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Preface

On March 15, 2002 we held a workshop on network interdiction and
the more general problem of stochastic mixed integer programming at
the University of California, Davis. Jesús De Loera and I co-chaired the
event, which included presentations of on-going research and discussion.
At the workshop, we decided to produce a volume of timely work on the
topics. This volume is the result.

Each chapter represents state-of-the-art research and all of them were
refereed by leading investigators in the respective fields. Problems as-
sociated with protecting and attacking computer, transportation, and
social networks gain importance as the world becomes more depen-
dent on interconnected systems. Optimization models that address the
stochastic nature of these problems are an important part of the research
agenda. This work relies on recent efforts to provide methods for ad-
dressing stochastic mixed integer programs. The book is organized with
interdiction papers first and the stochastic programming papers in the
second part. A nice overview of the papers is provided in the Foreward
written by Roger Wets.

We are grateful to Roger Wets not only for providing us with a Fore-
ward to this volume, but also for his leadership at UC Davis that essen-
tially made the workshop possible. People often speak of seminal papers,
but Roger has also provided us with a seminal presence. In addition,
we want to thank Kevin Wood who came to Davis before the workshop
and helped introduce us to problems in interdiction and introduced us to
some of the research and researchers in the field. Finally, we wish to ac-
knowledge the Air Force Office of Sponsored Research for their support
of the workshop under grant F49620-01-0327.

DAVID  L. WOODRUFF
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Foreword

It’s certainly a sign of the vitality of the field of Stochastic Program-
ming that in the week of March 11-15, 2002, two major workshops could
be organized. Both of them with the participation of some of the leaders
in the field and about than 10,000 km apart. The meeting in Laxenburg
(Austria) concentrated on ‘Dynamic Stochastic Optimization’ whereas
the Davis (California) meeting was devoted to ‘Network Interdiction and
Stochastic Integer Programming.’ This volume is the proceedings of the
Davis workshop.

Under the leadership of David Woodruff (Graduate School of Man-
agement) and Jesus De Loera (Department of Mathematics), research
at the University of California, Davis in Stochastic Programming is now
branching out in one of the most challenging areas: Stochastic Inte-
ger Programming. In fact, as suggested by the papers in this volume,
Stochastic Integer Programming has become a major research theme in
the Western United States with the non-negligible help of the Duisburg
(Germany) connection.

A major component of David’s research had been in manufacturing
and his int ital interest in stochastic programming was motivated by
the need to take into account the inherent uncertainty in the manu-
facturing process. How to deal with certain disjunctive variables in a
stochastic programming model for oil exploration came up a little later,
when Tore Jonsbrøaten from Stavanger (Norway) came on a post-doc
visit to Davis. By then, David had a serious commitment to designing
practical procedures for solving stochastic integer programs of various
types. One direction that seemed promising was to work on (stochastic)
network interdiction problems that had already been investigated just a
few miles south of Davis at the Naval Postgraduate School in Monterey
(California).

Jesus followed a more ‘theoretical’ path to come to the field. His ini-
tial interests were centered around a number of problems in Algebraic
Geometry, but a post-doc year at Cornell University motivated him to
also include Integer Programming and Combinatorial Optimization in



his research plans. It was difficult to ignore, one of the older member
of his department pointing out that stochastic integer programs were a
super-abundant source of mathematically challenging problems and that
progress in this area was bound to have significant impact in practice.
This lead Jesus to visit Duisburg were Raymond Hemmecke was finish-
ing his Ph.D. thesis under the leadership of Rüdiger Schultz, one of the
leaders in the field. Raymond is now a Visiting Research Assistant Pro-
fessor in Davis and, among others, provides a bridge between David’s
and Jesus’ teams.

The Network Interdiction Problem has a wide variety of applications
both in the transportation area, but more recently and very prominently,
in the communications area. An elementary version of this problem
would read: Given a network carrying flow from a source node s to a
destination node t, find those ‘operations’ that will reduce as much as
possible the maximum flow that can be carried from s to t; an opera-
tion could be destruction of certain nodes or reducing the capacity on
certain arcs, possibly to zero. In view of the max-flow/min-cut theo-
rem, the problem can roughly be viewed as one of finding the operations
that will affect the topology of the network so as to minimize the min-
cut. The problem is NP-hard! The analysis provides both strategies
that would minimize flow between origin and destination, and could
help in the design of networks that have high level reliability properties.
In practice, however, network interdiction problems come with uncer-
tainties or various types: characteristics of the network itself, actual
results of interdiction actions, etc. On the other hand, because of the
network structure, such problems are relatively simple (an oxymoron?)
stochastic integer programs, and possibly more amenable to efficient,
implementable solution procedures.

The two papers, ‘Enumerating near-min s – t cuts’ by Ahmet Balcioglu
and R. Kevin Wood, and ‘A decomposition-based pseudo approximation
algorithm for network flow inhibition’ by Carl Burch, Robert Carr, Sven
Krumke, Ladhav Marathe, Cynthia Phillips and Eric Sundberg, deal
with deterministic versions of the network interdiction problem. The
first one of these is devoted to finding approximating solutions that
would simplify the computational complexity, The second one the in-
troduced a new procedure to deal with non-planar networks again with
the goal of exploiting approximate solutions; the model includes a bud-
getary constraint that renders it more directly applicable in a number
of significant applications.

The two papers, ‘A stochastic program for interdicting smuggled nu-
clear material’ by Feng Pan, William Charlton and David Morton, and
‘Interdicting stochastic networks with binary interdiction effort’ by Ray-
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mond Hemmecke, Rüdiger Schultz and David Woodruff, deal with two
stochastic versions of the Network Interdiction Problem. In the first
one of these, an interdictor is to install sensors on a network so as to
maximize the probability of detecting smuggled nuclear material. The
problem is formulated as a stochastic mixed-integer program with re-
course. The second paper also deals with the interdiction of undesirable
materials or information, but the configuration of the network can only
be conjectured. The problem can be formulated as a stochastic pro-
gramming problem but with some special features that can be exploited
effectively in the design of solution procedures.

The two papers, ‘Stochastic batch-sizing problems: models and al-
gorithms’ by Guglielmo Lulli and Suvrajeet Sen, and ‘A summary and
illustration of disjunctive decomposition with set convexification’ by Su-
vrajeet Sen, Julia Higle and Lewis Ntaimo deal with two particular
classes of Stochastic Integer Programming problems. The first one of
these provides a unified treatment of the batch-sizing problem that, in
particular, considers trade-offs between costs and reliability. The sec-
ond paper reviews and illustrates a general, and promising, procedure
for two-stage stochastic mixed-integer programs: the Disjunctive De-
composition algorithm first proposed by Higle and Sen.
Roger J-B Wets
Truckee, California
August 26, 2002

xi
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Chapter 1

A STOCHASTIC PROGRAM
FOR INTERDICTING
SMUGGLED NUCLEAR MATERIAL

Feng Pan
Graduate Program in Operations Research
Mechanical Engineering Department
The University of Texas at Austin
Austin, TX 78712, USA
pan@mail.utexas.edu

William S. Charlton
Nuclear Engineering Teaching Laboratory
Mechanical Engineering Department
The University of Texas at Austin
Austin, TX 78758, USA
charlton@mail.utexas.edu

David P. Morton
Graduate Program in Operations Research
Mechanical Engineering Department
The University of Texas at Austin
Austin, TX 78712, USA
morton@mail.utexas.edu

Abstract This paper describes a stochastic network interdiction model for iden-
tifying locations for installing detectors sensitive to nuclear material.
A nuclear material smuggler selects a path through a transportation
network that maximizes the probability of avoiding detection. An in-
terdictor installs sensors to minimize that maximum probability. This
problem is formulated as a bi-level stochastic mixed-integer program.
The program is stochastic because the evader’s origin and destination
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are unknown at the time the detectors are installed. The model is refor-
mulated as a two-stage stochastic mixed-integer program with recourse
and is shown to be strongly NP-Hard. We describe an application of
our model to help strengthen the overall capability of preventing the
illicit trafficking of nuclear materials.

Keywords: network interdiction, stochastic programming.

Introduction
Smuggling of nuclear material, equipment, and technology has be-

come a threat to international security. One method to combat this
threat entails placing radiation sensors at customs checkpoints to de-
ter the smuggling of nuclear material. This paper describes a general
stochastic network interdiction model that can be used to select sites to
install sensors to minimize the probability a smuggler can travel through
a transportation network undetected. We reformulate the model as a
computationally tractable stochastic mixed-integer program and show
that the related decision problem is strongly NP-Complete.

We model two adversaries, an interdictor and an evader, and an under-
lying network G(N, A) on which the evader travels. In the deterministic
version of the model, the evader starts at a specified source node
and wishes to reach a specified terminal node The model is
deterministic in that this origin-destination pair is known. If the inter-
dictor has not installed a sensor on arc then the probability
that the evader can traverse undetected is and this probabil-
ity is if the interdictor has installed a detector on (We
use the terms sensor and detector interchangeably.) The events of the
evader being detected on distinct arcs are assumed to be mutually in-
dependent. The evader chooses a path from to so as to maximize
the probability of traversing the network without being detected. With
limited resources, the interdictor must select arcs on which to install
detectors in order to minimize the probability the evader travels from
to undetected.

Our stochastic network interdiction model differs from the above de-
scription only in that the pair for the evader is unknown when the
interdictor must select sites for installing sensors. However, the origin-
destination pair is assumed to be governed by a known probability
mass function, The interdictor’s goal
is to minimize the probability that the evader traverses the network
undetected, i.e., the objective function is a sum of (conditional) eva-
sion probabilities, each weighted by over the population of possible
evaders. We call this problem SNIP, for stochastic network interdiction
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problem. The timing of decisions and realizations in SNIP is key: First,
the interdictor installs sensors. Then, a random origin-destination pair
for the evader is revealed and the evader selects an path to maxi-
mize the probability of avoiding detection. The evader selects this path
knowing the locations of the detectors and knowing the evasion probabil-
ities and for all An evader can be caught by indigenous
law enforcement without detection equipment and so (To date,
nuclear smuggling attempts that have been stopped have been by this
means.)

In Section 1 we formulate SNIP as a bi-level stochastic mixed-integer
program, using a “min-max” structure because the interdictor is mini-
mizing the evader’s maximum evasion probability. We then develop an
equivalent mixed-integer program (MIP). The need for the MIP formula-
tion is justified by the fact that SNIP or, more precisely, the related deci-
sion problem, SNIP-DECISION, is strongly NP-Complete (Section 2).  In
Section 3 we consider an important special case of SNIP that arises when
sensors can only be installed at border crossings of a single country. In
this special case, the underlying network, and the associated MIP, can
be simplified. Our SNIP model requires the following parameters: the
probability a smuggler can traverse a physical transportation arc unde-
tected, the probability that sensitive nuclear material will be detected
by an installed sensor, and the probability a smuggler steals material
from a particular origin and wants to travel to a specific destination.
A discussion of the methods by which we estimate these parameters is
beyond the scope of this paper.

The study of network interdiction models in operations research be-
gan in the 1970s (see [IW01b] for a richer discussion of the history of
interdiction, dating from antiquity). During the Vietnam War, [MM70]
and [GMT71] developed deterministic mathematical programs to dis-
rupt flow of enemy troops and materiel. The problem of maximizing an
adversary’s shortest path is considered in [FH77] and [Gol78]. A closely
related problem concerns maximizing the longest path in an adversary’s
PERT network [Ree94]. In these linear programs, the interdictor can
continuously increase the length of an arc, subject to a budget con-
straint. A discrete version of maximizing the shortest path removes an
interdicted arc from the network, and when the budget constraint is
simply a cardinality constraint, this is known as the k-most-vital arcs
problem [CS82, MMG89]. The related decision problem is strongly NP-
Complete [BGV89, BKS95]. Generalizations of the k-most-vital arcs
problem, and associated solution procedures, are considered in [IW01a].
The interdiction problem of removing arcs to minimize flow in an ad-
versary’s maximum-flow network is considered in [Woo93], where the



(decision) problem is shown to be strongly NP-Complete, and integer
programming formulations are developed. See [Wol64, WW94] for game-
theoretic approaches to related network interdiction problems, [CL95] for
an interdiction model on a minimum-cost-flow network, and [IW01b] for
interdiction models of more general systems.

All of the interdiction models described above are deterministic in
nature in the following senses: First, the arc lengths in the shortest-
path and PERT problems, and the arc capacities in the maximum-flow
problems, are known with certainty. Second, when increasing the length
of an arc in the former problems or when removing or decreasing the
capacity of an arc in the latter problem, these modifications occur in
a deterministic manner, i.e., with certainty. In [CMW98] the work of
[Woo93] on interdicting a maximum-flow network is generalized to allow
for random arc capacities and random interdiction successes. In these
models, the interdictor does not know whether an interdiction attempt
will successfully remove an arc and the interdictor does not know the true
capacity of some arcs. However, the adversary does know the realizations
of these random variables and maximizes flow in the residual network.
The interdictor’s goal is to minimize the expected value of this maximum
flow.

The SNIP model we develop here is analogous. The interdictor must
place detectors on the network without knowing the evader’s origin-
destination pair. Then, an pair is realized. Of course, the
evader knows and selects a path that maximizes the probability
of avoiding detection. The evader’s optimization problem is known as
the maximum-reliability path problem and, even though there are prob-
ability values on the arcs and this problem can be solved as
a deterministic shortest-path problem (e.g., exercise 4.39 of [AMO93]).
The interdictor’s objective is to minimize the expected value of this max-
imized conditional probability, i.e., to minimize the probability that a
smuggler avoids detection.

4 INTERDICTION AND STOCHASTIC PROGRAMS



1. A Stochastic Network Interdiction Model
We now more formally define the SNIP model.

Network and Sets:
directed network with node set N and arc set A
set of arcs leaving node
set of arcs entering node
set of arcs where a detector can be installed

Formulation:

where

Data:
total budget for installing detectors
cost of installing a detector on arc
probability evader can traverse arc undetected
when no detector is installed
probability evader can traverse arc undetected
when a detector is installed

Random Elements:
realization of random origin-destination pair
sample point and sample space
probability mass function

Interdictor’s Decision Variables:
takes value 1 if a detector is installed on arc
and 0 otherwise

Evader’s Decision Variables:
takes positive value only if evader traverses arc and
no detector is installed on that arc
takes positive value only if evader traverses arc and
a detector is installed on that arc

Boundary Conditions:

Interdicting Smuggled Nuclear Material 5



and where

The conditional probability a smuggler avoids detection, given
is as defined in (1.2). The objective function in (1.1) is the
expected value of this evasion probability, where the expectation is taken
over all possible origin-destination pairs. The set of feasible detector in-
stallation locations defined through X is governed by a budget constraint
and binary restrictions on

Each link in the network on which a detector can be placed may
actually be viewed as two arcs in parallel. If a detector is installed, i.e.,

then flow may occur only on the “detector” arc, Conversely,
if no detector is installed then flow can only occur on the “no detector”
arc, A unit of flow on arc is multiplied by that arc’s gain (either

So, if is a path from then

is the probability that an evader can travel from on
without being detected. The evader’s goal is to select a path
that maximizes The evader’s subproblem (1.2) accomplishes this by
forcing one unit of flow out of in (1.2b), enforcing flow conservation
at all intermediate nodes in (1.2c), defining the flow that reaches as

in (1.2d) and maximizing that value in (1.2a). Flow is forced on the
appropriate arc, and incurs the associated gain (actually, loss), by the
interdictor’s decision variable in constraints (1.2e) and (1.2f).

The timing of decisions and realizations of the uncertainties in (1.1)
and (1.2) is as follows: First, the interdictor selects sites for installing

6 INTERDICTION AND STOCHASTIC PROGRAMS
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sensors. When making this decision, the interdictor knows: (i) the net-
work topology G(N, A), (ii) the indigenous detection probability on each
arc (iii) the value the detection probability would be if a
sensor were installed (iv) the budget constraint, (v) the
probability distribution governing the random pair, and (vi) the
method by which the evader will select a path. Next, an realiza-
tion is revealed, and the evader selects an path that maximizes the
probability of not being detected. The evader selects this path knowing:
(i), (ii) and (iii) as well as where detectors are installed.

Assuming the smuggler solves an optimization model to select an
path is a behavioral assumption. We note that even in cases when this

assumption may not be valid, the optimal value of (1.1) still provides a
potentially useful pessimistic prediction of the evasion probability.

The SNIP model (1.1)/(1.2) is a bi-level stochastic mixed-integer pro-
gram. In bi-level programs (e.g., [BM90, BA93]) each player has an
objective function, and these can differ because the players’ motives dif-
fer. In our case, the objective function is the same for both players,
but the interdictor is trying to minimize that function and the evader
is trying to maximize it. Restated, the problem is formulated with a
nested “min-max” structure, and so it is not possible to solve in this
form as a single large-scale mathematical program. The natural way to
attempt to circumvent this difficulty (e.g., [FH77, Woo93]) is to take
the dual of the linear programming subproblem (1.2) so that the prob-
lem is expressed in a nested “min-min” form. We could then construct
a single optimization model in which we simultaneously minimize over
the interdictor’s decision x and the dual-variable decisions of the evader
under each scenario, The difficulty with this is that there are
nonlinear terms involving x and the dual variables associated with con-
straints (1.2e) and (1.2f) and the prospects for solving realistically-sized
instances of the resulting stochastic nonlinear nonconvex mixed-integer
program are not good. Instead we will employ the exact-penalty re-
sult of Lemma 1, which is adapted from [MW99, Lemma 2], in order to
reformulate (1.2).

Lemma 1 Consider the following linear program

Interdicting Smuggled Nuclear Material 7

where the remaining vectors are dimensioned to conform and
and are dual variables. Assume (1.4) has a finite optimal solution,



is an optimal dual vector, and consider

8 INTERDICTION AND STOCHASTIC PROGRAMS

Proof: Let and G has an path and hence (1.2) is
feasible and has a finite optimal solution. Let and
be optimal dual variables for constraints (1.2e) and (1.2f), respectively.
These dual variables are bounded above by one because the network
gains, and are at most unity and hence
an increase in the capacity of an arc by can increase the flow exiting
that arc by no more than and therefore contribute at most to the flow
reaching So, employing Lemma 1 we can conclude that
is the optimal value of

The following theorem uses Lemma 1 to establish an equivalent expres-
sion to (1.2) for

Theorem 1 Assume that G has an path
and Then, for all and

is the optimal value of the following linear program

where and then



Because of the binary nature of we have
and for and satisfying the
constraints of (1.7). Making these substitutions in the objective function
of (1.7) and taking the dual of the resulting linear program yields (1.6).

The expression for in (1.6) has the following interpreta-
tion: The dual variable is the conditional probability of traveling from
node to destination undetected, given that the evader has reached
node undetected. Constraints (1.6a)-(1.6c), coupled with minimizing
the objective function, ensure the correct computation of i.e., the
probability of traversing the network from to undetected. Con-
straints (1.6a)-(1.6c) are tight for on the optimal path. When

i.e., a detector is installed on the indigenous-arc constraint
(1.6b) is vacuous and when the detector-arc constraint (1.6c) is
vacuous. The unit multiplicative coefficients on the right-hand sides of
(1.6b) and (1.6c) can be tightened to improve the subsequent MIP for-
mulation. For example, (1.6b) can be rewritten
provided the coefficient satisfies While is a valid
bound, this can be decreased by bounding the conditional probabil-
ity of traversing from to undetected. This can be bounded using the
sensor-free network or, better, in a network where certain necessary de-
tector locations have been determined, either by other logical arguments
or fixed within the branch-and-bound tree. (For notational simplicity we
will not modify the formulation in this way.)

The value of Theorem 1 is that we can now express our original nested
“min-max” formulation of SNIP, i.e., (1.1)/(1.2), as the following two-
stage stochastic mixed-integer linear program

Interdicting Smuggled Nuclear Material 9

As indicated above, the evader’s optimization problem is known as the
maximum-reliability path problem and for each pair this can be
formulated as a shortest-path problem. Instead, we used what may ap-
pear to be a less natural generalized network-flow model. The reason for



this is that using the shortest-path reformulation via, essentially, apply-
ing to (1.3) leads to a nonlinear mixed-integer program (at
least when In contrast, the generalized network-flow approach
allows for the preservation of linearity in the mixed-integer program.

SNIP, as formulated in (1.8), is “simply” a mixed-integer linear pro-
gram that one can attempt to solve using commercially-available op-
timization software, and this is what we do in Section 3. That said,
we note the following with respect to the potential for using decomposi-
tion schemes to solve SNIP. Formulation (1.1) minimizes
with respect to where defined by (1.2), is a maximiz-
ing linear program with appearing on the right-hand side of con-
straints (1.2e) and (1.2f). This implies that and hence

is a concave function over the convex hull of This
does not bode well for employing an outer-approximation cutting-plane
scheme like the L-Shaped method [VW69]. Laporte and Louveaux [LL93]
have developed variants of the L-Shaped method that are valid for such
nonconvex forms of but they require cutting-planes that
are tight at a specific (binary) value of and drop to an a priori
lower bound at all other (binary) values of Theorem 1 shows that
(1.2) and (1.6) are equivalent formulations in that they give the same
objective value, i.e., for and Interestingly,
while as defined by (1.2) is concave over the convex hull
of as defined by (1.6) is convex over the convex hull of

because it is a minimizing linear program with in the right-hand
side. This is possible because the objective function values of these two
linear programs are only ensured to be equal when i.e., when

takes on binary values (and satisfies the budget constraint). As a re-
sult, SNIP formulated as (1.1)/(1.6), or equivalently (1.8), is amenable
to solution by the L-Shaped method in which the master program has
binary restrictions on and the subproblem separates into one general-
ized network-flow subproblem for each [LL93, Wol80]. When the
underlying network is large and/or the number of scenarios is large, this
approach may lead to significant computational savings over trying to
solve (1.8) directly as a large-scale mixed-integer program.

2. Complexity
In this section we establish that SNIP is strongly NP-Hard by showing

the related decision problem, SNIP-DECISION, is strongly NP-Complete.
Consider the following decision problem:
PROBLEM: SNIP-DECISION

10 INTERDICTION AND STOCHASTIC PROGRAMS



GIVEN: A directed graph a finite set of scenarios with prob-
ability mass function origin-destination node pairs

and reliability weights on each arc and
nonnegative costs to convert each

arc reliability from to nonnegative budget b, and value
QUESTION: Does there exist a subset with such
that

Interdicting Smuggled Nuclear Material 11

where is the maximum-reliability path from on G with arc
reliabilities                               and

We now state the k-most-vital arcs problem (MVAP-DECISION) al-
luded to above, which is known to be strongly NP-Complete [BKS95,
BGV89]. Here, we use the budget b in place of
PROBLEM:   MVAP-DECISION

GIVEN: A directed graph G(N, A), origin-destination node pair
unit arc lengths, nonnegative budget b, and value
QUESTION: Does there exist a subset with such that
removing these arcs results in a shortest path from to on G (N, A\K)
whose length is at least

Consider the following special case of SNIP-DECISION: Let
the installation costs be unit-valued the indigenous
arcs have constant reliability and the
sensors have perfect detection capability This spe-
cial case of SNIP-DECISION is equivalent to MVAP-DECISION because,
as indicated above, computation of a maximum-reliability path is
equivalent to a shortest-path problem via a log-transformation and mul-
tiplying by – 1. (The constant arc lengths,              can be factored out.)
The answer to the SNIP-DECISION question is affirmative for value
if and only if the answer to the MVAP-DECISION question is affirma-
tive for value where the ceiling operator gives the
smallest integer greater than or equal to its argument. Clearly, both
SNIP and MVAP are in NP. As a result, we have the following theorem.

Theorem 2 SNIP-DECISION is strongly NP-Complete.

Theorem 2 shows that SNIP is strongly NP-Hard and provides justifica-
tion for our approach to formulating and solving SNIP by mixed-integer
programming.

to



3. Application to Smuggling Out of a Single
Country

One of the models we have developed is restricted to proposing de-
tector locations at customs checkpoints leaving a single country. When
potential sensor locations are limited in this manner, our SNIP model
(1.8) can be simplified as described in this section. We also describe our
computational experience with a test instance of this model.

Our underlying network model has four basic location entities: facil-
ities from which sensitive nuclear material could be stolen, geographic
regions, destinations where a nuclear smuggler may desire to go, and
customs checkpoints where sensors can be installed. The nominal trans-
portation network has a node representing each of these locations (some
aggregation is possible as we describe below). These nodes are linked
by arcs representing transport by surface roads, railroads, airline flights,
ship transport, etc. A sample point specifies a facility-destination
pair. In the SNIP model of Section 1, sensors are installed on arcs and
this can be modeled by splitting each customs-checkpoint node into two
nodes with an associated arc representing travel through the checkpoint.

The key to simplifying the formulation, when the customs checkpoints
of a single country are under consideration, is that on each potential
smuggling route (i.e., each possible path) there is exactly one arc
on which the smuggler could encounter a sensor. We formalize this
in the following manner: Let be the set of all paths for origin-
destination pair (These paths need not be enumerated.) Then,
in our BiSNIP model (bipartite SNIP, for reasons soon apparent) we
assume that each path in contains exactly one arc in AD, i.e., each
path has exactly one arc that is a candidate to receive a sensor. Let

be all such checkpoint arcs for
The evader, under scenario must select an path, but this

now depends on the sensor locations in a much simpler way than in the
general model. For each we perform a preprocessing step to compute
the value of the maximum-reliability path from to the tail of each
checkpoint arc and the value of the maximum-reliability path from the
head of each checkpoint arc to Call the product of these two proba-
bilities Then, the value of the maximum-reliability
path under scenario is

12 INTERDICTION AND STOCHASTIC PROGRAMS

By linearizing (1.9), we can express BiSNIP as the following stochastic
mixed-integer program with simple recourse
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BiSNIP (1.10) may be visualized on an underlying bipartite network with
node sets and Arcs link each facility-destination
pair, with its possible intermediate checkpoints, Ex-
cluding the possibility of being detected at the checkpoint, is the
evader’s probability of traveling from facility to destination, via
c, undetected. This reliability is multiplied by or depending on
whether or not we install a detector at c.

The specific problem we consider has 85 facilities, 79 geographic re-
gions, 79 customs checkpoints and 9 destinations. (The two 79s are co-
incidental.) There are 30 regions with checkpoints and 34 regions with
facilities. Facilities within a region are aggregated. Maintaining check-
point integrity is important, so they are not aggregated. After facility
aggregation, and allowing all possible facility-destination combinations,
the model has scenarios. The aggregated network has

(79 regions plus 2 · 79 checkpoints plus 9 destinations)
and arcs (555 region-region plus 79 region-checkpoint plus
140 checkpoint-destination). As a result, SNIP model (1.8) has 75,355
decision variables (79 binary first stage variables plus 246 · 306 second
stage variables) and 261,019 structural constraints (1 budget constraint
plus (774 + 79) · 306 dual network-flow constraints). In contrast, the
simplified BiSNIP formulation (1.10) has 385 decision variables, 79 of
which are binary and, nominally, 9453 structural constraints. There
are structural constraints of the form (1.10c)-(1.10d), but
further simplifications are possible. First, we can replace all of the con-
straints of form (1.10d) with simple lower bounds

Second, for each any constraints of the form (1.10c) with
can be eliminated. This reduces the number of

structural constraints from 9453 to 4720, for our data. Performing the
reduction from SNIP to BiSNIP requires finding the maximum-reliability
path from each facility to each customs site and from each customs site
to each destination. In our model the latter is trivial as each permissi-
ble customs site-destination combination is represented by a single arc.
These 34 · 79 = 2686 shortest paths are computed in about 3.5 seconds
on a 1.7 GHz, Dell Xeon dual-processor machine with 2 Gb of memory.
(All computations reported here are on this computer.)

13



One challenge we face in providing decision support is maintaining
an appropriate level of consistency in our recommendations for locat-
ing sensors. For example, after solving (1.10) with budget b (denote the
model BiSNIP(b)) and recommending we may be asked to re-solve
the model with budget and obtain The solutions
and can be dramatically different, and this can be disconcerting to
decision-makers. Sometimes there are compelling reasons for such dif-
ferences. For example, with we may be able to redirect resources
to now shutdown a key part of the network that we previously had in-
adequate resources to control. However, more frequently, differences in
solutions are unnecessary in the sense that there are multiple optimal, or
near-optimal, solutions to and by selecting an appropriate
one we can avoid drastic changes. The need to obtain so-called per-
sistent solutions is common in optimization and we adopt a technique
for doing so described in [BDW97]. Given that has already been an-
nounced, we modify (1.10) by adding a term to the objective function,

where When is small this places a mild
penalty on deviations from so that most of the weight is on the original
objective function.

We assume for all and solve our test problem for
all possible values of the budget b, ranging from 0 up to 79, and for four
values of The computational effort to solve representative instances of
(1.10) using GAMS/CPLEX [BKMR98, CPL01] are shown in Table 1.1.
All MIPs are solved to within a relative tolerance of Table 1.1
shows an additional benefit of the persistence approach, namely that
run times may be shortened (see also [BDW97]).

Figures 1.1 and 1.2 represent solutions from sequentially solving BiS-
NIP for budget levels ranging from 0 to 79 with
and (We enforced the budget constraint in X with equality.) Fig-
ure 1.1 indicates that near-optimal solutions are obtained with small
values of (contrast this with Figure 1.2 shows that this
is possible with solutions that maintain a high degree of persistence
relative to that of the solutions. More specifically, Figure 1.2
measures the number of “moves” in going from via

Solution installs one more sen-
sor than and our measure is zero if and are
otherwise identical. On the other hand, the number of sensors moved in
going from is two.

14 INTERDICTION AND STOCHASTIC PROGRAMS
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4. Summary
We have described a stochastic network interdiction model whose so-

lution can be used to select sites to install sensors for detecting smug-
gled nuclear material. Our goal is to minimize the probability that an
intelligent and informed smuggler can successfully travel through an un-
derlying transportation network undetected. The smuggler is informed,
knowing the detector locations and the probability of traversing each
arc in the network undetected. And, the smuggler is intelligent, select-
ing an origin-destination path of maximum reliability. We showed the
related decision problem to be strongly NP-Complete, reformulated the
model as a tractable two-stage stochastic mixed-integer program, and
specialized the model to the case where sensors can only be installed at
border crossings of a single country. We have presented a summary of
our computational experience with this problem.

While the focus of this paper has been on a stochastic network inter-
diction model for an informed and intelligent smuggler, other important
topics need to be addressed. Different models will be needed if: A smug-
gler is unaware of some or all of the detector locations; more generally, if



the interdictor and evader have different perceptions of the arc reliabil-
ities; or, the smuggler does not select a maximum-reliability path. We
anticipate our ongoing work on these topics to be reported in the near
future.
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Chapter 2

ENUMERATING NEAR-MIN S-T CUTS

Ahmet Balcioglu
Operations Research Dept.
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Monterey, CA 93943

R. Kevin Wood
Operations Research Dept.
Naval Postgraduate School
Monterey, CA 93943
kwood@nps.navy.mil

We develop a factoring (partitioning) algorithm for enumerating near-
minimum-weight cuts in directed and undirected graphs, with appli-
cation to network interdiction. “Near-minimum” means within a factor
of of the minimum for some The algorithm requires only
polynomial work per cut enumerated provided that is sufficiently (not
trivially) small, or G has special structure, e.g., G is a complete graph.
Computational results demonstrate good empirical efficiency even for
large values of and for general graph topologies.

Keywords: graphs, networks, cuts, enumeration, polynomial-time algorithm

Introduction
Researchers have studied various classes of cuts in graphs and devised

efficient algorithms for enumerating these cuts. This paper addresses
a particular class of cuts that has not received the same attention as
others, specifically, near-minimum-weight minimal cuts. We develop,
implement and test an algorithm to enumerate these cuts in directed or
undirected graphs.

Abstract



We focus on directed graphs G = (V,E), with positive integer edge
weights and two special vertices, a source and a sink A minimal
cut C is a minimal set of edges whose removal breaks all directed
paths; if removal of C breaks all paths but C is non-minimal, it is a non-
minimal cut. Non-minimal cuts do not interest us in this paper,
except in the way that they interfere with our identification of minimal

cuts. All cuts discussed are minimal cuts unless otherwise specified,
so we often drop “minimal” and even Note that a minimum-weight
cut must be minimal because all edge weights are positive.

The problem of finding an cut of minimum weight among all
possible cuts in G is the minimum cut problem (MCP). This
paper studies two extensions of MCP, the problem of enumerating all
minimum-weight cuts in G (AMCP) and the problem of enumerating
all near-minimum (minimal) cuts (ANMCP) whose weight is within
a factor of of the minimum for some The main contribution
of this paper is an efficient procedure for the latter extension, when is
small, or for certain graph topologies. Even when not provably efficient,
the algorithm shows good empirical efficiency on our test problems. A
cut-enumeration algorithm is “efficient” if the amount of work per cut
enumerated is polynomial in the size of G.

The analogs of AMCP and ANMCP in undirected graphs G can also
be solved using our techniques. An cut C in an undirected graph is
defined just as in a directed graph, the only difference being that the
paths broken by C consist of undirected edges. However, if we make the
standard transformation that replaces each undirected edge in G by two
directed, anti-parallel edges, each with the weight of the original undi-
rected edge, then each cut in the resulting directed graph corresponds
directly to an cut in the original graph. Thus, an efficient technique
to enumerate cuts in directed graphs will efficiently enumerate
cuts in undirected graphs.

Another type of cut can be defined in an undirected graph G. A discon-
necting set (DS) is a minimal set of edges whose deletion disconnects G.
(Often called a “cut,” we use “DS” to avoid confusion.) The problems of
finding and enumerating certain DSs are related to our problems and will
be discussed briefly, so: (a) The problem of finding a minimum-weight
DS is denoted MDSP, (b) the problem of enumerating all minimum-
weight DSs is denoted AMDSP, and (c) the problem of enumerating all
near-minimum-weight DSs is denoted ANMDSP.

In the remainder of this paper, we denote a minimum-weight cut
as and a near-minimum-weight (minimal) cut as
and denote the set of minimum and near-minimum cuts in G,
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respectively. We will often substitute “max” and “min” for “maximum”
and “minimum,” respectively.

A military application, namely network interdiction, first brought AN-
MCP to our attention; see Wood (1993) and references therein, Boyle
(1998) and Gibbons (2000). A “network user” attempts to communicate
between vertices and in a directed network while an “interdictor,”
using limited resources (aerial sorties, cruise missiles, etc.), tries to in-
terdict (break, destroy) all paths to prevent communication between

and By treating the amount of resource required to interdict an edge
as its weight or capacity, the interdictor can solve a max-flow problem
and identify a min-weight cut, i.e., min-resource cut, to prevent
that communication. It is clear from this application why we are only
interested in minimal cuts.

But, there may be secondary criteria, e.g., collateral damage, risk to
attacking forces, etc., that the interdictor wishes to consider when de-
termining the best interdiction plan. In this case, near-optimal solutions
with respect to the primary criterion can be obtained by solving AN-
MCP; then those solutions can be evaluated against the secondary crite-
ria for suitability. One of those near-optimal “good solutions” might pro-
duce more desirable results than an “optimal solution” obtained by solv-
ing MCP or AMCP (Boyle 1998, Gibbons 2000). Integer-programming
techniques could substitute for this enumeration approach, but the em-
pirical efficiency of our methods bodes well for enumeration. In fact,
the secondary criteria could be incorporated into our recursive cut-
enumeration algorithm to force peremptory backtracking, i.e., to help
trim the “enumeration tree.” This might result in an even more efficient
interdiction algorithm.

Another application of ANMCP arises in assessing the reliability and
connectivity of networks; see Provan and Ball (1983) and Colbourn
(1987).

AMCP and AMDSP have been intensively studied, but ANMCP has
not received the same attention. One brute-force approach for ANMCP
is to enumerate all cuts, i.e., solve AMCP, and then discard the cuts
that do not have near-minimum weight. All cuts can be enumerated
efficiently (Tsukiyama et al. 1980, Abel and Bicker 1982, Karzanov and
Timofeev 1986, Shier and Whited 1986, Ahmad 1990, Sung and Yoo
1992, Prasad et al. 1992, Nahman 1995, Patvardhan et al. 1995, and
Fard and Lee 1999). Unfortunately, this fact cannot lead to an efficient
general approach for AMCP or ANMCP because the number of minimal

cuts in a graph may be exponential in the size of that graph while
the number of minimum and near-minimum cuts may be polynomial.
For instance, if G is a complete directed graph with edge weights of 1,
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the total number of minimal cuts is the number of minimum
cuts is 2 and the number of cuts of the next largest size is

All minimum cuts can be enumerated efficiently, that is, AMCP
can be solved efficiently. Picard and Queyranne (1980) find a max flow in
a weighted directed graph G, create the corresponding residual graph,
and then demonstrate the one-to-one correspondence of minimum

cuts in G to closures in the residual graph. (A closure is a set of
vertices with no edges directed out of the set.) They go on to present an
algorithm, not necessarily an efficient one, to enumerate these closures
and thus all min cuts. Provan and Ball (1983) use the concept of
directed minimum cuts” to enumerate minimum cuts in both directed
and undirected graphs. However, neither their algorithm nor Picard
and Queyranne’s may be efficient for directed graphs (Provan and Shier
1996). Gusfield and Naor (1993), Provan and Shier (1996) and Curet et
al. (2002) all give efficient algorithms for AMCP based on results from
Picard and Queyranne. Provan and Shier’s work is related to Kanevsky
(1993) who finds all minimum-cardinality “separating vertex sets” as
opposed to separating edge sets.

Ramanathan and Colbourn (1987) enumerate “almost-minimum car-
dinality cuts.” They bound the number of cuts enumerated, and the
complexity of their algorithm, by where
and where is a constant by which the cardinality of an almost-min
cut exceeds the cardinality of a min cut. This algorithm applies only to
undirected graphs and has polynomial complexity only if is fixed.

Karger and Stein (1996) introduce a randomized algorithm for solv-
ing ANMDSP by repeated applications of edge contraction: Identify an
edge that is probably not part of a near-min-weight DS and merge its
endpoints into a single new vertex such that the new graph still contains
a near-min DS with high probability. With high probability, their algo-
rithm enumerates all DSs whose weight is within a factor of the mini-
mum in expected time. They also derive an upper bound

on the number of these DSs. Karger (2000) later improves this
upper bound to Nagamochi et al. (1997) give a deterministic
algorithm for solving ANMDSP based on Karger and Stein’s techniques.
They show that all near-min DSs can be enumerated in
time. Unfortunately, it is unlikely that this approach can be extended
to enumeration problems involving cuts (Karger and Stein 1996).

Vazirani and Yannakakis (1992) propose an algorithm for solving AN-
MCP and ANMDSP. Their extended abstract claims that the algorithm
has polynomial complexity, but that claim is based on this unproven
assertion: “Fact: Given a partially specified cut, we can find with one
max-flow computation a minimum weight cut consistent with it.” We
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believe that their claim is false, but do not yet have a proof. In any case,
since those authors provide no proof and thus no method for identifying
an appropriate cut, their “algorithm” can only be viewed as conjecture.

Boyle’s algorithm (Boyle 1998) for solving constrained network-inter-
diction problems on undirected planar graphs can be modified to enumer-
ate near-minimum cuts, but generalization to the non-planar case seems
unlikely. Gibbons (2000) describes an algorithm for solving ANMCP in
directed or undirected graphs, but that algorithm may enumerate a cut
more than once. Empirically, the running time and number of cuts enu-
merated in his algorithm grow rapidly as the size of graph and increase,
so that algorithm is impractical except for small problems.

There is a connection between the problems of enumerating near-min
cuts in graphs and enumerating extreme points of polytopes (e.g.,

Avis and Fukuda 1996, Bussieck, and Lübbecke 1998), because a mod-
ified dual of the max-flow linear program can be guaranteed to possess
0-1 extreme-point solutions that identify cuts (e.g., Wood 1993). But
the literature on extreme-point enumeration is silent on efficient enumer-
ation of near-optimal extreme points which is analogous to enumerating
near-min minimal and non-minimal cuts. Nor does this literature ad-
dress the enumeration of near-optimal extreme points possessing special
properties, which might be analogous to enumerating near-min minimal
cuts. Further research on extreme-point enumeration may lead to results
applicable to enumerating near-min minimal cuts, but is beyond the
scope of this paper.

The discussion above shows the need for additional work on AN-
MCP, so this paper proposes a new algorithm to solve the problem,
and provides theoretical and empirical results on its efficiency. The al-
gorithm first identifies a min-weight cut and then recursively
partitions (“factors”) the space of possible cuts, possibly including some
non-minimal ones, by forcing inclusion and/or exclusion of edges
in subsequent cuts.

1. Preliminaries
Let G = (V, E) be an edge-weighted directed graph with a finite set

of vertices V and a set of ordered pairs of vertices, called
edges. An undirected graph is defined similarly, except that its edges are
unordered pairs from V × V. We typically use e or to denote an
edge and we let and We distinguish two
vertices and in V as the source and sink, respectively. Edge weights
are specified by a weight function We denote the
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weight of edge as or and the vector of edge weights
as

A directed path in G is a sequence of vertices and edges of the
form A minimal cut in
G is a minimal set of edges C whose removal disconnects from in G,
i.e., breaks all directed paths. If C is a proper superset of some
cut, it is a non-minimal cut. When no confusion will result, we use

and “cut” interchangeably with “minimal cut.” The value
is the weight of cut C.

A minimum cut is an cut whose weight, is min-
imum among all cuts. All minimum cuts are minimal because edge
weights are positive. A near-minimum minimal cut is a minimal

denote the set of minimum and near-minimum (minimal) cuts,
respectively.

An flow f in a directed graph G is afunction where
for all and for all

The value of the flow from to is
In the maximum-flow problem, we wish to find a flow

that yields a maximum value for F, denoted
As a result of the max-flow min-cut theorem and its proof (e.g., Ahuja

et al. 1993, pp. 184-185), we know that It is also well known
that, given any maximum flow we can identify a minimum cut in
O(m) time.

A rooted tree T is a connected, acyclic, undirected graph in which one
node (vertex), called the “root” and denoted by is distinguished from
the others. A rooted tree, called an enumeration tree, will describe the
enumeration process used for solving AMCP and ANMCP on a graph
G. To avoid confusion with “vertices” in G, we use the term “node” to
mean a vertex in an enumeration tree. A node in tree T with root

to is of the form Every node along
path except node is an ancestor of and if is ancestor of then

is a descendant of For any path is the parent of and
is the child of

2. Theoretical Results
This section develops our algorithm for ANMCP through two inter-

mediate stages.

26 INTERDICTION AND STOCHASTIC PROGRAMS

cut whose weight is at most for some and

is said to be at level (depth) if the length of the unique path from



2.1 Basic Algorithm
Algorithm 1 below outlines an approach to solving ANMCP. Some

steps may be difficult to implement, but it illustrates the general ap-
proach our final algorithm will use.
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Algorithm A1
DESCRIPTION: A generic partitioning algorithm for enumerating
near-min, minimal cuts.
INPUT: A directed graph G = (V, E), distinct source and sink
vertices edge-weight vector w of positive integers, and
tolerance
OUTPUT: All minimal cuts such that
where is a min-weight cut of G.
begin

Find a min-weight cut in G;

/* set of edges to be included */
/* set of edges to be excluded */

EnumerateA1
end

Procedure EnumerateA1
begin

Step A: Let be min-weight minimal cut in G such that

if ( no such cut exists ) return;
if ( ) return;
Step B: print ( );
for ( each edge ) begin;

EnumerateA1

endfor;
return;

end.

Algorithm A1 begins by finding an initial min-weight cut and its
weight The algorithm then calls the procedure EnumerateA1
which attempts to find a new min cut by processing the edges of the
initial cut such that the edges are forced into (included in) or out of (ex-
cluded from) any new near-min cuts. Suppose that
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where is shorthand notation for a set
that contains all near-min cuts incorporating through but not

The cuts in this partition, except for the unique cut of the last
term which has already been found as are identified by recursively
calling Enumerate A1 with the argument sets and where
denotes included edges and denotes excluded edges. The procedure
calls itself recursively for every edge of the locally minimum cut that has
not already been forced into that cut at higher level in the enumeration.
(“Local” and “locally” refer to flows and cuts defined on graphs within
the enumeration tree.) The procedure backtracks when it determines
that no acceptable cuts remain below a given node.

To illustrate how this enumeration works, suppose we wish to solve
ANMCP on the graph of Figure 2.1 for The associated enumera-
tion tree (an instance of a rooted tree) for this problem is given in Figure
2.2. The enumeration algorithm first finds a minimum cut
at the root node (level 0), and then recursively partitions the solution
space via and Once an edge of a cut at some
node has been processed, it will never be processed again at any de-
scendant node of because its status as “included” or “excluded” with

is the initial minimum cut. Based on this cut, the set of near-min cuts,
is partitioned as
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respect to the current cut has been fixed at node The branches with
and correspond to searches for a new min cut

by processing the edges as described. If a search is successful, it defines
a productive node where a new near-min cut is identified and that cut’s
unprocessed edges are recursively processed. Otherwise, the search leads
to a terminal node, where the algorithm backtracks. The procedure is
correct because it implements inclusion-exclusion (Equation 2.1) in a
straightforward, recursive manner. The actual implementation of the
algorithm could be difficult, and efficiency poor however, because edge
inclusion may be difficult to ensure (although edge exclusion is easy).
This topic is explored further in Section 2.2.

A “relaxed” version of Algorithm A1, denoted “Algorithm A2,” can
be defined by modifying Steps A and B to:

Step A: Let be min-weight minimal or non-minimal cut in
G such that and



Step B: if ( is non-minimal )
Algorithm A2 may waste time working with non-minimal cuts because

it partitions the space consisting of all minimal cuts and possibly some
non-minimal ones, It does solve ANMCP, however, because it prints
only the minimal cuts. Our final implementable algorithm, Algorithm
B, closely mimics Algorithm A2.

Note that Algorithm A2 will not necessarily identify all non-minimal
cuts satisfying which is good because their identification
wastes computational effort. Consider, for instance, the last term of
equation (2.1), when This subset of
the partition includes all non-minimal cuts containing
However, Algorithm A2 does not partition further,
because any cut it might contain other than is a superset of and
must therefore be non-minimal.

2.2 An Implementable Algorithm
Algorithm B, below, implements a variant of Algorithm A2. We quasi-

exclude an edge e from every cut in a subtree of the enumeration tree
by simply setting represented by a suitably large integer. Ev-
ery near-min cut in G must have a finite weight, so setting
effectively eliminates cuts containing e. This means that quasi-exclusion
implements true exclusion. The graph with edge e quasi-excluded is
denoted

We quasi-include by effectively adding two edges to
and both with infinite weights. The graph with edge e

quasi-included is denoted Now, any cut of a graph must contain
at least one edge from every path, so any cut of must contain

or and any finite-weight cut of must contain
(We can omit if and omit In reality, we
implement quasi-inclusion of by temporarily treating as
an additional source and as an additional sink. Unfortunately, quasi-
inclusion can create modified graphs with minimal cuts that correspond
to non-minimal cuts in the original graph (See the example below.)
Thus, Algorithm B must screen for non-minimal cuts, just as Algorithm
A2 does.

Figure 2.3 illustrates the quasi-inclusion and -exclusion of edges.
denotes with quasi-included and quasi-excluded.

The caption describes an example of how quasi-inclusion of an edge in
the depicted graph can create a modified graph in which a minimal cut
is non-minimal in the original graph
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Note that Algorithm B calls a subroutine MaxFlow which is assumed
to return a min cut in the current graph along with the weight of
that cut which equals the value of the max flow. Also note that,
in order to keep the notation similar to the earlier algorithms, Algorithm
B repeatedly modifies a copy of the original graph rather than recur-
sively modifying and “unmodifying” a single copy of The actual Java
implementation of Algorithm B uses the latter, more efficient approach.

Algorithm B
DESCRIPTION: An implementable version of Algorithm A2 to
solve ANMCP;
INPUT:A directed graph G = (V, E), s, t, w, and
OUTPUT: All minimal cuts in G with

begin

/* set of edges to be included */
/* set of edges to be excluded */

EnumerateB
end.

Procedure EnumerateB
begin

for ( each edge
for ( each edge                                  begin

add artificial edge to and let
add artificial edge to and let

endfor;
and are now interpreted to include artificial edges */

MaxFlow
if return;
if is minimal in G ) print
for ( each edge ) begin

EnumerateB

endfor;
return;

end.
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2.3 Correctness of Algorithm B
We assume the correctness of Algorithm A2. Algorithm B begins by

finding a min cut in G and determining using a max-flow algorithm,
all in an obviously correct manner. That is, the main routine of Algo-
rithm B correctly implements the main routine of Algorithm A2. Then,
where Algorithm A2 finds a minimal or non-minimal, min-weight cut
that includes edges in and excludes edges in Algorithm B solves
a max-flow problem and finds a min cut in may or
may not be a minimal cut in the original graph but its deletion from
G does disconnect from in G, because (a) because artificial
edges have infinite weight and thus cannot be contained in and (b)
every path in is disconnected by deleting and (c)
every path in G is also a path in by construction; thus, all
paths in G are disconnected by deleting from that graph. Algorithm
B is clearly finite and will be correct as long as it correctly partitions
the space of all minimal cuts in G (along with some non-minimal cuts
perhaps).

The partitioning will be correct if no non-minimal cuts that Algo-
rithm A2 might identify are lost in the calls to EnumerateB and no
non-minimal cuts are repeated. The following two lemmas suffice to
prove this.

Lemma 2 Let C be a finite-weight set of edges in G and let and
be quasi-inclusion and quasi-exclusion sets, respectively, produced while
running Algorithm B. Suppose that and
Then C is a minimal cut of G only if C is also a finite-weight minimal
cut of
Proof: Since has finite weight in
has the same topological structure as so we need only be
concerned with the former. Now, C is clearly a cut in because
the fact that means that no edges crossing from the side
of the cut in G to the side have been added; only edges from the side
of the cut to or from to some vertex on the side of C could have
been added through quasi-inclusion of So, C is a cut in and
it must be minimal because every path in G is also a path in

Lemma 3 Let C be a set of edges in G and let and be, respec-
tively, quasi-inclusion and quasi-exclusion sets produced while running
Algorithm B. Suppose that  Then, C is a
not a finite-weight minimal cut of
Proof: We know that quasi-exclusion properly implements edge exclu-
sion. Thus, C cannot be a finite-weight minimal cut of if
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some edge of C has been excluded, i.e., if From the dis-
cussion on quasi-inclusion, we know that all finite-weight minimal cuts
of must contain i.e., C cannot be a finite-weight minimal
cut of

The following theorem results.

Theorem 1    Algorithm B solves ANMCP.

2.4 Complexity of Algorithm B
We show below that Algorithm B has polynomial complexity when G

and/or w satisfy certain conditions. This discussion ignores minimality
testing after the next lemma because it cannot add to Algorithm B’s
worst-case complexity for any problem, assuming that at least
work must arise at every node of the enumeration tree:

Lemma 4 Testing whether or not a set of edges C in G is a minimal
cut can be accomplished in time.

Proof: Assume that C is a minimal or non-minimal cut and mark all
vertices as “unreachable.” Now, perform a breadth-first search starting
at trying to reach as many vertices as possible without traversing any
cut edges Mark the vertices reached as “reachable from
Conduct a similar search, traversing edges backward from marking
the vertices reached as “can reach (If a backward search from can
reach then can reach along a directed path.) By definition, C is
minimal if and only if, for all edges is reachable from
and can reach The amount of work involved in the two searches and
testing the edges in C is clearly

2.4.1 Complexity Analysis of Min-Cut Enumeration.
We first analyze the complexity of enumerating minimum cuts
since this is an important special case of near-min cut enumeration. Con-
sider the enumeration tree of Figure 2.2. Every node in that tree is either
productive and defines a new cut (the filled-in nodes), or it is an unpro-
ductive terminal node from which backtracking occurs immediately. In
general, the quasi-inclusion technique can result in unproductive non-
terminal nodes because it can identify a non-minimal cut and be unable
to backtrack immediately. Fortunately, any non-minimal cut encoun-
tered while solving AMCP must correspond to a terminal node and an
efficient procedure results.

We know that the worst-case complexity of solving, “from scratch,”
an initial max-flow problem on G = (V,E) is where
is a polynomial function of and . (For instance, the
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first polynomial-time algorithm for max flows, a flow-augmenting path
algorithm due to Edmonds and Karp (1972), has worst-case complex-
ity the more modern pre-flow push algorithm due to Goldberg
and Tarjan (1988) has worst-case complexity.) At
each non-root node of the enumeration tree, the local max flow can be
obtained by performing flow augmentations starting with the feasible
flow from the parent node. (A feasible flow f in G must be feasible for

because the latter graph is obtained from the former by
increasing the capacity on certain edges, specifically and adding
some other edges, specifically Neither of these operations re-
duces the capacity on any path in the original graph G.) Each flow
augmentation requires work using breadth-first search in a stan-
dard fashion, but the total amount of work performed at each node can
be limited to because (a) if the first search does not find a flow-
augmenting path, a new min cut has been identified (this fact follows
from the standard constructive proof of the max-flow min-cut theorem,
e.g., Ahuja, et al. 1993, pp. 184-185), and (b) if a flow-augmenting path
is found, the locally maximum flow is at least and the algorithm
can backtrack immediately. (The algorithm must be modified slightly to
enable this “peremptory backtracking.”) Thus the number of productive
nodes is

Now, each non-terminal node can generate at most child nodes
assuming G has no parallel edges, and thus each productive node can
generate at most unproductive (terminal) nodes. Therefore, the total
number of nodes generated is bounded by The amount of
work to generate each node except the first is and the amount of
work to generate the first node is so we have the following
result.

Theorem 2   Algorithm B with          finds all minimum-weight       cuts
(solves AMCP) in time.

This shows that Algorithm B is theoretically efficient for AMCP since
only a polynomial amount of work is expended for each cut enumerated.
The Algorithm is admittedly less efficient for solving AMCP than are
some other algorithms from the literature: For instance, the algorithm of
Provan and Shier (1996) solves AMCP in
time. Nevertheless, our algorithm has several advantages in that (a)
it is easy to implement, (b) its empirical efficiency is quite good (see
Section 3) and, (c) it extends to near-min cut enumeration, i.e., to solving
ANMCP, by simply setting
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2.4.2 Complexity Analysis of Near-Min Cut Enumeration.
The argument of the previous section leads quickly to this corollary:

Corollary 1 If then Algorithm B solves ANMCP
in time.
Proof: is a multiplier on here because we are unable
to bound the number of flow augmentations required in EnumerateB to
establish a new max flow: We simply resort to the bound implied by
solving each max-flow problem from scratch. As before, the multiplica-
tive factor will bound the number of terminal nodes emanating from
a productive node.

Just as in Theorem 2, the statement of the Corollary will be true
if Algorithm B can always backtrack when it finds a non-minimal cut,
that is, if every non-minimal cut corresponds to a terminal node. This
is true because any non-minimal cut must have weight at least

So, Algorithm B is efficient when is sufficiently small. It is also
efficient when G has special topology.

Theorem 3 Algorithm B solves ANMCP in time
whenever G contains an edge of the form for each
and an edge of the form for each
Proof: The statement will be true if quasi-inclusion and -exclusion
never change the vertex-to-vertex connectivity of a graph, because then
any minimal cut of must be a minimal cut of G. But
quasi-inclusion never changes connectivity irrespective of graph topol-
ogy. Quasi-exclusion for always adds edges of the form
and but as specified, G already contains such edges.

Corollary 2 Algorithm B solves ANMCP in time
when G is a complete directed graph or complete acyclic graph with
in the acyclic (topological) ordering of the vertices.

Of course, the problem is trivial if
By the arguments of the preceding section, the number of nodes in

enumeration tree should be bounded by where
denotes the set of near-minimum, non-minimal cuts identified as nodes
in Algorithm B’s enumeration tree where immediate backtracking is not
allowed, i.e., the set of unproductive, non-terminal nodes in that tree.

The test for non-minimality takes time at each node by Lemma
4. The search for a local max flow might require multiple flow aug-
mentations and might be as hard as solving a max-flow problem from
scratch. Therefore, the work expended at every node is
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If we could backtrack whenever a non-minimal cut was identified,
then we could state that and the resulting complexity for
the whole algorithm would be But, it is easy to
show by example that backtracking when a non-minimal cut is encoun-
tered can result in the loss of some valid minimal cuts. Thus, Algo-
rithm B must continue partitioning, even on non-minimal cuts, until
it can backtrack based on cut weight. This results in a complexity of

which may not be polynomial if is
exponentially larger than Therefore, the worst-case complexity
of Algorithm B for arbitrary and/or arbitrary graph topology is not
well determined. We leave this complexity issue as a topic for future
research.

3. Computational Results
This section reports on computational experiments with Algorithm

B to demonstrate its empirical efficiency for solving both AMCP and
ANMCP. We test Algorithm B on both weighted and unweighted grid
graphs and on several problem instances from the literature.

Algorithm B is written and compiled using the Java 1.2.2 program-
ming language (Sun Microsystems 1998). All tests are performed on a
personal computer with a 733 MHz Pentium III processor and 128 MB
of RAM, running under the Windows 98 SE operating system.

3.1 Efficient Implementation of Algorithm B
We have described Algorithm B in a simple form for clarity, but there

are several modifications that improve its performance in practice. As
discussed in Section 2.4.1, the MaxFlow routine of Algorithm B is im-
plemented to solve an “incremental” max-flow problem. Specifically,
in G is a feasible flow in so a flow-augmenting path algo-
rithm operating on a graph at some non-root node in the enumeration
tree simply begins with the maximum flow from the parent node, rather
than starting with (See Ahuja et al. 1993, pp. 180-184.)

Another issue in an efficient implementation is edge inclusion. In
theory, we quasi-include an edge by adding infinite-weight edges

and to the graph, but in practice we simulate this by simply
treating as an additional source and as an additional sink.

Algorithm B also incorporates “peremptory backtracking” from within
the MaxFlow routine. In particular, that routine does not need to solve a
max-flow problem to completion if it augments enough flow to learn that
the local max flow exceeds which implies that any locally minimum
cut must have When this situation occurs, MaxFlow
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halts and returns the current feasible flow value F, which causes Enu-
merateB to return immediately.

The rest of the implementation is straightforward. We use forward
and reverse star representation of G as our data structure (Ahuja et
al. 1993, pp. 35-38) and a variant of the shortest flow-augmenting-path
algorithm of Edmonds and Karp (1972) for solving max-flow problems.
(More sophisticated algorithms would speed computations somewhat,
but this algorithm is more than adequate to verify the usefulness of our
methodology.)

3.2 Test Problems
Our literature search has not uncovered any particular problem fam-

ily designed for testing algorithms for AMCP and ANMCP, except for
Grid Graph Families (GGFs) (Curet et al. 2002, Gibbons 2000), which
we will explore. Additionally, we have modified some DIMACS prob-
lems (The Center for Discrete Mathematics and Theoretical Computer
Science, DIMACS 1991) and several problem classes from Levine (1997)
to test Algorithm B.

We have coded a GGF generator (GGFGEN) in Java to generate grid
graphs. The height H of the grid measured in nodes, and its length L in
nodes, determine the size of the generated graph. One other parameter
is which indicates whether the graph is weighted or unweighted

“Unweighted” simply means that all edge weights are 1 or
For both weighted and unweighted graphs, the edges beginning at and
ending at have infinite weights. Every vertex is connected
to each adjacent vertex (vertically and horizontally, assuming such
adjacent vertices exist) with two directed edges, and Edge
weights for weighted graphs are pseudo-random, uniformly distributed
integer weights in the range [1,10]. GGFGEN produces a directed graph
with vertices and edges. Figure 7 shows a graph
generated by GGFGEN with inputs Table 2.1
specifies the problems instances that are tested.

We have also chosen two other graph generators from the literature,
implemented in the C programming language and available via Internet
for research use. The first is the Double-Cycle Generator (DBLCYCLE-
GEN) (Levine 1997), which generates undirected graphs that we convert
to directed graphs. The single input parameter for DBLCYCLEGEN is

DBLCYCLEGEN generates two interleaved cycles on ver-
tices: The outer cycle includes all vertices with edge weights of 1000
and 997, and the inner cycle connects every third vertex of the outer
cycle with the edges of weights 1 or 4. Vertices and are chosen to
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be as distant from each other as possible. A minimum cut lies in the
middle of the graph with a weight of 2000 and there are many near-min
cuts with weight 2006.

The second generator is the Acyclic Dense (AD) graph generator from
DIMACS (1991). AD takes as its input parameter and generates a fully
dense, directed acyclic graph with vertices and edges.
We replace the pseudo-randomly generated edge weights in AD with
unit weights to observe the behavior of our algorithm on the underlying
topological structure. In all cases, and in the acyclic
ordering of the vertices. Table 2.2 gives the generated problem types for
DBLCYCLEGEN and AD.

3.3 Experiments on Unweighted Graphs
Table 2.3 presents run times of Algorithm B on GGF instances for

solving AMCP. It takes less than 1 second for Algorithm B to identify
all minimum cuts in grid graphs with up to 402 vertices and 1,560 edges.
The number of calls to MaxFlow—this corresponds to the number of
nodes in the enumeration tree—increases roughly linearly with

Table 2.4 summarizes the results for ANMCP on GGF-square in-
stances with and 0.15. Solution times are expected to
increase as increases because the number of cuts in any graph might
be exponential in the size of the graph. The algorithm is quite efficient
for modest-size grid graphs with modest values of Compared with
Gibbons’ results for ANMCP (Gibbons 2000), our results show a vast
reduction in calls to MaxFlow and in run times.

Table 2.5 presents results for an unweighted AD graph. Corollary 2
requires that Algorithm B not generate any unproductive non-terminal
nodes for the AD topology, and results displayed in the table provide
empirical verification of this.
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3.4 Experiments on Weighted Graphs
Here we use the GGF-square problems with edge weights that are

pseudo-randomly generated integers in the range [1,10]. Results for min-
imum and near-minimum cut enumeration are summarized in Tables 2.6
and Table 2.7, respectively.

Finally, we test Algorithm B on the DBLCYC-I problems with rang-
ing from 0.0 to 2.0. These are the only problems where Algorithm B en-
counters substantial numbers of non-minimal cuts from which immediate
backtracking would be incorrect. At the ratio of the number of
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near-min non-minimal cuts (encountered at non-terminal nodes) to the
number of near-min minimal cuts jumps dramatically; see Table 2.8.

In summary, computational results above show that Algorithm B per-
forms quite well on a variety of graph types. However, non-minimal cuts
defining unproductive, non-terminal nodes in the enumeration tree can
slow computations when the threshold parameter becomes large, at
least for certain graph topologies. For dense acyclic graphs, the behav-
ior of Algorithm B verifies Corollary 2: No non-minimal cuts are en-
countered at non-terminal nodes. However, for the double-cycle graphs
DBLCYC-I, the number of non-minimal cuts generated can outnumber
the minimal cuts by a large margin, at least when becomes large.

4. Conclusions and Recommendations
In this paper, we have developed an algorithm for ANMCP, defined as

the problem of enumerating all near-minimum-weight, minimal cuts
in a directed graph with positive integer edge weights

The users specifies a value and the algorithm finds
all minimal cuts such that where
denotes the weight of cut and is a min-weight cut. The algorithm
first finds a min-weight cut in the input graph via a maximum-flow
algorithm, and then recursively partitions the space of near-min cuts.
Given a cut this partitioning is carried out by forcing inclusion and
exclusion of edges from subsequent cuts. An edge isquasi-excluded
by simply setting its weight to infinity and quasi-included by implicitly
introducing two infinite-weight edges in one extending form    to
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and the other from to The algorithm solves a max-flow min-cut
problem for each modified graph that is obtained in the enumeration
tree.

We have implemented our algorithm using the following enhancements
to improve computational speed: (a) The algorithm solves a complete
max-flow problem at the root node of enumeration tree but solves only
“incremental” max-flow problems at the all other nodes (the max flow at
a parent node is feasible for all child nodes and thus provides an advanced
start for maximizing flows at those child nodes), and (b) quasi-inclusion
of an edge is simulated by treating as an additional source and
   as an additional sink, and (c) the algorithm backtracks directly from
the max-flow subroutine, without identifying a locally minimum cut, if
a feasible flow is found that exceeds the backtrack threshold. (That flow
is a lower bound on the weight of the min cut.)

Unfortunately, the quasi-inclusion technique can lead to the enu-
meration of non-minimal cuts at non-terminal nodes of the enumera-
tion tree. Non-minimal cuts are easily identified (and ignored), but
they can increase the computational workload and stop us from deriv-
ing a polynomial-time bound for the worst-case complexity of the gen-
eral algorithm: The algorithm cannot always backtrack when it finds
a non-minimal cut. We do obtain, however, a polynomial bound of

when denotes
the set of near-min cuts and is the worst-case complexity of
the max-flow algorithm being used. Thus, the algorithm has polyno-
mial complexity, per cut enumerated, for the important special case of
ANMCP when i.e., AMCP: Enumerate all min-weight cuts in

We also determine the polynomial bound of for
certain graph topologies such as complete graphs and complete acyclic
graphs.

Computational results for show that Algorithm B has good
empirical efficiency as long as is not too large. Unfortunately, large

can lead to the identification of many non-minimal cuts where the
algorithm cannot immediately backtrack. Thus, many “unproductive”
non-terminal nodes can be encountered in the enumeration tree, and it
is only these nodes that stop us from proving polynomial complexity.

To improve the algorithm, one might try to create a better quasi-
inclusion technique or develop a completely different technique for edge
inclusion. For instance, we have not tried simply setting to 0 the capacity
of an arc to be included. If “true edge inclusion” (as opposed to quasi-
inclusion) can be efficiently implemented, this should yield a provably
polynomial-time algorithm for near-min cut enumeration. However, it
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can be proven that the problem of finding a min cut that includes a
specific set of edges is actually NP-complete.

If the current quasi-inclusion technique is retained, another approach
might be used to avoid enumerating non-minimal cuts. In particular,
edges that cannot occur in any minimal cut given those that are already
included might be identified and marked as “forbidden for inclusion.”
These edges would be excluded, as usual, by setting their weights to
infinity. An edge can be forbidden from inclusion if (a) every
or path contains at least one included edge, or (b) some included
edge must contain in every path or in every path.
This list is not all-inclusive, however.

Another practical improvement might result from this: The algorithm
can backtrack whenever the set of quasi-included edges forms a cut in
the original graph.

Computation times on some large graphs would be improved by solv-
ing the initial maximum-flow problem using a more efficient algorithm,
e.g., Goldberg and Rao (1998). It may also be possible to show that the
worst-case complexity of the algorithm is actually better than reported
by amortizing the work involved in augmenting flows over the course of
running the algorithm.

We have shown that Algorithm B will not enumerate any non-minimal
cuts if every vertex has incident edges and It
would be interesting to determine if the algorithm will enumerate only
minimal cuts for other graph topologies, too. For instance, using the
dual of a planar graph and shortest-path techniques, it is possible to
enumerate near-min cuts in an undirected planar graph in polynomial
time per cut. Thus, it is natural to wonder if Algorithm B can too.
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In the network inhibition problem, we wish to expend a limited budget
attacking a given edge-capacitated graph by “paying” to remove edge
capacity from some subset of the edges. We wish to minimize the re-
sulting maximum flow between two designated vertices and The
problem is strongly Previous approximation algorithms ap-
plied only to planar graphs. In this chapter, we give a polynomial-time
algorithm, based on a linear-programming relaxation of an integer pro-
gram, that finds an attack with cost and residual network capacity
(max flow)    such that

1. Introduction
The Network Inhibition or Network Interdiction Problem models the

computation of a strategy to attack the transportation capacity of a
transportation network. One may wish to compute such a strategy to in-
hibit the flow of dangerous material through a network. Alternatively, if
one wishes to protect transportation capacity, optimal and near-optimal
attack strategies can indicate vulnerabilities in a network, areas that
need reinforcement.

Our transportation-capacity metric is the classic maximum flow.
Given an undirected graph G = (V, E) and two designated vertices
V, material “flows” through the network from the source vertex to the
sink vertex Each edge has an initial capacity
0. A feasible flow assigns a flow value to each direction for
edge    obeying capacity constraints on each edge and flow conservation
constraints on each vertex other than and More formally, for each
edge we have (generally at least one of
will be zero) and for each vertex we have

The maximum flow is the maximum total flow into the
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Abstract

Keywords:

where is a given error parameter, B is the given budget (the
amount of resources to expend damaging the network), and is the
minimum (optimal) residual capacity for any attack with budget B.
For example, our algorithm returns a or a

but we do not know which a priori.
The parameter biases the nature of the solution, but does not affect
the running time.

We generalize the pseudoapproximation algorithm to multiple attack
methods/budgets and give a polynomial-time algorithm to compute the
most cost-effective attack.

network interdiction, multicriteria optimization, integer programming,
linear programming, minimum cut



sink (equivalently out of the source) for any feasible flow. This represents
the maximum possible steady-state flow of material through the network.

If the nodes of a flow network are partitioned into two sets, S and T
with and the set of edges with one endpoint in S and the
other endpoint T is called a cut. The capacity of a cut is the sum of
the capacities of the edges in the cut. By Ford and Fulkerson’s classic
max flow/min cut theorem [Ford and Fulkerson, 1962], the value of a
maximum flow equals the minimum capacity of any cut.

In the Network Inhibition Problem, we are given a capacitated graph
as described above. In addition each edge    has removal cost repre-
senting the cost to remove the edge from the graph. This removal cost
may be infinite. We assume removal is linear for all edges with finite
removal cost, so that paying for removes units of
capacity from edge We wish to expend at most a fixed budget B
removing capacity from edges of G to minimize the resulting maximum

flow.  By the above discussion, this is equivalent to minimizing the
resulting minimum cut. We call the post-attack mininum cut capacity
(maximum flow), the residual capacity of the network.

Phillips provided the first full characterization of the complexity of
this problem [Phillips, 1993]. She proved the problem is weakly NP-
complete for planar graphs and restrictive subsets of planar graphs and
gave a fully-polynomial-time approximation scheme for planar graphs.
She also showed that the problem is strongly NP-complete for gen-
eral graphs, but gave no approximation algorithms for the general case.
These results also hold for the case where no edge can be partially cut.

Wood [Wood, 1993] independently showed that the network-inhibition
problem is strongly NP-complete. He describes methods for effectively
solving integer-programming formulations of variants on the network in-
hibition problem. For example, he defines valid inequalities that can
tighten the gap between the linear-programming relaxation and the in-
teger polytope. Since network inhibition is strongly NP-complete, these
methods require exponential time in the worst case. Earlier work from
the 70’s include a branch-and-bound strategy for general graphs [Ghare
et al., 1971], and methods of varying quality for inhibition of
graphs (planar graphs with both the source and the sink on the outer
face) [McMasters and Mustin, 1970, Helmbold, 1971].

In this chapter we consider approximation methods for general in-
stances of the network inhibition problem. Let be the optimal (min-
imum) residual capacity for any attack of cost at most B on graph G.
A ß-approximation algorithm for the network inhibition computes an
attack strategy for network G of cost at most B such that the residual
capacity is no more than A algorithm for
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the network inhibition problem relaxes the budget constraint. It finds
an attack strategy using budget at most with residual capacity at
most If the budget is negotiable, this is a multicriteria approxi-
mation algorithm. If the budget is a tight constraint, this is a pseudo-
approximation algorithm, since the solution is not technically feasible.

In this chapter, we give a simple algorithm that, given an returns
either a approximation, (a true approximation), or a

pseudoapproximation. If the solution exceeds the budget, then
it is actually superoptimal. We do not know which type of solution we
will compute a priori. The parameter biases the nature of the solution,
but does not affect the running time.

The algorithm uses the decomposition method. A number of recent pa-
pers, for example [Bar-Noy et al., 2001, Naor and Schieber, 1997, Phillips
et al., 2002, Srinivasan, 1997] have used the decomposition method
to find true approximation algorithms for combiniatorial optimization
problems. Others such as [Boyd and Carr, 1999] have used decomposi-
tion to prove structural results about the set of feasible solutions for a
combinatorial optimization problem. In the decomposition method, we
first model a problem with an integer (or mixed-integer) linear program:
minimize such that                  and some subset of the variables
must take on integer values. Here is an of unknowns and A
is an constraint matrix. We assume   Let          be the set of
feasible solutions.

Solving a general integer program (IP) is NP hard. However, we can
relax the integrality constraints to obtain an efficiently-solvable linear
program (LP). We compute an optimal (extreme-point) solution to
this LP relaxation. Because we have only relaxed constraints,
is a lower bound on the optimal solution to the integer program.

A (convex) decomposition of an IP is a set
of feasible solutions to the IP and corresponding weights

such that A decomposition the
original integer-programming problem if The so-
lutions the problem on average. Because of this averag-
ing, we conclude that one of the is a solution.

A decomposition for a solution of an LP relaxation
of an integer program is a convex decomposition of (IP) feasible solutions
such that If there is a decomposition
of and the cost vector c is nonnegative, then this decomposition also

the IP.
In this chapter, we model the network inhibition problem as a mixed-

integer program (MIP). We find an exact (1-approximate) decomposition
for the linear-programming relaxation, except we do not
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We show that this implies our stated approximation bounds. This is
an application of the general methods for multicriteria approximation
through decomposition studied rigorously in [Burch et al., 2001]. Their
methods allow us to generalize to cases where there are multiple types
of budget (say money and time).

Our decomposition algorithm is extremely simple because of the struc-
ture of the network-inhibition polytope. In fact, we can always find a
decomposition with N = 2.

One may use parametric-search techniques to achieve similar approxi-
mation bounds (for the single-budget case). Parametric search has been
applied to multicriteria problems where all criteria are “similar” [Krumke
et al., 1998, Marathe et al., 1998]. For example, one can find a spanning
tree of approximately minimum weight subject to a budget constraint
on the cost of the tree (as specified by a second edge-weight function). A
multicriteria optimization problem is reduced to a single-criteria prob-
lem using a weighted combination of the cost functions. The method
requires only an approximation algorithm for solving the single-criterion
problem.

Rao, Shmoys, and Tardos have independently achieved results similar
to ours for the single-budget network inhibition problem using para-
metric search [Shmoys, 1997]. In fact, using the parametric-search ap-
proach, we can obtain a theoretically-faster algorithm with running time

where m is the number of edges in the graph and
is the time to compute an s-t minimum cut. The advantage of our

approach over parametric search is that it’s extremely simple and non-
iterative. LPs are usually solved much faster than the worst-case bound
in practice, so our algorithm may be competitive or even superior in
practice.

The remainder of this chapter is organized as follows. In section 2 we
give a mixed-integer program for network inhibition. In section 3, we
describe the pseudo-approximation algorithm in more detail and prove
(pseudo)approximation bounds. In section 4 we show how to decompose
the solution to the linear-programming relaxation of the mixed-integer
program. In section 5 we give a geometric interpretation of the decom-
position and the algorithm. Finally, in section 6 we discuss an extension
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require each to satisfy the budget constraint. Because we have a 1-
approximate decomposition and satisfies the budget constraint, the

satisfy the budget constraint on average. Thus we will show that
one of these solutions has cost and residual capacity such that



to the multiple-budget case and show how to efficiently find a most cost-
effective attack.

2. A Mixed-Integer Program for Network
Inhibition

Phillips [Phillips, 1993] observes that for a particular (fixed) cut the
greedy attack strategy is optimal: One removes edges in decreasing order
of until the budget is exhausted. Thus a solution to the network
inhibition problem can be expressed as an cut, which is then at-
tacked in this manner. We base our mixed-integer program upon this
observation.

The classic minimum-cut integer program [Schrijver, 1986] specifies a
cut by specifying the vertex partition S and T used to determine the
cut. The IP has a binary decision variable for each vertex
where and Thus, ifvertex is on the side of the
partition and otherwise. An edge is in the cut if it has exactly
one endpoint on the side. Each such edge contributes to the capacity
of the cut. We model this with a binary variable for each edge
We have if is in the cut represented by the       variables
(that is, the values of and differ), and otherwise. The
min-cut integer program is:
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The first two sets of constraints set the variables as described
above. Because the constraint matrix is totally unimodular, all extreme
points are naturally integer, and therefore the integrality constraints are
redundant.

We formulate the network inhibition problem from the min-cut formu-
lation. If an edge is in the cut designated by the vertex variables
( and differ) then we must pay to remove the edge, or pay for the
remaining capacity in the objective function. We introduce a continuous
variable for each edge which represents the fraction of edge

removed through payment. Rational variable represents the
remaining fraction of edge which contributes to the cut’s residual
capacity. Thus for any edge in the cut, we have

The network-inhibition mixed-integer program is:



1One can show = instead of due to a strictly-positive cost vector c. We can assume c is
strictly positive without loss of generality because we can preprocess the graph to eliminate
all zero-cost edges. The greedy solution is also optimal for the fractional case.
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The first constraint enforces the budget. We could also add the con-
straints for all However these constraints will
hold in any optimal solution for the MIP as given above, so we do not
explicitly add them to the formulation.

3. The Pseudo-approximation Algorithm
In this section we describe the decomposition-based approximation

algorithm and prove its approximation bounds given a correct decom-
position.

Let be the set of feasible solutions to the problem NI-MIP for the
network-inhibition problem given in section 2 without the single (first)
budget constraint. Then the algorithm to (pseudo)approximate network
inhibition is:

1

2

3

4

Compute an optimal extreme point solution to the LP relax-
ation for NI-MIP with residual capacity

Compute and such that and

For apply the greedy attack strategy to the cut
determined by the vertex variables. Compute the cost

(the sum of the removal costs for all edges removed) and residual
capacity (the sum of the capacities of all remaining edges in
the cut). At most one edge will be partially cut, contributing
fractionally to both the cost and the residual capacity.

For the given (prespecified) value of return the strategy for the
solution such that

1
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We now argue that one of the two solutions computed in step 3 has
the property required in step 4.

Theorem 1 Given an for one of the cuts computed in the
algorithm, the greedy attack strategy on has cost and residual
capacity such that:

which is a contradiction.

INTERDICTION AND STOCHASTIC PROGRAMS

Proof. By construction, is a convex combination of and
Therefore, any linear function (with nonnegative coefficients) of is a
convex combination of the same linear function applied to and
In particular, this applies to the budget and residual capacity functions.
For example, we have

Suppose that no member of the decomposition has the property re-
quired in step 4. That is,

for Then we have:



The first step follows because is a feasible solution to the linear-
programming relaxation of NI-MIP, and therefore it satisfies the budget
constraint: so The step with the strict inequality
applies the assumption that none of the attack strategies satisfies the
required condition. The last step follows from the definition of a convex
combination:

Suppose we now have an representing an attack with budget
and residual capacity that satisfies the conditions in step 4 for

some epsilon > 0. Recall that is the set of integer feasible solutions
except that the budget constraint may be violated. We now show this
is either a or that residual capacity is at least
optimal and the budget is violated by no more than a factor of

Theorem 2 Suppose we have a solution with cost and residual ca-
pacity        that satisfies
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where B is the budget, and is the objective value of the linear-
programming relaxation of NI-MIP. Then either and

or and

Proof: Suppose Since we have

Thus The solution satsifies the budget constraint and there-
fore is feasible. Furthermore, because we have
and therefore An analogous argument applies to the
case where

4. Decomposition
In this section, we show how to decompose an extreme-point solution

for the LP relaxation of the network-inhibition IP. That is, given
an extreme-point optimal solution to the LP relaxation of NI-MIP, we
compute and such that
and The structure of the solution makes this
computation easy.

Theorem 4 proves that for each vertex-variable component of
either or or for some Assuming such
structure for an extreme-point optimal LP solution, we now describe how
to decompose the solutuion. Let be the set of vertices such
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that let be the set of vertices such that and let
be the set of vertices such that We construct

and as follows. If then Similarly, If
then There are no other options since all are

bounded between zero and one. If then and
This decomposition is illustrated in Figure 3.1. We set and

We now show how to set the edge variables and for
For ease of exposition let us define for any solution to
NI-MIP (integral or fractional). For cost vectors c > 0, in an optimal LP
solution we have and this value is assigned to and



according to a greedy cut attack. Define                           for
Intuitively, we now follow the decisions made in the fractional solution.
If an edge was cut in the fractional solution (usually totally cut), then
treat it the same way (proportionally) in any integer solution where it
is part of the cut. Formally we set             and
for

Solutions and are feasible solutions for the network inhibi-
tion problem without the budget constraint. Any setting for the is
acceptable and we have set                    for to satisfy the
other  constraints.

Theorem 3 The two solutions and are an exact decomposition
of the LP optimal

Proof: We have by construction.
We must now show and

First we argue that We prove this by case analysis.
Figure 3.1 illustrates the 4 cases for edge it can be in set for

or it can be contained within one of the vertex sets
or If edge is in set then and
Thus We omit the other cases
because checking them is straighforward.

We can now complete the proof:

The argument for the is completely analogous.
The and variables for each solution are set to implement the

greedy attack strategy on the cut designated by the One could show
this algebraically. However, it also follows directly from the optimality
of the greedy strategy. The values of the objective functions on the
solutions must equal that of the greedy strategy. Otherwise, there would
be a way to improve these solutions, use the improved solutions in a new
convex combination, and achieve a better LP solution. There may be
multiple optimal greedy solutions if edges tie on the ratio but
no non-greedy strategy can be optimal.
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We need only show that the solution has the required structure.

Theorem 4 Let be an extreme-point solution to the LP relaxation
of NI-MIP. Then there is a such that for each vertex variable

of we have

Proof: Let be the polytope of feasible solutions to NI-MIP after all
integrality constraints and the single budget constraint are removed.
We first argue that is naturally integer. We then argue that adding
the budget constraint to creates new vertices only in the middle of
edges of This suffices to prove that can have at most four values
represented by its components: and 1. We then argue that
extreme points of the new polytope have only three values. That is, any
vertex containing all four values is necessarily in the interior of the new
polytope.

We now argue that is naturally integer. Consider the minimum-cut
polytope formed by the system That is, consider MC-IP
without the integrality constraints. The matrix A is totally unimodular
and therefore all the vertices have integer coordinates. The system for

is where we derive from A by replacing with
Thus matrix is simply matrix A with some duplicated

columns.
Matrix is totally unimodular (TU). To prove this, it suffices to

show that the matrix derived from a TU matrix A by replicating
a single column is also TU. We can build from A by a series of
such operations. By definition, a matrix is totally unimodular if the
determinant of each square submatrix is 0, 1 or –1 [Nemhauser and
Wolsey, 1988]. Consider a square submatrix of If both and its
duplicate are in the submatrix, then the determinant is 0. Otherwise,
the submatrix is also a submatrix of A and therefore its determinant is
0, 1, or –1. Thus is totally unimodular and all of its vertices have
integer coefficients.

We now add the budget constraint to polytope to create polytope
Figure 3.2 shows this geometrically. The vertices of could be original
vertices of and therefore integer. All new vertices are created by the
intersection of the new hyperplane with an edge of Therefore, they
are points on an external edge of and are the convex combination of
two integer points. Any convex combination of two vectors having only
binary values can have at most four values: and 1 for some

To show that vertices of in fact have only 3 values for the vari-
ables, we show that any convex combination of two extreme points in
that uses all four values over must be strictly inside Consider two
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extreme points of denoted and The line segment between
and is an external edge of if and only if all points on that

line segment have a unique representation as a convex combination of
extreme points, those extreme points of course being and Sup-
pose there is a point on that line segment that uses exactly four values
for This is only possible if there exists vertex sets such
that and for all and and             for all

That is, there is a set of vertices that switches from 0 to 1 as we
move from to and another set of vertices that switches from 1 to
0. The two solutions agree on the settings for all other vertex variables.
Now consider the midpoint of segment We have
for all For all other components the components

we also have where has for all
and has for all

We now show how to set the edge variables of and such that
for the edge variables as well. First we describe the

structure of an extreme point of The vertex variables can take on
binary values in any combination. Once the vertex variables are set,
edges going between vertices with different settings must have
either or equal to 1, with the other set to 0. Edges going
between vertices with the same value can have both and
However, either one of these variables can also be 1. This will never be
optimal for strictly positive capacities. However these are still extreme
points of the polytope, and could be optimal solutions for cases where
some of the capacities are negative.

There is some flexibility in the choice of edge-variable values once the
vertex variables are set. Fix the choice of edge variables for and

to any values consistent with the extreme-point constraints. We will

variables we have However, for the vertex variables
and agree. Component takes this common value. For the vertex



set the variables for each edge in and so that one will have the
value from and the other will have the value from There are
four classes of vertices: (those that are zero in both and

(one for both extreme points), and and as defined. For ease of
exposition, let represent the set of all edges going between sets

and
We describe how to set the variables. Set the in the same

manner. For any edge that is internal to one of the four vertex

sets, and those in and set
and For edges in the remaining sets and

set the variables the other way:              v  and These
settings obey the constraints on extreme point edge-variable settings
and guarantee that

Therefore, does not have a unique representation as a convex com-
bination of extreme points and the entire segment is in the
interior of Therefore any extreme point of uses only three values
for the vertex variables

5. Geometry
In this section, we give a geometric interpretation of the network-

inhibition decomposition algorithm. We look at the two-dimensional
structure of the set of (integer) feasible (budget, optimal residual capac-
ity) pairs for a particular instance of the network inhibition problem.

Phillips [Phillips, 1993] defined the cut function for a particular
cut. This is the residual capacity as a function of budget, computed
by greedily attacking the cut. It is a piecewise-linear convex function,
where each segment corresponds to a budget region where some par-
ticular edge is partially cut. If we were to plot all exponentially-many
cut functions on the same set of axes, the lower envelope of this set of
functions determines the optimal attack strategy for each budget (per-
form the greedy attack for the cut which has the minimum cut-function
value at budget B). For a given budget the set of points where any
cut function intersects the line corresponds exactly to the set
of feasible solutions to the integer program NI-MIP that fully consume
budget

Let F be the set corresponding to all possible integer so-
lutions to NI-MIP for all interesting budgets We can compute the
maximum useful budget with a single minimum-cut computation
using removal values as capacities. Any budget beyond this cannot cause
any further damage to the network. Let H be the convex hull of F (in

64 INTERDICTION AND STOCHASTIC PROGRAMS



A Decomposition-Based Approximation for Network Inhibition 65

the two-dimensional budget-capacity space). The following is a corollary
of a more general result proved by Burch et. al.:
Corollary [Burch et al., 2001] All optimal solutions of the LP relaxation
of NI-MIP map to H, the convex hull of the set of integer solutions.

Figure 3.3 illustrates this geometry. The optimal residual capacity for
budget 0 is the capacity of the minimum cut in the original (unharmed)
graph. The piecewise-linear convex function is the lower envelope of the
set of cut functions (F). The points where the convex-hull segments
meet correspond to valid integer solutions, normally each corresponding
to a different cut. Points on the segments do not usually correspond
to valid integer solutions, but they are convex combinations of integer
solutions (the two endpoints), and valid solutions for the linear program.
The optimal LP-relaxation for a given budget B corresponds to the point
where this convex hull meets the line

The following is also a corollary of a more general result proved by
Burch et. al.:
Corollary [Burch et al., 2001] Let be the convex hull segment
upon which the image of lies. The two feasible solutions and
computed by the decomposition procedure correspond to and



Figure 3.3 shows the line Point lies on
this line, where is the objective value of the optimal LP solution
for budget B. The line has slope which is always
negative. At least one of the points (corresponding to and

will lie below line. The algorithm will return the corresponding
solution. The choice of biases the choice between a budget-feasible
suboptimal solution and a budget-infeasible superoptimal solution. This
is clear from the nature of the bounds we prove. Here it is reflected in
the slope of the line used for selecting one of the two candidate solutions.

6. Extensions
In this section we consider two related problems: network inhibition

with multiple budgeted properties, and computing a most cost-effective
attack.

Suppose there are a number of criteria one wishes to bound when
attacking a network, such as time, money, and/or “effort.” We can
apply the multicriteria-approximation results of [Burch et al., 2001] to
extend the results discussed in this chapter.

Suppose we have criteria, with the having budget Select
such that
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These represent our priorities for each criterion, where the cri-
terion is the objective function (residual capacity). In the one-budget
case described in this chapter, we have and
Consider a feasible solution to this multicriteria problem with budget

for Let be the amount the budget
for the criteria is violated. We can always find a solution such that

As with the two-criteria case we studied in detail, if any of
the criteria violates its budget, at least one other criterion is guaranteed
under budget.

We now show that we can compute a most cost-effective attack effi-
ciently. Let be the minimum cut in the original network. We wish
to find an attack using budget and achieving capacity such that

is minimized. We could compute this strategy using paramet-
ric search or other binary search methods. However, we can also use a
single invocation of our simple, noniterative algorithm.

Consider once again the cost-benefit graph in Figure 3.3. For any
feasible attack strategy with cost and residual capacity the value



we wish to minimize is the slope from the point to the point
Because the lower envelope of the feasible set is a convex func-

tion, the optimal point (one with the most negative slope) is the endpoint
of the first convex-hull segment. We can compute this by performing the
algorithm given in Section 3 using a tiny budget

More generally, we can compute the entire convex hull by “walking”
it. Once we have computed the endpoint of the first segment, which
uses budget we can get the next segment by running the algorithm
with budget and so on. This requires polynomial time for each
convex-hull segment. We do not yet know the complexity of the convex
hull, so it may be more efficient to explore forward and backward from
budget points of particular interest.
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We provide formulations, test instances and benchmark results for a new
class of network interdiction problems. The formulations are appropri-
ate for computer, terrorist or drug transportation networks where the
characteristics of the network cannot be known completely in advance
but rather interdiction must be planned based on conjectured configu-
rations. The models support maximization of the expected minimum
path length between two nodes, and We also model maximizing the
probability of causing the minimum path length to be above a specified
threshold. Examples make our formulations concrete and benchmarks
establish the computational requirements for solution. Our benchmarks
also help quantify the importance of using a special formulation pro-
vided for instances when a cut between and is the goal.
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1. Introduction
Consider the problem of interdicting the flow of information or goods

in a network whose characteristics are not certain, but instead there are
a number of possible network configurations. The goal is to maximize
the minimum distance between a node and a node We concern
ourselves here with the situation where the decision maker can associate
a weight, or probability estimate, with each possible configuration of the
network.

Since the network is uncertain, the objective must be stated in prob-
abilistic terms such as maximization of the expected minimum distance.
We provide a formulation and computational experience for this prob-
lem. In addition, we note that for applications in some computer, drug
transport, or terrorist networks, expectations are not the appropriate
objective. A more appropriate objective is to maximize the probability
that the minimum path exceeds a certain length, presumably selected
so as to be long enough to render the network essentially unusable.

1.1 Deterministic Formulation
To formalize these notions we begin with models based on those used

in previous interdiction work [1, 2, 3, 4, 5]. Consider a directed graph
given by (N, A), where an interdictor intends to maximize the minimum
distance from node to node We are given as data the node-arc
incidence matrix of the network, G, which includes an artificial arc
The arc distances are given in a vector c. Decision variables include a
vector, that gives interdiction effort for each arc, which lengthens
the arc at a rate given as data by the vector d. For the moment we
summarize the constraints on using the set X, although our intention
is to mainly consider cases where the interdiction is binary and subject
to a system of linear budget constraints.

We set The model makes use of the flow vector as a
decision variable for the network operator. The interdictor’s problem is:

subject to:
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Using the dual of the inner problem, we obtain:

subject to:

Notice that in formulation (F), we used a single index for the arcs:
A. In (F’) we used the node pair that defines the arc: They
are equivalent, but the node pairs are more appropriate for the dual and
the direct arc indices are more appropriate for the primal formulations.

Our intention is to provide budget constraints for interdiction deci-
sion variables, which we will consider to be binary. Hence, we envision
something like with a matrix Q and a
vector B provided as data, where n is the number of arcs.

Formulation (F) considers interdiction only on arcs, but in many com-
puter networks, drug transport, or terrorist networks it is the nodes that
can be most easily interdicted. To model interdiction on nodes, each in-
terdictable node must be replaced by two artificial nodes: one for all
incoming arcs to the original node and another for outgoing. An ar-
tifical, zero-length, interdictable arc must connect the two nodes. The
budget impacts of interdiction on the original node then become the
budget impact of interdicting the artificial arc between the nodes. The
effect of interdicting the node becomes the effect on the artificial arc as
captured by In the sequel, when we refer to a “node” it is under-
stood that we may also mean the artificial arc representing the node in
formulation (F).

1.2 Stochastic Formulations
Case where the interdiction efforts are stochastic are treated in [1]

and [4]; our primary interest here is in the case where the network is
uncertain. We have a set of scenarios and for every scenario a
probability Associated with each scenario is a network given by

For many interdiction problems, it makes sense to plan for interdic-
tion of nodes that may not be connected to the network in every scenario
(especially given that the true network may never be revealed). Conse-
quently, we use the notation (N, A) to refer to

and
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and to refer to the corresponding incidence matrix. We take to
be the number of arcs in (N, A) with the data for our formulations
defined over these arcs. Thus, we can refer to a budget constraint set

that does not depend on the scenario.
The length of the arcs will, of course, depend on the scenario as will
the flow decisions. At least conceptually, we can set and

for arcs

1.2.1 Maximizing Expected Length. Our first stochastic
model addresses the problem of maximizing the expected minimum path
length between nodes and Since we have a discrete set of scenarios,
we can write the expectation explicity as a sum:

subject to:

Formulation (E), which is based on formulation (F), provides a clear
statement of our problem. However, the problem can be solved in
straightforward fashion if we rely on a reformulation based on (F’), which
is

subject to:

1.2.2 Maximize the Probability of Sufficient Disruption.
The goal is to maximize the probability that the minimum length path
from to exceeds where is given as data. This results in the
following optimization problem:
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subject to:

Formulation (P), which is based on formulation (F), provides a clear
statement of our problem. However, exposition of our solution method
is much more straightforward if we rely on an equivalent formulation
based on (F’), which is

subject to:

The deterministic equivalent of this problem can be written by making
use of an additional vector of variables which indicate for
each scenario if the threshold path length is exceeded. Making use of
the notion that probabilities are expectations of indicator functions, we
write:

subject to:

where M is the ubiquitous “big M,” which is provided as data and is large
enough to exceed all possible values of the absolute value of

2. Example
Figure 4.1 shows a small example of the sort of problem our models

are intended to address. There are three scenarios. The first scenario
contains all of the nodes and arcs in the network between nodes
and In many settings, particularly involving drugs or terrorists,
it might be possible to know the nodes and arcs in a network, but not
know if all of them are involved in the flow of interest. This is captured
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by the other two scenarios where the even numbered or odd numbered
nodes (other than and ) respectively, are not part of the traffic of
interest. As an aside, we note that the nodes and arcs are labeled with
numbers only as a matter of convenience in making statements such as
“odd numbered nodes” and in connecting arc labels with vector indexes.
It is not our intention to put an order or value on the nodes or arcs; any
type of label would suffice for our models.

As already noted, when node interdiction is possible the problem must
be transformed in order to make use of the models that we have pre-
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sented. Note that nodes and are not interdictable. If they were
interdictable, then the appropriate problem statements would be quite
different. Our models are appropriate when and are special nodes
that cannot be directly interdicted such as when they are proxies for an
organization or people in a geographic area.

To specify a problem instance we need to supply values for the data
elements such as the following data:

Arc lengths: for arcs in the original arc set, and
for arcs added to allow the interdiction of an original node to be
represented by arc interdiction. This suggests that the network
operator’s goal is to minimize the number of hops. Of course, for
other examples the values might vary, although they would often
be zero for the arcs introduced to stand in for nodes.

Penalties for interdiction: for arcs in the original arc set
and for arcs added to allow the interdiction of an original
node to be represented by arc interdiction. This suggests that
interdiction of the nodes in the original network (i.e., the nodes
shown in Figure 4.1) will dramatically increase the path length
while interdiction of the arcs in the original network is not possible
for this example.

Scenario probabilities: Suppose that the full graph (i.e., scenario
one) is least likely and the other two graphs are equally likely. We
might model this using probabilities of 0.2, 0.4 and 0.4 for the
respective scenarios.

Threshold: A threshold such as for problem (P) would result
in maximizing the probability that the flow was disrupted by the
interdiction. If the goal is to maximize the probability that only
an interdicted route will be available then the non-zero values
must be sufficiently large (presumably all the same value, d, for all
interdictable arcs, ) so that will provide the desired effect.
The meaning of “sufficiently large” depends on the data, but a
value equal to the longest path length through the uninhibited
network clearly suffices.

Interdiction budget constraints: The data to operationalize the ex-
pression must supplied. If we assume binary interdiction
subject to a general budget constraint, we have

So for a specific, simple example we use a sin-
gle row of 13 ones for the matrix Q and right hand side value of
B = 1 so that we would be required to select a single arc for inter-
diction. One could imagine a situation where there were multiple
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resource classes each with a row in Q to indicate the quantities of
the resources that would need to be combined to interdict each arc
and the right hand side would indicate the budget for each type of
resource.

Figure 4.2 shows the instantiation of (D’) for this example. In order to
model a situation where the nodes shown in Figure 4.1 can be interdicted,
they must be converted to arcs in the formulation used (for simplicity,
arcs are added for nodes and as well; however, these particular arcs
cannot be interdicted). This is done by replacing node as shown in
Figure 4.1 with nodes and in the problem formulation. These
nodes are connected by an arc labeled as in Figure 4.2 because
this is a dual formulation where we have chosen to label arcs using their
terminal nodes (while Figure 4.1 used primal labels).

With data as suggested (i.e., B = 1, probabilities 0.2, 0.4, and
0.4, c = 1 and d = 0 for the original arcs and c = 0 and d = 20 for the arcs
added to represent original nodes), arc (9,10) is selected for interdiction.
I.e., node 5 from the original graph is selected for interdiction. This
results in a probability of 0.4 of exceeding the threshold, which makes
sense. With a budget for interdiction of only one arc, the path can
be lengthened for only one scenario. If the budget is increased to 2,
then flow can be impeded in all scenarios. The threshold value
is exceeded for this particular problem whenever the shortest path has
been altered by the interdiction.

For this example, we can set to test for the event that the
shortest path has been interdicted in two places. In general, of course,
the value might have to be higher than 2d, but in this case d is very high
compared to the length of the paths. If the budget is B = 2 then the
objective value is 0.4 again, as is the case for a budget of 3. A budget
of 4 yields 1 as an objective function value. An important special case
is when the goal is disconnect the network. For the example, this can
be accomplished with a threshold This special case is treated
more generally in the next section.

3. A Special Case:  Disconnection as the
Threshold

Suppose that our objective is maximize the probability of disconnect-
ing the network, which we take to mean that all paths are interdicted
at least once. We can model the problem by introducing an additional
arc from to assign to it a cost of 1 and assign to all other arcs zero
costs.
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Minimization of this special cost function leads to an optimal objective
value of 0 if there is a path from to that does not use and of 1 if
the original graph is disconnected (no directed path from
to ).

This problem can be stated as:

subject  to:

As the dual of this problem we obtain:

subject  to:

Note that and imply
for all nodes such that there is a directed path from to with arcs
from Thus, if is connected to with arcs from an
optimal solution is given by putting identically to 0. Otherwise, if is
not connected to with arcs from an optimal solution is given
by if is connected to and if is connected to with
arcs from Therefore, we may assume without loss of generality
that for all nodes

Now let us turn back to interdiction of arcs. Assume that arc is
interdicted. Thus, the inequality should be removed from
the constraint system. As for all nodes this can be achieved by
replacing with If this inequality
becomes redundant.

Therefore, we may model the interdiction problem as follows:

subject  to:
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The optimal objective function value is 1 if and only if the interdiction
led to a disconnected (original) network, and 0 otherwise. Hence, the
stochastic program that maximizes the probability of successful inter-
diction can be modeled as:

subject to:

4. Benchmarks
In order to establish some benchmarks concerning the computational

requirements for solving instances of the formulations given in this pa-
per, we conducted a number of experiments using simulated data. The
networks have nodes and with three layers of nodes in between. The
first layer has nodes that are known to be connected to node the
third layer has nodes that are known to be connected to node The
second, or middle, layer of nodes has connections with the first and
third layers that are uncertain. For each scenario, the arcs connecting
the first with the second layer and those connecting the second with the
third layer are specified.

Figure 4.3 shows a particular scenario where the realization is for 7
arcs between the middle layer and the outer two layers. These arcs are
shown with broken lines to make it easy to identify them. Note that
it is possible for nodes to be disconnected in a scenario if there are no
arcs connecting the nodes. In the Figure, this has happened to the top
node in the first layer and the bottom node in the third layer. In other
scenarios, presumably, these nodes are connected.

4.1 Expected Value Formulation
Table 4.1 shows the results of maximization of the expected value of

the minimum path from to using formulation (E’). For these problems,
the value of c is set to one for every arc and the value of d is ten for
every node (which is represented by an artificial arc in formulation (E’)).
The first column of the table gives the size of the instance in the form

The next column indicates the expected number of arcs
that are randomly generated between the first and second and second
and third layers of nodes in each scenario (for Figure 4.3 the realization
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is seven so the expected value would be presumably near this value). The
next column, labeled gives the number of scenarios. The budget for
interdiction (the value of B, which is the right hand side of the budget
constraint) is the column labeled “Budget.” The final column gives the
CPU time for XPress-MP, version 13 running on a 1GHz Pentium III
processor with default parameter settings.

For these instances, interdiction is allowed only on the nodes, so the
number of binary variables is equal to the total number of nodes that can
be interdicted (e.g., 30 for a problem of size 10 × 10 × 10). This highlights
the fact that although the number of binary variables is modest, these
problems require considerable effort in order to prove optimality. For
the last example, there are only 45 binary variables, but after 175,000
seconds there is still a significant gap: the best solution found has ob-
jective function value 23 but the upper bound was 133.72 when the run
was terminated.

For further experimentation, we created a set of benchmark instances
that are appropriate for problems (E’), (D’), and (D”). In all instances,
d was set to 20 for all arcs that were added to allow for interdiction of
nodes in the three layers between and We used a budget of B = 9.
For each network configuration, five instances were generated. For each
instance, 100 scenarios were generated.

Table 4.2 shows the results for instances of problem (E’). The first
column of the table gives the size of the instance in the form

The next column indicates the expected number of arcs that are
randomly generated between the first and second and second and third
layers of nodes in each scenario. The optimum objective function value
for each replicate is given in the column labeled “Obj. Val.” The final
two columns give the CPU time for XPress-MP, version 13 running on a
1GHz Pentium III processor and the number of branch and bound nodes
explored.
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4.2 Maximum Probability Formulation
Table 4.3 shows the results of using the benchmark instances for prob-

lem (D’). These are the same instances that were used for the experi-
ments shown in Table 4.2, but we used the probability formulations. In
all instances, d was set to 20 for all arcs that were added to allow for
interdiction of nodes in the three layers between and Consequently,
by using we able to solve identical instances using formulations
(D’) and (D”), which gives us some idea of the relative importance of us-
ing (D”) when that is appropriate. We used a budget of B = 9. For each
network configuration, five instances were generated. For each instance,
100 scenarios were generated. The first column of the table gives the
size of the instance in the form The next column indicates
the expected number of arcs that are randomly generated between the
first and second and second and third layers of nodes in each scenario.

The number of scenarios that are disconnected in the optimal solu-
tion for each replicate is given in the column labeled “Scen. Disc.” Since
there are 100 scenarios and the objective is to maximumize the probabil-
ity of disconnection, this corresponds to 100 times the optimal objective
value. The next two columns give the CPU time in seconds for (D’)
and (D”) respectively for XPress-MP, version 13 running on a 1GHz
Pentium III processor with default parameter settings. The final two
columns give the number of branch and bound nodes explored for (D’)
and (D”) respectively.
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As anticipated, formulation (D”) is much more tractable. For all
replicates, lower effort was required for solution. The importance of
using (D”) when appropriate, increases dramatically with the problem
size.

5. Conclusions
We have given formulations, test instances and benchmark compu-

tational results for a new class of network interdiction problems. The
formulations are appropriate for computer, terrorist or drug transporta-
tion networks where the characteristics of the network cannot be known
completely in advance but rather interdiction must be planned based on
conjectured configurations. We have presented formulations that sup-
port minimization of the expected path length between two arcs and for-
mulations that maximize the probability of causing the minimum path
length to be above a specified threshold.

The law of large numbers suggests that minimizing the expected value
is appropriate for problems that are solved, and whose solutions are im-
plemented, many times. Many problems in the interdiction of stochastic
networks are not subject to repeated solution and so the appropriate
objective is maximizing the probability that the network will not func-
tion properly. This is particularly true when unimpeded operation of the
network is disastrous. In these cases, parametric variation of the budget
to get the desired threshold with adequate probability or to generate
tradeoff curves would be valuable. For the case where the appropriate
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threshold is disconnection of all paths between nodes and we have
provided a reformulation that leads to a great reduction in the compu-
tational effort required for solution.

We have provided examples to make our formulations concrete and
benchmarks to establish the computational requirements for solution.
Our benchmarks also help quantify the importance of using the appro-
priate formulation when a cut between and is the goal. We hope that
these benchmarks will provide a starting point for additional work on
this class of problems. For example, decomposition as suggested in [6]
should be investigated.

The broad class of problems associated with network interdiction has
received increased attention due to changing conditions in the world.
This paper introduced a class of problems where the network is uncertain
and the objective is to maximize the probability of successful interdiction
of the network, which is intended to contribute to ongoing research in
network interdiction.
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In this paper we study the stochastic batch sizing problems. We provide
a unifying treatment of the problem, in which we formulate a multi-stage
recourse problem as well as a probabilistically constrained problem. The
solution approach that we adopt for these problems may be classified as
a branch and price (B&P) method. Through our computational exper-
iments turns out that the proposed B&P methodology is quite effective
for the recourse constrained model. We also demonstrate how trade-
offs between cost and reliability can be investigated for the stochastic
batch-sizing problem.

Stochastic Batch-Sizing Problem, Probabilistic Constraints, Branch-
and-Price Algorithm.

Introduction
Many practical decisions problems can be modeled as mathematical

programs. Typical applications may be found in the areas of industrial
production, transportation, agriculture, engineering, and many others.

Abstract

Keywords:
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In many of these modeling situations, it is unreasonable to assume that
the problem parameters are deterministically known. Operations prob-
lems often involve parameters (e.g. demand, lead-time etc.) that are
unknown at the time of planning, and their values are unveiled over time
and are modeled as random variables. For instance, future productivities
in production planning, inflows into a reservoir for a hydro power plant,
demands at various nodes in a transportation network, are all subject
to variation. The need to explicitly model uncertainty leads to the so-
called stochastic programming (SP) problems. SP problems are aimed
at determining non-anticipative (here-and-now) decisions that must be
taken prior to knowing the realization of the random variables. These
decisions are required to be made in such a way that total expected costs
or revenues (from here-and-now decisions and possible recourse actions)
are optimized.

In this paper, we discuss alternative models of the stochastic batch-
sizing problem. The deterministic version of these problems belongs to
the class of economic lot-sizing (ELS) models, and may be stated as
follows: given a demand and a cost structure for T time periods, the
object of production planning is to minimize the total production and
inventory costs. The papers of Manne [15] and Wagner and Whitin [21]
are the seminal contributions in this area of research. Manne formulated
the multiple item capacitated version of the problem as a mixed integer
linear program and proposed solving a linear programming approxima-
tion of it. Wagner and Whitin [21] studied the uncapacitated model
with fixed set-up cost and linear inventory and production costs. Their
main contribution was in demonstrating that an optimal replenishment
policy is one in which production is undertaken when inventory is zero.
Furthermore, they proposed an efficient forward dynamic programming
algorithm to solve the problem. In[10], Krarup and Bilde provided a
formulation of the economic lot-sizing problem which describes the con-
vex hull of the corresponding polyhedron. Starting with the seminal
works of Manne and of Wagner and Whitin, a broad variety of ELS
models have been studied in the literature. These models include the
ones in which backlogging may be allowed, production and inventory
capacities may be finite, start-up costs may be non-zero, etc. On this
subject we can mention the work of Leung, Magnanti and Vachani [12]
and of Hsu [8]. Leung, Magnanti and Vachani [12] studied the single-
item capacitated lot-sizing problem. In their paper, the authors studied
the polyhedral structure of the corresponding integer programming for-
mulation. Moreover, they introduced a set of valid inequalities for the
problem and showed that they define facets of the underlying integer
programming polyhedron. Such inequalities can be used effectively to
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develop an efficient branch-and-cut procedure. Hsu [8] discussed situa-
tions where the traditional ELS models are not applicable, and proposed
a new model with concave production and inventory functions. The au-
thor explored the structural properties of the optimal solution, which
were used to develop a polynomial time dynamic programming algo-
rithm. This summary provides some insights on the results achieved in
this area of research. For a more complete description of the state of the
art on deterministic ELS models, and several extensions the reader may
refer to Martin [16], Kuik et al. [9] and Aggarwal and Park [1].

When data for such models is uncertain, deterministic techniques such
as those mentioned above must be extended to accommodate uncer-
tainty. A simple approach is to apply multi-period models in a rolling
horizon environment. When this technique is applied, the only first
period’s decisions are implemented and the model is rerun after one pe-
riod with an updated data set. Baker [3] showed that simple lot-sizing
heuristic, like Silver/Meal or Groff’s heuristic, may outperform solu-
tions obtained applying exact algorithms, such as Wagner and Whitin,
in a rolling horizon environment. Moreover Baker observed that the
performance of rolling schedules depends on the length of the planning
horizon, cost structures and demand pattern. In particular, the length of
the planning horizon is a crucial parameter in such models. Stadtler [20]
presented modified rolling horizon models in order to obtain solutions
that are at least as good as the heuristics mentioned above, and fairly
insensitive to the length of the planning horizon. Only recently has there
been an explicit attempt to state the stochastic version of ELS models
as a stochastic programming problem. In a couple of papers, Lokketan-
gen and Woodruff [13] and Haugen, Løkketangen and Woodruff [7] have
combined the progressive hedging algorithm with Tabu search to design
an effective heuristic to solve the problem. The stochastic lot-sizing
problem has also been studied by Miller and Ahmed [18] who have de-
veloped valid inequalities that define the convex hull of structured relax-
ations. Furthermore, Miller [17] developed a polynomial-time dynamic
programming algorithm for the multi-stage stochastic uncapacitated lot-
sizing problem. The stochastic lot-sizing problem also appears promi-
nently in a recent paper by Ahmed, King and Parija [2] who transform
a stochastic capacity planning problem into a stochastic lot-sizing prob-
lem, and use the Krarup-Bilde formulation (of the lot-sizing problem)
to generate good bounds within a branch and bound algorithm. They
also devise an upper bounding heuristic which is incorporated within the
branch and bound method. As an interesting by-product of their work,
Ahmed, King and Parija [2] showed that the deterministic optimality
condition (i.e. production is undertaken only if inventory is zero) does
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not apply to the stochastic case. As shown by these authors, an opti-
mal solution of the stochastic ELS may have non-zero production levels
even in those periods in which the inventory levels are non-zero. This
is the manner in which a stochastic model helps hedge against future
uncertainty.

In this paper we study the stochastic batch-sizing problem, which is
a slight generalization of the stochastic lot sizing problem. As in the
stochastic lot sizing problem, demand, production, inventory and set-up
costs are uncertain problem parameters, but production is undertaken
in multiples of a given batch size. The main contribution of our work is
in providing a unifying treatment in which we formulate a multi-stage
recourse problem as well as a probabilistically constrained problem. In
addition, we discuss a solution procedure that is applicable to both.
From a managerial perspective, this unifying treatment allows us to
study trade-offs between production/inventory cost and the probability
of stock-outs. From an algorithmic viewpoint, our contribution lies in
solving this multi-stage stochastic integer programming problem (with
probabilistic constraints) using a branch and price algorithm. Our com-
putational results also demonstrate the viability of such decomposition
approaches over methods that solve a deterministic equivalent problem.
These computations extend the work reported in [14] in a number of
ways. We demonstrate that while the LP relaxation from the Krarup-
Bilde reformulation does improve lower bounds (as in the deterministic
case), it does not improve the overall performance of the branch and
price scheme, in general. We also provide some comparisons between
solutions to the recourse model with those obtained from the probabilis-
tically constrained model.

The paper is organized as follows. In § 1, we provide both formulations
of the multi-stage stochastic batch-sizing problem. The algorithm used
to solve these problems are discussed in § 2. Computational results are
given in § 3 while a comparison between probabilistically constrained
solutions and recourse solutions are given in § 4.Finally, § 5 contains
conclusions and future research.

1. Stochastic Batch-Sizing Formulations
We begin this section by first stating the recourse formulation. In

keeping with much of the literature, we deal with discrete random vari-
ables with finite support (Birge and Lauveaux [5]), i.e. if is the random
vector then with probabilities This hypothe-
sis allows us to represent uncertainty by means of scenarios, which repre-
sent a realization of the random variable corresponding to an elementary
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atom The relationship between scenarios is represented via a sce-
nario tree which captures the evolution of all information trajectories
over time. At any node of the tree, there are several branches to indicate
possible outcomes of the future which is modeled by random variables
(associated with each node of the tree). Such a construction allows us to
specify the events and probabilities in a natural way by conditioning on
the events leading up to the current stage. Because a scenario includes
one node at each stage exactly once, it is represented by a path from the
root node (at stage 1) to a leaf node (at stage T) of the scenario tree.
Note that with the exception of leaf nodes, all other nodes of the scenario
tree may belong to more than one scenario. Given the set of scenarios

and the decision horizon the correspon-
dence between nodes of the scenario tree and 2-tuples is
given by the surjective map

We begin the formulation by providing summary of the notation used
in the model.

is the set of scenarios,
is the decision time horizon,

batch size,

production capacity at time period specified in terms of the

number of batches,

inventory capacity at time period specified in terms of the

number of batches,

demand at time period in scenario
production cost at time period in scenario

holding (or inventory) cost at time period in scenario

fixed (or set-up) cost at time period in scenario
probability of scenario

The decision variables are:

production batch level at time in scenario
inventory level at time in scenario

production quantity at node of the scenario tree.



90 INTERDICTION AND STOCHASTIC PROGRAMS

The stochastic batch-sizing problem for minimizing total expected cost
is given by

subject to

Constraints (5.1), are the collection of inventory balance constraints.
They define the relation between demand, production level and inven-
tory level for each time period of any scenario Constraints (5.2) are
the non-anticipativity constraints on production level decisions. As in
all SP problems, the non-anticipativity constraints state that decisions
depend only on information revealed in the past and not in the future,
i.e. all scenarios with same history until the stage should result in
the same decisions until this stage. Therefore, we make decisions before
realizing the random outcomes of demand. Note that non-anticipativity
constraints are enforced only on the production decision variables, since
the non-anticipativity constraints on the set-up variables are automati-
cally satisfied once they are satisfied by the production level variables.
In this case, non-anticipativity constraints are represented by associat-
ing single decision      for  each node of the scenario tree
Constraints (5.3) and (5.4) are capacity constraints on production and
inventory levels respectively. Constraints (5.3) are also set-up forcing
constraints. The basic idea is to force variable to be one if production
takes place.

The formulation given above is the extension of the Manne formula-
tion [15] to the stochastic batch-sizing problem. Before going further, we
also provide a formulation of the problem using the Krarup-Bilde vari-
ables [10]. They formulated the economic lot-sizing problem by defining
a variable as the quantity produced in period to satisfy the demand
in period Using those variables, the inventory balance, non-
negative and set-up forcing constraints describe the convex hull of the
economic lot-sizing problem polyhedron. To extend the Krarup-Bilde
reformulation to the stochastic batch sizing problem let us introduce the
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following decision variables:

production batch level at time t for period in scenario s.

Using the notation introduced so far, the problem formulation with the
Krarup-Bilde decision variables here follows.

subject to

In this formulation, the inventory balance constraints are substituted
by the demand constraints ( 5.6). They state that demand have to be
satisfied in any scenario, since no backlogging is allowed. Constraints
( 5.7) are the non-anticipativity constraints on production level decisions.
Also in this formulation, non-anticipativity constraints are enforced only
on the production decision variables, since the non-anticipativity con-
straints on the set-up variables are automatically satisfied once they are
satisfied by the production level variables. Constraints ( 5.8) and ( 5.9)
are capacity constraints on production and inventory levels respectively.
Again, constraints ( 5.8) are also set-up forcing constraints.

In the stochastic batch sizing model we formulated above, we require
demand to be satisfied at any time period and no backlogging is al-
lowed. According to the demand balance constraints (constraints (5.1)
and (5.6)), at any stage of the system the production level should be
large enough to cover all the possible demand outcomes in the next
stage. Operation managers often consider such a policy to be uneco-
nomical. To overcome this potential drawback it may be appropriate to
include a probabilistic constraint which enforces the condition that the
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probability of meeting demand exceed an acceptable service level Thus
a production plan is deemed feasible if the total probability of the sce-
narios accommodated by an optimal solution exceeds Let denote
a binary variable, which assumes a value one if scenario is included
in the solution and zero otherwise. Mathematically, the probabilistic
constraint may be modeled by the following multiple choice constraint.

When dealing with a probabilistic constrained formulation, we have
to modify both the inventory balance and the non-anticipativity con-
straints. Using notation similar to that given for the recourse formu-
lation, the formulation of the probabilistically constrained SBSP is as
follows:

subject to

Constraints (5.12) and (5.13) are the non-anticipativity constraints.
They are effective only if the corresponding scenario is accommodated
by the solution. Note that so long as the cost coefficients are positive,

for all associated with scenario not accommodated by the
solution.

The above formulation is somewhat unique in that it uses both con-
tinuous and discrete decision variables to enforce non-anticipativity con-
straints within a probabilistically constrained model.

2. Algorithmic approaches for Stochastic
Batch-Sizing

In this section we propose some algorithmic approaches to the solution
of stochastic batch-sizing problems. It is clear from the models proposed
in the previous section that these problems involve discrete decision vari-
ables. This feature, which is realistic in several practical applications,
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has a significant impact on its tractability. Our approach to solving the
stochastic batch-sizing problem involves decomposing the multi-stage
SMIP problem using a branch and price (B&P) methodology. One of
the main advantages of this approach is that it allows us to take advan-
tage of the structure underlying the deterministic batch-sizing problem.
To give the reader a preview of the main algorithmic ideas, note that the
stochastic formulation essentially uses the non-anticipativity constraints
to bind decisions from individual (deterministic) scenario formulations.
In fact, what separates stochastic programming from deterministic op-
timization is the presence of non-anticipativity constraints. These con-
straints couple the decisions associated with different scenarios, thus
making the problem “harder” to solve. If we relax the problem, discard-
ing all the non-anticipativity constraints from the formulation, we obtain
a fully decoupled block-angular mixed-integer programming problem.
B&P methods are particularly attractive for problems with this feature
as they allow us to split the mixed-integer programming problem into
more manageable pieces corresponding to single scenario subproblems.

The B&P algorithm is motivated by the Mixed Integer Finite Basis
Theorem (Theorem 4.30 in [16]) which allows the representation of a
bounded integer polyhedron (e.g. defined by constraints (5.1), (5.3),
(5.4) and (5.5) of SBSP) by a convex hull of integer points. This method
applies the Dantzig-Wolfe decomposition principle to a master problem
which enforces non-anticipativity as well as integer requirements on the
decision variables. As with traditional Dantzig-Wolfe decomposition,
the number of variables in the master problem is exponential in terms of
the original problem size. Hence the algorithm proceeds by generating
columns as needed. Thus, only a subset of variables is handled in a
restricted master problem (SBS-RMP) which is formulated as follows:

where is the total cost associated with the column of scenario
and is the index set of columns in the SBS-RMP which be-
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long the finite set of points of Constraints (5.14) and (5.15) are
the non-anticipativity constraints and the convexity constraints respec-
tively. The integer requirements are imposed directly on the convex
combinations that arise in the master formulation.

To verify the optimality of the solution provided by the restricted
master problem (SBS-RMP), we have to verify that columns that are
not listed in the restricted master do not generate an improvement of
the objective function, if added to the restriction SBS-RMP. This task of
verifying the SBS-RMP optimality is accomplished by solving a pricing
program for each scenario For each scenario, the pricing problem
will be a deterministic batch-sizing problem. In our implementation,
we solve the deterministic batch-sizing problem using a customized dy-
namic programming algorithm, where the state variable of the system
is the inventory level and the control actions are given by the possible
production levels. The transition function of the system from one stage
to the next is represented by constraint (5.1) of the formulation given
in § 1. If a column has negative reduced cost, thus improving problem
objective function, it is added to the SBS-RMP.

This process is continued until no more columns price out negative and
the LP relaxation of SBS-RMP is solved. If the integrality conditions on
the decision variables are not satisfied, the branching phase takes place.
A straightforward branching scheme for the SBS-RMP is based on the
partition of the solution space using the original problem variables for
which we impose the integer requirements. Therefore, if a component of
the vector of the master LP solution is fractional, say the i-th
component, then the branching takes the form

The branch-and-price algorithm is summarized as follows.

Let dual variable associated with the convexity constraint ( 5.15),
dual variables associated with the non-anticipativity
constraint ( 5.14)

Initialization set

or equal to the objective function of some computed
feasible solution.

Step 1 solve the pricing problem:

or

and
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Step

Step

Step

Step

where
add the column to the current SBS-RMP with total cost computed
using the original cost vector. Otherwise go to Step 5.

2 Solve the linear relaxation of the restricted master problem RMP, and update
dual variables and

3 If go to Step 4 b, otherwise go to Step 4 a.
4 a Select and define two subproblems adding the constraints

Go to Step 5.
4 b If

then branch on For each newly generated node of the search tree define
an appropriate SBS-RMP, consistent with values assumed by the branching
variables, i.e. eliminate all the columns whose entries are not consistent with
the branching variable.
Otherwise update the incumbent solution.

5 Select an active node of the branching tree and go to Step 1, otherwise the
current solution is optimal, STOP.

Step

For a more comprehensive description of branch and price applied to
Stochastic Integer Programming problems the reader may refer to our
related paper [14]. Moreover, a discussion on practical issues concerning
efficient implementation is given in Barnhart et al. [4], Johnson et al. [11]
and Martin [16] .

3. Computational Results
In this section we provide some computational results on the stochas-

tic batch-sizing problem. We will first study whether the quality of the
LP relaxation has an impact on the computational time for the B&P
algorithm. Towards this end, we study differences due to the Krarup-
Bilde formulation, and the formulation provided in §2. Following this
experiment, we study the viability of the B&P algorithm suggested in
the previous section.

We begin by describing the test instances used in our study. Our ex-
periments involve ten randomly generated batch-sizing problems, each
involving six decision stages. For each instance, the scenario tree has
the structure of a binary tree. For node of such a tree, the condi-
tional probability associated with one branch is and that for the
other branch Here is chosen from the uniform [0,1] distribu-
tion. By choosing alternative values of as well as demands we can
generate different problem instances. The characteristics of the scenario
tree for the test instances used in our computational analyses are given
in Table 5.1.

and

or
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Our experiments were conducted on a workstation SUN Ultra 80 with
two processors and 1 GB RAM. For the CPLEX Branch-and-Bound
method (CPLEX-MIP), we implemented the formulations using AMPL
as modelling language, while the branch-and-price method has been im-
plemented using BCP (a framework for Branch, Cut and Price algo-
rithms), which is part of COIN-OR, the Common Optimization INter-
face for Operations Research [6]. As the LP engine to solve the linear
relaxation of RMP, we used CPLEX 7.0, while the subproblems were
solved using a customized dynamic programming algorithm.

We first evaluate how well the Krarup-Bilde formulation performs in
the context of the stochastic batch-sizing problem (KB-SBSP). On this
subject, we compared the relative gap of the Krarup-Bilde formulation
(5.6-5.10) with the one shown by the original formulation (5.1-5.5). The
relative gap is the percentage deviation between the optimal value of
the problem and the optimal value of its linear relaxation. As reported
in Table 5.2, we observe that the Krarup-Bilde formulation provides
slightly better relative gaps than those provided by the original SBSP
formulation. However, the difference between the two formulations is
not as significant as reported for the stochastic lot-sizing problems (see
Ahmed, Parija and King). Moreover, the SBSP formulation seems to
dominate the Krarup-Bilde formulation in terms of solution times (CPU
secs.) as well as the number of iterations. In view of these consider-
ations, we continue the remainder of our experiments using the SBSP
formulation.
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We evaluate the effectiveness of the B&P algorithm by comparing its
performance with that of CPLEX branch-and-bound method (CPLEX-
MIP). A time limit of 100 sec. was imposed for both the solvers. So-
lution statistics for B&P and CPLEX-MIP for all the instances solved
are reported in Table 5.3. First, we have to highlight that CPLEX-MIP
was not able to solve any of the instances, with the exception of the
ninth instance, within the imposed time limit. With reference to the
same statistic, the branch-and-price algorithm ran at most for 2.09 sec.
Differences between the two methods are also much more evident when

comparing the number of nodes of the search tree. Indeed, the branch
and price procedure did not branch at all, while CPLEX-MIP visited
thousands of nodes within the time limit. These results demonstrate
the quality of our method and the viability of using branch-and-price as
a methodology for special structured multi-stage SMIP problems.

Analogous computational results have been obtained for the proba-
bilistic version of the problem, see Table 5.4.

Because of the combinatorial structure of the non-anticipativity con-
straints, the probabilistically-constrained version of the stochastic batch-
sizing problem requires a greater number of search nodes.

The results shown in Table 5.4, highlight one of the intriguing points
of our branch and price implementation. The computational time re-
quired for the entire process, given by the sum of the time to solve the
linear relaxation of the restricted master problems (Time for LPs), time
spent to generate columns (Time in VG) and time for the execution of
strong branching procedures (Time in SB), is dominated by the amount
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of time required in traversing the search tree. In fact, an inordinate
amount of time is spent in traversing the search tree. The inefficiencies
of the tree management routines affect irremediably the solution times
of the probabilistically constrained version of the stochastic batch-sizing
problem. While the number of nodes still remains manageable, the in-
crease in running times limits the scalability of the proposed method for
the formulation with probabilistic constraints.

4. Solutions from Alternative Models
In this section, we highlight the differences among solutions obtained

by solving both the full recourse model and the probabilistic one. In par-
ticular, we compare full recourse solutions with probabilistic constrained
solutions obtained by solving the probabilistic constrained model using
two service levels, q = 0.90 and q = 0.75.

Due to computational difficulties with the probabilistic constrained
problem, in this section we restrict our study and analysis to a five-stage
problem. Again we use a scenario tree with a binary tree structure, as
described in § 3.

For each scenario accommodated in the solution, the value of inven-
tory level across the stages of the problem defines an inventory level
trajectory or path. Figure 1.1 reports an example of a five-stage sce-
nario inventory trajectory. More precisely the inventory trajectories for
the recourse and probabilistic solutions are given. On the abscissa we
report the stage of the problem. In the histogram the full black, the
reticulate and the dotted bars refer to the full recourse and probabilistic
constrained solutions with q = 0.90 and q = 0.75 respectively. As we
can see, the probabilistic constrained solutions exhibit a lower level of
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inventory than that provided by recourse solution. Analogous trends
are exhibited in the other single-scenario inventory paths. To provide
an overview on such trend, in Figure 1.2, we plot the period-by-period
average value of inventory (averaged across all scenarios).

Again, the full, dashed and dotted lines refer to recourse, probabilistic
with q = 0.90 and probabilistic with q = 0.75 solutions respectively. The
line representing the recourse solution inventory level is above the other
two lines.
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In most of the instances solved, we note this system behavior. Unfortu-
nately, it is not possible to give a description of inventory that is concise
and complete. Table 5.5 reports the average values of inventory (across
all scenarios) and standard deviation associated with these inventory
paths. Furthermore, we also report the maximum value of inventory
level in the solution.

In seven out of ten instances, probabilistic solutions with q = 0.75
have lower mean and standard deviation of inventory. Moreover, prob-
abilistic solutions with q = 0.75 show lower maximum inventory in all
the instances solved.

It is important to note, that the statistics reported Table 5.5 do not
provide a rigorous description of inventory, since there is a correlation
between single scenario inventory paths and there are averaging effects
due to the different number of scenarios accommodated in each solution
(those with q = 0.75, 0.90 and 1.0).

The difference in inventory level between the recourse and probabilis-
tic solutions is more and more significant as the cost structure of the
stochastic batch-sizing problem has higher and higher fixed costs and
the demand shows higher and higher volatility. The motivations of such
behavior may be brought back to the following considerations. First,
due to high fixed cost, the decision policy is to satisfy the demand of
several periods with large productions whenever they occur. Second, if
demand is highly volatile, productions should be fairly large to satisfy
all the possible scenario demand outcomes. On the other hand, if fixed
costs are negligible with respect to production and inventory costs (as in
some flexible manufacturing systems and just-in-time operations), then
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the differences between solutions from a probabilistically constrained
model and a recourse model may not be significant.

Solutions with higher q represent fewer stock-outs and hence more re-
liable. Obviously, higher reliability comes at a cost. A trade-off between
reliability and costs may be depicted as shown in Figure 1.3. Reliability

cost (backlogging) should be equal to the objective function difference
between the full recourse problem and the probabilistic problem

From an operational point of view, we may choose the level of ser-
vice corresponding an acceptable cost structure. Such insights are made
possible by the models and algorithm studied in this paper.

5. Conclusions
In this paper, we have studied the stochastic bath sizing problems

in which demand, production, inventory and set-up costs are uncertain
problem parameters, all of which evolve as discrete random variables.
This hypothesis allows us to represent uncertainty be means of a sce-
nario tree. In addition to the recourse formulation, we have presented
a probabilistically constrained version, whose solutions accommodate
a restricted number of scenarios. The latter approach may be viable in
situations where the cost of meeting demand for all scenarios may be ex-
orbitant. The solution approach that we adopt for these problems may
be classified as a branch and price method. One of the main advantages
of our approach is that it allows us to build on the wealth of knowledge
that has been developed in connection with the deterministic version of
these problems. Moreover, we handle the recourse formulation, and the
probabilistically constrained formulation within the same framework.
Through our computational experiments, we have also come to a variety
of conclusions. First, we note that the advantage of the Krarup-Bilde
reformulation does not seem to translate to lower computational times
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for the batch-sizing problem. As regards the B&P methodology, it turns
out that it is quite effective for the recourse constrained model. How-
ever, the multiple-choice constraints in the probabilistically constrained
formulation make the model significantly more difficult. Through our
study, we have also demonstrated how trade-offs between cost and reli-
ability can be investigated for the stochastic batch-sizing problem.
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Abstract

Keywords:

In this paper we review the Disjunctive Decomposition algorithm
for two-stage Stochastic Mixed Integer Programs (SMIP). This novel
method uses principles of disjunctive programming to develop cutting-
plane-based approximations of the feasible set of the second stage prob-
lem. At the core of this approach is the Common Cut Coefficient Theo-
rem, which provides a mechanism for transforming cuts derived for one
outcome of the second stage problem into cuts that are valid for other
outcomes. An illustrative application of the method to the solution
of a small SMIP illustrative example is provided.

Set convexification, Disjunctive Decomposition
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Introduction
Stochastic Mixed Integer Programs (SMIP) comprise one of the more

difficult classes of mathematical programming problems. Indeed, this
class of problems combines the extremely large scale nature of stochas-
tic programs and the inherent computational difficulties of combinato-
rial optimization. The main difficulty in solving two-stage stochastic
mixed-integer programs is that the recourse costs are represented as
the expected value of a mixed-integer program whose value function is
far more complicated than the value function of a linear program. In
general, the expected recourse function is non-convex and possibly dis-
continuous. In this paper we illustrate the Disjunctive Decomposition

algorithm with set convexification for two stage SMIP, proposed
by Sen and Higle [2000].

The method uses the principles of disjunctive programming to develop
a cutting-plane-based approximation of the feasible set of the second
stage problem. This task is streamlined via the Common Cut Coeffi-
cients Theorem (Sen and Higle [2000]), which provides a simple
mechanism for transforming cuts derived for one instance of the second
stage problem into cuts that are valid for another instance. This sig-
nificantly reduces the effort required to approximate the convexification
of the feasible set, a task that must be undertaken for each possible
outcome of the random variables involved. In this paper, we illustrate
the algorithm and the manner in which the Theorem is used to
reduce the computational effort. Because the methodology is related to,
but distinctly different from, the work of Carøe[1998], we also use this
forum to highlight the relationship between the two approaches.

This paper is organized as follows. In §1 we summarize the results
of Sen and Higle [2000], and identify connections between their work
and that of Carøe[1998]. In §2 we illustrate the application of the
Algorithm with a simple numerical example with both first and second-
stage binary variables. Finally, a discussion and our conclusions are
found in §3.

1. Background
In this section we summarize the main results from Sen and Higle

[2000] that are critical to our illustration of the algorithm. In partic-
ular, we review the theorem and discuss the details of its application.
For a more thorough explanation of disjunctive decomposition concepts,
proofs, and the derivation of the algorithm, we refer the reader to
Sen and Higle [2000]. Throughout this paper we consider the following
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stochastic mixed integer program (SMIP):

where is a set of feasible first stage decisions, is the
set of binary vectors, is a random variable defined on a probability
space and for any

It is assumed that X is a convex polyhedron, is a finite set, and that
for all Moreover, we assume that by using

appropriately penalized continuous variables, the subproblem (6.2) re-
mains feasible for any restriction of the integer variables Note that the
inclusion of integer variables in the second stage problem, (6.2), is the
primary source of the computational and algorithmic challenges associ-
ated with (6.1). In particular, in order to evaluate the SMIP objective

it is necessary to solve (implicitly or approximately) the
MIP (6.2) for each Moreover, the structural difficulties associ-
ated with MIP objective functions are well documented (see, e.g., Blair
and Jeroslow [1982] and Blair [1995]). These difficulties are compounded
by the fact that the expected value operations associated with the SMIP
objective function amounts to a convex combination of the complicated
individual MIP objective functions. The Theorem exploits the spe-
cific structure of (6.2), thereby permitting a computationally streamlined
development of SMIP objective function approximations.

1.1 Common Cut Coefficients
In an effort to develop approximations of the SMIP objective, we begin

with an approximation of the convex hull of feasible integer points for
(6.2). This set can be expressed as a disjunction,

where H is a finite index set, and the sets are polyhedral sets
represented as

Within our setting, we have as in (6.2) and includes
More formally, we note that the constraints in (6.2),
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vary with the first stage decision, and the scenario Consequently,
the disjunctive representation of the set depends on

where

A convex relaxation of the nonconvex set (6.3) can be represented by a
collection of valid inequalities of the form

While the disjunctive representation depends on the Theorem,
which we state below, ensures that as the argument changes, cut validity
can be maintained by a shift in the right-hand-side element without
altering the gradient of the cut. In the following we use

Theorem 1 (The Theorem). Consider the stochastic program with
fixed recourse as stated in (6.1), (6.2). For let

the set of mixed-
integer feasible solutions for the second stage mixed-integer linear pro-
gram. Suppose that is a finite collection of appropriately
dimensioned matrices and vectors such that for all

Let

and let

Let be given, and suppose that is nonempty for all
and is a valid inequality for There exists a
function, such that for all
is a valid inequality for

Proof. See Sen and Higle [2000].

The Theorem ensures that a valid inequality for the set
of the form can be translated to an inequality,

that is valid for the set The cut coefficients, are
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common to both sets. Thus, one may derive the left hand side coeffi-
cients, which may be applied to all scenario problems. The right hand
side is derived as necessary for each pair using a strategy
from reverse convex programming in which disjunctive programming is
used to provide facets of the convex hull of reverse convex sets (Sen and
Sherali [1987]). Given the valid inequalities, a lower
bound approximation for the scenario subproblem objective function is
given by:

We note that a version of Theorem 1 appears in Carøe[1998], although
there are some critical distinctions between Sen and Higle [2000] and
Carøe[1998]. Specifically, while Sen and Higle [2000] work within the
context of the temporal decomposition indicated in (6.1,6.2), Carøe[1998]
works within the context of the “deterministic equivalent problem”,

Accordingly, Carøe’s cuts may be translated from one scenario to an-
other, while being restricted to the higher dimension of as
compared to the dimension restriction of the Sen and Higle cuts.
It follows that the Sen and Higle cuts permit both a temporal and sce-
nario decomposition (i.e., wrt to and while Carøe’s are restricted to
only scenario decomposition (i.e., wrt Another recent paper, Sher-
ali and Fraticelli [2000] also uses cuts in this higher dimensional space.
Their approach uses the formulation-linearization techniques (Sherali
and Adams [1990]) to construct their approximation.

1.2 Convexification of the Right-Hand-Side
Function

As discussed in Sen and Higle [2000], the function is piecewise
linear and concave in the first argument. That is,
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for a specified collection Consequently, it is neces-
sary to develop a convexification of the function in order to facilitate
the solution of the lower bounding approximation (6.4). This is accom-
plished using reverse convex programming techniques, in which disjunc-
tive programming concepts are used to obtain the convex hull of reverse
convex sets (Sen and Sherali [1987]).

To begin, let the epigraph of restricted to be defined
as

where X is a polyhedral set such that

where and
Also let

Then can be defined in disjunctive normal form as

Thus the epigraph of function can be represented as the union of half-
spaces, which is a disjunctive set. In order to convexify this set, we apply
the notion of reverse polars from the theory of disjunctive programming
(Balas [1979]). These sets (reverse polars) characterize the set of all valid
inequalities of a disjunctive set, with the extreme points providing facets
of the (closure of the) convex hull of the disjunctive set. The specific
construction that we adopt is provided below, and will be referred to
as the epi-reverse polar because it represents the reverse polar of the
epigraph of

In the following, we assume that for all in (6.5). As long
as is bounded, there is no loss of generality with this assumption,
because the epigraph can be translated to ensure that The epi-
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reverse polar of this set, is defined as

Note that the epi-reverse polar only allows those facets of the convex
hull of that have positive coefficient for the variable If
are given then

Let denote the set of extreme points of the

epi-reverse polar, and let and For each

let Then for each
is a convex function. Moreover, the epigraph of

restricted to  is the closure of the convex hull of We refer
to as the convex hull approximation of and note that

whenever is an extreme point of

1.3 An Algorithmic Context for the  Theorem
As a preview of the algorithm, let us consider the scenario sub-

problems in a temporal decomposition of the SMIP, (6.1). If we let
denote the first stage solution associated with the algorithmic

iteration, the subproblems are of the form:
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Of course, in the first iteration we have

the LP relaxation of (6.2). Thus, the problem is initialized with
and as in (6.2). As iterations progress,

cutting planes of the form

are added to the subproblem, thereby refining the approximation of the
convex hull of integer solutions. As such, the vector is appended to
the matrix and the element identified is appended
to Let argmin

If the value assigned to integer variables
in is integer for all then no update is necessary, and

and
On the other hand, suppose that the subproblems do not yield integer

optimal solutions. Let denote an index for which is non-
integer for some and let denote one of the non-integer values

To eliminate this non-integer solution, a disjunction of the
following form may be used:

where

and

The index is referred to as the “disjunction variable” for iteration
Our assumptions ensure that the subproblems remain feasible for

any restriction of the integer variables, and thus both (6.8) and (6.9) are
non-empty. Also, since the disjunction is based on an either-or-condition,

is used. It should be noted that when the integer restrictions
are binary, the right hand side of (6.8b) is zero, and the right hand side
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of (6.9b) is one. This is precisely the disjunction used in lift-and-project
cuts of Balas, Ceria and Cornuéjols [1993].

Let denote the vector of multipliers associated with (6.8a), and
denote the scalar multiplier associated with (6.8b). Let and
be similarly defined for (6.9a) and (6.9b), respectively. Assuming

that the sets defined in (6.8) and (6.9) are non-empty for all the
following problem may be used to generate the common cut coefficients,

in iteration

The validity of the cut coefficients generated above follows from the
disjunctive cut principle (Balas [1979]) which requires the multipliers

to be chosen in such a way that the cut coefficients are greater than
the aggregated columns as specified above. Since the coefficients are
independent of the above LP generates common cut coefficients. This
LP/SLP is formulated following the standard approach of generating
valid inequalities in disjunctive programming (Sherali and Shetty [1980]),
and it optimizes some measure of distance of the current solution
from the cut. It is interesting to note that this problem is a simple
recourse problem, and may be interpreted as a stochastic version of the
linear program used to generate the lift-and-project cuts.

Since the disjunction used for cut formation has the
epigraph is a union of two polyhedral sets. Therefore, for each

the following parameters are derived from an optimal solution of
(6.10),

and

where
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are used to update the approximation of the polyhedron defined via (6.6),
which we denote as This polyhedron represents the epi-reverse
polar, which provides access to the convexification of Correspond-
ingly, for each the following LP is used to approximate

With an optimal solution to (6.11), we obtain
and For each these coefficientsare

used to update the right-hand-side functions
and Similarly, the solution to (6.10) is
used to update the constraint matrix,

The master program is defined as:

where is a piecewise linear approximation of the subproblem ob-
jective function, in the iteration.

1.4 Disjunctive Decomposition with Set
Convexification

The Basic Algorithm (Sen and Higle [2000]) can be stated as
follows:

Basic Algorithm
0.  Initialize.                             and are given.

and
1. Solve one LP Subproblem for each For each use the
matrix as well as the right hand side vector to
solve (6.7). If satisfy the integer restrictions,

and go to step 4.
2. Solve Multiplier/Cut Generation LP/SLP and Perform Updates
Choose a disjunction variable
(i) Formulate and solve (6.10) to obtain anddefine

(ii) Using the multipliers and the value obtained in (i) solve
(6.11) for each outcome The solution defines and which
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are used to update the right hand side functions:
and

3. Update and Solve one LP Subproblem for each For each
solve (6.7) using and If satisfies the

integer restrictions for all
Otherwise,
4. Update and Solve the Master Problem Using the dual multipliers
from the most recently solved subproblem for each (either step 1
or step 3), update the approximation by adopting a standard decom-
position method (e.g Benders [1962]). Let

and let denote the optimal value of the master problem. If
stop. Otherwise, and repeat from step 1.

2. An Illustration of the Algorithm
Consider the following two-stage SIP example problem with two sce-

narios:

where,

The first stage variables are while the second stage
variables are There are two scenarios are
and each occurring with probability 0.5. This instance is
motivated by the example in Schultz, Stougie, and van der Vlerk [1998],
where the second stage involves general integer variables. To ensure
that the subproblems remain feasible for any restriction on the integer
variables, we include an artificial variable, denoted which is penalized
in the objective at a rate of 100. Thus, we recast the problems as
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where

and

In this problem we have the following input data:
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Note that with A and b as defined above, binary solutions are extreme
points of as required. It is easily seen that
for binary values of the second stage variables a lower bound on the
objective In order to be consistent
with the requirement that the lower bound on the second stage objective
value must be zero, we translate the second stage objective function by
adding 86, thereby ensuring nonnegativity after the translation. We can
now start the algorithm.

Iteration 1 (k = 1)

algorithm is initialized with the following master program:

The initial master program yields and The upper
and lower bounds are initialized as and respec-
tively. For the first iteration of the algorithm we set

and

For step 1 of the algorithm we use and solve the linear
relaxation of the second stage subproblem for and which we call

Step 1
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and respectively:

and

The optimal solution for is and for
is

Since does not satisfy the integer restrictions, we choose as
the “disjunction variable” and create the disjunction or
for We formulate (6.10), which yields the vector for updating

and the data for (6.11) whose optimal solution is used to update
the right-hand side of the second-stage constraints. An optimal solu-
tion for (6.10) is

and We obtain by appending to

Using the solution from (6.10),

we formulate and solve (6.11) for both and The optimal solution
for is and Based on this

solution we update and as follows:

For the optimal solution of LP (6.11)

Step  2
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is and Similarly, we up-

date and as follows:

This completes Step 2 of the algorithm.

Step 3
Solving (6.7), we obtain with and

with The dual solutions are
and

because the integer restrictions are not satisfied.

Step 4
Using the dual solution for each subproblem from Step 3, we formulate
the “optimality cuts” as in Benders’ decomposition. The resulting cuts
are for and for
Since the two scenarios are equally likely, the expected values associated
with the cut coefficients yield Applying the
translation we get as the optimality
cut to add to the master program:

Solving the master program we get and an objective
value of 44.5. Therefore, the lower bound becomes The upper
bound remains the same, as before. This completes the
first iteration of the algorithm. Since and we begin the
next iteration.

Iteration 2

Step 1
We start the second iteration by solving the following updated subprob-
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lems with

and

The optimal solution for is
and for it is

Step 2
Since does not satisfy the integer restrictions, we choose as
the “disjunction variable” and create the disjunction or
for We formulate and solve (6.10), which yields the data used
to update and to formulate (6.11) whose optimal solution is used
to update the right-hand side of the second-stage constraints. Solving
LP (6.10) we obtain

and We obtain

by appending to Us-

ing the solution of (6.10) we formulate and solve (6.11) for both and
The optimal solution for is and

Based on this solution we update and as

follows:

For the optimal solution of LP (6.11) is
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and Similarly, we update and as follows:

This completes Step

2 of the algorithm.

Step 3
Solving (6.7) we obtain with
and with The dual solutions are

and
because the integer restrictions have not been met.

Step 4
Using the dual solution for each subproblem from step 3, we formu-
late the “optimality cuts” as in Benders’ decomposition. The resulting
cuts are for and
for The expected value associated with the cut coefficients yields

Applying the translation
we get as the optimality cut to add to the
master program:

Solving the master program we get and an objective
value of 47.5. Therefore, the lower bound becomes
and we begin the next iteration.
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Iteration 3

Step 1
We start the third iteration by solving the following updated subprob-
lems with

and

The optimal solution for is and
for the optimal solution is The
dual solutions are and

We now have an incumbent integer
solution

We go to step 4 of the algorithm.
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Step 4
Using the dual solution for each subproblem from Step 3, we formulate
the “optimality cuts” as in Benders’ decomposition. The resulting cuts
are for and for
and the expected values yield Applying the
translation we get 48.5 as the optimality
cut to add to the master program:

Solving the master program we get and an objective
value of 48.5. Therefore, the lower bound becomes Since the
upper bound and the lower bound are now equal, the algo-
rithm terminates and we have an optimal solution:

and objective value –37.5. It so happens
that both [0,0] and [1,0] are optimal for the master problem, but op-
timality can only be concluded for the point [0,0], since that is the
incumbent.

It is interesting to note that while the cuts used in and in
iteration 3 were obtained at and integer solutions

and were obtained with the first
relaxations solved at The credit for this should go to the
Theorem.

3. Conclusions
This paper has presented the main results on set convexifications for

large scale Stochastic Integer Programming and has given an illustration
of the new decomposition method called the algorithm. At the heart
of this novel method is the Theorem, which allows both a temporal
and scenario decomposition of the SMIP. We have used a simple exam-
ple to illustrate the application of the algorithm. In this example
the algorithm converges to an optimal solution in three iterations.
The example clearly illustrates how the second-stage convexifications are
sequentially carried out and how they impact the first stage objective
function.
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Our primary focus in this paper is the generation of cutting planes
within a temporal decomposition of two-stage SMIPs. We note, how-
ever, that cutting planes alone are typically inadequate for solving large
mixed-integer programs. Thus, our ultimate goal is to use cuts such as
those discussed in this paper within a Branch-and-Cut (BAC) setting,
where a careful generation of cuts is necessary to further enhance the
success of BAC-type algorithms for solving SMIP problems. Therefore,
our future work is to incorporate the algorithm in a branch-and-cut
setting. Moreover, the computational demands of this class of problems
calls for the use of high performance computing platforms.

Acknowledgements: This research was supported by a grant from the
National Science Foundation.

References

Balas, E. [1979], “Disjunctive Programming,” Annals of Discrete Mathe-
matics, 5, pp. 3-51.

Balas, E.S. Ceria, and G. Cornuéjols [1993], “A lift-and-project cutting
plane algorithm for mixed 0-1 integer programs,” Math. Programming,
58, pp. 295-324.

Benders,J.F. [1962], “Partitioning procedures for solving mixed-variable
programming problems,” Numerische Mathematic 4, pp. 238-252.

Blair,C. [1995], “A closed-form representation of mixed-integer program
value functions,” Math. Programming, 71, pp. 127-136.

Blair,C., and R. Jeroslow [1982], “The value function of an integer pro-
gram,” Math. Programming, 23, pp. 237-273.

Carøe, C.C. [1998], Decomposition in Stochastic Integer Programming,
Ph.D. thesis, Institute of Mathematical Sciences, Dept. of Operations
Research, University of Copenhagen, Denmark.

Schultz, R., L. Stougie, and M.H. van der Vlerk [1998], “Solving stochas-
tic programs with integer recourse by enumeration; a framework using
Gröbner basis reduction,” Math. Programming, 83, pp. 71-94.

Sen, S. and J.L. Higle [2000], The Theorem and a Algorithm
for Large Scale Stochastic Integer Programming: Set Convexification,
Working Paper, Dept. of Systems and Industrial Engineering, The Uni-
versity of Arizona, Tucson AZ 85721. (submitted to Math. Programming

Sen, S. and H.D. Sherali [1987], “Nondifferentiable reverse convex pro-
grams and facetial cuts via a disjunctive characterization,” Math. Pro-
gramming, 37, pp. 169-183.



Decomposition with Convexification 125

Sherali, H.D. and W.P. Adams [1990], “A hierarchy of relaxations be-
tween the continuous and convex hull representations for 0-1 program-
ming problems,” SIAM J. on Discrete Mathematics, 3, pp. 411-430.

Sherali, H.D. and B.M.P. Fraticelli [2002], “A modification of Benders’ de-
composition algorithm for discrete subproblems: an approach for stochas-
tic programs with integer recourse,” Journal of Global Optimization, 22,
pp. 319-342.

Sherali, H.D. and C.M. Shetty [1980], Optimization with Disjunctive Con-
straints, Lecture Notes in Economics and Math. Systems, Vol. 181,
Springer-Verlag, Berlin.


	Preliminaries
	Contents
	Preface
	Contributing Authors
	Foreword
	Interdicting Smuggled Nuclear Material
	Enumerating Near-Min s-t Cuts
	A Decomposition-Based Approximation for Network Inhibition
	Interdicting Stochastic Networks
	Stochastic Batch-Sizing
	Disjunctive Decomposition with Set Convexification

