x,+4x,3+5x, 42X, +6Xp,+ 353+ 5xy,

Subject to  x;;+ xpp+ x5t xy, =500

Xy 4+ Xp+ xpt x,,=700

Xy + Xy =200
X2 + Xy =300

X3 + X3 =400

X4 + x,,=300

Xy, X1 Xp3, Xig X215, X2, X2z X;a 2 0

a. Set up the problem so that it can be solved by the decomposition
algorithm using several convexity constraints.
b. Find an optimal solution using the decomposition algorithm.
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7.7 Use the decomposition principle to solve the following problem.

Maximize x;+8x,+35x;+6x,

Subject to x;+4x,+5x;+2x,< 7
2x,+3x, <6

Sxi+ x, <35
3xy+4x,>12

X, < 4

x, <3

X;, X3 X3, X420

7.8 In the text we developed a lower bound on the optimal objective value
when the subproblem is bounded. Examine the case when this assumption
is relaxed.

7.9 Solve the following problem by the decomposition technique using two
convexity constraints.

Maximize x;+x,+ 3x;—x,

Subjectto  x;+x,+ x;+x,<12

—X,+Xx, < 2
3x, — 4x, <5
X;+x,< 4

—x3+x,< 5

Xy, X3, X3, X2 0

7.10 Solve the following problem by the decomposition technique.

Minimize —x;—2x,+ x;+x,

Subject to  x;+2x,+2x;+x,>40

X+ X, <2
—-x;+2x, < 2
x3+x,< 6

X, X9, X3, X42 0
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7.11 Consider the problem: Minimize ex subject to Ax = b, x € X. Suppose
that X has a block diagonal structure. The decomposition algorithm can be
applied by using either one convexity constraint or several convexity
constraints, one for each subproblem. Discuss the advantages and dis-
advantages of both strategies. Which one would you prefer and why?

7.12 Apply the decomposition algorithm to the following problem.
Minimize —2x,+ x,—35x;
Subject to 4x,—2x,+3x;<4
0<x, x, x3<I

7.13 Suppose that the columns added during each master step of the decom-
position algorithm are not deleted. In particular suppose that the master
problem at iteration p is as follows.

P
Minimize D, (ex DA
1

j=

P
Subject to >, (AX )\ =

Jj=1

|
=2

™M

>
I
—

>

where x,, ..., x, are the extreme points generated so far. Discuss the
details of such a decomposition procedure and compare with that of
Section 7.1. Illustrate by solving the problem of Section 7.2.

7.14 In reference to Exercise 7.13 above, consider the following master problem.

P
Minimize ) (cx;)\,
=1

|
=2

P
Subject to D, (Ax)\, =
<

™
>
[
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Write the dual of this master problem. Suppose that the dual problem has
been solved instead of this problem; how does the decomposition algo-
rithm proceed? Interpret the dual master problem and show how to update
it. Show convergence of the procedure and interpret it geometrically. (Note.
The decomposition algorithm where the dual master problem replaces the
original master problem is usually called a cutting plane algorithm, since a
constraint that cuts away the previous optimal point of the dual master
problem is added at each iteration.)

Construct both a flow chart and detailed steps of the decomposition
algorithm for solving the problem: Minimize ex subject to Ax = b, x € X,
where X is not necessarily bounded. Then code the decomposition algo-
rithm in FORTRAN or another computer language. Use your code to
solve some of the numerical problems given here.

7.16 Solve the following problem by the decomposition algorithm.

Minimize —x,—2x,—x;—2x,

Subject to  x;+ x,+x;+ x,<12

—x;+ X, <4
—x,+2x, <12
x;+2x,< 8

Xy, Xy, X3, X420

7.17 Consider the following problem.

T
Minimize Y, ¢x;

i=1
v

T
Subjectto >, A;x,= b
i=1

x,€X, i=12...,T

Show that any basis in the A; space must contain at least one A, for each
i=12...,T



EXERCISES 343

7.18 Solve the following problem by the decomposition algorithm. Use phase 1
to get started in the A-space.

Maximize x,;+3x,+ x4

Subject to  x;+ X,+x3<6

X+ x, >4

—-x;+ x, >2
x3>3

Xy, Xy, X320

7.19 Is it possible that the decomposition algorithm would generate an optimal
nonextreme point of the overall problem in case of alternative optimal
solutions? Discuss.

(Hint. Consider the following problem.

Maximize X+ x,
Subject to X +x,<3
0 < X1, Xy < 1)

7.20 Many options are available while solving the subproblem(s) and the master
problem. These include the following.

a. The subproblem is terminated if an extreme point x, is found with
z;, — & > 0. Then A, is introduced in the master problem.

b. Several columns can be generated from the subproblem(s) at each
iteration.

c. At least one additional column is added to the master problem without
discarding any of the previously generated columns. In this case the
master problem reduces to finding the optimal mix of all columns
generated so far.

Discuss in detail the foregoing options and compare and contrast them.

Elaborate on the advantages and disadvantages of each.

7.21 Give a detailed analysis of the cases that may be encountered as artificial
variables are used to find a starting basis of the master problem. Discuss
both the two-phase method and the big-M method.
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7.22

7.23
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Consider the following problem.

Minimize  cgX,+ ¢;X;+ € X, -+ + €7X,
Subject to  Dgxo+A X, +AX, - - - +Ax,=b,
Dx,+ Bx, =h,
D,x, +B,x, =b,
DTXO +BTxT=bT
Xg, X1, X ,.0.., X720

Describe in detail how the decomposition technique can be used to solve
problems of the foregoing structure. (Hint. Let the first set of constraints be
the constraints of the master problem. The subproblem consists of the
remaining constraints. Take the dual of the subproblem and solve it by
decomposition. This becomes a “three-level” algorithm.)

Consider the following problem.

Minimize ¢;x,+ X, -+ + ¢/ X,
Subjectto AX;+AxX, - - - +A;Xx,<b
B x, <b,
B.x, <b,
B, x,<b,
X, Xyttt x>0

The following implementation of the decomposition principle is a possibil-
ity. The subproblem constraints are

Ax;+A, ... +AxX; < b
X, Xp..., Xxp=0

and the master constraints are B;x; < b, Bx, < b,, ..., B;x; < b;. De-
scribe the details of such an algorithm. What are the advantages and the
disadvantages of this procedure? Does this scheme have an economic
interpretation? Use the scheme to solve Exercise 7.10.
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7.24 Consider the following problem.

T T
Minimize X ¢x; + 3 dyy,
=1

j=1
Subjectto x;,_; —x;+Ayy,=b, j=12...,T
x,=b
0<x <u Jj=12 ,
0<y, <vuy j=12 ,

where X, is a known vector.

a. What class of problems lend themselves to this general structure? What
is the interpretation of the vectors x; and y,? (Hint. Examine a discrete
control system.)

b. How can the decomposition algorithm be applied to this system? (Hint.
Choose every other constraint to form the master constraints.)

c. Apply the procedure in (b) to solve the following problem.

Minimize X1+ X+ x5+ x,+3y,+ 5y, +4y; + 6y,
Xg— X, + =40
X=X, + y, =50
Xy— X3 + vy, =60
X3—X, : + y,=40
X4 =30

0< x|, x5, x5, x,<40
0<y,, y,<45
0< y;, y,<50

7.25 Consider the following cutting stock problem. We have standard rolls of
length / and an order is placed requiring b, units of length /, where
i=1,2,...,m Itis desired to find the minimum number of rolls which
satisfy the order.

a. Formulate the problem.

b. Apply the decomposition algorithm to solve the problem. Discuss in
detail. (Hint. Consider the column a; representing the jth cutting
pattern. Here a, is a vector of nonnegative integers; a;, the ith compo-

J
nent, is the number of rolls of length / in the jth cutting pattern.
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Develop a scheme for generating these a;, columns. What is the master
problem and the subproblem?)

7.26 An agricultural mill produces cattle feed and chicken feed. These products

7.27

are composed of three main ingredients, namely corn, lime, and fish meal.
The ingredients contain two main types of nutrients, namely protein and
calcium. The following table gives the nutrients’ contents per pound of
each ingredient.

INGREDIENT
NUTRIENT CORN LIME FISH MEAL
Protein 25 15 25
Calcium 15 30 20

The protein content must lie in the interval [18, 22] per pound of cattle
feed. Also the calcium content must be greater than or equal to 20 per
pound of the cattle feed. Similarly, the protein content and the calcium
content must be in the intervals [20, 23] and [20, 25], respectively, per
pound of the chicken feed. Suppose that 3000, 2500, and 1000 pounds of
corn, lime, and fish meal are available. Also suppose that it is required to
produce 4000 and 2000 pounds of the cattle and chicken feed respectively.
Let the price per pound of the corn, lime, fish meal be respectively $0.10,
$0.10, and $0.08. Formulate the blending problem with an objective of
minimizing the cost. Solve the problem by the decomposition algorithm
using two convexity constraints. Extra corn and fish meal can be obtained
but, because of shortages, at the higher prices of $0.12 and $0.10 per
pound. Would you advise the mill to consider extra corn and fish meal and
modify their blending at these prices? Why or why not?

A company owns two refineries in Dallas and New York. The company
can purchase two types of crude oil, light crude oil and heavy crude oil at
the prices of $11 and §9 per barrel respectively. Because of shortages, the
maximum amounts of these crudes that can be purchased are 2 million and
1 million barrels respectively. The following quantities of gasoline, kero-
sene, and jet fuel are produced per barret of each type of oil.

GASOLINE KEROSENE JET FUEL
Light crude oil 0.40 0.20 0.35
Heavy crude oil 0.32 0.40 0.20

Note that 5% and 8% of the crude are lost during the refining process,
respectively. The company has contracted to deliver these products to three
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7.28

consumers in Kansas City, Los Angeles, and Detroit. The demands of these
products are given below.

GASOLINE KEROSENE JET FUEL
Kansas City 200,000 400,000 —
Los Angeles 300,000 200,000 600,000
Detroit 500,000 100,000 300,000

It is desired to find the amounts that must be purchased by the company of
each crude at each of its refining facilities, and the shipping pattern of the
products to Kansas City, Los Angeles, and Detroit, that satisfy the de-
mands and minimize the total cost (purchase + shipping). The shipping
and handling of a barrel of any finished product from the refineries to the
consumers is given below.

KANSAS CITY LOS ANGELES DETROIT
Dallas Refinery $0.60 $0.40 $0.50
New York Refinery $0.35 $0.80 $0.30

a. Formulate the problem.
b. Suggest a decomposition scheme for solving the problem.
c¢. Solve the problem using your scheme in (b).

A company has two manufacturing facilities in Atlanta and Los Angeles.
The two facilities produce refrigerators and washer/dryers. The production
capacities of these items in Atlanta are 5000 and 7000 respectively. Simi-
larly the capacity of the Los Angeles facility is 8000 refrigerators and 4000
washer /dryers. The company delivers these products to three major
customers in New York City, Seattle, and Miami. The customers’ demand
is given below.

DEMAND / CUSTOMER NEW YORK SEATTLE MIAMI
Refrigerators 4000 5000 4000
Washer /dryers 3000 3000 4000

The items are transported from the manufacturing facilities to the
customers via a railroad network. The unit transportation costs (no distinc-
tion is made between the two items) are summarized below. Also, because
of limited space, the maximum number of refrigerators and/or
washer /dryers that can be transported from a facility to a customer is
given below.
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CUSTOMER
FACILITY NEW YORK SEATTLE MIAMI
Unit shipping
cost § 6 14 7
Atlanta Maximum
number of 6000 3000 8000
units
Unit shipping
cost § 10 8 15
Los
Angeles Maximum
number of 3000 9000 3000

units

It is desired to find the shipping pattern that minimizes the total trans-
portation cost.

a. Formulate the problem.

b. Use the decomposition technique with two convexity constraints to

solve the problem.

(Note. This problem is called a multicommodity transportation problem. The
subproblem decomposes into two transportation problems. If you are
familiar with the transportation algorithm, you can use it to solve the
subproblems. Otherwise use the simplex method to solve the subproblems.)

7.29 In this chapter the constraints were decomposed into special and general
constraints. Now consider the following problem where the variables are
decomposed.

Minimize c¢x + f(y)

Subjectto Ax + By=b
x>0
yeY
where ¢, b, X, y are vectors, A, B are matrices, f is an arbitrary function,
and Y is an arbitrary set.
a. Show that the problem can be reformulated as follows.
Minimize z
Subjectto z> f(y) + w(b — By)
wA <c
w unrestricted
yeyY
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(Hint. The original problem can be reformulated as follows.

Minimize ( f(y) + Minimum cx)
YEY Ax=b—By
x>0

Take the dual of

Minimize e¢x

Subject to Ax=b — By
x> 0)

b. Show that z > f(y) + w(b — By) for each wA < ¢ if and only if z >
f(y) + w;(b — By) and d;(b — By) < O for each extreme point w, and
every extreme direction d; of the region {w : WA < c}.

¢. Make use of (b) to reformulate the problem in (a) as follows:

Minimize :z

Subjectto z > f(y)+w;(b—By) ,;j=12...,¢
d;(b — By) <0 j=12...,1
yey
where w;,...,w, and d,, ..., d, are the extreme points and the ex-
treme directions of {w: wA < c}.
d. Without explicitly enumerating w,, ..., w, and d,, . . ., d, beforehand,

devise a decomposition algorithm for solving the problem in (c). (Hint.
Master Problem:

Minimize :

Subject to  z > f(y)+w;(b — By) j=4L2, ...,
d;(b — By) <0 J=1L2,.. .0
vyey
where w;, ..., w,and d, ..., d, are the extreme points and extreme
directions generated so far.
Subproblem:

Maximize w(b — By)
Subjectto wA < ¢
where y is obtained from the optimal of the master problem.)

e. How would you obtain the optimal (x, y) at termination of the decom-
position algorithm in (d)?
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7.31
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(Note. This algorithm is referred to as Benders’s partitioning procedure. Note
that the set ¥ can be discrete and so the procedure can be used for solving
mixed integer problems. In this case the master problem in (d) is a pure
integer programming problem and the subproblem is a linear program.)

Apply Benders’s partitioning procedure of Exercise 7.29 to solve the
following problem [let (x,, x,) be x and (x;, x,) be y].

Minimize —x;—2x,—3x;—x,

Subjectto  x;+ x,+2x;+x,<12

—x;+ x, < 4
2x,+ x, < 6
x3+x,< 8

X1, Xy X3 X420

A company is planning to build several warehouses for storing a certain
product. These warehouses would serve two major customers with monthly
demands of 3000 and 5000 units. Three candidate warehouses with capaci-
ties 4000, 5000, and 6000 can be constructed. Using the estimated construc-
tion cost of the warehouses, their useful life, and time value of money, the
construction cost per month for the three warehouses is estimated as $8000,
$12,000, and $7000. The unit transportation cost from the three candidate
warehouses to the customers is given below.

CUSTOMER
WAREHOUSE 1 2
1 1.50 2.00
2 2.00 1.50
3 2.50 2.25

Use Benders’s partitioning procedure of Exercise 7.29 to determine which
warehouses to construct and the corresponding shipping pattern.

7.32 Solve the following linear program entirely graphically using decomposi-

tion.

Minimize 2x,+5x,+ x3—2x,+3x;

Subject to  x;+ x,+ x3+ x4 > 2
3x,+ x+5x3+ x,—2x5> 5

- X, +2x;+ x4 > 2

Xy, X, X3, X4 X532 0
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7.33

7.34

7.35

7.36

(Hint. Let the first constraint denote Ax > b and the next two constraints
represent X. Then take the dual of each set.)

Indicate how the results of the previous problem may be generalized to any
number m of constraints. (Hint. Let the first constraint denote Ax = b and
the remaining m — 1 constraints be part of the subproblem. Then reapply
decomposition to the subproblem in a similar way.)

Assume that a linear program requires 3m /2 iterations for a solution. Also,
assume that standard techniques of pivoting are used to update the basis
inverse and RHS vector [in total an (m + 1) X (m + 1) matrix if we ignore
the z column]. If there is no special structure to the constraint matrix, then
is there an optimal split for decomposition? That is, find m, + m, = m
such that the first m; constraints form the master problem and the next m,
constraints are subproblem constraints, and the total “effort” is minimized.
Let the “effort” be defined by the number of elementary operations
(additions, subtractions, multiplications, and divisions).

In the previous problem suppose that m, and m, are given and that the
second m, constraints are of a special structure. Specifically, suppose that
the subproblem requires only 5% of the normal effort to yield a solution
when treated by itself.

a. Should the problem be decomposed for efficiency?

b. Is there a critical value of the percentage effort required?

Solve the following problem by decomposition.

Minimize —2x,+ 5x,— 4x;3
Subject to X+ 2x,+a,x3<6
3x,— 6xy+a,x;<5
2a,+ 3a,=4

X1y Xg, X3, A, a3 20

[Hint. Let X = {(a,, ay) : 2a, + 3a;, = 4, a;, a, > 0}. This is called a gen-
eralized linear programming problem.)

NOTES AND REFERENCES

1. The decomposition algorithm of this chapter is an adaptation of the Dantzig-
Wolfe decomposition principle [116]. The latter was inspired by the sugges-
tions of Ford and Fulkerson [157] for solving the special case of multicom-
modity network flow problems. :

2. The decomposition method presented in this chapter is closely associated
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with the concepts of generalized Lagrangian multipliers, tangential approxi-
mation of the Lagrangian dual function, and the dual cutting plane algo-
rithm. For further reading on these topics the reader may refer to Everett
[139), Geoffrion [189], Lasdon [305], Kelley [278], and Zangwill [486].

3. In addition to the Dantzig-Wolfe and similar decomposition algorithms, the
literature has a great deal of other decomposition methods. These can be
classified as price-directive and resource-directive algorithms. In the former, a
direction for modifying the Lagrangian multipliers of the coupling constraints
is found and then a suitable step size is taken along this direction. See, for
example, Geoffrion [188], Lasdon [305], Grinold [220], Balas [13], Held,
Wolfe, and Crowder [235], and Bazaraa and Goode [24]. The resource-direc-
tive algorithms proceed by finding a direction for modifying the shares of the
common resources among the subproblems and then determining the step
size. The reader may refer to Geoffrion [188], Lasdon [305], and Abadie [1].

4. In Exercise 7.29 we describe the partitioning scheme of Benders [33]. This
scheme is particularly suited for solving mixed integer programming prob-
lems. The relationship between Benders’s scheme and the decomposition
algorithm of this chapter becomes apparent upon studying Exercise 7.29.



EIGHT: THE
TRANSPORTATION
AND ASSIGNMENT
PROBLEMS

An important special class of linear programming problems is that of transporta-
tion problems. This class and its extension, the class of network flow problems,
possess a special structure that (1) permits the development of simple and
efficient algorithms and (2) facilitates a greater intuition for and understanding
of the techniques of linear programming and the simplex method. As a result
these special problems deserve and receive our attention in this and later
chapters.

8.1 DEFINITION OF THE TRANSPORTATION PROBLEM

Consider m origin points located on a map, where origin i has a supply of g,
units of a particular item (com odlty) In addition, there are located 7 destma-
tion points, where destination j requires b; units of the commodity. We assume
that g, b, > 0. Associated with each link (i, ), from origin i to destination j,
there is a unit cost ¢, for transportation. The problem is to determine the
feasible shipping pattern from origins to destinations that minimizes the total
transportation cost.

353
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Let x; be the number of units shipped along link (i,/) from origin i to
destination j. Further assume that the total supply equals the total demand, that
18,

a.=

1

1

by

1

I M3
T M=

I

If the total supply exceeds the total demand, then a dummy destination can be
created with demand b,,, =20, — 3 b, and ¢, ,,, =0 for i=1,...,m.
Assuming that the total supply equals the total demand, the linear programming
model for the transportation problem becomes as follows.

Minimize
cpxpt oo tepx e xgt s e X, T s F o X T X,
Subject to
xpto Xy, =a
Xt Xy, =a,
'xml+ +xmn= am
X1 + Xy T t X = b,
X1n _,*_'x2n +xmn= bn
Xils e X1 Xopy oo+ Xopy * * 0, Xl « o v s Xpn 2 0

The transportation problem is graphically illustrated in Figure 8.1.

Origin Destination

Figure 8.1. Nllustration of the graph of a transportation problem.
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We can cast the transportation problem in matrix form if we let

X =X Xpgp oo Xpps Xgpy o o« Xgpy v 0 o X)),

€ =(C11>Cras «++ Clps Cops - - - Copy + -« Cou)
b=(a,ay...,a, b,b, ..., b)Y
A= ,a,...,8,,8,...,8,...,2,)

where

a;,=e€ te,,.;

and e; and e, ; are unit vectors in E”*", with ones in the /th and (m + j)th
positions respectively. The reader should note that in this chapter g; is a scalar,

a, is a vector, and that these two terms should not be confused with one
another. With these definitions the problem takes the following form.

Minimize ¢x

Subjectto Ax=b

x>0
The A matrix, with dimension (m + 7) X mn has the following special form.

mn columns

1 0 0
0 1 0
A= . . . | m+4nrows
0 0 1
| { | { | {

where 1 is an # row vector of all I’s and I is an # X 7 identity matrix. It is the A
matrix that gives the transportation problem its special structure.

As an example of a transportation problem consider a 2-origin, 3-destination
transportation problem with data as indicated below.

Destination
a;
Origin e, =4 cp =1 c3 =5 30
€ = Cn = €3 =3 20




356 THE TRANSPORTATION AND ASSIGNMENT PROBLEMS

For this problem

SO~ O~
OS— O O~
—_0 O O~
SO~ =0
(= e
—_—0 O~ O

Feasibility of the Transportation Problem

Under the assumption that supply equals demand, the transportation problem
always possesses a feasible solution. For example, it is easy to show that

where d = 3,4, = X,b;, is a feasible solution. Note that for each feasible vector

x, every component x; is bounded as follows:

0 < x; < Minimum{a, b}

We know that a bounded linear program with a feasible solution possesses an
optimal solution. Thus it is now only a matter of finding the optimal solution.

8.2 PROPERTIES OF THE A MATRIX

We shall examine some of the properties of the A matrix that give the trans-
portation problem its special structure. As we shall see, these properties permit a
simple and efficient application of the simplex method for transportation prob-
lems.

Rank of the A Matrix

Assuming m, n > 2, we have m + n < mn so that rank (A) is less than or equal
to m + n. Clearly, rank (A) # m + n since the sum of the first m rows equals
the sum of the last » rows and hence the m + n rows of A are linearly
dependent. Thus rank (A) < m + n — 1.

To demonstrate that rank (A) = m + n — 1 we need only to find an (m + »n
— 1) X (m + n — 1) submatrix from A which is nonsingular. Ignoring the last
row of A, consider the submatrix

A" = (A, By -« s By B By - oo, By )
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which is an upper triangular matrix of the form

IMQ]

Obviously A’ has rank m + n — | and thus the matrix A has rank m + n — 1.
In the previous example problem we have (deleting the last row)

X3 X3 X X
1 0 1 1
, _ 0 1 0 0
A 0 0 1 0
0 0 0 1

Knowing that the rank of A is m + n — 1, we are left with two choices for a
basis—we can either delete the last row or any row leaving m + n — 1 linearly
independent constraints for which a basis exists, or we can add an artificial
vector for one constraint. When applying the simplex method, we shall select the
latter approach and augment A with a new artificial variable x, with column
vector e, ,.

Total Unimodularity of the A Matrix

The single most important property that the transportation matrix possesses is
the total unimodularity property. The A matrix is totally unimodular if the
determinant of every square submatrix formed from it has value —1, 0 or +1.
In the case of the transportation matrix, since all entries are 0 or 1, every 1 x 1
submatrix has determinant of value 0 or 1. In addition, any (m + #n) X (m + n)
submatrix has determinant of value O since rank (A) = m + n — 1. It remains to
show that any k& X & submatrix (1 < k& < m + n) has the required property.

Let A, be any & X k submatrix from A. We must show that det A, = =1 or
0. By induction on k, suppose that the property is true for A, _, (we know it is
true for A)). Recall that each column of A, has either no I’s, a single 1, or two
P’s. If any column of A, has no 1’s, then det A, = 0. If, on the other hand, every
column of A, has two 1’s, then one of the 1I’s will occur in an origin row and the
other 1 will occur in a destination row. In this case the sum of the origin rows of
A, equals the sum of the destination rows of A,. Thus the rows of A, are
linearly dependent and det A, = 0. Finally, if some column of A, contains a
single 1, expanding det A, by the minors of that column we get:

det Ak = *det Ak—l

where A, _ | is a (k — 1) X (k — 1) submatrix. But, by the induction hypothesis,
det A, _, = =1 or 0. Thus the property is true for A, and the result is shown.
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Triangularity of the Basis Matrix

We have previously demonstrated that rank (A) = m + n — 1 by selecting a
particular (m + n — 1) X (m + n — 1) submatrix that was nonsingular and,
therefore, was a basis for A (ignoring the last row). That matrix was (upper)
triangular. It can be demonstrated that every basis matrix of A enjoys this
triangularity property.

Suppose that B is a basis matrix from A. From previous considerations (recall
the preceding discussion on total unimodularity) we know that there must be at
least one column of B containing a single 1; otherwise, det B = 0. Permuting the
rows and columns of B, we obtain

1 q
B =
{:0 Bm+n—2:|

Now considering B,,,,_, we again argue that it must contain at least one
column with a single 1. Permuting its rows and columns, we get

Bm+n—2 =

1L p
0 Bm+n—3

Letting q = (q,, q,), B can be represented as follows:

1 g ¢q
B=|0 1 p
0 0 Bm+n—3

Continuing this procedure, we obtain the result that B is a triangular matrix.

Since B is a triangular matrix, there is a simple method of solving the basic
system Bx, = b. Suppose that we permute the rows and columns of B so that B
is upper triangular. Then since the last row of B contains a single entry in the
last column, we may use that row to solve for the last basic variable. Again, as a
result of the (upper) triangularity of B we may substitute the value of the last
basic variable into the next-to-last equation and solve for the next-to-last basic
variable. This process of back substitution continues until the values of all basic
variables have been determined.

In the example problem with the basis consisting of x,;, Xx,3, x;;, and x,, we
append the last row and artificial column to get the following:

X3 Xp X Xpl X, b
1 0o 1 1 : 0 30
Al = 0 1 0 0 ,0 20
0o 0 1 0 ,0 15
0 0 0 I 10 10
1 1 0 0 11 25
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Upon permuting the rows and columns of A’, we get

X, ) X3 Xy X Xp b
1 : 1 1 0 o0 25
A0 1 0 1 1 30
0,0 1 0 0 20
0.0 0 1 0 15
010 0 o0 1 10

Solving this triangular system, we get

X, =10
x; =15
Xy =20

x3=30—-x,—x,=30-15-10=5
=25 — x5 x;3=25—-5-20=0

Integrality of Basic Solutions

Since each basis consists entirely of integer entries and is triangular with all
diagonal elements equal to 1, we conclude that the values of all basic variables
will be integral if the supplies and demands are integers. In particular, we may
conclude that the optimal basic feasible solution will be all integer. This is a
property not enjoyed by general linear programs.

Properties of the y,; Vectors in the Simplex Tableau

Since a basis«B consists entirely of zeros and ones and is triangular with I’s on
the diagonal, then the elements of B~' are all =1 or 0 (why?). Each vector, y,,
in the simplex tableau for a transportation problem is given by

By, = a;

which is a system of equations in the unknown elements of y;- One method for
solving such a system is by Cramer’s rule (see Section 2.2). Utilizing Cramer’s
rule, the kth unknown element of y; is given by

det B,
Yik = "det B

where B, is obtained from B by replacing the kth column by a,. Then B, is a
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square submatrix from A, and since the latter is totally unimodular, then
det B, = *1 or 0. Since det B = * 1, it follows that y,, = =1 or 0.

This shows that a typical updated simplex column y; consists of + 1’s and 0’s.
It also shows that any vector a,; can be obtained by the simple addition and
subtraction of basic vectors. This simplicity suggests that there may be a
convenient method of obtaining the (unique) representation By, = a; and,
thereby, constructing the entire simplex tableau associated with a basic solution.
In particular, in the representation of the nonbasic vector a; = e, + e,,,; in
terms of basic vectors there must be a basic vector of the form a, = e, + e, ,
with a coefficient of + 1. Then there must exist a basic vector of the form
a, =e, +e,, ., with a coefficient of —1 in the representation. This process
continues until finally there must exist a vector of the form a,; = e, + e, ; with
a coefficient of +1 in the representation. A typical representation of a, is

at_’/’ = Ay T ag + A — Ay, + auj

= (ei + em+k) - (el + em+k) + (el + em+s)

- (eu + em+s) + (eu + em+j)
=e te,,;

Representing the nonbasic vector a; in terms of the basic vectors is illustrated
on the transportation matrix (tableau) in Figure 8.2. Note that the cell (7, )
together with the cells (i, k), (/, k), (/, s), (4, s), and (u, j) form a cycle in the
matrix. The cells (i, k), (1, k), (1, s), (u, s), and (4, j)} form a chain in the matrix
between cell (i, k) and cell (u, j). Other basic cells which do not appear in the
representation of a; are deleted from Figure 8.2. Also, note that the signs of the
coefficients alternate throughout the chain.

i k s

| © ©
|1 a:lls

! i a“@ ;@
L I
|
|
-+

NG

Figure 8.2. lllustration of the representation of a, in terms of the basic vectors.
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Characterization of a Basis on a Transportation Tableau

We shall first show that the basic vectors cannot form a cycle on the transporta-
tion tableau. In reference to Figure 8.3, suppose by contradiction that cells
(p, @) (r,q), (r,s), (u,s), (u,v), and (p, v) which form a cycle were basic.
Consider the following linear combination:

aq_arq+ars_aus+a

y2 - =

uv pU

(ep + em+q) - (er + em+q) + (er + em+:)
—(e, + €ns5) t (e, + €nio) (ep + errll+v) =0

This means that the vectors a,,, a,, a,, a,, a,,, and a,, are linearly dependent
and could not have been in the basis. The conclusion is that no basis, as

represented by a set of cells in the tableau, can contain a cycle.

us ut

Figure 8.3. A basis cannot contain a cycle.

Figure 8.4 illustrates the basis used to show that the rank of Ais m + n — 1
(the artificial variable used to complete the rank to m + 7z is not shown). The
B’s indicate the basic cells while the lines connecting the B’s indicate those basic
cells in the same row or column as other basic cells. This structure, the basic
cells and lines connecting them, has some very interesting properties. Ignoring
the matrix for a moment, such a structure of cells and lines is called a graph. The
basis graph of Figure 8.4 is connected; that is, every two basic cells in the tableau
are connected via basic cells and lines (these cells and lines form a chain). The
basis graph of Figure 8.4 is a tree, that is, a connected graph with no cycles.
Finally, the basis tree in Figure 8.4 is spanning; that is, there is a cell of the basis
tree in every row and column of the matrix.

Assuming that the artificial vector is present, we shall show that any basis on
the transportation tableau can be characterized as a (single) connected spanning
tree with m + n — 1 cells. To show that any basis is a spanning tree, first recall
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oy —— by —— ty ——

Figure 8.4. lllustration of a bosis.

that a set of basic cells cannot contain a cycle. Thus the basis must be a single
tree or several trees. It is also apparent that the basis tree or trees (forest) must
be spanning. For suppose that the basis graph did not contain a cell in some
row, i. Then the ith tow of the associated matrix consists entirely of zeros,
disqualifying it as a basis. Thus a basis contains at least one cell in each row.
Similarly, it must contain at least one cell in each column. Finally, we must
show that the basis graph is connected, and therefore, is a single tree. Consider
the two basic cells (i, j) and (k, /) in Figure 8.5. If cell (%, j) is basic, then cells
(i, /) and (k, I) are connected via the basic chain {(i, ), (k, j), (k, )}. Suppose,
on the other hand that cell (k, ) is not basic. We have already demonstrated
that a,; could be represented as the following linear combination of basic
vectors.

a,=a;—a,ta, +...+a

9 — Ay + A

In particular, the two basic cells (i, j) and (%, /) are connected by the basic chain
(G, ) (ry 1), (75 8), (8, 8)s - . ., (0, u), (v, W), (k, w), (k, 1)}. We have thus demon-
strated that any two basic cells are connected by a chain in the basis graph and
hence the basis graph is connected.

&t

O

Figure 8.5. Example of a structure not a single tree.
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To show the converse, we must demonstrate that a spanning tree with
m + n — 1 points together with an artificial vector is a basis. We shall do this by
showing that the matrix of vectors associated with a spanning tree has an
(m + n— 1) X (m + n — 1) (upper) triangular submatrix with I’s on the diago-
nal.

We first note that a tree always possesses at least one end, that is, a point that
has at most one line touching it. [The tree in Figure 8.4 has exactly two ends
(1, 1) and (m, n).] Considering an end of the tree, it must either be the only point
in the particular row or column. Suppose that the end is the only point in its
particular row. In Figure 8.6, cell (7, /) is an example of such an end. In this case

vector a; = e; + e, is the only tree vector with a nonzero entry in row i.

Oy ——t—

W ——

Figure 8.6. Example of a tree with many ends.

Perform row and column permutation on the (m + n) X (m + n — 1) matrix T
of tree vectors so that this nonzero entry will be in the last column and last row
of the matrix. Thus T is of the form:

T = T, | q
0 1

where T, is the matrix associated with the tree vectors when row i and vector a;
are deleted. Graphically, the endpoint and line joining it are deleted to obtain a
new connected tree. This is illustrated in Figure 8.7. Repeating the process, we
locate an end of the reduced tree in Figure 8.7. Consider the end of cell (%, /). In
this case the end is the only point in column /, so a,, = e, + e, , is the only
vector with a nonzero entry in row m + [. Performing row and column permuta-
tions so that this nonzero entry is in the last row and column of T, we obtain

T, p| @
T=\o0 1 q
0 [0]1
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W ——ty

Row i deleted

B B

Figure 8.7. The reduced tree of Figure 8.6.

This process is continued. Eventually we obtainan (m + n — 1) X (m + n —
1) (upper) triangular matrix with 1’s on the diagonal, in addition to an extra row
with (m + n — 1) components. This shows that the rank of T is (m + n — 1),
and hence T together with the artificial vector forms a basis of A.

Representation of the Basis on the Transportation Graph

We have seen that a basis of the transportation problem consists of a tree on the
transportation tableau plus an artificial variable, and conversely. Each tree on
the transportation tableau corresponds uniquely to a tree on the transportation
graph. In particular each basic cell (i, j) corresponds to the basic link (i, j) on
the graph, and each line connecting two basic cells in the transportation tableau
corresponds to the node (source or sink) connecting the associated links on the
graph. The artificial vector e, , is represented on the graph by a link leaving
destination n and ending nowhere. In Figure 8.8 we illustrate a basis of the
transportation problem on both the transportation tableau and the transporta-
tion graph. The structure on the graph is called a rooted spanning tree where the
root denotes the artificial variable.

- o
. © (D)
N
—)

3 3 Artificial
U (root)

Figure 8.8. Hllustration of a basis on the transportation tableau and the transporta-
tion graph.

& —=

Oy et
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From now on we shall carry all the computations on the transportation
tableau. The reader should have no difficulty in drawing a parallel development
directly on the graph. The graphical view will be taken in Chapter 9 on network
flow problems.

8.3 REPRESENTATION OF A NONBASIC VECTOR IN TERMS OF THE BASIC VECTORS

We have determined that each nonbasic cell together with a subset of the basic
cells forms a cycle and that the basic cells in this cycle provide the required
representation for the nonbasic cell. Then we found that the set of basic cells
formed a spanning tree on the transportation matrix. We further know that there
is a unique chain between every pair of cells in the tree; otherwise cycles would
be created. All of this suggests that to find the representation of a given
nonbasic cell (i, j) we use the chain in the basic tree between some basic cell in
row i and some basic cell in column ;. This is essentially accurate except that not
all basic cells in this chain (in the transportation matrix) are in the representa-
tion.

To produce the proper representation for a given nonbasic cell (variable) we
simply locate the unique cycle, in the basis graph, containing the arc associated
with the particular nonbasic cell. Then all of the basic cells of the transportation
matrix associated with the arcs of the cycle in the graph are required for the
representation of the nonbasic cell. The process of locating the representation
directly on the transportation matrix is essentially the same except that not all
basic cells in the unique cycle are used. In this case we use only those cells of the
chain for which there is another cell of the chain in the same row and another
cell of the chain in the same column.

To illustrate, consider Figure 8.9. Suppose that we want to represent a,, in
terms of the basic vectors. In Figure 8.10 the unique cycle of the graph is given
by (1, 4), (3, 4), (3, 1), (1, 1). Deleting the nonbasic arc (1, 4), we are left with the
unique basic chain (3, 4), (3, 1), (1, 1). As we already know, these are assigned
alternating signs of +1 and — 1, giving the following representation:

Qg =a; —ay + ay

1 2 3 4 5

B [ DR
1 : B —Q

T I
2| B |

l H

T T
3l B B B B

l
4 1'; Figure 8.9. Illustration of finding the
representation of a nonbasic cell.
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Figure 8.10. The basis in the graph associated with the basis of Figure 8.9.

which we may verify by
e tea=(e e, (& t+e,)t(e;+e,,

If we had sought the representation from the transportation tableau, we
would first obtain the unique cycle (1, 4), (1, 2), (1, 1), (2, 1), 3, 1), (3, 3), (3, 4).
Deleting the nonbasic cell (1, 4), we are left with the unique basic chain. We
delete cell. (1, 2) since there is no basic cell of the chain in the same column.
Similarily we delete cells (2, 1) and (3, 3). We are left with cells (1, 1), (3, 1), and
(3, 4) for the representation. This is the same as before.

Ignoring the other basic points, the representation is given below.

As another example, we shall represent the vector a,, associated with the
nonbasic cell (4, 2) in terms of the basic variables. Tracing the chain in the
transportation tableau between the basic cells (1, 2) and (4, 3), we get

C={(12,11. 21,31 33)43))
for which the required basic cells are (1, 2), (1, 1), (3, 1), (3, 3), and (4, 3). Hence
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the representation is

a, =ap —a; ta; —agtag

which can easily be verified as correct. Pictorially, the representation is (ignoring
other basic points) given below. Although this appears to be two cycles, it is
actually one cycle through the basic cells and cell (4, 2), since the cell (3, 2),
where the lines cross, is not basic.

a

a“B ? 12
I
|
|
1

a; B . B ay;
1
{
1
!
Om———— - B
347 843

The Role of the Artificial Variable in the Transportation Problem

We note that the representation of a nonbasic vector involves only basic vectors
associated with the unique chain through the basic cells. In particular, the
artificial vector never becomes involved in any representation, and therefore the
artificial variable will always remain zero. This fact will allow us essentially to
ignore the artificial variable in the application of the simplex method to
transportation problems.

8.4. THE SIMPLEX METHOD FOR TRANSPORTATION PROBLEMS

The general steps in the application of the simplex method to a linear program
are as follows.

1. Find a starting basic feasible solution.

2. Compute z; — ¢; for each nonbasic variable. Stop or select the entry
column.

3. Determine the exit column.

4. Obtain the new basic feasible solution and repeat step 2.

We shall show how each of these steps can be carried out directly on the
transportation tableau.
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Finding a Starting Basic Feasible Solution

In Section 8.2 we produced a feasible solution for the transportation problem.
However, the solution was not basic. While it would not be a difficult procedure
to convert that solution into a basic feasible solution, we shall consider another
procedure for obtaining a basic feasible solution. This procedure is called the
northwest corner rule. During the procedure as a variable x;, is assigned a value,
we reduce the corresponding a; and b, by that value. Let the reduced values of g,
and b; be denoted by ¢, and b; respectively. In particular, to start with, 4, = g,
and b; = bj.

Assuming that the total supply equals the total demand, beginning in cell
(1, 1) we let

x,; = Minimum{4,, b, }

and replace 4, by 4, — x,, and b, by b, — x,,- Then, if &, > b,, move to cell
(1, 2); let

X1 = Minimum{dl, 52}

and replace 4, by 4, — x,, and b, by b, — x,,. However, if d, < b,, move to cell
2, D; let

~

Xy = Minimum{4,, b, }

and replace d, by 4, — x,, and b, by b, — x,,. The case when 4, = b, produces
degeneracy and will be discussed later. For now we assume that equality never
occurs. The process of assigning a variable the minimum of the remaining
supply or demand, adjusting both, and moving to the right, or down, one cell
continues until all supplies and demands are allocated. Figure 8.11 illustrates
how the process might work.

Be———3—p a
J
1
B 3 B B a
J
1
B a3
L
1
B—3p—u-p a4
by by by by bs

Figure 8.11. Graphical illustration of how the northwest corner rule might allocate
values to the variables.
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The northwest corner rule will (in the absence of degeneracy) produce exactly
m + n — 1 positive x;’s. Each time an x;; is assigned some positive value, either
a supply or a demand constraint is satisfied. When m + n — 1 variables have
been assigned positive values, then m + n — 1 of the constraints are satisfied.
Noting that one of the constraints of the transportation problem is redundant,
then all the constraints are met.

The graphical structure of the basic cells is obviously connected and span-
ning. To demonstrate that the graph is a spanning tree and therefore a basis, it
remains only to show that it contains no cycles. Since, at each step, either the
row or column index of the variable assigned a positive value is increased by 1,
it is not possible to assign a new variable in an earlier row or column a positive
value—the only way to produce cycles. Therefore the northwest corner method
produces a basic feasible solution.

To illustrate, consider the transportation tableau of Figure 8.12 where the
supplies and demands are indicated. We first let x;; = Minimum{4,, b} =15,
decrease 4, and b, by x;; = 15, and move to cell (1, 2) since 4, > b,. Next, let
X, = Minimum{4,, b,} = Minimum{15, 20} = 15, decrease 4, and b,, and
move to cell (2, 2) since 4, < b,. This process is continued until all supplies and
demands are satisfied. Notice that we do have the required number of basic
variables, namely 7= m + n — 1. The blank cells are nonbasic and the
associated variables have zero values.

1 2 3 4 g
11 15— 15 3 M 0
]
v
2 5—->31-—4—>? 26 2Q 9. 0
\YL
3 5|o 50 0
Y
4 25 12§ 0

ou
o4
oMHE

Figure 8.12. Example of the northwest corner rule.

Computing z; — ¢, for Each Nonbasic Cell

Given a basic feasible solution, our next task is to determine whether that
solution is optimal or to select an entering variable. Now

y TG =Yy T Gy
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We have shown how to obtain the components of Yo that is, the coefficients of
the representation of a; in terms of the basic vectors. Since y; consists of I’s,
—I’s, and O’s, then cpy,; is calculated by simply adding and subtracting the costs
of some basic variables. To illustrate, consider Figure 8.2. The z; — ¢; value for
the nonbasic variable x; is given by '

Z; — ¢ = (c

i — Cys + Crs — clk + cik) - Gy

W i

Using the data of the example in Section 8.1 and the basis indicated below,
we get the following result.

1 2

7]
4]

TN

s
]

B

_5J3
Kl

B
i
B

Zy— €y =4-5+3-2=0

Zpy—Cp=T-5+3—-4=1

and x,, is a candidate to enter the basis.

The optimality criterion for the transportation problem is given by z; — ¢; <
0 for each nonbasic x;. A given cell (k, /) is a candidate to enter the basis if
Zk[ - ck[ > 0.

The foregoing procedure for calculating z; — ¢; utilizes the form

_ -1 =

z,.j—c,-j—cBB a; — C; = Cp¥y; — ¢;
The vector y,; is determined by constructing the unique cycle through cell (i, /)
and some of the basic cells as discussed above. Hence this method is sometimes
called the cycle method. Note, however, that calculating z; — ¢, can be alterna-
tively performed as follows:
Iy — ¢ = cBB_la,-j —c;=wa; — ¢
Let w,, i =1,...,m be denoted by 4, and w,,, ,j = 1,..., n by v,. Then the
dual vector w is given by

W= (u,...,U,0,..-.,0,)

Since a; has a | in the ith and (m + j)th positions, then wa, = u + v, Hence
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z; —¢; = 4, + v, — ¢;. This method of calculating z,;, — ¢, is thus called the

dual variable or (u,, j) method
Since the dual vector w = ¢zB™!, then w is the solution to the system

wB = ¢,
where
( pq’ :l’ em+n)
(pq, sy Gy Cg)
and a,, ...,a,arem + n — 1 basic columns, c,,, . . ., ¢, are their correspond-

ing cost coeff1c1ents, e,,.n is the artificial column, and c, is its cost coefficient.
Since we have previously shown that the value of the artificial variable will never

vary from zero, the value of ¢, does not matter. For convenience, we shall select
. = 0. Since B is triangular, we have an easy system to solve. The system

(U o vy Uy D1y e o -3 0By - - - s,,em+”)=(cpq,...,cﬂ,0)

is equivalent to (since a; = e, + e, )

u, + v, = Gy

u + v =c

st

The foregoing system has m + n variables and m + n equations. Utilizing the
concept of triangularity, we back-substitute the value v, = 0 into each equation
where v, appears and solve for a u-variable. Using this newly found u-variable,
we back-substitute to find some v, and so on.

As an illustration, consider the example probiem of Section 8.1 with the basis
as indicated below. The last dual variable, v,, receives the value zero from the
artificial column.

Use the artificial column = ;=0
Use the basic cell (2,3): u, + ;=3 = u,=3
Use the basiccell (1, 3): u; +v;=5 = u; =5
Use the basic cell (1,2): u; +v,=7 = v,=2
Use the basic cell (1, 1): u; + v, = = v = —1
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1 2 3
<] 7] [e]
1 uy
B B B
|
2] 4]  |3]
2 U,y
B
vy vy vy

Only the basic cells are used to solve for the dual variables as shown above.
Given the w vector, we may compute the z; — ¢, for each nonbasic cell in order
to determine the entering column. In particular:

Z3] T € = Uy + v~ ¢y
=3+(-1)-2=0
Ip T Cp = Uyt Uy —Cpy

3+42-4=1

and, again, we see that x,, is a candidate to enter the basis.

Determination of the Exit Column

Once a column (cell), say (4, /), has been selected to enter the basis, it is an easy
matter to determine the exit column. Recall that the coefficients in the basic
representation for that column are the negatives of the rates of change of the
corresponding basic variables with a unit increase in the nonbasic (entering)
variable. Thus if the entry, in column y,,, corresponding to a basic variable is
— 1, then the basic variable will increase at the same rate as the nonbasic
variable x,, increases. If this entry is + 1, then the basic variable will decrease at
the same rate as the nonbasic variable x,, increases.

Let X; be the value of x; in the current solution and let A be the amount by
which the nonbasic variable, x,, increases. Since each component of y,, is
either 1, —1, or 0, then the usual minimum ratio test gives

A = Minimum {)E,-j : basic cell (i, /) has a +1 in the representation
of the nonbasic cell (k, /)}

Given A, we proceed to adjust the values of the variables around the cycle by
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this amount, according to the sign of the coefficient in the representation. For
the example of Section 8.1 with the basis indicated below, as x,, enters the basis,
we get the following result.

x5, =15 xq15 = 10 %3 =5

N
It
&
I‘d
|
P
3
D —
X)
[}

b 15 10 25

A = Minimum{x,,, x,;} = Minimum{ 10, 20} = 10
The new solution is given by
X=X, —A=10-10=0 (leaves the basis)
xX3=X;+A=5+10=15
Xy3 = Xy —A=20—10=10
=A =10
x;, =15 (unchanged)

The new basis is given by the following.

1 2 3
: x,,=16 x,3= 15 20
B B
']
2 x5 = 10 x33 =10 20
B— B
15 10 25

8.5 AN EXAMPLE OF THE TRANSPORTATION ALGORITHM

Consider the transportation problem indicated by the data of Figure 8.13. The
number in the upper left hand corner of each cell is the cost associated with the
particular variable.
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1 2 3 4 5 6 a;

Lo Ji2] 3] 8] 4] J1] |
8 T T 1

3 17] 16 | 13 | 14 | 10 l 18 | 39
P ) R ) R T e A T e
b, 10 11 13 20 24 15

J

Figure 8.13. Example data for a transportation problem.

The starting basic feasible solution produced by the northwest corner method is
illustrated in Figure 8.14.

1 23 4 5 6
1 10
2 13 6
3 ' 14 24 1
4 14

Figure 8.14. The northwest corner basic solution.

Beginning with (1, 3), we price out each of the nonbasic cells by the cycle
method:

—cy=(12-18 +12) — 13 = -7
Zia— Ca= (12— 18 + 16) —8 = 2
Zs— 5= (12— 18 + 16 — 14 + 10) — 14 = —8

Zgs — €45 = (10 — 185 13) — 12 = —7

The current values of the basic variables and the tree are shown in Figure
8.15; the z; — ¢, values for the nonbasic variables are the circled values. Since
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1 2 3 a 5 6
| 10, 8 @ @ @ = 14
2@ 31 Bl s, @ @ u, = 20
3@ @ @ 14]3 2 , 1, =
(OO0 6OL0 i

»w=—4 9,=~-2 0,=-8 9y=-4 ov5=-8 =0

Figure 8.15. The z;, — ¢; values for the nonbasic cells.

z; — ¢; = 0 for the basic variables, these are not indicated. Note that the
z; — ¢; values could have been alternatively calculated as follows. First solve for
the dual variables (their values are summarized in Figure 8.15).

artificial column = v,=0

basiccell (4,6): u, +vs=13 = u,=13

basiccell 3,6): u; +vs=18 = u;=18

basiccell 3,5): u; +v5;=10 = v;= -8
basiccell 3,4): u; +v,=14 = v, = —4
basiccell (2,4): u, + v, =16 = u,=20
basiccell 2,3): u,+v;=12 = ov;= -8
basiccell (2,2): u, +v,=18 = v,= -2
basiccell (1,2): u, + v, =12 = u, =14
basiccell (1, I}: u; + v, =10 = v, = —4

Then z;, — ¢; = u; + v, — ¢, for example, z;, — ¢;y =4, + v, — ¢, =14 — 4
— 8 = 2. Using either alternative for calculating z; — ¢;, Figure 8.15 indicates
that the maximal z; — ¢, is 2z, — ¢;, = 2. Therefore x;, enters the basis.

Referring to Figure 8.15, we see that
=2 — Ay + Ay,

and the corresponding cycle is as follows.

(2, 2) (2, 4)
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From this we find

X4 = Minimum{ %,,, £,,} = Minimum{8g, 6} = 6

Xp=8—-6=2

Xp=34+6=9

Xy =6—-6=0 (leaves the basis)

The new basis and the values of the basic variables are summarized in Figure
8.16. Using either the cycle method or the dual variable method, z; — ¢; is
calculated for each nonbasic variable.

5
2 (—7} 6 @ @ uy =12
B B
NERIS Q@ |
24

ORRY
@ [

1).'=—2 172=0 v3= —6 1)4=—4 1)5=—8 v =0

OO 2|
O

Figure 8.16. Second basic feasible solution.

As indicated by the circled entries in Figure 8.16, cell (3, 2) is the entry cell.
The cycle associated with (3, 2) is as follows.

(1, 2) ————e—— (1, 4)

From this we obtain

X3, = Minimum{X,,, £;,} = Minimum{(2, 14} =2
Xp,=2-2=0 (leaves the basis)

X, =6+2=238

X34 =14 -2=12

The new basic feasible solution and the new z; — ¢, values are given in
Figure 8.17. Examining the z; — ¢y entries, we find that (2, 1) is the entry cell.
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1 2 3 4 5 6

1l 10, @ @ 8 & @ uy =12
9,1 13, @ @ @ u = 20

2; @ 123 24 B 1 uy= 18

DI

v,=-2 v,=-2 v,=-8 v,=-4 uy;=-8 7% =0

©

®

-3

Figure 8.17. Third basic feasible solution.

The associated cycle is as follows.

a,n (, 4)
|
!
!

(2, ) ———1(2,2)

(3, 2) =———(3, 4}

From this we obtain

Xy = Minimum{%,,, X3, £,,} = Minimum{10, 12,9} =9

x,=10-9=1
Xa=8+9=17
Xpy=12-9=3

Xyp=24+9=11
Xy =9—-9=0 (leaves the basis)

’

2 3 4 5
@ £ 7,
@ 13 @
3 @ n o, @ 33 2 . & u;= 18
O & @& 0 1o

vW=-2 wv,=-2 wv3=-5 vy,=—4 5,=-8 v5=0

-
-

u, = 17

)
©
By =t

-3

Figure 8.18. Fourth basic feasible solution.
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Figure 8.18 presents the new basic feasible solution and the new z; — ¢,’s.
Since z; — ¢; < 0 for each nonbasic variable, the indicated solution is optimal.

8.6 DEGENERACY IN THE TRANSPORTATION PROBLEM

As with any linear programming problem, degeneracy can occur in the trans-
portation problem. Also, analogous to general linear programs, degeneracy and
cycling do not represent a serious difficulty in the transportation problem. For
completeness we shall examine degeneracy in the transportation problem.

Finding and Maintaining a Basis in the Presence of Degeneracy

In Section 8.4 the northwest corner rule was presented for finding an initial
basic feasible solution to the transportation problem. In that section we assumed
that we would not reach a point where the reduced supply is equal to the
reduced demand. If we relax this assumption, it is still an easy matter to find a
starting basis by the northwest corner rule.

Suppose that at some stage in the application of the northwest corner rule we
have

~

X, = Minimum{4,, b,} = 4, = b,

where either @, or b, was reduced by a previous calculation of X 1 OF X,y
respectively. Whichever way we go with the northwest corner rule, the next basic
variable will be zero and degeneracy occurs. A practical method for obtaining a
starting basis is to proceed in either direction, that is, to (k, / + 1) or (k + 1, /),
and assign either x; ,,, or x,,, ; as a basic variable at zero level. Basic variables
at zero level are treated in exactly the same fashion as other basic variables. The
northwest corner rule produces a basic feasible solution even in the presence of
degeneracy.

Let us illustrate the foregoing concepts with an example. Consider the
example of Figure 8.19. Applying the northwest corner rule to this example we

a.

1_2_J 3] 4 | 9? 20
|

214 12 | 5 | 1

3|12 15[ 9| 3

30

40

bj 10 10 20 50

Figure 8.19. An example of degeneracy.
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obtain the sequence of calculations:
x;, = Minimum{4,, 5,} = Minimum{20, 10} = 10
4,=20-10=10,5,=10-10=0
Xj; = Minimum{4,, 5,} = Minimum(10, 10} = 10
4,=10-10=0b=10-10=0
At this point we may move to either (2, 2), or to (1, 3). Suppose that we move to
&2 X5, = minimum{4,, b,} = Minimum(30, 0} = 0
4,=30-0=30,5=0-0=0
Xy3 = Minimum{ d,, 5;} = Minimum{30, 20} = 20
G,=30-20=10,5,=20—-20=0
X54 = Minimum{d,, 5,} = Minimum{10, 50} = 10
4,=10—-10=0, 5, =50 — 10 = 40
X34 = Minimum{4,, 5,} = Minimum (40, 40} = 40
4, =40 — 40 =0,b, =40 — 40 =0

All other x;’s are nonbasic and are assigned value zero. The initial basic feasible
solution is given in Figure 8.20. As required there are m + n — 1 =3 +4 — 1
= 6 basic variables forming a connected tree. Note, however, that the basic
feasible solution is degenerate since the basic variable x,, = 0. For each non-
basic variable we calculate z; — ¢; by either the cycle method or the dual
variables method. These values are depicted in circles in Figure 8.20 for the

1 2 3 4

ERIORECA
1 B B #
2 @ ol 20 & 10 uy = 1
@ |

v, =10 vy = 11 v;=4 ve=0

y—tty

u3=3

©
©

Figure 8.20. Initial (degenerate) basic feasible solution.
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nonbasic variables. Since z;; — ¢;; = 1, then x5, enters the basis. The corre-
sponding cycle is as follows.

1, )= 1

!
ll (2, 2) ————— (2, 4)
I
I

x3; = Minimum{ £,,, %,,, £3,} = Minimum{10, 0, 40} = 0

X” =10 — 0= 10
Xy = 10 + 0= 10
Xpp= 0—-0= 0 (leaves the basis)

X24=10+0=10
X34 = 40 — 0 = 40

Note that x,, leaves the basis and x,, enters the basis at zero level. We have the
same extreme point but a different basis. The new basis and the new z; — ¢;’s
for the nonbasic variables are shown in Figure 8.21. Since z;, — ¢; < 0 for each
nonbasic variable, the current solution is optimal.

2 @ 20 10 uy = 1
B e B
sl o MG | (@) | a0 )|u=s

ey

v,=9 =10 =4 1,=0

Figure 8.21. Optimal basic feasible solution.

Notice that in this example we have
20=0a,=b,+b,=10+10

or, in other words, a subset of the supplies equals a subset of the demands. We
shall show that this is always true when degeneracy occurs in the transportation
problem.
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A Necessary Condition for Degeneracy in the Transportation Problem

Suppose that at some iteration of the transportation algorithm we obtain a
degenerate basic feasible solution, as that shown in Figure 8.22. Deleting one of
the degenerate cells separates the connected tree into several components as
shown in Figure 8.23. Sum the supply constraints over the variables in one of the
components, say, C,, to obtain

zx,-j = 2 a;
G G

Summing the demand constraints over the variables in the same component, we
get

2 Xy = 2 bj

c c
Together, these constraints imply

> a =2 b;

C c,

Thus a necessary condition for the presence of degeneracy is that a proper

I

B——pB
B
[
|
k B Bi “Tx,, =0
I
B B B
Figure 8.22, A degenerate basis.
I'_B:___B"Il
|
T s ——— p——
o — Ik j
| Pl i
] T
L5—t—8—t—1|

Figure 8.23. Components created by deleting a zero basic cell.
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subset of the rows and columns have the total supply equal to the total demand.
Therefore degeneracy (and cycling) can be eliminated if no such proper subset
exists (see Exercise 8.43).

8.7 THE SIMPLEX TABLEAU ASSOCIATED WITH A TRANSPORTATION TABLEAU

We have all of the information available to construct the simplex tableau
associated with a transportation tableau if we so desire. In Section 8.3 a method
was described for calculating the updated column vectors y,. In Section 8.4 two
methods were presented for calculating z; — c; for a nonbasic variable x;. This
information together with the basic solution provides all the necessary entries in
the simplex tableau.

As an example, consider the transportation problem given by the following
data.

< 1 2 3 a;
10 | 1| 20 |
1 20
]
RICH RN CH BT R .
b, 15 15 10

]

Figure 8.24 presents the initial transportation tableau and the associated simplex
tableau (including the artificial variable). Examining either tableau, we see that
X,, enters the basis and x,, leaves. We ask the reader to verify the entries in the
simplex tableau by generating the z; — ¢;’s and the y;’s from the transportation
tableau.

Z X Xjp X3 Xy Xy X3 X, RHS
z 1 0 0 —10 2 0 0 0] 375
x| 0 1 0o o0 1 o0 o0 o 15
xp | 0] 0 1 1 =1 0 0 0| 5
Xy 0 0 0 -1 1 1 0 0 10
Xy |0 0 0 1 0 0 1 0o 10
X, 0 0 0 0 0 0 0 1 0
1 2 3
1l s 5 ;= 10
IRE:
2 10 10 u, = 8
ORRIIIERE

v,=0 2,=1 w23=0

Figure 8.24. An initial transportation tableau and the associated simplex tableav.
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8.8 THE ASSIGNMENT PROBLEM

An important special case of the transportation problem is the case where
m = n and each g, = 1 and each b, = 1. This special case is called the assign-
ment problem. As an example, suppose we have m individuals and m jobs. If
individual i is assigned to job j, the cost incurred will be c;. We wish to find the
minimal cost assignment of individuals to jobs. In each basic feasible solution
x; = 1 means that individual i is assigned to job j, x; = 0 indicates that
individuals is not assigned to job j.

Since the assignment problem is a special case of the transportation problem,
we could apply the transportation procedure developed in this chapter. Note,
however, as will be discussed in more detail below, that the constraints of the
assignment problem admit exactly m positive variables at each basic feasible
solution. The number of basic variables is 2m — 1. Thus if the transportation
algorithm is used we would have m — 1 basic variables at zero level, leading to a
highly degenerate problem. In this section we shall exploit the special structure
of the assignment problem to get a more efficient algorthm.

A mathematical model for the assignment problem is given by the following.

m m
Minimize 2, X ¢;X;
i=1/=1

m

Subject to > x,=1 i=1,...,m
j=1
m

> x=1 j=1...,m
i=1

x;=0orl ij=1,...,m

In matrix form, the assignment problem becomes as follows.
Minimize ¢x

Subject to Ax=1

x,.j=00r1 Lji=1....,m

Where X = (X;;, -« s Xppms v« s Xmls - « 5 Xuy)> a0d A is a 2m X m? matrix
whose (i, j) column is a; = e, +e,, ; fori=12,...,mand;j=12,...,m
Thus we see that A is the same constraint matrix as that for the transportation
problem. Applying the total unimodularity property of A, we know that an
optimal basic feasible solution to the assignment problem with the constraint
x; = O or 1 replaced by x; > 0 will be all integer. Furthermore, as a result of the
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constraints no x; can exceed 1. Hence all x; will be either zero or 1 in an
optimal solution to the linear program. This permits us to replace the constraint
x; = 0 or 1 by the constraint x; > 0. Thus we obtain the following.

Minimize c¢x

Subject to Ax =1

x >0

The Dual Problem

The dual of the assignment problem with the nonnegativity restrictions replacing
the 0 — 1 constraints becomes as follows.

m m
Maximize 2, 4 + X v,

i=1 j=1

Subjectto % + v; < ¢;

u, v; unrestricted Li=1,2...,m
The complementary slackness conditions are given by
(¢c;— i —v)x; =0 Lj=1...,m

Thus, if we can find a set of feasible u’s, v’s, and x’s that satisfy complementary
slackness, those u’s, v’s, and x’s will be optimal.
A feasible dual solution is given by

4. = Minimum { ¢, i=1,...,m

! 1</j<m {e) ’ ’

¢ = Minimum {¢; — 4} j=1...,m
1<i<m

From this we see that #; is the minimum c; in row i and &, is the minimum
¢; — 4, in column j.
The Reduced Matrix

Consider a reduced cost coefficient matrix where c; is replaced by ¢; = ¢; —
— v;. In other words, the reduced cost matrix is obtained by first subtracting
from each row the minimum in that row; and then on the resulting matrix
subtracting from each column the minimum in that column. The reduced matrix
will have a zero in every row and column and all of its entries will be
nonnegative. The reduced matrix is actually the matrix of dual slack variables
(why?). '
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Suppose that we can find a feasible set of x,’s such that each x;, with value 1
is associated with a zero cell of the reduced matrix. Then by complementary
slackness we conclude that we have the optimal solution. What, then, constitutes
a set of feasible x;’s? Reviewing the constraints of the assignment problem, it is
clear that we must have exactly one x; in each row equal to 1 and exactly one X,
in each column equal to 1. Thus in a feasible solution there will be exactly m of
the x;’s equal to 1, the rest being zero.

Let us illustrate the forgoing ideas with an example. Consider the following
cost coefficient matrix for an assignment problem.

1 2 3 4 ROW MINIMUM
1 3 2 4 2
2 0 1 2 3 0
3 4 1 -1 3 -1
4 2 5 3 4 2

Subtracting the row minimum from each element in the row, we get the
following tableau.

W N -

S| W N =] O N
S| =S| Wl w
NN AW A

1
1
0
5
0
0 COLUMN MINIMUM

Subtracting the column minimum in the new matrix from each element in the
column, we get the reduced matrix as follows.

1 2 3 4

1 1 [o] 3 0
2 [o] 1 2 1
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Now if we let x§, = x3 = x33 = x = 1 and if we let all other x}’s be zero,
then we have a feasible solution with positive x;’s associated with zero cells of
the reduced matrix, thus producing an optimal solution.

It is not always so easy to find an optimal solution. Take, for example, the
following cost matrix. -

1 2 3

1 2 5 7

2 4 2 1 (= c)
2 6 5

The reduced matrix is given by:

1 2 3

1 0 2 5
3 0 0 (= &)
0 3 3

Here it is not possible to set three of the x;’s equal to 1 such that all three
positive x;’s occur in zero cells and no two positive x;’s occur in the same row or
column.

A Partial Solution

Notice that for the reduced matrix above, the maximum number of x;’s, from
among the zero cells, which can be set equal to 1 without any two positive x,’s
occurring in the same row or column is 2. For example, we might let x,, = x,,
=1, x;=x3=1 x5 =Xy =1, or x5 = x5 = 1. In this case the maximum
number of cells with zero ¢; such that no two cells occupy the same row or
column is 2. The corresponding cells are called independent. Notice also that if
one were to draw a set of lines through the rows and columns to cover the zeros
so that there is at least one line through each zero, the minimum number of such
lines for this matrix is 2, a line through column 1 and a line through row 2.

!
1 0

W PN
WO wn| W
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We see in this example that the maximum number of independent zero cells and
the minimum number of lines required to cover the zeros are equal. This result,
which is true in general, is given by the following theorem. We shall not prove
this theorem here. (In Chapter 11, Exercise 11.15 asks the reader to show that
this theorem is a special case of the maximal flow-minimal cut theorem for
networks. At that time we also suggest a method for systematically finding the
required number of lines. Also see Exercise 8.33 and Exercise 8.37.)

Theorem )

The maximum number of independent zero cells in a reduced assignment matrix
is equal to the minimum number of lines to cover all zeros in the matrix.

Modifying the Reduced Matrix

Suppose that we have not yet obtained the optimal solution, that is, cannot find
a feasible set of positive x,’s from among the zero cells of the reduced matrix.
Consider the covered matrix, the reduced matrix with zeros covered by the
fewest number of lines. Let & be the number of lines required. Also let

S, = {i), i .. . } be the set of uncovered rows and S, = {;,/, - - - } be the set
of uncovered columns. Define S, =M — S, and §, =M — S, where M =
{1, 2,..., m}. Finally, let p be the number of rows in S, and g the number of

columns in S,. Then k = (m — p) + (m — g).
Let ¢, be the minimum uncovered element, that is,

¢, = Minimum {é,} > 0
0 ies { u}
.IESC

It can be easily demonstrated that a new dual feasible solution is given by

_i_uAi iESr
§=6  JES
Dj=13j—-("0 jeSc

In the reduced matrix this is equivalent to subtracting ¢, from each uncovered
row and adding ¢, to each covered column. Another way to view this is that ¢, is
subtracted from each uncovered element and added to each twice-covered
element. The new reduced cost coefficient matrix has nonnegative elements and
a zero in every row and column (why?).

For the previous 3 X 3 matrix we have ¢y = Minimum (2, 5, 3,3} = 2 and
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the new reduced cost matrix is given by

1 2 3

1 0 [o] 3

3 [0] 1 1

Notice that now a feasible set of x,’s exists with positive x,’s associated with
zero cells (zero dual slack variables).

Note that primal feasibility is attained, dual feasibility is maintained (since
the entries in the reduced cost matrix are nonnegative), and finally complemen-
tary slackness holds (since x; = 1 only if the corresponding dual slack is zero).
Thus the Kuhn-Tucker conditions hold and the optimal solution, xj;, = x} =
x3; = 1 (all other x}’s set equal to 0) is at hand.

Summary of the Assignment Algorithm

The algorithm developed in this section is called the Hungarian algorithm and is
summarized as follows.

INITIALIZATION STEP

For each row of the cost matrix, subtract the minimum element in the row from
each element in the row. For each column of the resulting matrix, subtract the’
minimum element in the column from each element in the column. The result is
a reduced matrix.

MAIN STEP

1. Draw the minimum number of lines through the rows and columns to
cover all zeros in the reduced matrix. If the minimum number of lines is m,
then an optimal solution is available. Otherwise to go step 2.

2. Select the minimum uncovered element. Subtract this element from each
uncovered element and add it to each twice-covered element. Return to
step 1.
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An Example

Consider the following cost matrix.

1 2 3 4 5

1 2 3 5 1 4
2 -1 1 3 6 2

3 -2 4 3 5 0

4 1 3 4 1 4

5 7 1 2 1 2

The reduced matrix is as follows.

1 2 3 111 5
1 2 3 0 2
2 q) 2 3 / 2
3 0 6 4 v 1
4 2 2 (|) 2
5 8 ) 9 9

Here the minimum number of lines to cover all zeros is 3. The minimum
uncovered element is 1. Subtract this from each uncovered element and add it to
each twice-covered element.

1 2 3 4 5
1 1 2 0
2 SD 1 2 V
3 ¢ 5 3 7 0
4 1 1
5 0- 9 9

Again, we do not have an optimal solution at hand. The minimum uncovered
element is 1. Subtract 1 from each uncovered element and add it to each twice
covered element. This leads to the following matrix.
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5 8 0 (o] 2 1

In this matrix an optimal solution is given by x¥, = xJ; = xJ; = x§, = x5 =1

and all other x}’s set equal to zero.

In Exercise 8.35 we ask the reader to show that the Hungarian method for
assignment problems is precisely the primal-dual algorithm applied to the
assignment problem.

Finite Convergence of the Assignment Algorithm

If we could not find a feasible set of x;’s from among the zero cells of the new
matrix, then we would repeat the process of drawing lines and adjusting the
matrix. We can only do this a finite number of times before an optimal solution
can be found. Clearly, an optimal solution can be found if all reduced costs
become zero. To show finiteness we note that the reduced costs are always

nonnegative and that

226-23¢ = 2 (4-¢)+ X (&4-6)

(Sv Sc) (Sr’ Sc)
+ 2 (G-t 2 (45)
(55) (5.%)

= 2 ot X 0+ X 0+ 3 (—¢

55 (5.8)  (5S)  (5.%)

= pqco — (m — p)(m — g)cqo
=m(p +q— m),
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But p + g is the number of uncovered rows and columns, so that
prtgq—m=_2m—-—ky—m=m-—k

where & is the number of covered rows and columns. By Theorem 1, & is also the
maximum number of independent zero cells. In particular, ¥ < m because
otherwise we would have had an optimal solution at the last iteration. Therefore

2 2 (¢ = &) = m(m = k)

is a positive integer provided that the original cost matrix consists of integers.
Since the entries in the reduced cost matrix are always nonnegative by construc-
tion, and since the sum of the entries is reduced by a positive integer at each
iteration, the algorithm stops in a finite number of steps. At termination we have
an optimal solution since the Kuhn-Tucker conditions hold.

8.9 THE TRANSSHIPMENT PROBLEM

In the transportation problem studied in this chapter we have assumed that each
point is either an origin, where goods are available, or a destination, where
goods are required. Suppose that, in addition, there are intermediate points
where goods are neither available nor required, but where goods can be
transshipped through. The problem of finding the shipping pattern with the least
cost is called the transshipment problem and is illustrated in Figure 8.25.

It is possible to handle transshipment problems by the transportation algo-
rithm. There are several methods of converting a transshipment problem to a
transportation format. One such method is as follows. On the transshipment

Transshipment .
Sources nodes Destinations

Figure 8.25. Example of a transshipment problem.
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network solve for the least cost path from each origin i to each destinationj (see
Chapter 11). We then use this cost as the unit shipping cost in cell (i, /) of a
transportation tableau. Another procedure for converting the model into a
transportation problem is to add buffer stocks at certain nodes as discussed in
Exercise 8.42.

There are other methods of handling transshipment problems besides trans-
forming them to transportation problems. In the next chapter we provide an
algorithm for solving the transshipment problem directly, which we call the
general minimal cost network flow algorithm.

EXERCISES

8.1 Solve the following transportation problem.

Destination
1 2 3 a;
Origin 1 3 4 ! ¢; matrix
2 7 2 5
b; 1 3 3

8.2 On Tuesday the GT Railroad Company will have 4 locomotives at IE
Junction, 1 locomotive at Centerville, and 2 locomotives at Wayover City.
Student trains each requiring one locomotive will be at A-Station, Fine
Place, Goodville, and Somewhere Street. The local map gives the following

distances.
A- FINE SOMEWHERE
STATION PLACE GOODVILLE STREET
IE Junction 13 35 42 9
Centerville 6 61 18 30
Wayover City 15 10 5 9

How should they assign power (locomotives) so that the total distance
traveled is minimized?

8.3 The following is a transportation tableau.



EXERCISES
1 2 a
NS L1 N 1 Bl
i = A > 14 18
X..
) _ﬂl ___J _2J
24 24
s & el [l .
4 10 0 I 1 l
7 5 12
b, 14 35 5
a. Is the solution basic?
b. Show that the solution is optimal.
c. Give the original linear programming problem and its dual.
d. Derive the optimal solution to the dual problem.
e. Give the optimal simplex tableau associated with the foregoing trans-
portation tableau.
f. Suppose that c,; is increased from 11 to 16. Is the solution still optimal?

If not, find the new optimal solution.
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8.4 The following tableau depicts a feasible solution to a transportation prob-
lem. Is this solution basic? If not, then starting with this solution, construct
a basic feasible solution. Compare the costs of the two solutions.

1 4;
¢ /12""5| 6] 2] 4]
T T R 1 R 1
10 22 10 42
; 4] | 1] 9] |_10]
18 23
b, 20 10 40 30
8.5 Consider the following transportation problem.
1 3
1 2 1 .
c; matrix
2 1 4
b, 1 1



394

8.6

a.

b.

THE TRANSPORTATION AND ASSIGNMENT PROBLEMS

Construct a basic feasible solution by the northwest corner method.
Show the basic tree.
Find the optimal solution.

Consider Exercise 8.3.

a.

b.

C.

d.

Add 10 to each c;. Applying the cycle method, is the tableau still
optimal?

Multiply each c¢; by 10. Applying the cycle method, is the tableau still
optimal? '

Repeat parts (a) and (b) for a general constant k.

What can we conclude from part (¢) for transportation problems?

8.7 Consider the following transportation problem.

8.8

8.9

Origin |

Destination

Cy matrix

bt | bt | N | e

— | W] | N

—_— 0 B = W
[\

J

Prove by duality theory that
(X115 X120 X135 X1, X225 X23) = (0, 3,0, 1, 0, 4)
is the optimal solution.

. Interpret, economically, the dual variables for the solution in part (a)

above.

Consider the following transportation problem.

S w oo -

a.
b.
c.

1 2 3 4 a,

6 2 -1 0

4 7 2 5 25  ¢; matrix
3 1 2 1 25

10 10 20 15

Give the northwest corner starting basic solution.
Find an optimal solution.
What is the effect on the optimal solution if ¢, is changed to —4?

Consider the data of Exercise 8.8. Apply the method of Section 8.1 to
obtain a feasible solution. Convert the feasible solution into a basic feasible
solution. Show the basic tree.
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8.10 Attempt to find an example of cycling in the transportation problem, or
else show that cycling can never occur.

8.11 Devise a method for applying the lexicographic simplex method directly on
the transportation tableau.

8.12 Show that if a basis is not connected and is, in fact, several trees, then there
are not enough basic variables. (Hint. Count the basic variables in Figure
8.5)

8.13 An airline company can buy gasoline from each of three suppliers. The
suppliers have available 2K, 6K, and 6K gallons respectively. The company
needs gasoline at three locations with each location requiring 5K, 3K, and
2K gallons respectively. The per/ K gallon quoted price for gas delivered to
each location is as follows.

Location
1 2 3
1 2 3 1
Suppliers 2 4 2 5
3 1 8 9

How can the company buy the gasoline to minimize the total cost?

8.14 Show that if the cost coefficient for the artificial variable is increased by an
amount 4, then all of the w,’s will change by the same amount §. Thereby,
show that the cost coefficient of the artificial variable does not matter in
the computation of z; — ¢;.

8.15 Show that if we define

a,=a, + ¢ i=1, , m
bj=bj j=1, ,n_’l
1;,,=b”+me

then by a proper choice of ¢ we can totally avoid degeneracy in the
transportation problem.

8.16 An automobile manufacturer has assembly plants located in the Northwest,
Midwest, and Southeast. The cars are assembled and sent to major markets
in the Southwest, West, East, and Northeast. The appropriate distance
matrix, availabilities, and demands are given by the following chart.
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SOUTHWEST EAST WEST NORTHEAST a
NORTHWEST 1000 8000 1800 2000 2,000,000
MIDWEST 400 700 900 1400 1,300,000
SOUTHEAST 800 1200 900 1100 1,600,000

b, 1,000,000 1,500,000 1,200,000 700,000

a. Assuming that cost is proportional to distance, find the optimal ship-
ment pattern.

b. Assuming that cost is proportional to the square of distance, find the
optimal shipment pattern.

8.17 Solve the following assignment problem by the transportation method.

JOB
1 2 3 a;
. 2 | 1| 0 | i
PERSON 2 -—1—-[ 3 I 4 [ 1 c¢; matrix
3 L1 2 | 6 | I
b; 1 1 1
8.18 Consider the following problem.
Minimize RIS
i=1j=1
Subject to zx,-j = aq i=12...,m
j=1
2 ppxy = b J=12...,n
x; 20 i=1,...,m
Jj=1...,n

where p; > 0 for all i,j. Extend the transportation algorithm of this
chapter to handle the foregoing problem (which is sometimes referred to as
the generalized transportation problem).
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8.19

8.20

8.21

8.22

8.23

8.24

Formulate the problem of Exercise 1.14 as a generalized transportation
model, and use the procedure of Exercise 8.18 above to find the optimal
solution.

Devise a procedure for identifying the unique cycle of basic cells associated
with an entering nonbasic cell. The procedure must specify the cells with
coefficient 1, — 1, and 0 in the representation of the nonbasic cell. Such a
procedure must be developed when the transportation algorithm is coded
on a digital computer.

Show how sensitivity analysis of the ¢
transportation tableau.

j» &> and b, may be carried out on a

Give the dual of a transportation problem. Is it possible to readily specify a
feasible solution to the dual problem? If so, starting with this solution,
devise a method for applying the primal-dual method directly to a trans-
portation tableau.

Prove or give a counterexample: For a variable to be basic in a particular
row of the linear program for a transportation problem, the variable must
have a nonzero entry in that row.

A company has contracted for five jobs. These jobs can be performed in
six of its manufacturing plants. Because of the size of the jobs, it is not
feasible to assign more than one job to a particular manufacturing facility.
Also, the second job cannot be assigned to the third manufacturing plant.
The cost estimates, in thousands of dollars, of performing the jobs in the
different manufacturing plants, are summarized below.

PLANT
JOB 1 2 3 4 5 6
1 50 55 42 57 48 52
2 66 70 — 68 75 63
3 81 78 72 80 85 78
4 40 42 38 45 46 42
5 62 55 58 60 56 65

a, Formulate the problem of assigning the jobs to the plants so that the
total cost is minimized.

b. Solve the problem by the transportation algorithm.

Solve the problem by the assignment algorithm.

d. Apply the primal-dual algorithm to this problem. Make all possible
simplifications.

134
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8.25

8.26

8.27

THE TRANSPORTATION AND ASSIGNMENT PROBLEMS

Consider the transportation problem corresponding to the following
tableau.

1 2 4 a;
1 4 6 5 20
2 7 10 6 30 ¢, matrix
3 8 9 12 7 50
b, 15 35 20 30
a. Solve the problem by the transportation algorithm.

b. Suppose that c,, is replaced by 5. Without resolving the problem, find
the new optimal solution.

c. Suppose that ¢, is replaced by 5. Which of the optimality conditions of
the solution in part (a) is violated? Find the new optimal solution.

Consider the following data for a transportation problem:
1 2 3 4 a;

1 14 56 48 27 71

2 82 35 21 81 47 ¢, matrix

3 99 31 71 63 93

b, 71 35 45 60

a. Indicate a starting basic solution by the northwest corner rule. Give the
basic tree.

b. Find the optimal solution.

c. Give the simplex tableau associated with the basic feasible solution in
part (a) above.

The following is Vogel’s approximation method for obtaining a reasonably

good starting basic feasible solution.

Step 0. Begin with all cells unallocated.

Step 1. In the problem at hand, compute for each row and each column
the difference between the lowest and next lowest cost cell in the
row or column.

Step 2. Among those rows and columns at hand, select the one with
maximum difference.

Step 3. Allocate as much as possible to the x; with the lowest cost cell in
the selected row or column. Decrease the corresponding supply and
demand. Drop the row or column whose supply or demand is zero.
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8.28

8.29

Step 4. Make any allocations where only one unallocated cell remains in a
row or column. After reducing the corresponding supply and
demands and dropping the row or column, repeat Step 4 as
necessary.

Step 5. Stop if no rows and columns remain. Otherwise return to Step 1
with the reduced problem.

a. Apply Vogel’s method to the data of Exercise 8.1.

b. Apply Vogel’s method to the data of Exercise 8.8.

c. Apply Vogel’s method to the data of Exercise 8.17.

Show that Vogel’s approximation method leads to a basic feasible solution,
including any required zero cells.

The following is the matrix minimum method for obtaining a reasonably

good starting feasible solution.

Step 0. Begin with all cells unallocated.

Step 1. Identify the lowest-cost unallocated cell in the matrix and allocate
as much as possible to this cell.

Step 2. Reduce the corresponding supply and demand, dropping the one
going to zero, and repeat Step 1 until all supplies and demands are
allocated.

a. Show that the procedure produces a basic feasible solution.

b. Apply the procedure to Exercises 8.1 and 8.8.

8.30 Can the dual simplex method be applied to transportation problems

8.31

directly on the transportation tableau?

Consider the following capacitated transportation problem.

m n
Minimize 2 2 ¢;x;

i=1j=1

n
Subject to zx,.j: a i=12...,m
j=1

j=1...,n
Specialize the bounded simplex method of Chapter 5 to solve the foregoing
transportation problem. Describe all details: finding a starting basic feasi-

ble solution, computing z; — ¢, and the dual variables, the entering cell,
and the leaving cell.
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8.32

8.33

8.34

8.35

8.36

8.37

THE TRANSPORTATION AND ASSIGNMENT PROBLEMS

Consider Exercise 1.15.

a. Formulate the problem.

b. Solve the problem by the capacitated transportation algorithm that you
developed in Exercise 8.31 above.

c. Suppose that the third manufacturing company lost one of its other
contracts so that 700 tons are available to the furniture company. What
is the optimal solution?

Use the theorems of duality to prove that the minimum number of lines to
cover all zeros in a reduced assignment matrix equals the maximum number
of independent zero cells.

(Hint. Consider the problem:

Maximize D, zxij
i

Subject to D, a;x; <1

;=0

x,-j>O

where a; = e; + e,,; and the sum is taken only over zero cells of the
reduced matrix. Take the dual of this linear program and examine its
properties.)

Show that each new dual solution in the assignment procedure specified in
Section 8.8 is feasible.

Compare the Hungarian method for the assignment problem with the
primal-dual method applied to the assignment problem.

Apply the Hungarian method to the following assignment problem.

Cost matrix

W A W N

AN | O] =] -
N =N WO N
AWl N | W
NN == A
Wl — N W] W

Describe a procedure suitable for computer coding that will find, directly
on the reduced matrix, the maximum number of independent zero cells in
the reduced matrix (or equivalently the minimum number of lines to cover
all zeros). The reader may wish to study Exercise 11.15.
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8.38

8.39

8.40

8.41

8.42

Sally, Susan, and Sandra will go on a date with Bob, Bill, and Ben. Sally
likes Bill twice as much as Bob and three times as much as Ben. Susan likes
Bill three times as much as Bob and five times as much as Ben (Ben is a
loser!). Sandra likes Bob about as much as Bill but likes them both about
five times as much as Ben. How should the couples pair up so that in the
aggregate the girls are as happy as possible? If one girl is willing to stay
home, which one should it be? Which boy will lose out? (You guessed it!)

A carpenter, plumber, and engineer are available to perform certain tasks.
Each person can perform only one task in the allotted time. There are four
tasks available to be done. The inefficiency matrix for man i assigned to
task ; is as follows.

SOLDERING FRAMING DRAFTING WIRING

Carpenter 4 2 5 3
Plumber 1 3 4 2
Engineer 3 3 1 5

Which man should be assigned to which job? (Hint. Create a dummy man.)
Which job will go unfinished? Now suppose that each man can perform up
to two tasks. What should they do?

Given the optimal reduced matrix for an assignment problem, show how to
construct the basic tree for the associated linear program. Demonstrate by
the following reduced matrix.

— ool N

S| Of —=| W
NN RO
— | A O] A

(Hint. To the zero cells associated with the solution add an additional
number of zero cells to create a tree or trees on the matrix. Add the
required number of appropriate artificials.)

Show how one can construct the simplex tableau associated with the
optimal assignment matrix.

Given a transshipment problem, the following procedure is suggested to
convert it into a transportation problem. First the nodes are classified into
the following mutually exclusive categories.

1. Pure source: a node that only ships.
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2. Pure sink: a node that only receives.

3. Transshipment node: a node that may ship and receive.

A transportation tableau is constructed as follows. The origins are the pure
sources and the transshipment nodes. The availability at each transship-
ment node i is replaced by a; + B, where q; is the maximum of zero and
the net out of node i, and B is a buffer stock to be specified later. The
destinations are the pure sinks and the transshipment nodes. The require-
ment at a transshipment node i is b, + B, where b, is the maximum of 0
and the net into node i. If there is no direct link from node i to node j, then
c; 1s equal to M, where M is a large positive number. Also c¢; = 0 for

i o
transshipment nodes. Finally, B is a large positive number, say

B =3.q

a. Using the foregoing instructions, form the transportation tableau corre-
sponding to the following transshipment problem, where the availability
at nodes 1, 2, and 3 are respectively 10, 20, and 15, and the requirement
at nodes 5, 6, and 7 are respectively 10, 25, and 10.

b. Solve the problem using the transportation algorithm. Interpret the
solution. What is the interpretation of the buffer B?

c. Show that the procedure outlined in this exercise is valid in general.

d. Convert the problem into a transportation problem using the least cost
method discussed in Section 8.9. Apply the transportation algorithm and
interpret your solution.

8.43 If it is known in advance that a certain variable will be positive in any

optimal solution to a transportation problem, what simplifications can
result in the solution method?
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NOTES AND REFERENCES

L.

Hitchcock [240] is credited with the first formulation and discussion of a
transportation model. Dantzig [89] adapted his simplex method to solve
transportation problems. Charnes and Cooper [62] developed an intuitive
presentation of Dantzig’s procedure through what is called the “stepping
stone” method. In this chapter we label this the “cycle method.”

Koopmans [290] was the first to note the relationship between basic solutions
in the transportation problem and the tree structure of a graph. Other good
discussions are provided by Dantzig [97] and Ellis Johnson [266].

The Hungarian method for the assignment problem was developed by Kuhn
[294]. His work lead to the general primal-dual method for linear programs in
the following year. :



NINE: MINIMAL COST
NETWORK FLOWS

In this chapter we generalize the concepts of the previous chapter, on trans-
portation problems, to the more comprehensive class of network flow problems.
Again, we shall find that the class of network flow problems possesses an
important special structure that permits the simplification of the (primal) sim-
plex procedure to a point where it may be applied directly on the network
without the need of a simplex tableau.

9.1 THE MINIMAL COST NETWORK FLOW PROBLEM

Consider a directed network G, consisting of a finite set of nodes (points)
N=1{1,2" --,m} and a set of directed arcs (lines) S = {(i,)), (k1)

*+ - (s, 1)} joining pairs of nodes in N. Arc (i, ) is said to be incident with
nodes / and j and is directed from node i/ to node j. We shall assume that the
network has m nodes and n arcs. Figure 9.1 presents a network with 4 nodes and
7 arcs.

404
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With each node i in G we associate a number b, that is the available supply of
an item (if b, > 0) or the required demand for the item (if b, < 0). Nodes with
b, > 0 are sometimes called sources, and nodes with b, < 0 are sometimes called
sinks. If b, = 0, then none of the item is available at node i and none is required;
in this case node i is sometimes called an intermediate (or transshipment) node.
Associated with each arc (i, /) we let x; be the amount of flow on the arc (we
assume 0 < x;) and ¢; be the unit shipping cost along the arc.

We shall assume that the total supply equals the total demand within the
network, that is, 27,5, = 0. If this is not the case, that is, 27,5, > 0, then add
a dummy demand node, m + 1, with b,,,, = —37_ b, and arcs with zero cost
from each supply node to the new node.

The minimal cost network flow problem may be stated as follows. Ship the
available supply through the network to satisfy demand at minimal cost.
Mathematically, this problem becomes (where summations are taken over exist-
ing arcs)

Figure 9.1. Example of a network.

m m
Minimize >, >, Xy

i=1 =1

1

Subjectto X x; — X x;=b i=1...,m 9.1
j=1 k=1

xij>0 Lhj=1...,m

Constraints (9.1) are called the flow conservation or Kirchhoff equations and
indicate that the flow may be neither created nor destroyed in the network. In
the conservation equations, 2;.'; 1X; Tepresents the total flow out of node i while
Z7_x,; indicates the total flow into node i. These equations require that the net
flow out of node i, 27 ,x; — Z7_,x,;, should equal b, If b, <0, then there
should be more flow into i than out of 7.

The minimal cost flow problem might arise in a logistics network where men
and materials are being moved between various points in the world. It may be
associated with the movement of locomotives between points in a railroad
network to satisfy power for trains at least travel cost. Minimal cost network
flow problems occur in the design and analysis of communication systems, oil
pipeline systems, tanker scheduling problems, and a variety of other areas.
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Clearly, the minimal cost flow problem is a linear program and can be solved
in any one of several ways. One way is to apply the ordinary primal simplex
algorithm to the problem. What we seek in this chapter is a simplification of the
simplex method so that it can be applied directly on the network without the
need of a simplex tableau.

The results of this chapter are a direct extension of those in the transportation
chapter, as transportation problems are a special case of network flows. To place
the constraints of a transportation problem in the form of the constraints
specified by Equations (9.1) we multiply each destination constraint of the
transportation problem by — 1.

Paths, Chains, Circuits, Cycles, and Trees

For clarity of notation we shall provide a brief discussion of four concepts that
appear throughout this and later chapters.
A path (from node i, to i,) is a sequence of arcs P = {(ig, i}), (i}, i), ({,_1,1,)}
., in which the initial node of each arc is the same as the terminal node
of the preceding arc in the sequence. Thus each arc in the path is directed
“toward” i, and “away from” iy. A chain is a similar structure to a path except
that not all arcs are necessarily directed toward node i,. Figure 9.2q illustrates a

L

(a) A path (b} A chain

X

(d) A cycle

i

{c) A circuit

&

(e} A tree

Figure 9.2 Paths, chains, circuits, cycles, and trees.
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path while Figure 9.2b presents a chain. A circuit is a path in which i, = i,. Thus
a circuit is a closed path. A cycle is a closed chain. Figures 9.2c and d depict
circuits and cycles. Every path is a chain but not vice versa. Every circuit is a
cycle but not conversely. Throughout this chapter we shall assume that G is
connected; that is, that a chain exists from every node to every other node in G.
A tree is a connected graph with no cycles. A spanning tree is a tree that includes
every node of the graph. Figure 9.2¢ illustrates a spanning tree. Figures 9.2¢ and
b are also examples of spanning trees; Figures 9.2¢ and 4 are not trees.
Additional properties of trees are given in Exercise 9.1,

9.2 PROPERTIES OF THE A MATRIX

Consider the coefficient matrix A, associated with the constraint set (9.1). The
matrix A has one row for each node of the network and one column for each
arc. Each column of A contains exactly two nonzero coefficients: a “+1” and a
“—1.” The column associated with arc (i, j) contains a “+1” in row i, a “—1”
in row j, and a zero elsewhere. Thus the columns of A are given by

a, =€ —¢€

where e, and e; are unit vectors in £™, with I’s in the ith and jth positions
respectively. The A matrix is called the node-arc incidence matrix for the graph.
The A matrix for the network of Figure 9.1 is

(1L,2) (,b3) (2,3) (2.9 (3.2) (3,9 4]

1 1 o o o 0 -1]1
Ac|—-1 0 1 1 -1 0 0|2
o -1 -1 o 1 1 o0]3
o o o0 -1 o0 -1 1]4

Rank of the A Matrix

Clearly the A matrix does not have full rank since the sum of its rows is the zero
vector. To show that A has rank m — | we need only select an (m — 1) X (m —
1) submatrix from A that is nonsingular.

Let T be any spanning tree in the network G. Tree T consists of the m nodes
of G together with m — 1 arcs of G that do not form a cycle (see Exercise 9.1).
Consider the m X (m — 1) submatrix Ay of A associated with the nodes and
arcs in T. Since m > 2, T has at least one end, that is, a node k with exactly one
arc incident with it. In such a case the kth row of A, contains a single nonzero
entry. Permute the rows and columns of A, so that this nonzero entry is in the
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Figure 9.3. Reduction of T to 7.

first row and first column. Then A; becomes

A = ) O
T P| Ap
Delete the first row and column of A, and consider the matrix A, which is
(m — 1) X (m — 2). Correspondingly obtain the graph 7’ from T by removing
node k and the incident arc (see Figure 9.3). Here T’ is also a tree. It must
contain at least one end, say node /. Permuting the rows and columns of A,. so

that the single nonzero entry in row / is in the first row and column, we may
write A, as

*1 0|0
AT = Pl i l 0
| ) q| A

We can continue in this manner exactly m — 1 times, after which all m — 1
columns of Ay are fixed. Deleting the remaining bottom row of A, we have an
(m — 1) X (m — 1) matrix that is lower triangular with nonzero diagonal ele-
ments and therefore nonsingular. Thus the rank of A is m — 1.

If we select columns (1, 3), (2, 3), and (3, 4) from the node-arc incidence
matrix for the network of Figure 9.1, we get the following lower triangular
matrix after discarding row 4:

(1,3) (2,3) (3, 4)

0 0|1
1 0|2
-1 3

1

—_— O =
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The corresponding spanning tree is given as follows.

The Artificial Variable

Recall that the simplex method always starts with a full rank constraint matrix.
We demonstrated above that the rank of A is m — 1. Therefore an artificial
variable is required so that the rank of the new matrix is m. Introducing an
artificial variable corresponding to node m (any other node will do) leads to the
constraint matrix (A, e,,).

Any basic solution must contain m linearly independent columns, and hence
the artificial variable must appear in every basic solution. If we liberalize our
definition of an arc, then the new column can be viewed as an arc beginning at
node m and terminating in space (see Figure 9.4). This one ended arc is called a
root arc.

Figure 9.4. A generalized graph G.

Characterization of a Basic Matrix

We determined the rank of A by examining any submatrix associated with a
spanning tree. This also demonstrates that a spanning tree together with a single
artificial variable is a basis for the A matrix. What we have not yet shown is the
converse; that is, any basis is also a spanning tree together with an artificial
variable.

Let B be an m X m matrix formed by choosing m — 1 linearly independent
columns of A together with the artificial column so that B is a basis matrix.
Consider the graph G, associated with all the nodes in the original graph
together with the arcs in B (leaving the artificial variable aside). Thus G, can
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contain no cycles. By contradiction, suppose that G, contains a cycle C. (See
Figure 9.5.) Select some arc (i, j) in the cycle and assign the cycle an orientation
in the direction of that arc. Then, for each column of B associated with an arc in
the cycle, assign a coefficient of + 1 if the arc is in the direction of orientation of

Figure 9.5. lllustration of a linearly dependent set of columns.

the cycle and —1 otherwise. Applying these coefficients to the respective
columns in B, we find that the weighted sum of these columns is the zero vector.

In Figure 9.5 we have

a, —a,—a,ta, +a, + - =(e—¢)— (e —e)— (e —¢)
+(e—e) (e, —e)+ =0

Thus they could not have been linearly independent. This contradiction shows
that G, contains no cycles. But G, contains m nodes and m — 1 arcs. Hence G,

is a tree (why?).

Figure 9.6. A basis subgraph is a rooted spanning tree.

To summarize, we have shown that each basis consists of the root together
with a spanning tree (see Figure 9.6), and conversely. Thus we have the

following theorem.
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Theorem 1

A basis for the minimal cost network flow problem is characterized by a rooted
spanning tree.

Triangularity, Integrality and Total Unimedularity

Every basis corresponds to a rooted spanning tree and every rooted spanning
tree is (lower) triangular; thus every basis is triangular. From Chapter 8 we see
that a triangular basis matrix B permits a simple and efficient method for
solving for the values of the variables. We shall shortly exploit this fact to solve
efficiently for the values of the basic variables directly on the network. Triangu-
larity of the basis matrix also permits efficient, graphic determination of the dual
variables.

Recall that B is triangular and each of its entries is =1 or 0 (its diagonal
entries are *+1). Hence each of the basic variables will take on integral values
provided that the b’s are all integers.

Finally, as with the transportation problem, it is possible to show that the
constraint matrix for a network flow problem is totally unimodular. As the proof
is similar, we ask the reader to do this in Exercise 9.2. Since A is totally
unimodular, it follows that y, = B_la,.j is a vector of zeros or +1’s. We shall
shortly demonstrate this fact constructively.

9.3 REPRESENTATION OF A NONBASIC VECTOR IN TERMS OF THE BASIC VECTORS

Consider the basis subgraph G, corresponding to a rooted spanning tree; and
select any nonbasic arc (r, s). Since Gy is a tree, we know that there is a unique
chain between nodes r and s. This chain together with the nonbasic arc (r, s)
constitutes a cycle. (See Figure 9.7.) Assigning the cycle an orientation con-
sistent with (r, s5), we have

a, —a, +a,+- - +a,
=(e,—e)—(e,—¢)t(e,—e)+ - +(e,—¢)=0
or
a,=a,;,—a,+- - —a,

This development leads to the following simple procedure for representing
any nonbasic column in terms of the basic columns. First the unique cycle
formed by joining the nonbasic arc to the basis subgraph is determined. The
cycle is then given an orientation consistent with the nonbasic variable. A basic
column in the cycle along its orientation receives a coefficient of —1 in the
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A

Orientation

Figure 9.7. Cycle formed by adding a nonbasic arc to the basis tree.

representation, and a basic column in the cycle opposite to its orientation
receives a coefficient of +1 in the representation. Other basic columns receive
zero coefficients.

As an example consider the subgraph of Figure 9.6, which is a basis for the
network of Figure 9.4. Suppose that we seek the representation of the nonbasic
are (1, 2). Using the foregoing rule, we get

App = A3 — Ay

= (e — &) — (e; — &)
=€ "€

Note that the coefficients in the representation of the nonbasic column a,, in
terms of the basic columns give rise to the vector y,, [that is, the entries in the
simplex tableau under the (r,s) column]. Since the artificial column never
appears in the representation for any other column and since the artificial
variable always remains basic at value zero, we may select any value for the
associated cost coefficient, say ¢, = 0.
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9.4 THE SIMPLEX METHOD FOR NETWORK FLOW PROBLEMS

The general steps of the simplex method are as follows. First, find a starting
basic feasible solution. Next compute z; — ¢; for each nonbasic variable x;. If
optimality is achieved, stop; otherwise select the entering column. If optimality
is not achieved, determine the exit (blocking) column and pivot. The following
paragraphs present a discussion of each of these operations applied to network
flow problems. For the moment we shall postpone the difficulties associated
with identifying a feasible basis (that is, phase I of the simplex method) and
assume that one is at hand. To fix ideas we shall apply each of the foregoing
steps to the problem presented in Figure 9.8,

bs = —4

Figure 9.8. An example network flow problem.

Computing the Values of the Basic Variables

Adding the artificial arc to node 5, suppose that we select the feasible basis
given by the subgraph in Figure 9.9. The basic system of equations Bxy; = b to
be solved is

1 0 0 0 01| *i5 2
0 1 0 0 0 || X2 5
0o -1 1 0 0[] X3¢ |= 1
0 0 -1 1 0 || *as -4
-1 0 0 -1 1 Xs -4

where x; is the artificial variable associated with node 5.
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Figure 9.9. A basic subgraph.

Taking advantage of the lower triangular structure of the basis matrix, we
may iteratively solve for the basic variables. From the top equation, x,5 = 2.
From the second equation, x,; = 5. From the third equation, x;, = 1 + x,; = 6.
Next, x,5 = —4 + x5, = 2. Finally, x;= —4 + x5 + x,5 = 0 and thus the
basis is feasible. These same computations can be made directly on the graph in
Figure 9.9 as follows.

Examining node 1 in Figure 9.9, we see that it is an end of the basic tree, that
is, a node with only one basic arc incident to it. Hence the corresponding basic
equation contains only one variable, and the value of that variable can be

readily obtained. In this case arc (1, 5) points out of node 1 and thus x5 has a
+1in row 1. Thus x,5 = b, or x5 = 2.

x5 = by
by =2 - %15= 2

Examining node 2, we see that it is an end and hence x,; can be computed
similiarly:

b,

1]
o

. X23 = b,
2 -~ X3 =

Next, notice that node 3 has all of its incident arc variables assigned values
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except one. Thus we can use the conservation equation for node 3 to solve for
the remaining variable.

¥3=5
X3 — ¥m=1
——
X34 =6
X34
by =1
We can now solve for x,s:
=6
T by = —4 Xg5 — X34 = —4
e Xgg =
Xa5
Finally we solve for x..
X5 = 2
e S
by = -4 X5 — X5 ~ %5 = —4

x5 =0

The process of obtaining the basic solution proceeds from the ends of the tree
toward the root (see Figure 9.10). As we shall see later, the process of obtaining
the dual variables is just reversed.

End End

Figure 9.10. Computing the valves of the basic
variables.

Computing z, — ¢,

Given a basic subgraph, compute z, — ¢, for each nonbasic variable x;, and
either stop or proceed by introducing a nonbasic variable with a positive
z; — ¢;. As with the transportation problem, we have two methods of making
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this computation: one involving cycles and one involving the direct computation
of the dual variables. We treat the computation of z; — ¢; with cycles first.
Recall that z; — ¢; = ¢czy; — ¢;. In Section 9.3 we discussed how to compute
the vector y, that represents the nonbasic arc (i, j) in terms of the basic arcs. In
particular, to compute z; we first determine the cycle obtained by joining arc
(i, /) to the basic subgraph and then give the cycle an orientation consistent with
arc (7, /). Then z; is the sum of the costs of the basic arcs in the cycle opposite to
the orientation minus the sum of the costs of the basic arcs in the cycle along the
orientation. From this, z; — ¢; can be computed. As an example, referring to

i
Figure 9.9, we have
Iy == TGt o5 —e3=0-3+2-(=-2)=1

A second method of computing z; — ¢, for a nonbasic arc is to compute the
dual vector, w, and determine z; — ¢; through the expression z; — ¢, = wa;; —
c;- In order to compute w, the system wB = ¢, must be solved. For the basis
subgraph of Figure 9.9 we have

[wi, wy, ws, wy, w5] = [2, —4,0,3, O]

(= =]
—_—_—0 O O
— oo OO

—_o OO =
I
cCOo—~r—o

I

Using the last w equation, the one associated with the root, we get w, = 0. We
may now proceed away from the root in the following fashion,

Weg—ws = Cus=>w,;=3+0=3
W3 — Wy, = C3pu=>wy=0+3=3
Wy =Wy = (p=w,=—4+3= -1
W— Wy = cs=w=2+0=2

We start with the dual variable for the root node at zero value, then proceed
away from the root toward the ends of the tree using the relationship that
w; — w; = c; along the basic arcs in the tree.

While the process of computing primal variables consisted of working from
the ends of the basis tree inward toward the root (see Figure 9.10), the process of
computing dual variables consists of working from the root of the basis tree
outward toward the ends (see Figure 9.11).

To compute z;, — ¢, for the nonbasic arc (i, j) we apply the definition

Z; —c; =wa; — ¢y

w(e;, — ej) - ¢y

WM TG
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End End

Figure 9.11. Computing the valves of the

Root dual variables.

Thus the z; — ¢; can be conveniently computed on the network. Notice also
that by requiring that w, — w; = ¢; along basic arcs, we are actually requiring
that z; — ¢; = 0 for basic variables.

Using the values of the dual variables obtained above, we summarize below .
the value of z; — ¢, for each nonbasic variable x;;.

w, = —1

Determining the Exit Column and Pivoting

When we applied the cycle method to compute z; — ¢; for a nonbasic arc, we
essentially identified the pivot process. In the foregoing example z;3 — ¢;3 > 0
and so x,; is a candidate to enter the basis. What we must do is proceed to
increase x,;, adjust the basic variables to maintain feasibility with respect to the
right-hand side, and determine the first basic variable to reach zero. This
blocking basic variable is the exit variable and leaves the basis.

Consider the basic tree together with arc (1, 3). If we increase x,; by A, then
to provide balance we must increase x,, by 4, increase x,s by A, and finally
decrease x5 by A.
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This process of adjustment can be thought of as sending an additional amount
of flow A around the unique cycle created when the nonbasic arc is added to the
basic tree. Sending flow against the direction of an arc corresponds to decreas-
ing flow on the arc.

As x,; increases by A, the only basic variable to decrease is x,5 and its new
value is x5 = 2 — A. Thus the critical value of A is equal to 2, at which instant
x,5 drops to zero and leaves the basis. All of the other basic variables are
agj usted appropriately in value and the new basic solution is given as follows.

We leave it as an exercise to the reader to show that determining the exiting
variable and adjusting the values of the basic variables accordingly as described
above is equivalent to performing the usual minimum ratio test and pivoting.

9.5 AN EXAMPLE OF THE NETWORK SIMPLEX METHOD

Consider the network of Figure 9.12. In Figure 9.13 we given the complete
solution of this minimal cost network flow problem. The exiting variable is
denoted by * in the figure.
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Figure 9.12. An example network.

Iteration Primal  solution Dual solution ejj — €; Pivot

X3 =4, Xy = 2, x4 =5,a||otherx'i'} =0,2%*= —

Figure 9.13. The solution to Figure 9.12.

9.6 FINDING AN INITIAL BASIC FEASIBLE SOLUTION

In the previous sections we have assumed that a starting basic feasible solution
was at hand. We now give a method of finding one. Consider the A matrix
without the additional artificial column. Suppose that we add an artificial
column for every row of A, the ith artificial column being +e, depending on the
sign of b, (that is, +e, if b, > 0; —e, otherwise). Also, let us add a redundant
row given by the negative of the sum of the rows of the “extended” A matrix.
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The problem then becomes

*+1

I+

I+

Since each column of this “new” A matrix has exactly one + 1 and one —1,
we may view it as a node-arc incidence matrix of a graph. This “new” graph has
all of the same nodes and arcs as the original graph. In addition, it has a new
node and m new arcs—one arc between each original node and the new node. A
feasible basis for this new problem is given by the m artificial variables (arcs)
plus an additional artificial variable (root) for the new row (m + 1).

Beginning with the artificial basis we may proceed to apply the two-phase
method or the big-M method, using appropriate costs in each case, until
feasibility is achieved. At that time we may drop all of the artificial arcs
(variables) and node (m + 1), and replace these by a single artificial variable
(root) at node m.

To illustrate the technique, consider the example problem of Section 9.5.
After adding appropriate artificial columns and creating the new row, we get the
following,.

X2 X133 X3 Xaq X3z X3¢ X4 Xp Xz X3 X4 Xs b
1 1 1 0 0 0 0 -1 1 0 0 0 0 +4
21 -1 0 1 1 -1 0 0 0 1 0 0 0 +2
3 0 -1 -1 0 1 1 0 0 0 -1 0, 0 -1
4 0 0 0 —1 0 —1 1 0 0 0 -1 0 -5
5 0 0 0 0 0 0 0| -1 —1 1 1 1 0

Selecting the phase I method, the artificial variables x|, x,, x5, and x, will have
cost coefficients of 1 while all other variables have zero cost coefficients. This
leads to the associated network flow problem of Figure 9.14 where the cost
coefficient of the root x; is zero. With this feasible basis at hand we proceed to
solve the phase I problem, using the procedures developed in this chapter.

9.7 NETWORK FLOWS WITH LOWER AND UPPER BOUNDS

It is simple and straightforward to make the transition from the ordinary
simplex method for network flow problems to the lower-upper bound simplex
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The phase 1 problem A feasible basis

Figure 9.14. The phase | network flow problem and a starting feasible basis.

method for network flow problems. We briefly review the essential changes
required to effect such an extension to the lower-upper bound method.

Getting Started

The method of Section 9.6 carries over directly for problems with lower and
upper bounds. In this case, since all “real” arcs start out nonbasic during phase I
(or at the outset of the big-M method), we set all of these arc flow variables at
one or other of their bounds and compute the effect on the b values according to

5i=bi_2xy+2xki
j k

Using the vector b, we establish the “direction” (sign) of the artificial columns to
be added and begin phase 1.

Computing the Values of the Basic Variables

Whether in phase I or phase I, or during the big-M procedure, after adjusting
the b vector to b to reflect the values of the nonbasic variables (arcs), we proceed
in the same manner as before to compute the values of the basic flow variables.

Computing the Dual Variables and the z; — ¢;’s

Lower and upper bounds have no effect on the computation of the dual
variables and on the computation of the z, — cy’s. Note, however, that in the
presence of lower and upper bounds the optimality criteria are

Xy =U; = z,-j—c,-j>O
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and

x,.j=l,.j = z,.j—c,-j<0

These are easy to check and we can readily determine whether some nonbasic
variable x; should be increased or decreased if optimality is not achieved.

Determining the Exit Column and Piveting

Once the entering column is selected, it is again an easy task to select the exit
column and pivot. We add the entering nonbasic arc, regardless of whether the
variable is increasing or decreasing, to the basis tree and determine the unique
cycle formed. Then, if the entering variable is increasing, we send an amount A
around the cycle in the direction of the entering variable. If the entering variable
is decreasing, we send an amount A around the cycle against the direction of the
entering variable. Figure 9.15 illustrates these two possibilities. To compute the
critical value of A we check those basic variables increasing as well as those
decreasing, and the possibility that x; may reach its other bound. If the last
possibility occurs, x; remains nonbasic (at its other bound) and all basic
variables along the cycle are adjusted accordingly. Otherwise, the nonbasic
variable enters and some basic variable exists at one or other of its bounds, and
all variables along the cycle are adjusted accordingly.

(a) % increasing (b} x;; decreasing

Figure 9.15. Twe cases for entering are: (a) x; increasing. (b) x; decreasing.

An Example of the Network Simplex Method in the Presence of Lower and Upper
Bounds

Consider the network of Figure 9.16. We present, in Figure 9.17, the complete
solution to that network. We have identified a starting basic feasible solution,

- k .
thus omitting phase I. The notation “| — ™ represents a nonbasic arc at value k.
The exiting variable is noted by *.
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by =5 b, =0

(0, 3, 4} 0, 4, 2)=<—{(l, u, c)

by =3 by = -8

Figure 9.16. An example network with lower and upper bounds.

Iteration Primal solution Dual solution Zij —Cj Pivot

Z80%
T

X' = 3 x5 = 2, x0 = 4, %"

Figure 9.17. The solution to Figure 9.16.

A Labeling Algorithm for the Network Simplex Method

For either hand or computer calculations there are simple and convenient ways
to maintain the information required to solve a minimal cost flow problem with
lower and upper bounds by the network simplex method. Suppose that we
associate with each node j € N a label, L(j) = (%, A)), containing two pieces
of information. The second entry, A, in L(j) indicates the current estimate for
the value of the flow change.The first entry, *+ i, in L(j) indicates the previous
node in the cycle along which flow will be changed. If the first entry in L(j) is
+ i, then flow will be added to arc (i, j); otherwise, if the first entry is — i, then
flow will be subtracted from arc (J, {). The labeling algorithm becomes the
following,



424 MINIMAL COST NETWORK FLOWS
INITIALIZATION STEP

Select a basic feasible solution and set the x;’s to their required values in the
solution. If a basic feasible solution is not readily available, utilize artificial
variables.

MAIN STEP

1. Set w,, = 0. If w, has been computed, w; has not been computed, and arc
(i, )) is a basic arc, then set w; = w; — ¢;. If w;, has been computed, w, has
not been computed, and arc (j, i) is a basic arc, then set w, = w; + Cji-
Repeat step 1 until all w;’s have been computed.

2. If each nonbasic variable has Xy = I,.j and z; — ¢y < 0or x; = u; and

z; — ¢; > 0, stop; the optimal solution is obtained. Otherwise, erase any
labels. If z,, —¢,, <0 and x,, = u,, set s =p,t =g, (g h) =(p, 9),
and L(s) = (—t, x,, — L), orif z, —¢,, >0and x,, = [,
t=p, (g h)=(p, g and L(s) = (+1,u, — x,.).

3a. If node i has a label, node j has no label, and arc (i,)) is basic, set
L)) =(+i,4) where A; = Minimum{A,, Uy — X5} If w; — x; < 4, set
(g k) = (i,)).

b. If node i has a label, node j has no label, and arc (J, /) is basic, set
L(j) = (—i, A) where A; = Minimum{A,, x; — [;}. If x; — [, <A, set
(g h) =,

c. Repeat step 3 until node ¢ is labeled.

4. Let A = A,. If the first entry in L(#) is + &, then add A to x,; otherwise, if
the first entry in L(#) is — k, subtract A from x,, . Backtrack to node k£ and
repeat the process until node ¢ is reached in the backtrack process.

set s = q,

5. If (g, h) = (p, g), go to step 2. Otherwise add (p, q) to the basis, remove
(g, h) from the basis, and go to step 1.

An Example of the Labeling Algorithm

Since the initialization and computation of dual variables are the same as
previously described, we shall illustrate the labeling algorithm in performing the
first pivot on the network of Figure 9.16. For the initial basic feasible solution in
iteration 1 of Figure 9.17, we have z;; — ¢;3 = —2 and x;3 = u;, and so x;
should enter the basis (by decreasing).
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The sequence of operations of the labeling algorithm is as follows:

l.Ls=1Lt=3,(gh=(,3),L0)=(-33)
2. L(2)=(+13)

3.LG3) = (=2 1), (g h) =32

4 A=1

5. L13)= -2 = xj=x3,—A=1

6. Li(2)=+1 = xj,=x,+A=3
7.L[(1)=-3 = xj3=x,—-A=2

8. (g8 h)=(3,2) = x5, leaves

Having completed the pivot, we proceed to compute the new values of the
dual variables and locate the next entering variable.

9.8 THE SIMPLEX TABLEAU ASSOCIATED WITH A NETWORK FLOW PROBLEM

In Section 9.3 we showed how to construct the column y,; for any nonbasic arc
(i, j). Elsewhere, we have seen how to obtain the values of the basic variables
and the z; — ¢;’s. Thus it is possible to construct the entire updated tableau by
examining the basis subgraph at the corresponding iteration.

As an example, consider the final (optimal) basis in Figure 9.13 for the
network flow problem of Figure 9.12. The simplex tableau for this basis is given
in Table 9.1, where x, denotes the artificial variable at node 4. To illustrate how
a particular nonbasic column is obtained, consider x;,. We have already indi-
cated how z,, — ¢;, = —6 may be computed. To produce the other entries in
the column we consider the unique chain formed by adding (1, 2) to the basic
subgraph. The unique chain in the basis tree is C = {(1, 3), (2, 3)}. To reorient
this into a path from 1 to 2 we multiply column x,; by 1 and x,; by —1; thus the

Table 9.1 The Simplex Tableau Associated with the Final Basis in
Figure 9.13

Z Xy X3 X3 Xpq X3 X3g X4 X4 RHS

z [1]-6 0 0-2 -5 0 -5 0]-7
xs/0f 1 1 0o 0 ©0 0 -1 0] 4
X |0|-1 0 1 1 -1 0 0 0] 2
x|0| 0 0 0o 1 o 1 -1 ol 5
|0l o o0 o 0o o0 0 0 1| 0
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coefficients in the tableau. As a check we see that

a3 — 2; = (e —€;) — (e; — &)

=€ — e =a;

as required. The other columns of the simplex tableau are obtained in a similiar
manner.

EXERCISES

9.1 Let G be a connected graph.
a. Show that G contains at least one tree.
b. Let T be a tree in G. If the number of nodes in G is at least 2, show that
T has at least two ends.
c. Show that if an end of the tree and its incident arc are removed, the
resulting graph is a tree.
d. Show that a graph with m nodes, m — 1 arcs, and no cycles is a tree.

9.2 Show that the constraint matrix for the minimal cost flow problem is
totally unimodular. (Hint. Use an analogous reasoning to that for the
transportation problem.)

9.3 Can a basis tree ever have two roots (if they were available)?

(Hint. Show that the two root arcs and the chain between them form a
dependent set.)

9.4 Solve the following network flow problem using x5, X,3, X3, as part of a
starting basis.
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by = =2 by = =2

9.5 Apply the two-phase method and the big M method to the network of
Exercise 9.4 to get an optimal solution.

9.6 Indicate how the minimal cost flow problem of Section 9.1 can be trans-
formed into a transportation problem. Illustrate by the following network.
(Hint. Locate the minimal cost path from each supply point to each
demand point.)

9.7 Suppose, in the flow problem of Section 9.1, that we locate a path from a
supply point to a demand point. Putting as much flow as possible on the
path, decreasing the corresponding supply and demand, we repeat the
whole process until all supplies are allocated (and demands satisfied).

a. Will the feasible solution obtained be basic?
b. If not, how can the solution obtained be made basic?

9.8 Solve the following network flow problem.
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9.9 Solve the following network flow problem by the two-phase method.
3
4 e

Cij

2

) ON

“oa

-2

9.10 Solve the following network flow problem.

(Note. for this choice of b’s we have found the shortest path node 1 to
node 4.)

9.11 Show that if the cost coefficient for the artificial variable (root) is increased
by an amount 8, then every dual variable will change by an amount 6.
Thus, show that the value of the artificial cost coefficient does not matter
in the computation of z; — ¢;.

9.12 Suppose that the following figure represents a railroad network. The
numbers beside each arc represent the time it takes to traverse the arc. Two
locomotives are stationed at point 2 and one locomotive at point 1. Three
locomotives are needed at point 6. Find the minimum total time solution to
get the power required to point 6.
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9.13 Solve the following flow problem. (Note: Zb, # 0.)

by=3 b= -1

9.14 Consider the following network.
Node 1 has 5 units available.
Node 3 has 2 units available.
Node 2 needs 4 units.
Node 4 needs 1 unit.
a. Set up the linear program for this problem.
b. Solve the problem by the network simplex method.

(u, c)

9.16 Starting with x,,, x,,, and x;, as part of a basis where all other x,’s are
nonbasic at their lower bound, solve the following network flow problem.
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9.17
9.18

9.19

MINIMAL COST NETWORK FLOWS

Apply the two-phase method and the big-M method to Exercise 9.16.

A company has requirements for a certain type of machine during the next

N months of D, per month, i = 1, 2, ..., N. Those requirements must be

met, although excesses are permitted to any desirable extent. No machines

are available at the beginning of month 1. At the beginning of each of the

N months, the company may purchase machines. The machines are de-

livered immediately; that is, there is no lead time. The company may

purchase machines that last one month, two months, and so on on up to M

months. The number of months a machine is usable is called its service life.

The cost of a machine depends on the month in which it is bought and on

its service life. In particular, a machine bought in the ith month with

service life of & months costs ¢, dollars. Naturally a machine that lasts
longer costs more, so that ¢, < ¢, forp <s.

a. Formulate a mathematical statement for this problem, assuming that the
objective is to minimize the sum of the monthly costs. Let x, be the
number of machines bought in month ; with service life of & months.

b. Formulate the problem as a flow problem. Use N =3 and M = 2.
Summarize your work on a network. (Hint. Consider elementary row
operations to obtain a 1 and — 1 in every column.)

Consider the following network flow problem.
In addition:
Node 1 can produce an unlimited supply of units at no cost.
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9.20

9.21

9.22

9.23

9.24

9.25

9.26

Node 2 can produce up to 3 units at a cost of 4 per unit.
Node 3 needs 2 units.

Node 4 needs 5 units.

Find the optimal shipping policy.

It is often necessary (particularly in integer programs) to generate a row of
the simplex tableau. Indicate how this can easily be done for a network
flow problem. Illustrate by generating the row associated with x,; in the
starting simplex tableau for Exercise 9.4. [ Hint. Remove some arc (basic in
a given row) of the basic tree, thereby separating the nodes into two
subsets. Then consider the set of nonbasic arcs going between the two node
sets—those in the same direction as the given basic arc and those in the
opposite direction.]

Indicate how the lexicographic simplex method may be applied to the
network flow problem.

Develop in detail two algorithms for solving network flow problems that
are based on the dual simplex and the primal-dual methods.

Solve the following network flow problem.

Indicate how we can generate a row or a column of B! associated with a
network flow problem. Illustrate by generating the row of B™! associated
with x, in the initial basis for Exercise 9.4.

According to the rule of Section 9.4, show that the root is the last basic
variable to be assigned a value.

Prove or give a counterexample: In order for a variable to be basic in a
given row of the linear program for a network flow problem, the variable
must have a nonzero entry (that is, @ = 1) in that row of the original
constraint matrix; that is, the arc must be incident with the associated
node.
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9.27 Indicate how we can handle lower and upper capacity constraints on flow
through a node i. (Hint. Consider splitting node i into two nodes.)

PoRG=

9.28 Consider the following network of cities. Each city must be visited at least
once by some salesman. Use network flows to indicate the number of
salesmen necessary and their routes to minimize the total distance traveled.
Assume that an unlimited number of salesmen are available at no cost to
be positioned wherever needed. (Hint. Impose a lower bound of 1 on flow
through each node.) Can we impose the additional constraint that only one
salesman be used? (This would be the classical traveling salesman problem.)

(, u)

9.29 How can we handle undirected arcs, when /=0, in a network flow
problem? (Hint. Consider replacing a single undirected arc by two oppo-
sitely directed arcs.) What happens when / > (?

(u, c)

(2 () (—)
(1

1, ¢)

9.30 How can we transform a network flow problem with some /; < 0 into one
with all / > 0? [Hint. Consider adding two arcs, (i,7) and (J, {) with
appropriate lower bounds.] Illustrate by the following network.
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9.31 Show how a network flow problem with / = 0, for which the cost function
associated with each arc is piecewise-linear and convex, can be solved by
the methods of this chapter. (Hint. Consider adding parallel arcs—one for
each segment—with proper costs and upper bounds.) Can the methods of
this chapter be also used for network problems with piecewise-linear and
concave functions?

9.32 Show that a network flow problem with nonzero lower bounds can be
converted to one with zero lower bounds. (Hint. Consider a change of
variables: X; = x; — /;.) Illustrate by converting the following network to
one with zero lower bounds.

9.33 Show that a network flow problem with zero lower bounds and finite upper
bounds can be converted to one with zero lower bounds and no (infinite)
upper bounds. [ Hint. Consider splitting arc (i, j) as shown below.]

0, u;, ;) © =, c;) (0,, 0)
° j o Cij ° E ! ;ml i
H —/

b; b; bi

] bj +u;

Illustrate by converting the following network to one without upper
bounds.




434 MINIMAL COST NETWORK FLOWS

9.34 Prove that when we discard the redundant constraint, a network flow basis
is characterized by a rooted spanning forest (a collection of trees, each with
exactly one root, which spans the node set). Using this characterization,
develop the representation of a nonbasic column in terms of the basis.
Utilize your results to describe a complete simplex method for network
flow problems without the redundant constraint. Apply the method to the
network in Exercise 9.4 with the last constraint deleted.

9.35 Show how the results of this chapter can be generalized to handle the flow
with gains problem where each column of the A matrix is of the form
a; = e — p.e;, p; > 0. In particular, show that a basis is a pseudorooted
spanning forest (a collection of subgraphs, each with either no cycles and
exactly one root arc or no root arcs and exactly one cycle, which spans the
node set).

9.36 Develop a method to solve a linear program of the form

Minimize X + €1 X, 41

Subject to Ax +a, x,.,=b
x>0,x,,,>0

where A is a node-arc incidence matrix. Apply the method to the following

problem.
Minimize 2x,+3x,+ X3+ 3x,+ 5x5+4x,
Subject to X+ x, + xg= 2
- X +x;+ x, —2x4= 3
— X,— X, + xs+3x,=—1
— X,— Xs— xe=—4
Xy, Xy X3 X4 X5, Xg= O

9.37 Can the results of Exercise 9.36 be generalized to the case where the
constraint matrix is of the form (A, D), where A is a node-arc incidence
matrix, and D is any arbitrary matrix? Apply the method to the previous
problem with the additional column x, with a, = (2, — 5,2, 0) and ¢, =
-3.

9.38 Solve the following transportation problem by the network simplex method
of this chapter.
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9.39 Consider the following production-transportation-inventory problem. A firm
produces a single product at two locations in each of two time periods. The
unit costs and production limits vary by time period and are given by the
following diagram.

TIME PERIOD
PRODUCTION
LOCATION 1 2
1 $25/6 $35/2 Unit cost/
2 $30/10 $42/9 Production limit

The product will be shipped (instantaneously) to each of two locations to
satisfy specified demands over the two periods. These demands are as

follows.
TIME PERIOD
CONSUMER
LOCATION 1 2
1 3 1
2 5 4

The unit shipping cost varies over time and is given by the following.

PERIOD 1 PERIOD 2
PRODUCTION | CONSUMER LOCATION | PRODUCTION | CONSUMER LOCATION

LOCATION 1 2 LOCATION 1 2

1 $50 $60 1 $60 $80
2 $40 $70 2 $70 $90
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Finally, the product may be held in inventory at the production and
consumer locations to satisfy later period needs. The relavent data are
given below.

PRODUCTION LOCATION CONSUMER LOCATION
1 2 1 2
$1/2 $2/3 $3/1 $4/3 Unit cost/
Inventory limit

Set up a network flow problem that can be used to solve the problem of
minimizing the total cost to satisfy the demand over the two periods. (Hint.
Create a separate node that represents each location at each time period.
Shipping arcs connect nodes for the same time period; inventory arcs
connect nodes in different time periods.)

9.40 Show that the coefficient matrix for the lower-upper bounded network flow
problem is totally unimodular. This matrix is of the form

X s S, RHS
A 0 0 b
| -1 0 1
1 0 | u

9.41 a. State the dual problem for the lower-upper bounded network flow
problem in Section 9.7.
b. Give the values of all of the optimal dual variables for Figure 9.17 at
iteration 2.
c. Verify optimality by computing the dual objective function.

9.42 Consider the following network.

(u, c)
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9.43

9.44

Consider a basis given by x,,, x,3, X3,, X5, and the artificial variable x5 with

x4 nonbasic at its upper bound and all other variables nonbasic at their

lower bounds, that is, zero.

. Find the basic solution. Is it feasible?

. Give the simplex tableau associated with the specified basic solution.
State the dual program.

. Find the complementary dual solution. Is it feasible?
Regardless of costs, perform one pivot graphically to bring x,, into the
basis.

f. Is the new basis optimal?

- IS

If it is known in advance that a certain arc will be carrying positive flow in
any optimal solution to an uncapacitated network flow problem, what
simplifications can be made in the solution method?

Twenty million barrels of oil must be transported from Dhahran in Saudi
Arabia to the ports of Rotterdam, Marseilles, and Naples in Europe. The
demands of these ports are respectively 4, 12, and 4 million barrels. The

Rotterdam
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9.45
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following three alternative routes are possible (see accompanying map).

a.

a.
b.

From Dhahran, around Africa to Rotterdam, Marseilles, and Naples.
The average transportation and handling cost per barrel is $1.20, $1.40,
and $1.40 respectively.

. From Dhahran to the city of Suez, and then through the Suez Canal to

Port Said. From Port Said the oil is shipped to Rotterdam, Marseilles,
and Naples. The average transportation and handling cost from Dhah-
ran to the city of Suez is $0.30, and the additional unit cost of
transporting through the canal is $0.20. Finally, the unit transportation
costs from Port Said to Rotterdam, Marseilles, and Naples are respec-
tively $0.25, $0.20, and $0.15.

From Dhahran to the city of Suez, and then through the proposed
pipeline system from Suez to Alexandria. The average transportation
cost per barrel through the pipeline system is $0.15, and the unit
transportation costs from Alexandria to Rotterdam, Marseilles, and
Naples are $0.22, $0.20, and $0.15.

Furthermore, 30% of the oil in Dhahran is transported by large
tankers that cannot pass through the Suez Canal. Also, the pipeline
system form Suez to Alexandria has a capacity of 10 million barrels of
oil.

Formulate the problem as a general network flow problem.
Use the procedures of this chapter to find the optimal shipping pattern.

The following network represents an electrical power distribution network
connecting power generating points with power consuming points. The arcs
are undirected; that is, power may flow in either direction. Points 1, 4, 7,
and 8 are generation points with generating capacities and unit costs given
by the following table.

GENERATING POINT

1 4 7 8
CAPACITY (THOUSANDS OF 100 60 80 _ 150
KILOWATT HOURS)
UNrT Cosr ($/1000 KiLo- 15.0 13.5 21.0 23.5

WATT HOURS)

Points 2, 5, 6, and 9 are consuming points with demands of 35 KWH, 50
KWH, 60 KWH, and 40 KWH respectively. There is no upper bound on
the transmission line capacity. The unit cost of transmission on each line
segment is $11.0 per 1000 KWH.

a.
b.

Set up the power distribution problem as a network flow problem.
Solve the resulting problem.
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9.46 Formulate Exercise 1.16 as a network flow problem. Solve this problem by

the network simplex method.

NOTES AND REFERENCES

1.

The simplex method for general network flow problems is a natural extension
of the work on the transportation problem and the work of Koopmans [290]
relating linear programming bases for transportation problems and trees in a
graph.

Computational experience with the network simplex algorithm, as reported
by Glover, Karney, and Klingman [197], Langley and Kennington [303], and
others, indicates that this algorithm compares favorably with other proce-
dures for solving network flow problems.

Exercise 9.35 discusses the extension of the models of this chapter to the flow
with gains network models. Jewell [261] first solved this problem by a
primal-dual method. Ellis Johnson [266], Langley [302], and others have since
treated the problem via the simplex method.



TEN: THE OUT-OF-
KILTER ALGORITHM

In the previous chapter we presented a network simplex method for solving
minimal cost network flow problems. In this chapter we present another method
for solving minimal cost network flow problems, called the out-of-kilter algo-
rithm. This algorithm is similar to the primal-dual algorithm in that it begins
with dual feasibility but not necessarily primal feasibility and iterates between
primal and dual problems until optimality is achieved. However, it differs from
the primal-dual algorithm (as strictly interpreted) in that the out-of-kilter algo-
rithm does not always maintain complementary slackness. Thus it can be viewed
as a generalization of the primal-dual algorithm for network flow problems.

440
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10.1 THE OUT-OF-KILTER FORMULATION OF A MINIMAL COST NETWORK FLOW
PROBLEM

For convenience of presentation, the form of the minimal cost flow problem that
we shall work with is

m m
Minimize >, > Xy

i=1 =1

m m
Subjectto X x; — X X, =0 i=1 ...,m (10.1)
j=1 k=1
xij>lij Lji=1 ...,m
X; < Uy Lji=1...,m

where it is understood that the sums and inequalities are taken over existing arcs
only. We call a conserving flow any flow (choice of the x,’s) satisfying constraints
(10.1). A conserving flow that satisfies the remaining constraints /; < x; < u; is
a feasible flow (solution). We shall assume that ¢ and u; are integers and that
0<;<uy ,
The foregoing formulation is completely equivalent to the formulation of the
minimal cost network flow problem presented in Chapter 9. In Exercise 10.5 we
ask the reader to provide the transformation between the two formulations.
Since all right-hand-side values of the flow conservation equations (10.1) are
zero, we conclude that the flow in the network does not have a starting point or
an ending point, but rather circulates continuously throughout the network.
Thus all conserving flow in the network will be along circuits (directed cycles).

i by

The Dual of a Network Flow Problem and lts Properties

If we associate a dual variable w, with each node conservation equation (10.1), a

dual variable h; with the constraint x; < u, (which is treated as — x; > — u;

for the purpose of taking the dual), and a dual variable v; with the constraint
x; > I, the dual of the out-of-kilter formulation for the minimal cost network
flow problem is given by

m m m m
Maximize X X Lo, — X 3 uhy
i=1 =1

i=1 j=1
Subject to w,—w +uv; — hy=¢; Lji=1 ..., m
hgyvy>0 i,j=1,...,m
w,  unrestricted i=1,...,m
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where the summations and the constraints are taken over existing arcs. The dual
problem has a very interesting structure. Suppose that we select any set of w,’s
(we shall assume throughout the development that the w;s are integers). Then the
dual constraint for arc (i, j) becomes

v,-j—h,.j=c,-j—w,.+wj, h. > 0, v. >0
and can be satisfied by
v; = Maximum {0, ¢; — w, + w,}
hy = Maximum {0,—(c; — w;, + w,)}

Thus the dual problem always possesses a feasible solution given any set of
w;’s. In fact, the choices of v, and A; above yield the optimal values of v, and hy
for a fixed set of w’s (Why?).

The Complementary Slackness Conditions

The complementary slackness conditions for optimality of the out-of-kilter
formulation are (review the Kuhn-Tucker optimality conditions) the following:

(x, =)o, =0 ij=12...,m (10.2)
(u; — x;)h; =0 Lj=12 ... m (10.3)
Define z; — ¢; = w; — w; — ¢;. Then by the definition of v; and 4; we get
v; = Maximum {0, — (z; — ¢;)} (10.4)
h; = Maximum {0, z; — cl.j} (10.5)

Note that z; — ¢; would be the familiar coefficient of x; in the objective
function row of the lower-upper bounded simplex tableau if we had a basic
solution to the primal problem. However, we need not have one here.

Given a set of w’s we can compute z; — ¢; = w; — w, — ¢;. Noting Equa-
tions (10.4) and (10.5), then the complementary slackness conditions (10.2) and
(10.3) hold only if

Zy—¢; <0 = v; >0 = x;=1; Lj=12,...,m

2;=¢;>0 = h >0 = x;=u4, 4j=12,....,m

We include the obvious additional condition

z;—¢;=0 = [, <x;<u ij=1...,m
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Any conserving flow that satisfies the three conditions above will be optimal
(why?). The problem, then, is to search over values of w;’s and conserving x,’s
until the three conditions above are satisfied.

Consider Figure 10.1a. Selecting a set of starting w,’s, say each w; = 0, and a
conserving flow, say each x;, = 0, we can check for optimality. Figure 10.15
gives z; — c;, x;, and w, for the network of Figure 10.1a. In Figure 10.15 we see
that z;, — ¢;, = —2 and x,, = 0 (= /},) and thus arc (1, 2) is said to be in-kilter,
that is, well. On the other hand, z,; — ¢,; = 3 and x,; = 0 (< uy;) and hence arc
(2, 3) is said to be out-of-kilter, that is, sick. Thus the name out-of-kilter.

To bring arc (2, 3) into kilter we must either increase x,; or decrease z,; — Cy;
by changing the w;’s. This is exactly what the out-of-kilter algorithm attempts to
do. During the primal portion of the out-of-kilter algorithm we shall be changing
the x;’s in an attempt to bring arcs into kilter. During the dual phase we change
the w;’s in an attempt to reach an in-kilter state.

(i, uyy, cij )

0, 2,2

Figure 10.1. An example network: (a) The Network. (b) w,, z; — ¢;, x;;

The Kilter States and Kilter Numbers for an Arc

The in-kilter and out-of-kilter states for each arc in a network are given in
Figure 10.2. Note that an arc is in kilter if /; < x; < u; and conditions (10.2)
and (10.3) hold. As we change the flow on arc (i, j), the arc moves up and down
a particular column in Figure 10.2 depending on whether x; is increased or
decreased. As we change the w;’s, the arc moves back and forth along a row.
Figure 10.25 gives a graphical depiction of the kilter states of an arc. Each of the
cells in the matrix in Figure 10.2a corresponds to a particular subregion in
Figure 10.25.

In order to assure that the algorithm will converge, we need some measure of
the “distance” from optimality. If we can construct an algorithm that periodi-
cally (at finite intervals) reduces the distance from optimality, then the algorithm
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2 —c; <0 z; —¢€; =0 2, —c¢; >0
x> oy Out—of—kilter Out—of—kilter Out—of—kiiter
xyo= Qut—of—Kkilter In—kilter In—kilter

Iy <xy < uy Out—of—kilter in—kilter Out—of—kilter
x5 1y In—kilter In—kilter Out—of—kilter
x; < lij Out—of—kilter Out—of—kiiter Out—of—kilter

(a)
x”-
Out—of—kiiter
In—kilter
"i,‘
..
2
=
1
£
In—Kilter Out—of—kilter
i

iy oty

Qut—of— kilter

(b)

Figure 10.2. The possible kilter states for an arc.

will eventually converge. (We actually need a slightly stronger argument about
the amount of reduction, but as we shall see, reduction is by an integer, so there
is no problem with finiteness.)

There are many different measures of distance for the out-of-kilter problem.
We present in Figure 10.3 one measure of distance that we call the kilter number
K, for an arc (i, /). The kilter number is defined here to be the minimal change
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2, —¢; <0 2; —c; =0 2 —ciy >0
x> uy g, — 11 lxyj — uy; | lxg; — uyj |
Xy = uy layj — 1y | 0 0

Ly < xij <y lx; — Lij | 0 lwij — uij |
xjj I'I 0 0 lxif U |
Xj; < Iif |x,-j — IU | |xij - IU | Ixij - uy |
(a)
x,-,-
.
1
| Ky
1
|

iy T Cij

(b)

Figure 10.3. The kilter numbers K,.j’s.

of flow on the arc that is needed to bring it into kilter. The kilter number of an
arc is illustrated graphically in Figure 10.35. Notice that since all terms involve
absolute values, the kilter number for an arc is nonnegative. Also, notice that if
the arc is in-kilter, the associated kilter number is zero and if the arc is
out-of-kilter, the associated kilter number is strictly positive. Note that if

z; — ¢; <0, then arc (i, /) is in-kilter only if the flow is equal to /; and hence
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the kilter number |x; — /] indicates how far the current flow x;; is from the ideal
case /. Similarly, if z; — ¢, > 0, then the kilter number |x,.j — u,.jl gives the
distance from the ideal flow of u; Finally, if z; — ¢, = 0, then the arc is
in-kilter if /; < x; < ;. In particular, if x; > u; then the arc is brought
in-kilter if the flow decreases by |x; — |, and if x;; < /,, then the arc is brought
in-kilter if the flow increases by |x; — /|, and hence the entries in Figure 10.3
under the column z; — ¢; = 0.

One method of assuring finite convergence of the out-of-kilter algorithm is to
show the following.

1. The kilter number of any arc never increases.
2. At finite intervals the kilter number of some arc is reduced (by an integer).

This is exactly what we shall be able to show.

10.2 STRATEGY OF THE OUT-OF-KILTER ALGORITHM

As indicated before, the out-of-kilter algorithm may be viewed as a generaliza-
tion of the primal-dual algorithm. In this respect the general steps of the
algorithm are the following.

1. Begin with a conserving flow, such as each x; = 0, and a feasible solution
to the dual, such as each w, = 0, with &, v, as defined in Equations (10.4)
and (10.5). Identify the kilter states and compute the kilter numbers.

2. If the network has an out-of-kilter arc, conduct a primal phase of the
algorithm. During this phase an out-of-kilter arc is selected and an attempt
is made to construct a new conserving flow in such a way that the kilter
number of no arc is worsened and that of the selected arc is improved.

3. When it is deterrnined that no such improving flow can be constructed
during the primal phase, the algorithm constructs a new dual solution in
such a way that no kilter number is worsened and step 2 is repeated.

4. Iterating between steps 2 and 3, the algorithm eventually constructs an
optimal solution or determines that no feasible solution exists.

The Primal Phase: Flow Change

During the primal phase the out-of-kilter algorithm attempts to decrease the
kilter number on an out-of-kilter arc by changing the conserving flows in such a
way that the kilter number on any other arc is not worsened. Examining Figure
10.3, we see that the flows must be changed in such a way that the correspond-
ing kilter states move closer to the in-kilter states. For example, for the
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out-of-kilter state x; > u; and z; ; < 0, we can decrease x; by as much as
|x; — I, before the arc comes mto kllter If we decrease x; beyond this, the arc
will pass the in-Kilter state (we do not want this to happen) Also, we do not
permit any increase in this x;. A similar analysis of the other kilter states
produces the results in Figure 10.4a.

Several cells in Figure 10.4a deserve special attention. The out-of-kilter state
x; > u; and z; — ¢; = O indicates that the flow can be decreased by as much as

2 —¢; <0 z; —€; =0 z;; —¢; >0
Xy > U
Xij T uy = —
| | /\\
lij < xij < ujj = X
= =
N N | |
R N N % x
ij if = =
AN
|
xy <Ay X L
(a)
e
|
I
|
uy 2
! !
! | |
! j ‘
1y
|
I
¢
>y T Gy
(b)

Figure 10.4. Permitted flow change directions and amounts.
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|x, — I;|. Referring to Figure 10.3, we see that we really only need to decrease
the particular x; by |x;, — u;|, a smaller amount, to reach an in-kilter state.
However, as can be seen in Figure 10.3, we may continue to decrease x; by an
amount up to |x; — ;| and the arc will still remain in-kilter. It is often desirable
to do this to aid other -arcs in reaching in-kilter states. Also, an arc in the
in-kilter state /; < x; < u; and z; — ¢; = 0 may have its flow either increased
or decreased, while still maintaining its in-kilter status. Again we may illustrate
the permitted flow changes graphically. This is done in Figure 10.45.

Now that we have determined how much an individual flow on an arc may
change, we must still determine what combination of flows we can change in
order to maintain a conserving flow. If X is the vector of (current) conserving
flows, then Equation (10.1) can be rewritten as AX = 0, where A is the node-arc
incidence matrix. If A is a vector of flow changes, then we must have

AX+A4)=0 or AA=0

If AA = 0 for a nonzero A, then the columns of A corresponding to the nonzero
components of A must be linearly dependent. Since A is a node-arc incidence
matrix, then each column of A has exactly one + 1 and one — 1, and the
nonzero components of A must correspond to a (undirected) cycle or set of
cycles (why?). Hence flows must be changed along a cycle or set of cycles in
order to maintain the conservation equations.

Given an out-of-kilter arc, we must construct a cycle containing that arc. This
cycle must have the property that when assigned an orientation and when flow is
added, no arc has its kilter number worsened. A convenient method for doing
this is to construct a new network G’ from the original network according to the
information in Figure 10.4. First, every node of the original network is in the
new network. Next, if an arc (i, j) is in the original network and the flow may be
increased, then arc (i, j) becomes part of the new network with the appropriate
permitted flow change as indicated in Figure 10.4. Finally, if an arc (i, /) is in
the original network and the flow can be decreased, then arc (J, i) becomes part
of the new network with the permitted flow change as indicated for arc (i, j) in
Figure 10.4. Arcs in the original network with /; < x; < y; and z; — ¢; = 0 will
produce two arcs, (i, j) and (J, i), with differing permitted flow changes in the
new network. Arcs not permitted to change in flow are omitted entirely from G’.

Given the example indicated in Figure 10.1, a new network G’ is constructed

Permitted flow
1 6 4~~~ change

G Figure 10.5. The modified network G’ for
5 o Figure 10.1.
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by the foregoing rules and is presented in Figure 10.5. To illustrate, consider arc
(1, 3) in Figure 10.1. Note that x; < /;; and z,; — ¢;3 < 0. From Figure 10.4
the flow on (1, 3) can increase to /;; = 1. This results in arc (1, 3) in Figure 10.5
with permitted flow of 1.

Once the new network G’ is constructed and an out-of-kilter arc (p, q) is
selected, we find a circuit (directed cycle) containing that arc in G’. This circuit
in G’ corresponds to a cycle in G. The flow in the cycle in G is changed
according to the orientation provided by the circuit in G’. The amount of
change is specified by the smallest permitted flow change of any arc that is a
member of the circuit in G”. If no circuit containing the selected out-of-kilter arc
exists in G, then we must proceed to the dual phase of the zggorithm.

As an illustration of the primal phase, consider the modified network G’ of
Figure 10.5. We select an out-of-kilter arc, say (1, 3). From Figure 10.5 we see
that a circuit exists containing arc (1, 3), namely C = {(1, 3), (3, 4), (4, 1)}.
Hence we can change the flow around the associated cycle in G, increasing flows
on arcs with the orientation of the circuit in G’ and decreasing flows on arcs
against the orientation of the circuit in G, and obtain an improved (in the kilter
number sense) solution. The amount of permitted change in flow is A =
Minimum {1, 5, 3} = 1. The new solution and associated modified network is
given in Figure 10.6a. Arcs (2, 3) and (3, 4) are still out-of-kilter in G. Selecting
one of the associated arcs in G’ (see Figure 10.65), say (2, 3), we attempt to find
a circuit in G’ containing the selected arc. Because no such circuit exists, we
must pass to the dual phase of the out-of-kilter algorithm.

It is convenient (but not necessary) for the various proofs of convergence to
work on the same out-of-kilter arc (p, ¢) until it comes in-kilter. We shall
assume throughout our discussion of the algorithm that this is done.

The Dual Phase: Dual Variable Change

When it is no longer possible to construct a circuit in G’ containing a specific
out-of-kilter arc, then we must change the z; — ¢;’s in such a way that no kilter

Permitted
flow
change

(a) G (b) G’

Figure 10.6. The new solution for the network of Figure 10.1.
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number is worsened and (it is hoped) new arcs are introduced into G’ that
would allow us to find a circuit containing the out-of-kilter arc under considera-
tion.

Since z; — ¢; = w; — w; — ¢;, we must change the w/’s in order to change the
z; — ¢;’s. Let (p, q) be an out-of-kilter arc and let X be the set of nodes in G’
that can be reached from node ¢ along some path in G’. Let X = N — X, where
N ={1,..., m}. Note that neither X nor X is empty sinceg € X and p € X
when we pass to the dual phase. For (p, ¢) = (2, 3) in Figure 10.6 we have
X ={3,4,1} and X = {2}. In Figure 10.7 we illustrate the sets X and X.

We would like to change the w;’s in such a way that no kilter number is
worsened and the set X gets larger periodically. If another node comes into X at
finite intervals, then eventually p will come into X and a circuit is created in G'.
We have implicitly assumed that X will not get smaller. To ensure that this will
not happen we should change the w;’s in such a way that all arcs with both ends
in X are retained in the modified graph.

Consider z;, — ¢, =w, —w, — ¢;. If w, and w; are changed by the same
amount, then z; — ¢, remains unchanged. Thus we can ensure that the set X will
contain at least all of the same nodes after a dual variable change if we change
all of the w,’s in X by the same amount §. Suppose that we leave the w;’s in X
unchanged. Then the only arcs that will be affected will be arcs from X to X and

from X to X. Specifically, if § > 0 and we change the w,’s according to
w,+8 ieX
w; ieXx
then

(zj—c)y=z;,—¢; f i€XjEX

or & )?,j eEX
Now,ifieXandje)?,weget
(zj— ¢y =W +80)—w—¢;

=(z,.j—c,-j)+0

x  Figure 10.7. X AND X for P q =023
in Figure 10.6.
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Also, for i € )?andj € X we get

(z,.j—c,.j)’=w,.—(wj+0)—cij

=(z,.j—c,.j)—0

Thus arcs from X to X will have their z; — ¢y’s increased by 4 and those arcs

from X to X will have their z; — ¢;’s decreased by 8. We must determine § so
that the kilter number of no arc is worsened and the kilter state of some arc is
changed First we must identify the arcs that can be in the set (X, X ) and in the
set (X, X). (The notation (X, Y) represents the set S = {(x,p):x € X,y €
Y)). _

Examining Figure 10.4, we see that the set (X, X) cannot contain an arc
associated with the kilter state x;, < /; and z; — ¢; <0, since such an arc (i, j)
in G would become an arc in G’ with the result that if i can be reached (along a
path) from g, then j can be reached from ¢ and thus j € X (a contradiction).
Examining the remaining kilter states, we find that the only candidates for
membership in (X, X) are those identified in Figure 10.8. Recall that arcs from
X to X in G have their z; — ¢;’s increased. Thus these arcs change kilter states
in a left-to-right fashion as indicated in Figure 10.8¢. Examining an arc from X
to X in G that is in the kilter state x; > u; and z; — ¢, < 0, we see from Figure
10.3 that as @ increases, Kj; decreases from K, = [x; — I;] to K; = |x,-j — u,| and
thereafter remains constant. Thus, for such an arc, we can increase § as much as
we like and the arc’s kilter number will never increase. Hence such an arc gives
rise to an upper limit on § of cc as indicated in Figure 10.84. Any arc from X to
X in G that is in the kilter state x; = u; and z; — ¢; < 0 will have its kilter
number first decrease and then remain unchanged as 8 increases (why?). Thus,
again oo is an upper limit on the permitted change in @ for such an arc to ensure
that no kilter number will worsen. However, examining an arc from X to X in G
in the kilter state J; < x; < u; and z; — ¢; < 0, we see that the associated kilter
number Kj; first decreases (to zero), then starts to increase. In order to eliminate
the potential increase in K, for the arc we must place a limit of |z; — ¢;| on 6.
Similarly, we must place a limit of |z ] on # for arcs in the state x; = l and
z; — ¢; < 0. This analysis _]ustlfles the entrles in Figure 10.8. Each of the
perm1551ble kilter states for arcs in (X, X ) is graphically portrayed in Figure
10.85.

A similar analysis of arcs from X to X in G gives rise to the information in
Figure 10.9.

Insofar as worsening of kilter numbers is concerned, Figures 10.8 and 10.9
indicate that we need only compute § based on arcs from X to X with x; < u;
and arcs from X to X with x, > [,. However, if we proceed to define a method
of computing § based only on these considerations, difficulties would arise in
interpreting the meaning of the value # = oc. Matters are greatly simplified if,
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Figure 10.8. Possible kilter states for arcs from X to X in G and limits on 6.

instead of strict inequalities on flow (that is, x; < u; and x; > /), we admit
weak inequalities on flow (that is, x; < u, and x; > /). The reason for this
deviation from intuition will become apparent when we proceed to establish
convergence of the algorithm.

The previous discussion concerning limits on 8 based on kilter number
considerations and on (yet to be established) convergence properties leads to the
following formal procedure for computing 4.

In G define S, and S, by

S,E{(i,j):iEX,jE)?,z,-j—c,-j<0,x,-j<u,-j}
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Figure 10.9. Possible kilter states for arcs from X to X in G and limits on 0.
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where 8, = oo if S, is empty. Thus @ is strictly positive (why?). Also, 8 is either a
positive integer or oo (why?). These two possibilities are briefly discussed below.

Case 1: 0< 0 < o0.

In this case we make the appropriate changes in w,, (that is, w; = w; + 0 if
i € X and w] = w; if i € X) and pass to the primal phase of the algorithm.

Case 2. 0 = oo.

In this case the primal problem has no feasible solution. (We shall show this
shortly.)

This completes the specification of the dual phase of the out-of-kilter algo-
rithm and provides the foundation of the overall out-of-kilter algorithm.

As an illustration, consider the example of Figure 10.1 with the current
solution specified by Figures 10.6 and 10.7. Here

S, ={(1,2)}, 6,=1]—-2]=2
$;={23), 6=p3=3
6 = Minimum{2, 3} = 2
This gives rise to the following change in dual variables:
wi=w +0=2

Wy = w, =0

wE\
I

wy,+ 8 =2

wy=w,+0=2
The x;’s and new values of z; — ¢;’s are given in Figure 10.10a. Passing to
the primal phase of the out-of-kilter algorithm, we see that G’ in Figure 10.105
contains a circuit involving arc (2, 3) so we may change flows. The remaining
iterations are not shown.

There is really no need to work directly with the dual variables themselves
since we may transform the z; — ¢;’s directly by

(z; — ¢5) fieXx,jeXorieX,jeX
(g = ¢y ={(zy—c)+0 fieX,jeX

(zy—c)—0 ifi€eX,jeX
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wy =2 w, =0

Permitted
flow
change

@) G (b} G’

Figure 10.10. The new solution obtained from Figure 10.6 after the first dual
variable change.

In Exercise 10.20 we ask the reader to show how the dual variables can be
recovered anytime we need them. Note that (z; — ¢;) is an integer (why?).

As an example of infeasibility, consider the example network of Figure
10.11a. Selecting a set of x,’s and w;’s, we find in Figure 10.115 that arc (2, 1) is
out-of-kilter. Setting up G’ in Figure 10.11¢, we find no circuit containing the
arc (2, 1). In this case X = {1} and X = {2}. Here S, = ® (the empty set) and
S, = ® and thus § = oo. It is clear by examining u,, and /,, that no feasible
solution exists.

(l,u,c)
(3,5,0) 2y — = —1
(0,2,1) Xy, =2
(a) G (b) wi, xy;, and z;; — cij
Permitted
flow change
1
2
c) G (d) X and X

Figure 10.11. An example of an infeasible network.
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Infeasibility of the Problem When § = oo

Suppose during some application of the dual phase of the out-of-kilter algorithm
that we reach the case where § = co. When this occurs, we must have S, = §,
= ®. Since S, = ®, then by reviewing the definition of S, we conclude that
i € X and j € X imply one of the following cases:

1. z,.j—c,-j<0andx,-j>u,-j
2.zij—cij=0
3. z;—c; >0

From Figure 10.8 and since i € X and j € X, possibility (2) or (3) above can
hold only if x; > u;. Hence S, = ® holds only if x;, > u; fori € X andj € X.
Similarly, S, = ® holds only if i € X and j € X implies that x; < I;. Hence
S, = S, = ® implies

x> u, if i€EX,jEX (10.6)
and
x, <1l if ieX,jEX (10.7)

In particular, consider the out-of-kilter arc (p, ¢) in G'. If (p, ¢) is in G, then by
inequality (10.7)x,, < /. Suppose that x, = [,. Since (p, q) is out-of-kilter,
then z,, — ¢,, > 0, violating the assumption that S, = ®. Thus, x,, < ,,. If, on
the other hand, (g, p) is in G then by a similar argument we may show that
X, > ug,. Thus, at least one of the inequalities (10.6) or (10.7) is strict. Summing
these two inequalities we get

2oy 2> Xy 2 (10.8)
iex ieX ieXx ieX
jex JEX jEX jex

Since the current flow given by the x;’s is conserving, then equation (10.1) holds.
Noting that the node set consists of X U X and X N X = ®, then equation
(10.1) can be written as

zxij+ z_x,.j—zxﬂ—z_xﬁ=0 i=12...,m

JEX JEX jEX jEX
Summing these equations over i € X, we get

zxy+2xy—2xji_2xji=0
iex ieX JEX iE{
JEX JEX ieX JEX
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Noting that

zx.-,:zxj.-

i€EX JEX

JEX iex
and that

2 X = z_x.-,-

ieX ieXx

JEX JEX

the foregoing equation reduces to

2 oxy— 2 X = (10.9)
ieX ieX
jeEX jEX

Substituting in inequality (10.8), we get

0> X u; — > Iy (10.10)
iex ieX
jexXx JEX

Suppose by contradiction that there is a feasible flow represented by X for

i,j=12,..., m Therefore y; > %; and —[; > — %, and so inequality (10.10)
gives
0> uw—- 2> %53 % (10.11)
ieX ieX ieX iex
jeX JEX JjEX jex

But since the x,’s represent a feasible flow, they must be conserving. In a
fashion similar to Equation (10.9) it is clear that the right-hand side of inequality
(10.11) is equal to zero. Therefore inequality (10.11) implies that 0 > 0, which is
impossible. This contradiction shows that if § = oo, there could be no feasible
flow.

Note that if we had defined S, and S, by strict inequalities on x (namely,
Xy < u; and x; > [; respectively), we could not have produced the strict
inequality needed in (10.8).

Convergence of the Out-of Kilter Algorithm

For the purpose of the following finite convergence argument we make the
assumption that the vectors 1, u, and ¢ are integer valued.

In developing a finite convergence argument for the out-of-kilter algorithm,
there are several properties of the algorithm that should be noted. First, every
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time a circuit is constructed in G’ containing an out-of-kilter arc, the kilter
number of that arc and of the total network is reduced by an integer (why?). We
can construct only a finite number of circuits containing out-of-kilter arcs before
an optimal solution is obtained (why?). Second, after each dual variable change,
the kilter state of each arc in G that has both ends in X remains unchanged.
Hence, if (p, q) is not in kilter, then after a dual variable change, each node in X
before the change is in X after the change. Two possibilities exist. One possibil-
ity is that a new node & may be brought into X by virtue of an arc being added
in G’ from some node in X to node k. Each time this occurs the set X grows by
at least one node. This can occur at most a finite number of times before node p
becomes a member of X and a circuit is created containing (p, q). Thus, if the
algorithm is not finite, it must be the case that an infinite number of dual
variable changes take place without the set X increasing or § = co. We shall
show that this cannot occur.

Suppose that after a dual variable change no new node becomes a member of
X; that is, X does not increase. Then upon passing to the next dual phase we
have the same sets X and X and the same x;’s. In addition, each arc from X to X
has had its z; — ¢, increased and each arc from X to X has had its z; — ¢y

if
decreased. Thus, after the dual variable change, the new sets S| and S} satisfy

Sic S, and Sj;cC S,

(why?). Further, by the choice of the (finite) value of 8, at least one arc has been
dropped from either S, or S,. Thus at least one of the foregoing inclusions is
proper. Now, S, and S, may decrease at most a finite number of times before
S, U S, =® and § = w0, in which case the algorithm stops.

This completes a finiteness argument for the out-of-kilter algorithm. We now
summarize the algorithm and present an example.

10.3 SUMMARY OF THE OUT-OF-KILTER ALGORITHM

The complete algorithm consists of three phases: the initiation phase, the primal
phase, and the dual phase.

Initiation Phase

Begin with a conserving (integer) flow, say each x; = 0, and an initial set of
(integer) dual variables, say each w, = 0. Compute z;, — ¢; = w;, — w, — ¢,.
Primal Phase

Determine the kilter state and the kilter number for each arc. If all arcs are in
kilter, stop; the optimal solution is obtained. Otherwise, select or continue with a
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previously selected out-of-kilter arc (p, g). From the network G construct a new
network G’ according to Figure 10.4. For each arc (i, j) in G that is in one of the
kilter states that permit a flow increase, place an arc (i, /) in G’ with a permitted
flow increase as indicated in Figure 10.4. For any arc (7, j) in G that is in one of
the Kilter states that permit a flow decrease, place an arc (j, i) in G’ with the
permitted flow indicated in Figure 10.4. For those arcs in G that are members of
states that permit no flow change, place no arc in G'. In G’, attempt to construct
a circuit containing the out-of-kilter arc (p, q). Finding such a circuit is called
breakthrough. If such a circuit is available, determine a flow change A equal to
the minimum of the permitted flow changes on arcs of the circuit. Change the
flow on each arc of the associated cycle in G by the amount A using the
orientation specified by the circuit as the direction of increase. In particular, let
x; = x,; + Aif (i, /) was a member of the circuit in G'; let xj; = x; — Aif (j, i)
was a member of the circuit in G’; let x; = x; otherwise. Repeat the primal
phase. If no circuit containing arc (p, q) is available in G’, pass to the dual
phase. Finding no such circuit is called nonbreakthrough.

Dual Phase
Determine the set of nodes X which can be reached from node g along a path
in G'.Let X = N — X. In G, define S, and S, by

S, ={():i€EXJEX, z;,— ¢, <0, x,< ;)

&={@D:iEZjEXJU—%>OJU>L}

Yy

Let

¢ = Minimum = C
(i,j)ES.USz{lzy ’fl’ oo}

If § = oo, stop; no feasible solution exists. Otherwise, change the w’s and the
z; — ¢;’s according to

w,o+8 if ieX

w, if ieX

(25 — <) if (i,/) €(X,X)U (X, X)
(z5— ¢ ={(z;,—¢)+ 8 if (i,j)e (X, X)
(z; —c))— 0 if (i.)) €(X, X)

and pass to the primal phase.
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10.4 AN EXAMPLE OF THE OUT-OF-KILTER ALGORITHM

Consider the network given in Figure 10.12. Initiating the out-of-kilter algorithm
with each x; = 0 and each w; = 0, we get the sequence of primal and dual
phases given in Figure 10.13.

(r.9=(2)
C={(1,2),(24),45),5 1)
A=2

lal Breakthrough in the First Primal Phase

(r,9)=(3,4)

X ={1,2,4,5},X = {3}
Si={(2,3)}, 5= {34}
9=3

Ib) Nonbreakthrough and the First Dual Phese

Figure 10.13. The out-of-kilter solution for Figure 10.12.
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{c} Nonbreakthrough and the Second Dual Phase

(3, 4) is in - kilter

(p. @) =(4,5)
X={L5},X={234)
S ={(1,2),(5,2))

S, = {4 5}
9=1

xTz = 29 )Cf3 =0
xX3a=2x3=0
x:S =27‘x;l =2
x =0,z = -2

{d] The Optimal Solution

Figure 10.13. (Cont.)

A Labeling Procedure for the Out-of-Kilter Algorithm

Either for hand or computer calculations there are simple and convenient ways
to maintain the information required to solve a minimal cost flow problem by
the out-of-kilter algorithm. Suppose that we associate with each node j a label
L(j) = (=1, A). A label (i, ) indicates that the flow on arc (i, j) could be
increased by an amount A; without worsening the kilter number of any arc. A
label (-1, A)) indicates that the flow on arc (j, /) could be decreased by an
amount A; without worsening the kilter number of any arc. Note that A,
represents the current estimate of the amount of flow change that can take place
along some cycle containing an out-of-kilter arc and either arc (i, j) or (J, i) in
such a way that the kilter number of no arc is increased. The labeling algorithm
becomes as follows.
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INITIALIZATION STEP

Select a conserving flow, for example, each x; = 0, and a set of dual variables,
such as each w; = 0.

MAIN STEP

1.

If all arcs are in kilter according to Figure 10.2, stop; the optimal solution
is obtained. Otherwise, select (or continue with a previously selected)
out-of-kilter arc, say (p, q). Erase all labels. If (p, ¢) is in one of the states
where a flow increase, A, , is required according to Figure 10.4, then set
s=g¢, t=p and L(s) = (+1¢,4,). Otherwise, if (p, g) is in one of the
states where a flow decrease, A, , is required according to Figure 10.4, then
sets=p,t=gand L(s) =(—1,4,).

. If node i has a label, node j has no label, and flow may be increased by an

amount A, along arc (i, j) according to Figure 10.4, then assign node j the
label L(j) = (+17, A;) where A, = Minimum {A,, A;}. If node i has a label,
node j has no label, and flow may be decreased by an amount A; along arc
(J, i) according to Figure 10.4, then give node j the label L(j) = (—i, A)
where A, = Minimum(A,, A;;}. Repeat step 2 until either node ¢ is labeled
or until no more nodes can be labeled. If node ¢ is labeled, go to step 3
(breakthrough has occurred); otherwise, go to step 4 (nonbreakthrough has
occurred).

. Let A = A,. Change flow along the identified cycle as follows. Begin at

node ¢. If the first entry in L(¢) is +k, then add A to x,,. Otherwise, if the
first entry in L(f) is — k, then subtract A from x,. Backtrack to node k and
repeat the process until node ¢ is reached again in the backtrack process.
Go to step 1.

. Let X be the set of labeled nodes and let X = N — X. Define S, =

{(LH:ieX, JEX, z; —¢; <0, x; <y} and S, ={(i,j):i €
X, €EX, z; —¢; >0, x; > ;). Let § = Minimum({|z; — ¢, o0 : (i,)) €

S, U S,). If 8 = oo, stop; no feasible solution exists. Otherwise, let

w,+8 ifieX
w = —
w; ifieX

and

(z; — <) if (i,/) € (X, X)U (X, X)
(Zg= ¢ =1(z;—c)+8 H()E(XX)
(z; = ¢;) — 8 i (i.j) € (X, X)

Go to Step 1.
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An Example of the Labeling Algorithm

We shall illustrate the labeling method for the out-of-kilter algorithm by per-
forming the first two iterations represented in Figure 10.13 @ and 5. From
Figure 10.13a we find that arc (1, 2) is an out-of-kilter arc whose flow must be

increased.
The sequence of operations of the labeling algorithm are as follows:

() =(1,2),s=2,t=1L(12)=(+1,2)
L@ =(+2,2)
. L(5) =(+4,2)
. L(1) = (+5,2)

. Breakthrough: A = 2

LD =45=2 x5, = x5, +A=2

LS = td = X = x4+ A =2

L) =+2 = X=X A=2

L)y = A+l x,=x,+A=2

10. Erase all labels, (p, q) = (3,4),s =4, ¢t =3, L(4) = (+3,4)
11. L(5) = (+4,3)

12. L(1) = (+5,3)

13. L(2) =(—4,2) _

14. Nonbreakthrough: X = {1, 2, 4,5}, X = {3},0 =3
5. w=w,=w,=ws=3,w; =0

O 00 ION WU AW —

Since arc (3, 4) is now in-kilter, we select another out-of-kilter arc, erase all
labels, and continue.

EXERCISES

10.1 Solve the following problem by the out-of-kilter algorithm.
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10.2 Consider the following network flow problem.

a. Give the kilter state of each arc.
b. Solve the problem by the out-of-kilter algorithm.

10.3 Solve the following problem by the out-of-kilter algorithm.
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10.5 Show by manipulating the constraint equations mathematically that any
minimal cost network flow problem can be transformed into the out-of-
kilter form by adding an additional node and at most m additional arcs.

10.6 How can alternate optimal solutions be detected in the out-of-kilter
algorithm?

10.7 Solve the following problem by the out-of-kilter algorithm.

(1,3,-2)

10.8 Consider the following network flow problem.

by =2

a. Solve the problem by the network simplex method of Chapter 9.
b. Transform the problem into a circulation form and solve it by the

out-of-kilter algorithm.

10.9 Show that after each dual phase we can replace each new w; by w, — wy,
where k is some arbitrary node, and the results are the same. In a
computer, we might do this to force one dual variable, such as w,, to
remain zero and keep all of the dual variables from getting too large.
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10.10 Show explicitly how the dual objective value changes after each dual

phase of the out-of-kilter algorithm. Does it always increase?

10.11 Consider the following network flow problem with flows as indicated.

10.12

10.13

10.14

10.15
10.16

10.17

a. Ignoring the fact that the b’s are not zero, apply the out-of-kilter
algorithm directly to the foregoing network with the starting x;’s as
given.

b. Solve by the network simplex method of Chapter 9.

c. Are the solutions in (a) and (b) the same? Discuss!

Consider the general minimal cost network flow problem: Minimize cx
subject to Ax =b, 1 < x < u where A is a node-arc incidence matrix.
Define a “conserving flow” to be any x satisfying Ax = b (the conserva-
tion equations). Show that without transforming the network to the
out-of-kilter form, the out-of-kilter algorithm can be applied directly on
the original network with a starting “conserving flow” to obtain the
optimal solution.

Interpret the dual of the out-of-kilter formulation for a minimal cost flow
problem.

Considering the out-of-kilter problem, show that a feasible solution exists
if and only if for every choice of X and X = N — X we have

2 lij< 24”.‘,‘
ieX ieXx
JEX JEX

How can one handle /; < 0 in the out-of-kilter algorithm?

Is there any difficulty with the out-of-kilter algorithm when /; = u; for
some (i, j)? Carefully work through the development of the out-of-kilter
algorithm for this case!

Is there any problem with degeneracy in the out-of-kilter algorithm?
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10.18

10.19

10.20

10.21

10.22

Suppose that we have a feasible solution to the out-of-kilter problem.
Assuming that the selected arc remains out-of-kilter, is it possible for no
new node to come into X after a dual variable change? Discuss!

Show that the dual solution given in Section 10.1 is optimal for a fixed set
of w/s,

Suppose that we work only with the z; — ¢;’s after the initial dual
solution, and never bother to change the w;’s. Show how the w,’s can be
recovered anytime we want them. (Hint. The w;’s are not unique. Set any
one w; = 0.)

In the out-of-kilter algorithm, show that if no cycle exists in_the subset of

arcs in G with x; # [; and x; % u,, then the current solution corresponds

to a basic solution of the associated linear program. Indicate how the
out-of-kilter algorithm can be initiated with a basic solution if one is not
readily available. Illustrate by the following network with the indicated
conserving flow. (Hint. Start with a conserving flow. If a cycle exists

among arcs where x; 7 [; and x; # u;, consider modifying the flow

around the cycle.)

Using the results of Exercise 10.21, if the out-of-kilter algorithm is
initiated with a basic solution to the linear program, show how a basic
solution can be maintained thereafter. (Hint. Let E = {(i,)) : x; # /; and
x; # u;}. Start with only appropriate arcs associated with E as members
of G’. If a circuit exists, change flows. Otherwise, after developing X, add
an appropriate arc to G’, which is not a member of E, and which enlarges
X; then work with E as much as possible again. If no circuit still exists in
G’, add another arc that is not in E but does enlarge X. Continue as often
as necessary. If no such arc not in E exists that enlarges X, then pass to
the dual phase. This is an example of block pivoting.)
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10.23

10.24

10.25

10.26

10.27

10.28

10.29
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Extend the out-of-kilter algorithm to handle noninteger values of ¢, /;,
and u,; directly.

If during the primal phase we permit some kilter numbers to increase as
long as the sum of all the kilter numbers decreases, will the out-of-kilter
algorithm work? How could this be made operational?

Suppose that we are given a network with m nodes and n arcs, all lower
bounds equal to zero, positive upper bounds, and no costs involved. Show
how the out-of-kilter algorithm can be used to find the maximum amount
of flow from node 1 to node m. (Hint. Consider adding an arc from node
m to node 1 with [, =0, u,, = oo, ¢, = —1 with all other ¢;’s set at
Z€ero.)

Find the maximum flow in the following network from node 1 to node 4
using the out-of-kilter algorithm. (Hint. Refer to Exercise 10.25.)

Suppose that we are given a network of m nodes and »n arcs with a cost Cij
for each arc and no lower or upper bounds involved. Show how the
out-of-kilter algorithm can be used to find the shortest (least) cost path
from node 1 to node m. (Hint. Consider adding an arc from node m to
node 1 with /,,; = u,, = 1, and c,,; = 0. Set the lower and upper bounds
of all other arcs at 0 and 1 respectively.)

Consider a general linear program of the form: Minimize ex subject to
Ax = b, ] < x < u. Suppose that we begin with a solution x that satisfies
Ax = b. Develop primal and dual phases of a linear programming algo-
rithm, based on the out-of-kilter algorithm, for solving this general linear
program,

Coal is being hauled out of Kentucky bound for locations in the South-
east, Southwest, Midwest, Northwest, and Northeast. The network of
routes is given below.
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10.30

10.31

Northeast

Northwest
12 Midwest Kentucky Cost
{$/1000 tons)
12
14

Southwest Southeast

The demands are given by the following chart.

LOCATION DEMAND (1000’S OF TONS)
Southeast 5
Southwest 3
Northwest 10
Midwest 8
Northeast 15

Kentucky has a supply of 65,000 tons per week. Except for nonnegativity
there is an upper limit on flow of 17,000 tons on each arc. Ignoring the
return route for coal cars, use the out-of-kilter algorithm to find the least
cost distribution system for coal.

Show how a transportation problem and an assignment problem can be
solved by the out-of-kilter algorithm.

The “Plenty of Water” Company wishes to deliver water for the purpose
of irrigation to three oases: the sin oasis, the devil’s oasis, and the pleasure
oasis. The company has two stations A and B in the vicinity of these
oases. Because of other commitments, at most 600 kilo-tons and 200
kilo-tons can be delivered by the two stations to the oases. Station A is
connected with the sin oasis by a 10 kilometer pipeline system and with
the devil’s oasis by a 15 kilometer pipeline system. Similarly station B is
connected with the pleasure oasis by a 15 kilometer pipeline system and
with the devil’s oasis by a 5 kilometer pipeline system. Furthermore, the
pleasure oasis and the devil’s oasis are connected by a road allowing the
transportation of water by trucks. Suppose that the sin oasis, the devil’s
oasis, and the pleasure oasis require 200, 350, and 150 kilo-tons of water.
Further suppose that the transportation cost from station A is $0.01 per
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10.32

10.33
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kilo-ton per kilometer, and the transportation cost from station B is

$0.012 per kilo-ton per kilometer. Finally suppose that the transportation

cost between the pleasure oasis and the devil’s oasis is $0.15 per kilo-ton.

a. Formulate the problem so that the out-of-kilter algorithm can be used.

b. Solve the problem by the out-of-kilter algorithm.

c. Suppose that a road is built joining the sin oasis and the devil’s oasis
with a shipping cost of $0.10 per kilo-ton. Would this affect the optimal
solution? If so, find the new optimal.

Suppose that the air freight charge per ton between locations is given by
the following table (except where no direct air freight service is available).

LOCATION 1 2 3 4 5 6 7
1 — 12 27 — 45 35 15
2 12 — 10 25 32 — 22
3 27 10 — 28 50 28 10
4 — 25 28 — 16 20 32
5 45 32 50 16 — 26 35
6 36 — 28 20 26 — 20
7 15 22 10 32 35 20 —

A certain corporation must ship a certain perishable commodity from
locations 1, 2, and 3 to locations 4, 5, 6, and 7. A total of 30, 50, and 20
tons of this commodity are to be sent from locations 1, 2, and 3
respectively. A total of 15, 30, 25, and 30 tons are to be sent to locations 4,
5, 6, and 7 respectively. Shipments can be sent through intermediate
locations at a cost equal to the sum of the costs for each of the legs of the
Jjourney. The problem is to determine the shipping plan that minimizes the
total freight cost. Formulate the problem and solve it by the out-of-kilter
algorithm.

A manufacturer must produce a certain product in sufficient quantity to
meet contracted sales in the next four months. The production facilities
available for this product are limited, but by different amounts in the
respective months. The unit cost of production also varies according to
the facilities and personnel available. The product can be produced in one
month and then held for sale in a later month, but at an estimated storage
cost of $1 per unit per month. No storage cost is incurred for goods sold
in the same month in which they are produced. There is presently no
inventory of this product, and none is desired at the end of the four
months. Pertinent data are given below.
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10.34

10.35

10.36

CONTRACTED  MAXIMUM UNIT COST UNIT STORAGE
MONTH SALES PRODUCTION OF PRODUCTION  COST PER MONTH
1 20 40 14 1
2 30 50 16 1
3 50 30 15 1
4 40 30 17 1

Formulate the production problem as a network problem and solve it by
the out-of-kilter algorithm.

Water is to be transported through a network of pipelines from the big
dam to the low valley for irrigation. The network is shown below where
arcs represent pipelines and the number on each arc represents the
maximum permitted rate of water flow in kilo-tons per hour. It is desired
to determine the maximum rate of flow from the big dam to the low
valley.

a. Formulate the problem so that it can be solved by the out-of-kilter
algorithm.

b. Solve the problem by the out-of-kilter algorithm.

c. Through the use of a more powerful pumping system the maximum
rate of flow on any arc can be increased by a maximum of 10 kilo-tons
of water per hour. If the rate is to be increased on only one pipeline,
which one would you recommend and why?

Let ¢, be the length associated with arc (i, ) in a given network. It is
desired to find the path with shortest distance and that with the maximum
distance between any two given nodes. Formulate the two problems so
that the out-of-kilter algorithm can be used. Make all possible simplifica-
tions in the application of the out-of-kilter algorithm for these two
problems. (Hint. See Exercise 10.27.)

An assembly consists of three parts A, B, and C. These parts go through
the following operations in order: forging, drilling, grinding, painting, and
assembling. The duration of these operations in days is summarized
below.



472

NOTES AND REFERENCES

DURATION OF OPERATION

PART FORGING DRILLING GRINDING PAINTING
A 1.0 0.5 1.0 0.3
B 2.0 0.3 0.5 0.3
C 3.0 1.0 — 0.4

Upon painting, parts A and B are assembled in two days and then A, B,

and C are assembled in one day. It is desired to find the least time

required for the assembly (this problem is called the critical path problem).

Formulate the problem as a network problem.

. Solve the problem by any method you wish.

Solve the problem by the out-of-kilter algorithm.

. Solve the problem by the simplified procedure you obtained in Ex-

ercise 10.35 above.

e. Because of the shortage of forging machines, suppose that at most two
parts can go through forging at any particular time. What is the effect
of this restriction on the total processing duration?

oo o

NOTES AND REFERENCES

1.

Fulkerson [167] developed the out-of-kilter algorithm for network flow prob-

lems. For a slightly different development of the out-of-kilter algorithm, see

Ford and Fulkerson [158].
The presentation of the out-of-kilter algorithm in this chapter follows that of

Clasen [78], especially the division of states according to values of flows X,
and reduced costs z; — c;.

The spirit of the out-of-kilter algorithm can be extended to a procedure for

general linear programs. This has been done by Jewell [264]. The correspond-
ing steps in the general case require the solution to linear programs instead of

finding cycles or changing dual variables in a simple way.



ELEVEN: MAXIMAL
FLOW, SHORTEST

PATH, AND

MULTICOMMODITY
FLOW PROBLEMS

Two special and important network flow problems are the maximal flow
problem and the shortest path problem. Both of these problems can be solved by
either the network simplex method of Chapter 9 or the out-of-kilter algorithm of
Chapter 10. However, their frequent occurrence in practice and the specialized,
more efficient procedures for handling these two problems provide a strong case
for considering them separately.

We also include in this chapter an introduction to the class of network flow
problems called multicommodity network flows. In Chapters 8, 9, and 10 we
have considered network flow problems in which it was not necessary to
distinguish among the units flowing in the network. There was essentially a
single commodity or type of unit. There are network flow problems in which
different types of units must be treated. In these instances supplies and demands
are by commodity type, and the distinction among the commodities must be
maintained. We shall examine this multicommodity flow problem, consider the
difficulty in dealing with it, and present a decomposition-based procedure for
solving it.

473
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11.1 THE MAXIMAL FLOW PROBLEM

Consider a network with m nodes and n arcs through which a single commodity
will flow. We associate with each arc (i, j) a lower bound on flow of /; = 0 and
an upper bound on flow of u;. We shall assume throughout the development
that the u;’s (arc capacities) are integers. There are no costs involved in the
maximal flow problem. In such a network, we wish to find the maximum
amount of flow from node 1 to node m.

Let f represent the amount of flow in the network from node 1 to node m.
Then the maximal flow problem may be stated as follows:

Maximize f

0 i
f i

m m f .f i
Subjectto X x; — X X = if i%lorm
f=1 k=1 —_ f i
u iLhj=1,2...,m
0

=
AYARVN

Lj=12 ..., m

where the sums and inequalities are taken over existing arcs in the network. This
is called the node-arc formulation for the maximal flow problem since the
constraint matrix is a node-arc incidence matrix. (See Exercise 11.17 for another
formulation.) Noting that f is a variable and denoting the node-arc incidence
matrix by A, we can write the maximal flow problem in matrix form as

Maximize f

Subject to (e, —e)f +Ax=10
x<u

x>0

Since the activity vector for f is (e,, — e,), the difference of two unit vectors, we
may view f as a flow variable on an arc from node m to node 1. This provides
the direct formulation of the maximal flow problem in out-of-kilter form (with
zero right-hand-side values for the flow conservations). Recalling that the
out-of-kilter problem dealt with minimization, we assign a coefficient of zero to
every flow variable except x,,, = f, which receives — 1.

Arc (m, 1) is sometimes called the return arc. Figure 11.1 presents an example
of the maximal flow problem and its equivalent out-of-kilter network flow
problem. In Figure 11.1 the lower bound /,, = /,, = 0 is derived from the fact
that all x; = 0, x,,, = 0 is a feasible solution to the maximal flow problem. Thus
the maximal value of x,,, will never be less than zero.
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(0,0, —1}

(a) (b)

Figure 11.1. An example of a maximal flow problem: (a) Maximal flow problem.
(b) Ovt-of-kilter equivalent problem.

Before continuing with the development of the maximal flow problem, we
introduce the useful and important concept of cut-sets.

Cut-Set (Separating Node m from Node 1)

Let X be any set of nodes in the network such that X contains node 1 but not
node m. Let X = N — X. Then (X, X)={(i,j):i€ X,j € X} is called a
cut-set separating node m from node 1.

Capacity of a Cut-Set

Let (X, X) be any cut-set in a network G. Then u(X, X) = 2 per, oty 18
called the capacity of the cut-set. In Figure 11.1a there are several cut-sets
separating node 4 from node 1 in G. They are

X = {1}, X =1{2,34}, (X,X)={{1,2),,3), u(X,X)=>5
X=(1,2), X={3,4, XX)={{123),@23),24%}, uX X)=9
X={(1,3), X=(2,4, (X,X)={(12,3 %)} u(X, X) =73
X ={(1,2,3}, X=/{4), (X, X) = {2, 9, (3, ), u(X,X)=>5

Let (X, X ) be any cut-set separating node m from node 1 in G. Summihg the
flow conservation equations of the maximal flow problem over nodes in X, flow
variables with both ends in X cancel and we get

DXy — X x;=1 (11.1)
iex i€X
JjEX JjEX
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Using x; > 0 and x; < y

> We get

Du;—0>f (11.2)
iex
JjEX

This leads to the following.

Lemma 1

The value f of any (feasible) flow is less than or equal to the capacity u(X, X ) of
any cut-set (separating node m from node 1).

The Dual of the Maximal Flow Problem

Consider the dual of the maximal flow problem:

m m
Minimize X X uh,

i=1 j=1
Subject to w, —w, =1

w,—w+ h; >0 Lj=12....m

hy >0 Li=12...,m

where w corresponds to the conservation equations and h corresponds to x < u.
Note that the first dual constraint above is associated with the flow f whose
column is e, — e,. A typical column a; of the node-arc incidence matrix A has
+1 at the ith position and —1 at the jth position, which leads to the dual
constraints w; — w; + h; > 0.

Let (X, X) be any cut-set and consider the dual problem above. If we let

_{o if iex
1 if ieX
h._=[1 if (i) € (X, X)
0 otherwise

then this particular choice of w and h provides a feasible solution to the dual

problem (why?), whose dual objective is equal to the capacity of the cut-set.
Thus, Lemma 1 above also follows from the duality theorem, which states

that any feasible solution to a minimization problem has an objective value
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greater than or equal to that of the associated maximization problem. As the
reader may suspect, we shall show that the capacity of the minimal cut-set (the
one with minimal capacity) is equal to the value of the maximal flow. We shall
prove this constructively.

An Algorithm for the Maximal Flow Problem

From Lemma 1 if we are able to find a flow and a cut-set such that u(X, )?) = f,
we have the maximal flow (and the minimal cut-set). We shall do this construc-
tively.

Suppose that we start with any feasible (integer) flow in G, say each x; = 0.
From G construct G’ as follows.

1. If arc (i, /) is in G and x; < uy, then place arc (i, /) in G’ with permitted
flow change value A; = u; — x;;.
2. If arc (i,/) is in G and x; > O, then place arc (/, i) in G' with permitted

flow change value 4, = x;.
Now, in G’ two possibilities exist:

Case 1

A path P exists, in G’, from node 1 to node m.

Case 2

No path exists, in G’, from node 1 to node m.

In case 1 we may construct a new feasible flow with greater objective value
(that is, flow out of node 1). Let A be equal to the minimum permitted flow on
the path P from node 1 to node m in G’, that is, A = Minimum (A, : (i, ) is in
the path}. Now A is a positive integer (why?). Consider the associated chain P’
(undirected path) in G. Construct a new flow as follows. Add A to flows on arcs
of the associated chain in G with the direction of the path in G’, subtract A from
flows on arcs of the associated chain in G against the direction of the path in G’,
and leave all other arc flows unchanged. The new flow is feasible (why?). The
value of the new flow is f' = f + A (why?).

Assuming that the capacities are finite, case 1 can occur only a finite number
of times before case 2 occurs (why?). When case 2 occurs, let X be the set of
nodes in G’ that can be reached along some path in G’ from node 1. Let
X = N — X and note that node m belongs to X (why?). Consider the arcs in G
between X and X. First, every arc (i, /) in G from X to X must have X; = Uy
otherwise there would be an arc (i, ) in G’ and j would be a member of X (a
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contradiction). Second, every arc (i, /) in G from X to X must have x; = 0;
otherwise there would be an arc (J, i) in G’ and i would be a member of X (a
contradiction). Substituting in Equation (11.1), we get

> u; =f or u(X,X) =1

iex

jex

Thus we must have the maximal flow by noting inequality (11.2). Hence we have
constructively proved the following.

Theorem 1 (Maximal Flow—Minimal Cut Theorem)

The value of the maximal flow in G is equal to the capacity of the minimal
cut-set in G.

Summary of the Maximal Flow Algorithm

The constructive proof of the maximal flow-minimal cut theorem leads to the
following maximal flow algorithm.

INITIALIZATION STEP

Select a set of feasible (integer) flows, say each x; = 0.

MAIN STEP

From G construct G’ as follows.

1. All of the nodes in G are in G’.
2. If x; < u; in G, place (i, ) in G’ with the permitted flow change on (i, j) of

A, =u, — x;.
if if i
3. If x; > 01in G, place (J, i) in G’ with the permitted flow change on (/, i) of
A= x..
i if

Note that arc (i,j) in G will give rise to two arcs in G if 0 < x; < u;.
Attempt to locate a path P in G’ from node 1 to node m. If no such path exists,
stop; the optimal solution is obtained. Otherwise, let A be the minimum
permitted flow change on P in G’. Add A to flows on arcs of the associated
chain in G with the direction of the path in G’, subtract A from flows on arcs of
the associated chain in G against the direction of the path in G’, and leave all
other arc flows unchanged. Repeat the main step.

Locating a path is called breakthrough, whereas finding no path is called
nonbreakthrough.
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An Example of the Maximal Flow Problem

Consider the network of Figure 1l.l1a. Figure 11.2 presents the complete
solution to the maximal flow problem for this network.

P={(1,2),23),(3,49)
A=

P= {(1'3)’ (3) 2)’ (2v4)}
A=

{(1,3), 3, 9))
1

Optimal!

=3 =xih=1,
x$3 =0

xfy = x§y =2
X={1,3},X={24)
(X, X)=((12.69)
G G u(X,X)=3

(d} Nonbreakthrough

Figure 11.2. The solution for the network of Figure 11.1a.
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Basic Solutions in the Maximal Flow Algorithm

In Chapter 9 we characterized basic solutions to a network flow problem. Recall
that a basic solution to a network flow problem consists of a set of nonbasic
variables at one of their lower or upper bounds plus a set of variables that form
a rooted spanning tree. Thus we may conclude that if the set E = {(i, ) :
0 < x; < u;} does not contain a cycle, then we have a basic feasible solution at
each iteration of the maximal flow algorithm (why?).

To identify a basis after each flow change in the maximal flow algorithm we
take all of the variables in the set E above plus an additional number of
variables at one of their bounds to form a spanning tree. This set together with
the artificial variable (located at node m) forms a rooted spanning tree (and the
nonbasic variables are at their bounds). Note that since f, the flow in the
network, is a variable, it must be taken onto the left-hand side of the constraint
system and becomes an arc from node m to node 1 (as discussed previously).

In Figure 11.3 we present bases corresponding to the solutions at each
iteration of the example in Figure 11.2. Notice that the bases in Figure 11.35
and d are unique. Also, notice that in Figure 11.3¢ no basis is possible that
corresponds to the maximal flow algorithm solution at that point. In Exercise
11.9 we suggest a procedure for finding paths in G’ in such a way that we shall
always have a basic solution available. Finally, notice that the bases presented in
Figure 11.3a and b are not adjacent. To obtain the basis in Figure 11.35 we have
replaced two basic variables in the basis of Figure 11.3a by two nonbasic
variables. This is an example of block pivoting discussed in Chapter 3.

A Labeling Algorithm for the Maximal Flow Problem

Either for hand or computer calculations, there are simple and convenient ways
to maintain the information required to solve a maximal flow problem. We shall
present a labeling algorithm that does not require the creation of the network
G’. Suppose that we associate with each node j a label L(j) = (i, A)) contain-
ing two pieces of information. The second entry, A, in L(j) indicates the
amount of flow that can be sent to node j from node 1 through the current
network with given flows without violating the capacity constraints 0 < x; <
u,. The first entry, *i, in L(j) indicates the previous node in the chain along
which flow can be changed. If the first entry in L(}) is +i, then flow will be
added to arc (i, j); otherwise, if the first entry is — i, then flow will be subtracted
from arc (J, i). The labeling algorithm becomes as follows.

INITIALIZATION STEP

Set x;, =0fori,j=1,..., m
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G A basis for G
(a)

{b) Second breakthrough

{c} Third breakthrough

G The unigue basis for G

{d) Nonbreakthrough

Figure 11.3. Comparison between solutions in the maximal flow algorithm and
bases (when possible) for Figure 11.2.
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MAIN STEP

1. Erase any labels and set L(1) = (—, ).

2. If node i has a label, node j has no label, and x;; < u;, then set L(j) =
(+1i, 4), where A; = Minimum{4A,, u; — x,}. If node i has a label, node j
has no label, and x; >0, then set L(j) = (—i, 4;), where A =
Minimum(4,, x;}. Repeat step 2 until either node m is labeled or until no
more nodes can be labeled. Go to step 3.

3. If node m is not labeled, stop; the optimal solution is obtained. Otherwise,
if node m is labeled, then change flows in the network as follows. Set
A = A,,. Begin at node m and consider the first entry of L(m). If the first
entry is +k, then add A to x,,. If the first entry of L(m) is —k, then
subtract A from x,,,. Backtrack to node k and repeat the process until node
1 is reached. Return to step 1.

When the algorithm stops, let X be the set of labeled nodes and X=N-X.
The set (X, X) is the minimal cut-set.

An Example of the Labeling Algorithm

Suppose that we apply the labeling algorithm to the maximal flow problem of
Figure 11.1a to produce the first two iterations of the maximal flow algorithms
represented in Figure 11.2a and Figure 11.2b. We begin with each x; = 0.

The sequence of labeling operations are as follows:

- L(1) = (=, )
L) =(+1, 1)
LB =(+2, 1
. L@) = (+3,1)

. Breakthrough: A =1
Li#=4+3=x,=0+A4=1
LB =42=2xy3=0+A=1
L2D=+1=x,=0+A=1
Erase all labels, L(1) = (—, «)
10. L3) = (+1,4)

1. L(2) = (=3, 1)

12. L) = (+2, 1)

13. Breakthrough: A =1

14 L4 =4+2=x,,=0+A=1
15. L= -3 = x,3=1—-A=0
16. LiB)=+1=x;=0+A=1

Having completed the change of flows, we erase all labels and continue. The
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foregoing sequence of labels is not unique. We selected it because it illustrated
the method completely.

11.2 THE SHORTEST PATH PROBLEM

Suppose that we are given a network G with m nodes and n arcs and a cost ¢y
associated with each arc (i,j) in G. The shortest path problem is: Find the
shortest (least costly) path from node 1 to node m in G. The cost of the path is
the sum of the costs on the arcs in the path.

The Mathematical Formulation of a Shortest Path Problem

We may think of the shortest path problem in a network flow context if we set
up a network in which we wish to send a single unit of flow from node 1 to node
m at minimal cost. Thus b, =1, b, = —1, and b, =0 for i # 1 or m. The
mathematical formulation becomes:

m m
Minimize >, > ¢ i

i=1j=1
m m 1 if i=1
Subjectto X x; — X x,={ 0 if ix*lorm
Jj=1 =1 -1 if i=m
x; =0orl Lj=1,2,...,m

where the sums and the 0 — 1 requirements are taken over existing arcs in G.
The constraints x; = 0 or 1 indicate that each arc is either in the path or not.

Ignoring the 0 — 1, constraints we again find the familiar flow conservation
equations. From Chapter 9 we know that the node-arc incidence matrix
associated with the flow conservation equations is totally unimodular. Thus if
we replace x; = 0 or 1 by x; > 0, and if an optimal solution exists, then the
simplex method would still obtain an optimal integer solution wherein the value
of each variable is zero or one. (This can be shown by selecting any basis and
applying Cramer’s rule.) Thus we may solve the integer program as a linear
program. That formulation becomes as follows.

; m m
Minimize >, > ¢;x

i=1 =1

Subject to > X, 2 X = {
j=1

v—lOi—l
iy
[ N
—
®]
=
3

=

<
II

»
3
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Since the shortest path problem is a minimal cost network flow problem, we
can solve it by one of the methods described in Chapter 9 or 10. However, we
shall soon see that more efficient methods exist for this problem.

Consider the dual of the shortest path problem:

Maximize w, - w,
Subject to w, — W, < ¢y Li=12...,m
w,  unrestricted i=12,...,m
It will be more convenient to make the substitution w; = — w,. As we shall

shortly see, w/ — wj is the shortest distance from node 1 to node i at optimality.
Hence we can get the shortest distance from node 1 to all nodes of the network,

A Shortest Path Procedure When All Costs Are Nonegative
Consider the case when all ¢; > 0. In this case a very simple and efficient
procedure exists for finding the shortest path (from node 1 to node m).

INITIALIZATION STEP
Set wi = 0 and let X = {1}.

MAIN STEP

Let )__(__= N — X and consider the arcs in the set (X, )?) ={(i,j):i €X,
J E X). Let ‘
w, + ¢, = Minimum {w] + ¢}

(. peX, X)

Set w, = w, + ¢, and place node g in X. Repeat the main step exactly m — 1
times (including the first time) and then stop; the optimal solution is at hand.

Validation of the Algorithm -

We now prove that the algorithm produces an optimal solution. Assume,
inductively, that each w] for i € X represents the cost of the shortest path from
node 1 to node i. This is certainly true for i = 1 (why?). Consider the algorithm
at some point when a new node ¢ is about to be added to X. Suppose that

w, + ¢,, = Minimum {w] + ¢;} (11.3)
(e, X)
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We shall show that the shortest path from node 1 to node g has length
w, = w, + ¢, and can be constructed iteratively as the shortest path from node
1 to node p plus the arc (p, q). Let P be any path from node 1 to node ¢q. It
suffices to show that the length of P is > w;. Since node 1 is in X and node g is
currently in X, then P must contain an arc (i, /) where i € X andj € X (i and j
could be p and g respectively). The length of the path P is thus equal to the sum

of the following,

1. The length from node 1 to node ..
2. The length of arc (i, ), that is, ¢;;.
3. The length from j to q.

By the induction hypothesis the length from node 1 to node i is greater than or
equal to w;. Since the costs of all arcs are assumed nonnegative, then the length
in part 3 above is > 0. Therefore the length of P is greater than or equal to
w! + ¢;. In view of Equation (11.3) and since w, = w, + c,, it is clear that the
length of Pis > w/. This completes the induction argument and the algorithm is
verified.

An Example of the Shortest Path Problem with Nonnegative Costs

Consider the network of Figure 11.4. It is desired to find the shortest path from
node 1 to all other nodes. Figure 11.5 presents the complete solution for this
example. The darkened arcs are those used in the selection of the node to be
added to X at each iteration. These arcs can be used to trace the shortest path
from node 1 to any given node i/ (how?). As the reader may suspect, it is no
accident that darkened arcs form a tree!

Figure 11.4. An example of a shortest path
problem.

A Shortest Path Procedure for Arbitrary Costs

The shortest path algorithm described earlier in this section does not generalize
to the case when the costs are allowed to be negative. Figure 11.6 illustrates this
where the previous algorithm would select node 3 to enter X with wj = w] + ¢5
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Figure 11.5. Solution of the example of Figure 11.4.
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Figure 11.6. An example where the nonneg-
ative cost algorithm will not work.

= 2 as the value of the shortest path from node 1 to node 3. However, it would
be better to first travel to node 2, incurring a higher cost, and then go on to node
3 for a saving,

There still is a fast and efficient method for the shortest path problem with
negative costs. We shall assume, however, that the sum of the costs on arcs of
any circuit in G is nonnegative. Without this assumption, a “traveler” would
proceed directly to the circuit in G and traverse it an infinite number of times
with his cost decreasing after each time around the circuit.

The algorithm works with the dual of the shortest path problem. Recall that
the dual problem with the substitution w/ = — w, for i = 1,2,..., m is given
by the following.

Maximize w;,, —w}

Subject to w; — w/ < ¢ Lj=12...,m

J y

w/ unrestricted i=1,2,...,m

Since the objective and the constraints involve only differences in variables we
may set one variable to any value, say w; = 0 (why?).

In the algorithm for negative costs we shall begin with a choice of w’ that is
“best” with respect to the dual objective but which may violate one or more of
the dual constraints. We shall show that by iteratively modifying w’ to satisfy the
constraints, one at a time, we shall be able to terminate in a finite number of
steps with the optimal solution.

The algorithm proceeds as follows (we shall use the convention that co + a
= o0,and a — o0 = — o0, Where — 0 < a < o).

INITIALIZATION STEP

Setw; =0, w/ = 00 i+ 1.
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MAIN STEP

If w/<w +¢; for i,j=1,..., m, stop; the optimal solution is at hand.
Otherwise, select (p, q) such that w, > w, + ¢, and set w, = w, + ¢,,. Repeat
the main step as often as necessary.

To identify the arcs in the shortest path we begin at node m. If w/ = oo, then
there is no path at all from node 1 to node m (see Exercise 11.25). If w/, < o0,
then there must be a node k such that w, — w;, = ¢, (why?). Arc (k, m) is an
arc in the shortest path. Back up to node & and repeat the argument (except that
w; 7 oo) until node 1 is reached.

An Example of the Shortest Path Algorithm for Negative Costs

Consider the network of Figure 11.7 where we wish to find the shortest path
from node 1 to node 4. In Figure 11.8 we present the complete solution of the
example by the previous algorithm. There is no required order in which the arcs
must be considered for the algorithm to converge. When the algorithm stops, the
result is that wy, — w] = —8 is the length of the shortest path. Arcs along the
shortest path have w; — w] = ¢;.

Figure 11.7. A shortest path example with negative
costs.

Verification of the Algorithm for Negative Costs

In this section it will be necessary to distinguish between simple and nonsimple
paths. A nonsimple path is a path that contains one or more circuits. We shall
first show that when w; < o0, it represents the cost of some path (not necessarily
simple) from node 1 to node /. We note that in computing the cost of a (not
necessarily simple) path, we must count the cost of an arc as many times
as the arc appears in the path. Thus for a nonsimple path P =
{(1, 3), (3, 4), (4, 5), (5, 3), (3, 4), (4, 6)} the associated cost would be c;53 + ¢34
+ c45 + €53+ 34 + 4. As we shall see, nonsimple paths play a part in the
algorithm only when there is a negative circuit in G.

We shall demonstrate that w/ (< oo) represents the cost of a path from node
1 to node i by induction on the number of iterations of the shortest path
procedure (an iteration being a change in any one w;).

Now, since we start with w; = 0 and w; = oo for i # 1, the result is true at
the first iteration. This is true because w| = 0 represents the cost of the (empty)



w3 > wi + ¢y3 wy > Wi+ ¢py
' = o =
Wa=% Setwy=w)+c3=—1 Set wh = wi + ¢ =2

wy > wi+
Set wy = wiy + ¢33 = —8

whi > wy + ¢
Set wy = wh + €33 = —2

wy= >

wy= -2
(d}

Allwf < w] + ¢
wy = —8 Optimal!
P={(1,2), 3G9}

wy= -2
(e}
Figure 11.8. The solution for the network of Figure 11.7.
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path, which contains no arcs, from node 1 to node I.

~ Assume that the result is true at iteration ¢; that is, that w/ (< oo) represents
the cost of some (not necessarily simple) path from node 1 to node i. Consider
iteration ¢ + 1. Either for every i and j, wj + ¢; > w/ and we stop, or else for
some i and j, w/ + ¢; < wj in which case we set w/ = w/ + ¢;. In the former
case we stop without changing any w/, and so the result is true. In the latter case,
by assumption there exists a path P, from node 1 to node i at iteration ¢ with
cost w;. Consider the path P, = P, U {(i,/)}. This path has cost w/ + ¢; = w]
and the result is true at 1terat10n t + 1. Thus we have the following.

Theorem 2

If w; < oo, then there exists a (not necessarily simple) path P from node 1 to
node k along which 2, ) pc; = w;.

Corollary 1

wy, > Minimum( > c,-j>
P (L)EP,

where P, is any (not necessarily simple) path from node 1 to node &.

If there are no negative circuits, then the cost of any nonsimple path is
greater than or equal to the cost of the corresponding simple path after deleting
the circuits (why?). Hence, if there are no negative circuits, w; is bounded from
below by the cost of the shortest simple path and thus by a finite integer (why?).
Finally, since ¥,w/ decreases by a positive integer at each iteration (why?), the
shortest path algorithm will stop in a finite number of steps if there are no
negative circuits.

We also have at hand a way to determine whether the network contains a
negative circuit reachable from node 1. If no negative circuits exist, then ¢, =
EC <o € 1s a lower bound on w; (why?) Thus, if any w; falls below ¢, during the
algonthm a negative circuit must exist and we stop the shortest path algorithm.

We have shown that the algorithm terminates in a finite number of steps. If at
termination w;,, = oo, there is no path from node 1 to node m. If w;, < oo, then
there is a node / such that w,, — wj = ¢,,. Similarly there is a node & such that

"w, — wy, = ¢, Continuing in this fashion, node 1 is eventually reached (why?).
This backtracking procedure defines the shortest path from node 1 to node m.
To show that this is the case, note that if we let x;, = 1 for arcs on the path and
x; = 0 otherwise, and if we let the dual vector w be —w, then primal feasibility,
dual feasibility, and complementary slackness hold.

A Labeling Algorithm for the Shortest Path Problem

Either for hand or computer calculations there are simple and convenient ways
to maintain the information required to solve a shortest path problem with
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arbitrary costs. Suppose that we associate with each node j a label L()) = (i, w))
containing two pieces of information. The second entry, w/, in L(/) indicates the
cost (length) of the current “best” path from node 1 to node j. The first entry, i,
in L(j) gives the node just prior to node j in the path. Let ¢, = X 4 ¢;. The
labeling algorithm becomes as follows.

INITIALIZATION STEP
Set L(l) =(—,0 and L)) =(—, o) fori=2,...,m.

MAIN STEP

If w/<w +¢; for i,j=1,...,m, stop; the optimal solution is obtained.
Otherwise, select (p, g) such that w; > w, + ¢,, and set L(q) = (p, w, = w, +
Cpg)- If w, < ¢, stop; there is a negative circuit in G. Otherwise, repeat the main
step.

To identify the arcs of the shortest path, begin at node m. If the second label
in L(m), w,,, is oo, then there is no path from node 1 to node m in G. Otherwise,
the first entry in L(m), say k, gives the previous node in the shortest path.
Backtrack to node k and repeat the process until node 1 is reached.

An Example of the Labeling Algorithm

Suppose that we use the labeling algorithm to solve the shortest path problem of
Figure 11.7. First, ¢ = —1 —4 — 6 = —11.
The sequence of operations of the labeling algorithms are as follows.

L) =(=,0),L2)=(—, ), LAB)=(—,%), L& = (-, ©)
LB=(1, -1

L) =(1,2)

L) =2, -2

.L@&)=(3, - 8)

. Optimal: L,(4) = —8 (< o0) => a shortest path P exists with length of —8
.L(#H=3=3,4isin P
LB =2=(,3)isin P
. Li2)=1=(1,2)isin P

VN A WN —

Thus the shortest path is P = {(I, 2), (2, 3), (3, 4)}.

Identifying Negative Circuits With the Shortest Path Algorithm

We have already indicated that if at some point in the shortest path algorithm
any w;, < ¢, then a negative circuit reachable from node 1 exists in G. To find
such a negative circuit, begin at node & and apply the following procedure.
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INITIALIZATION STEP

Letp = k.

MAIN STEP

Let L,(p) be the first entry in L(p).

1. If L,(p) > 0 let / = L,(p) and replace L,(p) by —L,(p). Set p = [ and
repeat the main step.
2. If L,(p) < 0 then stop, a negative circuit has been found.

The original node k may not be part of the circuit. In this case it is necessary to
discard the path, from node p to node &, from the sequence of nodes and arcs
obtained by the above procedure.

11.3 MULTICOMMODITY FLOWS

In all of the flow problems we have considered to this point, it has not been
necessary to distinguish among the units flowing in the network. This class of
network flow problems is called single-commodity flow problems. There is also a
class of network flow problems called multicommodity flow problems in which
it is necessary to distinguish among the flows in the network.

The most natural example of multicommodity flows occurs in rush hour
traffic in any metropolitan city. If the area is divided into zones, then there are a
number of people in zone i who must travel to work in zone j. There are also a
number of people who must travel from zone j to work in zone i. Where people
are located corresponds to supply (b > 0) and where they wish to go corre-
sponds to demand (b < 0). If we treat the problem as a single-commodity flow
problem, a minimal cost flow procedure (network simplex or out-of-kilter)
would use the supply of people in a given zone to satisfy the demand in the same
zone. This is an unacceptable solution. In this problem and ones like it, we must
distinguish between the different types of flow and be careful to retain their
identity and flow pattern throughout the optimization procedure. That is, we
must essentially have a different flow vector and set of conservation equations
for each commodity.

As we shall see, multicommodity flow problems do not enjoy the same special
properties as single-commodity flow problems. As an example, consider the
network of Figure 11.9. Suppose that there are three commodities that flow
through the network. The source for commodity 1 is node 1, and the sink for
commodity 1 is node 3. That is, commodity 1 must originate only at node 1 and
terminate only at node 3. Similarly, let the source and sink for commodity 2 be
nodes 2 and 1 respectively. Finally, the source and sink for commodity 3 are
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fi 5

f4 fs

Y \

f f

Figure 11.9. A three-commodity maximal flow problem.

nodes 3 and 2 respectively. With the restriction that the sum of all commodities
flowing on an arc should not exceed the arc capacity u; = 1, what is the
maximal sum of commodity flows, f; + f, + f;, possible in the network?

Finding the maximal flow for the three-commodity problem of Figure 11.9 is
relatively simple since there is only one path that each commodity can take on
its way from its source to its sink. The paths for commodity 1, 2, and 3
respectively are

= {(1,2), 2.3))
P, = {(2, 3,3 D)
P = {(3,1),(1,2)).

If we place a single unit of flow on any one of the paths, then the other paths are
completely blocked (that is, must have zero flow) and thus the total flow would
be 1. However, there is a better solution available if we do not require integer
flows. Suppose that we place % unit of flow of commodity 1 on P,, % unit of
flow of commodity 2 on P, and j unit of flow of commodity 3 on P;. In this
case none of the arc capacities are violated and the total flow of all commodities
is 2. From this we see that multlcommodlty flow problems do not necessarily
provide integer flows.

Even though multicommodity flow problems do not have as “nice” a struc-
ture as single-commodity flow problems, they still are linear programs (if we
ignore integrality of the variables). As we shall soon see, multicommodity flow
problems do have some special structure that permits the application of decom-
position techniques.
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The Multicommodity Minimal Cost Flow Problem

Suppose that we are given a network G with m nodes and n arcs in which there
will flow ¢ different commodities. Let u, represent the vector of upper limits on
flow for commodity i in the arcs of the network. Then u,,, is the upper limit on
flow of commodity i in arc (p, g). Also, let u represent the vector of upper limits
on the sum of all commodities flowing in the arcs of the network. Then u,, is the
upper limit on the sum of all commodity flows in arc (p, g). Let ¢; represent the
vector of arc costs in the network for commodity i. Then c,,, is the unit cost of
commodity i on arc (p, g). Finally, let b; represent the vector of supplies (or
demands) of commodity i in the network. Then b,, is the supply (if b, > 0) or
demand (if b,, < 0) of commodity i at node g.

The linear programming formulation for the multicommodity minimal cost
flow problem is as follows:

i
Minimize », cgx,
i=1

t
Subject to >, x;<u

i=]

where x, is the vector of flows of commodity i in the network and A is the
node-arc incidence matrix of the graph. The foregoing formulation is called the
node-arc formulation for the multicommodity flow problem since it uses the
node-arc incidence matrix.

The multicommodity minimal cost flow problem possesses the block diagonal
structure discussed in Section 7.5 of the decomposition chapter. Thus we may
apply the block diagonal decomposition technique to the foregoing problem.
The multicommodity minimal cost flow problem has (¢ + 1)n variables and
n + mt constraints (including the slack variables for the coupling constraints
and ignoring the nonnegativity and upper bound constraints 0 < x; < u,). Thus,
even for moderate-sized problems, the constraint matrix will be large. For
example, suppose that we have a problem with 100 nodes, 250 arcs, and 10
commodities. The problem will have 2750 variables and 1250 constraints.

Consider the application of the decomposition algorithm to the minimal cost
multicommodity flow problem. Let X, = {x, : Ax; = b,, 0 < x; < u,}. Assume
that each component of u, is finite so that X, is bounded (See Exercise 11.47 for
a relaxation of this assumption). Then any x; can be expressed as a convex
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combination of the extreme points of X; as follows:

X; = 2 )\ijxij
j=1
where
k;
2N =1
i=1
AN 2O0 0 =100k
and x;;, X, ..., Xy, are the extreme points of X;. Substituting for x; in the

multicommodity minimal cost flow problem and denoting the vector of slacks
by s, we get the following.

ke
Minimize >, 2 (c;x;)A,

i=1 j=1

t k;
Subject to >, XA\ +s=u

i=1 j=1

2}\,.].=1 i=1, ,
J=1
J=1L...,k
A, 20
v i=1, ,t
s>0

Suppose that we have a basic feasible solution to the multicommodity minimal
cost flow problem in terms of the A;’s and let (w, @) be the vector of dual
variables corresponding to the basic feasible solution (w has n components and a
has ¢ components). Then dual feasibility is given by the following two condi-
tions:

(1) w,, < 0 corresponding to each s,,, and

(i) wx; + o, — ¢x,; < 0 corresponding to each A,,.

If any of these conditions is violated, the corresponding variable (s,, or A;) is a
candidate to enter the master basis. Here s, is a candidate to enter the basis if
w,, > 0. For a given commodity /, a nonbasic variable among the A;’s could
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enter the basis if the optimal objective of the following subproblem is positive
(why?).

Maximize (w — ¢)Xx;+¢;

Subject to Ax,= b,

0 <x;< u,

1

But, since A is a node-arc incidence matrix, this is simply a single-commodity
flow problem. Thus it may be solved by one of the efficient techniques for
solving single-commodity network flow problems (network simplex or out-of-
kilter).

Summary of the Decomposition Algorithm Applied
to the Multicommeodity Minimal Cost Flow Problem

We now specialize the decomposition algorithm of Chapter 7 to the multicom-
modity minimal cost flow problem.

INITIALIZATION STEP

Begin with a basic feasible solution to the master problem. Store B~!,
b= B_'(lll), and (w, a) = &;B !, where ¢; = ¢;x;; (the two-phase or the big-M

method may be required).

MAIN STEP

1. Let (w, @) be the vector of dual variables corresponding to the current
basic feasible solution to the master problem. If any w,, > 0, then the
corresponding s, is a candidate to enter the master basis. If w,, < 0 for,
each arc, consider the following ith subproblem.

Maximize (w— ¢)x;+ ¢«

Subject to Ax,= b,

This is a single-commodity flow problem. If the solution x,, to this problem
has z, — ¢, = (w — ¢)xy + o, > 0, then A, is a candidate to enter the
master basis.

2. If there is no candidate to enter the master basis, then stop; the optimal
solution is at hand. Otherwise, select a candidate variable, update its
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column accordingly, B“(e(’; ") for s,, and B_'(,:k
[Note that e, is a unit vector with the 1 in the row associated with arc
(p, q).] This updates the basis inverse, the dual variables, and the right-
hand side. Return to step 1.

;

) for A, and pivot.

An Example of the Multicommodity Minimal Cost Flow Algorithm

Consider the two-commodity minimal cost.flow problem whose data are given
in Figure 11.10.

(2,0) (1,-3)
lupg. t1pq, Uzpq: C1pg: €2pq!)
(1,5,4,1,—-1) (3,4,2,1,0)
(brg, bag)
(_2’ 0) (7, 5, 3, 0, 2) (_1’3)

Figure 11.10. A two-commodity minimal cost flow problem.

The constraint matrix and the right-hand side are displayed in Figure 11.11 (the
lower and upper bound constraints 0 < x; < u; and 0 < x, < u, are not dis-
played). Notice the structure of the coupling constraints and the special struc-
tured block diagonal constraints. Also note that x, and x, represent the artificial
variables for the two commodities.

Initialization

To avoid the two-phase or the big-M methods, suppose that we begin with the
following feasible solutions.

X112 2 X212 0
X123 3 X223 0
X;p=1{ X34 | =] 2 and Xy = X234 | =| 3
X141 0 X241 0
X142 0 X242 3

Note that the master basis (in the space of the slack variables and the A;’s)
consists of all the slacks, A;; and A,;. The basis and its inverse are
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FIRST COMMODITY

SECOND COMMODITY

SLACK VARIABLES

VARIABLES VARIABLES

X112 X3 X3¢ X X X1 Xapz Xpo3 0 Xz Xoar Xap X2 S;p Sa3 S3q S4p Ss2 RHS

-5 =1 0 -1 -4 0 2 0 -2 1 -6 0|0 0 0 0 0
1 0 0 0 0 0 1 0 0 0 0 01 0 0 0 0| 4
Cousi 0 1 0 0 0 0 0 1 0 0 0o o0lo I 0 0 O 3
CO“pt ng t 0 0 1 0 0 0 0 0 1 0o 0 0|0 0 1 0 o 7
onstraints 0 0 0 1 0 0 0 0 0 1 0o 0lo 0o o0 1 o0 1
0 0 0 0 1 0 0 0 0 0 1 o/0o 0 o0 o 1 5
Node-arc 1 0 0 -1 0 0 0 0 0 0 0 0/0 0 0 0 O 2
incidence -1 1 0 0 -1 0 0 0 0 0 0 0/l0 0 0 0 O 1
matrix for 0 —1 1 0 0 0 0 0 0 0 0 0l0 0 0 0 O0/|-1
subproblem 1| 0 0 —1 1 1 1 0 0 0 0 0o 0|0 0 0 0 0/[-2
Node-arc 0 0 0 0 0 0 1 0 0 -1 o olo o o o ol o
incidence 0 0 0 0 0 0| —1 1 0 0 -1 0]Jo 0 0 0 0]-3
matrix for 0 0 0 0 0 0 0 —1 1 0 0o 0l0o 0 0 o0 O} 3
subproblem 2| 0 0 0 0 0 0 0 0 -1 1 1 1]0 0 0 0 0| o

Figure 11.11. The constraint matrix for the two-commodity problem of Figure 11.10.
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S12 Sz S3q Sa

1 0O 0 0

0 1 0 0

0O o 1 0
B={i0 0 O 1
0O o0 o 0

0O 0 O 0

10 0 O 0

Here ¢;x,; = 13 and ¢,x,; = 24. Denoting [111] by b, we have

Sa2

SO~ O O OO

Au Ay
2 0
3.0
2 3
0 0
0 3
1 0
0 1

l—.

SCOOOOC O —

COOoOOO—~O

SCOOO—OC

SOO—~O OO
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0 -2 o0
0 -3 o
0 -2 -3
0 0 o0
10 -3
0 1 o
0o n 1]

(W, @) = &;B~! = (0,0,0,0,0,13,24)B~' = (0,0, 0,0, 0, 13, 24)

z =8B 'b =137

Setting up the revised simplex array

_—— N = W N

—_—— NI == NN

(W, @)

¢;B~'b

B—l

B~ 'b

for the master problem, we get the following,

Wip  Waz Wiy Wy Wy o &,  RHS
z 0 0 0 0 0 13 24 | 37 |
sy |1 o o o o -2 0| 2
s | 0 1 o o o -3 ol o
sw | 0 0 1 o o -2 -3 2
sa | 0 0 0 1 0 0 o] 1
se | 0 0 0 0 1 o -3 | 2
A, | 0 0o o 0o o0 1 o] 1
A | O 0 0o 0 0 0 1]

lteration 1

First, all Wog

(or commodity) is eligible to enter the master basis.

< 0. Next we check whether a candidate from either subproblem
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(Maximization)

(4,-1)

Figure 11.12. Subproblem 1 at the first iteration.

SUBPROBLEM 1
w—c, =0-c¢,=(-5-10—-1 -4

Subproblem 1 is the single-commodity flow problem defined in Figure 11.12.
The optimal (maximal cost) solution is x,, = (2, 3, 2, 0, 0)' and the value of the
subproblem 1 objective is

Zp—=cCcp=(W—¢)xp,+a,=-13+13=0

Thus there is no candidate from subproblem 1.

SUBPROBLEM 2
W-c,=0-¢,=(20 —21, —6)

Subproblem 2 is the single-commodity flow problem defined in Figure 11.13.
The optimal (maximal cost) solution is x,, = (3, 0, 3, 3, 0) and

Zyy = Cpp = (W — Cy)Xpp + @, =3 + 24 =27

Thus A, is a candidate to enter the basis. The updated column for A, (exclusive

b
M -3

(Maximization)

Ggpg, Wy _"ZM)\ (2,0)

(4,1)

3, -2
0 ( ) 3

Figure 11.13. Subproblem 2 at the first iteration.
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of z,, — ¢y,) is

X2
B 'lo |=(003 -301)
1
The pivoting process is as follows.
Wip Wz Wig  wa Wi O a, RHS Ay
z 0 0 0 0 13 24| 37 27
S1a 1 0 0 0 0o -2 0 2 3
Sa3 0 1 0 0 0o -3 0 0 0
S34 0 0 1 0 0o -2 -3 2 0
sal © 0 o 1 o o0 o 1 ©
S42 0 0 0 0 1 0o -3 2 -3
AL 0 0 0 0 0 1 0 1 0
Ay 0 0 0 0 0 0 1 1 1
Wip Wiz Wiq W4 Wy o & ap RHS
z 0 0 0 -9 0 13 24| 28
15 1 0 0o -1 0o -2 0 1
Sy3 0 1 0 0 0 -3 0 0
S34 0 0 1 0 0o -2 -3 2
Ay 0O 0 0o ¥ 0o o0 o L
Se 0 0 0 1 1 o -3 3
AL 0 0 0 0 0 1 0. 1
Ayl 0 0 0o -1 o o 1| 2
lteration 2

Again all w, < 0 (so no s,, is a candidate to enter the master basis).

SUBPROBLEM 1

w—c¢c)=(-5-1,0—-10, — 4)

Subproblem 1 is the single-commodity flow problem defined in Figure 11.14.
The optimal solution is x,; = (2, 3, 2, 0, 0) with

zZp—c3=W-—¢e)X;+a=-13+13=0

Thus there is no candidate from subproblem 1.
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bw\z

(Maximization)

4,-1)

{t1pq Wpy ~ €1pg)

(5,0)

Figure 11.14, Subproblem 1 at the second iteration.

SUBPROBLEM 2
(W—-1¢)=(2,0,—2 —8 —6)

Subproblem 2 is the single-commodity flow problem defined in Figure 11.15. An
optimal solution is x,; = (3, 0, 3, 3, 0)' with
Zy3 = Cp3 = (W= €)Xy + o, = —24+24=0
Thus there is no candidate from subproblem 2.
Therefore we already have the optimal solution as follows:
z* =128
XF=A X, =(23200)
X3 = AyXy + ApXy
=12(0,0,3,0,3) + 1(3,0, 3,3, 0)
=(1,0,3,1,2)

b?a
>0 -3

{Maximization)

(u2pq: Wpq — €2pg)

(3,-2

Figure 11.15. Subproblem 2 at the second iteration.

11.4 CHARACTERIZATION OF A BASIS FOR THE MULTICOMMODITY MINIMAL
COST FLOW PROBLEM

Suppose that we proceed to apply the simplex method directly to the multicom-
modity minimal cost flow problem. We first note from Chapter 9 that the system
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Ax; = b, has rank m — 1 so that it is necessary to add an artificial variable for
each commodity. Adding this artificial column vector, the overall constraint
matrix is given by

X, X, X, X

I I I } n rows
A 0 0 0 } m rows
0 A 0 0 } m rows
0 0 A 0 | } m rows

-

where A = [A, e,] and 1=11 0] Selecting a basis submatrix from this matrix,
we get

E, E, E, E
A, 0 0 0
B=|0 A (I
0 0 --- A 0

where E, and E are matrices formed by taking selected columns of IandI
respectively. The row location of the 1 for a particular column of E, identifies
the arc used in A,. B

Since B is a basis matrix, each A, must contain a submatrix that spans E™.
Therefore each A, contains an m X m basis (why?). Partition A, into [B,|D,]
where B, is a basis matrix for Ax, = b,. Note that B, must contain the artificial
column (why?). From Chapter 9, since B, is a basis for a set of single-commodity
flow conservation constraints, B, must correspond to a rooted spanning tree in G
with the artificial variable as the root. Similarly partition E; into [E(|E/].
Substituting into B and rearranging the columns, we get

E, EE --- E E E --- E E
B, 0 --- 0 D, 0 --- 0 0
B =

0 B, --- 0 0 D, --- 0 0

o 0 --- B 0 0 --- D, 0
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In other words, the basis matrix B has the following general structure:

]§={E' ) E]

B D 0
Denoting the right-hand side by b (where b is a column vector consisting of
b, b,, ..., and b,), the basic system Bx, = b reduces to
X
S AN
B D 0] b
B
Xp
where x, is decomposed into | Xp [. This system is not easy to solve. However,
Sp

by utilizing the following change of variables, the system can be solved, as we
shall outline shortly:

Xp I -B"'D o0’
Xp =10 I { 0 Xp (114 )
Sp 0 0 I]| sy

This is a nonsingular transformation and thus we have an equivalent system to
work with. On substituting for x, in Bx, = b, we get

~1 X
E g ]|l “B7D 0f T g
B D oll® 1 ofxp|=|y
0 0 1]s,
X
E’ E” — E/B—ID E x,D =[u]
B 0 0 b
Sp

Now the second set of equations Bx), = b is easy to solve since it corresponds to
a series of rooted spanning trees, one for each commodity.

Consider the first set of equations in the transformed system after having
solved for xg:

’

[Eu — E’B_ID, E][ z,D:| =u-—- E’X’F

B
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The solution is

’

[XD} =[E" - EB'D, E]_l(u — Ex;p
Sp
and requires the inversion of the matrix [E” — E’'B™'D, E]. While this matrix is
not as easy to invert as B, it is easy to form and understand. Here E is’a matrix
of unit columns corresponding to the slack variables in the basis. Now let us
investigate the matrix E” — E'B~'D.

A typical column of E” — E'B™'D corresponding to commodity k is given by

- E.B;! a,, where e; is a unit vector in E” with a 1 in the row corresponding
to arc (i, j) and a; is a vector in E™witha l inrowiand a —1 in row . From
Chapter 9 recall that y; = B¢ 'a; corresponds to a chain from node i to node j
through the basis tree. Note that the coefficients of y; actually reorient the chain
into a path. Then —B; ! a; corresponds to a chain from _] to i in the rooted
spanning tree of commodlty k. Each coefficient in — B, a corresponds to a
basic variable in B,. Now E; is an n X m matrix with 1ts columns being unit
vectors in E” identifying the basic variables in B,. Thus —E;B_/ 'a,.j simply
expands the m vector —B, ‘a,.j to an n vector by assigning zero coefficients
corresponding to all nonbasic arcs of commodity k. Hence —E; B, 'a,-j is an n
vector corresponding to the chain from node j to node i in the rooted spanning
tree of commodity k. Finally e; — E;(B;'a,.j corresponds to the unique cycle
formed when the arc (7, /) is added to the basis tree (and the basis arcs are
properly oriented). Thus, knowing B, it is easy to form E” — EB~'D.

The important conclusion is the following.

Theorem 3

A transformed basis matrix for the multicommodity minimal cost flow problem
corresponds to a rooted spanning tree for each commodity plus a set of cycles
and slacks.

Once [E” — E'B™'D, E] is formed as described above, we can solve for x},

and sj. With the vector
XF

XD
Sp
now known, we can solve for the basic variables X, x,, and s, from Equation
(11.4). In Exercise 11.55 we ask the reader to develop a systematic procedure for
computing the dual variables, updating the column of the entering variable, and
the basis inverse. This, coupled with the foregoing procedure for computing the
basic variables, represents a direct application of the simplex method for solving
multicommodity flow problems.



506 MAXIMAL FLOW, SHORTEST PATH, MULTICOMMODITY FLOW PROBLEMS

An Example of a Basis Matrix for the Multicommodity Minimal Cost Flow Problem

Consider the multicommodity minimal cost flow problem of Figure 11.10
without the upper bound constraints on the individual commodities. Recall that
the constraint matrix is shown in Figure 11.11.

Suppose that we select the basis submatrix (the reader is asked to verify that
this is a basis submatrix) indicated in Figure 11.16.

R
=
~

X112 X123 X3a Xig) Xo12 Xma X1 Xoa S12 S Sg

COCOCO|m OO —~|O~=O 00

—_ OO~ OO0 OO O —~0O 00

COOCOC| OO~~~ OO0 O~
|
COOCOO(O= = O OO0 —0O
COO0CO|~— OO OO —~0OC
SOOI O OO OO OO
SO~ =~ O OCOOC| OO O —~
—_— 00| OO0 OO OO —~OO0
|
—O0O=QO|l OO0 OO ,OOOC
— O OOl O C OO OO OO O
SOOI OCOOCO| OO O —~
COOOoO(COoCOC OO~ OO
COOCOC|OCOCOO({—OOCOC

Figure 11.16. A basis submatrix.

Applying the transformation of Equation (11.4), we get the matrix

E, E, E/-EB’'D, E —EB;'D, E
B, 0 0 0 0 (11.5)
0 B, 0 0 0

Here B, consists of x5, X 53, X134 and x, whereas B, consists of x,34, X541, X242
and x,. These two rooted spanning trees are illustrated in Figure 11.17 below. In
addition D, and D, are represented by x,,, and x,, and correspond to the
cycles of Figure 11.17.

Examining Figure 11.17, we see that

0-(-1)7 (1, 2) 1-0 1,2)
0-(-1)| (2,3) 0-0 2, 3)
Ef —EB D =|o_(-1y| 3,4) FE ~EB;'Dy=/g_p 3, 4)
1-0 (4, 1) 0—(=1)| (4 1)
0-0 4, 2) 0-(+1)] (42)

Substituting this information into the transformed basis submatrix of matrix
(11.5), we get the basis representation shown in Figure 11.18.
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(a) (b)

Figure 11.17. Graphical illustration of the basis matrix: () Commedity 1 subbasis.
(b) Commodity 2 subbasis.

7/ ’ ’ ! ’ ’ ’ ’ ! !
X112 X123 X34 Xy X234 X241 X242 X2 X1 X212 S S3a

SOOI~ OO| OO —~—0OC0

cooocloo~—~looo O -~
|
cooco|lo~~mo|looo —~o
coco|l—~ooo[oocoo oo
——0o0o|loocoococ|loo~o o
—co—~loocooc|o~ococo
|
— o —~0O|l0o0o0CO|~o0o 0o
—ocoo|looooc]loocooco oo
cCooo|loocooco|Oo = ———~
OO0 OO = —~O O —~
cocoococ|loococloooc o ~
coocCc|iooococ|loo—~o O
L
cooo|loooo|l~ocoococld

Figure 11.1B. The transformed basis submatrix.

EXERCISES

11.1 Find the maximal flow from node 1 to node 7 in the following network.




508

11.2

11.3

11.4

11.5

11.6

MAXIMAL FLOW, SHORTEST PATH, MULTICOMMODITY FLOW PROBLEMS

Discuss the economic meaning of the dual variables in the maximal flow
problem. Consider both the w;’s and the 4;’s.

Consider the production process shown below indicating the various paths
that a product can take on its way to assembly through a plant. The
number in each box represents the upper limit on items per hour that can
be processed at the station.

a. What is the maximal number of parts per hour that the plant can
handle?

b. Which operations should you try to improve?

sun— 1] ‘pe=-n
n Finish

Two paths are said to be arc disjoint if they contain no common arcs.
Prove that the maximal number of arc disjoint paths from node 1 to node
m in a network is equal to the minimal number of arcs that must be
deleted in order to separate node 1 from node m.

Find the maximal flow from node 1 to node 8 in the following network.

In a command and control communications network a commander is
located at one node and his subordinate at another node. Associated with
each link in the network is an effort u; required to eliminate that link
from the network.

a. Present a mathematical model that could be used to find the minimal
effort to block all communications from the commander to his sub-
ordinate.

b. Indicate how the problem can be solved by a special algorithm.
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11.7

11.8

11.9

11.10

11.11

Indicate how lower bounds on flow can be handled in the maximal flow
algorithm. (Hint. Apply a phase I procedure as follows. From G construct
G’ by: (1) All nodes in G are in G'. (2) In addition G’ contains two new
nodesm + land m + 2. (3) All arcs in G arein G'. (4) [; = 0, u;; = u; —
Iy (5) 1f I; > 0, then place arc (i, m +2) in G’ with « ., = [; and
I m+2 = 0; place arc (m + 1,) in G’ with u,, ., ;= [, and [, ., ; = 0. (6)
Solve for the maximal flow from node m + 1 tonode m + 2 in G*. (7) If
at optimality all arcs out of node m + 1 are saturated (that is, x; = up),
then a feasible flow éxists in G and X; = x;+ l;; otherwise, no feasible

solution exists.)

Consider the following procedure for reducing the size of a network while
finding the maximal flow from node 1 to node m.
Step 1. Remove all arcs entering node 1 (the source) and leaving node m
(the sink).
Step 2. Discard any node that has no arcs incident with it.
Step 3. Discard any node, except node 1, that only has arcs leaving it.
Also discard these arcs.
Step 4. Discard any node, except node m, that only has arcs entering it.
Also discard these arcs.
Repeat steps 2, 3, and 4 until no change results. If node 1 or m is
discarded, stop; the maximum flow is zero. Otherwise use the maximum
flow algorithm.
a. Show that the maximum flow in the resulting network is the same as in
the original network.
b. Show that there is a path from node 1 to every node in the resulting
network {assuming that node 1 has not been discarded).
c. Can one state and prove a similar result concerning node m?

Show that we have a basic feasible solution to the maximal flow problem

if there exist no cycles in the set £ = {(i,/) : 0 < x; < u;}. In this case

show how the basic variables and the simplex tableau can be obtained at

any iteration of the maximal flow algorithm. Furthermore, show that the

following procedure will maintain basic feasible solutions in the maximal

flow algorithm.

Step 1. At each iteration, begin with £ as defined above.

Step 2. Try to find a path from node 1 to node m in G’ associated only
with arcs in E.

Step 3. If no path is available from sfep 2, then add one arc in G’ not
associated with arcs in E to E if it permits the labeling of a new
node. With this new arc in E, return to step 2.

What simplifications would result if the out-of-kilter algorithm is used to
solve the maximal flow problem? Give all details.

What simplifications would result if the network simplex method (of
Chapter 9) is used to solve the maximal flow problem? Give all details.
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11.12
11.13
11.14
11.15

11.16

11.17

MAXIMAL FLOW, SHORTEST PATH, MULTICOMMODITY FLOW PROBLEMS

Develop a dual simplex method for the maximal flow problem.
How can node capacities be handled in the maximal flow algorithm?
Modify the maximal flow algorithm to handle undirected arcs.

Consider the problem of finding the minimum number of lines to cover all
zeros in the assignment algorithm (refer to Section 8.8). Show that the
maximal flow algorithm can be used to provide the result. (Hint. Given
the reduced assignment matrix, construct a maximal flow network G as
follows. Let nodes 1, . . ., n represent the n rows of the assignment matrix
and nodes n + 1, ..., 2n represent the columns of the assignment matrix.
If the ijth entry in the reduced matrix is zero, draw an arc from node i to
node n + j with «, ., = 1. Add two additional nodes 2n + 1 and 2n + 2.
Add an arc (2n + 1,i) with uy,,,, =1 for i=1,...,n and an arc
(n+i,2n+2)ywithu,,,,,.,=1fori=1,..., n Solve for the maxi-
mal flow from node 2n + ! to node 2n + 2 in G. The value of the
maximal flow is equal to the minimum number of lines to cover all zeros
in the reduced matrix. To find which lines to use, consider the sets X and
X when the maximal flow algorithm stops. If 2z + 1, i) is in (X, X), draw
a line through row i. If (n + i, 2n + 2) is in (X, X), draw a line through
column i. It still must be shown that this procedure works.)

Apply the procedure of the previous problem to find the minimum
number of lines to cover all zeros in the following reduced assignment
matrix.

W =

N =N -
(=R N Y =R S ]
BN W O] W
— ool =] &~

In this chapter we have provided the node-arc formulation for the
maximal flow problem. Consider an arc-path formulation as follows. Let
j=1,2, ..., tbean enumeration of all of the paths from node 1 to node
m in the network. Number the arcs from 1 to n and let

b = [ 1 if arciisin pathj
v 0 otherwise
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The arc-path formulation for the maximal flow problem is

I3
Maximize D, x;

J=1

t
Subjectto X px; <y, i=1,...,n
=1

where x; represents the flow on path ;.

a.

Give the complete arc-path formulation for the maximal flow problem
of Figure 11.1.

b. Solve the linear program of part (a).

11.18 Consider the arc-path formulation for the maximal flow problem as given
in Exercise 11.17. Suppose that we do not enumerate any paths to begin
with but, rather, decide to apply the revised simplex method with all slack
variables in the starting basic feasible solution. At any iteration of the
revised simplex method let w be the dual vector.

a.

b.

11.19 a.

b.

C.

What is the simplex entry criterion for (i) a slack variable and (ii) a
path variable?

Show that there is an easy method to test the simplex entry criterion
for path variables using the shortest path algorithm.

If you always first enter slacks until no more slacks are eligible to
enter, show that you may use the shortest path algorithm for nonnega-
tive costs to test the entry criterion for path variables.

. Describe the complete steps of the revised simplex method thus ob-

tained.
Apply the revised simplex method developed in this exercise to the
maximal flow problem in Figure 11.1.

Give the dual of the arc-path formulation for the maximal flow
problem as stated in Exercise 11.17.

If we add the restriction that the dual variables must be zero or 1, what
interpretation can you give the dual problem?

Interpret the dual solution obtained in part (e) of Exercise 11.18.

11.20 Is the constraint matrix for the arc-path formulation of a maximal flow
problem always unimodular? Prove or give a counterexample.

11.21 Find the shortest path from node 1 to all nodes of the following network.
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11.23 a. Show how the shortest path algorithm can be used to find the longest
path from node 1 to node m in a network.
b. When finding the longest path, what assumption must be made?
c. Use the results of part (a) to devise direct algorithms for the longest
path problem.

11.24 Show that at optimality of the shortest path problem w, — w,, represents a
lower bound on the cost of the shortest path from node i to node m for
each i.

11.25 In the shortest path algorithm for negative costs, show that at optimality
there always exists a path from node 1 to node m along which w/ = w; +
¢; provided that w,, < oo. Also, show that if w;, = oo, then no path exists
from node 1 to node m.

11.26 Find both the shortest path and the longest path from node 1 to node 6 in
the following network.
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11.27 Find the shortest path from node 1 to every other node in the following
network.

11.28 Find the shortest path from every node to node 6 in the following
network. (Hint. Apply the shortest path algorithm with nonnegative costs
in reverse.)

11.29 Modify the shortest path algorithm for negative costs to find the shortest
path from every node to node m.

11.30 Find the shortest path from every node to node 7 in the following
network.

11.31 a. Modify the shortest path algorithm for nonnegative costs to handle an
undirected network.
b. Apply the procedure of part (a) to find the shortest path from node 1
to node 5 in the following network.
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11.32 Can the shortest path algorithm for negative costs be modified to handle
undirected arcs? (Hint. Consider one of the arcs with negative cost.)

11.33 a. Apply the shortest path procedure to find the shortest path from node
1 to node 5 in the following network.
b. What is the difficulty in part (a)?
c. Solve the problem by the network simplex method of Chapter 9.
Compare with the result in (a).

11.34 Bob, Ed, and Stu are in a car pool. They each live at the points 1, 2, and 7
respectively in the following network. They agree to meet at point 10
every morning at a certain time and proceed from there to their work in a
single car. The numbers on the arcs represent the travel times in minutes.
a. What is the fastest route for each man to the meeting point?

b. How early (counting back from the meeting time) should each man
leave?
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11.35

11.36

A single maching is needed to perform a specified function for the next
four years, after which the function and machine will no longer be
needed. The purchase price of a machine varies over the next four years
according to the following table.

ONE YEAR  TwoO YEARS THREE YEARS
YEAR Now FROM NOW FROM NOW  FROM NOW

Purchase price $25,000 $33,000 $38,000 $47.000

The salvage value of a machine depends only on its length of service and
is given by the following table.

LENGTH OF SERVICE 1 YEAR 2 YEARS 3 YEARS 4 YEARS
Salvage value $10,000 $6,000 $3,000 $1,000

The annual operating cost varies with length of service, as follows.

LENGTH OF SERVICE NEw 1 YEAR 2 YEARS 3 YEARS
Annual operating cost $3,000 $5,000 $8,000 $12,000

What is the optimal policy of purchasing, operating, and salvaging
machines over the next four years if management wishes to minimize the
total cost?

In any project there are usually a set of activities that constitute the
project, a completion time for each activity, and a set of precedence
relationships specifying which activities must be completed before a given
activity can start. Project management is concerned with the scheduling
and control of activities in such a way that the project can be completed
as soon as possible after its start. The critical path is that sequence of
activities that limits the early completion time of the project. (It is
generally activities on the critical path that project managers watch
closely.)

Consider the following activities with indicated completion times and
precedence relationships.
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11.37

11.38
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COMPLETION
AcCTIvVITY TIME (DAYS) PREDECESSORS

3 -

A

O wp»
m O w

-

QMmoaw >
W oo NN M

5]

Find the critical path for this project and the associated project time.
[Hint. Draw an arc with its own beginning and ending nodes for each
activity with the arc cost equal to the completion time of the activity. If
activity Q must precede activity R, then draw an arc from the ending
node of activity Q to the beginning node of activity R with zero cost on
the arc. Provide a starting node to proceed all activities and a finishing
node to succeed all activities. In the network thus obtained the longest
path (why not shortest path?) will be the critical path.]

a. How can the shortest path algorithm be used to obtain a starting (not
necessarily feasible) solution when the out-of-kilter algorithm is applied
to a minimal cost network flow problem with nonzero right-hand side
values?

b. Is there any advantage to doing this?

Since Dijkstra’s shortest path algorithm for nonnegative costs is extremely
efficient, it would be highly desirable to be able to convert a network with
negative costs to an equivalent network with nonnegative costs. Consider
the following procedure for accomplishing this in a network G with m
nodes.

INITIALIZATION STEP

Let + = 1 (7 is the iteration counter)

MAIN STEP

1. Leti =1
2. Let ¢, = minimum c¢;. If ¢; < 0, replace c; by ¢, — ¢, for all j and

J

replace ¢, by c,; + ¢; for all k.
3. If i < m replace i by i + 1 and go to step 2. Otherwise go to step 4.
4. If all ¢; > 0, stop, the equivalent network is obtained. Otherwise, if
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11.39

t < m+1 replace t by t + 1 and go to step 1; if t = m + 1, stop,
there is a negative circuit in G.
Upon completing the above procedure if all ¢, > 0 we may apply
Dijkstra’s shortest path algorithm to the equivalent network. Note that
while the proper path will be found its length must be adjusted.

a. Show that the method works.

b. Apply the method to the networks in exercises 11.22 and 11.33.

¢. Show that if ¢, < 0 at iteration m + 1 then there is a negative circuit in
G which includes node j. Is it possible to develop a labeling procedure
to find the negative circuit?

Consider a network with upper bounds and costs (all lower bounds are

zero). Suppose that we wish to find, among all maximal flows, from node

1 to node m, that maximum flow that minimizes the total cost. This is

sometimes called the minimal cost—-maximal flow problem.

a. Give a linear programming formulation for the minimal cost— maximal
flow problem from node 1 to node m in a network.

b. Show how the out-of-kilter method can be used to solve this problem.

c. Apply parts (a) and (b) to the following network to obtain the minimal
cost-maximal flow from node 1 to node 4.

11.40 Consider the following procedure, due to Busacker and Gowen, for

finding the minimal cost-maximal flow from node 1 to node m in a
network with nonnegative costs and all /;'= 0.

INITIALIZATION STEP
Let all xX; = 0.

SHORTEST PATH STEP

From G construct G’ as follows. All nodes in G are in G'. If Xy < Uy in G,
place (i,j) in G" with A, = 4, — x; and ¢; = ¢;. If x; > 0 in G, place
(J, ) in G" with A, = x; and ¢, = — ¢;;. Find the shortest path from node
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1 to node m in G’. If no path exists, stop; the optimal solution is at hand.
Otherwise pass to the flow change step.

FLOW CHANGE STEP

Let A = Minimum {4, : (i, ) is in the shortest path}. Adjust flows along
the associated chain in G by A, increasing flows on arcs with the
orientation of the path and decreasing flows on arcs against the orienta-
tion of the path. Pass to the shortest path step.

a. Apply the algorithm to the example network of the previous problem.

b. Prove that the algorithm converges to the optimal solution in a finite
number of steps. It is necessary to show that (i) negative circuits never
occur in G’, (ii) after a finite number of flow changes no path from
node 1 to node m will exist, and (iii) on termination the optimal
solution is obtained. (Hint. Consider the flow in the network as a
parameter and show that after each flow change we have the minimal
cost solution for that amount of flow.)

c. What difficulties would occur when we admit negative costs?

Consider the following algorithm, due to Klein, for finding the minimal
cost-maximal flow from node 1 to node m in a network with arbitrary
costs and all /; = 0.

INITIALIZATION STEP

Find the maximal flow from node 1 to node m in G.

NEGATIVE CIRCUIT STEP

From G construct G' as follows. All nodes in G are in G'. If x; < u; in G,
place (i,j) in G’ with A; = u; — x; and ¢; = ¢;. If x; > 0 in G, then
place (J,7) in G’ with A; = x; and ¢; = — ¢;. Use the shortest path
algorithm or the method of Exercise 11.38 to find a negative circuit in G'.
If no negative circuit exists, stop; the optimal solution is at hand.
Otherwise, pass to the flow change step.

FLOW CHANGE STEP

Let A = Minimum {4, : (i, /) is in the negative circuit}. Adjust flows
along the associated cycle in G by A, increasing flows on arcs with the
orientation of the circuit and decreasing flows on arcs against the orienta-
tion of the circuit. Pass to the negative circuit step.
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a. Apply the algorithm to the network of Exercise 11.39.
b. Prove that the algorithm converges to the optimal solution in a finite
number of steps.

11.42 a. Give the linear programming formulation for the two-commodity max-
imal flow problem shown below (with no individual commodity upper
bounds).

b. Find the two commodity maximal flow in the network.

11.43 How can lower bounds be handled in the multicommodity minimal cost
flow problem?

11.44 Apply the decomposition algorithm to the following three commodity
minimal cost flow problem.

(3,1,1) (—2,—1,0)

Q\ (6,4,2,7,1,-2,3)
S

(4,2,5,1,0,1,5)

4,2,32,1,1,-1)

O
(-2,1,0) \ (1,2,1)

(b1g: bag . b3y) lu g rpg ., Uapg Uspg. €1pg+ C2pg. €3pg)

11.45 Given the optimal solution obtained from the decomposition procedure
for the minimal cost multicommodity flow problem, indicate how the dual
variables for the individual commodity constraints (Ax;, = b, and x;, < u,)
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11.48
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can be recovered. Apply the procedure to the example problem in Section
11.3.

Discuss the economic meaning of the dual variables for the various
constraints in the multicommodity minimal cost flow problem (namely,
22X, <u Ax;, = b, and x;, < u).

Modify the decomposition algorithm for the minimal cost multicommod-
ity flow problem when the set X; = {x,: Ax, =b,, 0 < x; < u;} is not
bounded. (This is only possible when for some / at least one component of
u; is co; that is, there is no upper bound on some arc.)

Discuss the difficulties, if any, in developing an algorithm for the multi-
commodity minimal cost flow problem that begins with the minimal cost
flow for each commodity and proceeds to adjust these flows to satisfy the
common upper bounds.

Give a node-arc formulation for the multicommodity maximal flow prob-
lem. Develop a decomposition procedure for this formulation and discuss
the nature of the ith subproblem when x; < u, is present and when it is
absent.

11.50 Develop an arc-path formulation for the multicommodity maximal flow

11.51

11.52

problem without the presence of the constraints x, < u, fori =1,...,1.
Develop a decomposition procedure for this formulation. (Hint. Consider
the formulation given in Exercise 11.17.)

How can undirected arcs be handled in the multicommodity maximal
flow problem? Illustrate on the following three-commodity network.

fi f3

fi fa

f2 fa
Consider the multicommodity maximal flow problem without the individ-
ual capacity constraints x, < w;, for i = 1, ..., t. A disconnecting set is a
generalization of a cut-set for the single-commodity flow problem. A
multicommodity disconnecting set is a set of arcs that “disconnects” (cuts
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all paths between) the source and sink for every commodity. A multicom-
modity minimal disconnecting set is the one for which the sum of (common)
arc capacities is minimal.

a.

Give a mathematical formulation for the minimal disconnecting set
problem. (Hint. Take the dual of the arc-path formulation for the
maximal flow problem and require the dual variables to be zero or 1.
Give the interpretation of this dual problem.)

. Show that the capacity of the multicommodity minimal disconnecting

set is greater than or equal to the value of the multicommodity
maximal flow. (Hint. Apply duality theorems to the formulation in part
(a).)

Give a minimal disconnecting set for the network of Figure 11.9 and to
the network of Exercise 11.42.

. Compare the capacity of the minimal disconnecting set and the value

of the maximal flow for both problems of Part (c) above.

Show that a multicommodity minimal disconnecting set is the union of
single-commodity cut-sets. Is a multicommodity minimal disconnecting
set necessarily the union of single-commodity minimal cut-sets?

Consider a metropolitan city with the area divided into four zones and a
highway network connecting the zones. Let the following matrix, called
the origin-destination matrix, specify the travel requirements from each
(row) zone to every other (column) zone.

Y I

1 2 3 4 5
0 10 7 8 5
2 0 3 4 4
6 2 0 1 5
2 4 7 0 5
1 1 3 4 0

Travel times and arc (upper) capacities are given by the following.

ARC 1,2 2,49 (2,5 (3,2) 43 G, (59

Travel ime (min) 15 35 15 20 10 15 10

Capacity 43 38 37 27 35 20 10

Find the minimal time traffic assignment in the network.
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11.55 In the multicommodity minimal cost flow problem suppose that we have

the capability of inverting the matrix [E” — E'B™'D, E]. Show how the
original primal and dual variables can be obtained. Use this information
to develop a simplex procedure for solving the multicommodity flow
problem directly on the graph. Give all details and illustrate by the
problem of Figure 11.10.

11.56 Resolve the multicommodity minimal cost flow problem of Figure 11.10

with u,;, = 4 instead of 3. Is it reasonable to expect this solution in
practice?

NOTES AND REFERENCES

1.

Ford and Fulkerson [152] first developed the maximal flow algorithm for
networks. Dantzig and Fulkerson [105] provided a proof of the maximal
flow—minimal cut theorem.

Algorithms for the shortest path problem have been developed by many
individuals including Bellman [30], Dantzig [95], Dijkstra [122], and Floyd
[151]. A particularly good comparison of shortest path procedures is given in
Dreyfus [127].

. Ford and Fulkerson [157] first proposed a column generation procedure for

the multicommodity maximal flow problem. This was the forerunner to the
Dantzig-Wolfe decomposition procedure for general linear programs. Hart-
man and Lasdon [233] proposed a procedure based on the simplex method
for solving multicommodity flow problems.

The procedure of Exercise 11.38 was developed by Bazaraa and Langley [23]
and is based on ideas presented by Nemhauser [352].



APPENDIX: PROOF OF
THE REPRESENTATION
THEOREM

In this appendix we provide the proof of the main representation theorem of
polyhedral sets in terms of their extreme points and extreme directions. This
theorem was presented in Section 2.6 without proof. The casual reader should
skip this appendix since the proof involves some relatively advanced material.

The proof of the main theorem relies on the following two lemmas. The first
lemma shows that there is a hyperplane that separates a closed convex set and a
point outside the set, and the second lemma shows that the number of extreme
points and extreme directions is finite.

Lemma )

Let S be a closed™ convex set in E” and x & S. Then there is a nonzero vector ¢
in E" and an € > 0 such thatex > e + cy foreachy € S.

TThe statement that S is closed means that every converging sequence in § has its limit in S.

523
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Proof

Let y, be the closest point to x in S (since S is closed, such a point exists and is
unique; see Figure A.1). Note that ||x — y,|| > O since x & S. We first show that
X — Y)¥y —yo) < Oforally € S. Lety € S. By convexity of S, Ay + (1 — Ay,
€ Sforall A € (0, 1). Since y, is the closest point in S to x, then

X = yol* < IIx — Ay = (1 = A)yoll?

= [|(x = ¥o) + A(yo — ¥)II?

= lIx = Yoll” + 2M(x — ¥o)(¥o — ¥) + A’llyo — yII?
This inequality implies that
0 < 2M(x = ¥o)(¥o — ¥) + A%llyo — ¥II?

Dividing by A and letting A go to zero, it follows that (x — yg)(y, — ¥) > 0. Let
¢ = X — y, and note that ¢ # 0.
Now for any y € S we have

0 <(Xx—Yo)(¥o— )
=(X—Yy)(Xx~x+y )
= (X =YX~ y) + (X~ ¥)(¥o — %)
=cx —cy — |x — yol

Therefore ex > cy + ||x — y,||*. Letting € = ||x — y,||> > 0, the result follows.

@

Separating
hyperplane

Figure A.1. Separation of a closed convex set and a point.
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Lemma 2

Consider the (polyhedral) set X = {x : Ax =b, X > 0} where A is an m X n
matrix. Then X has a finite number (perhaps none) of extreme points and
extreme directions.

Proof

Without loss of generality suppose that rank (A) = m. From Section 3.2, x is an
extreme point if and only if x is a basic feasible solution. The number of basic
feasible solutions is bounded above by

(m) = 5=y

and hence the number of extreme points is finite. Now let d be an extreme
direction of X. Note that Ad = 0 and d > 0. Possibly after rearranging the
components of d, suppose that

d=(d,dy,...,d,00,...,0,d)

) n

where cg >0forj=1,2,...,k and j = n. We first show that the columns
a,, ay, . . ., 4, are linearly independent. By contradiction, suppose that they were
linearly dependent Then there would exist scalars A}, A,, ..., A, not all zero
such that 3¥_Aa; = 0. Since d,, d,, . . ., d, > 0, there exists an a > 0 such that
d — a)\ > O and d + ah >0forj=1,2,...,k Construct the following two
vectors.
r . r 1
d, — a}, d, + aA,
d2 - 0()\2 d2 + 01)\2
d, — al, d, + al,
d, = 0 d, = 0
0 0
0 0
dn dn
L J L J

Note by the choice of a that d, and d, > 0. Furthermore Ad, = Z%_,a,(d, —
ak) + a,d, = Ad — aZf A4, =0 — 0= 0. Similarly Ad, = 0, and hence both
d, and d, are directions of X In addition d, is not a multlple of d, and so d, and
d, are distinct (or nonequivalent) directions of X. But d =1/2 d, + 1/2 d,,
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contradicting our assumption that d is an extreme direction. Therefore a,,
a,, . . ., &, are linearly independent. Since rank (A) = m, then & < m and there
must exist m — k columns from the vectors a,,,, a,,, ...,a,_;, which
together with a,, ..., a, form a linearly independent set of vectors (why?). To
simplify the notation, suppose that these vectors are a,,,, ..., a,. Denote
a,a,...,a, by B and note that B is an m X m invertible matrix. Since
Ad = 0 we get
m ~
0=Ad= ) ad +a,d, =Bd+ad,

Jj=1

where d is the first m components of d. Multiplying the last equation by B~!, we

getd = —B~'a d . Therefore the extreme direction is given by
d ~B 'ad, —B'a,
0 0 0
0 0 0
d=|  |= ) =d, )
0 0 0
d, d, 1

We have shown that every extreme direction must be a vector of the foregoing
form. Since there is only a finite number of ways of choosing an m X m
invertible matrix from A, and for each such choice there are n — m ways of
choosing a column from the remaining n — m columns, there is only a finite
number of extreme directions [at most n!/m!(n — m — 1)!] and the proof is
complete.

We are now ready to state and prove the main representation theorem.
Lemma 2 above is not explicitly used to prove the theorem. However, Lemma 2
is needed since in the statement of the theorem we are implicitly assuming that
the number of extreme points and extreme directions is finite. Existence of
extreme points was proved by construction in Section 3.2. Existence of extreme
directions (if X' is unbounded) follows as a corollary of the main theorem.

THE REPRESENTATION THEOREM

Consider the nonempty (polyhedral) set X = {x : Ax = b, x > 0} where A is an
m X n matrix. Let the extreme points be x,, X, . . ., X, and the extreme direc-
tions be d, d,, . . ., d, (finiteness of the number of extreme points and extreme
directions follows from Lemma 2 above). Then x € X if and only if it can be
represented as a convex combination of the extreme points plus a nonnegative
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linear combination of the extreme directions, that is,

k !
Xx= 2 Ax + X pd
j=1 j=1

k
S =1
Jj=1

A >0 i=12... .k

[
—
)
~

g >0 J

Proof

Note that any x with the foregoing representation belongs to X (why?). We now
show the converse. Suppose that rank (A) = rank (A, b) = m because otherwise
all redundant constraints can be thrown away. Now suppose that x € X and
suppose by contradiction that x cannot be represented as a convex combination
of the extreme points plus a nonnegative linear combination of the extreme
directions, and consider the following set:

k ] k
S=[2@g+2%¢:2@=L@>OMU%>OMU}

j=1 J=1 j=1

Since X is not empty, then it has at least one extreme point (see Section 3.2).
Therefore S is not empty. Furthermore, S is a closed convex set and x & S by
assumption. By Lemma 1 there exists a nonzero vector ¢ in E” and an ¢ > 0
such that

k i
cx > c( 2DAX + D p,jdj) + € (A1)
j=1 j=1
for any set of nonnegative A’s and nonnegative p’s satisfying Z%_ A, = 1. Since
p; can be made arbitrarily large, then by inequality (A.1) above we must have

ced <0 for j=12,...,1 (A2)

7

Now consider the extreme point defined by

cx, = Maximum cx; (A3)
1< <k

Letting A, = 1, A, = 0 for j # p, and g, = 0 for all j, inequality (A.I) gives

cX > cX, + ¢ (A,4)
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-1
Since X, is an extreme point, then x, can be represented as (BO b) where B is

an m X m invertible submatrix of A and B™'b > 0 (see Section 3.2). Without
loss of generality, suppose that B~ 'b > 0 (see Exercise 4.44). Recall that x was

’ X
assumed to be in X, thatis, Ax = b and x > 0. Decomposing X into (xB ), we
N

get b = Ax = Bx, + Nx,, which implies that x, = B~'b — B7'Nx,,.. Decom-
posing ¢ into ¢z and ¢y, we thus have

eX = cpXp + cyXy = ¢z;B7'b + (¢y —¢;B7'N)x,,  and
ex, = c;B~'b

Substituting in inequality (A.4), we get

(cy ~¢zB7'N)Xy > >0

Since each component of x,, is nonnegative, the foregoing inequality holds only
if there is a component j of the vector ¢y — ¢;B™'N that is positive, and for
which x; > 0. Denoting B~ 'a; by y;, we thus have x; > 0 and

¢ —¢gy; >0 (A5)

We first show that y, € 0. Suppose by contradiction that y; < 0. This implies
thatd = (—y, 0,0,...,1,...,0, 0), where the 1 appears at the jth position, is
a direction of X (by noting that d # 0, d > 0 and Ad = 0). Furthermore, by the
definition of d and noting inequality (A.5), we have ed = —czy; + ¢; > 0, which
violates (A.2) (why?). Therefore y; £ 0.

Now construct the point X = x, + Ad where

- b b,
A = Minimum< — :y, >0;=— >0

1<i<m Yij 1
and b = B~ 'p. By this choice of A, each component of X is > 0. Furthermore

A% = A(x, + Ad) = Ax, + \AAd=b + 0 =b

Therefore x is feasible. In addltlon % has at most m positive components since
%, = 0. Consider the submatrix B of A where a; replaces a, in B. Since y,; # 0,
then the columns of B are linearly mdependent This shows that X is indeed an
extreme point of X (see the characterization of extreme points in Section 3.2).
Also note that

cX = cx, + Acd
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Since A > 0 and cd > 0, then ¢k > ex,, which violates Equation (A.3) and the
fact that % is an extreme point. This contradiction shows that x can be
represented as a convex combination of the extreme points plus a nonnegative
linear combination of the extreme directions, and the proof is complete.

Corollary (Existence of Extreme Directions)

A nonempty polyhedral set X of the form {x : Ax = b, x > 0} is unbounded if
and only if it has at least one extreme direction.

Proof

If X has an extreme direction, then it is obviously unbounded. Conversely,
suppose that X is unbounded. By contradiction, suppose that X has no extreme
directions. By the theorem

><
?Mw

k
Ax: D=1 A >0 j=1,2,...,k}
j=

Letx € X. Then x = 2f=1)\jxj. By the Schwartz inequality and since 0 < A. < 1
for each j, we have

k

k
< DK< X Il

k
> Ax;
j=1 j=1 Jj=1

x|l =

Denoting 2’-‘=1||xj|\ by €, we have shown that ||x|| < € for each x € X, con-
tradicting the assumption that X is unbounded. Therefore X has at least one
extreme direction, and the proof is complete.
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vectors, 40
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Adjacent:
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extreme directions, 234
extreme points, 233, 234
Adjoint matrix, 54
Aircraft assignment problem, 301
Air quality problem, 34
Algorithm:
assignment, 388
Benders, 348
bounded simplex, 208
Busacker-Gowen, 517
cutting plane, 274, 342
Dantzig-Wolfe, 309, 351
decomposition, 309
dual simplex, 253
Klein, 518
labeling, 424, 462, 480, 490
maximal flow, 478, 480
multicommodity flows, 496
negative circuit, 491, 516
network simplex, 413, 420, 424
out-of-kilter, 458, 462
primal-dual simplex, 260, 263
revised simplex, 190
shortest path, 484, 487, 490
simplex, 109, 117
transportation, 367
Alternative optimal solutions, 17, 102, 103
Analysis: ..
big-M method, 157, 162
two-phase method, 146
Applications of linear programming:
capital budgeting, 11

cutting stock, 9
feed-mix, 7
production scheduling, 8
tanker scheduling, 12
transportation, 10
Arc, 404
Arc disjoint paths, 508
Arc-path formulation, 510
Artificial technique:
single constraint, 265
single variable, 163
Artificial variable, 140
Assignment problem:
covering, 386, 400, 510
definition, 283
dual problem, 384
finite convergence, 390
Hungarian algorithm, 388
independent cells, 386, 400, 510
modifying dual variables, 387
partial solution, 386
reduced matrix, 384
Assumptions in linear programming, 3
Augmented matrix, 50, 54

Back substitution, 49, 358, 371, 414, 416
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definition, 85
degenerate, 86, 89, 202
existence, 92
improving, 94
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entry criterion, 95
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multicommodity flow problem, 502
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optimal, 101
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transportation, 361
Benders’s partitioning procedure, 350
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analysis, 157, 162
comparison with two-phase method, 163
description, 154
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linear, 42
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Comparison:
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Complementary:
basic dual solution, 255
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Complicating constraints, 305
Concave function, 64
Cone:
convex, 62
generated by vectors, 63
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Connected graph, 407
Conserving flow, 441, 443, 448
Constraint:
active (binding, tight), 214
artificial, 265
definition, 2
matrix, 2
nonnegativity, 2
Construction of basic feasible solutions, 93
Control variable, 9
Convergence:
assignment algorithm, 390
dual simplex method, 256
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primal-dual method, 265
shortest path algorithm, 484, 490
simplex method, 110, 170
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combination, 58
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function, 64
set, 58
Convexity constraint, 329, 337
Corner point, 16
Cost coefficient, 2
Court scheduling problem, 33
Covering in assignment problem, 386, 400, 510
Cramer’s rule, 54, 359
Critical path problem, 472, 515
Cut, 272, 274
Cut-set, 475
Cutting plane algorithms, 275, 342
Cutting stock problem, 9, 345
Cycle:
in graph, 407, 448, 505
in transportation tableau, 360
Cycle method, for computing z;—c;,
416
Cycling:
example of, 166
prevention rule, 169
validation of prevention rule, 171

D

Dantzig-Wolfe decomposition principle, 305,
309, 351
Decision variables, 2
Decomposition principle:
algorithm, 309
block diagonal structure, 328
economic interpretation, 336
getting started, 320
lower bound on objective function, 310, 331
unbounded subproblem, 321
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in basic feasible solution, 86, 89, 202
in assignment problem, 383
relationship to cycling, 165
in transportation problem, 378, 381, 395
Dependent:
constraints, 55
vectors, 42
Destination in transportation problem, 353
Determinant of matrix, 52, 53
Dimension:
of basis, 43
of Euclidean space, 42
of matrix, 45
of vector, 39
Directed:
arc, 404
cycle, 441
network, 404
Direction:
associated with unbounded optimum, 105, 131
of convex set, 60
distinct, 62
extreme, 62, 78
of polyhedral set, 60
of ray, 60, 105
Disconnecting set, 520
Discrete control problem, 345
Distribution problem, 34
Divisibility assumption, 4
Dual:
of assignment problem, 384
canonical form, 237
complementary basis, 255
of dual, 239, 240
feasibility and primal optimality, 250
of maximal flow problem, 476
mixed forms, 240, 241
of out-of-kilter formulation, 441
standard form, 238
variables, 213, 237, 249
Duality:
economic interpretation of, 248
gap, 290
and Kuhn-Tucker conditions, 243
and Lagrangian multipliers, 213
theorems, 245, 246, 302
Dual simplex method:
finite convergence, 256, 295, 296
getting started, 265
summary of, 253

E

Economic interpretation:

of decomposition, 336

of duality, 248
Elementary matrix, 195
Elementary matrix operations, 47
Empty feasible region, 18
End of a tree, 363, 407, 414
Entry criterion, 95, 252
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Euclidean norm, 41
Euclidean space, 42
Exit criterion, 95, 253
Extreme direction, 62, 78
Extreme point:
adjacent, 233, 234
definition, 59
optimality at, 82
relationship to basic solutions, 90
representation theorem, 67, 68

F

Face, 64

Facility location, 27
Farkas’s theorem, 70

Feasible:
flow, 441
region, 2
solution, 2
system, 21
Feed mix problem, 7, 25, 26
Finite convergence, see Convergence
Finite optimal solution, 83, 93
Flow:
in arc, 405
conservation equations, 405
with gains, 434, 439
maximal, 474
minimal cost, 404
multicommodity, 492
Forest in graph, 362
Full rank matrix, 54
Fundamental theorem of duality, 245

G
Game, 291
Gaussian reduction, 49, 57
General solution of linear equations, 57
Generalized linear programming problem, 351
Generalized transportation problem, 396
Geometric interpretation:

Farkas’s theorem, 70

Kuhn-Tucker conditions, 214, 216
Geometric redundancy, 178
Geometric solution of linear programs, 14
Gradient, 25
Graph, 361

H
Halfline, 62
Halfspace, 60
Housing renewal planning problem, 33
Hungarian method, 388
Hyperplane:
definition, 59
normal to, 59
separating, 523

|
Identity matrix, 46
Improving basic feasible solution, 94
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Inactive constraint, 214 redundant (dependent), 55
Incident, 404 Linear inequalities, 2, 4
Inconsistent system, 18, 21 Linear programming problem:
Independent cells in assignment problem, 386 assumptions in, 3
Independent vectors, 42 canonical form, 5, 6
Initial basic feasible solution, 137 examples of, 7
In kilter, 443 generalized, 351
Inner product, 41 geometry of, 14
Integer programming problem, 274, 383 standard form, 5, 6
Integer property: Linear transformation, 504
in assignment problems, 383 Link (arc), 364
in network flow problems, 411 Lower bounds, on objective function, 310, 331
in transportation problems, 359 on variables, 201, 420, 509
Integer variable, 274 Lower triangular matrix, 46
Inverse matrix: M

calculation of, 50, 54
condition for existence, 49
definition, 49

Machine scheduling problem, 29, 31
Manipulation of linear program, 4

product form of, 195 Master:
i array, 309
investment problem, 28
Iteration, 110 p rqblem, 306
Matrix:
K adjoint, 54
Kilter number, 444, 445 definition, 44
Kilter state, 444 determinant of, 52
Kirchhoff equations, 405 elementary, 195
Klein’s algorithm, 518 identity, 46
Knapsack problem, 125, 223 inverse, 49
Kuhn-Tucker conditions: nonsingular, 49
for equality constraints, 217 operations, 45, 47
geometric interpretation of, 214 partitioned, 46
for inequality constraints, 213 rank of, 54
proof of, 216 singular, 49
relationship, to duality, 243 skew-symmetric, 46
to simplex method, 212 symmetric, 46
transpose, 46
L triangular, 46
Labeling algorithm: zero, 46
maximal flow, 480 Maximal flow-minimal cut theorem, 478
network simplex, 423 Maximal flow problem:
out-of -kilter, 461 algorithm, 477, 480
shortest path, 490 basic solutions, 480
Lagrangian dual problem, 303 cut-sets and dual of, 475, 476
Lagrangian multipliers, 213, 337 formulation, 474
Legitimate variable, 141 multicommodity, 493, 520
Lexicographic validation of cycling prevention Menu planning problem, 26
rule, 170 Minimal cost flow problem:
Lexicographically nonnegative vector, 171 algorithm, 413, 423
Lexicographically positive vector, 170 basis characterization, 409, 411
Line segment, 58 formulation, 405
Linear: initia] solution, 419
dependence, 42 lower-upper bounds on arc flows, 420
independence, 42 simplex tableau, 425
Linear combination, 42 Minimal cost-maximal flow problem, 517, 518
Linear equations: Minimum ratio test, 110, 253
basic solution, 55 Multicommodity:
Gaussian reduction, 57 basis characterization, 502, 505
general solution, 57 decomposition algorithm, 496

number of solutions, 56 maximal flow problem, 493, 520
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minimal cost flow problem, 494
minimal disconnecting set, 521
transportation problem, 348

N

Network:
directed, 404
connected, 407
Network flow problem, 404, 440, 473
Network simplex algorithm:
computing, basic solution, 413
dual variables, 416
determination, of entering variable, 415
of exit variable, 417
initial basic feasible solution, 419
labeling algorithm for, 423
lower-upper bounds, 420
pivoting, 417
tableau associated with, 425
New activity, 271
Node:
capacitated, 432
definition, 364, 404
Node-arc formulation:
maximal flow problem, 474

multicommodity minimal cost flow problem,

494

Node-arc incidence matrix, 407
Nonbasic:

matrix, 55, 86

variables, 86
Nonbinding constraint, 214
Nonbreakthrough, 459, 462, 478
Nondegeneracy, 86, 202, 395
Nondegenerate basic feasible solution, 86, 202
Nonnegativity constraints, 2
Nonsimple path, 488
Nonsingular matrix, 49
Norm of vector, 41
Normal to hyperplane, 59
Northwest corner rule, 368
Notation, 24
Number of basic feasible solutions, 88, 204

o

Objective contour, 16
Objective function:
definition, 2
parametric, 278
phase I, 142
phase II, 142
piecewise linear and convex, 433
unbounded optimal value, 18, 93, 105, 260
value, 2
Optimal basic feasible solution, 218
Optimal control problem, 8
Optimal extreme point, 83, 93
Optimality criterion, 16, 102, 209 254, 260
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Optimal location problem, 27
Origin in transportation problem, 353
Origin-destination matrix, 521
Out-of-kilter algorithm:

formulation, 441

dual of, 441

dual variable change, 449

finite convergence, 457

flow change, 446

kilter numbers and states, 444, 445

P
Parametric analysis:
of cost vector, 278
of right-hand-side vector, 282
Partitioned matrix, 46
Path in graph:
definition, 406
nonsimple, 488
simple, 488
Payoff matrix, 291
Personnel training problem, 29
Perturbation:
of cost vector, 278
of right-hand-side vector, 282
Perturbation method, 187, 296
Phase I problem, 142
Phase II problem, 142
Piecewise linear objective function, 433
Pivot:
block, 122
column, 227
definition, 115
element, 115
Player:
column, 291
row, 291
Polyhedral:
cone, 66
set, 64
Post-optimality analysis, 267
Price, 249
Price-directive decomposition, 352
Primal:
feasibility, 213
problem, 2, 236
simplex metho