Contents

FOREWORD xxi
PREFACE xxxiii
DEFINITION OF SYMBOLS xxxvii
1 THE LINEAR PROGRAMMING PROBLEM 1
1.1 SOME SIMPLE EXAMPLES 2
1.2 MATHEMATICAL STATEMENT 7
1.3 FORMULATING LINEAR PROGRAMS 8
1.3.1 The Column (Recipe/Activity) Approach 9
1.3.2 The Row (Material Balance) Approach 11
1.4 EXAMPLES OF MODEL FORMULATION 12
1.4.1 Product Mix Problem (Column Approach) 12
1.4.2 Product Mix Problem (Row Approach) 15
1.4.3 A Simple Warehouse Problem 16
1.4.4 On-the-Job Training 18
1.5 BOUNDS 21
1.6 AXIOMS 22
1.7 NOTES \& SELECTED BIBLIOGRAPHY 23
1.8 PROBLEMS 25
2 SOLVING SIMPLE LINEAR PROGRAMS 35
2.1 TWO-VARIABLE PROBLEM 35
2.2 TWO-EQUATION PROBLEM 37
2.2.1 Graphical Solution 38
2.2.2 The Dual Linear Program 41
2.3 FOURIER-MOTZKIN ELIMINATION 43
2.3.1 Illustration of the FME Process 44
2.3.2 The Fourier-Motzkin Elimination Algorithm 46
2.3.3 Fourier-Motzkin Elimination Theory 47
2.4 INFEASIBILITY THEOREM 52
2.5 NOTES \& SELECTED BIBLIOGRAPHY 53
2.6 PROBLEMS 54
3 THE SIMPLEX METHOD 63
3.1 GRAPHICAL ILLUSTRATION 64
3.2 THE SIMPLEX ALGORITHM 64
3.2.1 Canonical Form and Basic Variables 64
3.2.2 Improving a Nonoptimal Basic Feasible Solution 68
3.2.3 The Simplex Algorithm 71
3.2.4 Theory Behind the Simplex Algorithm 73
3.3 SIMPLEX METHOD 76
3.3.1 The Method 77
3.3.2 Phase I/Phase II Algorithm 78
3.3.3 Theory Behind Phase I 81
3.4 BOUNDED VARIABLES 83
3.5 REVISED SIMPLEX METHOD 89
3.5.1 Motivation 89
3.5.2 Revised Simplex Method Illustrated 92
3.5.3 Revised Simplex Algorithm 93
3.5.4 Computational Remarks 96
3.6 NOTES \& SELECTED BIBLIOGRAPHY 97
3.7 PROBLEMS 98
4 INTERIOR-POINT METHODS 113
4.1 BASIC CONCEPTS 115
4.2 PRIMAL AFFINE / DIKIN'S METHOD 118
4.3 INITIAL SOLUTION 121
4.4 NOTES \& SELECTED BIBLIOGRAPHY 122
4.5 PROBLEMS 124
5 DUALITY 129
5.1 DUAL AND PRIMAL PROBLEMS 129
5.1.1 Von Neumann Symmetric Form 129
5.1.2 Tucker Diagram 130
5.1.3 Duals of Mixed Systems 130
5.1.4 The Dual of the Standard Form 132
5.1.5 Primal-Dual Feasible-Infeasible Cases 133
5.2 DUALITY THEOREMS 134
5.3 COMPLEMENTARY SLACKNESS 135
5.4 OBTAINING A DUAL SOLUTION 136
5.5 NOTES \& SELECTED BIBLIOGRAPHY 138
5.6 PROBLEMS 139
6 EQUIVALENT FORMULATIONS 145
6.1 RESTRICTED VARIABLES 145
6.2 UNRESTRICTED (FREE) VARIABLES 146
6.3 ABSOLUTE VALUES 147
6.4 GOAL PROGRAMMING 150
6.5 MINIMIZING THE MAXIMUM OF LINEAR FUNCTIONS 152
6.6 CURVE FITTING 154
6.7 PIECEWISE LINEAR APPROXIMATIONS 157
6.7.1 Convex/Concave Functions 157
6.7.2 Piecewise Continuous Linear Functions 159
6.7.3 Separable Piecewise Continuous Linear Functions 160
6.8 NOTES \& SELECTED BIBLIOGRAPHY 162
6.9 PROBLEMS 162
7 PRICE MECHANISM AND SENSITIVITY ANALYSIS 171
7.1 THE PRICE MECHANISM OF THE SIMPLEX METHOD 172
7.1.1 Marginal Values or Shadow Prices 173
7.1.2 Economic Interpretation of the Simplex Method 174
7.1.3 The Manager of a Machine Tool Plant 175
7.1.4 The Ambitious Industrialist 181
7.1.5 Sign Convention on Prices 183
7.2 INTRODUCING A NEW VARIABLE 184
7.3 INTRODUCING A NEW CONSTRAINT 186
7.4 COST RANGING 188
7.5 CHANGES IN THE RIGHT-HAND SIDE 190
7.6 CHANGES IN THE COEFFICIENT MATRIX 192
7.7 THE SUBSTITUTION EFFECT OF NONBASIC ACTIVITIES ON BASIC ACTIVITIES 198
7.8 NOTES AND SELECTED BIBLIOGRAPHY 199
7.9 PROBLEMS 199
8 TRANSPORTATION AND ASSIGNMENT PROBLEM 205
8.1 THE CLASSICAL TRANSPORTATION PROBLEM 205
8.1.1 Mathematical Statement 206
8.1.2 Properties of the System 206
8.2 STANDARD TRANSPORTATION ARRAY 212
8.3 FINDING AN INITIAL SOLUTION 214
8.3.1 Triangularity Rule 214
8.3.2 The Least Remaining Cost Rule 217
8.3.3 Vogel's Approximation Method 217
8.3.4 Russel's Approximation Method 218
8.3.5 Cost Preprocessing 219
8.4 FAST SIMPLEX ALGORITHM FOR THE TRANSPORTATION PROBLEM 222
8.4.1 Simplex Multipliers, Optimality, and the Dual 222
8.4.2 Finding a Better Basic Solution 224
8.4.3 Illustration of the Solution Process 225
8.5 THE ASSIGNMENT PROBLEM 229
8.6 EXCESS AND SHORTAGE 233
8.6.1 Mathematical Statement 234
8.6.2 Properties of the System 236
8.6.3 Conversion to the Classical Form 236
8.6.4 Simplex Multipliers and Reduced Costs 238
8.7 PREFIXED VALUES AND INADMISSIBLE SQUARES 239
8.8 THE CAPACITATED TRANSPORTATION PROBLEM 240
8.9 NOTES \& SELECTED BIBLIOGRAPHY 244
8.10 PROBLEMS 245
9 NETWORK FLOW THEORY 253
9.1 TERMINOLOGY 253
9.2 FLOWS AND ARC-CAPACITIES 258
9.3 AUGMENTING PATH ALGORITHM FOR MAXIMAL FLOW 262
9.4 CUTS IN A NETWORK 275
9.5 SHORTEST ROUTE 277
9.6 MINIMAL SPANNING TREE 282
9.7 MINIMUM COST-FLOW PROBLEM 286
9.8 THE NETWORK SIMPLEX METHOD 288
9.9 THE BOUNDED VARIABLE PROBLEM 299
9.10 NOTES \& SELECTED BIBLIOGRAPHY 301
9.11 PROBLEMS 304
A LINEAR ALGEBRA 315
A. 1 SCALARS, VECTORS, AND MATRICES 315
A. 2 ARITHMETIC OPERATIONS WITH VECTORS AND MATRICES 317
A. 3 LINEAR INDEPENDENCE 320
A. 4 ORTHOGONALITY 321
A. 5 NORMS 321
A. 6 VECTOR SPACES 324
A. 7 RANK OF A MATRIX 326
A. 8 MATRICES WITH SPECIAL STRUCTURE 326
A. 9 INVERSE OF A MATRIX 329
A. 10 INVERSES OF SPECIAL MATRICES 330
A. 11 DETERMINANTS 331
A. 12 EIGENVALUES 333
A. 13 POSITIVE-DEFINITENESS 336
A. 14 NOTES \& SELECTED BIBLIOGRAPHY 337
A. 15 PROBLEMS 337
B LINEAR EQUATIONS 341
B. 1 SOLUTION SETS 341
B. 2 SYSTEMS OF EQUATIONS WITH THE SAME SOLUTION SETS 343
B. 3 HOW SYSTEMS ARE SOLVED 345
B. 4 ELEMENTARY OPERATIONS 346
B. 5 CANONICAL FORMS, PIVOTING, AND SOLUTIONS 349
B. 6 PIVOT THEORY 354
B. 7 NOTES \& SELECTED BIBLIOGRAPHY 357
B. 8 PROBLEMS 357
REFERENCES 361

