
MATHEMATICAL PROGRAMMING 
THEORY AND METHODS 



MATHEMATICAL PROGRAMMING 
THEORY AND METHODS 



This Page Intentionally Left Blank



MATHEMATICAL 
PROGRAMMING 

THEORY AND METHODS 

S. M. S INHA 
Formerly Professor of Operational Research 

University of Delhi, India 

ELSEVIER 

ELSEVIER 
A division of 

Reed Elsevier India Private Limited 



Mathematical Programming: Theory and Methods 
Sinha, SM 

ELSEVIER 
A division of 
Reed Elsevier India Private Limited 

�9 2006 Elsevier 
First Edition 2006 

All fights reserved. 
No part of this publication may be reproduced, stored in a retrieval system, or 
transmitted in any form or by any means, electronic, mechanical, photocopying, 
recording or otherwise, without the prior permission of the publishers. 

ISBN 13:978-81-312-0114-5 (PB) 
ISBN 10:81-312-0114-7 (PB) 

ISBN 13:978-81-312-0376-7 (HB) 
ISBN 10:81-312-0376-X (HB) 

Published by Elsevier, a division of Reed Elsevier India Private Limited, 
17-A/l, Main Ring Road, Lajpat Nagar-IV, New Delhi-110024, INDIA. 

Laser typeset by Chitra Computers, Delhi 

Primed and bound at Rajkamal Electric Press, Delhi. 



DEDICATED TO 

Mira Sinha, my wife, in memoriam 

and to 

Susmita, Madhumita and Ami t  



This Page Intentionally Left Blank



Preface 

This book is a result of my teaching mathematical programming to graduate 
students of the University of Delhi for over thirty years. In preparing this book, 
a special care has been made to see that it is self-contained and that it is suitable 
both as a text and as a reference. 

The book is divided in three parts. In Part 1, some mathematical topics have 
been reviewed to aid the reader in understanding the material discussed and to 
equip him with the ability to pursue further study. In Part 2, linear programming 
from its origin to the latest developments have been included and Part 3 deals 
with non-linear and dynamic programming including some special topics of recent 
developments. Several examples and exercises of varying difficulties have been 
provided to enable the reader to have a clear understanding of the concepts and 
methods discussed in the text. 

I am indebted to Prof. George B. Dantzig, who first introduced me to 
stochastic programming, way back in 1961, when it was emerging as an important 
area of development. I am grateful to Prof. J. Medhi who originally suggested 
me to write a book on Mathematical Programming and to Prof. Roger J.B. Wets 
for his encouragement in taking up this project. Special thanks are due to my 
colleagues Prof. K. Sen, Prof. Manju Agarwal and Prof. J.M. Gupta for their 
various suggestions and help during the preparation of the manuscript. I am also 
thankful to my many students, particularly Dr. C.K. Jaggi and Dr. G.C. Tuteja 
for their numerous help. I am specially thankful to my son Dr. Amit K. Sinha 
for his help and continuous insistence for completing the book. 

Finally, I must thank Mr. Sanjay Banerjee, Managing Director, Elsevier, South 
and South-East Asia, for getting the book published. 

Deltfi S.M. Sinha 
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C H A P T E R  1 

Introduction 

1.1. Background and Historical Sketch 
Since the beginning of the history of mankind, man has been confronted with 

the problem of deciding a course of action that would be the best for him under the 
circumstances. This process of making optional judgement according to various 
criteria is known as the science of decision making. Unfortunately, there was no 
scientific method of solution for such an important class of problems until very 
recently. It is only in 1930s that a systematic approach to the decision problem 
started developing, mainly due to the advent of the 'New-Deal' in the United States 
and similar attempts in other parts of the world to curve the great economic 
depression prevailing throughout the World during this period: As a result during 
the 1940s, a new science began to emerge out. 

About the same time, during World War II, the military management in the 
United Kingdom called upon a group of scientists from different disciplines to use 
their scientific knowledge for providing assistance to several strategic and tactical 
war problems. The encouraging results achieved by the British scientists soon 
motivated the military management of the U.S.A. to start on similar activities. 
The methodology applied by these scientists to achieve their objectives was named 
as Operations Research (O.R.) because they were dealing with research on 
military operations. Many of the theories of O.R. were in fact developed in direct 
response to practical requirements from military problems during the war. 
Following the end of the war, there have been increasing applications of operations 
research techniques in business and industry, commerce and managements and 
many other areas of our present day activities and from its impressive progress, 
it can aptly be said that one of the most remarkable development of the present 
century is the development of Operations Research techniques of which perhaps 
the most important is mathematical programming. 

A mathematical programming problem is a special class of decision problem 
where we are concerned with the efficient use of limited resources to meet desired 
objectives. Mathematically the problem can be stated as, 
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Maximize f (X) 
Subject to g~ (X) < 0 i = 1, 2, ....... m. 

X > 0  

where X = (x~, x2.. x )  r e R", fiX), g~ (X), i = 1, 2 .... rn are real valued functions 
of X. 

If the functions fiX) and g~(X) are all linear, the problem is known as a linear 
programming problem otherwise it is said to be a nonlinear program. 

Programming problems however, have long been of interest to economists. 
It can be traced back to the eighteenth century when economists began to describe 
economic systems in mathematical terms. In fact a crude example of a linear 
programming model can be found in the 'Tableau economique' of Qnesney, who 
attempted to interrelate the rolls of the landlord, the peasant and the artisan [355]. 
During the next 150 years there was however little in the way of exploitation of 
a linear type model, although it did appear as a part of Walrasian equilibrium model 
of an economy in 1874. The first major impetus to the construction of practical 
mathematical models to describe an economy came about in the 1930s when a 
group of Austrian and German economists started work on generalizations of 
the linear technology of Walras. This work stimulated the mathematician Von 
Neuman [488] to develop a linear model of expanding economy, which proved 
to be an outstanding one. A more practical approach was suggested by Leontief 
[303] who developed input-output models of an economy where one is concerned 
with determining the level of outputs that each of the various industries should 
produce to meet the specified demand for that product. 

1.2. Linear Programming 
Linear programming, as it is known today, arose during World War II out of 

the empirical programming needs of the Air Force and the possibility of generalizing 
the simple practical structure of the Leontief model to this end. It was George 
B. Dantzig, a member of the U.S. Air Force, who formulated the general linear 
programming problem and devised the simplex method of solution around 1947. 
[96] 

As indicated earlier, the general linear programming problem has the following 
mathematical form" Find x~, x 2, .. x which satisfies the conditions 

a l l  X 1 + a~e x 2 + .. + ain X n _< b l 

a2~ x~ + a22 x 2 + .. + a2, x n < b 2 

aml Xl + am2 X2 + .. + am. Xn < b m 

x~ >_ 0, x2 >_ 0 .. Xn>_0. 

and maximize a linear function 

C l X I + C2 X2-+- .. -I- C n X n 

where aij, b i and cj are assumed to be known constants. 
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It might seem that a solution to the above problem could be obtained by the 
method of calculus and in particular by the method of Lagrange multipliers. 
Unfortunately, the ordinary calculus can rarely be applied to programming problems 
since their optimal solutions lie on the boundary of the feasible region-infact at 
comer points of the boundary. Hence we need to develop a new procedure which 
will exploit the special feature of linear programming problems. Simplex method 
developed by Dantzig is such a method which is the most general and powerful 
enough to solve a large class of real life problems that can be formulated as linear 
programming problems. It is an iterative which yields an exact optimal solution 
of the problem in a finite number of steps. 

Soon after the World War II, tremendous potentialities of linear programming 
in different fields of activity were realized and there followed throughout the 
business and scientific world, a rapidly expanding interest in the areas and methods 
of programming. The development of the powerful simplex method and the advent 
of high speed digital computers gave a large impetus to this rapid increase in 
interest and a surprisingly large class of decisions problems, particularly arising 
in industry and business, could now be formulated as linear programming 
problems. The bibliography composed by Riley and Gass [376] comprise hundreds 
of case study references. Much of the theoretical and computational development 
in linear programming is due to Dantzig, Gale, Kuhn and Tucker, Charnes and 
Cooper, and P. Wolfe. 

1.3. Illustrative Examples 

Before proceeding to discuss the theory of linear programming, we shall present 
a few examples to illustrate the applications of linear programming. 

Example 1" Diet Problem 
One simple example, which has become the classical illustration in linear 

programming, is the minimum cost diet problem. The problem is concerned in 
finding a diet that meets certain nutritional requirements, at minimum cost. 

To be specific, let there be n different foods F, (j = 1, 2 .. n) from which a diet 
is to be selected and let b~ be the minimum daily requirement of nutrient N, (i = l, 
2 .. m) such as proteins, calories, minerals, vitamins, etc., as suggested by the 
dietitian. Let x be the number of units of food F to be included in the diet, c be 

J J J 
the cost per unit of food F and a be the amount of nutrient N. contained in one 

J 0 
unit of" food F. 

J 

The total amount of nutrient N~, contained in such a food is 

a i l  x I -Jr a i2  x 2 -t- ,. -t- a in  x n 

and this must be at least b. and the cost of the food is 
I 

Cl X 1 -+- C 2 X 2 -+- .. "1- Cn Xn ~ 

which we would like to minimize. 
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Obviously, the number of units of different food will not be negative and we 
should have, x > 0., j = 1, 2 .. n. 

The problem therefore is 

Minimize ~ c j xj 
j=l 

Subject to ~aijxj -> bi i = 1, 2,..m 
j=l 

x > 0 ,  j = l  2,..n 

which is a linear programming problem. 

The diet problem is perhaps the earliest linear programming problem 
considered. It was George J. Stiegler [444] who first solved the problem in 1945 
by trial and error method and later Dantzig and Laderman (unpublished) solved 
the same problem in 1947 by the simplex method. It is interesting to note Stiegler's 
comment that "the procedure is experimental because there does not appear to be 
any direct method of finding the minimum of a linear function subject to linear 
conditions." The development of the simplex method by Dantzig, only two years 
later is therefore a great and significant contribution in the field of linear 
programming. 

It should be noted that the diet problem as formulated, could certainly not 
serve to feed human begins for any length of time as it does not provide any 
variations in the diet. It can, however, be profitably used to animal feeding and 
for selecting suitable diets for patients in large hospitals or for an army. It can 
also be applied to space research where however, instead of minimizing the cost 
we are required to minimize the weight/volume of food. 

Example 2: Activity Analysis Problem 
Suppose that a manufacturer produces a number of products through n different 

activities (plants) from fixed amount of m resources available to him. Also, 
suppose that there is unlimited demand of the products in the market. 

Let a be the number of units of the ith resources required to produce one unit |J 

of the jth product, 

b~ be the available quantity of the ith resource, and 

c be the profit from the sale of one unit of the jth product 
J 

We now wish to find a production schedule x (j = 1, 2, .. n) which will 
maximize the total income without exceeding the given supply of resources. The 
problem therefore is 

n 

Minimize ~ cjxj 
j - !  
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Subject to ~ a~jxj _< b~ i = 1, 2,..m 
j = l  

x < 0 ,  j = l  2,..n j - -  

which again is a linear programming problem. 

Example 3: Transportation Problem 
Suppose that a manufacturer wishes to send a number of units of a product 

from several of his warehouses (origins) to a number of retail outlets (destinations, 
markets). 

Let there be m origins and n destinations and let a~ be the total amount of the 
product available for shipment at the ith origin and bj be the total demand of the 
product at the jth destination. 

Let x. be the quantity of the product shipped from the ith origin to the jth 
ij 

destination and c j be the cost of shipping one unit from the ith origin to the jth 
destination. 

The problem now is to determine a shipping schedule x > 0, such that 
U m 

(a) the demand bj at the jth destination is satisfied 
(b) the supply a~ at the ith origin is not exceeded 
(c) the total shipping cost is minimum. 

The problem therefore is, the linear programming problem: 

m 

Minimize ~ ~-~cijxij 
i=l j=l 

Subject to ~ x~j _< a~, i = 1, 2, .. m 
j = l  

m 

~x~j >_bj, j = l , 2 , . . n  
i=1 

x > 0, for all i, j 
U w 

The transportation model has very wide applications and has received more 
attention than any other linear programming problem. Due to the simple structure 
of the problem, many special computational schemes have been designed for it. 
It is also to be noted that many linear programming problems which have nothing 
to do with transportation can be formulated as transportation problems. 

The transportation problem has been discussed in detail in Chapter 19. 

1.4. Graphical Solutions 
To illustrate some basic features of linear programming, let us consider some 

problems involving only two variables which permit graphical solutions. 
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Example 1" Maximize x, + 2X 2 

Subject to x t + x  2 < 5  

- x I + 2x 2 _< 7 

x ! + 4x 2 >_ 4 (1.2) 

Xl -- X2 ___~ 1. 

x I > 0, x 2 > 0. (1.3) 

The nonnegativity conditions imply that the points should lie in the first 
quadrant of  the (x,, x2) plane. We then consider the inequalities as equations and 
draw straight lines. On each of these lines drawn, we indicate by arrows the area 
any point in which will satisfy that particular inequality (condition). The 
intersection of all these half planes is the polygon ABCDE (Figure 1.1). Any point 
within this polygon or on its boundary satisfies all the conditions. An infinite 
number of such points exist. Our problem is to find a point (or points) within 
this polygon or on its boundary that maximizes the linear form x~ + 2x 2. 

Consider the parallel straight lines 

X l + 2X 2 = Z 

where z is a parameter. 

For z - 4 or 6, the line cuts through the polygon ABCDE, implying that the 
value of z can be taken higher than z - 6. For z - 9, the straight line passes only 
through the comer point D of the polygon indicating that for any value of z higher 
than 9, the straight line passes beyond the polygon. It does not intersect the polygon 
at all and hence there is no point satisfying the conditions and yielding a value of 
z > 9 .  

i .~'X 

Figure I.I 
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Hence the maximum value of the linear form x + 2x 2 subject to the conditions 
(1.2), (1.3) is 9 and attained at the point D whose coordinate are x~ = 1, x 2 = 4 
which can be easily obtained from the solution of the system 

Xl + X2 "-  5 

-X ! + 2X 2 = 7 

Example 2. In example 1, the linear form attained its maximum at a unique 
point D. It is however not necessary that a linear programming problem will always 
have a unique solution. 

If we maximize the linear form x~ + x2 subject to the same conditions as in 
example 1 we note that the linear form attains its maximum 5 at comer points C 
and D and also at every point on the line CD. 

Example 3. Consider the problem 

Minimize 

Subject to 

2x~ + x~ 

X! +X2<4 
3Xl + X2> 5 
X 1 + 3X2> 3 

<3 X 1 
x 2 _< 2.5, 

X 2 

\ 
5 

\ 

3. 

\ 
2. 

xl, x2>_O 

I k x~=3 

z,=2 i ~ , ,  ~ z  =3"5 '~2-J ' = 6 " ' " "  

X ! 
f- 

Figure 1.2 
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It is clear from the lines representing the linear form 2x~ + x 2 = Z for z - 6, 
Z -  5 in Figure 1.2, that if we move parallel to these lines in the direction of 
decreasing z, it passes through the comer point A of the polygon ABCDE for 
z = z 3 and for z < z 3, it does not intersect the polygon at all. The minimum value 
of  the linear form therefore is z 3 and is attained at A, which is the point of 

intersection of the lines 3Xl + x 2 = 5 and x~ + 3 x  2 = 3. The solution of the problem 
is then x~ - 3/2, x 2 - 1/2 and min z = 3.5. 

Example  4: There may be some linear programming problems for which 
there do not exist any point satisfying all the conditions or there may be problems 
where the solution is unbounded.  We do not, however,  expect any linear 
programming problem representing some practical situation which has no solution 
or an unbounded solution. But for theoretical consideration, we now consider 
the following problem. 

Maximize 2x I + 3x 2 

Subject to x l + x  2>_4 

x I - x  2 _< 2 

x~ >_ O, x2 >_ O. 

1 

( 

-1 

? 

xl > 

Figure 1.3 

It is clear from Figure 1.3, that no matter how far the line 2x~ + 3 x  2 = Z is 
moved parallel to itself in the direction of increasing z, the line will always have 
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points satisfying the conditions. Hence z can be made arbitrarily large and the 
problem therefore has an unbounded solution. 

1.5. Nonlinear Programming 
Interest in nonlinear programming developed almost simultaneously with the 

growing interest in linear programming. It was soon recognized that many a practical 
problem cannot be represented by linear programming model. Therefore, attempts 
were made to develop methods of solutions for more general mathematical programs 
and many significant advances have been made. In 1951, Kuhn and Tucker [291 ] 
gave necessary and sufficient conditions for optimal solutions to programming 
problems which laid the foundations for a good deal of later work in nonlinear 
programming. Since then, many authors have developed methods of solutions 
for nonlinear programs of various nature and a large number of papers have 
appeared in the literature. 
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MATHEMATICAL FOUNDATIONS 

In Part 1 of the book, we have reviewed some mathematical concepts that 
are needed to study mathematical programming and in particular the topics 
covered in the remainder of this book. For more details, see Bartle [27], Berge 
[52], Berge and Ghouila-Houri [53], Buck [62], Fenchel [157], Finkbeiner 
[161], Flemming [162], Gale [183], Halmos [218], Rudin [386] and Simmons 
[419]. 
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CHAPTER 2 

Basic Theory of Sets and Functions 

2.1. Sets 
A set A is a collection of objects of any kind which are called the elements or 

points of A. In general sets are denoted by capital Latin or Greek letters such as 
A, B, X or f2, A, F. 

The set of  all real numbers is denoted by R. 

If a is an element of the set A, we write a ~ A and we write a r A, if a is not 

an element of A. 

A set is sometimes defined by listing its elements between the curly brackets. 
For example, the set consisting of the elements a, b, c may be written as A = {a, 
b, c}. But more often sets are defined by one or more properties that characterize 
its elements and we write A = { a l a  satisfies property P}. For example, the set of 
all nonnegative real numbers can be written as A = {x Ix ~ R, x > 0}. 

The set that contains no element is called the empty set and is denoted by ~. 
A set is finite if the number of its elements is finite and infinite otherwise. 

If A and B are two sets and all elements of A are elements of B, we write A c 
B, that is, A is contained in B or that B contains A and write B D A. A is then 
called a subset of B. 

If A c B and B c A, we say that A is equal to B and A = B. 

Operations on Sets 
If A and B are two sets, their union denoted by A w B is defined to be the set 

of elements which belong to either A or B. That is, 

A w B  = { x l x  ~ A o r x  ~ B}. 

The intersection of two sets A and B denoted by A n B is defined to be the 
set of elements which belong to both A and B. That is, 

A ~ B  = { x l x  ~ A a n d x  ~ B}. 

If A ~ B = ~, the sets A and B are said to be disjoint. 

The difference of two sets A and B denoted by A -  B is the set of elements 
that belong to A but not to B, i.e. 
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A - B  = {x lx  ~ A , x  et B}. 

The set of all elements do not belong to the set A is called the complement 
of A and is denoted by A ~. 

The set operations of union and intersection are (i) commutative (ii) associative 
and (iii) distributive: 

(i) A u B = B u A ;  A n B = B n A .  
(ii) (A u B) u C = A u (B u C); (A n B) n C = A n (B n C). 
(iii) A u (B n C) = (A u B) ~ (A u C). 

A n (B u C) = (A ~ B) u (A n C). 

Moreover, the operation of complementation has the following properties: 

A c B implies A r D B ~. 

A n A ~ = ~, (A~) ~= A 

A - B  = A n B  ~, (A u B )  ~ = A  ~ n  B ~ 

(A n B) ~ = A ~ u B ~ 

The operations of union and intersection for two sets extend easily to any 
finite and infinite number of sets. Let I be a finite or infinite set of integers. Then 
A = (A~l~ ~ I) is called a family of the sets A~. 

The union of the A~ is defined to be the set of elements which belong to at 

least one A~ and is denoted by u A~. 
ir 

The intersection of the A~ is defined to be the set of elements which belong 

to all the sets A~ and is denoted by n A~. 
ieI 

The product of two sets A and B is defined to be the set of ordered pairs (x, 
y) of which x e A and y e B and is denoted by A x B. That is, 

A x B = {(x, y) I x ~ A , y  ~ B}. 

The product of sets A~, i = 1, 2, .. n is defined to be the set of ordered n- 
triples (x~, x 2, .. x )  such that x~ e A i, i = 1, 2, .. n. and is denoted by A~ x A 2 .. 
x A .  Thus, 

A I x A  2 . . x A  ={(x  l ,x  2 , . . . x . l x  l e A  l ,x  2 e A  2, .... x c A . } .  

Closed and Open Intervals 
Let a and b be two real numbers. The set of real numbers x satisfying a < x 

< b is a closed interval and is denoted by [a, b]. The set of real numbers x 
satisfying a < x < b is called an open interval and is denoted by (a, b). 

Thus, [a, b] = { x l a  _< x _< b} is a closed interval 

and (a, b) = { x l a  < x < b} an open interval 

Similarly, the sets 

[a, b) = { x l a  < x < b} 

and (a, b] = { x l a < x _ < b }  

are known as left half-closed and right half-closed intervals, respectively. 
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Lower and Upper Bounds 
Let S be a nonempty set of real numbers. If there is a number ~ such that x 

> ot for all x ~ S, then S is said to be bounded below and ct is called a lover 

bound of S. 

Similarly, if there is a number 13 such that x _< 13, for all x ~ S, then S is said 

to be bounded above and 13 is called an upper bound of S. 

If S is bounded above and below, then S is said to be bounded. 

Greatest Lower Bound and Least Upper Bound 

Let S b a nonempty set of real numbers. A lower bound ~ is the greatest 
lower bound or the infimum of S (i.e. inf {x I x ~ S }) if no number greater than 

is a lower bound of S. 

Similarly, an upper bound ~ is the least upper bound or supremum of S 

(i.e. sup {x I x ~ S }), if no number smaller than 13 is an upper bound of S. 

Any nonempty set of real numbers which has a lower (upper) bound has a 

unique greatest lower (least upper) bound. This is one of the axioms of the real 

number systems. 

Thus, if the set has no infimum, it has no lower bound and we then say that 

S is unbounded from below and write inf S = - o o  

Similarly, if S has no supremum, it has no upper bound and we then say 

that S is unbounded from above and write Sup S = + oo 

2.2. Vectors 
An n-vector X is an ordered n-tuple of real number x~, x 2, .. x n. A vector is 

denoted by a capital letter. It is written as a column, i.e. 

X 1 

X =  x2 

and is called a column vector or simply a vector. It is also represented in the 

form of a row vector 

X T = [ x ~ , x  2, .... x n] 

where T denotes transposition. 

The number x is called the j th component or element of the vector X. 
J 
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S p e c i a l  V e c t o r s  

Null vector-  The null vector (zero vector) is a vector, all of  whole 
components are zero and is denoted by 0. 

o = [0,  0, ... 0]  T 

Sum vector: The sum vector denoted by e is a vector for which all components 
are 1. 

e = [1, 1, ... 1] T. 

Unit Vectors: The ith unit vector, e i is a vector whose ith component is 1 
and all others are zeros. Thus 

e, = [1, 0, 0, ... 0 ]  T, e 2 = [0 ,  1, 0, ... 0 ]  T, ... e n = [0 ,  0 ,  0 ,  ... 1] T. 

Addition of Vectors" The sum of two n-vectors X and Y is written as the 

n-vector X + Y, whose jth components is x + yj. 

X + Y - [x~ + y~, x 2 + Y2, "-" Xn + Yn] T" 

Multiplication by a scalar: The product of a vector X and a scalar r denoted 
by r is obtained by multiplying each element of X by ct 

cxX = ... r176 T. 

Scalar Product: The scalar product or inner product of two n-vectors X and 

Y is defined by XTy = ~ ~"__~x~y~. The two vectors are said to be orthogonal if 

XTy = 0. 

The Norm or Length of a Vector: The norm (length) of an n-vector X, 

denoted by IlXll is defined by IlXll- (XTX) ''= 

Distance between vectors: The distance between two n-vectors X, Y is 

defined by d (X, Y) = IIX - YII. 

The set of n-vectors of real numbers, denoted by R n, with which we are mainly 
concerned in our study, forms the n-dimensional Euclidean Space (see chapter 3). 

2.3. Topological Properties of R" 

We now consider some topological properties of R". 

A topology in a set f) is the family of open sets (defined below) in f2 if it is 
closed under operation of arbitrary unions and finite intersections and contains 
and f~. Thus the family of open sets in R n by its properties given below form a 

topology in R n. 

Neighbourhoods:  Given a point X 0 ~ R n and real number ~ > 0, the set 

N (Xo) = { X t X  e R" I I X -  Xoll < ~} 

is called an ~ neighbourhood of X o. 

N (Xo) of often called an open ball B(Xo) (or simply B(Xo) with centre X o 

and radius ~. 
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Interior Points and Open Sets 
A point X is said to be an interior point of the set S c R", i f  there exists an 

> 0 such that N ( X )  c S. 
The set of all interior points of S is called the interior of S and is denoted by 

int. S. Obviously int S c S. 
S is called open if S - int S, that is, if ever point of S is an interior point. 

Points of Closure and Closed Sets 
A poim X is said to be a point of closure of the set S c R", i f  for each e > 0 

N(X) S .  r 

The set of points of closure of S, denoted by ~, is called the closure of S. 

Clearly ~ D S. 

The set S is said to be closed if S - ~ , that is, if every point of closure of 

S is in S. 

It should be noted that a point of closure of a set S may or may not be a point 
of the set. For example, if S is the set { 1, �89 �88 ..... }, the point O i s a  point of 
closure of S but does not belong to S. However, every point in the set S is a point 
of closure of S. 

Relatively Open (closed) Sets 
Let S 1 and S 2 be two sets such that S~ c S 2 cz R". The S~ is said to be 

open (closed) relative to S 2 if there is an open (closed) set A in R ~ such that 

Sl = $2 (7 A. 

The following properties of open and closed sets in R ~ can be easily verified. 
A: (i) Every Union of open sets is open. 

(ii) Every finite intersection of open sets is open. 
(iii) The empty set ~ and R ~ are open. 

B" The complement of an open set is closed and the complement of a closed 
set is open. 

C" (i) Every intersection of closed sets is closed. 
(ii) Every finite union of closed sets is closed. 
(iii) The empty set ~ and R ~ are closed. 

Boundary Points 
A point X ~ S c R n is a boundary point of S if it is not an interior point of S, 

that is, if for each ~ > 0, N (X) contains at least one point in S and one point 
not in S. 

The set of all boundary points of S is called the boundary of S. 
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Bounded Sets 
A set S c R" is said to be bounded if there exists a real number tx > 0 such 

that 

IlXll < ~ ,  for each X e S. 

Compact Sets 
A set S c R" is said to be compact if it is closed and bounded. 

If S~ and S 2 are sets in R ~ which are respectively compact and closed, then 
their sum 

S = S~ + Sz = {x + y lx  ~ S~, y e $2} 

is closed. 

2.4. Sequences and Subsequences 
A sequence in a set S is a function f from the set I of all positive integers 

into the set S. If f(n) = x ~ S for n ~ I, we denote the sequence by {x} or by 

x t, x 2, x 3 ..... The elements x~, x 2, x 3 .... however need not be distinct. 

For any sequence {nk} of positive integers, such that n~ < n 2 < n 3 . . . . .  , the 
sequence {Xk } is called s subsequence of {x}. 

If S is a set of real numbers, then the {x,} is a sequence of real numbers and 
if S = R", it is a sequence of vectors. 

Limit Point 

Let {X} be a sequence in R". A point ,X ~ R" is said to be a limit point of 

the sequence if for any given ~ > 0 there is a positive integer N such that 

IIX.-  ~ II < ~ ,  for some n >_ N. 

A limit point is also called an accumulation point or a cluster point. 

Limit of a Sequence 

Let X~, X 2, X 3, .... be a sequence of points in R ~ A point R ER" is said to be 

the limit of the sequence, if for any given ~ > 0, there is a positive integer N 

such that 

IIX~- ~ II < e ,  for all n >_ N. 

and we say that {X} converges to R or that R is limit of {X} and write 

X ~ ,  as n ~ oo, or 

lim X. = X 
n - - > ~  

It can be shown that 
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(i) Every sequence {X} in a compact set S in R" has a limit point in 
S (Bolzano-Weierstrass) and then there is a convergent subsequence with a limit 
in S. 

(ii) The limit of a convergent sequence is unique. 

Cauchy Sequence 
A sequence {X} in R ~ is said to be a Cauchy sequence if for any given 

> 0, there is a positive integer N such that for all m, n >_ N, 

[IX m - X~ < 
A sequence in R n converges if and only if it is a Cauchy sequence. 

2.5. Mappings and Functions 

Mappings 
Let X and Y be two sets. A mapping F from X into Y is a correspondence 

which associates with every element x of X a subset F(x) of Y. The set F(x) is 
called the image of x under the mapping F. 

The set X ~ = { x l x  ~ X, F(x) r ~} is called the domain (or set of definition) 
ofF, and 

y ' =  u F(x) 
x EX 

is called the range (or set of values) of F. 

F is also said to be defined on X' and that F is a mapping ox X onto Y*. 

If B is a subset of Y, the set 

r - '  ( B ) -  {x e x I r(x) e B} c x 

is called the inverse image B under the mapping F. 

A mapping is called one-to-one if x~, x 2 s X and x~ ~ x: implies that F(x~) ~e 
F(x2), and for every y e Y, there is an x e X such that y = F(x). 

Functions 
If the mapping F from a set X into a set Y is such that the image set F(x) 

always consists of a single element, F is called a single valued mapping or a single 
valued function and is denoted by f. 

If Y is an m-dimensional Euclidean space R m, F is called a vector-valued 
function (or an m-vector function) f i.e. f(x) is a vector whose m components f~(x), 
f2(x),..f(x) are real numbers. 

If Y = R ~, the function is called a numerical function and if moreover X = R ", 
then f is the real single valued function of n variables, often written as f :  R ~ ---> 
R 1 . 

In our subsequent discussions, we will mainly be concerned with real single 
valued functions defined on R" or on a subset of Rn. 
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2.6. Continuous Functions 
Let S be a nonempty set in R". A function f" S ~ R ~ is said to be continuous 

at R, ~ S, if for any given e > 0, there exists a 5 > 0 such that 

x ~ s ,  II x -  ~ II < 5 imply that ,If(x)- f (~  )1 < 

or equivalently if for each sequence {X} in S, 

!irn f (X,)  = f(X). 

A function f is said to be continuous on S, if it is continuous at each point 

of S. 

A vector valued function is said to be continuous at R if each of  its 

components is continuous at ~ .  

Lower and Upper Semicontinuous Functions 

Let S c R n. A function f"  S -~ R ~ is said to be lower semicontinuous at 

~ S, if for each ~ > 0 there exists a 5 > 0 such that 

X e S and IIX - ~ II < 5 imply that fiX) - f( ,~ ) > - e. 

Similarly, a function f :  S ~ R ~ is said to be upper semicontinuous at R e 

S if for each E > 0 there exists a 5 > 0 such that 

X e S and IIX - ~ II < 5 imply that f(X) - f( R ) < e. 

f is said to be lower (upper) semicont inuous on S if it is lower (upper) 

semicontinuous at each point of S. 

Note that f is continuous at R e S if and only if it is both lower and upper 

semicontinuous at that point. 

2.7. Infimum and Supremum of Functions 

Bounded Functions 
Let S c R n. A function f :  S -~ R ~ is said to be bounded from below on S if 

there exists a number ct such that 

f(X) > ct, for all X e S. 

The number a is a lower bound of f on S. 

f is said to be bounded from above on S if there exists a number 13 such that 

f(X) < 13, for all X e S. 

The number 13 is an upper bound of f on S. 
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The function s is said to be bounded on S i f  it is bounded from below and 
from above. 

Inf imum of Functions" Let S c, R" and f "  S --~ R ~. |s there exists a number 
such that 

f iX) >_ E, for all X ~ S 
and for every e > 0, there exists an X e S such that 

f(X) < ~ + e,  

then ~ is called the infimum of  f on S and is denoted by ~ = inf {fix) IX ~ S} = 

inf fix). x~s 

S u p r e m u m  of  Functions: Let S c R" and f" S ~ R ~. If there exists a number 

13 such that 

f(X) < 13, for all X e S and for every ~ > O, 

there exists an X e S such that 

f i x )  > 13 - ~ ,  

then 13 is called the supremum of f on S and is denoted by 13 = sup { fiX) IX e S } 

= s u p  f i x ) .  
XeS 

If  R ~ is the complete set of  real numbers, that is, if we admit the points + 0% 
then every real single valued function has a supremum and infimum on the set S 
on which it is defined. 

By convention, if  S = 

inf fiX) = + oo 
X~S 

s u p  f i X )  = - oo 
x ~ s  

and if S * ~ and f is not bounded on S 

inf f(X) - - m 
XES 

sup fiX) = + oo 
XES 

2.8. Minima and Maxima of Functions 
Let f be a real single valued function defined on the set S. If there is a point 

X o e S such that f(Xo) < f(X) for all X ~ S then f(Xo) is called the minimum of  f 
on S and is written as 

f(Xo ) = min f(X) 
x~g  
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and X 0 is then called a minimum point of f on S. Thus if the minimum of f exists, 
f attains the minimum at the infimum of f on S. 

Similarly, if there exists a point X ~ ~ S such that fiX') >_ f(X) for all X e S, 
then fiX') is called the maximum of f on S and is written as 

f(X*) = max f(X) 
x c s  

X ~ is called a maximum point of f on S. Clearly, if the maximum of f exists, it is 
attained at the supremum of f on S. 

It should be noted that not every function f :  S ~ R ~ has a minimum or 
maximum. 

Examples. 

For x e W, 
(i) {f (x) = x l 0 < x < 1 } has no minimum or maximum. 
(ii) {f (x) = x l 0 < x < 1 } has no minimum but achieves maximum at x = 1. 
(iii) {f (x) = e-xl x ~ W} has no minimum. 

However, if the minimum (maximum) exists, it must be finite. 

The following theorem gives sufficient conditions for existence of a minimum 
or a maximum of a function f" S ~ R ~. 

Theorem 2.1. Let S be a nonempty compact set in R" and f : S ~ W. If f is 
lower (upper) semicontinuous then f achieves a minimum (maximum) over S. 

Since a continuous function is both lower and upper semicontinuous, it achieves 
both a minimum and a maximum over any compact set. 

2.9. Differentiable Functions 

Let S c R n be an open set and f" S ~ R ~. Then f is said to be differentiable at 

~ S if for all X ~ R ~ such that ~ + X ~ S, we have 

f (~ +x) - f (~ )  + 0(~)~x + 13(~, x) IlXll 

where 0 ( ~ )  is a bounded vector and 13( X, X) is a numerical function which tends 

to 0 whenever X tends to 0. 

f is said to be differentiable on S if it is differentiable at each point in S. 

Part ial  Derivatives: Let S c R" be an open set and f :  S ~ W. Then f is said 
to have a partial derivative at X ~ S with respect to xj, the jth component of X if 

f(X + he j ) -  f(X) 
lira 
h-.}0 h 

where ej is the jth unit vector, exists. This limit is called the partial derivative (or 
first partial derivative) with respect to x at X and is denoted by c~ /~ .  

J J 

The n-vector whose components are the n partial derivatives of f with respect 
to x,  j = 1, 2,..n is called the gradient of f at X and is denoted by Vf(X), that is, 
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I )T 
Vf(X)= Of 8f af 

(~X l ' O ~  2 O~ n 

The following theorem gives the relationship between continuity and 
differentiability of functions. 

Theorem 2.2. Let S be an open set in R" and f: S ~ R. 

(i) If f is differentiable at R e S, then f is continuous at X and Vf( R ) exists 

(but not conversely) and for R + X ~ S, 

f(~ + x )  = f(~ ) + v f ( N )  x + 13( ~, x) I lX l l  

where 13( X, X) ~ 0 as X ~ O. 

(ii) If f has cominuous partial derivatives at R with respect to all the variables, 

then f is Differentiable at ~ .  

Whenever we say that f is differentiable (or that it has partial derivatives) on 
some set A (open or not), it will be tacitly understood that there is an open set 0 
containing A and f is defined on O. 

Vector-valued Functions 
An m-dimensional vector function f defined on an open set S in R" is said to 

be differentiable at R e S (or on S) if each of its components f~, f2,..f is 

differentiable at R (or on S). 

f is said to have partial derivatives at X e S with respect to x~, X2,..X n if each 

of its components has partial derivatives at "~ with respect to x~, x2,..x .. 

The m by n matrix of the partial derivatives 

of,(x) of,(x) of,(x) 

�9 &, .ax~ '"" .~o 
Vf(X) = C3fm (~) o~: (,X) i~l~m (X) 

is called the Jacobian (or Jacobian matrix) of f at 

If an m-dimensional vector function f defined on an open set S in R" and a 

function g : R m ~ R ~ are differentiable at X e S and at Y = f ( ~ ) respectively, 

then the composite function ~ �9 S ~ R ~ given by 

(X) = g [fiX)] 

is differentiable at X. 
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Furthermore, V~ ( ~ ) = Vg( V )T Vf( ~: ) 

This is the well known chain rule of the differential calculus. 

Twice-dlfferentiable Functions 
Let S be an open set in R" and f :  S --> R ~. Let X ~ S. 
Since each of the partial derivatives 0f(X)/0xj with respect to x,  j = 1, 2,..n is 

a function of X, we can obtain partial derivatives of each of these functions if 
they exist. These are defined as second partial derivatives of f and are denoted by 
tYf(X)/0x~0xj, i, j = 1, 2,..n. If the second partial derivatives exist and are continuous, 

02f(x) 02f(x) 
then = 0xio~-'--'- ~ = 0xj0x------~ for all i, j. The n x n symmetric matrix 

H (X) = [ Ox, Oxj ' i, j = 1, 2,...n 

is called the Hessian matrix of f at X. 

f is said to be twice differentiable at R e S if in addition to the gradient vector 

there exist the Hessian matrix H ( R ) of f at X and a numerical function 13( X:, 

X), such that 

f(X) = t'( X ) + Vf( X )r (X - ,X, ) + �89 - X )T H( X ) (X - X ) 

+ IIX - X II 213( X:, X). fpr eacj X e S. 

where 13( X,, X ) ~  0 as X ---> 

A vector-valued function is twice differentiable if each of its components is 
twice differentiable. 

Mean Value Theorem 
Let S be an open convex set in R" (See chapter 8) and f :  S ~ R ~ be 

differentiable. Then for every X~ X 2 e S. 

f(X2) = f(X,) + Vf(X) T (X 2 - X,)  

where X = )v X~ + (1 - ~.) X 2 for some ~. e (0, 1). 

Taylor 's  Theorem. Let S be an open convex set in Rn and f :  S + R ~ be 
twice differentiable. Then for every X~, X 2 e S, the second-order form of Taylor's 
theorem can be stated as 

f(X2) = f(X~) + Vf (Xl) T (X 2 - X~) + �89 (X 2 - X~) r H(X) (X 2 - X~) 

where X = ZX~ + (1 - ~,) X 2 for some ~.~ (0, 1) and H(X) is the Hessian of f at X. 

Implicit Function Theorem 
Consider now the problem of solving a system of n equations (nonlinear) in 

n + m variables. We can see that if it is possible to express n of the variables as 
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the function of the remaining m variables, the system of equations can be solved 
for the n variables as implicit functions of the remaining ones. 

The following theorem gives the conditions for existence of such functions. 

Theorem 2.3. Let f be an n-vector function defined on an open set A c R" x 

Rmand le t (X,  Y) ~ A. 

Suppose that the following conditions hold: 

(i) fiR,, ~ ) = 0  

(ii) f has continuous first partial derivatives at (R ,  ~ ) with respect to the 

components of X 

(iii) Vxf( R, Y ) is nonsingular. 

Then there exists a unique n-vector function g defined on an open set U c R m, 

~ U such that 

(a) "~= g ( ~ )  

(b) f [g(Y), Y] = 0 for Y e U. 
(c) g has continuous first partial derivatives on U. 

(d) Vxf(X, Y) is nonsingular in an open ball B ( "~, ~ ) 
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Vector Spaces 

3.1. Fields 
A nonempty  set F of  scalars (real or complex numbers)  on which the 

operations of  addition and multiplication are defined, so that to every pair of  
scalars or, 13 ~ F there corresponds scalars ct + 13 and txl3 in F is called a field if 
the following conditions are satisfied for tx, 13, ~' ~ F 

(1) ct + 13 = 13 + ~t, ctl3 = 13o~. (commutativity) 
(2) ct + (13 + )') = (tx + 13) + ~/, ct(13~/) = (a13)~/. (associativity) 
(3) or(13 + y) = ctl3 + ~)' (distributivity) 
(4) For each scalar or, there exists a unique scalar 0 such that a + 0 = ct. 

(additive identity) 
(5) For each scalar tx, there is a unique scalar - (~ such that tx + ( -  a)  = 0. 

(additive inverse) 
(6) There exists a unique nonzero scalar 1 such that tx. 1 = o~ for every scalar 

ot (multiplicative identity) 
(7) For every nonzero scalar t~, there exists a unique scalar tx -~ such that 

atx -~ = 1 (multiplicative inverse). 

Thus, for example, the set R of all real numbers is a field and the same is true 
of the set C of  all complex numbers and the set Q of all rational numbers. It can 
be seen that the set Z of  all integers is not a field. 

3.2. Vector Spaces 
A vector space V over the field F is a set of vectors on which the operations 

of  addition and multiplication by a scalar are defined, that is, for every pair of 
vectors X, Y ~ V, there corresponds a vector X + Y ~ V and also (z X ~ V, 
where tx is a scalar such that the following conditions are satisfied" 

For X, Y, Z ~ V and tx, 13 scalars 
1. X + Y = Y + X  
2. X + ( Y + Z ) = ( X + Y ) + Z  
3. For every vector X in V, there exists a unique vector 0 in V such that 

X + O = X  
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4. For every vector X in V, there is a unique v e c t o r -  X such that X + ( -  X) 

= 0 .  

5. ~(13x)  = (czl3)X. 
6. 1 X = X, for every vector X. 
7. ot(X + Y) = o~X + ~Y 

8. (~  + 13)x = ~ x  + 13x. 

If F is the field R of real numbers, V is called a real vector space and if F is 
the field C of complex numbers, V is a complex vector space. 

It is easy to verify that the set R n of all n-tuples of real numbers is a real vector 
space. It is also called n-dimensional real coordinate space. 

3.3. Subspaces 

A nonempty subset U of a vector space V is called a subspace of V or a linear 
manifold if it is closed under the operation of addition and scalar multiplication, 
that is, 

if X, Y e U, then X + Y e U 

if X ~ U, o t e  R, then o~ X e U. 

A subspace U of a vector space V is itself a vector space and as all vector 
spaces, it always contains the null vector 0. 

The whole space V and the set consisting of the null vector alone are two special 
examples of subspaces. 

Linear Variety 
A subset L of a vector space V is called a linear variety if 

X' Y RL} ~ 2~X + (1- ~')Y ~ L" 2 ~  

A linear variety is also called an affine set. 

It can be shown that if U is a vector subspace and X 0 ~ V, the set U + X 0 is 
a linear variety and conversely, every linear variety is of the form U + X 0 for 
some vector subspace U and some vector X o. Moreover, if a linear variety L is 

such that L = U~ + X, and L + U 2 + X 2, then U, = U 2. 

Thus, the subspace U such that L = U + X 0 is necessarily unique and is 
called the subspace parallel to the linear variety L. 

Linear Combination 
A vector X is a linear combination of the vectors X,, X 2, .. X, in V if 

X = ~ o~iX i 
i=! 

for some scalars a~, i = 1, 2..n 
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It is clear that the zero vector can be expressed as a linear combination of 
any given set of  vectors by taking all ot~ = 0. 

If S is any nonempty set of vectors of a vector space V, then the set of all linear 
combinations of elements of S is a subspace of V. The subspace is then called the 
subspace spanned by (or generated by) S and is denoted by [S]. 

Linear combinations of vectors are so vital in the study of vector spaces that 
the term linear space is used as a synonym for vector space. 

3.4. Linear Dependence 
A finite set of vectors {X~, X 2, .. X }  of a vector space V is said to be linearly 

dependent if there exist scalars cx~, i = 1, 2,..n not all zero, such that 

s cx~X~ = 0 
i-I 

Otherwise, the set {X~} is linearly independent, that is if ~ ~ cx~X~ = 0 implies 

that ~x~ = 0, for each i, the set {X~} is linearly independent. 

By convention, the empty set is said to be linearly independent. 

T h e o r e m  3.1. Any set of  vectors containing the zero vector is linearly 
dependent. 

P r o o f :  Let {X~, X~, .. Xk} be a set of vectors where X k is the zero vector. 
Then the linear combination 

0X~ + 0X 2 + ... + 0Xk. ~ + ~k Xk = 0 

is satisfied for any o~ k 

Hence, (X~, X 2, .. X k} is linearly dependent. 

T h e o r e m  3.2. Any nonempty subset of a set of linearly independent vectors is 
itself linearly independent and any set of vectors containing a linearly dependent 
subset is itself linearly dependent. 

P r o o f :  Let us assume that the vectors X~, X~, .. X k are linearly independent 
and suppose that the vectors X~, X 3, .. X k are not. This means that there exist cx~ 
not all zero such that 

o[2X 2 -[- (z3X 3 q- .. --1- 0[,kX k -- 0 

Now this implies that 

~ i X l  q- O~,lX 1 q- ... + O[kX k : 0 

will always have a nontrivial solution because a nontrivial solution of the first 
equation with cx~ = 0 will be a solution of the second. But this contradicts the 
assumption that the vectors X~, X 2, .. X k are linearly independent. 

Similarly, it can be shown that a set of vectors containing a linearly dependent 
subset is itself linearly dependent. 

T h e o r e m  3.3. If each of the (m + 1) vectors Y~, Y2, " Y~  + ~ o f  a vector space 
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V is a linear combinat ion of  the same set of  m vectors X~, X 2, .. X m of  V, then 
the vectors Y~ (i = 1, 2, .. m + 1) are linearly dependent. 

Proof :  Let 

m 

Y~ = ~cx~jXj, i = 1, 2,.. (m + 1) 
j=l 

The theorem will be proved by induction on m. 

For rn = 1, Yt = ~ 

Y2 = ~t2~X~ 

If  both ot~ and ot2~ are zero, then Y~ = Y2 = 0 and YI, Y2 are linearly dependent. 

If  not, let ot~ ~ 0, Then, 

Ot~lY 2 - ot2~Y ~ = ot~ot21X ~ - ot2~ot~X ~ = 0. 

implying that Y~, Y2 are linearly dependent. 

Let  us now assume that  the theorem is true for m = k -  1 and then. we 
show that it is also true for m = k. By hypothesis, we have 

k 

Y, = ~-"a,jXj, i :  1, 2, ... (k + 1) 
j=l 

If  all otij = 0, then all Y~ are zero and hence they are linearly dependent.  

N o w  assume that at least one ot.j is not equal to zero, say Ot~l ~ 0. 

Let us define 

O[il 
Zi = Y i -  ~ Y  

(~11 1 

= a i j  ~ -  , = 
j=2 (XII 

Since each of  the k vectors Z~ is a linear combination of  the same ( k -  1) 
vectors X (j = 2, .. k), by the induction hypothesis, the Z~ are linearly dependent.  

Hence,  there exist numbers  13 z, [3 3, .. [3k+ ~, not all zero, such that 

0 = 13,z, :  13, v, . . . .  u  

"= j=2 (~'11 

i=2 0~ll  \ i=2 

which shows that the Yi are linearly dependent.  

C o r o l l a r y  3.3.1" Any set of  n + 1 vectors in R n is linearly dependent.  

Proof :  Let % (i = 1, 2, .. n) be the i ~ unit vector in R n. Then, any vector X 
R n can be written as 
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X = ~~ xie i . 
i=l 

The corollary then follows from theorem 3.3. 

Coro l la ry  3.3.2. Any m vectors in Rn are linearly dependent if m > n. 

Proof:  Follows from corollary 3.3.1 and theorem 3.2. 

Theorem 3.4. If S = {X~, X 2, .. Xk) be a set of  linearly independent vectors of 
a vector space V, then for any vector X, the set S~ = {X,, X 2, .. X k, X} is linearly 
independent if and only if X is not an element of the space spanned by S. 

Proof:  Suppose that X e [S]. Then, for some scalars tx~, i = 1, 2, ..k 

X = (z I X l "~" (~'2 X2 "l- .. "1- (~k Xk 

If (x~ = O, for all i, then X is a zero vector and by theorem 3.1, the set S~ is 
linearly dependent. 

If (x~ ;e 0 for some i, the set S l is again linearly dependent. 

Conversely, suppose that X e [S] and consider the equation 

[31X 1 -I- 132X 2 -4-...--I- [~k Xk -4- 13X---0 

If 13 ;e O, the vector X can be expressed as 

X =-13, X, +-132 
--if-x,+ + --~k Xk 

Thus, X is a linear combination of  vectors of  S and therefore X e [S], 
contradicting the assumption. 

Hence, 13 = 0 and since {X~, X 2, .. Xk} is linearly independent, ~i "- 0, for i = 
1, 2, .. k. Then S t = {Xl, X 2, .. X k X} is linearly independent. 

Theo rem 3.5. The set of  nonzero vectors X~, X 2, .. X is linearly dependent if 
and only if some X k, 2 < k < n is a linear combination of the preceding vectors. 

Proof:  If for some k, X k is a linear combination of  X~, X 2, .. Xk. ~, then the set 
of  vectors Xl, X 2, .. X k is linearly dependent and by theorem 3.2, the set of  vectors 
X~, X 2, .. X is linearly dependent. 

Conversely, suppose that the vectors X~, X 2, .. X are linearly dependent and 
let k be the first integer between 2 and n for which X~, X 2, .. X k are linearly 
dependent. Then for suitable scalars tx~, (i = 1, 2,..k) not all zero. 

Cf, lX ! d- (~2X2 d- ... -~- (~kXk : 0 

If tz k - 0, then X~, X 2, .. Xk_ , are linearly dependent contradicting the definition 

of k. Hence tz k r 0 and 

--(~2 --Of'k-I 
Xk .~--(~l Xl d- X 2 d-... d- Xk_ 1. 

~k (Xk ~k 

as was to be proved. 
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3.5. Basis and Dimension 

Basis: A set of maximum number of linearly independent vectors of a vector 
space V is called a basis of V. V is said to be finite-dimensional if it has a finite 
basis; otherwise V is infinite-dimensional. 

We shall however be concerned with finite-dimensional vector spaces only. 

Theorem 3.6" A set S of linearly independent vector X~, X 2, .. X of a vector 
space V is a basis of V if an only if every vector Y e V is a linear combination of 

the vectors X~, X 2, .. X.  

Proof: Suppose every Y e V is a linear combination of the vectors X l, X 2, .. 
X c Then by theorem 3.3, Y, X~,.. X r are linearly dependent. Consequently, S 
contains no larger set of linearly independent vectors. Therefore, r is the maximum 
number of linearly independent vectors in V and hence is a basis of V. 

Conversely, suppose that X~ (i = 1, 2..r) constitute a basis of V. Then be 
definition r is the maximum number of linearly independent vectors. Therefore, 
for every Y e V, Y, X~, X2,.. X must be linearly dependent. Hence there exist 

scalars %, ot~, .. ot not all zero such that 

OtoY + OtlX~ + ... + ot~X, = 0. 

Obviously % * 0, for otherwise, it will imply that X~, X2,.. X r are linearly 
dependent contradicting the assumption. 

Hence Y can be expressed as 

y 1 •  
= - - ~  o t i X  i 

0~o i=! 

which is the desired linear combination. 

Theorem 3.7. The unit vectors e~ (i = 1,2,..n) in R" form a basis. 

Proof: The unit vectors e~ (i = 1,2,..n) in R n are linearly independent, since 

~ot ,e i  = 0 implies that oti = 0 for i = 1,2,..n 
i=l 

and every vector X can be written as 

X : L x i e i  
i=! 

Hence e i (i = 1, 2,..n) form a basis of R". 

Theorem 3.8. The representation of a vector X of a vector space V as a linear 

combination of a basis {X~, x2,.. Xn} is unique. 

Proof: Suppose that the vector X can be represented in two different ways, 

x-  • 
i=l i--I 
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By subtraction we obtain 

11 
=0 

i--l 

and since X~ are linearly independent, a~ = ~ for i = l, 2, .. n. 

T h e o r e m  3.9. Given a basis X l, X 2, .. X k of  a vector space V and the linear 
expression of  a nonzero vector X of  V expressed as a linear combination of  the 
basis vectors, 

k 
x = y '  (3.1) 

i--I 

a new basis is obtained by substituting X for X~ in the current basis if and only if 
a~ is not equal to zero. 

Proof: Suppose that o h ~ 0 and that ~he set of  vectors X, X2,..X k are linearly 
dependent, so that 

~ X  + ~2X2 + ... + ~kXk-" 0 (3.2) 

implies that the scalars ~., ~'2, "-" Kk are not all zero. 

It is clear that X cannot be equal to zero, since by assumption X 2, X 3, .. X k are 
linearly independent. 

Substituting, the expression for X from (3.1) in (3.2) we obtain 

k 
Ka,X~ + ~ ( ~  + ;~a~)X~ = 0. (3.3) 

i=2 

But ;~ot~ r 0. This contradicts the assumption X,, X 2, .. X k are linearly 
independent. Hence, ~. must be equal to zero and consequently X~ = 0 for i = 2, 
3, .. k, which implies that X, X 2, ... X k are linearly independent. 

We now show that the linearly independent vectors X, X 2, .. X k form a basis. 
Since X l, X 2, .. X k is a basis, any vector Y in V can be expressed as 

k 
Y = ~[3iX~ (3.4) 

i-I 

Since a~ r 0, from (3.1), we have 

Xl = Z X -- ~ ~_.~i Xi (3 .5)  
Ot'i i=2 (XI 

Substituting (3.5) in (3.4), we obtain 

Y ~ X +  ~( [3 ,  - c~'[3' ~ 
= c~i i-2 - ~ l )  Xi (3.6) 

The vector Y is thus expressed as a linear combination of  vectors X, X 2, .. X k 

and hence X, X 2, .. X k form a basis of  V. 
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If (x~ = 0, we note from (3.1) that the vectors X, X2, .. X k are linearly dependent. 
Hence, the vectors, X, XE,..X k are linearly independent if and only if (x~ ~ 0 and 
they form a basis. 

Theorem 3.10. Every basis of a finite-dimensional vector space V has the 
same number of elements. 

Proof: Let S = {X1,.. X }  and T = {Y~, Y2," Ym} be bases of a finite 
dimensional vector space V. Since each one is a set of maximum number of linearly 
independent vectors, after vectors the set S~ - {Y~, X,,.. Xn} is linearly dependent. 
By theorem 3.5 some X~ is a linear combination of the vectors which precede it 
and there exists a subset S' of S 

S'I -- {YI,  Xl  "" Xi-l,  Xi+l, "" Xn} 

which contains Y~ as the first vector and is a basis of V. 

Consider now the set 

S2 = {Y2' S'l }" 

and again we note that S 2 is linearly dependent and some vector is a linear 
combination of the preceding vectors. This vector cannot be any of the Y's, since 
Y's are independent. Hence, there exists a subset S' 2 of S 2 containing Y2 and Y, as 
the first two vectors and form a basis of V. The set S 3 = {Y3, S'2} is then linearly 
dependent and we apply the same argument. Continuing in this way, we see that all 
the X's will not be replaced before the Y's are exhausted, since otherwise the 
remaining Y's would have to be linear combinations of the ones that have already 
replaced the X's, which contradicts that Y's are linearly independent. 

Hence, m _< n. 

Interchanging the roles of S and T in the replacement process, we obtain 
n < m .  

Hence, m = n. 

Dimension 
The dimension of a finite-dimensional vector space V is the number of 

elements (vectors) in a basis of V. 

The trivial space of empty vectors is said to have dimension zero and R n is an 
n-dimensional vector space. 

Theorem 3.11. Every set of (n + l) vectors in an n-dimensional vector space 
V is linearly dependent. 

Proof: Follows from corollary 3.3.1. 

Theorem 3.12. Any linearly independent set of vectors in an n-dimensional 
vector space V can be extended to a basis. 

Proof: Let {X~, X2,.. Xm} be a set of linearly independent vectors, which is 
not a basis of V. Hence, m < n and there exists a vector Xm+ ~ such that Xm+ ~ ~ [X~, 
X2,.. Xm] and by theorem 3.4, the set {X], X2,.. X m, Xm+ ~ } is a linearly independent 
set. If m+l < n, we can repeat the argument. The process is continued until we 
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obtain a set of n linearly independent vectors, which then is a basis of V. 

Theorem 3.13. A set of n vectors in an n-dimensional vector space V is a 
basis of V if and only if it is linearly independent. 

Proof: Let S - {X~, X2,.. Xn} be a set of linearly independent vectors of V. 
If this set is not a basis, it can be extended to a basis by theorem 3.12. But a 
basis of V contains only n vectors and hence the set is a basis. 

The only if statement follows from the definition of a basis. 

3.6. Inner Product Spaces 
So far we have considered vector .spaces with reference to the concept of 

linearity but ignored the usual concepts of geometric measurement such as length, 
distance and angle. To generalize these concepts we are to introduce a metric in 
the vector space. By observing, these measurements in R 2, it can be seen that a 
distance function is a suitable metric to be introduced. This can be conveniently 
done by means of the inner product of a pair of vectors in the vector space. 

An inner product in a real (complex) vector space is a real (complex) 
numerically valued function of the ordered pair of vectors X and Y defined by (X, 

y )  = ~ x~ y=, where y~ is the complex conjugate of y~, such that 
i 

(X, Y) = (Y, X) (3.7) 

(ct,X, + o~2X 2, Y) = o~, (X,, Y) + ot 2 (X 2, Y) (3.8) 

(X, X) >_ 0, and (X, X) = 0, if and only if X = 0. (3.9) 

An inner product space is a vector space with an inner product. 

The properties (3.7-3.9) imply that in a complex vector space, an inner 
product is Hermitian symmetric, conjugate bilinear and positive definite. In the 
case of a real vector space, an inner product is symmetric, bilinear and positive 
definite. Moreover, in either case, real or complex, I]X]I satisfies the homogeneity 

property I[~Xl[ = I~1. IlXll. 
A real inner product space is called a Euclidean space and its complex analogue 

is called a unitary space. In other words, a real vector space in which a real 
inner product is defined is called a Euclidean space and a complex vector space 
in which a complex inner product is defined is called a unitary space. 

R ", the set of all real n-vectors is an example of n-dimensional Euclidean space. 

Norm or Length 
In an inner product space, the real nonnegative number 

(XX) ~= IlXll 

is called the norm or length of the vector x. 

It has the following properties; 

(a) II Xll = I l.llXll 
(b) IlXll > 0 and IlXll = o, if and only if X = O. 

(3.10) 
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(c) i lx + Yll < IIXLI + [IYII. 
A vector space on which the norm IlXll is defined is called a normed vector 

space. 

Orthogonality, Distance and Angle 
Two vectors X and Y in an inner product space are said to be orthogonal if 

(X, Y) = 0. It is obvious that the vector 0 is orthogonal to every vector. 

If X is a nonzero vector in an inner product space then X/[IX[I is a vector of 
unit length and is called a normal vector. 

A set of mutually orthogonal vectors, each of which is normal is called an 
orthonormal set, that is for X, Y in the set 

(X, Y) = O, if X ;~ Y (3.11) 

(X, Y ) =  1, if X = Y. 

Note that an orthonormal set is linearly independent. 

Theorem 3.14 (Bessel Inequality) 
Let {Yt, Y2,'" Y.} be a finite orthonormal set in an inner product space S. If X 

is any vector in S, then 

~ l ( x ,  Y,)l 2 _< IlXll :. 
i=l  

Further, the vector X '=  X -  ~ ~"__~ (X, Y~) Y~ is orthogonal to each Y.. 
J 

N o w ,  

Proof: 

x ,,= = ( x -  Y,,Y,, / ,=, ,:, 

- ( x ,x ) -  ~ (x, Y, )(x, v, ) - ~  (x, Y, )(x, Y, ) 
i=l j=l 

n 

+X Z (x, ~,)(x, Y,)(Y+, Y+) 
i=~ j=l 

n n 

=ll x it- X w(x, ~,)l ~ - ~  i (x, ~,) I: +X I (x, Y,)l 
i=! i=i i=l  

n 

=11 x ii ~ Zl (x, v,)l ~ 
i=l  

(x,,Y,) = ( x -  ~ (x,Y,)Y,, Yj) ,=, 

= (x, Yj)- ~ (x, Y,)(Y,, vj) 
i=l 

= ( x ,  Y ) - ( x ,  Y )  = o. 
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Theorem 3.15. (Schwarz Inequality) 

If X and Y are vectors in an inner product space, then 

I(X, Y)I _< IlXll. IIYII. 
Proof: If Y = 0, the result is trivially true since then both sides vanish. Let us 

therefore assume that Y r 0. Then, the set consisting of the vector Y/IIYII is 
orthonormal and hence by Bessel's inequality (theorem 3.14) we have 

Y < II x II'- 
X' l lYii  

which reduces to I(X, Y)I _< IlXll. IIYII. 

Distance 
The distance between two vectors X and Y in an inner product space is defined 

by 

d (X, Y) = IIX - YI I -  (X - Y, X - Y)'~ 

which satisfies the following properties: 
(a) d (X, Y ) =  d (V, X). 
(b) d (X, Y) > 0 ; d (X, Y) - 0 if and only i fX - Y (3.12) 
(c) d (X, Y) < d (X, Z) + d (Z, Y). 

d (0, X) is then the distance of X from the origin and is called the length of X, 
which is equal to IlXll as stated in (3.10). 

A nonempty set in which a distance function d is defined is said to be a metric 
space. The distance function d is called a metric. Thus, a normed vector space 
becomes a metric space, if the metric defined on it is the distance function d. 

The properties (a) and (b) in (3.12) are obviously true and the triangular 
inequality (c) can be easily proved with the help of Schwarz's inequality. 

Let U, V be two vectors in an inner product space, then 

II u + v II ~ = ( u  + v, u + v )  
= (u ,  u )  + (u ,  v )  + (v, u )  + (v, v ) .  

= II u II = § (u ,  v )  § ( u , v )  § II v II ~ 

= II u II ~ + 2R~ (U, V) + II V II = 

< II U II ~ + 21(O,  V)l + II VII ~ 

_< II u II ~ + 2 II u I1"11 v II + II v II ~, by Schwarz's inequality 

- (11 u II + II v II) =. 
Setting U = X - Z and V = Z - Y, we obtain 

IIX- YII _< IIX- Zll + IIZ- YII 

that is, d (X, Y) _< d (X, Z) + d (Z, Y). 
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Angle 
Schwarz's inequality also enables us to define the angle between two vectors 

in a Euclidean space. We note that in the case of a Euclidean space, the expression 

(X,Y) 

IIXII.IIYII 

is a real number between-1 and +1. Hence, it is the cosine of an angle 0 in the 
range 0 < 0 < n. 

Therefore, the angle 0 between the vectors X, Y in a Euclidean space is defined 
to be an angle in the range 0 < 0 < n such that 

Cos 0 (X,Y) 
~ 

llxlI.IIYII 

Two vectors X and Y are therefore orthogonal if (X, Y) = 0. 
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Matrices and Determinants 

4.1. Matrices 
An m x n matrix is a rectangular array of m n numbers arranged in rn rows 

and n columns and is written as 

I 1 
all al2 "" aln 

A =  a21 a22...a2n =(aij ) 

aml am2 ..-atom 

(4.1) 

The numbers a~j (i = 1, 2..m; j = 1, 2..n) are called the elements of  the matrix. 

The first subscript refers to the row and the second to the column. 

It should be noted that a matrix has no numerical value. It is simply a convenient 
way of  representing arrays of  numbers. 

Special Matrices 
If  m = n, the matrix is said to be a square matrix of  order n. 

If m = 1, the matrix has only one row and if n = 1, it has only one column. 
The matrices with one row or one column are also vectors. Thus the vector a~, 

a i = (all ,  ai2, ... ain) 

is called the ith, row vector of  A 

and the vector a,  

a~j 

aj = a2j. 

amj 

is called the jth column vector of  A. 

An m x n matrix may therefore be considered as made up of  m row vectors a~ 

(i = 1, 2, ...m) or of  n column vectors a (j = 1, 2, ...n). 
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If all the elements of  a matrix are zero, the matrix is called a null or zero 
matrix and is denoted by 0. 

A square matrix, whose elements outside the main diagonal (the diagonal 
running from upper left to lower right) are all zero is called a diagonal matrix. 

A triangular matrix is one whose elements above or below the main diagonal 
are all zero. 

If in a square matrix of order n, all the rows (columns) are the n unit vectors 
% (i - 1, 2..n), it is called an identity matrix (or unit matrix) of  order n and is 
written as 

~ 

I.  = 1 = (8~j) 

0 
(i, j = 1, 2, ... n) 

where 8u is the Kronecker delta defined by 8ij = 1 and 8u = 0 for i ;~ j. 

The principal (main) diagonal elements of  I are all unity and the remaining 
elements are zero. 

The transpose of  a matrix A = (aij)mx. is obtained from A by interchanging the 
rows and columns and is denoted by A T . 

Thus, A T -- (aji)nxm 

A square matrix A is called symmetric if it is equal to its transpose, that is, 
if A = A T. It is a skew symmetric matrix if A = -A T. 

4.2. Relations and Operations 
E q u a l i t y :  Two matrices A and B are equal if the corresponding elements 

are equal. Thus, A - B, if and only if a~j = b~j, for every ij. 

A d d i t i o n :  The sum of two m x n matrices A and B is an m x n matrix C 
whose elements are, 

c~j = a~j + b~j, i = 1, 2 . . m ,  

j =  1, 2..n. 

Moreover, we have 

( A  + B )  T = A T + B T. 

Thus, C = (cjj) = (a~j + b0) = A + B. 

It should be noted that the equality and addition of matrices are defined only 
when the matrices have the same number of rows and the same number of columns. 

It is clear from the definit ion that the matrix addit ion is commuta t ive  and 
associative, i.e. 

A + B = B + A .  

(A + B) + C = A + (B + C). 
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that is, the transpose of the sum of two matrices A, B is equal to the sum of A 
transpose and B transpose. 

Multiplication by a Scalar: The product of a matrix A with a scalar X is the 
matrix 

XA = (~aij) 
Product  of Two Matrices: The product of an m • p matrix A with an p • n 

matrix B is the matrix C, whose elements are given by 

P 

Cij " -  ~ aikbkj" 
k=l  

Thus, A B = C = (c~j), i = 1, 2..m 

j =  1, 2..n 

The product A B is defined only if the number of columns of the premultiplier 
A is equal to the number of rows of the postmultiplier B. If A and B are square 
matrices of the same order, AB and BA are defined but in general AB ~ BA. For 
example, 

let 

then 

A =  and B = 
0 

but 

BA Ol 
Moreover, if AB = 0, it does not imply that either A or B must be zero. It is 

always possible to find nonnull matrices A, B whose product AB is zero. For 

example, 

I ilL  6 0'] : iiil 
Although, matrix multiplication is not in general commutative, it satisfies the 

associative and the distributive law with respect to addition and the homogeneity 
property with respect to scalar multiplication when the appropriate operations are 
defined. 
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(A B) C = A (B C) 

A(B + C) = AB + AC 

A (ka)= ~, (A B) 
Transpose of the Product: It can be easily verified that the transpose of the 

product of two matrices is the product of the transposes in reverse order, that is 
(AB) T = B T A T. 

Orthogonal Matrix: A square matrix A is said to be an orthogonal matrix if 
and only if 

A A T = A T A = I. 

Idempotent Matrix: A matrix A is said to be an idempotent matrix if and 
only if A 2 =A. 

An example other than the null and the unit matrix is 

l 001 _, 

Submatrix: If in an m x n matrix A, all but r rows and s columns are deleted, 
the resulting r x s matrix is called a submatrix of A. 

4.3. Partitioning of Matrices 
A matrix A may be partitioned into submatrices by drawing lines parallel to 

the rows or columns 

Thus, 

A 

a~ a~2 a~3 a~4 [a~5 a~6 

a2~ a22 a24 a24 l a2~ a26 
a3~ a32 a33 a34 [a3s a36 

a4~ a42 a43 a44 la45 a46 

as~ a52 a53 a54 la55 a56 

IAll Al2] 

A21 A22 

where A are the submatrices. |j 
One advantage of partitioning is that it simplifies multiplication of matrices if 

they are partitioned into conformable submatrices. 

Suppose that A and B are two matrices, the number of columns of A being 
equal to the number of rows of B so that the product of AB is defined. Suppose A, 
B are partitioned as 

I All AI2 1 
A = A21 A22 

A31 A32 

B 
B22 1 
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where the number of columns of A~ is equal to the number of rows of B 
the number of columns of A~2 is equal to the number of rows of B2~. 

It can then be easily verified that 

and il 

I 1 
AllBll + Al2B21 AliBi2 + Al2B22 

AB = A21BII +A22B21 A2IBI2 +A22B22 

A31Bll + A32B21 A31Bl2 + A32B22 

Thus, the product of AB may be obtained by applying the multiplication rule 
to the appropriate submatrices of A and B. 

The partitioning of matrices also enables in to write a system of linear equations 

AX = b, in a convenient way. 

If the m x n matrix A is partitioned into n submatrices a~, a2..a ", each a column 
vector with m components, and X is an n-component column vector, the system of 
linear equations may be written as 

X ! 

A x  = = ajxj 
j=l 

n 

=b. 

4.4. Rank of a Matrix 
Let A = (a~j) be an m x n matrix which may be considered to be composed of 

m row vectors a i = (ai~, ai2, .. ai,) or n column vectors aj = (% ..any. 

The maximum number of linearly independent row vectors (column vectors) 
is called the row rank (column rank) of the matrix A. 

Theorem 4.1. The row rank of a matrix A is equal to its column rank. 

Proof: Let r be the row rank of A and S be its column rank and suppose that 

r < s .  

Without any loss of generality, we assume that the rows and the columns are 
so arranged that the first r rows and the first s columns of A are linearly independent. 
The submatrix of A with these r rows and s columns is denoted by 

that 

[ a ~  a~2 ... a~sl 

"~ = " " " ( 4 . 2 )  

Earl a a a~ 

Since r < s, there exists a non zero column vector Y (corollary 3.3.2) such 

~Y = ~ a~jyj = 0, i = 1, 2,..r 
j=l 
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or .~y = 0. 

Also, since a~, a2,..a ~ are a row basis, it follows (theorem 3.6) that 

ak = ~)~ika,, k = 1, 2,..m 
i=l 

for some numbers ~ik" 

(4.3) 

(4.4) 

Hence, ak = s ~ikai (4.5) 
i=l 

and therefore, ak Y = s ~k (aiY) = 0, for all k (4.6) 
i=l 

which can also be written as, 

yjaj =0  (4.7) 
j=l 

This shows that the vectors a,  j _< s are linearly dependent, contradicting 
the assumption that they are linearly independent. 

Hence, we must have r >__ s. 

Starting with the assumption that r > s, we can use the same argument 
interchanging the role of rows and columns and get the reverse inequality r < s. 

Hence, r = s. 

Definition. The rank of a matrix is defined to be the maximum number of 
linearly independent rows (or columns) of the matrix. 

The rank of a matrix A is denoted by r(A). 

A square matrix of order n is called nonsingular (or regular), if its rank is n, 
otherwise, it is called singular. 

4.5. Determinants 

The determinant of  a square matrix A = (a~j) of order n, denoted by IA[ (or det 
A) is the number defined by the sum 

[A [= ~ 6(~)al,~,<l)a2,~r (4.8) 

where ct runs over all permutations of { 1, 2,..n}, and 6(a) is 1 if cx is an even 
permutation and-1  if ot is an odd permutation. 

The determinant is thus a homogeneous polynomial in the a~j; it has n! terms 
and each term includes one and only one element of each row and of each column 
of A. 

The determinant of  A is often denoted by 
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r 1 al~ a~2 ... a~n 

I A t=1 aij I = / a21 922 "'" a 2 n  

U/tnl an2 "'" finn 
(4.9) 

and is called an nth order determinant. 

It can be easily verified that the determinant A may also be defined by keeping 
the second indices in the natural order and carrying out the permutations on the 
first indices in (4.8) 

It should be noted that while a matrix has no numerical value, a determinant 
is a number. 

4.6. Properties of Determinants 
The following are some useful properties of determinants: 
(1) If every element in a row or a column of a matrix A is zero, then the value 

of the determinant is zero. 
(2) An interchange of two columns (or rows) of a determinant IAI, changes 

the sign of the determinant. If immediately follows that 
(3) A determinant having two identical columns (rows) is zero. 
(4) IfA is a matrix of order n and ~, a scalar, then I~.ml - ~,RIAI. 
(5) Imri--Iml. 
(6) The value of a determinant is unchanged by adding to a column (row) a 

linear combination of other columns (rows). 
(7) For square matrices A, B of the same order IA + BI r IAI + IBI, in general. 
(8) If A, B are square matrices of the same order theh IABI--IAI. IBI, that 

is, the determinant of the product is the product of the determinants. 
The multiplication of determinants is defined by the same rule as that of 
multiplication of matrices. 

(9) If the columns (or the rows) of a determinant are linearly dependent, the 
determinant is zero. 

4.7. Minors and Cofactors 
The determinant of the submatrix obtained by deleting the ith row and the jth 

column of a square matrix A is called the minor IMJ of the element a j. 

The cofactor A j of the element a,j is then defined by the determinant 

m j = (-1)~+i IM~jl. (4.10) 

Expansion by Cofactors 
It follows directly from (4.8) that for every i and j 

I A I = ~ a~iA~ j = ~ a~jA~j (4.11) 
j i 

These are the cofactor expansion of IAI by the ith row and the jth column. 
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, , 

Further, 

aijA u = 0 = ~ajiAjk, if i r k (4.12) 
J J 

since these expressions are the row and column expansion of a determinant with 
two identical rows or columns. 

Combining (4.11) and (4.12), we have 

E a i j A k j  =l A l'Sik = ~-'~ajiAj k (4.13) 
J J 

where 8ik is the Kronecker delta. 

Adjoint Matrix: Let A. 0 be the cofactor of a j in a square matrix A of order n 

a n d  ] e t a + i j  = A j i  , 

Then, 

I A, I A21 . . .  An, 1 
A § =(a~) = Al2 A:2 ... An2 

Al. A2. ... Ann 
( 4 . 1 4 )  

is called the adjoint matrix of A. 

In other words, the adjoint matrix A § is the transpose of the matrix whose 
element (i, j) is the cofactor of a in A. |j 

(4.13) can then be written as 

A.A § = A+.A = IA[I n (4.15) 

4.8. Determinants and Rank 
Theorem 4.2. The rank of an m x n matrix A is r if and only if there exists 

at least one square submatrix of A of order r whose determinant is not zero and 
the determinant of every square submatrix of order greater than r is zero. 

Proof: Necessity: Let the matrix A be of rank r. Hence, any (r + k) columns 
of A are linearly dependent and therefore by property 9, the determinant of every 
square submatrix of  order (r +.k) is zero. 

We are now to show that there is at least one submatrix of A of order r whose 
determinant does not vanish. Suppose on the contrary, that all determinants of order 
r vanish. A being of ra'nk r, there are r columns of A which are linearly independent 
and without loss of generality, let us assume that these are the first r columns of A. 
Now, suppose that the determinants of all the submatrices of order r in the first r 
columns and in particular the determinant of the submatrix formed from the first r 
rows vanish. Let A be the cofactor of the element a in that determinant. rj rj 

We then have, 

r 

~a~A~j =0 (4.16) 
j=l  
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The same cofactors are obtained if a submatrix of order r is formed from 
the first r -  1 rows and any other row i, i = r + 1,...m. 

Hence, s a~A~ = 0, i = r + 1,...m (4.17) 
j=l 

Moreover, s a~A~ = 0, i = 1 + 2,...r - 1 (4.18) 
j=l 

since the expression (4.18) is the expansion of the determinant with two identical 
r o w s .  

It follows from (4.16), (4.17) and (4.18), that the first r columns of A are 
linearly dependent which contradicts the hypothesis. 

Sufficiency: Now, suppose that every determinant of order greater than r is 
zero and that there exists at least one determinant of order r which does not vanish. 

Let the matrix A is of rank s. s cannot be greater than r, because from the 
proof  of  the necessity, we note that there would exist at least one nonzero 
determinant of order s. Hence, s _< r. 

s cannot be less than r, because from the definition of rank, s columns of A 
are linearly independent and consequently every determinant of order r would be 
zero (Property 9) Hence, s > r. 

The rank of A therefore, is r. 

Nonsingular Matrices 
A square matrix A is nonsingular if and only if its determinant is not zero 

(IAI ~ 0). It is called singular if IAI-- 0 

4.9. The Inverse Matrix 

4.9. I. Definition and General Properties 
Definition: If A be a square matrix of order n, then a matrix B, if it exists, 

such that 

A B = B  A = I ,  

is called the inverse of A. 

Inverse of A is usually denoted by A -~. 

Theorem 4.2. The inverse of a matrix, if it exists is unique. 

Proof: Suppose that B and C are two matrices, which are inverses of the matrix 

A, so that 

AB = BA = I 

and A C = C A = I  

We then have, CAB = C(AB) = CI = C 

CAB = (CA)B = IB = B 
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Hence, B = C. 

Theo rem 4.3. The inverse of a square matrix A exists if and only if A is 
nonsingular. 

Proof: The condition is necessary. 

Let B be the inverse of  A, so that 

AB = I. 

Then, [A[ [B[ = [I[ = 1 

and hence, [A[ ~ 0 

The condition is sufficient: 

Let tA[ ~ 0. 

It has already been shown in (4.15) that 

A A  + = A * A  = IAI . I ,  

where A § is the adjoint matrix of  A 

Consequently, A*/[A[- A -~. 

If follows that the matrix B = A -t is also a nonsingular matrix of  order n. 

Moreover, inverse of  a singular matrix is not defined since 

lAB]-  ]AI.IBI- 0 X ]B] ~ 1. 

Properties of the Inverse 
(a) If  A is a nonsingular matrix, then, 

(i) (A-~) -~= A 
(ii) (AT) -~= (A-~) T 

(b) If  A and B are nonsingular matrices, then, 
(AB)-l = B-l A-l 

(c) If  A is nonsingular and B is any other matrix, then, 
AB = 0 implies B = 0. 

4.9.2. Inversion by Partitioning 
Let A be a nonsingular matrix of  order n partitioned as follows: 

where a is an r x r submatrix, 13 an r x s submatrix 1, an s x r submatrix and 5 an 

s x s submatrix (r + s = n) such that 5 is nonsingular and 5 -~ is known. 

A -~ exists and let it be partitioned in the same manner as A, so that 

Since AA -~ = I, we have 
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= | , i 

and we obtain the equations 

ct~, + 13p = I 
r 

oqx+ 13v=O 

7~ + 8p = 0 

7IX + 8v = I 

Solving these for ~, IX, p, v we obtain 

ix = -  ;CRIB -1 

p = - 8-' )'~, 

v = 8-'- 8-' 7~. 
4.9.3. Product Form of the Inverse 

Let B = (b~, b 2, .. b )  be an n x n nonsingular matrix for which the inverse B "~ 
is known. Now another matrix B a  is formed by replacing the rth column of  B 
by a vector 'a ' ,  i.e. 

Ba = (b l, b 2, ..b_ l, a, b+ I .. b,) 

and we wish to find the inverse of Ba. 

Since B is nonsingular, the vectors h (j = 1, 2, .. n) are linearly independent 
and thus form a basis. The vector 'a '  can then be expressed as 

a = ~ yjbj = BY (4.19) 
j=l 

A necessary and sufficient condition that Ba will be nonsingular is that y, r 0. 
(See theorem 3.9). Assuming that this is true, we may write 

o r  

where 

1 b :-!~-~yjbj+--a 
Yr i~,, Yr 

b = Ba V 

( Yl, Yr-I 1 Yr+l Yn "~ V r : t - ' ~ ' "  y, 'y, y,. '"'-y'~'J 

(4.20) 

Defining the matrix E = (e~, % .. er_ ,, V ,  e+~, .. e ) ,  where e~ is the ith unit 

vector, we have 

B = B a E  

and hence, Ba -~ = E B -~. (4.21) 

From (4.19), we note that Y = B -~ a, from which Vr can be computed. 
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The preceding result may then be used for a step by step computation of the 
inverse B -~ of a nonsingular matrix 

B = (b,, b2,.. b~ 
We start with the identity matrix 

I = (el, e2,.., e )  

and replace e~ by b~ to form the matrix B~ and then replace r the second column 
of B~ to form the matrix B= and so on until e is replaced by b ,  thus forming the 
matrix F~ = B 

By the previous result, we then have, 

B~ ! = Eli" = E I. 

B2 ! = E 2 B~ -l = E2E l. 

B-' = B~' = E B~'_, = E E_,,.. E2E ,. (4.22) 

where E i = (e~, e2,..ei_l, Vi, ei+l,..en) (4.23) 

Vi r = /  Yil, Yi2,.. el.i-, 1 ,  , Y,.i+,,.., Yi, 1 
(4.24) \ Yii Yii Yii Yii Yii Yii J 

y r = (Yil,.-Yi,) 

and Yi = B~--~ b~. = Ei_ ~, Ei_2...Eib ~, Bo ~ = I (4.25) 

Since B -~ = B~ ~ is expressed as the product of E matrices as in (4.22) it is 

called a product form of the inverse. 



CHAPTER 5 

Linear Transformations and Rank 

5.1. Linear Transformations and Rank 

A linear transformation T is a mapping of a vector space R" into a vector space 
R m, which has the following properties. 

If X~, X 2 e R", then T(X~ + X, )=  T(X~) + T(X2); 

If X e R" and X, a scalar, then T(XX) = XT(X), (5.1) 

Clearly, T(0) = 0, since T(0) = T(0 + 0) = T(0) + T(0) and T(X-Y) = T ( X ) -  
T(Y), since T(X-Y) + T(Y) = T(X-Y+Y) = T(X). 

It follows that the range of T r(J), R(T) = {TX IX e R ~ is a subspace of R m 
and the null space ofT, N(T) = {X[TX = 0} is a subspace of the domain R" and 

dim R(T) + dim N(T) = n. 

The dimension of the range space R(T) is called the rank of the transformation 
and the dimension of the null space N(T) is called the nullity of T. 

Theorem 5.1. Every linear transformation of R" into R ~ may be completely 
determined by an m x n matrix A. 

Proof: Let A be an m x n matrix. Then for any vector X e R", the vector Y = 
AX can be considered to be a vector in R m. Moreover, the rules of matrix operations 
establish that the matrix A preserves the addition and the homogeneity property of 
linear transformations. 

Thus, the m • n matrix A is a linear transformation of R" into R m. 

Conversely, let {e~, e2,.. e}  and {f~, f2"" fro} denote the usual orthonormal basis 
of R" and R m, respectively. A vector X e R" and its transformation Y = T(X) 
may then be expressed as 

X = ~ xjej (5.2) 
j=l 

m 

Y = E y i f i  (5.3) 
i=l 

Since ej e R", has a transformation T(e) e R m, it may be expressed as 
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m 
T(ej) = ~-[aijf i , j = 1, 2,..n. 

i=l 

for some unique alj, azj,., amj 
We then obtain 

Y = T(X)= T ~ ~  xjej = J--, xjT(ej) 

(5.4) 

: x l ai f/ 
= s 1 6 3  

j=l i=l 

m ( s  / 
= ~ a,jxj fi (5.5) 

i=l j=l 

Comparing with (5.3), we have y~ = ~ j%a0x j and considering A = (aij) to be 

the m • n matrix, we have Y = A X. 

The matrix A then represents the given linear transformation. 

Moreover, it is clear that we may replace {e~, e2,.. e}  and {f~, f2,'- fro} by any 
other fixed ordered bases in R n and R m and set up similar one-to-one correspondence 
between linear transformations of R" into R m and m • n matrices. 

Theorem 5.2. The rank of a linear transformation T is equal to the rank of 
the corresponding matrix A. 

Proof: The linear transformation of a vector X ~ R" is the vector T(X) = Y, 
which by theorem 5.1 is simply the matrix product Ax giving the image elements 
of R m. 

Thus, if the m • n matrix A corresponds to T, then 

Y = AX = s x ia j 
j=l 

so that the dimension of the subspace R(T), called the rank of T, is equal to the 
maximum number of independent columns of A, which by definition is the rank of 
the matrix A. 

A linear transformation T is said to be nonsingular if the corresponding matrix 
A is nonsingular. The transformation is said to be orthogonal if A is an orthogonal 
matrix. 

5.2. Product of Linear Transformations 

Let T~ be a linear transformation which maps R n into R k and T 2, a linear 
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transformation which maps R k into R m. Then it is easy to verify that the product 
T 3 = T2T ~ of the two linear transformations T~, T 2 defined by 

T 3 (X)=T~  IT, (X)] 

is also a linear transformation which maps R" into R m. 

It should however, be noted that multiplication of transformations is not 
commutative. 

The corresponding matrix product is easily obtained. If the matrix A (k x n) 
corresponds to T~ and the matrix B(m x k) corresponds to T=, then their product 
C = BA is an m x n matrix and corresponds to the linear transformation T 3. 

If for X ~ Rn, AX = Y, Y E R k 

and BY = Z ,  Z E R m 

Then Z = BY = B(AX) = (BA)X. 

Thus, C = BA maps R" into R m. 

From theorem 5.2, we note that the rank of the transformation C is the rank of 
the product BA of the two matrices. This leads to the following important result. 

Theorem 5.3. If A and B are two matrices then the rank of the product AB 

r (AB) _< min [r (A), r (B)]. 

Proof: The matrices A, B represent linear transforms and since (AB)X = 
A(BX), it follows that R(AB) is contained in R(A), so that 

r (AB) _< r (A). 

Similarly, (BTAT)Y = BT(AXY) 

which implies that r (BrA x) _< r (B x) 

Now since the rank of a matrix is equal to the rank of its transpose 

r (AB) _< min [r (A), r (B)]. 

Theorem 5.4. The rank of the product of a matrix A with a nonsingular matrix 
is equal to the rank of the matrix A. 

Proof: Let a matrix A be post-multiplied by a nonsingular matrix B. 

Then by theorem 5.3. 

r (AB) _< r (A). 

Again, since A = AB.B -~ 

r (A) < r (AB) 

Hence, r (AB) = r (A). 

If A is premultiplied by a nonsingular matrix, the proof can be established in 

exactly the same way. 

5.3. Elementary Transformations 
Certain simple operations which are applied to a system of linear equations to 

find an efficient solution procedure (Gaussian elimination), are also found useful 
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in finding the rank of a matrix. These operations when performed on the rows and 
columns of a matrix reduce it to a matrix of the same rank from which the rank of 
the matrix can be found very easily. 

These operations are called elementary transformation. They are: 
(1) Interchange of two rows (columns). 
(2) Multiplication of a row (column) by a nonzero scalar. 
(3) Addition of one row (column) to another row (column). 

5.3.1. Elementary Matrices 
A matrix obtained from a unit matrix, by subjecting it to any of the elementary 

transformation is called an elementary matrix. 

It can be easily verified that 
(i) every elementary matrix is nonsingular, and 
(ii) each of the elementary row (column) transformation of a matrix may be 

considered as the result of the premultiplication (postmultiplication) with 
the corresponding elementary matrix. 

Examples 
(1) Exchange of the first and second rows. 

Let 
A ~__ I2 il 

Consider the elementary matrix 

I 0 1 01 
E =  1 0 0 

0 0 1 

then EA= I2 !1 
(2) Multiply the second row by 3, 

Considering, 
E Ii ~ ~ 1 3 0 

0 1 
we have 

EA= Ii il 
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(3) Add four times the second row to the third row. 

I 1 0 01 
E = 0 1 0 ,  Taking, have w e  

0 4 1 

EA= Ili ZI 
Analogous elementary transformations can be performed on the columns of a 

matrix by postmultiplying the matrix by the corresponding elementary matrices 
obtained by the desired transformations on the columns of a unit matrix. 

Since elementary matrices are nonsingular, it is obvious that the product of a 
matrix with an elementary matrix does not change the rank of the matrix. 

5.4. Echelon Matrices and Rank 
A matrix having the following structure is called an echelon matrix: 
1. The first k rows are nonzero; the other rows are zero. 
2. In each nonzero row, the first nonzero element starting from the left is 1. 
3. If c~ denotes the column in which the element unity occurs, which is 

the first unity in row i, then 

C I < C 2 < . . . .  < C k. 

Example, 

0 1 a~3 al4 al5 a~6 

i 0 1 0.24 a25 a26 
0 0 0 1 a36 

0 0 0 0 0 

Theorem 5.5. Every matrix A can be reduced to an echelon matrix by a series 
of elementary transformations. 

Proof: The proof presented here is constructive, i.e. it describes how the 
reduction is actually carried out to obtain the echelon matrix. 

The following steps are followed: 
1. Move the columns of A having all elements zero in the beginning of the 

matrix. 
2. If the first column having at least one nonzero element does not occur 

in the first row, exchange the first row with any other row having a 
nonzero element. Let this element be tx. Divide the first row by ct so 
that the element in the first row is now 1 (i.e., a~c~ = 1). 
If a~c~, i = 2,...m, the elements in other rows of this column are nonzero, 
reduce them to zero by subtracting a~c~ times the first row from them. 
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3. We now move to the next column which has at least one nonzero element 
in one of the rows 2, 3,...m and repeat step 2 to obtain a2c 2 = 1. 

4. Continue in this way until an echelon matrix is obtained. 

Theorem 5.6. The rank of an echelon matrix H is the number of nonzero 
rows in H. 

Proof: Let k be the number of rows in H, which have at least one nonzero 
element. Obviously, the rank of the matrix H cannot be greater than k. To establish 
the linear independence of the k nonzero rows h~ (i = 1) we are to show that the 
linear relation between them 

E )Lihi = 0 
i 

implies that all Ei = 0 

Since row h~ has an element unity in column c~ and all other elements in this 
column are zero, E~ = 0, Further we have, 

~l alc2 -F ~2 "-0 ~ ~'2 = 0 

~l alC3 + ~2 a2c3 = 0 :=~ i~'3 "- 0 

and so on 

and thus all 7~ = 0 
I 

Hence, r (H)=  k 

It is thus observed that any matrix A can be reduced to an echelon matrix H 
by premultiplying it by a suitable elementary matrix E 

i.e. EA = H. 

and since E is nonsingular, rank of A is immediately known from the echelon matrix 
H. By theroem 5.6, the rank of H is simply the number of nonzero rows in H. 

It can also be shown that by postmultiplying the echelon matrix H by a suitable 
elementary matrix E l, it can further be reduced to the matrix 

I k 
H E l = 

0 

Since H = EA, we have 

E A E l = [ I  0 

where k is the rank of A. 

:1 

If A is an n x n nonsingular matrix, E A E l = I 

Moreover, since every nonsingular matrix is a product of elementary matrices, 
it can be said that for every matrix A of rank k there exist nonsingular matrices P 
and Q such that 

  o:[I0 001 
The matrix B = PAQ is called equivalent to A. 
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Quadratic Forms and Eigenvalue Problems 

6.1. Quadratic Forms 
A homogeneous expression of the second degree 

Q = ~ %x, xj. (6.1) 
i,j=l 

in the n variables x~, x 2, .. x n, where a.j are real constants is called a quadratic form. 

In matrix notation it can be written as 

Q = X T A X  

where X T = (x 1, x 2 .. XR), and 

I a~ a,2 .. a~n 1 
a2~ a22 .. a2n 

ax l  ax2 .. an. 

Since the coefficient of x~ xj in the above expression is (a~j + a )  for i ;~ j, we 
can define 

% + aji 
bij = bj~ = for all i, j (6.2) 

2 

and the quadratic form Q can then be expressed as 

Q = XTBX, 

where B = [bij ] is a symmetric matrix 

It should be noted that this redefinition of the coefficients does not change the 
value of Q for any X. Hence, without loss of generality, we always assume that 
the matrix A associated with the quadratic form X r AX is symmetric and the 
quadratic form then is a symmetric quadratic form. 

The symmetric matrix A is said to be the matrix of the quadratic form and the 
rank of the quadratic form is defined to be the rank of A 

Example: The matrix of the quadratic form 
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,s ,,['6 :] 
If we now define 

Q = 3x12 + 4xlx 2 + 6x2x 1 + X22 

which is not symmetric. 

6 + 4  
bl2 = b21 = 2 

we note that, Q = XrAX = XrBX, 

where the matrix B = (b0) is symmetric. 

6.2. Definite Quadratic Forms 

- 5 ,  bll = 3 ,  b22 = 1. 

A quadratic form XTAX is said to be positive definite if XTAX > 0 for every 
X except X = 0. It is said to be positive semidefinite if XTAX > 0 for every X and 
there exists atleast one X ~ 0, for which XTAX = 0. 

Negative definite and negative semidefinite quadratic forms are defined by 
reversing the inequality signs in the above definitions. 

A quadratic form XTAX is said to be indefinite if it is positive for some vectors 

X and negative for others. 

A symmetric matrix A is said to be positive definite, positive semidefinite, 
negative definite, etc., according as the quadratic form associated with it is so. 

Examples. 
(1) The quadratic form Q = 3x~ 2 + 2x22 + x32 is positive definite as it is positive 

for every X = [x~, x 2, x3] T except when x~ = x 2 = x 3 = 0. 
(2) Q = (x~ - x2) 2 + 2x32 is positive semidefinite as it is always nonnegative 

and is zero if x~ = x 2, x 3 = 0. 
(3) Q = -  x~ 2 - 3x22 is negative definite and 
(4) Q = x~ 2 -  3x22 is indefinite since it is positive when x~ = 2, x 2 = 1 and 

negative when x~ = 1, x 2 = 1. 

Theorem 6.1. If A is a positive semidefinite matrix, then XTAX = 0 implies 

that AX = 0. 

Proof:  For any Y and arbitrary ~,, we have 

O s  ( Y + ~ X )  T A ( Y + ~ X )  

= y T A y  + 2 LyTAX + ~2XTAX 

= y T A y  + 2kYTAX, " XTAX = 0. (6.3) 

Now, the above expression holds only if the coefficient of  ~ vanishes, i.e. 
yTAX = 0 and since (6.3) must be true for every Y, it follows that AX = 0. 

Theorem 6.2. Let A be a symmetric matrix of order n and B be any n x m 

(n > m) matrix. 
(i) If the matrix A is positive semidefinite, then the symmetric matrix BTAB 

is also positive semidefinite. 
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(ii) I fA is positive definite and r(B) = m, then BTAB is also positive definite. 

Proof: (i) Let Y - BX, then the quadratic form corresponding to the symmetric 
matrix BTAB, XTBTABX = y ' rAy  > 0 for all Y and hence for all X and it assumes 
the value zero for nonzero values of X satisfying BX = 0, (i.e. Y - 0) 

(ii) Since r(B) = m, the m columns of B are linearly independent. Then X r 0 
implies Y r 0 and since A is positive definite, yTAy > 0 for all Y ~ 0, Hence, 
XrBTABX > 0 for all X ~ 0. 

Corol lary  6.1. The symmetric matrix BTB, called the gram matrix of B, is 
positive definite or positive semidefinite according as the rank of B is equal to m 
or less than m. 

Proof: This follows from theorem 6.2 with A replaced by the unit matrix I. 

Theorem 6.3. I fA is an n x n symmetric matrix of rank r, then there exists a 
nonsingular matrix P such that 

II r 001 
where D is a nonsingular r-rowed diagonal matrix. 

Proof: The result is obtained by premultiplying and postmultiplying A with 
pairs of elementary matrices each of which is the transpose of the other. Thus, 
there exists a nonsingular matrix P, the product of the postmultiplied elementary 
matrices such that PTAP is a diagonal matrix with r nonzero diagonal elements. 

Corol lary 6.2. Let Q = X'rAX be a quadratic form where A is n x n symmetric 
matrix of rank r. Then there exists a nonsingular linear transformation X - PY 
such that 

XTAX = yrptAp Y = y r D y  

where D is a diagonal matrix, so that 

y r D y  = d~yl2 + d2Y2 2 + .. + drYr 2 
where d, 1 < j < r are nonzero numbers. 

Theorem 6.4. Let A be an n x n symmetric matrix of rank r. Then there exists 
a nonsingular matrix P such that pTAp is a diagonal matrix with 1 in the first s 
diagonal posi t ions,-  1 in the next r -  s diagonal positions and zeros elsewhere. 

Proof: By theorem 6.3, there exists a nonsingular matrix L such that LTAL is 
a diagonal matrix with r nonzero diagonal elements. 

Let LTAL - diag [b~, b 2, ..b, 0, 0 .... 0] 

and suppose that s of the nonzero elements are positive so that (r-  s) elements are 

negative. Without loss of generality, let us assume that bl, b2, ..b s are positive and 

bs+l, bs+2, ..b r are negative. 

Now, there exist numbers 13~, 132,..13 ~ such that 

~ = b,,~22 = b 2 .... ~ = bs;~+, =-b~+,,~+2 =-b~+2...~ =-b, 
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L e t M  = diag EI3~ -~ .... 13~-~,1,1,...1]. 

Taking P - LM, we obtain 

p T A p -  MTLTALM 

= diag [13~ -I .... I3~-l,1,...1].diag [bl,bE,...br,0,0..0 ]. diag [13~ -I .... I3~-l,1,...1] 

- diag [l,1, ...l -1,  .. -1, 0, 0..0]. 

so that 1 and-1  appear s and ( r -  s) times, respectively. 

Coro l l a ry  6.3. If Q = XTAX is a quadratic form of rank r then there exists a 
nonsingular linear transformation X = PY, which transforms XTAX to 

yTpTAp Y = yl 2 + y2 2 + ... + y3 2 -  Ys+l 2 -  . . . -  yr 2 

The above expression is called the cannonical form of the quadratic form XTAX. 

The number of  positive terms s and the difference s - (r - s) = 2s - r between 
the number of  positive and negative terms are respectively called the index and 
signature of  the quadratic form. 

Coro l la ry  6.4: Let Q = XTAX be a quadratic form in n variables of  rank r 
and index s. Then the quadratic form Q is 

(a) positive definite, if r = n, s = n 
(b) negative definite, if r = n, s = 0 
(c) positive semidefinite, if r < n, s - r 
(d) negative semidefinite, if r < n, s = 0. 

In every other case the quadratic form is indefinite. 

Theorem 6.5. A set of  necessary and sufficient conditions for the quadratic 
form Q - XTAX to be positive definite is 

lall al2 la, l " a,o >0. al, >0, >0, ... 
la21 a22 anl ... ann 

In other words, a quadratic form XTAX is positive definite if and only if the 
leading prin.cipal minors of A are all positive. 

6.3. Characteristic Vectors and Characteristic Values 
A nonzero vector X such that 

AX = ~,X, for some scalar ;L (6.4) 

where A = (a~j) is a given matrix of order n is called a characteristic vector of A. 
The scalar ;L is called the characteristic value of A associated with the characteristic 

vector X. 

Now, a nonzero solution X of (6.4) exists if and only if ( A -  M) is singular, 
that is, if and only if 

I A -  ;~II = 0. (6.5) 
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Obviously, the determinant is a polynomial of degree n in Z, and can be written 
as 

f(~,) = I A -  gI[ = (-1)"~, n + b~, "-~ + ..... + bn_~, + b n (6.6) 

where the b 's  are sums of products of a~j. fig) is called the characteristic 
polynomial of the matrix A. 

The equation (6.5) is called the characteristic equation and its r o o t s  ~i (i - 

1,2, .. n) are called the characteristic values, eigenvalues or latent roots of the matrix 
A. The characteristic vectors are also called eigenvectors of A. 

In general, the eigenvalues of a matrix A need not be real numbers~they 
may be complex. It can however be shown that if the matrix A is symmetric, 
the eigenvalues are real. 

Theorem 6.6. If A is a real symmetric matrix, then all eigenvalues and 
eigenvectors of A are real. 

Proof: If possible, let the eigenvalue ~, of the real symmetric matrix be complex. 
Then all the components of an eigenvector corresponding to ~ cannot be real and 
we have 

A X = XX (6.7) 

A X = ~ X (6.8) 

where ' - '  denotes the complex conjugate. 

Multiplying (6.7) by ~T and (6.8) by X T, we have 

~rAX = )~X~X (6.9) 

XTAX _~ ~ x T x  (6 .10)  

Since ~ r  x = xT~ and XTAX = X T A X ,  subtracting (6.10) from (6.9) we get 

(~k, - ' ~ ) x T R  -- 0 (6.11) 

Further, since XT~, is real and positive (... X ,  0) we have Z, = ~ and hence 

is real. 

Now, since the coefficients of the homogeneous linear equations ( A -  
XI)X = 0 are real, the components of the vector X are also real. 

It can also be noted that the eigenvectors ~orresponding to different eigen 
values are orthogonal. 

Theorem 6.7. (Cayley Hamilton theorem) 

Every square matrix satisfies its characteristic equation, that is, if A is a matrix 
with characteristic equation 

(--1)n~n-k b l~n-l + . . . .  + bn_l~ + b = 0 

t h e n  ( -1 )hA n + b l A  n-1 + . . . .  + b.~A + bnI = 0 

Proof: Consider the adjoint matrix of (A - M). Then C = adj (A - M) is a 
matrix, whose elements are polynomials in Z, of degree ( n -  1) 
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Thus, C = C o + C~Z + + C ~n-2 _1_ Cn l~n-l 
"" n-2 - " 

where the Cr are matrices whose elements are polynomials in the a~j. 

Now, by (4.15), 

( A -  XI)C = I A -  ~II • I. 

= ((-1)~, n + b ,~n-I  + .. + bn)I.  

or ( A -  XI) (C O + C~, + .. + Cn_2~n-2 + Cn_l~n-l) 

- ~n-~ + .. + bn)I" - ( ( - 1 ) n ~ n  + b,  

Equating the coefficients of X, we have. 

- -  C n _  1 " -  ( - -  1)nI 

- -  C n _  2 + ACn_ 1 - bl I 
- - C n _  3 + ACn_  2 = b2I 

- C  o + A C ~  = b _ ~ I  

AC o = bnI 

Premultiplying the above successively with 

A n, A n'l, A n'2 .... A, I 

and adding we obtain 

( -1 )nA n + b lAn-I  + b2An-2 ... + bn_lA + b n = 0. 

Theorem 6.8. If Q = XTAX is a quadratic form of rank r < n, then there exists 
an orthogonal transformation 

X = P Y  

which transforms Q to the form 

~lYl 2 +  ~2Y2 2 +  .. + ~rYr 2 

where  ~i'S are the r nonzero eigenvalues of A. 

Proof: For any real symmetric matrix A with rank r, there exists an orthogonal 
matrix P whose columns are an orthonormal set of eigenvectors of A, such that 

pTAp = p-i AP = D 

Where D is a diagonal matrix whose diagonal elements are the eigenvalues of 
A, that is, 

D = diag (~'l, ~'2 " k~, 0, 0 .. 0). 

Let X = PY, then 

Q = XTAX = yTpTAp X = yTDy 

= ~,~y2 + ~,2Y2 2 + .. + Xry2 

Corollary 6.5. The quadratic form Q = XTAX is 
(a) Positive (negative) definite if and only if all eigenvalues of A are positive 

(negative). 
(b) Positive (negative) semidefinite if and only if all eigenvalues of A are 

nonnegative (nonpositive) and at least one of the eigenvalues is zero. 
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(c) Indefinite if and only if the matrix A has both positive and negative 
eigenvalues. 

Example. Consider the quadratic form 

Q = 7Xl 2 + 10x22 + 7x32- 4x~x 2 + 2x lx  3 -4X2X 3 

The symmetric matrix A is then 

I 7 -2 1 1 
A = -2 10 -2 

1 - 2  7 

The eigenvalues are the roots of the characteristic equation 

Z,-7 2 -1 

IA-Z,I= ~,-10 2 

2 X-7  

=0 

or ~3.24Z2 + 180~, - 432 = 0 

or (~,- 6) 2 (~, - 12) = 0 

The eigenvalues are then 6, 6, 12 which are all positive. Therefore, the 
quadratic form is positive definite. 

Theorem 6.9. Let Q~ = XrAX and Q2 = XrBX be two real quadratic forms in 
n variables and let Q2 be positive definite. Then there exists a real nonsingular 
transformation X = PY which transforms the quadratic forms to 

~,ly12 + .. + ~,ny2 

and y2 +..  §  

respectively, where ;~, ~'2, " ~. are the roots of 

IA-  ~,BI = 0 
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Systems of Linear Equations and 
Linear Inequalities 

7.1. Linear Equations 
Consider a system of m linear equations in n unknowns x~, X2,. . .X n 

all X 1 -k- a12 X 2 q- . . .  + aln X n - -  b~ 

a2~ x~ + aE: x 2 + ... + azn x n = b E (7.1) 

am l X 1 "1- am2 X 2 q- . . .  q-  amn x n brn 

where aij, b~ (i = 1,2..m, j = 1,2..n) are known constants. 

The system of  equations (7.1) can also be written in matrix notation as 

AX = b (7.2) 

where the m x n matrix A = (a~j) is called the coefficient matrix or the matrix of 

the system and the matrix A b = (A, b) is called the augmented matrix of  the system. 
Necessarily, r (A) < r (Ab). 

Any vector X which satisfies (7.2) is called a solution to the system. The system 
is called consistent  if  it has at least one solution, otherwise it is said to be 
inconsistent. If b = 0, the system of equations is said to be homogeneous and if b 
0, it is called nonhomogeneous. A homogeneous system of equations always has a 
solution X = 0, which is called a trivial solution. 

Two system of  linear equations are said to be equivalent if they have the same 
set of  solutions. 

7.2. Existence Theorems for Systems of Linear Equations 
T h e o r e m  7.1. Any system of m homogenous linear equations in n unknowns 

always has a nonzero solution if m < n. 

P r o o f :  Let AX = 0 be the system of linear equation where A is an m x n matrix 
and X is an n component vector, m < n. 

Let the m-vector aj be the jth column vector of a, so that a - [a~j, a2j, ... amj] T, 
for j - 1,2,..n. a are then a set of  n vectors in m dimensional space where n > m. 

J 
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Hence by corollary 3.3.1, they are dependent and therefore there exist xj's not all 
zero such that 

~ a j x j  =0. 
j=l 

Theorem 7.2. If A is an m x n matrix of rank r, the set S of all solutions of 
the homogeneous system AX = 0 is an ( n -  r) dimensional subspace of R n. 

Proof: Since S, the set of all solutions of the system AX = 0, is closed under 
addition and scalar multiplication, S is a subspace of R n. We shall now show that 
the dimension of this subspace is ( n -  r). 

Since A is of  rank r, there exist r linearly independent column vectors of  A. 
Suppose (reordering if necessary) that these are the first r column vectors a~, a 2, ... 
a r so that for j > r, we have 

r 

aj = ~ ajka k, j = r + 1,...n (7.3) 
k--'l 

Let us define 

- - T  Xj = ( -  %~, --r ... - %r' 0, 0, ... 0, 1, 0, ...0), j = r + 1, ..n. (7.4) 

where the component 1 is the j th component of X j 

It follows from (7.3) that each X j, (j = r + 1,...n) is a solution of AX = 0. 

Moreover, it follows that Xj are linearly independent. 

Xj .  

It now remains to show that every vector in S is a linear combination of  the 

Let X = (x)  be an arbitrary solution of AX = 0. 

X ,  Then = X -  ~ xjXj (7.5) 
j=r+l 

is also a solution and we note from (7.4) that 

x* = 0, for j = r + 1 ...n. (7.6) j ~ 

Hence, '~" ajx; =0 
j=l 

and since a,  j = 1,2...r are linearly independent, 

x ~ = 0, for j = 1 2..r (7.7) 
j 
4t 

Thus, xj = 0, for j = 1,2..n (7.8) 

and from (7.5), we then have 
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x = ~ xjS:j 
j=r+l 

as was to be shown. 

Theorem 7.3. If r (A) = m, the system of m equations in n unknowns AX = b 
(which implies m < n) always has 

(i) a unique solution if m = n 
(ii) an infinite number of solutions if m < n. 

Proof: (i). If r(A) = m = n, the n column vectors a~, a2,..a" being linearly 
independent form a basis of R". Hence, any vector b can be uniquely expressed 
as a linear combination of the basis vectors, that is, 

a I X 1 + a 2 X 2 + . . +  a x = b (7.9) 

X = (x~, Xz,..x )T is therefore the unique solution of the system. 

In fact, when r(A) = m = n, the matrix a is nonsingular and A -~ exists. A 
unique solution of the system AX = b can then be obtained by premultiplying 
both sides of the system by A -1 so that 

X = A -~ b. (7.10) 

We thus have an explicit solution of the system of equations through the use 
of the inverse of the coefficient matrix. IfA -1 is not known, the well known Cramer's 
rule may be applied to obtain the solution. 

(ii) If m < n, we can assign arbitrary values to the unknowns associated with 
the (n-m) vectors of  A not forming the basis and the values of  the remaining 
unknowns can be obtained uniquely as in case (i). Since the (n-m) unknowns are 
assigned arbitrary values, the system has infinitely many solutions. 

Theorem 7.4. In a system of m linear equations in n unknowns AX - b, if 
(i) r(A) = r(Ab) = n, the system has a unique solution, 
(ii) r(A) = r(Ab) < n ,  the system has infinite number of solutions, 
(iii) r(A) < r(Ab), the system has no solution. 

Proof: If r ( A b )  = r < m, r rows of A b a r e  linearly independent. Let us assume 
that these are the first r rows. Every row of A b c a n  then be expressed as a linear 
combination of these r linearly independent rows of A b. The (m-r) last equations 
can therefore be dropped from the system without any effect on the solutions and 
hence they are redundant. 

The system is then reduced to an equivalent system 

~ = ~  (7.11) 

where ~ is a r x n matrix and r (~ ,  b ) -- r 

Moreover, r(A) = r( ~, ) 

If r( ~, ) = r, the theorem 7.3 can be applied to the system (7.11) to prove cases 

(i) and (ii). 
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Case (iii) 

If r(A) = r( ~, ) < r = r(~., ~ )then every set of r linearly independent columns 

of (~ , ,~ )  must contain the column ~. Hence, ~ is linearly independent of the 

columns of ~,. 

Thus, there are no x such that J 

~ x j a j  =b  
j=l 

Hence the system AX = b has no solution. 

Theorem 7.5. A necessary and sufficient condition for a system of m 

homogeneous linear equations in n unknowns (m _< n) AX = 0 to have a nonzero 
solution is that r (A) < n. 

Proof: If r (A) - n, A is nonsingular and 

X = A - 1 0 = 0 .  

Thus there is a unique solution and it is trivial. Now let r(A) < n. Since b = 0, 
r(A) = r(Ab) < n and the theorem then follows from case (ii) of theorem 7.4. 

Theorem 7.6. If X o is a solution of the nonhomogeneous system of equations 

AX = b, then for all solutions X of the homogeneous system AX = 0, 

X o + X (7.12) 

is a solution of  AX = b and all solutions of the nonhomogeneous system can be 

expressed in the form (7.12) 

Proof: Let X 0 be a solution of the nonhomogeneous system AX = b and X be 
a solution of  the homogeneous system AX = 0. We then have 

A (X o + X )  = AX o + A X  = b  + 0 = b. 

which shows that X o + X is a solution of AX = b. 

Now let Y be an arbitrary solution of AX = b, so that we have 

A ( Y -  Xo) = A Y -  AX 0 = b - b = 0 

which implies that U = Y -  X 0 is a solution of the homogeneous system and we 

have 

Y = X o + U .  

7.3. Basle Solutions and Degeneracy 
Consider a system of m linear equations in n > m unknowns AX = b and 

suppose that r(A) = r (Ab) = r < n. We have noted earlier that if r < m, (m-r) 
equations of  the system are redundant and can therefore be ignored. Without loss 

of generality therefore, we assume that r(A) = r (Ab) = m. 

Let B be a submatrix of A formed from m linearly independent columns of A. 

These columns then constitute a basis of the set of column vectors of A and the 
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submatrix B is often called a basis matrix of A. 

The system of equations can then be written as 

AX = B X B + NX N = b (7.13) 

where B is an m x m nonsingular matrix, N is an m x (n-m) matrix and X T = 

[ X~, X~ ], X B, X N being the vectors of variables associated with the columns of 

B and N, respectively. 

All the solutions of the linear system (7.13) can then be obtained by assigning 

arbitrary values to X N. The particular solution by setting X N -- 0, is given by 

X B = B -1 b, X N = 0 (7.14) 

and X T = [(X B = B-~b) T, X~ = 0] is called the basic solution associated with B. 

The componems of X B are called the basic variables and the remaining (n-m) 

components of X are known as nonbasic variables 

Since there are atmost (~)  sets of m linearly independent vectors from the n 

column vectors of A, 

(n): n 
m!(n -m) !  (7.15) 

is the maximum number of basic solutions. 

Degeneracy:  A basic solution to AX = b is called degenerate if one or more 
of the basic variables have a zero value. If all basic variables have a nonzero value, 

the solution is called nondegenerate. 

Theo rem 7.7. A necessary and sufficient condition for the existence and 
nondegeneracy of all possible basic solutions of the system of m equations in n 
unknowns AX = b, where r (A) = m is that every set of m columns from the 
augmented matrix A n = (A, b) is linearly independent. 

Proof: (Necessity). Let us suppose that all (~)  basic solutions exist and none 

is degenerate. In that case, every set of  rn columns from A must be linearly 
independent and for any set of m columns say, a, (j = 1,2, .. m) of A, we have 

m 

~-~ ajxj = b 
j = l  

and x ;~ 0, for j = 1,2,..m. (7.16) 
J 

Since none of x = 0, any column a, (j = 1,2 . m) can be replaced by b and j ~ �9 

the new set of  vectors also form a basis (see theorem 3.9). 

Hence, b and any ( m - l )  columns from A are linearly independent. 

(Sufficiency): Let us now suppose that any set of rn columns from A b are 
linearly independent. This implies that all basic solutions exist. Then a~, a 2, . .  a m 

are linearly independent and b can be expressed as a linear combination of a~, a2,..a m, 
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that is, 

m 

~7~ ajxj =b  (7.17) 
j=l 

Now by assumptions, the vectors 

a l, a 2, .. a m (7.18) 

and also b, a 2, .. a m (7.19) 

are linearly independent. 

This means that if a~ in (7.18) is replaced by b, the set (7.19) also forms a 
basis and therefore the coefficient x~ of a~ in (7.17) cannot be zero. Similarly, 
since a~, b, a 3, ..a m are linearly independent, the coefficient x 2 of a 2 cannot be 
zero. Thus, b can replace any of the m columns of every basis matrix from A 
and none of the xj can be zero for any basic solution. Hence all basic solutions 
exist and are nondegenerate. 

7.4. Theorems of the Alternative 

We have been considering the conditions which ensure the existence of a 
solution of a system of linear equations. It is sometimes however, useful to know 
the conditions under which the systems of equations or inequalities do not have a 
solution. The following theorems give positive criteria for determining when a 
system of linear equations or inequalities has no solution. 

Theorem 7.8. (Gale [ 183]) 

Let A be an m x n matrix and b be an m vector. Then exactly one of the 
following two systems has a solution: 

System 1. AX = b, for some X e R" 

System 2. ArY = 0 

baY = or, for some Y e R m 

where ot is any nonzero number. 

Proof:  Suppose that System 1 has a solution, that is, there is an X e R" 
such that AX = b. Then for every Y, X r AY = baY 

If Y is a solution of System 2, then the 1.h.s. of the above equation is zero 
whereas the r.h.s, is equal to o t r  0. Hence system 2 cannot have a solution. 

Now, suppose that System 1 has no solution. Let r be the rank of A and without 
loss of generality, let us assume that the first r columns a~, a2,...a r of A are linearly 
independent. Then these vectors together with b are linearly independent otherwise 
b would be a linear combination of the a ' s  giving a solution of System 1. 

It then follows that there exists a vector Y such that (see theorem 7.3) 

a i r y = 0 ,  j = 1, 2,..r 

b W  = ot 
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for every cx. 

Moreover since A is of rank r, we have 

a k = ~ ~,jaj, k = r + 1,...n. 
j=l 

and then a~Y = ~ ~.ja]rY = 0, k = r + 1,...n. 
j=l 

Hence, ajT y = 0, for all j - 1, 2,...n. 

Thus, Aa'Y = 0, and bTy = ot 

which shows that System 2 has a solution. 

Theorem 7.9. (Farkas theorem [ 155]). 

Let A be an m x n matrix and b be an m vector. Then exactly one of the 
following two systems has a solution. 

System 1" AX = b, X >_ 0, X ~ R" 

System 2" ATy > 0, bvy < 0, Y ~ R m 

Proof :  [183] It is easy to see that both Systems 1 and 2 cannot hold 
simultaneously for if X and Y are their solutions, we have 

XTAW = bvY from System 1 

and y'rAX > 0 from System 2, since X > 0 

But this contradicts that baY < 0. 

If Ax = b has no solution, then by theorem 7.8 taking ot < 0, we find that there 
exists Y e R m such that ArY = 0. brY = ot < 0, Hence Y is a solution of System 2. 

We then suppose that Ax = b has a solution but no nonnegative solution and 
show by induction on n, the number of columns of A that in that case System 2 
has a solution. 

If n = 1, Ax = b reduces to 

a~x~ = b 

and by hypothesis it has a solution x I < 0. 

Then Y = -  b is a solution of System 2, since 

b v Y = _ b 2 < 0  

bvy 
and al r Y = ~ > 0  

X l 

Let us now assume that the theorem is true when the number of columns of A 
is ( n -  1) and show that it is also true when the number of columns is n. 

Since by hypothesis, the system of equations 
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]•-" ajxj =b, (7.20) 
j=l 

has no nonnegative solution, it follows that the system 

n-I 

~" ajxj =b (7.21) 
j=l 

also has no nonnegative solution since a nonnegative solution of (7.21) with 
x - 0 would satisfy (7.20) 

Hence by the inductive hypothesis, there exists a vector Yl such that 

a jTyl>0 , _  j =  1, 2,...(n - 1) 

bTYl < 0 (7.22) 

T y~ > 0, then Y~ satisfies System 2 and the theorem is proved. If also a, 

r y~ < 0, let us set If a, 

a-j - a n (aTy~)-(anTu fro j = 1, 2,...(n - 1) (7.23) 

b = an (brYl)-(a:Yl)b 

Now, the system of equations 

(7.24) 

n-I 

)--'~ ajxj =b  (7.25) 
j=l 

cannot have a nonnegative solution for if ~j >_ 0, substituting (7.28) and (7.24) 

in (7.25), we get 

E 1 n-lI  , )]n 
[ 7  (aTYI ~j + ~ a j ~ j  =b (7.26, 

an --anrYl "= j=l 

which shows that the system 1 has a nonnegative solution contrary to our 
assumption. 

Then by the inductive hypothesis applied to (7.25), we note that there exists a 

vector c/ such that 

gT~f >_ 0, j = 1, 2,. . .(n- 1) and bT,~, < 0 (7.27) 

Note let 

Y = (a~f)Yl -(anTYl)~f. 

From (7.23) (7.24) and (7.27), we then have 

(7.28) 
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airy = (a.VV) a]rY~ - (a.VY~) airY. 

- [a: 1- 1 
= a~?  > 0 for j = 1, 2,...(n - 1) 

T 
aoY =0  

and bTy =EaT (bTY1)- (aTYI)bT ] Y 

= b Y  <0. 

and thus Y satisfies system 2 and the theorem is proved. 

T h e o r e m  7.10. (Gale [183]). 

Let A be an m x n matrix and b be an m-vector. Then exactly one of the 
following two systems has a solution. 

System 1. AX >_ b, X e R n 

System 2. ATy = 0, bTy = 1, Y > 0, Y e R m 

Proof:  It can be easily verified that both System 1 and System 2 cannot have 
solutions simultaneously. 

Suppose that the system of equations 

ATy = 0, bTy = 1 

has no nonnegative solution, that is, 

has no nonnegative solution. 

Then by theorem 7.9, there exists a vector X e R ~ and a number rl such that 

that is, there exists and X e R ~ and a number rl which satisfy the system 

AX + brl > 0 

n < 0  

which shows that , -X/r l  is a solution of System 1. 

T h e o r e m  7.11. (Gale [183]) Let A be an m x n matrix and b be an m-vector. 
Then exactly one of the following two systems has a solution. 
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System 1. AX < b, X > 0, X ~ R n 

System 2. ATy > 0, bTy < 0, Y > 0, Y ~ R m 

Proof: As above, it is easy to see that both System 1 and System 2 cannot 
have solutions simultaneously. 

Now, suppose that System 1 has no solution and since System 1 is equivalent 
to the system 

1" AX + IZ = b. 

X, Z>_0, X E Rn, Z E R m 

where I is a unit matrix of order m, System l 'has  no solution. 

By theorem 7.9, then, there exists Y ~ R m such that 

ATy > 0 

I Y > 0  

brY < 0. 

Thus there exists Y > 0 which satisfies System 2. 

Theorem 7.12. Let A be an m x n matrix B be an p x n matrix and C be an 
n-vector. Then exactly one of the following two systems has a solution. 

System 1" AX > 0, BX = 0, CrX < 0, X ~ R" 

System 2" ATy + BTZ = C, Y >_ 0, Y ~ R m, Z E R p. 

Proof: Writing Z = Z~ - Z 2, Z~ >_ 0, Z 2 > 0, System 2 of the theorem becomes 

iy 1 [ ,C,B ' , -B ' ]  7., -c,  
;7_, 2 

Y, ZIZ: >_ 0 

which is in the form System 1 of the theorem 7.9 and the result then follows. 

Theorem 7.13. (Gordan's theorem [209]). 

Let A be an m x n matrix. Then exactly one of the following two systems has 
a solution. 

System 1: AX -- 0, X >_ 0, X r 0, X ~ R ~ 

System 2: Aa'Y > 0, Y ~ R ~ 

Proof: Both System 1 and System 2 cannot have solutions simultaneously. For 
if X and Y are their solutions we have 

from System 1, yTAX - 0 

and from System 2, XTATy > 0 

which is a contradiction. 

Now, suppose that system 1 has no solution. This is equivalent to the 
statement that the equations 

AX - 0 
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. . . . . . . .  

eTX = 1 

where e is a vector of ones have no nonnegative solution. 

Then by theorem 7.9 there exists a vector Y and a number rl such that 

[A T el [Y]  > 0, [0 1][Y] < 0 

and thus ATY > 0 and hence System 2 has a solution. 
Theorem 7.14. (Stiemke's theorem [443]) 
Let A be an rn x n matrix. Then exactly one, of the following two systems has 

a solution. 

System 1" AX = 0, X > 0, X ~ R" 

System 2" ArY > 0, Y ~ 0 Y E R m 

Proof: Follows from theorem 7.13. 

Theorem 7.15. (Motzkin's theorem [356]). 

Let A, B and C be m x n, p x n and q x n matrices respectively. Then exactly 
one of the following two systems has a solution. 

System 1. AX > 0, BX > 0, CX = 0, X e R n 

System 2. ATYI + BTY2 + CTY3 = 0 

Y l >--0, Y1 ;e 0, Y2 >- 0, Y1 E R m, Y2 e Rp, Y3 e Rq 

Proof: Le.t System 1 has a solution and if possible let System 2 has also a 
solution. If X and Y~, Y2, Y3 be their solutions then since Y1 >-- 0, Y~ ;e 0, Y2 >- 0, 
we would have from System 1, 

XTATYI > 0, XTBTy 2 > 0, XTCTY3 = 0 

and therefore 

XT(ATy I + BTY2 + CTY3) > 0 

which contradicts the first equality of System 2. Hence if System 1 has a solution, 
System 2 cannot have a solution. 

Now suppose that System 1 has no solution. Then there is no solution of the 
system 

AX > erl 

B X > 0  

CX = 0  

where e is a vector of ones and 11 e R l, rl > 0 

That is, the system 

(B ; e ) ( X )  >0'  (C 0 , ( X ) = 0  ( 0 , - 1 , ( X ) < 0  

has no solution. Hence by theorem 7, 12, there exists a solution of the system 
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A r B r + = 
-e r 0 3(Y'23 (Cr )  Y3 (O1) 

YI>0 ,  Y2>0 

or ArY~ + BTY2 + CTY3 = 0 

--eW = -1 1 
Yl > 0, Y2 > 0 

has a solution. Since erY~ = 1, Y1 > 0, YI r 0. Thus system 2 has a solution. 

Theorem 7.16. (Tucker's theorem [473]). 

Let G, H and K be given matrices of order p x n, q x n and r x n respectively 
with G nonvacuous. Then exactly one of the following two systems has a solution. 

System 1. GX > 0, GX r 0, HX > 0, KX = 0, X ~ R r 

System 2. GW 2 + HrY3 + KrY4 = 0, 

Y2 > 0, Y3 > 0, Y2 ~ RP, Y3 ~ Rq, Y4 ~ R" 

The proof is similar to the proof of theorem 7.15 (Motzkin's theorem) 

We now consider an important property of the linear homogeneous inequlity 
system where the matrix of the system is skew-symmetric. 

Theorem 7.17. the system of inequalities 

KX > 0 (7.29) 

X > 0  

where K is an n x n skew-symmetric matrix (i.e. K r = - K )  has at least one solution 

such that 

K X + X > 0  

Proof: We first show that there always exists a solution ,~ to (7.29) such 

that for K i, the ith row of matrix K, 

Ki ~i ~" XI > 0 (7.30) 

Let us take A = -K, and 

b = -e  i = (0,0,..0,-1,0, .... 0) r 

and apply theorem (7.11). 

Then either 

has a solution. 

or, 

-KX < --e i (7.31) 

X > 0  

-KrZ > 0 

-eri Z < 0 (7.32) 

Z > 0  
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has a solution. 

If  ~ >_ 0 is a solution to (7.31), we have 

~ K , X i < - e  i 

and thus KX' _ 0 

Ki ~i  > 1 > 0 

and if ~ '  _> 0 satisfies (7.32), we have 

- K r X  i _> 0 

-~i<0 

i.e., I ~  i > 0, since K r = - K  (7.34) 

xl >0 

The result holds true for every row of matrix K, if the vector b is taken as the 

vectors - e  l, - e  2, ..., - e  successively. The vector 

i=l 

is then a solution of  (7.29) such that 

K,X + X, _ ~: ,~ + xl > 0, i -  1, 2,..n. 

(7.32) 



C H A P T E R  8 

Convex Sets and Convex Cones 

8.1. Introduction and Preliminary Definitions 
The concept of convexity, which we now introduce is of great importance in 

the study of optimization problems. Before we define convex sets and drive their 
properties, we first give some definitions. 

Line: Let X~, X 2 ~ R ", X~ ~ X 2. The line passing through X~ and X 2 is defined 
to be the set, 

{X IX = ~,X, + (1 - ~,)X 2, ~, ~ R'}. 

Line Segment: The line segment, joining points X~, X 2 e R" is defined to be the 
set 

{ N i X  - 2~X~ + (1 - ~,)X 2, 0 _%< ~, ~ 1 } �9 Closed 

{ N i X  - ~,X~ + (1 - ~)X 2, 0 < ~, < 1 } �9 Open 

Half Line: The set D = {X IX - ~d, ~, >_ 0} where d is a nonzero vector in R ~ is 
called the half-line or ray starting from the origin. 

Hyperplane: The set H = {X[ aTX = or} is said to be a hyperplane in R", where 
a is a nonzero vector in R" and ot is a scalar. It passes through the origin if and 
only if ot - 0. The nonzero vector a is usually referred to as the normal to the 
hyperplane and if the vector a is of unit length, it is called unit normal. Two 
hyperplanes are said to be parallel if they have the same unit normal. 

Half-Spaces: A hyperplane H determines two closed half-spaces 

H~ = {XlaTX<ot} ,  H 2= {X[aTX>ot} 

and two open half-spaces 

H 3 = {X[aTX<ot},  H 4 -  {X[aTX> or}. 

The hyperplane H = {X ]arX = ct}, is called the generating hyperplane of the 

half-spaces. 

8.2. Convex Sets and their Properties 

A set S in R n is said to be convex if the line segment joining any two points in 
the set also belongs to the set. In other words, a set S E R" is convex if for any 
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two points X~, X 2 ~ S and ~, ~ R l, 

X -- ~LX~ + (1 - ;L)X 2 ~ S, for each ~,, 0 _< ~, _< 1 (8.1) 

The express ion ~X~ + (1 - ~)X/, 0 _< ~, _< 1 is referred to as a convex 
combination of X~, X 2. 

Linear subspaces, triangles and spheres are some simple examples of  convex 
sets. In particular the empty set ~, sets with a single point only and R" are convex. 

Ex t r eme  points" A point X in a convex set S is called an extreme point or a vertex 
of  S, if there exist no two distinct points X~, X 2 ~ S such that 

X = ~,X~ + (1 - ~,)X 2, for 0 < ~, < 1 (8.2) 

Ex t r eme  Directions" Let S be a closed convex set in R". A nonzero vector d in 
R" is called a direction of  S, if for each X ~ S, the ray {X + ~,d �9 ~, >__ 0 } emanating 
from X also belongs to S. Two directions d~ and d 2 o f  S are said to be distinct if d~ 

d 2 for any ~t > 0. 

A direction d of  S is called an extreme direction of  S if d cannot be expressed 
as a positive linear combination of  two distinct directions of  S, that is, if d - 

~d]  + ~2d2, for ~,~, ~'2 > 0 then d~ = ~ d  2 for some ot > 0. 

Convex 

Nonconvex 

Figure 8.1. convex and nonconvex sets. 
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Extending the concept of convex combination, we now generalize its def'mition. 

Convex Combination: A vector X in R" is said to be a convex combination of 
the vectors X 1, X2,.. X m ~ R" if there exist real numbers ~,~, ~2,..~L m such  that 

m m 

X=)-"XiX i, Xi>_0, i=l,2,..m,~-"~.~=m (8.3) 
i=l i=l 

Theorem 8.1" A necessary and sufficient condition for a set S in R" to be convex 
is that every convex combination of any m points in S belongs to S. 

In other words, a set S in R" is convex if and only if for any m, 

X i ~ S, i = 1,2,..m. 

~,~ > 0, i = 1,2,..m. 

m 

~;Z i =1 
i=l 

m 

implies that ~ Z,~X~ ~ S. 
i=l 

Proof: Suppose that every convex combination of m points in S belongs to S. This 
implies that every convex combination of two points in S belongs to S which by 
definition implies that the set S is convex. Hence the condition is sufficient. 

The necessity of the condition will be proved by the method of induction. 
Suppose that S is convex. For m = 1, the condition is trivially true. For m = 2, the 
condition holds by definition. Assume now that the condition holds for m = k and 
we will show that it also holds for m - k + 1. 

k+l k+l 

Let X = ~ ;~iX~, X~ ~ S, ;~i -- 0, i = 1...k + 1, ~ ) ~  = 1 
i=l i=l 

k 

If ~k+l -- 0, than X = ~ ~X~ e S, by assumption. 
i; l  

If ~'k+l = 1, X = Xk+l ~ S, 

If 0 < )~k+~ < 1, we have 

~'i X i  + )Lk+l .Xk+l  X = ( l -kk. , ) ,= ,  i'_ Z.k+, 

X = ( 1 -  ~,k+l)X +~k+,Xk+ ' �9 

Since by assumption, the condition holds for k points, ~ is a point of S and 

consequently X is also a point of S. 

This completes the proof. 

Theorem 8.2: The intersection of a finite or infinite number of convex sets is 

convex. 



Convex Sets and Convex Cones 79 

Proof." Let I be a finite or infinite set of indices and S~, i ~ I are convex sets. 

Let X~, X 2 e r'l si. 
~I 

Since X~, X 2 belong to each S i, and S i are convex, X = XX~ + (1 - )~)X2, 0 _< ~, 
< 1, belongs to each S i and therefore belongs to 

NSi 
i~l 

Hence ~ Si is convex. 

Theorem 8.3: Let S be a convex set in R ~. Then the product aS,  where ct is a real 
number, is a convex set. 

Proof: The product aS  is defined by 

~S = { Z [ Z = ~ X ,  ot E Rl, X E S}. 

Let Z~, Z 2 e tx S, then Z~ = l ~ X l ,  Z 2 -- o[,X2, X l ,  X 2 E S 

Then for 0 < ~. < 1, we have, 

~.Z~ + (1 - ~.)Z 2 = ot [~.X l + (1 - ~)X2] e aS,  since S is convex. Hence orS is 
convex. 

Theorem 8.4: The sum S = S~ + S 2 of two convex sets S~, S 2 in R" is a convex set. 

Proof: The sum S = S~ + S: is defined by, 

S = S I + S ~ _ = { Z I Z = X + Y , X ~ S ~ , Y ~  $2} 

Now, let Z~, Z 2 e S, then Z~ - X~ + Y~, Z 2 = X 2 + Y2, X~, X 2, ~ S1; Y~, Y2eS2. 

For 0 < L _< 1, we then have, 

~ , Z  1 + (1 - ~)Z 2 = K (X, + Yl) + (1 - ~) (X 2 + Y2) 

= [ ~ X  1 if- (1 - E)X2] + [EV, + (1 - E)Y~] 

c S ~ + S 2 = S  

Hence S = S~ + S 2 is convex. 

Similarly, it can be shown thatthe set S~-  S 2 is convex. 

8.3. Convex Hulls 

Let S be an arbitrary set in R". The convex hull of  S, denoted by [S], is the 
intersection of  all convex sets in Rn containing S. 

Since the intersection of  convex sets is convex, [S] is convex and is the smallest 

convex set containing S. Obviously, if S is convex, then [S] = S. 

T h e o r e m  8.5: The convex hull [S] of  a set S in Rn is the set of  all convex 
combinations of  points of  S. 

Proof: Let K be the set of  all convex combinations of  points of  S. Then 

K =  X I X =  cziX ~,X i~S, r  i e R  ~,r i>_0, i=l ,2 , . .m,  r 
i- l  i=l 
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where m is an arbitrary positive integer. 

Let X~, X 2 E K, then 

m m 

X, = Z c t i X l ,  X I eS,  a i >0, Zot i  =I  
i=l  i---I 

m m 

X 2 -~7~[3,X~, X~ ~S, [3 i _>0, ~)7~[3, =1 
i - I  i - I  

For 0 _< ~, _< 1, we then have 

m m 

+ (1- = + Z (1- 
i - l  i= l  

where ~ot i > 0, (1 - ~)[3i > 0, i = l, 2,...m 

!11 in 

and ~]  ~,(x, + ~ (1-  ~ )~ i  - 1 
i - l  i= l  

Hence ~,X~ + (1 - ~,)X2 ~ K and K is a convex set. 

Obviously, S c K and since K is convex [S] c K. Now, since IS] is a convex 
set containing S, we have by theorem 8.1 that it must also contain all convex 
combinations of points of  S. Hence IS] D K. Thus IS] = K. 

The theorem, therefore shows that a point in the convex hull of  a set in R", 
can be expressed as a convex combination of a finite number of  points in the set. 
The following theorem shows that it is not really necessary to form convex 
combinations involving more than (n + l) points in S. 

Theorem 8.6. (Caratheodory's Theorem [64]) 

Let S be an arbitrary set in R". Then every point of the convex hull [S], can be 
expressed as a convex combination of atmost (n + l) points of  S. 

Proof: Let X ~ [S], then 

111 m 

X = ~ , i X i ,  where X~ ~ S, ~,i > 0, i=  1 , 2 , . . m ~ ,  i = 1 (8.4) 
i=l  i=l  

If m < n + l, the theorem is true. 

Now, suppose that m > n + 1. Since m -  1 > n, the vectors X 2 - X~, X 3 - 
X~, .. X m - X~ are linearly dependent. Hence there exists scalars ~t~ (i - 2, ... m) 

not all zero, such that 

m 

( x , - x , )  =o 
i - 2  

m 

Let ~t~ = - ~ t ~  and it follows that 
i - 2  
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m m 

Z Pi Xi - 0 ,  Y'~ Pi = 0 and not all Pi = 0 
i=l i=i 

which means that for at least one i, ~t~ > 0. 

Let 0 be a real number such that, 

~ -  01~ >_ 0, i = 1,2 .. m and 

~,~-0Pi  = 0 for some i, say i 0. 

This can be achieved if we chose 0 as 

(8.5) 

(8.6) 

) 
0 Min [. Pi Pi > Of = I ~i , = , for some i = i 0. 

[-ti0 

and then 0 > 0. 

If ~t~ _< O, Z -  0 p~ > 0 and if la~> O, then 

~i ~'io 
- -  ___ = 0 and hence ~ i -  O~l'i > O, for i = 1 2,..m. 
[J'i ~l'i0 -- ' 

By (8.5), we then have 

(8.7) 

(8.8) 

where 

m m m m 

X -- Z ~ i X i -  Z ~ i X , -  0 Z  ~l.iX , = Z ( / ~ i -  0 ~ , ) X  i 
i=l i=l i=l i=l 

~ - 0 1 . t  >_0, i = 1,2,. .m 

m 

Z (~i -- Oll~i ) -- 1 and further (8 .9)  
i=l 

Xi -  01~i = 0 for i - i o, i o ~ { 1, 2,..m}. 

It implies that X is expressed as a convex combination of atmost ( m -  1) points 
of  S. If m -  1 > n + 1, the above argument is applied again to express X as a 
convex combination of  ( m -  2) points of S. The process is repeated until X ~ [S] 
is expressed as a convex combination of (n + 1) points of S. 

8.4. Separation and Support of Convex Sets 
The notions of  supporting hyperplanes and separation of  disjoint convex sets 

are very important for a wide range of optimization problems. It can be easily 
visualized that if we have two disjoint convex sets then there is a hyperplane (called 
a separating hyperplane) such that one set lies entirely on one side of the hyperplane 
and the second set on the other side. Also, extending the geometric concept of  
tangency, the generalized tangency to a convex set S is expressed by a hyperplane 
H (called a supporting hyperplane) where S is contained in one of  the half-spaces 
of H and the boundary of S has a point in common with H. 
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We then have 
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Separation of a Convex Set and a Point 
Theorem 8.7: Let S be a nonempty closed convex set in R ~ and Y be a point not 
in S. Then there exists a hyperplane H, called a separating hyperplane which 
contains Y such that S is contained in one of the open half-spaces produced by H. 

For the proof of the theorem, we need the following important result from 
calculus. 

Lemma 8.1" Let S be a closed convex set in R" and Y ~ S. Then there exists a 
unique point X o ~ S, with minimum distance from Y, that is, 

II Xo - YII _< IIX - YII, for all X ~ S. (8.10) 

Proof  of the theorem: Let S be a nonempty closed convex set and Y ~ S. 
Hence by lemma 8.1, there exists a unique point W ~ S, closest to Y, so that 

IIW - YII _< IIX - YII, for all X ~ S. (8.11) 

Since for any X ~ S, the point Z = ~,X + (1 - L)W, 0 < ~, < 1 is also in S, 
we have, 

IIW- YII < IIZ- YII 

IIW- Yil _< II;~X § (1 - ;~) w -  vii, 

II(W- Y) § ~, ( x -  W)ll >__ I Iw-  YII. 

~ ' ( x -  w ) ~ ( x -  w)  + ( w -  Y ) ~ ( w -  Y) + 2~ ( w -  Y ) ~ ( x -  w)  

_> (w - Y) ~(w - Y) 

or Z2(X - W)T(X - W) + 2~, ( W -  Y)T(X -- W) _> 0 (8.12) 

Taking ~, > 0 and dividing by ~,, we have 

X ( X -  W)T(X- W) + 2 ( W -  Y)T(X- W) > 0 

Now, let X ~ 0 and then in the limit 

( W -  Y)T(X- W) > 0 (8.13) 

Since Y is a given point not in S and W is a unique point in S, C - W -  Y is 
a constant vector 

and thus CT(X- W) > 0 or CTX > CTW (8.14) 

Moreover, CT(W- Y) = CTC > 0 or CTW > c r y  (8.15) 

Hence, CTX > CTW > CTy = ot (say) 

Thus for any point X ~ S, CTX > 0t., 

which means that the convex set S lies wholly in the open half space CTX > 0t, 
produced by the hyperplane CTX = or. 

The geometrical interpretation of the theorem in R 2 or R 3 is simple. The 
hyperplane CTX = ot is the plane in R 3 or the line in R 2 through Y r S perpendicular 
to the line joining Y and W ~ S, representing the shortest distance from Y to S 
(Fig 8.2) 
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Figure 8.2 

Let us now imagine Y to approach W through a sequence of points along the 
line joining the points Y and W. In the limit when Y = W, the hyperplane CTX = 
meets S at W and for all X ~ S, CTX > ~. 

It is clear th.at W is a boundary point of S. For otherwise,  there is a 
neighbourhood which is entirely in S and W being in the hyxerplane CTX = C~, 
there will be points in S lying on either side of the hyperplane. This will contradict 
the theorem proved above. 

Supporting Hyperplane 
Let S be a nonempty set in R n and let W be a boundary point of S. A hyperplane 

H = {X [ CTX = a}-is called a supporting hyperplane of S at W if CTW = r and S 
is contained either in the halfspace CTX < r or in the halfspace CTX > ct. 

Figure 8.3. Supporting hyperplanes. 
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From the discussion in theorem 8.7, it can be seen that the hyperplane which 
meets S at its boundary point W is a supporting hyperplane of S. W however is 
not an arbitrary boundary point. It is determined by the choice of Y. The following 
theorem shows that there exists a supporting hyperplane of a convex set at each of 
its boundary point. 

Theorem 8.8. Let S be a closed convex set in R" and let W be a boundary point 
of S. Then there exists at least one supporting hyperplane of S at W. 

Proof: Let W be any boundary point of S. Let Yk be a point not in S but in the ~k 
(~k = 1/k say) neighbourhood of W. By theorem 8.7, there is a boundary point 
W k of S whose distance from Yk is minimal and there exists a supporting 
hyperplane Crk x = Ot k at W k. 

Now,  IlW k - WI[ = liW k - Yk + Yk-  Wll 

< IlWk- Ykll + IIYk- Wll (8.16) 

Since IlYk- Wit < ~k, [IYk- Wl[ ~ 0 as k ~ oo 

Further, since liW k - Ykli is the shortest distance between Yk and S 

IlWk-- Ykll--< IIY~- Wll ~ 0 as k ~ oo 

Hence, IIW k -WI[ ~ 0 as k ~ oo 

or W k -~ W. 

Now, dividing both sides of the supporting hyperplane CTkX = Ot k, at W k, by 
the length of C k, we get 

~ T  - - ~  C k x = ~ k ,  where Ck Ck and ~k = ak 
II Ck II II Ck I1' (8.17) 

m 

so that 1[ C k il= 1. 

Since { C k} is bounded, it has a convergent subsequence with limit C, whose 

norm is equal to one. 

Again by Schwarz inequality, since W k is on the hyperplane, 

I~k]=l~2:Wk]<]]Ck ]] ]]Wk ]]=tlWk ]] (8.18) 

Hence { ~k } from a bounded infinite sequence and has a limit point ct. 

Hence Ck ~ C, ~k ~ Ot as Wk -~ W. (8.19) 

Thus there exists a supporting hyperplane 

CTX = Ot at W e S and for all X e S, 

CrX > or. (8.20) 

Since this is true for every point in the neighbourhood of W and not in S, 
the result follows. 

It should be noted that the theorem holds even if the convex set S is not closed. 
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Since g ,  the closure of S is convex and W is a boundary point of S,  the theorem 

holds for g and then it certainly holds for S. Thus without loss of generality, we 

may assume that S is closed. 

Corol lary  8.1" If S is a closed and bounded convex set, the linear function CTX 
assumes its maximum or minimum value on the boundary of S. 

Proof: Excercise. 

Separation of two sets 
A hyperplane H = {X [ CTX = cz, X c R n} is said to separate two nonempty 

sets S I and S 2 in R n if 

CTX _> ~, for each X ~ S~ 

and CTX _< cz, for each X E S 2 

The hyperplane H is said to strictly separate S~ and S 2 if CTX > ct for each X 
S1 and CTX < Ct for each X ~ S 2 

The hyperplane H is then called a separating hyperplane. 

We now prove some results when the sets S~ and S 2 are convex. 

Lemma 8.2. Let S be a nonempty convex set in R n, not containing the origin 0. 
Then there extsts a hyperplane {X [ CTX = 0} c + 0 which separates S and the 
origin 0. 

Proof: (i) If the origin is an exterior point of S, the closure of S, then by theorem 

8.7, there exists a vector C r 0 such that CTX > 0 for all X c S. 

Thus, the hyperplane {X [ CTX - 0} separates S and the origin. 

(ii) If the origin is a boundary point of S, then the lemma follows from theorem 

8.8, 

Theorem 8.9 (Separation theorem). Let SI and S 2 be two nonempty disjoint convex 
sets in R". Then there exists a hyperplane H = {X [ CTX = c~}, which separates S I 
and S 2, that is there exists a nonzero vector C in R n such that 

i n f{CvX[X ~ S~} >__ Sup {CTX[X ~ $2}. 

Proof: The set S = S~-S 2 = {X1-X 2, X~ ~ S1, X 2 e $2} is convex by theorem 8.4 
and since S~ ~ S 2 = (~, 0 r S. 

Hence by Lemma 8.2, there exists a nonzero vector C such that 

CTX >_ 0 ,  for all X ~ S. 

Thus for all X~ ~ S1 and X 2 ~ S 2 

aT(X1- X2) ~__ 0 
or CTX~ ~__ CTX2 . 

which implies that 

inf{CvXI X c S,} >Sup  {CTX]X ~ $2}. 
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Figure 8.4. Separation of two convex sets. 

Lemma 8.3. Let S be a nonempty closed convex set in R n, not containing the origin 
0. Then there exists a hyperplane H = {X I CrX = cz, X ~ R"}, cz > 0 which strictly 
separates S and the origin. 

Proof: Since S is closed and does not contain the origin 0, 0 is an exterior point. 
Hence by theorem 8.7, there exists a vector C ~ 0 such that 

CrX > 0 ,  for all X ~ S 

Hence there is a positive number cz such that 

CTX > or, > 0 

The hyperplane H = {X I CrX = cz}, then strictly separates S and the origin 0. 

Theorem 8.10. Let S~ and S 2 be two nonempty disjoint convex sets in R" and 
suppose that S l is compact and S 2 is closed. Then there exists a hyperplane H = 
{XICTX = or}, C ~ 0 that strictly separates S l and S 2. 

Proof: Since the set S = S~- S 2 is convex by theorem 8.4 and since S~ is compact 
and S 2 is closed it follows that S is a nonempty closed convex set. Then by Lemma 
8.3. there exists a hyperplane H = {X I CrX = ct}, cz > 0, which strictly separates 

S~ and S 2. 

Theorem 8.11. A nonempty closed convex set S in R", bounded from below (or 
from above) has atleast one extreme point. 

Proof: The theorem will be proved by induction on the number of dimension n. 

Since S is closed and bounded from below, for n = 1, 

S = {X I X  > a, a ~ R~}. Obviously, a is an extreme point of S and the 
theorem is true for n = 1. 

Let us now assume that the theorem is true for n = m. We shall then prove that 
it is true for n = m + 1. Let S c R m§ Since S is closed and bounded from below, 
there exists a boundary point W of S and by theorem 8.8. there is a supporting 
hyperplane H = {X [ CvX = cz} of S at W. Let T* be the intersection of S and H. 
T* is then a nonempty, closed convex set bounded from below and is of dimension 
m. Therefore by hypothesis, T* = S n H has an extreme point. We contend that 
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the extreme point o fT*  is also an extreme point of S. To Drove our contention, let 
us suppose that ~ is an extreme point of T* which is not an extreme point of S. 

Then ~ "-- ~,X 1 q- (1 -- ~)X 2, X~,X 2 ~ S, 0 < ~, < 1 (8.21) 

Since by (8.20), CTXl _> Or, CTX2 >__ ot 

and since C T ,~ = or, we have 

ct = C v ~ = ~,CTX~ + (1 - ~,)CTX2 (8.22) 

and this will hold if and only if 

C T X 1  --" OL, C T X 2  = (1, 

that is, if and only if Xl, X 2 E T* which contradicts that ~ is an extreme point 

of T*. Hence the extreme point of T* is also an extreme point of  S. 

Thus, if the theorem holds for n = m, it holds for n = m + 1 and we have 

seen that it holds for n = 1. Hence by induction, the theorem is true for all n >_ 1. 

Corol lary 8.2" Every supporting hyperplane of a nonempty compact convex set S 

contains atleast one extreme point of S. 

Theorem 8.12. Every point of a nonempty closed bounded convex set S in R n is a 

convex combination of its extreme points. 

Proof: The proof will again be given by induction on the number of dimension n. 

If n = 1, S is a closed and bounded interval [a, b] whose extreme points are a 
and b and every point of which is a convex combination of a and b, hence the 
theorem holds for n = 1. 

Suppose that the theorem holds for n = m and we shall prove that it also holds 

for n = m + 1. Let S c R m+l and X 0 be any point in S. Now, (a) X 0 may be a 
boundary point of  S or (b) an interior point. 

Case (a): Let X o be a boundary point of S and H = {X I CTX = or} be a supporting 
hyperplane at X 0. The set S n H is then a nonempty, closed, bounded convex set 
of  dimension m. By hypothesis therefore, every point of  S ~ H is a convex 
combination of its extreme points. But as shown in the proof of theorem 8.11, an 
extreme point of S ~ H is also an extreme point of  S. Hence X 0 is a convex 
combination of the extreme points of S. 

Case (b): Let X 0 be an interior point of S. Then any line through X 0 intersects S 
in a line segment with boundary points X~ and X 2 and therefore X 0 can be 

expressed as a convex combination of X~ and X 2. 

Now, since X~, X 2 are also boundary points of S, by case (a), they are convex 

combinations of the extreme points of S. Hence X 0 is also a convex combination 
of the extreme points of S. 

This completes the proof. 

8.5. Convex Polytopes and Polyhedra 
A set in R n which is the intersection of a finite number of closed half-spaces 
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in R n is called a polytope. 

From the convexity of the half-spaces, it follows that a polytope is a closed 
convex set. 

If a polytope is bounded, it is called a convex polyhedron. 

Now, if the set of the intersection of a finite number of closed half-spaces is 
bounded, it is equal to the set of linear convex combinations of a finite number of 
points, known as the convex hull of these points. 

Therefore, a convex polyhedron may also be defined as the convex hull of a 
finite number of points. 

T h e o r e m  8.13. The set of extreme points of a convex polyhedron is a subset of 
the set of its spanning points. 

Proof :  Let K = {X~, X 2, .. Xm} be the set of  points spanning the convex 
polyhedron S and V be the set of its extreme points. 

Suppose that X e V but X r K. Since X e S, it is a convex combination of 
points in K and thus 

m m 

X = E ~ i X  ~, ~,_>0, i: l ,2, . .m,~-"kt i : 1  
i=l i=l 

If X ~ K, at least two ~t~ say ~q, and ~t 2 are nonzero and we may write 

__ - -  m , ~ i  X i E S  
X = ~iXi + (1- ~1 )X, 0 < ~t I < 1, X = Y'~i=l 1 - ~1 

which contradicts that X is an extreme point 

Hence X ~ K. Thus V c K 

T h e o r e m  8.14. Let T be a polytope in R" defined by the intersection of the 
hyperspaces 

aix _< b i, i = 1, 2 ,  ... m~ m > n ( 8 . 2 3 )  

A point ~ ~ T is an extreme point of T if and only if ~ is a solution of the 

system. 

aix = b i, i ~ { 1, 2, ... m}. (8.24) 

where a~ is a row vector and the matrix of the system is a nonsingular matrix 

of order n. 

P r o o f :  Let the matrix of the system (8.24) be written in the matrix form as 

AX = b 

Let X ba a solution of (8.25) and let us suppose that there exist two distinct 

point X~ and X 2 in T such that 

X = )~X, + (1-k)X 2, 0 < ~, < 1 (8.26) 

Since AX~ < b, AX 2 < b, we have 
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b = AX = ~,AX l ( 1 -  ~ ) A X  2 _~ b 

Hence AX = AX~ = AX~ = b 

abd subce 7. is nonsingular, 

X = X l = X 2 

which contradicts that X~ and X 2 are distinct. Hence X is an extreme point 

o f T .  

Conversely, let ~ be an extreme point of T. ~ therefore satisfies the system 

a~X < bi, i = 2, 2, ... m. 

Suppose that 

a~X < b~, for all i, i = 1, 2, ... m 

We can then always find a small nonzero vector of  ~ such that 

a i (X + dX) < b~ and a~ ( X -  dX) < b~, i = 1, 2, ... m (8.27) 

Then R = 1 ~[(X + dR) + ( X -  dR)], is a convex combination of  two distinct 

points of  T and hence ,~ is not an extreme point. 

Thus, there exists a nonempty set I c { 1, 2,...m}, such that 

a~X = b i, i ~ I (8.28) 

a~X < b~, i ~  I (8.29) 

Writing (8.28) in matrix form as AI~ = b I , we now show that the columns of  

A ~ are linearly independent. Suppose they are not. In that case, there exists a nonzero 
vector y such that 

a~Y = 0, Y ~ 0, i ~ I. (8.30) 

We can then find a small nonzero scalar dX such that 

a~ (X + YdX) < a~ (X - YdX) < b i , i ~ I. (8.31) 

Thus from (8.28), (8.30) and (8.31), we have 

a i ( X  + dX) _< b i , i = 1, 2 ,  ... m .  

Then,  X = ~ [ ( X +  Y d X ) + ( X - Y d X ) I ,  is a convex  combina t ion  of  two 

distinct points of  Y and hence R is not an extreme point of  T, which contradicts 

the hypothesis. 

The columns of  A I are therefore linearly independent; A ~ contains a nonsingular 



90 Mathematical Programming" Theory and Methods 

submatrix X of order n. ~ is thus a solution of the system AX = b. 

Corol lary 8.3. The number of extreme points of a polytope is finite. 

Proof: It follows if we note that the maximum possible number of nonsingular 
matrices from A is finite. 

Theorem 8.15. Let S be a nonempty convex polytope in R", given by S = {X lAX 
= b, X > 0}, where A is an m • n matrix with rank m. Then, the set of extreme 
points of S is not empty and has a finite number of points. Further, the set of extreme 
directions of S is empty if and only if S is bounded (i.e. S is a convex polyhedron). 
If S is not bounded, then S has a finite number of extreme directions. 

Let X~, Xz,... X k be the extreme points and the vectors dr, d2,.., d~ be the extreme 
directions of S. Then X e S if and only if X can be written as 

k 1 

x = +  jdj 
j=l j=l 

k 

~-~j  =1 
j=! 

~ j>0 ,  j =  1, 2,...k 

~tj > 0, j =  1, 2,...1. 

Proof: For a proof see [35]. 

Simplex 
Let X~, X 2, .. Xm+ ~ be a finite number of points in R". If X 2 - X 1 ,  X 3 - X l , . .  

Xm+ ~ -- X~ are linearly independent then the convex hull of X~, X 2, .. Xm+ ~, that 
is, the set of  all convex combinations of X~, X2,.. Xm+ ~ is called an m-dimensional 
simplex (m-simplex) in R ~ with vertices X~, X 2, .. Xm+ ~. Since the maximum number 
of linearly independent vectors in R ~ is n, there could be no simplex in R ~ with 
more than (n + 1) vertices. Thus a 0-simplex is a point, a 1-simplex is a line 
segment, a 2-simplex is a triangle, a 3-simplex is a tetrahedron and for m > n, 
there is no m-simplex. 

The Faces of Polytopes 
Let T be a polytope in R" 

T = {Xla~ X_< b~, i= 1,2..m} 
and let V j denote the linear variety 

a i X =  b~, i ~ J c  {1, 2,.. m}. 

We call Fj, the face associated with J, the intersection of the linear variety Vj 

with T. 

If Vj = ~, X is a vertex and we say that {X} is a face of order 0, if Vj has 
dimension 1, the face Fj is an edge or a face of order 1 ofT. IfVj has dimension k, 
we say that Fj is a face of order k of T. 
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Thus an edge of a convex polyhedron S is the line segment joining any two 
extreme points (vertices) of  S, if it is the intersection of S with a supporting 
hyperplane of S. 

The two extreme points of S are said to be adjacent extreme points, if the line 
segment joining them is an edge of S. 

8.6. Convex Cones 
In this section we introduce the concept of convex cones and briefly discuss 

their properties. The material in preceding sections is sufficient for understanding 
the subsequent chapters. This section may therefore be skipped without loss of 
continuity. 

Cones: A subset C of R" is called a cone with vertex zero, if 

X ~ C ~  ~,X ~ C , f o r a l l L > 0  

The sum C~ + C 2 of two cones defined by 

C ~ + C  2 = { x [ x = x  l + x  2, X I ~ C  l , x  2~C2} 

is also a cone. 

Convex Cones: A cone is a convex cone if it is a convex set. 

Equivalently, a convex cone C is a set of points such that 

X ~ C ~ ~X ~ C ,  for all ~ >_ 0. 

X 1 E C ,  X 2 E C:::~X1 + X  2 EC.  

Linear subspaces, the nonnegative orthant X > 0, a half line {X IX = ~.b, k > 
0}, a closed half space {X I aTX < 0} are examples of convex cones. 

It immediately follows that if C~ and C 2 are convex cones then 
(a) their sum C l + C 2 is a convex cone. 
(b) their intersection C 1 n C 2 is a convex cone. and thus 
(c) the set of positive linear combination of a finite number of points a, j = 1, 

2... k, that is, the sum of a finite number of half lines is a convex cone C: 

C=  Y I Y =  ajxj, x j > 0  
j=l 

Equivalently, C is a cone if for some matrix A 

C =  { Y I Y = A X , X > 0 } .  
(d) The intersection of a finite number of closed half-spaces is a convex cone 

H" 

H =  {XIb~ X <  0, i=l ,2. .p} 

or in matrix notation, 

H = {XIBX_< O} 

Polar  Cones: The polar cone C + of a cone C is defined by the set 

C + = {a I aTX < 0 ,  for all X ~ C}. 
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Clearly, C § is a closed convex cone. 

For any cones C,, C 2 the following properties are simple consequences of the 
definition of polar cones 

(i)  C l c C 2 =:, C1 + :3 C2 + 
(ii) C, c C~ +§ where CI ++ is the polar cone of C, + 

(iii) (C~ + C2) + = C (  c~ C2 + 

Theorem 8.16. If C is a convex cone defined by 

c =  {x I X = A U ,  u>__0}, 
then C += {Y I ArY < 0} 

Proof: By definition, the polar cone C + of C is 

C § = {YiYTX< 0, X <C}.  

= {Y [ yTA w < 0 ,  w > 0 }  

Now, yTAU < 0, for all U > 0 if and only ifATy < 0. Hence. 

C+= {Y [ATy< 0} 

as was to be shown. 

Theorem 8.17. If C is a closed convex cone, then C = C ++ 

Proof: By property (ii) of polar cones C c C +§ Now, let X e C § and suppose 
that X ~ C. Then by theorem 8.7 there exists a nonzero vector a and a scalar ot 
such that such that 

arY _< ~t, for all Y e C and aTX > Or. 

Since Y e C, Y = 0 is in C and hence by the first inequality ot > 0 and therefore 
arX > 0. 

This implies that a e C § For if not, then a r ~ > 0, for some ~ e C and 

then taking Z. arbitrarily large aV(~ ~ ) can be made arbitrarily large which 

contradicts that arY < ot for all Y e C. Hence a e C § Since X e C § aTX _< 0, 
but this contradicts that arX > 0. Therefore X e C and the proof is complete. 

Theorem 8.17 can be used to prove the well-known Farkas' theorem. 

Theorem 8.18. (Farkas' theorem) 

Let A be an m • n matrix. Then exactly one of the following two systems has 
a solution 

System 1" AX = b, X > 0, X e R" 

System 2" ArY > 0, brY < 0, Y e m m 

An equivalent statement of Farkas' theorem can be given as follows. 

System 1" AX = b, X >_ 0, is consistent if and only if. 

System 2" ArY _< 0, baY _< 0, has a solution. 

Proof: Consider the cones 

C = {AXI X > 0} 

C+ = {Y I ArY < 0 }, by theorem 8.16 
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C ++= {U I YRJ _< 0, Y ~ C+}, by definition 

By theorem 8.17, b ~ C +§ if and only if b ~ C. 

Now, b ~ C ++ implies that whenever Y ~ C +, then bTy < 0 which means 
that ATy < 0 implies that bTy < 0 

And b ~ C implies that AX = b, X > 0. 

Thus system 1 is consistent if and only if System 2 has a solution. 

Polyhedral Convex Cones 
The convex cone spanned by a finite set of vectors a~, a 2 , . . a  r is called a polydral 

convex cone and is denoted by 

Cp-{ xlx-~ 'kak 'k=~ Xk <0, k =1,2,..r} 

In matrix notation, it can be written as 
c = { X l X  = A~,, ~, > 0} 

where A is the n • r matrix whose column vectors are ak, k = 1,2..r and k is r x l. 
Thus, C is the sum of finite number of half-lines. p 

A polyhedral convex cone may also be defined as the intersection of a finite 
number of closed half-spaces whose generating hyperplanes pass through the 
origin. 

A polyhedral convex cone is thus the set of solutions to some finite system of 
homogeneous linear inequalities. 
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Convex and Concave Functions 

In this chapter we introduce convex and concave functions defined on convex sets 
in R" and give some of their basic properties and obtain some fundamental theorems 
involving these functions. We will see later that these theorems are very important 
in deriving optimality conditions for nonlinear programming problems and 
developing suitable computational schemes. 

In the following definitions and theorems, the functions are numerical functions, 
that is real single valued functions, defined on a convex set S in R ". 

9.1. Definitions and Basic Properties 
A function f defined on a convex set S in Rn, is said to be a convex function 

on S, if 

f [XX, + (1 - ~,)X2] _< ~,f(X,) + (1 - ~) f(X2) 

for each X~, X 2 e S and each ~, 0 _< ~, _< 1. 

The function f is said to be strictly convex on S if the above inequality is 
strict for X~ * X 2, and 0 < ~, < 1. 

A function f is said to be concave (strictly concave) i f - f  is convex (strictly 
convex). 

It is clear that a linear function is convex as well as concave but neither strictly 
convex nor strictly concave. 

Alternatively, a function f defined on a convex set S in R" is convex (concave) 
if linear imerpolation between the values of the function never underestimates 
(overestimate~) the actual value at the interpolated point. 

A geometrical imerpretation of convex and concave functions is given in Figure 
9.1. 

Let x t and x 2 be two points in R ~ and consider the point x = X x~ + (I-)L)x2,)L 
(0,1), X f(xl) + (1-~,) f (x2) then gives the linear interpolation between the values 

of f (x) at x~ and x 2 while f [Xx~ + (1-~,)X2] gives the value of f(x) at the interpolated 
point Xx~ + (1-)g)x 2. 

So for a convex function f, we have 
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f [;~x, + (1-n)x~] _< ;~f(x,) + (1-;~) f(x~) 
and for a concave function f 

f [~,x, + (1-~)x2] > ~,f(x,) + (1-X)f(x2). 

f(x) ~ 

xl ~.x, + 1 ---~x~ 

f[Lx, + 1- L)f(x2) 

/gx~) 

f(x) 

F igure  9.1(a): Convex Function. 

i ii i 

x I ~.x~ + - ~ ,x  z x2 

f(x 2) 

k f ( x , )  + (1 - ~ . ) f ( x ~  ) 

>x  

Figure 9.1(b): Concave Function. 

Theorem 9.1" A necessary and sufficient condition that a function f defined on a 
convex set S in R n is convex is that 

/ m 
f ~iXi < E ~ i  f ( x ' ) '  

i = l  i = l  

for all integers m, 



96 Mathematical Programming" Theory and Methods 

111 
where X i e S, ~ > 0, i = 1, 2,..m, ~ ~'i ---- 1 

i=! 

Proof: Suppose that the condition is satisfied. For m = 2, clearly f is convex 
and this is sufficient to show that f is convex for all integers m. 

Conversely, suppose that f is a convex function. The proof  will be given by 
the method of  induction. Clearly, the condition is satisfied for m = 1 and m = 2. 
Suppose that it is satisfied for rn = r and we prove that it is also satisfied for m = 
r+ 1 

r+l 
NOW, ~ ~iXi = ~ ~iXi + ~r+lXr+l 

i=l i=l 

= ~ ZiY + ~r+lXr+l 
i=l 

where 

and then Y e S 

Therefore, 

Y = ~iXi, ILli r , i = 1, 2,..r 
i=, ~ ~'i 

i=l 

�9 

~'~ ~i f(Xi ) 
_ _ ( ~ i  I i=l + ~r+lf(Xr+l) 

i-I ~ ~i 
i=l 

= ~ ~ f(X, ) + s f(X,+, ) 
i=l 

r+l 

= 

i=l 

Hence, the theorem is proved by induction. 
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Theorem 9.2" A necessary and sufficient condition that a function f defined on a 
convex set S in R" is convex is that the one dimensional function, ~ defined by 
~(~) = f [EX~ + (1-~)X2], X~, X 2 ~ S is convex on [0,1] 

Proof:  Let ~ be a convex function on [0,1 ]. 

Then for ~ ~ [0,1 ], 

f [kX~ + (1-~)X2] = ~ (~,) = ~ [~1 + ( l -k)0] .  

< L qb (1) + (1-~,) qb (0). 

= ~, f(X,) + (1-~) f(X2) 

This holds for all X~, X 2 ~ S and hence f is convex on S. 

Conversely, suppose that f is convex on S. 

Then for K,, k 2 ~ [0,1] 

~) [c~E, + ( 1--or)K2] = f [ { (~ ,  + (1--ot)~ 2 } X, + { 1--{0~ 1 + 1--or ~2) } X2] 
XI, X 2~ S , O < o t < l .  

= f [cz{X z +~, ( X , -  X2) } + (1--a){X 2 + ~2 (X, - X2)}] 

= f [a{;~,X, + (1-~,)X2} + (1-a){X2X , + (1-;~2)X2}] 

< a f [E,X, + (1-E)X2] + (1-c~) f [~2 X, + (1-E2)X2] 

= (x ~) (~,) + ( l - - a )  (~ (~2) 

Hence ~ is convex on [0,1] 

Theorem 9.3" If fh' h = 1, 2..m are convex functions on a convex set S in R n and 
Lh >-- 0, h = 1,2..m, then the function f defined by 

m 

f(X) = ~ Xh fh (X) 
h=l 

is also a convex function on S and strictly convex if at least one of  the functions 
fh is strictly convex. 

Proof:  Let fh' h = 1, 2..m be convex functions on a convex set in R" and let 

In 

f(X) = ~ )~h fh (X), ~h -> 0, h = 1, 2..m. 
h=l 

Let 0 _< ot _< 1, then 

f laX,  + (1 - a ) x ~ ]  
m 

"- E ~ h f h [ ( X  X 1 + ( ] - c / , ) X 2 ]  
h=l 

m 

< ~ Kh [afh (X,) + (1 - a)fh (Xz)] 
h=l 

"'fh (X) is convex. 

m m 

= (X Z ~hfh (X,)  + (1 - cQ~" ~hfh ( X 2 )  
h=l h=i 

= ~ r(x,)  + ( i - ~ )  r(x 9. 
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, 

Hence f is convex. 

If at least one of  the functions fh is strictly convex, then strict inequality will 
follow in the above expression and in that case f is strictly convex. 

Theorem 9.4. A function f defined on a convex set S in R" is convex if and only if 
its epigraph defined by the set 

S p~ = {(X, { ) I X  e S, { e R', f(X) _< ~} 

is a convex set in R "§ 

Proof:  Suppose that f is convex and let (X~, ~ )  and (X 2, ~2) e Sops. Then for 0 _< ~. 
_<1, 

f [XX, + (1-~.)X21 _< X fiX,) + (1-~.)f(X2) 

< )v~, + (1-~)~,2. 

Hence [~.X, + (1-~.)X 2, ~.~, + (1-k)~2] e S p~ 

and S is is a convex set in R "+'. 

Conversely, assume that Sopi is convex. Let X~, X 2, e S, then [X~, f(X~)] and 
[X 2, f(X2) ] belong to Sop i Since S p i is convex, we must have 

[~.X~ + (1-k)X 2, Xf(X,) + (1-X)f(X2) ] e Sop,, for 0 _< ~. < 1 

or f [)vX, + (1-~.)X2] < ~.f(X,) + (1-k)f(X2),  for 0 < ~. < 1 

and hence f is convex on S. 

Theo rem 9.5. If (f, i e I) is a family of convex functions on a convex set S in R", 
then the function f defined by fiX) = Sup~ ~ fi(X) is convex on S. 

Proof: Since fi, i e I are convex functions on S, then by theorem 9.4, their epigraphs 

Sop i = {(X, ~ ) I X  ~ S, ~ e W, f~(X) < ~}, i a I 

are convex sets in R "+~. 

Hence their intersection 

f'l S = {(X, V,)IX e S, ~ e W f (X)  < V,, for all i e I} 
i~l  epi ~ 

= {(X,~)IX e S, ~ e R  ~, Supfi(X)_< ~ } i ~  

is also a convex set in R n+~. Thus the epigraph of f is convex. 

By theorem 9.4, then f is a convex function on S. 

Theorem 9.6. If f is a convex function defined on a convex set S in R n, then the 

set 

S = { X l X  e S, f (X)<  or}, 

called a level set, is convex for each real number or. 

Proof:  Let f be a convex function on S and let X~, X= e S .  Then X~, X=, e S, 
f(x,)  _< a, f(x=) _< ~. 

By convexity of  S, X = ~, X 1 + (1-TV)X= e S, for 0 < ~, < 1 and since f is 
convex, 
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f(x) = tlxx, + (1-~)xJ  

_< x fix,) + (l-X) f(x 9 

_< )~cz + (1-90 cz = cz 

Hence X e S and therefore S is convex. 

Local and Global Minima of Functions 

A point ~ e S c R" is called a local minimum point of the function f in S if 

there exists an e-neighbourhood N ( , ~  ) around ~ such that f(X) >_ f( ~ ), for 

each X e S ~ N ( ~  ). If a point ~ e S is such that f(X) >_ f( ~. ), for each X 

S, then ~. is called a global minimum point of f. 

A local and global maximum point of a function can be defined similarly. 

Theorem 9.7: Any local minimum of a convex function attained on a convex 
set is a global minimum. The set of all these minima is convex 

Proof:  Let ~ minimize the convex function f on a convex set S in some 

e-neighbourhood N ( ~  ) around ~ such that 

f( ,~ ) < f (X),  for each X e S c~ N (  ~ ) 

that is, ~ is a local minimum point 

Suppose that ~ is not a global minimum point so that there exists a point 

X o �9 S, but not in N e ( ~ ) such that 

f(X0) < f( X: ) 

Further, suppose that X~ eS is a point in the neighbourhood of N ( ~  ) so 

that 

Now, 

X 1=%X o+(1-9~) ~ ,0<~,<1.  

fiX,) - f[~X o + (I-~) ~] 

_< Kf(x o) + (l-X) f(R) 

= f(R) + x [f(x o) - f(~)] 

< f( "~ ), since f(Xo) < f( ,~ ) 

which contradicts the assumption that ~ is a local minimum point. Hence f attains 

a global minimum at ~ .  

Let ~ be the set of points at which the convex function f attains its minimum. 

Let X,, X 2 e S and fiX,) = f (X2)  - m 

Now, for 0 < o~ < 1 , f[otX, + (1-ot)X2] < o~ fiX,) + (1-ot)f(X2) = 
a m  + (1--ot)m = m 
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which means f attains its minimum also at OtXl + (1-(/,)X2, 0 < 0t, < 1 and 

therefore belongs to ~. Hence ~ is convex. 

Theorem 9.8. A strictly convex function on a convex set S in R" attains its global 
minimum at an unique point in S. 

Proof: Let f be a strictly convex function on a convex set S in R" and attains its 
global minimum at X~, X 2, ~ S, X~ r X 2 so that f (X1) = f(X2) = m 

Let X = ~,XI + (1-Z)X 2, 0 < ~, < 1. 

Then 

f(x) = f[ x, + (1-)OxJ 

< %f (X,) + (1-)~) fiX2) 

= )~ m + (1-)~) m 

- m .  

The above inequality contradicts that m is the global minimum. 

This completes the proof. 

Theorem 9.9. A quadratic form Q(X) = Xq3X is convex for all X ~ R", if and 
only if the symmetric matrix B is positive semi-definite. 

Proof: Let X1, X 2 ~ R". Then for 0 < )~ < l, 

~.Q(X,) + (1 - ~,) Q (X2)-  Q[~. x ,  + (1-~.)x2] 

= E(XTBX, ) + ( 1 -  ;~)(X2TBX2 ) -  rex, +(1-  ;~)x~IT Bt~XI +(1-  )~)X2 ] 

= ;~(X~BXl)+ (1-M(XTBX2)-;~2X~BX,- (1-M'~ X2VBX2- 2;~(1- )0X~BX2] 

= ~(1- K)X~rBX, + ~(1- K)X2rBX2 - 2~(1- K)X~rBX: 

= ~(1- ~l~) [XTBXI + NTBX2 - 2X:BX 2 ] 

= k, (1-9~) (X,-X2)TB (XI-X2) 

> 0, for all ~,, 0 < ~. < 1, if and only if the matrix B is positive semidefinite. 

This proves the theorem. 

Corollary 9.1. A positive definite quadratic form is a strictly convex function over 
all of R" 

Continuity of Convex Functions 
It should be noted that a convex function f defined on a convex set S in R" is 

not necessarily continuous everywhere. For example, the convex function 

f (x)= 2 for Ixl- 1 

= x 2 for Ixl < 1 

defined on S - {x I-1 < x < 1 } is not continuous at the boundary points of S. 

It can however, be shown that if f is a convex function on an open convex set 
S in R", then it is continuous on S (Theorem 9.10) 
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Theorem 9.10. If f is a convex function on an open convex set S in R" then f is 
continuous on S 

Proof: See Flemming [ 162] 

Since the interior of any set S in R" is open, it follows that a convex function 
defined on a convex set S in R" is continuous on the interior of S. 

9.2. Differentiable Convex Functions 
Theorem 9.11. If f is a differentiable function on an open convex set S in R n, then 
f is convex on S if and only if for each X~, X 2 ~ S, 

f(X2)- fiX,) >_ V f(X,) T (X2-X,). 

Proofi Let f be a differentiable convex function on S. For X~, X: ~ S and 0 < k _< 
l, we then have 

( l - k )  fiX,) + kf(X2) >_ f [(1-k)X, + kX2] 

or E[f(X2) -- f(Xl) ] > fiX, + ~(X 2 - X,)] - fiX,). 

= fiX,) + ~ Vf(X,) T (X 2 - X,) 

+ ~. IIX~_- x,II a [x,; ~ ( x = -  x , ) ] - f (Xl)  

where ot [Xl; ~ (X 2-  Xl) ] --9, 0 as 2~ ~ 0. 

or f (X2)-  f(Xl) >__ Vf(Xl )T (X 2 - Xl) Jr-[IX2- Xl[ I ot [X,; )~ (12 - X~)] 

Now, taking the limit as )~ ~ 0, we obtain 

f (X2) - f (X1) >_ Vf (x1)r (X 2-  X~). 

Conversely, suppose that 

f (X2) -  f(X1) > Vf(X1)T.(X2- X , ) ,  for X1, X 2 E S. 

Since S is convex, ;~X l, + (1-~) X 2 e S, for 0 _< ~ _< 1. 

and we then have 

f (X2) - flEX, + (1-k)X2] > ~.Vf [EX, + (1--~.)X2]T (X 2 - X1) 

f (X1) - flEX 1 + (1-L)X2] >_ -(1-~.)Vf [LX, + (1--k)X2]T (X 2 - X,) 

Multiplying the first inequality by (1-~) and the second one by ;~ and adding 
we get 

)~f(X,) + (1-~) f(X2) > f[)~X, + (1-)~)X2] 

Hence f is convex. 

Theorem 9.12. If f is a differentiable function on an open convex set S in R n, then 
f is strictly convex if and only if for each X~, X 2 ~ S, X~ r X 2, 

f (X2)-  fiX,) > Vf(X,) T (X 2 - X,) 

Proof: It immediately follows from theorem 9.11 by changing all inequalities to 
strict inequalities for 0 < ;~ < 1. 

Theorem 9.13" If f is a differentiable function on an open convex set S in R", then 
f is convex if and only if for each X~, X, ~ S 

[Vf(X2)- Vf(X,)] T (X 2 - X,) >_ 0. 
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Proof: Let f be convex on S. Then for any X~, X 2 E S, 

we have by theorem 9.11 

f(X2)-  f(X,) >_ gf(X1) T (X 2 - -  X,) 

f ( X l ) -  f(X2) >_ Vf(X2)T (X 1 - X=) 

Adding the above two inequalities, we get 

[Vf(X2)- Vf(X,)] w (X=- X,) > 0. 

To prove the converse, let X,, X 2 e S. Since S is convex, %X, + (1-%)X 2 e S 
for 0 < ~, < 1. 

Now, by the mean value theorem we have for some ~, ~ (0, 1) 

f(X2) - f(X,) = Vf [kX, + (1-k)X2] T (X 2 - X,) 

But by assumption, 

[vtI x, + v f ( x , ) Y  + - x , ]  > o 

or (1-~,)[Vf[~.X, + ( 1 - ~ ) X 2 ] -  Vf (X , ) ]  T (X 2 - Xl) ~_~ 0 

or Vf [~,X, + (I--~,)X2]T (X=- X,) > Vf(X,) T (X 2 - X,) 

Hence f(X2) -- f (X l )  >_ Vf(X,) T (X 2 - X,) 

and by theorem 9.11, f (X) is convex. 

It immediately follows that 

Theorem 9.14: If f is a differentiable function on an open convex set S in R", then 
f is strictly convex if and only if for each X~, X 2, e S,  X~ ~ X 2 

[gf (X2)-  Vf(X,)] T (X 2 - X,) > 0 

Theorem 9.15: If f is a differentiable convex function on a convex set S in R", 
then f(Xo), X o ~ S is a global minimum of f(X) if and only if Vf(X0)T(X- Xo) > 0 
for all X ~ S. 

Proofi Suppose that 

Vf(Xo)T(X- Xo) >_ 0, for all X e S 

Since f is convex, by theorem 9.11, we have 

f i X ) -  f(Xo) >_ Vf(Xo)T(X- Xo) >_ 0, for all X ~ S. 

which implies that f(Xo) is a global minimum. 

To prove the converse,-suppose that f(Xo), is a global minimum of f(X) on S. 

Then for all X ~ S, f(Xo) _< f(X). 

Since ~,X + (1-~,)X o ~ S, for any X e S, 0 < ~, < 1 

f(Xo) _< f[kX + (1-~,)Xo]. 

or f(Xo) _< fiX o + ~.(X - Xo) ] 

or f[X o + k ( X -  Xo) ] - f (Xo) > 0 

Dividing the Taylor's expansion by ~. and taking the limit as k ---> O, we have 

Vf(Xo)T(X- Xo) > 0 

Theorem 9.16: If a function (~ is a differentiable function of single variable defined 
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on an open interval D c R l then ~ is convex on D if and only if ~', the derivative 
of ~ is nondecreasing on D. 

Proof: Let ~ be a differentiable convex function on D. 

Then by theorem 9.11 we have 

~(~) -  ~(~,) _> ~'(~,)(~- ~,) 

and ~(~,,)- O()~:) > ~'(~,2)( ~,, - ~2) 

~1' ~2 e D ,  L~ < L2 for 

Hence 

q)(~k,2 ) - q)()~,l ) qo'(;L, ) _< -< qo'O~2), for X, < )~2 
~2 - Xl 

and therefore ~)'(~) is nondecreasing on D. 

Conversely, suppose that ~)' is nondecreasing on D. Let ~,~, ~ e D, ~ < ~2 and 

= it) h + (1-g))~ 2, 0 < g < 1. 

By the mean value theorem, we have 

~0~2)- ~ ( ~ ) =  g ()%- 9~) ~'(nl), ~ < rl~ < 9~2 

~(~)  - ~ ( ) ~ , )  - (1  - g )  ( ) ~ 2 -  ~1 ) *'(~12) ~1 < '1"12 < ~ 
Since ~' is nondecreasing, ~'(~I~) >__ ~)'(rl2) for rll > r12, and therefore from the 

above two expressions, we have 

*( ~ ) -" r  + (1-g)k2]  

ILl, r -I- ( l - g )  ~(~'2)" 
Hence ~ is convex. 

Twice Differentiable Convex Functions 
Theorem 9.17. If f is a twice differentiable function on an open convex set S in 
R n, then f is convex on S if and only if the Hessian matrix H(X) is positive 
semidefinite for each X e S. 

Proof: Let f be convex on S and let ~ e S. We are then to show that for each X 

R", XTH('X )X >_ 0. Since S is an open convex set, there exists a ~ > 0 such 

that for any X e R n 

+ ~ X  ~ S , f o r 0 < ~ , <  ~. 

By theorem 9.11 we have 

f(x: + LX) > f ( x )  + 9~ Vf (x )TX,  for 0 < )~ < 

and since f is twice differentiable 

f( X + )~X) = f( X ) + )~f( X )TX + �89 ~2 XTH( ~: )X 

+ ~2 ilXl1213(~;~x) 
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Hence )x  +  =llXll=13( 0. 

Dividing by 12 and taking the limit as E ---} 0, we have, since lim 13(X; Z.X) = 0 
~---}0 

Xq-I( ~ )X > 0, for all X ~ R" 

Hence H(X) is positive semidefinite for all X ~ S. 

Conversely, suppose that the Hessian matrix is positive semidefinite for each 
point in S. Let X~, X 2 ~ S and consider 

= X , + ) ~ ( X  2 - x ~ ) ,  0 < 1 ~ < 1  

obviously, ~ ~ S. 

Now, by Taylor's theorem, we have 

1 )T 
f(X2) = fiX,) + Vf(X,) T (X 2 - X1) + -~ (X 2 - X, H( X )(X 2 - X,) 

Since ~ ~ S and by assumption H ( ~  ) is positive semidefinite, we get 

f(X2) = f(X,) > Vf(X,) T (X 2 - X l )  

and by theorem 9.11 f is convex on S. 

Theorem 9.18. Let fbe  a twice differentiable function on an open convex set S in 
R". Then f is strictly convex on S if the Hessian matrix H(X) is positive definite 
for each X ~ S, that is, for each X e S, YTH(X)Y > 0, for all Y e R", Y r 0. The 
converse is not true. 

Proof: If H(X) is positive definite for all X ~ S, then from theorem 9.17, we find 

f(X2) - fiX,) > Vf(X~) T (X 2 - X,), X,, X 2 e S, X 1 :~: X 2 

Hence by theorem 9.12, f is strictly convex 

To see that the converse is not true, consider the function defined by f(x) = x 4, 
x e R~. f is strictly convex on R ~ but H(x) = 12x 2 is zero at x = 0 and hence is not 
positive definite. 

9.3. Generalization of Convex Functions 

In the beginning of  the development of nonlinear programming, the theory and 
methods were mainly concerned with problems involving convex functions. It was 
however, gradually realized that not all the properties of convex functions are needed 
to establish many of the results of nonlinear programming---only some weaker 
properties are required. In this section, we present various types of functions, similar 
to convex functions, sharing some of their weaker properties. 

Ouasiconvex Function 
A function f defined on a convex set S in R" is said to be quasiconvex if for 

each X~, X 2 ~ S, 
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f(x,) _< f(x=) = tI~x, + (i-K)x~] _< f(x=) 
for each k e [0, 1] 

or equivalently, if" for each X 1, X 2 e S 

f[~,X~ + (1-k)X2] < Maximum { f(X~), f(X=)}. 

for each 2, e [0, 1 ] 

The function f is said to be quasiconcave i f -  f is quasiconvex. 

Theorem 9.19. Let f be a function defined on a convex set S in R", Then f is 
quasiconvex on S if and only if the set 

S = {XIX e S,  f(X) < or} is convex for each real number or. 

Proof: Suppose that S is convex for each real number or. Let X~, X 2 e S, then X 
= KX, + (1-~,)X: e S for ~, e [0, 1] 

Further, let ot = maximum {f(X1), f(X=)}, then X,, X 2 e S and since S is 
convex by assumption, X e S .  Therefore, 

fiX) < ot = max {f(X~), fX:)}. 

Hence fiX) is quasiconvex. 

Conversely, suppose that f is quasiconvex on S and let X,, X 2 e S .  Without 
loss of generality let us assume that fiX=) _< f(X,), and since X,, X 2 e S ,  f(X2) _< 
f(X,) _< or. 

Now since X~, X= e S and S is convex, 

f[kX~ + (1-X)X=] e S for k e [0, 1] 

and since f is quasiconvex, 

f[XX, + (1-X)X2] _< f(X,) _< 
Hence ~,X 1 + (1-~,)X 2 e S for ~, �9 [0, 1] 

and therefore S is convex. 
(x 

Theorem 9.20- A function f is quasiconvex on a convex set S c R n if and only if 
for all X~, X 2 ~ S, the function, ~ given by ~(~.) - f[~X~ + (1-X)X2] is quasiconvex 
in [0,1]. 
Proof: Suppose that f is quasiconvex on S and let X l, X 2 e S, X . .  X 2 and 

Y1 = ~'lXl + (1-~'l)X2 

Y2 = ~'2Xl + (1-Xz)X2 

for 0 _5_< K, < X 2_< 1. 

Further let Yo e (YI,Y2), so that Yo can be expressed as. 

Y0 = k0Xl + (1-~o)X2, ~1 < ~'0 < ~2 
Thus, we have Y~, Y2 e [X 1, X2] and Yo e (YI, Y2) and hence f(Y,) < f(Y2) 

implies f(Yo) ! f(Y2) which means ~(~1) < ~(K2) ::~ (~(~0) < (~(~2) , for all k~ ~2 e 
[0, 1], k o e(k,,  k2) 

Hence ~ is quasiconvex in [0,1] 

Conversely, let ~ be quasiconvex in [0,1]. Putting ~,~ = 0, ~2= 1, we get 
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~(0) _< ~(1) ~ ~(1~o) -< ~(1) for 1~o e [0, 1] 

which means 

f(X2) < fiX,) ~ f [~o x ,  + (1-)~o)X2] _< f(Xl) 
Thus f is quasiconvex. 

Theorem 9.21. Let f be a differentiable function on an open convex set S in R". 
Thenf is  quasiconvex if and only if for all X~, X 2 ~ S. 

f(Xl) < f(Xz) implies Vf(X2)T(X 1 - X2) ~ 0. 

Proof: Let fbe  quasiconvex and let X~, X z e S be such that f(X~) < f(X2). 

Then f[)~X l + (1-)0X2] < f(Xz), for Z, e (0, 1). (9.1) 

By differentiability of f(X) at X z, we have for ~, e (0, 1). 

f[~X 1 + (1--)~)X~] - f(X2) = ~Vf(X2)T(Xl--X2) + ) llX,-X lkz [x,; ~(Xl--X2) ] 

where cz[X2; ~,(X~-X2) ] --> 0 as ~, --> 0 

By (9. I), we have 

)~Vf(X2)T ( X , -  X2) + X [IX,- X211 cz [X2; ~,(X,- X2) ] _< 0 

Dividing by ~, and letting ~, --> 0, we get 

Vf(X2) T (X 1 - X2) _~ 0. 

To prove the converse, suppose that X~, X 2 E S be such that ffXl) _~ f(X2) and 
Vf(X2)T(Xl-X2) < 0. 

We are then to show that 

f[XX~ + (1-)~)X2] _< f(X2), for each X e (0, 1) 

We establish the quasiconvexity of f by showing that 

f~ = {X IX = )~X, + (1-~,)X~, 1~ e (0, 1), f (X) > f(X2)} 

is empty. 

We assume by contradiction that there exists an ~ ~ t-l, so that 

,~ = ~X~ + (1-;~)X v for some ;~ e (0, 1) (9.2) 

and f (R ) > f(X2) (9.3) 

Since f is differentiable, it is continuous and there must exist a 5 ~ (0, 1), 
such that 

f[la X + (1-g)X 2] > f(X 2) for each Ix e [6, 1] 

and f( X ) > f [5 X + (1--8)X21 (9.5) 

(9.4) 

Let J~ = 0 X + (1 - 0)X:, for some 0 e (5, 1) 

By the mean value theorem, we then have, 

f( X ) = ti5 X +(1--~3)X 2] + (1-5) Vf( )( )T ( ~ _X2 ) (9.6) 

Hence (1--6) Vf( J~ )T ( X -X  2) = f( X )--ti5 X +(1-5)X2]>0, by (9.5) (9.7) 
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and (9.4) implies that 

f( i ) > f(X 2) 

Dividing (9.7), by (1-6), we have 

Vf( i )T ( ~ _X2 ) > 0 

Now, since 

we have 

-- X 2 - ~X 1 .4- (1-~)X 2 -- X 2 

= ~ (X~-  X2) and ~ e (0, 1), 

(9.8) 

(9.9) 

VU( X )T (XI_X2) > 0 (9.10) 

and further f( i ) > (X 2) ~ f(X l) 

By the assumption of the theorem, we have 

Vf( i )T (X, - ) (  ) _< 0 

(9.11) 

(9.12) 

Now, X = 0 X + (1 - 0)X 2, for some 0 e (5, 1) 

= 0[~X, + (1 - )~)X2] + (1 - 0)X 2 for soem ~, ~ (0, 1) 

= )~X 1 + (1 - ;~)X 2, where E 1 e (0, 1) 

and therefore we must have 

vff ( x , - R  ) -- (1 - vf( R ( x , - x  9 

Hence Vf( J~ )v (X,-  Xz) _< 0. 

which contradicts (9.10) implying that ~ is empty. 

This completes the proof. 

(9.13) 

Strictly Quasiconvex Functions 

A function f defined on a convex set S in R ", is said to be strictly quasiconvex, 
if for each X~, X 2 E S, 

f(X~) < f(X2) ~ f [ZX 1 + (1-X)X2] < f(X2), for each ~, e (0,1) 

or equivalently, 

f(X~) ~ f(X2) ~ f [ZX1 + (1-Z)X2] < max {f(X1), f(X2)} for each Z ~ (0,1) 

The function f is said to be strictly quasiconcave i f - f  is strictly quasiconvex. 

Theorem 9.22: If f is a strictly quasiconvex function on a convex set S in R", then 
any local minimum point is also a global minimum point of f on S. 

Proof: Let X be a local minimum point of a strictly quasiconvex function f on S 

in R ". 

Then there exists an ~-neighbourhood N ( X )  such that 
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f ( 'X)  < f(X), for all X ~ N ( , X )  (9.14) 

Let us assume that there exists a point )( e S but not in N ( X  ), such that 

f(J~) < f(x,). (9.15) 

Let X 0 e N ( X ) ,  such that 

X o-  ;~X +(1 - ) Q ~ ,  

By strict quasiconvexity of f, we then have 

0 < ; ~ < 1  

f(Xo)= t~EX +(1-)~)J~] < f ( x )  

i.e. f(Xo) < f( X ) (9.16) 

which contradicts that 

f(Xo) >_ f( X ) by (9.14) 

Hence "X is a global minimum point. 

It should be noted that every strictly quasiconvex function need not be 
quasiconvex. For example [266] consider the function f defined on R ~, such that, 

, if  
fix) = 0 if x ~ (9.17) 

f is then strictly quasiconvex on R' but is not quasiconvex, since for x~ = a, X 2 

= - a , a > 0  

f (Xl) = f (x2) = 0, but f [�89 x~ + �89 x2] = f (0) = 1 > f (x2). 

If however, f is lower semicontinuous, then strict quasiconvexity implies 
quasiconvexity as is shown in the following theorem. 

Theorem 9.23. [266] Let f be a lower semicontinuous function defined on a convex 
set S in R n and strictly quasiconvex. Then f is quasiconvex on S. 

Proof:  Let X l, X 2 s S. If f(X~)<f(X2), strict quasiconvexity of f implies 
quasiconvexity. 

Now, suppose that f(X~)=f(X2) and assume by contradiction that f is not 
quasiconvex. Hence there exist X l, X: s S, X o s (X~, X2) such that 

f (X~) = f (X2) < f (X o) (9.18) 

Since f is lower semicontinuous, there exists an R ~ (X l, Xo) such that 

f (Xo) > f ( X ) > f (X,) = f (X2). (9.19) 

It is easy to see that X 0 can be expressed as a convex combination of X and 

X 2, that is X o ~ ( X ,  X2). 



Convex and Concave Functions 109 

Now, since f(X2) < f (X) ,  by strict quasiconvexity of f we have f(X0) < f 

( X )  which contradicts (9.19) 

Hence f is quasiconvex on S. 

Explicitly quasiconvex 
A function defined on a convex set S in R n is explicitly quasiconvex if it is 

quasiconvex and if f(X1) < f(X2) implies f(X0) < f(X2)., for all X~, X 2 e S, X o 
(X l, X2) or equivalently if f(X~) r f(X2) implies f(Xo) < max [f(X~), f(Xz)]. In other 
words, f is explicitly quasiconvex if it is quasiconvex and also strictly quasiconvex. 
However, a strictly quasiconvex function need not be explicity quasiconvex.[See 
(9.17)] 

Further, an explicitly quasiconvex function on S is quasiconvex by definition, 
but every quasiconvex on S is not explicitly quasiconvex. This can be seen from 
the following example. 

Let the function f be defined on R+ ~ as 

1 if O_<x<l 
f(x) = 

0 if x > l  

It can be easily seen that this function is quasiconvex on R+ ~ 

Now for x~ = 2, X 2 - -  0 ,  f(2) = 0 < f(0) = 1, 

but for L = �88 x o - L x~ + (1-~)x 2 = �89 

f (Xo)=f ( �89  1 ~ f (0)= 1 

Thus the function f is quasiconvex in R+ ~ but not strictly quasiconvex and hence 
not explicitly quasiconvex. 

Theorem 9.24. If f is a convex function defined on a convex set S in R n, it is 
explicitly quasiconvex, that is, quasiconvex and also strictly quasiconvex but not 
conversely. 

Proof: Let f be convex on S and f ( X l )  ~ f iX2).  

Then for all L e (0,1), 

f [~k,X 1 "}- (1-L)X2] < ~ fiX,) + (1-~) f(X2) 

= f(Xz) + ~, [ f ( X l ) -  f(X2) ] 

_< f(x~). 
Hence f is quasiconvex on S. 

If f(X~) < fiX2), the above inequality is strict and thus fiX) is strictly 
quasiconvex. 

To prove that the converse is not true, consider the following example. 

Let f(x) = -  x 2, x ~ R+ ~. Then f is lower semicontinuous in R+ ~ (indeed 
continuous) and for x~, X 2 __> 0 ' -- X21 < -- X22 implies Xl ~> X2" 

Thus for x o = (1-)~) x~ + )~ x 2, 0 < )~ < 1 

f(Xo)- f(x2) = -  [(1-~,)x 1 + )/,X2] 2 + X22 
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= [(1-~.) x, + (1 +~.)x2] [(l-K) (x , -  x2) ] 

< 0 .  

Hence f is strictly quasiconvex and by theorem 9.23 it is quasiconvex on R 1 

But for x I = 2, x 2 = 0 and Z = �89 we have 

f[�89 + �89 = f(1) = - 1  > �89 f(2) + �89 f(0) = �89 (-4) + �89 (0) = - 2  

and therefore, f is not convex on W+. 

Theo rem  9.25. If f is convex and nonnegative and g is concave and positive 
functions on a convex set S in R n, then the function F defined by 

f(X) 
F(X) = 

g(X) 

is explicitly quasieonvex on S. 

Proof: Let X~, X z E S and X o = ZX~ + (1-Z)X 2, ;~ ~ (0,1). 

0 < f(Xo) _< X. fiX,) + ( l -Z)  f(X2). 

and g(Xo) >_ ~, g (X,) + ( l -Z)  g(X2) > 0 

Then 

F(Xo) = 
f(Xo) _< Lf(X,)+(1-~ ' ) f (X2)  

g(X o) ~, g(X,) + (1 - ~,)g(X 2) 

;~g(X, )F(X, ) + (1 - ~,)g(X 2 )F(X 2 ) 

g(X, ) + (1 - ;~)g(X z) 

~,g(X,) (1 - L)g(X2) 
F(Xl) + 

g(X, ) + (1 - ~)g(X 2) ~, g(X~) + (1 - ~)g(X2) 
F(X2) 

X2, 

Vf(X,) T (X z - X,) > 0 implies ffX2) > fiX,). 

Let a function f defined on some open set S in R" be differentiable on S. The 
function f is then said to be pseudoconvex if for each X~, X 2 e S. 

Vf  (X,) r (X 2 - X,) > 0 implies f(X2) > fiX,). 

or equivalently, if for each X~, X 2 ~ S, 

f(X2) < f(X~) implies Vf(X,) T (X 2 - X,) < 0 

The function f is said to be strictly pseudoconvex if for each X~, X 2 ~ S, X~ 

Pseudoconvex Function 

= o F(X,) + (1--0) F(X, ) ,  O ~ (0,1). 

< max{F(X,), F(X2) } 

Hence F(X) is quasiconvex on S. 

If  F(X~) ~ F(X2), the above inequality is strict implying that F is strictly 
quasiconvex. 

F is therefore explicitly quasiconvex on S. 
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or equivalently, if for each X,, X 2 e S, X 1 :r X2, 

f(X2) < f(X,) implies Vf(X1) T (X 2 - X~) < 0. 

The function f is said to be pseudoconcave (strictly pseudoconcave) i f - f  is 
pseudoconvex (strictly pseudoconvex). 

Theorem 9.26. Let a function f be defined on an open convex set S in R". If f is 
pseudoconvex on S, then f is both strictly quasiconvex and quasiconvex on S but 
not conversely. 

Proof: Suppose that f is pseudoconvex but not strictly quasiconvex. It then follows 
that there exists X l, X 2 e S such that 

fiX,) < f(X2) (9.20) 

and f( i ) > f(X 2) > f(Xl) 

where ~ = kX, + (1 - MX 2, for some 9~ e (0, l) 

By pseudoconvexity of f we then have 

vf(i )~ (x,- i ) < o (9.21) 

Since X 1 - i = -  
1-7~ 

(X 2 - i ), we have 

vf(5: )~ ( x : -  2 ) > o 

and then by pseudoconvexity of f 

f(X 2) > f( i ) 
and hence by (9.20), 

f(X 2) = f( i ) (9.23) 

Now, since Vf(~( )T (X 2 _ ~  ) > 0, there exists a point ~: = g ~: + (1 - g) 

X 2, g e (0, 1) such that 

Vf( )( )v ( ~ _ j~ ) > 0 (9.24) 

Hence, f( X ) > f( X ) = f(X2). (9.25) 

Now, since f(Xz) < f ( ~  ) ,  by pseudoconvexity of f, we have 

Vf( ~ )T (X 2 _ ~ )  < 0 (9.26) 

(9.22) 

g 
and since X2 - X = - 1 - g  ( )~ - ~ )' 

v f ( ~ F  ( i  - R) > o (9.27) 



112 Mathematical Programming: Theory and Methods 

Similarly, f( i ) < f( X ) implies 

Vf(R')  T ( i  -- X ) < 0 (9.28) 

which contradicts (9.27). 

Hence f is strictly quasiconvex. 

By theorem 9.23, then f is also quasiconvex. 

To show that the converse is not true consider the example f(x) = x 3, x e W. 
It can be easily seen that f is strictly quasiconvex but is not pseudoconvex on R'. 

Theo rem 9.27. If a function f defined on an open convex set S in R n is 
pseudoconvex, then a local minimum of f on S is also a global minimum. 

Proof: By theorem 9.26, the function f is strictly quasiconvex function on S and 
therefore by theorem 9.22, a local minimum of f on S is also a global minimum. 

Theorem 9.28. If a function f defined on an open convex set S in R n is convex 
and differentiable, then f is pseudoconvex on S. 

Proof: Let f be a differentiable convex function on S, then 

fiX:)- f(X,) >_ Vf(X,) T (X 2 - X,) 

Then, Vf(X,) T (X=- X,) >_ O, implies that 

f(X 2) >_ f(X l) 
and hence f is pseudoconvex on S. 

Theorem 9.29. Let S be a convex set in R n and let a function F on S be defined by 

cTx  + O, 
F(X) = DT X +]3 

where C, D e R n and r 13 are scalars. 

If DTX + ~ r 0 for all X e S, then F is both pseudoconvex and pseudoconcave 
on S. 

Proof: Since DTX + [3 ~ 0, for all X e S, it is either positive for all X e S or 
negative for all X e S. For if there exist X~, X: e S such that DTX~ + [3 > 0 and 
DTXz + 13 < 0, then for X, a convex combination of X~ and X 2, DTX + 13 would bc 
zero, contradicting the assumption. 

To show that F is pscudoconvcx on S, we need to show that for X~, X 2 e S, 
Vf(X]) T (X 2 - Xl) ~ 0 implies F(X2) >__ F(X~). 

Now, 0<_ (X2-X,)TA F(X,)=(X2--X,)T [ (DTX' + ~)C-(CTX'( DTX, + [3) 2 + cz)D] 

Since (DTX, + 13) 2 > 0, wc have 

(X2-XI)T[(DTX, + [3) C -  (CTXI 4- or)D] >_ 0 

or (CTX2 + or) (DTX1 + ]3) - ( O t X  2 + ~)  (CTX, -Jr- (g) ~__ 0 

Since DTX + [3 and DTX2 + 13 are both either positive or negative, 
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dividing by (DrX~ + 13)(DrX= + 13) > 0, we get 

CrX2 +c~ > CrX~ +or 

BrX2 + 13 - DrX, + 13 

Hence F is pseudoconvex 

Similarly, it can be shown that Vf(X~)T(X2- X~) _< 0 implies F(X2) _< F(X~) 
and therefore F is pseudoconcave. 

Corol lary  9.2: The function F is strictly quasiconvex, quasiconvex and also strictly 
quasiconcave, quasiconcave. 

Proof:  Follows from theorem 9.26. 

The ordering among the generalized convex functions, we have discussed may 
now be given as follows. 

(a) If a function is defined on an open convex set and is differentiable, we 
have the relations 
strictly convex ~ convex ~ pseudoconvex 

explicitly quasiconvex 
quasiconvex. 

(b) If a function is defined on an open convex set but is not differentiable, we 
have 
strictly convex ~ convex ~ explicitly quasiconvex 

quasiconvex. 

9.4. Exercises 
1. Show that a function f on R" is a linear function: if and only if f is both 

convex and concave. 
2. Classify the following functions as convex and concave. 

( a )  x 2 , x ~ R l 

(b) IXl , x ~ R ~ 
(c) e ~ , x ~ R 1 

(d) e -x~ , x ~ R 1 

(e) log x , x > 0 
3. If fi, i e I are convex functions on a convex set S in R" and b~ are scalars, 

then show that the set 

R = {X [ fi(X ) < ba, i e I} is convex and closed. 
4. Show that a function f defined on a convex set S in R" is concave if and 

only if the hypograph of  f defined by the set 

Shy p = {(X, ~) IX E S, ~ E R l, f(X) ~_ ~} 
is convex. 

5. Consider the function f(X) = CTX + �89 XTBX, where C is an n-vector and 
B is an n x n symmetric matrix. Show that f is concave on R ~ if and 
only if B is negative semidefinite. 

6. Let  f be a convex  funct ion  on a convex  set S in R" and g be a 
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nondecreasing convex function on R ~. Show that the composite function 
h defined by h (X)=  g[f(X)] is convex on S. 

7. Let fl, f2," f be convex functions on a convex set S in R". Show that 
the function f defined by f(X) = max{fl(X ), f2(X), .. f (X)}  is convex 
on S. 

8. Let g be a concave function on S = {X: X e R", g(X) > 0}. Show that the 
function f defined by f(X) = 1/g(X) is convex on S. 

9. Show that the function f defined by 

m 

f (x)  = ~ c~ exp ( "~ 
�9 j = l  

where a.. and c~ > 0 are scalars, is convex on R". 
ij 

10. Let f(X, a )  be convex on a convex set S for each ct, a _< ot _< b. If the 
function O(ot) >_ O, then prove that the function 

b 

F(X)= If(X, (x)~((x)dot 
a 

is convex on S. 
11. Show that no polynomial of odd degree (>_3) is a convex function on R ~. 
12. Show that the function f defined by 

f(X) = In .__. e ~' 
�9 i= l  

is a convex function on R" 
13. Let the function (~ be defined on S = { X ~ R" I X > 0}. Then show that 

r = (x,)~' (x~y' . . .(x~ " 

where (x~ >_ 0 ,  (i = 1,2,..n) is explicitly quasiconcave. 
14. If functions f and g defined on a convex set S is R" are both concave and 

nonnegative, then prove that r = f(X).g(X) is explicitly quasiconcave 
on S. 

15. Let the functions f and g be defined on a convex set S in R". Show that 
the function ~) defined by 0(X) = f(X)/g(X) is explicitly quasiconvex if 
any one of the following conditions holds true. 
(a) f is concave and nonnegative, g is concave and negative on S. 
(b) f is convex and nonpositive, g is convex and positive on S. 
(c) f is concave and nonpositive, g is convex and negative on S. 

16. If in Q 15, S is open and f and g are differentiable on S, then show that ~) 
is pseudoconvex. 
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Linear Programming Problems 

As we have seen in Chapter 1, a wide class of decision problems can be formulated 
as linear programming problems where we are to maximize or minimize a linear 
function subject to certain inequality constraints. In this chapter we give equivalent 
formulations of the general linear programming problem and discuss some of its 
fundamental properties which make it possible to develop the most widely used 
method~the simplex method, for solving the problem (discussed in Chapter 11). 

10.1. The General Problem 

The general linear programming problem is to find values of a set of variables 
Xa, x2, .. x which optimizes (maximizes or minimizes) a linear function 

z = ~-'~ cjxj (10.1) 
j=l 

Subject to ~ a~jxj _< b~, i = 1,2 .... m~ (10.2) 
j=l 

~" a~jxj = b~, i = m~ + 1,..m 2 (10.3) 
j=i 

~'~ a~jxj > b~, i = m 2 + 1,..m 
j=l 

x.>O, j = l  2,..n1 

xj arbitrary, j = hi, + 1,..n 

where all the Jc" a~j and b~ are assumed to be known constants. 

(10.4) 

(lo.5) 
(lO.6) 

10.2. Equivalent Formulations 
It has been shown in the examples of Chapter 1 that the linear programming 

problem can be presented in variety of forms. It may be a problem of maximization 
or minimization under the conditions with < ,  = ,  and/or >_ type of inequalities. 
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Different aspects of development in linear programming are based on different 
forms of the problem. It can however be easily shown that these different forms 
are equivalent to each other and the results attained with one form of the problem, 
therefore are valid for all types of linear programming problem. In all the cases, 
the condition of nonnegativity of all the variables are imposed as the nonnegativity 
conditions xj > 0, play a special role in linear programming. 

Three equivalent formulations of the problem are considered which are also 
equivalent to the general form: the canonical form, which is primarily used in the 
development of the theory of duality; the standard form, which is used in the 
development of the methods of computation and the mixed form which contains 
both the conditions of equalities and inequalities, is used to represent some practical 
situations. 

Canonical Form 

Maximize Z = ~ CjXj 
j=l 

Subject to ~,~ a~jxj < b~, i = 1,2,...m 
j=l 

xj_>0, j = l  2,..n. 

In matrix notation, it can be expressed as 

Maximize z = cTX 

Subject to AX < b 

X > 0  

where c r = (c~, C2,..Cn); b r = (b~, b2,..bm); 

X T = (x~, x2..X, ) are row vectors and 

A = (a~j) is an m • n matrix 

Standard Form 

(10.7) 

Minimize Z ~- ~ CjXj 
j=l 

Subject to ~ a~jxj = b~, i = 1, 2 .... m 
j=i 

x > 0 ,  j = l  2,..n. 

and in matrix notation it can be stated as, 

Minimize z = crX 

Subject to AX = b 

X > 0  

(10.8) 
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Maximize Z = s GjXj 
j-l 

n 

Subject to ~ aijxj -< b~, i - 1,2,...m 1 
j=l 

In matrix notation, we have 

Maximize 

Subject to 

s a~jxj = b~, i = m] +1 .... m. 
j=] 

xj_>O, j = l  2,..n. 

Z = cXX 

AIX _< b l 

A2X = b 2 (10.9) 

X > 0  

where c r, A~, A 2, b I and b 2 are appropriate matrices or vectors. 

The equivalence of  the above different forms may easily be shown by the 

following elementary operations. 

Operation 1" Since minimum f(X) = -  maximum [-f(X)], where f(X) is a linear 

function, any problem of  maximizat ion may be expressed as a problem of  
minimization and vice-versa. 

Operation 2: An inequality in one direction may be changed to an inequality in 
the opposite direction by multiplying both sides of  the inequality b y - 1 .  

Thus a~ x~ + a 2 x 2 < b~, 

is equivalent to - a  I x 1 - a 2 x 2 >_ -b~ 

Similarly, d~x I + d2x 2 >_ b2, 

is equivalent to -dlX ~ - d2x 2 _<-b2. 

Opera t ion  3: A variable of  arbitrary sign can always be expressed as the difference 
between two nonnegative variables. Thus if a variable x is unconstrained in sign, 

it may be replaced by (x §  x-), where x § and x- are both nonnegative variables, 
i.e. x § >_ 0, x- >_ 0 

Operation 4" An equation 

a I x~ + a 2 x 2 = b 

is equivalent to the two inequalities 

a~ x~ + a 2 x 2 < b 

- a  I x I - a 2 x 2 < -b. 

Operation 5: An inequality of  less than or equal to type, may be changed to an 

equation by adding an additional nonnegative variable called the slack variable. 
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For example, a l x  I + a2x 2 < p~, 

may be replaced by a~x~ + a2x 2 4- x 3 = Pl ,  

where x 3 > 0 is the additional variable known as slack variable. 

Similarly, an inequality of greater than or equal to type may be changed to an 
equation by subtracting, an additional nonnegative variable called the surplus 
variable. 

Thus, d~x~ + d2x 2 > q 

may be replaced by, d~x~ + d2x 2- x 3 = q 

where x 3 > 0 is the additional variable called the surplus variable. 

It should be noted that the slack and surplus variables are given zero coefficients 
in the linear function to be optimized. 

Using the preceding operations, the following transformations from one form 
to another may easily be obtained. 

General form to 

Standard form to 

Mixed form to 

Mixed and Canonical form to 

Mixed form (by operations 1, 2 and 3) 

Canonical form (by operatiofls 1 and 4) 

Canonical form (by operations 4) 

Standard form (by operations 1 and 5) 

10.3. Definitions and Terminologies 
The linear function to be optimized (minimized or maximized) is called the 

objective function. 
Mathematically, the conditions of nonnegativity do not differ from other 

conditions but since nonnegativity conditions play a special role in the development 
of the methods of computations for linear programming problems, (c.f. Chapter 
11), x > 0 are called nonnegative restrictions or simply restrictions and the other 
conditions are referred to as constraints. 

A set of values of the variables which satisfies all the constraints and the 
nonnegative restrictions is called a feasible solution. 

A feasible solution which optimizes the objective function if it exists, is called 
an optimal solution, that is, an optimal solution is a feasible solution in which all 
variables are f'mite, which optimizes the objective function. 

A set of feasible solutions is said to be a feasible region, a feasible set or a 
constraint set. 

The vector 'b' on the right hand side of the constraints is called the requirement 
vector and the columns of A are called activity vectors. 

A linear programming problem is often referred to as a linear program. 

10.4. Basic Solutions of Linear Programs 
By a basic solution of a linear programming problem, we mean a basic solution 
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of the system of linear constraints of the problem in standard form. (c.f. section 
7.3). 

Consider the problem, 

Minimize 

Subject to 

Z ----- c T X  

AX = b. 

X > 0  (10.10) 
where c T = (c,, c 2, ..  C n )  , b T = (b,, b 2, . .  b i n )  and A is an m x n matrix. 

It is assumed that n > m and r(A) = m, so that the system of equations are 
nonredundant and the problem has more than one, in fact an infinite number of 
solutions. 

Suppose that any m linearly independent columns from A are selected to form 
a matrix B. B is then a nonsingular submatrix of order m of A and is called a basis 
of the linear system or a basis matrix of the problem. 

The matrix A can then be written as 

A = [B, N] 

where B is an m • m matrix, and N is an m • (n-m) matrix. 

Further, suppose that X B is the vector of variables associated with the columns 
of B and X N be the vector of the remaining variables. The system of equations can 
then be expressed as, 

BX B + NX N = b, (10.11) 

and all the solutions of the linear system can be generated by assigning arbitrary 
values to XN If we set X N = 0, we have BX B = b and since B is nonsingular, a 
unique solution X B = B-'b can be obtained. [X~, 0], is then called a basic solution 
of the system AX = b or the linear program. For convenience, X B = B-'b, is often 
referred to as the basic solution, understanding that the basic solution actually is 
[X a, 0], with (n-m) remaining variables having zero values. 

The m components of X B are called basic variables and the remaining (n-m) 
variables (the components Of XN) are known as nonbasic variables. 

(n 1 n, The maximum number of basic solutions is equal to = m ! (n -  m)!' which 

is the number of nonsingular matrices possible to extract from A. 

A basic solution is called a basic feasible solution, if it satisfies the nonnegative 
restrictions also, that is, if all the basic variables are nonnegative. 

A basic feasible solution is called a nondegenerate basic feasible solution if 
all the basic variables are strictly positive. If one or more of the basic variables 
are zero, it is known as degenerate basic feasible solution. 

10.5. Fundamental Properties of Linear Programs 
In this section we shall discuss some fundamental  properties of  linear 



122 Mathematical Programming: Theory and Methods 
, 

programming problems which lead to the development of the simplex method 
devised by Dantzig [96] for solving linear programs. 

Theorem 10.1. The set of feasible solutions to a linear programming problem is a 
closed convex set bounded from below. 

Proof: Every feasible solution which must satisfy the constraints of the problem 
(10.9) belongs to the intersection of the closed half-spaces with the hyperplanes 
and with the nonnegative orthant X > 0. All these are closed convex sets and hence 
their intersection is. Furthermore, the set is bounded from below since X > 0. 

Let S denote the set of feasible solutions to a linear programming problem. If 
S is nonempty, S may either be a convex region unbounded in some direction or a 
convex polyhedron. If S is unbounded, the problem has a feasible solution but the 
value of the objective function might be unbounded and if S is a convex polyhedron, 
then the problem has a feasible solution with an optimal value of the objective 
function. 

Let us assume that S is a convex polyhedron. 

Note that the objective function of the linear program which is to be optimized 
is a hyperplane 

cTX = Z 

where z is a parameter. 

This hyperplane is moved parallel to itself over the convex set of the feasible 
solutions S umil z = z o, the minimum value of z on S. (for minimization problem) 

Thus X o is an optimal solution of the minimization problem if and only if 

CTXo = Zo, 

cTX > Z, for every X ~ S. 

which implies that X o is a boundary point of S. By definition, then crX = z o is a 
supporting hyperplane which contains at least one point of S on the boundary. 
Thus, there may be more than one optimal solution of the linear program and at 
least one extreme point of S is an optimal solution. (See Chapter 8) 

This can also be seen from theorem 10.2, which follows. 

Theorem 10.2" Let the set S of feasible solutions to the linear programming 
problem be nonempty, closed and bounded. Then the problem has an optimal 
solution which is attained at an extreme point of S. 

Proof: Since S is a nonempty, closed, bounded convex set and the objective 
function is linear, an optimal solution of the problem exists. S is a convex polyhedron 
and from corollary 10.2, it follows that S has a finite number of extreme poims. 
Let these extreme points be denoted by X],  X 2 , .. Xp. Let X o be a feasible point 
minimizing (for the, minimization problem) the objective function cTX on S, so that 

CTXo < cTX, for all X ~ S (10.12) 

If X 0 is an extreme point, the theorem is true. 

Suppose X o is not an extreme point of S and hence X 0 can be expressed as 
a convex combination of the extreme points of S (see Theorem 8.12). Thus, we 
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=cVX~ (10.13) 

where = cVX~ = Min cVX~, 
i 

= C T * By (10.12), CTXo X, 

and therefore, there is an extreme point X '  of S, at which the objective function 
attains its minimum. 

Theorem 10.3" The set of optimal solutions to a linear programming problem is 
convex. 

Proof: Let K be the set of optimal solutions and X~ ~ X2 ~ ~ K. X~ ~ X2~ are then 
optimal solutions to the problem and crX~ ~ = cVX0 = z o = min z. 

Since X~ ~ Xz ~ are feasible solutions, X~ ~ X: ~ belong to S, the set of feasible 
solutions of the problem and since S is convex, 

~X ~  for all ~., 0<~.<1. 

A l s o ,  c ~ [~x',' + 0 - ~ ) x ;  ] = ~c ~ x~ + (l - ~ )c  �9 x~  = Zo 

Hence, ~.X ~ + (1 - ~.)X~ e K, for all ~., 0 < ~. _< 1 

and therefore K is convex. 

Corollary 10.1" If there exist more then one optimal solutions, then an infinite 
number of optimal solutions can be obtained. 

Proof: Every convex combination of the known optimal solutions is optimal. 

Now, a convex polyhedron has a finite number of extreme points (corollary 
10.2) and hence if we had an analytical method to find the extreme points of the 
feasible set of the problem, we would only need to examine a finite number of 
feasible solutions to find an optimal solution. That, it is indeed possible to have 
such a method can be seen from the following theorems. 

Theorem 10.4: If a standard linear program has a feasible solution it also has a 
basic feasible solution. 

Proof: Let the linear constraints of the standard linear program be given by, 

AX = b, 
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where A is an (m x n) matrix and rank (A) = m 

Let X = (x~, x 2, . .x)  T be a feasible solution and suppose that the variables 
are so numbered that the positive components of  X are the first k components 
and the last (n-k)  components have the value zero, so that 

a~x I + a2x 2 + .. + akX k -- b (10.15) 

where aj is the j th column of A and x > 0, j = 1,2,...k. J 
Two cases may now arise 

Case 1. The vectors a~,a2,..a k associated with the positive variables are linearly 
independent. This implies k < m. 

If k = m, the assumed feasible solution is a nondegenerate basic feasible 
solution. 

If k < m, a set of additional vectors say, ak+ Z, ak+ 2, ..a m can always be found 
(since r(A) - m) so that a~, aE,..ak, ak+~,..a m form a linearly independent set. Then, 

a l x  I + .. + amX m b, 
where xj > 0, j = 1,2..k (10.16) 

and xj = 0, j = k+ 1, ..m. 

Thus we have a degenerate basic feasible solution with (m-k)  of  the basic 
variables having values zero. 

Case 2. Let a~, a2,..a k be linearly dependent. This means that there exist constants 

13[,1, 0[,2..0[,k, not all zero, such that 

ct~a~ + ~ a  2 +... + ~kak = 0. (10.17) 

Multiplying this equation by -1,  if necessary, we can always assume that one 
of  the otj is positive. Now, multiplying (10.17) by a scalar 0 and subtracting it 
from the equation (10.15), we get, 

k 

~ -~(x j -0%)  aj =b  (10.18) 
j=l 

and if x j -  0 (xj, j = 1, 2, ..k are all nonnegative, we have a new feasible solution. 
Since x~, x 2, .. x k are all positive, we can always find a 0 > O, for which the 
coefficients of the vectors a. in (10.18) remain nonnegative. 

J 

x t = - - =  n ,aj  >0  . 
~ r  

(10.19) 

~ j  
and then x'j - x j - ~ x , ,  j = 1,2,..k (10.20) 

(~r 

are all nonnegative 

It is thus clear that (x~ ', x2',... 0; 0...0) T (10.21) 

constitute a new feasible solution with at most ( k - l )  positive variables. If the 
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vectors associated with these positive variables are linearly dependent, we repeat 
the forgoing procedure and continue the process until the vectors associated with 
the positive variables are linearly independent. Then case 1 applies and a basic 
feasible solution can be obtained. 

Theorem 10.5. Let S be the convex polyhedron generated by the set of  feasible 
solutions to the standard linear programming problem, i.e. S = {x lAx = b, x > 
0}, where A is an m x n matrix and r(A) = m. Then X is an extreme point of  S 

if and only if X is a basic feasible solution of  the problem. 

Proof:  Suppose that X is an extreme point of  S. Let the nonzero components of  

X be the first k components so that 

alx 1 + aEx 2 + .. + akX k = b (10.22) 

Assume that the vectors al ,a2, . .a  k a re  linearly dependent. Then there exist 

constants ~,ot2..ot k not all zero, such that 

r la~ + txEa 2 + + tXka k = 0 .  ( 1 0 . 2 3 )  

Now, for some 0 > 0, multiplying (10.23) by 0 and adding and subtracting the 
result from (10.22) we have, 

k 

(xj + Ocxj) aj = b (10.24) 
j=l 

k 

and )- ' (xj  - 0 % )  a, = b (10.25) 
j=l 

Let X 1 -- (x  1 § 0 0[,1, x 2 § O 0[,2, .. x k § 0 (Zk, 0 . . .  0 )  T ( 1 0 . 2 6 )  

and X 2 = (x~ - 0 c~ 1, x 2 - 0 ~2, "xk - 0 o~ k, 0 ... O) r (10.27) 

Since x. > O, j = 1,2..k, it is always possible to find a 0 > O, such that the first 
J 

k components of  both X 1 and X 2 are positive. For example, if we take 

O as O < O < M i n  xj J I ctj] '  czj r j= l ,2 , . .k  (10.28) 

then, x + 0 or. and x . -  0 (z. are both positive for j = 1,2..k. 
J J J J 

Hence X~ and X 2 a r e  feasible solutions of  the problem (X~ r X2) ,  

But X - �89 X 1 + �89 X 2 , i.e. X is a convex combination of two distinct feasible 
solutions different from X and therefore contradicts that X is an extreme point of  

S. Hence a~, aE,..a k a re  linearly independent. 

Since r(A) - m, i fk  < m, we can always include additional (m-k)  vectors say, 

ak+~,..a m so that the set of  vectors al,aE..ak, ak+l,..a m are linearly independent. B = 
(a~, a 2, ..a k, ak+~..am) then forms a basis matrix and X = (x~, X2..Xk,0..0)T is a basic 
feasible solution. 

Now, suppose that X B is a basic feasible solution to the problem, and let 
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.  00) X B = X ,X2, . .Xm,  

(after relabelling the variables if necessary). 

The values of the components of X B are given by the solution of 

(10.29) 

so that we have, 

and x "  =(Xl , ,," 

FI FI )T X FI " - (xIFI ,x2 ..x n (10.31/ 

X Fl ~ X Fa 

xjB : ~,x~l +(l_X)x~2, j :  1,2,..m (10.32) 

0 = kx F~ + (1 - X)x[ 2, j : m + 1,..n. (10.33) 

for some ~,, 0 < ~, < 1. 

Since xjF~ _> 0, XjF2 _> 0 for all j and 0 < ~. < 1, (10.33) implies that 

xjF~ = xjF2 = 0, for j = m+ 1 , ...n. 

and the values of the remaining components of X FI and X F2 are also determined by 
the solution of (10.30). As this solution is unique, we must have 

x~ =xjFl =xjF~ , for all j = 1, 2,..n. 

which implies that X B cannot be expressed as a convex combination of two distinct 
feasible solutions. Hence X B is an extreme point of S. 

Corol lary 10.2. The number of extreme points of the convex polydron S = {XI 
AX = b, X > 0} where A is an m x n matrix and r(A) = m is finite. 

Proof: The number of extreme points of  S is at most ( n / ,  which is the maximum 

number of ways to choose m independent columns from A to from the basis matrix 
B. 

10.6. Exercises 
1. A manufacturer produces three products A, B and C which are to be 

m 

)-~aijx j = b i, i = 1,2,..m (10.30) 
j=l 

Since a~, a2..a are linearly independent vectors forming the basis, this solutions 
must be unique. 

Suppose that X B is not an extreme point of S. Then there exist two distinct 
feasible solutions. 



Linear Programming Problems 127 

processed by three machines M], M 2 and M 3. The machine time in hours per unit 
produced, the total machine times available on machines and profit per unit from 
the products are as follows" 

Products Machine time in hours Profit per unit 

M, M: 
A 3 0 1 8 

B 8 4 2 20 

C 2 3 0 6 

Machine hours. Available 250 150 50 

Formulate the problem as a linear programming problem to determine the 
amount of each product to be produced to maximize-the total profit. 

2. A manufacturer of biscuits is considering four types of gift packs containing 
three types of biscuits, Orange Cream (OC), Chocolate Cream (CC) and Wafers 
(W). Market research study conducted recently to assess the preferences of the 
consumers shows the following types of assortments to be in good demand: 

Assortments Contents Selling price per unit in dollar 

Not less than 40% of OC 

A Not more than 20% of CC 10 

Any quantity of W 

Not less than 20% of OC 

B Not more than 40% of CC 12.5 

Any quantity of W 

Not less than 50% of OC 

C Not more than 10% of CC 11 

Any quantity of W 

D No restrictions 6 

For the biscuits, the manufacturing capacity and costs are given below: 

Biscuit variety Plant Capacity Manufacturing 
units per day cost in dollar per unit 

OC 200 4 

CC 200 4.5 

W 150 3.5 

Formulate a linear programming model to find the production schedule which 
maximizes the profit assuming that there are no market restrictions. 
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3. An oil refinery has two types of crude oil A and B and wants to optimally 
mix them to produce fuel oil and gasoline from the data given below: 

Mix Input in units Output in units 

Crude A Crude B Fuel oil Gasoline 

M 2 3 3 4 
1 

M 3 2 6 2 
2 

M 3 3 3 2 
3 

The amount of crude oil available are 15 units of A and 20 units of B. The 
fuel oil sells for $3 per unit and gasoline sells for $18 per unit. Formulate the 
problem to decide on the production scheme to maximize the profit. 

4. A paper company produces rolls of paper of standard width of 200 cm 
and the following orders have been received: 

Width in cm: 65 60 55 
No. of rolls: 250 150 100 

To satisfy these orders the rolls are to be cut in such a way that the wastage of 
paper is minimum. 

Obtain a linear programming formulation of the problem to determine an 
optimal cutting pattern. 

5. A ship has three cargo holds: forward, centre and aft. The capacity limits 
are as follows: 

Cargo holds 

Forward 
Centre 
Aft 

Weight capacity Volume capacity 
in tonnes in cubic meters. 

2,000 100,000 
3,000 135,000 
1,500 30,000 

The following cargoes are offered; the ship owners may accept all or any part 
of each commodity: 

Commodity Amount Volume per Profit per 
(tonnes) tonne tonne ($) 

A 6,000 60 60 
B 4,000 50 80 
C 2,000 25 50 
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In order to preserve the trim of the ship, the weight in each hold must be 
proportional to the capacity in tonnes. The problem facing the owners of the ship 
is to decide how much of each commodity to accept in order to maximize the total 
profit. 

Formulate a linear programming model for this problem. 

6. A television set manufacturing company produces two types of television 
sets--color and black-and-white. A color T.V. requires 16 man-hours and a black- 
and-white requires 12 man-hours and the total number of man-hours available is 
4,000 per month. A market research indicates that at most 800 units of color T.V. 
and 3200 units of black-and-white T.V. can be sold per month. The unit profits of 
the color and black-and-white T.V.'s are $48 and $24 respectively. The company 
wants to determine the number of units of the two types of T.V.'s that are to be 
produced so that the total profit is maximum. Formulate the problem as a linear 
program. 

7. A company manufactures products A, B, C and D which are processed by 
planer, milling, drilling and assembly departments. The requirements per unit of 
products in hours and the capacities of the departments and profits per unit of 
products are as follows: 

Product Requirements per unit (hours) Profit per 

Planner Milling Drilling Assembly unit in dollars 

A 0.5 2.0 0.5 3.0 8 

B 1.0 1.0 0.5 1.0 9 

C 1.0 1.0 1.0 2.0 7 

D 0.5 1.0 1.0 30 6 

Capacity (in hours) 1,800 2,800 3,000 6,000 

Minimum sales requirements of the products A, 13, C and D are 100 units, 600 
units, 500 units and 400 units, respectively. 

Formulate the problem of determining the number of units of the products to 
be produced to maximize profit as a linear programming problem. 

8. Express the following linear programs in standard form. 

(a) Minimize 3x~ + 2X 2 - 4 X  3 

Subject to 5x~ - x 2 + 3x 3 > 8 

-4x~ + 2x 2 + 5X 3 ~> 4 

2X~ + 5x 2 - 6 X  3 >_ 5. 

Xl, X2, X 3 ~ 0. 

(b) Maximize 3xt - 6x 2 - 2x 3 

Subject to 3x~ - 2x 2 + x 3 5 5 

4x~ + 6x 2 - 3x 3 > - 2  
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(c) Maximize  

Subject to 

(d) Maximize 

Subject to 

X l + 2X 2 + 2X 3 >_ 11 

Xl, X2, X 3 ~___ 0 

5X 1 + 2X 2 + 3X 3 

x 1 - x 2 - x 3 < 5 

9x~ + 6X 2 - 7X 3 > --4 

4x~ + x  2 + x 3 = 10 

x] unrestricted; x 2, x 3 > O. 

3x~ + X 2 

X 1 --X2_~ 4 

X l +  X2_<2 

Xl > O, x 2 unrestricted 

9. Convert  the following linear program into canonical form. 

Maximize  3x I + 3x 2 + 2 x  3 

Subject to 2x~ + 3X 2 + 4x 3 = 8 

x~ + x 2 + 3x 3 = 6 

x~ + 2x 2 + x 3 = 2 

Xl, X2, X 3 ~ O, 

10. Solve the following problems graphically. 

(a) Maximize  2x~ + 3x 2 

Subject to x~ + x 2 _< 3 

(b) Minimize 

Subject to 

(c) Maximize  

Subject to 

X 1 - -  2x 2 < 1 

x2_<2 

Xl, X2~__ O, 

X l + 2X 2 

x~ + x2 >_ 1 

2x~ + x 2 < 9 

Xl_<4 

Xl, X 2 ~___ O, 

Xl "l- 3X 2 

X l + X 2 > _ 3  

-x~ + x 2 < 2. 

X l - 2X 2 < 2 

x~, x 2 >__ 0 

11. Obta in  basic feasible solutions of  the fol lowing linear programs and 

determine their optimal solutions. Verify them graphically 

(a) Maximize  2x~ + 3X 2 

Subject to 2x~ + x 2 < 2 
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(b) Maximize 

Subject to 

(c) Maximize 

Subject to 

X 1 + 3X2= 5 

x~, x2> 0 

5X 1 + 2X 2 

2x~ + x 2 _<~ 4 

2x~ + 3 x  2 >_ 6 

Xl, X2~ 0 

3X 1 + 4 x  2 

Xl + X2_< 4 

2x] + 5X 2 _<~ 10 

X1, X 2 >___ O. 

12. Find the extreme points of the set of solutions of the following system: 

8x~ + 3x 2 - 4 x  3 + x  4= 10 

4x 2 - 2 x  3 +x  5 = 12 

2x~ - x 2 + 3 x  3 + X 6 -" 7 

x . > O ,  j ~  

j = 1,2,...6. 

13. Show graphically that the maximum or minimum values of the objective 
function of the following problem are same. 

Maximize (or Minimize) 3x~ + 5x 2 

Subject to 3x~ + 2X 2 >__ 3 

x] + x 2 < 6  

Xl >__ 3 

X2>___ 3 

X1, X2> ~ 0 

14. Construct an example of linear program 
(a) which has no feasible solution. 
(b) which is feasible but has no optimal solution. 
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Simplex Method: Theory and Computation 

11.1. Introduction 
From the theorems discussed in Chapter 10, we know that 
(a) an optimal solution of a linear program, if it exists, is attained at one of 

the extreme points of the convex set of the feasible solutions, 
(b) every extreme point of the set corresponds to a basic feasible solution, and 
(c) if there exists a feasible solution to the problem, there also exists a basic 

feasible solution. 

It is therefore, clear that we need only to investigate extreme point solutions 
and hence only basic feasible solutions to obtain an optimal solution of the 
problem. Now, the maximum number of bases for a system of m equations in n 

unknowns is equal to ( n ) ,  which increases rapidly with the increase o f m  and 

n. For large m and n it would therefore be an impossible task to evaluate all the 
extreme points and select one that optimizes the objective function. What we 
need therefore, is a computational scheme which selects in a systematic way, a 
subset of extreme points where the value of the objective function continues 
improving and ultimately converges to an optimal solution if it exists. The simplex 
method devised by G.B. Dantzig [96] is such a procedure. The procedure finds 
an extreme point and checks whether it is optimal or not. If it is not, the procedure 
finds a neighbouring extreme point whose corresponding value of the objective 
function is at least as good as the one just obtained. The process is continued 
until an optimal solution is obtained or it indicates that the problem is unbounded. 
In each step, the procedure puts many extreme points out of consideration and 
it makes it possible to find an optimal solution in a finite number of steps. The 
simplex method also makes it possible to find whether the problem has no feasible 
solution. 

11.2. Theory of the Simplex Method 
To develop the simplex method, we proceed with the standard form of the linear 

programming problem 
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Minimize z = cTX. 

Subject to AX = b. (1 1.1) 

X > 0 .  

where A is an m x n matrix, m < n and r(A) = m. 

We assume that the problem is feasible and that we are given a basic feasible 

solution 

X 0 -- (x lo  , X20..Xmo , 0 ,  0 , . . . 0 )  T 

We then have 

alXlo + a2x20 +..+ amXm0 -- b. (1 1.2) 

ClX10 + C2X20 + . . +  CmXm0 -- Z 0 (1 1.3) 

where aj are the linearly independent column vectors of A, associated with the basic 
variables cj is the component of c corresponding to the basic variable x and z o is 
the corresponding value of the objective function. 

Since a~, a2.. a m are linearly independent vectors, any vector from the set a~, 

a2,.. am,..a ~ can be expressed in terms of a~, a2,..a m. 

a = a , j  = 1, 2,..n (11 4) Let ~ "+- s + " +  (Zmj m 

c = z, j = 1, 2,..n (11.5) and define (~'ijCl -t- l~2jC2 lt-"-~" O~mj m 

Theorem 11.1. Given a basic feasible solution to a standard linear programming 
problem, if for some j associated with the nonbasic variables, z - c  > 0 and all otij 
< 0, i = 1, 2,..m, then a class of new feasible solutions can be constructed in 
which (m + 1) variables are strictly positive and the corresponding value of the 
objective function can be made arbitrarily small. 

Proof: Multiplying (1 1.4) by some number 0 and subtracting from (1 1.2) and 
similarly multiplying (1 1.5) by the same 0 and subtracting from (1 1.3), we get, 

(Xl0- 0 0(,ij ) a~ + (X:o- 0 % )  a 2 + ...+ (Xmo- 0 0~.mj ) a + 0 a rn j 

= b, j = 1, 2,...n (1 1.6) 

(X10 -- 0 (~ij) C 1 q" (X20 -- 0 0~2j ) C 2 q- ...'Jr- (Xm0 -- 0 0~,mj ) C m + 0 Cj 

= z o -  0 ( z  - c ) ,  1, 2, . . .n (11 .7 )  

where 0 c has been added to both sides of (11.7). 
J 

Now, if at any stage, we have for some j associated with the nonbasic variables, 
z -  c. > 0 and all or. < 0, then for any 0 > 0, the coefficients of a ' s  in (11.6) will 

j j ij J 
constitute a new feasible solution. It is clear that there is no upper bound to 0 and 
that a class of new feasible solutions has been constructed in which (m + 1) 
variables are strictly positive and z ~ - ~  as 0 --~ + ~. 

Theorem 11.2. Let every basic feasible solution to the linear programming problem 
(11.1) be nondegenerate.  Then, if for some j associated with the nonbasic 
variables, Z -  c > 0 and if o~. > 0 for at least one i, i = 1,2,..m then a new basic j j ij 
feasible solution with exactly m positive variables can be constructed whose value 
of the objective function is less then the value for the proceeding solution. 
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Proof: Since by assumption, the basic variables X~o, X20,.oXmo are all positive, it is 
always possible to find a 0 > 0, for which the coefficients of the vectors in (11.6) 
remain positive. Thus, a new feasible solution is obtained and since Z j -  cj > 0, 
we have from (11.7), 

z = z o -  0 ( z -  c) < z o (11.8) 

Therefore, 0 should be made as large as possible to have a maximum reduction 
in the value of z. However, if at least one cz. > 0, it is not possible to assign any ij 
positive value to 0, without violating the nonnegativity restrictions. The largest 
value of 0 for which the coefficients of the vectors in (11.6) remain nonnegative is 

0 o = Min XiO > 0 for otij > O. (11.9) 
i O[ij 

Since the problem is nondegenerate, the minimum in (11.9) will be obtained 
for unique i, say for i = r (1 < r _< m). If 0 o is substituted for 0 in (11.6) and (11.7), 
the coefficient corresponding to i = r will vanish, which means that the vector a is 
replaced by a and we have a new basic feasible solution with exactly m positive 

variables, 

xa = X~o- 0 o ct 0, i = 1, 2,..m, i ~ r. 

x = 0  o 

and other variables = 0 

with z = z o - 0 o (z - c) < z o 

Note that if the problem is not nondenerate, z s z ~ 

Theorem 11.3. A necessary and sufficient condition for a basic feasible solution 
to the linear programming problem (11.1) to be minimal is that z - c < 0 for every 

J J ~  
j associated with a nonbasic variable. 

Proof: It follows immediately from theorems 11.1 and 11.2 that the condition is 
necessary if we assume that every basic feasible solution to the problem (11.1) is 
nondegenerate. 

Let us now show that the condition is also sufficient. 

Let Y = (y~, y2,..y,) r be any other feasible solution of the problem so that 

Y~ al + Y2 a2 +'"+ Y. a = b (11.10) 
yj>O, j =  1,2..n 

and let y~ c I + y2 c2 +...+ y c = z* (11.11) 

where z* is the corresponding value of the objective function. 

By hypothesis z j -  cj < 0, for every j associated with a nonbasic variable and 
since it is always true that zj - cj = 0 for every j, associated with a basic variable, 

we have, 

zj - c.j_< 0 for all j, j - 1,2..n. (11.12) 

Replacing cj by z in (11.11), we then get 

Y~ Zl + Y2 z2 +'"+ Y, z < z* (11. i3) 
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Further, on substituting (11.4) into (11.10) we obtain 

el (~-'~ txilai / + Y2 (~"~ ct'2a' ) + "'" + Y ~ / ~  ctma' / = b  ,=l i=l i=l 

or yjtxlj a~+ 2yjtx2j a2+.. .+y n Yj@mj am=b (11.14) 
j=l j=l j=l 

Similarly, on substituting (11.5) into (11.13), we obtain 

yjtXmj C < Z *  (11 15) ~j= Yj~,j Cl+ YjaEj) C2 +'"+ ~ j__, m -- . 

Now, a~,av..a m are basis vectors and since the expression of any vector in 
terms of basis vectors in unique, the coefficients of the corresponding vectors 
in (11.2) and (11.14) must be equal, that is 

Xi0 -" ~" yjaij, i = 1, 2..m (11.16) 
j=l 

Hence from (11.15), we have 

Xl0C 1 -I'- X20C 2 +.. .+ Xm0C m _~ Z* 

or z 0 < z*. 

Note that the nondegeneracy assumption is not required for the proof of 
sufficiency. 

Corollary 11.1" Given an optimal basic feasible solution to the linear programming 
problem (11.1), a necessary and sufficient condition that there is another basic 
feasible solution to be optimal is that for some j associated with the nonbasic 
variables, z - c = 0 for which oc > 0 for at least on i. j j lj 
Proof: The proof follows from theorem 11.3 and the relation 

z *  = z o - 0 0 ( z  - q ) .  

Corollary 11.2: A necessary and sufficient condition for an optimal solution to 
the linear programming problem (11.1) to be unique is that z -  c < 0, for every j J J 
associated with the nonbasic variables. 

Proof: The proof follows immediately from corollary 11.1 and from the fact that 
for a given basis, the solution is unique. 

Theorem 11.4. Under the assumption of nondegeneracy at each iteration, the 
simplex procedure terminates in a finite number of steps. 

Proof: The simplex procedure moves from one basis to another and under the 
assumption of nondegeneracy, the value of the objective function is decreased at 
each step. In the absence of degeneracy therefore, no basis can ever be repeated 
and since there is only a finite number of bases, the process terminates in a finite 
number of steps either with an optimal basic solution or an indication that there 
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is an unbounded solution of the problem. 

In the presence of degeneracy, one cannot be sure that the simplex procedure 
will necessarily terminate in a finite number of steps. If a basic feasible solution is 
degenerate, that is one or more of the basic variables are zero, then 0 o in (11.9) is 
zero and the new solution obtained is again degenerate with no improvement in 
the value of the objective function. This may occur in several successive iterations 
and it is possible to return to a basis already obtained and then the procedure may 
cycle indefinitely. It is therefore desirable to develop a procedure to avoid 
degeneracy in the problem. 

The techniques to resolve degeneracy in linear programming has been discussed 
in Chapter 13. 

11.3. Method of Computation: The Simplex Algorithm 
The theorems discussed in the previous section indicate how to proceed step 

by step so that the procedure converges to an optimal solution to the linear 
programming problem or determines that the problem has no optimal solution. 

We summarize them as follows: 

The Simplex Algorithm 
1. Convert all the inequality constraints into equations by introducing slack 

or surplus variables in the constraints. 
2. Check if all b~ (i = 1,2..m) are nonnegative. If any one of b~ is negative, 

multiply the corresponding equation by-1 .  
3. Express the problem in tabular form known as Simplex Tableau. (See 

section 11.4) 
4. Obtain an initial basic feasible solution X s to the problem where B is the 

initial basis matrix (in the case where there is no obvious feasible solution, 
see Chapter 12) 

5. Calculate the matrix (aij) and the quantities zj - cj according to (11.4) and 
(11.5). Test the z - c, 
(a) If for every j, z - cj < 0 (> 0), the present solution is minimal 

(maximal). 
(b) If for some j, z - cj > 0 (<0), proceed as follows. 

(i) If all ctj < 0, the problem is unbounded. 
(ii) If ~.j > 0, for at least one i, associated with the basic variables, 

the solution can be improved and proceed to step 6. 
6. If zj - cj > 0 (< 0) holds for more than one j, we introduce the vector a in 

the basis for which 

I z, - c ,  I = Max I zj - c j I .  entry criterion 
J 

and depart the vector a~ from the basis for which 
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, 

Q 

xr M'nEX: 1 
(:/' rs i (3t, is (:/'is > 0 exit criterion 

to obtain a new set of basis vectors a l, a2,...ar_ ~ a s, a +~,...a m. 
( z  is called the pivot element 
Calculate the new values of the basic variables, X B, and the new values 
(z' and z . ' -  c. and enter them into the next tableau [See section 11.5]. ij j j 

Repeat the process from step 5 until either an optimal solution is obtained 
or there is an indication that the problem is unbounded. 

11.4. The Simplex Tableau 
To apply simplex algorithm in a systematic and efficient manner, the linear 

programming problem is expressed in a tabular form known as Simplex Tableau. 
The simplex tableau is a very useful tabular form displaying all the quantities of 
interest in a linear programming problem so that the computation can be carried 
out in a systematic way. 

Let 13~, 13 2 .. 13 m be a set of linearly independent vectors and let a l, a2,...a n be a 
set of vectors each of which is a linear combination of 13~. The tableau of the vectors 
a, with respect to the basis 13~ is the matrix T o, expressing each of the a as a linear 

J 
combination of the 13~. It is expressed as 

~ m  

a~ a: .. aj .. a m 

(3('11 1~'12 (~'lj Of'in 

0('21 Cf'2.2 O~'2j C~'2n 

O~,il 0~,i2 Cf, ij Cf, in 

O'ml O~'m2 O~'mj (~'mn 

= T 0. 

The elements (z~j are the coefficients of 13~, in the expression for a, that is, 

i n  

aj = Y:  I3, 
i=l 

In simplex tableau, a few more rows and columns are added to give all the 
relevant information about the problem. The first column of the tableau gives the 
costs c a , corresponding to the vectors in the basis. The second column shows the 
vectors that are in the basis. Thus aB~ is the vector from A which is in the ith column 
of the basis matrix B. The succeeding n-columns are the coefficients of aa~ in the 
expression of aj in terms of aBe. The next column under the heading 'b' or X a gives 
the current values of the basic variables and the last column of the tableau gives 
the values of the ratio b~/ct~j where aj is the vector to be introduced in the basis. 

The (m + 1)th row of the tableau gives the cost elements of the problem and 
the last row provides the values of z j -  c. 

J 

The simplex tableau then looks like 
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% % 

CB 1 aB 1 

CB 2 aB 2 

CB i aB i 

CB m RB m 

C 

Z . - - C .  
J J 

a I a 2 . . .  aj . . .  a n 

0t, l l  (1,12 0t, lj (X'ln 

(X,21 (1,22 (X,2j OL2n 

OLil (X'i2 (X, ij (X'in 

(~ml (~m2 Cf'mj (/'mn 
, 

�9 C C l C 2 Cj n 

Z 1 - - C  1 Z 2 - - C  2 Zj --  Cj Z n - - C  n 

X s = b b / ~ . j  

b~ bl/Ctlj 
b 2 b2/c~2j 

b i b~/cx~j 

/ r  bm bm mj 

(11.17) 

T a b l e  11.1 Simplex Tableau. 

11.5. Replacement Operation 
Suppose that a basic feasible solution to the linear programming problem (11.1) 

is given by X s = B-~b, where B is a basis matrix whose columns are the first m 
columns of A. For any column vector aj from A, we then have. 

a i = tx~j a~ + G{,2j a 2 + ... + aO a + ... + O[,mj am, j = 1, 2,...n (11.18) 

where ix. are scalars. |j 

Suppose that the present basic feasible solution is not optimal and we want to 
examine the possibility of finding another basic feasible solution with an improved 
value of z. In Chapter 3, we have discussed how one of the vectors in a basis can 
be replaced by another vector to form a new basis. In the present case let a be a 
vector associated with the nonbasic variable x so that 

a =tXl a~ + tx2a 2 + ... + t x a +  ... + if, ms am (11.19) 

and let t x ,  0. We then get a new basis consisting of vectors a~, a2.. a_l, 
a ar+~..a m, by replacing the vector a by a and entries in the new tableau, i.e. the 
new values of tx e X B, and z - %  can be easily calculated. 

From (11.19), we get 

as ~ (3['is 
a r -- , , ._ ,, a i 

(~rs i=l l:l' rs 
i~r 

Now, any vector aj can be expressed as 

m 

aj = X GtiJ ai + ariai 
i=l 
i;tr 

Substituting the value of a from (11.20), we have, 

m as O[is 
aj  = E G ~ i j a i  + ~ ~ a i  ~rj  

i=l (~rs i=! (grs 
i;~r i.r 

(11.20) 
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, ,  , , , , ,  , 

m( ) 
cx~ tx~ (11.21) 

i~r 

Thus the new values or'.. are given by, tj 

CXt O~isC~rj ~j = c x ~ j - ~ ,  i=l,2,. .m; i~ r .  
C~rs 

(11.22) 

~rj 
~'rj = 

O[rs 

From the original basic feasible solution X 8, we have 

m 

Z Xa, a i = b. 
i=l 

(11.23) 

m 

E XBia i + X B a  r = b or i=l 

Now, eliminating a r in (11.24) by (11.20), we have 

m( 
E ~ X B , - - - X B , ~  a i + a s = b  
i=l C[rs C[rs 
i~r 

and if the new basic solution is to be feasible, we must have 

~is X i = X B - - ~ X B  >_0, i=l,2. .m; i ~ r  
~rs 

(11.24) 

(11.25) 

(11.26) 

X B  r 

x'~ = ~ > 0 (I 1.27) 
(X rs 

It is clear that if we are interested in having the new basic solution nonnegative, 
we cannot replace the vector a r by a when OCrs is not positive. In fact, we 
immediately note that to satisfy (I 1.27), we must have cz  > 0, since XBr > 0. 
NOW, if cz  > 0 and for some i, Otis _< 0 (i ~ r) then (I 1.26) is automatically 
satisfied for that i. We therefore need to be concerned with the case when cz~, > 
0. We then select from a~ with O~s > 0, the vector a to be removed from the old 
basis so that (I 1.26) is satisfied. 

If cz~, > 0, (I 1.26) can be written as 

xBi - xB----z-~ >__ 0 ( 1 1 . 2 8 )  
C~is C~rs 

We therefore, determine 
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�9 cxi, > 0 (11.29) 

and if this minimum (unique under nondegenerate assumption) is obtained when 
i = r, then a is replaced by a.  This implies that (11.26) are satisfied, i.e. the new 
basic solution is feasible. 

We are now interested in getting the transformation formula of z . -  c. and of z 
J J 

and show that there is an improvement in the value of the objective function at the 
new basic feasible solution. Let xj be a nonbasic variable, then z ' . -  J cj is given by 

m 

Zt  E t t j -- Cj = Of, ij Ci "1" (3f, rj Cs -- C j .  
i=l 
i~r 

m ( C~i,~r j ) (Xrj = ~~(x,j c , + - -  
�9 = Cgrs O~r s 
i;er 

c s -- Cj. 

o r  
~ 1~ isOf" rJ 

Z I j - -  Cj = (~ijgi  --  Of, rjCr --  
i=l i=l Of'rs 

(X rsO'r j O, rj 
C i + C r + ~ C  s - -C j  

O~r s Ctrs 

[ m: I r: 1 
i=l (}{'rs L i=l 

= ( Z j -  Cj)--~'~-'(Z s --Cs) (11.30) 

Now the new value of the objective function is 

in 

Z t = E C i X l i +  CsXW s 
i;~r 

Substituting the values of x 'x '  from (11.26) and (11.27) in the above expression i ~ s 
we get 

z'=z-X"' (z -c,) 
O~r s 

and hence z '<  z if z -  c > O. 

We therefore enter that vector a into the basis for which z - c > 0 and at least 
one ais (say ~x) > O, so that the value of z in the new solution is improved. 

11.5.1 Replacement Rule 
Suppose at some stage of computation for a solution of a linear programming 

problem by the simplex method, we find that to improve the solution we are to 
replace the vector a in the basis by the vector a.  We are to calculate the new values 
of ot~j, X b and Zj - cj and enter them in the next tableau. 
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Let the column associated with the vector a be called the distinguished column 
and the row associated with the vector a be known as the distinguished row. The 
element c t  at their intersection (distinguished position) is called the distinguished 
element or the pivot element and is indicated by an asterisk. 

From the formulae derived in the previous section, it is clear that by following 
' or' and z ' -  the rules stated below, the values of x B , ~j J c can be easily obtained. 

Rule 1: Divide all elements of the distinguished row by the distinguished element, 
thus obtaining an unity in the distinguished position. 

Rule 2: Subtract from the elements of the other rows, the ratio of the product 
of the corresponding elements in the distinguished row and the distinguished 
column to the distinguished element. 

Note that these operations will give zeros in th disting:Jished column except in 
the distinguished position, where we will get unity. 

11.6. Example 
Consider the problem 

Minimize 

Subject to 

Z = X l --  3 X  2 + 2 X  3. 

3x~- x 2 + 2x 3 _< 7 

- 4x~ + 3 x  2 + 8X 3 < 10 

- - X  l + 2 X  2 < 6 

Xl, X2, X 3 >___ O. 

After introducing the slack variables, the problem reduces to the standard form 

Minimize z = x~-  3x 2 + 2x 3 

Subject to 3x~- x 2 + 2x 3 + x 4 = 7 

-4x~ + 3x 2 + 8x 3 + x  5 = 10 

- - X  l + 2 X  2 + X 6 - 6  

x > 0 , j -  1,2,..6. j - -  

Tableau 1 

% aB 

a, 

a s 

a6 

z j -c j  

al a2 a3 a4 a 5 a6 

3 -1 2 1 0 0 

-4  3 8 0 1 0 

-1 2* 0 0 0 1 

1 -3  2 0 0 0 

-1 3 - 2  0 0 0 

1' 

b b/ai2 

10 10/3 

6 3 ~  
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Tableau 2 

% 

-3 

aB 

a, 

a 5 

a2 

zj-cj  

a, a 2 a 3 a 4 a 5 a 6 

5/2* 0 2 1 0 1/2 

-5 /2  0 �9 8 0 1 -3 /2  

-1/2  1 0 0 0 1/2 

1/2 

1' 

1 -3  2 0 0 0 

0 -2  0 0 -3/2  

10 

bi/ail 

4-~ 

Tableau 3 

% 

-3 

aB 

a 1 

a 5 

a 2 

z j-cj  

al a2 a3 a4 a5 a6 

1 0 4/5 2/5 0 1/5 

0 0 10 1 1 -1 

0 1 2/5 1/5 0 3/5 

1 -3  2 0 0 0 

0 0 -12/5 -1/5 0 -8/5 

11 

Since in tableau 3, z - c < 0 for all j, the solution obtained is optimal. 

Thus the optimal solution is 

x~ = 4, x 2 = 5, x 3 = 0 and Min z = -  11. 

11.7. Exercises 
1. Consider the linear programming problem max cTX, AX = b, X > 0. If X 0 

is an optimal solution, will X o be an optimal solution if 
(i) crX is changed to crX + k, where k is a constant. 
(ii) crX is changed to kcrX, where k > 0. 
(iii) c is changed to c + d, where d ~ 0 is an n component vector. 

2. Under what condition a standard linear programming problem has 

(i) a unique optimal solution. 
(ii) more than one optimal solutions. 
(iii) an unbounded solution. 

3. Solve the following linear programming problems by the simplex method. 

(a) Maximize 2x 1 + 4X 2 + 3X 3 

Subject to 2x~ + X 2 + 2X 3 < 4 
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(b) Maximize 
Subject to 

(c) Maximize 
Subject to 

(d) Maximize 
Subject to 

(e) Maximize 

Subject to 

3x~ + 4 x  2 + 2x  3 < 6 

x~ + 3x z + 2X 3 < 8 
Xl, X, X 3 > 0 

z = 7x~ + 5x  2 

7x~ + 10x 2 __~ 35 

8X 1 + 3X 2 < 24  

XI + X 2 _ < 4  

XI, X2 ~_ 0 

2x~ + 3X 2 

X~+ x2_<6 
X 1 "+" 2X 2 _< 10 

x~_<4 

Xl,X 2 ~ 0 

3X l + 4X 2 

2X 1 + 3X 2 < 14 

2x~ + X 2 __~ 8 

X l q- X2_~ 5 

Xl, X2 ~___ 0 

X 1 -- 3X 2 + 2X 3 

X 1 -- X 2 + X 3 5 3 
X 1 -Jr" 2x 2 + 4x 3 < 4 

x~ + 6x 2 + 3x  3 ~ 6 

Xl, X2~_ O. 

4. Solving by the simplex method, show that 

(a) the problem 
Maximize x~ + 2x 2 
Subject to x~ - 2x 2 < 3 

x~ + 2x 2 < 12 
- x~ + 2x 2 < 8 

x~, x2> 0 
has multiple optimal solution 

(b) the problem 
Maximize 
Subject to 

has a unique solution 

(c) the problem 
Maximize 

2x~ + 3X 2 
x~ +x2_<3 

x I - 2x 2 < 1 
x2_<2 

Xl, X2 _~ ~ 0  

2x~ + 3X 2 
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0 

Subject  to x~ + x 2 >_ 4 

x , - x 2 < 2  

x,, x 2 > O  
has no opt imal  solution. 

G iven  the feasible  solut ion x~ = 1, x 2 = l,  x 3 = 2, x 4 = 3 to the fo l lowing  

set o f  equat ions  find a basic feasible solution o f  

X 1 - - 4 X  2 + 6X 3 + 2X 4 = 15 

5x I + 3x 3 - 4 x  3 + x 4 = 3 

2x~ + 5x 2 + x 3 - 3 x  4 = 0 

Xl, X2, X3, X 4 > 0 



C H A P T E R  1 2  

Simplex Method: Initial Basic 
Feasible Solution 

12.1. Introduction: Artificial Variable Techniques 
Application of the simplex algorithm requires knowledge of an initial basic 

feasible solution to the linear programming problem. There are many problems for 
which such a feasible solution is readily available 1 but there are other problems 
encountered in practice which do not provide any knowledge of the system of 
constraints. The problem may have inconsistency due to errors in obtaining or 
recording the numerical values and moreover it may also have redundancies. In 
fact before we proceed to obtain a basic feasible solution, it is necessary to find 
out if the problem has inconsistency or redundancy which however, might be 
quite time consuming. 

It is therefore important that a general mathematical technique must be 
developed to solve linear programming problems without any prior knowledge of 
the system of constraints. 

Two methods are currently used to achieve this end. 
(a) The two-phase method, developed by Dantzig, Orden and Wolfe. 
(b) The method of penalties, due to A Chames. 

12.2. The Two-Phase Method [117] 
The linear programming problem is first expressed in the standard form and 

the simplex method is used in two phases. In phase I the simplex algorithm is applied 
to an auxiliary linear programming problem and determines whether the original 
problem is feasible and if feasible finds a basic feasible solution. The basic feasible 
solution thus obtained then acts as an initial basic feasible solution to the original 
problem and the simplex algorithm is started in Phase II, which finally finds a 
solution to the original problem. 

1. For example, if slack variables are added to every constraint to convert less than or equal 
to type inequalities into equations, we immediately see that these slack variables constitute 
the initial basic variables. If the constraints are equations or greater than or equal to type 
inequalities, it may not be possible to get a basic feasible solution directly. 
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It has several important features: 
(i) No assumption on the original system of constraints are made; the system 

may be redundant, inconsistent or not solvable in nonnegative numbers. 
(ii) An initial basic feasible solution for Phase I can be easily obtained. 
(iii) The end product of Phase I is a basic feasible solution (if it exists) to 

the original problem so that the simplex algorithm can be initiated in 
Phase II. 

Outline of the Procedure 
Step 1" Express the linear programming problem in standard form by introducing 
slack or surplus variables wherever is necessary. Multiply, if necessary certain 
constraints of the system b y - 1 ,  so that the constants on the right hand side are 
all nonnegative. 

The problem then becomes 

Minimize z = crX 

Subject to AX = b 

X > 0  

where b T = (bl,b2,...bm) > 0, c T = (cl, C3...Cn) 
X T --- (X~,X2...Xn) and A - (a~j) is an m x n matrix. 

(12.1) 

(12.2) 

(12.3) 

Step 2 (Phase I): The system of equations (12.2) is augmented by introducing 
additional variables W~ > 0, called the artificial variables so that the constraints 
become 

AX + IW = b (12.4) 

where W r - (Wl,W2,...Wm) 

The simplex algorithm is then applied to find a solution to the auxiliary linear 
programming problem 

Minimize z* = eXW (12.5) 

Subject to AX + IW = b 

X, W >_ 0 (12.6) 

where e x = (1,1,... 1) is an m-component vector having unity as a value for each 
component. 

In this case (X = 0, W = b) can be taken as initial basic feasible solution and 
the simplex algorithm can readily be started. Since W~ > 0, the problem cannot 
have an unbounded solution and the process terminates as soon as an optimal 

solution (X o, Wo) to the problem is found. 

Three cases may arise 
(a) Min z* > 0. In this case no feasible solution exists for the original problem 

because if X > 0 is a feasible solution, then (X, W = 0) is feasible to the 
auxiliary problem with all W~ = 0, which contradicts that Min z* > 0. 
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(b) Min z* = 0 and all the artificial variables are nonbasic. In such a case, 

there exists an optimal solution (X o, Wo) with W o = 0 and X o is a basic 

feasible solution to the original problem. 

(c) Min z* = 0 and at least one artificial variable is basic at zero level. Thus 

a basic feasible solution of the problem is obtained with these artificial 

variables as a part of  the basic set of variables. This will occur whenever 

the original system has redundancies and often when it has degenerate 

solutions. 

Step 3 (Phase II): In cases (b) and (c) all the columns corresponding to the nonbasic 

artificial variables are deleted from the final table in Phase I and z* is replaced by 

z, the objective function of  the original problem. The tableau so obtained forms 

the starting tableau of Phase II. The simplex algorithm is applied to this table taking 

care that the artificial variables (if any at zero level) never become positive. (Since 

this would destroy feasibility). To ensure this the usual simplex computation is 

slightly modified (See 12.6). The algorithm terminates as soon as either an optimal 

solution is obtained or there is an indication of the existence of  an unbounded 

solution. 

12.3. Examples 

12.3.1. M i n i m i z e  z " - x  1 -Jr- x2  

Subject to 7x~ + x 2 > 7 

x~ + 2x 2 > 4 

x 1, x2> 0 

Introducing the surplus variables x 3, x 4 to the constraints, we reduce the problem 

to the standard form: 

Minimize z = x 1 + x 2 

Subject to 7x 1 + x 2 - x 3 = 7 

x~ + 2x 2 - x 4 = 4 

x > O, j = 1,2,3,4. j ~  

We then add artificial variables w~ > O, w 2 > 0 to the equality constraints above 

and replace the objective function by w I + w 2 and the problem thus obtained is 

solved by the simplex algorithm in Phase I. 

Phase I 

Minimize 

Subject to 

Z* --  W 1 + W 2 

7x 1 + x 2 - x  3 -+- w I = 7 

X 1 + 2 X  2 - X 4 + W 2 = 4 

x > O, j - 1,2,3,4, w l, w 2 > O. 
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Tableau 1 

C B a8 

a5 

a~ 

Z $ . m C .  
J J 

a I a~ a 3 

7* 1 -1 

1 2 

0 0 

a4 as a6 

0 1 0 

0 -1 0 1 

0 0 1 1 

3 -1 -1 0 0 

b/a. 

Tableau 2 

c. a. 

0 a l 

1 a~ 

Z . - - C .  
J J 

Tableau 3 

cB aB 

0 a l 

0 a: 

Z ~ . ~ C .  
J J 

a, a~ a 3 a,  a 5 

1 1/7  - 1 / 7  0 1/7 

0 13/7' 1/7 -1 -1/7 
, . , , , 

0 13/7 1/7 -1 -8/7 

a I a~ a 3 a 4 a 5 a 6 

1 0 - 2 / 1 3  1 /13  2 / 1 3  - 1 / 1 3  

0 1 1/13 -7/13 -1/13 7/13 

0 0 0 0 -1 -1 

a~ 

0 

1 

0 

b / a i 2  

7 

21/13 

b 

10/13 

21/13 
,,  , 

Since all z.* - c .  < 0, in tableau 3 an optimal basic solution to the auxiliary 
J j -  

problem has been attained. Furthermore, no artificial variable appears in the basis. 

Hence, 

x~ = 10/13, x 2 = 21/13 

forms a basic feasible solution to the original problem. 

Now, deleting the columns corresponding to nonbasic artificial variables in 

tableau 3 and replacing the objective function by the original objective function, 

the problem is solved by the simplex algorithm. 
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Phase II 

Tableau 4 

C B a~ 

a 1 

a~ 

C 

Z*.- -C.  j �9 j 

a I a 2 a 3 a 4 

1 0 -2 /13  1/13 

0 1 1/13 -7 /13  
i 

1 1 0 0 

0 0 -1 /13  -6 /13  

10/13 

21/13 

Since all z . -  c < 0, an optimal basic solution to the original linear program 
J J ~  

has been obtained, which is 

x I = 10/13, x 2 = 21/13 and Min z = 31/13. 

12.3.2 Maximize  z = 3x~ + 5x 2 

x~ + 2x 2 < 1 

4x~ + x2>_6 

xl, x2>_ 0 
The linear program is first reduced to the auxiliary problem 

Minimize z* = w 

Subject to x~ + 2 X  2 + X 3 = 1 

4x~ + x  2 - x  4+ w = 6 

x. > 0 , j  = 1,2,3,4, w > 0  

where x 3, x 4 are the slack and surplus variables and w is an artificial variable. Note 

that since x 3 can be taken as a basic variable, the artificial variable w is added 
only to the second constraint. 

Phase I 

Tableau 1 

cB aB 

0 a 3 

1 a 5 

Z* .--C. 
J J 

al a2 a3 a4 a5 

1 "  2 1 0 0 

4 1 0 -1 1 

0 0 0 0 1 

4 

1, 
1 0 -1  0 

b b/ail 

6 3/2 
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, i 

Tableau 2 

% % 

0 a] 

1 a 5 

Z* .~C. 
J J 

a] a2 a3 a4 a5 

1 2 1 0 0 

0 -7  -4  -1 1 

0 0 0 0 1 

0 -7  -4 -1 0 

Since all z*.-  c < 0, an optimal basic solution to the auxiliary problem is 
J J 

obtained but the artificial variable w is in the basis at a positive level. This shows 
that the original linear programming problem does not have a feasible solution. 

12.4. The Method of Penalties [71] 
Another intuitive method to find a basic feasible solution to a linear 

programming problem is the method of penalties. The method is commonly known 
as Chames' M-technique or Big M-method. 

As in the two-phase method, here also artificial variables are added to the 
constraints which enable us to find an initial basic feasible solution to the augmented 
constraints. It is clear that if a new basic feasible solution to the augmented 
constraints is found where all the artificial variables have the value zero, we have 
a basic feasible solution to the original problem. 

To achieve this, each artificial variable is multiplied by a penalty M per unit, 
an arbitrarily large positive number (negative in the case of a maximization problem) 
and their sum is added to the objective function of the original problem. The slack 
variables (if there is any) and the artificial variables form an initial basic feasible 
solution and the simplex algorithm can be readily applied to optimize the augmented 
problem. If there are no more artificial variables in the basis, we have a basic 
feasible solution to the original problem. 

The simplex algorithm is then continued until an optimal solution to the original 
problem is found. 

Outline of the Procedure 
Consider the general linear programming problem taking care that the constants 

on the right hand side are all nonnegative, multiplying, if necessary, by-1  through 
out the constraint. We thus have the problem, 

Minimize Z = s CjXj 
j=l 
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Subject to ~ aijxj -< b i ,  i = 1, 2,. .m~ 
j=l 

' • ' •  aijx j _> b~, i = m I + 1, . . m  1 + m 2 . 

j=l 

' • ' •  a~jxj = b~, i = m I + m 2 + 1...m 
j=l 

x > 0 ,  j = l , 2 . . n  j -  

where b~ > 0, for all i = 1,2...m. (12.7) 

Step 1" Express the linear programming problem in the standard form by introducing 
slack or surplus variables wherever is necessary. The problem then reduces to, 

Minimize Z = ~ CjXj 
j=l 

Subject to '~-'~ aijxj q- Xn+i - - "  b i '  i = 1,2. . .m~, 
j=l 

' • " •  a i j x  j + Xn+ i --  b i ,  
j=l 

i = m 1 , + 1,...m I + m 2 , 

~ a i j x  j = b~, i = m~ + m 2 + 1,...m 
j=l 

x > 0 ,  j - 1,2...n (12.8) j 

where b~ >_ O, for all i - 1,2...m, 

Xn+ ~ > 0, i -- 1,2..m, are slack variables 

and x+~ > 0, i = m~ + 1,...m~ + m 2 are surplus variables. 

Step 2" Introduce nonnegative artificial variables to the left hand side of the 
constraints except where we have slack variables, since a slack variable itself can 
be taken as a basic variable. Assign an arbitrarily large positive number M per 
unit to each of  the artificial variables and their sum is added to the original objective 

function. 

The problem then becomes, 

Minimize z = cjxj +M w~ 
j=l i=ml +1 

Subject to ~ a~jxj +Xn§ ~ = b~, i = 1,2,..ml, 
j=l 
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~'~ aijx j - Xn+ i ~" W i = bi, 
j=l 

i - m~ + l . . . m ~  + m 2 

n 

Z a i j x  j + w  i = b t ,  i = m  I + m  2 + l , . . . , m ,  
j=l 

> 0 ,  j =  1 ..n, Xj __ ,. 

x+ i > O, i = 1,2...m I + m 2 (12.9) 

> O, i = m 1 + 1, ...m W .  ! 

where b l > 0, i = 1,2...m 

and M is an unspecified large positive number. 

Step 3: The simplex algorithm is applied to the augmented problem (12.9). The 
slack variables along with the artificial variables form an initial basic feasible 
solution to start the computation. 

The following three cases may arise: 

Case (i): There are no more artificial variables in the basis. We then have a 
basic feasible solution to the original problem and we proceed to step 4. 

Case (ii)" At least one artificial variable is in the basis at a zero level and the 
coefficient of M in each z -  c is negative or zero. In such a case, the current basic 

J J 
feasible solution is a degenerate one to the original problem. If no z . -  c is strictly 

J J 
positive, we have an optimal solution to our problem otherwise we proceed to 

step 4. 

Case (iii)" At least one artificial variable is in the basis at a positive level and 
the coefficient of M in each z j -  cj is negative or zero. Iri this case, the original 
problem has no feasible solution, for if there were a feasible solution to the problem, 
the corresponding artificial vector could be removed from the basis with an 
improvement in the value of z. 

Step 4: Application of the simplex algorithm is continued until either an optimal 
basic feasible solution is obtained or there is an indication of the existence of an 

unbounded solution to the original problem. 

N o t e :  Whenever an artificial vector leaves the basis, we drop that vector and omit 
all the entries corresponding to its column from the simplex tableau as we are not 
interested in its re-entry into the basis. 

12.5. Examples: Penalty Method 
12.5.1 Minimize z = 3x~ + 4x 2 

Subject to 2x~ -- 3X 2 _< 6 

X 1 + 2X 2 >_ 10 

X I + X 2 > _ 6  

X 1, X2 ~__ O.  
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The augmented  problem is given by 

M i n i m i z e  z * =  3 x  1 + 4 x  2 + M X  6 + M x  7. 

Subject  to 2x~ - 3x 2 + x 3 = 6 

X 1 + 2X 2 - X  4 "Jr- X 6 = 10 

x~ + x 2 -  x 5 + x 7 = 6 

x > 0 ,  j = 1,2,...7. j ~  

where  x 3 is a slack variable,  x 4, x 5 are surplus variables and x 6, x 7 

variables.  

are artificial 

Tableau 1 

CB % 

0 a 3 

M a 6 

M a 7 

Z . - - C .  
J J 

a I a:  a 3 a 4 a 5 a 6 a 7 

2 - 3  1 0 0 0 0 

1 2* 0 -1 0 1 0 

1 1 0 0 -1 0 1 

3 4 0 0 0 M M 

2 M - 3  3M--4 0 - M  - M  0 0 

10 

b/ai2 

5--> 

Tableau 2 

C B 

M 

% 

a~ 

a~ 

a7 

Z . - - C  
J J 

al a2 a3 a4 a5 a7 

7/2 

1/2 

0 1 -3 /2  0 0 

1 0 -1 /2  0 0 

1/2' 0 0 1/2 -1  1 
, 

3 4 0 0 0 M 

M/2-1  0 0 M / 2 - 2  - M  0 

21 

b/ail 

10 
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Tableau 3 

C B 

0 

% 

a3 

4 a 2 

3 a~ 

Z * .~C. 
J J 

a] a 2 a 3 a 4 a s 

0 0 1 -5  7 

0 1 0 -1 1 

1 0 0 1 - 2  

3 4 0 0 0 

0 0 0 -1 - 2  

14 

Since all z ~ - c  < 0 and there is no artificial variable in the basis, an optimal 
J J ~  

solution to the original problem is obtained which is given by x 1 = 2, x 2 = 4 and 

min imum z = 22. 

12.5.2 Maximize  z = 2x I + 3x 2 

Subject to x I + 2x 2 _< 1 

4x I + 3X 3 > 6 

x~, x2 >_ O. 

The augmented problem is given by 

Minimize z* = -  2x z - 3x 2 + Mx 5 

Subject to x~ + 2x 2 + x 3 = 1 

4x~ + 3x 2 - x  4+ x 5 = 6 

> 0 , j = l  2, 5. X j _  , . . .  

where  x 3, x 4 are slack and surplus variables respectively and x 5 is an artificial 

variable. 

Tableau 1 

% as 

0 a 3 

M a 5 

Z* .-me. 
J J 

aj a 2 a 3 a 4 a 5 

1" 2 1 0 0 

4 3 0 -1 1 

- 2  -3  0 0 M 

4M+2 3M+3 0 - M  0 

b b/all 

1 1---) 

3/2 
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Tableau 2 
% % 

-2  a 1 

M a 5 

Z - - C .  
J J 

a I a 2 a3 a4 a5 

1 2 1 0 0 

0 -5  -4  -1 1 

-2  -3 0 0 M 

0 -5M-1  -4M-2  -M 0 

From tableau 2, we find that all z* - c  < 0, but the artificial variable x 5 appears 
J j -  

in the optimal basis at a positive level. Hence the original problem has no feasible 
solution. 

12.6. Inconsistency and Redundancy 
The method of artificial variables which enables us to obtain an initial basic 

feasible solution to a linear programming problem without any assumption about 
the system of constraints, also provides us information about the inconsistency and 
redundancy of the problem. 

Suppose that the two-phase method is used. If at the end of phase 1, all the 
artificial variables are nonbasic, we have a basic feasible solution of the original 
problem, the basis containing only column vectors of A and consequently r(A) -- 
m. The constraints are therefore consistent and there is no redundancy in the system. 

If at the end of phase 1, the optimal value of the auxiliary problem is positive, 
the original problem is not feasible and hence the constraints are inconsistent. 

If the optimal value of the auxiliary problem is zero and at least one of the 
artificial variables appears in the basis at a zero level, we have a feasible solution 
of the original problem and therefore the original constraints are consistent. 

If we further find that corresponding to the artificial basic variable w r which 
is at a zero level there exists at least one ct ~ 0 (positive or negative) say ~ 

lJ r s  

0, we can replace the vector a r, by the vector a s. The new solution thus obtained 

will again be a basic feasible solution with ~5 - 0 and the values of nonzero 

basic variables as well as the value of the objective function will remain unchanged. 
If this process can be continued until all the artificial basic variables are removed 
from the basis, we will have a degenerate basic feasible solution involving only 

the original variables. Consequently r(A) = m and there is no redundancy in the 
system. 

If however, it is not possible to remove all the artificial vectors from the basis 
by the procedure above, we must. reach a stage where corresponding to each artificial 
basic vector ai, ct. are zero for every j. Suppose thaf k artificial vectors remain in u 

the basis at a zero level. Every column vector of A can then be expressed as a 
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linear combination of the (m - k) vectors of A in the basis. It is therefore clear 
that r (A)  = m -  k and k of the original constraints are redundant. 

(Analogous conclusions may be derived from the method of penalties also). 

12.7 .  E x e r c i s e s  

1. Show how the simplex method can be used to find a nonnegative solution 
of a system of linear equations AX = b. 

2. Explain how the simplex method indicates whether a linear programming 
problem is inconsistent. 

3. When does the simplex method indicate that the system of constraints 
in a linear programming problem is redundant? 

4. Solve the following problems by the two-phase methods. 

(a) Maximize 
Subject to 

8X 1 d- 5X 2 

x~ +x2_<5 

4X i +X2>_4  

2x~ + 3X 2 > 3 
x~, x2 > 0 

(b) Maximize 
Subject to 

3x~ + 4x~ 

3x~ + x 2 < 9  
-2x~ + x: < 4 
x~ + 2x: > 2 

x l, x2>_ 0 

(c) Minimize 
Subject to 

5x~ + 4x 2 
x~ + 2x 2 < 6 
2x~ + x 2 < 5 
4x~ + x 2 > 2  

Xl -[- X2 ~ 1 
x~,x:>_O 

(d) Minimize 
Subject to 

5x~ - 2x z 

x~ - x 2 + x 3 < 2 
3x~ - x z - x 3 > 3 

X I, X2, X 3 > 0 

SO 

(e) Maximize 3x~ + 2x 2 + 3x  3 

Subject to 2x~ + X 2 + X 3 _~< 2 

3X l + 4X 2 + 2X 3 >_ 8 

xl,  X2, X 3 > 0 

Using the two-phase method, show that the following linear programming 
problem is inconsistent. 
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Minimize x~ + x 2 

Subject to X l + 2X 2 < 2 

3X l + 4X 2 > 12 

Xl, X2>_ 0 

6. Solve the following linear programming problems by the penalty method. 

(a) Minimize x ~ -  3x 2 

Subject to 3x~ + x 2 _< 3 

x~ + 2x 2 >_ 2 
x~_<4 

x l, x 2 >  O. 

(b) Minimize 2x~ + x 2 - x  3 

Subject to 2x~ + x 2 - x 3 >_ 6 

3 X 1 -I- X2 -Jr- X3 ~__ 4 

x 2 + x 3 < 12 

Xl, X2, X 3 ~ 0 

(c) Minimize 3x~ + 4x 2 + 8 x  3 

Subject to x] + 2x 2 >_ 5 

x 2 + x 3 > 2 

Xl, X2~__ 0 

(d) The problem in Q4(b). 

7. Using the simplex method find the inverse of  the matrix 

4 1 2 5 1 7 

(a) 0 1 0 (b) 4 8 

8 4 5  6 8  

8. Apply the simplex method to find a solution of  the system of  equations 

(a) 

(b) 

Xl "Jr" X 2 "l- 4X 3 + 2X 4 = 9 

X 1 -t" X 2 "l- 2X 3 - -X  4 = 3 

2x I + 2 x  2 + 4 x  3 + x 4 = 12 

X], X2, X3, X 4 >_ 0 

3x] - 2 x  2 - X 4 -" 1 

X 1 - X  3 + 4X 4 = 3 

2x I - x 2 = 3 

Xl, X2, X3, X 4 >___ 0 
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Degeneracy in Linear Programming 

13.1. Introduction 
A degenerate basic feasible solution to a linear programming problem is one 

in which one or more basic variables are equal to zero. We know that the simplex 
algorithm is an iterative procedure which moves from one basis to another and finds 
an optimal solution at a basic feasible solution. The assumption of nondeneracy in 
the simplex method is necessary to show that for each successive admissible basis, 
the associated value of the objective function is better than the preceding one so 
that no basis is repeated. Consequently, since there are only a finite number of basis, 
the simplex procedure reaches an optimal solution (or indicates that there is an 
unbounded solution) in a finite number of steps. In the presence of degeneracy, the 
proof of convergence breaks down. 

A basic variable becomes zero, when the minimum calculated by the simplex 
exit-criterion is not unique or when it enters the basis to replace a variable already 
zero. For example, if a k were the vector to enter the basis and if 

00 = Min X io -- x r~ (13.1) 
i/ark >0 (3~ik ~rk 

the vector a r would leave the basis. 

If the minimum in (13.1) occurs for x0 also, we get a degenerate basic feasible 
solution in the next iteration. If X o is already zero, we again get a degenerate 
solution. In the presence of degeneracy, there is no improvement in the value of 
the objective function. 

It is therefore possible that the same sequence of bases is selected repeatedly 
without reaching an optimal solution and an endless cycle starts. Since cycling in 
the simplex algorithm is only possible under degeneracy and degeneracy is quite a 
frequent phenomenon, it might be thought that there would be many cases of cycling. 
But in actual practice, cycling never seems to occur except in the specially 
constructed examples of Hoffman [232] and Beale [38]. 

In the absence of cycling, degeneracy is not a difficulty in itself. Although, 
the value of the objective function remains the same for a number of iterations, in 
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practice, an optimal solution is reached in a finite number of steps. For this reason, 
most instruction codes for electronic computers do not include roles which guarantee 
convergence. Theoretically, however, it is at least possible for a problem to cycle 
and therefore it is desirable to develop a procedure that will ensure that cycling 
will never occur. 

Two best known procedures for the resolution of degeneracy are the perturbation 
method, developed by Chames [67] and the lexicographic method developed by 
Dantzig, Orden and Wolfe [ 117] 

We present here the method suggested by Charnes. 

13.2. Charnes' Perturbation Method 

We note that degeneracy in a linear programming problem occurs when 'b' ,  
the requirement vector of the problem cannot be expressed as a positive linear 
combination of the basis vectors of some bases formed from the columns of A. It 
is then expected that if 'b '  were perturbed, it might be possible to express the 
perturbed 'b'  as a positive linear combination of each basis vector of every feasible 
basis and from the solution of this nondegenerate perturbed problem, we may then 
be able to get a solution of our original problem. 

Consider the linear programming problem (11.1), where the constraints are 

xla ~ + x2a 2 + ... + x a = b, (13.2) 

a being the j the column of A. 
J 

We now perturb the vector 'b'  and rewrite the constraints as, 

x~a~ + x2a 2 b+ ... + x a = b + ~a~ + ~2a 2 + . . . +  ~ n a  n = b ( ~ )  (13.3) 

where ~ is a sufficiently small positive number which is adjusted so as to make 
(13.3) nondegenerate. We will see later that it is not necessary to know the value 
of ~ precisely. Only the knowledge of existence of such an ~ is sufficient for our 
purpose. The numerical value of ~ is never involved in our computation. Once a 
solution to the perturbed problem has been obtained, by setting ~ = 0, we have the 
corresponding solution of the original problem. 

Let the vectors a l, a 2, a 3 . . .  a m f o r m  an admissible basis B, that is, the basis 
that yields a feasible solution (the problem can be so arranged that the basis vectors 
are the first m vectors). Then a basic feasible solution to (13.2) is given by, 

X 0 = B-lb > 0 (13.4) 

and a solution to (13.3) by 

Xo(e) = B-' b(e)  

or Xo(e) = X o + eB-~a~ + eB-la2 + ... + enB-~a (13.5) 

Hence X~o (e )  can be written as, 

Xio (~) = X,o + ~ e j ocij, i = 1, 2,..m (13.6) 
j=l 

Since B consists of vectors a~, a2,..a m, B-~a is an identity vector with the unit 
J 
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element in the jth position for j = 1,2, .. m. Hence 

Xi0 (E) = Xi0 "t- E i -I- s E j Gt, ij , i = 1, 2,..m 
j=m+l 

(13.7) 

It can be shown that 

L e m m a  13 .1  

There exists a range of values of ~, 0 < e < e0 for which an e-polynomial, 
f(~) = P0 ~- P~ e + ' ' '+ Pmem is positive, if and only if the leading term in f(~) is 
positive. 

P r o o f :  Exercise 

Hence by taking e>  0 but sufficiently small, in (13.7), we can make all 

Xio (e )  > 0, i = 1,2,...m. 

Since z -  c are the same for both the perturbed and the original problems and 
J J 

are independent of  e,  the same vector may be introduced in the basic set. Let the 
vector a k be introduced in the basis and if all a~k < 0, then there is an unbounded 
solution to the perturbed problem and to the original problem. If at least one 
Ct~k > 0, we select the vector to be eliminated from the basis by the usual exist 
criterion 

Obviously, 0 o > 0, since each x~0 (e )  > 0. If this minimum is unique, we have 
a nondegenerate basic feasible solution to the perturbed problem. 

We now rewrite 0 o as 

0 o = Min 
I 

Xi0 + ~ EJ O[,ij 
j=l  

' (~ik > 0  
Ct~k (13.9) 

and show by applying Lemma 13.2 given below, that a unique minimum in (13.9) 
can really be obtained, so that degeneracy does not appear in the next iteration. 

Lemma 13.2 

If two polynomials 

m Ill 

f(~) = ~ Pi Ei and g(~)= ~ q~ E i a re  such that 
i-o i=o 

Pi = qi' i = 0, 1,2.. k-1 

Pk <qk 
and p~, q~ are arbitrary for i > k, then for some e o > O, f (e)  < g (e) ,  for all 0 < e < 

E o 
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Proof: Exercise 

The procedure for finding the minimum may now be stated as follows" 

We first compare the ratios X~o/a~k. If the minimum is obtained for unique i, 
say for i = r, then for e < e o, the minimum in (13.9) occurs at i = r and the vector 
a r is uniquely determined to be eliminated. If however, there are ties for some set 
of indices, we compare the ratios a~/Ct~k (i.e. the coefficients of eJ, for j = 1 in 
(13.9)) for those indices. If the minimum occurs at i = s (s belongs to the tied set), 
then a is the vector to be eliminated. If there are still ties, we compare the ratios 
for the tied set for j = 2 and repeat the process. 

For example, if we have 

0 0 = Xs0 = Xt0 

sk ~ tk 

we compute M i n  ~ 1 ~ ~ (~tl ~ O { ~ s k ,  C{'tk (13.10) 

If minimum in (13.10) is ctdctk, then the vector a is eliminated and if minimum 

is given by Ot, tl/Ot, tk , then a t is eliminated. 

If however, a~/Ctk = Ot, tl/(/,tk , we compare the ratios (the coefficients of eJ for j 
= 2 in (13.9)) 

as2 and at2 
Ot, sk Ot, tk 

and find the vector to be eliminated from the basis. If still there is a tie, we proceed 
to compare the ratios for j = 3 and so on. 

It is certain that eventually a unique minimum must be obtained. If it is not, it 
would imply that two or more rows of the inverse of the basis are proportional to 
each other. This however, is not possible as the basis matrix is of rank m. The 
procedure therefore, ensures that a new basic feasible solution is obtained with all 
basic variables strictly positive. 

The above procedure is applied in every iteration and thus degeneracy can never 
appear in the perturbed problem. 

Moreover, since, 

~ ( e )  = z ( ~ )  - 0o(Z - c )  < z ( e ) ,  0 0 > 0. 

in each iteration, no basis can be repeated and an optimal solution is obtained to 
the perturbed problem in a finite number of steps. Setting e = 0, we then have an 
optimal solution to the original problem since z . -c .  does not depend on the value 

J J 
of e. 

It should be noted from the above analysis that the numerical value of e is 
never involved in our calculations. The information required to determine 0 0 is the 
values of the basic variables of the original problem and the coefficients of eJ in 
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(13.9). This information is all contained in the simplex tableau of the original 
problem. The ~-perturbation was introduced only to develop a procedure for 
preventing cycling and this we find, is done without ever using ~ explicitly. 

To apply the perturbation technique therefore, only the simplex tableau of the 
original problem is needed. 

13.3. Example 
Consider the problem suggested by Beale. 

3 1 
Minimize z = - -  x~ + 150x 2 x 3 + 6x 4 

4 

1 1 
- -  X l - 6 0 X  2 - X 3 + 9x4 + x5 = 0 Subject to 4 

1 1 
- -  - 9 0 X  2 - + 3 X  4 + X 6 0 2x~ ~'~x3 = 

x 3 +x 7 = 1 

x . > 0 ,  i = 1,2,..7. j - -  

It can be shown that the problem cycles, if we use the simple rule that we select 
the vector to be eliminated, the one whose row index is the smallest among those 
tied. However, this cycling can be avoided by applying the perturbation technique 
as is shown below. 

Rearranging the problem so that the basis vectors appear in the beginning of 
the tableau, we have 

Tableau 1 

c B 

0 

0 

0 

aB 
i 

a 1 

a2 

a 3 

c 

z . - c .  
J J 

a I a 2 a 3 a 4 a5  a6  a7  

1 0 0 1/4 -60 -1/25 9 

0 1 0 1/2' -90 -1/50 3 

0 0 1 0 0 1 0 

0 0 0 -3/4 150 -1/50 6 

0 0 0 3/4 -150 1/50 -6  
? 

To determine which vector is to depart from the basis, we compute 

Min{Xs~, a~4 > a ~ 4  O} = xa~ = xa---2a14 a24 =0 

Thus there is a tie between the basis vectors a~ and a 2. 

xB 

0 

0 

1 
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We therefore compute 

a2}: int  0t0: 
L a14 a24 1 / 4 1 / 2 

Since minimum occurs for a21/a24 , the vector a 2 is to be eliminated. 

Tableau 2 

aB 

a] 

a4 
a~ 

al a2 a3 a4 a5 a6 a7 

1 -1 /2  0 0 -15 -3 /100 15/2 

0 2 0 1 -180 -1/25 6 

0 0 1 0 0 1' 0 

C B 

0 

-3 /4  

0 

c 0 0 0 -3/4  150 -1 /50  6 

z - c  0 -3 /2  0 0 -15 1/20 -21/2  
J J 1' 

It is now obvious that the vector a 6 is to  enter and a 3 is to  leave the basis. 

Tableau 3 

% a~ 

0 a] 

-3 /4  a 4 

- 1 / 5 0  a 6 

Z.-C. 
J J 

a I a 2 a 3 a 4 a 5 a 6 a 7 

1 -1 /2  3/100 0 -15  0 15/2 

0 2 1/25 1 -180  0 6 

0 0 1 0 0 1 0 

0 0 0 -3/4  150 -1 /50 6 

0 -3 /2  -1 /20 0 -15  0 -21/2  

163 

xB 

0 

0 

1 

X B 

3/100 

1/25 

1 

The optimality condition is satisfied in the tableau 3 and an optimal basic 

solution to the problem is 

x 1 = 1/25, x 2 = 0, x 3 = 1, x 4 = 0 

and Min z = - 1 / 2 0 .  

13.4. Exercises 
1. Show that in Beale 's  problem (see example), the phenomenon of cycling 

occurs if in case of  a tie in the simplex exist criterion, the vector to be 

eliminated in selected whose row index is the smallest among those tied. 

2. Prove Lemma 13.1 and Lemma 13.2. 

3. Solve the following linear programming problems. 
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(a) Min imize  

Subject  to 

(b) Max imize  

(c) Maximize  

Subject  to 

z = 2x I - 3 x  2 - 5 x  3 

2x~ - x 2 + 2x 3 > 2 

x 1 + 3 x 2 < 5  
-4x~ + 3x 3 < 3 

Xl, X2, X 3 >' 0 

Z = X l "}" 2 X  2 

x~ + 4 x 2 <  8 
3x~ + 4x2 < 12 

- x  I + 4x 2 < 8 

x~, x 2 >_ 0 

z = 3Xl + 5x 2 
8x~ + 3xz < 12 

x~ + x z < 2 

2Xl + 5x 2 < 10 

xl, xz>_O 
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The Revised Simplex Method 

14.1. Introduction 
Soon after the simplex method came into practice, it was realized that the 

method requires to compute and record many numbers in each iteration which are 
not all needed in the subsequent steps. The simplex procedure may therefore be 
very time consuming even when solved on a computer. It may be noted that to reach 
a decision at any iteration, of the simplex method the following quantities are needed 
for a given basis. 

( i )  z - %, to determine the vector to be introduced into the basis or to test 
optimality for the current solution. 

(ii) The column corresponding to the variable entering the basic set to 
determine the vector to be eliminated from the basis 

(iii) The values of the basic variables. 

It should be observed that in each iteration the information above can be 
obtained from the original date consisting of A, b and c and B -~, the inverse of the 
current basis B only. This fact has led to the development of a computational 
procedure to solve the general linear programming problem known as the revised 
simplex method [115, 117]. 

14.2. Outline of the Procedure 
Consider the problem, 

Maximize 

Subject to 

Z = cTX 

AX = b 

X > 0  

(14.1) 

where c is a n x 1, b > 0, is m x 1 and A is m x n matrices. 

The general approach of the revised simplex method is the same as in the 
original simplex method. The differences lie in the manner of calculations which 
are made to move from one iteration to the next. We shall first consider the case 
when an initial basis is known and then the case when the initial basic variables 
are artificial. 
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14.2.1 Case 1: Initial basis is known 
In the revised simplex method, the objective function is added to the set of 

constraints in the form of a linear equation, thus forming an adjoined problem. In 
this case therefore, we deal with an (m + 1) dimensional basis instead of an m- 
dimensional basis as in the ordinary simplex method. 

The problem becomes, 

Maximize 

Subject to z - s cjxj = 0 (14.2)  
j-I  

s =b~, i = l ,2 , . .m 
j--'l 

The problem can be restated as 

where 

x. > O, j = 1,2,..n 

z unrestricted. 

Maximize elrX 

Subject to ~ - 1; 

= (elfi~fi2...~,)an (m + 1) x (n + 1) matrix 

" T a~ = [-cj,  aj ], a i being the jth column of A 

e~r=[1,0"~ and J ( r= [z ,  Xr],X>_0. 

(14.3) 

and J~B = g-~l~ 

Let B be an initial basis such that BX B = b, X B > 0 and thus X B = B-~b is an 
initial basic feasible solution of the original problem. It can be easily seen that 

corresponding to every basis B of the original problem, we have a basis ~ for the 

adjoined problem and is given by 

0 B (14.4) 

From the inversion formula for partitioned matrices, it follows that 

w  1 ~ -' 
0 g -1 (14.5) 
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:[10 c..T lE:l. 1 

rc~ lu I [z 1 
-[_ B-'b = X .  (14 .6)  

Now, to see whether the solution is optimal or not, we require to know the 
values of z -  c. We note that J J 

[; T ]I 1 = caB -cj 

B -~ aj 

:rc . .a cl=Iz  el 
(14.7) 

Thus z . -  c. are obtained by multiplying the first row of 1~ -~ by the fij and or. J J J 
are obtained by multiplying the last m rows of 1~ -1 by ~j. 

The results obtained in (14.6) and (14.7) can however be obtained by single 
operation 

~'(~ ~) I; z, e l  z_c2 Zn-C. z 1 
, = (14 .8)  

OC l Ot 2 Ot X B 

If z - c .  satisfy the optimality condition we have an optimal solution, if not, J J 
the vector ak to be introduced in the basis is determined from 

z k - c  k = Min ( z -  cj), z - c j  < 0. (14.9) 

The vector ~ ,  to be removed from the basis is determined from 

M i n i  xBi'~ ik aik> 0} =xBrCt rk (14.10) 

[If there is a tie, it may be resolved by any standard method.] 

We now need to perform the transformation to get the new basic feasible 
solution and check for its optimality. As already discussed, in the revised simplex 

method only t~-~ and )(B are required to be transformed. This is most conveniently 

done by the method of product form of the inverse [See Chapter 4]. 

14.2.2 Case 2. Initial basis consists of artificial variables 
Suppose that the original matrix does not contain any unit vector and the initial 
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basis consists of  the artificial vectors only, forming an identity matrix. The two- 
phase method is then used to eliminate the artificial variables from the basis. In 

Phase I, the artificial variables are driven to zero and in Phase II an optimal solution 
to the original problem is obtained. 

Suppose that the variables are renumbered such that x 2, X3,...Xm+ ~ are the 

artificial variables and the original variables are Xm§ x, Xm+3,...Xm+n+ 1. 

In Phase-I instead of  minimizing the sum of  the artificial variables, we 
equivalently maximize 

m+l 

z " -  ~-'~ ( -xi)  (14.11) 
i=2 

and setting 

a~j = a~+~,j+m+ ~ ; bi = bi+ 1, i - 1,2,..m; j = 1,2,..n and replacing z* by x 1 we have 
the problem, 

Maximize x~ 

Subject to x~ + x 2 + ... + Xm+ ~ = O. 

m+n+l 

X 2 + E a2jxj =b E 
j=m+2 

m+n+l 

Xm§ + E am+jXj = bm+ 1 (14.12) 
j=m+2 

> 0, j = 2,3,.. .m+n+l Xj_ 

where b i > 0, i - 2,.. m+ 1. 

Note that the variable x 1 should always remain in the basis. 

m+l 

It is clear that x] will never have a positive value, since ~ xi >- 0 
i=2 

It max x I < 0, there is no feasible solution to the original problem and if max 
x 1 - 0, we have a basic feasible solution and we move to Phase II. 

In Phase II, we are to maximize 

m+n+l 

z = ~ cjxj, where c of (14.1) is now denoted by Cj+m+ 1 j = 1,2,..n 
j=m+2 J 

Subject to m+n+l 

X 2 + ~ a2 jx j  = b  2 
j=m+2 

�9 o 

m+n+l 

Xm+ 1 + ~ am+lXj 
j=m+2 

x .>O,  j ~  

"- bm+ 1 

j = 2...m+n+ 1 

(14.13) 
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where b~ >_ 0, i = 2,...m+ 1. 

We however, assume that at the optimum solution in Phase I, one or more 
artificial variables may remain in the basis at a zero level and therefore we must 
take care that these artificial variables remain zero in all subsequent iterations. For 
this purpose, we insert 

X 2 + X 3 + .. + Xm+ I -" 0 (14.14) 
in the set of constraints. Moreover, at the end of Phase I, x~ = 0 and hence it 
can be added to (I 4.14), since the simplex method will always maintain it at a 
zero level. 

Now, setting z = x 0, c =-a0j, we can write the set of  constraints in a more 
symmetric form 

m+n+l 

X o + Z aojXj = 0 
j=m+2 

X 1 q'- X 2 "+" . . .+  Xm+ 1 = 0 

m+n+l 

X2 + Z a2jxj  -- b2 
j=m+2 

m+n+l 

Xm+l + Z am+ljXj = bm+l 
j=m+2 

( 1 4 . 1 5 )  

Subtracting the sum of  the m last equations from the second we have 

m+n+l 

X o + Z aojXj = 0  
j=m+2 

m+l m+n+l m+l 

x, - Z  Z a , j x J = - Z b ,  
1=2 j=m+2 1=2 

m+n+l 

x 2 + ~ a2jxj =b2 (14.16) 
j=m+2 

m+n+l 

Xm+l + Z am+ljXj = bm+l 
j=m+2 

and find that a unit basis of  order (m + 2) is given by the first (m + 2) columns of  
(14.16) 

We now set 
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m+l 

% = ~ (-aij), 
i=2 

j = ( m + 2 ) . . . ( m + n +  1) 

m+l 
b, = ~-"(-b~) <0 

i=2 

bo=O 

and the system of equations can finally be expressed as 

m+n+l 

x o + ~ aojxj=bo 
j=m+2 

(14.17) 

X l 

m+n+l 

+ Z aljxj  = b ]  
j=m+2 

m + n + l  

Xm+ 1 -t- Z am+ljXj = bm+l 
j=m+2 

(14.18) 

The set of equations (14.18) can now be conveniently used in Phase I as well 
as m Phase II. 

In Phase I, we 

Maximize x~ 

Subject to the set of equations (14.18) (14.19) 

x > 0,j =2,.. ( m + n +  1). j ~  

and in Phase II, we 

Maximize x o 

Subject to the set of equations (14.18) (14.20) 

x > 0 , j  = 1,2,.. (m = n +  1) j ~  

where b o = 0, b~ < 0 and b~ > 0, i = 2,..(m + 1) 

The matrix of the system of equations (14.18) is given by 

t 
l 0 I 0 [ ao,m+ 2 

A = 0  1 [ [a~§ 

0 r f F  A 

ao, m+n+l 

al.rn+n+l..L.. (14.21) 

and the inverse of the basis matrices obtained from .~ for Phase I and Phase II 

enable us to derive the criteria to proceed with the iterative process to solve the 
problem. 
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C o m p u t a t i o n :  P h a s e  I 

During Phase I, the variables x 0 and x~ are never to leave the basis. The basis 

matrix 13 therefore always contains the first two columns of ~ .  

Setting c* = j - a~j, we have the basis matrix as, 

g =  0 1 [ (14.22) 
o I 

where B is the basis of the original problem and C'B, C B represent the price vectors 
for the problems in Phase I and Phase II respectively. 

By the formula of inversion of matrices by partition we have, 

t 
l 0 [ cBB-' 1 

I3-'= 0 1 I c~,B-~! 
o 1- 13 - 

(14.23) 

We note that the product of the second row of g-1 with fij give z .*  - c .*  from J J 
which we obtain the entering vector fik by the usual criterion 

" " E . . . .  1 z k - c  k=Min  z j - c j ; z j - c j < 0  (14.24) 

The product of the last m rows of 1~ -~ with fik give ot k and X B is obtained 

from the product of the same row with 1~ from which we find the vector to be 

removed from the basis by the simplex exit criterion 

O~ xBrrk =Min{ xBi'O~,k a~k >0},  i = 2,...m+ 1 (14.25) 

Now, to move to the next iteration, we only need to transform i~ -~ . This 

can be efficiently done by the method of 'product form of the inverse'. (See 
Chapter 4). 

Phase If: During Phase II, only the first column of ,~ is never to leave the 

basis and x~ is treated as any other artificial variable 

The basis matrix t3 is given by, 

g = ~ (14.26) 

where the set of constraints from B 2 includes the m original constraints and the 
second equation of (14.18). x~ is now required to be nonnegative and the second 
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equation of (14.18) ensures that x~ and all other artificial variables remain at a 
zero level throughout the calculation. The basis matrix B 2 is of order (m + 1) and 
always includes at least one of the artificial vectors because otherwise it is not 

possible for 13 to have an (m + 2) dimensional basis. 

I~-1 is then determined as 

:[1 I 
i -  --B; .r--] (14.27) 

As in Phase I, z - c  are obtained from the product of the first row of 1~ -~ with 

~j and the entering vector ~k is then obtained by the criterion, 

= Min . O] z,-c  j [ z - c , z - c <  

By multiplying the (m + 1) last rows of 1~ -~ by ~k we get % and by multiplying 

it by 1~, % is obtained. The variable which leaves the basis is then obtained by the 

usual simplex criterion. At each iteration therefore, we only need to transform the 
adjoined basis and as in phase I, this can be done by the method of 'product form 
of the inverse' 

14.3. Example 
Minimize 

Subject to 

Z = X l + 2X 2 

2x 1 + 5x 2 > 6 

Xl + X 2 _ >  2 

Xl) X2~___0 

Introducing the surplus variables X3, X 4 and the artificial variables Xal, Xa2, the 

problem can be converted to 

Maximize 

Subject to 

Xao --  --  X 1 --  2x 

Xal -[- 2X 1 + 5 x  2 - X  3 = 6 

x,, + x  l + x  2 - x  4=2  

Xl ,  X2, X3, X4, Xal , Xaa ~___0 

As indicated in (14.16) section 14.2.2, after subtracting the sum of the two 

equations from x~ 0 + x~, + x~, = 0, the problem can be rewritten as: 

X o + X 1 + 2X 2 = 0 

x, o - 3x 1 - 6 x  2 + x 3 + x 4 = - 8 

x~, + 2x~ + 5x 2 - x 3 = 6 

xa, + x  I + x  2 - x  4=2  
x > 0 , j  =1 2,3 4 j ~  ~ 

Xa >0,  i=  1,2 
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where in Phase I, we maximize x. o (= z*) where x o and x~ o are of  arbitrary sign 

and in Phase II, we maximize x o (= z) where x o is of arbitrary sign and x. o > 0 

The matrix (A, 1~), excluding the first four columns which comprise the basis 

matrix 13, is given below 

Table 1 

Table 2 

1 2 0 0 

-3  -6  1 1 

2 5 -1 0 

1 1 0 -1  

Variables 

in Basis 

Xo 
Xa o 

Xa~ 

Xa 2 

0 

- 8  

6 

2 

1 0 0 0 

0 1 0 0 

0 0 1 0 

0 0 0 1 

0 

- 8  

6 

2 

}3 a2 =Y2 
2 

-6  

5 

1 

We now compute zi*-ci*, to determine which vector is to be entered in the 

basis, z * - c *  are the products of the second row 13 -~ with A i.e. 
J J 

1 2 0 0 

-3 -6 1 1 

(0 1 0 0) 2 5 -1 ?1 = ( - 3 ,  -6,  1, l) 

1 1 0 

Thus ~ enters the basis. 

To compute Y2 (in conformity with the notations of  the product form of 
inverse formula (4.21), we now use Y in place of ~ used in (14.8), we multiply 

l~ -~ by a2, and X a = 1~-11~ = lo in this iteration. These are recorded in the last 

two columns of Table 2. From the last two rows of these two columns, we 
determine the vector to leave the basis, i.e. from 

min(  / 
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Hence the variable xa,, i.e. the third column of f3 -~ is to be replaced by a2. 

1~ -~ is then transformed to 13~ ~ by the formula (4.21) in Chapter 4. Let 13j be the jth 

column of ~-~ and 13 is to be replaced by 13 k. Then for the next table, we have 

13~ = 13j + 13~ (Vk -- ek) and 

X~ = X s + Xs~ (v k -ek). 

T (" Ylk YEk Yr-l,k 2 Yr+l,k Y ~ I  
~k, ~ ~ ' ' "  ~ ~ ~ ' ' ' ~  

where Vk = Yrk Yrk Yrk Yrk Yrk Yrk 

and e k is the kth unit vector 

vT = ( 2 6 1  1) 
In our case, 5 ' 5 ' 5 '  5 

Thus 
~=  

0 -2 /5 ]  0 -2 /5  
/ 

+1 1/5/ = 1/5 

-1/5j -1/5 

and 
x~ 

o fF-=, I o _! _4,,, 
= +6 / /1 /~  / = 6/51 

LL-1/s/ 4/5 1 

Table 3 
Variables 

in Basis 

X o 
Xa o 

X 2 
Xa I 

1 0 -2/5 0 

0 1 6/5 0 
0 0 1/5 0 
0 0 -1/5 1 

x~ 
-12/5 

-4/5 
6/5 
4/5 

y2 

1/5 
-3/5 

2/5 
3/5 

Now from the product of the second row of 1321 , with ,~ we find 

z j -  c~ = (-3/5, 0 , -  1/5, 1) 

Hence ~ ,  enters the basis 
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The vector Y~ is obtained by multiplying 621 by ~ and is recorded in the 

last column of Table 3 

Hence X2~ leaves the basis 

Table 4 
Variables 

in Basis 

X o 

Xa o 

x 2 

x 1 

1 0 -1/3 -1/3 

0 1 1 1 

0 0 1/3 -2/3 

0 0 -1/3 5/3 

-8/3 

0 

2/3 

4/3 

Since x~ o = 0, all the artificial variables are zero and Phase 1 ends. 

Now, to initiate Phase II, we take the product of the first row of ]~31 with 

,~ and obtain 

z . -  c . -  (0, 0, 1/3, 1/3) 
J J 

Since all z . -  c. > 0, the solution obtained in table 4 is optimal. 
J J ~  

Hence the solution of the problem is 

x~ -- 4/3, x 2 - 2/3 and Min z = 8/3 

14.4. Exercises 

1. Compare the simplex and the revised simplex methods. 

2. Discuss the revised simplex method for the linear program where the 
initial basis is not known and it is not necessary to add an artificial variable 
to every constraint to get an identity matrix. 

3. Solve the following linear programming problems by the revised simplex 
method. 
(a) 

(b) 

Maximize z -  x~ + x 2 
Subject to 2x~ + 3X 2 < 8 

x~ + 4x 2 _< 6 
xl, x2 >__ 0 

Maximize z = x~ + 2x 2 
Subject to x~ + 6x 2 < 3 

4Xl + 3x 2 _5< 6 
x~, x2 >_ 0 
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(c) Maximize 
Subject to 

(d) Minimize 

Subject to 

(e) Maximize 
Subject to 

(f) Minimize 

Subject to 

Z = 3 X  1 + 6 X  2 - 2 x  3 

2x~ + 2 x  2 -- X 3 __~ 2 
4x~ + x : < 4  

Xl, X2, X 3 ~ 0 

Z = X  l + 3X 2 

3x t + 2 x  2 > 2 
x~ + x 2 >  1 

x Z, x2>_ 0 

z = 2x~ + 2 x  2 + X 3 

3x~ + 4x 2 - x  3 < 8 
2x~ + x 2 + . 7 5 x  3 _< 3 
3xt + x 2 + .25x 3 < 2 

XI, X2, X 3 >' 0 

Z = X l + 2X 2 

3x~ + 4x 2 > 6 

2x~ + x 2 < 3 

x~ + 3x2= 3 

x l, x 2 > 0 
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Duality in Linear Programming 

15.1. The concept of duality plays an important role in linear programming from a 
theoretical as well as a practical point of view. Associated with every linear 
programming problem is another closely related linear programming problem called 
the dual. The original problem is called the primal problem. The relations between 
these two problems are such that it is possible to use the optimal basic feasible 
solution of one problem to obtain an optimal solution for the other readily. This 
fact is important because situations may arise where it is more convenient to use 
the dual to solve a linear programming problem than the primal. The notion of 
duality was first introduced by J.von Neumann [488]. Subsequently Gale, Kuhn, 
and Tucker [185], Dantzig and Orden [116] and Goldman and Tucker [203] 
presented duality theorems and properties of dual linear programs. 

We shall now proceed to establish duality relations between two canonical 
linear programs. From this we shall get a proof for the standard and the general 
program. 

15.2. Cannonical Dual Programs and Duality Theorems 
Consider the problems 

Maximize 

Subject to 

and 

f i x )  = c rX 

A X < b  (15.1) 

X > 0  

Minimize g(y) = brY 

Subject to ArY >__ c (15.2) 

where A is an m x n matrix 

Y > 0  

The problem (15.1) is called the primal problem and the problem (15.2) the 
dual. 

The relations between the primal and the dual problems will now be shown 
through a member of theorems. 
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Theorem 15.1. (Weak Duality Theorem) 
If X and Y arc feasible solutions to the primal and the dual problems 

respectively, then 

f(X) _< g(Y) 

Proof: From the constraints of (15.1) and (15.2) we have 

f(X) = crX _< WAX _< Y ~  = bvY = g(V) 

Corollary 15.1. If X o and Yo are feasible solutions to the primal and the dual 
problems respectively such that CrXo = bW o, then X o and Yo are optimal solutions 
to the primal and the dual problems respectively. 

Proof: Let X be any feasible solution to the primal problem. By theorem 15.1, we 
then have 

crX < bW o = CrXo 

and hence X o is an optimal solution to the primal problems. Similarly, it can be 
shown that Yo is an optimal solution to the dual. 

Theorem 15.2. (Duality Theorem) 
If either of the primal or the dual problems has an optimal solution, so does 

the other and their optimal values are equal. 

Proof: Let X 0 be an optimal solution of the primal problem (15. l) 

Consider the system of inequalities 

A W > c  
baY < CrXo (15.3) 

Y > 0  

If (15.3) has a solution Yo, then by theorem 15.1 brYo = CrXo and by corollary 
15.1, Yo is then an optimal solution of the primal and the optimal values of the 
primal and the dual problems are equal. 

Suppose that the system of inequalities (15.3) does not have a solution. It then 
follows from theorem 7.11 that there exists a (Z, 0) satisfying the system of 
inequalitites 

A Z -  b0 < 0 

cXZ - 0 CrXo > 0 (15 .4)  

Z, 0>_0. 

where 0 is a single element. 

Now, 0 cannot be zero for if 0 = 0, we have 

A Z < 0  

crZ > 0 (15.5) 

Z > 0  

and then (x o + t )  is feasible for the primal problem for all t > 0, and 

f(X o + t )  = cr(Xo + t )  = CrXo + tcrZ ~ + oo as,t ~ + oo, since crZ > 0, 
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which contradicts the assumption that X o is an optimal solution of the primal 
problem. 

Since 0 > 0, we note from (15.4) that z/0 is feasible to the primal problem 
and cTZ/0 > C'Xo, which again contradicts that X o is an optimal solution of the primal 
problem. Thus, the system (15.4) has no solution. 

Hence the system of inequalities (15.3) must have a solution Y0 and Y0, 
therefore is an optimal solution of the dual problem and their optimal values are 
equal. 

Similarly, it can be proved that if Y 0 is an optimal solution of the dual problem 
(15.2), then there exists an X 0 such that X 0 is an optimal solution of the primal 
problem (15.1) and their optimal values are equal. 

Theorem 15.3 (Unboundedness Theorem) 

(a) If the primal problem is feasible while the dual is not, the objective function 
of the primal problem is unbounded. 

(b) If the dual problem is feasible, while the primal is not, the objective 
function of the dual problem is unbounded. 

Proof: (a) Let X o be a feasible solution to the primal problem (15.1). Since the 
dual problem is infeasible, the inequalities 

A W > c  

Y > 0  

have no solution. 

Hence there exists (theorem 7.11) a solution of 

AZ<O 

cTZ > 0 

Z > 0  

and then X o + IIZ is feasible for the primal problem for all !~ >__ 0 and 

f (X o + ~tZ) = cT(Xo + ~tZ) = CTXo + ~tcTZ --~ +o0 as ~t --~ + oo since cTZ > 0. 

(b) The proof goes exactly in the same way as in (a). 

Corollary 15.2 
(a) If the primal problem is feasible and f(X) is bounded above, then the dual 

problem is feasible 
(b) If the dual problem is feasible and g(Y) is bounded below, then the primal 

problem is feasible. 
(c) If the primal and the dual problems are both feasible, then f(X) is bounded 

above and g(Y) is bounded below. 

Proof: (a), (b): If one problem is feasible and the other is not, then by theorem 
15.3, the objective function of the feasible problem is unbounded contradicting the 
assumption. 
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(c): Suppose that the primal is unbounded. This can however, only happen if 
there exists a solution of 

A Z < 0  
crZ> 0 

Z>O 

in which case for any feasible solution X of the primal problem, X +tZ is also 
feasible for all t > 0 and f(X + tZ) = cr(X + tZ) = ca3( + tcrZ ~ + oo for t ~ + oo, 
since crZ > 0. By theorem 7.11, it then follows that there does not exist a solution 
of the system 

ArY>c  

Y > O  

which implies that the dual problem is infeasible, contradicting the assumption. 

Theorem 15.4. (Existence Theorem) 
If both the primal and the dual problems are feasible, then both have optimal 

solutions and their optimal values are equal. 

Proof: By corollary 15.2 (c), f(X) is bounded above on the constraint set of the 
primal and g(Y) is bounded below on the constraint set of the dual problem. Since 
the set 

S = {X[ A X < b ,  X > 0 }  

is a nonempty, closed bounded polyhedral convex set the linear function crX attains 
its maximum value on S, that is, there exists an X o feasible for the primal problem 
such that max crX = CrXo and X o is an optimal solution of the primal problem. 

By theorem 15.2 then, there exists a Yo optimal for the dual problem and CrXo 
= brYo . 

Alternatively, theorem 15.4 can be proved as follows: 

Consider the system of inequalities 

AX<b 
ArY>_c (15.6) 
crX- brY > 0 

X,Y>_O 

If (15.6) has a solution (X o, Yo), then by theorem 15.1 CrXo = bVYo and by 
corollary 15.1, X o and Yo are then optimal solutions to the primal and the dual 
problems respectively and their optimal values are equal. 

Suppose (15.6) does not have a solution. It then follows by theorem 7.11, that 
there exists a (W, Z, O) satisfying the system of inequalities. 

ArW - cO> 0 

-AZ + b0 > 0 (15.7) 

brW - crZ < 0 

W,Z, 0>_0 
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where 0 is a single element 

It can be seen easily that 0 must be positive. 

If 0 = 0, from the constraints of (15.1), (15.2), and (15.7) we have 

brW > XTATW > 0 

cTZ < yTAZ < 0 

so that b r W -  cVZ > 0 contradicting the third inequality of (15.7) 

If 0 > 0, from (15.7) we get 

ATW/0 > c 

A Z/0 < b 

W/0, Z/0 >_ 0 

so that z/0 and W/0 are feasible solutions of the primal and the dual problems 
respectively. Hence by theorem 15.1, 

bTW/0- cTZ/0 > 0 

or bTW - cTZ > 0 

which again contradicts the third inequality of (15.7). 

Hence (15.7) is inconsistent and we must have a solution of (15.6) which 
implies, that both the primal and dual problems have optimal solutions and their 
optimal values are equal. 

The possible status of the dual problems may be summarized as follows: 

Primal; Max f(X) 

Feasible 

Infeasible 

Dual" 

Min g(Y) 

Feasible 

f(X) _< g(Y) 

Max f(x) = Min g(Y) 

Max f(X) --~ + oo 

Infeasible 

Min G(Y)= ~ oo 

Possible 

Table 15.1 

The following example shows that both the primal and the dual problems can 
be infeasible 

Example" Consider the primal problem: 

Maximize f(X) = 4x~- 3x 2 

Subject to = x, - x 2 _< 1 

- x , +  x ~ < - 2  

x,, x2>0  

It is clear that the problem is infeasible. It's dual problem is 

Minimize g(Y) = y, - 2y 2 

Subject to Y~ - Y2 > 4 
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- yl+Y2 > -  3 

Yl, Y2 > 0 

and it is also infeasible. 

Theorem 15.5: The dual of the dual is the primal. 

Proof: Suppose that the primal problem is 

Maximize f(X) = crX 
Subject to AX < b, 

X > 0 .  

The dual to this problem is then given by 

Minimize g(Y) = bTy. 

Subject to ArY > c. 
Y > 0 .  

(15.8) 

(15.9) 

Now, the problem (15.9) is also a linear programming problem and we are 
interested in finding its dual. The problem (15.9) can easily be expressed as" 

Maximize - g(Y) = - brY 
Subject to - ArY < - c (15.10) 

Y > 0  

Which is exactly in the form of (15.8) and hence the associated dual problem 
is given by 

Minimize h(W) = - cTW 
Subject to - AW >_- b 

W > 0  

or Maximize H(W) = crW 
Subject to AW < b (15.11) 

W > 0  

The problem (15.11) which is the dual of dual problem (15.9) is just the primal 
problem, we had started with. 

15.3. Equivalent Dual Forms 
(a) Cannonical form (Symmetric form). 
The duality relations between a pair of linear programming problems in 

cannonical form have already been established. If the problem 

Maximize z = crX. 
Subject to AX < b (15.12) 

X > 0  

is considered as the primal problem, then its dual is given by, 

Minimize v = baY 

Subject to ArY > c (15.13) 

Y > 0  
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The cannonical form of the dual problems is remarkable because of its 
symmetry and is referred to as symmetric dual programs. To see more clearly the 
connection between the pair of dual programs, they may be symbolized in the table 
below 

Dual 

Variables 

y~>0 

Y2>0 

Ym>0 

Relation 

Constants 

Primal 

XI~___O x2~O Xn~__O 

all a12 aln 

a2~ a22 a2n 

aml am2 amn 
> > > 

C 1 C 2 C n 

Relation 

< min v 

Constants 

b 1 

b2 

b 
m 

> max z 

Table 15.2 

(The primal problem reads across and the dual problem down) 

Dual problems for the standard and the general linear programs may 
conveniently be obtained by first transforming them to their equivalent cannonical 
forms and then obtaining their dual. 

(b) Standard form" The standard form of linear programming problem 

Maximize z = cTX 
Selected to AX = b (15.14) 

X > 0  
can be written in the cannonical form as 

Maximize z = cTX 
Subject to AX < b 

- A X  < - b  
X > 0  

Its dual is therefore given by 

Minimize v = baY 
Subject to ATy > c (15.15) 

Y unrestricted. 
(c) General form 

Consider the linear programming problem in general form 

Maximize z = ~ c jxj 
j~N 

Subject to ~a~jxj _< b,, i ~ M 1 
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aijxj = b~, i e M 2 
jEN 

>0 ,  j e N  ! Xj._ 
xj unrestricted, j e N 2. 

where M = { l, 2,..m}, M ! c M, M 2 = M -  M l 
and N = { 1, 2,. . .n}, N ! c:: N, N2= N - N ! 

The problem can be rewritten as 

M a x i m i z e  z = E CjXj "1" Z c j x l j -  Z CjX~ 
jGNi jEN2 j~N2 

(15.16) 

Subject to 
1 2 <b  i i e M l  Z aijxi + Z aijxj- Z aijxj ' 

jeNl jeN2 j~N2 

l 2 <b  i i e M 2  Z aijxj + Z aijxj- Z aijxj , 
j~Nt j~N2 jEN2 

_ _ 2 _< _b i i E M 2 Z aijxj Z aijxlj + Z aijxj , 
jGNI j~N2 j~N2 

2 >0 ,  j e N 2  x > 0 , j  e N~, x > 0 , j  e N2, xj _ 

which is now in the cannonical form and its dual therefore is given by 

Minimize v = ~7~ biyi + ~7] biyl - ~]  biy~ 
i eM t i ~M 2 i eM 2 

Subject to Z aiJYi + Z  aiJYl- Z aiJY~ >cj '  j EN l 
ieM I iGM z i~M2 

"iiYi + ~ aijYl- ~ aijY~ > r J s N2 
i~M I ieM2 ieM2 

- Z a i J y i - Z a i J y l  + Z a i j y ~  > - c i ,  j EN 2 
iGM I iEMz iGM2 

which can be expressed as, 

y~>0,  i E M  1, y l > 0 ,  i e M  2, y~>0 ,  i e M  2 

Minimize v = ~b iYi  
iEM 

Subject to a~jy~ > cj, j e N l 
iEM 

(15.17) 

aijY ~>cj,  j a N  2 
iEM 

y~ > 0, i e M l, Yi unrestricted for i e M 2 

M~ + M 2 = M = { 1,2..m}, N 1 +N 2 = N{ 1,3..n} 
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The correspondence between a pair of dual programs may now be summarized 
as below: 

Primal 

Objective function: (Max z = Zcx )  

Constant terms" b i 

Coefficient matrix: A =(a0) 

Constraints" 

i th inequality: Za0x < b~ 

i th equaliity: Zja~jx=b~ 

Variables: 

( a l x  > 0  

(b) x unrestricted in sign 

15.4. Other Important Results 

Dual 

Constant terms c.. 
J 

Objective function: Min v = EibiY ~ 

Transposed coefficient matrix" AT=(a~) 

Variables: 

i th variable y~ > 0 

i th variable y, unrestricted in sign 

Constraints: 

(a) j the inequality: Zia~jy j > c 

(b) j th equality: Z~a0y j = c 

The following theorem can be interpreted as establishing a necessary and 
sufficient condition for optimality of feasible solutions to the pair of symmetric dual 
problems. 

Theorem 15.6: (Weak theorem of Complementary Slackness) 

Let X o and Yo be feasible solutions to the symmetric dual problems Max {crX 
lAX _< b, X >_ 0} and Min {bW I ArY >__ c, Y >_ 0} respectively. Then a necessary 
and sufficient condition for X o and Yo to be optimal solution is that 

YT o (b - AXo) = 0 (15.18) 

and X T (ATYo - c) = 0 (15.19) 

Proof: Since X o and Yo are feasible solutions to the primal and the dual problems 
respectively, we have, 

ot = YT o (b - AXo) > 0 (15.20) 

13 = XTo (ArYo - c) > 0 (15.21) 

and ot + 13 = brYo - cTXo > 0 (15.22) 

If X o and Yo are optimal solutions, then by the duality theorem, we must have 

CrXo = bTYo (15.23) 

which means that ot + 13 = 0 and since ot >_ 0, [3 > 0, we must have ot = 0 and 13 = 0 
and therefore (15.18) and (15.19) are tree. 

Now, let the conditions (15.18), (15.19) hold true. This means 

a=o,  13=o 
and therefore ct + 13 = 0 

i.e. brYo - CrXo = 0 

or CrXo = bW o (15.24) 

Hence, by corollary 15.1, X o and Yo are optimal solutions to the primal and 



186 Mathematical Programming: Theory and Methods 

the dual problems respectively. 

Corollary 15.3: For optimal solutions of the primal and dual systems, (i) whenever 
the ith vari/tble is strictly positive in either system, the ith relation of its dual is an 
equality (ii) if the ith relation of either system is a strict inequality then the ith 
variable of its dual vanishes. 

Proof: Consider the relation (15.18). Since each term in the summation 

o = 0  yT(b-AXo)=)-~y~ b i - aijx j 
i=l j 

is nonnegative, it follows that 

Y~ (bi ~ aijxjq for i = 1, 2,...m. (15.25) _ 0 =0 
J / 

This means that for each i = 1,2, ..... m 

y~>0 implies ~ o 0=bi a~jxj (15.26) 
j=l 

0 0 and aijxj < bi implies y~ = 0 
j=l  

Similarly, from the relation (15.19), we find that 

~ for j = l  2, ..n. Xj ~ . 
i - I  

and hence for each j = 1, 2,...m. 

(15.27) 

( 5.28) 

m 
0 xj > 0 implies ~ a~jy~ = cj (15.29) 

i=l 

m 

~  0 and ~a~jy~ > cj implies xj (15.30) 
i=l 

Thus the relations (15.26) and (15.29) prove case (i) and the relations (15.27) 
and (15.30) prove case (ii) 

The possibility of the case, where both the terms in the product (15.25) or 
(15.28) are zero at the same time for a pair of optimal dual solutions cannot be 
ruled out. The following theorem will however, show that this eventuality cannot 
hold simultaneously for all pairs of optimal dual solutions. 

Theorem 15.7" (Strong Theorem of Complementary Slackness). 

Let X, Y be feasible solutions to the symmetric dual programs Max {cTX[ 
AX < b, X > 0} and Min {bTy I ATy > c, Y > 0} respectively. Then there exists 
at least one pair of optimal solution X o, Yo satisfying the relations. 
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(b - AXo) + Yo >0 

(AVYo- c) + X o > 0 

First we prove the following lemma. 

L e m m a  15.1: The system of linear homogenous inequalities. 

- A X  + tb > 0 

A r Y -  tc > 0 
n 

cTX -- baY . > 0 

X > 0, Y > 0, and t > 0 is a single element. 

(15.31) 

(15.32) 

possesses at least one solution (X,Y,t) such that 

- A X + t b + ?  >0 

A ~ u 1 6 2  (15.33) 

c T x - - b T y + t  > 0 

X,Y,t  > 0 

Proof: The system of linear inequalities (15.32) can be expressed as 

AIX l >_ 0 

XI>_0 

where 

(15.34) 

Io --C 

A l = -A  0 
c T _b T 

is a s k e w -  systematic matrix and 

X[ = [XrYr t ]  

m 

By Theorem 7.16, the system possesses atleast one solution X~ >_ 0, such that 

m ! 

AI,X~ + Xl > 0 

Thus, the system of inequalities (15.32) must possess at least one solution 

(X, Y, t) such that 

0 A ~ -c  x 

A 0 

C T - b  T 0 

>0 
(15.35) 

X,Y,t > 0. 
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and hence the result. 
Proof  of theorem 15.7. Let X and Y be feasible solutions of the primal and the 
dual problems respectively and thus 

A X > b , X > 0  

ATy>C,  Y > 0  

By lemma 15.1, there exists a solution (X,Y,t)  to (15.32) satisfying (15.33). 

It can be easily seen that ~ > 0. If ~ = 0 then form (15.32) we have 

AX<0 ,X>_0  

ATY > 0,Y > 0. 

we then have c rX _< T TAX < 0, 

and bTY > XTATY >_ 0. 

Hence c ~ ~ - b T ~ < 0, which contradicts the last strict inequality in (15.33). 

Therefore ~ must be positive. 

Then X o = X/ t ,  Yo = Y / t, t o = 1 is a solution of (15.32) and thus (X o, Yo) are 

feasible solutions of the primal and the dual problems respectively with crXo > brYo . 
From corollary 15.1, it follows that CTXo = bTYo , and hence (X o, Yo) constitute 
optimal solutions of the dual programs. The relations (15.33) show that (X o, Yo) 
satisfy the relations (15.31). 

Thus the theorem states that there exists at least one pair of  optimal solutions 
to the dual programs, for which if one of the two terms of the sum in (15.31), is 
zero, the other is strictly positive. 

For example, if in ( 15.31) 

b~ - ~a~jXoj = 0, then Yoi > 0 
j=l 

and if Y~o = 0, then ~ aijXoj < b i 
j=l  

Similarly, if 

m 

aijyo~ -c j  = 0, then Xoj > 0 
i=l 

m 

and if Xoj = 0, then ~ aijyo~ > cj 
i=l 
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15.5. Lagrange Multipliers and Duality 
In the theory differential calculus, Lagrange's method of minimizing a function 

z = crX subject to the constraints AX = b, consists of introducing Lagrange 
multipliers U and look for the minimum of the unconstrained function 

crX + Lrr ( b -  AX) 

called the Lagrangian function associated with the problem. 

One may therefore feel that the method of Lagrange multipliers can perhaps 
be applied to solve any linear programming problem but this procedure does not 
work because of the additional nonnegativity constraints X > 0. We can however 
consider the Kuhl2.-Tucker theorem [291] which generalizes Lagrange's classical 
multiplier method to the determination of a solution of an optimization problem 
under inequality constraints and nonnegative variables. It has been shown that if 
the problem is 

Maximize f(x) 

Subject to g~(X) > 0, i = 1, 2,...m 

X > 0  

where f(X) and all the g~(X) are differentiable concave functions then under certain 
conditions, a solution of the saddle value problem corresponding to the lagrangian 
function of the problem, constitutes optimal solutions to the problem and its dual. 
The Lagrange multipliers are the dual variables. 

Since linear programming problems satisfy the Kuhn-Tucker conditions, this 
theory is applicable to linear programming also. 

Consider the problem 

Maximize crX 

Subject to AX < b (15.36) 

X > 0  

The Lagrangian function associated with this problem is given by. 

(X,U) = crX + U r (b - AX), for X > 0, U > 0 (15.37) 

Definition: Saddle value problem: The saddle value problem corresponding to 
the Lagrangian function t~ (X,U) is to find vectors X 0 > 0, U o > 0 which satisfy 

(X, U0) _< ~ (X 0, U0) _< ~ (X 0, U) for all X >_ 0, U >_ 0 (15.38) 

(X o, Uo) is called the saddle point of ~ (X, U) 

Theorem 15.8: For a pair of dual problems, a necessary and sufficient condition 
for the two vectors X o > 0 and U o >_ 0 to constitute dual optimal solutions is that 
(X o, Uo) be a saddle point of the Lagrangian function ~ (X, U). The common optimal 
value of the problem is then ~ (X 0, U0). 

Proof: 

Let X o, U o be optimal solutions of the pair of dual problems respectively, 
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Maximize ca'X Minimize bq.J 

Subject AX < b and Sunject to 

X > 0  

and then the Lagrangian function is given by 

0 (X,U) = crX + I.V (b - AX) 

Now, O (Xo, Uo) = CrXo + UoT(b- AXo) 

ATU > c (15.39) 

U > 0  

(15.40) 

= CrXo by theorem 15.6 

= bTUo + X0r ( c -  A~o)  

= brUo by theorem 15.6 

Thus r (X o, Uo) = CrXo = brUo 
Moreover for all X, U >_ 0. 

r (X, Uo) = cTX + Uo T ( b -  AX) = bTUo + X r ( c -  ATUo) 

_< b Oo = r (Xo, Do) 
and 0 (Xo, U) = CTXo + Or (b -  AXo) > CTXo = r (X o, Uo) 

Hence �9 ~ (X, Uo) < ~ (X o, Uo) < ~ (X o, U) for all X, U > 0. 

Conversely, let there exist X o, U o > 0 which satisfy (15.38). From the first 
part of (15.38) we have 

r (X, Vo) < r (X o, Co), X >__ 0 

or [crX + Uo r (b - AX)] - [cTX o + Uo r (b - AXo) ] < 0. 

or (c T-  Uo r A) ( X -  Xo) _< 0 

Taking successively X = X o + e, j = 1, 2, .... n 

where e is the j the unit vector, 
J 

we have c - aj ~ U o < 0, j = 1, 2, ..... n 

which implies that U o is a feasible solution to the dual problem. 

Similarly, considering the second part of (15.38), it can be shown that X o is 
feasible to the primal problem. 

Further, by putting X = 0, U = 0 in (15.38) we find 

cTXo >_ brUo 
By theorem 15.1, then CrXo = bTUo and hence X o and U o ~re optimal solutions 

to the primal and dual problems respectively and their optimal values are equal. 

15.6. Duality in the Simplex Method 
An important aspect of the simplex method is that from the optimal simplex 

tableau for a linear programming problem, an optimal solution to the dual can readily 
be obtained. Since the dual of dual is the primal, it is convenient to solve the dual 
problem to get a solution to the primal (original) whenever solution of the dual is 
easier than that of the primal. 
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15. 6.1. Optimal solution of the dual 
Consider the problem, 

Maximize 

Subject to 

Z - -  c T X  

AX < b  

X > O  

(15.41) 

To initiate the simplex algorithm, we introduce slack vector X > 0 to convert 
the inequality constraints into equations and we have the problem 

Maximize z = crX (15.42) 

Subject to AX + I X  = b 

X , X  > 0  

LetX o = [X0a ] be an optimal solution of the problem where B is the optimal 
basis and the optimal value of the objective function is Max z = CBTXB, where c B is 
the price vector associated with X a. 

According to the optimality criterion, we must have, 

z -  c > 0 for all j 
J J - -  

T B_I i.e. c B a - c > 0  for j -  1 2, .n (15.43) 
�9 j J ~  ~ . . . . . .  

T n-' and c a e >__ 0 for i = 1, 2,. ...... m (15.44) 

Hence Yo "-- ( c T B - I  )T (15.45) 

is feasible to the dual Problem 

Maximize bTy (15.46) 

Subject to ATy >_ c 

Y > 0  

and the value of the objective function is 

rB-~b = craXB = Max z b~Yo = Yo~b = c, 

By corollary 15.1, then Y0 is an optimal solution of the dual problem. Note 

that y T = carB-~ is found in the zj - cj row of the optimal simplex tableau under 

the columns corresponding to the slack variables. 

Thus, to find an optimal solution of the problem (15.46) we obtain an optimal 
solution of its dual (15.41) and from the optimal simplex tableau, an optimal solution 
of the original problem (15.46) is easily found. 

Now, suppose that the problem to be solved is 

Maximize bTy 

Subject to ATy < c (15.47) 

Y unrestricted 
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Its dual is 

Minimize crX 

Subject to AX = b 

X > 0  

To solve the dual problem, we consider the equivalent problem 

Minimize CrX + M=xT �9 

AX + X" = b 

X, X" >__ 0 

(15.48) 

(15.49) 

( , )T 
where X ' =  x~,x2,...x ~ is an artificial vector and M = (M, M, . . .M)  r is an 

m-vector with each component M, a large positive number. 

For an optimal solution of  the problem, we must have 

(crsB - ' )  a j - c j  < O, j = 1, 2, . . .n (15.50) 

and (c~B- ' )e  i - M < 0, i = l, 2 , . . .m (15.51) 

The above inequalities imply that Yo r = r -~ cBB is a feasible solution to the 

problem. Moreover,  it is an optimal solution. 

15.7. Example 
Consider the problem 

Maximize 

Subject to 

The dual problem is 

Minimize 

Subject to 

2y~ + 6y 2 + 7y 3 

Y~ + 2Y2 + Y3 < 2 

2 y ~ -  3y 2 + )'3 < -1 

-yl  + y2 + y3 < - 1  

Y~, Y2, )'3, )'4 unrestricted. 

z = 2x I + x 2 - x 3 + Mx 4 + Mx 5 + Mx 5 

x ~ - 2 x  2 . x  3+ x 4 = 2 

2x~ + 3x 2 + x 3 + x 5 = 6 

x~ + x :  + x 3 + x 6= 7 

x > O , j  = 1, 2,. . .6. 

where x 4, x 5, x 6 are artificial variables and M is a large positive number. 

(15.32) 

(15.53) 
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Since all z -  c < 0, in Tableau 4, we have an optimal solution of the dual 
J j -  

problem. 

x~ - 3, x 2 -  1, x 3 - 3 and the optimal value of z = 2, 

From Tableau 4, we then find the optimal solution of the original problem as 

Yl - 36/33, Y2 = 9/11, Y3 = - 8/11 

and the optimal value is 2. 

15.8. Applications 
We shall now show how duality relations in linear programming can be used 

in proving some important results. 

Theorem 15.9 (Farkas' Lemma) 
Let A be an m x n matrix and p and X are n -  vectors. Then pTX > 0 holds for 

all X satisfying AX > 0 if and only if there exists an m-  vector U such that 

ATU = p, U > 0  

Proof: Suppose that pTX > 0 holds for all X satisfying AX > 0 

Consider the linear programming problem 

Minimize pTX (15.54) 

Subject to AX > 0 

The problem (15.54) is feasible and since pTX is always nonnegative on the 
constraints set, by letting X = 0 we find that the optimal value of the objective 
function is zero. 

Now, the dual to the problem (15.54) is given by 

Maximize 0 

Subject to ATU = p (15.55) 

U > 0  

and by duality theorem, the problem (15.55) has a solution. 

Thus there exists U > 0, such that ATU - p. 

Conversely, suppose that there exists an m-vector U > 0 such that ATU = p. 
The problem (15.55) then has an optimal solution with the optimal value equal to 
zero since the U satisfying the constraints of (15.55) will give the value zero to 
the objective function. Hence, by duality theorem, there exists an X satisfying AX 
> 0 and Min pTX = 0, which implies that pTX > 0 for all X satisfying AX >_ 0. 

Solution of the Linear Inequalities 
Consider the problem of solving a system of linear inequalities 

AX < b (15.56) 

By theorem 7.10, (15.56) has no solution if and only if the system of equations 

ATy = 0, bTy = - 1 ,  Y > 0 (15.57) 

has a solution. 
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Consider the linear programming problem 

Minimize 0 

Subject to A~Y = 0 

b T y - 0  = -1  (15.58) 

Y, 0 >__ 0 

If the minimum value of 0 is zero, it will mean that the problem (15.57) has a 
solution and therefore the system of inequalities (15.56) does not have a solution. 
If on the other hand, the minimum value of 0 is positive then an optimal solution 
of the dual to (15.58) provides us with a solution of (15.56). 

The dual to (15.58) is given by the problem 

Maximize - g  

Subject to AX + bg < 0 (15.59) 

- g < l .  

where g is a single element. 

and-~t 0 = max (-~t) = min 0 > 0 

Thus-go > 0 and hence X/(-~t0) solves the original system (15.56). 

Thus to find a solution of (15.56), we first solve the linear programming 
problem (15.58) by the simplex method and from the optimal tableau, we note the 
solution of (15.58) and its dual. If the optimal value of (15.58) is positive, a solution 
of (15.56) can be obtained from the optimal solution of the dual problem. 

Examples of duality also arise in Leontief input-output system [303] (which 
in fact was one of the inspirations for the development of linear programming), 
matrix games, mathematics and in many other fields. 

15.9. Economic Interpretation of Duality 
Let us now consider the economic interpretation of a pair of dual problems in 

linear programming. The basic ingredients of all economic problems are inputs, 
outputs and profit. In this context we consider the activity analysis problem 
discussed in chapter 1. The primal problem is 

Subject to ~a~jxj _< b~, i = 1,2 .... m. 
j=l 

x > 0 ,  j = l , 2 , . . . n  j ~  

Maximize ~ C j X j  
j=l 

where a~j represents the quantity of resource i required to produce one unit of product 
j, b~ represents the availability of the resource i and c represents the profit from 
one unit of product j. x is the level of production of the jth product. 
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The primal problem is thus 
Subject to 

(Production rate of j] ) 
/at unit level from /x(level~ / < (  availability 

J=~ k, resource i ) k, product j) - k, of resource i i = 1, 2,...m. 

(level of product j) > 0, j = 1,2,...n 
Maximize (overall profit) 

[,product(Price perj unit of) = ~j=-7 x (level of product j) 

The corresponding dual problem is 
Subject to 

(ProductiOnunit levelratefrom~ Yi --> (Price per unit] 
z.., [at /x ~ofproduct j ) ,  j = 1,2,...n 
i=l \resource i ) 

y~ > 0, i = 1,2,...m 

Ilt 

Minimize (cost) = ~ (availability of resource i) x y~ 
i=l  

To interpret the dual variables Yi, w e  note that in a situation of equilibrium, 
the laws of economics for society require no profits. Hence, y~ should represent 
unit price of resource i. It is common to refer to y~ as the shadow price. 

Thus the dual problem is 
Subject to 

/at unit level from/Pr~176 rate ~ ( Unit c~ ~ ] > (Price per unit) 

i= l  k, res~ i ) k, resource i ) ~ofproduct j , j = 1,2,...n 

(Unit cost of resource i) > 0, i = 1,2,...m 

Minimize(cost) = ~ (Availability~176176 
i-i \resource i \resource i ) 

Thus, the two dual problems represents two opposing interests. The former 
considers the question of determining the level of production so that the overall 
profit is maximum and the latter wants to fix the prices of the resources such that 
the total cost of resources used for production is minimum. Note that the solution 
of one naturally solves the other problem. 
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15.9. Exercises 

1. Find the dual o f  the problem 

Minimize  z = 4x~ + 2 x  2 + 3x 3 

Subject  to 6x l+ x 2 + 4x 3 < 5 

7x~ + 3x 2 + x  3 = 3 

5X l + 2X 2 + 3X 3 > 2 

x~ unrestricted, x 2, x 3 > 0. 

2. Find optimal solution o f  the following problems by solving their duals. 

. 

, 

(i) Minimize  z = x ~ + x  2 

Subject  to 7x I + 3X 2 > 12 

X~ + 2X 2 > 8 

Xi, X 2 > 0 

(ii) Minimize  z = x I - x 2 

Subject  to x, + x 2 _<-1 

2x I + x 2 > 2 

Xl, x: >__ 0 

(iii) Max imize  z = 4x~ + 2x 2 

Subject  to x~ - x 2 > 2 

x~+x2>_3  

x l, x 2 >_ 0 

(iv) Minimize  z = 6X l + 4X 2 + 3X 3 

Subject  to x I + x 2 > 2 

x~ +x3 > 5 

Xl, x2, x3 >_ 0. 

(v) Minimize  z = 45x~ + 36x 2 + 60x 3 

X l + X 2 + 4X 3 > 5 0  

2x~ + x 2 + 2 x  3 > 40 

5x I + 2x 2 + x  3 > 2 5  

Xl, X2, X s > 0 

Obtain  dual to the fol lowing linear program 

Maximize  z = crX 

Subject  to A~X < b l, 

A 2 X  = b2, 

A3X > b 3 

X > 0  

where  A~ is m~ • n, A 2 is m 2 x n and A 3 is n h x n matrices, 

Solve the fol lowing system o f  inequalities by the s implex method.  

4X l - 7 X 2 +  5X 3 < 1 

- 2 X  l + 4X 2 - 3X 3 < 3 

2 x  I + 2X 2 - 3 X  3 > 7 

- 2 x  I + x~ + x 3 >_ 4 
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5. Show the problem 
Maximize crX 

Subject to AX = b 
has a solution if and only if c is a linear combination of the columns of A. 

6. Construct an example different from that given in section 15.2 to show 
that both the primal and dual problems may have no solution. 

7. Consider the problem: Minimize crX subject to AX = b, X > 0 where A 
is an n x n symmetric matrix and c = b. Show that if there exists an X 0 >_ 
0 such that AX o = b, then X 0 is an optimal solution of the problem. 

8. Prove that the optimal dual solution is never unique if the optimal basic 
solution is degenerate and the optimal dual is not. 



CnAPTrR 16 

Variants of the Simplex Method 

16.1. Introduction 
By simplex variants we mean the methods developed by varying the simplex 

algorithm so as to reduce the number of iterations in solving a linear programming 
problem. This is specially needed for problems having many constraints in order 
to reduce the cost of computation. It is also needed for problems involving a large 
number of variables, for the number iterations appears to increase with this number. 
This is in particular the case when the introduction of artificial vectors is required 
to obtain an initial basic feasible solution which involves considerable computational 
effort. 

We present in this chapter two variants of the simplex method which rely 
on duality relations: the dual simplex method and the primal-dual algorithm. 

16.2. The Dual Simplex Method 
As we know the simplex algorithm needs to have a basic feasible solution of 

the problem to start with. It then calculates a sequence of basic feasible solutions 
which eventually lead to an optimal solution of the problem. Thus, having an 
initial basic feasible solution is an a priori condition for applying the simplex 
method. The search for an initial basic feasible solution involves substantial 
computational effort when the introduction of artificial variables is required 
because in that case, we first need to replace the artificial variables one by one. 

To reduce this prolonged computations, we start with a basic solution to the 
original (called the primal) problem which is not feasible but satisfies the 
optimality criteria. By duality relations a basic feasible solution to the dual problem 
is easily obtained and such a primal basic solution is called a dual feasible basic 
solution. Now, starting with a dual feasible but primal infeasible basic solution, 
the simplex algorithm is applied to the dual problem to obtain a sequence of primal 
infeasible solutions satisfying the optimality criteria which ultimately lead to an 
optimal solution. This is precisely what Lemke's [300] dual simplex method does. 

Consider the linear programming problem 
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Minimize 

Subject to 

and its dual 

Maximize 

Subject to 

where A is an m x n matrix. 

Z = cTX 

AX = b. 

X > 0  

(16.1) 

v = bTW 

ArW < c (16.2) 

Suppose that we have obtained from A, a basis matrix B = (a~, a2,...am), a 
being the jth column of  A such that X B = B-~b is a basic solution to the primal 
problem which satisfies the optimality criterion. 

Hence z j -  cj < 0 ,  for all j 

or ArW < c 

where W r = cBBr -~ 

Therefore W is a feasible solution to the dual problem (if section (15.6.1) 

and X B is then called a dual feasible basic solution. If X B is feasible, i.e. X B >_ 0, 
it is of  course, an optimal solution to the primal. 

If  W is not an optimal solution to the dual problem, then by the duality 

theorem X 8 is not feasible to the primal and at least one elemem of  X B = B-~b is 
negative. We shall now show that if XB~ < 0 for at least one i (i = 1, 2..m), it is 
possible to find another feasible solution to the dual which is better than W. 

Let 13~ be the ith row of  B -I and consider 

~ r  = W r _ 0 j3, (16.4) 

where 0 is a scalar. 

We then have 

~ r b  = W r b - 0  13 i b. 

= Wrb - 0 Xsi (16.5) 

so that ~ r  b > Wrb for all 0 > 0 since XB~ < 0 (16.6) 

If now ~ can be shown to satisfy the constraints of  the dual, we have a 

new solution ~ to the dual which is better than W. 

Note that 13~ a i = aij, for aj not in the basis 

I~i ar = ~ir' i, r = I, 2,..m, a~, a are in the basis (16.7) 

We have, ~ r  a = (W  r - 0 13~)a, 

= Wra  - 0 13~ a ,  for all j 

Thus, ~ r  a = W  r a . -  0 a .  
j j Ij 
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, . . . .  

= zj - 0 czij for j nonbasic ~ (16.8) 

~/r a = z = Cr, for r, i basic, r ~ i (16.9) 

and ~V r a~ = z~- 0 = c~- 0, r = i. (16.10) 

If tx~j > 0 for all j nonbasic it follows from (16.8), (16.9), (16.10) and (16.3) 

that ~ is a feasible solution to the dual problem for every 0 > 0 and from (16.5) 

we note that the dual problem is unbounded (when 0 ---> + oo) which implies that 
the primal problem has no feasible solution. 

If czij < 0, for at least one j nonbasic we note from (16.8), (16.9) and (16.10) 

that ~ remains a feasible solution to the dual problem if and only if 

z-0(zi j  < c ,  for all j nonbasic 

or 0 _< Min cz~j < 0 
J (~'ij 

Z k -- C k 
= ~  (16.11) a~k 

To have a maximum improvement in the solution to the dual, 0 must be as 
large as possible and therefore 0 is taken to be 

0 = Zk -- ck  

ai k (16.12) 

and then from (16.8) we have ~ v  ak = Zk_ 0 Ct~k" (16.13) 

= C k 

Since (/"ik :~: 0, a new basis matrix B' is now formed by replacing ai by a k and 

it follows from (16.9) and (16.13) that a new solution ~ to the dual is obtained 

so that 

T ~ r T B '  = CB, 

or ~ z  = c~. (B')-~ (16.14) 

Let X w = (B')-lb (16.15) 

be the new basic solution to the primal. 

If X B, > 0, it is an optimal solution of the primal problem. If at least one 
element of  X s, is negative, we apply the preceding process again and obtain a 

new solution W to the dual, better than -~ .  

If it is assumed that 0 r 0, then from (16.5), it follows that the value of the 
dual problem is strictly increasing and no basis is therefore repeated. Since the 
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number of bases is finite, the process will terminate in a finite number of steps 
with a basis that solves the dual and thus provides a feasible and hence an optimal 
solution to the primal problem or with an indication that the dual problem is 
unbounded implying that the primal problem has no feasible solution. 

Consider now the case when 0 computed from (16.11) is zero. It occurs 
when in the previous iteration of the dual simplex algorithm, there is a tie in the 
computation of the entry criterion and degeneracy appears in the dual problem. 
To handle degeneracy in the dual, Lemke [300] has shown that a method similar 
to the degeneracy method for the primal may be established. 

16.3. The Dual Simplex Algorithm 
The dual simplex method may now be summarized as follows: 
Step 1. Obtain a basis B of the primal problem such that z -  c < 0, for all j 

J J ~  
nonbasic I (see Section 16.4). 

Step 2. Check the basic solution X B = B-lb, 

I f  X B >_ 0, it is an optimal solution of the problem. 

Otherwise some of the elements of X B are negative. Let XB~ < 0 for at 
least one i in the basis l 

Step 3. Check tx~j for all i for which XB~ < 0 and all j nonbasic. 
(a) I f  ~.j >_ 0 for at least one i and every j nonbasic, the primal problem has 

no feasible solution. 
(b) I f  tx.,j < 0 for every i for which XB~ < 0 and for at least one j nonbasic, 

select r by the relation 

XB ~ = M i n  [XBi [XBi < 0], Exit criterion 

and the vector a r is removed from the basis, and determine k by the relationship 

I z j - c j  ] Entry criterion 
zk --Ck = Min ct~ < 0 , 

ot,k J ct~ for all j nonbasic 

so that a k is entered in the basis. 

Step 4. Obtain the new basis matrix B' by removing the vector a and 
introducing a k in the basic set. Calculate the new values of XB., z' and or' and repeat j |J 
the algorithm from step 2. 

Note that the dual simplex method is carried out with the same tableau as 

the primal simplex method. 

For brevity we write j nonbasic meaning that j belonging to the set of indices of nonbasic 
vectors. Similarly, for i in the basis. 
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16.4. Initial Dual  - Feasible  Basic Solut ion 

The dual simplex algorithm is used to solve a linear programming problem when 
a basic solution to the problem with all z -  c < 0 is known. In certain cases such 

J j -  

as in parametric and post-optimization problems a dual-feasible basic solution is 
readily available but in general it is not easy to find such a basic solution to the 
problem. However, there may be situations, where we wish to use the dual simplex 
algorithm when a dual-feasible basic solution is not already known. In such cases 
the following procedures may be followed to find initial dual-feasible basic solution. 

16.4.1. A particular case 
Consider the problem 

Minimize crX, subject to AX > b, X > 0 
(16.15) 

where c are all nonnegative. 
J 

Suppose a surplus variable is added to each constraint 

Then the initial basis matrix is B = - I  and X a = -  b with the associated costs 
equal to zero. Further, since cj > 0 for every j, z - c  _< 0. Thus X B is a dual feasible 
solution and the dual simplex algorithm can now be applied. 

16.4.2. Dantzig's Method [100] 
Dantzig has suggested a method of getting started on the dual simplex 

algorithm for a linear programming problem which involves the direct use of its 
dual. 

Consider the problem (16.1), i.e. 

Minimize z = cTX 

Subject to AX = b 

X>_0 (16.16) 

where A = (aij) is an m x n matrix, n > m and c > 0, for all j -- 1,2,..n. j ~  

Its dual is 

Maximize v = bTW 

Subject ATW _< c (16.17) 

The dual problem (16.17) is written in the standard form by adding a slack 

variable W; to the jth constraint for each j - 1, 2,..n. The initial dual basis is 

then ~ = I and W; = c is the initial dual solution. Starting with Bz, a dual basis 
J 

- v transposed from B (n • n) is obtained which contains the m column vectors a~, 

rows of A. Without loss of generality (after rearranging and possible renumbering 

of the rows), ~ can be expressed as 
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aT 0, 0,...0 
T 

a~ 0, 0,...0 

T 
am 0, 0,'"0 
T 

am+ l 1, 0,... 0 

T 
_a, 0, 0,... 1_ 

r transposed from a column of A and of where the first m rows are the vectors aj 

( n -  m) zeros respectively. The rn vectors a, (j = 1, 2,..m) are necessarily 

independent ('." r(B)= n) and hence form a primal basis B. The dual solution 

associated with ~ satisfies the first m constraints with equality and it then follows 

that the primal basi c solution associated with B is dual feasible. 

16.4.3. Lemke's Method [300] 
Suppose that the given problem is 

Minimize z = cTX 

Subject to AX=b 

X>O (16.18) 

Lemke has suggested the following procedure to obtain a dual feasible solution 
of the problem. 

Step 1. Find m linearly independent columns of A and let the vector 17) be a 

linear combination of these vectors with each coefficient in the linear expression 
positive. 

Step 2. Solve the problem Minimize z = cVx, subject to AX = 1~, X > 0, by 

the simplex method. 

Step 3. In the optimal solution, replace 1~ by b. This will give a basic solution 

to the original problem with all zj - cj < 0, since zj - cj does not depend on the 
requirement vector b. 

The dual simplex algorithm can then be applied. 

However, both Dantzig's method and the method suggested by Lemke require 
a good deal of calculations and may not therefore be advantageous over the usual 
artificial variable technique to solve the problem. 

16.4.4. A General Method: The Artificial Constraint Technique 
Consider the linear programming problem in standard form (16.1) and suppose 
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that a basis B is known. 

The constraints of  the problem can be written as 

X B + ~ B-~ajxj = B-~b = b 
J 

Assuming that B corresponds to the first m vectors of  A, we have from (11.4) 

x~ + (x0x j = b, i = 1,2 .... m. 
j - m + l  

( b )  - _ where ~ = b = XB = value of the basic variables 

T Multiplying this expression by c B on the left and subtracting it from 

rx  B + ~ CjX z = c  B j, we have 
j=m+l  

- • •  ( /  rb = c j x j  = c ( x j x j ~  j ij ~ ~ �9 z - c  a (x = c~ i = l  2, . .m 
j=m+l  j=m+l  

r b = r XB = ~ = the value of the objective function for this basic Setting c B eB 

solution we have 

• 
j - m + l  

111 

sin ce by (11.5), ~ Ci(Xij "- Zj. 
i=l 

The problem can thus be expressed as 

Minimize z = ~ -  ~ (z j -c j )x j  (16.19) 
j=m+l 

Subject to x~ + a~jxj - b~, i = 1,2,. . .m (16.20) 
j=m+l  

x > 0 j = 1,2,.. .n (16.21) j -  

Suppose that the basic solution is not feasible and that not all zj - c.j_< O. We 

then introduce the artificial constraint 

~-~ xj < M (16.22) 
j=m+l  

where  M is a large posi t ive number ,  larger than any finite number .  Now,  

introducing a nonnegative slack variable x o, the artificial constraint (16.22) is 

transformed into an equality, so that 
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x o+ ~ x j = M ,  x 0 > 0  (16.23) 
j=m+l 

Consider now, the augmented problem 

Minimize z = 2 -  ~ ( z j - c j )  xj (16.24) 
j=m+l 

Subject to constraints (16.20), (16.21) and (16.23). 

Clearly xi = bi, i = 1,2,...m 

x o = M (16.25) 

xj = 0, j = m+l,...n 

constitute a basic solution to the augmented problem (16.24) 

Now, change the basis by introducing the variable x k (m + 1 < k < n) in 
place of x o, where k is defined by 

za, - c k = Max (z --cj) (16.26) 

Replacing x k by its value M - x o - ~ xj in (16.19) and (16.20) we get the 
j=m+l 

problem 

Minimize z = [~  - M(z k - Ck)]+ (Z k -- C k) X o 

+• 
j=m+l 
j#k 

[/Zk- X, 
(16.27) 

Subject to 

w 

--(ZikX 0 + X i + (C[,ij --(Zik )Xj = b~ - (XikM, 
j=m+l 
j.k 

i = 1, 2 , . . . m .  

X o + X k +  2.a Xj j-m+~ = M (16.28) 
j~k 

x > 0 ,  j = 0 ,  1, 2...n. j - -  

Xl, x2, ...x m, x k can then be taken as basic variables and from (16.26), it follows 
that the basic solution obtained is dual feasible. The dual simplex algorithm may 
therefore be applied to the augmented problem. 

The application of the dual simplex algorithm leads to the termination of the 
process with one of the following three results: 

(a) The augmented problem has no feasible solution. 

In this case the original problem also does not have a feasible solution since 
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every feasible solution (XI,X2,...Xn) T to the original problem yields a feasible 

solution (~O,~l,...~n) T to the augmented problem where 

s 
xo - M -  xj 

j=m+l 

(b) The augmented problem has a minimal solution and x o is not a basic 
variable in this solution. 

In this case at the minimal solution, the constraint (16.22) is satisfied with 
equality, i.e. 

xj = M. (16.29) 
j=m+l 

and the values of the basic variables are functions of M. Now two cases may 
arise. 

(i) The minimal value ~ of z is an explicit function of M for every value of 

M greater than a fixed value. M1. If M --~ + o% then z ~ - 0% since z cannot 
tend towards + oo, because there is a feasible solution of the original problem 
which yields a finite value of z. Hence the augmented problem has an unbounded 
solution and since the objective functions of the augmented and the original 
problems are the same and further every feasible solution of the augmented 
problem is a feasible solution of the original problem (x 0 = 0), the original problem 
has also an unbounded solution. 

(ii) The minimal value ~ is independent of M for every value of M greater 

than M1. When Ml varies and is larger than M~, the hyperplane 

x j = M .  
j=m+l 

is displaced parallel to itself and the minimal vertex which is lying on this 
hyperplane (x 0 = 0) moves out to an infinite edge of the polytope represented by 
the set of feasible solutions of the augmented problem. Since ~ is not a function 

of M, the hyperplane cTX = ~ contains this edge and therefore all the points on 
this edge are minimal feasible solutions. In particular, there exists a minimal basic 
feasible solution of the original problem represented by the origin of this infinite 
edge and this origin is obtained by decreasing M until one of the variables which 
is a function of M vanishes. 

(c) The augmented problem has a minimal solution and x o is a basic variable 
in this solution. 

It follows from the constraints (16.23) and (16.20) that the minimal basic 
solution is given by 
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o:][x:]-- 
w her e  e is an m-vec t o r  o f  ones  and 

(16 .30)  

. . . .  

It shou ld  be no ted  f rom (16.30)  that  

x 0 + M + (a cons tan t  i ndependen t  o f  M)  > 0 

and all the  basic  var iab les  x B are independen t  o f  M. Since x o > 0, the  cons t ra in t  

(16 .22)  is a strict  inequal i ty ,  i.e. 

~ x j < M  
j=m+l 

in this min ima l  basic  solut ion.  

H e n c e  the  va lues  o f  X B in the min imal  basic  so lu t ion  cons t i tu te  a min ima l  

solut ion to the original  problem.  

16.5. Example 
Cons ide r  the p rob lem 

M a x i m i z e  

Subjec t  to 

X l + 2X 2 + X 3 

5x I - 2x 2 - 3x 3 < -  4 

3X l + 4X 2 + 6x 3 < 8 

x I + x 2 - 9x 3 < -  3 

x l,  X 2, x 3 > 0 

Introducing the slack variables x 4, x 5, x 6 we express the problem in the fol lowing 

equiva lent  form. 

Min imize  z = - x ~ -  2x 2 - 3x 3 

Subject  to 5x~ - 2X 2 - 3x 3 + x 4 = - 4 

3x~ + 4 x  2 + 6 x  3 + x  5 = 8 

x l + x  2 9 x  3 + x  6 = - 3  

> 0 ,  j - 1,2...6. X j _  

The  bas ic  so lu t ion  x 4 = - 4, x 5 - 8, x 6 - - 3 is not  feas ible  and  s ince z~ - c~ = 

1, z 2 - c 2 = 2, z 3 - c 3 = l ,  the  opt imal  condi t ion  is not  satisfied. 

We,  therefore  in t roduce  the artificial constraint  

x 0 + x I + x 2 + x 3 = M 

where  x o > 0 and M is a large posi t ive  number .  
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Now,  since Max  (z  - c )  = Z 2 - c  2 = 2, we replace x o by x 2 in the basis by 

substituting J 

x 2 = M - x  o - x ~ - x  3 

in the problem 

Thus, we have the augmented problem 

Minimize z = -  2M + 2x o + x~ + x 3 

Subject to 2x o + 7 X  1 - - X  3 + X 4 " " - - 4  + 2M 

- 4 x  o - x~ + 2 x  3 + x 5 = 8 - 4M 

- x  o -  10x 3 + x  6 = - 3 - M  

x o + x 1 + x 2 + x 3 = M 

> 0 , j = 0 , 1  .6. X j _  , . .  

and the basic solution x 2 = M, x 4 = -4 + 2M, x 5 = 8 - 4M, x 6 = - 3 - M is dual 

feasible and we apply the dual simplex algorithm 

Tableau 1 

cB 

0 x, 

0 x 5 

o 

o x 2 

Z. ~ C. 
J J 

X 0 X 1 X 2 X 3 X 4 X 5 X 6 

2 7 0 -1 1 0 0 

--4* -1 0 2 0 1 0 

-1  0 0 - 1 0  0 0 1 

1 1 1 1 0 0 0 

2 

- 2  

1' 

1 0 1 0 0 0 

-1  0 -1 0 0 0 

XB 

- 4 + 2 M .  

8 - 4 M  

- 3 - M .  

M 

--> 

Tableau 2 

X o 

X 6 

X 2 

Z. m e .  
J J 

13/2 0 0 1 1/2 0 

1/4 0 -1 /2  0 -1 /4  0 

1/4 0 - 2 1 / 2 '  0 -1 /4  1 

3/4 1 3/2 0 1/4 0 

-1 /2  0 - 2  0 -1 /2  0 

1' 

0 

M - 2  

-5  

2 
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Tableau 3 

C B 

0 X 4 

2 x o 

1 x 3 

0 x2 

Z .  n C.  
J J 

X 0 X ! X 2 X 3 X 4 X 5 X 6 

0 13/2 0 0 1 1/2 0 

1 5/21 0 0 0 - 5 / 2 1  - 1/21 

0 -1/42 0 1 0 1/42 -2/21 

0 11/14 1 0 0 3/14 1/7 

0 -23/42 0 0 0 -19/42 -4/21 

XB 

0 

M-37/21 

10/21 

9/7 

Thus an optimal solution of the augmented problem is obtained in tableau 3 
and hence an optimal solution of the original problem is given by 

x~ = 0, x 2 = 9/7. x 3 = 10/21 

and max. z = 64/21 

1 6 . 6 .  T h e  P r i m a l  - D u a l  A l g o r i t h m  

We have seen that the dual simplex method develops a technique which 
eliminates the necessity of introducing artificial variables and works with an 
infeasible basic solution of the problem which satisfy the optimality criterion. The 
primal-dual algorithm developed by Dantzig, Ford and Fulkerson [112] does 
introduce artificial variables into the primal but instead of driving the artificial 
variables to zero as usual, the method works simultaneously on the problem (primal) 
and its dual. Associated with any feasible solution to the dual, a restricted primal 
problem is obtained from the auxiliary primal problem by dropping certain variables 
to satisfy the theorem of complementary slackness (theorem 15.6) and minimize 
the sum of artificial variables by the revised simplex method. If the optimal solution 
thus obtained is not feasible to the original primal problem, a new feasible solution 
to the dual is obtained and the whole process is repeated. After a finite number of 
iterations, the optimal solution of the restricted primal is either optimal to the original 
problem or it indicates that the primal problem has no feasible solution or is 
unbounded 

Development of the Method 
Let us assume that the primal problem is 

Minimize z = crX 

Subject to AX = b, b >_ 0 (16.31) 

X > 0  

Its dual then is 

Maximize v = brW (16.32) 

ArW <c 
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As in the ordinary simplex process, an auxiliary primal problem (Phase I 
problem) is obtained by adding artificial variables to the constraints of (16.31) and 
by replacing the objective function by the sum of the artificial variables. Instead 
of driving the artificial variables to zero as usual, the primal-dual method [ 112] 
deals with the primal and the dual problems simultaneously and reduces the number 
of iterations taken by the two-phase method. 

The auxiliary primal problem is 

m " E  Minimize z = x~, 
i = l  

Subject to s + x~. = b,, b > 0. i = 1, 2,. . .m 
j = l  t ~  

x > 0 ,  x , > 0 ,  i =1  2, .m 
j ~ i ~ ~ " "  

j = 1, 2,. . .n 

where x~, is an artificial variable 

Its dual is given by, 

m 

Maximize v = 2 b iwi 
i=l 

(16.33) 

Ill 

Subject to ~ aijw ~ _< 0, j - 1, 2,. . .n (16.34) 
i = l  

w < l ,  i = l , 2 , . . . m  
1 

To initiate the primal-dual algorithm, we need to have the knowledge of a 
feasible solution to the dual problem (16.32). In problems where c > 0, W = 0 is 
an obvious feasible solution but in general, a dual solution may not be easily 
available. We then make use of a simple device suggested by Beale [36] which 
leads to an immediate feasible solution to the dual. (See section 16.9) 

Theorem 16.1 

Any feasible solutions to (16.33) and to (16.32) are optimal solutions to the 
original primal and the dual problems respectively if 

z* =0 

and XT(ATW -- C) = O. 

Proof: Since XR, >_ 0 (i = 1, 2,..m), the condition z* - 0 implies that each x~, = 0 

and hence the feasible solution to (16.33) (for which z* = 0) is a feasible solution 
to the original primal problem (16.31). 

For every feasible solutions X, W to the primal and dual problems respectively, 
We have from the constraints of ( 16.31) and (16.32). 
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b rW = XrAvW < Xrc 

The condition X r (ArW - c) = 0 then implies that 
brW = crX 

and hence X and W are optimal solutions to the primal and the dual problems 
respectively. 

It may be noted that the condition Xr (ArW-  c) = 0 is the condition of the 
weak theorem of complementary slackness (theorem 15.6) 

Let ~ (i = 1, 2,...m) be a feasible solution to the dual problem (16.32). 
Associated with this solution, a restricted primal problem is obtained from the 
auxiliary primal (16.33) under the conditions 

m 

x. = 0, if ~ aijwi < cj. (16.35) 
J i= l  

Let Q denote the set of indices j, for which 

m 

~ a i j ~  i - c j  = 0 
l= l  

i e  0 , ,6 

Thus if ~i are such that the jth constraint of (16.32) is satisfied with strict 
inequality, the variable xj is dropped from the auxiliary primal problem (16.33), to 
form the restricted primal problem. The dual of the restricted primal is obtained 
from the auxiliary dual (16.34) by dropping the jth constraint for which 

m 

aijw i - c j  < 0 
i= l  

The restricted primal problem is then solved by the revised simplex method. 

The values Xa, = b~ may be taken as the initial basic feasible solution and the method 

provides optimal solutions (x~, x~ ) anda ,  w~~ (i = 1,2,....m, j =  1,2,...n)to the 

restricted primal and its dual respectively. 

Theorem 16.2 

If the minimal value of z* for the restricted primal problem is zero, then the 

solutions (x~, w ~ are optimal solutions to the original primal and the dual problems 

respectively. 

Proof: The optimal solution to the restricted primal problem is obviously a feasible 
solution to the auxiliary primal problem. Now this feasible solution to the auxiliary 
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primal and the feasible solution to the dual problem from which this restricted 
problem is derived satisfy the conditions of theorem 16.1. Hence they are optimal 
solutions to the original primal and the dual problems respectively. 

From the optimal solutions to the restricted primal and its dual, we note that, 

0 o<0  for j e Q  and Y'aijw ~  ifxj  >0 a i j w  i -- 
l i 

(16.37) 

0 wiO _< 1, i = 1, 2,... .m and w~ = 1, if x ~ >0 (16.38) 
a I 

Theorem 16.3 

If for the restricted primal problem Min z* > 0, then either the original primal 
problem has no feasible solution or a new feasible solution to the dual problem 
with a strict increase in the value of its objective function can be obtained. 

Proof: Let us define 

0 0 w~ = w~ +0w~, i = 1,2, ..... m (16.39) 

where 0 is a scalar parameter 
n 

0 

N o w f o r a l l j  e Q, ~-'~aijw~ =cj and Y~aijw~ _<0 by(16.37) and for 
i i 

j ~ Q, Eai jwi  <cj. 
i 

Two cases may now arise: 

Case (a) For every j ~ Q' ~ aij w~ < 0 
i 

(b) There is at least one j ~ Q for which 
0 2 a i j w  ~ > 0 

i 

In case (a), 
u 

0 0)--~ aijw~ _ 2 a i j w i  - E aij w i  d- o < c j ,  
i i i 

and hence w~ (i = 1 ,2,..m) is feasible to the dual problem (16.32) for every 

0 > 0 .  

~176 ) to the restricted primal problem is obviously a The optimal solution (xj ~, 

feasible solution to the auxiliary primal (16.33) and w I' is a feasible solution to 

its dual (16.34). Since they satisfy the conditions of the theorem of complementary 
slackness, as can be seen from (16.37), 16.38), and the definition of the associated 
restricted primal, they are optimal solutions to the auxiliary dual problems. Since 
Min z* > 0, it implies that the original primal problem has no feasible solution. 
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In case (b), it follows that 

w~ (i = 1, 2,...m) is a feasible solution to the dual problem for every 

0 , 0 < 0 _ < 0  o 

X aij w i  - Cj 

where 0 o Min -- 0 
X a i jwi  

i 

o 
X a~jw~ > 0 

i (16.40) 

j ~  
air Wi - Cj 

i 

E air w ~  r 
i 

The new value of v is 

m m 
o ow o) v O - "  E b i w i -  E b i  ( w i  + 

i=l i=l 

m 
o 

= V + 0  b i w  i 
i=l 

From the constraint of (16.33) 

(16.41) 

m m y o y X (  o) o X x o o  
b i w  i = a i jw i x j  + a~Wi 

i--I j i i=l 

m 

o o=0  and forx~ >0, o Since for xj > O, ~ a~jw~ ,, w~ = 1, by (16.37) and (16.38), 
i=l 

we have 

m in 

E ~ 1 7 6  b i w i  = a, 
i=l i=l 

Thus v ~ = v + Oz' 

and hence v ~ > v ( 16.42) 

Thus, a new feasible solution w~ to the dual problem is obtained with strict 

increase in the value of the maximizing function. 

For the new feasible solution to the dual problem (16.32), we take 

w~l = w, + 0oW~, i = 1,2, ...m (16.43) 

in order to get the greatest possible in v and the new restricted primal associated 

is formed from (16.33) by the conditions with w~ 
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aijw i < cj implies xj 0 (16.44) 

Since for those j, for which x > 0 in the optimal solution of the restricted 
J 

primal problem 

Y'aij W i  - - C j  - "  0 ,  

i 

0 
and ~ %w~ = 0, 

i 

we have from (16.43) 

by (16.37), 

1 = 0  ~-'~ a~jw i - cj 
i 

We may therefore take the prior minimizing solution of the restricted primal 
as an initial basic feasible solution of the new restricted primal. 

At each iteration there is a variable x in the new restricted primal for which 

0 

E ai~wi > 0 and hence can be introduced in place of one of the basic variables 
i 

and under non-degeneracy assumption z* will be strictly decreased. Thus no basis 
can be repeated and the process terminates in a finite number of steps either with a 
basic feasible solution for which z* = 0 and an optimal solution of the original 

o< 0 
problem is obtained or arrives at a solution where min z* > 0 and ~ a~jw~ _ for 

i 

every j which implies that the original problem has no solution. 

16.7. Summary of the Primal-Dual Algorithm 
The iterative procedure for the primal-dual algorithm may now be summarized 

as follows: 

Steps 
1. 

m 

�9 

(i = 1,2,..m) to the dual problem (16.32) Obtain a feasible solution w i 

[See section 16.9] 

k-~ (i = 1 2,...m) be a feasible solution to the dual problem at the Let w i 

end of the (k-l)th iteration. Associated with this solution, obtain a restricted 
primal problem from the auxiliary primal (16.33) by the conditions 

k-1 x j = 0  if ~a~jw~ <cj 
i 

Solve the restricted primal problem by the revised simplex method. The 
optimal solution of the restricted primal problem at the (k-1)th iteration 
may be taken as an initial basic feasible solution for the new problem. 
The optimal tableau of the revised simplex method also provides an optimal 
solution to its dual problem. Thus the restricted primal problem to be solved 
is 
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m 

" E  Minimize z = x= 
i=l  

Subject to ~ a~jxj + x,. = b~, i=  1 2 , . .m  jEQk ' " 

> 0 for j E Qk X j _  

Xai  >__ 0 

where Qk = {JlEai~w~ l - ~  =0} 

If Min z* = 0, then stop: the optimal solution of the restricted primal is an 

optimal solution of the original primal problem and wi k-1 (i = 1,2,...m) is an optimal 

solution of the original dual. 

If Min Z* > 0, go to step 4. 

4. Evaluate 

E a i j w ~  
i 

k 

(i) if ~ aijw~ < 0, for all j ~ Qk" 
i 

the primal has no feasible solution and the process terminates. 

(ii) if ~ aijw~ > 0, for at least one j ~ Qk" 
i 

I Eai, 
O k = M i n  - ~ 

take J E aijw~ 
i 

i aijw~ > 01 

and define w~ = w~-'+ Okw k 

as a new feasible solution to the dual problem. 

5. Repeat the process from step 2 onwards. 

16.8. Example 
Consider the problem 

Minimize 

Subject to 

Z = 6X 1 + 7x 2 + 4 x  3 + x 4 + 3x 5 

2X l + X 2 + X 3 + 2X 4 + X 5 - X  6 = 3 

x~ + 6x 2 - x  3 -  5x 4 + 2x 5 - x  7 = 6 
x > 0 ,  j = 1,2,...7. j ~  



Its dual problem is given by 

Maximize 

Subject to 

Variants of the Simplex Method 

v - 3w~ + 6w z 

2w~ + W 2 _~ 6 

w~+6w 2 < 7. 

w ~ - w 2 < 4  

2w~ - 5w 2 < 1. 

w~ + 2 w < 3  

-w~ _<0 

- w2_<  0 

w~, w 2 unrestricted 
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An initial dual feasible solution is given by W~ = (w~, w2)r=  (0, 0) v and 

thus the last two dual constraints are satisfied with equality. Hence Q~ = {6, 7}. 

Let xg, x 9 be the artificial variables, so that the restricted primal problem is 
given by 

Minimize z* = x 8 + x 9 

Subject to - x 6 + x 8 = 3 

- x 7 + x 9 = 6 

X6, X7, X8, X 9 ?_ 0. 

The optimal solution to this restricted primal is clearly x 6 = 0, x 7 = 0, x s = 3, 

x 9 = 6 and Min z* = 9. 

The dual of  the above restricted primal is then given by 

Maximize v = 3w~ + 6w 2 

Subject to - w~ _< 0 

- w 2 < O  

w~< 1 

w2_<l 

w~, w 2 unrestricted. 

Since x 8, x 9 are positive, from the complementary slackness theorem, we note 
that for an optimal solution of  the above dual problem, the last two of  its constraints 
must  be satisfied with equali ty and the optimal solution of  the dual is W ~ 

( w~,w 2 =(1,1 

TO obtain a new feasible solution, we compete W ~ a ,  for j r Q~ and we have 

W~ = 3, W~ = 7, W~ = 0, W~ = -3, W~ 5 = 3 

{ 0 - 6  0 - 7  0 - 3 } = 1 .  
and t h u s 0  o = M i n  3 ' 7 ' 3 

Thus W 2 = (0,0) r + (1, 1) r = (1,1)v is the new dual solution. 
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With this new solution W 2, we compute the new Q as Q2 = {2, 5} and the 
new restricted primal is given by 

Minimize 

Subject to 
X 8 + X 9 

X 2 + X s + X s = 3 

6x 2 + 2x 5 + x 9 = 6 

X2, Xs, Xs, X 9 > 0 

The optimal solution of the above restricted problem is given by 

x 2 = 0, x 5 = 3, x 8 = 0, x 9 = 0 and z* = 0 

Thus, we have an optimal solution to the original problem 

x5 = 3, x = 0, forj = 1 , 2 , 3 , 4 , 6 , 7  

and the optimal solution to its dual is given by 

o o 1 
W l = l ,  W 2 = . 

All the necessary operations in the primal-dual algorithm can be carried out in 
the tableau format. If the initial solution to the dual problem is not readily available, 
we add the artificial constraint to the problem and proceed with the simplex tableau. 

16.9. The Initial Solution to the Dual Problem: The Artificial Constraint 
Technique 

We need to have a feasible solution to the dual problem to initiate the primal- 
dual algorithm. If it is not easily available, we make use of a simple device suggested 
by Beale [36] 

An additional constraint 

n 

x o + ~ xj = b0 (16.45) 
j=l  

is added to the constraints of the primal problem, where the additional variable 
x o > 0 has an associated cost of zero and the constant b o > 0 is an unspecified 
arbitrarily large number. 

The primal problem (16.31) then becomes 

Minimize Z = ~ CjXj .  
j=l 

Subject to Xo + ~ xj = b o. (16 .46)  
j=l  

aijxj = b i '  i = 1, 2,. . .m 
J 

Xo, x>_ 0. j =  1, 2,. . .n 

The problem (16.46) is called the modified primal problem. The dual of (16.46), 
called the modified dual is 
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m 

Maximize V = bow o + ~ b~w, 
i = l  

m 

Subject to Wo + ~ aijwi < cj (16.47) 
i = l  

Wo<O 

A feasible solution to the dual problem is now readily available; it can be easily 
seen that 

w o = Min[0,cj] (16.48) 
J 

w = 0 ,  i = 1, 2...m 
1 

constitutes a feasible solution to the dual problem (16.47) 

The primal-dual algorithm may therefore be applied to the modified problems. 

Two cases may arise. 

(a) The dual problem (16.47) is unbounded which implies that the modified 
primal is infeasible. It then follows that the original primal problem is also infeasible 
because if the original primal is feasible, there must be a feasible solution to the 
modified primal: 

(b) Suppose that x, (j = 0, 1, 2...n) and wl', (i - 0, 1,...m) are optimal solutions 

to the pair of  dual problems (16.46) and (16.47) respectively. 

There are two possible cases 

o o ( i  = 1 2,...m) are feasible (i) w o~ 0. This implies that xj , (j = 1, 2,...n) and w i , 

to the original primal and its dual problems respectively where z and v have the 
same value. Hence they are optimal solutions to the original problems. 

o < O. In that case Max V ~ -  oo as b o ~ + oo (since b o can be made ( i i )  w o 

arbitrarily large) and by duality, the objective function z of the modified primal 
0 has the same value at the optimum. Now, since xj ,  (j = 1, 2,...n) is feasible to the 

original problem, its objective function, which is the same as that of the modified 
primal has no lower bound. 

16.9. Exercises 
1. Solve the following linear programming problems by the dual simplex 

method. 

(i) Minimize z = 2x~ + 3x 2 

Subject to 3x~ + 4x 2 >_ 6 

x~ + 3x2> 3 

xl + x 2 < 3 

x,, x2 >_ 0 
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(ii) 

(iii) 
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Minimize  z = 2x~ + 2x~ + 4 x  3 

Subjec t  to 2x~ + 3x 2 + 5x 3 > 2 

x~ + 4x  2 + 6 x  3 _< 5 

3X l + X 2 + 7X 3 _< 3 

X 1, X 2, X 3 >__ 0 

M i n i m i z e  z = 2 x  I + 3 x  3 

Subjec t  to 2x~-  x 2 - x 3 >_ 3 

x~ - x 2 + x 3 > 2 

Xl, X2, X 3 ~_~ 0 

(iv) M i n i m i z e  z = x I + 2 x  2 + 3 x  3 

Subjec t  to x ~ -  x 2 + x 3 >_ 4 

X 1 "q- X 2 -b 2X 3 _< 8 

X 1 - - X  3 ~_~ 2 

2. So lve  the fo l l owing  l inear  p r o g r a m m i n g  p rob l ems  by the dual  s implex  

me thod  us ing artificial constraint  

(i) M a x i m i z e  z -  x ~ -  x 2 - 2x 3 

Subject  to 6x I + 3X 2 + 4x 3 < 8 

3X l -- 5X 2 + 2X 3 >_ 4 

9x I - x 2 - x 3 >_ 3 

X 1, X2, X 3, >_ 0 

(ii) M a x i m i z e  z - x~ - 4x 2 

Subject  to x~ - x 2 < 1 

- x I + x 2 < 1 

x~ >__ 2 

2x~>_ 3 

x~, x: >_0 

(iii) Min imize  z = 3x~-  x 2 

Subject  to x~ + x 2 > 4 

x I - x~ > -  2 

- x ~  + x 2 > 3/2 

x~, xv  >_0 

3. So lve  the  f o l l o w i n g  l inear  p r o g r a m m i n g  p r o b l e m s  by  the  p r ima l  dual  

a lgori thm. 

(i) Minimize  

Subject  to 

Z = - 2X l - X 2 

6x~ + x 2 >_ 3 

x~ + 1.5x 2 >_ 3 

x~, x2>_O 
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(ii)  M i n i m i z e  z = 2x~ + x 2 - x  4 

Sub jec t  to 3x 1 + 2 X  2 - X 3 - -  2x  4 > 5 

x 1 + x 2 + x 3 + x 4 < 6 

x > O , j = l  2 , 3 , 4  

4. U s i n g  the  p r i m a l - d u a l  a lgor i thm,  s h o w  that  the  p r o b l e m  [ 105] 

M i n i m i z e  z = -  x 1 

Sub jec t  to - x 1 + x 2 - x 3 = 1 

x I - x 2 - x 4 = 1 

X1, X2, X3, X 4 ~___ 0 

has  no  feas ib le  so lu t ion  

5. W h e n  is the  dua l  s i m p l e x  m e t h o d  is p r e f e r r ed  to the  s i m p l e x  m e t h o d  for 

f ind ing  a s o l u t i o n  o f  a l inear  p r o g r a m m i n g  p r o b l e m ?  W h e n  do  w e  c o n s i d e r  the  

p r ima l -dua l  a l g o r i t h m  is be t te r  than  the dual  s implex  m e t h o d ?  



C t I A P T E R  1 7  

Post-Optimization Problems: Sensitivity 
Analysis and Parametric Programming 

17.1. Introduction 
In a linear programming problem, we assume that all the coefficients of the 

problem are given constants. However, for many problems, these constants are either 
estimates or they vary over time or there are some errors in recording their numerical 
values. It may also happen that some variable of interest or some constraint was 
omitted from the problem. It is therefore important to find not only an optimal 
solution of the given problem but also to determine what happens to this optimal 
solution when certain changes are made in the system. 

The changes may be discrete or continuous. The study of the effect of discrete 
changes is called sensitivity analysis and if the changes are continuous, it is known 
as parametric programming. 

17.2. Sensitivity Analysis 
In this section, we are concerned with the analysis that determines the range 

of a given element for which the original optimal solution remains optimal. In other 
words, we are interested in performing a sensitivity analysis of the optimal solution 
already obtained. If the change is beyond this range, in many cases, it is not 
necessary to solve the problem over again. Some additional work applied to the 
optimal tableau will take care of the effect of modification. In other cases however, 
there is no altemative but to solve the problem afresh. 

Suppose that the problem under consideration is 

Minimize z = cTX 

Subject to AX = b. 

X > 0  

where X e R" and A is an m x n matrix. 

(17.1) 

Let X o = B - l b ,  be an optimal basic solution where B denotes the basis matrix. 

Changes in the problem which are usually studied can be divided into the 
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following five categories. 
1. Changes in the cost vector (c) 

2. Changes in the requirement vector (b) 
3. Changes in the elements of the technology matrix (A) 
4. Addition of a constraint 
5. Addition of a variable 

It is however possible to imagine a great variety of more complicated problems 
involving different combinations of the changes described above. 

17.3. Changes in the Cost Vector 
Let A c k be the amount to be added to c k, the kth component of the cost vector 

c. It is clear that since a solution of the problem is independent of o's,  any change 
in 'c.' does not disturb the feasibility of the current solution. Hence X o = B-'b, J 
remains a basic feasible solution. 

Now, to preserve optimality, we must have 

z k - c  k ___ 0, where + refers to the modified problem (17.2) 

If the variable x k is not in the final basis, we must have 

+ + 
Zk - Ck = Zk -- (Ck + A c k) < 0 

or A c k >_ z k - c k (17.3) 

and A c k then has no upper bound. Hence for any change in c k, satisfying (17.3), 
the current optimal solution remains optimal and the value of the objective function 
also does not change since x k = 0. 

In the case, when x k is in the final basis, the evaluations of zj for all nonbasic 
variables are affected by any change in c k and we should have 

+ + 
zj - cj = y '  ~jcj + ~kj (Ck + ACk)-- Cj _ 0 

i in basis for all j not in the basis 
i=k 

Thus, 

or  

= Z -  Cj + ~kj ACk -< 0 

% ,Xc~ _< - (z - cj) 

-(zj - c j )  
AC k _< , if~kj > 0 

~kj 

-(zj - c j )  
Ac k _> , ifotkj < 0 

~kj 

Hence Max 
Os 

-(zj -cj) -(zj -cj) 
_< Ac k _< Min 

O[kj ctkJ<o O[kj 
(17.4) 

for all j not in the basis. 
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Thus if (17.4) is satisfied, changes in c k will not affect the original optimal 
basis or the values of the optimal solution. The only change will occur in the optimal 
value of the objective function z o. The optimal value will now be given by 
Z 0 + A CkX k. 

Any violation of (17.4) indicates that an improvement in the solution can be 
obtained by introducing the variable that violates, into the basis in the final optimal 
tableau of the original problem. 

17.4. Changes in the Requirement Vector 
Since optimality criterion does not depend on the requirement vector, any 

change in the requirement vector does not affect the optimality condition. It however 
affects the values of the basic variables and hence the value of the objective function. 
Thus if the magnitude of the change in the requirement vector be such that it 
preserves the feasibility of the optimal basis, then the original optimal basis remains 
optimal. 

Let b k, the kth element of the requirement vector b be changed to b k + A b k. 

The basic solution of the modified problem associated with the original optimal 
basis B is then given by 

X0 = B-lb 

where ~ = [b l, b2,...b k + Abk,...bm ]T 

or X0 = B-~b + B-l [0, 0...0 Ak, 0...0] T 

or xio = Xio + [~ik A bk, for all i in the basis 

where 13~k is the element in the i th row and k th column of B -1. 

For maintaining the feasibility, we must have 

Xio ~-~ 0 

or Xi0 + [~ik A b k > 0. 

for all i in the basis 

(17.5) 

(17.6) 

or Abk ~ -Xi'''-~0 ' 
[~ik for [~ik > 0 

--Xio 
and Abk - < ~ ,  for ~ik < 0 

~ik 

Thus the range for A b k for which the optimal basis remains optimal is 

Max -xi,,9,, < Ab k _< Min -x~~ 
13ik>~ [~ik [3ik<~ [~ik 

(17.7) 

The solution of the modified problem is given by (17.6) and the change in the 
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value of the objective function is ~ Ck[3ikAbk" 
i m b a s i s  

Suppose that the A b k are such that (17.6) is violated by some variables so 
that these variables become infeasible for the modified problem. 

To determine the new optimal solution, it is not necessary to solve the problem 
from the beginning. This can be done as follows. 

We multiply b y - 1 ,  those rows of the original optimal tableau for which the 
basic variables become infeasible. Next, we add artificial variables to these rows 
and replace the infeasible variables in the basis by the artificial variables. The two- 
phase method may now be applied to find a new optimal solution. 

Application of the dual simplex method to find a new optimal solution will 
however be more rapid. 

In the case where the number of the basic variables becoming negative is large, 
it is desirable to solve the problem from the beginning. 

17.5. Changes in the Elements of the Technology Matrix 
Let arkthe (r, k)th element of A = (aij) be changed to ark + A ark. 

Two cases may arise. 

Case (i)" The vector a k (the k th column of A) is a vector of the optimal basis. 

Case (ii): The vector a k is not a basis vector. 

C a s e  (i). Due to change in ark the optimal basis matrix B becomes 

= B + Aak Drk , (17 .8)  

where Drk is an m x m matrix where all elements are zero except for the rkth 
element which is equal to unity. 

Let us assume that g is nonsingular. Now to preserve feasibility we must have, 

Xo = B b = (B + AarkDrk)-l b > 0 
m 

-1 )-IB-I or Xo = (I + B Aa~kD~k b 

= (I +B -1 AarkDrk) -1 X o > 0 

B -~ A ark Drk can be written as 

(17.9) 

(0  "'" [~lrAark "'" 0") l !  0 r ak 0/ 
"'" [3krAa,k "'" 

�9 -- [3mrAa,k "" 

where B -~ = (13~j), i = 1, 2 . . . m  

j - 1 ,  2,. . .m 
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and therefore 

(1 "-. ~,rAark "'" 0"~ 

l i  "'" 13~dXa~ "'" 0i/ (I + B -lz~,kD~k) = .-. 1 + 13k, Aa,k "'" 

. . .  ~ A a r k  . . .  

and 

(I + B-lAarkDrk )-1 = 

t" N 
1 ... --131rAark "'" 0 

1 + 13kTAark 

1 
0 . . . . . .  0 

1 + 13krAark 

0 "'" --13mrAark "'" 1 
,. 1 + 13krAark 

(17.10) 

(17.11)  

Hence we have 

Xo = B b = (I + B-IAarkDrk)-I Xo" 

( 
Xlo 

13,,Aa~k 
Xko 

1 + [3krAark 

1 
Xk0 

1 + 13krAark 

13mrAark 
Xmo -- Xno 

, 1 + [3krAa ~ , 

(17.12)  

Thus for existence and feasibility of  Xo, we must  have 

1 + 13krA ark > 0 

13i~Aark 
and xi~ l+13kkAark Xk~ -> 0, i = 1, 2,. . .m 

Assuming  that 1 + 13kr A a k>0 , we have for all i r k, 

Xio 

Aa,k -< 13i,Xk ~ _13k, Xio, for [3i~ Xko- 13k~Xio > 0 

Xio 

a n d  Aark ~ [~irXk 0 _ PnkrXi 0 ' for [~ir Xk0 -- [~krXio < 0 

(17.13) 

(17.14)  
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Hence for maintaining feasibility, we must have 

Xi~ _< Aark < min x~~ 
mi~akx [[~irXko--[~krXio] < 0 -- i;~k [[~irXkO--[~krXio] > 0 

along with 1 + 13k~ Aark > 0 

Now, to preserve optimality, we must have 

227 

(17.15) 

__ T---1 
zj - cj = % B aj - cj ___ 0, for all j not in the basis (17.16) 

where c B is the vector of costs associated with the optimal basic variables. 

Thus, we must have 

T % a j - c j  ___0, for all j not in the basis (17.17) 

- - -~  [ B_ ~ ]-1 where aj = B aj = I + AarkDrk B-~aj 

_- EI + B-]AarkDrk 1 -l ~j 

As in (17.12), we then have 

~j = 

13~Aa~k 
Of'iJ 1 + [~krAark ff'kj 

1 + [3k~Aark 
~kj 

[~mrAark 
ff'mj -- 1 + [~krAark Ct'kj _ 

(17.18) 

From (17.16), (17.17) and (17.18), we obtain 

~i,.Aark 
Zj -" Z Ciff, ij -- Z Ci - "]-C k 

i*k i~k 1 + [3k~Aa~k r 

Thus 

[~irAark 
= Z Ci(ZiJ-  Z Ci O('kJ 

t in the i in the 1 + 13krAark 
basis basis 

13i~Aa~k 
z ~ - c j = z j - c j -  Z Ci 

i inthe 1 + [3krAark 
basis 

~kj 

1 + [3krAark 

(17.19) 

(17.20) 
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Since by (17.13), 1 + ~kr A ark > 0, (17.20) reduces to 

Zj--Cj _< Aark I ~ i  Ci[~irlXkj--(Zj- Cj)l~kr 1. 

If the term in brackets in (17.21) 

2 Cil~ir(/,kj - - (Z j -  Cj)l~kr 
i 

is positive, we have 

(17.21) 

and if it is negative, 

Zj --Cj 
< Aark 

2 Ci[~irO[kJ -- (Zj -- Cj)l~kr (17.22)  
i 

zj - c j  

Aa~k < 2Ci[~ir(~k j --(Zj--Cj)l~kr (17.23) 

Hence in order to maintain the optimality of the new solution, Aark must satisfy 

[zjc, ]  n[Z,-Cj ] 
max , Lj > 0 < Aa~k < , Lj < 0 J Lj Lj (17.24) 

where Lj -" O[kj E Ci~ir --(Zj -- Cj)~k r 
i 

Case (ii): If the change is in the element ark of the vector a k not in the basis, 
the feasibility condition is not distributed. To preserve the optimality we must have, 

Z--k --Ck _0  

T -1 w 
or cBB ak--C k _<0 

X B-l[ak + A er]--C k < 0 or ca ark _ 

where e r is a unit vector with rth element unity. 

Thus we have, 

Z-" k --  C k = Z k --  C k + Aa,k ~ [~ir Ci ~ 0 
i 

(17.25) 

(17.26) 

--(Zk -- Ck), if ~ [~irCi > 0 
and therefore Aa'k < ~ ~irCi i 

i 
(17.27) 

-(z~ - c .  ) 
Aa,k > , if 2 [3i, c, < 0 

and )-~ [3i,c i , 
i 
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Hence, if the original solution has to remain optimal, even after a change in 
ark of a k not in the basis, Aak must satisfy, 

f - ( z ~  - e ~ )  

max ~ ~irCi 
i 

~rc~<- 0t_<Aark_<minf_~ k, ~C~_Ck)I~~r t (17.28) 

10.6. Addition of a Constraint 

Suppose that an additional constraint is added to the problem after an optimal 
solution has already been obtained. If the optimal solution to the original problem 
satisfies the new constraint, it is obvious that it is also an optimal solution to the 
modified problem. If it does not satisfy the new constraint, a new optimal solution 
has to be found. 

Let the new constraint added to the system be 

~'~am+l,jXj {--~ = -~)bm+l (17.29) j=l 
A basis matrix for the modified problem is then, 

+1 (17.30) 

where B is the optimal basis for the original problem, U is a row vector whose 
elements are the coefficients in the new constraint of the optimal basic variables in 
B and the last column is a null vector except for the last element which is + 1, 
corresponding to the slack, surplus or artificial variable added to the new constraint. 

The new solution is 

X B+ = B+-'b + = ( B-1 
_T_UB -1 +1 bm+ l 

(xB / 
.T.UXB + bm§ (17.31) 

If a slack or surplus variable is added, its coefficient in the objective function 
is zero and the optimality condition z -  c < O, remains unchanged. But since the j jm 
original optimal solution does not satisfy the new constraint, the slack or surplus 
variable must be negative. This implies that the solution satisfies the optimality 
condition but is not feasible. Dual simplex method can therefore, be applied to find 
an optimal solution to the modified problem. 

If the new constraint is an equality, an artificial variable is added to it. If the 
value of the artificial variable in the basic solution is negative, its cost element is 
taken to be zero and dual simplex method may be applied. If however, the value 
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of the artificial variable is positive, an arbitrarily large positive M is assigned as a 
cost per unit to this variable and the usual simplex methods is applied. 

17.7. Addition of a Variable 
Suppose that a nonnegative variable x+, is added to the original problem. This 

entails an addition of a column vector a+, to A and a cost element c+ l to c. 

It is obvious that the original optimal solution is feasible to the modified 
problem. It also remains optimal if z+ 1 -Ca+ ' < 0, i.e. if c B B -1 a+ l - c +  l < 0. If 
however, z+, - c+, > 0 the present solution can be improved by introducing a+, 
into the basis. The last (optimal) tableau of the original problem is then augmented 
by the vector a+, and the simplex algorithm may be applied to find an optimal 
solution to the modified problem. 

17.8. Parametric Programming 
As mentioned earlier, we are interested not only in the optimal solution of a 

linear programming problem but also in how it behaves as changes are made in 
the coefficients of the problem. When the changes are discrete, such a study is called 
sensitivity analysis and has been discussed in the previous sections. In the following 
sections, a similar type of analysis is presented, when the changes are continuous 
and is known as parametric programming. 

17.9. Parametric Changes in the Cost Vector 
Suppose that the cost vector c vary continuously as a linear function of a 

parameter O, so that the cost vector now becomes 
c = c o + 0 d (17.32) 

where c o and d are constant vectors. 

The problem then becomes, 

Minimize z = (c o + 0d)rX ( 17.33) 

AX=b. 

X > 0  

Let us assume that our problem is nondegenerate and that there exists an 
optimal solution of the problem for some known value of 0. Without loss of 
generality, we take that value to be 0 = 00 = 0. (It is always possible by a change 
of origin of 0) 

Let X 0 = B-~b be an optimal solution for 0 = 00 = 0 (17.34) 

where B is the corresponding basis matrix, 

When 0 varies, the solution remains feasible but the optimality conditions may 
be disturbed. The solution will remain optimal provided 

m 

Zj--Cj =E~ij(C~-bOdi)-(C ~ +Odj) 
i=l 
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( ~  o) - d ) < O .  = z - c j  +O(vj J (17.35) 

in 

where vj = ~ cxijd i 
i=i 

Now, 

if v . -  d. < 0 for all j, the solution X o remains optimal for all 0 > 0 
J J ~  ~ 

if v . -  d. > 0 for all j, the solution X o remains optimal for all 0 < 0 
J J ~  ~ 

Apart from these special cases, in general v . -  d. may have positive as well as 
J J 

negative values and in that case, the range of 0 for which the current solution 
remains optimal is 

Max 
J vj -d j  I [ ~ v j - d j < 0  < O < M i n  (z~-c i )  

J vj -d j  ] v j - d j  >0  . (17.36) 

If v -  d > 0 for at least one j then for a sufficiently large increase in 0, 
J J 

(z - c)  will be positive for at least one j and the optimality criterion is violated. 
The critical value 0~ of 0, beyond which X 0 is no longer an optimal solution is 
then given by, 

E ~ ] o o (z -cj) zk-ck 
0 = M i n  - v j - d j > 0  = - - -  

J vj -d j  Vk ~ (17.37) 

For 0 > 01, we are to find a new optimal solution and a new range of 0, for 
which this solution remains optimal. This can be easily done by the simplex method. 

For 0 > 0~, z k - c k > 0 and if CX~k < 0 for all i, the problem is unbounded for 0 
beyond 0~. If CXik > 0, for at least one i, the vector a k is introduced in the basis 
and the vector to be eliminated is given by the simplex exit criterion 

Xor Mini x~ ] > O] 
a r  k i LOtik I ~ (17.38) 

so that a is eliminated from the basis and the basis matrix is changed to B' say. 

Now, from (17.35) and (17.37), we have for 0 = 0~, 

, _  , 0_c o +01(vj_dj)  Z j  C j  = Z j  J 

0 0 
0 o _ Zk --  Ck 

= zj -c j  Vk _d------~(vj - d , )  < 0 for j r k 
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t and z' k - c k 0 (17.39) 

After simplex transformation, we have for 0 = 01 + 0', 0'>_ 0, 

z ' . j - c  = z ' . - c ' ,  j + 0 ' ( v ' - d ) , j  j , r  

z', - c, = -0 '  (vk - dk ) 
(17.40) 

( / ' r k  

It is clear that z ' . -  c '  < 0 and v k - d  k > 0, and therefore the new solution is 
J J 

optimal for 0 > 0] if v ' . -  ' - J d < 0 for all j. If v d > 0 for at least one j, there 
~ j J 

exists a critical value 02 > 0~, beyond which the new solution is no longer optimal. 
The critical value 02 can be obtained from (17.40) 

We can proceed in the same manner to obtain a new solution and a new critical 

value 03 . 

Thus a series of increasing sequence of critical values 0 o, 0~, 02, 03 ... and a 
series of solutions X o, X~, X 2, X3... may be determined so that X~ remains optimal 
for all values of  0 in the interval 0~ < 0 < 0~§ i = 0, 1, 2, 3. 

If 0 varies in the negative direction, we can obtain in a similar way a decreasing 
sequence of critical values 0~, (i = 0 , - 1 , - 2 . . . )  and a series of solutions X~ so that 
X~ remains optimal for all values of 0 in the interval 

0i_ ~ _< 0 _< 0 i, i = 0 , - 1 , - 2 , - 3 . . .  

17.10. Parametric Changes in the Requirement Vector 
Suppose that the requirement vector b is to change continuously as a linear 

function of a parameter 0. The requirement vector then becomes 

b = b o + 0b', 0 > 0. (17.41) 

where b o and b' are constant vectors and 0 is a parameter. We consider here the 
case where 0 varies in the positive direction from zero. The case where 0 decreases 
from zero is completely analogous. 

Suppose that these exits an optimal solution of the problem for some known 
value of 0. Without loss of generality we take that value to be 0 = 0 o = 0. 

Let Xoa = B-lbo (17.42) 

be an optimal solution for 0 = 0 o = 0, where B is the corresponding basis matrix. 
A basio solution of the modified problem is 

X0B = B-lb o + 0B-lb ' (17.43) 

Since the calculation of z j -  c.~ is independent of the requirement vector, the 
optimality criterion remains satisfied whatever be the value of 0 but the basic 

solution may cease to be feasible. 

Hence, the basic solution will remain optimal as long as 

X0B = B-lbo + 0B-lb ' 

= XoB+ 0 Q > 0. (17.44) 

where Q = B-~b '. 
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if Q > 0, the solution X0B remains optimal for all O > 0. 

if Q < 0, the solution X0 B remains optimal for all 0 < 0. 

In general however, Q may have both positive and negative elements. 
If Q~ < 0 for at least one i, we cannot increase 0 indefinitely without violating 
feasibility. There exists a critical value 0~ of 0, beyond which X0B is no longer 
feasible to the problem. 

0~ is then given by, 

r I I B 0, = Min -x~ Qi < 0 = - X ~  

' LQI Q, i in thebasis 
(17.45) 

If 0 = 0~ + ~, ~ > 0, at least one component of X0B becomes negative and 
X0B ceases to be a feasible solution. Optimality criteria, however, remains satisfied 
and hence the dual simplex method may be applied to obtain a new optimal solution 
and a new critical value of 0. The process may be repeated to obtain subsequent 
critical values and optimal solutions in the corresponding ranges. 

17.11. Exercises 
1. Consider the problem 

Maximize z = 5X 1 + 3X 2 

Subject to 3x~ "~" X 2 ___~ 1 

x~ + x 2 <  1 

x~, x 2 > 0 

Determine the ranges of the discrete changes in the cost coefficients c~ and 
c 2 which maintains the optimality of the current solution 

2. Consider the problem 

Minimize z = x ~ + x  2 + x  3 

Subject to x~ - x 2 - 2x 3 > 4 

2x I + 2x 2 - x 3 > 2 

- X  I + 3 X  2 + X 3 >_ 6 

Xt, X2, X 3 > 0. 

a) Obtain the optimal solution 

b) Find the ranges of the discrete changes in b~ and b 2 separately so 
that the optimality of the solution obtained is maintained. 

3. Consider the problem 

Minimize z = x~ + x 2 - 2 x  3 

Subject to x~ - x 2 + 4x 3 > 6 

- x ~  + 3x: + x 3 < 10 

x ~ + x 3 < 4  

Xp X2, X3, ~___ 0 
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a) Obtain the optimal solution 

b) Find the separate ranges of the discrete changes in b~ and b 3 s o  that 
the optimality of the solution obtained is maintained. 

4. Consider the problem 

Maximize z = 2x~ + x 2 + 4x 3 - x  4 

Subject to x~ + 2X 2 + X 3 -- 3X 4 < 8 

- -  X 2 + X 3 + 2X 4 < 0 

2x l+7x 2-  5x 3-  10x 4 < 21 

x > 0 , j  = 1, 2 ,3 ,4 .  j -  

The optimal simplex tableau for the problem is 

% % 

a 1 

a2 

a7 

Z . m e .  

J J 

a I a 2 a 3 a 4 a5 a6 a7 

1 0 3 1 1 2 0 

0 1 -1 -2  0 -1 0 

0 0 -4  2 -2  3 1 

0 0 +1 +1 +2 +3 0 

Find the effect of the discrete parameter changes given below, on the 
optimal solution. 

(a) c ~ s c h a n g ~ ~  ~ , 2 , 3 , 4 ]  r 
(b) b is changed to [ 3 , -  2, 4] r 

5. Consider the problem 

Maximize z = 10x, + 3x 2 + 6x 3 + 5x 4 

Subject to x, + 2x 2 + x 4 _~ 6 

3x~ + 2x 3 < 5 

x2+ 4x 3 + 5x 4 < 3 
x > 0 , j  =1  2,3 4. 

Find the conditions on discrete changes in a~ and a23 , s o  that the new 

solution remains optimal. 

6. Describe the role of duality theory in sensitivity analysis of a linear 

programming problem. 

7. Solve the following linear programming problem with parametric objective 

function for all values of 0 > 0. 

Minimize z = (2 - 20)x~] + (4 - 0)x 2 + (1 - 3 0 ) x  3 

Subject to 2x~ + 4x 2 + 3x 3 >_ 6 

5x~ + x  2+ 2x 3 < 4  

2x~ + 3x 2 + x  3 = 3 

x~, x2, x3 >_ 0 
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Q Study the variation in the optimal solution of the following parametric linear 
programming problem for all values of 0 >_ O. 

Minimize z = 2x z + 4x 2 + x 3 

Subject to 2x] + 4x 2 + 3x 3 > 6 + 20 

5x~ + x 2 + 2x 3 _< 4 -  0 

2x~ + 3 x  2 + x 3 = 3 + 30 

X l, X2, X3, ~___ O. 
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Bounded Variable Problems 

18.1. In linear programming problems, often it happens that instead of being 
subject to the usual constraints of nonnegativity, the variables are constrained by 
lower and upper bounds: 1. < x < u. 

j - -  j ~  J 

The lower bound lj could be caused by contractual obligations or policy 
restrictions and the upper bound uj could be caused by capacity limitations, resource 
limitations or the size of the market. 

18.2. Bounded from Below 
Consider the linear programming problem 

Minimize z = ~ ejxj (18.1 a) 
j=l 

Subject ~ aijx j = b~, i = 1, 2,...m (18.1 b) 
j=l 

x >  I, j =  l, 2,...n 

1. being an arbitrary constant, positive, negative or zero. 
J 

We define x = lj + yj, j = 1,2...n 

and substitute them for x. in the problem. 
J 

The problem is then reduced to an equivalent problem, 

(18.1c) 

(18.2) 

Minimize Z = ~ cjyj 
j=l 

(18.3) 

s.t. ~ a~jyj = b'i, 
j=l 

yj>_0. 

where b'  = b i  - ~ aijlj 
t j=l 

i = 1, 2 , . . . m  

3 = 1, 2,...n. 



Bounded Variable Problems 237 

which is in the usual linear programming form. An optimal solution of the problem 
(18.3) will then yield an optimal solution of the problem (18.1). 

We thus note that the lower bound conditions offer no difficulty. 

The situation, however, is not as simple in the case of a problem with upper 
bounds. 

18.3. Bounded from Above 

Consider now the problem, 

Minimize z = ~ cjxj (18.4a) 
j=l 

s.t. ~ a~jx~ = b,, i = 1, 2,...m (18.4b) 
j=l 

x. > 0 j = 1 2,. .n (18.4c) j ~  ~ �9 

x < u. j = 1 2,. .n (18.4d) 
J - -  l ~ �9 

where A = (a~j) is an (m • n) matrix, rank (A) = m and it is assumed that all the 
variables are bounded above because i f  not, we can always bound a variable by a 
suitable large number. 

The system (18.4a) to (18.4c) is referred to as the original system whereas the 
system (18.4a) to (18.4d) is called the capacitated or enlarged system. 

If we now convert the upper bound inequalities into equations by introducing 
slack variables vj, i.e. x - u - vj, vj > 0, j -- 1 2,..n and substitute them for x 
in the problem, it reduces to an equivalent problem 

Minimize Z -" - -~"~  C jXj  
j=l 

s.t. ~ %vj = b'i, i = 1, 2,...m 
j=l 

0 < v < u  j =  1, 2,...n 
j ~  J 

where b 'i -" ~ aijuj - bi, i = 1 ...m (18.5) 
j=l 

which is of the same from as (18.4) 

It seems, therefore, that the upperbound constraints must be included 
explicitly within the original system but this necessitates an enlargement of the 
basis matrix. The enlarged system then consists of (m + n) constraints and the 
numbers of variables becomes 2n because slack variables are to be added in 
(18.4d). This makes the computation very expensive. 
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A more efficient technique has been developed by Chames and Lemke [78] 
and Dantzig [ 101 ] which takes advantage of the simple structure of the upperbound 
constraints and slightly modifies the standard simplex procedure and makes it 
possible to solve the problem without explicit representation of the upperbound 
constraints in the original system. 

In the standard simplex method, a basic solution of the original system is 
defined as a solution obtained by setting ( n -  m) nonbasic variables equal to zero 
and solving the resulting rn x rn square system for the basic variables. A solution 
is said to be a basic feasible solution if all the variables are nonnegative and 
constitutes an extreme point solution. From the set of all extreme point solutions, 
the simplex method finds an optimal solution to the problem. If the basic solution 
satisfies the constraints (18.4 c,d) it is a solution of (18.4) and is an extreme 
point of the polyhedron defined by (18.4 b,.c,d). This procedure, however does 
not work since it does not furnish all the extreme point solutions. (because the 
problem is not in standard form). 

It can be easily shown that 

Theorem 18.1. A necessary and sufficient condition for X ~ K, where K = {X �9 
AX = b, 0 < X < U}, A is m • n, r (A) = m; to be an extreme point of K is that 
(n - m) components of X each have the value zero or uj and the remaining m 
components are basic variables (i.e. associated with m independent column vectors 
of A) and have values between zero and u. J 

From theorem 18.1, it is clear that the bounded variable problem (18.4) can 
be solved by applying the simplex algorithm to the original system provided that a 
nonbasic variable is assigned either the value zero or the corresponding upper bound. 
We then define a basic solution for the bounded variable problem to be one for 
which (n - m) variables are set equal to either their lower or upper bounds (zero 
or u) and solves the resulting system of m equations (corresponding to the basic 
matrix). If the basic solution satisfies the lower and upper bound constraints of 
(18.4) it is called a basic feasible solution to the bounded variable problem. 

18.4. The Optimality Criterion 
Theorem 18.2. A basic feasible solution to the bounded variable problem is optimal 
if for nonbasic variables 

z - c < 0 ,  if x = 0  
J J ~  J 

and z . -  c. > O, if x. = u. 
J J ~  J J 

Proof: As in (16.19), we can write 

(18.6) 

(18.7) 

z = Z o - Z ( z j - r  
J 

for j not in the basis 

where z o is the value of the objective function for the basic variables 

(18.8) 
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Hence min z minlZ0 theJ notb s cJ J 1 
If the conditions (18.6) and (18.7) hold, then any changes in the nonbasic 

variables will increase the value of objective function. Hence (18.9) gives the 

minimum value. 

18.5. Improving a Basic Feasible Solution 
If the current basic feasible solution does not satisfy the optimality conditions 

(18.6) or (18.7), we can replace a current basic variable by a nonbasic variable 
and get a new improved solution. 

Suppose that we have a basic feasible solution to the bounded variable problem 

(18.4) with basis B and that the optimality conditions (18.6) or (18.7) are not 

satisfied by some nonbasic variable x k 

Case 1. Let x k - 0. 

For the given solution with x k = 0, we have z k - C k > 0. 

Now, the basic variables can be expressed as 

x~ = x,0 - y ' a i ju j  --a~kX k, i ~ B  (18.10) 
JEJI 

where J1 is the set of  indices of  the nonbasic variables which have values equal 
to their upper bounds. 

Let b'~ - X~o - ~ a~juj and we then have 
J~JI 

X i=  b'i - (Xik Xk, i ~ B (18.11) 

If CZik > 0, an increase in x k will decrease the value of  x i. We must however, 
restrict any increase to x k so that it does not cause any x~ to become negative 

For CZik > 0, we must therefore have 

b ' -  % k  Xk >-- 0 .  

b' i 
or Xk -< 

(Zik 

or xk < Min  b'i b'~ 
- : (18.12) 

x,k >0 (]t, ik (Xrk 

Similarly, for those for i which c G < 0, an increase in X k will also increase x~ 

but we must be ensured that the value assigned to x k does not violate its upper 

bound constraint. 

Hence for CZ~k < 0, we must have 
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b' - < u i i (X'ik Xk - -  

u~ -b'~ 
x k _ _ _ ~  

--Of, ik 

x k _< Min ui -- b'i -- us -- b's 
- ~  (18.13) 

Otik <0 _13f, ik _Of, s k 

Moreover, we must have 

Xk_<U k (18.14) 

From (18.12), (18.13) and (18.14), we see that the maximum increase that 

can be given to x k is given by 

m a x  Xk-minI, B  ikb:if if, Uk] 

ie max Xk min[b: us b : ]  = ~ , ~ ,  Uk (18.15) 
Cf, rk --13f, sk 

If  max x k is b'r/ff ,  rk , then x k replaces x in the basis and x becomes a nonbasic 

variable with its value equal to zero. If max x k is u -  b'J O~k, then x k replaces x in 

the basis and x becomes a nonbasic variable at its upper bound u and if it is u k, x k 

stays nonbasic but its value changes to u k. 

Case  2. Let x k = u k and z k - c k < 0. Since x k is at its upper bound, it can only be 

reduced which makes an improvement in our solution 

The basic variables in this case can be expressed as 

i B Xi "- Xio -- 2.~ (ZijUj -- O['ikXk' E 
jEJ! (18.16) 
j*k 

Let 
bi : Xio -- E (~ijUj 

j~j, and we then have (18.17) 
j*k 

Xi = b i -  (~'ik Xk' i ~ B (18.18) 

For C~k > 0, a decrease in x k will increase x~ and we must ensure that the value 

of  x k is not decreased to the extent that the basic variable exceeds its upper bound. 

We therefore, must hav.e 

Xi = b i -  O[ik Xk 5 U i for (I, ik > 0 .  

m 
bi - u  i bp - U p  

or Xk > max = ~  (18.19) 
r >0 (]f'ik Of'pk 
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On the other hand, if aik < 0, a decrease in x k will also decrease x~ and we 

must ensure that x~ does not become negative. 

Thus we must have, 

x~ = g~-  % x k >_ 0. for Ct~k > 0. 

m 
bi bq 

or Xk > max = (18.20) 
r <0 ~ ik 13~ qk 

and finally we must have 

Xk>_ 0 

We can therefore assign to x k, the value given by 

I g.-Up - ] 
M i n x  k = M a x  ... .  , bq ,0 

L (Xpk (Xqk 

(18.21) 

(18.22) 

- in the basis and the new value of If m i n x  k is bp Up/0f, pk , then x k replaces Xp 

Xp is Up. If  m i n x  k is bq/(~qk' then x k replaces Xq in the basis and the new value of 

Xq is zero and if m i n x  k is zero, then the basis remains unchanged but the value 

of  x k changes to zero. 

After an appropriate change in the nonbasic variable x k, the above procedure 

is repeated until the optimality conditions (18.6), (18.7) are satisfied. 

Note that in replacement operations indicated above the pivot could be negative. 

t8.6. Example 
Consider the problem 

Maximize 3x I + 5X 2 + 2X 3 

Subject to x~ + 2x 2 + 2x 3 < 10 

2x~ + 4x 2 + 3x 3 _< 15 

0 < x  1_<4,0 < x  2_<3, 0 < x  3 < 3 

Introducing slack variables x 4, x s, the problem is reduced to 

Minimize z = - 3 x ~ -  5x 2 - 2x  3 

Subject to x I + 2x: + 2x 3 + x 4 = 10 

2x~ + 4 x  2+ 3x 3 + x  5 = 15 

0 < x  I < 4 ,  0_< x: < 3, 0 < x3_< 3, 

x4, x5 >_ 0 
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ca is 

0 a4 

0 as 

cJ 

z - c  
J J  

a, a2 % a4 a5 XB 

1 2 2 1 0 10 

2 4 3 0 1 15 

-3 -5 -2 0 0 

3 5 2 0 0 
t 

Tableau 2 

% %  

0 a4 

0 a5 

5 
2. - c. 

J 1  

a, a'2 a3 a4 a5 x* 
I -2 2 1 0 4 

2" -4 3 0 I 3 

-3 -5 -2 0 0 

3 -5 2 0 0 
t 

'B % 

0 a4 

-3 a, 

cJ 

-3/2 I 1 -512 0 
? 

1 J  

a, a'2 a3 a4 a5 x, 
0 0 112 1 -1/2 5 12 

I -2 * 312 0 1 /2 3 /2 

-3 -5 -2 0 0 
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a' 2 enters the basis 

Since Min ~o, ~ - 2 i  = 4-'3 = ~- 

a~ leaves the basis 

The table then becomes 

Tableau 4 

% % 

0 a. 

5 a ~ 2 

Z. - - C .  
J J 

a 1 a '  2 a 3 a 4 a5 

0 0 1/2 1 --1/2 

--1/2 1 --3/4 0 --1/4 

--3 --5 --2 0 0 

1/2 0 --7/4 0 --5/4 

XB 

5/2 

-3 /4  

The new values of  basic variables are 

x 4 = 5 / 2 - 0  x 4 -  5/2 

x 2 = - 3 / 4 -  (-1/2) x 4 = 5/4. 

Also, the nonbasic variable x~ at upper bound is put at zero level by substituting 

x~ = 4 - x'~ and we obtain the final tableau as 

Tableau 5 

c B a B 

a 4 

a 2 

Z m e .  
J J 

a ! ! 
1 a 2 a3 a4 a5 

0 0 1/2 1 -1 /2  

1/2 1 -3 /4  0 -1 /4  

-3  -5  -2  0 0 

-1 /2  0 -7 /4  0 -5 /4  

XB 

5/2 

5/4 

which shows that an optimal solution has been attained. 

The optimal solution is 

x 1 = 4 - x ' ~  = 4 - 0  = 4 

x 2 = 3 - x '  2 = 3 -  5/4 = 7/4 

X 3 = 0 

and Min z = - 8 3 / 4  
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18.7. Exercises 

Solve the fol lowing problems by the bounded  variable algori thm 

1. Max imize  z = x I + x 2 

Subject  to 6 x ~ -  3x 2 < 9 

1 

D 

Max imize  

Subject  to 

Max imize  

Subject  to 

Max imize  

Subject  to 

D 

x I + 2x 2 < 18 

- 2 x  I + x~ _< 6. 

O_<x~<3  

O_<x:_< 8 

z = 5x I + 2x 2 

3x~ + 2x 2 < 9 

x~ + 2x 2 < 5 

5x~ + 2x 2 < 10 

O_<x~_< 6 

--4_< x2_< 5 

Z = 3 X  l +X 3 

2x I - x  2 < 0 

-x~ + 2x 3 < 10 

x~ + x  2 +x3 < 10 

X l > O  

O_<x:_< 8 

0 < X 3 < 4  

z = 3x~ + 4x 2 + 4x 3 

2x I + x 2 - x  3 < 10 

-x~ + 2x 2 + x  3 < 6 

X l - X  3 < 4 

3x~ - x 2 + 2x 3 < 15 

O_<x~_<4 

O_<X2_< 8 

0 < X 3 < 4 .  
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Transportation Problems 

19.1. Introduction 

One of the earliest and most important applications of linear programming 
has been the formulation and solution of the transportation problem as a linear 
programming problem. The classical transportation problem can be described as 
follows. A certain commodity is available in fixed quantities at a number of origins 
(sources), a specified amount of which are sent to satisfy its demand at each of a 
number of destinations. It is assumed that the total demand is equal to the total 
supply and the transportation cost is proportional to the amount transported. The 
problem is to determine an optimal schedule of shipments. 

In 1939, Kantorovich [264, 265] had shown that a class of transportation type 
problems arise very frequently in practical situations but the method of solution 
given was however not complete. The standard form of the problem was first 
formulated along with a constructive method of solution by Hitchcock [230] in 1941 
and later, the problem was discussed in detail by Koopmans [282]. The classical 
transportation problem is therefore often referred to as the Hitchcock-Koopmans 
transportation problem. The linear programming formulation and the method of its 
solution were first given by Dantzig [97]. 

An intuitive presentation of Dantzig's method is due to Charness and Cooper 
[68] and is called the "stepping stone method". Other methods of solution which 
are based on the theory of graphs were given by Ford and Fulkerson [ 170] and 
Flood [ 167]. The method to be described in this chapter was developed by Dantzig 
by specializing the general simplex method. 

19.2. The Mathematical Formulation 

Suppose that there are m origins (warehouses) which contain various 
amounts of a (homogeneous) commodity which has to be shipped to n 
destinations (retail outlets). Let a~ be the quantity of the commodity available at 
the origin i and bj be the quantity required at the destination j. Let c be the cost Ij 
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of shipping a unit quantity from the origin i to the destination j. It is assumed 
that the total demand is equal to the total supply that is, 

m s 
'~'a~ = bj (19.1) 

i j 

The condition (19.1) implies that the system is in balance and the problem is 
then called a balanced transportation problem. 

The problem is to determine the number of units to be shipped from the origin 
i to the destination j, so that the total demand at the destinations is completely 
satisfied and the cost of transportation is minimum. 

Let x > 0 be the quantity shipped from the origin i to the destination j. The 
t j ~  

mathematical formulation of the problem then is, 

m• 
Minimize z = ~ cijx~j (19.2) 

i = l  j = l  

r 
Subject to 2., x~j = a~, a > 0, i -- 1, 2,...m (19.3) 

j = l  l 

m 

ff~xij =b~, b > 0 ,  j =  1,2,...n (19.4) 
i = l  J 

x.. > 0, i = 1, 2,...m 
Ij 

j = 1, 2,...n (19.5) 

We note that the problem is a linear programming problem with (m + n) 
equations in mn variables. 

Theorem 19.1. The transportation problem always has a feasible solution and is 
bounded. 

m n aibj 
Proof" Since ~ a i  = ~ b j ,  it can be easily verified that xaj ~ a  i i = 1, 2,...m; 

i-q j - l  i 

j = 1, 2,...n is a feasible solution to the problem. 

Moreover, for every component x~j of a feasible solution, we have 

0 < x.. < rnin [a i, bj]. 
- -  Ij - -  

The feasible region of the problem therefore is closed, bounded and nonempty 
and hence there always exists an optimal solution to the problem. 

Writing the equations (19.3), (19.4) as, 
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, , 

Xll -I- Xl2 -I" .. "Jr- Xln --- a~ 

X21 "k X22 -'k .. + X2n -- a 2 

X11 

x + + + x  = a  ml Xm2 "" mn m 

+ x2~ + Xm~ = b~ 

X12 X22 Xm2 = b 2 

Xln X2n Xmn -- b n (19.6) 

we see that the transportation problem can be expressed as a standard linear 
programming problem 

Minimize cTX 

Subject to AX = b (19.7) 

X > 0  

where c "= (el l  , C12)... Cn, Cln ) C2, C2n,... Cml , ...Cmn )T 

b = (ala z ... a m, bl..b ) r 

X "- (Xll,X12,..Xln , x21,.. Xzn... Xml,.. Xmn )T 

and 

m __ 

In 0 0 0 

0 In 0 0 

0 0 In 0 

0 0 0 In 

_I n '~ I n In In. 

(19.8) 

an (m + n) x mn matrix, in which 1 is a sum vector and the subscript n indicates 
that it has n components. 

Any standard linear programming problem therefore is called a transportation 
problem if its technology matrix has the same structure as (19.8). 

The simplex method therefore could directly be applied to find a solution of a 
transportation problem. However, due to the special structure of the coefficient 
matrix A, it has been possible to modify the simplex method which is more efficient 
computationally for such problems. It is also possible to employ methods which 
are not directly, related to the simplex method but in what follows we shall only 
discuss the method developed by Dantzig. 

The Transportatioo Array 
The special structure of the transportation model enables us to represent the 

system by a rectangular array having m rows, corresponding to the origins O~ (i = 
1, 2, m) and n columns corresponding to the destinations D (j = 1, 2,..n) and is 
called the transportation array. 



248 Mathematical. Programming: Theory and Methods 
. ,  

Transportation Array 
D~ D 2 D 

n 

O 
1 

02 

O m  

Column 
Total or 
Demand 

Xll 

C21 

�9 

�9 o 

bl 

Xm, 

Cml 

Xl2 

X 2  2 

C~2 

C 2 2  

�9 

�9 

�9 

�9 �9 

. 

. 

b2 

x2 

C m  2 

XI n 

X 2 n  

e l  n 

C 2 a  

�9 o 

�9 o 

�9 �9 

bn 

x 

Table 19.1 

Row Total 
or Supply 

a 

(19.9) 

The (i,j)th cell of the array contains the values of c,j in its lower right hand 
comer and of x.,j in its upper left hand comer. The values of the constants for the 
first m equations, i.e. the supply a~ are given in a marginal column and for the 
remaining n equations i.e. the demand bj in a marginal row. Each row then 
corresponds to one of the first m equations and each column corresponds to the 
last n equations of the problem. At any stage of the algorithm, absence of an entry 
of xij implies that x. 0 is nonbasic and hence of zero value. A zero-valued basic 
variable is indicated by a zero entry (degeneracy). 

19.3. Fundamental Properties of Transportation Problems 
Theorem 19.2. The matrix A is of rank (m + n -  1) 

Proof." The system (19.6) consists of (m + n) equations in mn unknowns but the 
equations are not independent. Since the sum of the first m rows is equal to the 
sum of the n last rows, one of the equations is redundant, because it can be obtained 
from the others. If we add the first m equations and subtract from it the sum of the 
next ( n -  1) equations, we get 

m in n-l  

ZXin =~-'~a i - ~ b j  =b. ,  (19.10) 
i=l i=l j=l 



Transportation Problems 249 

which means that rank (A) < m + n -  1. 

Moreover, it is easy to extract from A, a square matrix of order m + n - 1 for 

which the determinant does not vanish. Hence the matrix A is of rank m + n = 1. 

Corol la ry  19.1. The number of basic variables in a basis of  (19.9) is m + n -  1. 

Triangular Basis: A system of linear equations AX = b is said to be a triangular 
system if the matrix A is triangular, that is when all the elements below or above 
the main diagonal of A are zero. The elements in the main diagonal, however, must 
all be nonzero. The system has the property that there is at least one equation 
that contains only one unknown and when this unknown is eliminated from the 
remaining equations, the reduced system is again triangular. 

A basis for the system AX = b, is said to be a triangular basis if a triangular 
system is obtained when the nonbasic variables are set equal to zero in the original 
system of equations. 

Theorem 19.3. All bases for the transportation problem are triangular. 

Proof: Suppose that we have a transportation array as in (19.9) with m rows and 
n columns and with marginal constants a and b all positive. Consider that a 

! j 

particular set of  basic variables are placed in their appropriate cells. As each 
equation of (19.6) corresponds to a row or a column of the array, we need only to 
prove that there is at least one row or one column of the array that has only one 
basic variable and that when this row or column is deleted, the reduced array will 
also have the same property. 

We note that it is impossible that any row or column might have no basic 
variable because this would mean that the corresponding constraint cannot be 
satisfied as a~ and bj are positive. Hence all rows and columns must have one or 
more basic variables. 

Let us assume that no row or column has exactly one basic variable. This will 
mean that all rows and columns must have two or more basic variables. 

Let k be the total number of basic variables, in the array. Then, since there 
are at least two basic variables in each row and in each column, we must have, 

k > 2 m  

and also k > 2n 

so that we must have k 5, m + n (19.11) 

But this is impossible because the number of basic variables is m + n -  1. 

It then follows that there must be at least one row or column which has 
exactly one basic variable. Deleting this row or column, we are left with a reduced 
array and the argument can be repeated to show that in the reduced array also, 
there is only one row or column which has exactly one basic variable. The 
procedure can be repeated again and again and the theorem is thus established. 

Theorem 19.4: The values of the basic variables in a transportation problem are 
given by expressions of the form 
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Xij =--.+ ~ ap ~ E bq (19 12) 
Some p Some  q 

where the upper signs apply to some basic variables and the lower signs apply 
to the remaining basic variables. 

Proof: Consider a transportation problem arranged in an array as in (19.9) and 
suppose that the values of the basic variables are recorded in the appropriate cells. 
Since all the bases are triangular, there is at least one row or column which 
contains exactly one basic variable. Let the value of this basic variable be denoted 
by Xpq. Then 

~ -  o o Xpq ap or bq ( 19 13) 

depending on whether Xpq is the only basic variable in row p or column q. It 
should be noted that (19.13) is a special case of (19.12). 

If Xpq is the only basic variable in row p, then Xpq -- a and we then obtain the 
reduced array by deleting row p and replacing bq by bq-  ap. This corresponds to 
discarding the equation in row p after evaluating Xpq and eliminating it from all the 
other equations. On the other hand, if Xpq is the only basic variable in column q, 
then we obtain the reduced array by deleting column q and replacing ap by ap- bq. 

As the basis of the reduced array is also triangular, we can repeat the foregoing 
procedure to find a new basic variable Xp,q,  such that 

x - ap. or bq. or ap- bq or b - ap. (19.14) p'q' q 

which is again of the form (19.12) 

Following the above procedure, we can further reduce the array and continue 
the process of selecting the basic variables. Clearly at any stage, the row totals for 
each reduced array are given by expressions of the form 

E a p - E b  q 
s o m e  p s o m e  q 

while the column totals for each reduced array are of the form 

-~-'~ ap+ E b q 
s o m e  p s o m e  q 

This shows that (19.12) is valid because the triangularity of the basis implies 
that the values of the basic variables are equal to a row total or a column total of 
some reduced array. 

Corollary 19.2. If all a~ and bj are integers, then the values of the basic variables 
for any basis are also integers. 

Proof: The values of the basic variables can be expressed as the difference between 
partial sums of the original row and column totals (theorem 19.4). If now all a~ 
and bj are integers, their partial sums are also integers. 



Transportation Problems 251 

19.4. Initial Basic Feasible Solution 
Consider the transportation array as in (19.9). Select any variable Xpq a s  the 

first basic variable and make it as large as possible, consistent with the row and 
column totals, i.e. set 

Xpq = Min (ap, bq) (19.15) 

If ap < bq, x = a and all the other variables in the pth row are nonbasic and 
Pq P 

given the value zero. The pth row is then removed from further consideration and 
bq is replaced by bq - ap and the process is repeated to evaluate a basic variable in 
the reduced array. 

If ap > bq, Xpq = bq and all other variables in the qth column are nonbasic 
and are set equal to zero. The qth column is then removed and ap is replaced by 
a - b .  

P q 

In case, ap = bq, either the pth row or the qth column is deleted but not both. If 
there is only one row (column) but several columns (rows) remain in the reduced 
array, then the qth column (pth row) is dropped. 

In this process, we select (m + n -  1) variables for the initial basis because 
eventually there will be only one row and one column left and both are dropped 
after the last variable is evaluated. Thus the values of the variables are uniquely 
determined as linear combinations of any m + n -  1 of the m + n marginals a~, 

aE,...am; b 1, bE,...b .. 
Since the rank of the system is m + n- l ,  the set of these variables, with the 

remaining variables equal to zero, constitutes a basic feasible solution of the 
problem. It is clear that the basis selected by this procedure is triangular. Since all 
bases for the transportation problem are triangular, we can generate any of them 
by the above procedure. 

Special cases 
(a) North-West Comer Rule [68]. 

A particular case of the method discussed above, is the so called north-west 
comer rule. 

In this method, we begin with the north-west comer cell of the array, i.e. 
cell (1,1) and allocate Xpq = x~ = min (a~, b~) and repeat the procedure with the 
reduced array. 

Computationally, however, the above methods are not very practical as the costs 
are completely ignored here. Usually, the number of iterations required to achieve 
optimality can be greatly reduced if the basic set is selected with some reference 
to the values of the cost elements. 

Several such methods of determining an initial basic feasible solution are 
available in the literature. 

(b) Matrix Minima (Least Cost) Method. [235] 

The method consists in choosing the cell with the smallest cost in the entire 



252 Mathematical Programming: Theory and Methods 

array and allocating the first basic variable in that cell. 
Suppose that the smallest cost occurs in cell (p.q.). Then allocate Xpq = rain 

[ap, bq]. i f  Xpq = ap, cross out the pth row and replace bq by bq - ap. It" xpq = bq, 
cross out the qth column and replace a by ap - bq and it" x = ap = bq, i.e. the 
row and the column requirements are satisfied simultaneously, cross out either 
the row or the column but not both. I f  the minimum cost is not unique, make an 
arbitrary choice among the minima. 

Repeat the process with the reduced array, until all the row requirements and 
the column requirements are satisfied. 

(c) Vogel's Approximation Method (VAM) [375] 

Another method which usually provides a solution quite close to optimum is 
the Vogel's approximation method. The procedure is carried out as follows. 

Step 1. Find the difference between the lowest and the next lowest cost entries in 
each row and each column of the array and record them in a column on the right 
and in a row at the bottom of the array. 

Step 2. Select the row or the column with the largest difference. If the largest ' 
difference is not unique, then select the row or the column arbitrarily. 

Step 3. Make the maximum possible allocation to the cell with the lowest cost in 
the selected row or column. If the cell having the lowest cost is not unique, then 
select from tied ones, the cell to which the maximum allocation can be made. The 
marginal totals are then adjusted accordingly. 

Step 4. Cross out that row or column on which the supply has been exhausted or 
the demand has been fully satisfied. If both the row and the column totals are 
satisfied simultaneously, cross out either the row or the column but not both. 

Step 5. Repeat the process with the reduced array. 

We now illustrate the methods of finding an initial basic feasible solution to a 
transportation problem by a numerical example 

Consider the transportation problem given by the table 19.2 

Destination 

Origin 

O 1 

02 

03 

Demand 

D1 D 2 D3 D 4 

11 13 17 14 

16 18 14 10 

21 24 13 10 

200 225 275 250 

Supply 

250 

300 

400 

Table 19.2 
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Note that it is a balanced transportation problem. 

(a) North-West Comer Rule 

An initial basic feasible solution obtained by the N.W.C.R. is given in the 
following table 

Ol 

02 

03 

D 1 D 2 D 3 D 4 Supply 

200 50 

175 125 

150 250 

Demand 200 225 275 250 

250 

300 

400 

(b) Matrix Minima (Least Cost) Method 

Following the matrix minima (least cost) method, let us select the cell (2,4) 
with the least cost 10 to be allocated first. The method then yields a basic feasible 
solution as shown in the following table 

Ol 

02 

03 

D 1 D 2 D 3 D 4 Supply 

200 50 

50 

125 275 

250 

Demand 200 225 275 250 

250 

300 

400 

Note that if we would have selected the first cell to be allocated to be the cell 
(3,4), we would have got the same solution as obtained by the north west comer 
rule, 
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(c) Vogel's Approximation Method. 

Ol 

02 

03 

Demand 

D l D 2 D 3 D 4 Supply 

200 

11 

16 

21 

200 

13 

18 

24 

17 

14 

13 

14 

10 

10 

Difference 

250 

300 

400 

Difference 5 5 1 0 

O 1. 

O~ 

03 

Demand 

50 

0 2 D 3 D4 

13 17 14 

18 14 10 

24 13 10 

225 275 250 

Supply 

50 

300 

400 

Difference 

Difference 5 1 0 

0 2 

03 

Demand 

Difference 

D 2 D 3 D 4 

175 

18 

24 

14 10 

13 10 

175 275 250 

6 1 0 

Supply 

300 

400 

Difference 

0 2 

03 

Demand 

D3 

125 

14 

13 

275 

D4 

10 

10 

250 

Supply 

125 

400 

Difference 

Difference 1 0 
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03 

Demand 

D3 D4 

275 125 

13 10 

275 125 

Supply 

400 

The basic feasible solution thus obtained is shown in the following table, 

Ol 

O~ 

03 

Demand 

D 
1 

200 

11 

16 

21 

200 

D2 

50 

13 

175 

18 

24 

225 

D3 

17 

275 

D4 

125 

14 

125 

14 

13 

275 

10 

10 

250 

Supply 

250 

300 

400 

19.5. Duality and Optimality Criterion 
The dual problem to the standard transportation problem ( 1 9 . 2 -  19.5) can 

be easily obtained as 

m • 
Maximize w = Z a i u i + b j v j (19.16) 

i=l j=l 

Subject to u~ + vj < c~j; i -- 1, 2,...m 

j =  1, 2,...n 

u~ and vj unrestricted 

From the complementary slackness theorem (Theorem 15.7) we know that the 
feasible solutions x..u and % vj are optimal solutions to the transportation problem 
and its dual if and only if 

c ~ j - u - v > 0 ,  J -  (19.17) 

x~j (c~j - u~- vj) = 0 (19.18) 

the equation (19.18) implies that if x~j ~ 0, c~j - u i - vj must be equal to zero. Hence 
for a basic feasible solution if x.. > 0, we must have 

u 

u~ + vj = c~j, for i, j in the basis (19.19) 
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a system of (m + n -  1) equations in (m + n) unknowns, (assumption). Thus if a 
set of  values u~ and vj satisfies (19.19), the basic feasible solution under 
consideration is optimal if and only if, 

u~ + vj < c~j, for all i j. (19.20) 

The dual variables u~ and vj can be obtained uniquely from (19.19), if one of 
them is assigned an arbitrary value. 

Optimality Criterion 
From (19.20), we note that a basic feasible solution to the transportation 

problem is optimal if and only if it satisfies 

u i - vj -c~j < 0, for all i andj (19.21) 

Following the simplex method for a standard linear program with basis B 
and the associated cost vector c B, it can be seen that the optimality criterion for 
a transportation problem is the same as (19.21) 

= T B_I z~j - c 0 c B a..,j - c,~ = u, + v.j - c,j_< 0. i 1 ,2, . . .m 

j =  l, 2,...n 

v B_~ represents the dual variable (See section 15.6) and every column since cB 

vector of A, a~j = e i + em§ j. 

The values of u~ and v. are now so chosen that the coefficients of the basic variables 
J 

in (19.18) vanish, i.e. 

u~ + vj = c 0 , for all basic variables x. 0. (19.22) 

The system of equations (19.22) has a matrix which is the transpose of the 
matrix of the basis under consideration and is of rank m + n -  1, Since any equation 

in (19.22) may be considered redundant, one of the dual variables u~, v can be 
J 

assigned an arbitrary value and the remaining m + n -  1 variables can be obtained 

uniquely. 

Now, since the basis is triangular and the transpose of a triangular matrix is 
also triangular, the matrix of (19.22) is triangular and the dual variables u~, v. can 

J 

be easily obtained by back substitution. In practice, it is convenient to assign zero 
value to that variable which is associated with the row or the column of the 
transportation table, containing the greatest number of basic variables. 

19.6. Improvement of a Basic Feasible Solution 

If the current basic feasible solution is not optimal then there is at least one 

(i, j) for which cij - u i - vj < 0. Then an improved basic feasible solution can be 
obtained by increasing the value of the nonbasic variable that violates the optimality 
criterion and adjusting the basic variables so that the row totals and the column 

totals remain satisfied. 

Suppose that for the nonbasic variable x 
pq 
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Cpq -- Up - Vq < 0 (19.23) 

and the value of x is increased to a value 0. 
Pq 

Since the values of the basic variables must satisfy the row and the column 

totals, some other variable in row p, say x Pql will have to be reduced by 0. This 

will necessitate an increase of 0 somewhere in column ql, say in Xplq, , There should 

then be a decrease of 0 somewhere in row p~, say in Xp, q~ and so on until eventually 

balance all rows and columns by arriving back in column q thus forming a loop 1 

and the algebraic sum of the 0 adjustments is zero. Note that the value of 0 is 
restricted by those x.. from which it is subtracted. ij 

To see that the new solution thus obtained is better than the preceding one, 

consider the four cells of the transportation table where Xpq is a nonbasic variable 

and the comers of cells of the loop formed with basic variables, have cost elements 

C C pq, C such that c + < + pq~ ~ Plq ~ Cplql pq Cplql CPql Cplq 

Let m i n  (Xpq I , xpl q ) -- Xpql -- 0.  

In the new solution we have 

1 1 - - 0  Xpq = Xpq + O~ Xpq~ = Xpq~ 

- 0 ,  ~ +0. Xpl q : Xpl q Xplq I : Xplql 

while other variables remain unchanged. 

1 has value zero and is taken as nonbasic. Thus xpql then becomes basic and Xpq l 

the new solution still contains m + n -  1 basic variables. 

The value of z is then decreased by 

O(Cpq, +Cp, q-Cpq-Cp, q, ). 

If Xpq, and Xp, q had the same value, only one of them is made nonbasic. 

19.7. The Transportation Algorithm 
We now summarize  below the computat ional  procedure for solving a 

transportation problem 

(a) Find an initial basic feasible solution. 

(b) Solve the system of equations 

c~j - u, - v~ = 0 , for all basic variables Xij , 

~A loop in a transportation table is a path which begins and ends in the same cell 
and has no more than two cells in any row or column. 
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where the value of one of the variables u i, vj is fixed arbitrarily (say u I - 0). The 
system of equations thus obtained is triangular and may easily be solved by back 
substitution. Enter the values of u~ and vj in the margins of the rows and columns 
of the transportation table. 

(c) Calculate the expression 

Cij  - -  C . .  - -  U .  - -  V .  
u t j 

for every nonbasic variable and enter them in the lower left corner of the 
corresponding cells in the transportation table. 

(i) If Eij > 0 for all (i,j), the current basic feasible solution is optimal. 

(ii) If ~j < O, for at least one (i,j), a better solution can be obtained. Proceed 

to (d). 

(d) Select the cell (i, j) for which ~ij is the most negative. Let this cell be (p,q). 

The nonbasic variable Xpq is then increased to a value 0 (say). 

(e) Determine a loop, that starts from the cell (p, q) and connects certain other 
cells occupied by basic variables and ends at the cell (p, q), i.e. the original cell. 
Assign the maximum possible value to 0 without violating the structural and 
nonnegativity constraints. The variable Xpq then becomes basic and the basic variable 
whose value is now reduced to zero leaves the basis. 

(f) Repeat the process from step (b), umil an optimal solution is obtained. 

19.8. Degeneracy 
As in any linear programming problem, degeneracy may occur in a 

transportation problem also. One or more of the basic variables of a transportation 
problem may have the value zero and the problem becomes degenerate. We know 
that the values of the basic variables for a transportation problem are given by the 
positive or negative difference between a partial sum of the row totals a~ and a partial 
sum of the column totals bj. Degeneracy can therefore occur in a transportation 
problem only if this difference is zero. Degeneracy may occur in the process of 
determining an initial solution or it may arise at some subsequent iteration. 

Suppose that at some stage in the process of finding an initial basic feasible 

solution, we have a situation where ap bq. We then delete either the row or the 
column and the reduced array thus obtained will have either a zero column total or 
a zero row total. We must then allocate a zero basic variable to a properly selected 
cell in this column or row so that the vectors associated with the resulting (m + n 

- 1) occupied cells must be linearly independent. We thus obtain an initial basic 
feasible solution but the basis is degenerate became one or more of the basic 

variables are zero. 
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Degeneracy may also arise at some subsequent iteration if two or more basic 
variables have the same value and there is a tie for the variable to leave the basis. 
In that case, one of these variables is dropped from the basis but the remaining 
ones are kept which become degenerate variables in the new basis. 

In the next iteration, suppose that the 0 adjustment indicates that we are to 

subtract 0 from one or more of the degenerate variables. 0ma ~ must then be equal 
to zero and we drop one of these degenerate variables that required a -  0 and bring 
another variable into the basis with zero value. Thus from one degenerate solution 

we move to another degenerate solution with no improvement in the value of z and 
cycling may start. 

To avoid these degenerate situations we have to make sure that no partial sum 
of the a can be equal to a partial sum of the b. This can be done by purturbing 

! j 

the constants a. and b. One technique due to Orden [361 ] consists of replacing the 
I j 

values of the ai and bj by 
a 

a i = a i + E , 

bj =bj ,  

m 

b. = b n + m ~  

for ~ = 0 .  

We note that 

i = 1, 2 , . . . m ,  

j =  1, 2, . . .n-I ,  

m m n - I  n 

i = l  i = l  j = l  j = l  

so that the perturbed problem also has a solution Orden has shown that there 

exists an ~o > 0 such that for all ~, 0 < ~ < ~o, degeneracy will never occur. It 
is however, never necessary to determine 0 0 explicitly. The purpose of the ~- 
procedure is to break the ties and an arbitrarily small ~'s enable us to proceed 
with the computation without any degenerate solutions. When an optimal solution 
to the perturbed problem is found, we drop the ~'s to obtain an optimal solution 
to the original problem. 

However, no transportation problem has ever been known to cycle. 

19.9. Examples 
Example 1. Let us consider the following problem (Hitchcock) and solve it 

starting with an initial solution obtained by the Vogel'sapproximation method. 
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Origin 
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15 

10 

Destination 

b .  
J 

(1) 
(2) 

(3) 

(4) 

2 

20 

3 

30 

25 

15 20 30 35 

1 1 2 1 

1 X 2 1 

1 X X 1 

1 X X 2 

a, (1) (2) (3) (4) 

25 1 1 3 X 

25 4 1 2 2 

50 1 4 1 1 

To find an improved solution, we compute c~j = cij - u~- v. Let u~ = 0. Since 

~ij = 0 for all basic variables, other values of u~'s and vj's are easily obtained and 

then ~j for all nonbasic variables are evaluated. 

n 

b. 
J 

1 2 3 4 a. u 
. -__ .L ._  

25 

2 10 

1 8 

15 

15 

8 

2 

20-0 

+0 

-1 

5 

30 

5+0 

6 

5-0 

35 

7 

25 

7 

25 

50 

-1 



b. 
J 

V 

1 10 

0 8 

15 
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1 2 3 4 a u 
__...L._ 

2 5 

20 

3 

2 6 

4 7 

30 

30 

15 

25 

10 

1 8 

25 0 

25 -1 

50 0 
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Since ~j> 0, the solution obtained is optimal. The optimal solution is Xl4 = 

25, X22 "- 15, X24- -  10, x31 - 15, X32 "- 5 ,  X33 = 30. 

Example 2. Consider the following transportation problem, where the initial solution 
is obtained by the matrix minima method. Note that the number of positive basic 
variables is 4, less than 5 (= 3 + 3 - 1) and hence the problem is degenerate. We 
therefore perturb the problem as shown below and apply the optimality test 

b. 
J 

V 

1 2 3 a~ u 

60+e 

11 8 6 7 3 

50 20+e 

11 

50 

-1 

3 1 8 9 

80 e 

3 5 

80 80+3e 

3 5 

60 + e - 2  

70 +e 4 

8 0 + e  0 

Since ~j> O, for all i,j, the optimal solution obtained is, x,3 = 60, X21 -- 5 0 ,  

X2a = 20, x32 = 80 and x33 = O. 
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19.10. Unbalanced Transportation Problem 
So far we have assumed that the total supply at all the origins is equal to the 

total demand at all the destinations so that the supply at the origins is exhausted to 
meet the demand at the destinations exactly. This implies that 

m 11 

Z a i  = ~" bj 
i j 

so that the system is in balance. 

In many applications, however, it may be impossible or unprofitable to ship 
all that is available or to supply all that is required or the total production (supply) 
either exceeds or is less than the total demand. Such problems are called unbalanced 
and can be handled by the standard transportation algorithm as explained below. 

(a) Supply Exceeds Demand. (overproduction) 

Suppose that for a transportation problem, the total quantities available at the 
origins exceeds the total demand at the destinations and that the demand must be 
met exactly. This means that some origins will have some undispatched items. 

The problem then has the form 

m• 
M i n i m i z e  z = Z cijxij ( 1 9 . 2 4 )  

i=l j=l 

Subject to ~ xij < ai, i = 1, 2 , . . .m (19.25) 
j=l 

m 

x~j = b j, j = 1, 2,...n (19.26) 
i=l 

x~j > O, i = 1, 2 , . . .m (19.27) 

j =  1, 2,...n 

m 

~-~ ai > ]~-'~ bj (19.28) 
i=l j=l 

Introducing slack variables X~n+~ (i = 1, 2,...m) in the equations (19.25), we 
have the problem 

m n+l 

Minimize z ---- Z 2 GijXij (l 9.29) 
i=l 

Subject to ~ x~j + xin . = a~, i = 1, 2 , . . . m  ( 1 9 . 3 0 )  
j=l 

m 

~x~j =bj, j = 1, 2,...(n+l) (19.31) 
i=l 
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x > 0, i = 1 2,...m (19.32) 
I J ~  

j = 1, 2,...(n+l) 

m • 
where bn+ 1 = ~ a  i - bj (19.33) 

i=l j=l 

The slack variable xi,+l represents the excess supply, i.e. the quantity of 
undispatched items at the ith origin which is stored there. Then ci.+~ is interpreted 
as the storage cost per unit at the origin i. Suppose that c~.+~ = 0, for all i. We can 
then imagine a fictitious destination where all the excess supply is sent at zero cost. 
We therefore add a column in the transportation array, which represents the fictitious 
destination whose requirement is b+~. We thus reduce the unbalanced problem to 
a balanced transportation problem and hence can be solved by the algorithm already 
discussed. 

Even though we have assumed above that the storage costs of undispatched 
items are zero at all the origins, the assumption is not necessary. In fact, in many 
practical problems, positive storage costs are incurred at some or all the origins. 
No matter what values are assigned to C~n+~, the problem (19.29) to (19.33) is a 
balanced transportation problem and hence can be solved in the usual manner. 

(b) Demand Exceeds Suppl x (Underproduction) 

In a transportation problem if the total demand exceeds the total supply, the 
demand at some destinations cannot be completely satisfied, even when all the 
supplies are dispatched. The problem then is 

m• 
Minimize z = y '  %x~j (19.34) 

i=l  j = l  

Subject to ~ x~j = a~, i = 1, 2,. . .m (19.35)  
j= l  

m 

x~, < b,, j = 1, 2,...n (19.36) 
i=l  

x > O, i = 1 2 ...m (19.37) 
lj ~ ~ 

j =  1, 2,...n 

where 

m 

~-"a i < ~" bj (19.38) 
i= l  j = l  

Introducing slack variables Xm+lj 0 = 1,2,..n) in (19.36), we have the balanced 
transportation problem, 

Minimize 
m + l  n 

z : Z Z cijx~J (19.39) 
i=l j=l 
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Subject to ~ xij = a~, i = 1, 2,...(m+ 1) (19.40) 
j=l 

where 

m 

EXij +Xm+l, j =bj, j = 1, 2,...n (19.41) 
i=l 

x > O, i = 1, 2,...m+l t j ~  

j =  1, 2,...n. 

Cm+~j = 0 j = 1, 2,...m 

(19.42) 

m 

and a m + l  = bj-~-~a~ (19.43) 
j=l i=l 

The slack variable Xm+~j represents the quantity of unsatisfied demand at the 
jth destination. We can imagine to create a fictitious origin with am+ 1 quantities of 
the item in store which can be sent to the destinations to make up any deficiencies 
between supply and demand at zero cost. We therefore add a row in the 
transportation array which represents the fictitious origin where the row total is 
am+~, the quantity of the item available at this origin. The balanced transportation 
problem (19.39) to (19.43) can then be solved by the usual transportation algorithm. 
We have assumed here that the cost of unsatisfied demand (Cm+~) at all destinations 
is zero. If however, the cost of unsatisfied demand is positive, i.e. Cm+l, j > 0. 
(since failure to meet the demand results in a loss of revenue or goodwill, in 
many cases, shortages are associated with a penalty cost) the problem can still 
be solved without introducing any additional computational technique. 

(c) Surplus Supply, Demand Unsatisfied. 

Situations may also arise where it may not be possible to ship all the items 
available at the origins or to satisfy all the demands at the destinations. 

The problem then is 

~177 
Minimize z = )"  %xij (19.44) 

i j 

Subject to ~ x~j _< a~, i = 1, 2,...m (19.45) 
j=l 

m 

x~j < bj, j = 1, 2,...n (19.46) 
i- I  

x.. > O, for all i and j (19.47) 
t j ~  

j =  1, 2,...n 

where Z ai > Z bj (19.48) 
i j 
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Under this formulation, if all c.j > 0, the problem is trivial, simply ship nothing, 
that is, x. 0 = 0 for all .i and j, gives the optimal solution with the minimum 
transportation cost as zero. A meaningful problem exists if there are penalty costs 
for tmsatisfied demands and storage costs for surpluses at the origins. 

Introducing the slack variables Xm+ ~ and Xm+lj in (19.45) and (19.46) 
respectively, we get the problem as 

m• m s 
Minimize z = E CijXij + E Cin+lXin+l + Cm+ljXm+lj ( l  9.49) 

i=l j=l i=l j=l 

Subject to s Xij "+" Xin+l "- ai, i = 1, 2,...m (19.50) 
j=l 

m 

EXij +Xm+lj  =bj, j = 1, 2,...n (19.51) 
i=l 

x > O, i - 1 2,..m + 1 (19.52) ij D ~ �9 

j = 1, 2,...n + 1 (19.52) 

where cm+ ~ is the storage cost per unit at the i th origin, Cm+~j is the penalty cost per 
unit of unsatisfied demand at the j th destination, X~n+~ is the unutilized item at the 
ith origin and Xm+lj is the unsatisfied demand at the jth destination. 

We also note that, 

m m s s m s  

E a i - E X i n + ]  = b j -  Xm+~j= ~ X~j (19.53) 
i=l i=l j=l j=l i=l j=l 

We can imagine a fictitious origin where the unutilized supply is stored and is 
shipped to the real destinations; and a fictitious destination where the demand is 
the total extra requirements and the above relations imply that they are numerically 
equal. 

The problem is thus reduced to the balanced transportation problem, 

m+l n+l 

Minimize z = ~ ~ %xij (19.54) 
i=l j=l 

n+l 

Subject to ~ xij = ai, i = 1, 2,...m+ 1 (19.55) 
j=l 

where Cm+ln+l -- O, 

m+l 

x~j = bj, j = 1, 2,...n+ 1 (19.56) 
i=l 

x.. > O, for all i and j (19 .57)  g - -  

s s 
a m +  l = b i , b n + l  = a i 

j=l i=l 
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There are many other variations of unbalanced transportation problem which 
can be reduced to balanced transportation problems and can be solved by the usual 
transportation technique. 

19.11. The Transhipment Problem 
In our discussion of the transportation problem we have so far assumed that 

shipments can only be done from origins to destinations directly. In many cases 
however, the amount that can be sent on the direct route may be limited or situations 
may arise where it may not be economical to ship directly from origins to 
destinations. It may therefore be required that the goods available at some origin 
reach their ultimate destinations via other origins and destinations which act as 
intermediary stations. It may be possible that some of these imermediary stations 
are neither origins nor destinations. They merely act as transhipment points and 
can be considered as origins that produce nothing or as destinations that have zero 
demand. 

The generalized transportation problem in which transhipment through 
intermediary stations is permitted was first considered by Orden [343a] who has 
shown that such a problem can easily be formulated as a standard transportation 
problem. 

Suppose that, we have m origins and n destinations. Since in a transhipment 
problem, any origin or destination can ship to any other origin or destination it would 
be convenient to number them successively so that the origins are numbered from 
1 to m and the destinations from m + 1 to m + n. 

Let a~ be the quantities available at the origins and bj be the demands at the 
destinations and 

111 m + n  

Zai = Zbj. 
i= l  j = m + l  

Let xij (i, j - 1,2,...m + n, j ~ i) be the quantities shipped from station i to 
station j and c.j be the unit cost of shipping from i to j (i, j = 1,2...m + n, j ,  i) 
where c. need not be the same as c .  

Ij jI 

The total amount shipped from an origin must be equal to the amount it produces 
plus what it tranships. Similarly, the total amount received at a destination must 
be equal to its demand plus what it tranships. 

We then wish to find 

x.j_> 0 i, j = 1, 2,...m + n, i r j. (19.58) 

which Minimize 

m+n m+n 

z = E E 
i=i j=l 
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m+n m+n 

Ex,j-Ex,i-a,, 
Subject to j=l j:l i = 1, 2,...m (19.60) 

j#i j~i 

m+n m + n  

E X i j -  E X j t  - b j ,  ~=~ ~_~ j = m + 1,...m + n. (19.60) 
i~j i#j 

The system (19.58) to (19.61) is a linear programming problem which is similar 
to a transportation problem but not exactly since the coefficients of  Exit's a re -1 .  
The problem however, may easily be converted to a standard transportation problem. 

m+n 

Let t~ = ~ x~j, j__~ i = 1, 2,...m (19.62) 

m+n 

and tj = ~ xj,, ~_~ j = m + 1,...m + n (19.63) 

where t i represents the total amount of transhipment through the i th origin and 
t represents the total amount shipped out from the jth destination as transhipment. 

Let T > 0 be a sufficiently large number so that 

t~ < T, for all i and tj < T for all j (19.64) 

If we now write t i + xii = T, then the nonnegative slack variable x, represents 
the difference between T and the actual amount of transhipment through the ith 
origin. Similarly if we let t + x = T, then the nonnegative slack variable x 

J .IJ JJ 
represents the difference between T and the actual amount of transhipment through 
the jth destination. 

The transhipment problem then reduces to 

m+n m + n  

Minimize ~ Z cijxij (19.65) 
i=l j=l 

m+n 

Subject to ~ x~j = a~ + T, i = 1, 2 .... m (19.66) 
j=l 

m + n  

xij = T, i = m  + 1,...m + n. (19.67) 
j=l 

m + n  

xij = T, j = 1, 2,...m. (19.68) 
i=l 

m+n 

E Xij = bj + T, j = m + 1,...(m + n). (19.69) 
i=l 
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x. 0 _> 0, i = 1, 2,...m + n (19.70) 
j = 1, 2,...m + n 

where c~i = 0, i = 1, 2,...m + n. 
The system (19.65) to (19.70) represents a standard transportation problem 

with (m + n) origins and m + n destinations. 
Note that T can be interpreted as a buffer stock at each origin and destination. 

The question now arises as to what value should be assigned to T. Since we are 
assuming that any amount o f  goods can be transhipped at any point, T should be 
large enough to take care of  all transhipmcnts. It is clear that the volume of  goods 
transhipped at any point cannot exceed the amount produced (or received) and hence 
we take 

llt 

T = E a i  (19.71) 
i=l 

The transhipment problem may also be presented in a tabular form as given 
below and the standard transportation algorithm may then be used to obtain an 
optimal solution. We note that the solution of the problem contains 2m + 2 n -  1 
basic variables. However, m + n of these variables appearing in the diagonal cells 
represent the remaining buffer stock and if they are omitted, we have (m + n -  1) 
basic variables of our interest 

Transhipment Tableau 

origin (0) 

1 

2 

Ill 

m+l 

m+2 

Destination (D) " 

m+n 

Origin (0) 
1 2 m 

O t o O  

D t o O  

T T ...... T 
Quantities arriving 

at origins 

Destination (D) 
m+l m+2 m+n 

O t o  D 

Dto D 

bl+T b2+T ..... bn+T 
Quantities arriving 

at destinations 

a~+T Quantities 

a2+T leaving 

"origins 

am+ T 

TQuantities 

Tleaving 

"destinations 

T 

Table 19.3 
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Example. Consider the following transhipment problem involving two origins and 
two destinations. The availabilities at the origins, the requirements at the 
destinations and the costs of transportation are given in the table below. 

Ol 

02 

Dl 

D2 

b. 
J 

O~ 02 D~ D 2 

0 1 3 4 

1 0 2 4 

3 2 0 1 

4 4 1 0 

20 10 

25 

Find the optimal shipping schedule. 

Since T = E~a~ = 30, we convert the problem into a balanced transportation 
problem by adding 30 units to each a~ and b. 

J 

Ol 

02 

Dl 

Ol 02 Dl D 2 

0 1 3 4 

1 0 2 4 

3 2 0 1 

4 4 1 0 

30 30 50 40 

35 

55 

30 

30 

Using Vogel's approximation method for an initial basic feasible solution and 
checking its optimality, we have the following table 
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Ol 

02 

Dl 

D2 
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30 

Ol 

2 1 

6 3 

8 4 

30 

02 

0 1 

4 2 

7 4 

30 

30 

DI 

0 3 

25 

2 1 

25 

50 

D2 

30 

1 4 

40 

35 

55 

30 

30 

Since all ~ij are nonnegative, the solution obtained is optimal. Ignoring the 

allocations in the diagonal cells, we obtain the optimal solution for the transhipment 
problem. The optimal schedule is 

O~ ~ D 2, 5 units 

02 --~ D~, 25 units 

D~ -~ D2, 5 units 

and Min Z - 75 

19.12. Exercises 
1. Solve the transportation problem given by the following table. 

Destination 

O 1 

Origin 02 

O3 

Demand 

D 1 D 2 Ds D 4 

5 9 4 2 

1 4 1 2 

2 1 3 3 

30 10 20 40 

Supply 

20 

30 

50 
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2. Consider the following transportation problem 

D1 

O 1 

0 2 

03 

D 2 D 3 D 4 ai 

63 71 99 31 

27 48 14 56 

81 21 82 35 

60 45 71 35 

93 

71 

47 

Find an initial basic feasible solution by the north-west comer rule and obtain 
an optimal solution. 

3. Find an optimal solution of the problem discussed in section 19.4 starting 
with each of the initial basic feasible solution obtained. 

4. Consider the following transportation problem. 

Dl 

O ! 

0 2 

03 

b. 
J 

D 2 D 3 D4 a i 

85 60 30 50 

75 65 35 45 

80 60 20 55 

120 110 150 120 

130 

150 

220 

Find an initial basic feasible solution by (i) the north-west comer rule and (ii) 
the matrix minima method and obtain optimal solutions. 

5. Consider the following transportation problem 

O 1 

0 2 

03 

DI D E D 3 D 4 

5 8 3 6 

4 5 7 4 

6 2 4 5 

30 20 40 30 

30 

50 

40 

Find an initial basic feasible solution by the Vogel's approximation method 
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and obtain an optimal solution. 

6. Show that a balanced transportation problem with some or all cij < 0 can 
be converted to an equivalent transportation problem with all cij > 0. 

7. Consider four bases of operations B. and three targets T. The tons of bombs 
t j 

per aircraft from any base that can be delivered to any target are given in the 
following table: 

Base 

Target 

Tl "I"2 "I"3 

B 1 8 6 5 

B 2 6 6 6 
B 3 10 8 4 

B 4 8 6 4 

The daily sortie capability of each of the four bases is 150 sorties per day. 
The daily requirement in sorties over each individual target is 200. Find the 
allocation of sorties from each base to each target which maximizes the total tonnage 
over all the three targets. 

8. Prove that for the balanced transportation problem, the optimal solution is 
not affected if for any row r, the unit cost co is replaced by c o + t~ or for any column 
k, C~k is replaced by C~k + 13 k where tx and 13 k are constants. 

9. Suppose that for a balanced transportation problem, an infeasible basic 
solution satisfying the optimality criterion (19.20) is available. Discuss how the 
dual simplex method can be applied to find an optimal solution of the problem. 

10. Consider the following bounded variable transportation problem called the 
capacitated transportation problem: 

Minimize 
~177 

Z = E r 
i l l  j=l  

Subject to ~ xij = a~, i = 1, 2,...m. 
j=l 

where 

m 

~'~ xij =b  j, 
i=l 

0 < x~j < d~j, 

m • 
E a  i = bj, 
i=l j=l 

j = 1, 2,...n. 

for all i, j. 

a~> 0, h > 0, % >_ 0 

Modify the bounded variable method (chapter 18) to derive an algorithm that 
would solve the problem. 
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11. A company produces a product in three plants located at places L~, L2, L 3 
and supplies its product to warehouses W~, W 2, W 3, W 4 and W 5 at different places. 
The plant capacities, warehouse requirements and the unit transport cost is given 
in the following table 

Plant 

L 1 

L3 

Requirement 

Warehouse 

W 1 W 2 W 3 W 4 W 5 

6 6 4 8 4 

7 6 5 4 7 

6 6 3 5 8 

500 400 800 400 400 

Capacity 

900 

500 

800 

Find an optimum distribution plan for the company in order to minimize 
the total transportation cost. 

12. Solve the following transportation problem 

O 1 

0 2 

Origin 0 3 

0 4 

Destination 

D1 D 2 D 3 D 4 D5 

7 4 7 2 7 

2 3 4 7 8 

7 2 4 8 4 

8 7 1 4 3 

b 2 7 8 3 2 
J 

13. Consider the following transportation problem: 

Pl  

P2 
Plant P3 

P4 

Warehouse 

W 1 W 2 W 3 W 4 W 5 W 6 

- 6 9 5 11 11 

9 9 9 12 2 10 

2 6 11 8 6 10 

5 7 7 3 7 5 

20 

50 

90 

60 

Supply 

Demand 40 40 60 40 20 20 
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It is not possible to transport any quantity from plant P~ to warehouse W 1 . 

Find an initial basic feasible solution by the Vogel's approximation method 
and obtain an optimal solution of the problem. 

14. Generalized Transportation Problems" 

Consider the problem 

Minimize 
ms 

Z = E cijxij 
i=l j=l 

Subject to s dijx~j = a~, a~ > 0, i = 1, 2,...m. 
j=l 

m 

~x i j  =bj, b.>O, j =  1,2,...n. 
i=l J 

x . > 0  

where d,j > 0 for all i, j. 

The problem differs from the transportation problem in that the coefficients of 
the x. in the constraints may not be unity in this case. However, the structure of Ij 
these problems is similar to that of the transportation problem and are referred to 
as the generalized transportation problems. 

Extend the transportation algorithm to solve such problems. 

15. Solve the transhipment problem involving two origins and three destinations 
for which the origin availabilities, the destination requirements and the costs for 
shipping are given below. 

Ol 

02 
Dl 

D 2 

D 3 

Required 

O 1 0 2 D l D E D 3 

0 2 6 4 2 

2 0 1 3 5 

6 1 0 1 2 

4 3 1 0 3 

2 5 2 3 0 

- 3 0  3 0  4 0  

Available 

50 

50 



C H A P T E R  2 0  

Assignment Problems 

20.1. Introduction and Mathematical Formulation 
Assignment problems are special type of allocation problems. In its simplest 

form the problem can be stated as follows. Suppose that we have n jobs to perform 
and n persons, each of whom can perform each of the jobs but with varying degree 
of efficiency. It is assumed that through performance tests (for example, the 
number of hours of ith person takes to perform the jth job), an estimate of the 
cost of assigning the ith person to the jth job can be determined. Let this be 
denoted by c~j. The number c 0 is then a measure of effectiveness of the ith person 
to the jth job. We wish to assign only one job to each person so that the total 
cost of performance is minimum. 

Suppose that the ith person is assigned to job Pi" The problem then is to find a 
permutation (p~, P2," P.) from the set of n! permutations such that the total 
assignment cost. 

Z = 2.~ Cipi (20.1) 
i=l 

is minimum 

Stated in this form, the problem is evidently combinatorial. For small n it may 
be possible to enumerate all the n! permutations and calculate the corresponding 
costs, the least value of which provides an optimal solution. But the number of 
possibilities grow rapidly with n and even for a moderately large n, this enumerative 
procedure is very much time consuming and not at all practical. 

Alternatively, the problem can be formulated as follows. 

1, if the ith person is assigned to the jth job 
Let xif = 0, if not (20.2) 

The problem can then be stated as 

Minimize z= ~ ~ cijxij (20.3) 
i=l j=l 
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n 

Subject to ~ xij = 1, 
i=l 

~xij =1, 
j=l 

j = 1, 2,...n (each job is assigned 

to only one person) (20.4) 

i = 1, 2,...n (each person is assigned 

only one job) (20.5) 

(20.6) x,j = 0 or 1 for all i and j 

This is an integer linear programming problem (i.e. a linear programming 
problem where the variables are restricted to be integers) which may be very 
difficult to solve. If however, the last constraint (20.6) is replaced by the condition 
x,j_> 0, it reduces to a transportation problem with each a~ = b i - 1. We know 
that (see corollary 19.2) the solution of a transportation problem will be nonnegative 
integers when a~, bj are integers and therefore in this case, the solution will 
automatically satisfy the constraint (20.6). The assignment problem is therefore, 
a special case of the transportation problem. The structure of the problem 
however is such that every basic feasible solution is degenerate since exactly n 
basic variables must have the value unity and the ( n -  1) basic variables must 
therefore, all be equal to zero. The problem therefore is highly degenerate and 
solving an assignment problem by transportation technique can be very 
frustrating. A very convenient procedure however, is available for assignment 
problems and is known as Hungarian method. 

20.2, The Hungarian Method 
In 1931, the Hungarian mathematician K6nig [280] published a theorem on 

linear graphs, which was generalized in the same year by another Hungarian 
mathematician Egervfiry [ 144]. Based on K6nig-Egervfiry theorem, Kuhn [290] 
designed a technique to solve the so-called assignment problem and called his 
algorithm the Hungarian method. As we shall see, the Hungarian method is much 
more suitable as it is not affected by degeneracy. 

The method relies on the following theorems. 

Theorem 20.1. If all the elements in any row or column of the cost matrix in an 
assignment problem are increased or decreased by the same amount, an equivalent 
assignment problem is obtained. 

Proof: We are to show that if X = (x~j) is an optimal solution to the assignment 
problem with the cost matrix (caj), then it is also optimal for the problem with the 

t cost matrix (c aj) where 

c'aj - c~ + pa • qj, pa, qj being arbitrary real numbers. 

Now, z = • (oi  +-p, +_ qj) 
i=l j=l i=l j=l 
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i=l  j= l  i=l  j= l  i=l  j=l  

= Z_.+ ~ p  i + ~-~ q j 
i =1 j =1 

since ~-~ xij = 1, ~-~ xij = 1. 
i=l  j= l  

which shows that the set of x will optimize both the problems. 
tj 

Theorem 20.2" If in an assignment problem, some of the cost elements c are zero |j 

and the others are positive, then a set of x's that are all zero except perhaps where 
c~j = 0, must be optimal to the problem. 

Proof: Since all c~j > 0, for any assignment schedule, z > 0. Now, the value of z 
corresponding to the given set of x's, is zero and hence it must be optimal to the 
problem. 

C t By applying theorem 20.1, the cost matrix (c~j) is transformed to (~j), where 
each c'. > 0 with at least one zero element in each row and each column. We then U m 

need to find the maximum number of independent zero elements so that an attempt 
can be made to find an assignment among the zeros. For this we state the K6nig- 
Egerv~iry theorem, where we make use of the following definitions. 

Definitions: The elements of a matrix are also called points. A row or a column 
of the matrix is known as a line. A set of points of a matrix is said to be independent 
if none of the lines contains more than one point of the set. A single point is regarded 
as independent. 

Theorem 20.3. (K6nig-Egerv~ry) 
The maximum number of independent zero elements in a square matrix is equal 

to the minimum number of lines required to cover all the zeros in the matrix. 

We therefore, repeatedly use theorem 20.1 to create zeros in the cost matrix 
of the problem and then make use of theorem 20.3 to find a set of independent 
zeros which provides an optimal solution to the problem. 

20.3. The Assignment Algorithm 
Various steps of the Hungarian method for obtaining an optimal solution to an 

assignment problem may be summarized as follows. 

Step 1. Subtract the smallest element in each row of the cost matrix from every 
element in that row. 

Step 2. Subtract the smallest element in each column of the reduced matrix from 
every element in that column. 
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The reduced matrix will then have nonnegative elements with at least one 
zero in each row and in each column. If it is possible to find a set of n independent 
zeros, then an assignment among the independent zeros will provide an optimal 
solution to the problem. According to theorem 20.3 we then proceed as follows. 

Step 3. Draw the minimum number of lines say n~, through rows and columns 
which will cover all the zeros. This can be done by drawing the lines in such a 
way that each line covers as many zeros as possible If n~ -- n, an optimal solution 
has been reached. This optimal assignment corresponds to n independent zeros, 
i.e. where there is one zero in each row and in each column. 

If however, n~ < n, we further create zeros in the cost matrix and once again 

verify whether it is possible to get a set of n independent zeros. 

Step 4. Find the smallest element not covered by the n~ lines drawn in step 3. Let 
this element be 0. Subtract 0 from each of the elements not covered by the n~ lines 
and add it to the elements at the intersections of these lines. This procedure is 
equivalent to 

(i) subtracting 0 from all the elements of the cost matrix. 
(ii) adding 0 to all the elements of the covered rows. 
(iii) adding 0 to all the elements of the covered columns. 

and hence is carried out according to theorem 20.1 It is therefore clear that this 
procedure does not affect the optimal assignments. 

Step 5. Draw the minimum number of lines say n 2 through rows and columns that 

cover all the zeros in the new reduced matrix. 

If n 2 = n, an optimal solution is reached. 

If n 2 < n, repeat step 4, as often as necessary until a reduced matrix is obtained 
for which n r = n and then the independent zeros provide an optimal solution to the 
problem. (follows from theorem 20.3) 

The optimum is always reached after a finite number of steps. 

To find the independent zero elements, the following procedure may be 

followed. 

A row which contains only one zero is first selected. This zero becomes an 
independent zero element and is enclosed by a square. All other zeros in the column 

of this enclosed zero are then crossed. Proceed in this manner until all the rows 
have been examined. The process is then repeated with the columns of the matrix 

thus reduced. 

Two things may happen, 
(a) All the zeros in the matrix are either enclosed or crossed, or 
(b) there is no row or column in the reduced matrix containing a single zero. 

In case (a), the number of independent points determined, is maximal and the 

enclosed zeros provide an optimal solution. 
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In case (b), a row or a column having the minimum number of zeros is chosen 
arbitrarily and one of the zeros is enclosed as an independent point. 

The remaining zeros in the selected row or column are then crossed. The process 
is continued and we eventually obtain a matrix with all the zeros either enclosed 
or crossed. The enclosed zeros are then independent points and yield an optimal 
solution to the problem. 

Remarks 
1. There may be situations where a particular assignment is not permissible. 

In such cases, the cost of such an assignment is taken to be very high in 
order to prevent this assignment in the optimal solution. 

2. If the number of jobs is less than the number of workers, fictitious jobs 
are added to the problem and if the number of workers is less than the 
number of jobs, fictitious workers are introduced. The corresponding costs 
are taken to be zero. 

20.4. Variations of the Assignment Model 
(a) In the assignment problem discussed above, we considered that each person 

is assigned one job and each job is assigned to one person. There may however, be 
situations where a person can spend a fraction of his time in one job and a fraction 
of his time in another. The problem can then be expressed as 

Minimize Z -- ~'~ ~"~ Cij Xij 
i=l j=l 

I1 

Subject to ~ xij = 1, i = 1, 2,...n 
j=l 

~-'xij =1, j =  1, 2,...n 
i=l 

x. > 0, for all i, j. 

where x.j is the fractions of time that the ith person spends in the jth job. By corollary 
19.2 it is clear that in the optimal solution x. can take only the values zero or one. |J 
This implies that any optimal solution to the problem will assign one person full 
time to one job. 

(b) Frequently, we have situations, where there are many identical jobs which 
require the same basic qualifications. Such jobs can be grouped into a job category 
and similarly if there are individuals having approximately the same measure of 
efficiency, they can be grouped into a personal category. 

Let us assume that there are n job categories with bj number of jobs in the jth 
category and there are m personal categories with a~ individuals in the ith category. 

Let c j be the measure of efficiency of the ith individual to the jth job. 
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The general assignment problem can then be formulated as, 

Maximize Z = ~'~] ~'~ CijXij 
i=l j=l 

Subject to ~xi j  = a~, i = 1, 2,...m. 
j=l 

~-~x~i =bj, j =  1,2,...n. 
i=l 

x,j_> 0, i = 1, 2,...m; j = 1, 2,...n. 

m ~..~ m ~.~ m ~.~ 
where 2 a i  = bj or 2 a i  < bj or 2 a i  > bj 

i=l j=l i=l j=l i=l j=l 

The problem is a transportation problem and since aa, bj are integers x,j take 
on the values zero or positive integer indicating the number of individuals in the 
ith personal category assigned to the jobs in the jth job category. 

If all a~ = 1 and all bj = 1, the problem reduces to a simple assignment problem 
already discussed. 

20.5. Some Applications of the Assignment Model 

(a) The Marriage Problem: Throughout the ages, our society has been debating 
the question that of all the possible forms of marriage (monogamy, bigamy, 
polygamy etc.) which one is the best. It is rather interesting that with the help of 
linear programming, the issue can now be settled. 

Consider n men and n women. Let each man rate the women according to his 

M and w respectively preference and vice-versa. Let these ratings be denoted by % Cji 

which we assume to be valid measures of happiness. 

1 w 
D e f i n e  cij --" "~(cM + Cji ), 

as the average rating of the pair of the ith man and the jth woman. 

Let x.j be the fraction of time that the (i,j) couple spends together. 

Since we wish to maximize overall happiness, the problem is 

Maximize 
i=l j=l 

Subject ~ x~j = 1, 
J=l 

i = 1, 2 , . . . n  
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xij =1, j =  1, 2,...n 
i=l 

x.. > 0, for all i, j. 1 j -  

where c. = 0. 
11 

It is an assignment problem and is clear that the optimal values of x. will ij 
either be zero or one which implies that monogamy is an optimal social structure. 

It should be noted that if in the above problem c.,j is considered to be the 
measure of average unhappiness of the pair (i, j), it would correspond to 
minimizing the overall happiness. An optimal solution of the problem will then 
show that monogamy is a worst form of marriage. Hence monogamy is both a 
best and a worst social structure. The resulting couples however, are different. 
This shows that the determination of values of c~j depends on many other factors 
besides simple preference ratings by couples 

(b) Machine Set-up Problem: Suppose that a production company has n machines 
on which n jobs are to be performed. Each machine can do each of n jobs but it 
needs an adjustment so as to adopt it to the particular job assigned. The set up 
time of a machine is different for different job. It depends on what the machine 
was doing previously; if the previous job is of the same kind, it will not be 
necessary to reset the machine. The company wants to find an assignment which 
minimizes the total set up time. 

Let c.,j be the time needed to set up the ith machine for the jth job. The 
problem then is, 

Minimize Z -" s s CijXij 
i=l j=l 

Subject to s = 1, i = 1 ,  2 . . . .  n 
j=l 

s x~j = 1, j =  1, 2,...n 
i=l 

x. > 0, for all i and j. U~  

Example 1 
A company has 4 machines on which 4 jobs are to be performed. Each job 

can be assigned to one and only one machine. The set up time taken by the machines 
to do the jobs is given in the following table. 

Find the optimal assignment. 
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Job 2 

Machine 

1 2 3 4 

2 5 5 4 

8 6 7 9 

4 5 8 7 

6 7 6 5 

Solution" 

Step 1. Subtracting the smallest element in each row from every element in that 
row, we obtain the reduced matrix 

1 2 3 4 

0 3 3 2 

2 0 1 3 

0 1 4 3 

1 2 1 0 

Step 2. Subtracting the smallest element in each column of the reduced matrix from 
every element in that column, we get 

1 2 3 4 

0 3 2 2 

I 
- 2 -  - 0  - - 0 -  - 3 -  

0 1 3 3 

I 
- 1 -  - 2 -  - 0 -  - 0 -  

The minimum number of lines that cover all zeros is 3 which is less then the 
order of the cost matrix This implies that an optimal solution has not yet been 
reached and we proceed to step 3. 
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Step 3. The smallest element not covered by the lines drawn in step 2 is 1. 
Subtracting this element from all elements not covered by the lines and adding it 
to the elements at the intersection of the lines, we obtain the new reduced matrix 

1 2 3 4 

- I - 0 7 - - 2 - - 1 - - 1 -  

- 3 - - 0 -  -[-0-]- - 3 - 

- 0 - - [ - 6 ] - - 2 - - 2 -  

- 2 - - 2 - - 0 - - I - 0 - 1 -  

The smallest number of lines that cover all the zeros of the reduced matrix is 
now 4 and 4 independent zeros can be easily determined which provide an optimal 

solution. 

Thus the optimal solution is (1,1), (2,3), (3,2), (4,4) and the minimum set up 
time is 2 + 7 + 5 + 5 = 19. 

(c) Machine Installation problem: A job shop has purchased m new machines 
and there are n locations available in the shop where a machine could be installed. 
Some of these locations are more desirable than others for particular machines from 
the stand point of materials handling. The problem therefore, is to assign the new 
machines to the available locations so that the total cost of materials handling is 
minimum. 

Example 2 
A job shop has purchased 3 machines and there are 4 locations available in 

the shop for their installation. Selection of locations for installation of the machines 
are important from the standpoint of materials handling. The estimated cost per 
unit time of materials handling is given in the following table. 

Find an optimal assignments of the machines to the locations 

Location 

1 2 3 4 

A 

Machine B 

18 14 16 15 

19 20 15 17 

10 X 12 11 

Location 2 is not suitable for machine c. 
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Solution: Since the number of machines is less than the number of locations, a 
fictitious machine is introduced in order to formulate the problem as an assignment 
problem and the cost of materials handling for this machine at any of the four 
location is considered to be zero. Also, an extremely large cost M is attached to 
the assignment of machine C to location 2, so that this assignment does not appear 
in the optimal solution. The resulting cost matrix then is 

A 

B 

Machine C 

D 

Location 

1 2 3 4 

18 14 16 15 

19 20 15 17 

10 M 12 11 

0 0 0 0 

Now, subtracting the smallest element in each row from all the elements in 
that row, we get the reduced matrix 

A 

B 

C 

D 

Location 

3 4 1 2 
I 

-[-0~- - 2 -  - 1 - i 4 • 

I 

- 4 -  - 5 -  
I 

@ M 
I 

- 0 -  - 0 -  - 
! 

- [ - 0 ~ -  - 2 -  

2 1 

_ 

As indicated in the table above, the minimum number of lines covering all the 
zeros is 4 and therefore yields an optimal solution. The independent zero elements 
are enclosed and the optimal assignment is given by 

A--+ 2, B ---> 3, C---> 1 and D---> 4. 

The total cost of materials handling is 14 + 15 + 10 + 0 = 39 

Example 3. Marketing Problem: A marketing manager has four territories open 
and four salesmen available for assignment. The territories differ in their sales 
potential and the salesmen differ in their ability. The estimates of normal sales by 
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the salesmen in the four territories are given below. 

Territory 

1 2 3 4 

A 

Salesman C 

D 

40 33 30 23 

25 27 22 17 

28 25 22 16 

24 30 18 20 

Find the assignment of salesmen to the territories in order to have maximum 
sales. 

Solution: The problem of maximization is converted to a minimization problem 
by multiplying each element of the sales matrix b y - 1  and then subtracting the 
smallest element in each row from all the elements in that row. The efficiency matrix 
for the minimization problem then becomes 

1 2 3 4 

A 

D 

0 7 10 17 

2 0 5 10 

0 3 6 12 

6 0 12 10 

Now, subtracting the smallest element in each column of the reduced matrix 
from all the elements of that column, we obtain 

A 

B 

C 

D 

1 
I 

0 
I 

2 
I 

0 
I 

6 
I 

2 3 4 

7 5 7 

0 - -  0 - -  0 

3 1 2 

0 - -  7 - -  0 
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The minimum number of lines that cover all the zeros is 3, which is less than 
the order of the matrix. We therefore, find the smallest element in the matrix, not 
covered by the lines (which is 1). Subtracting this element from all the elements 
not covered by the lines and adding it to the elements at the intersection of the 
lines, we obtain the new reduced matrix 

A 

B 

D 

1 2 3 4 
I I 

[-6"] 6 4 6 

I I 
3 - -[-0~- - 0 -  - 0 -  

I t 
0 2 [-6-] 1 

I I 
- 7 -  - 0 -  - 7 -  - [ - 0 ~ -  

I I 

The minimum number of lines covering all the zeros now is 4 which implies 
that an optimal solution has been reached. The independent points are enclosed 
which provide an optimal solution 

(A ~ 1), (B ~ 2), (C ~ 3) and (D ~ 4). 

An alternative optimal solution exists for this problem 

(A ~ 1), (B -~ 4), (C ~ 3) and (D ~ 2). 

The optimal sale is 109. 

Example 4 
A firm has five garages in each of which is stationed 5 trucks which are of the 

same type. The trucks have to go on hire to five different places one to each. The 
following table gives the distances between the garages and the destinations. How 
should the trucks be dispatched so as to minimize the total distance travelled? 

A 

B 

Garage C 

D 

Place 

Pl P2 P3 P4 P5 

20 20 16 18 20 

18 15 14 10 16 

14 18 17 12 14 

19 22 15 24 22 

E 14 10 16 11 13 
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Solution: Subtracting the smallest element in each row of the distance matrix from 
all the elements in that row and then subtracting the smallest element in each column 
of the reduced matrix from all the elements in that column, we get the matrix reduced 
to 

A 

B 

Garage C 

D 

E 

P~ P2 
I 

2 4 
I 

6 5 
I 

- 0  6 
I 

2 7 
I 

2 0 
I 

P3 P4 P5 

0 2 2 

4 0 4 

5 0 

0 9 5 

6 1 1 

As indicated in the table above, the minimum number of lines covering all the 
zeros is 4, and hence this reduced matrix does not contain 5 independent zero 
elements. We then find the smallest element not covered by the lines. This element 
is 1 in our case. Subtracting this element from all the elements not covered by the 
lines and adding it to the elements at the intersections of the lines, we get the new 
reduced matrix 

A 

D 

Pl P2 P3 P4 P5 

I 
1 4 0 2 1 

I 
I 

- 5 -  - 5 -  - 4 -  - 0 -  - 3 -  
I 
I 

- 0 - - 7 - - 6 - - 1 - - 0 -  
I 
I 

1 7 0 9 4 
I 
I 

- 1 - - 0 - - 6 - - 1 - - 0 -  
I 

Again we find that the minimum number of lines covering all the zeros is 4. 
The above matrix therefore has to be subjected to further transformation. We find 
the smallest element not covered by the lines which is 1. We subtract this element 
to all the elements not covered by the lines and adding to the elements at the 
intersections, we get the matrix: 
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Pl P2 P3 P4 Ps 

A 

D 

3 0 1 0 

5 5 5 [-0-7 3 

0 7 7 1 ~-] 

0 6 [-~ 8 3 

1 [-~ 7 1 0 

The minimum number of lines covering all the zeros is now 5 and the optimal 
solution has been reached. The optimal assignment is 

(A -~ P,), (B -~ P4), (C -~ Ps), (D -~ P3), (E --~ P2)" 

and the minimum distance travelled is 69. 

Note that alternative optimal solution is also available. 

20.6. Exercises 
1. Solve the following assignment problems. 

(a) Job (a) 

I II III IV 

Job 

II III IV 

I- 

Al l9  12 11 10 A 3 6 4 1 
/ 

Man Man B 9 10 7 
C 13 14 11 1 C 7 11 5 

Di_ll 15 9 D 5 8 7 8 

2. There are four engineers available for designing four projects. Engineer E 3 
is not competent to design project P2" Given the time estimate required by each 
engineer to design a given project in the table below, find an assignment which 
minimizes the total time. 

Project 

Pl P2 P3 P4 

E] 

Engineer E 3 

E4 

10 2 3 7 

9 1 8 6 

8 X 10 3 

5 1 8 6 
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3. A marketing manager has five territories open and five salesmen available 
for assignment. Considering the capabilities of the salesmen, the marketing 
manager estimates, sales by the salesmen in each territory as given in the table 
below: 

A 

B 

C 

Salesman D 

E 

Territory 

T 1 m 2 m 3 T 4 T 5 

35 39 33 40 29 

36 36 38 41 22 

28 40 38 40 32 

21 36 24 28 40 

30 37 27 33 41 

Find an assignment which maximizes the total sales. 

4. A manufacturing company has four jobs to be done and three workers are 
available. The time taken by each worker to complete the job is given below. 

Job 

J1 J2 J3 J4 

W1 

Worker W 2 

W3 

1 5 3 3 

5 3 4 2 

4 2 1 3 

Which worker should be assigned to which job? Which job will remain 
unfinished? 

5. The captain of a cricket team has to allot five batting positions to six batsmen. 
The average runs scored by each batsman at these positions are as follows" 
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B1 

Batsman B 3 

B, 

Batting position 

P~ P2 P3 P4 P5 

50 48 40 60 50 

45 52 38 50 49 

58 60 59 55 53 

20 19 20 18 25 

42 30 16 25 27 

40 40 35 25 50 

Find an assignment of batsmen to batting position which would give the 
maximum number of runs. Which of the batsmen is to be dropped? 
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The Decomposition Principle for 
Linear Programs 

21.1. Introduction 
The solution of linear programming problems with large number of constraints 

by means of the simplex method usually requires considerable computational time. 
In many cases however, the matrix of the coefficients has a special structure, which 
can be utilized to improve the computational efficiency of the problem. For example, 
such a situation may arise in a big business enterprise with many branches. Suppose 
that the branches are almost independent in the sense that the activities of one branch 
are not affected by the activities of the other branches but there are a few constraints 
and a common objective that tie them together. 

Several methods for handling such linear programs efficiently have been 
suggested by various authors [119, 47, 40, 385, 296 and others]. 

In this chapter we shall describe only the decomposition algorithm of Dantzig 
and Wolfe [112]. 

If the coefficient matrix of the problem is black angular, the set of constraints 
may be partitioned into (k + 1) subsets such that k subsets are mutually independent 
systems, each one containing different unknowns and the constraints of the 
(k + 1)m subset are the linking constraints involving all the variables. 

The linear programs over the sets of independent constraints are called the 
subprograms and the solutions of the subprograms enable us to obtain a solution 
of the original problem efficiently. 

21.2. The Original Problem and its Equivalent 
Consider the linear programming problem, 

Minimize z = cVX 

Subject to AX = b 

X>O. 

where the m • n coefficient matrix A is of the form 

(2.1.1) 
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A 

P, P~... P~ 
A] 0 0 

0 A2... 0 

.0 0 Ak. 

(21.2) 

where Pj is m o • nj matrix, A,  an mj x nj matrix, 

k 

E mj = m, 
j=0 

the number of constaints and 

k 

n j = n, the number of variables. 
j=l 

The matrix of the form (21.2) is called a block-angular matrix. 

The problem (21.1) can then be expressed in the form, 

k 

Minimize z = ~ c]rXj (21.3) 
j=l 

k 

Subject to ~ PjXj = b o (21.4) 
j=l 

A X = h, j = 1, 2,...k. (21.5) 

Xj > 0, j = l, 2,...k. (21.6) 

where the vectors c, b and X are also partitioned in the same manner as done 
in A. Thus, 

CT T) 
= C , C 2 ,...C k , 

b r = (bo T, b: , . . .b:) ,  and 

x �9 - 

Let us now suppose that the polytopes Sj defined by the constraint sets 

AX=bj, xj>__0 j-1,2...k. (21.7) 
are bounded and hence are convex polyhedra. 

Each S, therefore has a finite number of extreme points say X~ ( i -  1,2..t). 

Every point Xj of Sj can therefore be written as 

tj tj 

X j  -- E ~ j i X j  i '  E ~ji = 1, ~ji ~ 0,  i = 1, 2 . . . t  ( 21 .8 )  
i=l i=l J 
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Suppose that all the extreme points Xj~ are known and let 

pj~= PX~ i -  1,2...tj (21.9) 

T (21 10) Cji "- Cj Xji  

Now, when X in (21.3) and (21.4) are replaced by (21.8), the problem is 
J 

reduced to 

Minimize 

k tj 

Z = E Z  Cji~'ji 
j=l i=l 

Subject to 
k tj 

~ E P j i ~ j i  =bo. 
j=l i=l 

tj 

~--' ~.j, = 1, j = 1,2...k (21.11) 
i=l 

kj~ >_ 0, i - 1,2...t; j - 1,2...k. 

The linear program (21.11) in the unknowns ~j~ equivalent to the original 
problem and is called the master program. Indeed, corresponding to every feasible 
solution to (21.1), there is a feasible solution to (21.11) and conversely. 

The decomposition principle is thus based on representing the original problem 
by a linear program in terms of the extreme points of the sub programs. Once an 
optimal solution of the master program is obtained, we can find an optimal solution 
of the original problem from (21.8). It should be noted that the procedure reduces 

k 

the number of constraints from ~~ mj. to (m 0 + k) but there is an increase in the 
j=0 

k k 

number of variables from )-". nj to ~ tj. Since the computational effort in any linear 
j=0 j=0 

program mainly depends on the number of constraints rather than on the number 
of variables, it may be considered advantageous to apply the decomposition method. 

It may appear that the solution of the master program requires prior 
determination of all the extreme points Xji w h i c h  may be numerous and hence to 
enumerate all the extreme points explicitly is a very difficult task. However, this 
is not the case. In fact, to determine an initial basic feasible solution for the master 
program, only one extreme point of each of the subprograms is needed and the other 
extreme points required to find an optimal solution of the problem are generated at 
the succeeding iterations of the computing process. 
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21.3 The Decomposition Algorithm 
Let us now describe the algorithm for the solution of the master program (21.11) 

The algorithm is based on the revised simplex method discussed in Chapter 14' 

Let B be the basis matrix associated with the current basic feasible solution 
of (21.11) and c B be the corresponding cost vector. We use the revised simplex 

method, so that the dual vector r -~ eBB of(m ~ + k) components is known. 

Let crBB -~ = V = (V I, V2), where V~ is formed from the first m 0 components 

and V 2 is formed from the last k components of V. 

rB_l (Pji'~ 
= [, ) - %  T h e n  z j i -  cji CB ej 

-" VlPji + V2j -- Cji ( 2 1 . 1 2 )  

where ej is the jth unit rector, 

By (21.9) and (21.10), we have 

T (21.13) Z j i -  Cji "- (WlPj - c  B ) X  i + v2j. 

If z . -  c.. < 0, for all (j i), the current solution is optimal. 
JJ J l  - -  

If zj~ - cji > 0, for at least one (j, i), the solution is not optimal and the basis 
is changed by replacing a vector of B by one of the vectors 

l PJi 

ej 

for which z -  c > O. jl p 
Thus to determine whether the current solution is optimal or not, we are to 

compute 

M .ax(zji - cj,) = Minx [Miax(zji - cji ) ] (21.14) 
J, l  

Now, this computation depends on the values of the extreme points of the 
set A X  = bj, X i >_ 0. Since by assumption, this set is bounded, it follows that, 

for a given j, Max (Zji_ C )  is also bounded and must occur at an extreme point 

of the set. We therefore solve k linear programming problems, 

T Maximize z = (V~P - cj )X (21.15) 

Subject to A.X. = b J J l 
X . > 0  forj  = 1 2,...k. 

Let Xj~j be an optimal solution for the jth such problem and the corresponding 

optimal value of z, is 
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We then have, 

z ; -  (v,P, - 

max ( z j , - % )  = max(z; + v:j). (21.16) 

Let this maximum be achieved for j = s and the corresponding optimal solution 

of (21.15) be X,~ or X (where r = r say). 

Thus max = = sr (21.17) J,' ( Z  i - -  Cji ) Z i -k- V2s Z s r -  C 

If z r - c < 0, the current solution is optimal for the master program and an 
optimal solution of the original problem is then obtained using the relation (21.8) 

If z - c > 0, the vector sr sr 

is introduced in the basis and the vector to leave the basis is determined by the 
usual simplex procedure. The process is then repeated. 

21.4. Initial Basic Feasible Solution 

In the foregoing discussions, we considered the computational procedure 
involving all the extreme points of each of the subprograms. However, to obtain 
an initial basic feasible solutions to the master program, we need to know only 
one basic feasible solution for each of the k subprograms. These solutions (if exist) 
are then applied to the master program and the problem is solved by the two-phase 
method after adding artificial variables. The solution in Phase I provides a basic 
feasible solution to the master program or indicates that the problem is infeasible. 

Suppose that a basic feasible solution X] to the subprogram j = 1,2,...k. is 
known (The use of artificial variables may be necessary to obtain such a solution) 

! 
Let P ji = pjXj], j = 1,2...k. 

The Phase I problem for (21.11), then becomes 

Minimize F(W)= w I + w 2 +.. .+ Wm0 

Subject to P' ~ l~'~ ~ +P'21 ~'21 -I''" .+P'kl~k I -4- elwl 4- e2w2 4-...+ emoWmo = b ~ 

~ l - 1 , , j =  1,2, .... k 

L~ >_ O, j = 1,2,....k 

W i ~___ 0,  I - 1,2,....m 0 

where w~ is the ith artificial variable and e~ is an m0-component unit vector whose 
ith component is one. The sign preceeding e~w~ is so determined that w would be 
nonnegative. 
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At the end of phase I, a basic feasible solution to the master program is 
obtained if Min F(W) = 0. We then apply Phase II, to obtain an optimal solution 
of the given problem. If any of the k subprograms is not feasible or Min F(w) r 
0, the given problem has no feasible solution. 

21.5. The Case of Unbounded Sj 
If the set Sj is unbounded, the decomposition algorithm has to be slightly 

modified. In this case, X e Sj, if and only if 

tj lj 

X j  = Z ~ j i X j  ` q- Y'~ ~tjidj, (21.18) 
i=l i=l 

tj 

~--' ~,j~ =1 
i=l 

L . > 0 ,  i =-1, 2... t.. 
j r - -  l 

laji > O, i = 1, 2...lj. 

where Xj~ and dj~ are the extreme points and the extreme directions of S (See Chapter 
8). 

Replacing each X. in (21.3) - (21.6) by the above representation, the original 
J 

problem can be written as follows. 

Minimize 
k ti k lj 

j=l i=l j=l i=l 

Subject to 
k tj k lj 

Z ~ ( P j X j i )  ~k'ji "~" Z~(Pjdji)~tji  = bo (21.19) 
j=l i=l j=l i=l 

tj 

~,j~ = 1, j = 1, 2,...k (21.20) 
i=l 

~,j~ > 0, i = 1, 2,...tj; j = 1, 2,...k 

~tj~ >__ 0, i = 1, 2,... l j; j = 1, 2,...k (21.21) 

Suppose that a basic feasible solution of the above problem is known with 
an (too+ k) • (mo + k) basis matrix B. It should be noted that each basis must 
contain at least one variable Li; from each block j. 

= r x . . f o r L ,  andc  = Let % be the cost vector of the basic variables with cj~ cj J, J, ji 

for 

Further, let n and ~t be the vectors of dual variables corresponding to the 

T B_I constraints (21.19) and (21.20) respectively. So that (rtroff)= c B 
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The current basic feasible solution is optimal if 

zj~- cj~ = n T (Pj X~) + ~ - c~ X~ < 0 for ~,j~ nonbasic (21.22) 

Z..__ C...._ 71~T T j, jt (Pj  d i ) -  c j d i _<< 0 f o r  ~tj~ nonbasic. (21.23) 

To verify whether the optimality conditions hold or not, we now solve the k 
subprograms 

T Maximize z = ( n T P -  Cj )X (21.24) 

Subject to X �9 S j = 1 2,...k. 
J J 

If the solution of the jth subprogram is unbounded, then an extreme direction 
T djr is found such that (TtrPj - cj )dr> 0, which means that the condition (21.23) is 

violated and ~jr is eligible to enter the basis. Since Zjr- Cjr > 0 ,  the insertion of ~jr 

in the basis improves the value of the objective function. 

If a finite optimal solution to the jth subproblem is found, then obviously the 
condition (21.23) holds for the jth subproblem. Let X r be an optimal extreme point 

o of the jth subproblem. Now, if the optimal value of the objective function zj = 

0 + < 0, then the conditions (21.22) holds for the (nrPj -  c~) Xj~ is such that zj ~ j_  

subproblem J. O t h e r w i s e  ~jr can be introduced in the basis. When for each 

o + < 0, then the optimal solution to the original problem subprogram in (21.24) zj ~ _  

is obtained. 

Thus, according to the above procedure, each subprogram j (j = 1,2..k) is solved 
in turn. If the subprogram j yields an unbounded solution, then an extreme direction 
d is found and the vector jr 

is introduced into the basis of the problem (21.19)-  (21.21). If the subprogram j 
o +  _ yields a bounded optimal solution X and zj ~j - c j )X r + ~ > 0, then 

the vector 

/ PiXjr 

is introduced in the basis matrix. If neither of these conditions hold, then there is 
no vector to enter the basis from the subprogram j. If none of the k subprograms 
yields a vector to enter the basis, then an optimal solution of the original problem 
is obtained. Otherwise, we select one from the eligible vectors to enter the basis. 
We then update the entering column by premultiplying it by the current B -l, pivot 
on the master array and repeat the process. 



298 Mathematical Programming: Theory and Methods 

21.6. Remarks on Methods of Decomposition 
It should be noted that in solving a structured linear programming problem by 

means of the decomposition algorithm, the problem can be decomposed in various 
ways. Instead of considering each of the subprograms A X = b. in (21.5) separately, 

J J J 

they can be grouped into a single problem or grouped in parts giving several linear 
programs. However, there are advantages and disadvantages of such various types 
of decomposition in solving the original linear program. 

The decomposition principle can also be applied to problems where the 
constraints form a staircase structure (multistage) such as 

Maximize x o 

Subject to  A1X l = b I 

A1 X 1 + A2X 2 = b 2 

A2 X 2 + A3X 3 = b 3 

7. 3 X3 + A4X 4 + PoXo = b 4 

Xt >_ 0, t = 1 ,2 ,3 ,4 ,  

whe re  mi (i -'-" 1, 2, 3), A t are matrices, X t, b t (t = 1, 2, 3, 4)  and Po are vectors. 

Such problems often arise in the study of processes through time in which the 
activities of one period are directly connected with those of the preceeding and 
following periods but with no others. (See section 23-4 in [ 109]) 

These observations show that the decomposition method is extremely flexible. 
In fact, application of the decomposition principle is not limited to problems of 
special structure. Actually, any linear programming problem can be decomposed 
by splitting up the set of constraints into two subproblems. An application of this 
variant of decomposition to a multi-commodity transportation problem furnishes 
a particularly efficient algorithm. 

21.7. Example 

Minimize 

Subject to 

Z = -  5X l - 3X 2 - 5 X  3 - 2.5x 4 

2x~ +3X2+3X3+2X4 < 15. 

X~ +X 2 < 4  

2X l + X 2 < 6 

2X 3 + 5X 4 ___~ 10 

X 3 <4,  

Xi, X2, X3, X 4 >_ 0 

In terms of notations in section 21.2 
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T -- cT=(-5,-3), c~-(-5,-2.5), bo 15, 

b~ = (4, 6), b~ = (1 0, 4) and X1T = (x l, x2), X~ = (x 3, x 4) 

The convex polyhedron S~ is given by the constraints 

X l + X2~4 

2X~ + X 2 < 6 

Xl, X2 ~_~ 0 

and the convex polyhedron S 2 by the constraints 

2x 3 + 5x4__~ 10 

< 4  X 3 

X3, X4 ~__ 0 

It can be noted that S~ and S 2 each has four extreme points X~, j = 1, 2; 
i = 1, 2, 3, 4, which can be easily obtained from their graphs. 

The extreme points of  S~ are 

~ i00)x~:/~o) x,~ -/;) x4:(041 
and the extreme points of S 2 are 

(~ I:/ /41 (:/ X21= ' X22= ' X23= 2/5 ' X24= " 

To construct the master program, we note that 

p ~x , ~  i~ 

and from C.. = X.. we have jl jl 

el ~ , ~ , / : 3 : ~  

P21 =P2X21 =(3,2) iOo/: o 

4 64 
P23 =P2X23 =(3,2) 2 / 5 - 5 

p2, :P2x24 :~3 2~ i~): 4 

c2~525~ I ~ l ~  
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, .  

I41 C23 (--5, - '2 .5)  2/5 = -21, 

4 
Now, Xj : Z ~jiXj i' j = 1, 2 

i=l 

4 
Z ~ j i  = l, , j =  1,2 
i=l 

Ej~ > O, i -  1 ,2 ,3 ,  4;j  = 1,2. 

and the master program is given by 

Minimize z = -15Z~2- 16~,13- 12~,~4- 20Z22- 21Z23 - 5Z u. 

Subject to 6~2+ 10~13 + 12~,14+ 12~22+64/5~23+4~,24_< 15 

~11 "[- ~12 "t-~'I3 q- ~14 : 1 

~'21 + ~'22 + ~'23 + ~'24 = 1 
~.j.~ > 0 for all i and j. 

Solving the above linear programming problem, we have the optimal solution 

Z,~2 = 1, Z,2~ = 1/4,. 7'22 = 3/4, all other Z,i~ = 0. 

The optimal solution to the original problem is then given by 

4 

X I -" E ~liXli -" ~'llXll "t- ~,12X12 -[" ~,13Xl3 "~ ~,14Xl4 
i=l 

_- lx,2/_- l o3 
4 

X 2 -" E ~'2iX2i-- ~21X21 "4- ~22X22 + ~23X23 "~" ~24X24 
i--i 

(x 
Hence, the optimal solution of the original problem is 

x I = 3, x2= O, x3= 3, x4= 0 

and Min z = -  30. 
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, 

The above problem is solved by using all the extreme points of S 1 and S 2. In 
general, it is difficult to determine all the extreme points of each Sj. The problem 
can however be solved when only one extreme point of each S is known (See section 
21.4) 

It is left to the reader to solve the above given problem with only one extreme 

point of each S~ and S 2. 

21.8. Exercises 
1. Solve the following linear programming problem by using the decomposition 

technique. 
(i) 

(ii) 

M a x i m i z e  z = 8x  1 + 7 x  2 + 6 x  3 + 5x  4 

Subject to 2x~ § X 2 § X 3 § 3X 4 < 13 

X l § X 2 § 2X 3 + X 4 < 10 

2X l + X 2 < 1 1 

x~ + x 2 < 8  

x 3 + 2x 4 < 9 

X 3 +X4<6 

X I X2, X3, X 4 ~_~ O. 

M a x i m i z e  z = 6 x  I + 8X 2 § 3X 3 + 8X 4 

Subject to 3X 2 - X 3 + 4X 4 < 12 

3X l +X 2 + 3 x  3 +4X 4< 16 

X 1 + 4X 2 < 12 

3X l + 2X 2 < 9 

x 3 +3x 4 < 10 

2 X 3 +  X 4 < 8  

X1, X2, X3, X 4 ~_ O. 

M i n i m i z e  z = x I - x 2 - x 3 - 2X 4 

Subject to 2x I + x 3 +x 4 < 3 

X 2 + X 4 < 2  

x~ + 2x 2 < 6 

X 1 - X2_< 2 

2X 3 + X 4 _~ 5 

X 4 < 2  

XI, X2, X3, X 4 )" 0 

(iii) 

2. Show how the decomposition technique can be applied to solve a problem 
of the following structure 
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M i n i m i z e  CXo X 0 § CTl X ! § .. § CTk X k 

Subject to B 0 X 0 + P~ X~ + ... + Pk Xk = bo 

B l Xo+A 1 X 1 = b l 

B E X 0 + A 2 X 2 = b 2 

B k X o + B k X k = b k 

X > 0 ,  j - 0, l,..k. j -  

[Hint: Take the.problem consisting o f  the last k constraints as the subproblem. 

Solve its dual by the decomposit ion algorithm.] 

3. A linear programming problem can be decomposed in various ways. Discuss 

their relative advantages and disadvantages, when the decomposi t ion algori thm is 

applied to solve the problem. 

4. Apply  the decomposit ion algorithm to solve the following problem. 

Minimize 

Subject to 

z = 10x~ + 2x 2 + 4x 3 + 8x 4 + x 5 

2x~ + x 2 + x 3 >_ 2 

x~ + 4x z - x  3 > 8 

x I +2x 4 - xs>  10 

3x i + x 4 + x s > 4 

xl, x2, x3, x4, x 5 >_ O. 



C H A P T E R  2 2  

Polynomial Time Algorithms for 
Linear Programming 

22.1. Introduction 
The development of the simplex method by George B Dantzig in the mid- 1940s 

for solving linear programming problems is a great achievement in the theory of 
optimization. An optimal solution of a linear programming problem always lies at a 
vertex of the feasible region which is a polyhedron. The simplex method moves 
along the edges of the polyhedron from one vertex to the next in an orderly fashion 
until it arrives at an optimal vertex. Since the number of vertices of the polyhedron 
associated with the m x n coefficient matrix of the problem, is quite large for large 
values ofm and n, there was apprehension that the simplex method would not prove 
to be efficient. However, in practice, it was found to perform exceedingly well. It 
was observed that for most of the practical problems, the number of iterations the 
method needs, is only between m and 3m. However, the fact remains that for certain 
problems, the simplex method may require to examine all the vertices to arrive at an 
optimal solution and therefore the number of iterations can grow exponentially An 
example given by Klee and Minty [275] indeed shows that in the worst case, the 
simplex method needs 2" iterations to find an optimal solution. 

The search for methods with better complexity (algorithm efficiency) than 
the simplex method led to the development of polynomial time algorithms, that 
is, where the computation time is bounded above by a polynomial in the size or 
the total data length of the problem. 

22.2. Computational Complexity of Linear Programs 
We now discuss the computational complexity (algorithm efficiency) of linear 

programming problems, that is, we determine the growth in computational effort 
of an algorithm as a function of the size of the problem in the worst case. 

Consider the linear programming problem 

Minimize cTx 
Subject to AX = b 

X>O (22.1) 
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where A is m x n and m < n, n > 2 and all data are integers. If the data are 
rational, they can be easily converted to integers by multiplying them by the least 
common denominator. 

By an instance of the problem we mean a linear programming problem with 
specific values of m, n, c, A and b and the size of an instance of the problem is 
represented by (m, n, L), where L is the number of bits required to store the problem 
data in a computer and known as the input length of an instance of the problem. 

Let f(m, n, L) be a function in terms of the size of the problem such that the 
total number of computational operations required by the algorithm to solve the 
problem is bounded by pf(m, n, L), where p > 0. We then say that the order of 
complexity of the algorithm is 0 (f(m, n, L)). If f(m, n, L) is a polynomial in m, n 
and L, the algorithm is said to be a polynomial algorithm and the problem is 
polynormally solvable. 

Thus if the bound on the number of operations in an algorithm is ot L~ for some 
ot > 0, 13 > 0, it is a polynomial algorithm and if the bound is 3, 2 L, for y > 0, we 
say that it is an exponential algorithm. Hence the simplex method is not a polynomial 
algorithm. Since for large L, ~/2 L > tx La, in theory, a polynomial algorithm is more 
efficient than an exponential algorithm. 

On the other hand, if f(m, n, L) is independent of L and polynomial in m and 
n, then we say that the algorithm is strongly polynomial. No strongly polynomial 
algorithm is known to exist for general linear programming problems but it does 
exist for combinatorial linear programs in network flow problems. (see [460]). 

22.3. Khachiyan's Ellipsoid Method 
The first polynomial time algorithm for linear programming was given by 

Khachiyan in 1979 [274]. Khachiyan showed how the ellipsoid method developed 
during the 1970s by Russian mathematicians could be adapted to give a polynomial 
time algorithm for linear programming. There are several variants of Khachiyan's 
algorithm, we follow the interpretation given by Gacs and Lovask [ 169]. 

Consider the problem of determining a solution to the set of linear inequalities 

S = {X lAX < b} (22.2) 

where A is m x n, b is an m-vector; m, n > 2 and the data are all integers. 

Assuming that S is nonempty, algorithm s'tarts by constructing an appropriate 
ball E o centered at the origin to contain a large portion of S. If the center of the 
ball lies in S, then the algorithm terminates. Otherwise, a sequence of ellipsoids 
El, E2, E k ...... in decreasing volume are constructed each of which containing the 
region of S covered by E o. If at the kth iteration, (k = 1, 2...), the center X k of E k 
lies in S, the algorithm terminates. If not, some constraints are violated. Let the 
most violated constraint be 

A X_< b v (22.3) 

Hence 

A X k > b (22.4) 
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A new ellipsoid Ek+ l of smaller volume is then constructed which contains 
that region of S which was covered by E k. If the center of Ek+ 1 lies in S, the 
algorithm terminates. Otherwise the above steps are repeated. Khachiyan has 
shown that if S is nonempty, one can determine a feasible point within a number 
of iterations bounded above by a polynomial in the size of the problem. However, 
if this bound on the number of iterations is exceeded, the set is indeed empty. 

The ellipsoid E k can be represented by 

E k = {XI(X--Xk)r B-'k(X - X k) < 1 } (22.5) 

where X k is the center and B k is a n x n symmetric positive definite matrix. 

To construct Ek+ , (see [34]), the hyperplane A X = b is moved parallel to itself 

in the feasible direction of A~ r until it becomes tangential to the ellipsoid E k at the 

point Yk (See Figure 22.1) and thus 

Y k = Xk § dk, 

where dk = -  
BkATv 

(A~BkA w),/2 

Now, the point Yk on the hyperplane A v X = b is obtained by moving from 

X k in the direction d k and hence 

Y k = Xk + ~'k dv 

where the step length )~k = A~Xk -b~ (A~BkA r)l/2 > 0 

l ' n  

Let Xk+ 1 be the point on the line segment [YkYk ]that divides this in the ratio 

Hence 

Xk+, = n ~ +  Yk 
n + l  

1 + nX k BkA v 
-~ X k ~ ~  T)  1/2 

n + l  (AvBkA v 
% 

BkA~ 

(AvB,A v)I/2 
(22.6) 

where we assume that ~'k < 1. 

The ellipsoid Ek+ l with center Xk+ ~ can then be given by 
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Ek+ , = { X I ( X -  Xk+,) T B"k+ , ( X -  Xk+,) <_ 1} 

where Bk+l = 8It I Bk --Ok (kvBkATv)l/2 , is a symmetric 

positive definite matrix. 

(22.7) 

l + n ~  k 

n + l  

~k = 
AvX k - b~ 

(A~BvA~,) '/2 

ffk = 
2(1 + nX k) 

(n + 1)(1 + X, k) 

n 2 
~Sk n 2 -1  

Note that if L k > 1, (22.2) is infeasible and if )~k = 1, Ek+ I degenerates to a 

point. 

It can be shown that the ellipsoid Ek+ ~ defined as above is the minimum volume 
ellipsoid containing the appropriate part of E k. 

Yk 

Ek+l 

Xk 

AvX=b ~ 

Ek 

Figure 22.1 
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22.4. Solving Linear Programming Problems by the Ellipsoid Method 
Let us now see how Khachiyan's algorithm can be used to solve a linear 

programming problem. 

Consider the linear programming problem 

Maximize crX 

Subject to A X < b  

X < 0 (22.8) 

where A is m x n, m, n, > 2 and the data are all integers. 

There arc several ways to apply the ellipsoid method to solve the above 
problem. We here discuss the approach where we apply the ellipsoid method to a 
certain system of linear inequalities that yields an optimal solution of the linear 
programming problem. 

The dual problem to (22.8) is given by 

Minimize bW 

Subject to ATy _< c 

Y > 0. (22.9) 

and by duality theory in linear programming, X 0 and Y0 are optimal solutions to 
(22.8) and (22.9) respectively if and only if X 0, Y0 solve the system of linear 
inequalities 

A X < b  
-ArY < - c 

-cTX + bTY < 0 

-X <0 

-Y < 0 (22.10) 

Now, (22.10) is in the form of (22.2) and we may apply the ellipsoid method to 
(22.10) and it produces optimal solutions to the primal and the dual problems 
simultaneously. 

However, in this approach, the ellipsoid method is applied to a system of linear 
inequalities in R m§ and the high dimensionality slows convergence. 

To reduce the dimensionality of the problem, Jones and Marwil [261] suggested 
a variant of this approach of simultaneously solving the primal and dual using the 
complementary slackness conditions for the problems (22.8) and (22.9). 

The overall complexity of Khachiyan's algorithm for linear programming is 
0(n6L 2) where L is the number of bits required to store the problem data in a 
computer. Unfortunately, this worst case bound is actually achieved in most problems 
and Khachiyan's ellipsoid method, though expected to be faster than the simplex 
method is no better. It was therefore, a great disappointment and the simplex method 
remained the best possible method for solving linear programs. This disappointment 
however gave great impetus to researchers for making exciting new developments. 
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22.5. Karmarkar'$ Polynomial-Time Algorithm 
In 1984 Karmarkar [269] proposed a new polynomial-time algorithm for linear 

programming which performs much better than Khachiyan's ellipsoid method. 

Karmarkar considers the linear programming problem in the form 

Minimize crX 

Subject to AX = 0 (22.11) 

erX = 1 

X < 0  

where X = (x~,x,,... x )  r ~ R" 

e = (1,1,.. 1)r, an n-vector with all elements equal to unity and 

A is an m x n matrix with rank m, n > 2 and the data are all integers. 

It is assumed that the following two conditions hold: 

A 1. The point X o = (l/n, 1/n,..l/n) is feasible to the problem (22.11) 

A2. The optimal value of the objective function in (22.11) is zero. 

At first glance, it may appear that the above form of the linear programming 
problem along with the assumptions A1 and A2 is very much restrictive but it can 
be shown that any general linear programming problem can be easily converted to 
this form. (See section 22.7) 

We now describe Kannarkar's algorithm for solving the problem (22.11). Nice 
descriptions of the algorithm can also be found in Fletcher [ 165] and in Bazaraa, 
Jarvis and Sherali. [34] 

Starting with the feasible point X 0 = (l/n, l/n,., l/n) representing the center of 
the (n- l )  dimensional simplex A x = {XleTX = 1, X > 0}, the algorithm generates 
a sequence of feasible points which converges to the optimal solution in polynomial 
time. Let at step k, X k > 0 be a feasible solution where cTXk ~ 0. The current feasible 
point X k will no longer be at the center of the simplex. For the procedure to be 
iterative, we use a projective transformation to bring this feasible point to the center 
of the simplex in the transformed space. Then we optimize the transformed problem 
under a restriction so that the new feasible solution is an interior point. 

Kan~arkar uses the projective transformation 

D~X 
V = erDa,----- ~ .  (22.12) 

where O k is the diagonal matrix, diag (Xk~, Xk2,... Xkn), Xk~ being the ith element of 
the solution point X k 

Equivalently, the transformation is 

x i / x~ 
Yi = a 

)-'xj/Xkj i = 1,2,..n (22.13) 
j=i 
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The inverse transformation is given by 

X =  DkY 
erDky (22.14) 

Therefore, the transformation (22.12) is one-to-one and maps the X-space 
into the Y-space uniquely. Thus under the transformation (22.12), any point in 
the simplex A x is transformed into a point in the simplex A v = {YlerY = 1, Y >_ 
0} in the Y-space. In particular, the point X k is transformed into the point Yo = 
(l/n, l/n,... I/n), the center of the simplex Ay. Each facet of A x is mapped onto 
the corresponding facet of A v and the feasible region in the X-space now becomes 
the feasible region in the Y-space. 

Thus under the transformation (22.12), the problem (22.11) is transformed 
into the problem 

Minimize 
crDkY 

erDkY 

Subject to ADkY'= 0 

e q '  = 1 ( 2 2 . 1 5 )  

Y > 0  

Note that by assumption A2, the optimal value of the objective function in 
(22.15) is zero and since erD~ Y is positive, the problem (22.15) is reduced to the 
problem 

Minimize 

Subject to 

crDkY 

ADkY = 0 
erY= 1 

Y > 0  (22.16) 

However, to ensure that the new feasible solution is an interior point, we 
proceed as follows. 

Let B (Yo, r) be the n-dimensional sphere or ball inscribed in the simplex Ay, 
with the center Yo, the same as the center of the simplex and radius r. The 
intersection of this ball with the simplex is then an (n-l) dimensional ball with the 
same center and radius. This radius r is then the distance from the center (l/n, 1/ 
n,... l/n) of the simplex to the center of one of its facets. Since the facets of A v are 
one lower dimensional simplices, r can be obtained as the distance from (l/n, 1/ 
n,...1/n) to say (0, 1/n-l, 1/n-l, .... l/n-l). 

Hence r = 
x/n(n'----~- 1" (22.17) 

The problem (22.16) is then optimized over a smaller ball B (Yo, otr), 0 < a 
< 1, where ~ is a parameter which can be chosen suitably between 0 and 1. A 
smaller ball is considered as it ensures that the feasible solutions of the problem 
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will be interior points with all the coordinates being strictly positive. 
We are therefore concerned with the problem 

Minimize O'DkY 

Subject to ADkY = 0 

Cy = 1 (22.18) 

Y ~ B (Y o, cxr) 

The condition Y > 0 is disregarded since it is implied by the intersection of 
the constraint CY = 1 and the ball. 

For convenience, the problem (22.18) is rewritten as 

Minimize ~Ty. 

Subject to PY = Po (22.19) 

( Y - Y J  (V-Yo) < a2r2, 

where ~T = CTDk, 

P - [  , Po- and 

B (goo~r)- {YI ( g -  Yo) T ( Y -  Yo) -< a2r~} 

Since PY = Po is an (n-m-l) dimensional affine subspace that passes through 
the center of the ball B (Yo, cxr), the feasible region of the problem (22.19) is an 
(n-m-l)  dimensional ball centered at Yo" It is thus evident that the optimal solution 
to the problem (22.19) is obtained by projecting the negative gradient of the 
objective function at Yo onto the null space of P and moving along this projected 
direction from the centre Y0 to the boundary of the ball B (Yo, c~r). 

Let cp be the projection of the gradient vector E onto the null space of P. % 
can then be obtained by a projection theorem in linear algebra as 

c e = [1 - W (PW)-' P] ~ (22.20) 

Taking a step of length cxr in the direction of normalized projection --%/][ cp ]l, 
we obtain the optimal solution Y owof the problem (22.19) as 

Cp 
Ynow = Yo - cxr [[ cp ]] (22.21 ) 

Since from (22.20), we note that P% = 0, equation (22.21) implies that 

~Vy.o w < ~ r y  ~ (22.22) 

The next point Xk+ ~ in the sequence in the X-space is then obtained by the 
inverse transfomaation (22.14) as 
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D k Ynew 
Xk+l  -- (22.23) 

eTDkY.ew 

and since Y,.w lies in the interior of the ball inscribed in the simplex A, it is positive. 
Hence Xk§ 1 > 0. 

The steps are then repeated and it can be shown that in each step there is a 
reduction in the value of the objective function of (22.19) and the process approaches 
the optimal value zero. 

The convergence and the complexity of the algorithm is discussed in the next 
section. 

22.6. Convergence and Complexity of Karmarkar's Algorithm 
Consider the n-dimensional ball B (Yo, R) in the Y-space with center Yo, the 

same as the center of the simplex A v and radius R that circumscribes the simplex 
A v . R is then the distance from the center Y0 to any vertex of A v, that is the distance 
from the point (l/n, l/n,..1/n) to say (1,0,0..0). 

/ 
1 n 

Hence R = ~] (22.24) 
V n 

Consider now the problem (22.19), where the constraint Y ~ B (Yo, ar) is 

replaced by y ~ B (Yo, R), that is the problem 

Minimize ErY 

Subject to PY = P0 

(Y-Y0)T(Y-Yo) < R E (22.25) 

As in (22.21), the optimal solution Y,ew to the problem (22.25) is given by, 

- -  Rcp 
Y.=. = Yo II Cp II 

We note that 

B (Yo, r) = A c B (Yo, R) y 

B (Yo,r) c~ ~'  c_ Avc~ ~'  _c B (Yo R) c~ ~', 

where f~' {Y [ ADkY= 0} (22.27) 

Denoting Y*, as an optimal solution of the problem (22.16), we then have 

--T -~T Erynew _<ETy*< C Y, ew < Yo (22.28) 

where the last inequality follows from (22.22) 

From (22.28) we get 

(22.26) 
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0 < E r (Y - Y..w) < Er (Yo - Y' )  < Er (Yo - Y..,+) = RErc'  
II e ,  II 

(by 22.26) 

R Er (Yo - Y... ) (by 22.21) 
t2r 

Thus, Er (Yo - Y') ~ R___~T (Yo - Y..w) 
t~r 

R r ET 
=~rEE ( Y o - Y ' ) -  (Yn,,w-Y')] 

or ~'T(Yn, w - Y ' ) <  (1-c~~-] ET(Y o - Y ' )  

and since ~'T (Yo - Y') > 0, we have 

~.r (Y,,w - Y') 
_< 1 _ __ctr = 1 - - - - -  (22.29) 

~T (Yo - Y') R n -  1 

Now, by assumption (A2), Er y '  = 0 and hence 

~ T y  (~ 

,,w < 1 - ~  (22.30) 
c 'Ty  o n -  1 

Thus in each step, there is a reduction in the value of the objective function 

~Ty, which however depends on the choice of cx. 

We have made the above analysis with the numerator of the objective function 
of the transformed problem (22.15) and hence does not guarantee that the objective 
function in the fractional programming problem (22.15) and therefore, in the original 
problem (22.11) will also decrease. We should note that a linear function is not 
invariant under a projective transformation (as can be seen from the objectives in 
(22.11) and (22.15)) but ratios of linear functions are transformed into ratios of 
linear functions. 

Fortunately, there is a novel function known as the potential function which 
may be used to measure the progress of the algorithm toward optimality. 

The potential function defined by Karmarkar is given by, 

(cTX~ 
f (X)= j~__l l n ~ ~ )  (22.31) 

which has the property that under the projective transformation (22.12), f(X) is 
transformed into a function of the same form and a reduction in the value of CTX 
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is achieved by a reduction in the value of fiX) and hence assures convergence to 
optimality. 

The transformed potential function in the Y-space at the kth iteration under 
(22.12) is 

Dky ~ (~-Ty'~ 
e (Y)=f  eTDKy)=j~__l In ) 

XkjYj 

= n lnETy - s In y j -  s lnxkj (22.32) 
j=l j=i 

To measure the decrease in the value of the potential function f(X) or 
equivalently in F(Y) we compute F(Ynow)- F(Y0) from (22.32) and since Yoj = 
1/n for j = 1,2,..n, we obtain 

I ~rY"~w 1-  s ln[nY n~w,j ] F(YRow)- F(Yo)= n In [ CTYo J=~ 

-<nln El-  ]- 'nEnVnowj] [from (22.30)] n - 1 j=~ 

Since In (l-x) _<-x, we have 

F(Y.~)- F(Vo)-<- n----~ - s  EnVnow,j ] 
n -  1 j=i 

(22.33) 

- -  n 

._....tin, ot = 
n -1  

or, where 0 < ot < 1 is sufficiently small so that 

~ / n - 1 -  ~/ n 
or= ot<l. 

n n -1  

We now make use of the following results from calculus. 

X 2 

L e m m a 2 2 . 1 .  If Ix [_  < 13 < 1, t h e n [ I n ( 1  + x ) - x [ _ _ _  
2 (1 - [3 )  

Proof: Follows directly from the expansion of In (1 + x), 

L e m m a  22.2.  If II n Y - e  II < 13, for 13 ~/ 
n 

_ = or<l, 
n-1  V 

(22.34) 

eW = 1, Y > O, then 1n(nyj)[ < ~  
j=i 2(1-[3) 
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Proof: II n Y - e II -< 13 implies that 

(n  yj - 1) 2 <13 2 
j=i 

o r l n y j - l [ <  [3, j=l ,2, . .n  

By Lemma 22.1, we have 

(nyj -1) 2 
[lntl + (n yj - 1)] - (n  yj - 1)[ <__ 

2(1-13) 

or jn__•[ In - 1)[< ~" (n yj - 1) 2 n Yj (n Yj 
2(1-13) 

< 13'- 
2(1-[3) 

or 1n yj (nyj 1) n - s  - 
j=l j=l 

32 
< ~  

2(1-13) 

n 

and since = ~ (n yj - 1) = 0, we have 
j=l 

In nyj 
j=l 2(1-13) (22.35) 

N o w ,  s In nYj =lnn"I~Yj 
j=l j=! 

If I = n In  n + n  I n  Yj 
j=l 

Ill )l,n - n  Inn  Yj 

< nlnn. 
~Yj 

n 
=n ln l=0  since G.M. < A.M. (22.36) 

Thus, s In n yj 
j=l 

Hence from (22.35) we have 

___0 
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Now since 

132 
0<_- ln(n yj) _< 

j=, 2(1-13) 

eTy =1 Y > 0 and by (22.21) new 9 new 

Jnl ( ' 1 IlnY, ow - e  I I=nar=  ~ c t < l  r= 
n x/n(n - 1) ' 

(22.37) 

Ynow satisfies the conditions of Lemma 22.2 and by (22.37) the equation 
(22.33) becomes 

F(Yn,w) - F(Yo) < - ot + 2(1 - ~,)2, (22.38) 

where 13 ~ /n-1  _ -- (/,. 
n 

- n ~  1 
For (x = ~ = - ,  we have 

n - 1  3 

F (Ya,w)- F(Yo) -< -1/5 (22.39) 

Hence the function 'F' and consequently the potential function 'f '  decreases 
by 1/5 in every iteration and thus over k iterations 

f ( X k ) - f ( X o ) = n l n ( C T X k l - s  k 
c T x 0  j=l - - - - ' 5 "  

Since 1n(n Xkj)<0 
j=l 

[See (22.36)], we have 

(c~X k "~ k 
In / < - ~  

cTxk0) 5n 

or cTX k _< CTXo e -k/5" 

Therefore for k = 1 On L, we have 

CTXk _< CTXo e-2L 

where L, the lower bound on the input length for the problem is given by 

L = [1 + log (IDot maxl) + log (1 + [c max I)1 (22.41) 

where ID tm~xl is the largest numerical value of the determinant of any basis of the 
problem and Ic m~xl is the largest numerical value of any cost coefficient cj. 

Since cTx0 < 2 L, (See [517]), we have 

CTXk _<< CTXo e-2L < 2 L 2  -2L = 2 -L (22.42) 

(22.40) 
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Further since at each iteration, the number of arithmetic operations in the worst 
case is 0(n 3) the polynomial complexity of the algorithm is 0 (n4L). 

A modification to the algorithm 
The computational effort of the algorithm discussed above is dominated by the 

computation of %, the projection of the gradient vector, where 
el, = [ I -  pr (ppv)-~p] E 

Thus, in each iteration, we have to find the inverse of (P pr): 

E p p r =  AD~ Ar 0 (22.43) 
0 n 

Note that the only change in this matrix, from step to step is in the elements of 
the diagonal matrix D k. Taking this advantage Karmarkar has shown that instead 
of recomputing the inverse it can be obtained by an undating procedure so that the 
algorithm can run with a bound of 0(n zS) operations per step. The overall polynomial 
complexity of the modified method then reduces to 0(n3.SL). 

22.7. Conversion of a General Linear Program into Karmarkar's Form 
Consider the linear programming problem in the form 

Maximize crx 

Subject to AX _< b 

X > 0 (22.44) 

where A is m x n of rank m and the data are all integers. 

There are several ways by which this problem can be converted into the form 
considered by Karmarkar accompanying the assumptions AI and A2. We now 
present one such method. 

The dual of the problem (22.44) is given by 

Minimize baY 

Subject to ArY > c 

Y> 0 (22.45) 

By duality theory, the system of inequalities (22.46) has a solution if and only 
if the original problem has a finite optimal solution. 

A X < b  

Aa'Y _> c (22.46) 

crX - brY = 0 

X>  0, Y_>0 

Adding slack and surplus variables Xn§ i, i -- 1 ,2...m and Ym§ J = 1,2..n in the 
problem, (22.46) we have 
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~-]%xj +x,+~ =b~, i =l,2,..m 
j=l 

m 

aijYi - Ym+j =Cj, j =l,2,..n 
i=l 

m 

CjXj - Z biYi = O. 
j=l i=i 

(22.47) 

Let us now define Q by 

x > O, j = 1,2...n, n + 1...n + m j - -  

y~ _> O, i = 1,2...m, m + 1,...m + n 

n+m m+n 

Z Xj + Z Yi < q (22.48) 
j=l i=l 

where Q is a sufficiently large number so that any solution of (22.47) satisfies 
(22.48) 

Introducing the bounding constraint 

n+m m+n 

~-]xj + ~-" yi +s, = Q 
j=l i=l 

where s~ > 0 is a slack variable, in the problem (22.47) we have 

~a~jxj + Xn+ i "- b~ i =l,2,..m 
j=l  

m 

aijyj - Ym+j = Cj, j =l,2,..n 
i=l 

n m 

~-" c j x j -  ~)-" biY i =0  (22.49) 
j=l i=! 

n + m  m+n  

~ x j + ~ Y i + S ,  = Q  
j=~ i=I 

all x, Yi > 0 ; s l>  0 

Further to obtain the problem in the homogeneous form, we introduce an 
additional variable s 2 with the restriction s2= 1 and express the problem as 

~ a i j x  j + Xn+ i -b is  2 =0, i =l,2..m 
j=l 
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m 

aijYi - Ym+j -- CjS2 = O, j = 1,2..n 
i=l 

n m 

y ~ c j x j -  ~-'biy i : 0  
j=~ i=l 

n+m m+n 

Y'~xj + E y i  + s , - Q s 2  : 0 
j=l i=l 

n+m m+n 

xj + ~ Yi + sl + s2 = Q + 1. (22.50) 
j=l i=l 

all x ,  Yi > 0 and s 1, s 2 > 0 

where the last two constraints are equivalent to the constraint Ex+Z~ y~+sl= Q in 
(22.49) and s 2 = 1 

Let x = (Q+ 1)vj, j = 1,2, ..... n+m, 

Yi = (Q+ 1)Vn+m+ i, i = 1,2 . . . . . .  m+n, 

S t - "  (Q+l)V2m+2.+ ~, (22.51) 

s 2 = (Q+ 1)V2m+Zn+Z. 
The system is then reduced to 

~ a i j v  j + Vn+ i + biV2m+2n+ 2 = 0 
j=i 

i = 1 , 2 ,  . . . . .  r n  

m 

~ a i j V n + m +  i -- V2m+n+j -- CjV2m+2n+ 2 -- 0 
i=l 

j = 1,2, ..... n 

m 

CjVj - ~ biVn+m+ i = 0 (22.52) 
j=l i=l 

n+m m+n 

Y ~ V j + E V m + n + i  +V2m+2n+l--QV2m+2n+2 = 0  
j=l i=l 

n+m m+n 

_ _  E Vj + - -  E Vm+n+i + V2m+2n+l-  QV2m+2n+2 = 1 
j=l i=l 

v > 0  

We now introduce the artificial variable ~. in the constraints of  (22.52) such 
that the sum of'the coefficients in each homogeneous constraint and of  ~ is zero so 
that Karmakar 's  assumption AI holds. 

We then consider the problem 

Minimize ~. 
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Subject to ~" a~jvj + V n +  i - -  biV2m+2n+ 2 + Ki~ = 0, i = 1,2...m 
j=l 

m 

Z aijVn+m+ i --  Vn+2m+j  - -  C j V 2 m + 2 n +  2 + K 
i=l 

m+j ~L - -  0 ,  j =l,2...n 

!11 

Cjvj - ~" b~V.§ ~ +km+n+l~, = O, 
j=i i=l 

2m+2n+l 

Z vj 
j=i 

-Qv2m+2., ~ + ( Q -  (2m + 2n + 1))Z, = 0 

2m+2n+2v 

vj +~, = 1. (22.53) 
j=i 

AI1V>__ 0, ~, >__ 0 and 

K's are integers, positive or negative or zero. 

If the sum of the coefficients in a particular constraint of (22.52) is already 
zero, the artificial variable ~, need not be added to that constraint, that is, the 
corresponding K is of value zero. Note that the minimum value of ~, in (22.53 is 
zero if and only if the system pf inequalitites in (22.46) has a solution. 

The problem (22.53) is now in Karmarkar's form and assumptions AI and A2 
are also satisfied. By solving this problem by Karmarkar's algorithm, we obtain 
optimal solutions to the primal and dual problems of the original linear program 
simultaneously. One disadvantage of this approach of combining the primal and 
the dual into a single problem is the increase in dimension of the system equations 
which must be solved at each iteration. 

Karmarkar suggested some modifications to his algorithm in order to solve a 
general L.P. problem under the assumption A1 only dispensing the assumption 
A2, that is, without the requirement that the optimal value of the objective function 
has to be zero. 

By the use of the Big, M method, where we are to add artificial columns 
and/or artificial rows and a large penalty parameter M, the problem (22.44) can 
be converted into Karmarkar's form along with the assumption A1 only. 
Karmarkar's modified algorithm may then be applied to solve the problem. 

Several other approachces are also proposed. 

Ever since Karmarkar's algorithm was published, there was a spurt of 
research activities in polynomial-time algorithms for linear programming and a 
number of variants and extensions of his algorithm appeared in literature. For 
example, Charnes, Song and Wolfe [80], Anstreicher [12], Tomlin [470], Todd 
and Burrell [469], Kojima [275], Gay [192], Lusting [307] among others. A 
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particularly perceptive paper is that of  Gill et al [198] who have shown 
relationships of Karmarker's algorithm to projected Newton barrier methods. 

22.8 Exercises  

1. Show that solving the linear programming problem Minimize crX, subject 
to AX >_ b, X > 0 by Khachian's ellipsoid method is equivalent to finding 
a solution to a system of linear inequalities. 

2. Consider the linear programming problem Minimize crX subject to AX = 
b, X > 0, where A is m x n and the coefficients of one of the constraints, 
say ~ > 0, j = 1,2..n and b m > 0. Show how the problem can be converted 
into Karmarkar's form. 

3. Consider the linear programming problem Minimize crX subject to AX = 
b, X > 0, where A is m x n of rank m and the data are all integers. Show 
how the big M method can be used to convert the problem into 
Karmarkar's form where Assumption A1 only is satisfied. Also, show 
from this converted problem, how one can determine whether the given 
linear program is feasible or unbounded. 
[Hint: Proceed in the same way as in Section 22.7 with the primal problem 
only. After reducing the system similar to (22.53) add MX to the objective 
function CrX.] 

4. Show that the matrix PPX is nonsingular where P is defined as in (22.19). 
5. Convert the following problem into Karmarkar's form which satisfies 

Assumption A, 
Maximize z = x~ + x 2 
Subject to 2x~ + x 2_< 2 

XI ,X 2 3 ~ 0 

6. Perform three iterations of Karmarkar's algorithm on the following 
problem. 

Maximize 
Subject to 

Z = X  1 + X E - 4 X  3 

X 1 - X 2 --  2 X  3 + 2 X  4 = 0 

X 1 + X 2 + X 3 + X 4 "- 1 
x > 0, j = 1,2,3,4. 

J 
7. Solve the following linear programming problem by Karmarkar's algorithm 

Maximize z = 2x t - x 3 
Subject to 2x~ - x 2 - x 3 = 0 

X 1 + X 2 + X 3 -- 1 
Xl ,  X2, X 3 >--- 0 

8. Solve the following linear programming problem by Karmarkar 's  
algorithm. 

Minimize 

Subject to 

Z = X  1 

X 1 - -  2 X  2 "+" X 3 "- 0 

X 1 + X 2 + X 3 -- 1 

xr x 2, x 3 _> 0 
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Nonlinear Programming 

23.1. Introduction 
We recall that the general problem of mathematical programming problem 

can be stated as 

Minimize f(X) 
Subject g~(X) < 0, 1 = 1,2,...m 

X > 0  

where f(X), g~(X), i = 1,2...m are real valued functions of X ~ R" 

If the constraints and the function to be minimized are linear, this is known 
as a linear programming problem, otherwise this is said to be a nonlinear program. 

We have noted that a very large class of decision problems could be 
formulated as linear programming problems and the simplex method is powerful 
enough to solve all of these problems. Very soon however, it was recognized 
that many a practical problem cannot be represented by linear programming model 
and interest in nonlinear programming developed almost simultaneously with the 
growing interest in linear programming. Therefore attempts were made to develop 
more general mathematical programming methods and many significant advances 
have been made in the area of nonlinear programming. The first major 
development was the fundamental paper by Kuhn and Tucker in 1951 [291 ] which 
laid the foundations for a good deal of later work in nonlinear programming. 

In general, nonlinear programming problems present much greater difficulties 
to solve than linear programs, because for a nonlinear program, the optimal solution 
may occur at an interior point or on the boundary of the feasible set. Moreover, a 
local optimal may not be a global one, which makes the problem more difficult. 
Most of the computational techniques for nonlinear programming therefore, aim at 
finding a local solution of the problem. If however, f and g~, i = 1,2.m are convex 
then any local solution is global. Such problems form a special class of nonlinear 
programming and is called convex programming. 

Before we consider the traditional nonlinear programming problems, we first 
present some results regarding optimization of problems without constraints. 
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23.2. Unconstrained Optimization 
In this section we shall discuss the optimality conditions of a function f(X) 

over X e R ", when there,are no constraints on the variables. Unconstrained problems 
do not arise frequently in practice. However, the optimality conditions for 
unconstrained problems are important not only for themselves but also for the 
fundamental role they play in the development of many techniques for solving 
constrained optimization problems. 

The problem of our concern here, is to determine whether a point X o is a local 
or a global minimum point of fiX) over X e R ". A point X o e R b is called a local 
minimum of the function if f(Xo) < fiX) for each X e N (Xo). It is global minimum 
if f(Xo) < f(X) for all X e R ". 

Theorem 23.1. Let f be a real valued function defined on R n and is differentiable 
at X o. If there is a vector d such that 

V f(Xo) T d < 0 (23.1) 

then there exists a 8 > 0, such that 

f(X o +~,. d) < f (Xo) (23.2) 

for all ~ ~ (0, 5 ) 

Proof: Since f is differentiable at X o, we have 

f(X o + ~, d) = f(Xo) + ~,V f(Xo )T d + ~, Ildll (Xo; d). 

where r (Xo; ~, d) ---> 0 as ~, ---> 0. 

Hence 
f(X o + ~,d) - f(X o) 

= Vf(Xo) r d+ II d II a(Xo; ~d) 

and lim f (X~ + ;~d) - f(X o) = Vf(X o)T d < 0. 
k-~0 

From the definition of limit, it then follows that there exists a 5 > 0 such that 
for all ~, r 0, a n d -  5 < k < 5 

f(X o + Z,d)- f(Xo) 
<0. 

Selecting ~, > 0, we have 

f(X o + ~, d ) -  f(Xo) < 0, for all ~,. e (0, 5 ) 

Hence, it follows that d is a descent direction of the function f at X o. 

Theorem 23.2. (First order necessary conditions) 

Let the function f" R ~ ~ R ~ be differentiablr at X o. If X o is a local minimum, 

then Vf(Xo) = 0 (23.3) 

Proof" Suppose that Vf(Xo) r 0. Then for some j, 

 (Xo)  (Xo) 
~ < 0 :  or >0. 

~j  ~j  
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Then by selecting d with the appropriate sign, it is always possible to have 

dj 0f(X~ < 0. 
0xj 

Thus, if we select d = -Vf(Xo), we have 

vf (Xo)  T d - - I lVf (Xo) l l  = 

and by Theorem 23.1, there exists a 5 > 0 such that 

f(X o + )~ d) < f(Xo), for all )~s (0, 5). 

This contradicts  the assumption that X o is a local minimum.  Hence 
V f(Xo) = 0. 

Theorem 23.3. (Second order necessary conditions). 

Let the function f: R" ---~R ~ be twice differentiable at X o. If X o is a local 
minimum, then 

(i) V f(Xo)= 0, and 
(ii) H (Xo), the Hessian matrix evaluated at X o is positive semidefinite. 

Proof: Since X o is a local minimum, from theorem 23.2, we have Vf(Xo) = 0 
and since f is twice differentiable at X o, we have for some non-zero vector d. 

f(X o + ~ d) = f(Xo) + )~ V f(X0)T d + 1/2 ~2 d T H(Xo ) d + )~z ildll 2 ~ ( x  ~ ; kd) 

(23.4) 

where ot (X o ; )~d) ~ 0 as 9~ ~ 0. 

Thus f(X~ + ~d);~2 + F(X~ = 1 drH(Xo) d + 2  II d II z ~ ( x  ~ ;)~d) (23.5) 

Now, since X o is a local minimum, 

f(x o + k d) >__ f(Xo), for k sufficiently 

small and we have 

ldTH(Xo)d+ 1[ d I[ z r >_0 23.6) 
2 

By taking the limit as ;~ -~0, we then have, 

d T H(Xo) d > 0 and hence 

H(Xo) is positive semidefinite 

The necessary condition V f(Xo) = 0 for X o to be a local minimum is not 
sufficient. The condition is also satisfied by a local maximum or by a saddle point 
(defined in section 23.7). The points satisfying Vf(X) = 0 are called stationary points 
or critical points of f. Theorem 23.4 gives a sufficient condition for a local minimum. 

Theorem 23.4. (Sufficient conditions). 

Suppose that the function fi R n --~ R 1 is twice differentiable at X o. If V f(Xo) = 
0 and the Hessian matrix H (Xo) is positive definite, then X o is a local minimum. 

Proof: Since f is twice differentiable at X o, by Taylor's theorem, we have, 
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1 
f(X) = f(Xo) +Vf(Xo)T ( X -  Xo) + -~ (X-Xo)T H [X Xo+ (1-X)X] (X-Xo) 

for some ~,, 0 < X < 1. 

Since by hypothesis V f(Xo) = 0, (23.7) yields 

1 
f(X) - f(Xo) = ~ (X (X-Xo) T H[~ Xo+ (1-X)X] (X-Xo) 

(23.7) 

(23.8) 

Now, since we have assumed the existence and continuity of the second partial 
derivates of f(Xo), it is clear that the second partial derivates 

a:f(X ~ 

ax~axj 

will have the same sign as the second partial derivatives 

(9 ~ 
f[XX o + (1- X)X] 

ax~axj 

in some neighbourhood N~ (Xo). 

Thus if H (Xo) is positive definite, 

f (X)-  f(Xo) > 0 for X e N,(Xo). 

Hence X o is a local minimum. 

The following theorem shows that the necessary condition Vf(Xo) = 0 is also 
sufficient for X o to be a global minimum if f is pseudoconvex. 

Theorem 23.5. Let f be a pseudoconvex function on R". Then Vf(Xo) = 0 is a 
necessary and sufficient condition that X o is a global minimum of over R". 

Proof: The necessity holds by theorem 23.2. 

Now, suppose that V f(Xo) = 0. 

Since f is pseudoconvex, 

Vf(Xo) T ( X -  Xo) > 0 ~ f(X) > f(Xo), for all X eR" 

and since V f(Xo) = 0, we have Vf(Xo) T ( X -  Xo) = 0 

and hence 

f(X) < f(Xo), for all X e R" 

23.3. Constrained Optimization 
Consider the nonlinear programming problem 

Minimize f(X) 

Subject to & (X) < 0, i = 1,2..m (23.9) 
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where the functions f and g~ are f: R" --~ R ~ and g~: R" ---> R ~ are assumed to be 
differentiable. 

Let the constraint set be denoted by S, that is 

S = {XI g~ (X) < 0, i = 1,2...m} 

To develop the optimality conditions for the problem, we first introduce the 
concept of feasible direction. 

Feasible Directions 

Let S be a nonempty set in R ~ A direction d is said to be a feasible direction 
at X e S, if we do not leave the region S, when making a sufficiently small move 
in the direction d. 

Mathematically, a direction d is feasible at X e S, if there exists a 5 > 0, such 
that X +~. d e S for all 9~ e (0,5). 

Let the set of all feasible directions at X be denoted by 

D ( X ) -  {dl there exists 5 > 0 such that X + ~ d e s, for all 9~ ~ (0, 5)} 

(23.10) 

Theorem 23.6. If X o is a local optimal solution to the nonlinear program (23.9), 
then 

V f(Xo)V d > 0, for all d ~D (Xo). (23.11) 

Proof" Suppose there is a direction d o e D(Xo) such that 

V f(Xo) T d o < 0. 

Then by Theorem 23. l, a small movement from X o in the direction d o would 
decrease f(Xo) contradicting the assumption that X o is a local optimal solution to 
the problem. 

Let ~ Xo) be the closure of D(Xo), so that every point in ~ (Xo) is the limit 

of points in D(Xo). Obviously, D(Xo) c ~ (Xo), but a point in ~ (Xo) need not 

be in D(Xo) unless D(Xo) is itself a closed set when D(Xo) = ~ (Xo). 

We will now show that Theorem 23.6 also holds for all directions in ~ (Xo). 

Corollary 23.1. If X o is a local optimal solution to the nonlinear programming 
problem (23.9), then 

V f(Xo) T d > 0, for all d e ~ (Xo) (23.12) 

Proof: Let d e ~ (Xo), the closure of D(Xo). Then the direction d can be expressed 

as a limit of directions d k in D(Xo). 

Thus, d = lim d k d k e D (Xo). 
~.~0 

Since d k e D(Xo), by Theorem 23.6 

V f(Xo)r d k > 0, for all k. 
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By taking the limit as k ---> oo, we then have 

Vf(Xo)rd = limf(Xo)rd k > 0, d ~D(Xo) 
k - - ~  

23.4. Kuhn-Tucker Optimality Conditions 
It has been shown in Corollary 23.1 that a necessary conditions for X o to be 

a local optimal solution to the nonlinear program (23.9) is that V f(Xo) r d > 0 for 

all d ~ ~ (Xo). But since ~ is not defined in terms of the constraints, it is not 

possible to express the conditions in more usable algebraic statement. We therefore 

formulate ~ (Xo) in terms of the constraints and then by making use of it, develop 

the Kuhn-Tucker optimality conditions. 

Let X ~ S and suppose that for some i's, g~(X) < b~. Since g~ are continuous, a 
small move in any direction from X will not violate these constraints and hence 

the inactive constraints g~ (X) < 0 do not influence ~ (X). For our purpose, 

therefore, we need to consider only the active constraints g~(X) = 0. At a feasible 
point X, the constraints are therefore divided into two sets, one consisting of active 
constraints and the other consisting of inactive constraints. 

Let I (X) be the set of indices for which g~ (X) are active (binding) at a feasible 
point X, that is 

for X ~ S, I(X) = { ilg~ (X) = 0 (23.13) 

This implies that for i ~ I(X), g~ (X) < 0. 

We now define the set 

~(X) = {dl V gi (X) r d _< 0, for all i ~ I (X)}. (23.14) 

It is clear that is a nonempty closed set. 

Theorem 23.7. ~ (X) c ~(X). 

Proof:  Let d ~ D(X) and suppose that g~ (X) = 0. If V g~(X) T d > 0, then from 
Theorem 23.1, it follows that there exists a 8 > 0, such that 

gi (X + Xd)> gi (X)= 0, for all X~(0,8) 

which implies that the direction d is not feasible. Hence V gi (X) T d _< 0, for all 
i ~ I (X).  

Consequently, ~ ( X ) c  ~(X) 

Since ~(X) is a closed set, it follows that ~ (X) c ~(X) 

In general however, the condition that V gt (X) T d _< 0 holds for all i ~ I(X) is 
not sufficient to guarantee that d is a feasible direction. In other words, there may 

be directions in ~(X) that are not in ~ (X). 

Example. Consider the constraint set generated by 
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3 g~(X) = x~ - x~ _< 0 

3 + x  2 < 0  g2(X) = x~ 

A t  the point X = (0, 0) r, both g~(X) and g2(X) are satisfied as equalities. 

The gradient vectors are 

Vg,(X) T - (3x~, - 1) 

Vg~(Xy = (3x~, + 1). 

Thus for d = (1, 0) T, we have 

Vg l(0)Td = 0 

Vg2(0)Td = 0 

Hence d ~ ~(X) 

But obviously d points in an infeasible direction as any point on the X~ axis to 
the fight of the origin violates the constraints (see Figure 23.1). 

Thus for ~, > 0, X + ~.d ~ S and therefore d is not a feasible direction. 

Hence d ~ ~ (X) 

In order to exclude such cases Kuhn and Tucker assumed certain conditions, 
known as the constraint qualification to hold at the boundaries of the constraint 
set. 

Xl 

~(x)=o 

Feasible 

region 

gl(X)=0 

g,(X)=0 

, X 1 

g:(X)=O 

F i g u r e  23 .1 .  
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23.5. Kuhn-Tucker Constraint Qualification 

The K-T constraint qualification is said to hold at a feasible point X of the 
problem (23.9) if every vector d gd(X) is tangent to a differentiable are 1 contained 
in the constraint set. In other words, the constraint qualification holds at X e S if, 

given d e go (X), there exists a differentiable are a( 0 ) with the properties: 

(i) a (0)=  X 

(ii) there is a 8 < 0 such that for all 0 , 0  _< 0 _< 5 a ( 0 ) e  S, and 

(iii) lim a(0(-a(0) = d 
O-~O+ 0 

Theorem 23.8. If X o is a local optimal solution to the nonlinear program (23.9) 
and the Kuhn-Tucker constraint qualification holds, then 

V f(Xo)rd >_ 0, for all d e ~(Xo) 

Proof: By Taylor's expansion about X o, we have 

f(X) = f(Xo) + V (X o + ~t (X-Xo)) T ( X -  Xo) for some ~t, 0 < Ix< 1 

Since X o is a local minimum, 

f ( X ) -  f (Xo) > 0 

for all feasible point X, sufficiently close to X o 

Hence Vf(X o + ~t ( X -  Xo)) r (X - Xo) > 0 
Since the constraint qualification holds, there exists a differentiable are a(0) 

such that a (0) = X o and for a small positive 0, a ( 0 )  = X e S. 

Hence V f(X o + ~t {a( 0 ) - a(0 )})T (a(0)  - a(0)) > 0 

Dividing both sides of the inequality by 0 > 0 and taking the limit as 0 ~ 0 ,  

we have V f (Xo) T lim a(0) - a(0) > 0 
0--r 0 

V f(X0)T d > 0 or 

as was to be proved. 

Theorem 23.9. (Kuhn-Tucker Necessary Conditions) 

If X o is a local optimal solution to the nonlinear program (23.9) and the K-T 
constraint qualification holds, then there exists scalars Xi, i = 1,2,..m. such that 

nl  

vf(Xo) + z,vg  (Xo)=o 
i=l 

~Ligi(Xo) = 0, 

Z.i >_ 0, 

(23.15) 

i = 1,2..m (23.16) 

i = 1,2..m (23.17) 

A continuous function 'a': W ~ R n is said to be an are in R ~. As the parameter 

0 varies, a ( 0 ) describes a path in R n. 
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Proof: If X o is a local optimal solution, then by Theorem 23.8 

V f(Xo) d > 0 

for all d satisfying 

Vgi(Xo) d < 0, for all i e I (Xo) 

Then by Farkas' lemma, there exit scalars ~,~> 0, i eI (Xo), such that 

m 

Vf(Xo) + ~ ~,~Vg~ (Xo) = 0 
i e l ( X o )  

Now, by letting ~,~ = 0 for all i ~ I (Xo), we have, 

m 

vf(Xo) +  ,Vgi (Xo) = 0 
i=! 

~,igi(Xo) = 0, i = 1,2..m 

~,~ > 0, i = 1,2..m 

The conditions (23.15)-  (23.17) are known as the Kuhn-Tucker conditions. 
The scalars ~,~ are called the Lagrangian multipliers and the condition 
~,~g~ (Xo) = 0, i = 1,2,..m is referred to as the complementary slackness condition. 

Theorem 23.10. (Kuhn-Tucker Sufficient Conditions) 

Consider the nonlinear programming problem (23.9) where the functions f and 
gi are differentiable. Let the objective function f be pseudoconvex and the functions 
gi, i = 1,2,..m be quasiconvex. Suppose that a feasible solution X o satisfies the 
Kuhn-Tucker conditions. Then X o is a global optimal solution to the problem. 

Proof: Let X be any feasible solution to the problem Since gi (i = 1,2..m) are 
quasiconvex, the constraint set S is convex and therefore d = X -  X o is a feasible 
direction. 

Hence by Theorem 23.7, d ~ ~(Xo) 

and thus V g~(xo)r d < 0, for i ~ I(Xo) (23.18) 

Multiplying (23.18) by ~,~> 0, for i ~ I(Xo) and by ~i-- 0, for i ~ I(Xo) and 
summing over i, we have, 

m 

E~,iVgi (Xo) T d < 0 
i=l 

Since K-T conditions are satisfied, 

m 

Vf(Xo) + EkiVgi(Xo)  = 0. 
i=l 

It then follows that 

Vf(Xo)Td >_0. 

or V f(Xo)T (X - Xo) > 0 

From the pseudo convexity of f, we then have, 
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f(x) >__ f(x o) 
and hence X o is a global optimal solution. 

Kuhn-Tucker Conditions for Problems with Inequality and Equality 
Constraints 

Consider the problem, 

Minimize 

Subject to 

f(x) 
g~ (X) < 0, i = 1,2..m, (23.19) 

h i (X)  = 0, i = m~ + 1,..m 

X > 0  

where f, g~, i = 1,2..m~, and h~, i = m~ + 1..m are continuously differentiable fimctions 
defined on R ~. 

T h e o r e m  23.11" IF X ~ is a local optimal solution to the nonlinear program (23.19) 
and the constraint qualification holds, then there exists scalars u i, i = 1,2..m I and 
Vi, i = m~ + 1, ..m such that 

ml m 

Vf(X~ + ~ uiVgi ( x ~  + E viVhi(X~ > O. 
i-! i=ml+l 

ml m 

V f ( X ~ 1 7 6  + ~ v~Vh~(X~ X ~  (23.20) 
i=! i - m l + i  

uig i (X ~ = 0, i - 1,2..m 1, 

u~ > 0, i = 1,2..mi, 

v~ unrestricted, i - m  I + 1, .... m 

Proof: We first rewrite the problem in the form that enables us to apply the Kuhn-  
Tucker conditions directly. The problem then becomes 

Minimize f(X) 

Subject to gi (X) _< 0, i -  1,2..m 1 

h~ (X) _< 0, i - m~ + 1..m (23.21) 

- h  i (X) _< 0, i - m~ + 1,..m 

- X  < 0  

An application of Theorem 23.9 implies that there exist scalars u i, i = 1,2..m~, 
ct~, 13i i = m~ + 1,..m and laj j = 1,2,..n such that 

m l  m m 

V f ( X ~  ( x ~  E ctiVhi ( x ~  E [3iVh~(x~ 
i=l i=m I +l m 1 +1 

u i g i ( X  O) - -  O, i = 1,2..m I 



otihi(X ~ = O, 

13i hi(X~ ) = 0 

o - ~ j X j  - 0  

Quadratic Programming 

i - m~ + 1..m 

i=m~ + 1..m 

j = 1...n 

Ui,(l,i,~i , ~j are all nonnegative 
On setting ai--Pi = Vi, the conditions reduce to 

Vf(X~ uiVgi(X0)+ ~ V~Vh~(X~ >0 
i=l i=mi+l 

Vf(X ~ + u~Vg~ (X ~ + ~ V~h~ (X ~ X ~ = O. 
i=l i=ml+l  

uigi(X O) = O, i = 1,2..m 1 

u~ _> O, i = 1,2..m 1 

v unrestricted, i = m I + 1,....m 
I 
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(23.22) 

(23.23) 

23.6 .  O t h e r  C o n s t r a i n t  Q u a l i f i c a t i o n s  

In 1948, Fritz John [257] developed the necessary optimal conditions, that if 
X 0 is a local optimal solution of the nonlinear program (23.9) then there exist scalars 

u 0 and u i for i = 1,2..m such that. 

m 

uoVf(Xo) + ~u~Vgi (Xo)=  0 
i=l 

uigi(Xo) = 0, i = 1,2,..m 

u o, u i > 0, i = 1,2,..m 

where not all u o, u~, i = 1,2..m are equal to zero. 

It should be noted that in the above conditions, there is no guarantee that u o > 
0. If u o = 0, Fritz John conditions fail to provide any information in locating an 
optimal solution of the problem because then the term uoVf(Xo) disappears from 
the above system. In order to exclude such cases, we need to introduce some 
regularity conditions. 

In 195 l, Kuhn and Tucker [29 l] independently developed necessary optimality 
conditions under certain regularity conditions known as constraint qualifications, 
which ensures that u o > 0. 

Since then many authors have developed the Kuhn-Tucker conditions under 
different constraint qualifications. 

Zangwill Constraint Qualification [550] 

It has been shown in Theorem 23.7 that ~ (X) _c ~ (X). Situations may 

then exist for which there are directions in 9~(X) that are not in ~ (X). In order 
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, 

to exclude such cases Zangwill assumed that 

~(X) = 5 (X) 

as the constraint qualification. 

It then follows from Corollary 23.1 that for X o to be a local optimal solution 
to the problem, 

V f (Xo) T d > 0, for all d satisfying 

V gi (Xo T d < 0, for all i ~I (Xo) 

An application of Farkas' lemma, then yields the Kuhn-Tucker conditions. 

Slater's Constraint Qualification [437] 
Let the functions gi: R" --> R ~, i = 1,2..m of the problem (23.9) be convex 

which define the convex constraint set 

S = {Xlg~ (X) < 0, i = 1,2..m} 

Then the functions are said to satisfy Slaters' constraint qualification, if there 

exists an ~ ~ S, such that 

gi ( X )  < 0, i = 1,2,..m. 

Slater's Constraint Qualification for Problems with Inequality and 
Equality Constraints 

Let in the problem (23.19), the function g~ be pseudoconvex at ~ for i e I ( ~  ) 

= {i[gi(~ ) = 0}, h i for i = m~ + 1,..m is quasiconvex, quasiconcave and Vh i ( ~ )  

for i = m 1 1,..m are linearly independent, then the functions are said to satisfy 

Slater's constraint qualification at ~ if there exists a feasible point X such that 

and 

g, (X) < 0, for i e I ( ~  ) 

h i (X) = 0, for i = m~ + 1,..m. 

Linear Independence Constraint Qualification 

For the problem (23.19) Vg i ( ~ )  for i a I ( ~  ) and Vhi( ~ ) for i = m~ + 1,..m 

are linearly independent. 

Note that Slater's constraint qualification and linear independence constraint 
qualification imply Kuhn-Tucker constraint qualification. 

Constraint qualifications are also suggested by Karlin [268], Arrow, Hurwicz 
and Uzawa [ 17], Cottle [82], Mangasarian and Fromovitz [322], Abadie [2], Evans 
[149] and others. The readers are referred to their individual work. 
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23.7. Lagrange Saddle Point Problem and Kuhn-Tucker Conditions 
In this section, we show that a saddle point of the Lagrangian function 

associated with the nonlinear programming problem (if it exists) yields an optimal 
solution to the problem and that under certain conditions an optimal solution to the 
problem provides a saddle point of the associated Lagrangian function. We then 
derive the conditions for existence of a saddle point and its relation with the Kuhn- 
Tucker conditions. 

Consider the problem, 

Minimize 

Subject to 

fix) 
g~(X) < 0, i -  1,2..m 

X > 0  

(23.24) 

where f(X), g~(X) i --- 1,2.m are nonlinear differentiable functions of X ~ R n. 

It can be shown that under suitable assumptions, the nonlinear program 
(23.24) can be transformed into an equivalent saddle point problem. 

Saddle Point Problem" Let t~ (X,U) be a real valued function of X~ff, c R" and 
U ~611, c R m. A point (X ~ U ~ is said to be a saddle point of ~ (X, U) if 

(X ~ U) _< ~ (X ~ U ~ < ~ (X, U~ for all X ~ ~ and U ~ ~ (23.25) 

In other words, a saddle point is a point (X ~ U ~ that minimizes the function 
(X, U) in ~ for fixed U ~ ~ ~ and maximizes the function in ~ for fixed X ~ ~ 
simultaneously. 

v = ~ (X ~ U ~ is then called a saddle value, of ~ (X, U) 

The Lagrangian function associated with the nonlinear program (23.24) is given 
by, 

~(X, U)= fiX)+ U T g(X) (23.26) 

where the vector U ~ R m is called the vector of Lagrange multipliers and g(X) = 
[g~(X), g2(X),...gm(X)] T. 

The corresponding saddle point problem is to find a pair (X ~ U~ X ~ > 0, U ~ 
> 0 such that 

f(X ~ + Urg(X ~ < f(X ~ + U~ ~ < f(X) + U~ 

for all X >_ 0, U >__ 0 (23.27) 

Theorem 23.12. If (X ~ U ~ is a saddle point of the Lagrangian function ~ (X, U), 
associated with the nonlinear program (23.24), then X o is an optimal solution to 
the problem. 

Proof: Since (X ~ U ~ is a saddle point, from the left hand inequality in (23.27), 
we have, 

U r g(X ~ < U ~ g(X~ for all U >__ 0 (23,28) 

and hence the inequality is true for 

U = U ~ + e~, where e i is the ith mint m-vector 
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Thus g~(X ~ < 0. (23.29) 

Repeating this process for all i, we get 

g(X ~ _< 0. (23.30) 

Since X ~ > 0, (23.30) implies that X ~ is a feasible solution to (23.24) 

Now, since U~  0, from (23.30), we have 

u g(X o) _< o. (2 3.31) 

But from (23.28) with U = 0, we have 

U ~ g(X ~ ) > 0. ( 23.32) 

(23.31) and (23.32), then implies that 

u g(X o) = o. (2 3.3 3) 

The right hand inequality of (23.27) then becomes 

f(X ~ _< f (X) + U ~ g(X), for all X >_ 0 

and hence for all X feasible to (23.24). 

Now, since U~ 0 and for feasible X, g(X) _< 0, 

we have U )r g(X) < 0, 

and hence f(X ~ < f (X), for all X feasible to (23.24) 

Thus, a saddle point of the Lagrangian is sufficient to locate an optimal 
solution to the nonlinear program, it is associated with. While no assumption was 
required to establish the sufficiency, we need to impose certain conditions on 
the functions in order to prove the necessary part. 

Theorem 23.13. Let X ~ be an optimal solution to the nonlinear program (23.24) 
and assume that the Kuhn-Tucker constraint qualification holds. Further, let the 
differentiable functions f (X) and g~ (X), i = 1,2,..m are convex. Then there exists 
U~ 0 such that (X ~ U ~ is a saddle point of the associated Lagrangian function 
(X, U) = f(X) + LV g(X) so that 

~(X ~ U) < (X ~ U ~ < r U~ for all X > O, U > 0 

Proof: Since X ~ is an optimal solution to the nonlinear program and the Kuhn- 
Tucker constraint qualification is satisfied, Kuhn-Tucker conditions are applicable 
which implies that there exists U ~ > 0 such that 

NOW, 

hence 

But. 

Hence, 

Vf(X ~ + U ~ Vg(X ~ >_ 0 (23.34) 

[Vf(X ~ + U ~ Vg(Xo)] r X ~ = 0 (23.35) 

U ~ g(X ~ = 0 (23.36) 

~(X, U ~ = fiX) + U ~ g(X) is convex and 

~(X, U ~ > ~(X ~ U ~ + Vx ~(X ~ U~ r ( X -  X ~ for X >_ 0 (23.37) 

Vx~(X ~ U ~ = Vf(X ~ + U ~ Vg(X ~ >_ 0, by (23.34) (23.38) 

Vx.,(X 0, U~ T ( X -  X 0) = Vx~(X 0, U~ T X -  Vx~)(X 0, U~ T X 0 

= Vx~(X ~ U~ T X - 0, by (23.35) 

= Vx~(X ~ U~ 
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Now by (23.38), Vx~(X ~ U ~ > 0 and since X > 0, we have 
Vx~(X o, uo) �9 ( x -  x o) > o 

Hence by (23.37) ~(X, U ~ >_ (~(X ~ U ~ 

Now since ~)(X ~ U) is linear in U, 
~(x o, u)  = ~(x o, u o) + Vo~ (x  o, uo) T ( u -  u o) 

and since Vu~(X ~ U ~ = g(X ~ 

and U ~ g(X ~ = 0, by (2336) 

VU~ (X O, U~ T ( U -  U O) - Vu~)(X~ , U~ T U - g(X~ T U 

Since g(X ~ < 0 and U > O, Vu~(X~ U~ w ( U -  U ~ < 0 

Hence ~ (X ~ U) _< (X ~ U ~ 

From (23.40) and (23.43), we then have 
~(x o , u )  _< ~(x o , u o) _< ~(x, u o) 

and (X ~ U ~ is a saddle point. 
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(23.39) 

(23.40) 

(23.41) 

(23.42) 

(23.43) 

Existence of a Saddle Point 

We now derive the conditions for existence of a saddle point for a function 
~(x, u),  x >_ o, u >_ o. 

Theorem 23.14. (Necessity) The conditions 

,0  [ IX0 0 ~0~ 0T 0 
~)x X = 0, X~ 0. (23.44) 

,o I il  OT, O uo - vu -- , _< 0 (23.45) 
x ~  ~ 

are necessary for (X ~ U ~ to be a saddle point for any continuously differentiable 
function (~ (X, U), X >_ 0, U >_ 0. 

Proof: Since (X ~ U ~ to be a saddle point for (D(X, u), (D(x, u ~ has a local 
minimum at X = X ~ It may either be an interior point or a boundary point. 

Hence the components of ~)~ must vanish except possibly when the 

corresponding components of X ~ vanish, in which case the conditions (23.44) must 
be satisfied. 

A similar argument shows that the conditions (23.45) must also hold. 

Theorem (23.15). (Sufficiency). If (D (x, u)  is continuously differentiable function 
and ~)(X, U ~ is convex in X and ~ (X ~ U) is concave in U, then the conditions 
(23.44) and (23.45) are both necessary and sufficient for (X ~ U ~ to be a saddle 
point of (D (X, U). 

Proof: Since ~(X, U ~ is convex in X, we have 

(x, u o) >_ ~ (x o, u o) + ~r ( x -  x o) 
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> ~ (X ~ U ~ (since ~o >O,X > O, or o -o)  

_> ~ (X o, U o) + ~o~ ( U -  U ~ (since ~j  _< O, U >, O, ~x~176 =0)  

>_ r (X ~ U), for all X >_ O, U >_ 0 

since ~ (X ~ U) is concave in U. 

Hence r (X ~ U) < ~ (X ~ U ~ < ~ (X, U~ for all X > O, U > O. 

From the results obtained above, it should be noted that the Kuhn-Tucker 
necessary and sufficient conditions for X o to be an optimal solution to the problem 

Minimize f(X) 

Subject to  gi(X) < 0, i = 1,2..m 

X > 0  

where fiX) and g~(X) are continuously differentiable convex functions can be 
expressed as 

>0, o X o =0 ,  >_0. 

~o _< 0, vu~~176 = 0, U ~ _> O. 

where ~(X, U ) =  f(X) + UTg(X), X >_ 0, U > 0 

23.8. Exercises 
1. Find all local maxima and minima and the global maximum and 

minimum of 

2 + 3XlX 2 + 2 (i) f(x,, x=) = x, x= 

(ii) f(x~, x~)= (x~ - 1) 2 e x~ + %. 

2. Show that for the problem minimize f(x) = (x = - 1)3, x = 0 is the global 
minimum. 

3. Determine the values of a and b so that f(x) = x 3 + ax = + bx, has 
(i) a local maximum at x = -1 and a local minimum at x = + 1 
(ii) a local maximum at x = 1 and a local minimum at x = 0. 

4. Consider the constrained optimization problem and the sets D, ~ and 

as defined in sections 23.3 and 23.4. Show that Zangwill's constraint 

qualif icat ion ~ ( x ) =  ~ (X) implies K u h n - T u c k e r  constraint  

qualification. 
5. Consider the constraint set 

x~+x~< 1 
x~>O, x2>O 

Is ~ (Xo) = ~ (Xo) at the feasible point X o = , ? 
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6. Show that Slater's constraint qualification and linear independence 
constraint qualification imply Kuhn-Tucker constraint qualification. 

7. Prove that if in a constrained optimization problem, all constraints are 
linear, then Kuhn-Tucker constraint qualification holds. 

8. Solve the problem 

Minimize " 7  x j 

, 

n 

Subject to ~ a j x j -  b 
j=i 

x = 0, j = 1,2,..n 
where c, a and b are positive constants, by finding a point X o that 
satisfies the Kuhn-Tucker conditions. 
By using the Kuhn-Tucker conditions, establish the well-known result: 

If Xlp X2,..X n >___ O, then 

1 

~ I x j  < Xj 
j=l -- ~" "=" 

n 

[Hint: Consider the problem: Minimize 1--[xj, 
j=l 

Subject to ~ x j  = 1, x > 0, j = 1,2..n] 
j=i J - -  

10. Obtain the Kuhn-Tucker conditions for the solution of the problem 
Minimize cTX + 1/2 Xq3X 
Subject to AX = b. 

X > 0  
where c is an n vector, b an m vector, A an m x n matrix and B is an 
n x n symmetric positive semidefin[te matrix. 

11. Show that the solution of the pair of dual linear programs 

and 

Maximize cTX 

Subject to AX < b 
X > 0  

Minimize b T U 
Subject to ATU > C 

U > 0  
where c is an n vector, b an m vector and A is m x n matrix is 
equivalent to the solution of the saddle point problem for the bilinear 
function ~ (x, u). 



C H A P T E R  2 4  

Quadratic Programming 

24.1. Introduction 
Quadratic programming is an important class of  convex programming in 

which a convex quadratic function is to be minimized subject to linear constraints. 
Such problems arise in various contexts. Some of them referred by Wolfe [524 
] are as follows. 

(a) Regression [554] 
To find the best least-square fit to given data, where certain parameters are 

known a prior to satisfy linear inequality constraints. 

Consider the regression model 

y = 13 o + 13~ x I + 132 x 2 + ... + 13 k x k , 

where 13j (j = 0,1,...k) are the regression parameters. 

Let y~ be the ith observation on the dependent variable corresponding to the 
given values x j of the independent variables, so that 

Yi = 130 + ~1 Xil + [32 Xi2 + "'" + 13k Xik at- el, (i = 1,2..n) 

where e~ is the error by which an observation falls off the true regression. 

In order to have a best fit to the model, the estimates of 13's are to be so 
determined that these errors are as small as possible. A satisfactory method of 
determining the estimates is the method of  least squares which consists in 
minimizing the sum of  squares of the errors of estimation. Thus, we need to 

~ .q .n  

Minimize ~..~e~ = ~.., (Yi - [30- [31xil + ... + [3kXi k )2 
j=O i 

which is a quadratic function in the variables 13 o, [3~, .. 13 k . 

It is however quite common in econometrics and in many other practical 
applications to impose certain linear constraints on the parameters of  [3's. 

k 

' ~  ao[3j = b~, r = 1, 2...m 
j=O 
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13j > O, j - O, 1, 2,...k. 

We then minimize a quadratic function subject to linear constraints, which is 
a quadratic programming problem. 

(b) Efficient Production [127] 
Suppose that an entrepreneur wants to maximize his profit from the sale of 

the n commodities he produces. Suppose that pj, the price per unit for the jth 
product, decreases linearly as the output x of the jth product increases. 

J 

Thus pj = a - h x, j = 1,2 ..n. 

where a > O, h > O. 

With the usual linear constraints regarding availability of resources employed, 
the problem reduces to 

Maximize s (aj - b j x j ) x j  . 
j=l 

Subject to s aijxj -< b~ , i = 1, 2 . . m  
j=l 

x. > O, j=l,2..n. j ~  

which is again a quadratic programming problem 

(c) Portfolio Selection [328] 
Suppose that an investor wishes to invest a fixed amount of money in n different 

securities and is faced with the problem of selecting a portfolio (combination of 
securities) which will yield at least a given expected return o~ with minimum risk. 

Let x, be the proportion of money invested in the jth security 

pj, be the variable retum from the jth security with the estimated mean ktj and 
the variances and covariances ~k (J' k = 1,2..n) 

The problem then is to determine an investment portfolio (x~, x2,. Xn), which 

Minimize CjkXjXk 
j=l k:l  

Subject to s x j = 1 
j=! 

j=! 

x. > O, j=l,2..n j ~  

which is a quadratic programming problem. 
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(d) Convex Programming [514] 
To find the minimum of a general convex function under linear constraints 

using a quadratic approximation 

Several methods have been developed for solving quadratic programming 
problems. An exposition of them has been given in the books by Boot [60]; Kunzi, 
Krelle and Oettli [294]. 

It was Barankin and Dorfman [26] who first pointed out that if the quadratic 
program has a solution then beginning with an arbitrary basic solution of the linear 
system of the Kuhn-Tucker conditions for the problem, it is possible to find one 
which satisfy the complimentary condition and hence provides a solution of the 
problem. Markowitz [327] on the other hand, suggested a method which begins 
with finding a solution of a modified linear system and the complementary condition 
and then retaining the complementary condition, alter the variables until the linear 
system is also satisfied, thus giving the desired solution. Finally, Wolfe [524] showed 
that this can be achieved by slightly modifying the simplex algorithm. 

24.2. Wolfe's Method 
Wolfe [524] modified the simplex method to solve the quadratic programming 

problem 

Minimize f ()~, X) = ~ pT X + 1/2 X r CX 

AX = b. (24.1) 

X > 0  

where )~ is a single nonnegative parameter that can be chosen as convenient, p,X 
are n-vectors, C is an n x n symmetric positive semidefinite matrix, A an rn x n 
matrix and b >_ 0, is an m-vector. 

Without loss of generality, equality constraints have been assumed in (24.1) 
as inequality constraints can easily be converted into equality constraints by addition 
of additional variables. Elements of b can then be assumed to be nonnegative. 

Lemma 24.1" The function f (~,, X) is convex 

Proof: Since C is positive semidefinite XTCX is Convex, XpTX being linear may 
be considered to be convex. Further, since the sum of two convex functions is 
convex, f(;~,X) is convex. This ensures that any local minimum encountered in 
the problem is a global minimum as the constraint set is convex. 

Theorem 24.1. The necessary and sufficient conditions for an X > 0 to be a 
solution to the quadratic programming problem (24.1) are that there exist a U 
and a V > 0, such that X, U, V satisfy 

VTX =0  

AX = b (24.2) 

C X -  V + A T U + ~,p = 0 

P r o o f :  Since the constraints of the problem (24.1) are linear, the Kuhn-Tucker 
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constraint qualification is automatically satisfied and since f(~,X) is convex, the 
Kuhn-Tucker conditions for a solution to the problem are both necessary and 
sufficient. 

Now, following the notations of Section 23.7 the Kuhn-Tucker conditions 
can be stated as 

T T > 0  U 2 > 0  C u  _<o, Cu,_ _<o,Gu, =o, = o , u , _  , _ . 

where 
1 

~(X,U,U 2) --~ pTX+ "~ XTCX + U: (AX-b)+ U T (-AX+b) 

We then have 

~x = ;~P + C X  + A T U 1 - A  T U 2 > 0 

T 
~Tx = [Zp + CX + ATu, - ATuz]x  = 0 

X >0. 

~UI = AX - b < 0 

~U 2 = - A X  + b < 0 

UI >_0, U2_< 0 

(24.6), (24.7) imply that AX = b 

and then = GlUt G = 0 .  

are automatically satisfied. 

Let V = cx and U = U z - U~. 

The conditions are then reduced to 

VTX = 0 

AX = b 

CX - V + ATU + ~.p = 0 

X >_ 0, V >__ 0. 

24.2.1. The Computation 

(24.3) 

(24.4) 

(24.5) 

(24.6) 

(24.7) 

(24.8) 

(24.9) 

The Short Form" ;L fixed 
Consider the problem 

Wolfe developed the computational algorithms for solving the quadratic 
programming problem in two separate forms: first the "short form", when ~, is fixed 
and the next the "long form", when the problem is solved parametrically for all 
;~ ___ 0. While the convergence of the process in the short form requires that either 

= 0 or that C is positive definite, for the long form no such restriction is needed 
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Minimize eZtm)W 

Subject to AX + W = b. 

C X -  V + Aqd + Z~-  Z 2 =-~.p. (24.10) 

X, V, W, Z l, Z 2 > 0 

where e(m ) is an m-component vector with each clement equal to unity and 
m-component vector W and n-component vectors Z~, Z 2 are vectors of additional 
variables introduced in the system. 

It is assumed that the constraints in (24.10) arc nondcgcncratc. 

Since b >_ 0, an initial basis for the system (24.10) can be formed from the 
coefficients of W, Z~ and Z:. The problem (24.10) with U = 0, V = 0, that is the 
problem 

Minimize eX(m)W 

Subject to AX + W = b 

CX + Z~-  Z 2 = - ~ P  

X, W, Z~, Z 2 >_ 0 (24.11) 

is then solved by the simplex method. If the quadratic program (24.1) is feasible, 
the minimum obtained for eX(m)W will be equal to zero and the condition VrX = 0 
is also satisfied. 

From the optimal solution of (24.11) we discard W and the unused components 
of Z~ and Z 2 and denote the remaining n components by Z and their coefficients by 
E. E is then a diagonal matrix with elements + 1 o r -1  depending on whether z = 

J 

Zlj or z = Z2j. 

We thus have a basic feasible solution of the system 

AX = b 

C X -  V + ArU + E Z - - ~ , p  (24.12) 

X,V, Z>_0 

with U = 0, V = 0 so that the condition VTX - 0 is satisfied. 

With this basic solution, we now initiate the simplex method to 

Minimize eT(.) Z 

Subject to (24.12) (24.13) 

under the side condition that if x k is in the basis, v k is not to be entered into the 
basis and if v k is in the basis, x k is not to be entered into the basis (k = 1, 2,...n). 

(24.14) 

The side condition (24.14) ensures that at each stage of the simplex iteration 
we have W X  = 0. 

If the iterative process terminates with er(.) Z = 0, we have a solution of (24.2) 
and then the X-part of the solution is a solution for the quadratic programming 
problem for a given ~. 

However, it may happen that under the side conditions (24.14), it is not possible 
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to reduce eTnZ to zero unless it is assumed that either C is positive definite or ~, = 
0. To establish this statement we prove the following theorem. 

Theorem 24.2" Let A be an m • n matrix, b an m• 1 and C be an n • n symmetric 
positive semidefinite matrix. Let Q be n • h matrix, q be an h component vector 
and g an n-vector. Let X > 0, V > 0 such that VTX = 0 be given. Further, let X 
denote the vector whose components are the positive components of X and V x, the 
vector whose components are the corresponding components of V ( V  = 0). 
Similarly, let V denote the vector whose components are the positive components 
of V and X ,  the vector whose components are the corresponding components of 

x ( x  v = o ) .  

If the linear form 

qrW (24.15) 

is minimal under the linear constraints 

Vx-O (24.16) 

X - O  
v 

AX = b 

CX - IV + ATU + QW = g 

X > 0, V > 0, W > 0. (24.17) 

then there exists an no vector r such that 

Cr = 0 ,  Ar = 0 and qrW = rrg. 

Proof: We have already distinguished in the vectors X,V, the corresponding parts 
Xx>0, V x = 0 and the corresponding parts X = 0, V v > 0. Atler a possible reordering 
of indices, the vectors X and V are partitioned as follows" 

X T = (Xrx, xrs,  X T) 

V T = (VT, W~, V T) (2 4.18) 

where X s and V s are the remaining parts of X and V respectively. 

Similarly, A, C, Q and g are partitioned as 

A=(AxA~A ) ,  24.19 ) 

1 C = / C , ,  ~ C~ Csv (24.20) 

 Cx\ cw 

gr =(g~,g~,gv r) (24.21) 

QT = (Qxr,Q~,Qv r) (24.22) 

Note that X and V contain all the positive elements of X and V respectively 
and thus X 8 and V 8 consist of variables with zero values, i.e. X x = V  = 0 in the 
solution of the program. 

The constraints (24.17) can then be expressed as 
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, , ,  . . . .  

A X +A~Xs= b 

C X +C ~Xs+ A T U+QW =gx 

T (24.23) Cx~Xx + C~X8 - IsVs + ATu + Qs W = g8 

T V -I~V~ + A v U + Q ~ W = g  ~ C x v X  x + C s x X  8 T 

Xx>_ 0, X s >_ 0, V~ >_ 0, Vv>_ 0, W >_ 0 

X v and V x are not included in the formulation above since they have zero values. 

According to the hypothesis of the theorem, the values of the variables X x > 
0, X 8 > 0, V 8 > 0, V v > 0, W > 0 and U (Unrestricted) minimizes the linear form 
qTW. 

By the duality theorem in linear programming then, there exists a solution of 
the dual to this problem and their objective functions have the same value. 

The dual program can be stated as, 

Maximize b r y  + gxTrx + gTr 8 + gTr~. 

Subject to T AxY+Cxxr x +C.sr s +Cxvr . =0  (a) 

T A~Y + Cxsr , + Cur s + C~r, < 0 (b) 

-I~r~ < 0 (c) (24.24) 

-I  r = 0 (d) 
v v 

A r+As+r~+Ar - 0 (e) 

Qx Trx+QTrS+Qv Tr .<  q (f) 

and we have qT W = bTy + gx T r~ + g~r 8 + g~rr~ (24.25) 

The dual variables are unrestricted in sign, since the constraints (24.23) are 
all equations. Moreover, when a variable in (24.23) is positive as in X x, V or is 
unrestricted as in U, the corresponding dual constraint is an equality. 

From (24.24c) and (24.24d) it immediately follows that r 8 > 0 and r = 0. 
Now, multiplying (24.24a) on the left by rT x and (24.24b) by rTs, we obtain 

T T T r T r x A~Y + r x Cx~ x + rx C~r~ =0 

T T V r rTCssr8 <_ 0 (24.26) r 8 A 8 Y + r~ Csxrx + 

Then adding these two expressions and taking the transpose, we get 

T T  ,llrl<0 
yT(Axr ~ + A,r,)+ (r,~ r, )LeT c,, .. . .r ,  (24.27) 

The first term in (24.27) vanishes by (24.24e) and the matrix in the second 
term being a principal submatrix of the positive semidefinite matrix C is itself 
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positive semidefinite, so that the second term cannot be negative. The only 
possibility is that 

which implies that 

rx 8 C~ r~ 

I Cx~CT8 Cxs](rx) = 0 . C 8 8  r8 (24.28) 

o r  

C~r x + Cxsr~ = 0 (24.29) 

T r Cx~ ~ + C~r~ = 0 (24.30) 

From (24.29) and (24.24a), we obtain 

A T Y = 0 (24.31) 
x 

and therefore, 

bTy E T T T T T T ]  = XxA x +X 8A 8 + X . A .  Y (24.32) 

--  T T y  , = - XxA ~ = 0 (since X~ 0 by definition) 

Since r = 0, we may generalize (24.28) to have 

Icxx Cx, Cxvllrxl 
C xr8 C88 C8~ r5 

C x\ 

=0 
(24.33) 

Setting r T - (r~,r[,rvT) we have from (24.33), (24.24e) and (24.32), (24.25) 

Cr = 0, Ar = 0, qTW = rTg. (24.34) 

This proves the theorem. 

Coming back to the short form computation, we note that if in problem 
(24.13), it is not possible to reduce eTZ to zero under the side condition, the 
hypothesis of theorem 24.2 will be satisfied with 

Q = E , q T = ( 1 . 1  .... 1 ) , W = Z a n d g = - ) ~ p .  

and we will have 

eT(n)Z = qrW = rTg =-- ~, r T p (24.35) 

with Cr = 0. 

In order to have Min eT(,)Z = 0, therefore, we should either have k = 0 or C 
positive definite, when necessarily r = 0 and then by theorem 24.1 X-part of the 
terminating solution will be a solution of the quadratic program (24.1) 

We however, observe that the short form computation can work with positive 
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semidefinite quadratic form if the diagonal elements of C are perturbed to change 
C to (C+e I) for a small e > 0 so that X r (C + el)  X > 0 and the algorithm can 
be operated as if a positive definite form were employed. The perturbation can be 
made small enough so that the numerical results obtained are not affected. 

The Long Form 
In order to obtain solutions for the quadratic "programming problem (24.1) 

for all values of k >0, we first obtain a solution for ~. = 0. 

Having performed the short form computation for ~ = 0, we obtain a basic 
feasible solution of the system 

AX = b (24.36) 

CX - V + ATU + E Z = 0 

X>_O,v>_O 

with Z = 0 and W X  = 0 

We then apply the simplex method to find a solution of the problem, 

Minimize 

Subject to 

with the side condition W X  = 0 

-Z, (24.37) 

AX = b 

C X -  V + ArU + ~p = 0 (24.38) 

X, V >_0, ~ >  0. 

As indicated in (24.36), an initial basic feasible solution of the problem (24.37), 
(24.38) having ~. = 0 and VTX = 0 is provided by the short form computation with 

~ - 0 .  

Two cases may arise 
Case ( i ) : -  ~. has a finite minimum 
Case (ii)"-~. is unbounded below. 
Case (i): If-~. has a finite minimum, the hypothesis of theorem 24.2 is satisfied 
with W = ~,, Q = p, q = - 1  and g = 0. We then have 

Min (-~.) = qTW = rTg = 0 

which means t h a t - L  has infact not been reduced. 

Now, under the assumption of nondegeneracy of the constraints of (24.38), 
every basic solution of  this system has exactly (m + n) positive variables. Since 
~, = 0, m variables in U are always in the basis, the remaining n variables are in 
X x and V v (X~,V 8 are empty). From Theorem 24.2 we know that there exists a 
vector r such that Ar = 0, Cr = 0 so that for any t, we have 

A(X + tr) = b. (24.39) 

C(X + t r ) -  V + ArU = 0 

It follows from nondegeneracy that r = (r x, r~, r )  >__ 0 for otherwise if at 
least one element of rx(r ~, r = O) is negative, there would exist a t > 0 such that 



Quadratic Programming 349 
i 

X + tr will vanish for at least one more component than X does. In that 
case, (X + tr, V, U, ~ = 0) would also be a solution of (24.38) with fewer than 
(m + n) positive variables, violating the nondegeneracy assumption. 

Thus (X + tr) is feasible for the quadratic program (24.1) for all t > 0 and 

f(~, X + tr) = ~,pr(X + tr) + 1/2(X + tr)VC(X + tr) 

= Lpr X + ~t pt r + 1/2 XTCX 

Since by (24.240, prr < - 1 ,  

fiE, X + tr) ~ - ~ as t ~ for any ~, > 0. 
Case (ii)" Since ~, is unbounded, by the theory of the simplex method (see 
Chapter 11) we have a sequence of basic solutions (X ~, V ~, U ~, Ei), i = 1,2,..k 
for the system (24.38) and finally (X k§ V k§ U k+~) such that (X k + tX k§ V k + 
tvk+~, U k + tUk+~, ~k + t) is a solution for all t ___ 0, where the side condition 
ensures that 

0--" V i X  i -" WiX i+l -" Vi+ lX i -- V i+ lX  i+l and ~,i < ~i+1 (24.40) 

i = 1 , 2 , . . k .  

Thus X ~, V ~, U ~, ~,~ is also a solution of the system (24.2) and hence X ~ is a 
solution of the original quadratic programming problem for ~, = ~i, (i = 1, 2..k) 

Now, for any ~ ,  Xi< ~ < ~i+l , i = 1, 2, ...k-1 

~ i + l _ ~  X i ~ , _ ~ i  X i+1 
X = ;Li+ 1 _ ~,""""""~ + ;Li+l _ ~-"""'-W (24.41) 

being a convex combination of X ~ and X ~+~ and letting V and U the same convex 
combination of V ~, V ~§ and U ~, U ~+~ respectively, (X,V, U) is feasible for (24.38) 
and therefore also satisfies (24.2) and hence X is a solution of the quadratic program 
(24.1) for the corresponding ~,. 

For ~, > ~k, 
X = X k + ( ~ -  ~k) Xk+~, 
V = V k + ( ~ -  ~k) Vk+~ 
U -- U k +- (ik,- ~k) Uk+l 

(24.42) 

satisfies Theorem 24.2 and X is therefore a solution of the quadratic program for 
the corresponding ~, (~, > ~k). 

24.3. Dantzig's Method 
Dantz ig  has sugges ted  a var iant  of  Wol fe ' s  me thod  for quadra t ic  

programming. The chief difference is that Dantzig's algorithm is more nearly a 
strict analogue of the simplex method. It has a tighter selection rule and the value 
of the objective function decreases monotonically. Therefore, no solution can 
reappear and hence the solution is obtained in a finite number of steps. It is believed 
to be computationally more efficient because there can be a greater decrease in 
the value of the quadratic function in each iteration. 
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Consider the problem 

Minimize 1/2 XTCX 

Subject to AX = b 

X > 0  

where C is an n x n symmetric positive semidefinite matrix. 

The Kuhn-Tucker conditions for an optimal solution of the problem are 

AX = b 

CX - V + Arid = 0 

VTX = 0 (24.44) 

X , V > 0  

It is assumed that all basic solution of the above system are nondegenerate. 

The procedure initiates with a basic feasible solution to the first two conditions 
of the system with x > 0 only (V, U not restricted ) such that VTX=0 at each iteration. 
The alogorithm then proceeds to find a solution which satisfies the restriction 
V > 0 and hence it yields an optimal solution to the given problem. 

The Algorithm 
Step 1. Let X T = [XraX~] be a basic feasible solution to AX = b, X > 0 and let 

V T = [vrB, vrN]. Consider the basic solution to the enlarged system (24.44) 
with the basic vectors X B, V N, U which satisfies all the constraints except 
possibly V > 0. 

Step 2. If V > 0, stop. The current solution is optimal. Otherwise, determine 
minimum {vilv i < 0} = vj. Go to step 3. 

Step 3. Introduce xj into the basis. If v.j drops, repeat step 2. Otherwise, if x r drops, 
go to step 4. 

Step 4. Introduce v into the basis. If v, drops, go to step 2. If another variable x k 
drops, repeat step 4 with v replaced by v k. 

The algorithm terminates in a finite number of steps. 

For details see Dantzig [ 108, 109]. 

24.4. Beale's Method 
Beale [37, 39] has developed a method for solving quadratic programming 

problems which is based on the basic principles of the simplex method rather than 
the Kuhn-Tucker conditions. 

Consider the problem 

Minimize 

Subject to 

F(X) = pTX + XTCX. 

AX = b. 

X > 0  

(24.45) 

where A - (a~ is an m xn matrix, b is m x 1, p is n x 1, X is n x 1 and C is an 

n x n symmetric matrix. 
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The symmetric matrix C however need not be positive definite or positive semi- 
definite. Thus Beale's method finds a local minimum of a nonconvex quadratic 
function, of course if the objective function is convex, the local solution obtained 
will be global. It is assumed that the problem is nondegenerate. 

Beale's method is an iterative procedure and begins with any basic feasible 
solution of (24.45). Let A be partitioned as 

A = (B, N) ,  (24.46) 

where B is the basis matrix which for convenience is assumed to consist of the 
first m-columns of A (by reordering the columns of A, if necessary) and N is the 
matrix consisting of the remaining n-m columns of A. Also let X B and X N be the 
vectors of basic and nonbasic variables. 

The constraints AX = b, can then be written as 

B X a + N X  N = b. 

and X a = B- lb -  B -1NX N (24.47) 

The basic variables can thus be expressed as 

n-m 

Xh "- O~'hO q" Z Ot'hqZq ' h = 1,2..m (24.48) 
q-I 

where Zq = Xm+ q , q = 1,2.., n -  m are the nonbasic variables. 

In the present trial solution of the problem, therefore the basic variables x h are 
equal to CthO > 0 and the nonbasic variables are all zero. 

Using the equations (24.48), the objective function F(X) can now be expressed 
in terms of the nonbasic variables and to examine the effect on F of changing the 
value of the nonbasic variables, the partial derivatives with respect to each of the 
nonbasic variables, assuming that all the other nonbasic variables remain fixed and 
equal to zero, are considered. 

For convenience, F(X) is expressed in the symmetric form 

n-m n-m 

F ( X )  "- Z Z ~kqZkZ q 
k=0 q=0 

n-m ~ n-m 

= Too + 2 ~ 'Yk0Zk d- Z ]/kqZkZq (24.49) 
k=! k=i q=l 

where Zo=l  and ~kq'- '}tqk' k, q = 0,1,2..n-m. 

10F  
Then - ~  = ~/ko, k = 1, 2,..n - m 2 az k (24.50) 

If TkO > 0, a small increase in z k with the other nonbasic variables held equal 
to zero will not reduce F. 
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However, if)'k0 < 0, the value of F can be reduced by a small increase in z k. It 
is profitable to go on increasing z k until either 

(a) one of the basic variables becomes zero (a further increase in z k will 
make the basic variable negative) or 

(b) the partial derivative F /az  k changes its sign that is, when it vanishes and 
is about to become positive. 

Case (a)" Suppose that z k is increased and one of the basic variables say x 
vanishes before 0F/t9 z k does ( x  becomes nonbasic in place of xk.) Then the 
equation 

ll-m 

Xv "- (/'vO q" ~ l~vqZq (24.51) 
q=l 

is used to express z k in terms of x and the other nonbasic variables and is then 
substituted in (24.48) and (24.49) to express other basic variables and the objective 
function F in terms of the new set of nonbasic variables. 

Case (b): If aF/z  k vanishes before any basic variable becomes negative, a new 
nonbasic variable 

,-m 1 OF 
Ut "--?kO "[" ~)r  "- 2 az k (24.52) 

q-'l 

is introduced into the problem, where the subscript 't ' indicates that this is the tth 
such variable introduced during the iterative process. Using equation (24.52), we 
now express the new basic variable z k in terms of u t and the other nonbasic variables 
and is then substituted in (24.48) and (24.49) to express other basic variables and 
the objective function F in terms of the new set of nonbasic variables. Since z k is 
now a basic variable and no former basic variable leaves the basis, there will be 
one more basic variable than before. 

Since u t is not restricted to have nonnegative values, it is called a free variable 
to distinguish it from the original x-variables which are called restricted variables. 

Thus, if aF/o~ t > 0, then F can be reduced by making u t negative. If a free 
variable enters the basis, it can be disregarded, as soon as it has been eliminated 
from the equations for the basic variables and for F. The process is repeated until 
a point is reached where it is not possible to change any of the nonbasic variables 
to have a further decrease in the value of the objective function. Thus, the conditions 
for termination of the iterative process are. 

aF 
>0. for all k (24.53) 

tgz k 

aF 
=0 for all free variable. 

/gut 
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which constitute necessary conditions for a local minimum of the problem. If 
however the objective function F(X) is convex, that is the matrix C is positive or 
positive semidefinite, the necessary conditions are also sufficient for a global 
minimum. 

For the proof that the process terminates in a finite number of steps, see 
Beale [37,39] 

24.4.1. Summary of Beale's Algorithm 
The algorithm deduced from the preceding discussion on Beale's method for 

solving quadratic programming problems may now be summarized as follows: 

Step 1. Obtain a basic feasible solution of the problem. 

Step 2. Express the basic variables x h , h = 1,2...m in terms of the nonbasic variables 
--- --- , Zq Xm+q, q 1,2. n-m 

We will then have, 

n-m 

Xh - -  O{'h0 " [ " Z  (~hqZq" 
q=l 

Step 3. Express the objective function F(X) in terms of the nonbasic variables in 
the symmetric form 

rl-m n-Ill 

F ( X )  --  E E ' Y k q Z k Z  q 
k=O q=O 

n-m n-m n-m 

= ~/00 + 2 E  ~/kqZk + E E '}tkqZkZq 
k=l k=l q=l 

where Zo=l and Ykq'- Ykq" 
Step 4. Consider the partial derivative of F(X) with respect to any one of the 
nonbasic variable say z k, 

~ F  ll-m 
m ..__--._. -- 

~kO + Z~, '~kqZq 
2 &k q=l 

with all other nonbasic variables held at zero 

(a) If 

aF 
_>0, 

az k 

for all k, the current solution is optimal. 

(b) If 

c~F 
- - < 0 ,  
C3Z e 
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for at least one k, increase z k until either 
i) some basic variable becomes zero, or 
ii) aF//9~ vanishes and is about to become positive. 

Step 5. To determine the change in the basis, calculate 

E J Min Cth~ h=l ,2 . .m,  lr~~ 
I(Xhk I' rkk 

for (~hk < 0 and ~/~> O. 

(i) If the minimum occurs for some h = v, then x becomes nonbasic, and 

(ii) if the minimum occurs for the second term, introduce a new nonbasic 
variable u t, defined by 

1 a F  n-m 

at  - - - - ~  = ~k0 + ~ ~/kqZq 
2 az k q=l 

u t is unrestricted and is called a free variable. This will lead to one additional 
equation and one more basic variable than before. 

Step 6. Go to step 2 and repeat the process until 

aF 
> 0 ,  for all k and 

cgz k 

aF 
= 0 ,  for all free variables. 

Step 7. Obtain the local (global if F is convex) optimal solution and the value 
of Min F by setting nonbasic variables equal to zero in their expressions. 

24.4.2. Example 
Consider the problem 

Maximize 

Subject to 

X I + 2x 2 - x2 2. 

X l + 2X 2 < 4 

3x I + 2x 2 < 6 

xl, x 2 <0 .  

By introducing slack variables, we have the problem 

Minimize F(X) = - x ~ -  2x 2 + x22 

Subject to x l + x  2 + x  3 = 4  

3x I + 2x 2 + x 4 = 6 

x~, x v x 3, x4_< 0 

Let us take x 3 and x 4 as basic variables and express them in terms of nonbasic 

variables 
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and 

x 3 = 4 - x~ - 2x 2 

x 4 = 6 - 3x 1 - 2 x  2 

F(X) = - x  1 - -  2x 2 + x22 

1 OF l a n d  1 OF -1 .  
Now,  2 0x~ 2 2 0x 2 

Hence it is profitable to increase x 2 and we calculate 

Min [(1[,32 I'Icx,, I' ~ L2 2 '  

= Min (2 ,3 ,1)=  1. 

We therefore introduce a free nonbasic variable 

1 OF 
U 1 " - - - - ~  - - -  1 + x 2 

2 cOz 2 

We again express basic variables in terms of  nonbasic variables 

x2= 1 + u  1 

x 3 = 4 - x l - 2 ( 1  + u  l) 

--- 2 - x 1 - 2 u  1 

x 4 = 6 - 3x I - 2(1 + u~) 

= 4 -  3 x  1 - 2u l 

F(X) =--X 1 - -  2 (1 + Ul) + (1 + U~) 2 

= - I  - x~ + U21 . 

1 0 F  1 0 F  1 
Now,  -2 0u---~ - = 0 '  2 0x 1 = - - 2  

x~ is therefore increased and we next calculate 

{c~30 c~40 1~ 17101} 
Min [ c~31 ['[r 1' ~ i  ' ~ i  

f 2 = Min T '  , (~  = O ~ t l l  = O )  

4 
- - . ~ ~  

3 

Thus x 4 leaves the basis and x~ enters. 

Then 

4 2 1 
x~ =-3 - - - - U 1 3  - 3 x 4  
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x 2 = 1 +u~ 

2 4 
X 3 - -  - -  " -  - -  

3 3 

1 
U 1 4 "  ~'X 4. 

F(X)= 7 2 1 - - -+  +-- +u~ 
3 3 ul 3 X4 

IOF 1 IOF 1 

20u I 3' 2 ~  4 6 

Hence it is profitable to decrease u~ 

We therefore introduce another free variable u 2, 

u 2 = 1/3 + u~ 

and thus 

1 
U 1 ---- - ' - -  -I" U 2 

3 

14 2 1 
x~ =--~--~u 2 --~x 4. 

2 

=3+u  
10 4 1 

X3 ----- - - 9  - -3 u2 + 3 x4 

F(X) 22 1 2 
---- - - - -  -]- - -  X 4 d -  U 2 

9 3 

10P' l a F  1 
Now, 20u 2 =0 and 2 i~x4=6>0  

and hence the minimum solution is achieved. 

14 2 22 
~ =  x~ =--~,x2 = ~  and MinF = 9 

24.5. Lemke's Complementary Pivoting Algorthm 
In 1968, Lemke [30la] proposed a complementary pivoting algorithm for 

solving linear complementarity problems. Since the Kuhn-Tucker conditions for 
quadratic programming problems can be written as a linear complementarity 
problem (see section 24.5.3), Lemke's algorithm can be used to solve quadratic 
programs. 

We therefore, first briefly discuss the linear complementarity problem and then 
present the complementary pivoting algorithm suggested by Lemke. 

24.5.1. The Linear Complementarity Problem 
In a complementarity problem, we are to find a Z ~ R" satisfying 
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f (Z) 3 0, Z 3 0, ZTf(Z) = 0 (24.54) 

where f is a given vector-valued function from R" to R". 

If  f (Z)= MZ + q (24.55) 

where M is a given n x n matrix and q is a given n-vector, the problem 
(24.54) is called a linear complementarity problem. 

The problem has applications in many areas, such as bimatrix games and 
engineering optimization. In the recent years, a large number of papers, dealing 
with important results and generalizations of the complementarity problem, have 
appeared in the literature. 

Thus, the linear complementarity problem is to find vectors W and z such that 
W -  MZ = q (24.56) 
wj > 0, z _> 0, j - 1, 2,...n (24.57) 
w z = 0 ,  j = l  2, .n (24.58) 

J J ~ . .  

where M is a given n x n matrix, q is a given n-vector. 

The pair (wj z) is said to be a pair of complementary variables. 

A solution (W r, Z r) to the above system is called a complementary basic 
feasible solution, if (W r, Z v) is a basic feasible solution to (24.56) and (24.57) 
and variable of the pair (wj, z) is basic for j - 1, 2,...n. 

If q > 0, we immediately see that W = q, Z = 0 is a solution to the linear 

complementarity problem. If however, q ~ 0, we consider the related system 

W - MZ - ez o = q (24.59) 
wj > 0, z > 0, j = 1, 2, ...n (24.60) 
w z =0 ,  j = l  2, .n (24.61) 

J J ~ . .  

where z o is an artificial variable and e is an n-vector with all components 
equal to one. 

It should be noted that any solution to the related system with z o - 0, provides 
a solution to the linear complementarity problem ((24.56) - (24.58)). Lemke's 
algorithm attempts to drive z 0 to zero, thus obtaining a solution to the linear 
complementarity problem. 

A feasible solution (w r, Z r, Zo) to the system (24.59) - (24.61) is called an 
almost complementary basic feasible solution if 

(1) (W r, Z r, Zo) is a basic feasible solution to (24.59), (24.60) 
(2) neither w nor z are basic for some s ~ { 1,2,...n}, and 
(3) z 0 is basic, and exactly one variable from each complementry pair (wj, z), 

j = 1,2,...n, j ~ s, is basic. 

Given an almost complementary basic feasible solution (W r, Z v, Zo), where w 
and z are both nonbasic, an adjacent almost complementary basic feasible solution 
is obtained by introducing either w or z in the basis replacing a variable other 
than z 0 from the basis. 

Lemke's algorithm moves among the adjacent almost complementary basic 
feasible solutions until either a complementary basic feasible solution is obtained 
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or a direction indicating unboundedness of the region defined by (24.59) - (24.61) 
is found. 

Summary of Lemke's Algorithm 
We now summarize Lemke's complementary pivoting algorithm for solving 

the linear complementarity problem. 

Step 1. Introduce the artificial variable z o and consider the system (24.59)- (24.61) 
(a) If q > 0, stop; (W, Z) = (q, 0) is a complementary basic feasible solution. 
(b) If q > 0, express the system (24.59), (24.60) in a tableau format as in the 

simplex method. Let qs = minimum {qi, Isi<n} and update the tableau 
by pivoting at rows and the zo column, i.e. replace ws in the basis by 
z o, thus, the basic variables z o and wj for j = 1, 2, . .n, j r s, become 
nonnegative and yields an almost complementary basic feasible solution 
to start with. Let y, = z. 

Step 2. In the updated tableau, let as be the column under the variable y, and 

be the right-hand side column of constants densting the values of the basic 

variables. If ~s < 0, go to step 5. Otherwise, determine a row index r by 

the minimum ratio test 

q~ mi,,,,,,,,,,,~q~ } 
- =1<i<,, I - ~ ' ~  > 0  

a,.~ l a~ 
If the basic variable at the r is z 0, go to step 3. Otherwise, go to step 4. 

Step 3. Replace z o by y~ and update the current tableau by pivoting at the y~ column 
and the Zo row. stop, because a complementary basic feasible solution is 
obtained. 

Step 4. The basic variable at row r is either wt or z I for some 1 ,  s. The variable 
y, enters the basis and the tableau is updated by pivoting at row r and the 
y~ column, where 

Go to step 2. 

_~z~, if wt leaves the basis. 

Y~ Lwt if zt leaves the basis. 

stop5 StopArayO {(wTZTZo) T } = , , + ~,d'~, >__ 0 is found such that every point 

in D satisfies (24.60) and (24.61), (W T, Z T, Zo) is the almost complementary 
basic feasible solution associated with the current tableau and d has 1 at 

the row corresponding to Y,  - ~ at the rows of the current basic variables 

and zero everywhere else. Stopping the algorithm at this step is termed 
ray termination. 
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Convergence of the Algorithm 
The following theorems show that the algorithm stops in a finite number of 

steps, either with a complementary basic feasible solution or with ray termination. 
Under certain conditions of the matrix M, the algorithm stop with a complementary 
basic feasible solution. For the proof of the theorems see [301 a]. 

Theorem 24.3: Suppose that each almost complementary basic feasible solution 
to the system (24.59) - (24.61) is nondegenerate. Then none of the points generated 
by the complementary pivoting algorithm is repeated and the algorithm stops in a 
finite number of steps. 

We now definite the following: 

A square matrix C is said to be copositive if xTcx___0 for each x > o. Further, C 
is said to be copositive-plus if it is copositive and x>0 and xTcx=0 imply that 
(C+C T) x = 0. 

Lemma 24.2: If a square matrix C has nonnegative entries, then C is copositive. 
Further, if C has nonnegative entries with positive diogonal elements, then C is 
copositive-plus. 

Theorem 24.4: Suppose that each almost complementary basic feasible solution 
to the system (24.59)- (24.61) is nondegenerate, and suppose that M is copositive- 
plus. Then, Lemke's complementary pivoting algorithm terrminates in a finite 
number of steps. In particular, if the system (24.56), (24.57) is consistent, then the 
algorithm terminates with a complementary basic feasible solution to the system 
(24.56)- (24.58). On the other hand, if the system (24.56), (24.57) is inconsistent, 
then the algorithm stops with ray termination. 

Corollary 24.1: If the matrix M has nonnegative entries, with positive diagonal 
elements, then Lemke's complementary pivoting algorithm terminates in a finite 
number of steps with a complementary basic feasible solution. 

Proof: By lemma 24.2, M is copositive-plus. Moreover, under the assumption on 
M, the system W-MZ = q, W, Z _> 0 has a solution since we can choose Z 
sufficiently large so that W = MZ + q >_ 0. The result then follows from the 
theorem. 

24. 5. 2. Example 
Consider the linear complementarity problem of finding W and Z satisfying 

W -  Mz = q, Wrx = O, W_> O, Z > O, 

where 

M I I 
1 0 2 -1 

3 2 -1 ,q= 

-2 1 0 - 

Introducing the artificial variable z 0, wo form the following tableau 
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Tableau 1 

Basic variable 

W 1 

W 2 

W 3 

W 1 W 2 W 3 Z 1 Z 2 Z 3 Z 0 

1 0 0 -1 0 -2  -1 

0 1 0 -3  - 2  1 -1 

0 0 1 2 -1 0 -1 

R.H.S. 

-1  

2 

-3  

Since min {q~" 1 < i ___ 3 } = q3, we pivot at row 3 and the z o column and for 

the next tableau we have ys = z 3. 

Tableau 2 

Basic variable 

W 1 

W 2 

Z 0 

W 1 W 2 W 3 Z 1 Z 2 Z 3 Z 0 

1 0 -1 -3 1 -2  0 

0 1 -1 -5  -1 1 0 

0 0 -1 - 2  1 0 1 

R.H.S. 

Here, y, = z3 enters the basis. By the minimum ratio test w 2 leaves the basis 
and for the next iteration y, = z:. We pivot at the w 2 row and the z 3 column. 

Tableau 3 

Basic variable 

W 1 

Z 2 

Z f} 

W 1 W 2 W 3 Z 1 Z 2 Z 3 Z 0 

1 2 -3 -13  -1 0 0 

0 1 -1 -5  -1 1 0 

0 0 -1 - 2  1 0 1 

R.H.S. 

12 

5 

3 

Here, z 2 enters the basis and by the minimum ratio test z o leaves the basis. 
Pivoting at the z o row and the z 2 column, we get the next tableau and obtain the 
complementary basic feasible solution. 

Tableau 4 

Basic variable 

W 1 

Z 3 

Z 2 

W 1 W 2 W 3 Z 1 Z 2 Z 3 Z 0 

1 2 -4  -15 0 0 1 

0 1 - 2  - 7  0 1 1 

0 0 -1 - 2  1 0 1 

Thus the solution we obtain is 

z~ = 0, z 2 = 3, z 3 = 8, w~ = 15, w 2 = 0, w 3 = 0 

R.H.S. 

15 

8 

3 
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24.5.3. Solving Quadratic Programs by Complementary Pivoting 
Algorithm 

In this selection, we show that the Kuhn-Tuckcr conditions for a quadratic 
programming problem reduce to a linear complementary problem. Thus, the 
complentary pivoting algorithm can be used to solve a quadratic programming 
problem. 

Consider the quadratic programming problem 

Minimize f (x) = f x  + �89 xrcx 

Ax _< b, (24.62) 

x > 0  

where A is an mxn matrix, p is an n-vector, b is an m-vector and c is an nxn 
symmetric matrix. 

Let Y denote the vector of slack variables and U be the vector of Lagrangian 
multiplier associated with A x < b. 

The Kuhn-Tucker conditions can then be written as 

A x + Y = b  

- C x - A r U + V  =p  

Vrx = 0, UrY = 0 (24.63) 

X,Y,U,V_>O 

If, we now take 

M = [  ~  [ U ] w = [ V ] a n d Z = [ U ]  A ~ C ' q =  P ' v x , (24.64) 

The Kuhn-Tucker conditions can be expressed as the linear complementary 
problem 

W -  MZ = q, w r z  = 0, W, Z, > 0 (24.65) 

Thus, the complementary pivoting algorithm discussed above can be used 
to find a solution of the Kuhn-Tucker conditions for the quadratic programming 
problem. 

Convergence of the Procedure 
In order to prove the convergence of Lemke's complementary pivoting algorithm 

to solve the Kuhn-Tucker conditions for the quadratic programming problem we 
need the result given by Lemma. 

Lemma 24.3: Let A be an mxn matrix and c be an nxn symmetric matrix. If c 

is positive semidefinite, then the matrix M = I o -A] A ~ C is copositive-plus. 

Proof: Let Z r = (X ~, yr)  > 0 then 

E o Z r MZ = (X r, y r )  a ~ c v =Yc Y>0,  since C is positive 

semidefinite. 
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Hence M is copositive. 

Now, suppose that Z > 0 and Z r MZ = 0, then since ZrMZ = Y'rcY = 0 and 
C is positive semidefinite, we have CY = 0 (by Theorem 6.1) and hence 

(M+ M T ) z  = [ 2 O y l  = 0 , s o  that M is copositive-plus. 

Lemma 24.4: Let A be an mP, n matrix and C be an nxn symmetric matrix. If C 

has nonnegative entries, then the matrix M = I OA ~-A l c  is copositive. Further, if C 

has nonnegative elements with positive diagonal elements, then M is copositive- 
plus. 

Proof: Let Z r = (x T, yr) > 0, then 

Z r MZ = WCY 

and since it follows from assumption that y ' r cy  > 0, M is copositive. Further, if 
C has positive diagnal elements, then Z > 0, ZrMZ=YrCY = 0 imply that Y = 0. 

Hence CY = 0. Thus, (M+Mr)Z = 120y  ] =0 and therefore M is copositive-plus. 

Theorem 24.5 

Consider the quadratic programming problem (24.62). Suppose that the 
problem is feasible. Further, suppose that Lemke's complementary pivoting 
algorithm is used to find a solution to the Kuhn-Tucker conditions W-MZ = q, 
W, Z > 0, WrZ = 0 where M, q, W and Z are given by (24.64). Under the 
assumption that each almost complemtary basic feasible solution to this system, 
is nondenerate, 

(i) The algorithm stops in a finite number of steps, if C is positive semidefinite. 
Furthermore, ray termination implies that there is an unbounded solution 
to the quadratic programming problem (24.62). 

(ii) The algorithm stops in a finite number of steps with a solution to the Kuhn- 
Tucker conditions if any one of the following three coditions is satisfied: 
(a) C is positive semidefinite and p = 0 
(b) C is positive definite 
(c) C has nonnegative entries with positive diagonal elements. 

Proof: (i) If C is positive semidefinite, then by Lemma 24.3 M is copositive-plus. 
Then by Theorem 24.4, the algorithm stops in a finite member of steps with either 
a solution to the Kuhn-Tucker conditions or a ray termination. 

Now, suppose ray termination occurs. Then by Theorem 24.4, ray termination 
is possible only if the system 

A x + Y = b  

-Cx - Aria + V = p 

X,Y, U,V>_O 
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has no solution. 

By theorem 7.9, we then must have a solution (d, g) of the system 

ATq - Cd > 0 

A d < 0  

q > 0  

d _>0 

bTq = pTd < 0 

Since Ad ___ 0 and q > 0, multiplying (24.66) by dT>_ 0, we have 

0 < d TAT q -  d T Cd < 0 -  d T Cd = -  d TCd 

and C is positive semidefinite, d T Cd = 0 and hence Cd = 0, 
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(24.66) 

(24.67) 

(24.68) 

(24.69) 

(24.70) 

(24.71) 

(24.72) 

Let X, Y be a feasible solution to the quadratic programming problem (24.62) 

so that 

AX + Y = b, X, Y > 0 (24.73) 

Substituting b from (24.73) in (24.70), we get 

T 0 > pTd + bTq = P d + (AX + y)Tq  

> p T d + ~ T A T  q .. V{ > 0, q >0  

> pTd + ~ T c d  by (24.66) 

Further, from (24.72), we note that cd 0 and hence pTd < 0. 

We note that Ad < 0, d > 0, so that ~ + Xd is feasible to the problem for all 

~. > 0 and is a ray emanating from the point ~ in the direction d. 

Now, f (~  + kd) = f ( ~ )  + ~ (pT + ~ TC) d + �89 ~,2 dTCd 

= f ( ~ )  + k pT d, since cd = 0 

Since pTd < 0, f (~  + kd) -+ -oo as ~, --~ -oo. 

and thus there is an unbounded solution to the problem (24.62). 
(ii) By Lemma (24.3) and (24.4), M is copositive-plus under conditions (a), 

(b) or (c) of the theorem. It would therefore, be sufficient to show 
that row termination is not possible under any of these conditions. 
Suppose, by contradiction, that ray termination occurs under condition 
(a), (b) or (c). From (24.71), we note that dTCd < 0. Hence, under 
condition (b) or (c), d = 0, which contradicts (24.74). Under condition 
(a), Cd = 0 and moreover, by assumption p = 0. This again contradicts 
(24.74) 

Thus, under conditions (a), (b) or (c), ray termination is not possible and 
the algorithm finds a solution to the Kuhn-Tucker conditions in a finite number 
of steps. 
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24.6. Exerc i se s  

I. Solve the following quadratic programs by Wolfe 's  method: 

(i) Minimize z = x I - 2x 3 + 1/2(X21 + X22 + X23). 

Subject to X ! - x 2 + x 3 = 1 

Xl, X 2, X37~O" 

(ii) Minimize z = x I - x 2 + 1 / 2 ( x  I - x2)  2 

Subject to 2x~ - x 2 > 4 

2X l + X 2 >7. 

x~, x2> 0. 

2. Solve the following problems by the method of  Wolfe and by Beale 's  
method. 

(i) Maximize z =Sx~ + 2x 2 - 2x21 + 2x~x 2 - x22 

Subject to -5Xl + 3x 2 < 4 

3x~ + 2x 2 < 20 

Xl, X 2 ~___ O. 

(ii) Maximize z = 2x I + x 2 - 1/2 x2~- 1/2 x22 

Subject to 4x I + x 2 _< 5 

3X l 4- 2x 2 < 6 

XI, X2 ~___ O. 

3. Solve the following quadratic programming problem for all Z > O 

Maximize z = ~,(3x I + 2x2) -  2x21 

Subject to Xl + x 2 < 2 

4x~ + x 2 < 4 

Xl, X2 ~ 0. 

4. Solve the following quadratic programming problems by Beale 's  method. 

(i) Maximize z = 2 5 x ~ + 1 0 x  2 x 2 - 4 x  - 1 0 x  / 1 1X2 2 

Subject to 2x~ + x 2 < 10 

x ~ + x  2 < 9  

x~, x2 >__ 0 

(ii) Maximize z = 3x~ + 6x 2 -4x2~ + 4XlX 2 - x22 

x~ + 4x2 > 9 

X l -I- X2 _< 3 

x l, x 2 > 0 .  

5. Show that the convergence of Wolfe 's  method for solving the quadratic 

program 

Minimize pTX + 1/2 x ' r c x  

AX = b 

X > 0  ...., 
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requires that either p = 0 or C is positive definite. 

6. Discuss the case in Wolfe's method for solving the problem (24.1) when 
the value of the objective function is unbounded from below. 

7. Are the matrices given below copositive-plus? 

(i) 

1 0 2 0 0 - 1  - 1  

0 0 1 -2  
3 2 - 1  (ii) 

' 1 -1  2 - 2  
~2 1 0 

a 1 2 - 2  

8. Use the complementary pivoting algorithm to solve the Kuhn-Tucker 
conditions for the problem. 

Maximize 

Subject to 
3 XI+X 2 

Xl--X2 ~ 4 

x~ +x2< 6 

X1, X2--> 0 

9. Use the complementary pivoting algorithm to solve the following quadratic 
programming problem. 

Maximize 

Subject to 

- 6 x~- 2x 2 + 2x2~ - 2 x~ + x 2 + x22 

2x~- x 2 ~ 2 

x~ + x 2 < 2  

X l, X2>_ 0 
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Methods of Nonlinear Programming 

In this chapter we are concerned with the methods of solution for general 
nonlinear programs. 

Maximize f(X) 

Subject to g~ (X) < 0, i = 1, 2...m 

X < O , X E R  n 

Several methods have been developed where either f and all ga are nonlinear 
or only f is nonlinear. The methods that we will discuss in this chapter are the 
following: 

(1) 
(2) 
(3) 
(4) 

(5) 
(6) 

(7) 

Separable Programming 

Kelley's Cutting Plane Algorithm 

Zoutendijk's Method of Feasible Direction 

Rosen's Gradient Projection Method 

Wolfe's Reduced Gradient Method 

Zangwill's Convex-Simplex Method 

Dantzig's Method for Convex Programming 

25.1. Separable Programming 
Separable programming is a special technique for obtaining solutions of a class 

of nonlinear programming problems where the functions involved can be expressed 
as a sum of functions each of a single variable only, that is, the functions f(X) and 
gi (X) are of the form. 

f(X) = ~ f ( x j )  , gi ( x ) ' -  ~gi j (xj) ,  i = 1,2..m 
j=l j=~ 

The functions are then said to be separable. The linear function 

f(X) = ~ ejxj 
j=l 

and the nonlinear function 
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fiX 1, X 2) : ClX21 + C2X32 --C3X 1 "~" C4X 2 

--" (ClX21 -- C3XI) "~" (C 2 X32 q" C,X2) 

= fl(Xl) + f2(x2) 

are examples of separable function. 

There are some functions, which are not directly separable can also be made 
so by transformation of variables. For example, in a given problem, the product 
term xlx 2 can be transformed into a separable function by setting 

u~ = 1/2 (x~ + x2) ;u  2 = 1/2 (x~- x2) (25.2) 

so that XlX 2 "- U21 -- U22 

The term x z x 2 can then be replaced by the separable function u2~ - uZz , while 
the separable expressions in (25.2) are included in the set of constraints of the 
problem. 

�9 ao, where the x are essentially positive and have In general the term x~" .x~ ~ .x. j 

a strictly positive lower bound can be replaced by e w, while the expression 

w = a~ lnx~ + a zlnx z + ... + a l nx .  

is included in the set of constraints. 

Consider now, the separable nonlinear program 

Minimize f(X) = ~ f j ( x j )  
j=l 

Subject to ~-" g~j(xj) <b~, i=l,2...m (25.3) 
j=l 

x > 0 j=l ,2 . .n .  

In this section, we shall discuss a special method which makes use of a 
modification of the simplex method to provide good approximate solutions to 
nonlinear separable programs. 

25.1.1. Approximating the Problem 

In order to be able to make use of the simplex method for finding a solution of 
the problem, the separable functions f ( x )  and g~j(x), i = 1,2..m are first 
approximated by piecewise linear functions. 

To see how this can be done, consider a continuous function h (x) of a single 
variable x defined over the interval [a, b]. The interval [ab] is then subdivided into 
smaller intervals by the grid points a r (r = 1, 2..k) such that 

a =  a~ < a2 <.. .  ak= b. 
Now, any point x in the interval [a, a+l] can be uniquely expressed as 

X = ~rar  + ~+1 ar+l (25.4) 

where X + X+~ = 1 , ~r' ~r+l ~-- O. 
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Then la (x)= ),,. h (a) + ;Lr+ , h (ar+,) 

gives a linear approximation of the function h in the interval [a, ar+~] as shown in 
Figure 25.1. 

It should be noted that the grid points need not be equidistant and that the 
accuracy of the approximation can be improved by using finer grids. However, with 
the increase in the number of grid points, the number of variables in the 
approximating linear program increases and this may result in more iterations in 
solving the problem. The selection of grid points should therefore be suitably made. 
It is also noted that the approximation using adjacent grid points yields better 
approximation. 

h (X) I 

I l l  ! l i  I il 
I I ! I I I I 
I 1 ! t t i t 
i ', ! t t t I 
I 1 t I I I I 
t I, I I, t t , 

a=al a2 aa a4 as ak=b 
. . . .  > x  

Figure 25.1. Piecewise linear approximation of a function. 

The piecewise linear approximation of the function h over the interval [a,b] 
can then be written as 

k 

h(x))-" Z,h(ar (25.5) 
r=l 

where 
k 

x = ~ ~,a, 
r=l 

k 

)-"~, =1 , ~, >0, r=l,2...k. 
r=l 

and that at most two adjacent ~.'s are positive 

Let us now return to the separable programming problem (25.3) and assume 
that all the fj and g~j are continuous. Now, it may so happen that for some j, fj and 
all gij, i - 1, 2..m are linear and therefore for convenience we define a set L as 
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L = { j �9 fj and gij, i=  1, 2..m are linear}. (25.6) 

Suppose that for each j r L, the range of the variable x is [aj, bj], where a, 
bj > O. We then divide the interval by grid points x j, r = 1 2...k such that ~ j 

aj = Xlj < x2j < ... < Xkj j = bj (25.7) 
where the grid points (not necessarily equidistant) are selected judiciously so that 
the approximations of the functions can be obtained with sufficient accuracy. 

Using the method described above, piecewise linear approximations of fj (xj), 
g~j (x), (i = 1,2...m) for each j r L are then obtained as 

f (x j )=  ~ ) ~ f ( x ~ )  , for j ~ L 
r=l 

gij(xj) = ~ ~,og~j(xj) , for i = 1,2...m; j ~ L 
r=l 

(25.8) 

kj 

where x i = ~ ~,~r~, j ~ L (25.9) 
r=l 

kj 

y '  ~,~ = 1 , s > 0, for r = 1,2,...kj, j ~ L (25.10) 
r=l 

.'s are positive for j ~ L. and at most two adjacent ~ 

Since for j e L, both f and g~j for i = 1, 2...m are linear, no grid points need to 
be introduced in this case and the functions are kept in their present form. 

Now, replacing the nonlinear functions f(xj), g~j (x), j ~ L in (2S.3), by their 
linear approximations, the separable program is approximated by the following 
problem 

Minimize 

kj 

z =  Z fj(x,) + Z Z/.~jf(xo) 
j~L j~L r=l 

Subject to )-~gij(xj)+)-~~~,ogij(xo) <b i , i=l,2...m 
j~L j~L r=l 

f~"~'o = 1, j~L 
r=l 

~,~j _>0 , r = 1,2...k" j ~ L ,  (25.11) 

> 0  j~L X j _  , 

' s  are positive for j eL. and the additional restriction that almost two adjacent ~.j 

25.1.2. Solution of the Problem 
Except for the additional restriction, the approximating problem (25.11) is a 

linear program. It can therefore, be solved by the simplex method with a little 
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modification. The simplex method is now applied with the 'restricted basis entry 
, is introduced into the basis only rule' which specifies that a nonbasic variable ;Lj 

if it improves the value of the objective function and if for each j r L, the new 
basis has no more than two adjacent ~'0 that are positive. From the local optimal 
solution to the approximating problem thus obtained, an approximate local optimal 
solution ~2 to the original problem is obtained by (25.9). Thus if (x ~ ;L~ j) is a 

solution of (25.11), then the jth component of ~ is given by 

x! , for j s L 

~x~  , for j ~ L  (25.12) 

It should be noted that the solution obtained to the approximating problem may 
not even be a feasible solution to the original problem. If however, the original 
constraint set is convex, a feasible solution to the approximating problem will also 
be a feasible solution to the original problem. 

The following theorem shows that if for each j r L, f is strictly convex and gij 
is convex for i = 1, 2,...m, then we can discard the additional restriction in (25.11) 
and solve the problem by the usual simplex method. 

Theorem 25.1. Consider the separable program (25.3) and let the set L be defined 
as in (25.6). Suppose that for each j r L, the function f~ (x) is strictly convex and 
that gij (x) is convex for i = 1 2,...m. Further, suppose that x ~ (j r L) and ~0 ' rj 

(r = 1, 2,...k; j ~ L) solve the approximating linear program (25.11) without the 
additional restriction. Then 

(i) the vector ~2, whose components are given by 

o for j ~ L  ~j = xj, 

kj 

~j =~-~E~ 0 for j~L 
r=l 

is feasible to the original problem 

(ii) For each j ~ L, atmost two ;L ~ ' s  are positive and they must be adjacent. rj 

Proof: 
(i) Since the functions g~j (x) are convex for j ~ L and i - 1,2,..m we have 

s gij(~j) = ~gij (~j) + '~-" gij (~j) 
j=l j~L j~L 
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Moreover, 

j~L j~L  

_< b~ , for i =l,2,...m. 

~  0 for j e L ,  x j = x j _  

^ kj 
for j~L  x j = ~  o o , ~,~x~ >0 , since ~,~ ___0, x~ >_0 

r=l 

for r = 1,2...k and j r L. 
J 

To prove part (ii), it is sufficient to show that for each j ~ L, if )~oj and )~o~. are 
positive, then the grid points x. and x.  must be adjacent. Let us suppose, on the 

rj ql 

contrary that )~oj, )~o are positive but x~j, x.,j are not adjacent. Then there exists a 
grid point Xpj e(Xlj, x )  that can be expressed as 

Xpj = 0 x~j + (1 - 0) x j, .for some 0, 0 < 0 < 1. 

Since x~ (j e L), ;~0rj (r = 1, 2,,, k, j ~L) solve the linear program obtained 
from (25.11) ignoring the additional restriction, it follows that there exist Lagrange 
multipliers u~ > 0 for i = 1, 2...m and v ~ for j ~ L associated with the constraints of ~ j 

the problem such that the following subset of the Kuhn-Tucker necessary conditions 
are satisfied for each j eL" 

m 

fj(x )+Z o o> o Ui gij(Xrj) + Vj 
i=l 

0 0 0 
Efj(xo) + EUi gij(Xrj) + Vj ]~rj = 0  r =l,2,. . .k. j 

Since ~oj and Xo. are positive, we have, from the above relations 
ql 

m 

fj(xo) + ~  o o =0  (25 13) Ui gij(XIj) + Vj 
i=l 

m 

f j (Xqi )+~  o o =0  (25 14) Ui gij(Xqj) + Vj 
i=l 

m 

f j ( x p j ) + E  o o >0 (25.15) Ui gij(Xpj) + V j -- 
i=l 

Now, by strict convexity of fj and convexity of g~j for j r L, we get 

m 

fj(Xpj) + z o o Ui gij (Xpj) "F Vj 
i=l 

= fj (Oxu 
m 

o o 
- Ui gij(OX U + ( 1 -  O)Xqj) + Vj 

i=l 
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m 
< 0fj (xlj) + (1- 0)fi (Xqi) + )-' ui [Ogij (xlj) + (1- O)gij (Xqi)] 

i=l 

+0v~ + (1 - 0)v~ = 0, 

by (25.13) and (25.14) 

This contradicts (25.15) and hence x~j and x j must be adjacent. 

(25.16) 

25.1.3. Grid Refinement 
It is natural that the accuracy of the above procedure largely depends on the 

number of grid points for each variable. However, with the increase in the number 
of grid points, the number of variables in the approximating linear program increases 
and this may result in more iterations in solving the problem. 

One way to select a suitable grid is as follows. [344] 
Step 1. Solve the problem initially using a course grid. 
Step 2. Refine the grid around the optimal solution obtained with the coarse 

grid. 
Step 3. Resolve the problem using the refined grid. 
Step 4. If the improvement in the optimal objective value of the problem 

using the new grid is significant go to step 2. Otherwise, select 
the grid used in step 3. 

25.1.4. Example 
Consider the following separable problem 

Minimize fiX) = 2X21 - 4 x ~  + x22- 3x 3 

Subject to x~ + x 2 + x 3 < 4 

x21-x2_< 2 

> 0  j =  1 2,3. Xj__ , 

Since the variable x 3 appears linearly both in the objective function and the 
constraints, the set L = { 3 }. We therefore need not take any grid points for x 3. From 
the constraints it is dear that both x~ and x 2 lie in the interval [0, 4]. Though it is 
not necessary for the grid points to be equally spaced, here we use the grid points 
0, 2, 4 for both the variables x~ and x 2, so that 

x~ = 0, x2~ = 2, x3~ = 4, and 
X12 "- 0, X22 ----- 2, X32 ----- 4. 

Then, 

where 

x~ = 0 Z~ + 2 ~2~ + 4 ~3~" 
X 2 -- 0 ~12 4" 2 ~22 "l- 4 ~32 

~,~ + ~2, + 7~3~ = 1 
~12 "~" ~22 4" ~32 = 1 

~j >_0, forr = 1, 2, 3;j = 1,2 
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i , ,  , , ,  , ,  , ,  , =, , i , ,  , , i  , ii , 

(X)=(1 6~31 ) + (4~22+1 6Z32)-3x3 
A 
g,(X) = (2~,2, + 4~,3,) + (2~,22 + 4~,32) + X 3 ~ 4 
^ 
g2 (X) = (4Z2, + 1 6~,3, ) + (-2Z22 - 4~32) _< 2 

The approximating program therefore is 

Minimize z = 16 ~31 q- 4 ~22 q- 16 ~32 -- 3X3 
Subject to 2 ~'21 + 4 ~'3~ + 2 ~'22 + 4 ~'32 + x3 < 4 

4 Z,21 + 1 6 ~31 -- 2 Z22- 4 ~32 -~< 2 

~11-I" ~'21 + ~31----" 1. 
~12 -I- ~22 + ~32 -~< O. 
Zo<O,r =1 ,2 ,3 ;  j = 1 , 2 .  

Introducing the slack variables x 4 > O and x 5 > 0 in the first two constraints, 
we solve the problem by the simplex method with the restricted basis entry rule, 
that is, for each j= 1, 2, at the most two of the variables ~j, ~'2j, 7L3j are positive and 
they must be adjacent. The first tableau is given below 

Tableau 1 

Basic 

V a r i a b l e s  ~ ~'2~ ~'3~ ~'12 ~'22 ~'32 X3 X4 X 5 C o n s t a n t  

x 4 0 2 4 0 2 4 1 1 0 4 

x 5 0 4 16 0 -2  -4  0 0 1 2 

;~11 1 1 1 0 0 0 0 0 0 1 

~'12 0 0 0 1 1 1 0 0 0 1 
i 

z 0 0 16 0 4 16 -3 0 0 
,, , , , 

It is lett to the reader to obtain the subsequent simplex tableaus finally giving 
an optimal solution to the approximating problem. From this solution an approximate 
optimal solution to the original problem is obtained by (25.12) 

Since the objective function and the constraint functions of this problem satisfy 
the assumptions of Theorem 25.1, we could have applied the simplex method without 
the restricted basis entry rule and yet obtained the same optimal solution. 

25.1.5. Mixed Integer Programming Formulation 
In the method discussed above, we have seen that a nonlinear separable program 

can be approximated by a linear program with an additional restriction, which can 
be solved by the simplex method with a minor modification. The procedure however, 
finds a local optimal solution to the problem (25.11) if the functions are not convex. 
A mixed integer programming ~ formulation of the problem where the additional 
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restriction is replaced by a set of constraints involving integer valued variables has 
been discussed by Markowitz and Manne [329] and Dantzig [105]. Such a 
formulation leads to a global optimal solution to the problem. The simplest such 
formulation given by Dantzig [105] is as follows: 

Minimize Z f i ( x i )  + 2 ~ i ~ f ( X r i )  
jeL j ~L r=l 

Subjeetto ~-"~gij(xj)+'~Y~~i~gij(x~)-<b~, i = 1,2,..m 
jEL jEL r=l 

O < X j < 5 _ j + S j ,  r = 2 , 3 , . . . k  - 1 ,  

0 < 5kj, j < ~Skj_~, j 

r=l 

)-" 3~ =1 
r=l 

6rj 0 o r l  j C L  

(25.17) 

It is therefore sufficient to restrict our attention to the convex program (25.20). 

A mixed integer programming problem is a linear program where some of the variables 
are restricted to have integer values only. 

25.2. Kelley's Cutting Plane Method 
Consider the nonlinear programming problem 

Minimize f(X) 

Subject to g~ (X) < 0, i = 1, 2...p (25.18) 

where f(X) and g~ (X) are continuously differentiable convex functions of X ~ R". 

It is easy to see that the problem (25.18) can be expressed in the equivalent 
form 

Minimize x.+~ 
Subject to fiX) - x.+ 1 < 0 (25.19) 

gi (X) < 0 ,  i = 1, 2...p. 

Thus by the addition of one constraint and one variable, we have converted 
the original problem (25.18) into a problem with a linear objective function. 

The problem therefore can be expressed in the form 

Minimize CrX (25.20) 

Subject to g~ (X) < 0, i = 1, 2...m. 

where g~ (X) are continuously differentiable convex functions of X~R". 
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This is the form Kelley [273] has considered to develop his cutting plane algorithm. 

Let G denote the feasible set of the problem (25.20). We assume that G is 
contained in a compact convex polyhedron S 0, defined by a finite number of closed 
half spaces and then solve the linear program 

Minimize C~X (25.21) 

Subject to X ~ S o. 

Let X o denote the optimal solution of (25.21), which is of course an extreme 
point of S o. If X o e G, then it must be an optimal solution of (25.20). If not, then it 
produces a linear constraint that cuts off a portion of S O to yield a new compact 
polyhedron S~ (S O D S~ D G). Thus, a sequence {Sk} of nested convex polyhedron 
is produced such that 

G c S k, Sk. ~ C S k, k = 0, 1, 2,... (25.22) 

and a sequence {Xk} of infeasible points is generated which under certain conditions 
converge to the optimal solution of the original problem. (see Section 25.2.2) 

25.2.1. Summary of the Algorithm 
We now describe the steps of the algorithm. 

Step 1. Find a compact convex polyhedron S O containing G defined by a finite 
number of linear inequalities i.e. 

S o= {X l A X < b ,  X e R"}. (25.23) 

There are a number of ways to find such an S o. One possibility is to let S O be 
the set of all points X satisfying the linear constraints g~ (X) < 0 of the problem 
(25.20), provided the set is compact. Another reasonable procedure for choosing 
S O for many practical problems is to determine the lower and upper bounds L and 

J 

M. on the value of each variable X and define S O to be the rectangular hypersolid 
J J 

S O = { X I L  _< x _< M, j = 1, 2,...n} (25.24) 

Now solve the problem 

Minimize CrX (25.25) 

Subject to X ~ S O 

Let X o denote an optimal solution to the linear program (25.25) If X o ~ G, X o 
is an optimal solution to the problem (25.20) and the method terminates. 
Otherwise, go to step 2. 

Step 2. If X o does not satisfy the constraints of (25.20) then there is at 
least one constraint in G for which g~ (Xo) > 0. Let the most violated 
constraint be gr (X), i.e. 

g~ (Xo)= Max [g~ (Xo), g2 (Xo)'" gm (Xo)] > 0 (25.26) 

Consider the linear approximating constraint to gr(X) < 0, given by 

h o (X) - g~ (Xo) + Vg r (Xo) r ( X -  X0) _< 0 (25.27) 

Since all g~ are convex functions on G, we have 



376 Mathematical Programming: Theory and Methods 

h o (X) - g~ (Xo) + Vg~ (Xo) r ( X -  Xo) < g, (X), for all X eG. (25.28) 

Obviously, Vg~(Xo) r 0, otherwise, since g~(Xo) > 0, (25.28) will imply that 
the problem (25.20) is infeasible. 

Hence for all X e G, 

h o (X) _< gr (X) _< 0, 

SO that the linear constraint (25.27) is satisfied by all points of G but is not satisfied 
at the point X o since g~ (X o) > 0. Hence the constraint (25.27) cuts off a portion of 
the convex polyhedron S o, but not any portion of G. For this reason the hyperplane 
h0(X ) = 0 is called the cutting hyperplane and any algorithm based on the addition 
of (25.27) to the constraints of (25.25) is called the cutting plane algorithm. 

We now solve the problem 

Minimize CrX (25.29) 

Subject to X ~S~ 

where S~ = {XIX e S 0, and h o (X) < 0} 

Note that G c S ~ c So. 

Let Xl be an optimal solution of (25.29) (XI #Xo). If Xl e G, then XI is an 
optimal solution of (25.20) and the procedure terminates. 

If X~ ~G, go to step 3. 

Step 3. If X~ ~ G, proceeding as before we form a convex polyhedron S 2 by 
adding to the constraint set of (25.29), the cutting hyperplane 

h, (X) - g~, (X,) + V g~, (X,) r (X - X,) _< 0 (25.30) 

where gr, (X 1) = Max [g, (Xi) , g2 (Xl) ' '"  gm (Xl)] > 0 

and solve the problem 

Maximize CrX 

Subject to X E S, 

where $2.= { X I X E  S l and h~ (X) < 0} 

Continuing in this manner, we generate a sequence of nested convex, polyhedron 

{ S k} so that 

G c S k, Sk§ ~ c S k for k = 0, 1, 2... 

and a corresponding sequence of infeasible points {Xk} that converges to the optimal 
solution X* of the original problem (25.20). 

25.2.2. Convergence of the Algorithm 
Under some mild assumptions on the convex functions, convergence of Kelley's 

algorithm can be established as follows. 

Theorem 25.2. Let the convex functions g~, i = 1, 2...m be continuously 
differentiable on a compact convex set S O and suppose that there is a positive number 
M such that I g~ < (X)[ M, for all X E S o, i = 1, 2,...m. Further assume that the 
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feasible set G of the problem (25.20) is nonempty and is contained in S 0. Then, 
any limit point of the sequence generated by Kelley's algorithm is an optimal 
solution of the problem (25.20) 

Proof: Since S O is compact, the sequence {Xk} in S O has convergent subsequence 
with a limit in S o. 

Let {Xk}, k ~ K, where K is a subset of all positive integers, be a subsequence 

of {Xk}, converging to ~ .  Now, ifk,~ K k' ~ K, and k' > k, then we must have 

g, + Vg, _< 0 ,  

which implies that 

(xk) _<1 Vga (Xk)l I Xkl (25.31) 

Since [Vg~ (Xk) [ is bounded, the right hand side of (25.31) goes to zero as k 

and k' go to infinity. The left-hand side goes to ga ( ~ ) .  Thus ga ( ~ )  _< 0 and 

hence ~ is feasible for the problem (25.20). 

Now, if CrX * be the optimal value of the problem (25.20) then CTXk < CrX *, 
for each k since X k is obtained by minimizing CTX over a set containing G. Thus 

by cominuity C ~ ~ _< C~X * and hence ~ is an optimal solution of (25.20) 

However, the rate of convergence of the algorithm has not been satisfactorily 
analysed. In practice therefore, the algorithm is terminated when 

g, (Xk) _< ~, i = 1, 2,..m 

where ~> 0 is a small preselected tolerance limit. 

We should also note that in Kelley's algorithm, at each iteration one new 
constraint is added and this suggests that the dual simplex method can also be used 
at each stage. Moreover, computational efficiency of the algorithm can be increased 
by dropping some of the cutting plane constraints which are no longer meaningful. 
One way to do this is to discard all nonbinding cutting plane constraints at the end 
of each stage so that the linear programs do not grow too large. Convergence 
properties are not destroyed by this process since the sequence of objective values 
will still be monotically increasing. 

One may add all constraints of the form of (25.27) at each iteration, but this 
increases the size of the problem and therefore, the best scheme would probably to 
add a single linear constraint as discussed above. 

For other cutting plane methods see Zangwill [550] and Veinott [486]. 

25.2.3. Example 
Consider the following problem 

Minimize z = x~ - x 2 

Subject to g(X) - 3x~ z -  2XlX 2 + x22 - 1 _< O. 
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Since g(X) is convex, it is a convex programming problem and Kelley's  
algorithm may therefore be applied. From graphical representation, it can be seen 

that the optimal solution of the problem is X 'r = (0,1) and Min Z = - 1 .  

Let S O = {X I -2  < x~ < 2 , - 2  < x 2 < 2} which contains the feasible region G. 
of the given problem. 

We solve the linear program 

Minimize z = x~ - x 2 

Subject to -2  < x~ < 2 

-2_<x2_< 2 

It can be seen that the optimal solution of the problem is Xo~ = - 2 ,  Xo2 = 2, 
with z = - 4 

Since g(Xo) =23 > 0, X o is not feasible to the original problem. We therefore 
linearize g(X) at X o and get 

ho(X ) = g (X0) + Vg(Xo)T(X- Xo) =-16x~ + 8x 2 - 25 < 0 

We then solve the problem 

Minimize z = x~-  x 2 

Subject to X ~ S~ 

where S~ = {X 1-2 < x~ < 2, -2  < x2< x 2 and -16x~ + 8x 2 < 25} 

and obtain the optimal solution XT~ (--.5625, 2.0) with Z = -2.5625. 

Since g(X~) = 6.199 > 0, X~ is not feasible to the given problem. We therefore 
linearize g(X) about X~ and the next cutting plane constraint is 

hl(X ) -- g(Xl) -I- Vg(X,) T ( X -  Xl) 

=-7.375x~ + 5.125x 2 - 8 . 1 9 9  _< 0 

This gives the new linear program 

Minimize z = x~ - x 2 

Subject to X ~ S 2 

i.e. Minimize z = x~ - x 2 

Subject to -2_< x~ _< 2 

-2  _< x 2 < 2 

-16x~ + 8x 2 _~ 25 

--7.375X~ + 5.125X 2 < 8.199. 

We find that the optimal solution is 

X 2 = (.279, 2.000) with z - 1.722. 

The point X 2 still does not satisfy the constraint g(X)< 0 and the process is 

continued. The results thus obtained are given in the Table 25.1. 
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Table 25.1 

k X k z g(Xk) 

0 (-2.00, 2.00) -4.000 23.000 

1. (-.563, 2.000) -2.563 6.199 

2. (.279, 2.00) -1.722 2.120 

3. (-.530, .838) -1.367 1.431 

4. (-.053, 1.160) -1.213 .478 

5. (.427, 1.485) -1.058 .484 

6. (.171, 1.207) -1.036 .132 

7. (.0183, 1.041) -1.023 .047 

8. (-.166, .840) -1.007 .068 

9. (-.073, .930) -1.003 .017 

It is evident from the Table 25.1 that the optimal solution of the problem cannot 
be obtained in a finite number of iterations. This, in fact, is frequently the case in 
applications of Kelley's algorithm. We therefore continue the process till g(X) _< 
~, where ~> 0 is a preassigned tolerance limit. 

In this problem, we take ~= .02, and obtain an approximate optimal solution 
of the problem as. 

X T = (-.073, .930) with z = -1.003. 

25.3. Zoutendijk's Method of Feasible Directions 
Zoutendijk's method of feasible directions [563] is an iterative procedure for 

solving convex programming problems, which can be considered to be a large step 
gradient method. Starting with a feasible solution of the problem, the method 
generates a sequence of improving feasible solutions by moving along the usable 
directions and finally finds an optimal solution of the problem. 

Consider the problem 

Maximize 

Subject to 

f(x) 
gi (X) < b i , i ~I c 

a T, X _< ba , i ~I L 

0 < X < M  

where f(X) and g~ (X) are concave and convex functions of X ~ R n respectively. 

I c is a subset of a set of integers I = { 1,2,..m}, that is, I c c I. 

aa, i ~ I L are n component vectors and I L = I - I c 

(25.32) 
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b~ are scalars for i E I L -I- I c = I 

and M is an n-component vector, some or all components of which may be infinite. 

Further let J = { 1,2...n}. 

Then the feasible region R defined by the constraints of (25.32) is obviously 
convex. 

It is assumed that the functions f(X) and g~(X), i E I c are differentiable with 
continuous partial derivatives and further the nonlinear constraints satisfy the 
regularity condition: 

there exists an X e R, such that g~ (X) < b~ for all i e I c 
(25.33) 

Note that the regularity condition implies Kuhn-Tucker constraint qualification 

By definition, a direction S at X e R is called feasible if we do not immediately 
leave the region R, when making a sufficiently small move in the direction S, that 
is, S is called a feasible direction at X e R, if there exists a 5 > 0, such that X + 
;LS ~ R, for all ~. e (0, 5). Further, a feasible direction S at X ~ R  is called usable 
if f(X + ZS) > fiX), for all Z, e (0, 5) or equivalently, if 

( I i f ( X + ~ S ) ~  = Vf(x)Ts  >0  (25.34) 8;t. )~:o 
Theorem 25.3. If no feasible direction at X e R is usable then X maximiZes f(X) 
on R. 
Proof: Suppose that no feasible direction at X ~ R is usable and that X does not 
maximize fiX). 

Hence there exists Y e R such that flY) > fiX). Since fiX) is concave, we 
have 

0 < f ( Y ) -  f(X) < Vf(X) T ( Y -  X). 

Now, since Y-X is a feasible direction, it follows that it is also usable, which 
contradicts our assumption. 

Hence X maximizes f(X) on R. 

Now, for convenience, let the gradient vectors be denoted by 

I T of of ""OXn" h(X) = Vf(X) = .~,Ox2,. 

IT (25.35) 
c~gi agi .c~gi ,ieIc. 

q~ (X) = Vg~ (X) = c3x~' tgx 2 "" c~g n J 

and let for any X e  R, 
Ic(X) = {ilg~ (X)=  b~} 

IL(X ) = {i I ari X = b~} 

J,(X) = {j Ix  = 0} 
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J2(X) = {j i x  = M } ,  where J, (X) + J2 (X) = J and Mj is the jth 
componem of M. (25.36) 

and further let 

S lq i(X)s r < 0 ,  i e l c (X) ]  

S(X) = a?S ___ 0, i e I~ (X).~ 

sj > 0, i E Jl(X) / 

sj _< 0, i c J2 (X).J 

(25.37) 

Theorem 25.4. A feasible direction S at X ~ R belongs to S(X). (Exercise.) 

Theorem 25.5. If S ~ S(X) with qi(X)xS < 0, i ~ Ic(X ) then S is a feasible direction 
at X ~ R. If further h(X)TS > 0, then S is a usable feasible direction. 

Proof: Let S~S(X) satisfy q~(X)TS < 0 for i~Ic(X). By differentiability of gi '  we 

have 

g~ (X + ~S) = g, (X) + ;~q, (X)TS + ;~ IISIr cz (x;  ;~s). 

where cz(X; ;~S) -->0 as 2, ---> 0. 

and since q~ (X)TS < 0, then 

g~ (X + XS) < g~ (X) = b i , for X > 0 sufficiently small. 

Hence for iCIc(X ), gi (X+~.S) < b r 

For i r Ic(X ), g~ (X) < b~ and since g~ is continuous there exists a ~. > 0, 
sufficiently small such that g~ (X + ~S) _< b r 

Thus there exists a ~ > 0 such that 

g~ (X + 2.S) _< bi, for all i c I c. 

It can be easily shown that for some X > 0, (X + ~S) also satisfies all other 
constraints of the problem (25.32) 

Hence there exists a X > 0 such that X + XS ~ R and therefore S is a feasible 
direction at X ~ R. Now, since f is differentiable and h(X)T s > 0, by a similar 
argument we get 

f(X + )~S) > f iX),  for ~ > 0 sufficiently small which implies that S is a usable 
feasible direction. 

Theorem 25.6. A feasible point X e R maximizes f(X) on R if and only if 
h(X)TS < 0 for all S e S(X). 

Proof: Let S be a feasible direction at X eR. Then S eS(X) by theorem 25.4. 
Now, for all S c S(X) h(X)TS < 0 implies that there is no feasible direction S which 
is usable. Hence by theorem 25.3, X maximizes f(X) on R. 

Conversely, let X maximize f(X) on R and suppose that there exists an S e S(X) 
satisfying h(X)TS > 0. By our regularity condition, we know that there exists an 

e R ,  such that g , (~  ) < b~, for all i e I c. 

Let S = ~ _  X.  Since gi (X) are convex, we have 
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q~ (X) T [(X + (x, g ) - X] _~ g~ (X + cz g ) - g, (X)., for 0 < oc < 1 

or a q~ (X) T g ~ (I, [g~ ( ~ )  - g~ (X)] 

or qi (X) T S < 0 ,  for i e Ic(X ). 

Now, let S(X)= X S + g.  

It is easy to see that 

q~ (X)TS()L) < 0 ,  for i e Ic(X ). 

ai T S(M _< 0 ,  for i e IL(X ). 

[S(X)]j >_ 0 ,  for j ~ J~(X) 

and [S(X)]j _< 0 ,  for j e J2(X) 

Thus S(~,) belongs to S(X) with qi (X) TS < 0 

Hence, by theorem 25.5, S(g) is a feasible direction at X ~ R, for all ~ >_ 0. 

Moreover, h(X)TS(X) = Z, h(X)TS + h(X) T g 

Since h(X)TS > 0, ~, can be chosen large enough so that h(X)TS(~) > 0, 
which implies that S(~,) is a usable feasible direction and hence X cannot be a 
maximum point. 

T h e o r e m  25.7 A point X e R maximizes f(X) on R if and only if the gradient 
vector in X can be expressed as 

1 h(X)= Z uigi(X)+ Z u i a i - Z  vjej+ Z vjej2 
i~I c (x) i~I L (x) JeJI (x) J~J2 (X) 

(25.38) 

where u~ > 0 ,  v~ ~ > 0 v. 2 > 0 and e is the jth unit vector. - -  ~ ~ j ~ j 

Proof:  Suppose g(X) can be expressed as in (25.38). Then for any S e S(X), 
we have 

h ( X )  T S  E u ig i  ( X ) T S  + Z ui aTS E ' vjejSj + Z J2 = -- V ejSj _< 0 
i~I c (x) i~I L (x) J~Jt (x) J~J2 (x) 

so that by Theorem 25.6, X maximizes f(X) on R 

Conversely, if X maximizes f(X) on R, then by Theorem 25.6 we have 
h(X)TS < 0, for all S ~ S(X) 

that is, we have a solutions of 

q~ (X)TS _~ O, i e Ic(X). 

ai T S _~ O, i e I L(X). 

s.<O j e Jl(X) 

sj _< O, j e J2(X) 

and h(X)TS < 0 
Applying Farkas lemma, we then have. 

h(x)- Z u,g,(x)+ Z u a,- Z v',e, + Z +,. 
ieI c (x) ieIL (x) JeJI (x) J~J2 (X) 

~>0, ' >0  u~>_O, vj_ vj_ 
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25.3.1. Direction Finding Problem 
In order to find a usable feasible direction at a point X ~ R, we now consider 

the problem 

Maximize o 

Subject to q~ (X)rS + 0 i o ___ 0 ,  i e I c (X) 

aTi S < 0 ,  i e I L (X) 

s >__ 0 j e J l (X)  j 
< 0 ,  j e (x)  S j_  

- h (X) rS  + o < 0 (25.39) 

and a normalization requirement, where o is an extra variable and 0 i are arbitrary 
positive numbers. 

A normalization requirement is introduced in (25.39) to prevent a method of 
solution producing an infinite solution. 

For any (S, o) satisfying the constraints of (25.39) with o > 0, S will be a 
usable feasible direction since cr > 0 implies that q~ (X)TS < 0 for i~I (x)> and 

h(X)TS > 0. (Theorem 25.5) Thus if at X e R, (S, o',) is an optimal solution of 

(25.39), with ~. > 0, it will lead to the most suitable usable feasible direction and 

if ~r = 0, it can be shown that X maximizes fiX) on R. 

Theorem 25.8 A point X e R maximizes f(X) on R if and only if the optimal 
value of 6 in (25.39) is zero. 

Proof: The optimal value of o in (25.39) is zero if and only if the system of 
inequalities 

qi (X) TS + 0i (3' _<< 0 ,  i e I c (X) 

aTi S < 0 ,  i e I L (X) 

sj > 0 ,  j e J l (X) 

< 0 ,  j e J2 (X) (25.40) Sj__ 

-h(X)TS + o < 0 

and c r>0  

has no solution 

By Theorem 7.9, then there must exist a solution of 

1 2 = uoh(X) E qi (x)ui + Y'~ a i u , -  E ejvj + E ejvj (25.41) 
i~I c (x) ieI L (X) jeJ ! (x) jeJ 2 (x) 

E 0iUi -F U 0 -- 1. (25.42) 
i~Ic(x) 

1>0, jeJ~(X) and u0 >- 0,u~ _> 0, i e I~(X) + IL(X);v j_ 

Z>o, jeJz(X).  Vj-- 



384 Mathematical Programming: Theory and Methods 
, , , i ,  , , 

Now, if Uo> 0, it follows from (25.41) and Theorem 25.7 that X maximizes 
f(X) on R. If u 0 = 0, then the equation (25.42) implies that u~ > 0 for at least one 
i e Ic(X ) and. 

_ 1 2 . . . 0  q, (x)u, + E a~u~ ~ ejvj + ~ ejvj 
i~I~ (x) ieI L (x) J~Jt (x) JeJ2 (X) 

(25.43) 

which shows that the gradient vectors of the binding constraints are not linearly 
independent. Hence, Kuhn-Tucker constraint qualification does not hold and thus 
our regularity condition is violated. 

u 0 must therefore be positive and we arrive at an optimal solution of the 
problem. Zoutendijk suggested a number of conditions, one of which may be 
used as a normalization constraint in the direction finding problem (25.39) 

STS ~ 1 NI" 

N2: 

N3: 

-1 < sj < 1, for all j, 

sj <_ 1, if h(X) > 0 

sj_>-1, if h(X) < 0 

N4: (a) 6 _< 1, for the problem (25.39) 

(b) h(X)TS ___ 1 if the problem has no nonlinear constraint 

N5: q~ (X)TS + 0~ ~ < b~- g~ (X), if i~I c 

ai T S < b - ai T X, if i e I L 

- x j  < s < M j -  xj , j~J .  

The normalization N~: STS < 1, perhaps gives the best possible feasible 
direction since it makes the smallest angle with the gradient vector and will in 
general need a fewer steps than the other normalization constraints. On the other 
hand, the other normalization constraints, which are linear may need more steps 
but less computation in each step. Therefore, the relative merits of the different 
normalizations can be judged only after having computational experience with 
them. Obviously, other constraints can be used as normalization requirement 

We now discuss the computational aspect of the direction finding problem 
with STS < 1 as the normalization constraint. 

The direction finding problem now becomes 

Maximize 

Subject to qi (X) TS + Oi o" < O, i ~ I c (X) 

aTi S _< O, i ~ It, (X) 

> 0 ,  j ~ J, (X) Sj _ 

S _<0 j E J 2 ( X )  j 

-h(X)TS + o _< 0 

STS ~ 1 

(25.44) 
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The problem (25.44) can be expressed in the form 

Maximize c 

Subject to Q s + 0 g _< 0 

-1-1 ~X )~S + c _<0 (25.45) 

STS _<" 1. 

where Q = Q(X) is the matrix with rows 

q~ (X) T, i~I c (X) ;aTe, i~I L (X); e , j ~ J ~  (X); e , j ~ J 2  (X) 

and 0 is a vector with components 0 > 0, for i ~ Ic(X ) and equal to zero otherwise 

Theorem 25.9. If (S~, c~) is an optimal solution of the problem (25.45), it is 
proportional to the optimal solution (S 2, c2) of the problem 

Maximize c 

Subject to QS + 0 ~ _<0 

-h(X)rS + c _<0 (25.46) 

STS .Jr. (y2 ~" 1 

2 Proof: It is clear that S~/41+ ~ , cr~/ + 2 is feasible to (25.46) and that 

2 2 is feasible to (25.45). $2/41 cr 2 , ~,/~/1-cr2 

Hence 

(~l ~ > ~  
IJ 2 

2 (25.47) 

0" 2 > _ ~  
a 1 

41 + c2 (25.48) 

From (25.48), we get 

2 
2 < 0"2 

2 (25.49) 
1 + ( ~  2 

(25.47) and (25.49) then imply that 

(3"2 $2 
(Yl 

= .[vl + 13' 22 ' S~ x/1 c22 (25.50) 

~1 $2 $1 
= 2 ' 41+ 2 (25.51) Similarly, we have ~2 41 + ~ c~ 

This proves the theorem. 

From Theorem 25.9, we note that if c 2 - 0, then ~ = 0 and then S~ - 0, ~ - 
0 is an optimal solution of (25.45) and we arrive at an optimal solution of the 
original problem. If~2> 0, t~, is positive and S~ is then the usable feasible direction. 
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Thus through a solution of the problem (25.46), we can obtain a solution of 
the direction f'mding problem. 

The problem (25.46) is a convex programming problem with a linear objective 
function and linear and one quadratic constraints. It can however, be shown that 
this problem can be solved by any method for solving quadratic programming 
problems. 

The problem (25.46) is of the form 

Maximize pTX. 

Subject to AX < 0 

XTX < 1 (25.52) 

where pT = (0, 1); X T = (S, ~) and 

~ 
Now, consider the problem 

Minimize XTX. 

Subject to AX < 0 (25.53) 

pTX= 1. 

It can be easily seen that if the problem (25.53) is not feasible then the problem 
(25.52) must have an optimal solution with pTX = 0. 

Suppose now that X~ is an optimal solution of (25.52) with pTX~ > 0. In that 
case an optimal solution of the problem (25.52) can be obtained from an optimal 
solution of (25.53) which is a quadratic programming problem. 

Theorem 25.10 If the problem (25.52) is feasible with pTX > 0, then an optimal 
solution of the problem can be obtained from an optimal solution of the problem 
(25.53) 

Proof: Let X~ be an optimal solution of (25.52) Then pTX~ > 0 and for 13 = 1/pTX~, 
13X~ is feasible for (25.53). Suppose X 2 is an optimal solution of (25.53). Then 

- <__ f3 (XT, X , )  _< 13 . 

or cx_< 13. 

It is clear that X2/a is feasible fo~ .25.52) and hence 

p T x  2 = 1 > 1 = [3pTxI  = pTxl 

Since X~ is optimal for (25.52), cx must be equal to 13. 

Hence 

X2 _ X2 

(xlx ) 

must be an optimal Solution of (25.52) 
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We also note that if X~ is an optimal solution of (25.52) and PrX~ > 0 then 

X~X~ = 1 and further X~ is unique. 

25.3.2. Determination of the Length of the Steps 
After finding a usable feasible direction S at X ~ R, we now want to determine 

~,, the length of the step to be taken in the direction S, so that X + ~,S is an improved 
solution. 

The step length ~, can be obtained by solving the problem 

Maximize f(X + ~,S) 

Subject to 0 _< ~, _< ~0 (25.54) 

where ~'o = Max {~,IX + Z, S ~ R}. 

Since ~, is the only variable involved in the problem (X and S are known 
vectors), ~'o can be easily obtained, if all the constraints are linear. In the general 
case, we find the largest root of g~ (X + ~,S) = b~, for each i ~ I c and then take the 
smallest of the figures obtained. This can be done by using some numerical 

technique such as Newton's method. Let this value of ~, be denoted by ~,'. 

For the linear constraints, we define 
t t t ~'L = Min (~,'~,~,~, ~'3) (25.55) 

where EL =Min{ b` a~s-a~X a~S>0 f o r i ~ I  L --IL(X)}. 

~ , '2=MinlXJ[s j<O,  j ~ J j  L-Sjl -J~(X)} 

 nfMj xj I t = Sj>0,  j ~ J - J 2 ( X )  
sj 

~'o is then obtained as Z,o= Min (Z,'~ ,Z,L) (25.56) 

Note that the value of ~'o may be infinite if some of the M. are infinite and if 
J 

no finite value of ~, is optimal for (25.54), the original problem has an unbounded 
solution. 

It now remains to find a starting feasible solution to the problem to initiate the 
algorithm. 

25,3.3. Finding an Initial Feasible Solution 
Frequently, a feasible solution to the problem is immediately available. If 

however, an initial feasible solution is not readily available, we can obtain it as 
follows. 



388 Mathematical Programming" Theory and Methods 

The solution is obtained in two phases. 

Phase 1: Take any point ~ satisfying 0 _< ~ _< M and solve the problem 

Maximize - ~] (25.57) 

Subject to ari X-p i  ~1 < b~, i~I L 

0_< X_<M, ~ _> 0 

where ~ is an extra variable and p~, i~I L are nonnegative numbers with p~ = 0 if 
aTi X __< b i and Pi > 0 if ari X > b i . 

This is a linear programming problem and can be solved by the simplex method. 
An initial feasible solution to this problem is given by 

i m X = X ,  ~ ,=Max a? 
X bi 

Pi 
Pi >0] .  (25.58) 

If the constraint set R is not empty we will obtain an optimal solution ( ~ ~, ~ 

= 0) and ~ ~ will then satisfy the linear constraints of the original problem. If now 

g~(~ ~) < b~, for all i e I c, ~ ~e R and an initial feasible solution to the problem is 

obtained. If g~(X ~) > b~, for same i ~ I c, we proceed to phase 2: 

Phase 2: We now solve the problem 

Maximize -~2 

Subject to g~ (X) - ~t~ ~2 -< b~, i ~ I c 

aTi X _< b i , i ~ I L (25.59) 

0 < X < M ,  ~2>0. 

where ~2 is an extra variable and ~ i e I c are nonnegative numbers with [s = 0, if 

g i (x ~) -< b~ and ~i > 0, if g~(~ 1) > b~. 

An initial feasible solution to the problem (25.59) is 

X ~ = ~ '  

= Max t'/fi (X')-- - b i 

[ ~ti 
~t~ >0] (25.60) 

Since the problem (25.59) is a convex programming problem of the original 
type, the method of feasible directions can be applied to obtain an optimal solution 
to this problem with ~2 = 0, which can be taken as an initial feasible solution to 
the original problem. 

25.3,4, Summary of the Algorithm 
Step 1. Start with a feasible point X ~ and suppose that the algorithm has 

produced a sequence of feasible points X ~ X~,.. X k. 
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Step 2. Solve the kth direction finding problem, Let ~ k, ~ k be the optimal 

solution. 

-- k = 0, X. k is an optimal solution to the original problem and Step 3. (a). If c 

the process terminates 

(b). If ~ k > 0, S k = ~ k is a usable feasible direction at X k. 

Step 4. Determine the step length ~k. 

(a) If ~k = o0, the original problem is unbounded. 

(b) If ~k < oo, determine X k+' = X k + ~kSk and proceed to the next 
iteration. 

Step 5. Repeat the process from step 2. 

25.3.5. Convergence of the Procedure 
In Zoutendijk's method of feasible directions discussed above, convergence 

is not generally guaranteed. Recall that in the direction finding problem only the 
binding constraints are considered. The usable feasible directions S k at X k are thus 
chosen by examining only the binding constraints at X k, without any regard to other 
constraints. But if the point X k is close to any boundaries of the constraints not 
considered, the directions, S k thus chosen might point toward these close boundaries. 
The algorithm then generates a sequence of points {X k} such that the entire sequence 
converges to the corner point formed by these close boundaries thus causing 
jamming (zigzagging) at a nonoptimal point. 

It is therefore necessary to apply some device to avoid jamming in the direction 
finding problems to ensure convergence of fiX) to an optimal solution. One such 
device is the 'e-perturbation' method where feasible directions are determined by 
considering all constraints which are binding or almost binding at X k. 

The ~-Perturbation Method 
Let e > 0 be an arbitrary number. 

For X e R, we now define. 

I c ( X , e ) =  { i e I c l b  ~- e< g~(X) < b~} 

I L (X,e) = { ie lLlb  ~- e< ari X < b~} 

J, ( X , e )  = { j ~ J I 0  --- x. < e}. 
J 

J2 (X,e) = { j e J I M  - e< xj < M}. 

The direction finding problem (25.39) now becomes, 

Maximize (~ 

Subject to qi (X) TS + 0i c ___ 0 ,  i e I c (X,e) 

a T, S_< 0 ,  i e I L (X,e) 

> 0 , j  e J, (X,e) Sj __ 

(25.61) 
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s < 0  j ~ J2(X,~) j 

-h(X)TS + c < 0 (25.62) 

SrS < 1 

If (S,o)be the optimal solution of (25.62) with ~r < ~, we replace e by e /  

2 and solve the direction finding problem again. If o < ;5 a pre-specified small 

positive number called the termination constant, then the process terminates and 

X is an optimal solution of the original problem. Otherwise, ~ will be the usable 

feasible direction with no danger of jamming. 

For proofs and detail discussion on convergence, refer to Zoutendijk [563] 
and Zangwill [550]. Also, see Topkis and Veinott [471] 

25.3.6. Summary of the Algorithm using Perturbation Method 
l. Start with a feasible point X ~ and suppose that the algorithm has produced 

a sequence of feasible points X ~ X~,.. X k and perturbation constants ~ ,  

E2~-. E k- 

2. Solve the kth direction finding problem (25.62) using e = ek" Let ~ k, o" k 

be the optimal solution. 

3. a) If ~ k < ek' then replace e k by ~k/2 and solve the direction finding 

problem again. 

b) If ~ k < 5 (the termination constant), the process terminates and X k 

is an optimal solution of the original problem; otherwise set ~k+~=~r 
2 and proceed to next step. 

c) If ~ k >_ ek ' then S k = ~ k is a usable feasible direction at X k. 

4. Determine the step length ~3 

If Z3 = oo, the original problem is unbounded and the process terminates; 
otherwise X k+~ = X k + ~kSk and proceed to the next iteration. 

5. Repeat the process from step 2. 

25.3.7. The Case of Linear Constraints 
Consider the problem 

Maximize 

Subject to 

r(x) 
A X < b  

EX = d 
0 < X < M (25.63) 

where f(X) is a concave differentiable function of X e R ", A is an m • n matrix, E 
is an 1 x n matrix, b is an m-vector, d is an 1-vector and M is a vector of n 
components, some or all of which may be infinite. Let R denote the feasible set 

of the problem. 
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It can be seen from the previous result that in this case the following steps 
are to be followed to obtain a solution of the problem. 

Step 1. Find an initial feasible solution X ~ to the problem and suppose that 
the algorithm has produced a sequence of feasible points X ~ X~,.. 
X k. 

Step 2. At X k, solve the direction finding problem. The direction, finding 
problem, in this case reduces to 

Maximize h(Xk)rS 

Subject to A~ S _< 0 ,  i ~ I L (X). 

ES - 0 
> 0 ,  j ~ J~(X) (25.64) Sj_ 

s < 0, j ~ JE(X). j 
and one of the normalization constraints N~, N2, N3, N 4 (b). 

Let S k be an optimal solution of (25.64) 

(a) Ifh(Xk)TSk = 0, then X k is an optimal solution of (25.63) and the algorithm 
terminates. 

(b) Ifh(Xk)rSk> 0, S k is a usable feasible direction and go to step 3. 

Step 3. Determine the step length ~k by solving 

Maximize f(X k + ~, S k) 

Subject to 0 < ~, < ~-0 

where Z o = max {;LIX k + ;L S k ~ R}. 

(a) If ;L k = oo, the problem (25.63) is unbounded 

(b) If Z k < oo, determine X k+~ = X k + ;LkS k and proceed to the next step. 

Step 4. Repeat the process from step 2. 

25.3.8. Example 
Consider the problem 

Maximize 

Subject to 

_ x 2 f(X) = 3x~ + 2x 2 + x1x 2 -X21 2 

5X~ + X 2 __< 5 

Xl + X 2 < 2  

X~>__O 

X2>__ 0 
Note that the constraints are linear only. 

Vf(X) = h(X) = 2 + x 1 - 2x z 

Let the initial point be 

(25.65) 
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Direction Finding Problem" At the point X ~ the third and the fourth constraints 
are binding and the direction finding problem is then 

Maximize h (X~ = 3s~ + 2s 2 

Subject to -s~ _< 0. 

- s  2 < 0. (25.66) 

- l < s < l  
1 ~  ~ 

- 1 <  $2< 1. 

where we u s e - 1  < S< 1 as our normalization constraint. 

o _ 1, o= 1 and h(X~176 0. The direction S O The optimal solution is s~ S 2 , 

therefore, is a usable feasible direction. 

Finding Step Length 

X o = Min[i bi -a~X~ ~ aT S~ > 01" for nonbinding constraints 

- . 

The value of ~o is then obtained by solving 

Maximize f(X ~ + X S ~ = 5 X -  X 2 

Subject to 0 _< X < 5/6. 

Now, df  (X ~ + XS~ - 0 - >  5 - 2~, = 0 so that ~, 
o p t  

Hence the desired steps length ~o = 5/6 and 

= 5/2. 

At X~= , h(X ~  ,/6j 'L7/6j and 

the first constraint is binding. 

The direction finding problem is then 

Maximize h(Xl)TS = 13/6 s I + 7/6 s 2 

Subject to 5s~ + s 2 < 0. (25.67) 

- 1 <  s I < 1 

--1_<$2_< 1. 

It is clear from the Figure 25.1 that the optimal solution to the above problem 
is s z = -1/5, s 2 = 1 and h(Xl)TSl > 0, SO that the direction S ~ is usable. 
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Finding Step Length 

Zo =Min i  2 - 2X5 / 6 4 / 5  '1/55/6] 

=Min , = ~-~ 

The value of Z ~ is obtained by solving. 

Maximize f (X~+ ~,S ~) = 22/30 ;it,- 31/25 ~2 

Subject to 0 < ~, < 5/12 

df 55 
- - = 0 : : ~  ~,= 
dZ 186 

Thus ~,~ = 55/186 and 

: x ,  + 
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Direction Finding Problem 
At X 2, the first constraint is binding and h(X2)TS = 80/31 s~ + 16/31 s 2 

Hence we 

Maximize 

Subject to 

h(X2)TS = 80/31 s] + 16/31 s 2 

5s, + s 2 _< 0. 

-1_< s~ <1 

-1 <s2<  1. 

(25.68) 

h(x~)rs for Problem (25.67) 

$2 

(-1, 1) 

m 

(-1,-1) 

(1,1) 

I% 

\ 

%% 

-,----~ S l 

(1, -1) 

Also, h(x2)rs for Problem (25.68) 

Figure 25.2 
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From the Figure 25.2, we note that s 2 = (-1/5, 1) T and s 2 = (1/5,-1) T and every 
convex combination of these optimizes the above problem. Hence there exist 
multiple optimal solutions of the problem and the optimal value of h(XZ)TS = 0. 
Hence X 2 = (24/31, 35/31) is an optimal solution to the original problem. 

25.4. Rosen's Gradient Projection Method 
In this section we shall discuss another feasible direction method for 

maximizing a concave function under linear constraints~the gradient projection 
method developed by J. B. Rosen [382]. 

For an unconstrained maximization problem, one can improve the value of 
the function by moving in the direction of its gradient. However, in the presence 
of constraints, this method may lead to infeasible points. Zoutendijk therefore 
considered a vector which makes an acute angle with the gradient of the objective 
function as the usable feasible direction. Rosen's method is to project the gradient 
onto the boundary of the feasible domain and then proceed in the direction of this 
projection. 

Consider the problem, 

Maximize f(X) 

Subject to ATX < b (25.69) 

where f(X) is a differentiable concave function of X~ R", A = (a~, a2,..am), a i ~ R" 
and b is an m-component vector. 

Then the feasible region defined by the constraints of (25.69) is convex. 

Suppose that starting with a feasible point X ~ after k iterations we obtain the 
feasible solution X k, which is a boundary point and lies on exactly q hyperplanes. 
Without loss of generality, we assume that these are the first q hyperplanes, so that 

aTi X k -  b i=  0 ,  i = 1,2..q (25.70) 

aT i X k - b i < 0 ,  i = q+ 1 ..m (25.71) 

Now, (25.70) can be conveniently expressed as 

A T X k -  bq = 0. (25.72) q 
where Aq = (a~, a2..aq) and  b q = (b~, b 2, bq) T. 

Assume that a~, a 2 , .  aq are linearly independent so that the binding constraints 
at X k are linearly independent. 

Let V denote the ( n -  q) dimensional linear subspace defined by the intersection 
of the q hyperplanes (25.72) and since the vectors a~, a 2, .. a are normal to V, q 
the q-dimensional linear subspace spanned by the columns of A is orthogonal to q 

V. Let this be denoted by.  Q.  Q is thus the set of points. 

X = ~ a i u  i =AqO (24.73) 
i=l 

where U = (Ul, U2,...Uq) T 
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V and ~ are orthogonal to each other and together they span the whole 

space R". Any vector X ~ R" can then be expressed uniquely as 

X = X v + X; (25.74) 

where X v lies in Cr and X v is in the linear subspace parallel to V and by the 

orthoganility of V and 

T 
XvX ~ =0  

Before we proceed to discuss Rosen's algorithm, we first consider the definition 
of a projection matrix. 

25.4.1. The Projection Matrix 
An n • n matrix P is called a projection matrix i f  P = pT and PP = P. 

It can be easily seen that 

(i) a projection matrix is positive semidefinite and 

(ii) P is a projection matrix if and only if Q = I -  P is a projection matrix. 

Define the matrix 

Aq T -1  T = (AqAq) Aq 

Since the columns of Aq are linearly independent, the q x q symmetric matrix 
AqVAq is nonsingular and therefore its inverse (AZqAq) -~ exists. 

Lemma 25.2 The matrix pq is a projection matrix which projects any vector 

X E R n into ~ .  

Proof: pq is symmetric and pq pq - pq and hence pq is a projection matrix. 

Let X ~ R", then 

PqX [Aq(ATA ) -' "-- q A~](Xv + X~)" 

Since X v is orthogonal to all vectors in ~r AVq X v = 0 and we have 

 qX- A (Aq Aq)-'Aq X: 

- Aq(A~Aq)-' - A~.AqU (25.76) 

=AqU =X v. 

Theorem 25.11. P = I -  pqis a projection matrix which projects any vector 
q 

X e R n into the orthogonal complement of ~r 

Proof: From (25.74) we have 
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X~ =X-X~ 

=X-13qX 

Thus PqX = X v (25.77) 
where Pq = I -  Aq(ArqAq) -i Arq 

and X v is the projection of X into the orthogonal complement of the subspace 

~ ,  generated by the columns of Aq. Also, we note that PqX, = 0 and PqXv=X v. 

Corollary 25.4.1 
A necessary and sufficient condition that a nonzero vector X be linearly 

independent of a~, a~,...aq is that PqX ;~ 0. 

25.4.2. Rosen's Algorithm 
We now describe the optimization procedure for the problem (25.69) as 

developed by Rosen. 

It has already been pointed out that in the presence of constraints, moving along 
the direction of the gradient of the objective function may lead to infeasible points. 
Rosen therefore considered the projection of the gradient onto the boundary of the 
feasible domain as the feasible direction, moving in which it is possible to improve 
the value of the objective function. 

Let for convenience, the gradient of the objective function be denoted by h(X), 
so that 

Of 
Vf(X) = h(X) 0x, ' ~ z  o~x. (25.78) 

Theorem 25.12 Let X k be a boundary point of the feasible domain R which lies 
on exactly q (1 _< q < n) hyperplanes which are assumed to be linearly independent. 
Then X k is an optimal solution to the problem (25.69) if and only if 

Pqh(X k) = 0 (25.79) 

and (ArqAq) -I A~ h(X ~) > 0 (25.80) 

Proof: The condition (25.79) implies that h (X k) is orthogonal to the subspace V 

and hence lies in ~ .  h(X k) can therefore be expressed uniquely as 

h(X k) = AqU (25.81 ) 

where U = (Ul, U2,..Uq) T 

Substituting (25.81) in (25.80) we find that the condition (25.80) implies that 

U >_ 0 (25.82) 
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Thus the conditions (25.79), (25.80) reduce to 

h (X k) - AqO = 0 (25.83) 

U > 0. (25.84) 

Now taking u~ corresponding to nonbinding constraints (25.71) to be zero, 
we find that the relations (25.83), (25.84) along with (25.70), (25.71) satisfy 
the K-T necessary and sufficient conditions for optimality and hence X k is a global 
optimal solution to the problem. 

It should be noted that if q = 0, that is if X k is an interior point of the feasible 
domain, the optimality criterion reduces to 

h(X k) : Vf(X k) = 0. (25.85) 

25.4.3. Determination of Usable Feasible Directions 
Suppose now that the conditions for optimality are not satisfied. Two cases 

may arise. 

(i) Pqh (X k) , 0 

(ii) Pqh (X k) = 0, but u~ < 0 for at least one i. 

It will be shown below that in such cases a feasible direction can be found, 
moving in which a feasible point can be obtained with an improved value of the 
objective function. 

Case (i): 

Theorem 25.13: Let X k be a feasible solution to the problem (25.69), at which 
the first q constraints are binding and suppose that the vectors a~, a 2, ... aq are linearly 
independent. Let Pqh(X k) ~e 0. Then Pqh(X k) is a usable feasible direction at X k. 

Proof: Let eqh(X k) = S k, S k ~: 0. 

and consider the point 

X k§ = X k + ~ S k , where E is a scalar. 

For i = 1,2,...q, 

aTi (X k + ~. S k) = aT i X k + E aTi S k 

= aTi X k + ~ aTi Pq h(X k) 

= a~ X k since A T P = 0 q q 
= b~, for all ~,. 

For i = q + 1,...m 
aT~ (X k + ;~ S ~) = a~ X k + ~. aT~ S k 

Since a~rXk < b~, there exists a ~, > 0, such that 

aTi (X k + ~, S k) < b i 

Thus S k is a feasible direction. 

Now, Vf(Xk)rS k= h(Xk)TPqh(X k) 

= h(Xk)TpqTpqh(Xk). 

(25.86) 

(25.87) 
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= (s~)~s  ~ > o. ( 2 5 . 8 8 )  

Thus (25.88), [see section 25.3] implies that Pqh(X k) = S k is a usable feasible 
direction. 

25.4.4. Determination of the Length of the Steps 
Having found the usable feasible direction S k at X k, we now determine the step 

length ~,, that will yield the greatest increase in the value of the objective function. 

It is easily seen that the largest value of ~ for which X k + ~S k is a feasible 
point is given by 

E ' = M i n { b ~ - a ~ X k  .r k } 
�9 a~Sk a~ S > 0,  i = q + 1,...m > 0 (25.89) 

If however, a~rS k < 0, for all nonbinding constraints, ~ '=  

We then determine a E in the interval 0 < ~ < ~', so that at (X k + ESk), the 
objective function has the maximum possible value. 

To find the desired step length Ek, we solve the one-dimensional problem 

Maximize f(X k + Z k) 

Subject to 0 < Z < L' (25.90) 

If Z ' =  0% and no finite value of ~ is optimal for the problem (25.90), the 
original problem has an unbounded solution. Otherwise, we take the next feasible 
point as X k+~ = X k + ~kSk. 

Case (ii): We now consider the case when Pqh(X k) = 0 but u~ < 0, for at least 
one i (i = 1,2,..q). The current solution X k is then not an optimal solution and we 
therefore proceed to find a usable feasible direction at X k. We select one of the 

= < 0 (in practice however, the indices i for which u~ < 0, say i q, so that Uq 
index i is selected by some rule such as selecting i for which lail U i is most 
negative) and then disregard the q th hyperplane as if X k lies on the first ( q -  1) 
hyperplanes only. We now show that, we can then find a usable feasible direction 
at X k, so that moving along this direction a better solution can be obtained. 

Theorem 25.14. Let X k be a feasible solution to the problem (25.69) at which 
the first q constraints are binding and suppose that the vectors a~, a 2, .. aq are 
linearly independent. Let Pqh(X k) = 0 and u < 0. If the qth hyperplane is relaxed 
and it is considered as if at X k only the firstq(q- 1) constraints are binding, then 
Pq_~ h(X k) is a usable feasible direction where Pq_~ is the projection matrix 

)-1 A T associated with  Aq_l, that is Pq-l = I -  Aq_ 1 (ATq_1 Aq_] q-I 

Proof." Since Pq_lAq_l = 0 and a is independent of a~, a 2, .. aq l' we have Pq laq ,= 0 
and thus 

Pq-I h(Xk) = Pq-I AqU 

= UqPq_, a r 0 (25.91) 
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Let  Pq_lh(X k) = S k, S k * 0 , and consider the point X k+l "- X k + ~S  k, where 

is a scalar 

Then, for i = 1,2,..q-1 
aT~ (X k + ~, S k) = ar X k + ;~ a r, Pq_, h(X k) 

=aT~X k since A T P = 0  q-1 q-1 

= b i , for all ~. 

and for i = q+ 1,...m 

d i (X k + ~, S k) = a~i X k + ~ ari S k 

Since a i rXk < bi,  there exists a 9~ > O, such that  a i r (x  k + ~ S k) _< b i . 

Moreover, for i = q, 
aTq (X k + ~, S k) = a rq Xk + ~, a xq Sk 

- a  T X k+~, P h(X k) q aTq q-1 

= a Tq X k + ~, Uq a~q Pq_~ aq, by (25.9 l) 

= a Tq X k -Jr- ~ Uq aTq pTq_ 1 Pq_~ aq. 

= a rq X k + ~L Ha [1 eql- aq I12 . 

< b~, for ~ > 0 

Hence S k is a feasible direction. 

As in case (i), it can now be shown that Vf(X) T S k > 0, so that S k is a usable 
feasible direction at X k and we proceed to find the optimal step length ~k, SO that 
(X k + ~,kSk) yields the maximum possible value of the objective function. 

25.4.5. Summary of the Algorithm 
The various steps of the gradient projection method can now be stated as 

follows. 

Step l: Find a feasible point X ~ for the problem. After k-iterations, suppose 
that the feasible point X k is obtained. 

Step 2: Identify the q independent constraints that are binding at X k. 

Step 3" Compute Pq, Pqh(X k) and U 

Step 4 (a): I f  Pqh(X k) - 0 and U >_ 0, then X k is an optimal solution and the 
process terminates. 

Step 4 (b)" If Pqh(X k) ~ 0, S k - Pqh(X k) is a usable feasible direction and 
go to step 5. 

Step 4 (c): I f  Pqh(X k) = 0 and ui < 0 for at least one i, select any one of 
them say 'u  < 0 and disregard the qth binding constraint. Then 
Sk = Pq-1 h()~k) is a usable feasible direction and go to step 5. 

Step 5: Determine the largest permitted step length X' by (25.89) 

Step 6: Find the desired step length ~k by solving 

Maximize f(Xk+ ~, S k) 
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Subject to 0 ~ X < X'. 

If ~,' = oo and no finite value of X is optimal, the original problem 
has an unbounded solution. Otherwise set X k+~ = X k + XkS k and go 
to step 2 and repeat the process. 

To this day, no convergence proof for Rosen's method is available, neither is 
there a counter example. Indeed, the method has been used successfully for 
numerous nonlinear programming problems and jamming has never been detected. 
Readers interested in detail discussiom convergence theory should consult Zangwill 
[550] and Luemberger [306]. 

We have discussed the gradient projection method for maximizing a concave 
objective function under linear constraints. It should be noted that if the objective 
ftmction is a general nonlinear differentiable function, the conditions (25.83), 
(25.84), (25.70), (25.71) are the K-T necessary conditions for optimal@ and thus 
any feasible point for the problem satisfying them is a local optimal point. 

The gradient projection method can also be applied to a more general case, 
where nonlinearity occurs in both the objective function and the constraints. For a 
discussion on such a case, the reader is referred to Rosen [382]. Also, see 
Goldfarb [201] and Davies [ 123 ]. 

25.4.6. Example 
Consider the problem, 

Maximize 

Subject to 

f(X) = 3x~ + 2x~ - x~ 2 -  Xz2 + x~x 2 

5x~ + x~ < 5 

x~ + x 2 < 2  

x~>0 

x >_0 
The problem can be expressed as 

Maximize 

where 

f(X) = pTX- XTCX. 

ATX < b. 

(3, 2) 

C= -1/2  1 ' 

5 

AT = 1 
--'1 

0 

1 

and 
b ~  

5 

i 
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Iteration 1. The initial point is selected which satisfy the first two constraints 

X ~ = (Arq) ' bq 
q = 2 = n .  

1 (: :/ -4 "= , (Aqr)-' = Aq 

xO =(3/4" 
Hence ~,5/4 

X ~ > 0 and therefore X ~ is a feasible point. 

At X ~ = , wehave 

Vf(X ~ = h(X ~ = P -  2 c X ~ 

I 

=[32]-2[-II/2 -1,21 ] [~//:] =[ll/41LI/4j 

as equalities. 
Thus 
where 

Since q = n Pq h (X ~ = 0 and 

Then, 

)-l = ( 2 / 1 6  6/16 ](5 i ) = ( 1 / 4  - 1 / 4  / 
(A~Aq Aq T t,-6/16 26/16)~1 ~,-1/4 5 /4)"  

U r )-,Aqrh(XO) = (AqAq 

= ( 1 / 4  - 1 / 4 / ( 1 1 / 4 1 = ( 1 0 / 1 6 ) = I u ~ 1  
~,-1/4 5 / 4 J ~ , 1 / 4 )  ~,-6/16) u 2 

-5 /26]  

25/26 

since U 2 < 0,  the second constraint is discarded. 

r (5 1),(A r "r )-, 1 Now, Aq qAq) = 26, = ~  = (Aqqq 26 

-A.fA.A.A. Pq=I r )-, x 

= 2-g~, 5 5/=1,,-5/26 

=(  6 /4•  1 
S~ = Pqh(X~ ~,-30/4 x 26) 
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. �9 H ,  

since A3rS ~ < 0, we compute 

o 
/ 26 13 

( 6 /4x26  '~ = 6 3 
(0 -1 ) l_30 /4x  26) 

13 
Hence L ' =  ---. 

3 

Therefore, the optimal value of Z, = Z, ~ for which X ~ + ~,~176 is feasible is 
obtained from the solution of 

Maximize f (X ~ + 9~ S ~ 

Subject to 0 < ~, < 13/3 

which is reduced to 

Maximize 26Z,-31L 2 

Subject to 0 < ~, < 13/3. 

The optimal solution is Zo = 13/31 so that 

X~=xO+zOsO=(3 / : )+13 (  6 /4x26 ~ = ( 2 4 / 3 1 )  
5/ " ~ , - 3 0 / 4  x 26J k,35/31 

Iteration 2. Atthe point X~ = 24/31) ( 1~ 
~,35/3 ' 

the first constraint is binding and. 

(8~ Vf(X ~) = h(X')= 16/3 

r = (5 ,1 ) . ,  ( A r A q )  -' = 1 
Aq 26 

Thus again 

Pq I Aq(ATAq) -1 T_..( 1/26 
- - -  Aq ~-5/26 

-5/26~ 

25/26) 

We then have 

S o Pq 
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r )-' A~h(X' u 1 = (AqAq ). 

_ 1 (5 1) > 0 
26 16/3 31 

Hence the point X ' =  (24  3 5 / r  ~ i"  31 ) is optimal for the problem. 

25.5. Wolfe's Reduced Gradient Method 

In this section we describe the reduced gradient method to solve a nonlinear 
programming problem with linear constraints, first developed by Wolfe [527]. From 
a computional viewpoint, the reduced gradient method is closely related to the 
simplex method for linear programming. It consists in partitioning the feasible 
solution of the problem into sets of dependent (basic) and independent (nonbasic) 
variables and to consider the problem only in terms of the independent variables, 
thus reducing the dimensionality of the problem. Like the gradient projection method, 
the method then proceeds to generate usable feasible directions and finally finds a 
feasible solution which is a Kuhn-Tueker point, i.e. it satisfies the Kuhn-Tucker 
conditions. 

Consider the problem 

Maximize 

Subject to 
fiX). 
AX = b (25.92) 

X > 0  

where X ~ R", A is an m • n matrix of rank m, b is an m-vector and f is a 
continuously differentiable function on R". 

We make the nondegeneraey assumption that every set of m columns of A are 
linearly independent and every basic solution to the constraints has m strictly 
positive variables. With this assumption, any feasible solution will have atmost 
n -  m zero variables. 

Let X be a feasible solution. We partition A into [B, N] and X "r into IX~, XrN ], 

where B is an m • m nonsingular matrix and X B > 0, X N are basic and nonbasic 
vectors respectively. The components of X N may either be positive or zero. 

We then have 

X B = B -l b - B -1N X N. 

The objective function f can then be expressed as a function of the independent 
variables only and the gradient with respect to the independent variables (the 
reduced gradient) is found by evaluating the gradient of f (B -~ b - B -~ N X N, XN). 

It is given by 

rVN = V N f(X) T-  ~7 B f(X) T B-' N (25.93) 
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where V B fiX) and V N f(X) are the gradients of f with respect to X B and X N 
respectively. 

Thus fiX) r =  [0 r , r ~  ] (25.94) 

Now, we define a direction vector S so that it is a usable feasible direction 
of f at X, i.e. S is such that AS = 0, and sj _> 0 if xj = 0 and Vf(X) r S > 0. 

Let the direction vector S be decomposed into S r = [SrB,SrN] and is defined 

as follows. 

0 if %___0 andxNj =0 
= , (25.95) 

sNJ rNJ otherwise 

and S B = - B  -l N S N (25.96) 

The following theorem shows that the direction vector S defined above is a 
usable feasible direction if S r 0. 

Theorem 25.15 

Consider the problem (25.92) where the m • n matrix A is partitioned into A 
= [B, N] and B is an m x m nonsingular matrix. Let X be a feasible solution to the 
problem such that X = [X s, XN] and X s > 0. Let S T = [Ss r, SN r] be the direction 
vector given by (25.95), (25.96). Then S is a usable feasible direction at X if S 
0. Further, S = 0 if and only if X is a Kuhn-Tucker point. 

Proof: Note that S is a feasible direction if and only if AS = 0 and Sj > 0 if xj = 0, 
for j = 1,2,..n. 

Now, by definition of S, 

AS = BS s + NS N = B ( - B  -1 NSN) + NS N = 0 (25.97) 

If x is basic, then by assumptions x > 0 and if x is nonbasic then by (25.95) 
J J J ) 

sj could be negative only if and if the nonbasic x = 0, s > 0. Hence S is a feasible 
direction. 

Further, 

Vf(X) T S = [V B f(X) v, VN fiX) r] [STs, STN] : rTs S N (25.98) 

It is obvious from (25.95) that Vf(X) r > 0 and equality holds if and only if S N 
= 0. In that case S B = 0 and therefore S = 0. Hence, if S r 0, Vf(X) r > 0 and then 

S is a usable feasible direction. 

Now, the feasible point X is a Kuhn-Tucker point if and only if there exists 
a vector V e R m such that 

V B f(X) + B W  < 0, 

v N f (x )  + N W  _< 0, 

[V B f(X) + BW]TXB = O, 

[V N f(X) + NrvIT XN = O, 

(25.99) 

(25.100) 

(25.101) 

(25.102) 

Since Xa > 0, from (25.101) we have, V B f(X) + B W  = 0 and hence 

v = - ( B - , y  fix).  



Methods of Nonlinear Programming 405 

Substituting the value of V in (25.100), we get 

V N f ( X ) -  (B -1 N) T V B f(X) _< 0 

or, r N < 0 

and from (25.102), we have 

r T X N = 0 (25.104) 

By definition of S, we note that the above two conditions (25.103) and 
(25.104) hold if and only if S N - 0 and hence by (25.96), S B = 0. Thus, X is a 
Kuhn-Tucker point if and only if S - 0. 

Note that if the objective function f is concave, the solution X is global optimal. 

(25.103) 

25.5.1. Determination of the Step Length 
Having found a usable feasible direction S at X we want to improve the 

solution X by continuing moving in the direction S until either the objective function 
stops improving or a boundary of the feasible region is encountered (i.e. a variable 
is driven to zero). To determine the maximum possible step length, Xm~x,We 
compute 

min( x, ) = _ �9 S n j < 0  

SNj 

min( 1 = _ �9 S B j < 0  

SBj 

Then 

and 

= I min (A 1 , 22 ) if S ~ 0 

Amax Loo, i f s  > 0 (25.105) 

The desired step length ~, must therefore be less than or equal to  ~max" This 
is obtained by solving the problem 

Maximize f(X + ~, S) 

Subject to 0 < ~, _< ~'m~x (25.106) 

This is an one-dimensional problem and can easily be solved. If however, 
~'m~x = oO and no finite value of ~, is optimal for (25.106), the solution to the 
original problem is unbounded. 

25.5.2. Summary of the Algorithm 
We now summarize Wolfe's reduced gradient algorithm for solving the 

problem (25.92) 

Step 1. Find a feasible point X ~. If such a point is not immediately available, 
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the Phase 1 approach of the simplex algorithm may be used. 

Suppose that the feasible points X ~, X 2, ... X k have already been produced 

by the algorithm. 

Step 2. At the feasible point X k with the basis matrix B k, find S k from (25.95) 

and (25.96). If S k = 0, the process terminates; X k is a Kuhn-Tucker  point. 

Otherwise, proceed to step 3. 

Step 3. Obtain the step length ~k by solving the problem (25.106) 
(a) If Z k = oo, the solution of the original problem is unbounded and the process 

terminates. 

(b) If Zk is finite, X k§ = X k + ZkSk is the next feasible point. If ~k < zk 2 [see 

(25.105)], we do not change the basis. Otherwise, for some index j, 

k ~k k k xBj + sj = 0 and xBj is dropped from the set of  basic variables in 

exchange of the largest positive nonbasic variable. Thus form the new basis 

matrix B k§ and repeat the step 2. 

25.5.3. Example 
Consider the problem 

Maximize 

Subject to 

f(X) = 18x 2 - x~ 2 + x~x 2 - x22 

Iteration 1 

Let us take 

x~ + x 2 + x 3 = 12 

x~ - x 2 + x 4 = 6 

xj_>0,j = 1 , 2 , 3 , 4 .  

x ~  = (x~, x J ,  x N = (x,,  x~) T so that 

 /10  Cll '/1 
and the initial feasible point 

X l = (0, 0, 12, 6) r 

Note that 

V f ( X ) -  (-2x~ + x 2 , 18 + x I - 2 x  2 , 0, 0) r 

and thus Vf(X ~) = (0, 18, 0, 0) T. 

From (25.93), the reduced gradient is obtained as 

(: 
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The above information is recorded in the tableau below 

x B x~ x 2 x 3 x, 

x 3 1 1 1 0 

x 4 1 -1 0 1 
i 

Solution X ~ 0 0 12 6 

Vf  (X ~) 0 18 0 0 

r~ 0 18 - - 

407 

By (25.95), (25.96), we then have 

/ 18 and 

(-i :1 
Hence S 1 = (0, 18, -18 ,  18) T 

Note  that X3, X 4 are the basic variables and x], X 2 a r e  nonbasic.  

We now compute  the step length ~,~ along the direction S I. By (25.105) we 

have ~'m~x = 2/3 = kl 2 and ~,~ is determined from the optimal solution of  the problem 

Maximize  f(X ~ + ~, S ~) = (18) 2 ~, - (18) 2 X2 

Subject to 0 < X 2/3 

~, =1/2. 
opt 

Hence ~l = 1/2 and 

x 2 = (X l + ~l S ~) = (0, 9, 3, 15) T. 

Iteration 2 

2 
Since ~ < ~,~2 = -~, we do not change the basic and 

1 
at X:, B=(a3 ,  a4) = 0 

and Vf(X 2) = (9, 0, 0, 0) T 

We then have 

l: 11/ 
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The new tableau is now as follows: 

xB 

x3 
x, 

Solution X 2 

vf  (x ~) 

X l X 2 X 3 X 4 
| 

1 1 1 0 

1 -1  0 1 

0 9 3 15 

9 0 0 0 

9 0 - - 

By (25.95) we have 

S r -(901 
_.-, (: ,)(90): (:99) Then $2 = NSs = -  1 

Hence S 2 = (9, 0, -9 ,  -9 )  r 

Now, to compute step length X2, we obtain X=~ = 1/3 and then solve the 

problem 

Maximize f(X 2 + kS 2) = 81 + 81X - 81 ~,2 

Subject to 0 _< Z _< 1/3. 

We f indZ  =1 /3 .  opt 

Hence X2 = 1/3 and X 3 = 3, 9, 0, 12) r 

1 
I terat ion  3. Since X 2 = X22 = ~,  the variable x 2 enters the basis replacing X 3. 

Atx 3 = (3, 9, 0, 12y, we then have 

B = (a 2, a4), N = (a~, a3) and Vf(x 3) = (3, 3, 0, 0) r 

The new tableau obtained by pivot operation is 

xB 

X 2 

X 4 

Solution X 3 

vf  (x 3) 

X 1 X 2 X 3 X 4 

1 1 1 0 

2 0 1 1 

3 9 0 12 

3 3 0 0 

0 - -3  - 



Methods of Nonlinear Programming 409 

where r 3 is computed by (25.93), 

r :( 01 (', :)('0 :) = 
By (25.95) we have S 3 = 0 

and hence S~ = -B-~NSN = 0 

Thus S 3 = (S B SN) r = (0, 0) r. Hence the algorithm terminates and the 
solution X 3 = (3, 9, 0, 12) r is optimal to the problem. 

We have discussed above the reduced gradient method for optimizing a 
nonlinear function under linear constraints as given by Wolfe in 1963 [527]. The 
method, however, does not necessarily converge to a Kuhn-Tucker point. In 
1969, McCormick [337] modified Wolfe's method (see Exercise 14), which does 
converge to a Kuhn-Tucker point. A generalization of the method to nonlinear 
constraints was given by Abadie and Carpentier [4]. 

25.6. Zangwill's Convex-Simplex Method 
The convex-simplex method of Zangwill is quite similar to the reduced 

gradient method of Wolfe. The major difference between this method and the 
reduced gradient method is that instead of permitting all of the nonbasic variables 
to change at each iteration, only one nonbasic variable is changed while all other 
nonbasic variables are fixed at their current levels. The selection of the one- 
nonbasic variable to change is made much as in the ordinary simplex method. 
Thus, the method behaves very much like the simplex method for linear programs. 
The method was originally posed by Zangwill [545] for the problem of minimizing 
a convex function subject to linear inequality constraints. Because of this and its 
simplex method nature, it was termed the convex-simplex method. 

Consider the problem 

Maximize 

Subject to 

f ( x )  

AX = b 

x > O  (2.5.107) 

Suppose that the feasible point X T is partitioned into X r : (X~,Xr~) and A 

into [B, N], where B is an m x m nonsingular matrix and X B > O, X N are basic and 
non basic vectors respectively. The components of X N may either be positive or 
zero. 

Where X ~ R", A is an m x n matrix of rank m, b is an m vector and f is a 
continuously differentiate function on R" 

It is assumed that every set of m cohimns of A are linearly independent and 
every basic solution to the constraints has m strictly positive variables. 
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By using the reduced gradient off ,  the convex-simplex method develops 
the criteria to determine if the current feasible point is optimal and if not to 
determine the next feasible point. 

25.6.1. Summary of the Convex-Simplex Method 
We now give the summary of the convex-simplex method for solving the 

problem. (25.107) 

Step 1. Find a basic feasible solution X ~, for which Phase 1 procedure of the 
simplex algorithm may be used. 

Suppose that the feasible points X ~, X2,...X k have already been produced by 
the algorithm. 

Step 2. A tXk, identify B k = (%, j e Lk), 

N k = (%, j ~ Lk), where L k = index set of m largest components of X k 
and compute the reduced gradient off. 

r kT = V N f(Xk) T-  V B f(Xk) T (Bk) -' N (25.108) 

Let 

rp k = max{rkj e J}, 

k k rqXq:max{ k krixjj~J} 

where J is the set of indices of the nonbasic variables. 

k = O, terminate x k is a Kuhn-Tucker point. If rk = rkXq 

Step 3. Determine the nonbasic variable to change: 

If r~ > [rqkx~[, increase xp, and 

[ [ (25.109) If rp k < rqkXkq, decrease Xq 

Step 4. Calculate the next feasible point XK+I: 

There are three cases to consider. 

Case (a) xp is to be increased and at least one component of yk _ (B k )-~ ap 

is the pth column of A is positive, where ap 

Compute improving feasible directions S K, whose components are given by 

k Sp =1 

k Sj = 0 ,  ifj ~ J,j r p. 

Sjk=y~p,, if j ~ J, i  e p. (25.110) 
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where I represent the set of indices of basic variables and J is the set of indices 
of nonbasic variables. 

Increasing xp will drive a basic variable to zero and to maintain feasibility xp 
cannot be increased by more than Xm~ x where 

~max -XB' -min< ~xki y~p >0 
- y kp �9 [yk k ' (25.111) 

The desired step length ;L = Ek must therefore be less than or equal to )~m~x" 
This is obtained be solving thr one-dimensional problem 

Maximize f (x k + XS k) (25.112) 

Subject to 0 ~ ~ < ~max 

Obtain the new feasible point X k+~ by 
Xk+l = X k Jr- ~kSk 

Case (b) Xp is to be increased and all components of yp are nonpositive. In 
this case Xp may be increased indefinitely without driving a basic variable to zero. 

Determine the step length ~ = Ek by solving the problem 

Maximize f(X k + Z,S k) 

Subject to X >_ 0 (25.113) 

where the feasible direction S k is as given in (25.110) If Eopt = Ek is finite, the next 
feasible point is obtained and proceed to the next iteration. If no finite value of 
optimizes the problem (25,113), the method terminates and the solution is unbounded 
(However, the optimal value of the objective function is not necessarily infinite) 

Case (c) Xq is to be decreased. This implies that x > 0 in the current solution. q 

The maximum permitted decrease in x is computed as follows. q 

= x --L = m a x  xi;  Y~q [ yikq ]Yiq <0 (25.114) 

= Xq 

and )~max = min (-9~, 9~) 

If y~q --_ 0, for all i ~ I, take ~ =-oo. Then either a basic variable becomes 

zero or x itself becomes zero before a basic variable reaches zero. q 

The desired amount of decrease in Xq is given by the optimal solution 2op t = 2k 
of the problem. 

Maximize f(x k -  2s k) 

Subject to 0 <_ 2 ___ 2m~ x (25.115) 
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Where s k is as given in (25.11 O) 

Then the new feasible point is X k+~ = X k- 2kS k. 

Step 5. After calculating X ~:§ go to the next iteration and repeat from step 2 
replacing k by k + 1, until the algorithm converges to a Kuhn-Tucker point. 

For the proof of convergence of the method and other details see Zangwill 
[545, 550]. 

25.6.2. Example 
Consider the problem 

Maximize 

Subject to 

2 + XlX2 2 f(X) = 18X 2 - x I - x 2 

x~ +x2+x3  = 12 

x ~ - x  2 + x 4 = 6  

xj_>O, j =  1, 2 , 3 , 4 .  

I n t e r a t i o n  1. Let us take X B = (x3, x4)T , X N = (Xl, x2)T. We then have 

ilo Ol) (11) B =  , N =  
1 1 

and the initial feasible point X ~ - (0, 0, 12, 6) r 

Note that Vf(X) - (-2x I + x 2, 18 + x I - 2x v 0, 0) T 

and thus Vf(X l) - (0, 18, 0, 0) T 

By (25.108), the reduced gradient is obtained as 

r~ = ( 1 0 ) - ( :  l l ) ( ; ]  = (10 ] 

The above information is recorded in the following tableau. 

x. 
X 3 

X4 

S o l u t i o n  X 1 

Vf(X') 
r I 

X l X 2 X 3 X 4 

1 1 1 0 

1 - 1  0 1 

0 0 12 6 

0 18 0 0 

0 18 - - 

By (25.108), we get 

max{rl , j  E J} = r ~ : 1 8  

' J} 0 min{rlxj , j  ~ = 
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Since r~ = 18 > 0, we note from (25.109.) that the nonbasic variable x 2 is to be 

increased and since Y2 = (1,--1)T has a positive component, we are in case (a). 

By (25.110) then, we have the usable variable direction S ~ = (0, 1 , - 1 ,  1) T. 

The maximum value of  ~, such that X ~ + ~,S ~ is feasible is computed by (25.111) 

and we get 

~max =~in(  xB~ ,Yi2 >0] = XB1 12  

Yi2 YI2 = ~ = 12 

The desired step length ~ at x ~ is then obtained by solving the problem. 

Maximize f(x~+ ~,s ~) = 18~,- ~2 

Subject to 0 < ~, < 12 

df  
= 0 ~ ~, = 9 which is less than 12 and therefore,  the optional Now,  d~, 

solution ~, = 9 opt 

Thus ~ = 9 

and X 2 = X 1 + ~,IS~ = (0, 0, 12, 6) r + 9 (0, 1 , -1 ,  1) r 

= (0, 9, 3, 15) T 

I tera t ion 2. At X 2 = (0, 9, 3, 15) T, L 2 = {2, 4} so that B = (a 2, a4) and N = (a~, 

a3). The new tableau obtained by pivot operation is given below. 

X2 
X~ 

Solution X 2 

Vf(X 2) 

r 2 

X 1 X 2 X 3 X 4 

1 1 1 0 
2 0 1 1 

0 9 3 15 

9 0 0 0 

9 - 0 - 

where r 2 is computed by (25.108) 

:(90/ (ll I90/ 
Since max(r2 , r2)  = r, 2 =9  

min(rl2x~ 2 2 , q X 3 ) = 0  

we note from (25.109) that x~ has to be increased. 

From (25.11O) we get s 2 = (1, O , - 1 , - 1 )  T. The maximum value of  Z so that 

X 2 + ~S 2 is feasible is then computed by (25.111). 
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The desired step length ~2 at X 2 is then obtained by solving the problem. 

Maximize f(X 2 + )~S 2) = 81 + 9 Z -  )~2 

Subject to 0 _< ~, _< 3. 

The optimal solution )~opt = 3. 

Thus, )~2 - 3 

and X 3 = (X 2 + ;~S 2) = (3, 9, 0, 12) T 

I terat ion 3. At X 3 = (3, 9, 0, 12) T, L 3 = {2, 4} SO that B = (a 2, a4) and N = (a~, 

a3). Thus the basis remains the same and we have 

X 2 

X 4 

Solution X 3 

vr(x 
r 3 

X 1 X 2 X 3 X 4 

1 1 1 0 

2 0 1 1 

3 9 0 12 

3 3 0 0 

0 - -3 - 

where r 3 is computed by (25.108) 

We then have 

max(r3,r33) : max(0,-3) = 0 

3 min(r~x~,r~x3) = min(O,O) = 0 

Hence X 3 = (3, 9, 0, 12) T is optimal. 

25.7. Dantzig's Method for Convex Programs 
The methods that we have discussed so far for solving convex programming 

problems assumed that the functions are differentiable. In this section we shall 
discuss a method developed by Dantzig [109] for solving a general convex 
programming problem even if the functions are not differentiable provided some 
mild regularity conditions are satisfied. The burden of the work in this iterative 
procedure shifts to a subproblem, which must be solved afresh at each iteration. 
This itself again is convex programming problem, which may or may not be easy 

to solve for general convex functions. 
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Consider a general convex programming problem 

Minimize z = �9 0 (X) 

Subject to ~ (X) - 0, i -1 ,2 ,  . . . . . .  r (25.116) 

O~ (X) _< 0, i -- r + 1,. . . . . .  m 

Where ~ (X), i = 1,2, . . . . . . . . .  r are linear and 

Oi (X), i = 0, r + 1, .... m are general 

convex function with the assumptions that 

(a) the domain of  variation is restricted to a closed bounded convex set R. 

(b) the convex functions are continuous in R. (i.e. continuity extends to the 
boundary).  

(c) there exists a nondegenerate basic feasible solution 

X ~ of  �9 (X) - 0, i - 1 , 2 ,  . . . . . .  r such that ~ (X ~ < 0, i - r + 1, . . . . . . . . .  m 

The problem (25.116) may be rewritten in the form of  a generalized linear 
program [ 109, 120] 

~L 0 - 1 

YlXo = 0 

Yr~0  = 0  

Y~+I Lo + gr+l = 0 (25.117) 

Ym~o + ~m -- 0 

yo~,o = z (Min), gi -> O, i = r + 1, . . .m. 

where y~ are variable coefficients which may be freely chosen  subject  to the 

conditions that 

Yi = (l)i ( X ) ,  i = 1, 2, . . . . . .  r and y~ > ~ (X) ,  i - r + 1 . . .m 

for some X ~ R 

we then consider the following problem called a "restricted master problem" 

ZIP1 + ~'2P2 + ""+ ~PPP + gr+l Ur+l + "'" gmUm + (--Z) Urn+ ~ = U o 

~,j > 0, j = 1,2, . . .p; la i > 0, i = r+ 1, . . .m (25.118) 

where Ui (i = 0, r + 1, . . .m + 1) denotes the unit vector with ith component  being 
unity and vectors 

p T = (1 yJ,, YJ2 "'YJm' yJo), j = 1,2, ..p (25 119) J ~ o o  o . 

are a set of  admissible 

pT _--(1, YI' Y2""Ym' yo) (25.120) 

Our assumption (c) implies that there exists a nondegenerate basic feasible 

solution to a restricted master problem which can be used to initiate the algorithm. 

We assume that this has already been done. The restricted master problem for 

iteration k is shown explicitly in detached coefficient form in (25.121) 
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Restricted Master Problem for Iteration k 

•1 ~ 0 ~'2 ~ 0 . . .  ~'p + k ~> 0 ~Lr+ 1 ~ 0 . . .  ~1, m >__ 0 --Z C o n s t a n t s  

1 1 . . .  1 0 0 0 1 

yl y~... y~+k 0 0 0 0 

Multipliers 

1-Io 

yl 2 y~... y2 p§ 0 0 0 0 YI 2 

V p+k Y~r Y~"" .,, 

... v p+k ylr +1 yr2+l dr+l 

V p+k Y~m y2.. .  --m 

/ 

0 

1 

0 

0 

0 0 0 " 

0 0 0 " 

1 0 0 H= 

0 1 0 y~ y2... yp+k 

(25.121) 

I t e r a t i v e  P r o c e d u r e :  For iteration k, the restricted master problem (25.118) is 
optimized obtaining a new basic feasible solution. 

X k = (k~,~,~, ... ~,kp+k,~trk+,, ... I.t~) -> 0 with 

and a new set of simplex multipliers 

n = ... n l) 

p+k 

z k =)-~ ~ky~ (25.122) 
j=l 

(25.123) 

To express conveniently, the kth approximate solution to the problem (25.116) 
we now assume that the vector P. of the master problem is defined by 

J 

p.v = (1 Ol (XJ) 02 (XJ), Om (XJ), ~o (Xi)), j =  1,2,...p+k j ~ ~ . , ,  

where y~ = ~ (XJ), i = 0, 1, 2,...m for some X = XJ, chosen from the closed 
bounded convex set (25.124) 

The kth approximate solution to (25.116) is then given by, 

x - = * o  
j=l 

It should be noted that the simplex multipliers 

n k satisfy the following conditions" 

n k Pj = 0; nk U~ = 0, if L or ~t~ is a basic variable 

n k Pj > 0; n k U~ > 0, if ~ or  [J'i is a nonbasic variable 

and n k Urn+ I = I 

( 2 5 . 1 2 5 )  

(25.126) 
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It then follows thth, n k > 0, for I = r + 1, ...m (25.127) 

Further note from (25.121) and (25.126) that no k = - z  k (25.128) 

To test whether or not the kth approximate solution (25.125) is optimal, the 
function 

m 

A(X[ ~k ) = ~o (X) + ~ r ~  (X)+n~ (25.129) 
i=l 

is minimized over all X e R 

Theorem 25.16 

f m } k If Min A(X I nk) = ~o (X) + ~ n~ ,  (X) + no > 0 
XeR i=l 

then the kth approximate solution ~k is optimal for the problem (25.116) 

Proof: Let x e R be feasible for (25.116) and suppose 

that MinA(Xl~ k) >_ 0 
XeR 

Since 

and hence 

and since 

m 

~ ___0, for i = r  + 1,...m, ~ ~r (X)_< 0 
i=r+l 

A(XI~9 _< %(X) + ~0 ~ 
no k = - z  k, we have 

A(Xl~o ~) + z ~ _< %(X) 
Now, from the convexity of ~o(X), we have 

~o(X )=~o ~j 
k, j=l j=l 

(25.130) 

(25.131) 

p+k 
=~-~ k j =Z  k ~'jYo 

j=l 

From (25.130) we get 

Min A(XIT~ k) < A( ~ In k) < ~o( X k)'~-nok 

= ~o ( ~  ~)-  zk 

_< 0, by (25.132) 

and since by the hypothesis 

Min A(XIn k) >__ 0, it follows that 

(25.132) 
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Min A(Xln k) - 0. 

Now, from (25.131) we have, 

Min A(X[~ k) + Zk_< Min ~o(X) _< ~o( X k) _< Z k, by (25.132) 

From (25.133) and (25.134) it then follows 

That 

- ~ko = Zk = #o(X k) = Min ~o(X) 

which establishes the theorem 

If however, Minx~R A(Xl~k) < O, a new vector Pp+k+t 

restricted master problem for the (k + 1)th iteration. 

We define Xk+~eR and the new vector Pp+k+~ by 

A(Xk+llTtk ) -- Min A(Xlxk) < 0 
XER 

pr = (1 ~, (Xk+]), t ~ m ( X k + l ) ,  ~ o ( X k + l ) )  
p+k+l ~ " " " 

and the process is repeated 

(25.134) 

is generated for the 

(25.135) 

(25.136) 

It can be shown that Min A(Xlnk) tends to zero on some subsequence of 
X~R 

the k's, so that ~o(X k) converges to the desired minimum and finally we have 

T h e o r e m  25.17 

A k  
Lim ~o ( X )  -- M in ~o (X) 
k--~oo 

for x satisfying the conditions of the problem (25.116) 

P r o o f  : Dantzig [ 107, 109] 

Thus in Dantzig's method for convex programming, we obtain at each 
iteration an approximate solution by the simplex method, which is then checked 
whether optimal or not by solving a problem of the type (25.129), Theorem 25.17 
then states that the process, though it may be infinite converges to a solution. 

25.8 Exercises 
1. Convert the following problems into separable programs. Replace the non- 

linear functions by their piecewise linear approximations and then solve 
the approximating problems. 

2 _ 6x~ + 2x 2 (i) Minimize 2x~-  xxx 2 + x: 

Subject to 2x] + x 2 < 12 

2 =  8 X12 -1- X 2 

x~, x : > 0  



(ii) Minimize 
Subject to 

(iii) Minimize 
Subject to 

Methods of Nonlinear Programming 

3x~ + 2X 2 
X~X 2 > 16 
X 2 > 4  

X l - 2X 2 

x~x 2 >_ 2 
Xl + X 2 _ < 4  

x~, x2>O 

419 

2. Solve the following problems by the separable programming method. Can 
the restricted basis entry rule be dropped for these problems? 

(i) Maximize 2x~ + 3x 2 
Subject to X12 + 4X2 2 < 1 6 

x~ ,x  2 >_0 

(ii) Minimize (x~- 3) 2 + (x 2 - 3) 2 
Subject to x~ + x 2 < 4 

Xl, X2~_ 0 

(iii) Minimize x~ 2 + x22-8x~-  6x 2 - 1/2x 3 
Subject to - x I + x22 _< 3 

x 1 + x 2 + x 3 < 5 
Xl, X2, X s > 0 

3. Solve the following problems by Kelley's cutting plane algorithm 

(i) Minimize x~ - x 2 
Subject to x~ + x 2 _< 5 

Xl. X2 ~ 4 
X 1, X2~___0 

(ii) Maximize x~ + 3x 2 
Subject to Xl + x 2 _< 3 

X 1 -1- X22___~--1 

x 1, x2>0  

(iii) Minimize 5x~ + 4X 2 

Subject to  2x12 + X22 + 2XlX 2 _< 4 
_ X22 Xl2 -'F 4X 2 > 3 

4. Prove that Kelley's cutting plane algorithm is still globally convergent if 
it is modified by discarding at each stage all cutting plane constraints that 
are not binding on the optimal solution to the corresponding linear program. 

5. Solve the following problem by Zoytendijk's feasible direction method 

(i) Maximize 

Subject to 

_ 2 + XIX2 2 3X l + 2X 2 X l -- X 2 

2 >  0 X l -- 2 X 2 _ _  
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5x~ + x 2 < 5 
x~,x2>O 

2 2 (ii) Maximize 8x~ + 6x 2 - Xl - x 2 

2 + 4  2 < 1 6  Subject to x I x 2 _ 

5 X  l "[- 3x 2 < 15 
x~ ,x:>_0 

(iii) Maximize x~ + 2x 2 - x 2 

2 + 2  2 <  6 Subject to 3 xt x, _ 

x~, x2>_0 

Solve the following problem: 

Minimize ( x , -  1) 2 + (x 2 - 2) 2 
x~ - x22 >_ 0 

2X l -- X 2 = 1 
by Zoutendijk's method using the normalization constraint 
(a) SrS < 1 
(b) -1 _< sj _< 1, for j = 1,2. 

Solve the following nonlinear programs with linear constraints by 
Zoutendijk's feasible direction method and by Rosen's gradient projection 
method. 

Q 

2 (i) Maximize x~ + 2x 2 - x 2 

Subject to X 1 + 2x 2 < 4 
3X l + 2x 2 < 6 
x~, x2> 0 

2 + 3  2 (ii) Minimize 4 x~ x 2 

Subject to x~ + 3x 2 > 5 
x~ + 4x2>4 
x~, x~>_0 

Solve the following problem by Rosen's gradient projection method 

Maximize 

Subject to 

2 2 
2 x  I + 4 x  2 - x I - x  2 

2 x  I + 3 x  2 < 6 

X l + 4X 2 < 5 

x l, x2> 0 

1 Solve the problem of Exercise 8 by Zontendijk's feasible direction method 
using the normalization constraint SrS < 1 

10. Solve the following problem by the gradient projection method using the 
origin as the starting point 
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Maximize 

Subject to 

3 2x~ + x 2 + x 1 x 2 

2x~ + x 2 _< 8 
X l - -  2X 2 < 4 
x ~ - x  2 >_ 0 

x 1, x 2 > 0 

11. Determine the projection of the gradient of the function 

F(x) = 5x 1 - 3x 2 + 6x  3 

onto the XlX 2- plane. Sketch the gradient and its projection. 

12. Show that the gradient projection method will solve a linear program in a 
finite number of steps. 

13. Solve the following problem by (a) the reduced gradient method and (b) 
the convex simplex method, starting at the origin in each case. 

_ 2 + XlX2 2 (i) Maximize l Ox I + 20x 2 x 1 - x 2 

Subject to x I - x 2 _< 6 

Xl +x2_< 12 

Xl ,  X 2 >_ 0 

(ii) Maximize 1010g~ (x~+ 1) + (X2+ 1)2 + 4x 3 

Subject to x I + x 2 + x 3 _< 12 
3x 2 + x 3 < 24 
4X 1 + X 2 + 2X 3 < 28 
X 1 , X 2 , X 3 >___ 0 

14. Consider the problem 

Minimize 
Subject to 

f(x) 
AX = b 
X > 0  

Where A is an m • n matrix of rank m ,  f is a continuously differemiable 
function on R" and that the nondegeneracy assumption holds. 

Suppose that the reduced gradient method discussed in section 25.5 is 
modified [McCormick] with the modifications that (a) the basic variables 
are, at the beginning of an iteration, always taken as the m largest variables 
and (b) the direction vector S=(SvSN) is now defined as 

SNj = I -rNJ' if rNj _< 0 

l-xNjrNj, if rNj > 0 

S B = -  B -I N S N 
Using this modification, solve the following problem by the reduced 
gradient method: 
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2 ..[_ 2 
M i n i m i z e  x 1 x 2 - X l X  2 - 3x~ - 2 x  2 

Subject to 5x~ -I" X 2 -!" X 3 = 5 

Xl+X 2 +X4=2 
X I , X 2 ,  X 3 ,  X 4~__0 

15. Show that the convex-simplex method reduces to the simplex method 
if the objective function is linear. 
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Duality in Nonlinear Programming 

26.1. Introduction 
The duality theory in nonlinear programming is a natural extension of duality 

in linear programming. Noting the success of the application of the duality principles 
in linear programming many authors became interested in generalizing the well 
known duality properties of linear programs to nonlinear cases. The Lagrangian 
saddle point problem and the Kuhn-Tucker theory also incited a great deal of 
interest in duality in nonlinear programming. As a result, a large number of papers 
on duality in nonlinear programming appeared in the literature. 

Consider the problem 

Minimize ~(X) (26.1) 

Subject to g(X) < 0 

Where ~ and g are scalar and m-vector functions respectively both defined on 
an open set ~ c R ". 

It is assumed that both ~ and g are differentiable on ~. 

The problem (26.1) is called the primal problem. From the saddle point problem 
of the associated Lagrangian function we form the following problem called the 
dual problem 

Maximize V (X,U) = ~(X) + LVg(X) 

Subject to V~(X) + LVVg(X) = 0 (26.2) 

U > 0  

where X ~ Z and U ~ R m 

Let the constraint set of the primal be denoted by Cp and that of the dual problem 

by C D. 

26.2. Duality Theorems 
Several duality formulations have been evolved by various authors under 

different conditions which satisfy many of the properties of linear dual programs. 
In this section, we discuss the relationships between the nonlinear programs (26.1) 
and (26.2), under the assumptions of convexity of the functions involved. 



424 Mathematical Programming" Theory and Methods 

Theorem 26.1" Weak Duality Theorem [525] 

Let ~(X) and g(X) be diffrentiable convex function of X e ~ Then 

Inf ~(X) > Sup w(X,U) 

Proof" Let X ~ ~ Cp and (X 2, U 2) e C D 

Then ~(X ~) - ~(X 2) >__ ~(X2) r (W- X2), since ~(X) is convex 
=-U 2T Vg(X 2) (W- X2), since V~(X 2) + U2rg(X2)=0 

>__ U 2r [g(X 2) - g(X~)], since g(X) is convex and U2>__ 0 

>__ U 2r g(X2), since g(W) < 0 and U2>__ 0 

thus ~(X ~) >__ ~(X 2) + Uag(X 2) = w(X 2, U 2) 

Using the convection that 

Inf ~(X) = + oo, if Cp is empty 

And Sup v(X, U)=- oo if C D is empty 

we have Inf ~(X)>__ Sup w(X, U). 

Theorem 26.2" Duality Theorem [525, 238] 

Let ~(X) and g(X) be diffrentiable convex functions of X e ~ Let X ~ be an 
optimal solution of the primal problem (26. I) and let g(X) satisfy the Kuhn-Tucker 
constraint qualification. Then there exists a U ~ e R m such that (X ~ U ~ is an optimal 
solution of the dual problem (26.2) and 

r o) = v(x o, uo). 

Proof: Since g(X) satisfies the Kuhn-Tucker constraint qualification, there exists 
a U ~ e R m such that (X ~ U ~ satisfies the Kuhn-Tucker conditions. 

V~(X ~ + U ~ Vg(X ~ = 0 (26.3) 

U ~ g(X ~ = 0 

g(X ~ _< o 
U~ 0 

It is clear that (X ~ U ~ is a feasible solution of the dual problem. Let (X, U) 
be any arbitary feasible solution of the dual, Then 

v(X ~ U ~ - v(X, U) = ~(X ~ - ~(X) + U%(X ~ - tyrg(X) 
>__ v~(x)~(xo--x)_ tyrg(x), 

since ~(x) is convex and U~ ~ = 0 

>__ v~(x )  �9 (x  o-  x ) -  tyr[g(X o) = Vg(X) ~ (x  o -  x)] 

since g(X) is convex and 'U > 0 

= [ v ~ ( x y  + u �9 Vg(X) ~ ] (x  o-  x )  - tyrg(x o) 

= 0 -  Urg(X ~ 

>__ O, since U >_ 0 and g(X ~ _< 0 

and thus w(X ~ U ~ > v(X, U) 

which implies that (X ~ U ~ is an optimal solution of the dual problem 
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Moreover, since U~ ~ = 0 

v(X ~ U ~ = ~(X o) + U~ o) = ~(X o) 

Theorem 26.2 can alternatively be proved by direct application of weak duality 
theorem. Since g(X) satisfies the Kuhn-Tucker constraint qualification, there exists 
U ~ E R m such that (X ~ U ~ satisfies the condition (26.3), which implies that (X ~ 
U ~ is a feasible of the dual problem. 

NOW, V ( x0, U~ -" ~(x0) q- U~ 

= ~(X~ since U~ ~ = 0 

> ~g (X, U), by Theorem 26.1 

Hence (X ~ U ~ is an optimal solution of the dual problem and ~(X ~ = 
(X ~ U~ 

Theorem 26.3: Converse Duality Theorem [238] 

Let ~(X) and g(X) be diffrentiable convex functions of ft. ~ X and let (X ~ U ~ 
be an optimal solution of the dual problem (26.2). If ~g(X, U ~ is twice continuously 
differentiable at X ~ and the n x n Hessian matrix V2x~g(X ~ U ~ is nonsingular then 
X ~ is an optimal solution of the primal problem (26.1) and ~(X ~ = ~g(X ~ U~ 

Proof" Since by assumption, the Hessian matrix V2 ~g(X ~ U ~ is nonsingular, the 
implict function theorem is applicable to Vx~g(X, U). Hence there is an open set W 
E R m containing U ~ and an n-dimensional differentiable vector function h(U) 
defined on W such that 

X ~ = h (U ~ 

H (U)~  X, forU ~ W 

VW x [h(U), U] = 0, for U ~ W (26.4) 

Since (X ~ U ~ is an optimal solution of the dual problem and W (X ~ U ~ = 
~g [h(U~ U~ U ~ is an optimal solution of the problem 

Maximize ~g [h(U), U] (26.5) 

Subject to U > 0, U ~ W 

Since W is open and the constraints of the problem (26.5) are linear, the Kuhn- 
Tucker constraint qualification is satisfied. The associated Lagrange function is 

L (U, V)=  V [.h(U), U] + VTU 

where V ~ R" is the vector of Lagrange multipliers. Thus, there is some V ~ ~ R m 
such that (U ~ V ~ satisfy the Kuhn-Tucker conditions 

Vo V [h(U~ U~ + V~ = 0 (i) 

V ~ U ~ = 0 (ii) (26.6) 

U ~ >_ O, V ~ >_ 0 

By chain rule of diffrentiation applied to V U [h(U~ V ~ we get 

- V ~  = Vu V [h(U~ U~ 

= v h(O~ �9 VxV(XO, u o) + v o v ( x  o, oo), 
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= V ~  (X ~ U~ since h (U ~ = X ~ 

= g(X ~ since ~gx(X ~ U ~ = 0 (26.7) 

Thus g(X ~ = - V ~  0 and X ~ e ~ so that X ~ e Cp. Further, we note that 
U~ 0, lyr~ ~ = - U~ ~ = 0 and V~g (X ~ U ~ = 0. Hence (X ~ U ~ satisfies 
the Kuhn-Tucker conditions for the problem (26.1) and therefore X ~ is an optional 
solution of the primal problem. 

Moreover, 
~(X o) = ~(X o) = UOvg(XO), 

= ~g(X ~ U~ since U~ ~ = 0 

26.3. Special Cases 
In this section we shall discuss the duality theory for special cases of nonlinear 

programs. In particular, we shall discuss duality in linear constrained nonlinear 
programs and in quadratic programming. 

26.3.1. Duafity in Nonlinear Programs with Linear Constraints 
Consider the problem 

Minimize 

Subject to AX < b (26.8) 

X > 0  

Where ~(X) is a differentiable convex function of X e R". 

The problem (26.8) will be called the primal problem. Since the constraints of 
(26.8) are linear, the Kuhn-Tucker constraint qualification is satisfied and the 
Kuhn-Tueker conditions are given by 

VO(X) + AvU > 0 

X r V~(X) + UTAX = 0 (26.9) 

A X < b  

U r A X -  brU = 0 

X > 0 ,  U > 0  

The dual problem to (26.8), formed according to (26.2) is then given by 

Maximize ~g (X, U) = ~ ( X ) -  X "r ~(X) - bvU 

Subject to V~(X) + ArU > 0 

U >_ 0 (26.10) 

Duality Results 

The following theorems follow directly from the theorems proved in the previous 
section. 

Theorem 26.4: Weak Duality Theorem: 

Inf ~(X) >_ Snp V (X, U) 

Proof: Follows the Theorem 26.1. 
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Theorem 26.5: Duality Theorem 

If X ~ is an optimal solution of the primal problem (26.8), then there exists a 
U ~ e R m such that (X ~ U ~ is an optional solution of the dual problem (26.10) and 

o) = v ( x  o, uo). 

Proof: Follows from theorem 26.2. 

Theorem 26.6: Converse Duality Theorem 

If (X ~ U ~ is an optimal solution of the dual program (26.10) and if ~(X) is 
twice continuously diffrentiable at X ~ with V: ~(X) nonsingular, then X ~ is an 
optimal solution of the problem (26.8) and ~(X ~ - W (X ~ U ~ 

Proof: Follows from Theorem 26.3 

The following additional result can also be derived 

Theorem 26.7: Unbounded Dual 

If the primal problem is infeasible and the dual problem is feasible then 

Snp W (X, U)=  + oo 

Proof." Since the primal problem is infeasible the system 

A X < b  

X > 0  

has no solution 

By the inequality Theorem 7.11 then there exists a Y e R m satisfying 

A T y > 0  (26.11) 

bTy < 0 ,  Y > 0 .  

Let (X, U) be a feasible solution of the dual problem (26.10). Then (X, U + 
ty) is also feasible to the dual problem for all t > 0 and 

V (X, U+tY) = ~(X) - XT~(X) -- bT(U + tY) 

+ oo as t ~ + oo since bTy < 0 

26.3.1.1. Duality in Quadratic Programming 

The duality theory of quadratic programming was first studied by Dennis [ 117] 
and then by Dorn [122]. As in section 26.1, we form the dual to a quadratic 
programming problem from the saddle point problem associated with the Lagrangian 
function of the given problem and establish their duality relations. 

Consider the quadratic programming problem 

Minimize ~(X) - pTX + �89 XTCX (26.12) 

Subject to Ax _< b 

x > 0  

where X ~ R n, A is an m • n matrix, b an m-vector and C is an n x n symmetric 
positive semidefinite matrix so that ~(X) is a diffrentiable convex function of X 

R". 
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The Kuhn-Tucker conditions associated with the problem is then given by 

p + CX + ArIA > 0 

paX + XTCX + UrAX = 0 

A X = b  (26.13) 

I f rAX-  brU = 0 

X>_0, U>_0 

According to (26.10), the dual problem to (26.12) is given by 

Maximize ~(X, U) = - 1 / 2 x r c x -  brU 

Subject to CrX + Arid > -  p 

u>_0 (26.14) 

The problem (26.12) is then called the primal problem. Let Cp~ and CDq denote 
the constaint sets of the primal and the dual problem respectively. 

Duality Results 

Theorem 26.8: Weak Duality Theorem 

Inf t~(X)> Sup ~g(X, U) 

Proof: It follows directly from Theorem 26.4 

Theorem 26.9: Duality Theorem 

The existence of an optimal solution of either the primal or the dual problem 
implies the existence of an optimal solution of the other and then their extreme 
values are equal. 

Proof: Let X ~ be an optimal solution of the primal problem. Since by Theorem 
26.8, the quadratic function ~g(X, U) is bounded from above, it attains its maximum 
(see Theorem 2.1) and hence there exists an optimal solution of the dual problem. 

Conversely, if (~, 0)  is an optimal solution of the dual problem, then by the 

same argument the primal problem also has an optimal solution. 

Furthermore, if X ~ ia an optimal solution of the primal problem, then for some 
U ~ (X ~ U ~ satisfy the Kuhn-Tucker conditions (26.13) and we have (X ~ U ~ 
feasible for the dual problem and 

~(X o) = pTXO + 1/2XoTCX ~ 

=prX~ + 1/2X~176176 + X~176 + brU ~ 

since the expression in the bracket 
is equal to zero. 

= - 1/2X~ - bq2 ~ 
A A 

= v ( x  ~ u ~ _< v (x ,  u ) ,  since ~, U is an optional solution 

of the dual 
A A 

Hence, by Theorem 26.8 ~(X ~ = ~ (X, U) 
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Theorem 26.10: Existence Theorem 

If both the primal and the dual problems have feasible solutions, then both have 
optimal solutions. 

Proof: Since both the primal and dual problems are feasible, then by Theorem 
26.8, ~(X) is bounded below on CpQ and v(X, U) is bounded above on CDQ and 
since ~(X) and v(X, U) are quadratic functions, there exists points X 0 e CpQ 

A A 

and (X, U) e CDQ such that 

, ( X  o) = Min (~ ,~ )  = Max x,c~ ~(X)and V (x.u)~c~ v(X, U) 

Theorem 26.11" Unboundedness  Theorem 

If one of the primal and dual problems is feasible while the other is not, then 
on its constraint set, the objective function of the feasible problem is unbounded in 
the direction of optimization. 

Proof: Let the primal problem is feasible, so that there exists a vector X satisfying 
AX < b, X > 0. Now, the dual problem is infeasible means that there is no solution 
of 

and 

(: (0"/ 
By inequality Theorem 7.10 then there exists vector (Z, V) satisfying 

(A C 01)(V) = 0 ,  (pT '0) (Z)  = 1 

Z>_O, V>_O 

Or, CZ = 0 

AZ <0 
prZ = -  1 

Z > O  

It then follows that (X + tZ) is feasible for the primal problem for all t > 0 

~(X + tZ) = pT(X + tZ) + �89 + tZ) T C(X + tZ) 

- pTX + tpTZ + 1/2XTCX because CZ - 0 

--~ -oo as t --~ + 0% since pTZ =-- 1 

The other case can be proved similarly. 

Several approaches to duality formulation in nonlinear programming are 
available in the literature. For early results on duality, see Dennis [124], Dora 
[129], Wolfe [525], Hanson [221], and Mangasarian [314]. In our presentation, 
the formulation is based on the saddle point problem of the associated Lagrange 
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function and for the proofs to establish duality relations we have followed Wolfe 
[525] and Huard [238]. For quite a different approach, which is based on the 
concept of conjugate function o f F e n c h e l  [157], the reader may consult  
Rockafellar [379, 380] and Whinston [510, 51.1]. For symmetric duality, see 
Cottle [83], Dantzig, Eisenberg and Cottle [111], Mond [348] and for minimax 
approach to duality, Stoer [445], Mangasarian and Ponstein [323]. 

For other studies on Duality, see Karamardian [266], Geoffrion [197] and 
Lasdon [296]. 

Exercises 
1. Obtain a dual to the problem 

Minimize f(X) 
Subject to g~(X) _< 0, i = 1, 2,. . .m 

h~(X) = 0, i = m + 1,...k 
X > 0  

where the function f and g~ (i = 1, 2,...m) are differentiable convex function 
and h i (i = m + 1,...k) are linear. 

2. Write the dual of the problem 
Minimize f(X) 
Subject to g~ (X) < 0, i -  1, 2,. . .m 

AX = b 
X > 0  

Where f and gi (i = 1, 2,...m) are differentiable convex function and A is 
a k x n matrix. 

3. Give the dual of the problem 
Minimize 2X I + x~ 2 + x22 
Subject to x12 + x22 _< 1 

3x~ + 2x~ >_ 1 
xl, x2 >_0 

4. Show that the dual of the quadratic programming problem 
Minimize CTX + XTBX 
Subject to X >_ 0 

Where B is a positive definite matrix, can be considered to be 
Maximize - Ya'B-]Y 
Subject to -Y_< C 

5. Obtain the dual of the quadratic programming problem 
Minimize Z = prX + �89 XrCX 
Subject to AX = b 

X > 0  
Where C is a positive semidefinite matrix 

6. Is it true that the dual of the dual of the problem in Q5 above is the primal? 
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Stochastic Programming 

27.1. Introduction 
In linear programming, the coefficients of the linear functions are assumed to 

be constants. However, this is frequently not a very realistic assumption. A problem 
of stochastic linear programming arises when the coefficients of the linear 
functions, i.e. the parameters of the linear programming model are random 
variables. The linear programming model for such a case, however, has no 
meaning and it is necessary to formulate a new model to deal with such cases. 

Expected Volume Model [102] 
The initial approach to reduce the effect of uncertainty in the problem was to 

replace the random variables by their expected values or by some good estimates 
of them and then to solve the resulting linear program. In many practical situations, 
however, the solution under such a formulation may not be feasible to the original 
problem (Exercise 2) and even if it is feasible it may lead to a misleading result. 

For example, consider the linear programming problem 

Minimize z = crX 

Subject to AX > b 

X > 0  

Where A is an mxn matrix, b is an m-vector and c, X are n-vectors. 

Suppose that only the elements of the cost vector c are random variables. Then 
for a given X, z is a random variable and we solve the problem by replacing z by 

its expected value ~ (X) = Ez (X) = Er X . Now, suppose that the feasible points 

X ~ and X 2 are both optimal so that Ez(X 1) = Ez (X 2) but var z (X 1) > var z (Xl). If 

var z (X) is very much greater than var z (X2), it may be dangerous to select X l as 
our desired optimal solution. 

Minimum Variance Model [328] 
The above discussion on the expected volume solution procedure for a linear 

programming problem where only the cost elements are random variables, shows 
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that it may be desirable to control the variance of z for a fixed tolerance value ot 
the expected cost. The problem then reduces to 

Minimize var z = XO3X 

Subject to AX ___ b 

E z < a  

X > 0  

Where t~ is an upper bound which we want to improve on the expected cosl 
and B is a positive semidefinite matrix. 

The problem is a quadratic programming problem and can be solved by 
Wolfe's method. 

Alternatively, tx may be taken a parameter and the problem is solved as a 
parametric programming problem. 

There are essentially two different approaches to deterministic formulation ot 
stochastic linear programs, namely the 'wait and see' and the 'here and now' 
models. 

In the 'wait and see' model, the decision maker waits for the realization of the 
random variables and then solves the resulting linear program. The optimal solution 
and the optimal value of the objective function being functions of random variables 
are also random variables and the question arises as to what are their expectations 
and variances. It is therefore natural to determine the probability distribution of 
the optimal solution or the optimal value of the problem. This problem of finding 
the distribution is known as the distribution problem. 

In 'here and now' model, a decision has to be taken at the very beginning before 
the realization of the random variables. In a linear programming problem, where 
some or all the parameters (A,b,c) are random variables with a known joint 
probability distribution, the problem is to determine an X > 0 which satisfies the 
constraints with a certain preassigned probability c~ and minimize the expected 
value of the objective function. 

The problem is then reduced to 

Minimize E CrX 

Subject to P {AX > b} > ct 

X > 0  

where P denotes probability 

This is called the chance constrained programming problem. The chance 
constrained programming technique was originally developed by Charnes and 
Cooper [70]. 

Two stage problems [102, 114] 
A Special 'here and now' approach to deal with the stochastic linear program 

is to solve the problem in two stages. In the first stage, a vector X > 0 is determined 
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which is feasible for the problem for some estimated values of the random vectors 
(A, b, c). After observing the realization of the random vectors a recourse or second 
stage activity vector Y > 0 is introduced in the constraint to compensate for any 
discrepancies between AX and b at an additional cost f called the penalty cost. 
The decision maker then wants to minimize the expected value of the sum of the 
original costs and the penalty costs (which are random variables) over the modified 
constraints. 

The two stage problem or the stochastic linear program with recourse where 
only b is random then takes the form 

Minimize cXX + E min f ry  

Subject to AX + BY = b 

A , X = b  l 

X,Y>_0 

w h e r e A i s a n m  x n m a t r i x ,  B i s m  x fi A~ is ffi • n , b  ~ is ffl x 1 a n d b i s  

random m-vector with known distribution and e and f are known n and 

dimensional vectors. The problem is said to be complete [502] when the matrix 
B (after an appropriate rearrangement of rows and columns) can be partitioned 
as B - - ( I , - I ) .  The problem then becomes 

Minimize cTX + E min (f~ry++f-ry-) 

Subject to AX + IY + - IY- = b 

A i X = b l  

X > 0 ,  Y+>0,  Y->_0 

As an illustration of the two stage problem, consider the following simple 
example due to Dantzig [ 102] 

Example 27.1 
Suppose that a factory has 100 items on hand which may be shipped to an 

outlet at the cost of $1 a piece to meet an uncertain demand d. If the demand exceeds 
the supply it is necessary to meet the unsatisfied demand by purchases from the 
local market at $2 a piece. Let the demand d be uniformly distributed between 70 
and 80. The problem is to find the quantity to be shipped so that the total cost 
of shipping is minimum and can be stated as 

Minimize z -  x I + 2E max (0, d -  x~) 

Subject to x l + x  2=100  

x~ + x 3 - x 4 = d 

x > 0 ,  j =  1 2,3 4 j ~  ~ 

where x~ = number shipped from the factory 

x 2 = number stored at the factory 
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x 3 = number purchased from local market 

X 4 - "  excess of supply over demand 

d = unknown demand uniformly distributed between 70 and 80. 

It can be easily verified that 

t 
l50-x~  

z=  (x~+1/10(80-x~ =1/10(75-x~ +77.5, 

LX~ 

if 0<x~ <70 

if 70 <__ x z _< 80 

if x~ ___ 80 

It then follows that min z = 77.5 at x~=75 = E (d). This means that the factory 
should ship 75 items which is the expected demand in this case. It should however, 
be noted that it is not always best to ship the expected demand. 

A large number of papers with variations and extensions of the above models 
have appeared in the literature. An excellent bibliography on stochastic 
programming has been prepared by Roger J-B wets (private circulation). 

In section 27.2, we present the deterministic formulation of the general 
stochastic linear program as suggested by Sinha [422], under the assumption that 
at least the means, variances and covariances of the random variables are known, 
which can be dealt with in a wholly constructive manner. 

27.2 General Stochastic Linear Program [422, 423] 
We consider a linear programming problem where all the parameters (A, b, c) 

of the problem are random variables. With the assumption that at least the means, 
variances and covariances of the random variables are known, the stochastic linear 
programming problem is reduced to a deterministic convex programming problem, 
which can be dealt with in a wholly constructive manner. 

27.2.1. Mathematical Formulation 

Consider the linear programming problem 

Minimize s  
j = !  

0 

Subject to a~jxj _< b O Xn+l ' i=l, 2...m 
j = l  

x =1 
n + l  

x .>0 ,  j - 1  2, . n + l  (271) j ~ ~ ~ 1 7 6  ~ 

Where the parameters d ~ a~j ~ and b, ~ (i - 1, 2...m; j - 1, 2,...n) are random 
variables whose joint distribution for fixed i is independent of the choice of x. 

J 

Under the situation, the problem in the usual linear programming format is no longer 
meaningful and a reformulation of the problem is necessary. The uncertainty aspect 
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of the problem, however suggests that it can only be solved probabilistically and 
hence a reasonable formulation of the stochastic programming problem requires 
that our activity levels should be such that with a certain preassigned high 
probability 13~ (0 < 13~ < 1), i = 1, 2,...m the total quantities required for each item 
should not exceed the available quantities and at the same time should guarantee a 
minimum objective with a preassigned high probability 130 (0 < 130 < 1). 

So we require 

p o - b ~ x  <0  >13~ i 1,2,.  m aijxij n+l - - , = .. (27.2) 
j=l  

x = 1 (27.3) n + l  

x > 0 ,  j =  1 2, n+l (27.4) 

Where P denotes probability 
. .  )T  Among the feasible vectors X (i.e. vectors X = (x~, X2 .x+~ 

satisfying (27.2), (27.3) and (27.4) we should then select one for which the upper 
(1 - 13o) probability point of the corresponding distribution of the objective function 
is a minimum. 

So we define a preference functional 

Z(X) = eo (X) + tOOoo(X ) (27.5) 

and minimize it with respect to X satisfying (27.2), (27.3) and (27.4), where 

0 
e o (X) = dj xj, eo (X) = Ee o (X) = Expectation of e o (X) 

j=l  

2 
O oo(X , = E [eo(X ) - eo (X)] 2 = variance of e o (x) 

and t o is a constant determined by 

P [eo(X) _< Z(X)] >_ 130 (27.7) 

We consider the following two cases" 

0 0 0 
(i) The random variables d j ,a j ,b ,  (j = 1, 2,. . .n) have known joint normal 

distributions for each i = 1, 2,...m. 
(ii) Only their means, variances and covariances are known. 

Case (i): Linear programming coefficients have known joint normal 
distributors. 

(27.6) 

0 0 
Let e~ (X) = aj xj - b~ x.~, i =1, 2, . . .m (27.8) 

Since e~ (x), (i = 0, 1, 2, . . .m) are linear combinations of normal variables, 
they themselves are normally distributed [90] with 
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mean ~, (X) = Ee, (X), an.d 

variance 6~ (x) = E[e~ (X) - E, (X)]' , i = 0, 1, 2. . .m (27.9) 

From the Normal Probability table [367], we then determine the t~'s so that 

P[e  i (X) ~ ~ (X) + t, 6,, ,x, ] 

= p[e,(X)-~(X)<~.,(x) t ,]  =13,, i = O, 1 2. . .m 

and our requirement (27.2): P [e~(X) < O] > 13~,i = 1, 2,...m 

is thus equivalent to the condition that 

(X) + t~o,(x) <- O, i = 1, 2,.. .m 

(27.10) 

(27.11) 

Case (ii): Only the means,  variances and covariances of  the coefficients in 
the linear programming  problem are known. 

Even if it is not known that the coefficients in the linear programming problems 
are jointly normally distributed, but only their means, variances and covariances 
are known, we proceed as follows: 

By Techebysheff's extended lemma [165] 

p [ e i ( X ) - E , ( X ) > t ~ ] <  1 
6=,(x ) - 1 + t~ i = O, 1, 2 , . . .m 

o r  PIei (X) < ~, (X) + tia=,(x ) ] > 

We now take 

2, i = 0, 1, 2,. . .m l+t~ 
(27.12) 

t~= 13i 
1-13i 

and it is seen that any X satisfying 

e-'] (X)+ t~a=,(x ) _< 0, 

will satisfy our requirement (27.2) 

Thus our problem reduces to 

Minimize 

Subject to 

which can be expressed as 

i = 0, 1, 2 . . .m 

i = 1, 2 , . . .m 

e--o ( x )  + to6oo(X) 

~(X)  + t~ao,(x ) < 0,  i = 1, 2,. . .m 

Xn+ 1 -- 1 

Xj > 0, j = 1, 2...n+ 1 

(27.14) 

(27.14) 

(27.15) 
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where 

Minimize 

Subject to 

DTX + t o (X T B~ 

A i X + t~ (XTB~X) ~/2 < 0, i = 1, 2 , . . .m 

Xn+ 1 -" 1 

X > 0  

(27.16) 

D T= (dl, d 2. ..dn, dn+l); d = Ecl.~ j = t, 2, . . .n + 1, and d~ 0 

- = E a ~  j = l  2. n a n d  A i = (all , ai2,...ain, - b i ) ,  aij , , .. 

b i = Eb~ i = 1, 2, . . .m 

X T = (x~, x 2, ...Xn+~) a lx(n + 1) matrix 

B'~ = (b~jk), a(n + 1) x (n + 1) symmetric positive semidefinite matrix, where 

b i = = - b  ~ j, k = 1 2,.. .n, (n + 1); i = 1 2.. .m. jk E(a~ (a~ and a~ i' ' 

B~ = (b~ a (n + 1) x (n + 1) symmetric positive semidefinite matrix, where 

b~ = E(d~176 j, k = 1, 2, . . .n + 1; and 

t~, i = 0, 1, 2, . . .m are known constant. 

For convenience, we now write (27.16) in the form: 

Minimize F(X) = DTX + ( X  T B ~  1/2 

Subject to f(X) = A~X + (XTB~X) ~/2 < b~, i = 1, 2, . . .m 

Fm. l (X) = A m + i X  = 1 

x > 0  

Where 

(27.18) 

A i = (all, aiz, ""ain+l)'  ain+l = 0, i = 1, 2, . . .m 
Am+ l = (0 ,0  . . . .  1), a lx(n + 1) matrix and 

B i - t2i Bil . i = 0, l, 2, . . .m (27.19) 

The Stochastic linear programming problem is therefore reduced to the case 
of nonlinear programming, where the nonlinearity occurs in the objective function 
as well as in the constraints in the form of square roots of  positive semidefinite 
quadratic forms. It can be shown that the functions F(X), f(X), ( i -  1, 2,...; m 
+ 1) in (27.18) are convex functions. 

Generalizing the Cauchy-Schwartz inequality, we have 

L e m m a  27.1. If C is a real symmetric positive semidefinite matrix, then 

(XTCy)2_< (XTCX) (yTCy),  for all X, Y e R" 

and equality holds if and only if CX and CY are linearly dependent, i.e. say CX = 
~,CY where ~ is a real number. 

For a short proof see [146] 

L e m m a  27.2. F(X), fi(X), (i = 1, 2, . . .m + 1) in (27.18) are convex functions 
o f X  ~ R". 
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Proof: For any Xl, X 2 E~ R" and Gt, 13 > O, ~ + 13 = 1 

+ =  A,X, + + + 13x ) �9 B' 

= otA~X~ + I3A~X 2 + [ot~XT1BiX~+2oq3XT~B~X2+I32XT2B~X2] '~ 

_< czA~X~ + 13A~X/+ [&XITB~X,+2ot[3(XT~B~X~)v, (X2BiX2) ,~ 

+ [32XT2BiX2] v, (by Lemma 27.1) 

= otAiX, + [3AiX2 + (~XTIBiX,) v, + ~(XT2BiX2) ,~ 

or f(o~X,+13X2) < czfi(X,)+J3fi(X2), i = 1, 2,...m 

The proof that F(x) is convex is analogous and f+~(X), being linear is convex. 

Our problem therefore, is to minimize a convex function subject to convex 
constraints, which ensures that any local minimum encountered in the problem will 
give the global solution desired. But our functions need not be differentiable (as 
they involve positive semidefinite forms and hence can vanish) and we cannot 
therefore apply any of the various methods of convex programming known in the 
literature based on differentiability assumptions. However, Dantzig [109] has 
developed a method for solving convex programming problems without the 
assumption of differentiability and his method can be suitably applied to solve our 
problem. 

It is interesting to note that when all the corelation coefficients involved in the 
problem are unity, the problem reduces to a linear programmifig problem. 

27.3. The Sochastic Objective Function 
Consider the case where the coefficients in the constraints and the resources 

in a linear programming problem are constants but the coefficients in the objective 
funtion are random variables. The problem is reduced to a nonlinear program where 
nonlinearity occurs only in the objective function. Since it is difficult to solve the 
problem directly, we first obtain a solution of a dual problem. A solution of the 
(primal) problem is then obtained with the help of the solution obtained for the 
dual problem. 

27.3.1. The problem and its Dual 
Our problem can be stated as 

Maximize F(X) = DTX- (XrBX) '~ 

Subject to AX < b 

X > 0 (27.20) 

where A is a mxn matrix, b a m • 1, D, X are nxl matrices and B is a mxn 
positive semidefinite matrix. 

It can be shown that a formal dual problem to (27.20) is given by 

Minimize G (Y) = bW 

Subject to AW + BW > D 

WrBW< 1 
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Y > 0 (27.21) 

Where we assume that if (27.21) is feasible then there exist (Y,W) feasible 
for (27.21) with WrBW < 1. (Assumption P) 

This assumption however, does not seem to be a serious restriction. In fact, 
if it is not satisfied, we can suitably perturb the variance matrix B, so that there 
exists a feasible solution of the dual problem with WrBW < 1. 

The problem (27.20) is called the primal problem and (27.21), the dual 
problem. Let the constraint set of the primal problem be devoted by C and that p 
of the dual by C D. The symbol t0 denotes the empty set. 

27.3.2. Duality 
It will now be shown that a duality relation holds between (27.20) and (27.21) 

in the sense that 
(a) Sup F(X) = Inf G(Y) (Inequality or Weak Duality Theorem) 
(b) The existence of an optimal solution of one of these problems implies the 

existence of an optimal solution of the other in which case their extreme 
values are equal. (Duality Theorem) 

(c) If one problem is feasible, while the other is not, then on its constraint 
set, the objective function of the fesible problem is unbounded in the 
direction of optimization (Unboundedness theorem) 

(d) If both problems are feasible, then both have an optional solution 
(Existence Theorem) 

Theorem 27.1. Sup F(X)= Inf G(Y) 

Proof: Using the convention that 

- is empty. Sup F(X) - ~, if Cp 

and inf G(Y) = + ~, if C D is empty. 

it remains to prove the inequality under the assumption that both problems are 
feasible. 

Let X and (Y,W) be feasible solutions of the primal and the dual problems, 
respectively. 

We then have 

F(X) = DTX - (XTBX) �89 

which proves the theorem. 

< D T X -  (XTBX) w (W'rBW) v' 

< D T X -  WqBX (by Lemma 27.1) 

_< yTAX < bwy = G (Y) (27.22) 

We recall the result obtained by Eisenberg in [146], which we give here as a 
lemma. 

Lemma 27.3. Let C be a real symmetric nxn positive semidefinite matrix and A 
be a real mxn matrix, so that G - R" ~{XIAX _< 0} is a polyhedral convex cone, 
Let 
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U = R" r G >_ urX _< (XTCX)'~}, and 

V =  { v l 3 Y  ~ Rm+X ~ G a n d  

v = A'ry + CX, XTCX = 1 }, 

Where Rm+ = R m r {YIY >_ 0}, 

Then U=V 

Theorem 27.2. If X o is an optimal solution of the primal problem, there exists a 
(Yo,Wo) so that (Yo,Wo) is an optimal solution of the dual problem and the extrema 
are equal. 

Proof: Let X o be an optimal solution of the primal problem and F(Xo) = M. 

Consider the set 

K=Rn+'c~{(X, ~.) I AX - bE _< 0, X >_ 0, 9~ > 0} (27.23) 

so that K is a polyhedral convex cone. The set can be rewritten as 

K=Rn+'c~{(X, k)I A , X -  b,~ _< 0} 

where 

i oll A~ ,b~ --(bT,O,...O,1) (27.24) 

are (re+n+ 1) x n and l x(m+n+ 1) matrices respectively and I is a (n x n) identity 
matrix. 

if (X, Z) e K and ~, > 0, then Z-~X e C p NOW, 

and 

F(Z.-'X) = Z.-' F(X) _< M 

or F(X) _< ~.M 

= _ _ for all t > 0 while if ~ 0, then AX < 0, X > 0 and therefore X o + tX ~ Cp 

Hence 

M > F(X o + tX) F(Xo)+tF(X ) 

since F(X) is a homogenous concave function. 

Now, if F(X) > 0, taking large value of t, we can make the right side of the 
above expression greater than M. Hence we must have F(X) < 0. 

Thus, 

(X, Z) e K ~ F(X) _< ;LM. 

i.e. 

(X, Z) e K ~ (D T, -M)  (X T, Z) T _~ [(X, Z) T B,(X T, Z)T] '~ (27.25) 

w ere [: 001 
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From Lemma 27.3 it follows that there exists a Y ~ R+m+n+l+ and (X, ~t) ~ K, 
such that 

(D r, -M) r = (A~,-bl)TY + BX, XO3X < 1 

or D = (A r, -I, 0) Y + BX (27.26) 

- M  = - (b r, 0,...0, 1)Y 

XTBX < 1 

which implies that there exists a (Yo, Wo) such that 

A Tyo + BWo > D 

Wo r BWo < 1 (27.27) 

Y o > o  

and brYo < M 

From theorem 27. l, it follows that bTYO = M and then (Yo, Wo) is an optimal 
solution of the dual problem which proves the theorem. 

Converse 
Now, suppose that (Yo, Wo) is an optimal solution of the dual problem and 

consider the following linear program" 

Minimize g(Y)-- bTY 

Subject to A ~  + BW >_ D (27.28) 

Y > 0  

There are three possibilities 
(a) (27.28) may have an optimal solution with WTBW _< 1, or 
(b) every optimal solution of (27.28) may satisfy WrBW > 1, or 
(c) (27.28) may have unbounded solution. 

It is noted that the system of inequalities 

A~t ~ >_ 0 (27.29) 

b ~ < 0  

Y > 0  

has no solution. For, i fY is a solution of (27.29), then (Yo + tY, Wo) is a feasible 
solution of the dual problem and G (Yo + tY) ~ -  oo for t ~ oo, contradicting the 
assumption that (Yo, Wo) is optimal for the dual problem. 

Now, (27.28) has an unbounded solution if and only if there exists a solution 

(V2, W2) of 

ArY + BW > 0 (27.30) 

baY <0  

Y > 0  
m 

so that for any feasible solution (Y~, W~) of (27.28), (Y~+tY 2, W~+tW2) is feasible 
for (27.28) for all t > 0 and g(Y~ + tY2) = br(y~+tY2) ---) - oo for t ---) oo. 
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Then, 

(W l + tW2)T B(Wl+tW 2) = t2w'r2BW2+2tVdT BW2+W~r BW ~ 

Since the system of inequalities (27.29) has no solution, BW 2 cannot be a 
null vector and since B is positive semidefinite WTEBW2 > 0. 

Hence (W~+tW2) T B(W l+tW2) -~ oo, for t -~ oo. 

Thus in the case that g(Y) is unbounded on the constraint set of (27.28), 
WTBW also tends to infinity. 

Summarizing the above, we have the following two cases 

Case (i): (27.28) may have an optimal solution with WTBW _< 1 (i.e. solution 
satisfies the constraints of the dual), 

Case (ii): it may have a solution with WTBW > 1 (i.e. solution does not satisfy 
the constraints of the dual). 

Case (i)" 

Lemma 27.4: If (Yo, Wo) is an optimal solution of the dual problem and (27.28) 
has an optimal solution satisfying the constraints of the dual then (Yo, Wo) is an 
optimal solution of (27.28). 

Proof: Let (Y~,W~) be an optimal solution of (27.28) such that WrzBW ~ _< 1. Since 
(Y~,W~) is a feasible solution of the dual problem, 

bTYo _< bTy~ (27.31) 

Further, since (Yo, Wo) is a feasible solution of the linear program (27.28), 

bTy~ _< bTY0 (27.32) 

Hence bTYo = bTyl 

Theorem 27.3" If (Yo, Wo) is an optimal solution of the dual problem and the 
linear program (27.28) has an optimal solution satisfying the constraints of the dual, 
there exists an Xo, so that Xo, is an optimal solution of the primal problem and 
the extrema are equal. 

Proof: By Lemma 27.4, (Yo, Wo) is an optimal solution of (27.28). The duality 
theorem of linear programming states that there exists an Xo, such that 

AXo < b 

BXo - 0 

Xo>O 

and DTXo = bTyo. 

Since BXo = o, we have 

F(Xo)-  DTXo- (XTo BXo) '~= bTyo - G(Yo) (27.34) 

It then follows from Theorem 27.1 that Xo is an optimal solution of the primal 
problem and the proof is complete. 

Case (ii): 
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Consider the following quadratic programming problem. 

Minimize G~(0, Y, W) = 0bvY + �89 (1- 0) WrBW 

Subject to ATy + B W > D 
Y > 0 (27.35) 

Where 0 is a single real parameter, which can be chosen as convenient between 
0 and 1 ( 0 < 0 <  1) 

A method of solving such a problem for all 0, 0 < 0 < 1 is discussed in section 
27.3.3. 

Lemma 27.5: If (Yo,Wo) is a solution of (27.35) for 0 < 0 < 1, then Wo v BW o is 

a monotonically increasing function of 0. 

Proof: Take any 0~ and 02, where 0 < 0~ < 02< 1. Since (Y0,' W0, ) minimizes G~ 

(0 l, Y, W) we have 

1 1 OlbTYo, + (1-O1)W BWo,-<OIbTYo O1)W BWo  
(27.36) 

and since (Y0 ,W0~ ) minimizes G 1 (02, Y, W), we have 

1 1 
02bTYo, +-~(1-02)Wor~BWo, < 02bTYo, +-~(1-02)Wor, BWo,  (27.37) 

Multiplying (27.36) by 02 and (27.37) by 0~, we get 

1 1 
0,02bTYo, +-~ 02 (1-0,)WoTBWo, < 0102bTYo, + ~  02(1- 0,)WoTBWo~ 

1 1 W TBWo, <0,0:bTYo, + 0,(1 0: TBWo, 0102brYo~ + -~ 0, (1 - 0z) 05 "~ - )Wo, 

Adding these two inequalities and rearranging, we get 

1 1 
(o,-o,) W BWo, < BWo  T 

and hence 

W~BW0,-< wTBw0~0~ 

Lemma 27.6" If for some 0 = 0' ,  0 < 0* < 1, (Yo., Wo.) is a solution of (27.35) 

with WOT. BWo.=I, then (Yo., Wo.) is a solution of the dual problem (27.21) 
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Proof: Let (Y, W) be any feasible solution of (27.21), then (Y, W) is also feasible 
for (27.35). Since (Yo. Wo.) minimizes G~(0*, Y, W), we get 

0*bTYo,+ �89 (1-0") We, BWo, < 0*bTy + �89 (1- 0") WTBW 

o r  O*bTYe. < 0*bTy-  �89 (1-e*)  (We T. BWe.-  WTBW) 

Since W~BW0.=I and WrBW < 1, we obtain 

0*brY0,< 0*brY 

or brY0, = bay 

and since (Yo., W0.) is feasible for the dual problem (27.21), the lemma is proved. 

Corollary 27.6.1. If(Ye., We. ) is a solution of(27.35) for O = O* with W~r. BWe.=I, 

then (Ye., We.) is optimal for (27.35) for 0 = 0". 

Proof." Since W~r.BWe.=l, the unboundedness of Gl(0*, Y, W) will imply the 

unboundedness of brYo., which contradicts the assumption that the dual problem 
has an optimal solution. 

It will now be shown that we can in fact find a 0 = 0", O< 0* < 1, so that 
(27.35) has an optimal solution (Ye., We.) with We.BWo.=l. 

Lemma 27.7" There exists a 0 = 0", 0 < 0"<1, for which (27.35) has an optimal 
solution (Y*,W*) with W*TBW * = 1 

Proof: For 0 = 0. (27.35) reduces to 

Minimize WTBW (27.38) 

Subject to ATy + BW > D 

Y > 0  

According to our assumption (P), (27.38) has a feasible solution (Y, W) with 
WrBW < 1. Hence there exists an optimal solution (Y~, W~) of (27.38), [173, 

Appendix i], with W1T BW~ < 1. 

Further, for 0 = 1, (27.35) reduces to 

Minimize bry 

Subject to ATy + BW >_ D, 

Y > 0  

and case (ii) states that there is a solution of this problem with WrBW > 1. 

From Lemma 27.5, it then follows that a 0 - 0", 0 < 0* <1 can be obtained 
for which (27.35) has a solution (Y*, W*) with W*BW* - 1. (This will be 
illustrated in section (27.3.4.), which by corollary 27.6.1, is in fact an optimal 
solution. 



Stochastic Programming 445 

Lemma 27.8: If (Yo, Wo) is an optimal solution of the dual problem, then Wo ~ 

BWo = 1 

Proof: Let (Yo,Wo) be an optimal solution of the dual problem (27.21) with 

wT BWo < 1. 

From Lemma 27.7, it follows that for some 0 = 0", 0 < 0* <1, (27.35) has an 
optimal solution (Y*,W*) with W*TBW*=I and (Y*,W*) is then feasible for 
(27.21) 

Since (Y*,W*) minimizes GI(0*, Y, W) and (Yo,Wo) is a feasible solution of 
(27.35), we have 

0*bTy*+ �89 (1-0")  W*TBW*< 0*bryo + �89 (1 -0" )  Wo T BWo 

or 0*brY * < 0*brYo - �89 (1-0")  (W*TBW * -Wo r BWo) 

and since W*rBW * = 1 and Wo T BWo < 1, we get 

0*brY * < 0*bWo 

or baY < brYo 

contradicting the assumption that (Yo,Wo) is an optimal solution of the dual 
problem. 

Lemma 27.9: If (Y*,W*) is an optimal solution of the quadratic problem (27.35) 
for a 0 = 0", 0 < 0* < 1, so that W*TBW * = 1 (and hence (Y*,W*) is also an 
optimal solution of the dual problem), then (Y*,W*) is an optimal solution of the 
following linear programming problem. 

Minimize gl (Y,W) = 0*brY + (1 -0" )  W *T BW 

Subject to ATy + BW > D (27.39) 

Y > 0  

Proof: The problems (27.35) and (27.39) have the same constraints. Suppose there 
A A 

exists an (Y, W) satisfying the constraints such that 

A A 
gl ( Y '  W )  < gl ( Y * , W * )  

[0*bT~ + �89 (1--0')  W*TB ~ ]-- [0*ba'Y * + ( 1 - 0 )  W*TBW *] < 0 

or 0*bT(~ -Y*)+ (1-0")  W * T B ( ~ - W * )  < 0 (27.40) 

0 < ct < 1 and define 

Y1 = (1-  cz) Y* + cz ~ = Y* + cz ( ~ - Y * )  

W, - (1-  ix)W* + o~ "~ -- W* + o~ ( "~-W*)  

Let 

which means 
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Since the constraints set of (27.35) or (27.39) is convex, (Y~,W~) is a feasible 
solution for (27.35) or (27.39), Consider 

G~(O*,Y~, W ) -  G~(O*,Y*, W*) 

= ot [O*b'r ( ~ - Y * )  + (1-0")  w*'r B( "~ -W*)] 

+ �89 ( 1 - 0 " )  cz ~ ( ' ~  - W*)TB ( ~ -  W*) (27.41) 

From (27.40) and positive semidefiniteness of B, it follows that the right- 
hand side of (27.41) can be made negative for sufficiently small positive cz. This 
conradicts the assumption that (Y*,W*) is an optimal solution of (27.35) for 0 = 
0 ' .  Therefore, (Y*,W*) must be an optimal solution of the linear program (27.39) 

Theorem 27.4: If (Y*,W*) is an optimal solution of the dual problem (27.21) 
and if the linear program (27.28) has a solution which does not satisfy the 
constraints of the dual, then there exists an X*, so that X* is an optimal solution 
of the primal problem and the extrema are equal. 

Proof: By Lemma 27.8 it follows that (Y*,W*) is an optimal solution of the dual 
with W*TBW*=I, and hence is an optimal solution of(27.35) for 0 = 0". By Lemma 
27.9 then, (Y*,W*) is an optimal solution of the linear program (27.39). By the 
duality theorem of linear programming, there exists az, such that 

AZ < 0*b 

BZ = (1-  0") BW* (27.42) 

Z > 0  

and DTZ = 0*brY * +(1- 0") W*TBW * 

or DTZ-  W*TBZ = 0*bTy * 

By Lemma 27.1 and since W*TBW * =1, we get 

DrZ - (ZTBZ) '~ = 0*bvy * (27.43) 

Let X* = ( 1/0* ) Z, then X* is a feasible solution of the primal problem and 

DTX * - (X2BX*) '~ = bry  * (27.44) 

From Theorem 27.1, it then follows that X* is an optimal solution of the primal 
problem and the theorem is proved. 

Theorem 27.5 

O and C D O, then Sup F(X) = + r (a) IfCp = x~c, . 

(b) If, Cp = O and C o r O, then y~%Inf G(Y) = -  oo 

Proof: (a) Let Xo ~ Cp so that AX ~ < b, Xo >_ 0 Since C D = O, the inequalities 

A T y > D  

Y > 0 (27.45) 

have no solution, for otherwise, a solution of (27.45) with W = 0, will be feasible 
for the dual problem, contradicting the assumption that C D = O. 
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i.e., 

Hence there exists [Theorem 7.11 ] a solution of 

A X < 0  

DTX > 0 

X > 0  

Now, i f X > 0 ,  A X < 0  ~ F ( X ) < 0  

[AIIX _< 0 ~ F(X) < 0 

(27.46) 

then by Lemma 27.3, there exist Y e R~, Z e R~ 

n and W e R+, such that 

A T y - Z + B W = D  

WTBW= 1 

i.e. there exists a solution of 

ATy + B W > D  

WTBW < 1 

Y > 0  

which contradicts the assumption that 

C D = O. Hence 

X > 0 ,  A X < 0  ~ F ( X ) > 0  

For ~ >_ 0, we then have 

and 

A(Xo + ~,X) < AXo < b 

Xo + Z,X > 0 

Hence Xo + ~,X ~ Cp But 

F(Xo + ;~X) > F(Xo) + ;~F (X), 
since F(X) is a homogenous concave function. 

And then 

Lim (Xo + ~,X)= + oo 
~ - - 4 , 0 o  

(b) Let (Yo,Wo) ~ C D, so that 

A TyO + BWo > D 

WToBWo < 1 

Yo> 0 

Now, CP = (3 implies [Theorem 7.11 ] that there exists a solution Y of 

A T y > 0  
m 

b T y < 0  
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Y > 0  

and for ~ >_ 0, we have 

AT(Yo+~tY) + BWo >_ ArYo + BWo >_ D 

Wro BW ~ < 1 

Y o + ~ Y > 0  

Hence (Yo + ~t Y, Wo) e CD, but 

G(Yo + ~ Y) - brYo + ~t baY 

and Lim G (Yo + ~ Y) = -oo  
I.t-...~oo 

since bW < 0 

Corallary 27.5.1 
(a) If Cp * O, and F(x) is bounded above on Cp, then C D , O. 
(b) If C D , O and G(Y) is bounded below on C D then Cp ~ O. 
(c) If Cp * O and C D , O, then F(x) is bounded above on Cp and G(Y) is 

bounded below on C D 

Proof: (a), (b): If one problem is feasible and the other is not then by theorem 
27.5, the objective function of the feasible problem is unbounded in the direction 
of optimization contradicting the assumption. 

(c): Is an immediate consequence of Theorem 27.1 

Theorem 27.6: If both primal and dual problems are feasible, then both have 
optimal solutions. 

Proof: Since Cp and C D are both nonempty, F(X) is bounded above on Cp and G(Y) 
is bounded below on C D. 

Let us know consider the problem (27.28), i.e. the problem 

Minimizeg(Y) = bTy 

Subject to ATY + BW >_ D 

Y>O 

If (27.28) has an optimal solution (Yo,Wo) with Wo x BWo _< 1, then (Yo,Wo) 

is also optimal for the dual problem (follows from Lemma 27.4) If there is no 
optimal solution of (27.28) with WrBW _< 1, consider the problem (27.35), i.e. 
the problem. 

Minimize Gl (0 , Y, W) - 0ba'Y + �89 (1-0)  WaBW 

Subject to Aa'Y + BW > D 

Y > 0  

Where 0 is chosen as convenient between 0 and 1. 

Since G(Y) is bounded below on C D, it follows from Lemma 27.7 that there 
exists a 0 = 0", 0 < 0* < 1 for which (27.35) has an optimal solution (Y*,W*) 
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with Wr*BW*=I, which is also an optimal solution of the dual problem (Lemma 
27.6) 

It then follows from Theorem 27.3 and Theorem 27.4 that there also exists 
an optimal solution of the primal problem. 

The duality relation is now fully established. 

27.3.3. Solution of the quadratic program (27.35) 
We will now discuss a method for solving the quadratic programming 

problem (27.35) for all 0, 0 < 0 < 1. 

For 0 =1. The problem reduces to a linear programming problem and this 
can be solved by the usual simplex method. 

For 0 _< 0 < 1, we note that if we set ~, = 
0 

> 0, (27.35) is equivalent to 
1 - 0 -  

the problem. 

Minimize G: ()~,Y, W)= )~brY + �89 WVBW 

Subject to ArY + BW > D (27.46) 

Y > 0  

Now, let W=W~-Wz, where W~ > 0, W z > 0 are nxl matrices. (27.46) can 
then be written in the form 

Minimize G 2 (~,Z)= )~ b~ Z + �89 ZrCZ 

Subject to A T Z = D 

Z > 0  

where A~ = (A T, - I, B , -  B) is an n x (m + 3n) matrix, 

b T -- (b T, 0, 0...0), a 1 x (m + 3n) matrix, 

(27.47) 

I 0 0 0 1 
C =  0 B -B an (m+3n)  x ( m + 3 n )  

0 -B B 

symmetric positive semidefinite matrix and 

ZT=( YT' Ym+,'"Ym+n' wT' W~)is  a 

1 • (m + 3n) matrix, y~+~ (1 < i < n) being scalors. 

It may be noted that for a feasible solution of (27.47) with ZTCZ = 1, there 
is a feasible solution (Y, W) of (27.35) with WTBW < 1 and hence of the dual 
problem (27.21) and conversely. 

We now assume that (27.47) has a feasible solution and apply Wolfe's method 
[524] discussed in Chapter 24 to solve this problem for all ~, >_ 0. 
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Theorem 27.7 [Wolfe]: The problem (27.47) has a solution if and only if there 
exists a V > 0, (V is (m + 3n x 1) and U (U is n x 1) such that 

VTZ = 0 

A T Z = D (27.48) 

CZ-V + A~U + Z b~ = 0 

Z > 0  

Proof: Suppose Zo,Vo,Uo is a solution of (27.48) and Z is any feasible solution of 
(27.47). Since C is positive semi-definite, we have 

( z -  Zo) �9 c ( z -  Zo) >__ 0 

or ZTCZ- Zo T CZo > 2 Zo T C ( Z -  Zo) (27.49) 

Now 

G2(Z, Z) - G2(Z, Zo) = E b[ (Z - Zo) + �89 (ZTCZ -- Zo T CZo) 

From (27.48) we know that 

Hence, 

> ~ b, �9 ( z -  Zo) + Zo �9 c ( z -  Zo) 

= (z  b: + Zo T c )  ( z  - zo )  

~,bT+zoT C = VT- UTA T 

G~(Z, Z) - G=(;~, Zo) > ( W -  V r A T ) (Z - Zo) 

by (27.49) 

VTZ = 0, A T Z = D, 

C Z -  v + A~U + Zb~ = 0 

V > 0 ,  Z > 0  

Hence there exists Z, U, V satisfying (27.48) 

Theorem 27.8 [Wolfe]" Let A~, D, C be as before, let the matrix Q be (m+3n) by 
n~, q be 1 by x "~ and g be (m+3n) by 1. Let Z ___ 0, V > 0 such that VTZ = 0 be 
given, Denote by Z ,  those components of Z which are positive and by V the 
corresponding components of V (note V = 0); denote by V the positive components 
of V and by Z the corresponding components of Z (note Z = 0) 

= ( w z -  W Z o -  v r A T Z + U T A, ~ Z ~ 

= VTZ -- O -- UTD + UTD 

>_ 0, since V >_ 0, Z >_ 0 

Conversely if (27.47) has a solution, then it must satisfy the Kuhn-Tucker 
conditions 
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If the linear form qw 

Is minimal under the linear constraints 

V z = 0 ,  

Zv = 0, 

Stochastic Programming 451 

(27.50) 

A~Z = D (27.51) 

C Z -  IV + A~U + QW = g 

then there exists an r such that 

Cr = 0, A~ r r = 0 and qw = rg. 

Let us now minimize the linear form 

-~ ,  (27.52) 

subject to (27.48) 

where Theorem 27.8 can be applied with 

Q = b~, q = - 1 ,  g = 0 and W = 

Two cases may arise 

Case (i)" - ~, has a finite minimum. 

Case (ii): ~, is unbounded. 

Case (i)" If (27.52) has a finite minimum, the hypothesis of  Theorem (27.8) is 

satisfied and we note that the minimum value o f -  X is 

-~, = q W = rg = 0 and 

there exists an r such that 

AIr r = 0, C r = 0  

Further from the proof of  Theorem 27.8, (See section 24.2) we have 

bTr_<- l ,  r >_ 0 

Thus for any t > 0 and aZ feasible for (27.47), we have 

A~ r (Z + t r )=  D 

Z + t r > 0  

and G2(~,, Z + tr) = ~, b~ Z + ~,t b~ r + �89 ZrCZ 

Since b~ r < - 1 

G 2 (~,, Z + tr) ~ -oo  as t > oo for any ~ > o (27.53) 

Note" If there exists an optimal solution of the dual problem (27 .21) , -  X in (27.52) 

cannot have a finite minimum. 
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Case (ii): Z is not bounded, since in the minimizing problem (27.52), only a 
finite number of bases are available, a sequence of basic solutions (Z ~, V ~, U ~, Z~), 
i = 1, 2, . . .k will be produced and finally (Z k§ V k§ U k§ such that (Zk+tZ k+~, 
Vk+tV k§ Uk+tU k§ ~,~+t), is a feasible solution for all t >_ 0. [96] Due to the 
restriction (27.50), we will have 

0 "- V i Z  i - V i Z i+l - V i+l Z i - V i+l Z i+l a n d  ~b i < ~b i+l for i = 1, 2,... k 

(27.54) 

Now, for given ~i<< ~ < ~i+l, let 

~i+l __~, Z i ~ _ ~ i  Z i+l 
Z = )i+~ _ ~----~ + ~i+~ _ ~-"~ , i = l, 2,...k-1 (27.55) 

and let V and U be respectively the same convex combination of V i, V i+~ and U t, 
U ~§ Then (Z, V, U) is a feasible solution of (27.52) and hence satisfies the 
conditions of Theorem 27.7, so that Z yields the desired minimum in (27.47). 

If, on the other hand, Z >_ i~ k, then 

z = z ~ + ( ~ -  ~,qz ~§ v = v ~ + ( ~ -  ~ )  v k§ u = u ~ + ( ~ -  ~ )  u ~+' 
(27.56) 

satisfies the conditions of Theorem 27.7 and Z is a solution of our problem (27.47). 

27.3.4 Solution of the Dual Problem 
Suppose that the dual problem is feasible. We then first solve the linear 

programming problem (27.28) 
Case (a): I f  (27.28) has an optimal solution (Yo,Wo) satisfying the constraints 

of the dual, then (Yo,Wo) is an optimal solution of the dual problem. (Lemma 27.4) 
Case (b): I f  not, then either G (Y) is unbounded (see (27.53) or from Lemma 

27.7 it follows that we find X ~§ > ~= > 0 in the sequence of the basic solutions of 

(27.52), such that for X = X ~, we obtain an optimal solution (Y~, W~ ) of (27.46) 
with 

0 < W~ r BW~i < 1 

and for E = ~J*~, an optimal solution 

(Y~,.,, W~,., ) with 

Wf.,BW~,., > 1 

If ~i< ~k-~, we define 

Y* =(:zY~> +(1 +r Y~>,,, 

w*  = ,~w, ,  +(1 +,~) w~,,., 

O < c t < l  
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such that W*rBW * = 1, where o~ is determined from the quadratic equation 

a2Wxr, BWx, + 2or(l- ot)WxrBWx,., + (1- o02W~r~.,BWx., - 1 = 0  

solving ~ = Z.* from 

~i+l __ ~i 

we note from (27.55) that (Y*,W*) is an optimal solution of (27.46) for ~, = ~,* 
and hence of (27.35) for 0 = 0* = )~*/1+ ~,* with w'r*BW * = 1. (Y*,W*) is 
therefore an optimal solution of the dual problem (Lemma 27.6) 

I f  ~,i> ~k, we  def ine 

Y* = Yx~ + otYx~., 

W* = W~k + ~W;~k.! 
Such that W*rBW * = 1, where ct is determined from the quadratic equation 

tx2Wxr~§247 + 2ctWzr~,, BWx~ + Wxl BWx~ -1  = 0 

Now, solving ~ = ~.* from ~, -  ~k = Or, we note from (27.56) that (Y*,W*) 
is an optimal solution of (27.35) for 0 = 0* = ~.*/1+ ~,* with W*rBW * = 1 and 
hence is an optimal of the dual problem. 

27.3.5. Solution of the Primal Problem 
For obtaining a solution of the primal problem, we first solve the dual problem. 

(i) If the dual problem is feasible and G(Y) is unbounded, the primal problem 
is infeasible (Theorem 27.5) 

(ii) If the dual problem is infeasible but the primal feasible, then F(X) is 
unbounded. This can however, only happen if there exists a solution of 

A Z < 0  

BZ < 0 (27.57) 

DTZ > 0 

Z > 0  

in which case, for any feasible solution X of the primal problem X + tZ is 
also feasible for all t > 0 and F(X+tZ) ~ oo for t ~ oo 

(27.57) can be solved by the simplex method. 

(iii) In case the dual problem does have an optimal solution (Yo, Wo), there 
exists an optimal solution Xo of the primal problem (Theorem 27.3 and 27.4), such 
that 

F(Xo) = G (Y0) 

i.e. 

DTXo - ( Xo r BXo) '/' = brYo (27.58) 
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We also know from (27.22) that 

F(Xo) = DTXo - ( Xo T BXo) '~ < DTXo - ( X T B X o )  '~ ( W T B W o )  ~ 

< D T X o -  W T B X o  

< Yo T AXo = bTyo = G(Yo) 

and by (27.58), equality must hold throughout in (27.59). Hence 

F(Xo) = DTXo - ( X  T BXo) '~ = DTXo - (X  T BXo) '~ ( W f BWo) '~ 

and this is true if any only if 

BXo = a BWo 

ATyo = D - B Wo 

AXo = b 

Yo r AXo = bTyo 

= D T X o -  W0 r B X o  

= yTAXo = bTyo = G(Yo) 

(27.59) 

(27.60) 

where a = 0 if the solution of the dual problem is obtained by solving the linear 

1 - 0 "  
program (27.28) and a = ~ if the solution is obtained by solving (27.35), 

0 *  ' 

we therefore obtain a solution of 

AX < b  

BX = aBWo (27.62) 

X > 0  

by linear programming techniques. 

A solution of  (27.62) will then give us an optimal solution of  the primal 
problem. 

27.4 The General Case 
Consider the case when all the parameters (A, b, c) in a linear programming 

problem are random variables. Assuming that the distributions of the random 
variables are not known but only their means, variances and covariances are known, 
a reasonable deterministic formulation of the problem can be obtained (see Section 
27.2) as, 

Minimize F(X) = DTX + (XTB~ ~ 

Subject to f(X) = AIX + (XTB~X) '~ < b~, i = 1, 2, . . .m 

f + l ( X )  = Am+iX = 1 (27.63) 

X > 0  

where B~,(i = 0, 1, 2, . . .m) are symmetric positive semidefinite matrices. 
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The problem is a convex programming problem but the functions F(X), f~(X), 
(i - 1, 2,. . .m) need not be differentiable and we cannot therefore apply any of the 
various methods of convex programming based on differentiability assumptions to 
solve our problem. However, Dantzig [ 109] has shown that even if the functions 
are not differentiable, a method can be developed for solving a general convex 
programming problem, provided some mild regularity conditions are satisfied. It 
can be seen that the burden of the work in this iterative procedure shifts to a sub- 
problem, which must be solved afresh at each iteration. This itself is a convex 
programming problem which may or may not be easy to solve for general convex 
functions. 

We now impose the restriction of boundedness on X in (27.63) (in fact, in 
many practical situations, the decision maker knows beforehand the upper bounds 
of the levels of activities that he can employ) and further assume that there exists 
an X such that f~(X) < b~ (i = 1, 2,...m) and f+](X) = 1, so that the regularity 
assumptions in Dantzig's method are satisfied. 

The general problem then becomes 

Minimize F(X) = DTX + (XTB~ '/' 

Subject to fi(X) = A~X + (XVB~X) '~ < b~, i = 1, 2, . . .m 

f+t(X) = X+~ = 1 (27.64) 

X ~ R  

where R = {0 < X < S} (27.65) 

and S is a vector with positive elements. 

27.4.1. The subproblem and its Dual 
We now apply Dantzig's method (see Section 25.7) to solve our problem 

(27.64). At each iteration we are then required to solve a convex programming 
problem called the 'subproblem' which in our case can be stated as 

t 

Maximize ~(X) = DrX - ~ (XrB~X) ~/2 
i=l  

Subject to IX < S (27.66) 

X > 0  

where B ~ are symmetric positive semidefinite matrices. 

As in section 27.3, we first obtain a solution of a dual problem to (27.66), 
with the help of which a solution of the subproblem is then obtained. 

It can be shown that a dual problem to (27.66) is given by 

Minimize ~ff(Y) = STy 

t 

Subject to IY + i f '  B~W ~ > D (27.67) 
i=l  

WiTBiWi~ l, i = 1, 2,...t, 

Y > O  
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27.4.2. Duality 
It will now be shown that the dual relations hold between (27.66) and (27.67). 

The sub problem (27.66) will also be called the primal problem and (27.67) the 
dual. 

Theorem 27.9: Sup O (X) _5< Inf ~(Y) 

Proof: Let X and (Y, Wi), i = 1, 2,...t be any feasible solution of the primal and 
the dual problem respectively. 

We then have 

t 
~(X) = DTX - ~ (XTB') ''~ (WTB'W') ''~- 

i=l 

t 

< DTx - ~ w i r B i X  (27.68) 
i=l 

< yTIX < STy = v(Y). 

Hence sup ~(X) < Inf ~(Y) in the case that both the problems are feasible. 
The theorem then follows, if we assume the convention that 

Sup {~(X) = - 0% if the primal constraint set is empty 

Inf ~(Y) = + 0% if the dual constraint set is empty. 

Extending Lemma 27.3, we now prove the following 

Theorem 27.10: Let C ~ (i = 1, 2,...t) be real symmetric nxn positive semidefiniee 
matrices and A be a real mxn matrix. Let 

G = R ~ c~ {XIAX < 0} be a polyhedral convex cone and 

Let 

t 
R m + = R m ('~ {nln > 0 } and  cons ide r  the set 

V = (  v l3n~Rm X~ ~G with v=ATn+s ' x i t c i x i  _<1, i = 1,2,...t} 

Then U = V 

Proof: See [425] 

Theorem 27.11" There exists an optimal solution of the primal problem if and only 
if there exists an optimal solution of the dual problem, in which case their respective 
extreme values are equal. 

Proof: It is clear that the primal problem (27.66) is equivalent to the problem 

Maximize O(X) 
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Subject to y'rlX < ~g(Y) for all Y > 0 (27.69) 

X > 0  

Consider the problem 

Minimize ~g(Y) = SaY 

Subject to XTIY > O(X) for all X > 0 (27.70) 

Y > 0  

Since O(X) and ~g(Y) are positively homogenous continuous, concave and 
convex functions respectively and since 

I X < O , X > O ,  4) (X)_>O~ X = 0  

I Y > 0 ,  Y > 0 , ~ ( Y ) _ _ _ 0 ~  Y = 0  

it follows from a theorem of Eisenberg on duality in homogenous programming 
[145] that there exists an optimal solution of the problem (27.69) if and only if 
there exists an optimal solution of the problem (27.70) and then their extreme values 
are equal. 

Our theorem will then follow, if we show that the dual problem (27.67) is 
equivalent to (27.70). 

Let (Y,W), i = 1, 2,...t be any feasible solution of the dual problem. Then for 
all X > 0, 

t 

XrlY > DrX - Z wit BiX 
i=l 

t 

> DTx _ ~ (WiTBi W i ),/2 (XTBi X),/2, 
i=l 

by Lemma 27.1 

t 

> DTx - ~ (XTB~X) '/2 = ~(X) 
i=l 

Hence Y is a feasible solution of (27.70) 

Conversely, let Y~ be any feasible solution of (27.70), then 

t 

xTIy~ > DTx - ~" (XTB~X) '/2 
i=l 

for all X _> 0, Y~ > 0 

which means 

t 

- IX > 0 ~ (D T - y r ) x  < ~ (XTB~X)'/z 
i=l 

By Theorem 27.10, it then follows that there exist 

II, W, i = 1, 2,...t such that 

t 

- - I I I  4- Z B i  w i  - -  D -  I Y  1 

i=l 
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W i T B i W i  _~ ~ 1, 

II > 0, W~> 0, i - 1, 2,...t. 

Which implies that 

t 

- I  Yl + ~ BiWi > D 
i=l 

W i T B i W i  _< ~ l ,  

Y~ > 0, W >  0, i = 1, 2,...t 

i.e. (Y~,W~), i = 1, 2,...t is a feasible solution of the dual problem. 

Hence (27.70) and the dual problem are equivalent. 

Theorem 27.12: Both primal and dual problems have optimal solutions. 

Proof: Since the constraint set of the primal problem (27.66) is bounded, it has 
an optimal solution and then from Theorem 27.11, it follows that the dual problem 
(27.67) also has an optimal solution. 

The duality relations between (27.66) and (27.67) are thus established. 

27.4.3. Solution of the "Subproblem" 
The subproblem (27.66) is a convex programming problem, where the 

objective function is nonlinear which may not be differentiable and in practice it 
may or may not be possible to solve this problem directly. 

If it is not possible to solve the 'subproblem' directly, we first try to obtain 
a solution of the dual problem which again is a convex programming problem, 
where the nonlinearity now occurs in the constraints. The functions here are 
however, differentiable and it may therefore be possible to solve this problem by 
one of the various methods available for convex programming problems. 

Suppose then that (Yo,Wo~), i = 1, 2,...t is an optimal solution of the dual 
problem. Then there exists an optimal solution Xo of the primal problem (Theorem 
27.11) such that 

O (Xo) = v(Yo) 

t 

i.e. DTXo - ~(XorB~Xo) = STYo (27.71) 
i=l 

We also know 

t t 

~(Xo) = DTXo - ~(XorB'Xo) '-'2 < DTXo - ~(XoVB~Xo)~'2 (W~TB~W~) ''2 
i=l i=l 

< DTx0 - ~ w0 -- i T B i X o  (27.72) 
i=l 

< YrolXo < STY0 = ~(Y0) 

and by (27.71) equality must hold throughout in (27.72) 
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This is, however, true if and only if 

BiXo < ~iBiWio, i =1, 2,...t 

IVo 
i=! 

IX o < S 

Yo T IX 0 = STY0 

We therefore obtain a solution of 

I X < S  

B i X -  Gt, iBiWi0 = 0, i = 1, 2,...t 

Yo r IX = SrYo (29.73) 

X > 0  

By linear programming techniques. 

A solution of (27.73) will then yield an optimal solution of the (primal) sub- 
problem. 

27.4.4. Solution of the General Problem 
In solving our general problem we use Dantzig's method [109] for convex 

programming. 

At each step of iteration an approximate solution is obtained by the simplex 
method. It is then checked whether the optimal value of the objective function of 
the corresponding subproblem (of the type (27.66)) is nonnegative. 

If it is nonnegative, the approximate solution obtained is the optimal solution 
of the general problem (Theorem 25.16) 

If the optimal value of the objective function is negative, the iteration process 
is continued and from Theorem 25.17, it follows that for some iteration k, the 
optimal value of the objective function of the corresponding subproblem tends 
to zero and the kth approximate solution tends to the optimal solution of the general 
problem. 

27.5. Exercises 

1. Consider the problem 

Maximize z = 4x~ + 2X 2 + 3X 3 + c4x4 

Subject to x l + x  3+x  4<24 
3x I + x 2 + 2x 3 + 4X 4 < 48 
2X~ + 2X 2 + 3X 3 + 2X 4 < 16 

X l , X 2, X 3, X 4 >_ 0 

where c 4 is a discrete random variable which takes 4, 5, 6, or 7 with 

probabilities .1, .2,.3 and .4 respectively. 

Find a solution that maximizes the expected value of z 
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2. Consider the problem [262] 

Minimize x~ + x 2 
Subject to ax~ + x 2 > 7 

bx t + x 2 > 4 
xl,x 2 >_ 0 

Where a and b are random variables uniformly distributed between 1 and 
4, and 1/3 and 1 respectively 
Show that the solution obtained by the expected value solution procedure 
is infeasible to the original problem with probability '75. 

3. Solve the same problem as in Example 27.1 when d is a discrete random 
variable taking the values 70, 71, 72,...80 each with probability 1/11. 

4. Consider the problem of minimizing with respect to x, the function 

Z(x) = 2x + E( rn~n 10 y) 

Subject to x + y > b 
x , y > 0  

where b is a random variable having normal distribution with mean 100 
and standard deviation 12. 

5. A manufacturing firm produces two types of products P~, P2 using three 
machines M~, M, and M~. The processing times on these machines and 
the available time per week are given below. The profit per unit of each 
of the products are random variables whose joint distribution is not known 
but only their means, variances and the covariance are known. 

Time required Available time 
per unit (minutes) per week (minutes) 

M 1 

M2 

Product P~ 

10 

1 

Product P2 

5 

10 

1.5 

2500 

2000 

450 

The mean values of profit per unit for Product 1 and Product 2 are $50 
and $100 respectively and the variance-covariance matrix is given by 

B = (  400 200 / 

\200 2500) 

Formulate the deterministic equivalent of the problem and use the method 
discussed in section 27.3 to find the quantities of Product 1 and Product 2 
to be produced to obtain the maximum profit with probability '9. 
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Consider the problem in Exercise 5 above, where now the machine times 
required for the two products are independent random variables with known 

2 means a~j and variances o~j as given below 

Type of 
machines 

M2 

M3 

Time required per unit (minutes) 

Product 1 

- 2 = 3 6  all = lO, t~l] 

- -  2 = 1 6  a21 -- 4, (3"21 

- -  2 = 4  a31 = 1, (~'31 

Product 2 

a~2 = 5, 0"2=16 

- -  2 = 4 9  a22 = 10, o22 

- -  2 = 9  a32 = 1.5, a32 

Stochastic Programming 

Available time 
per week (minutes) 

2500 

2000 

450 

The mean values of profit per unit and the variance-covariance matrix 
are the same as in the previous problem. Formulate the deterministic 
equivalent of the problem and use the method discussed in section 27.4 to 
find the quantities of Product 1 and Product 2 to be manufactured per week 
to obtain the maximum profit with probability '9. 
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Some Special Topics in 
Mathematical Programming 

In this chapter, we discuss some special cases in mathematical programming which 
frequently arise in real world problems, namely, goal programming, multiobjective 
programming and fractional programming. 

28.1. Goal Programming 
Goal programming is a relatively new concept that was conceived by Charnes 

and Cooper [71, 74] to deal with certain linear programming problems in which 
multiple conflicting objectives (goals) exist. In the present day business environment, 
management may no longer be satisfied with profit maximization only but is also 
concerned with market share, labour stability or other business and social factors. 
The management therefore sets a desired or acceptable level of achievement 
(aspiration level, target or goal value) for each objective under consideration. 
However, it might be impossible to satisfy all goals of management exactly and 
therefore the management is interested in finding a solution that achieves the goals 
"as closely as possible". This may be achieved by considering all the goals as 
constraints and minimizing a suitable function of the sum of the absolute values of 
the deviations from such goals. To illustrate the concept, we consider the following 
simple example. 

Example. A manufacturing company produces two types of products: A and B from 
the same raw material. The production of a single unit of A requires 2 units and a 
single unit of B requires 3 units of the raw material. Total quantity of raw material 
available in stock is 120 units. The profit per unit of A is $4 and that of the product 
B is $3. The market share of the products are estimated to be 40 units of A and 
30 units of B. 

The profit maximization problem is then 

Maximize 4x~ + 3X 2 

Subject to 2x~ + 3x 2 < 120 

x~ < 40 
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x2_< 30 

xl, x2 >_ 0 

This is a linear-programming problem and can be solved by the usual simplex 
method. 

Suppose now that the management sets the goals" 

1. A profit target of $240 should be met. 

2. The purchase of the material from the open market should be minimized. 

It is clear that there would be no feasible point that would satisfy all the 
goals. We therefore try to find a feasible point that achieves the goals as 
closely as possible. We may therefore reformulate the problem as 

Minimize d~- + d~ 

Subject to 4x~+3x2+d~ - d~ = 240 

2Xl+3X2+d~-d 2 = 120 

x < 4 0  (28.1) 
x < 3 0  

+ + 

x l, x 2, d l ,  d I , dE, d 2 > 0 

Where d~- represents the negative deviation from the ith goal, i = 1, 2. 

(under-achievement) 

d~ epresents the positive deviation from I the goal,  i = 1,2. 

(over-achievement) 

This problem is still in a linear programming form and the usual simplex 
method can be used to find a solution. 

However, goals are rarely of equal importance and even if they are equally 
important, unit of measurement may be different. Therefore, deviations from these 
goals are not additive (as in the example above). It is therefore, necessary to derive 
an equivalent common measure or to use a conversion factor. 

There are two basic models in goal programming 
(a) The Archimedian model. 
(b) The preemptive model. 

28.1.1. The Archimedian Goal Programming 
In the Archimedian model, weights are assigned to undesirable deviations 

according to their relative importance and is minimized as an Archimedian sum. 
This is known as weighted goal programming. (W.G.P.) 

Mathematically the problem can be stated as" 
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Minimize 

k 

z = ~ (w~-d~- + w+d +) 
i=l 

where 

Subject to + 
f(X) + d[ - d, = b,, i = I, 2,...k 

fi(x) = b i, i = k+ I,...m. 

x>O, d~-, d~ >__0, i = I, 2,...k (28.2) 

f(X), i = 1, 2,...m are linear functions of X ~ R", 

b~, i = 1,...m are the target values, 

+ d~-, d~, i = 1, 2,...k are the deviational variables associated with undesirable 

deviations from the target values. 

- -  + 

w~, w~, i = 1, 2,.. .k are the positive weights attached to the respective 

deviations in the achievement function z. 

The problem is in a linear programming form and can therefore, be solved by 
the usual simplex method. 

28.1.2. Preemptive Goal Programming 
In Preemptive (lexicographic) goal programming, the goals of equal importance 

are grouped together and priorities are assigned to them. The goals of highest 
importance are assigned priority level 1, designated as p~, the goals of the next 
highest importance are assigned priority level 2, designated as P2 so that P~ >> P2 
and so on. In general, Pr >> P+~, which means that there exists no real number 13 
such that 13 P~+l > Pr" Any rigid constraints are assigned priorirtyl and all goals within 
a given priority must be commensurable. 

The mathematical representation of the problem is given as: 

Lex minimize a = { g~(d-, d+), g2(d-, d+)...gk(d -, d+)} 

Subject to ~ cijxj + d[ - d + = b~, i = 1, 2,...m. 
j=l  

x j > 0 ,  j = 1,2,...n 

d~-, d? > O, i = 1, 2,...m (28.3) 

where 

x i, j = 1, 2...n are the decision variables, 

k is the total number of priority levels, 

a is the achievement vector; an ordered row vector measure of the attainment 
of the objectives at each priority level. 
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d~-, d~ are the negative and the positive deviations associated with the ith goal 

constraint, i - 1, 2,...m. 

gr(d-,d+), r = 1, 2...k are linear functions of the deviational variables associated 
with the goal constraints at priority level r. 

c j is a constant associated with variable j in goal i (a technological coefficient) 
i = 1, 2...m, j =1, 2...n, 

b~, i = 1, 2,...m are the target values. 

One method to solve the above problem (28.3) is to find the sequential solution 
to a series of conventional linear programming problems. This is accomplished by 
solving the single objective linear programming problem one for each priority level 
while maintaining the minimal values reached by all higher priority level 
minimization. 

This is known as sequential goal programming (SLGP) method. 

In the first stage, we solve the problem of minimizing the first term in the 
achievement function subject only to the goals associated with the priority level 
1, that is, we solve the problem. 

Minimize al = gl (d-, d § 

Subject to ~ c~jxj + d[ - d~ = b~, i ~ P~ (28.4) 
j=l 

X, d-, d+>O 

o denote the optimal value of a~ from stage 1. Let  a 1 

In the next stage, we are to minimize the second term in the achievement 
function subject to all goals at priority levels PI and P2 and an extra goal that the 

0 achievement at the priority level one must be equal to the optimal achievement a~, 

already obtained in the first stage minimization. 

The problem in the second stage therefore, is 

Minimize a 2 = g2(d-, d +) 

Subject to c~jxj + d[ -d i  = bi, i e P~ 
j=l 

�9 ~ c i j x  j + d [ - d  7 = b  i, i E P  
j=l 2 

gl(d-, d§ = a~ 

X, d-, d § >_ 0 (28.5) 

We continue the process until all priorities have been considered. The optimal 
solution at the last stage of the process id then the optimal solution to the original 
goal-programming problem. 
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It should be noted that as soon as a unique optimal solution is obtained at any 
stage of the process, it is the optimal solution to the original problem and the process 
is terminated. This is so because in that case, goals with lower priority levels do 
not influence the solution obtained at the previous stage. 

28.1.3. Multiphase Goal Programming 
Another approach for solving the lexicographic goal programming problem was 

presented by Lee[298]. The method, known as the multiphase (or modified simplex) 
method is an extension of the well-known two phase method of the simplex 
algorithm and is an improvement over the sequential goal programming technique 
as it generally requires fewer computations. 

28.1.4. Incommensurability Goal Programming 
In general, units of measurements for deviation variables from different goals 

are incommensurable. Thus, a simple summation of these variables in the objective 
functions of a W.G.P. or within a priority level of an Lex.G.P. is not valid. To 
overcome this difficulty a normalization procedure is adopted. Each objective is 
divided throughout by a constant pertaining to that objective which ensures that 
all objectives have roughly the same magnitude. Such a constant is known as 
normalization constant. There are several different normalization constants 
according to different norms used. For example, L~-norm. L2-norm (Euclidean), 
L| (Tehelbycheff) or percentage norm. 

28.1.5. Goal Efficiency 

Definations 28.1. Let (X,d) be a feasible solution to the goal problem. Then 

is goal-efficient if there does not exist another feasible point (X, d) such that 

d < ~,  d ~ ~,  where ~ and d are the corresponding vectors of undesirable 

deviational variables. 

28.1.6. Sensitivity Analysis in Goal Programming 
It should be noted that assigning weights in goals programs is often very 

difficult. Moreover, in reality, most processes and organizations need to change 
the importance or priorities of their goals with time. Analysing the impact of such 
changes in the model is therefore, important in the total decision making process. 

In Archimedian goal programming, we first solve the problem with a set of 
reasonable weights and then perform sensitive experiments with other sets of weights 
to see if a better solution can be obtained. 

In preemptive goal programming, we change the order of the priorities and then 
solve the problem again. 

The impact of discrete changes or range variations in other parameters of the 
linear goal programming model may also be analysed in a manner quite similar to 
that performed in linear programming. 
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28.1.7. Interactive Goal Programming 
The central theme of interactive goal programming is to actively involve the 

decision maker in the decision making process. For example in preemptive goal 
programming, after specifying the priority levels and assigning weights within those 
priority levels associated with more than one goal, the problem is first solved with 
the sequential programming procedure. After obtaining a solution, various data and 
results are presented to the decision maker. The decision maker may then refine 
the formulation with changes in any goal type, target value, priority level and weight 
that he considers appropriate. Then, the new problem is solved generating the second 
stage solution and so forth. If the feasible region is bounded, a goal efficient solution 
is produced. 

28.1.8. Duality and Extensions 
The duality in linear goal programming has been discussed by Ignizio [242]. 

In SLGP approach, since each problem in the sequence is a conventional linear 
program, there is a corresponding sequence of conventional linear programming 
duals. In multiphase approach, the dual of a linear goal programming problem is a 
linear programming problem with multiple, prioritized right hand sides. Ignizio has 
designated this dual as the multidimensional dual. 

A method for solving goal programming problems using fuzzy sets, known as 
fuzzy programming has been given by Zimmerman [560], Hannan [220]. Extensions 
of linear goal programming to the integer and nonlinear cases are given by Ignizio 
[242] and Lee and Marris [299]. 

28.2. Multiple Objective Linear Programming 
After the development of the simplex method by Dantzig for solving linear 

programming problems, various aspects of single objective mathematical 
programming have been studied quite extensively. It was however realized that 
almost every real-life problem involves more than one objective. For such problems, 
the decision makers are to deal with several objectives conflicting with one another, 
which are to be optimized simultaneously. For example, in a transportation problem, 
one might like to minimize the operating cost, minimize the average shipping time, 
minimize the production cost and maximize its capacity. Similarly, in production 
planning, the plant manager might be interested in obtaining a production programme 
which would simultaneously maximize profit, minimize the inventory ofthe fuished 
goods, minimize the overtime and minimize the back orders. Several other problems 
in modem management can also be identified as having multiple conflicting objectives. 

Mathematically, a multi-objective linear programme (MOLP) can be stated 
as:  

Maximize 

Maximize 

Maximize 

Z l = clX 
Z2 -" c 2 X  

z~ = ckX 
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Subject to X ~ S 

or Maximize Z = CX 

Subject to X ~ S (28.6) 

where X ~ R" is the decision vector. 

k is the number of objectives 

c ~ is the vector of the coefficients of the ith objective function 

z i is the value of the ith objective. 

C is a k • n matrix. The components of the column of CX are the k 

objectives. 

S is the feasible region defined by 

S={X ~ RnlAX = b, X > 0} A being an m x n matrix of full rank, 

m < n .  

Z is the vector valued objective function (criterion vector) 

The problem (28.6) is also called a linear vector maximization problem. 
(LVMP) 

There are three basic approaches to deal with multi-objective linear programs. 
(a) Weighting or utility methods. 
(b) Ranking or prioritizing methods. 
(c) Efficient solution methods. 

28.2.1. Weighting or Utility Methods 
In this method each objective is assigned a positive weight and the weighted 

sum of the k objectives is then maximized over S. The problem is thus converted 
into a single objective programming problem which can be solved by the 
conventional simplex method. 

k 

Assuming that the weights )h are normalized so that ~ ~,i = 1, we have the 
i=l 

problem 

Maximize ~,TCX 

Subject to X e S (28.7) 

k 

Where ~, e R k, Z,~ > 0, i = 1, 2...k, ~ ~,~ = 1 
i=l 

However, the obvious drawback to such an approach is that it is extremely 
difficult to obtain the necessary weights. To determine the weights, we are to make 
use of the utility function, which itself is very difficult to construct and if constructed 
(in general nonlinear) is valid only for one point in time. (see [258]) 

28.2.2. Ranking or Prioritizing Methods 
This approach tries to circumvent the difficulties faced in determining the 
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weights to be assigned to the objective functions. Instead of attempting to find a 
numerical weight for each objective, the objectives are ranked according to their 
importance. In fact, ranking is a concept that seems inherent to much of decision 
making. 

We then specify aspiration levels (target values) for the objectives and solve 
the problem lexicographically (see preemptive goal programming in w 

28.2.3. Efficient Solution Methods 
Since in general there does not exist a point in S, which will simultaneously 

maximize all the objectives in the multi-objective linear program, we can only try 
to maximize each objective as best as possible. We therefore seek to obtain efficient 
solutions of the problem in the sense of the following definition. 

Definition 28.2. A point X ~ ~ S is said to be an efficient point if and only if there 
is no X ~ S, such that 

CX > CX ~ and CX ~ CX ~ 

that is, a poim X ~ ~ S is efficient if and only if its criterion vector is not dominated 
by the criterion vector of some other point in S. 

An efficient point is often called a Pareto-Optimal point, an admissible point 
or a nondominated solution. 

A slightly restricted concept of efficiency called the proper efficiency is 
proposed by Geoffrion[ 195]. 

Definition 28.3. An efficient solution X ~ of (26.6) is said to be properly efficient 
if there exists a scalar M > 0 such that for each 

one 

p~{1  2 k} and each X ~ S, C X  > C X  ~ there is at least 
, . . .  p P 

q ~  {1 2, .k} q r  C X < C X  ~ �9 . ~ q q 

CpX -CpX ~ 

C q X  0 - C q X  
_<M 

Geoffrion has shown that X ~ is a properly efficient solution of (28.6) if X ~ is 
an optimal solution of the problem. 

~,TCX Maximize 

Subject to X ~ S  

for some =1 t 
The multi-objective linear program which is sometimes called linear vector 

maximization problem can therefore be solved by finding the set E of all efficient 
solutions and then choosing between them on an entirely subjective basis. Finding 
an initial efficient extreme point is crucial in developing algorithms for enumerating 
all efficient points. Several algorithms have been developed for finding the set of 
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efficient extreme points of S, see for example, Refs[368, 151,143, 251 ]. Efficient 
faces are then generated and the set E is obtained as the union of the maximal faces. 

The method for obtaining the set of all efficient solutions thus proceeds in three 
phases. In phase 1, an initial efficient extreme point is determined or it is ascertained 
that the set E of efficient points is empty. If E is not empty, the set of all efficient 
extreme points is generated in phase II. Finally, in phase III, all maximal efficient 
faces are determined. The set E is then obtained as union of all these faces. 

Before we discuss the algorithms, we first consider the following results. 

A well known theorem in multi-objective linear programming is the following. 

Theorem 28.1. A point X ~ ~ S is efficient if and only i fX ~ maximizes the problem 

Max{~YCX I X ~ S} (28.8) 

forsome ~ ' E A = (  ~ERk ]~i > 0 , ~ ) L  i~_~ =1} 

For the proof of the theorem, we follow Steuer[441]. We first consider the 
following lemmas. 

Lemma 28.1. (Tucker's Theorem of the Alternative). 

Let G, H and K be given matrices of order p • n, q • n and r • n respectively 
with G nonvacuous. 

Then either 

System I: 

or the 

System II" 

GX > 0 GX r 0, HX > 0 KX = 0 has a solution X ~ R". 

GTY2 + HTy 3 + KTY4 = 0 

Y2 > 0, Y3 > 0 

has a solution Y2 e RP, Y3 ~ Rq and Y4 E R r" 

Proof: See Chapter 7. 

Lemma 28.2. Let X ~ e S and D be an n x n diagonal matrix with 

(10 if ~  d~ = xj 

otherwise 

Then X ~ ~ E if and only if the system 

CU > 0, CU ~ 0, DU > 0, AU = 0 

has no solution U e R" 

Proof: Suppose that U satisfies the system. Let ~ = X ~ + ~U. Then there exists 

an ~. > 0, such that for all ct ~ [0, ~ ], ~ ~ S. But CX - CX ~ = ctCU >__ 0 and 

txCU r 0. This implies that X ~ is not efficient. 
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Conversely, suppose that the system is inconsistent and let X be any point in 

S. Then for U = X -  X ~ AU = 0 and DU > 0.Therefore since the system is 
inconsistent, it is not true that CU > 0, C U r  0. It is thus not true that CX > CX ~ 
CX r CX ~ Hence X ~ is an efficient point. 

L e m m a  28.3. Let X ~ ~ S and D be a diagonal matrix as defined in lemma 
28.2.Then X ~ is efficient if and only if there exist ~ ~ R k. Y3 ~ R" and Y4 ~ Rm 
such that 

cT~ + DTy 3 + ATY4 = 0 

n >  O, Y3_> O. 

Proof: Follows from lamma 28.1 and 28.2 

Proof of the theorem 
Let X ~ ~ S be an efficient point. Then by lemma 28.3, there exists r~ ~ R k, 

Y3 ~ R" and Y4 ~ Rm such that 

CrTr + DTY3 + A W  4 = 0 

rr > 0, Y3 > 0 is consistent (28.9) 

k 
Now, taking ot = ~ 7t i > 0, the system (28.9) 

i=l 

can be written as 

(CT)~)~ + Da'Y3 + ATY4 = 0 

~, ~ A, Y3>0 .  

But by lemma 28.1, the system 

(~TC) U ~ 0 

(UC) U ~ 0 

D U > O  

AU =0 

has no solution. 

Now, for any X e S, U = X -  X ~ DU >_ 0, AU = 0. Hence it is not true that 
)JCU >_ 0, )~TCU ~ 0. This implies that )~TCX _< ~TCX ~ which means that X ~ 
maximizes. (28.8) 

Conversely, suppose that X ~ maximizes (28.8) but is not an efficient point. Then 
there exists an X e S such that CX >_ CX ~ CX r CX ~ Since ~ > 0, this implies 
that ~,TCX > ~TCX~ which contradicts that X ~ maximizes (28.8). 

Corol lary  28.1. If S has an efficient point, then at least one extreme point of S is 
efficient. 

P roof"  Follows from Theorem 28.1 and the fact that if a linear program has an 
optimal solution, it has an optimal extreme point. 
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28.2.4. Finding Efficient Extreme Points 
We now discuss methods for finding an initial efficient extreme point and then 

to generate all efficient extreme points of S. 

(a) Evans-Stoner Method[IS1] 
Based on Theorem 28.1 an initial efficient extreme point can be obtained by 

solving the linear program 

Max {~rCX I X E S} 

for an arbirary ; ~ A = ( ~ , ~ R k  I~,i >0 '~~Zi  =1)  " i = ~  (28.10) 

If S is nonempty and bounded, an optimal solution is obtained, which by 
Theorem 28.1 is an efficient extreme point. However, the method is not fail-safe 
when S is unbounded. 

Now, in the sequence of basic feasible solutions (extreme points) generated 
before an optimal solution of the problem is reached, there may be one or more 
efficient points. Therefore, a test of efficiency is applied to basic feasible solutions 
along the way they are generated and time to find an initial efficient extreme point 
may be reduced. 

Test for Efficiency of an extreme point 

To determine if a given extreme point of S is efficient we proceed as follows: 

Let X be an extreme point of S with associated basis B and let A and C be 
partitioned into basic and nonbasic parts so that we have 

X B = B-lb _ B-1NXN 

Z = C B B-lb + (C N -CBB-lN)XN 

= CaB-l b + WX N 

Where B denotes the basic columns of A and N the nonbasic columns, 

Xa, X N denote the vectors of nonbasic variables respectively, 

C B (k x m) and C N (k x ( n -  m)) denote the submatrices of C corresponding 

to basic and nonbasic vectors X a, X N. 

Z is the k-vector of criterion values corresponding to the basic feasible 

solution X and 

W - C N- CBB-~N is the k x (n - m) reduced cost matrix. 

Note that B is an optimal basis of (28.10) if and only if 

;~TW < 0 for ~, > 0 (28.1 l) 

We call B an efficient basis if and only if B is an optimal basis of the weighted 
sum linear program (28.10) 

Theorem 28.2. Let ~ be an extreme point of S with corresponding basis B. Let 
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Q = {i[ XB, = 0} and (B-~N)~, i ~ Q be the rows of (B-1N) associated with 

degenerate basic variables. Then ~ is efficient if and only if the subproblem 

Maximize eW 

Subject to - WY + IV = 0 

(B-1N)i Y + s i = 0, i ~ Q 

Y>_0, V > 0 ,  s~>0for  i ~ Q. 

where e is the sum vector of ones, Y ~ R n-m, V ~ R k is consistant bounded with 
optimal objective value equal to zero. 

Proof.[441]" Let A and C be partitioned into basic and nonbasic parts. Then by 

Lemma 28.2 ~ is efficient if and only if the system 

CBU B + CNU N >_ 0 

CBU B + CNU N ~ 0 (28.13) 

D U > 0  

BU B + NU N = 0 

is inconsistent. 

If we let U B =-B-~NUN and since for degenerate basic variables (-B-~N)~ 

U N >_ 0 for i ~ Q, ~ is efficient if and only if the system 

CBB-1NUN- aND N < 0 

CBB-~NUN - CNU N r 0 

(B-~N)~ U N < 0, i ~ Q (28.14) 

UN>_0 

is inconsistent. In other words, ~ is efficient if and only if the system 

-WU N + IV = 0 

(B-~N)~UN _< 0, i ~ O (28.15) 

UN>_0 

does not have a solution such that V >_ 0, V ~ 0. Thus the above system enables us 

to test the efficiency of an extreme point. Hence ~ is efficient if and only if the 

subproblem (28.12) has a solution with the optimal objective value equal to zero. 

We now consider the problem of finding the set of all efficient extreme points. 
After obtaining an initial efficient extreme point, we introduce a nonbasic variables 
into the current efficient basis converting one of the basic variables to nonbasic 
and thus obtain an adjacent extreme point which is then tested for efficiency. This 
test is conducted for each nonbasic variable in each efficient tableau (that is, the 

tableau corresponding to an efficient basis) and thus each adjacent extreme point 
is classified as efficient or nonefficient. If it is efficient, the entering nonbasic 
variable is called an efficient nonbasic variable. A series of subproblems are 
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therefore solved to enumerate all efficient extreme points and hence involves 
significant computation. 

For testing the efficiency of an extreme point adjacent to a given efficient 
extreme point, we solve the subproblem (28.16) 

Theorem 28.3. Let x ~ be an efficient extreme point of S and x be a nonbasic 
J 

variable with respect to the efficient basis B. Then the adjacent extreme point with 
x a basic variable, is efficient if and only if the subproblem 

J 
Maximize eW 

Subject to -WY + WJu + IV = 0 (28.16) 

Y,V > 0, u ~ R l 

where WJ is the jth column of the reduced cost matrix W = C N- CBB-~N and Y 
Rn-m, V ~ R  k 

is consistent and bounded with optimal objective value equal to zero. We then 
call x, an efficient nonbasic variable. 

Proof: Clearly, the adjacent extreme point is efficient if and only if the problem 

Minimize OTX 

wry..< 0 

(Wi)T;~ = 0 

I ~ , > e  

Subject to 

X > 0  

has an optimal solution where the value of the objective function is zero. 

to 

(28.17) 

Since (WJ) TX = 0 implies (WJ) T~, > 0 and -(WOTX > 0, the problem reduces 

Minimize OTX 

Subject to -wrx_> 0 

(WJ)T;~ > 0 (28.18) 

I ~ , > e  

~ > 0  
m 

Its dual is given by 

Maximize eW 

Subject to -WY + WJu + IV + It = 0 (28.19) 

Y > 0 ,  u ~ RI, V > 0 ,  t > 0  

Thus the adjacent extreme point is efficient if and only if the problem (28.19) 
has an optimal solution with the value of the objective function equal to zero. 

The problem (28.19) can be expressed as (28.16) since the slack vector t is 
not necessary because if there exists a t~ > 0,we can increase the value of the 
objective function by setting t~ = 0. 

This completes the proof. 
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Thus we note that since the subproblem is always consistent, the adjacent 
extreme point is inefficient if and only if the subproblem (28.16) is unbounded. 

Echer-Kouda Method 

Echer and Kouda[ 142] provides us with a method for finding an initial efficient 
point or showing that the set E is empty. 

Let X ~ ~ S and consider the problem 

Maximize eTs 

Subject to CX = Is + CX ~ 

AX = b (28.20) 

0 < X  E R n , O < S _ < R  k 

! 

Theorem 28.4. If (X,~) is an optimal solution of (28.20), then ~ is efficient. 

Proof." Suppose that ~ ~ E. Then there exists an ~ ~ S such that c ~ >_ c ~ ,  

c x ~ c x  

Now, c ~ - cX ~ = I ~ and since we can always find a ~ such that ( ~ ,  ~ ) 

is feasible f o r ( 2 8 . 2 0 ) , c ~  - c X  ~  > _ I ~ , I ~  ~ I ~  and then 

cT~ > cT~, which contradicts that ( ~ ,  ~ ) is an optimal solution of (28.20). 

Hence ~ is efficient. 

Theorem 28.5. If (28.20) does not have a finite maximum value, then the set E 
is empty. 

Proof: If (28.20) does not have a finite maximum value, then its dual 

Minimize (CX ~ P + bTy 

Subject to CTp + ATy >_ 0 (28.21) 

-IP > e 

P,Y unrestricted 

is infeasible. 

Setting n = - P  and Y4 = -  Y, the dual problem can be written as 

Minimize - (CX~ - bTY4 

Subject to CTn + IY3+ ATY4 = 0 (28.22) 

n > 0 ,  Y3>_0 

If we now suppose that E ~ ~ and X ~ E, then by lemma 28.3, there exist 

(n,Y3,Y4) such that 

CT~ "Jr" DTY3 + ATY4 = 0 

71: > 0, Y3 > 0 (28.23) 

Thus there exists a Y3 > 0 such that (28.22) has a feasible solution, which 
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contradicts that the dual problem is infeasible. Hence, it is not possible for (28.20) 
to have an unbounded value of the objective function. 

Of course, the efficient point thus obtained need not to be an extreme point. 
However, it can be shown[ 140] that if it is not an extreme point, a simple procedure 
for performing pivots on the optimal tableau for (28.20) will yield an efficient 
extreme point. 

Now, to enumerate all efficient extreme points, Ecker and Kouda[143] 
proposed to find a solution of the linear system 

W r V + y  = - W r e  

V > 0, Y > 0 (28.24) 

Where W is the reduced cost matrix of an efficient basis and V ~ R k, 
y ~  R .-m. 

Then X is an efficient nonbasic variable if and only if there exists a solution 
J 

(V, Y) of (28.24) such that Yi = 0 

Given an efficient extreme point of (28.6) a routine on simplex tableau of the 
linear system is applied and Ecker-Kouada's procedure to determine the set of 
efficient nonbasic indices J an be stated as follows" 

Step 1" Let L = Set of nonbasic indices = { 1, 2,...n - m} and J = ~. Consider 
the tableau. 

Yl 

Yll-m 

-Wre 

Vl .... Vk Yt .... Y~-m 

I 

w ~ I 1 

[ 

Step 2" For each j e L such that yj row in the tableau has a positive left constant 
and nonpositive nonbasic entries, drop the row and set L = L-  {j }. 

Step 3" Perform pivots as necessary on the tableau to obtain a new tableau 
with a nonnegative constant column. 

Step 4" For each j ~ L such that yj is nonbasic or basic with value zero, set J 
= JU{j} and L = L-{j}. 

Step 5: For each j ~ L such that yj is currently basic but can be made nonbasic 
in one pivot, set J = JU {j } and L = L-{j } 

Step 6" If L = ~, stop. Otherwise, select a j e L and set L = L-0} .  Add to 
the current tableau an objective row to minimize Y i" In the course of minimization, 
check for steps 2,4 and 5 after each pivot. 

Step 7: If yj has a minimum value of zero, set J = JU{j}and go to step 6. 

In the above procedure it has been assumed that the problem is nondegenerate. 
For the degenerate case, the above procedure has to be slightly altered (see [ 143]). 



Some Special Topics in Mathematical Programming 41'7 
. . . . .  

(c) Isermann's Method [251] 
Isermann's procedure for finding an initial efficient extreme point of S is a 

two step procedure. 

In the first step, the problem 

Minimize UTb 

Subject to UTA- VTC > O T (28.25) 

V > e  

is solved. Isermann then states that the multi-objective linear program (28.6) has 
an efficient solution if and only if (28.25) has an optimal solution. Next, provided 
that an optimal solution (U~ ~ for (28.25) has been determined, an initial efficient 
extreme point for (28.6) is obtained by solving the linear program 

Maximize (V~ (28.26) 

Subject to X ~ S 

However, Eeker and Hegner [ 140] have shown by a counter example that, in 
fact (28.25) may be feasible and unbounded even though (28.6), has an efficient 
solution. Thus, for certain problems Isermann's method may fail to generate an 
efficient extreme point solution even though such solutions exist. Benson [48] 
however establishes that if the set Q = {X ~ S [ CX > 0} is nonempty, 
Isermann's procedure is valid. Benson has also proposed a new method for finding 
an initial efficient extreme point. 

Let us now consider the method proposed by Isermann for generating all 
efficient extreme points of S. 

It is clear that, x is an efficient nonbasic variable with respect to an efficient 
basis if and only if there exists a ~, ~ A such that 

~,TW < 0 (28.27) 

X T W  j --" 0 

where W is the reduced cost matrix of the efficient basis and WJ is the j the column 
of W. 

Hence if there is an optimal solution ~ of the problem 

Minimize eTa, 

Subject to - WT~, >_ 0 

(WJ)TX = 0 (28.28) 

~,>e 

where W J is the matrix of columns of W, J denoting the index set of the nonbasic 
indices, then the basis pertaining to W is an optimal basis for the problem (28.28) 

corresponding to X = ~ and each nonbasic variable x, j ~ J is efficient. 

Now, the dual to (28.28) can be written as 

Maximize eW 

Subject to -WY + WJU + IV = e  
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Y > 0, U > 0, V > 0 (28.29) 

where Y e R "-m, V e R k and U e R IJI, [JI denoting the number of elements in 
J II 

Thus each non basic variable x, j e J is efficient if and only if the subproblem 
(28.29) has an optimal solution. 

Consider that an efficient extreme point X is available for (28.6). We then start 
the algorithm by solving the subproblem (28.29) with J = { r }. If the subproblem 
has an optimal solution, then x, is an efficient nonbasic variable. Isermann's method 
then seeks to enlarge the set J in the following way in order to reduce the number 
of subproblems to be solved to classify all nonbasic variables. 

Ifyj is in the optimal basis of the subproblem with J = {r}  then x is an efficient 
j 

nonbasic variable and J is enlarged by each such j. Now, let yj be a nonbasic 
variable in the last optimal solution with J r ~. We then successively drop the 
sign restriction on yj and test if we can introduce yj into the basis in exchange 
for a basis variable v i and still the basis is optimal. If the converted basis is optimal, 
xj is an efficient nonbasic variable and J is enlarged to JU {j }. 

At the end, the index of each nonbasic variable yj of the last optimal solution 
for which the reduced cost is zero, is included in J. The resulting index set J is a 
maximal index set of efficient nonbasic variables. 

The algorithm is continued with each efficient extreme point and the 
corresponding maximal set of efficient nonbasic variables are obtained from which 
the set of all efficient extreme points is determined. Note that, we may have several 
maximum index sets for a given efficient extreme point. 

28.2.5. Determining the Set of All Efficient Points 
The problem which now remains is to determine the set E of all efficient 

solutions for (28.6). We therefore find all maximal efficient faces of S and the union 
of these faces will then give the set E. 

Several authors have investigated the problem of computing efficient faces, see 
e.g. Yu and Zeleny [544], Gal [180], Isermann [251 ] and Ecker, Hegner and Kouada 
[ 141 ]. While Yu-Zeleny and Gal make use of multiparametric linear programming 
to find all efficient extreme points and then develop their respective algorithms for 
generating the efficient faces, Isermann's approach identifies the efficient extreme 
points through a problem dual to the parametric linear program and then by 
extending his algorithm generates all maximal efficient faces. Ecker, Hegner, 
Konada's method is similar to Isermann's. 

Isermann's Method 
Let us assume that S is bounded and let Ix denote the index set of all efficient 

bases and J~J, the maximal index sets of efficient nonbasic variables at efficient 
basis i. (as described in section 28.2.4(c)). 

To compute all maximal efficient faces, Isermann's procedure is as follows" 
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For each i e Ix, let T i denote the set of all indices which belong to at least one 
of the maximal sets J~J, at efficient basis i, i.e. T = U J ~,j and let g denote the 

i j 

number of indices in T ~. 

For each T', a directed graph F(T ' ) i s  formed whose nodes are the ( ~ ]  

combinations of indices in "P, where h = g, g- 1, ...... 1. The ( : 1  node is the source 

and the (~1 nodes are the sinks. Since each node of F(T') represents a potential 

maximal index set at efficient basis i, the graph has to be adjusted as one or more 
maximal sets J~J have already been determined. In adjusting F(T i) for maximal 
index sets that are known, the respective nodes and all predecessors and successors 
are deleted. If the adjusted graph F(T ~) has no node, all maximal index sets of 
efficient nonbasic variables have been identified. If however, the adjusted graph is 
nonempty, a sink of the adjusted graph F(T ~) is selected and the linear program 
(28.29) is solved for the respective J~J. If (28.29) has no optimal solution, the node 
corresponding to jij and all its predecessors are deleted. If, however (28.29) has 
an optimal solution, a maximal set J~J is determined and the respective node, its 
predecessors and all its successors are deleted. 

Let us now form the index sets 

Q~,j = jij UD i for all i, j 

where D ~ denotes the set of indices of the basic variables at i ~ Ix. 

Now, the same index set may be constructed several times and therefore we 
form the minimal number of minimal index sets U ~, (ct = 1, 2,... ~ ) that subsume 

all of the Q~,J and have the property that for each Q~,J there exists an ot ~ { 1,2,... ~ ) 
such that Q~J c U ~ and for each U ~ there exists at least one index set Q~,J such that 

Qij = U ~ and moreover U ~' a: U c~" for any or', c~" ~ { 1, 2 .... ~ }, ( or' ;~ or" ). 

Now, for each ot ~ { 1, 2,... ~ }, we form the index set 

Ix ~ = { i ~ I  x l D '  c U  ~} 

Thus, the otth maximal efficient face is characterized by Px" 

Then the union of these maximally efficient faces gives the set of all efficient 
points. 

28.3. Fractional Programming 
In this section we discuss a special class of nonlinear programming problems 

where we are concerned with optimizing a ratio of real valued functions over a 
convex set. Such problems are known as fractional programs. Occasionally, they 
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are also called hyperbolic programs. If the objective functions of the problem is 
a ratio of two linear (or affine" linear plus a constant) functions and the constraint 
set is a convex polyhedron, the problem is called a linear fractional program. 

Mathematically, the fractional programming problem can be stated as 

f(x) 
Maximize F(X) = 

g(X) 

over X ~ S, 

where S is a compact convex sub-set of R" and f(X) and g(X) are continuous real 
valued functions of X ~ S. 

In most cases, it is further assumed that f(X) is nonnegative and concave on S 
and g(X) is positive and convex on S. 

Fractional programs arise in various contexts 

(a) The stock cutting problem: 
It is often required in paper (or steel) industry to cut the rolls of paper (or 
steel sheet) from the stock into narrower rolls of specified widths to satisfy 
the orders. The problem is that cutting should be done in such a way that 
the amount of wastage is minimum. Linear programming technique can 
be used to find an optimal cutting pattern, but it may be more appropriate 
[ 190] to minimize the ratio of wasted and used amount of raw material 
and thus a linear fractional program arises. 

(b) Investment problem 
In investment problems, the firm wants to select a number of projects on 
which money is to be invested so that the ratio of the profits to the capital 
invested is maximum subject to the total capital available and other 
economic requirements which may be assumed to be linear[346, 347]. If 
the price per unit depends linearly on the output and the capital is a linear 
function then the problem is reduced to a nonlinear fractional program with 
a concave quadratic function in the numerator of the objective function. 

(c) Stochastic problem 
Nonl inear  fractional program also appears in stochastic linear 
programming. Suppose that in the problem of maximizing a profit function 
say crX, subject to linear constraints, the coefficients of the profit function 
are random variables whose means and variance-covariance matrix are 
only known. Under the situation, a reasonable deterministic formulation 
of the problem is to maximize the probability that the profit function attains 
at least the desired value subject to the linear constraints [see section 27.2]. 
Then the problem of maximization of return on investment reduces to a 

p r x  - (XTBX) ~ 
nonlinear fractional program of the form Max Max 

DrX 

subject to AX < b, X > 0 where B is a positive semidefinite matrix. 
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Also see [50] and [360]. 
Applications of fractional programming are also found in inventory 
problems [231] information theory [7, 343], game theory [409] and in 
many other areas. 

In the recent years various aspects of fractional programming have been studied 
and a large number of papers on theory and methods of solution have appeared in 
the literature. 

The fractional programming problem (28.30) is said to be a concave-convex 
fractional program if f is concave and g is convex on S. Concave-convex fractional 
programs have some important properties in common with concave programs. 

It can be shown that (see section 9.3) 

~ 

. 

If f is nonnegative and g is strictly positive then F = f/g is explicitly 
quasi-concave on S and hence a local maximum is global maximum. 

If f and g are also differentiable, then F = f/g is pseudoconcave and 
hence a point satisfying the Kuhn-Tucker optimality conditions is a global 
maximum. 

3. For a linear fractional program, since the objective function is quasiconcave 
(and quasiconvex), if the feasible region is bounded, the maximum 
(minimum) is attained at an extreme point of the feasible region. 

Based on these properties, it has been possible to solve concave--convex 
fractional programs by some available techniques in mathematical programming. 

28.3.1. Linear Fractional Programming 
An example of linear fractional programming was first identified and solved 

by Isbell and Marlow [249] in 1956. Their algorithm generates a sequence of linear 
programs whose solutions coverage to the solution of the fractional program in a 
finite number of iterations. Since then several methods of solutions were developed. 
Gilmore and Gomory [200] modified the simplex method to obtain a direct solution 
of the problem. Martos [330] and Swarup [446] have suggested a simplex-line 
procedure, while by making a transformation of variables, Chames and Cooper [72] 
have shown that a solution of the problem can be obtained by solving at most two 
ordinary linear programs. Algorithms based on the parametric form of the problem 
have been developed by Jagannathan [253] and Dinkelbach [125]. 

We now present below the method suggested by Chames and Cooper for solving 
a linear fractional program. 

The method of Charnes and Cooper 
Consider the problem 

Maximize F(X) = 
c T x  -I- (~, 

DTX +13 
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Subject to AX < b 

X > 0 (28.31) 

where C and D are n-vectors, b is an m-vector, A is an mxn matrix and ot and 13 
are sealors. 

It is assumed that the constraints set 

S = {X lAX < b, X > 0} (28;32) 

is nonempty and bounded and further 

DTX + 13 r 0 over S (28.33) 

Note that the assumptions (28.33) implies that either DTX + 13 > 0 for all X 
S or DTX + 13 < 0 for all X ~ S. It cannot have both positive and negative 

values in the constraints set. If there exists an X 1 e S for which DTX~ + 13 > 0 
and an X 2 ~ S for which Dr')( z + 13 < 0, then for some convex combination X of 
X~ and X 2, DTX + [3 = 0 contradicting our assumption. 

Suppose DTX + 13 > 0 for every X ~ S and 

1 
let Y = tX, where t = D T X + 13 > 0 (28.34) 

The problem (28.31) is then transformed into the following linear program 

Maximize G (Y, t) = CrY + oft 

Subject to A Y -  bt < 0 

DrY + 13t = 1 (28.35) 

Y > 0 ,  t > 0  

Lemma 28.4. For every (y, t) feasible to the problem (28.35), t > 0. 

Proof: Suppose, (Y, t = 0) is feasible to the problem (28.35) Obviously, V/- , 

0. Let ~ ~ S. Then X = ~ + ~t ~/" is in S for all ~t > 0, which implies that the 

set S is unbounded contradicting our assumptions. 

Theorem 28.6. If (Yo, to) is an optimal solution to the problem (28.35), then Yo/ 
to is an optimal solution to the problem (28.31) 

Proof: Let X be any feasible solution to the problem (28.31). Then there exists a 

1 
t > 0, namely t = Dr X +--------~ such that (tX, t) is feasible to the problem (28.35). 

Since (Yo, to) is an optimal solution to (28.35) we have 

C r X + ~  
C r (Yo,to) = CW o + otto > C v (tX) +ott = t (CrX + or) DrX + 13 

(28.36) 
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Now, since t o > 0, it is clear that 

Yo/to is feasible to the problem (28.31) and 

C~Y'~ + ot CVYo + cxt o > CXX + ot 
F ( Y  o / t o ) = = 

D ~Yo / to + 13 D r y , ,  + 13to D TX + 13 
(28.36) 

which implies that yo/to is an optimal solution to the problem (28.31) 

Now, if DTX + 13 < 0 for all X ~ S, then letting Y = tx, t = -  

we get the following linear program 

Maximize - CW - oct 

Subject to A Y -  bt < 0 

-DTY - 13t = 1 

y , t > 0  

DTX+I3 
>0, 

(28.37) 

As in the previous case, it can be shown that if (yo, to) is an optimal solution 
to (28.37), then yo/to is an optimal solution to the fractional programming problem 
(28.31). 

Example 

Consider the problem 

M a x i m i z e  F = 5X1 + 6X2 
2x 2 + 7 

Subject to 2x~ + 3X 2 < 6 

2X~ + x 2 _~ 3 

X 1 , X 2 ~ 0  

We solve the problem using the method of Chames and Cooper. Note that the 
denominator 2X 2 + 7 is positive over the entire feasible region. 

1 
Let Y = tX where t = ~ The equivalent linear program is then given 

2X 2 + 7 " 

by 

Maximize 

Subject to 

G = 5y~ + 6 y  2 

2y~ + 3 y  2 - 6 t  < 0 

2y~ + Y 2 -  3t < 0 

2y 2 + 7t = 1 

Y~, Y2, t >_ 0 

It can be verified that Y~ 3 0 2-3 t~ 1 = - ~ ,  Y2 = , =]--~ 
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is an optimal solution to the above linear program. 

Hence the optimal solution to the fractional program is 

0 = Y ~ = 3  x2~ Y~ 3 and F o 51 
X1 t-ft" 4 t o 2 40 

28.3.2. Nonlinear Fractional Programming 
As mentioned before, nonlinear fractional programs arise in many applications. 

Based on the nature of the functions and their properties several algorithms have 
been suggested for solving nonlinear fractional programs. The interested readers 
may refer to Jagannathan [253], Swarup [447], Dinkelbach [125], Bector [42], 
Mangasarian [317], Almogy and Levin [ 11 ]. 

We present below the parametric algorithm of Dinkelbach. 

Consider the nonlinear fractional program 

t Maximize D(X) X e S (28.38) 

where S is a closed, bounded and connected subset of R ~ and N(X), D(X) are real 
valued continuous functions of X e S. 

Further, it is assumed that D(X) > 0 for all X e S. 

It will be shown that a solution of the problem can be obtained by solving the 
following parametric problem associated with (28.38) 

F(q) = Max {N(X)-  qD(X)IX e S}, (28.39) 

where q ~ R ~ is a parameter. 

From the assumptions it follows that the problems (28.38) and (28.39) have 
solutions, if S is nonempty; 

Lemma 28.5. F(q) = Max {N(X)-  qD(X)} is convex over R ~ 

Proof: Let 0 < ~ < 1 and q' * q". Then 

F(~q '+ (1-)~) q") = Max {N(X)-  ()~q'+ ( l -X)  q") D(X)} 
Xr 

= Max { ~,(N(X) - q' D(X)) + ( l - X )  N(X)-q" D(X)} 
X~S 

= ~, Max (N(X) - q' D(X)) + (1-~,) Max (N(X) - q" D(X)) 
X~S Xr 

- Z F(q ~ + (1- ~) F(q") 

Lemma 28.6. F(q)' is continuous for q ~ R ~. 

Proof: The proof follows from the result that if f is a convex function on a 
convex set, it is continuous on its interior. (See Theorem 9.10) 
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Lemma 28.7. F(q) is a strictly decreasing function of q e R ~ 

Proof: Let q' < q". q', q" e R ~ and suppose that X" e S maximizes N(X) - q" 
D(X). Then 

F(q") = Max {N(X) -  q" D(X) [ X e S} 

= N (X'3 - q" D(X") 

< N(X") - q' D(X") 

= Max {N(X) -  q' D(X) [ X e S} 

= F(q') 

Lemma 28.8..F(q) = 0 has an unique solution say qo. 

Proof: The proof follows from lemma 28.6 and lemma 28.7 and the fact that 

lira = +oo and lira = F(q)=-oo 
q-~-oo q...~-oo 

N(X +) 
Lemma 28.9. Let X § e S and q+ = , then 

D(X +) 

F(q +) > 0. 

Proof: F(q +) = Max { N(X)--q+ D(X) ] X e S} 

> N(X +) - q+D(X +) = 0 

For any q = q*, let X* be an optimal solution to the problem 

Max{N(X)-  q*D(X) ] XeS} and the optimal value be denoted by F(q*, X*) 

The following theorem now establishes a relationship between the nonlinear 
fractional and the nonlinear parametric programs. 

q 0  - - ~  

Theorem 28.7 

N(X~ = Max { N(X) 
D(Xo) D(X) t 

If and only if 

F(qo) = F(q o, Xo) = Max {N(X)-  qoD(X)IX e S} = 0 

Proof: Let X o be an optimal solution to the nonlinear fractional problem. (28.38) 

We then have 

N(X) 
- N(X~ > for all X e S. (28.40) 

q o -  D(Xo' ~ - D(X) '  

Hence N ( X ) -  qoD(X) < 0, for all X e S 

and N(Xo) - qoD(Xo) = 0 

From (28.41) and (28.42), we have 

(28.41) 

(28.42) 
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F(qo) = Max{N(X) -  qoD(X) [ X ~ S} 

= N(Xo) - qoD(Xo) 

- F(q o, Xo) - 0 

Hence X o is an optimal solution to the problem (28.39) for q = qo" 

To prove the converse, let X o be an optimal solution to the problem (28.39) 

such that, N(Xo)-  qoD(Xo) - 0 

We then have, 

N(X) - qoD(X) < N(Xo) - qoD(Xo) - 0, for all X _< S. 

Hence 

(28.43) 

and 

N(Xo) 
D(Xo) -< qo, for all X ~ S (28.44) 

N(Xo) 
D(X o) = qo (28.45) 

which implies that X o is an optimal solution to the nonlinear fractional program 

(28.38) and 

q 0  - - ' ~  
N(X~ = Max I N(X) 
D(Xo) [D(X)  

x s} 
It should be noted that X o may not be unique. Furthermore, the theorem is still 

valid, if we replace "max" by "min" 

Dinkelbach's Algorithm 
Let us now assume that N(X) is concave and D(X) is convex for all X ~ S 

and let S be a convex set. The problem (28.39) is then a problem of maximizing 
the concave function N(X) - qD(X), (q >_ 0) over the convex set S. 

It is further assumed that 

F(0) = Max{N(X)lX ~ S} > 0 (28.46) 

Let X o be an optimal solution to the nonlinear fractional program (28.38). Based 
on the Theorem 28.7, we formulate the problem (28.38) as followz: 

Find an X m ~ S, such that 

q(Xo)-  q(Xn, ) < ~, for any given ~ > 0, 

a s  

(28.47) 

N(X) 
where q(X) = D(X) 

Since F(q) is continuous, we can have an altemative formulations of the problem 
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N(X.) 
Find an X ~ S and q. - ~  such that 

. D ( X . )  

F ( q . ) -  F(qo) = F(q.) < 8 for any given 8 > 0 (28.48) 

The algorithm can be started with q = 0 or by any feasible point X] ~ S 

N(X,) _ 0 
such that q(X,) =D(X, )  

The following steps are then followed 

N(X~) X~ ~S and Step 1" Set q2 = 0 or q2 = D(X]) '  

proceed to step 2, with k = 2. 

Step 2" By a suitable method of convex programming find a solution X k to the 
problem 

F(qk) = Max{N(X)-  qk D(X) ] X ~ S} 

Step 3" If F(qk) < 5, terminate the process 

(a) If F(qk) > 0, then X k = X 

and (b) If F(qk) = 0, then X k = X 0 

X 0 is then an optimal solution and X ,  an approximate optimal solution to the 
nonlinear fractional program. 

N(X ) 
Step 4" If (F(qk) > 5, evaluate qk+, = D(Xk----- ~ 

and repeat step 2 replacing qk by qk+]" 

Proof of Convergence" We first prove that qk+~ > qk' for all k with F(qk) > 5. 

Lemma 28.9 implies that F(qk) > 0 

And by the definition of qk+~ we have 

N(Xk) = qk+, D(Xk) 

Hence, 0 < F(qk) = N(Xk)- qkD(Xk) 

= (qk+~ - qk) D(Xk) 

and since D(Xk) > 0, we have qk+~ > qk" 

We now prove that 

(28.49) 

(28.50) 

lira = k-~ qk q(Xo) = qo 

If this is not true, we must have 

(28.51) 

lim = q* (28.52) k-~ qk < q0 

NOW, by construction of our procedure, we have a sequence {Xk* } with 
{qk*} such that 
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lim (qk*) = F(q*) = 0 (28.53) 
k---~oo 

Since F(q) is strictly decreasing, we obtain from (28.52) and (28.53), that 

0 = F(q*) > F(qo) = 0 

which is a contradiction 

Hence ~irn= qk = q(Xo) = q0 

and by continuity of F(q), we get 

lim F(qk ) - F( ~irn= qk)= F(qo) -- 0 
k--~oo 

This completes the proof. 

28.3.3. Duality in Fractional Programming 
Several duals for concave-convex fractional programming have been suggested 

and duality relations proved. For example, see Gold'stein [205], Bector [43], 
Jagannathan [254], Rani and Kaul [373], Bitran and Megnanti [56], Schaiblr [396]. 

Most of them are, however, equivalent. 
In contrast to linear programming, a dual to a linear fractional program is not 

necessarily a linear fractional program and is usually more complicated than the 
given fractional program. Hence in general, the dual does not give a computational 
advantage. However, the optimal dual variables are useful to measure the sensitivity 
of the maximal value of the primal objective function. To make the dual problem 
computationally more attractive than the primal fractional program, the functions 
in the primal problem should have certain special structure. 

In the case of a linear fractional program, the equivalent problem is a linear 
program [72]. Hence by dualizing, the equivalent linear program, the dual of a linear 
fractional program can be obtained as a linear program, which itself is equavalent 
to a fractional program. Almost all duality approaches in linear fractional 
programming yield essentially this dual. See Kaska [271 ], Chadha [65], Kombluth 
[285], Sharma and Swamp [413], Kydland [295], Craven and Mond [94]. Other 
duals that were suggested are nonlinear programs that seem to be less useful. 

28.3.4. Other Fractional Programs 
There are several applications that give rise to nonlinear fractional programs 

having different algebric structure of N(x) and D(x) in (28.38) A large number of 
papers on these special nonlinear fractional programs have appeared in the literature. 

Quadratic Fractional Programs 
A nonlinear fractional program is called a quadratic fractional program if  N(x) 

and D(x) arc quadratic and S is a convex polyhedron. 
In 1962, Ritter [377] showed how a method for parametric quadratic 

programming can be used to solve a quadratic fractional program. With the help 
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of linear transformation of variables Swarup [447] replaced the quadratic fractional 
program by two nonlinear programs, each with a quadratic objective function subject 
to linear and one quadratic constraints and showed that an optional solution, if it 
exists, can be obtained from the solutions of two associated nonlinear programs. 
Kaska and Pisek [271 a] related the quadratic linear fractional program to parametric 
quadratic program, where the parameter appears in the objective function. Aggarwal 
and Swarup [6] developed a method for maximizing a ratio of linear functions 
subject to linear and one quadratic constraints. 

Homogenous Fractional Programs 

Sinha and Wadhwa [436] considered the problem of maximizing the ratio of 
concave and convex functions both being homogenous functions of degree one with 
a constant added to it subject to linear constraints and reduced the problem to a 
convex programming problem. A solution of the original problem can then be 
obtained from a solution of the convex programming problem. 

Bradley and Frey. Jr [6 l] generalized the above homogenous fractional 
programming to the case of maximizing the ratio of nonlinear functions subject to 
nonlinear constraints, where the constraints are homogenous of degree one and the 
functions in the objective function are homogenous of degree one with a constraint 
added to it. Two auxiliary problems are developed and the relations between the 
solutions of the auxiliary problems and the solutions of the original problem are 
obtained. 

Craven and Mond [95] obtained a dual to the homogenous fractional program 
with N(X), differentiable concave and D(X) differentiable convex functions both 
being homogenous of the same degree and the constraints are linear. Aylawadi [ 19a] 
generalized the results of Craven and Mond by replacing linear constraints by 
nonlinear constraints. 

Nondifferentiable fractional programs 
Aggarwal and Saxena [8a] considered the problem 

Minimize F(X) - [ f (X)  + (XrBX) ~ ] / g ( X )  (28.54) 

Subject to h~(x) > 0, i = 1, 2,...m. 

X ~ S  

where S is an open convex subset of R" and g(X) > 0. B is a symmetric positive 
semidefinite matrix, f is a differentiable convex and g, h~ are differentiable concave 
functions on R ~. 

They derived necessary and sufficient optimality conditions for the problem 
and also obtained duality results. 

Singh [420], extended and generalized the results of Aggarwal and Saxena 
by considering the problem 
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Minimize F(X) = If(X) + s (XTBiX)I/2 ]/g(X) i=l 

Subject to h~(X) >_ 0, i = 1, 2,. . .m (28.55) 

K~(X) = 0, i = m+ 1,...m+p. 

X e S  

where S is an open convex subset of R n, B~ are symmetric positive semidefinite 
matrices, all functions involved in the prbblem are differentiable and members of 
Hanson-Mond [224, 225] classes of functions and g(X) > 0. and also established 
the duality results. 

Chandra and Gulati [66] obtained a dual and proved the duality theorems for 
the nondifferentiable fractional programming problem 

Minimize F(X) = 
cTx - (XTBX) 1/2 --~ 
ETx + (XTDX) 1/2 + 

Subject to AX < b (28.56) 

X > 0  

where A is a mxn matrix, C, E, X are n-vectors, B and D are nxn positive semi- 
definite matrices and or, 13 are sealars. 

It is assumed that ETX + (XTDX) ~ + 13 > 0 for all X satisfying the constraints. 

Sinha and Aylawadi [427] derived necessary and sufficient optimality conditions 
for a class of nonlinear fractional programming problems where the objective 
functions and one or more of the constraint functions are nondifferentiable. Also, 
see [428] 

Generalized Fractional Programs 
In many applications, we get a fractional program where the problem is to 

maximize a finite sum of ratios on a convex set, that is the problem is 

m 

Maximize ~ fi (X) (29.57) 
i=l  gi(X) 

Subject to X ~ S, 

where S is a convex subset of R ~. 

Such a problem is referred to as a generalized fractional program. 

The generalized fractional program has applications in inventory models, 
economics, statistics and management science. Almogy and Livus [ 10] considered 
a multi-stage stochastic shipping problem and formulated its deterministic 
equivalent as a sum of ratios problem. Hodgson and Lowe [231] developed a 
model for simultaneously minimizing the set-up cost, inventory holding cost and 
material handling cost. This gives rise to a fractional program (28.57). Also, see 
[406] and references therein. 
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In 1970, Wadhwa [491] gave a method of solution for the problem of 
maximizing the sum of two ratios of linear functions subject to linear constraints. 
The method consists in considering a closely related parametric linear programming 
problem, a solution of which leads to a solution of the original problem. 

Consider the problem 

c T x  q- I~ 1 c T x  q- 0[, 2 
= + (28.58) Maximize F(X) D~X + 131 D2 vX + 132 

Subject to AX < b 

X > 0  

where X ~ R", A is an mxn matrix, b an m-vector and C~, C2, D~, D 2 a r e  n-vectors 
and ot~, a 2, 13~, [32 are scalors. 

It is assumed that the constraints set 

S = {X[ AX < b, X >__ O} 

is nonempty and bounded and that for every X ~ S, 

D T X + f3, > 0, D J X + 132 > 0. 

The outline of the proposed method of solution is as fpllows. A programming 
problem closely related to the original problem is first considered, where if one 
restricts the value of one particular variable to a fixed value 0 and then treat 0 as 
a parameter, the problem essentially becomes a linear programming problem with 
a parameter 0 in the technology matrix. The optimal solution of this problem is 
then a function of 0 and the objective function f of the related problem can be 
expressed in terms of this function and 0. The maximum of f as a function of one 
variable 0 is formed from which the solution of the original problem is easily 
obtained. 

Consider the problem 

Maximize f(X, t, u, v) = C~ X + ct~t + v 

Subject to A X -  bt < 0 

D T X + ]31t = 1 (28.59) 

D TX + [3 : t -u  = 0 

-C2 v X + OtEt + uv = 0 

X , t , u > 0  

Theorem 28.8. Every (X, t, u, v) feasible to (28.59) has t, u positive. 

Proof" Suppose (X,)-= 0,~,V)is feasible to (28.59). Then ~: v 0, otherwise the 

second constraint in (28.59) will not be satisfied. Let j~ e S. Then AX < 0,,X > 0, 

X *=  j~ + ~,~ e S, f o r a l l ~ > 0  
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which implies that S is unbounded contradicting the assumption. Hence T > 0. 

Again, since (X/~)  e S, D2rX + 132 T > 0, ~ must be positive. 

Theorem 28.9. If x o is an optimal solution of the problem (28.58), then there 
exist t o > 0 and u o, v o so that (toX o, t o, u o, Vo) is an optimal solution of the problem 
(28.59). 

1 
Proof" Sionce D~ X o +13~ > 0, D2 r X o + 132 > 0, there exist to = DlrXol3 ~ > 0  and 

u o, v o so that (toX o, t o, u o, Vo) is feasible for the problem (28.59). Let (X~, tl, Ul, 
Vl) be any feasible solution for (28.59). By Theorem 28.8, t I > 0 and hence Xl/t 1 
is feasible for the problem (28.58). We therefore, have 

Max F(X)= C~r X~ + ct~ + C2 rX o + o~ 2 > Cl r X , / t  I + a~ + C2 r x ~ / t  I + (z 2 

DrX o + ~i D2 ~Xo + 132 - Dl rx l / t~  + ~ T D,~ X l / t I + [3,~ 

to (C2TXo + a2) cITXI + %t, cTxI + cz2t , to (C:Xo + % )  + > + 

or to(D~Xo ~ l )  to(D2~Xo +132)-D:Xl  +~ltl D2rX~ +[32tl 

UoVo UlV t 
>_ C~ r X~+a~t~ + or  t o ( C :  X 0 "+" (If, l) + Uo Ul 

or  t o ( C :  X 0 -{- (~,l) "+" V 0 ~___ C1T X l+0t'lt I + V 1 

or  f(toX o, to, U0, V0) ~___ f(Xl,  t~, Ul, Vl) 

which proves the theorem. 

Theorem 28.10. If (X~, t l, u l, Vl) is an optimal solution of the problem (28.59), 
then X / t  I is optimal for the problem (28.58) 

Proof :  Suppose X* is any feasible solution of the problem (28.58). 

Then, by assumption DI T X* + ~l > 0, D2 ~ X* + [32 > 0 and let 

u* = D2 r X* + 13 2, v* = C2 r X* + a 2 and ~= 
1 

DIrX* +13~ "We now define 

= ~X*,fi ~u*,~ = v *  = ~ so that (X,t, fi, ~') is feasible forthe problem (28.59) 
U ,~ 

Hence f(X l, t 1, u l, vt) > f(X, t, fi, r 

i.e. CtrX~ + a lt~ + v~ > C~ rX + a It + ~. 

By Theorem 28.8, t~ > 0 and hence X~/t~ is feasible for (28.58) 

(28.60) 
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and F(Xl/tl) 
C T (X, / t ,  + (I 1 C T ( X , / t  1 + 17, z 

+ 
D T (X, / t,) + J3, D~ (X, / t,) + [t 2 

= C TX~ + a~t~ + 
cT Xl "~" (~'2tl 

D~X l + [32t ~ 

= c r x ~  + Otlt ~ + v~ 

by (28.60) 

V* = kCl'X * +~,)+ 
u *  

c T x  * +(I, 1 C ; X  $ +(~'2 
= + 

DTx* -['[31 DTx* +[32 

Hence X~/t~ is optimal for the problem (28.58). 

In problem (28.59), the value of v is now reatricted to a fixed value 0 and 
then 0 is treated as a parameter in the linear programming problem 

Maximize z = c T x  + ot~t 

Subject to Ax - bt < 0 (28.61) 

D,~ X + B,t = 1 

D2 r X + 132t- u = 0 

- C z  v X - ot2t + 0 u  = 0 

X , t , u> _0  

It is clear that the parameter 0 varies over the range (02; 0m) where 

o,~ = ~ F~(X)-  D~X +~,_ x e S  (28.62) 

C~X+~ 1 = x e S  (28.63) and 0 M Max F 2(X) = DTx + 132 

The problems (28.62) and (28.63) are linear fractional programming problems 
and can be solved by the simplex method as illustrated in [72]. 

To begin with 0 is given the value 0 u and the following problem is solved 

Maximize z - C~ v X - ct~t = 0 
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Subject to A X -  bt < 0 (28.64) 

D~ X + [3,t = 1 

- D 2  ~ X  + [32 t + u = 0 

-C~ X - ~:t + 0u = 0 

X, t, u>_0 

where the solution of(28.63) provides an initial basic feasible solution to the problem. 

Note that, since by Theorem 28.8 every feasible solution of (28.64) must 
have t and u positive, they must always remain in the basis. 

The range of 0 �9 (0 l, 0M) for which the optimal basis remains optimal is 
determined and continuing the process of parametric technique, the optimal basis 
for each subset of the internal (02, 0m) is obtained. The optimum z for each subset 
of the interval is a function of a single variable 0 and can be expressed as 

z i = g~(0), for 0~§ l < 0 < 0~, i = 0, 1,...k. (28.65) 

where 00 = 0 M and Ok+ ~ = 0 L 

The objective function of the problem (28.59) is then given by 

f(0) = g~(0), + 0, for 0~+ l < 0 < 0~, i = 0, 1,...k. (28.66) 

which are functions of a single variable 0. For each interval, the maximum of 
f is obtained either by simple inspection or by the method of differential calculus. 
Suppose that 0 = 0~* maximizes fi(0) in the interval (0i+ ~, 0i). The optimal value of 
the objective function of the problem (28.59) is then given by 

Max f=  Max [f~ (0~*)] (28.67) 

If this maximum is obtained for i = i o, then the optimal basis of the problem 

(28.64) for 0io§ < 0 < 0io will also be optimal for (28.59) and an optimal solution 

X o, t o, u o and v o = 0io * of the problem is easily obtained. By Theorem 28.10, 

X0/t o is optimal solution of the original problem (28.58). 

Almogy and Levin [ 11 ] considered fractional programs of maximizing a sum 
of linear or concave-convex fractional functions on closed and bounded polyhedral 
sets and have shown that, under certain assumptions, problems of this type can 
be transformed into equivalent ones of maximizing multi-parameter linear or 
concave functions subject to additional feasibility constraints. 

Cambini, Martein and Schaible [63] considered the problem of maximizing 
the sum of m concave--convex fractional functions on a convex set and had shown 
that this problem is equivalent to the one whose objective function is the sum of m 
linear fractional functions defined on a suitable convex set. Successively, using 
the Chames-Cooper transformation, the objective function is transformed into 
the sum of one linear function and ( m -  1) linear fractional functional functions. 
As a special case, the problem of maximizing the sum of two linear fractional 
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functions subject to linear constraints is considered. Theoretical properties are 
studied and an algorithm converging in a finite number of iterations is proposed. 

In recent years, a number of other solution methods have also been proposed 
[49, 136, 153, 176, 281,293] 

Jokseh [259] considered the fractional programming problems: Maximize (or 
Minimize) 

1 
(i) F(X) = f~(X) + f2 (X----~ 

1 1 
or (ii) F(x) = f~(X) f:(X) 

subject to AX < b (28.68) 

X > 0  

where f~(X), f2(X) are linear functions of X ~ R", A is an mxn matrix and b, an 
m-vector. 

Jokseh reduced the problems to parametric linear programs by treating the value 
of one of the linear forms in the objective function as a parameter, He also derived 
conditions for extrema and discussed the possibilities for local and global extrema. 

For the problem 

drX 
Maximize F(X) = crX + hrX (28.69) 

Subject to X ~ S 

where S is a convex subset of R" c, d, h are n-vector and hrX > 0. 

Schaible [399] investigated F(X) in terms of quasi-concavity and quasi- 
convexity to get some insight into the nature of local optima of the problem. Under 
some conditions the objective function F(X) can be written as a quotient of a 
concave and convex functions, which can be related to a convex program [395a] 
by an extension of Chames-Cooper's variable transformation [72]. Then duality 
relations are obtainable for (28.69). 

Multi-objective fractional programs 
Not much work has been done on algorithms for multi-objective linear 

fractional programming problems. Consider the problem 

Maximize {F~(X), FE(X),...Fk(X)} (28.70) 

Subject to X ~ S = {X ~ RnlAX = b, X > 0, b ~ R m} 

c T x  + (~'i 
where Fi is a linear fractional r 

Di X+13i 

denominators arc positive. 

, for i = 1, 2,...k and for all X ~ S, the 
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The only algorithm known, for this problem is given by Kombluth and Steuer 
[287]. It computes all weak efficient vertices provided that S is bounded and the 

set of all weak efficient points is determined, A point ~ ~ S is said to be weak 

efficient if and only if there dos not exist another X e S, such that F~(X) > F~( ~ ) 

for all i. 

Schaible [404] discussed some results in multi-objective fractional programming 
with regard to the connectedness of the set of efficient solutions. For optimality 
conditions and duality of multi-objective fractional programs, see [421 ]. 

28.3.5. Indefinite Quadratic Programming 
In this section, we consider the problem of maximizing a quadratic function 

that can be factored into two linear functions subject to linear constraints. Such a 
problem may arise in ease there is a competitive market with respect to two 
competitors for a given product whose total demand is constant, the sale of the 
product depends linearly on the market prices and the problem is to maximize profit 
for one of the competitors [449]. Necessary and sufficient conditions for expressing 
a quadratic function as a product of two linear functions plus an additive constant 
have been derived by Schaible [393]. 

Consider the problem 

Maximize F(X) = (CTX + tx) (DrX + [3) 

Subject to AX < b (28.71) 

X > 0  

where A is an mxn matrix, b an m-vector and X, C, D are n-vectors and ct, [3 are 
scalars. It is assumed that the constraint set S-  {X[ AX _< b, X > 0} is nonempty 
and bounded. 

Several authors investigated the above problem and proposed different methods 
to find its solution. 

In 1996, Swamp reduced the problem to a parametric linear programming 
problem [451 ] and assuming that both CxX + ct and DTX + [3 are positive for all 
X ~ S, Swamp [452] developed a simplex-type algorithm to solve the problem. 
Swamp [450] had also shown that a solution of the problem can be obtained from 
a solution of the convex programming problem 

t 2 
Minimize CrX + at  

Subject to A X -  bt _< 0 

DTX + 13t = 1 (28.72) 

X, t>_0 

With the assumption that for every X ~ S, Dr)( + 13 > 0 and that max {F(X) 
IX E S} is positive, Sinha and Lal [433] showed that a solution of the problem 
(28.71) can be obtained from a solution of a convex programming problem where 
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the objective function is linear and the constraints are linear and one convex 
quadratic function. 

Sinha and Wadhwa [436] considered a generalization of the problem (28.71) 

Maximize F(X) = [f(X) + ~] [g(X) + 13] 

Subject to AX < b (28.73) 

X > 0  

where A, b, ot and 13 are the same as in (28.71) as also is the assumption that 
the set S = {XIAX < b, X > 0} is nonempty and bounded. It is assumed that 
fiX) and g(X) are concave homogenous functions of degree one and further at 
an optimal solution of (28.73) f(X) + a and g(X) + 13 are both positive. 

It had been shown that if (R, T) is an optimal solution of the problem 

Maximize f(X) + ctt 

Subject to A X -  bt < 0 (28.74) 

g(X) + 13t- t 2 >_ 0 

X , t > 0  

then (~ /u  is an optimal solution for the problem (28.73) 

28.4. 

g 

Exercises 

A textile company produces two types of materials A: a strong upholstery 
material and B: a regular dress material. The material A is produced 
according to direct orders from furniture manufacturers and the material 
B is distributed to retail fabric stores. The average production rates for 
the material A and B are identical, 1000 metres l~er hour. By running 
two shifts the operational capacity is 80 hours per week. 

The material department reports that the maximum estimated sales for 
the following week is 70,000 metres of material A and 45,000 metres of 
material B. According to the accounting department the profit form a metre 
of material A is $ 2.50 and from a metre of material B is $1.50. 

The management of the company believes that a good employer-employee 
relationship is an important factor for business success. Hence, the 
management decides that a stable employment level is a primary goal for 
the firm. Therefore, whenever there is demand exceeding normal production 
capacity, the management simply expands production capacity by providing 
overtime. However, the management feels that overtime operation of the 
plant of more than 10 hours per week should be avoided because of the 
accelerating costs. The management has the following goals in order of 
their importance. 

(i) Avoid any under-utilization of production capacity. 
(ii) Limit the overtime operation of the plant to 10 hours per week. 
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(iii) Achieve the sales goals of 70,000 metres of material A and 45,000 
metres of material B. 

(iv) Minimize the overtime operation of the plant as much as possible. 

Formulate and solve this problem as a goal-programming problem. 

ABC furnitures produce three products: tables, desks and chairs. All 
furniture are produced in the central plant. Production of a desk requires 
3 hours in the plant, a table takes 2 hours and a chair requires only 1 hour. 
The normal plant capacity is 40 hours a week. According to marketing 
department, the maximum number of desks, tables and chairs that can be 
sold are 10, 10 and 12, respectively. The president of the firm has set 
the following goals arranged according to their importance. 

(i) Avoid any under utilization of production capacity. 
(ii) Meet the order of XYZ store for seven desks and five chairs. 
(iii) Avoid the overtime operation of the plant beyond 10 hours. 
(iv) Achieve the sales goals of 10 desks, 10 tables and 12 chairs. 
(v) Minimize the overtime operation as much as possible. 

Formulate and solve the given problem as a goal programming problem. 

A company manufactures two products A and B each of which requires 
processing on two machines M~ and M 2. The normal machine time available 
on both the machines M~ and M 2 is 40 hours per week. The machine 
requirements in hours for a unit of each product are given in the table below 

Product Machine time 

M, M 2 

A 1 1.5 

B 2 1.5 

o 

The profit per unit of product A is $80 and the profit per unit of product 
B is $100.  

The company sets the following goals ranked in order of priority 

(i) Overtime is not to be allowed. 
(ii) Meet a production quota of 100units of each product per week. 
(iii) Maximize profit. 

Formulate and solve the problem as a goal programming problem. 

An electronic firm produces two types of television sets: color and black- 
and-white. According to the past experience, production of either a color 
or a black-and-white set requires an average of one hour in the plant. The 
plant has a normal production capacity of 40 hours a week. The marketing 
department reports that because of limited market, the maximum numbers 
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color and black-and-white sets that can be sold in a week are 24 and 
30, respectively. The net profit from sale of a colour set is $80, whereas 
it is $40 from a black-and-white set. 

The manager of the firm has set the following goals arranged in the order 
of importance 

P 1" Avoid any under utilization of normal production capacity. 
P2: Sell as many television sets as possible. Since the net profit from the 

sale of a color television set is twice the amount from a black-and- 
white set, achieve twice as much sales for color sets as for black- 
and-white sets. 

P3" Minimize the overtime operation of the plant as much as possible. 

Formulate the given problem as a goal-programming problem and solve 
it. 

5. Using the sequential linear goal programming method, solve the problem 

Lex. minimize a = [(d~ + + d2+), da +, d4- ] 
Subject to x~ + x 2 + d (  - d~ + = 10 

x~ + 2x 2 + d2--d2 + = 12 
4x~ + x 2 + d3--d3 + = 4 

+ 
X2 + d4--  d 4 7 
x j > 0 , j  = 1,2 
d +~ , d~->0, i = _  1, 2 

6. Using Ecker-Kauda method find an efficient point for the multi-objective 
linear program. 

Maximize z~ = 3x, - x 2 
Maximize z z = x~ + 2x 2 
Subject to 2x~ - x 2 < 2 

X l < 2  
xl, x2 >_ O. 

7. [544] Find all efficient extreme points and all maximal efficient faces for 
the multi-objective linear program. 

41  /Xll 
Maximize Z -  1 3 -1 x 2 

- 1  1 4 x 3 

Subject to 

1 1 1 x~ 3 

2 2 1 x ~ < 4  

1 - 1  

X1, X2, X 3 ?_ 0 
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Find all efficient extreme points and maximal efficient faces of  the 
problem. 

Maximize Z = 

2 1 2 -1 -2  

0 1 -1 i 
0 -2  0 

- 2 1 0 

X 1 

X 2 

X 3 

X 4 

X~ 

Subject to 

'0 4 0 3 3 ~ 

2 4 0 4  1 

4 0 2 0 0  

3 0 0 0 0  

, 0 0 2 0 0 ~  

X 1 

X 2 

X 3 

X4 

X 5 

27" 

40 

< 38 

24 

27~ 

> 0 ,  j = 1 , 2 , 3  4,5  Xj__ , . 

9. Solve the following fractional programming problems 

i) Maximize 

Subject to 

ii) Maximize 

Subject to 

iii) Minimize 

Subject to 

iv) Maximize 

Subject to 

3x z + 2x 2 

x~ + x  2 +7  

3x~ + 4x: < 12 

5X 1 + 3X 2 ~ 15 

Xl, X 2 ~ 0 

3x Z + 2x 2 

7x~ + 5x 2 + 4 

x~ + 3x2<4 
x~ + x 2 <  1 
x~,x:>_O 

--5X 1 --6X~ 

2x 2 + 7 

2x~ + 3x 2 < 6 
2x~ + x 2 < 3 
x 1, x2>O 

2x~ + x 2 

2x z + 3x 2 + 1 

-x~ + x2< 1 
x~ + x 2 < 2  

x l, x 2 >_ 0 
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C r X + o t  
10. Let F(X) = DTX + [3 and let s be a convex set such that DTX + [3 > 0 

over S. Then show that F is both pseudoconvex and pseudoconcave over 
S. 

11. [ 125] solve the following nonlinear fractional program 

Maximize 

Subject to 

-3x~ - 2x2~ + 4x] + 8x 2 - 8 

2 2 _ 6X 2 + 8 X 1 q- X 2 

x~+ 3x2< 5 

XI, X2 ~> 0 

12. [435]. Consider the problem 

1 
Minimize F(X) = CrX + o~ + DrX + 13 

Subject to AX < b 
X>_O, 

where X ~ R", C, D are n-vectors, b an m-vector and the constraint set is 
nonempty and bounded. Further, for every feasible solution x, CTX + CZ > 
0,  D T X  +[3 > 0 

Show that a solution of the problemcan be obtained from a solution of 

Minimize G(X,t) = 

Subject to 

CTX +ott + 1 

A X -  bt < 0 
DTX-  13t > t 2 
X, t>_O 

13. Let fi(X), i = 1, 2, . . .m are differentiable concave functions on a convex 

m 
set S c R" and are positive. Prove that n fi(X) is pseudoconcave on S. 

i=l 

14. [436] Show that a solution of the problem (28.73) can be obtained from a 
solution of the problem 

Maximize f(x) + ~t 
Subject to A x -  bt < 0 

g(x) + [3t > t: 
x,t>_O 

15. Solve the problem 

Minimize 
Subject to 

(2x I + 3x~ + 2 ) ( 5 -  x2) 

x 1 + x 2 <  1 
4X 1 + X 2 > 2 

Xl, X2 ~__ 0 
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Dynamic Programming 

29.1. Introduction 
Dynamic programming is a mathematical technique concerned with the 

optimization of multi-stage decision processes. The technique was developed in 
the early 1950s by Richard Bellman [44], who also coined its name "Dynamic 
Programming". The name might suggest that dynamic programming refers to 
problems in which changes overtime were important. However, the technique can 
be applied to problems in which time is no way relevant. 

In this technique, the problem is divided into small subproblems(stages) which 
are then solved successively and thus forming a sequence of decisions which leads 
to an optimal solution of the problem. 

Unlike linear programming, there is no standard mathematical formulation of 
the dynamic programming problem. Rather, dynamic programming is a general 
approach to solving optimization problems. Each problem is viewed as a new one 
and one has to develop some insight to recognize when a problem can be solved 
by dynamic programming technique and how it could be done. This ability can 
possibly be best developed by an exposure to a wide variety of dynamic 
programming applications. For this purpose, we present several examples and show 
how the dynamic programming technique can be used to find their solutions. 

However, There are some common features of all dynamic programming 
problems, which act as a guide to develop the dynamic programming model. 

29.2. Basic Features of Dynamic Programming Problems and the 
Principle of Optimality 

The basic features which characterize dynamic programming problems are as 
follows: 

(a) The problem can be divided (decomposed) into subproblems which are 
called stages. 

(b) At each stage, the system is characterized by a small set of parameters 
called the state variables. 

(c) At each stage, there is a choice of a number of decisions. 
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(d) The effect of a decision at each stage is to transform the currem state into 
a state of the system at the next stage. 

(e) Given the current state, an optimal decision for the remaining stages is 
independent of the decision taken in previous stages. 

(f) The purpose of the process is to optimize a predefined function of the state 
variables called the objective function or the criterion function. 

Thus, the common characteristic of all dynamic programming models is 
expressing the decision problem by a functional equation obtained by an application 
of the principle of optimality. 

Principle of Optimality [Bellman] 
An optimal policy has the property that whatever the initial state and initial 

decision are, the remaining decisions must constitute an optimal policy with regard 
to the state resulting from the first decision. 

The principle states that the optimal policy starting in a given state depends 
only on that state and not upon how one got to the state. This is the Markovian 
property in dynamic programming. 

29.3. The Funct ional  Equation 

Since a multi-stage decision process can be characterized by the initial state 
of the system and the length of the process, a functional equation may be 
developed as follows. 

Consider an N-stage process and let s be the set of state parameters. 

Define for n < N, f (s, Xn) = the return from an n-stage process given that 
there are s states and a decision x is used. 

n 

R n (s, x~ = the return from the first stage of an n-stage process with state s, 
using decision x .  

s ~ = the new state resulting from decision x .  

and f f  (s) = the total return from an n-stage process where the system is in 
state s and an optimal decision is used. 

Then f f  (s) = Max f(s,  Xn)= f(s, Xn* ) 
where x* denote the value of x n, which maximizes f(s, Xn). 

Thus, we have 

f~*(s) = Max R1 (s, x~) 
XI~S 

(29.1) 

f*(s) = Maxx.~s [R  (s, x )  + fn,'- (sl)] (29.2) 

n = 2 ,  3,...N 

The form of the functional equation may however differ depending on the nature 
of the problem. 
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To illustrate the dynamic programming technique, let us first consider the well 
known cargo loading problem. 

29.4. Cargo Loading Problem 
Consider a well-known problem of loading a vessel (or a Knapsack or flyaway- 

kit) with different items so that the total value of its content is maximum subject to 
the constraint that the total weight must not exceed a specified limit. 

Mathematically, the problem can be stated as, 

Maximize v~x~ + v2x 2 + ... + VNX N 

Subject to w~x~ + w2x 2 + ... + WNX N < W (29.3) 

xa, (i = 1, 2 ... N) are nonnegative integers, 

where v~ and w~ are the value and the weight per unit of the ith item respectively, 

x~ is the number of units of item i, i = 1, 2, ...N and 

W is the maximum allowable weight. 

For dynamic programming formulation, let us consider the items as stages and 
the state of the system be defined as the weight capacity available. 

Let f (s n, x )  be the value of the load for the stages 1, 2,.. .n when the system 
is in state s and a decision x n is used. 

f ( s )  = Total value of the load, when the system is in state s and an optimal 
decision is used. 

Then f* ( s )  = Max f (Sn, x )  = f (s ,  Xn* ) 
X a 

Where x *  is the value of x ,  which maximizes f (s ,  x )  

Thus for the first stage, 

f*, (s , )= Max fl (s,, x,) 
x I 

Max 

and 
Max 

x,+, . . . .  ,-vx + 
n = 2, 3,...N (29.5) 

[s:] 
where is the largest integer in 
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Consider the following simple numerical problem with the data as given in 
Table 29.1 

Table 29.1 

Item Weight~Unit Value~Unit 
i w v 

1 3 5 

2 4 8 

3 2 4 

and W = 7  

The computations for the three stages of the problem are given in the following 
tables. 

Stagel.  Since s~ = {0, 1, 2,...7}, the largest value ofx~ is = = 2 .  

Table 29.2 
i 

f,(s,, x,)= 5x, 

o 1 

0 0 

1 0 

2 0 

3 0 5 

4 0 5 

5 0 5 

6 0 5 

7 0 5 

10 

10 

Optimal solution 

f~'(s,) 

0 

0 

0 

5 

5 

5 

10 

10 

x l 

0 

0 

0 

1 

1 

1 

2 

2 

s, . ,o,  Fort o os~ [;] , 



0 

1 

2 

3 

4 

5 

6 

7 
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Table 29.3 
. . . . . . .  

f2 (s2, x2)= 8x2 + f*l (s2-4x2) 

0 1 

0 + 0 = 0  

0 + 0 = 0  

0 + 0 = 0  

0 + 5 = 5  

0 + 5 = 5  8 + 0 = 8  

0 + 5 = 5  8 + 0 = 8  

O+ 10 = 10 8 + 0 = 8  

O+ 10 = 10 8 + 5 = 13 

Optimal solution 

f{(s~) 
0 

0 

0 

5 

8 

8 

8 

13 

X 2 

0 

0 

0 

0 

1 

1 

1 

1 

Stage 3. Finally for the three-stage process, the largest value o f x  3 is [ ; ]  = 3 .  

0 

1 

2 

3 

4 

5 

6 

7 

0 

0 + 0 = 0  

0 + 0 = 0  

0 + 0 = 0  

0 + 5 = 5  

0 + 8 = 8  

0 + 8 = 8  

0 + 8 = 8  

0 + 13 = 13 
i 

Table 29.4 

f3(s~, x~) - 4x~+f~(s3-Ex 3) 

1 

4 + 0 = 4  

4 + 0 = 4  

4 + 0 = 4  

4 + 5 = 9  

4 + 8 = 1 2  

4 + 8  = 12 

8 + 0 = 8  

8 + 0 = 8  

8 + 0 = 8  

8 + 5 = 1 3  

12 + 0 = 12 

12 + 0 = 12 

Optimal solution 

f3"(s3)" X'' 
0 0 

0 0 

4 1 

5 0 

8 0 ,2  

9 1 

12 1,3 

13 0 ,2  

Optimal solution corresponding to W = 7, can now easily be read out from 

the tables calculated above. 

If we take x 3 = 0, then there are 7 choices left for stage 2 and then from 
Table 29.3 we find x 2 = 1. Hence only (7-1x4) = 3 choices are left for stage 1 

and using Table 29.2 we get Xl - 1. 

Thus an optimal solution is given by 

x~* = 1, x2 ~ = 1 and x3*= 0 

and the total value of  the load = 1 x 5 + 1 x 8 + 0 x 4 = 13. 
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An alternative optimal solution can be obtained if we take x 3 = 2 and proceed 
in the same way as above. The alternative optimal solution is then given by, 

x 1 = 1, x2* - 0, x 3 - 2 with the same total value 13, as was expected. 

29.5. Forward and Backward Computations, Sensitivity Analysis 
The computation procedure of dynamic programming problem differs depending 

on whether the computation starts with the initial stage or the final stage. If the 
computation starts at the first stage and moves towards the final stage, it is known 
as the forward computation. If, on the other hand, the computation begins at the 
final stage reaching ultimately the initial stage, it is called the backward computation. 
Both the procedures give the same result but it is usually convenient to solve the 
problem by backward computation when the initial state is specified while the 
forward computation is more efficient when the final state is given. 

Sensitivity Analysis 

The tabular computations of dynamic programming problems also provide 
considerable information to study sensitivity of the solution to variations of state 
input or to know the effect of making the planning horizon longer on the total return. 

The backward calculation is well suited for sensitivity analysis to see how the 
total return varies with the input state since at the final table, the problem of whole 
range of inputs can be easily solved. 

On the other hand, if we want to know how the length of the planning horizon 
influences the optimal decision, we use the forward calculation since additional 
stages can be added in the process of computation. 

29.6. Shortest Route Problem 
Consider the problem of finding a shortest route through a net work, which 

arises, is a wide variety of applications. Suppose that a salesman wants to find a 
shortest route from his starting point (station 1) to his destination (station 10) 
from the road map as given in Figure 29.1. 

Figure 29.1. 
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There are eight intermediate stations, all of which however, are not connected 
with one another. The distances between connecting stations are indicated in the 
road map. 

It is noted that the salesman has to travel through four stages regardless of 
the particular routine and each station in a stage represents a state. 

Let d.j denote the distance between state i and state j and x be the decision 
variable to move to the next station, when there are n more stages to go. (n = 1, 2, 
3,4) 

Let f (s, x )  be the total distance of the best over-all policy for the last n stages 
when the salesman is in state s and x is the decision taken. 

f '  (s) = Min f(s, x )  = f(s, x ' )  
n X n 

where x* is the value of x which minimizes f (s, x). 

Then, f*(s) = Min (29.6) x. [d~x~ + f*.-~(x.)] 

Computational Procedure 
For convenience the distance d.j from state i to state j is reproduced in the 

table below. 

Table 29.5 

5 6 7  

2 3 4  2 4 3 4  5 

1 6 5 3 . ]  3 5 7 2  ~ 6 
4 5 7 

8 9 

6 4 10 

9 
2 

Stage 1. In this problem, the computation is carried out from the end of the 
process. For this one-stage problem we then have 

f;(s) 
5 

3 

XI* 
10 

10 

For other stages, the results are obtained by recurrence relation. 
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Stage 2. 

5 

6 

7 

f2(s, x 2) = dsx2+fl*(X2) 

8 9 

6 + 5 = I I  4 + 3 = 7  

4 + 5 = 9  3 + 3 = 6  

2 + 5 = 7  5 + 3 = 8  

Optimal solution 

f2*(s) x2* 

7 9 

6 9 

7 8 

Stage 3. 

2 

3 

4 

f3(s, x 3) = ds,x3+f2*(x3) 

5 6 7 

4 + 7 = 1 1  3 + 6 = 9  4 + 7 = 1 1  

5 + 7  = 12 2 + 6 = 8  6 + 7  = 13 

7 + 7  = 14 5 + 6  = 11 3 + 7  = 10 

Optimal solution 

f3*(s) x 3. 

9 6 

8 6 

10 7 

Stage 4. 

f4( s, X 4) + * = dsx4 f3 (x4) 

2 3 4 

6 + 9 =15 5 + 8 = 13 3 + 10 = 13 

Optimal solution 

f4*(S) X4* 
13 3 ,4  

The computation now terminates and the optimal solution can be read out from 
the tables above. 

The result of  the stage-4 table indicates that an optimal decision for the 
salesman is to go from state 1 to either state 3 or state 4. If he chooses to go to 
state 3, then the 3-stage table shows that for s - 3, an optimal decision is to go to 
state 6. Continuing to the 2-stage table we find that when the salesman enters state 
6, an optimal decision is to go to state 9 and from state 9, he finally goes to state 
10. 

Hence an optimal route is 

1 - ->3-->6-->9--> 10. 

If the salesman chooses to go to state 4 initially an alternative optimal route is 
obtained as 

1 - ->4-->7-->8--> 10 

The minimum distance that the salesman has to travel is 13. 

29.7. Investment Planning 
An entrepreneur is considering to invest his capital to four activities and expects 

to get retums as given in the table below. The total budget is limited to 5 units of 
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money and only an integer number of units can be allocated. The entrepreneur 
wishes to find a plan of allocation so that return is maximum. 

Table 29.6. Return from Investments 
Activity 

Capital 

1 2 3 4 

0 0 0 0 

7 5 3 3 

9 7 4 5 

9 8 5 8 

9 8 5 9 

9 8 5 9 

C o m p u t a t i o n s  

For dynamic programming formulation, let us consider the four activities as 
the four stages and let the decision variable x be the number of units of capital 
allocated to the nth stage from the end. Thus x is the number of units of capital 
allocated to activity 5 - n. (n = 1, 2, 3, 4). 

Since the choice of the decision variable at any stage is the number of units of 
capital available, they constitute the state of the system. 

Let rs_" (x )  = the return from the (5 - n) th activity, that is, from the first 
stage of the n-stage process from the end, n = 1, 2, 3, 4. 

f (s, x )  = The return from the last n stages when the state available is s 
and x n is the decision taken. 

Max f. (s ,x.)  
Then f*(s) = x.=0,, .... 

x = 0 , 1 , . . . s  
n 

= Max [rs_n(X,)+f~_l(s-x,)  1 (29.7) 
x n =0,1,...s 

n =  2, 3, 4. 

and f,*(s) = Max r4(x,) (29 8) 
Xn =0,I,2,... s 

We now proceed with our calculation beginning with the first stage from 
the end (Activity 4) and move backward to the stage 4 (Activity 1). 
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0 

3 
6 

Stage 1. 

0 

0, 1 
1 

Stage 2. 

- 0  S 

0 
1 
2 
3 
4 
5 

0 
3 3 
5 6 4 

8 8 7 5 
9 11 9 8 5 
9 12 12 10 8 5 

f3(s, '3) = r,(x3>+f;(s-x3> 

1 2 3 4 5 

0 
3 5 
6 8 7 
8 11 10 8 
11 13 13 11 8 
12 16 15 14 11 8 

Stage 4. 

Optimal solution 

Optimal solution 

11 
13 
16 1 

Optimal solution 

5 I 16 20 20 17 14 9 I 20 I 1,2  



512 Mathematical Programming: Theory and Methods 
i 

The, solution of the problem can now be read out from the tables above. 
Optimal allocations of the capital to the four activities are as follows: 

Activity 1 

X 4 

1 

1 

2 

Total rettu~ is 20. 

Activity 2 

X 3 

1 

2 

1 

Activity 3 
Ii, 

X 2 

1 

1 

1 

Activity 4 
X 1 

29.8. Inventory Problem 
Suppose that a Company producing a single item wants to determine a 

production schedule to meet the fluctuating demand over the next n periods, so that 
the total cost incurred is minimum. 

It is assumed that the production is instantaneous (i.e. the time to produce the 
item is negligible). The demand varies from one period to another but otherwise 
known (by an accurate forcast) and the shortages are not allowed. However, there 
is a cost of holding on the inventory at the end of the period. Further, it is assumed 
that the inventory level is zero at the end of the period n. 

Let us define for the period i (i = 1, 2,...n) 

x~ = Quantity of the item produced. 

d = demand in integer. 

z~ = inventory at the beginning of the period (entering Inventory). 

h = holding cost per unit of inventory at the end of the period. 

k = set up cost 

p~(x) = production cost of x i in the period. 

Now, the total cost incurred in each period depends on the set up cost, 
production cost and the holding cost for the inventory at the end of the period. 

Let 

C i ( X i ) =  ~iki + p~(x) 
Where 

= f  0, if x i - 0  
8i 

1, if x~ > 0 

The objective function can then be written as 

Minimize s [ci (xi) + h i (zi+~)] 
i=l 
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where Zi+ 1 is the amount of inventory carried forward from period i to period i+ 1 
and hence 

z~+~ = z~ + x~-d i, for i = 1, 2,.. .n 

and Zn+ 1 "-- 0 

The dynamic programming formulation for forward computation for this 
problem can be developed as follows. 

Let each period be considered as a stage and the states of the system at any 
stage i be the amount of inventory at the end of the period i (i.e. z~+~). 

Let f(zi+~) be the minimum inventory cost for the first i periods 1 to i, given 
that zi+ ~ is the inventory at the end of the ith period. Since it may be more economical 
to produce more in one period and store the excess to meet the demand in future, 
the values of z~+~ is limited by 

0 _~ Zi+ 1 _~ di+ l + di+ 2 + di+ 3 +...d n. 
The recurrence relations are then given by, 

Min [c](x~) + h~z2] (29.9) f,(z2) = O~x,~d,+-, 

fi = (Zi+,) = Min [ci(xi ) + + O<x,<di+zi,i hizi+ , f i_ l (Zi+ ,+di -x i ) ]  i = 2, 3 , . . n  

(29.10) 

We now consider a numerical problem to illustrate the computational procedure 
described above. 

Consider a three-period inventory problem with demand varying from one 
period to another but otherwise known and the holding cost i sbased  on the 
inventory at the end of the period. 

The data for the problem are given in the following table. 

Period 
i 

1 

2 

3 

Set up cost 
k 

Holding cost 
in dollar h 

Demand 
d 

4 

3 

5 

The initial (entering) inventory z~ at period 1 is 1 and the inventory at the end 
of period 3 is equal to zero. The production cost at period i is given by 

= f l5xi ,  if 0 < x~ < 4 

Pi (Xi)  L60 + 3 0 ( x  i _ 4), if x~ > 5 

This means that the cost of production per unit is 15 for the first four units 
and 30 for any numbr of units in excess of that. 
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C o m p u t a t i o n s  

Stage 1. Since z~ = l, the smallest value ofx~ is d l -  z] = 4 - 1 = 3 
and the largest x~ = dl+ d2+ d3-1 = 4+3+5-1 = 11 
and 0 _ < z 2 < 3 + 5 = 8 . ,  k = 3  

X 1 

__.__ h,(z2)'N ~ 

0 

1 

2 

3 

4 

5 

6 

7 

8 

Stage 2. 

X2 
lhz c (  

0 

1 

2 

3 

4 

5 

0 

3 

6 

9 

12 

15 

fi(Xl " Z2) = Cl(XI) "1- h lZ  2 

3 4 5 6 7 8 9 10 11 

48 63 90 120 150 180 210 240 270 

48 

64 

92 

123 

154 

185 

216 

247 

d 2 = 3, 0 < x 2_< 8, 0 ~ z 3 <_ 5, k = 6 

f2(x2:z3) = c2(x2)+h2z3+fl (z3+d2"x2) 

278 

0 1 2 3 4 5 6 7 8 

0 21 36 51 66 96 126 156 186 

150 

169 183 216 

200 202 235 

234 233 235 

123 113 100 99 

157 147 131 118 117 

191 181 165 149 136 

225 215 199 183 167 

259 249 233 217 201 

293 283 267 251 235 240 

Optimal 
solution 

x,, 

48 3 

64 4 

92 5 

123 6 

154 7 

185 8 

216 9 

247 10 

278 11 

Optimal 
solution 

99 3 

117 4 

136 4 

167 4 

200 5 

233 6 
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Stage 3. 

Z 4 

m 

0 

x 3 

h3z4 

d 2 = 5, 0 < x 3 < 5, Z 4 -'- 0 ,  k =4 

t"3(X3 :Z4) "-- c3 (x3 )=+h3z4+f2 (z4+d3-x3  ) 

0 1 2 3 4 5 

0 19 34 49 64 94 

233 219 201 185 181 193 

f3(z4 ) 

181 

Optimal 
solution 

X3* 

4 

The solution is obtained from the tables above as 

Period i 

X i 

at a total cost of $181. 

29.9. Reliability Problem 
Consider the problem of designing a complex equipment where reliability (that 

is probability of no failure) is a most important requirement. 

Suppose that the components are arranged in series so that a failure of one 
component will cause the failure of the whole system. To increase the reliability of 
the system, one might instal duplicate units in parallel on each component 
(subsystem) with a switching device so that a component is automatically replaced 
by new one when the old one fails. 

Suppose that the whole system has N subsystems with duplicate components 
in parallel (stages) which are arranged in series and that at least one component 
must be used at each substation. 

Let 1 + m. = the number of components used at the jth stage, where m. is J J 
the number of stand-by units at stage j (m - 0, 1, 2,...; j - 1, 2,...N) 

and ~)j ( m ) =  the probability of successful operation of the jth stage when 1 +m 
J 

components are used at the jth stage. 

Assuming that the probabilities at different stages are independent, we have 
the system reliability of the N-stage device. 

N 
R N = H~j(mj) 

Let cj = the cost of a single component at the jth stage. 

and C be the total capital available. 

The objective is to determine the value of m. which will maximize the total 
J 

reliability of the system without exceeding the available capital. 
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The problem thus becomes 

N 

Maximize R N = ~ ~j(m j) 

N 

Subject to ~cjmj _< C 
j=l 

m = 0 ,  1,2,.. .  
J 

Let f (x)  represent the optimal reliability for the stages 1 through n when 
the state (capital) at stage n is x where 0 < x < C. The recurrence relations may 
then be obtained as 

fl (Xl) = Max r (m,) (29.11) 
m, 

0 - - C  1 m l - - < X  l 

Max [r Cnmn)] fn( ) =  m. and Xn o~..~. 

n = 2, 3,...N (29.12) 

From the recurrence relations, computations for different stages can be carried 
out from which the optimal solution of the problem can be obtained. 

29.10. Cases where Decision Variables are Continuous 

In all the examples considered above, the decision process was of finite length 
and the stage, state and decision variables were represented by integer numbers 
and it was observed that dynamic programming technique can be suitably applied 
to find an optimal solution of the problems. Let us now show how the dynamic 
programming technique can be applied to problems, where the decision variables 
are not restricted to be integers. 

Consider the simple allocation problem where we are to maximize the return 
function 

N 

R(Xl, X2,...XN) = ~L gi (xi) 
i=l 

N 

Subject to ~ x~ _< b (29.13) 
i=l 

x i>0 ,  i = l , 2 , . . . N  

where each g~(x~) is assumed to be continuous for all x i > 0. 

Let, as in the previous, the activities be considered as stages and s - b be 
the state of the system. Let s n, denote the state at the stage n, so that 

0 < s  n - -  <b ,  n = l , 2 , . . . N .  

Define fN(S) = Max R(xI x2,." .XN) (xi) 
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and thus f ( s )  represents the maximum retum from the n-stage process when 
s is the state at the stage n. The recurrence relations are then, 

f ( s )  = Max [g,(x ) + f_~(Sn-X,) ] n > 2 (29.14) 0<x n <S n ~ 

and f,(s,) = Max g,(x,) (29.15) 
O<x I <s l 

It is clear that f (0)  = 0, provided that g~(0) = 0 for each i . ,  n = 1, 2,...N. 

Now, to find an optimal policy, we are to determine the sequence f (x), n = 
1, 2,...N, for all x in the interval [0, b]. It is clearly not possible to find all the 
values of a function in an interval. However, there are several search procedures 
(see [515]), which under certain conditions can be applied for finding an optimum 
of a function, particularly if the function is unimodal such as strictly convex or 
concave function. In the general case, when the function does not possess any 
special structure we use some interpolation scheme which permits us to recreate 
a general value from a few carefully chosen values. 

To achieve this, each of the functions f(s,), n = 1, 2,. . .N are evaluated and 
tabulated only at each of the finite grid points. 

s n = 0, A, 2A,...rA = b 

The values of f ( s ) ,  for s distinct from these grid points are then obtained by 
interpolation. The type of interpolation to be used depends on the accuracy desired 
and on the time required to achieve this accuracy. 

If kA < s < (k+l) A , 

the simplest approximate value of f ( s )  is obtained by setting, 

f ( S n ) - -  f ( k A )  

The next simplest approximation is obtained by the linear interpolation formula 

f ( S n )  = f ( k l ~ )  %" (S n -  kA)[ f (n+l )A-  f(kA)]/A 

However, more accurate higher order interpolation formulas may be used, if 
so desired. 

Moreover, the decision variables x also are allowed to range over the same 
set of grid points as above. 

The computation for finding an optimal policy then proceeds as follows. 

fl(Sl) is computed from the relation 

f,(s,) = Max gl(X,) 
0_<x~_< s~ 

where s I takes the values 0, A, 2A,...rA. 

The set of values {f~ (kA)}, thus obtained is stored (or tabulated) in the memory 
of the computer along with the corresponding maximizing x~-values 

{x, (kA)}, k = 0, 1, 2,...r. 

We now compute 
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f2(s2) = Max fl(s2_x2)] + 

where s z assumes only the values 0, A, 2A,...rA. Since no enumerative process 
can yield maximization over a continuous range of values, we replace the interval 
[0, sz] by a discrete set of values and compute 

f2(kA) = Max [g2(xz ) + f~(kA - x2)], k = 0, 1 2, .r. 
x 2 = k A  ) � 9  

To begin the maximization process, we first evaluate, g2(0) + fl(kA) and g2(A) 
+ f l ( (k-  1) A) and retain the largest of these two values. The value g2(2A) + f~((k 
-2) A) is then computed and compared with the previously obtained larger value 
and the larger of these two values is retained. This process is continued until all 
the values of g(x2) + f~(kA - x2), for x 2 = 0, A, 2A,...kA have been compared. The 
process yields fE(kA) and also the maximizing point (points) x2(kA ). Following this 
procedure, the values of fE(s2) are computed and stored for each s 2 belonging to the 
set { 0, A, 2A,...rA}. 

The procedure may then be continued for the N-stage process and the result 
may be tabulated. 

S 

0 
A 
2A 

. 

rA 

f,(s) x,(s) 

f,(0) x,(0) 

fl(~X) x,(A) 
f~(2A) xt(2A) 

f~(rA) x~(rA) 

Table 29.7 

f,(s) x,(s) 
f,(0) x,(O) 
f,(,x) x,(A) 
f2(2A) xz(2A) 

f2(rA) x2(rA) 

f,~(s) xds) 

fN(0) xd0) 
f.(A) xN(A) 

fs(2A) xs(2A) 

fs(rA) xs(rA) 

The solution to the N-stage process can now be read out from the table 29.7. 
Given a particular value of s N, the state at the stage N, the value of x N (SN) is noted 
from the column of xN(s ) which is the maximizing value of x N and is denoted by 
x*w Once x N~ I determined, we have a problem of (N- l )  stage process with the 
state of the system sN_ ~ = xN--x N" The maximizing value x N-~ for the (N- l )  stage 
process can then easily be obtained from the table. Continuing this procedure we 
find the optimal solution, x N, x N-r"x 2, x ~ in that order. 

As already indicated, the decision process may have several optimal policies. 
It is advisable to retain all the optimal policies as they may sometime turn out to 
be quite helpful in selecting the final decision to be implemented. Moreover, near 
optimal policies should also be recorded, as they may be important in providing 
simple approximations for more complex situations. 

For more details, see Bellman[44] and Bellman and Dreyfus[46]. 
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29.11. The Problem of Dimensionality 
In the problems presented so far, the states of the system were represented by 

a single variable only and at each stage, only a single decision variable was to be 
determined. We now consider more complicated problems arising from various 
realistic situations, in which the state variables may be more than one (a state 
vector) and at each stage, values of two or more decision variables must be 
determined. The dynamic programming problem is then said to be multidimensional. 
The recurrence relations for the problem can be developed in the same way as was 
done in the previous sections but it can be seen that the number of computations 
increases exponentially with the increase in the dimension of the problem. Since 
the amount of information to be stored is enormous, it may tax the computer 
memory and increase the computation time or even may be beyond the range of 
available computers. This presents a great limitation to the use of dynamic 
programming and is aptly called the "Curse ofdimensionality", by Richard Bellman. 

To overcome these difficulties, several methods have been suggested [44, 
45, 46], the most powerful of which is perhaps the method of Lagrange 
Multipliers. 

29.11.1. Allocation Problems with Two Types of Resources and Two 
Decision Variables 

Consider an allocation problem with two different types of resources which 
are to be allocated to a number of independent activities. The problem of our concern 
is to determine an allocation of the resources to the activities so that the return 
function is maximum. 

Consider the problem 
N 

Maximize R (x~, x2...xN; y~, Y2""YN) = ~-~g~ (Xi' Y) 
i=l 

N 

Subject to ~ a~ xi 5 b~ (29.16) 
i=l 

N 

a~i Yi ~ b2 
i=l 

x~>0, y > 0 ,  i = l , 2 , . . . N  

where a~, a2~ have positive values for each i and b~, b 2 are  the quantities of the 
two type of resources to be allocated to the N activities. The activities are regarded 
as stages and the levels of activity (x~, Yi) represent the decision variables at stage 
i (i = 1, 2,...n). The states of the system are defined as the amount of two resources 
available to be allocated to the current stage and the succeeding stages. Thus, the 
state s n at stage n is the vector s = (s w s2,) r. 

It is assumed that each function g~ (x~, y)  is continuous for all x~ > 0, y~ > 0, 
(i = 1, 2,...N). This implies that the state functions f(s~., s2. ) are continuous of 
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Sln and S2n. 

Following the general approach to dynamic programming we define 

fi' (s~., S2n ) = Max R(x~, X2,...Xn; Yl' Y2""Yn) 

Xl, X2...X n 
Yl, Y2""Y. 

where maximization is taken over x~, y~ satisfying 

ali X i < Sin 
i=l 

a2i Yi ~ $2n 
i-I 

x~> 0, y~> 0, i = 1, 2,...n. 

The recurrence relations are then given by 

M a x  
fi* (Sli' S2i) -- O~'ix'gs'i gi(xi ' Y) (29.17) 

0<a2iYi -~s21 

M a x  
fn (S,a, S2. ) = osa,.xn~s,. [ga(Xn ' yn) + f ,(S,-.-a,nX, S2n--a2nYn) 

O~a2. yn~gS2n 

n = 2, 3,...N (29.18) 

Since the decision variables are nonnegative and not restricted to be integers, 
we follow a simple extension of the approach discussed in section 29.10. To 
determine the sequence of functions {f  (s~,, s2,)} in the region defined by (0 _< s~ 
_< bl; 0 < s~ _< b2), the functions are now evaluated at a set of lattice points, say 
the points S l = kA, s~ = 1A, k, 1 = 0, 1, 2,..., which are required to be stored in 
the computer memory. The computational effort involved however is enormous 
which rapidly increases with the increase in the number of state variables. The 
amount of information to be stored may be so enormous that it may be beyond 
the range of available computers. 

29.11.2. Allocation Problems with Two Constraints and One Decision 
Variable 

Consider the problem of allocating two resources to N activities subject to two 
constraints involving one decision variable. Such a problem appears in many 
contexts. For example, in cargo-loading problem, we may have both weight and 
volume restrictions. 

Mathematically, the problem can be stated as 

N 

Maximize R (x l, x2...xn) = ~ gixi 
i=l 
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N 

Subject to ~ a,ixi < b 1 (29.19) 
i=l 

N 

Z a2i Xi _< b2 
i=l 

x > 0 ,  i =1  2, .N. 
I ~ ~ " "  

where a~i, a2i (i = 1, 2 , . . . N )  have positive values. It is assumed that each function 
g~ (x) is continuous for all x~ _> 0. 

As in section 29.11.1, the N activities are regarded as stages and the levels of 
activity x~ represent the decision variables at stage i (i = 1, 2,...N). The states are 
defined as the amount of resources to be allocated to the current and the remaining 
stages. 

Let the optimal return from the n-stage process be defined by 

' Max Rn(Xl, X2 ' .Xn) fn (Sin' S2n)--" Xl,X 2 .... X. "" 

where the maximization is taken over x~ satisfying 

alixi _< Sin 
i=l 

a2ixi < S2n 
i=l 

x~>_0, i = 1, 2,. . .n 

We then have the recurrence relations 

f~(s~l, s21) = Max g~(x~) 

0 _< a~ Xl _< sit 

0 _< a2~x ~ < s21 

and f*(sl., S2n ) = Max[g,(x ) + f_t(sl -al x ,  s2 -a2 x ) 

0 < alnX n < Sin 

0 < a2nx n < S2n 

n = 2, 3,...N. (29.21) 

As in the previous case the computational effort to solve the problem is 
enormous and it may not be possible to make use of available computers for our 
purpose. 

From sections 29.11.1 and 29.11.2, we note that as the number of state variables 
increases, the total number of computations increase enormously and due to huge 
memory requirements, it becomes essentially impossible to use present-day 
computers to solve the problems by dynamic programming. The most obvious 
way to reduce requirements is to reduce storage the number of state variables. 
In the next section we will discuss methods that can be used to reduce the 
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dimension of the problem. However, problems involving only two decision 
variables can usually be solved on a large computer. 

As an example, 

consider the following linear programming problem, 

Maximize z = 5X l + 3X 2 

Subject to 2x~ + 3X 2 < 36 

X~< 12 

x2<8 

x~>0, x2>0 
The two activities are considered as the two stages and since there are three 

resources, the state s is represented by a three-component vector. Thus, s = (Sl, 
s 2, s3), where s i is the amount of resource i remaining to be allocated (i = 1, 2, 
3). The nonnegative decision variables x~, x 2 are continuous and so they possess 
infinite number of possible values within the feasible space. This creates 
complications in the computation as discussed in section 29.10. 

However, the present problem is small enough so that it can still be solved 
without much difficulty. 

L e t  f2*(sl S2, S3)= Max z = Max (5x1 + 3x2) ' (xl,x~) 

Using the backward recursion, we have 

f; (SI $2' $ 3 ) '  = Max 3 x 2 3  x, _<,, = 3Min ( s~,, s3 ) 

x2_<s 3 

x2>_0 
and the optimal value of x 2 is 

N o w ,  

X* 2 "- min s3 

f;  (SI,S2,S3) = Max[5x, + t"1" (s, - 2x,,s 2 - xl,s3)] 2xl~g36 
x~< 12 

x~>O 

= Max [5xl+f~*(36-2x l, 12-x~, 8)] 

2x 1 < 36 
x~ <12 

Xl~___0 

= 0~x, ~,2 Max [5x' + 3Min ( 36 - 2x'3 ,8)] 
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Now, 
] 8, f o r 0 < x  t < 6  Min 36-2x~ 8 = - - 

' 2 
3 1 2 - ~ x ]  for 6 _< x~ _<12 

and hence 

+ 3 M i n (  3 6 - 2 x l  8~=~ 5 x ' + 2 4 '  f o r O < x ] < 6  
5x 1 

3 ' ) -~3x~+36fo r6<x~<12  

which achieve its maximum when x~ = 12. 

( �9 
It then follows that x 1. - 12 and x 2. = Min 3 6 -  2x~ 

3 

Thus the optimal solution of the problem is 

x~ - 12, x 2 = 4 

and Max z = 72 

~ ' s 3 1  = Min (4, 8) = 4 

29.12. Reduct ion  in D imens iona l i ty  

We have already noted that the greatest obstacle to the use of dynamic 
programming is the size of the state vector. If the number of state variables is more 
than two, a large number of values must be computed and stored which may be 
beyond the range of available computers. To overcome this difficulty, several 
methods have been suggested. One of the most powerful of these methods is the 
use of Lagrange multipliers that reduces the number of state variables to a 
manageable size in many cases. The procedure is based on Everett's method [152] 
of using Lagrange multipliers to solve constrained optimization problems. 

Everett has shown that Lagrange multipliers can be used to solve a general 
class of problems. 

Max f (X) 

Subject to g~ (X) < b~, i = 1, 2,...m. 

X ~ S c R n. (29.22) 

T h e o r e m  29 .1  

If X 0 is an optimal solution of the problem, 

m 

Maximize L (X, X) = f(X) - ~ ~,ig~ (X) 
i=l  

Subject to X ~ s (29.23) 

for a set of real nonnegative Lagrange multipliers (X~, ~,2,...~,m) = U, then X 0 is 
an optimal solution of the problem. 
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Maximize 

Subject to 

f (x )  

g~(X) < g,(Xo), i = 1, 2,...m. 

X s S  

Proof: Since X o maximizes L (X, ~) over S, we have, 

m !11 

f(X o) - ~ :L~g~ (X o) >_ f(X) - ~ ~,gi (X) 
i = l  i= l  

for all X ~ s. 

(29.24) 

m 

f (x  o) - f ix )  > [g,(x o) - g,(X)] >_ 0 
i=l  

for all X ~ S, satisfying gi(X) < gi(Xo), since all ~i >-- 0. 

Hence X o is an optimal solution of (29.24). 

Now, if g~ (Xo) = b~, i = 1, 2,...m, X o is also an optimal solution, an optimal 
solution of the original problem. 

It should be noted that the problem considered is quite general since the 
functions involved and the set S are completely arbitrary. No assumptions such as 
continuity, differentiability or convexity are made for the functions and there are 
no restrictions on the set S. S, for example may be discrete or continuous. 

Thus the Lagrange multipliers method is applicable to a wider class of problems 
than the class of problems that can be formulated as dynamic programs. 

In the above procedure, if with the present set of L1, ~'2," "~'m' g~(Xo) ~ b,, i = 
1, 2,...m, then another set of L~'s must be chosen and the new Lagrange function 
has to be maximized. This process is continued till we find a set of ~.~'s, yielding 

gi(xo) = b i, for all i. 
The following result acts as a guide in the search of ~,-values that will yield 

gi (x~ = bi, for all i. 

Theorem 29.2. Let ~. = (L~, ~2,...~m) ~' 0 and ~t = (~t~, ~,2,...~l,m) ~ 0 be any two 
sets of Lagrange multipliers such that 

~ = ~t~, i = 1, 2,. . .m;i ~ k (29.25) 

Z'k > ~k 
and Xox, Xo~ are the corresponding optimal solution of the problem. (29.23) Then 
gk(Xox) is monotonically decreasing function of ~'k" 

Proof: Since X0~ maximizes L(X, ~,), we have 

m m 

f(Xo~)- ff'~ ~.ig~ (Xo~) _> f (Xo . ) -  E L,g~ (Xo.) 
i=l  i=l  

and since Xo, maximizes L(X, ~t), we have 
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m m 

f(Xo.) - if '  ~t ig  i (Xo.) >- f(Xoz) - ~ ~t,gi (Xo;~) 
i=l i=l 

Adding these inequalities and rearranging, we get 

E ( ~ i  -,i)[gi(Xo )-gi(Xo  0 
Hence by (29.25) 

~(X0~ ) - g(Xo~ ) < 0 

Theorom 29.2 implies that if we want to decrease the value of gk(X) at an 
optimal solution of (29.23), then )~k should be increased, keeping the other %'s fixed. 
Thus interpolation and extrapolation can be used to determine the desired set of 
~,'s. However, there is no guarantee that there will exist a set of Lagrange multipliers 
such that one can find an optimal solution of (29.23) that satisfies g~(x) = b~ for all 
i. (Exercise 18) Everett has shown that if the variables are continuous and the 
function to be maximized is concave, then the Lagrange multipliers method will 
work. 

Since the restriction on the memory capacity of computers is such that it is 
preferable to carry out a large number of one-dimensional problems rather than 
one multidimensional probl.em, Lagrange's dimensionality reducing procedure 
discussed above often permits us to treat problems which would otherwise escape 
us. To preserve the advantage of dynamic programming, the Lagrange and dynamic 
programming can be synthesized by treating some of the constraints with Lagrange 
multipliers and the remainder with state variables. The choice of the number of 
Lagrange multipliers to be introduced depends upon the individual problem, the 
type of computer available and the time available for computation. 

To illustrate the reduction of state variables using Lagrange multipliers method, 
we consider the following example 

1 2 
Minimize -~ (x, + x ~2 ) 

Subject to x, + x 2 = 8 

x, + 2x 2 _< 10 (29.26) 

x~, x2 >_ 10 

This is a two-stage problem with two-state variables. 

Following the procedure of section 29.12 we transform the problem into an 
equivalent problem with one constraint of the problem with a Lagrange multiplier, 
we have 

1 2 1X2 
Minimize F~ (x,, x 2) = -~ x, + ~ 2 + )~(x, + 2x 2) (29.27) 

Subject to xl+ x 2 = 8 (29.28) 

XI,X 2 >___ 0 
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We solve the problem for a fixed value of ~, by the procedure described in 
section 29.10 and fred the value ofx~ + 2x 2 at this point. The process is then repeated 
for successive values of ~, until x~ + 2x 2 = 10. 

Let ~ = 0. The problem then reduces to 

Minimize 1 2 1X2 Fo(x,,x ) = 

Subject to x~+x 2 = 8 

xl, x 2 >_ 0 

The optimal solution of this problem is found it to be x] = x 2 - 4. 

Clearly, Xl + 2x2 ~ = 12 > 10 

Using Theorem 29.2, we find that Z should be increased. 

Let us take ~ = 5. The optimal solution of the problem is then given by x~* = 
6.5, x 2 = 1.5. Then x~*+2x2* = 9.5 < 10. The desired value of ~,, therefore should 
lie in the interval (0, 5). By linear interpolation, the new value of ~, is estimated to 
be equal to 4. 

With Z = 4, the optimal solution of the problem is given to be x~ - 6, x 2 = 2, 
that yields x~*+2x2* = 10. Hence x] = 6, x 2 = 2 is the optimal solution to the given 
problem. 

Thus, by treating one of the constraints with a Lagrange multiplier one of 
the state variables is eliminated and the computations and storage of optimal data 
is reduced considerably. 

29.13. Stochastic Dynamic Programming 
All the decision processes considered in previous sections, had the property 

that the outcome of any decision was uniquely determined by the choice of this 
decision. Such processes are called deterministic. There are however many multi- 
stage processes arising from realistic situations which do not have this property. 
There are nondeterministic processes in which for each choice of a decision, the 
outcome may be a random variable having a probability distribution. We call such 

processes as stochastic. 

29.13.1 As an illustration, let us first consider a rephrased version of Bellman's 

gold mining problem. [234] 

Suppose that we are concerned With using a bomber to inflict maximum damage 
on some enemy. The bomber has two possible enemy targets, A and B to attack. A 
raid on target A results either in a fraction r~ of the enemy's resources at A being 
destroyed or in the bomber being shot down before inflicting any damage, the 
probability of the bomber surviving a mission to A being p~. Target B is similarly 
associated with a fraction r 2 and a probability P2" The enemy's resources initially 
are x at A and y at B. The problem now is to determine a policy of attack that 
will maximize the total expected damage to the enemy resources. 



Dynamic Programming 527 

Let us define 

fN(x,y) = expected damage if the optimal policy is followed when a maximum 
number of N raids is possible and the system starts with resources x at A and y at 
B. 

Then, 

f~(x, y )=  Max [p~r~x, p:rzy]. (29.29) 

Now, if the N-raid policy starts with an attack on A, then by the principle of 
optimality, the total expected damage is 

fg(X, y )=  p~[r~x + fN-l[(1--r~)x' y)] (29.30) 

and if the target B is attacked first, the total expected damage is 

fa(X, y )=  pz[r2Y + fN_,[x, (1-rz)y)] (29.31) 

Since we wish to maximize the total expected damage from N-raids, the basic 
recurrence relation is 

f(x,  y) = Max[fA(x, y), fB(X, y)] 

= Max [p~ {r~x fN-~ ((1-r~) x, y)}, pz{r2Y + fN.~(x, (1-rz)y)} ] 
(29.32) 

29.13.2. Stochastic Inventory Problems 
Let us consider a simple problem of stocking and supplying a single item to 

meet in an unknown demand, whose probability distribution is only known. It is 
assumed that orders are made at each of a finite set of equally spaced times and 
immediately fulfilled. If the supply is less than the demand observed, a further supply 
is made to satisfy the demand as far as possible. Any excess of demand over supply 
then incurs a penalty cost. 

Suppose that the following functions are known. 

~(s) ds = the probability that the demand will lie between s and s + ds. 

c (z) -- the cost of ordering z items to increase the stock level. 

k (z) -- the cost of ordering z items to meet an excess, z of demand over 
supply, the penalty cost. 

It is further assumed that the functions are independent of time. 

Let x denote the stock level at the initial stage and our aim is to determine an 
ordering policy which minimizes the expected cost of carrying out an N-stage 
process. 

Let us define 

f ( x )  = the optimal cost for an n-stage process starting with an initial stock x 
and using an optimal ordering policy. 

Suppose that at the first stage, a quantity y-x is ordered to bring the stock up 
to the level y. 

Then 

f~(x) = minimum expected cost at the first stage, 
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= Min c(y - x) + k(s - y)~(s)ds 
y>x 

Y 

(29.34) 

Following the principle of optimality, we then have the functional equation 

f. (x) = Min c ( y -  x) + k ( s -  y)r 
y>x 

Y 

+fn-l (0) ffr + ~f._, (y - s)r (29.3 5) 
y o 

n = 2 ,  3,...N., 

considering the different possible cases of an excess of demand over supply 
and supply over demand. 

Dynamic programming techniques may also be used in many other cases of 
inventory problems which arise under various assumptions regarding cost function 
(ordering and penalty), distribution function or involving lag in time of supply. For 
details the reader is referred to Bellman [44]. 

29.14. Infinite Stage Process 
If the number of stages in a multi-stage decision process approaches infinity, 

it becomes an infinite stage process. When there are a very large member of 
stages remaining and there is regularity in the stage returns and transformations, 
we might expect the optimal decision to be independent of the particular stage 
number. Then in place of sequence of equations (29.2), the single equation. 

f '(s) = MaxER(s,x) + f'(s~) ~ (29.36) 

might serve as a good approximation. 

Now, the question arises whether the equation possesses a finite solution and 
if so, is the solution unique? Bellman[44] has shown that under certain assumptions 
a unique solution to (29.36) does exist and discusses this problem in great detail. 

Although, for some simple problems the steady state solutions can be obtained 
easily, in general, solving the infinite stage optimization equation is difficult. 
Bellman has shown how methods of successive approximation can be used to solve 
this type of equation. 

An infinite stage process also arises when the stages correspond to time 
periods. Here, the horizon is finite but the time periods are very small. In the 
limit, as the size of the time periods approaches zero, we assume that decisions 
are made continuously. Thus, for any finite horizon there will be an infinite number 
of decisions. 
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For example, consider the problem of a missile fitting a target in a specified 
(finite) time internal. Theoretically, the target has to be observed and commands 
to the missile for changing its direction and speed have to be given continuously. 
Thus, an infinite number of decisions have to be made in a finite time interval. 
Since a stage has been defined as a point where decisions are made, this problem 
will be a continuous infinite stage problem. 

Thus, the model of a continuous multi-stage process can be written as 

t2 

Max ~f (t,x, y)dt 
t~ 

d x  
Subjectto -dT=g(t ,x,y) ,  t, ___t <t 2 (29.37) 

X 1 - -  x(tl) = k 

where x is the state variable and y, the decision variable. 

The determination of a function to optimize an integral is a problem in the calculus 
of variations. However, the analytical solutions, using calculus of variations, cannot 
be obtained except for very simple problems. The dynamic programming 
approach, on the otherhand, provides a very efficient numerical approximation 
procedure for solving continuous multi-stage problem. 

29.15. Exercises 

N N 

Use dynamic programming to show that ~ Pi log Pi, subject to ~ P~ - 1 
i=l i=l 

1 
p~ > 0, i = 1, 2,...N is minimum when p] = P2 = "'" = PN --  N " 

2. Consider the cargo-loading problem presented in Section 29.4. Suppose 
that in addition to the weight limitation w, there is also the volume 
restriction Q, where q~ is the volume per unit of item i. Obtain the dynamic 
programming formulation of the problem. 

3. Solve the following linear programming problem using dynamic 
programming 

Maxmize 7x~ + 8x 2 
Subject to 2x~ + 5x 2_< 15 

X l + 2 X  2 < 8 

x~, x 2 nonnegative integers. 

4. Solve the following linear program by the dynamic programming technique. 
Maxmize 3x~ + 4x 2 
Subject to x~ + 6x 2 _< 6 

2x I + x 2 _< 4 
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Xl, X2 >_ O. 

Solve the following linear program by the dynamic programming 
technique. 

Maxmize 
Subject to 

4x~ + 2X 2 
3X] + X 2 _< 42 
x 1 +x2<21  
3x~ + 2x 2 < 48 
x~, x2>O. 

Formulate the functional equations of dynamic programming for the 
problem 

Minimize 
N 

Zxr, p>o 
i=l 

N 

Subject to ~x~  > b, b > 0 
i=l 

Xi>__0 , i = 1,2 .... N. 

7. Solve the following problems by the dynamic programming technique. 
2 2 2 (a) Minimize x~ + x 2 + x 3 

Subject to x~ + x 2 + x 3 > 15, 
x~, x2, x3 >_ 0 

(b) Maximize x~ + 2x~ + 4 x  3 

Subject to x~ + 2x 2 + x 3 < 8 
Xl,  X2, X3 >__ 0 

8. Use dynamic programming to solve the problem 

~ 

N 
Maximize H x~ 

i=l 

N 

Subject to ~ x  i = c 
i=l 

x .>0 ,  i = 1 2,...N. 

Formulate the functional equations of dynamic programming for the 
problem 

N 

Minimize ~ x~', p > 0 
i--I 

N 

Subject to IIx~ = c 
i=l 

x.> 1, i = 1, 2,...N. 
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10. Solve the following problem by the dynamic programming technique. 

4 

Maximize ~ (4 x i - ix ~ ) 
i = l  

4 

Subject to ~ x  i=10 
i = l  

x > 0 ,  i - 1  2,3 4 
I ~ ~ 

11. There are n machines available and each of them can do two jobs. If x 
of them do the first job, they produce goods worth 3x and if x of them 
do the second job, lthey produce goods worth 2.5x. The machines are 
subject to attrition, so that after doing the first job only 1/3x out of x 
remain available for further work and if they were doing the second job, 
the available number is 2/3x. The process is repeated with the remaining 
machines for two more stages. Find the number of machines to be 
allocated to each job at each stage in order to maximize profit. 

12. A manufacturing firm stocks certain basic material every month for a 
smooth functioning of its production schedule. The purchase price Pn and 
the demand forecast d n for the next six months by the management are 
given below 
Month(n) �9 1 2 3 4 5 6 
Purchase price (Pn) " 11 18 13 17 20 10 
Demand(d) �9 8 5 3 2 7 4 
The basic material is purchased at the beginning of each month. 
Due to the limited space, the wareouse cannot hold more than 9 units of 
the basic material. When the initial stock is 2 units and the final stock is 
required to be zero, find by the use of dynamic programming, an ordering 
policy for the next 6 months so as to minimize the total purchase cost. 

13. A company has 6 salesmen and 3 market areas A, B, C. It is desired to 
determine the number of salesmen to allocate to each market area to 
maximize profit. The following table gives the profit from each market 
area as a function of the number of salesmen allocated. 

Number of salesmen 

Market area 0 1 2 3 4 5 6 
i 

A 38 41 48 58 66 72 83 

B 40 42 50 60 66 75 82 

C 60 64 68 78 90 102 109 

Use the dynamic programming technique to solve the above problem. 



532 Mathematical Programming" Theory and Methods 

14. A man is engaged in buying and selling identical items. He operates from 
a warchouse that can hold 500 items. Each month he can sell any quantity 
that he chooses up to the stock at the begining of the month. Each month, 
he can buy as much as he wishes for delivery at the end of the month so 
long as his stock does not exceed 500 items. For the next four months he 
has the following forecasts of cost and sale prices. 

Month : 1 2 3 4 
Cost : 27 24 26 28 
Sale price : 28 25 25 27 

If he currently has a stock of 200 items, what quantities should he sell 
and buy in the next four months in order to maximize his profit? Find 
the solution using dynamic programming. 

15. Consider the transportation problem with m origins and n destinations. 
Let a~ be the amount available at origin i, i = 1, 2,...m and let d be the J 

m s 
amount demanded at destination j, j = 1, 2,...n, where Y'~ai = dj .  

i=l j=l 

Assuming that the cost of transporting x~j units from origin i todestination 
j is g~j(x~j), formulate the problem as a dynamic programming model. 

16. Consider a transportation problem with two origins and five destinations. 
The availabilities at the origins, the demands at the destinations and the 
transportation costs as a function of the number of units x. 0 transported are 
given in the following table. 

Origin 

Demand 

1 

2 3x~ 

4x2~ 

7 

Destination 
2 3 

4x n 2x~3 

2x222 ,. ~/2 DX23 

3 5 

4 5 

5-X141/2 3X15 

3X24 2x25 
8 2 

Available 

10 

15 

A 

B 

(d~j)=C 

D 

E 

A B C D E 

0 22 7 oo oo 

22 0 12 10 22 

7 12 0 oo 42 

oo 10 oo 0 8 

oo 22 42 8 .0 

17. Use dynamic programming to find the shortest route for travelling from 
city A to city E whose distance matrix (d~j) is given as 

Find an optimal solution of the problem by using the dynamic proganuning 
technique. 
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18. Show that Lagrange multiplier method fails to solve the problem. 
Maximize 3x~ + 2x 2 
Subject to x~ - x 2 = 0 

X 1 + X2-< 3, 
x~, x 2 > 0, x~, x 2 integers. 

19. Using dynamic programming technique, solve the following reliability 
problem. For notations see section 29.9. 

1 

2 

3 

~,(ml) 

.5 

.7 

.9 

j= l  
c~m~ ~2(m2) 

.7 

.8 

.9 

j=2 

c2m2 

j=3 

~3(m3) 

.6 

.8 

.9 

c3rr h 

20. To conduct a research project on a certain engineering problem, three 
research teams A, B and C are engaged who are trying three different 
approaches to solve the problem. The probability that the respective teams 
will not succeed is estimated as 0.80, 0.60 and 0.40 respectively, so that 
the probability that all three teams will fail is (0.80) (0.60) (0.40) = 0.192. 
To minimize this probability, it has been decided to assign two more top 
scientists among the three teams. 
The following table gives the estimated probability that the respective teams 
will fail when 0, 1, 2 additional scientists are added to that team. 

Number of 
new scientists 1 

Team 

A B C 

0.80 0.60 0.40 

0.50 0.40 0.20 

0.30 0.20 0.15 

How should the two additional scientists be allocated to the teams? 
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