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Introduction

Science is made of facts just as a house is made of bricks, but a collection of facts is no

more science than a pile of bricks is a house.

Henri Poincaré

The aim of the disciplines of praxis is not theoretical knowledge. . . . It is to change the forms

of action. . . .

Aristotle

Transportation systems consist not only of the physical and organizational ele-

ments that interact with each other to produce transportation opportunities, but also

of the demand that takes advantage of such opportunities to travel from one place

to another. This travel demand, in turn, is the result of interactions among the var-

ious economic and social activities located in a given area. Mathematical models

of transportation systems represent, for a real or hypothetical transportation sys-

tem, the demand flows, the functioning of the physical and organizational elements,

the interactions between them, and their effects on the external world. Mathematical

models and the methods involved in their application to real, large-scale systems are

thus fundamental tools for evaluating and/or designing actions affecting the phys-

ical elements (e.g., a new railway) and/or organizational components (e.g., a new

timetable) of transportation systems.

This book discusses the mathematical models that are used to analyze transporta-

tion systems, presenting them as the result of a limited number of general assump-

tions (theory). It also deals with the methods needed to make these models opera-

tional, and with their application to transportation system project design and evalu-

ation. This field of knowledge is known as transportation systems engineering.

The development of a transportation system project may involve functional

design of new infrastructure facilities such as roads, railways, airports, and car

parks; assessment of long-term investment programs; evaluation of project financ-

ing schemes; determination of schedules and pricing policies for transportation ser-

vices; definition of circulation and regulation schemes for urban road networks; and

design of strategies for new advanced traffic control and information systems. Phys-

ical elements of the system are designed and/or selected from among those available

to provide the characteristics and performance that are required of the transportation

services to be provided. A transportation system project must of course be techni-

cally feasible; but it is equally important that its definition reflects a quantitative

assessment of its characteristics and impacts against the objectives and constraints

that the project is intended to satisfy.

The difficulty, but also the fascination, of this field derives from the intrinsic

complexity of transportation systems. They are, indeed, internally complex systems,

made up of many elements influencing each other both directly and indirectly, of-

ten nonlinearly, and with many feedback cycles. Furthermore, only some elements

in the system are “technical” in nature (vehicles, infrastructure, etc.), governed by

the laws of physics and, as such, traditionally studied by engineers. In contrast,

the number of travelers or quantity of goods that use these physical elements and,
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vi Introduction

through congestion, the performance of these elements and the impacts of their use,

are strictly connected to travel demand and users’ behavior. Thus, the analysis of

travel demand plays a key role in understanding and designing transportation sys-

tems. However, travel demand analysis requires a different kind of approach, one

that draws on concepts traditionally used more in social and economic sciences than

in engineering.

Apart from their internal complexity, transportation systems are closely interre-

lated with other systems that are external to them. Transportation projects may have

implications for the economy, the location and intensity of the activities in a given

area, the environment, the quality of life, and social cohesion. In short, they have a

bearing on many, often conflicting, interests, as can easily be seen from the heated

debates that accompany almost all decisions concerning transportation at all scales.

Both the intensity of these impacts and our sensitivity to them have grown consider-

ably in recent decades due to continued economic and social development, and they

have to be addressed in the design and evaluation of transportation projects.

For all these reasons, the consequences of a project cannot be predicted using

only experience and intuition. Although they are prerequisites for good design, ex-

perience and intuition do not allow quantitative evaluation of the effects of a project,

and they may be seriously misleading for complex systems. Modeling supported

by empirical evidence sometimes produces unexpected and seemingly paradoxi-

cal results: a capacity addition that increases congestion on existing facilities; local

projects whose effects propagate to remote parts of the system; price increases that

lead to revenue reductions; measures meant to reduce car usage that result in an

overall increase in air pollution and energy consumption; and so on. Furthermore,

due to the large number of design variables and the complexity of their interactions,

modeling the effects of multiple variables requires powerful mathematical tools to

help the designer find satisfactory combinations. Finally, social equity issues can

only be objectively addressed using a quantitative approach.

The mathematical theory of transportation systems that is presented in this book

has been developed over recent decades to develop solutions to these problems.

This discipline is based on a systems engineering approach. It is concerned with

the relationships among the elements making up a transportation system and with

their performance. It possesses a theoretical core that is unique to transportation

systems, and also draws on the theory and methods of many other disciplines, es-

pecially economics, econometrics, and operations research, in addition to those that

are traditionally more directly relevant to transportation engineers, such as traffic

engineering, transportation infrastructure engineering, and vehicle mechanics.

The discipline’s theoretical foundation is, in my opinion, a “topological–

behavioral” paradigm consisting of a set of assumptions and a limited number

of functional relationships. This paradigm is an abstract representation of trans-

portation services and their functioning (supply or performance models), of travel

demand and users’ behavior (demand models), and of the interactions of the two

(demand/supply interaction or assignment models).

Over the years, these assumptions and relationships have been extended and for-

malized. The general mathematical properties of the resulting models have been
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investigated, producing a wide and internally consistent system of results with a cer-

tain degree of formal elegance. This does not preclude the possibility of significant

new theoretical and methodological developments in the future. Indeed, transporta-

tion systems engineering is probably one of the areas of applied systems engineering

in which research is most active, most able to generate extensions and generaliza-

tions within the accepted assumptions, and most able to widen and even replace the

assumptions on which it is based. Examples can be seen in research on the inter-

actions of transportation with land-use and activity systems, in models of supply

design and in the analysis of within-day dynamic systems.

Transportation systems theory would, however, be of little use for addressing

practical problems without a set of methods to make it operational. This allows us

to specify systems of mathematical models that are consistent with the theory and

able to represent the relevant aspects of different transportation systems in the real

world. Such methods range from rules for defining a network model to techniques

for estimating travel demand and algorithms for solving large-scale computational

problems. These methods use the results of a variety of disciplines and, taken as a

whole, make up the technical tools and resources of transportation system engineers

and analysts.

This book extends and generalizes the contents of my previous book Transporta-

tion Systems Engineering: Theory and Methods published in 2001, updating both

the theory and the application methods. In its attempt to address both general theory

and practical methods, the book should be useful to readers with different needs and

backgrounds. The various topics are presented, wherever possible, with a gradually

increasing level of detail and complexity. Some sections can be used as the basis

for beginning and advanced courses in transportation systems engineering and other

disciplines, such as economics and regional science. Some sections deal with topics

that are mainly of interest for specific applications or are still subjects of research;

exclusion of such sections, which are marked with an asterisk, should not limit the

understanding of later sections and chapters. The book is made up of ten chapters

and an appendix.

Chapter 1 defines a transportation system, and identifies its components and the

assumptions on which the theory described in later chapters is developed. It also

introduces some application areas of transportation systems engineering, as well as

the decision-making process and the role of quantitative methods in this process.

Chapters 2 to 6 explore the theory of transportation systems under the traditional

assumption of intraperiod stationarity of the relevant variables. More specifically,

Chap. 2 deals with mathematical models that represent transportation supply sys-

tems. These models combine traffic flow theory and network flow theory models.

The chapter introduces an abstract model that links network flow theory models with

the mathematical relationships between transportation costs and flows. The chap-

ter then presents general guidelines concerning the applications of network models

and specific models for transportation systems for both continuous and scheduled

service. Chapter 3 describes the theoretical basis and mathematical properties of

random utility models; these are the general tools most widely adopted to model

the travel behavior of transportation system users. Chapter 4 then describes specific
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mathematical models that represent different aspects of passenger and freight travel

demand, introducing their theoretical formulations and providing several examples.

Chapters 5, 6, and 7 describe and analyze assignment models, which predict the

outcome of transportation demand/supply interactions; these outcomes include user

flows and travel conditions (times, costs, etc.) on the different components of the

supply system. Some solution methods are also presented.

Chapter 5 concerns models (and simple algorithms) for within-day static net-

work equilibrium, assuming (fully) pre-trip path choice (either deterministic or sto-

chastic), fixed demand, one transportation mode, a single user class. Shortest path

computation as well as assignment to uncongested networks are also addressed.

Chapter 6 extends the results of Chap. 5 to within-day static network equilibrium

with combined pre-trip en-route path choice (such as hyperpath assignment), vari-

able demand, several user classes, several transportation modes. Some references

are also made to recent inter-period (day-to-day) dynamic models, including both

deterministic and stochastic process approaches.

Chapter 7 extends the results of the previous chapters to intra-period (within-

day) dynamic systems. In particular, it describes supply, demand and supply/demand

interaction (assignment) models for within-day dynamic systems, considering both

continuous and scheduled service systems.

Chapter 8 explores methods for estimating travel demand. Methods derived from

statistics and econometrics are applied to survey data to estimate existing travel

demand in a given area, and to specify and calibrate travel demand models. The

chapter also discusses techniques for estimating existing demand flows and model

parameters from aggregate data, specifically traffic counts.

Chapter 9 briefly describes several supply design models and algorithms. It con-

siders design problems for road and transit networks that relate to network topology,

performance characteristics, and pricing. The design models and algorithms can be

used to determine the values of variables that define the design problem at hand by

optimizing different types of objective functions under various constraints.

Finally, Chap. 10 describes methods for evaluating and comparing alternative

transportation projects. Cost-benefit analysis is presented as an example of eco-

nomic analysis, cost-revenue analysis as an example of financial analysis, and differ-

ent multicriteria analysis approaches as examples of quantitative methods for com-

paring different projects.

For full appreciation and understanding of the book, the reader should have a ba-

sic knowledge of calculus, mathematical analysis, optimization techniques, graph

and network theory, probability theory, and statistics. Appendix A provides an

overview of additional relevant mathematics.

Different reading paths can be followed according to the reader’s interests. For

example, a path focusing on demand analysis could consist of Chaps. 3, 4, and 8,

whereas one focusing on transportation systems design and planning could consist

of Chaps. 2, 5, 6, 7, 9, and 10.

A book of this scope and magnitude cannot be completed without the help and

the assistance of several individuals. Giulio Erberto Cantarella took part in the en-

tire decision process that underlies the structure of the book and the choice of its
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contents. He also contributed directly to it, co-authoring Sect. 2.2 of Chap. 2 and

Chaps. 5 and 6.

Francesca Pagliara contributed to Chaps. 1 and 10, Vincenzo Punzo contributed

to Chaps. 2 and 7, Andrea Papola and Vittorio Marzano to Chaps. 3, 4, and 8, Ar-

mando Cartenì to Chaps. 5 and 6, and Mariano Gallo to Chap. 9. Natale Papola and

Guido Gentile are the authors of Sect. 7.5 and Appendix 7.A. I would also like to

thank Paolo Ferrari and Pietro Rostirolla for their advice and contributions to the

preparation of Chap. 10. Almost all topics covered in this book were discussed over

the years with Agostino Nuzzolo, who also co-authored Sect. 7.6 of Chap. 7 on

scheduled service transportation systems.

I would like also to thank Jon Bottom for revising the English of the whole book

as well as for several comments and suggestions.

Despite such extensive contributions and input from others, I take sole responsi-

bility for any mistakes.
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Chapter 1

Modeling Transportation Systems:
Preliminary Concepts and Application Areas

1.1 Introduction

Transportation systems consist not only of the physical and organizational elements

that interact with each other to produce transportation opportunities, but also of

the demand that takes advantage of such opportunities to travel from one place to

another. This travel demand, in turn, is the result of interactions among the vari-

ous economic and social activities located in a given area. Mathematical models

of transportation systems represent, for a real or hypothetical transportation sys-

tem, the demand flows, the functioning of the physical and organizational elements,

the interactions between them, and their effects on the external world. Mathematical

models and the methods involved in their application to real, large-scale systems are

thus fundamental tools for evaluating and/or designing actions affecting the phys-

ical elements (e.g., a new railway) and/or organizational components (e.g., a new

timetable) of transportation systems.

This book discusses the mathematical models that are used to analyze transporta-

tion systems, presenting them as the result of a limited number of general assump-

tions (theory). It also deals with the methods needed to make these models opera-

tional, and with their application to transportation system project design and evalu-

ation. This field of knowledge is known as transportation systems engineering. This

chapter defines transportation systems and identifies their main elements and the in-

teractions between them (Sect. 1.2). Transportation systems are presented, and the

main components and their interactions are defined; the basic assumptions made to

analyze these systems are described in Sect. 1.3 through mathematical models that

are briefly introduced in Sect. 1.4 and are described at length in later chapters. Fi-

nally, Sect. 1.5 describes the “mission” of transportation systems engineering: its

role in the wider and more complex decision-making process, as well as some of its

typical application areas.

1.2 Transportation Systems

A transportation system can be defined as a set of elements and the interactions

between them that produce both the demand for travel within a given area and the

provision of transportation services to satisfy this demand. Almost all of the com-

ponents of a social and economic system in a given geographical area interact at

some level of intensity. However, in practice it is impossible to take into account
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Fig. 1.1 Relationships between the transportation system and the activity system

every interacting element when addressing a given transportation engineering prob-

lem. The general approach of systems engineering is to isolate the elements most

relevant to a problem at hand, and to group these elements and the relationships be-

tween them within the analysis system. The remaining elements are assigned to the

external environment; they are taken into account only in terms of their interactions

with the analysis system. In general, the analysis system includes the elements and

interactions that an action under consideration may significantly affect. Hence there

is a strong interdependence between the identification of the analysis system and

the problem to be solved. The transportation system of a given area can also be seen

as a subsystem of a wider territorial system with which it strongly interacts. The

details of the specific problem determine the extent to which these interactions are

included either in the analysis system or the external environment.

These concepts can be clarified by some examples. Consider an urban area con-

sisting of a set of households, workplaces, services, transportation facilities, govern-

ment organizations, regulations, and so on. This system has a hierarchical structure

and, within it, several subsystems can be identified (see Fig. 1.1).

One of the subsystems – the activity system – represents the set of individual,

social, and economic behaviors and interactions that give rise to travel demand. To

describe the geographic distribution of activity system features, the urban area is

typically subdivided into geographic units called zones. The activity system can be

further broken down into three subsystems consisting of:
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• The households living in each zone, categorized by factors such as income level,

life-cycle, composition, and the like

• The economic activities located in each zone, categorized by a variety of socio-

economic indicators (e.g., sector of activity; value added; number of employees)

• The real estate system, characterized by the floor space available in each zone for

various uses (industrial production, offices, building areas, etc.) and the associated

market prices

The different components of the activity system interact in many ways. For ex-

ample, the number and types of households living in the various zones depend in

part on employment opportunities and their distribution, and therefore on the eco-

nomic activity subsystem. Furthermore, the location of some types of economic

activities (retail, social services such as education and welfare, etc.) depends on the

geographic distribution of the households. Finally, the number of households and the

intensity of economic activities in each zone depend on the availability of specific

types of floor space (houses, shops, etc.) and on their relative prices. Detailed analy-

sis of the mechanisms underlying each subsystem of the activity system lies beyond

the scope of this book. However, it should be noted that the relative accessibility of

the different zones is extremely relevant to many of these mechanisms.

Another subsystem – the transportation system – consists of two main compo-

nents: demand and supply.

Travel demand derives from the need to access urban functions and services in

different places and is determined by the distribution of households and activities in

the area. Household members make long-term “mobility choices” (holding a driving

license, owning a car, etc.) and short-term “travel choices” (trip frequency, time,

destination, mode, path,1 etc.), and use the transportation network and services so

that they can undertake different activities (work, study, shopping, etc.) in different

locations. These choices result in travel demand flows, that is, the trips made by

people between the different zones of the city, for different purposes, in different

periods of the day, by means of the different available transportation modes. Simi-

larly, economic activities require the transportation of goods that are consumed by

other activities or by households. Goods are moved between production plants, re-

tail locations, and houses or other “final consumption” sites. Their movements make

up freight travel demand and corresponding flows.

Both mobility and travel choices are influenced by the characteristics of the trans-

portation services offered by the available travel modes (such as private vehicles,

transit, walking). These characteristics are known as level of service or performance

attributes; they include travel times, monetary costs, service reliability, riding com-

fort, and the like. For instance, the choice of destination may be influenced by the

travel time and cost needed to reach each alternative destination; the choice of depar-

ture time depends on the travel time to the destination and the desired arrival time;

and the choice of transportation mode is influenced by the time, cost and reliability

of the available modes.

1The term path is used in the book to define both a choice alternative and a path in a graph. The

term route is also used in the literature with either or both of these meanings.
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The transportation supply component is made up of the facilities (roads, parking

spaces, railway lines, etc.), services (transit lines and timetables), regulations (road

circulation and parking regulations), and prices (transit fares, parking prices, road

tolls, etc.) that produce travel opportunities. Travel from one location to another

frequently involves the successive use of several connected facilities or services.

Transportation facilities generally have a finite capacity, that is, a maximum number

of units that may use them in a given time interval. Transportation facilities also

generally exhibit congestion; that is, the number of their users in a time unit affects

their performance. When the flow approaches the capacity of a given facility (e.g., a

road section), interactions among users significantly increase and congestion effects

can become important. Congestion on a facility can significantly affect the level

of service received by its users; for example, travel time, service delay, and fuel

consumption all increase with the level of congestion.

Finally, the performance of the transportation system influences the relative ac-

cessibility of different zones of the urban area by determining, for each zone, the

generalized cost (disutility) of reaching other zones (active accessibility), or of be-

ing reached from other zones (passive accessibility). As has been noted, both these

types of accessibilities influence the location of households and economic activi-

ties and ultimately the real estate market. For example, in choosing their residence

zone, households take account of active accessibility to the workplace and other ser-

vices (commerce, education, etc.). Similarly, economic activities are located to take

into account passive accessibility on behalf of their potential clients; public services

should be located to allow for passive accessibility by their users, and so on.

Several feedback cycles can be identified in an urban transportation system.

These are cycles of interdependence between the various elements and subsystems,

as shown in Fig. 1.1. The innermost cycle, the one that involves the least number of

elements and that usually shows the shortest reaction time to perturbations, is the in-

teraction between facility flows, the performance due to congestion and transporta-

tion costs, in particular those connected with road transportation. The trips made by

a given mode (e.g., car) choose from among the available paths and use traffic ele-

ments of the transportation network (e.g., road sections). Due to congestion, these

flows affect the level of service on the different paths and so, in turn, influence user

path choices.

There are also outer cycles, cycles that influence multiple choice dimensions

and that involve changes occurring over longer time periods. These cycles affect

the split of trips among the alternative modes and the distribution of these trips

among the possible destinations. Finally, there are cycles spanning even longer time

spans, in which interactions between activity location choices and travel demand are

important. Again, through congestion, travel demand influences accessibility of the

different areas of the city and hence the location choices of households and firms.

It is clear from the above that a transportation system is a complex system, that

is, a system made up of multiple elements with nonlinear interactions and multiple

feedback cycles. Furthermore, the inherent unpredictability of many features of the

system, such as the time needed to traverse a road section or the particular choice

made by a user, may require the system state to be represented by random variables.
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As a first approximation, these random variables are often represented by their ex-

pected values.

Transportation systems engineering has traditionally focused on modeling and

analysis of the elements and relationships that make up the transportation system,

considering the activity system as exogenously given. More specifically, it has typi-

cally considered the influence of the activity system on the transportation system (in

particular on travel demand), whereas the inverse influence of accessibility on activ-

ity location and level has usually been neglected. However, this divide is rapidly van-

ishing and transportation system analysis increasingly studies the whole activity–

transportation system, albeit at different levels of detail than do disciplines such as

regional science and spatial economics.

The aim of transportation systems engineering, as shown in greater detail be-

low, is to design transportation systems using quantitative methods such as those

described in the following chapters. Transportation projects may have very different

scales and impacts, and consequently the boundaries between the analysis system

and the external environment may vary considerably.

If the problem at hand is long-term planning of the whole urban transportation

system, including the construction of new motorways, railway lines, parking facil-

ities, and the like, the analysis has to include the entire multimode transportation

system and possibly its relationships with the urban activity system. Indeed, the

resulting modifications in the transportation network and service performance char-

acteristics and the time needed to implement the plan are such that all components

of the transportation and activity systems will likely be affected.

There are cases, however, in which the problem is more limited. If, for exam-

ple, the aim is to design the service characteristics of an urban transit system with-

out building new facilities (and without implementing new policies affecting other

modes, such as car use restrictions), it is common practice to include in the analysis

system only those elements (demand, services, prices, vehicles, etc.) related to pub-

lic transportation. The rest of the transportation system is included in the external

environment interacting with the public transportation system.

As shown in the following chapters, the above examples can be generalized to

areas of different size (a region, a whole country, etc.) and extended to cover freight

transportation.

1.3 Transportation System Identification

Transportation system identification is the definition of the elements and relation-

ships that make up the system to be analyzed. It includes the following steps.

• Identification of relevant spatial dimensions

• Identification of relevant temporal dimensions

• Definition of relevant components of travel demand

Some comments on the different steps are given below. However, it should be

stated at the outset that system identification cannot be reduced to the mere ap-

plication of a set of rigid rules. Rather, it requires the application of professional
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expertise, which is acquired by combining experience with a thorough knowledge

of the methods of transportation systems engineering.

1.3.1 Relevant Spatial Dimensions

The identification of relevant spatial dimensions consists of three phases:

• Definition of the study area

• Subdivision of the area into traffic zones (zoning)

• Identification of the basic network

These three phases necessarily precede the building of any model of the transporta-

tion system because they define the spatial extent of the system and its level of

spatial aggregation.

Study Area

This phase delineates the geographical area that includes the transportation system

under analysis and encompasses most of the project effects. First, the analyst must

consider the decision-making context and the type of relevant trips: commuting,

leisure, and so on (see Sect. 1.3.3). Most trips of interest should have their origin

and destination inside the study area. Similarly, the study area should include trans-

portation facilities and services that are likely to be affected by the transportation

project. As one example, the study area for a new traffic scheme should include

possible alternative roads for rerouting; as another, the study area for a new in-

frastructure project should include locations where the number of trips starting or

ending may change due to variations in accessibility. The limit of the study area is

the area boundary. Outside this boundary is the external area, which is only con-

sidered through its connections with the analysis system. For instance, the study

area might be a whole country if the transportation project is at a national level;

alternatively, it may be a specific urban area, or part of an urban area for a traffic

management project.

Zoning

In principle, the trips undertaken in a given area may start and end at a large number

of points. To model the system, it is necessary to subdivide the study area (and

possibly portions of the external area) into a number of discrete geographic units

called traffic analysis zones (TAZs). Trips between two different traffic zones are

known as interzonal trips, whereas intrazonal trips are those that start and end within

the same zone.

In most transportation models, all trips that start or end within a zone are rep-

resented as if their terminal points were at a single fictitious node called the zone
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Fig. 1.2 Zoning and basic network

centroid, located in the zone near the geographic “center of gravity” of the full set of

actual trip terminal points that it represents. In this representation, intrazonal trips

both start and end at the same centroid location, so their effects on the network

cannot be modeled.

Zoning can have different levels of detail, that is, a coarser or finer grain. For

example, traffic zones may consist of entire cities or groups of cities in a regional or

national model, or of one or a few blocks in urban traffic model.

For a given model, the density of zoning should approximately correspond to the

density of the relevant network elements: a denser set of network elements corre-

sponds to a finer zoning and vice versa (see Fig. 1.2). For example, if the urban

system includes public transportation, it is common practice to consider smaller

traffic zones than for a system including only individual cars. This allows walking

access to transit stops and/or stations to be realistically represented in terms of the

distance from the zone centroid.

The external area is usually subdivided into larger traffic zones. External zones

represent trips that use the study area’s transportation system but start or end out-

side of the study area itself. External zones are also represented by zone centroids

sometimes called stations.

For a given study area and analysis problem, there may be several possible zoning

systems. However, some general guidelines are usually followed.

• Physical geographic separators (e.g., rivers, railway lines, etc.) are convention-

ally used as zone boundaries because they prevent “diffuse” connections between
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Fig. 1.3 Basic road network for a portion of urban area

adjacent areas and therefore usually imply different access conditions to trans-

portation facilities and services.

• Traffic zones are often defined as aggregations of official administrative areas

(e.g., census geographic units, municipalities, or provinces). This allows each

zone to be associated with the statistical data (population, employment, etc.) usu-

ally available for such areas.

• A different level of zoning detail may be adopted for different parts of the study

area depending on the precision needed. For example, smaller zones may be used

in the vicinity of a specific facility (e.g., a new road, railway, etc.) for which traffic

flows and impacts must be predicted more precisely.

• A traffic zone should group connected portions of the study area that are relatively

homogeneous with respect both to their land use (e.g., residential or commercial

uses in urban areas; industrial or rural uses in outlying areas) and to their acces-

sibility to transportation facilities and services.

Basic Network

The set of physical elements represented for a given application is called the basic

network. For example, in urban road systems, the road sections and their main traf-

fic regulations such as one-way, no turn, and the like are indicated (see Fig. 1.3).

For scheduled service systems, the infrastructure over which the service is oper-

ated (road sections, railways, etc.) will be indicated, together with the main stops or

stations, the lines operating along the physical sections, and so on.

The facilities and services included in the network might relate to one or to sev-

eral transportation modes. The former is referred to as a single mode system and the

latter as a multimodal system.
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Relevant facilities and services are identified based on their role in connecting

the traffic zones in the study area and the external zones. This implies a close in-

terdependence between the identification of the basic network and zone systems.

Facilities and services may also be included according to their relationship to the

transportation alternatives under consideration.

Because the flows on network elements resulting from intrazonal trips are not

modeled, very fine zoning with a coarse basic network will probably cause overes-

timation of the traffic flows on the included network elements. Conversely, a very

detailed basic network with coarse zoning may lead to underestimation of some

traffic flows.

Identification of the relevant elements is obviously easier when all the services

and facilities play a role in connecting traffic zones, as may be the case, for example,

for a national airways network. In the case of road networks, only a subset of roads

is relevant in connecting the different zones. In urban areas, for example, local roads

are usually excluded from the basic network of the whole area, although they may

be included in the basic networks of spatially limited subsystems (a neighborhood

or part of it). Similarly, when dealing with a whole region, most of the roads within

each city will not be included in the basic network.2

1.3.2 Relevant Temporal Dimensions

A transportation system operates and evolves over time, with the characteristics of

both travel demand and supply varying at different time scales. For example, the

number of trips undertaken in an urban area and the frequency of transit services

vary by time of day, by day of the week, and so on. Although space has always

been recognized as a fundamental dimension of transportation systems, the time di-

mension has often been overlooked. However, determination of the relevant analysis

time intervals as well as assumptions about system variability within those intervals

are crucial modeling decisions.

The main assumptions related to the temporal dimensions of a particular study

include the following.

• Definition of the analysis time horizon, and assumptions regarding long-term

trends in the exogenous variables

• Selection of reference periods to account for variations in travel demand and sup-

ply

• Assumptions about the variability of system parameters within each selected ref-

erence period

• Procedures to infer overall system attributes by combining the results obtained

from the modeling and analysis of each reference period

2Recent developments in databases and Geographic Information Systems (GIS) allow geographi-

cally referenced data about the physical elements of the basic network of a given area to be readily

stored, retrieved, and represented.



10 1 Modeling Transportation Systems: Preliminary Concepts and Application Areas

Design and evaluation of transportation projects typically involve two distinct

time scales. Design (e.g., determining the required number of road lanes, the settings

of a traffic signal at an intersection or the service frequency of a transit line) usually

requires information on short maximum-load periods such as the peak hour. This

information is obtained from a transportation model by analyzing conditions in a

particular reference or model period (see Chap. 9). On the other hand, economic or

financial evaluations usually require information about a project’s performance over

a time span comparable to its technical life (see Chap. 10). The analysis period is

the entire time duration relevant to the study of a given system.

Depending on the application, the analysis period may include one or more model

periods. For major infrastructure projects, for example, the analysis period may span

several years or even decades, but the system is typically modeled for only a limited

number of reference periods (e.g., one average day per year); the results obtained for

the model periods are then expanded to the whole analysis period. By contrast, ap-

plications such as traffic signal setting, for example, may only require the modeling

of a single reference period (e.g., the A.M. peak period on an average weekday).

If both demand and supply remained approximately constant over the whole

analysis period, then any shorter interval could be adopted as a reference period,

and the results obtained from modeling the reference period could validly be ex-

trapolated to the whole analysis period. However, because transportation system

characteristics change over time, a selected reference period will only be represen-

tative of a portion of the analysis period. Thus, the latter is typically subdivided

into several model periods, corresponding to different representative situations.3

Figure 1.4 shows the variation of urban travel demand by trip purpose within an

average weekday. In this case, inasmuch as the hypothesis of constancy within the

day would clearly be unrealistic, the day would typically be subdivided into shorter

model periods (e.g., morning peak, off-peak, evening peak).

One approach is to assume that all relevant transportation characteristics are con-

stant on average during the reference period, and independent of the particular in-

stant at which they are modeled: this is the assumption of within-period stationarity.

Traditional mathematical models of transportation systems assume that demand and

supply remain constant over a period of time long enough to allow the system to

reach a stationary or steady-state condition.

The other approach explicitly models the variations in demand and supply within

the reference period; this is the assumption of within-period dynamics. It should be

noted that, in practice, within-period dynamic models typically assume that some

elements of the system (e.g., activity-system variables or global travel demand) re-

main constant within the model period.

In general, three kinds of time variations of system characteristics are important.

3It might be thought that analysis intervals that include several stationary subperiods (e.g., an aver-

age day with several homogeneous peak and off-peak periods) could be dealt with by considering

a single reference period with average parameter values (e.g., travel demand or supply). However,

this approach could lead to serious errors, especially for congested systems (see Chap. 2). Conges-

tion and demand phenomena are typically highly nonlinear, and average flows and service levels

can differ significantly from flows and service levels computed using average parameter values.
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Fig. 1.4 Breakdown of urban travel demand by time of day and purpose

(a) Long-term variations or trends at the global level and/or systematic variations

that can be identified by averaging over multiple reference periods. For example,

if reference intervals are single days, a trend consists of variations in the total

level and/or in the structure of the average annual demand, observed over several

years. In this case, the daily demand is averaged over 365 elementary periods.

Long-period variations are often the result of structural changes in the socioe-

conomic variables underlying travel demand, or in transportation supply. For

example, variations in the level of economic activity, production technologies,

household income, individual vehicle ownership, sociodemographic population

characteristics, lifestyles, urban migration, and the stock of transportation facili-

ties and services have significantly modified the level and structure of passenger

and freight travel demand over the years (see Fig. 1.5).
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Fig. 1.5 Average long-term trends in European passenger and freight demand

(b) Cyclical (seasonal) variations occurring within the analysis period and involv-

ing several reference periods. These variations repeat themselves cyclically and

can be observed by averaging over a number of cycles. This is the case, for ex-

ample, with variations in daily demand on different days of the week, or with

variations at different times within a typical day. For instance, the fluctuations

of urban travel demand by time of day, shown in Fig. 1.4, repeat cyclically over

successive workdays. In an analysis period, several cyclic variations with differ-

ent cycle lengths may occur and overlap with long-term variations. For example,

demand and supply change over an analysis period of several years (long-term

variation), but they also vary cyclically over the different months of the year, the

days of the week and the hours of each day.

(c) Between-period variations are variations in demand and supply over reference

periods with otherwise identical characteristics, after accounting for the trend

and cyclic variations. This is the case with demand variations during morn-

ing peak hours of different days with similar characteristics. These fluctua-
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tions can be considered random because they cannot be associated with spe-

cific events. Travel demand results from the choices made by a large number

of decision makers; its actual value in a period therefore depends both on the

unpredictable behavioral elements connected with these choices, and on the in-

fluence of choices made in previous periods. Similarly, the actual values of some

key supply parameters, such as road capacities or travel times, may vary due to

unpredictable events, such as an accident. Variations in demand and supply be-

tween successive reference periods, for example, the same hours within typical

days, are called between-period (or period-to-period) dynamics.

As already mentioned, in reality the three types of dynamics overlap and their

identification depends to a great extent on the perspective adopted. In addition, the

length of the reference period depends on the modeling approach followed. Some

models can endogenously represent the variations in relevant parameters within a

typical day, which in this case may be taken as the model period. Other models

may require the analyst to explicitly specify different exogenous input variables in

order to represent variations over different reference periods of the day; in this case,

single hours may be the best model periods. Moreover, different applications usually

require different assumptions on the relevant temporal dimensions.

Consider, for example, a freight system project for which no significant conges-

tion is expected. This project might require an analysis period several years long.

Furthermore, it might be appropriate to consider long-term variations of the system

over a number of years, and to account for seasonal variations by considering one or

a few typical months as model periods, while ignoring cyclic variations within each

month.

For a project with a short-term horizon, such as the traffic plan of an urban area,

the long-term trend of daily demand (say over several years) can be ignored. The

analysis period might consist of one or more typical days (e.g., average week and

weekend days).

Cyclic variations could be modeled as hourly variations within the typical day.

Model periods may encompass the morning and evening peak and off-peak hours,

with traffic conditions during each period assumed to be stationary. Alternatively,

the analyst may consider a different perspective, by which the analysis period is an

entire week, cyclic variations are relative to both days of the week and hours of

the day, and reference periods encompass full days. In this case, the models would

explicitly represent the distribution of demand and supply performances over subin-

tervals of each day, following a within-period dynamic approach (see Fig. 1.6).

1.3.3 Relevant Components of Travel Demand

Passengers and goods moving in a given area demand the transportation services

supplied by the system. Travel demand clearly plays a central role in the analy-

sis and modeling of transportation systems because most transportation projects at-

tempt to satisfy this demand (although some projects, such as travel-demand man-

agement policies, attempt instead to modify some of its characteristics). In turn,
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Fig. 1.6 Alternative reference periods

traveler choices can significantly affect the performance of transportation supply

elements through congestion (see Chaps. 2 and 7).

Travel does not generally provide utility in itself, but is rather an auxiliary activ-

ity necessary for other activities carried out in different locations. Travelers make

work-, school-, and shopping-related trips. Goods are shipped from production sites

to markets. Travel demand is therefore a derived demand, the result of the interac-

tions between the activity system and the transportation services and facilities, as
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was seen in Sect. 1.1, as well as of the habits underlying travel behavior in a given

area.

A travel-demand flow can formally be defined as the number of users with given

characteristics consuming particular services offered by a transportation system in a

given time period. It is clear that travel demand flows result from the aggregation of

individual trips made in the study area during the reference period. A trip is defined

as the act of moving from one place (origin) to another (destination) using one or

more modes of transportation, in order to carry out one or more activities. A se-

quence of trips, following each other in such a way that the destination of one trip

coincides with the origin of the next, is referred to as a journey or trip chain. With

passenger travel, trip chains usually start and end at home; for example, a home–

work–shopping–home chain consists of three distinct trips. For freight, individual

movements of goods from one place to another are usually referred to as shipments

or consignments. The sequence of manipulations (e.g., packaging) and storage ac-

tivities applied to shipments is often referred to as the logistic or supply chain.

Transportation system users, and the trips they undertake, can be characterized in

a variety of ways in addition to the temporal characterization described in the previ-

ous section. In the following chapters, h stands for the reference period, describing

the average weekday, the morning or evening peak hours, the winter or summer

seasons, and so on. Some of these ways are described here.

The spatial characterization of trips is made by grouping them by place (zone

or centroid) of origin and destination, and demand flows can be arranged in tables,

called origin–destination matrices (O-D matrices), whose rows and columns cor-

respond to the different origin and destination zones, respectively (see Fig. 1.7).

Matrix entry dod gives the number of trips made in the reference period from origin

zone o to destination zone d (the O-D flow). Some aggregations of the O-D matrix

elements are also useful. The sum of the elements of row o:

do. =
∑

d

dod (1.3.1)

accumulates the total number of trips leaving zone o in the reference period and is

known as the flow produced or generated by zone o. The sum of the elements of

column d accumulates the number of trips arriving in zone d in the reference period:

d.d =
∑

o

dod (1.3.2)

and is known as the flow attracted by zone d . The total number of trips made in the

study area in the reference interval is indicated by d..:

d.. =
∑

o

∑

d

dod (1.3.3)

Trips can be characterized by whether their endpoints are located within or out-

side of the study area. For internal (I-I) trips, the origin and the destination are

both within the study area. For exchange (I-E or E-I) trips, the origin is within the
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Fig. 1.7 Trip types and their identification in the origin–destination matrix

study area and the destination outside, or vice versa. Finally, crossing (E-E) trips

have both their origin and their destination external to the study area, but traverse

the study area, that is, use the transportation system under study. Figure 1.7 is a

schematic representation of the three types of trips and their position in the O-D

matrix.

Travel demand can also be classified in terms of user and trip characteristics.

In the case of person trips, user characteristics of interest usually relate to the trip-

maker’s socioeconomic attributes, such as income level or possession of a driver’s

license. Groups of users who are homogeneous with respect to a particular set of
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socioeconomic characteristics are referred to as market segments. In a study of dif-

ferent pricing policies, for example, market segments might be defined according

to personal or household income. In the case of goods movements, the user charac-

teristics of interest typically relate to attributes of the shipping firm, such as sector

of economic activity, firm size, type of plant, production cycle, and so on. In the

following chapters, market segments are indicated by i.

Characteristics of individual trips are also of interest. Person trips are often de-

scribed in terms of the general activities carried out at the origin and destination

ends. The pair of activities defines the trip purpose: home-based work trips, work-

based shopping trips, and so on. A whole sequence of purposes (activities) can be

associated with a trip chain. The trip purpose is indicated by s.

Other trip characteristics of interest in a particular analysis may include desired

arrival or departure times, and mode, among others, for person trips; and consign-

ment size, type of goods (time sensitivity, value, etc.) and mode for freight trips.

1.4 Modeling Transportation Systems

Design and evaluation require the quantification of interactions among the elements

of existing and potential future transportation systems. Values of some elements of

existing transportation systems may be obtained from direct measurement, however,

it is usually very costly to extend such measurements to all the elements involved.

Moreover, proposed future transportation systems obviously cannot be measured.

Hence modeling plays a central role in the design and evaluation of transportation

systems.

The mathematical models that are described in the following chapters allow rep-

resentation and analysis of the interactions among the various elements of a trans-

portation system. It is worth giving an overview here of the various classes of models

that make up the system of models used to analyze an actual transportation system.

The models and their relationships are described in Fig. 1.8; they should be com-

pared with the physical components of the system that they represent, shown in

Fig. 1.1.

Supply models, described in Chap. 2, represent the transportation service pro-

vided to travel between the different zones; network flow models are frequently

used for this purpose. More specifically, supply models represent the performance

of transportation facilities and services for the users, and also determine the external

impacts (pollution, energy consumption, accidents) of this use (these are sometimes

called impact models). The resulting level of service attributes, such as travel time

and cost, are input variables for demand models. To predict the performance of sin-

gle elements (facilities) and the effects of congestion, especially for road systems,

supply models often use the results of traffic flow theory, which is briefly described

in Chap. 2. Moreover, network models are used to represent the travel opportunities

between different locations, and/or the relationships between different trip phases.

Demand models predict the relevant aspects of travel demand as a function of the

activity system and of the level of service provided by the supply system. Demand
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Fig. 1.8 Structure of transportation system models

characteristics typically predicted include the number of trips in the reference period

(demand level) and their distribution between different time intervals within the ref-

erence period, among different points, different transportation modes, and possible

paths. Demand models, described in Chap. 4, can be applied to passenger as well as

to freight demand. Travel demand models are usually derived from random utility

theory, described in Chap. 3.

Analysis and design of transportation systems require the estimation of present

demand and the forecasting of future demand. These estimates and forecasts can be

obtained using different sources of information and statistical procedures. To esti-

mate present demand, surveys can be conducted, typically by interviewing a sample

of users. From such surveys, direct estimates of the demand can be derived using

results from sampling theory. Alternatively, the demand (present or future) can be

estimated using models similar to those that are described in Chap. 4. Model-based

estimates require that models be specified (i.e., the functional form and the variables

are defined), calibrated (i.e., the unknown model coefficients are determined), and

validated (i.e., the ability to reproduce available data is verified). Model estimation

procedures are presented in Chap. 8.

Assignment models (or network demand–supply interaction models), studied in

Chaps. 5 and 6, predict how O-D demand and path flows will use the various ele-

ments of the supply system. Assignment models allow the calculation of link flows,

that is, the number of users using each link of the network that represents trans-

portation supply in the reference period. Furthermore, link flows may affect the

performance of particular transportation facilities through congestion, and therefore

may affect the input to demand models. The mutual interdependencies of demand,

flows, and costs are captured by assignment models and are addressed in Chaps. 5, 6

and 7. The models described in this book are based on general assumptions already

introduced in the previous sections of this chapter. They are summarized below.
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• Physical and functional delineation of the system. The transportation system is

contained within a defined region (study area) and the external area is considered

only through its relationships with the analysis system. These relationships are

related to both demand (exchange and crossing trips) and supply (transportation

infrastructure and services connecting the external area with the analysis system).

• Spatial discretization (zoning). The geographic area is subdivided into discrete

subareas (traffic analysis zones) to which the socioeconomic variables are related.

Departure and arrival points of all the trips traveling to or from a zone are assumed

to originate from or go to an arbitrary location in the zone known as the zone

centroid.

• Identification of relevant transportation services. Only those facilities and/or ser-

vices that connect study area traffic zones together, or that connect them with

external traffic zones, are explicitly represented and modeled.

Further assumptions about the representation of time include the following.

• Identification of relevant model periods. This refers to the definition of the length

of the analysis period, selection of the significant cyclic variations to be modeled,

and identification of the corresponding reference or model periods.

• Assumptions about within-period variability. The within-period stationary ap-

proach, adopted in Chaps. 2, 4, 5, and 6, assumes that travel demand and sup-

ply have constant average characteristics over a period of time long enough to

allow stationary conditions to be reached. Under this assumption, the significant

variables assume values that are independent of the reference time. Alternatively,

within-period dynamic models explicitly represent the variation of supply and

some demand dimensions within each reference period. Within-period dynamic

models are still at a relatively early stage of development and are discussed in

Chap. 7.

• Type of demand–supply interaction. In the equilibrium approach, it is assumed

that the system is in an equilibrium configuration in which demand, flows, and

costs are mutually consistent. Equilibrium assignment models have been exten-

sively studied and are described in Chaps. 6 and 7. Alternatively, it is possible to

adopt a between-period dynamic approach to modeling demand–supply interac-

tion by explicitly representing system evolution over different reference periods.

Models of this type are considered in Chap. 6.

Finally, traditional transportation models are sometimes integrated with models

that predict activity location and production levels. These models differ according

to the size of the study area (urban, regional, and national) and the type of activi-

ties that are considered as endogenous. For example, they may relate to household

location in an urban area or to production levels in different sectors of the economy

at a multiregional level. Models that jointly analyze the transportation and activity

systems are referred to as land use–transportation interaction models. This class of

model is less widely used than transportation system models, and their systematic

analysis goes beyond the scope of this book. An example of a model that analyzes

various interactions among production levels, economic activity location, and trans-

portation is described in Chap. 4, in the context of freight demand models.
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1.5 Model Applications and Transportation Systems Engineering

Transportation systems engineering – the design of physical components or policy

interventions intended to affect transportation supply and/or demand – is one of the

main applications of transportation system modeling.

A set of coordinated, internally consistent actions is referred to as a project or

plan. Projects might relate to transportation facilities, control systems, services,

or fares. They can be designed and evaluated from the perspective of the commu-

nity served by the transportation system under analysis, or from that of the service

providers and/or facility operators. Design and decision-making are two interdepen-

dent activities. Decision-making for transportation systems is often more complex

than for the systems considered in other sectors of engineering. This is especially

true when the decision maker must consider, directly or indirectly, the effects of pro-

posed actions on the overall community. Projects concerning decisions and/or typ-

ical points of view of a transportation operator, such as the organization of freight

distribution or the design of a traffic signal control system, usually undergo a sim-

pler and more straightforward decision-making process. However, even projects that

might appear to be of internal concern to a company or public agency, such as the

reorganization of transit lines, often produce external impacts that may influence the

final decisions.

1.5.1 Transportation Systems Design and the Decision-Making

Process

Changes in transportation systems may affect a community and its members in a

variety of ways. Building a new facility, for example, may not only change the

service experienced by network users, but also produce economic, financial, social,

and environmental impacts on groups or individuals who are not system users. These

nonusers may be single individuals as well as businesses, landowners, operators,

and institutions responsible for the transportation system and the area in which it

operates.

Project decisions can be made in many different ways. The “rational” approach to

decision-making is based on evaluation of the impacts of the projects under consid-

eration on the various affected parties. This approach, which is commonly adopted

for private decisions, is even more necessary when the decisions are made on be-

half of a community. The natural dynamics of society, changes in individuals’ and

decision-makers’ attitudes, the occurrence of particular events, and variations in re-

source availability are all such that decisions and their implementation evolve over

time. Increasing recognition over the years of the importance of such long-term dy-

namic effects has resulted in changes in the very concept of planning. Planning is

no longer seen as an activity that leads to the preparation of a single “master” plan

identifying a set of projects to be implemented over a long period of time. Rather,

planning is now viewed as a process rather than an activity. A planning process
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results in a sequence of decisions (plans or projects) taken at different, not neces-

sarily predefined, moments in time, with each decision accounting for the effects of

previous decisions and exogenous factors. In this framework, the role of quantita-

tive methods for the definition and evaluation of alternative projects is even more

relevant as they ensure a sort of “dynamic rationality” for the whole process.

The decision-making process described above is often considered a gross simpli-

fication of actual public decision-making processes in the real world. Despite this

criticism, it should be seen as a reference paradigm that, with necessary adapta-

tions, can in principle be applied to very different problems and decision contexts.

The theoretical analyses that have led to “planning theory” as a theory of collec-

tive decision-making are beyond the scope of this book. However, identification of

the role and limits of transportation systems analysis and design within the broader

decision-making process is extremely relevant. To this end, it is useful to consider

the main activities of the decision-making process as shown in Fig. 1.9. The right-

hand side of the figure shows schematically the decision process, and the left-hand

side shows the phases of analysis and modeling that support its activities.

In the objectives and constraints identification phase, the objectives of the

decision-maker (or decision-makers) and the relevant constraints for the project are

defined. Objectives and constraints may be either explicit or, at least partly, implicit.

They depend on the perspective of the decision-maker and, in one way or another,

define the type of actions that can be included in the project (e.g., creation of new

facilities over the long term or reorganization of existing facilities in the short term).

Modifications to the transportation system can be designed and evaluated from

different points of view. Objectives of a private operator, for example, would typ-

ically include profit maximization. Constraints might include existing regulations,

the available budget, service or fare obligations, the technical limits on the pro-

duction capacity of the factors employed, and so on. In the case of public decision-

makers, the project objectives are numerous, often not clearly defined and frequently

conflicting with each other, as, indeed, are the interests of a “complex” society.

A public decision-maker may be interested in increasing safety, reducing the gen-

eralized transportation cost borne by the users, increasing equity in the distribution

of transportation benefits, improving accessibility to economic and social activities,

fostering new land development, protecting environmental resources, and reducing

the public deficit. Objectives and constraints, explicit or implicit, synthesize the val-

ues and attitudes of the firm or of society.

The increasing importance of energy consumption and environmental conserva-

tion in recent decades is a clear example of this point. Both objectives and con-

straints influence the successive phases of the process, especially the analysis of

the present situation and the actions that can be included in alternative projects.

From the modeling perspective, these factors have an impact on the definition of

the analysis system, that is, identification of the elements and their relationships,

which are included in the representation of the system in order to evaluate correctly

the effects of planned actions. In the analysis of the present situation phase, data

on the transportation and activity systems are collected. Data are used to analyze

the present system state and identify its main deficiencies or “critical points” with
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Fig. 1.9 Transportation systems design and the planning process

respect to the project objectives and constraints. These critical aspects should be

corrected or mitigated by the planned actions. This phase is also linked to the build-

ing of a mathematical model of the present system, because it provides the input

data for the models (supply, demand, land use). Furthermore, the models often pro-

vide some system performance indicators (e.g., flows, saturation levels, generalized

transportation costs by the O-D pair) that would be impossible or too costly to mea-

sure directly.

The next step is the formulation of system projects (or plans), that is, sets of com-

plementary and/or integrated actions that are internally consistent and technically

feasible.4 The strict interdependence among the elements of a transportation system

generally requires that a project be designed taking into account the other system

4Complementary projects have mutually reinforcing positive effects (e.g., building park-and-ride

facilities and improving railway services), whereas integrated projects aim at reducing possible

negative interactions (e.g., upgrading public transportation and increasing parking prices).
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components that may be significantly influenced by it. A new subway line, for ex-

ample, requires a reorganization of the surface transit lines to increase the catchment

area of the stations (complementary action). Restricting the access of cars to parts of

an urban area requires the design of appropriate parking areas, transit lines, pricing

policies, and so on in order to alleviate its potentially negative effects (integrated

actions). System design is usually limited to the definition of the functional char-

acteristics of the elements composing the system; their physical design, if required,

pertains to other branches of engineering.

In general, several alternative projects can be proposed in response to predefined

objectives. One alternative is the nonintervention (do nothing) option. More realis-

tically, the do minimum option involves implementing committed decisions (those

that, for political or other reasons, cannot be reversed) as well as carrying out basic

activities required to keep the system state from deteriorating unacceptably. When

a complex project involves multiple actions that cannot be implemented simultane-

ously, alternative time sequences can be generated, with each sequence considered

as an alternative project. Indeed, the impacts of such projects may be significantly

influenced by the specific sequence of actions undertaken for their implementation.

Assessment and evaluation of alternative projects require the prediction of the

relevant impacts of their implementation. Most of the impacts can be forecast quan-

titatively using the mathematical models and their application methods that are de-

scribed later in this book. If evaluation of a project requires prediction of its main

impacts over a sufficiently long time horizon, assumptions are needed regarding

the anticipated future structure of the activity system, or rather the values of the

variables that are exogenous to the model. A set of consistent assumptions on the

activity system is usually known as a socioeconomic scenario. The evolution of ex-

ogenous variables over long time periods depends on complex phenomena related

to the demographic, social, and economic evolution of the area and on the related

external environment. It is very difficult, and perhaps impossible, to forecast these

phenomena with precision. Thus, the usual practice is to consider a number of dif-

ferent future scenarios to assess the range of variation of the predicted impacts, and

to check the robustness of the alternative projects with respect to the different sce-

narios.

Technical assessment of the projects concludes the system design phase. This

activity verifies that the elements of the supply system will function within their

ranges of economic validity and technical feasibility (e.g., that the forecast user

flows are not too low or too high with respect to their technical capacity). Moreover,

the technical feasibility of the assumed performance of system components and the

consistency of this performance with the forecast system state are ascertained. Tech-

nical assessment is based on predicted project impacts. Modeling studies can (and

often do) influence the high-level design of projects as, indeed, is usually the case

in engineering systems design.5

5This assumes that potential projects are exogenously specified prior to analysis; this is the ap-

proach most commonly used in applications. However, mathematical models can also be used as

supply design tools, as discussed in Chap. 9. As stressed in that chapter, supply design models
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Activities related to the analysis of the present situation, formulation of alterna-

tive projects, prediction of relevant impacts, and technical assessment can together

be defined as the system design phase.

The predicted impacts of alternative projects can be further processed to facili-

tate their comparison. There are many techniques for the analysis and comparison

of alternative projects with different levels of aggregation. However, it should be

stressed that these techniques cannot and should not replace the actual decision-

making process, which is based on compromises among conflicting interests and

objectives. Rather, they should be considered as tools to support decision-making.

After a project, or part of it, is implemented, one can compare forecast and ac-

tual effects, note the occurrence of unexpected developments and new problems, and

evaluate social consent or dissent. These observations may modify some elements

of the project or alter its future development. Project monitoring6 is the system-

atic checking of the main “state variables” of the transportation system using these

checks for the a posteriori evaluation of project impacts and the identification of new

problems. Monitoring can also identify deficiencies in modeling and analysis, and

suggest areas needing improvement. In practice, monitoring transportation systems

and projects is often neglected or carried out nonsystematically, although it should

play a much more important role in the planning process.

The complexity of the decision-making processes for transportation systems is

clear from what has been said so far. The analyst has a technical role in the phases

of analysis, design, and forecasting. It should also be recognized that in general

the transportation systems engineer does not have all the technical skills required

for all the tasks involved. Interaction with specialists from other disciplines (other

branches of engineering, economics, urban and regional planning, and social sci-

ences) is needed, particularly if the projects are likely to have significant effects on

external systems. On the other hand, understanding the “inner working” of trans-

portation systems, and therefore their design and quantitative modeling, lies at the

core of the professional competence of transportation systems engineers.

1.5.2 Some Areas of Application

Some examples of transportation system engineering applications are discussed be-

low, together with their implications for the mathematical models and evaluation

methods discussed later in the book.

generally pertain to particular types of project (e.g., traffic signal control or transit line frequen-

cies) that are components of wider system projects. In most cases, supply design models should

be seen as generators of alternative supply configurations rather than as tools to get the “optimal”

solution. For these reasons, supply design models can be included, at least conceptually, in the

overall system of mathematical models.

6Monitoring has a conceptual function analogous to that of feedback in closed-loop control sys-

tems. Closed-loop systems usually prove to be more efficient than open-loop systems, which lack

such feedback.
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Strategic Planning

Strategic or investment planning involves decisions about long-term (10–20 year)

capital investment programs involving the construction of new facilities (e.g., roads,

railways, ports) and/or the acquisition of vehicles and technologies (e.g., rolling

stock and traffic control systems). In this case, projects usually include transporta-

tion services, pricing policies, and, in some cases, travel demand management poli-

cies (e.g., access or parking restrictions). Public projects are included in urban, re-

gional, national, or transnational transportation plans, depending on the extent of the

area; the projects of agencies or companies are part of their strategic development

(or business) plans.

For strategic plans, the study generally encompasses the entire transportation sys-

tem because substantial changes, even for a single mode, may influence the struc-

ture and functioning of the whole system. Returning to the example of an urban

transportation plan for a new subway line, the design elements will also include the

surface transit lines, parking policy, fare policy, and so on. Evaluation of the line’s

effects cannot be limited to the public transportation system because the demand

split among modes may well change, producing significant effects on road conges-

tion, parking availability, and so on. The time horizon for this level of design re-

quires forecasts of alternative activity system scenarios, and the reverse interactions

between the transportation system and the activity system need to be considered as

well. Continuing with the same example, it is reasonable to expect that construction

of a new subway line may affect, to some extent, the pattern of land use and there-

fore of travel demand. This broad view of the design system usually entails a less

detailed level of representation. Indeed, it is pointless to model extremely detailed

effects, such as turning movements at intersections or flows on minor roads, because

they are not significant for the evaluation of the project under study.

Feasibility Studies

Feasibility studies are assessments of the technical possibility, economic worth, pri-

ority level, and execution mode of individual transportation projects. Project defin-

ition is generally derived from a higher-level reference scheme, such as a strategic

plan, that identifies new connections needed in the transportation network.

Technical and economic feasibility studies of transportation projects usually re-

quire the formulation of project alternatives in terms of their performance and

functional characteristics (such as layout, connections, capacity, service perfor-

mance, type and characteristics of vehicles and technologies, and prices). Alter-

native projects, including the do-nothing or reference solution, are then evaluated

from the functional, economic, and financial points of view, in the context of differ-

ent transportation and activity system scenarios. The analysis time horizon in this

case is usually long-term and the geographic scale varies from urban to regional or

national according to the kind of project to be assessed. The definition and func-

tional characteristics of the larger system can be analyzed and modeled at levels of
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detail that vary according to the intensity of the interactions with the project being

studied. For example, a denser zoning system can be adopted around the proposed

alignment of a new railway. Whatever the case, the system must be modeled con-

sidering the travel demand for and supply of all transportation modes.

There are many examples of feasibility studies. Some studies are aimed at as-

sessing the financial worth of private capital investments in facilities and/or trans-

portation services (project financing). In this case, forecasts of travel demand, user

flows, and revenues are of special interest, as are the external conditions under which

expected demand and financial returns can be obtained.

Tactical Planning

Short- or medium-term tactical planning involves decisions about projects requir-

ing limited resources, usually assuming minor or no changes in existing facilities.

Urban traffic plans or public transportation plans are examples of tactical plans un-

dertaken by public agencies. The design of scheduling or pricing policies for air or

rail services are examples of tactical plans carried out from the operators’ point of

view.

Of primary interest in this context are evaluations of the technical and functional

impacts of the project, as well as analysis of its financial performance in terms of

operating costs and traffic revenues. These analyses might be accompanied by an

economic appraisal, although this is often simplified. For these applications, the

socioeconomic scenario is usually taken as given. In practice, it is also assumed that

the level and spatial distribution of travel demand are unaffected by the projects,

whereas variations in modal split and flows on the project networks are explicitly

modeled. In some cases, a single transportation mode is examined in the context of

the overall system; the effects of intermodal competition are then considered only

through the level of demand of the mode considered (elasticity analysis), without

explicit representation of the network and service characteristics of the competing

modes.

Operations Management Programs

Short-term operations management programs generally focus on particular aspects

of the operations of individual transportation modes, optimizing the use of available

resources usually from a company or agency point of view. The design of traffic

signal control plans, preparation of transit timetables, and organization of factors

necessary for producing transportation services (e.g., assignment of vehicles to lines

and travel staff to work shifts) are examples of operations management programs.

In this case, the study is usually limited to a single mode and assumes that the

modal demand is fixed. For example, only the road subsystem (network and de-

mand) is considered in designing a traffic-signal control scheme. If necessary, net-

work and assignment models described in later chapters can be integrated with de-

tailed microsimulation models. Furthermore, the design phase can be carried out

with the support of supply design models similar to those described in Chap. 9.
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Reference Notes

The definition of a transportation system and its elements can be found in most text-

books covering transportation systems analysis and modeling, though with slightly

different interpretations. Descriptions of this kind can be found in Manheim (1979),

Sheffi (1985), and Ortuzar and Willumsen (2001), among others. The integrated

transportation system is described by Cascetta (1995).

Definitions of travel demand and its characteristics can be found in textbooks

such as Wilson (1974), Hutchinson (1974), Manheim (1979), Meyer and Miller

(2001), Ortuzar and Willumsen (2001), and Train (2003).

Descriptive analyses of the structure of travel demand and its development over

time may be found in the European Conference of Ministries of Transport (ECMT,

2001) study of passenger transportation, and the Organization for Cooperation and

Economic Development (OCED, 2001) study of freight transportation. An overview

of travel demand trends in some transportation markets are provided in Boyer

(1998).

A clear and concise description of the different approaches to the general problem

of planning and public decision-making, with special reference to town planning, is

given in Alexander (1997), which contains a vast bibliography. Many textbooks deal

with the process of transportation planning from different viewpoints. Contributions

that present differing and sometimes contrasting positions are Hutchinson (1974),

Manheim (1979), and Meyer and Miller (2001). Wachs (1985) and Bianco (1986)

contain annotated bibliographies of the theoretical developments of the concept of

transportation systems planning. The different levels of planning are classified in

Florian et al. (1988). Detailed description of the different types of projects and a

general outline of the evaluation process is provided in Cascetta (1993). The work

by de Luca (2000) deals with the general structure and contents of the different

levels of transportation planning for an Italian case study. Finally, the book edited

by Cascetta (2005) covers many applications of the main principles of transportation

planning and transportation systems engineering applied to Campania regional case

studies.



Chapter 2

Transportation Supply Models

2.1 Introduction

This chapter deals with the mathematical models simulating transportation supply

systems. In broad terms a transportation supply model can be defined as a model,

or rather a system of models, simulating the performances and flows resulting from

user demand and the technical and organizational aspects of the physical transporta-

tion supply.

Transportation supply models combine traffic flow theory and network flow the-

ory models. The former are used to analyze and simulate the performances of the

main supply elements, the latter to represent the topological and functional struc-

ture of the system. Therefore, in Sect. 2.2 we present some of the basic results of

traffic flow theory. Section 2.3 covers the constituent elements of a transportation

network supply model: such elements form an abstract model of transportation sup-

ply (transportation network) which combines network flow theory with the functions

that express dependence between transportation flows and costs on the network. This

is followed by some general indications on the applications of network models in

Sect. 2.4. Specific models for transportation systems with continuous services (such

as road systems) are described in Sect. 2.4.1; models for discrete or scheduled ser-

vices (such as bus, train, or airplane) are described in Sect. 2.4.2. Throughout this

chapter, as stated in Chap. 1, it is assumed that the transportation system is intrape-

riod (within-day) stationary (unless otherwise stated); extensions of supply models

to intraperiod dynamic systems are dealt with in Chap. 7.

2.2 Fundamentals of Traffic Flow Theory1

Models derived from traffic flow theory simulate the effects of interactions between

vehicles using the same transportation facility (or the same service) at the same time.

For simplicity’s sake, the models presented refer to vehicle flow, although most of

them can be applied to other types of users, such as trains, planes, and pedestrians. In

the sections below we describe stationary uninterrupted flow models (nonstationary

models are introduced in Chap. 7), followed by models of interrupted flow, derived

from queuing theory.

1Giulio Erberto Cantarella is co-author of this section.
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2.2.1 Uninterrupted Flows

Multiple vehicles using the same facility may interact with each other and the effect

of their interaction will increase with the number of vehicles. This phenomenon,

called congestion, occurs in most transportation systems, generally worsening the

overall performances of the facility, such as the mean speed or travel time. Indeed,

it may happen that a vehicle is forced to move at less than its desired speed if it

encounters a slower vehicle. The higher the number of vehicles on the infrastructure,

the more likely this condition is to happen. This circumstance may also occur in

transportation systems with scheduled services: the higher the number of vehicles

on the infrastructure, the more likely out-of-schedule vehicles are to cause a delay

to other vehicles.

In general, stochastic models may be used to characterize in a probabilistic sense

an interaction event that causes a delay. For congested systems with continuous ser-

vices it is very often sufficient to adopt the aggregate deterministic models described

below; they may be applied in areas far away from interruptions such as intersec-

tions and toll booths.

2.2.1.1 Fundamental Variables

Several variables can be observed in a traffic stream, that is, a sequence of cars

moving along a road segment referred to as a link, a. In principle, although all

variables should be related to link a, to simplify the notation the subscript a may be

implied. The fundamental variables are as follows (see Fig. 2.1).

τ The time at which the traffic is observed

La The length of road segment corresponding to link a

s A point along a link, or rather, its abscissa increasing (from a given origin,

usually located at the beginning of the link) along the traffic direction (s ∈

[0,La])

i An index denoting an observed vehicle

vi(s, τ ) The speed of vehicle i at time τ while traversing point (abscissa) s

For traffic observed at point s during time interval [τ, τ + ∆τ ], several variables

can be defined (see Fig. 2.1) as follows.

hi(s) The headway between vehicles i and i − 1 crossing point s

m(s | τ, τ + ∆τ) The number of vehicles traversing point s during time interval

[τ, τ + ∆τ ]

h̄(s) =
∑

i=1,...,m hi(s)/m(s | τ, τ + ∆τ) The mean headway, among all vehicles

crossing point s during time interval [τ, τ + ∆τ ]

v̄τ (s) =
∑

i=1,...,m vi(s)/m(s | τ, τ + ∆τ) The time mean speed, among all vehi-

cles crossing point s during time interval [τ, τ + ∆τ ]

Similarly, for traffic observed at timeτ between points s and s+∆s, the following

variables can be defined.
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Fig. 2.1 Vehicle trajectories and traffic variables

spi(τ ) The spacing between vehicles i and I − 1 at time τ

n(τ | s, s + ∆s) The number of vehicles at time τ between points s and s + ∆s

s̄p(τ ) =
∑

i=1,...,n spi(τ )/n(τ | s, s + ∆s) The mean spacing, among all vehicles

between points s and s + ∆s at time τ

v̄s(τ ) =
∑

i=1,...,n vi/n(τ | s, s + ∆s) The space mean speed, among all vehicles

between points s and s + ∆s at time τ

During time interval [τ, τ + ∆τ ] between points s and s + ∆s, a general flow

conservation equation can be written:

∆n(s, s + ∆s, τ, τ + ∆τ) + ∆m(s, s + ∆s, τ, τ + ∆τ)

= ∆z(s, s + ∆s, τ, τ + ∆τ) (2.2.1)

where

∆n(s, s + ∆s, τ, τ + ∆τ) = n(τ + ∆τ | s, s + ∆s) − n(τ | s, s + ∆s) is the varia-

tion in the number of vehicles between points s and s + ∆s during ∆τ

∆m(s, s + ∆s, τ, τ + ∆τ) = m(s + ∆s | τ, τ + ∆τ) − m(s | τ, τ + ∆τ) is the vari-

ation in the number of vehicles during time interval [τ, τ + ∆τ ] over

space ∆s

∆z(s, s + ∆s, τ, τ + ∆τ) is the number of entering minus exiting vehicles (if any)

during time interval [τ, τ + ∆τ ], due to entry/exit points (e.g., on/off

ramps), between points s and s + ∆s

In the example of Fig. 2.1 there are no vehicles entering/exiting in the segment ∆s;

then ∆z = 0 (∆n is equal to 1 and ∆m is equal to −1).

With the observed quantities two relevant variables, flow and density, can be

introduced:

f (s | τ, τ + ∆τ) = m(s | τ, τ + ∆τ)/∆τ is the flow of vehicles crossing point s

during time interval [τ, τ + ∆τ ], measured in vehicles per unit of time

k(τ | s, s + ∆s) = n(τ | s, s + ∆s)/∆s is the density between points s and s + ∆s

at time τ , measured in vehicles per unit of length
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Flow and density are related to mean headway and mean spacing through the

following relations.

f (s | τ, τ + ∆τ) ∼= 1/h(s)

k(τ | s, s + ∆s) ∼= 1/sp(τ )

Note that if observations are perfectly synchronized with vehicles, the near-equality

in the previous two equations becomes a proper equality.

Moreover, if the general flow conservation equation (2.2.1) is divided by ∆τ , the

following equation is obtained.

∆n/∆τ + ∆f = ∆e (2.2.2)

where

∆f (s, s + ∆s, τ, τ + ∆τ) = ∆m(s, s + ∆s, τ, τ + ∆τ)/∆τ is the variation of the

flow over space

∆e(s, s + ∆s, τ, τ + ∆τ) = ∆z(s, s + ∆s, τ, τ + ∆τ)/∆τ is the (net) entering/

exiting flow

Finally, dividing by ∆s, we obtain a further formulation of (2.2.1) (useful for com-

parisons with nonstationary models based on the fluid-dynamic analogy described

in Chap. 7) that expresses the role of variation in density:

∆k/∆τ + ∆f/∆s = ∆e/∆s (2.2.3)

where

∆k(s, s + ∆s, τ, τ + ∆τ) = ∆n(s, s + ∆s, τ, τ + ∆τ)/∆s is the variation of the

density over time

2.2.1.2 Model Formulation

In this subsection we describe several deterministic models developed under the as-

sumption of stationarity, formally introduced below. Extensions to nonstationarity

conditions are reported in Chap. 7 (some information on stochastic models is re-

ported in the bibliographical note). In formulating such models it is assumed that a

traffic stream (a discrete sequence of vehicles) is represented as a continuous (one-

dimensional) fluid.

Traffic flow is called stationary during a time interval [τ, τ +∆τ ] between points

s and s + ∆s if flow is (on average) independent of point s, and density is indepen-

dent of time τ (other definitions are possible):

f (s | τ, τ + ∆τ) = f

k(τ | s, s + ∆s) = k

Note that this condition is chiefly theoretical and in practice can be observed only

approximately for mean values in space or time. It is nevertheless useful in that it
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Fig. 2.2 Vehicle trajectories and traffic variables for stationary (deterministic) flows

allows effective analysis of the phenomenon. In this case, the time mean speed is

independent of location and the space mean speed is independent of time:

v̄τ (s) = v̄τ

v̄s(τ ) = v̄s

In the case of stationarity, both terms in the left side of the conservation equa-

tion (2.2.3) are identically null, anyhow other flow conservation conditions may be

formulated. Hence, let n = k · ∆s be the number, time-independent due to the as-

sumption of stationarity, of vehicles on the stretch of road between cross-sections s

and s + ∆s, and let v̄s be the space mean speed of these vehicles. The vehicle that

at time τ is at the start of the stretch of road, cross-section s, will reach the end,

cross-section s + ∆s, on average at time τ + ∆τ ′, with ∆τ ′ = ∆s/vs . Due to the

assumption of stationarity, the number of vehicles crossing each cross-section dur-

ing time ∆τ is equal to f · ∆τ . Thus the number of vehicles contained at time τ on

section [s, s +∆s] is equal to the number of vehicles traversing cross-section s +∆s

during the time interval [τ, τ +∆τ ′] (see Fig. 2.2); that is, k∆s = f ∆τ ′ = f ∆s/vs .

Hence, under stationary conditions, flow, density, and space mean speed must satisfy

the stationary flow conservation equation:

f = kv (2.2.4)

where

v = v̄s is the space mean speed, simply called speed for further analysis of station-

ary conditions.2

2It is worth noting that the time mean speed is not less than the space mean speed, as can be shown

because the two speeds are related by the equation v̄τ = v̄s + σ 2/v̄s , where σ 2 is the variance of

speed among vehicles. In Fig. 2.2 σ 2 = 0, hence v̄τ = v̄s .
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Fig. 2.3 Relationship between speed and flow

In stationary conditions, empirical relationships can be observed between each

pair of variables: flow, density, and speed. In general, observations are rather scat-

tered (see Fig. 2.3 for an example of a speed–flow empirical relationship) and vari-

ous models may be adopted to describe such empirical relationships. These models

are generally given the name fundamental diagram (of traffic flow) (see Fig. 2.4)

and are specified by the following relations.

v = V (k) (2.2.5)

f = f (k) (2.2.6)

f = f (v) (2.2.7)

Although only a model representation of empirical observations, this diagram

permits some useful considerations to be made. It shows that flow may be zero

under two conditions: when density is zero (no vehicles on the road) or when speed

is zero (vehicles are not moving). The latter corresponds in reality to a stop-and-go

condition.

In the first case the speed assumes the theoretical maximum value, free-flow

speed v0, whereas in the second the density assumes the theoretical maximum value

jam density, kjam. Therefore, a traffic stream may be modeled through a partially

compressible fluid, that is, a fluid that can be compressed up to a maximum value.

The peak of the speed–flow (and density–flow) curve occurs at the theoretical

maximum flow, capacity Q of the facility; the corresponding speed vc and density

kc are referred to as the critical speed and the critical density. Thus any value of flow

(except the capacity) may occur under two different conditions: low speed and high

density and high speed and low density. The first condition represents an unstable

state for the traffic stream, where any increase in density will cause a decrease in

speed and thus in flow. This action produces another increase in density and so

on until traffic becomes jammed. Conversely, the second condition is a stable state

because any increase in density will cause a decrease in speed and an increase in
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Fig. 2.4 Fundamental diagram of traffic flow

flow. At capacity (or at critical speed or density) the stream is nonstable, this being

a boundary condition between the other two.

These results show that flow cannot be used as the unique parameter describing

the state of a traffic stream; speed and density, instead, can univocally identify the

prevailing traffic condition. For this reason the relation v = V (k) is preferred to

study traffic stream characteristics.

Mathematical formulations have been widely proposed for the fundamental di-

agram, based on single regime or multiregime functions. An example of a single

regime function is Greenshields’ linear model:

V (k) = v0(1 − k/kjam)

or Underwood’s exponential model (useful for low densities):

V (k) = v0e
−k/kc .

An example of a multiregime function is Greenberg’s model:

V (k) = a1 ln(a2/k) for k > kmin

V (k) = a1 ln(a2/kmin) for k ≤ kmin

where a1, a2 and kmin ≤ kjam are constants to be calibrated.

Starting from the speed–density relationship, the flow–density relationship, f =

f (k), may be easily derived by using the flow conservation equation under station-
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ary conditions, or fundamental conservation equation (2.2.4):

f (k) = V (k)k

Greenshields’ linear model yields:

f (k) = v0(k − k2/kjam)

In this case the capacity is given by

Q = v0kjam/4

Moreover the flow–speed relationship can be obtained by introducing the inverse

speed–density relationship: k = V −1(v), thus

f (v) = V
(

k = V −1(v)
)

· V −1(v) = v · V −1(v)

For example, Greenshields’ linear model yields: V −1(v) = kjam(1 − v/v0) thus

f (v) = kjam(v − v2/v0)

In general, the flow–speed relationship may be inverted by only considering two dif-

ferent relationships, one in a stable regime, v ∈ [vc, vo], and the other in an unstable

regime, v ∈ [0, vc]. Greenshield’s linear model leads to:

vstable(f ) =
v0

2

(

1 +
√

1 − 4f/(v0kjam)
)

=
v0

2

(

1 +
√

1 − f/Q
)

vunstable(f ) =
v0

2

(

1 −
√

1 − f/Q
)

In the particular case that one can assume the flow regime is always stable, with

reference to relation v = vstable(f ) the corresponding relationship between travel

time t and flow may be defined (some examples of this type of empirical relationship

may be found in Sect. 2.4):

t = t (f ) = L/vstable(f ) (2.2.8)

2.2.2 Queuing Models

The average delay experienced by vehicles that queue to cross a flow interruption

point (intersections, toll barriers, merging sections, etc.) is affected by the num-

ber of vehicles waiting. This phenomenon may be analyzed with models derived

from queuing theory, developed to simulate any waiting or user queue formation at

a server (administrative counter, bank counter, etc.). The subject is treated below

with reference to generic users, at the same time highlighting the similarities with

uninterrupted flow.
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Fig. 2.5 Fundamental variables for queuing systems

2.2.2.1 Fundamental Variables

The main variables that describe queuing phenomena are:

τ The time at which the system is observed

τi The arrival time of user i

hi = τi − τi−1 The headway between successive users i and i −1 joining the queue

at times τi and τi−1

mIN(τ, τ + ∆τ) Number of users joining the queue during [τ, τ + ∆τ ]

mOUT(τ, τ + ∆τ) Number of users leaving the queue during [τ, τ + ∆τ ]

h(τ, τ + ∆τ) =
∑

i=1,...,m hi/mIN(τ, τ + ∆τ) Mean headway between all vehicles

joining the queue in the time interval [τ, τ + ∆τ ]

n(τ) Number of users waiting to exit (queue length) at time τ

With reference to observable quantities, flow variables may be introduced.

u(τ, τ + ∆τ) = mIN(τ, τ + ∆τ)/∆τ arrival (entering) flow during [τ, τ + ∆τ ]

w(τ, τ + ∆τ) = mOUT(τ, τ + ∆τ)/∆τ exiting flow during [τ, τ + ∆τ ]

Note that the main difference with the basic variables of running links is that

space (s,∆s) is no longer explicitly referred to because it is irrelevant. Some of the

above variables are shown in Fig. 2.5.

With reference to the service activity, let:

ts,i Be service time of user i

ts(τ, τ + ∆τ) Average service time among all users joining the queue in time inter-

val [τ, τ + ∆τ ]

twi Total waiting time (pure waiting plus service time) of user i

tw(τ, τ + ∆τ) Average total waiting time among all users joining the queue in time

interval [τ, τ + ∆τ ]
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Fig. 2.6 Fluid approximation of deterministic queuing systems

Q(τ, τ + ∆τ) = 1/ts(τ, τ + ∆τ) the (transversal3) capacity or maximum exit flow,

that is, the maximum number of users that may be served in the time unit,

assumed constant during [τ, τ + ∆τ ] for simplicity’s sake (otherwise ∆τ

can be redefined)

The capacity constraint on exiting flow is expressed by

w ≤ Q.

A general conservation equation, similar to (2.2.1) and (2.2.2) introduced for

uninterrupted flow, holds in this case:

n(τ) + mIN(τ, τ + ∆τ) = mOUT(τ, τ + ∆τ) + n(τ + ∆τ). (2.2.9)

Moreover, dividing by ∆τ we obtain:

∆n/∆τ +
[

w(τ, τ + ∆τ) − u(τ, τ + ∆τ)
]

= 0. (2.2.10)

In the following subsection we describe several deterministic models developed

under the assumption that the headway between two consecutive vehicles and the

service time are represented by deterministic variables. This is followed by a sub-

section on stochastic models developed using random variables. In formulating such

models, as in the case of uninterrupted flow models, we assume arrival at the queue

is represented as a continuous (one-dimensional) fluid.

3In some cases it is also necessary to introduce longitudinal capacity, that is, the maximum number

of users that may form the queue.
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Fig. 2.7 Cumulative arrival and departure curves

2.2.2.2 Deterministic Models

Deterministic models are based on the assumptions that arrival and departure times

are deterministic variables. According to the fluid approximation introduced above,

the conservation equation (2.2.10) for ∆τ → 0 becomes (see Fig. 2.6):

dn(τ)

dt
= u(τ) − w(τ)

Deterministic queuing systems can also be analyzed through the cumulative num-

ber of users that have arrived at the server by time τ , and the cumulative number of

users that have departed from the server (leaving the queue) at time τ , as expressed

by two functions termed arrival curve A(τ), and departure curve D(τ) ≤ A(τ),

respectively; see Fig. 2.7. Queue length n(τ) at any time τ is given by:

n(τ) = A(τ) − D(τ) (2.2.11)

provided that the queue at time 0 is given by n(0) = A(0) ≥ 0 with D(0) = 0.

The arrival and departure functions are linked to entering and exiting users by the

following relationships.

mIN(τ, τ + ∆τ) = A(τ + ∆τ) − A(τ) (2.2.12)

mOUT(τ, τ + ∆τ) = D(τ + ∆τ) − D(τ) (2.2.13)

The flow conservation equation (2.2.9) can also be obtained by subtracting member

by member the relationships (2.2.12) and (2.2.13) and taking into account (2.2.11).

The limit for ∆τ → 0 of (2.2.12) and (2.2.13) leads to (see Fig. 2.7):

u(τ) =
dA(τ)

dτ
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Fig. 2.8 Undersaturated queuing system

w(τ) =
dD(τ)

dτ

If during time interval [τ0, τ0 + ∆τ ] the entering flow is constant over time,

u(τ) = ū, then the queuing system is named (flow-)stationary and the arrival func-

tion A(τ) is linear with slope given by ū:

A(τ) = A(τ0) + ū · (τ − τ0) τ ∈ [τ0, τ0 + ∆τ ]

The exit flow may be equal to the entering flow ū, or to the capacity Q as de-

scribed below.4

(a) Undersaturation When the arrival flow is less than capacity (ū < Q) the sys-

tem is undersaturated. In this case, if there is a queue at time τ0, its length decreases

with time and vanishes after a time ∆τ0 defined as (see Fig. 2.8)

∆τ0 = n(τ0)/(Q − ū) (2.2.14)

Before time τ0 + ∆τ0, the queue length is linearly decreasing with τ and the

exiting flow w̄ is equal to capacity Q:

n(τ) = n(τ0) − (Q − ū)(τ − τ0)

w̄ = Q (2.2.15)

D(τ) = D(τ0) + Q(τ − τ0)

After time τ0 + ∆τ0 the queue length is zero and the exiting flow w̄ is equal to the

arrival flow ū:

n(τ0 + ∆τ0) = 0

4In stationary queuing models used on transportation networks, the inflow ū can be substituted

with the flow fa of the link representing the queuing system.
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Fig. 2.9 Oversaturated queuing system

w̄ = ū (2.2.16)

D(τ) = A(τ) = A(τ0) + ū(τ − τ0)

(b) Oversaturation When the arrival flow rate is larger than capacity, ū ≥ Q, the

system is oversaturated. In this case queue length linearly increases with time τ and

the exiting flow is equal to the capacity Q (see Fig. 2.9):

n(τ0) = n(τ0) + (ū − Q)(τ − τ0)

w̄ = Q (2.2.17)

D(τ) = D(τ0) + Q(τ − τ0)

(c) General Condition By comparing (2.2.15) through (2.2.17) it is possible to

formulate this general equation for calculating the queue length at generic time in-

stant τ :

n(τ) = max
{

0,
(

n(τ0) + (ū − Q)(τ − τ0)
)}

(2.2.18)

With the above results, any general case can be analyzed by modeling a sequence

of periods during which arrival flow and capacity are constant. An important case is

that of the queuing system at traffic lights which may be considered a sequence of

undersaturated (green) and oversaturated (red) periods with zero capacity (see p. 73:

Application of Queuing Models).

The delay can be defined as the time needed for a user to leave the system (pass-

ing the server), accounting for the time spent queuing (pure waiting). Thus the delay

is the sum of two terms:

tw = ts + twq

where
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Fig. 2.10 Deterministic delay function at a server

tw is the total delay

ts = 1/Q is the average service time (time spent at the server)

twq is the queuing delay (time spent in the queue)

In undersaturated conditions (ū < Q) if the queue length at the beginning of pe-

riod is zero (it remains equal to zero), the queuing delay is equal to zero, twq(u) = 0,

and the total delay is equal to the average service time:

tw(ū) = ts

In oversaturated conditions (ū ≥ Q), the queue length, and respective delay,

would tend to infinity in the theoretical case of a stationary phenomenon lasting

for an infinite time. In practice, however, oversaturated conditions last only for a

finite period T . If the queue length is equal to zero at the beginning of the period, it

will reach a value (ū−Q) ·T at the end of the period. Thus, the average queue over

the whole period T is:

n̄ =
(ū − Q)T

2

In this case the average queuing delay is x̄/Q, and average total delay is (see

Fig. 2.10):

tw(ū) = ts +
(ū − Q)T

2Q
(2.2.19)
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2.2.2.3 Stochastic Models

Stochastic models arise when the variables of the problem (e.g., user arrivals, ser-

vice times of the server, etc.) cannot be assumed deterministic, due to the observed

fluctuations, as is often the case, especially in transportation systems. If the system

is undersaturated, it can be analyzed through (stochastic) queuing theory which in-

cludes the particular case of the deterministic models illustrated above. Some of the

results of this theory are briefly reported below, without any claim to being exhaus-

tive.

It is particularly necessary to specify the stochastic process describing the se-

quence of user arrivals (arrival pattern), the stochastic process describing the se-

quence of service times (service pattern) and the queue discipline. Arrival and ser-

vice processes are usually assumed to be stationary renewal processes, in other

words with stable characteristics in time that are independent of the past: that is,

headways between successive arrivals and successive service times are indepen-

dently distributed random variables with time-constant parameters. Let N be a ran-

dom variable describing the queue length, and n the realization of N . The character-

istics of a queuing phenomenon can be redefined in the following concise notation,

a/b/c(d, e)

where

a denotes the type of arrival pattern, that is, the variable which describes time

intervals between two successive arrivals:

D = Deterministic variable

M = Negative exponential random variable

E = Erlang random variable

G = General distribution random variable

b denotes the type of service pattern, such as a

c is the number of service channels: {1,2, . . .}

d is the queue storage limit: {∞, nmax} or longitudinal capacity

e denotes the queuing discipline:

FIFO = First In–First Out (i.e., service in order of arrival)

LIFO = Last In–First Out (i.e., the last user is the first served)

SIRO = Service In Random Order

HIFO = High In–First Out (i.e., the user with the maximum value of an

indicator is the first served)

Fields d and e, if defined respectively by ∞ (no constraint on maximum queue

length) and by FIFO, are generally omitted. In the following we report the main re-

sults for the M/M/1 (∞,FIFO) and the M/G/1 (∞,FIFO) queuing systems, which

are commonly used for simulating transportation facilities, such as signalized inter-

sections.
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Some definitions or notation differ from those traditionally adopted in dealing

with queuing theory (the relative symbols are in brackets) so as to be consistent with

those adopted above. The parameters defining the phenomenon are as follows.

u, (λ) The arrival rate or the expected value of the arrival flow

Q = 1/ts, (µ) The service rate (or capacity) of the system, the inverse of the ex-

pected service time

u/Q, (ρ) The traffic intensity ratio or utilization factor

n A value of the random variable N , number of users present in the system,

consisting of the number of users queuing plus the user present at the server,

if any (the significance of the symbol n is thus slightly different)

tw A value of the random variable TW, the time spent in the system or overall

delay, consisting of queuing time plus service time

(a) M/M/1 (∞, FIFO) Systems In undersaturated conditions (u/Q < 1):

E[N ] =

u
Q

1 − u
Q

=
u

Q − u
(2.2.20)

VAR[N ] =

u
Q

(1 − u
Q

)2

According to Little’s formula, the expected number of users in the system E[N ]

is the product of the average time in the system (expected value of delay) E[T W ]

multiplied by arrival rate u:

E[N ] = uE[T W ] (2.2.21)

from which:

E[T W ] =
1

Q − u
(2.2.22)

The expected time spent in the queue E[twq ] (or queuing delay) is given by

the difference between the expected delay E[tw] and the average service time ts =

1/Q:

E[T Wq ] =
1

Q − u
−

1

Q
=

u

Q(Q − u)
. (2.2.23)

According to Little’s second formula, the expected value of the number of users

in the queue E[Nq ] is the product of the expected queuing delay E[T Wq ] multiplied

by the arrival rate u:

E[Nq ] = uE[T Wq ] (2.2.24)

and then:

E[Nq ] =
u2

Q(Q − u)
(2.2.25)
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(b) M/G/1 (∞, FIFO) Systems In this case the main results are the following.

E[N ] =
u

Q

[

1 +
u

2(Q − u)

]

E[T W ] =
1

Q

[

1 +
u

2(Q − u)

]

E[T Wq ] =
u

2Q(Q − u)

2.3 Congested Network Models

This section provides a general mathematical formulation of transportation supply

models, based on congested network flow models. The bases for these models are

graph models. Next, network models, including link performances and costs, and

network flow models, including link flows, are introduced. Finally, congested net-

work (flow) models, modeling relationships among performances, costs, and flows,

are developed.

2.3.1 Network Structure

The network structure is represented by a graph. The latter is defined by a set N of

elements called nodes and by a set of pairs of nodes belonging to N,L ⊆ N × N ,

called links. The graphs used to represent transportation services are generally ori-

ented; that is, the links have a direction and the node pairs defining them are ordered

pairs. A link connecting the node pair (i, j) can also be denoted by a single index,

say a.

The links in a graph modeling a transportation system represent phases and/or

activities of possible trips between different traffic zones. Thus, a link can represent

an activity connected to a physical movement (e.g., covering a road) or an activity

not connected to a physical movement (such as waiting for a train at a station). Links

are chosen in such a way that physical and functional characteristics can be assumed

to be homogeneous for the whole link (e.g., the same average speed). In this sense,

links can be seen as the partition of trips into segments, each of which has certain

characteristics; the level of detail of such a partition can clearly be very different for

the same physical system according to the objectives of the analysis.

Nodes correspond to significant events delimiting the trip phases (links), that is,

to the space and/or time coordinates in which events occur that they represent. In

synchronic networks, nodes are not identified by a specific time coordinate, and the

same node represents events occurring at different moments (instants) of time. For

example, the different entry or exit times in a road segment, an intersection, or a

station, may be associated with a single node, representing all the entry/exit events.
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Centroid nodes, introduced in Sect. 1.3.1, represent the beginning or end of individ-

ual trips. In diachronic networks, on the other hand, nodes may have an explicit time

coordinate and therefore represent an event occurring at a given instant. The graphs

considered in this chapter are synchronic, because diachronic networks assume a

within-period system representation; diachronic graphs for scheduled services are

introduced in Chap. 7.

A trip is a sequence of several phases and, in a graph that represents transporta-

tion supply, it consists of a path k, defined as a succession of consecutive links

connecting an initial node (path origin) to a final node (path destination). Usually,

only paths connecting centroid nodes are considered in transportation graphs. On

this basis, each path is unambiguously associated with one, and only one, O-D pair,

whereas several paths can connect the same O-D pair. An example of a graph with

different paths connecting the centroid nodes is depicted in Fig. 2.11.

A binary matrix called the link–path incidence matrix ∆, can represent the re-

lationship between links and paths. This matrix has a number of rows equal to the

number of links nL and a number of columns equal to the number of paths nP . The

generic element δak of the binary matrix ∆ is equal to one if link a belongs to path

k, a ∈ k, and zero, otherwise, a /∈ k (see Fig. 2.11). The row of the link–path inci-

dence matrix corresponding to the generic link a identifies all the paths including

that link (columns k for which δak = 1). Moreover, the elements of a column cor-

responding to the generic path k identify all the links that make it up (rows a for

which δak = 1).

2.3.2 Flows

A link flow fa can be associated with each link a. Link flow is the average number

of homogeneous units using link a (i.e., carrying out the trip phase represented

by the link) in a time unit. In other words, the link flow is a random variable of

mean fa . Several link flows can be associated with a given link depending on the

homogeneous unit considered. User flows relate to users, such as travelers or goods,

possibly of different classes. Vehicle flows relate to the number of vehicles, perhaps

of different types such as automobiles, buses, trains, and so on.

For individual modes, such as automobiles or trucks, user flows can be trans-

formed quite straightforwardly into vehicle flows through average occupancy coef-

ficients. For scheduled modes, such as trains, vehicle flows derive from the service

schedule and are often treated as an input to the supply model.

The link flow of the generic user class or vehicle type i is denoted by f i
a . In ac-

cordance with the results of traffic flow theory (see Sect. 2.2), link performance and

cost variables are affected by user or vehicle flow. To allow for this dependence it is

often worth homogenizing the various classes of users or various types of vehicles

by defining equivalent flows associated with links. In this case the flows of different

user classes or vehicle types are homogenized to a reference class or type:

fa =
∑

i

wif
i
a
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Fig. 2.11 Example of a graph and link–path incidence matrix

where wi is the homogenization coefficient of the users of class i with respect to

their influence on link performances. For example, for road flows, automobiles are

usually the reference vehicle type (wi = 1) and the other vehicle flows are trans-
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formed into equivalent auto flows with coefficients wi . The latter are greater than

one if the contribution to congestion of these vehicles is greater than that of cars

(buses, heavy vehicles, etc.), less than one in the opposite case (motorcycles, bicy-

cles, etc.).

The vector of link flows f has, as a generic component, the flow on link a,fa ,

for each a ∈ L (see Fig. 2.12).

Flow variables can also be associated with paths. Under the within-day station-

arity hypothesis, the average number of users, who in each subinterval travel along

each path, is constant. The average number of users, who in a time unit follow path k,

is called the path flow hk . If the users have different characteristics (i.e., they belong

to different classes), path flows per class i, hi
k , can be introduced. Path flows of dif-

ferent user classes or vehicle types can be homogenized by means of coefficients wi

similar to those introduced for link flows; the equivalent path flow is obtained as:

hk =
∑

i

wi · hi
k

There is clearly a relationship between link and path flows. Indeed, the flow on

each link a can be obtained as the sum of the flows on the various paths containing

that link. This relationship can be expressed by using the elements δak of the link–

path incidence matrix as

fa =
∑

k

δak · hk (2.3.1)

or in matrix terms:

f = ∆h (2.3.2)

where h is the path flow vector.

Equation (2.3.1) or (2.3.2) expresses the way in which path flows induce flows

on individual links. For this reason it is referred to as the (static) Network Flow

Propagation (NFP) model (see Fig. 2.11). Note that the linear algebraic structure

of (2.3.1) depends crucially on the assumption of intraperiod stationarity (within-

day static model); if this assumption is removed, the model loses its algebraic-linear

nature as shown in Chap. 7.

2.3.3 Performance Variables and Transportation Costs

Some variables perceived by users can be associated with individual trip phases. Ex-

amples of such variables are travel times (transversal and/or waiting), monetary cost,

and discomfort. These variables are referred to as level-of-service or performance

attributes. In general, performance variables correspond to disutilities or costs for

the users (i.e., users would be better off if the values of performance variables were

reduced). The average value of the nth performance variable, related to link a, is

denoted by rna . The average generalized transportation link cost, or simply the
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Fig. 2.12 Transportation network with link and path flows

transportation link cost, is a variable synthesizing (the average value of) the differ-

ent performance variables borne and perceived by the users in travel-related choice

and, more particularly, in path choices (see Sect. 4.3.3). Thus, the transportation link
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cost reflects the average users’ disutility for carrying out the activity represented by

the link. Other performance variables and costs, which cannot be associated with

individual links but rather to the whole trip (path), are introduced shortly.

Performance variables making up the transportation cost are usually nonhomoge-

neous quantities. In order to reduce the cost to a single scalar quantity, the different

components can be homogenized into a generalized cost applying reciprocal substi-

tution coefficients β , whose value can be estimated by calibrating the path choice

model (see Sect. 4.3.3). For example, the generalized transportation cost ca relative

to the link a can be formulated as

ca = β1 · ta + β2 · mca

where ta is the travel time and mca is the monetary cost (e.g., the toll) connected

with the crossing of the link. More generally, the link transportation cost can be

expressed as a function of several link performance variables as

ca =
∑

n

βn · rna

Different users may experience and/or perceive transportation costs, which differ

for the same link. For example, the travel time of a certain road section generally

differs for each vehicle that covers it, even under similar external conditions. Fur-

thermore, two users experiencing the same travel time may have different percep-

tions of its disutility. If we then add the fact that the analyst cannot have perfect

knowledge of such costs, we realize that the perceived link cost is well represented

by a random variable distributed among users, whose average value is link trans-

portation cost ca . There may be other “costs” both for users (e.g., accident risks

or tire consumption) and for society (e.g., noise and air pollution) associated with a

link. It is usually assumed that these costs are not taken into account by users in their

travel-related choices and are not included in the perceived transportation cost. The

transportation cost is, therefore, an internal cost, used to simulate the transportation

system and, in particular, travelers’ choices. The other cost items are external costs,

used for project design and assessment. External costs are sometimes referred to as

impacts; they are dealt with in Sect. 2.3.5.

Different groups (or classes) of users may have different average transportation

costs. This may be due to different performance variables (e.g., their speeds and

travel times are different or they pay different fares) or to differences in the homoge-

nization coefficients βn (e.g., different time/money substitution rates corresponding

to different incomes). In this case a link cost ci
l can be associated with each user

class i. In what follows, for simplicity of notation, the class index i is taken as un-

derstood unless otherwise stated. Other considerations relative to users belonging to

different classes are made in Chap. 6.

Link performance variables and transportation costs can be arranged in vectors.

The performance vector ra is made up by the nth performance variable for each

link, its components being rna . Analogously, the vector c, whose generic component

ca is the generalized transport cost on link a, is known as the link cost vector.
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The concepts of performance variables and generalized transportation cost can

be extended from links to paths. The average performance variable of a path k, znk ,

is the average value of that variable associated to a whole origin–destination trip,

represented by a path in the graph. Some path performance variables are linkwise

additive; that is, their path value can be obtained as the sum of link values for all

links making up the path.

Examples of additive path variables are travel times (the total travel time of a

path is the sum of travel times over individual links) or some monetary costs, which

can be associated with some or all individual links. An additive path performance

variable can be expressed as the sum of link performance variables as

zADD
nk =

∑

a∈k

rna =
∑

a

δakrna

or in vector notation

zADD
n = ∆T rn

Other path performance variables are nonadditive; that is, they cannot be ob-

tained as the sum of link specific values. These variables are denoted by zNA
nk . Ex-

amples of nonadditive performance variables are monetary cost in the case of tolls

that are nonlinearly proportional to the distance covered or the waiting time at stops

for high-frequency transit systems, as shown below.

The average generalized transportation cost of a path k, gk , is defined as a scalar

quantity homogenizing in disutility units the different performance variables per-

ceived by the users (of a given category) in making trip-related choices and, in

particular, path choices.

The path cost in the most general case is made up of two parts: linkwise additive

cost gADD
k and nonadditive cos, gNA

k , assuming that they are homogeneous:

gk = gADD
k + gNA

k (2.3.3)

The additive path cost is defined as the sum of the linkwise additive path perfor-

mance variables:

gADD
k =

∑

n

βn · zADD
nk

Under the assumption that the generalized cost depends linearly on performance

variables, the additive path cost can be expressed as the sum of generalized link

costs. The relationship between additive path cost and link costs can be expressed

by combining all the equations previously presented:

gADD
k =

∑

n

βnz
ADD
nk =

∑

n

βn

∑

a

δakrna =
∑

a

δlk

∑

n

βnrna =
∑

a

δakca

or

gADD
k =

∑

a

δakca (2.3.4)
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Fig. 2.13 Transportation network with link and path costs

The expression (2.3.4) can also be formulated in vector format by introducing

the vector of additive path costs gADD (see Fig. 2.13):

gADD = ∆T c (2.3.5)
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The nonadditive path cost gNA
k includes nonadditive path performance variables:

gNA
k =

∑

n

βnz
NA
nk

Finally, the path cost vector g, of dimensions (nP × 1), can be expressed as

g = ∆T c + gNA (2.3.6)

where gNA is the nonadditive path cost vector.

In many applications, the nonadditive path cost vector is, or is assumed to be,

null. This affects the efficiency of the calculation algorithm for assignment models,

as shown in Chaps. 5 and 6.

2.3.4 Link Performance and Cost Functions

Link performance attributes generally depend on the physical and functional char-

acteristics of the facility and/or the service involved in the trip phase represented

by the link itself. Typical examples are the travel time on a road section depending

on its length, alignment, allowed speed, or the waiting time at a bus stop depending

on the headway between successive bus arrivals. When several travelers or vehi-

cles use the same facility, they may interact with each other, thereby influencing

link performance. This phenomenon is known as congestion and was introduced in

Sect. 2.2.1. Typically, the effects of congestion on link performance increase as the

flow increases. For instance, the larger the flow of vehicles traveling along a road

section, the more likely faster vehicles will be slowed by slower ones, thus increas-

ing the average travel time. Moreover, the larger the flow arriving at an intersection,

the longer is the average waiting time; the larger the number of users on the same

train, the lower is the riding comfort.

In general, congestion effects are such that the performance attributes of a given

link may be influenced by the flow on the link itself and by flows on other links.

Link performance functions relate the generic link performance attribute rna to

physical and functional characteristics of the link, arranged in a vector bna , and to

the equivalent flow on the same link and, possibly, on other links, arranged in the

vector f :

rna = rna(f ;bna,γ na)

where γ na is a vector of parameters used in the function.

Because the generalized transportation cost of a link ca is a linear combination

of link performance attributes, link cost functions5 can be expressed as functions of

5A distinction should be made between cost functions in microeconomics and in transportation

systems theory. In the first case, the cost function is a relationship connecting the production cost

of a good or service to the quantity produced and the costs of individual production factors. Cost
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the same parameters:

ca = ca(f ;ba,γ a) (2.3.7)

where vectors ba and γ a have the same meaning as above.

Link performance and cost functions may have some mathematical properties,

which are used in Chaps. 5 and 6 to study the properties of supply–demand interac-

tion models and to analyze the convergence of their solution algorithms.

Performance and cost functions can be classified as separable and nonsepara-

ble across a link. In the former case, the performances and cost variables of a link

depend exclusively on the (equivalent) flow on the link itself:

ca(f ) = ca(fa)

In the latter case, they also depend on the flow on other links. Examples of both

types of function are given in the following sections.

The cost function vector c(f ) is obtained by ordering the nL functions of the

individual network links:

c = c(f ) (2.3.8)

Under the assumption that the first partial derivative of c(f ) exists and is finite, the

Jacobian matrix, Jac[c(f )], may be defined:

Jac
[

c(f )
]

=

∣

∣

∣

∣

∣

∣

∣

∣

∂c1
∂f1

. . .
∂c1
∂fnL

∂ci

∂fi
. . .

∂cnL

∂f1
. . .

∂cnL

∂fnL

∣

∣

∣

∣

∣

∣

∣

∣

The cost functions generally have an asymmetric Jacobian. In some cases, they may

have a symmetric Jacobian: ∂ci/∂fj = ∂cj/∂fi, ∀i, j ; that is, the cost variation on

link a, due to a flow variation on link j , is equal to the cost variation on link j , due

to a flow variation on link i. Separable cost functions are clearly a special case, the

Jacobian being a diagonal matrix: ∂ci/∂fj = 0, ∀i �= j .

In the case of uncongested networks the cost functions are independent of the

flows, so the partial derivatives are all equal to zero and the Jacobian is null.

2.3.5 Impacts and Impact Functions

Design and evaluation of transportation systems, in addition to performance vari-

ables perceived by the users, require the modeling of impacts borne by the users,

but not perceived in their mobility choices, and of impacts on nonusers. Examples

functions in transportation systems provide the cost perceived by users in their trips. Transportation

cost is therefore a cost of use rather than of production. The cost of producing transportation

services is usually indicated as the service production cost, and similarly the functions correlating

it to the relevant quantities are called production cost functions.
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of the first type include indirect vehicle costs (e.g., tire or lubricant, vehicle de-

preciation, etc.) and accident risks with their consequences (death, injury, material

damage). The impacts for nonusers include those for other subjects directly involved

in the transportation system, such as costs and revenues for the producers of trans-

portation services, and impacts “external” to the transportation system (or market).

Examples of externalities are the impacts on the real estate market, urban structure,

or on the environment such as noise and air pollution. The mathematical functions

relating these impacts to physical and functional parameters of the specific trans-

portation systems and, in some cases, to link flows are called impact functions. Of-

ten these functions are named with respect to the specific impact they simulate (e.g.,

fuel consumption functions or pollutant emission functions). Some impacts can be

associated with individual network links and depend on the flows, el(f ). Link-based

impact functions are usually included in transportation supply models; see Fig. 2.1.

Some impact functions may be quite elementary whereas others may require com-

plex systems of mathematical models. Examples of link-based impact functions are

those related to air and noise pollution due to vehicular traffic. Some impact func-

tions are discussed in Chap. 10 in the context of evaluation of transportation system

projects.

2.3.6 General Formulation

To summarize the above points, a transportation network consists of the set of nodes

N , the set of links L, the vector of link costs c, which depend on the vector r of link

performances, the vector gNA of nonadditive path costs and the vector e of relevant

impact variables: (N,L, c,gNA, e). For congested networks, the link cost vector

is substituted by the flow-dependent cost functions c(f ); the same holds for flow-

dependent internal and external impacts e(f ), whereas the nonadditive costs vector

gNA is usually assumed to be independent of the flows. In this case the abstract

transportation network model can be expressed as (N,L, c(f ),gNA, e(f )). Perfor-

mance variables and functions are not explicitly mentioned, as they are included in

the generalized transportation cost functions.

The set of relationships connecting path costs to path flows is known as the supply

model. The supply model can therefore be formally expressed combining (2.3.2),

(2.3.6), and (2.3.8) into a relationship connecting path flows to path costs:

g(h) = ∆T c(∆h) + gNA (2.3.9)

where it is assumed that nonadditive path costs, if any, are not affected by con-

gestion. Link characteristics can be obtained through performance, cost and impact

functions for the link flows corresponding to the path flow vector. Clearly the model

(2.3.9) expresses the abstract congested network model described in the previous

sections. The same type of models can be used to describe other systems such as

electrical or hydraulic networks.

The general structure of a supply model is depicted in Fig. 2.14. The graph de-

fines the topology of the connections allowed by the transportation system under
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Fig. 2.14 Schematic representation of supply models

study, and the flow propagation model defines the relationship among path and

link flows. The link performance model expresses for each element (link) the re-

lationships among performances, physical and functional characteristics, and flow

of users. The impact model simulates the main external impacts of the supply sys-

tem. Finally, the path performance model defines the relationship between the per-

formances of single elements (links) and those of a whole trip (path) between any

origin–destination pair.

2.4 Applications of Transportation Supply Models

Network models and related algorithms are powerful tools for modeling transporta-

tion systems. A network model is a simplified mathematical description of the phys-
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Fig. 2.15 Functional phases for the construction of an urban bimodal network model

ical phenomena relevant to the analysis, design, and evaluation of a given system.

Thus transportation network models depend on the purpose for which they are used.

Building a network model usually requires a sequence of operations whose gen-

eral criteria are described in the following. A schematic representation of the main

activities in the case of a bimodal supply system (road and transit urban systems) is

depicted in Fig. 2.15.

In the most general case, a supply network model is built through the following

phases.

(a) Delimitation of the study area

(b) Zoning

(c) Selection of relevant supply elements (basic network)

(d) Graph construction

(e) Identification of performance and cost functions

(f) Identification of impact functions

Phases (a), (b), and (c) relate to the relevant supply system definition. They are

described, respectively, in Sect. 1.3.1 of Chap. 1 and are not repeated here. The rest

of this section introduces some general considerations related to phases (d), (e), and
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(f) for a generic system. Specific models are described separately for two different

types of transportation systems: continuous services (such as road), in Sect. 2.4.1,

and scheduled services (such as train or buses), in Sect. 2.4.2.

The construction of a transportation graph requires the definition of the rele-

vant trip phases and events (links and nodes) that depend on the physical system

to be represented. Important nodes in transportation graphs are the so-called cen-

troid nodes. They correspond to the events of beginning and ending a trip in a given

zone. As was seen in Sect. 1.3.1, the centroids can approximate the internal points

within a traffic zone. In general, the zone centroid is a fictitious node, that is, a node

which does not correspond to any specific location but which represents the set of

points of the zone where a trip can start or end. Therefore, a zone centroid is placed

“barycentrically” with respect to such points or to some proxy variables (e.g., the

number of households or workplaces). In principle, different centroid nodes may

be associated to different trip types (e.g., origin and destination centroids). In other

cases, centroids represent the places of entry into or exit from the study area for the

trips, which are partly undertaken within the system (cordon centroids). In this case

they are usually associated with physical locations (road sections, airports, railway

stations, etc.).

A graph usually includes links of different types: real links and connectors. Real

links represent trip phases corresponding to “physical” components (infrastructures

or services), such as traversing a road section or riding a train between two succes-

sive stations. When centroid nodes do not correspond to a physical element, connec-

tor links are introduced into the graph. These links represent the trip phase between

the terminal point (zone centroid) and a physical element of the network. In the re-

mainder of this section, links are referred to according to the trip phase (activity) or

the infrastructure or service which allows that activity. For example, there are road

links, transit line links, and waiting links at stops.

A transportation graph will have different levels of complexity, depending on the

system being represented and the details required to do so. In general, short-term

or operational projects, such as a road circulation plan or the design of transit lines,

require a very detailed representation of the real system. By contrast, strategic or

long-term projects usually require less detailed, larger-scale graphs both because of

the geographical size of the area and the number of elements included in the system.

As shown shortly, different graphs can be associated with the same basic net-

work, depending on the aim of the model. Graphs can also represent transportation

infrastructures; in general, infrastructure graphs are not used directly for system

models, but rather they are referred to during the construction of service graphs.

User flows and supply performances depend on the transportation services using the

infrastructures rather than on the infrastructures themselves.

Specification of link performance and cost functions for a transportation network

requires the study of the functioning of the individual elements that comprise it.

In practice, performance functions used at times derive from explicit assumptions

on system behavior, following a “deductive” approach, as for queuing models for

barrier systems such as motorway toll booths, road intersections, air and sea termi-

nals, and the like (see Sect. 2.2.2). When this approach, albeit based on simplifying
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assumptions, proves particularly complex, we use “descriptive” models developed

according to an “inductive” approach, as in most stationary traffic flow models (see

Sect. 2.2.1). Such models are made up of statistical relationships between perfor-

mance attributes and the explicative variables of the phenomenon. Examples of both

types of performance functions are given in the next two sections.

Both approaches use unknown parameters, vectors γ n and γ , respectively, in ex-

pressions (2.4.11) and (2.4.12), which should be calibrated for each specific supply

model. To estimate behavioral model parameters or to specify the functional form

and estimate nonbehavioral model parameters, the usual methods of inferential sta-

tistics may be used. However, in many applications the cost functions calibrated in

similar contexts are transferred to the system in question to save application time

and costs.

2.4.1 Supply Models for Continuous Service Transportation

Systems

Continuous and simultaneous services are available at every instant and can be ac-

cessed from a very large number of points. Typical examples are individual modes

such as cars and pedestrians using road systems.

2.4.1.1 Graph Models

In graphs representing road systems, nodes are usually located at the intersections

between road segments included in the supply model. Nodes can also be located

where significant variations occur in the geometric and/or functional characteristics

of a single segment (such as changes in a road cross-section and lateral friction).

Intersections with secondary roads not included in the “base network,” however, are

not represented by nodes. Links usually correspond to connections between nodes

allowed by the circulation scheme. Therefore, a two-way road is represented by two

links going in opposite directions, whereas a one-way road has a single link going

in the allowed direction. Figure 2.16 shows the graph representing part of the urban

road network shown in Fig. 1.3.

In applications two distinct types of links are considered: running links, which

represent the vehicle’s real movement as the trip along a motorway or urban road

section; and waiting or queuing links, representing queuing at intersections, toll bar-

riers, and so on (see Fig. 2.17).

The level of detail of the road system depends on the purpose of the model. This

is especially true for road intersections. In a coarse representation, a road intersec-

tion is usually represented by a single node where the access links converge. Al-

ternatively, we can adopt a more detailed representation that distinguishes different

turning movements and excludes nonpermitted turns (if any). Such a representation

can be obtained by using a larger number of nodes and links. Figure 2.18 shows

the two possible representations of a four-arm road intersection. Note that in the

single-node representation, paths requiring a left turn (4-5-2) cannot be excluded if
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Fig. 2.16 Example of a graph representing part of an urban road system
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Fig. 2.17 Representation of

a road intersection with

running and waiting links

this turning movement is not allowed; furthermore, different waiting times cannot

be assigned to maneuvers with different green phase durations, such as right turns

(4-5-3). Both of these possibilities are allowed by the detailed representation.

Parking is another element of a road system that can be represented with different

levels of detail. In detailed road graphs, trip phases corresponding to parking can be

represented with different links for different parking facilities available in a given

zone (see Fig. 2.19). Parking links can be connected through pedestrian links to the

centroid of the zone where they are located, and to the centroids of traffic zones

within walking distance. In less detailed graphs, parking is included in connector

links; in this case, however, congestion and different parking policies cannot be

simulated.

2.4.1.2 Link Performance and Cost Functions

The generalized transportation cost of a road link is usually made up by several

performance attributes. For example, three attributes can be selected: travel time

along the section, waiting time (e.g., at the final intersection, at the tollbooth, etc.),

and monetary cost. In this case, the cost function can be obtained as the sum of three

performance functions:

ca(f ) = β1tra(f ) + β2twa(f ) + β3mca(f ) (2.4.1)

where

tra(f ) is the function relating the running time on link a to the flow vector

twa(f ) is the function relating the waiting time on link a to the flow vector

mca(f ) is the function relating the monetary cost on link a to the flow vector

The dependence on physical and functional variables ba , and parameters γ , has

been omitted for simplicity’s sake. Note that in (2.4.1) it has been assumed that

homogenization coefficients may differ for the different time components. Further-

more, not all of the components in (2.4.1) are present for each link; for example,
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Fig. 2.18 Graphs for a road intersection

if the link represents only the waiting time for a maneuver, tra and mca are zero,

and the same consideration is true for monetary costs and waiting times on most

pedestrian links. If an individual link represents both the trip along a road section

and queuing at the intersection, its cost function will include both travel time tra

and queuing time twa .
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Fig. 2.19 Explicit representation of parking supply

In the most general case, the monetary cost term mca includes the cost items that

are perceived by the user. Because users do not usually perceive other consumption

(motor oil, tires, etc.), in applications monetary costs are usually identified as the
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toll (if any) and fuel consumption:

mca = mctoll + mcfuel(f ).

The latter depends on the specific consumption (liters/km), which can vary in

relation to the average speed and hence to the congestion level. In practice, these

variations are sometimes ignored and the monetary cost is calculated as a function

of the toll and the average unit consumption.

Performance functions for travel time and queuing time attributes are derived by

following both a behavioral (deductive) and experimental (inductive) approach. For

the waiting links, for example, the results of queuing theory are generally used (see

Sect. 2.2.2). However, their mere implementation has not always permitted proper

coverage of all situations in practice, which is why such relations often include

approximated adjustment terms obtained from empirical observations.

Listing all the performance functions that can be adopted for the elements of

different continuous service systems is beyond the scope of this book. In the follow-

ing, we therefore present some examples of performance functions both for travel

links and waiting links, following the two approaches mentioned. It should also be

stressed that, consistently with the assumption of intraperiod stationarity, stationary

traffic flow variables and results are used.

Running Links Starting from the (stable regime) speed–flow relationship, the

(stable regime) travel time of a running link a can be calculated as a function of

the flow:

tra = La/va(fa) (2.4.2)

where

tra is the running time on link a

fa is the flow on link a

La is the length of the running link a

va is the mean speed on link a assuming a stable regime

Below we introduce the relationships between travel time tra and flow fa for unin-

terrupted flow conditions, for various types of road infrastructures: motorways and

urban and extraurban roads.

(a) Motorway Links On motorway links flow conditions are typically uninter-

rupted and it is assumed that the waiting time component is negligible because it

occurs on those sections (ramps, tollbooths, etc.) that are usually represented by

different links.

Link travel time is usually obtained through empirical statistical relationships.

One of the most popular expressions, referred to as the BPR cost function, has the

following specification.

tra(fa) =
La

voa

+

(

La

vca

−
La

voa

)(

fa

Qa

)4

(2.4.3)
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Fig. 2.20 Motorway travel time function (2.4.3) for different values of some parameters

where

La is the length of link a

v0a is the free-flow average speed

vca is the average speed with flow equal to capacity

Qa is link capacity, that is, the average maximum number of equivalent vehi-

cles that can travel along the road section in a time unit. Capacity is usually

obtained as the product of the number of lanes on the link a, Na , and lane

capacity, Qua

From (2.4.3) it can be noted that, in the case of motorways, cost functions are

separable. The influence of flows on the performances of other links (e.g., the oppo-

site direction or entrance/exit ramps) is significantly reduced by the characteristics

of the infrastructure (divided carriageways, grade-separated intersections, etc.).

The values of voa, vca , and Qa depend on the geometric and functional charac-

teristics of the section (width of lanes, shoulders, and median strips; bend radiuses;

longitudinal slopes; etc.). Typical values can be found in different sources; the High-

way Capacity Manual (HCM) is the most complete and systematic (see Reference

Notes). Parameters γ1 and γ2 are typically estimated on empirical data.

Figure 2.20 shows a diagram of (2.4.3) for different parameter values. Note that

this function associates a travel time with the link also when flows are above link ca-

pacity (oversaturation), even though such flows are not possible in reality. However,

in applications oversaturation is often allowed for reasons connected with mathe-

matical properties and solution algorithms of static equilibrium assignment models

(see Chap. 5). From a computational point of view, the oversaturation assumption

should not influence the results significantly if the value of parameter γ2, that is, the

delay penalty due to capacity overloading, is large enough.
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Values of γ2 are typically much larger than one; that is, the function is more-

than-linear in flow/capacity ratios. This phenomenon is rather frequent in congested

systems. It should also be noted that, if the flow is close to capacity, resulting in-

stability challenges the within-day stationarity assumptions and the cost functions

adopted. In this sense, delay functions should be considered as “penalty” functions

preventing major oversaturation, rather than estimates of actual travel times.

(b) Extraurban Road Links Users traveling on an extraurban road behave differ-

ently according to the number of lanes available for each direction: single lane (two-

lane arterial) or two or more lanes (four-lane arterial, six-lane arterial, etc.).

In the former case, the capacity and travel conditions in each direction are not

influenced by the flow in the opposite direction. For this type of road, the same

formula (2.4.3) described for motorway links can be used, although with different

parameters. These can again be deduced from capacity manuals, such as the HCM,

or from other specific empirical studies.

In the case of roads with one lane in each direction, link performances depend

on the flow in both directions: because overtaking is not always possible, vehicles

may reduce the average speed. In practice, it is often assumed that link capacity

has a value common to both directions, and the travel time function is modified as

follows.

tra(fa, fa∗) =
La

v0a

+ γa

(

La

vca

−
La

v0a

)(

fa + fa∗

Qaa∗

)γ2

(2.4.4)

where, apart from the symbols introduced previously, the link in the opposite direc-

tion is denoted by a∗ and overall capacity in both directions by Qaa∗ .

(c) Urban Road Links In an urban context, given the relatively short lengths of

road sections, travel speed is more dependent upon road physical and functional

characteristics than upon the flow traveling on them. The higher the dependence is

on factors such as section bendiness or roadside parking, the lower the impact of

flow.

As an example, we report the empirical relation for estimating travel speed cal-

ibrated on survey sample data from the Napoli (Italy) urban area, integrated with

microscopic simulation data (see the bibliographical note):

va = 29.9 + 3.6Lua − 0.6Pa − 13.9Ta − 10.8Da − 6.4Sa + 4.7Pva

− 1.0E−04
(fa/Lua)

2

1 + Ta + Da + Sa

(2.4.5)

where

Lua is the useful width in meters of link a

Pa is the nonnegative slope in % of link a

Ta is the tortuosity of link a, in values in the interval [0,1]

Da is an index of disturbance to traffic from external factors (entry from

sideroads, irregular parking, pedestrian crossings, etc.) in values in the in-

terval [0,1]
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Fig. 2.21 Hyperbolic travel time cost function

Sa is the percentage of length of a occupied by parking

Pva is a dummy variable of 1 if the pavement of link a is asphalt, 0 otherwise

fa is the equivalent flow on link a in equiv. vehicles/hour

The travel time on link a may thus be calculated by multiplying the time obtainable

from (2.4.5) by a corrective factor c(La), which makes allowance for the effect of

transient motions at the ends of the link (in the case of stopping at intersections):

tra =
La

va

· c(La) =
La

va

·
1

1 − exp(−0.47 − 0.48E−02 · La)
(2.4.6)

where La is the road section length in km.

A further example of link travel time function is the hyperbolic expression given

by Davidson, which also holds for interrupted flow (delays at intersections are thus

included):

{

tra = (La/v0a)(1 + γfa/(Qa − fa)) for fa ≤ δQa

tra = tangent approximation for fa > δQa
(2.4.7)

with δ < 1 and Qa = link capacity. Also see Fig. 2.21.

In this last case the tangent approximation is necessary because tra tends to ∞

for fa going to Qa . This condition is unrealistic because the oversaturated period

has a finite duration.

Waiting Links

(a) Toll-Barrier Links In the case of links representing queuing systems, it is as-

sumed that average waiting time is the only significant time performance variable. In
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simple cases (e.g., a link corresponds to all toll lanes), the average undersaturation

waiting time can be obtained by using a stochastic queuing model:

twu
a(fa) = Ts +

(

T 2
s + σ 2

s

)

·
fa

2
·

1

1 − fa/Qa

(2.4.8)

where

Ts is the average service time for each toll lane

σ 2
s is the variance of the service time at the pay-point

Qa = Na/Ts is the link (toll-barrier) capacity equal to the product of the number

of lanes (Na) by the capacity of each lane (1/Ts)

Expression (2.4.8) is derived from the assumption of a queuing system M/G/1

(∞,FIFO) with Poisson arrivals and general service time (see Sect. 2.2.2.3).

The values of Ts and σ 2
s depend on various factors such as the tolling structure

(fixed, variable) and the payment method (manual, automatic, etc.). Note that the av-

erage waiting time obtained through (2.4.8) is larger than the average service time Ts

even though the arriving flow is lower than the system’s capacity. This effect derives

from the presence of random fluctuations in the headways between user arrivals and

service times. Hence the delay expressed by (2.4.8) is known as “stochastic delay.”

Moreover, the average delay computed with (2.4.8) tends to infinity as the flow fa

tends to capacity (i.e., if fa/Qa tends to one). This would be the case if the arrivals

flow fa remained equal to capacity for an infinite time, which does not occur in

reality. In order to avoid unrealistic waiting times and for reasons of theoretical and

computational convenience, two different methods can be adopted. The first, and

less precise, method assumes that (2.4.8) holds for flow values up to a fraction α

of the capacity, for example, fa ≤ 0.95Qa . For higher values, the curve is extended

following its linear approximation, that is, in a straight line passing through the

point of coordinates αQa, tw(αQa) with angular coefficient equal to the derivative

of (2.4.8) computed at this point:

twa(fa) = twa(αQa) + K(fa − αQa) (2.4.9)

with

K =
T 2

s + σ 2
s

2
·

1

(1 − α)2

Figure 2.22 shows the relationships (2.4.8) and (2.4.9) for some values of the

parameters.

A more rigorous method is based on calculating oversaturation delay using a

deterministic queuing model with an arrival rate equal to fa , deterministic service

times equal to Ts and an oversaturation period equal to the reference period duration

T (see Sect. 2.2.2.2). The deterministic average (oversaturation) delay twd
a is then

equal to:

twd
a = Ts +

(

fa

Qa

− 1

)

T

2
(2.4.10)

which, for a given capacity, is a linear function of the arrivals flow fa .
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Fig. 2.22 Waiting time functions (2.4.8) and (2.4.9) at toll-barrier links

Note that in this case the assumption of intraperiod stationarity is challenged

because even if the arrivals flow rate fa and capacity 1/Ts are constant over the

whole reference period T , the waiting time is different for users arriving in different

instants of the reference period. In static models it is assumed that users perceive the

average waiting time. Intraperiod dynamic models, discussed in Chap. 7, remove

this assumption.

The average delay twa can be calculated by combining the stochastic undersatu-

ration average delay twu
a expressed by (2.4.8) with the deterministic average over-

saturation delay twd
a , expressed by (2.4.10). The combined delay function is such

that the deterministic delay function is its oblique asymptote (see Fig. 2.23). The

following equation results.

twa(fa) = Ts +
(

T 2
s + σ 2

)fa

2
+

T

4

{

fa

Qa

− 1

+

[(

fa

Q
− 1

)2

+
4(fa/Qa)

QaT

]1/2}

(2.4.11)

(b) Signal-Controlled Intersection Links Queuing and delay phenomena at sig-

nalized intersections can be obtained from the queuing theory results reported in

Sect. 2.2.2. In fact, signalized intersections are a particular case of servers for which

capacity is periodically equal to zero (when the signal is red). During such times the

system is necessarily oversaturated.

The simplest case is that of a signal-controlled intersection not interacting with

adjacent ones (isolated intersection), without lanes reserved for right or left turns.
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Fig. 2.23 Under- and oversaturation waiting time functions for toll barrier links

Fig. 2.24 Discharge flow from signal-controlled intersection in relation to cycle phases

Below we first introduce the assumptions and variables for each access as well as

the most widely used calculation method. We then present the various models for

calculating delays at intersections.
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It is common to divide the cycle length into two time intervals (Fig. 2.24 illus-

trates the quantities associated with a traffic-light cycle). The effective green time

equals the green plus yellow time minus the lost time, during which departures oc-

cur at a constant service rate, given by the inverse of saturation flow. The effective

red time is the difference between cycle length and the effective green time, during

which no departures occur.

Below, to simplify the notation, we omit the index of link a. Moreover, to facil-

itate application of the results in Sect. 2.2.2, the symbol ū instead of f is used for

the arrivals flow. Let:

Tc be the cycle length for the whole intersection

G be the effective green time for an approach

R = Tc − G be the effective red time for the approach

µ = G/Tc be the effective green/cycle ratio for the approach

The number of vehicles arriving at the approach during time interval Tc is given

by the following equation.

mIN(τ, τ + Tc) = ū · Tc

The maximum number of users that may leave the approach, during time interval

Tc, is given by:

S · G = µ · S · Tc

where S is the saturation flow of the intersection approach, that is, the maximum

number of equivalent vehicles which in the time unit could cross the intersection if

the traffic lights were always green (µ = 1). Alternatively, the saturation flow may

be defined as the maximum discharge rate that may be sustained by a queue during

the green–amber time.

Hence the actual capacity of the approach is given by:

Q =
S · G

Tc

= µ · S

Thus, the approach can be defined undersaturated if:

ū · Tc < µ · S · Tc

that is:

ū < µ · S (2.4.12)

On the other hand the approach is defined oversaturated if:

ū ≥ µ · S (2.4.13)

The saturation flow rate of an intersection can in principle be obtained through

specific traffic surveys; in practice, however, empirical models based on average re-

sults are often used. The Highway Capacity Manual (HCM) describes one of the
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Fig. 2.25 Typical lane groups for the HCM method for calculating saturation flow

most popular methods. To apply this method, it is necessary to determine appro-

priate lane groups. A lane group is defined as one or more lanes of an intersection

approach serving one or more traffic movements with which a single value of sat-

uration flow, capacity, and delay can be associated. Both the geometry of the inter-

section and the distribution of traffic movements are taken into account to segment

the intersection into lane groups. In general, the smallest number of lane groups that

adequately describes the operation of the intersection is used. Figure 2.25 shows

some common lane group schemes suggested by the HCM. The saturation flow rate

of an intersection is computed from an “ideal” saturation flow rate, usually 1900

equivalent passenger cars per hour of green time per lane (pcphgpl), adjusted for a

variety of prevailing conditions that are not ideal. The method can be summarized

by the following expression,

S = S0 · N · Fw · FHV · Fg · Fp · Fbb · Fa · FRT · FLT
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where

S is the saturation flow rate for the specific lane group, expressed as a total

for all lanes in the lane group under prevailing conditions, in vphg

S0 is the ideal saturation flow rate per lane, usually 1900 pcphgpl

N is the number of lanes in the lane group

Fw is the adjustment factor for lane width (12 ft or 3.66 m lanes are standard)

FHV is the adjustment factor for heavy vehicles in the traffic flow

Fg is the adjustment factor for approach grade

Fp is the adjustment factor for the existence of a parking lane adjacent to the

lane group and the parking activity in that lane

Fbb is the adjustment factor for the blocking effect of local buses that stop

within the intersection area

Fa is the adjustment factor for the area type

FRT is the adjustment factor for right turns in the lane group

FLT is the adjustment factor for left turns in the lane group

The first six adjustment factors not connected with the type of turning maneuvers

are reported in Fig. 2.26.

Once the approach capacity Ql = µS is known, we may calculate the queue

length and mean waiting time twa , using models derived from different approaches.

Application of Queuing Models From (2.4.12) and (2.4.13) it is clear that the

results discussed in Sect. 2.2.2 hold for a queuing system representing a signalized

intersection approach. In this context, the server’s capacity Q coincides with the

actual capacity of access: Q = µ · S. The latter is the weighted mean between the

zero value of the “red” period and that equal to S for the “green” period, with µ =

G/Tc.

In the case in which access occurs in undersaturation conditions, the queue length

may be calculated using (2.2.18) in which capacity assumes alternatively a value

of zero, in intervals of length R (intervals of effective red), and a value of S, in

intervals of length G (intervals of effective green) (see Fig. 2.27). As the system

is undersaturated, at the end of each interval of effective green the queue is zero:

nu(I · Tc) = 0 ∀i, where i stands for the progressive number of cycles. Thus, for

each interval of effective red we have n(τ0) = 0 with τ0 = I · Tc and, setting Q = 0

in (2.2.18), the queue length is equal to:

nR
u (τ ) = ū(τ − I · Tc) I · Tc ≤ τ ≤ I · Tc + R (2.4.14)

The queue length reaches a maximum value at the end of the red-time, equal to:

nR
u (I · Tc + R) = ūR = ū(1 − µ)Tc

Thus, at the beginning of the interval of effective green we have n(τ0) = ū(1−µ)Tc

with τ0 = I · Tc + R, and the queue length in a certain instant τ of the interval is

given by (2.2.18) with Q = S:

nG
u (τ ) = max

{

0, ū(1 − µ)Tc − (S − ū)(τ − I · Tc − R)
}
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ADJUSTMENT FACTOR FOR AVERAGE LANE WIDTH Fw

Average lane width, W (FT) 8 9 10 11 12 13 14 15 16

Fw 0.867 0.900 0.933 0.967 1.000 1.033 0.067 1.100 1.133

ADJUSTMENT FACTOR FOR HEAVY VEHICLES FHV

Percentage of heavy vehicles (%) 0 2 4 6 8 10 15 20

FHW 1.000 0.980 0.962 0.943 0.926 0.909 0.870 0.833

Percentage of heavy vehicles (%) 25 30 35 40 45 50 75 100

FHW 0.800 0.769 0.741 0.714 0.690 0.667 0.571 0.500

ADJUSTMENT FACTOR FOR APPROACH GRADE Fg

Grade (%) −6 −4 −2 0 +2 +4 +6 +8 ≥ 10

Fg 1.030 1.020 1.010 1.000 0.990 0.980 0.970 0.960 0.950

ADJUSTMENT FACTOR FOR PARKING Fp

Fp No. of parking maneuvers per hour

No. of lanes in lane group No parking 0 10 20 30 ≥ 40

1 1.000 0.900 0.850 0.800 0.750 0.700

2 1.000 0.950 0.925 0.900 0.875 0.850

3 or more 1.000 0.967 0.950 0.933 0.917 0.900

ADJUSTMENT FACTOR FOR BUS BLOCKAGE Fbb

Fbb No. of buses stopping per hour

No. of lanes in lane group 0 10 20 30 ≥ 40

1 1.000 0.960 0.920 0.880 0.840

2 1.000 0.980 0.960 0.940 0.920

3 or more 1.000 0.987 0.973 0.960 0.947

ADJUSTMENT FACTOR FOR AREA TYPE Fa

Type of area Fa

CBD (Center Business District) 0.900

All other areas 1.000

Fig. 2.26 Adjustment factors in the HCM method for saturation flow

I · Tc + R ≤ τ ≤ I · Tc + R + G (2.4.15)

The time period (within the green) in which the queue is exhausted is (see (2.4.15)):

∆τ0 =
ū(1 − µ)Tc

(S − u)

The queue in undersaturation conditions therefore shows a periodic time trend,

with zero values at the end of effective green time (i.e., at the beginning of the red

interval) and maximum values at the end of the effective red interval (see Fig. 2.27).

However, if the system is in oversaturation conditions (ū ≥ µ ·S), the total queue

length is obtained by summing the queue length in undersaturation to the queue

length in oversaturation (see Fig. 2.28). The queue length in undersaturation, nu(τ ),

is obtained once again by (2.4.14) and (2.4.15), for an arrivals rate equal to capacity
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Fig. 2.27 Deterministic queuing model for signalized intersections, undersaturated conditions

Fig. 2.28 Deterministic queuing model for signalized intersections, oversaturated conditions

(ū = µ · S):

nR
u (τ ) = µ · S(τ − I · Tc) I · Tc ≤ τ ≤ I · Tc + R (2.4.16)

nG
u (τ ) = µ · S(1 − µ)Tc − S(1 − µ)(τ − I · Tc − R)

I · Tc + R ≤ τ ≤ I · Tc + R + G (2.4.17)

The oversaturated queue length can be computed with the queue obtained from

(2.2.18) with Q = µ · S, τ0 = 0 and n(τ0) = 0 (see Fig. 2.28):

n0(τ ) = (ū − µ · S)τ (2.4.18)

The expressions of queue length allow us to determine the deterministic delay at

intersections, as described below.

For undersaturated conditions ū < µS, the average individual delay twUS can

easily be obtained from the evolution over time of the queue length, as described
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Fig. 2.29 Deterministic delay function at a signalized intersection

by (2.4.14) and (2.4.15):

twUS =
Tc[1 − µ]2

2[1 − ū/S]
(2.4.19)

In oversaturated conditions, ū > µS, for the deterministic case, the queue length,

and respective delay, would tend theoretically to infinity. In practice, however, over-

saturation lasts only for a finite period of time T , and the average delay twOS can

be calculated from the evolution over time of queue length as described by (2.4.16)

through (2.4.18):

twOS =
Tc[1 − µ]

2
+

T

2

[

(ū/µS) − 1
]

(2.4.20)

Note that the first term is the value of (2.4.19) for ū = µ · S. The delay for the

arrival flows can be computed through (2.4.19) for ū < µ · S, and through (2.4.20)

for ū ≥ µ · S, as depicted in Fig. 2.29. Note that the diagram depicted in Fig. 2.29

shows an increase in average delay also for flows below the capacity. This is due to

the increase in the undersaturated delay expressed by (2.4.19).

Stochastic delay models are based on the results of queuing theory. More pre-

cisely, a signalized intersection is considered to be a M/G/1 (∞, FIFO) system.

Therefore, the average delay is (see Sect. 2.2.2.3):

twst
q (u) =

(ū/µS)2

2ū(1 − ū/µS)
(2.4.21)
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Fig. 2.30 The Webster delay model

Overall Delay Models The total (mean individual) delay equals the sum of the de-

terministic and the stochastic terms (introduced in the previous section), and some-

times, of terms calibrated through experimental observations.

One of the best known expressions is Webster’s three-term formula, proposed

for an isolated intersection under the assumption of random (Poisson) arrivals and

undersaturation conditions (fa/Qa < 1) (see Fig. 2.30):

twa(fa) =
Tc(1 − µ)2

2(1 − fa/Sa)
+

(fa/Qa)
2

2fa(1 − fa/Qa)

− 0.65
(

Qa/f
2
a

)1/3
(fa/Qa)

2+µ (2.4.22a)

where

Tc is the cycle length

µ is the effective green to cycle length ratio for the lane group represented by

link a

Qa is the capacity of the lane group represented by link a

The first term expresses the deterministic delay (see (2.4.19)), the second is the

stochastic delay due to the randomness of the arrivals (see (2.4.21)), and the third

term is an adjustment term obtained by simulation results. This term amounts to

about 10% of the sum of the other two, hence its established use in practical appli-

cations of Webster’s two-term formula:

twa(fa) = 0.9

[

Tc(1 − µ)2

2(1 − fa/Sa)
+

(fa/Qa)
2

2fa(1 − fa/Qa)

]

(2.4.22b)
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f f/Q Akcelik Webster

0.00 0.00 15.00 15.00

0.10 0.20 16.67 16.87

0.20 0.40 18.75 19.26

0.25 0.50 20.00 20.77

0.30 0.60 21.93 22.61

0.40 0.80 27.95 28.45

0.50 1.00 60.00

0.60 1.20 216.75

Fig. 2.31 Waiting time functions at a signalized intersection

The delay given by (2.4.22) tends to infinity for an arrivals flow fa , which tends

to capacity Q = µ· S (see Fig. 2.30). Thus Webster’s formula cannot be used to

simulate delays at oversaturated signalized intersections. To overcome this limit, it

is possible to apply the two heuristic methods described for (2.4.8).

The first method applies (2.4.22) for values of fa up to a percentage α of the

capacity whereas for higher values a linear approximation of the function is used,

thereby ensuring the continuity of the function and its first derivative:

twa(fa) = twa(αQa) +
d

df
twa(f )

∣

∣

∣

∣

fa=αQa

.(fa − αQa) fa ≥ αQa (2.4.23)

The second method computes the oversaturation delay combined with the stochastic

delay, deforming the stochastic delay function so that it has an oblique asymptote

defined by the deterministic delay. Based on these considerations, Akcelik’s formula
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was proposed:

twa(fa) =
0.5Tc(1 − µa)

2

1 − µaXa

Xa ≤ 0.50

twa(fa) =
0.5Tc(1 − µa)

2

1 − µaXa

+ 900 · T ·

{

Xa − 1

+

[

(Xa − 1)2 +
8(Xa − 0.5)

µaSaT

]1/2}

0.50 ≤ Xa ≤ 1

twa(fa) = 0.5Tc(1 − µa) + 900 · T ·

{

Xa − 1

+

[

(Xa − 1)2 +
8(Xa − 0.5)

µaSaT

]1/2}

Xa > 1

(2.4.24)

where Xa = fa/Qa is the flow/capacity ratio, the times twa and Tc are expressed

in seconds, Sa in pcph, and T is the duration of the oversaturation period in hours.

Equation (2.4.24) is compared with the Webster formula in Fig. 2.31 for a value of

T = 0.5 h.

Note that application of the previous formulae for calculating saturation flows,

capacities, and average waiting times (delays) in the case of multiple lane groups

requires an “exploded” representation of the intersection with several links corre-

sponding to the relevant lane groups and their maneuvers (see Fig. 2.18). For ex-

ample, in the case of an exclusive right-turn lane a single link can represent such

a movement and the associated delay. Sometimes, to simplify the representation,

fewer links than lane groups are used; in this case the total capacity of all lane

groups is associated with the single link and the resulting delay is associated with

the whole flow.

From a mathematical point of view the delay functions discussed so far are sep-

arable only if the traffic-signal regulation (assumed known) is such as to exclude

interference between maneuvers represented by different links. For example, this is

the case for the three-phase regulation scheme of a T-shaped intersection shown in

Fig. 2.32. However, if the phases allow conflict points, for example, left turns from

the opposite direction with through flows during the same phase, nonseparable cost

functions may be necessary, which take account of the reciprocal reduction in sat-

uration flow for maneuvers in conflict, such as for the two-phase scheme for the X

intersection in Fig. 2.33.

In general, if a single node represents the entire intersection, the effects of in-

dividual maneuvers and lane groups are impossible to distinguish and separable

functions are adopted, with a single value of saturation flow, reduced to account for

the interfering turns.

In the case of control systems at signalized intersections, the control parameters

(cycle length Tc , ratio µ of green time to cycle length) depend on flows arriving at

the access roads which converge at the intersection. In this case the delay functions

are different and definitely nonseparable.
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Fig. 2.32 Examples of traffic light phases for 3- and 4-arm intersections

Finally, in the case of networks of interacting intersections (i.e., so close as to

affect one another), further regulation parameters must be introduced; hence, calcu-

lation of the delay cannot be performed with the formulae presented, but requires

more detailed flow simulation models along the road sections joining a pair of adja-

cent intersections.

(c) Priority Intersections To complete the survey of the delay functions, priority

intersections (i.e., intersections regulated by give-way rules rather than traffic lights)

need to be considered. Empirical functions are often used to express average delays;

these functions are nonseparable in that right-of-way rules cause delays due to con-
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Fig. 2.33 Flow conflicts for computing delays at a priority intersection

flicts between flows. As an example, the delay corresponding to the maneuvers at a

4-arm intersection can be calculated by means of the following HCM function.

twa(f ) = exp
(

−0.2664 + 0.3967 ln(fconf) + 3.959A
(

ln(fconf) − 6.92
))

(2.4.25)

where

twa(f ) is the waiting time expressed in seconds

fconf is the total conflicting flow, which varies according to the maneuver as

shown in Fig. 2.33

A = 1 if fconf > 1062 vehicles/h, 0 otherwise

(d) Parking Links Monetary cost (fares) and search time are the most important

performance attributes connected to links representing parking in a given area. In

general, these attributes differ for links representing different parking types (facili-

ties). The more sophisticated models of search time take into account the congestion

effect through the ratio between the average occupancy of the parking facilities of

type p, represented by link a, and the parking capacity Ql .

The average search time can be calculated through a model assuming that avail-

able parking spaces of type p are uniformly distributed along a circuit, possibly
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mixed with parking spaces of different types (e.g., free and priced parking). If oc-

cupancy of a given parking type at the beginning and end of the reference period is

inferior to capacity, the following expression can be obtained.

tsa(fa) =
Lp

vs

1

occ2(fa) − occ1
·
Qtot · (Qp + 1)

Qp

· ln

(

1 + Qp − occ1

1 + Qp − occ2(fa)

)

−
(Qtot − Qp)

Qp

(2.4.26)

where

tsa(fa) is the search time in minutes

fa is the flow on parking link a

Lp is the average length of a parking space

vs is the average search speed for a free parking space

occ1 is the parking occupancy at the beginning of the reference period

occ2 is the parking occupancy at the end of the reference period, depending on

flow assigned to the parking link and the turnover rate

Qp is the parking capacity of type p corresponding to link a

Qtot is the total capacity of all parking types mixed with type p in the zone

If one or both occ are above capacity, similar but formally more complicated

formulas can be obtained. These expressions are not reported here.

2.4.2 Supply Models for Scheduled Service Transportation Systems

Discontinuous and nonsimultaneous transportation services can be accessed only at

given points and are available only at given instants. Typical examples are scheduled

services (buses, trains, airplanes, etc.), which can be used only between terminals

(bus stops, stations, airports, etc.) and are available only at certain instants (departure

times). Scheduled services can be represented by different supply models according

to their characteristics and to the consequent assumptions on users’ behavior (see

Sect. 4.3.3.2). The approach followed in this chapter is based upon the modeling

of service lines, that is, a set of scheduled runs with equal characteristics. This ap-

proach is consistent with the assumption of intraperiod stationarity and with path

choice behavior, typical of high frequency and irregular urban transit systems.

If service frequency is low and/or it is assumed that the users choose specific

runs, it is necessary to represent the service with a different graph known as a run

graph or diachronic graph. This is usually the case with extraurban transportation

services (airplanes, trains, etc.), which have low service frequencies and are largely

punctual. In this case, however, the assumption of within-day stationarity does not

hold. Indeed, the supply characteristics are often nonuniform within the reference

period (arrival and departure times of single runs may be nonuniformly spaced).

Furthermore, in order to simulate the traveler’s behavior desired departure or ar-

rival times should be introduced. For these reasons run-based supply models are

described in Chap. 7 dealing with intraperiod dynamic systems.
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2.4.2.1 Line-based Graph Models

If the scheduled services have high frequencies (e.g., one run every 5–15 min) and

low regularity, it is usually assumed that the users do not choose an individual run,

but rather a service line or a group of lines. A service line is a set of runs sharing the

same terminals, the same intermediate stops, and the same performance character-

istics, as in the case of an urban bus or underground lines. In this case a line graph

is typically used. In this graph, nodes correspond to stops, more precisely to the

relevant events occurring at the stops. Access nodes represent the arrival of the user

at the stop, the stop node, or diversion node, represents the boarding of a vehicle,

and the line nodes represent the arrival and departure of vehicles of a given line at

a given stop. The links represent activities or phases of a trip: access trips between

access nodes (access links), waiting at the stop (waiting links), boarding and alight-

ing from the vehicles of a line (boarding and alighting links), the trip from one stop

to another of the same line (line links), and vehicle dwelling at the stop (dwelling

links).

Essentially, each stop is represented by a subgraph such as that shown in

Fig. 2.34. The graph representing an entire public transportation system can be built

by combining the line graph and the access graph through the stop subgraphs. Ac-

cess links may represent different access modes depending on the system modeled.

In urban areas, they may represent pedestrian connections or, sometimes, undiffer-

entiated “access modes” including local transit lines to the main network of bus

and rail services. The line graph is completed by adding nodes and links allowing

entry/exit from the centroids to the stops; in the urban context this usually occurs

through pedestrian nodes and links or through road links connected to park-and-ride

facilities (nodes).

2.4.2.2 Link Performance and Cost Functions

The typical performance attributes used in line-based supply models are travel time

components related to different trip phases and monetary costs. Travel times can be

decomposed into on-board travel times Tb , dwelling times at stops Td , waiting times

Tw , boarding times Tbr, alighting times Tal, and access/egress times Ta , which may

correspond to walking or driving time for urban transit networks. In general, a single

time component is associated to each link and the coefficients β , homogenizing

travel times into costs (disutilities) are different. In fact, several empirical studies

have shown that waiting and walking times have coefficients two to three times

larger than that of on-board time for urban transit systems.

Performance functions used in many applications do not take congestion into

account, at least with respect to flows of transit users, as it is assumed that services

are designed with some extra capacity with respect to maximum user flows.

On-board travel time of a transit link can be obtained through a very simple

expression:

Tba =
La

va(ba,γ a)
(2.4.27)
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Fig. 2.34 Line-based graph for urban transit systems

where vector ba includes the relevant characteristics of the transit system repre-

sented by link a, and vector γ a comprises a set of parameters. The average speed is

strongly dependent on the type of right-of-way. For exclusive right-of-way systems,

such as trains, the average speed va can be expressed as a function of the charac-

teristics of the vehicles (weight, power, etc.), of the infrastructure (slope, radius of

bends, etc.), of the circulation regulations on the physical section and the type of

service represented. Relationships of this type can be deduced from mechanics for



2.4 Applications of Transportation Supply Models 85

which specialized texts should be referred to. For partial right-of-way systems, such

as surface buses, the average speed depends on the level of protection (e.g., reserved

bus lane) and the vehicle flows on the links corresponding to interfering movements.

Performance functions of this type typically derive from descriptive models.

The waiting time is the average time that users spend between their arrival at the

stop/station and the arrival of the line (or lines) they board. Waiting time is usually

expressed as a function of the line frequency ϕln, that is, the average number of runs

of line ln in the reference period. When only one line is available the average waiting

time Twln will depend on the regularity of vehicle arrivals and the pattern of users’

arrivals at the stop. It can be shown that, under the assumption that users arrive at

the stop according to a Poisson process with a constant arrival rate6 (consistent with

the within-day stationarity assumption), the average waiting time is:

Twln =
θ

ϕln

(2.4.28)

where θ is equal to 0.5 if the line is perfectly regular (i.e., the headways between

successive vehicle arrivals are constant), and it is equal to 1 if the line is “completely

irregular” (i.e., the headways between successive arrivals are distributed according

to a negative exponential random variable); see Fig. 2.35.

In the case of several “attractive lines,” that is, when the user waits at a diver-

sion node m for the first vehicle among those belonging to a set of lines Lnm, the

average waiting time can again be calculated with expression (2.4.28) by using the

cumulated frequency Φm of the set of attractive lines:

Twln =
θ

Φm

with Φm =
∑

ln∈Lnm

ϕln (2.4.29)

Expression (2.4.29) holds in principle when vehicle arrivals of all lines are com-

pletely irregular. In this case cumulated headways can still be modeled as a negative

exponential random variable, with a parameter equal to the inverse of the sum of

line frequencies. In practice, however, expression (2.4.29) is often used also for in-

termediate values of θ .

These expressions of average waiting times are revisited in Sect. 4.3.3.2 on path

choice models for transit systems.

Access/egress times are also usually modeled through very simple performance

functions analogous to expression (2.4.27):

Taln =
Lln

val(bln, γln)

where val represents the average speed of the access/egress mode. Also in the case of

pedestrian systems, it is possible to introduce congestion phenomena and correlate

6To be precise, it is assumed that users’ arrival is a Poisson process; that is, the intervals between

two successive arrivals are distributed according to a negative exponential variable.
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Fig. 2.35 Arrivals and waiting times at a bus stop

the generalized transportation cost with the pedestrian density on each section by

using empirical expressions described in the literature.

More detailed performance models introduce congestion effects with respect to

user flows both on travel times and on comfort performance attributes. An example

of the first type of function is that relating the dwelling time at a stop Tdln to the user

flows boarding and alighting the vehicles of each line:

Tdln = γ1 + γ2

(

fal(a) + fbr(a)

QD

)

γ3 (2.4.30)

where

fal(a) is the user flow on the alighting link

fbr(a) is the user flow on the boarding link

QD is the door capacity of the vehicle

γ1, γ2, γ3 are parameters of the function
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Another example is the function relating the average waiting time to the flow of

users staying on board and those waiting to board a single line. This function takes

into account the “refusal” probability, that is, the probability that some users may

not be able to get on the first arriving run of a given line because it is too crowded

and have to wait longer for a subsequent one. In the case of a single attractive line l

the waiting time function can be formally expressed as

Twln =
θ

ϕln(.)

(

fb(.) + fw(.)

Qln

)

(2.4.31)

where ϕln(.) is the actual available frequency of line ln, that is, the average number

of runs of the line for which there are available places. It depends on the ratio be-

tween the demand for places – sum of the user flow staying on board fb(.) and the

user flow willing to board, fw(.) – and the line capacity Qln. This formula is valid

only for fb(.) + fw(.) > Qln.

Note that both performance functions (2.4.30) and (2.4.31) are nonseparable, in

that they depend on flows on links other than the one to which they refer.

Discomfort functions relate the average riding discomfort on a given line section

represented by link a, dca , to the ratio between the flow on the link (average number

of users on board) and the available line capacity Qa :

dca = γ3fa + γ4

(

fa

Qa

)γ5

(2.4.32)

where, as usual, γ3, γ4, and γ5 are positive parameters, usually with γ5 larger than

one expressing more-than-linear effect of crowding.

Reference Notes

The application of network theory to the modeling of transportation supply sys-

tems can be found in most texts dealing with mathematical models of transportation

systems, such as Potts and Oliver (1972), Newell (1980), Sheffi (1985), Cascetta

(1998), Ferrari (1996), and Ortuzar and Willumsen (2001). All of these, however,

deal primarily or exclusively with road networks. The presentation of a general

transportation supply model and its decomposition into submodels as described in

Fig. 2.14 is original.

Performance models and the traffic flow theory are dealt with in several books

and scientific papers. The former include Pignataro (1973), the ITE manual (1982),

May (1990), McShane and Roess (1990), the Highway Capacity Manual (2000), and

the relevant entries in the encyclopaedia edited by Papageorgiou (1991). Among the

latter, the pioneering work of Webster (1958), later expanded in Webster and Cobbe

(1966) and those of Catling (1977), Kimber et al. (1977), Kimber and Hollis (1978),

Robertson (1979), and Akcelik (1988) on waiting times at signalized intersections.

In-depth examinations of some aspects of traffic flow theory can be found in Da-

ganzo (1997).
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For a theoretical analysis of queuing theory, reference can be made to Newell

(1971) and Kleinrock (1975).

The work of Drake et al. (1967) reviews the main speed–flow–density relation-

ships, and gives an example of their calibration. The linear model was proposed

by Greenshields (1934). References to nonstationary traffic flow models are in part

reported in the bibliographical note to Chap. 7.

A review of the road network cost functions can be found in Branston (1976),

Hurdle (1984), and Lupi (1996). The study of Cartenì and Punzo (2007) contains ex-

perimental speed–flow relationships for urban roadways, reported in the text (2.4.5)

and updates the work by Festa and Nuzzolo (1989). The cost function for parking

links (2.4.26) was proposed by Bifulco (1993).

Supply models for scheduled services have traditionally received less attention

in the scientific community. The line representations of scheduled systems are de-

scribed in Ferrari (1996) and in Nuzzolo and Russo (1997).

Several authors, such as Seddon and Day (1974), Jolliffe and Hutchinson (1975),

Montella and Cascetta (1978), and Cascetta and Montella (1979), have studied the

relationships between waiting times and service regularity in urban transit systems.

Congested performance models discussed in Sect. 2.4.2 have been proposed by Nuz-

zolo and Russo (1993), and other models for waiting time at congested bus stops are

quoted in Bouzaiene-Ayari et al. (1998). Mechanics of motion is treated in detail in

several classical books. For an updated bibliographical note see Cantarella (2001).



Chapter 3

Random Utility Theory

3.1 Introduction

In Chap. 1 it was stated that transport flows result from the aggregation of individ-

ual trips. Each trip is the result of a number of choices made by transport system

users: by travelers in the case of personal transport or by operators (manufacturers,

shippers, carriers) in goods transport. Some choices are made infrequently, such as

where to reside and work and whether to own a vehicle. Other choices are made for

each trip; these include whether to make the trip, at what time, to what destination

or destinations, by what mode, and using what path. Each choice context, defined by

the available alternatives, evaluation factors, and decision procedures, is known as a

“choice dimension.” In most cases, travel choices are made among a finite number

of discrete alternatives.

Starting from these assumptions, many travel demand models, such as those de-

scribed in the next chapter, attempt to reproduce users’ choice behavior,1 and so

are called behavioral models. The present chapter describes the behavioral models

derived from random utility theory, which is the richest and by far the most widely

used2 theoretical paradigm for modeling transport-related choices and more gen-

erally, choices among discrete alternatives. Within this paradigm, it is possible to

specify a number of models, having various functional forms, and applicable to a

wide variety of contexts. It is also possible to study their mathematical properties

and estimate their parameters using well-established statistical methods.

It should be said that random utility models are not the only behavioral mod-

els that can be used to represent transport-related choices. Other models proposed

in the literature are based on choice mechanisms that violate one or more of the

general hypotheses described in Sect. 3.2. These models are often called “noncom-

pensatory,” because they do not allow the compensation of negative attributes with

positive ones or, more generally, trading off one attribute against another. Noncom-

pensatory models are at present mostly research tools and are not widely used in

1Behavioral models, like all microeconomic demand models, attempt to reproduce the results of

choice behavior “as if” decision-makers behaved in accordance with certain hypotheses; they do

not claim to represent the actual psychological mechanisms leading to decisions.

2Discrete choice models in general, and random utility models in particular, can be considered

one of the most significant contributions of the transport field to economics and econometrics.

From the theoretical point of view, they represent a development of classical microeconomic de-

mand models. In fact, discrete choice models represent choices made among discrete alternatives

whereas classical microeconomic demand models represent the choice of a (continuous) quantity

of “commodities” to be consumed. Discrete choice models, originally developed for travel-demand

modeling, are used in many applications of econometrics, from the choice of insurance policy types

and investment portfolios to the choice of car models.
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practice. Furthermore, it has been shown that a properly specified random utility

model can very often satisfactorily approximate the choice probabilities obtained

with noncompensatory models.

In this chapter, random utility models are discussed in terms of personal mo-

bility choices. The same kinds of model can be applied to freight transport-related

choices, as shown in Sect. 4.7. The chapter does not consider the statistical estima-

tion of model parameters, except where particular estimation issues are relevant to

the discussion; estimation is discussed in Chap. 8.

Section 3.2 introduces the general hypotheses underlying random utility models,

and Sect. 3.3 describes their most widely used functional forms. Section 3.4 defines

the expected maximum perceived utility variable and analyzes the mathematical

properties of this variable and of random utility models. Section 3.5 considers the

problem of choice set modeling. Section 3.6 introduces the concept of elasticity of

random utility models. Finally, Sect. 3.7 analyzes various aggregation procedures

that allow the estimation of aggregate demand from models that represent individual

choices.

3.2 Basic Assumptions

Random utility theory is based on the hypothesis that every individual is a rational

decision-maker, maximizing utility relative to his or her choices. Specifically, the

theory is based on the following assumptions.

(a) The generic decision-maker i, in making a choice, considers mi mutually ex-

clusive alternatives that constitute her choice set I i . The choice set may dif-

fer according to the decision-maker (e.g., in the choice of transport mode, the

choice set of an individual without a driver’s license or car obviously should not

include the alternative “car as a driver”);

(b) Decision-maker i assigns to each alternative j in his choice set a perceived util-

ity or “attractiveness” U i
j and selects the alternative that maximizes this utility;

(c) The utility assigned to each choice alternative depends on a number of measur-

able characteristics, or attributes, of the alternative itself and of the decision-

maker: U i
j = U i(Xi

j ), where Xi
j is the vector of attributes relative to alternative

j and to decision-maker i;

(d) Because of various factors described later, the utility assigned by decision-

maker i to alternative j is not known with certainty by an external observer

(analyst) wishing to model the decision-maker’s choice behavior, thus U i
j must

be represented in general by a random variable.

From the above assumptions, it is not usually possible to predict with certainty

the alternative that the generic decision-maker will select. However, it is possible to

express the probability that the decision-maker will select alternative j conditional

on her choice set I i ; this is the probability that the perceived utility of alternative j

is greater than that of all the other available alternatives:

pi(j/I i) = Pr
[

U i
j > U i

k ∀k �= j, k ∈ I i
]

(3.2.1)
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The perceived utility U i
j can be expressed as the sum of two terms: a system-

atic utility and a random residual. The systematic utility V i
j represents the mean

(expected value) utility perceived by all decision-makers having the same choice

context (alternatives and attributes) as decision-maker i. The random residual εi
j is

the (unknown) deviation of the utility perceived by user i from this mean value; it

captures the combined effects of the various factors that introduce uncertainty into

choice modeling:

U i
j = V i

j + εi
j ∀j ∈ I i (3.2.2a)

with

V i
j = E

[

U i
j

]

, σ 2
i,j = Var

[

U i
j

]

and therefore

E
[

V i
j

]

= V i
j , Var

[

V i
j

]

= 0

E
[

εi
j

]

= 0, Var
[

εi
j

]

= σ 2
i,j

Replacing expression (3.2.2a) in (3.2.1) yields:

pi[j/I i] = Pr
[

V i
j − V i

k > εi
k − εi

j ∀k �= j, k ∈ I i
]

(3.2.3a)

From (3.2.3a) it follows that the choice probability of an alternative depends on

the systematic utilities of all competing (available) alternatives, and on the joint

probability law of the random residuals εj .

Random utility models and the variables they involve can be compactly repre-

sented using vector notation. Let

pi be the vector of choice probabilities, of dimension (mi × 1), with elements

pi[j ]

U i be the vector of perceived utilities, of dimension (mi × 1), with elements

U i
j

V i be the vector of systematic utility values, of dimension (mi × 1), with ele-

ments V i
j

εi be the vector of random residuals, of dimension (mi × 1), with elements εi
j

f (ε) be the joint probability density function of the random residuals

F(ε) be the joint probability distribution function of the random residuals

Expression (3.2.2a) can therefore be written in vector notation as:

U i = V i + εi (3.2.2b)

In general, the choice model (3.2.3a) can be viewed as a function, known as a

choice function, that associates a vector of choice probabilities to each vector V i of

systematic utilities for a given probability law of random residuals:

pi = pi(V i) ∀V i ∈ Emi (3.2.3b)
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A random utility model is said to be invariant (or additive) if neither the form

nor the parameters of the joint probability density function of the random residuals,

f (ε), depends on the vector V of systematic utilities:

f (ε/V ) = f (ε) ∀ε ∈ Emi

It follows immediately from expression (3.2.3a) that, for invariant models, the

choice probabilities of the alternatives do not change if a constant V0 is added to the

systematic utility of each of them:

pi[j/I i] = Pr
[

V i
j + V0 − V i

k − V0 > εi
k − εi

j

]

= Pr
[

V i
j − V i

k > εi
k − εi

j

]

∀k �= j ; j, k ∈ I i (3.2.4)

From the previous expression it also follows that, in the case of invariant models,

choice probabilities depend on the differences between the systematic utility of each

alternative and that of a reference alternative h; these differences Vj −Vh are known

as relative systematic utilities.

Before describing some of the random utility models derived from particular

assumptions on the random residual joint probability functions, some further general

remarks on the implications of the hypotheses introduced so far should be made.

The variance–covariance matrix of random residuals. In general, a variance–

covariance matrix Σ is symmetric and positive semidefinite (see Appendix 3.B).

When the variance of each random residual εk is zero, σkk = 0, all the covariances

must also be zero, σkh = 0 ∀h, and therefore the variance–covariance matrix is itself

zero, Σ = 0; this case yields the deterministic choice model whose properties are

described in Sect. 3.4. If the variance–covariance matrix is not zero, Σ �= 0, a non-

deterministic choice model is obtained. In this case, it is usually assumed that the

variance σkk = σ 2
k of each random residual εk is strictly positive, σkk > 0, and that

the random residuals are imperfectly correlated, (σkh)
2 < σ 2

k σ 2
h ; that is, the rows (or

columns) of Σ are pairwise linearly independent. These conditions are equivalent

to assuming that the variance–covariance matrix is not singular, |Σ | �= 0, in addi-

tion to being nonzero, Σ �= 0. In this case the models are called probabilistic,3 and

the choice function p = p(V ) can be shown to be continuous with continuous first

partial derivatives.

The set of available alternatives I i , or choice set, significantly influences the

choice probabilities, as can be seen from (3.2.1) and (3.2.3a). If a particular

decision-maker’s choice set I i is known, the definition of choice probability (3.2.1)

can be applied directly. However, it often happens that the analyst has no exact

knowledge of the generic decision-maker’s choice set. In this case, the problem can

be handled with different levels of approximation, as shown in Sect. 3.5.

3The case in which the variance–covariance matrix is nonzero, Σ �= 0, but singular, |Σ | = 0, be-

cause the variance of a random residual is zero and/or two random residuals are perfectly corre-

lated, is of limited practical interest and is not given further attention.
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The expression for the systematic utility. Systematic utility is the mean perceived

utility among all individuals who have the same attributes; it is expressed as a func-

tion V i
j (Xi

kj ) of attributes Xi
kj relative to the alternatives and the decision-maker.

Although in principle the function V i
j (Xi

j ) may be of any type, it is usually as-

sumed for analytical and statistical convenience that the systematic utility V i
j is a

linear function, with coefficients βk , of the attributes Xi
kj or of functional transfor-

mations fk(X
i
kj ) of them:

V i
j

(

Xi
j

)

=
∑

k

βkX
i
kj = βTXi

j (3.2.5a)

or

V i
j

(

Xi
j

)

=
∑

k

βkfk

(

Xi
kj

)

= βTf
(

Xi
j

)

(3.2.5b)

Further details on the specification of the systematic utility are given in Chap. 8.

The attributes included in the vector Xi
j can be classified in different ways. Those

related to the service offered by the transport system are known as level-of-service or

performance attributes (times, costs, service frequency, comfort, etc.). Those related

to the land-use characteristics of the study area (e.g., the number of shops or schools

in each zone) are known as activity system attributes. Those related to the decision-

maker or to his household (income, holding a driver’s license, number of cars in the

household, etc.) are referred to as socioeconomic attributes.

Attributes of any type are called generic if they are included in the systematic

utility of more than one alternative in the same form and with the same coeffi-

cient βk . They are called specific if they are included with different functional forms

and/or coefficients in the systematic utilities of different alternatives. A dummy vari-

able is usually included in the systematic utility of the generic alternative j ; its value

is one for alternative j and zero for the others. This variable is usually denoted the

Alternative Specific Attribute (ASA) or “modal preference” attribute,4 and its co-

efficient βk is known as the Alternative Specific Constant (ASC). The ASA is a

kind of constant term in the systematic utility; it can be viewed as the difference

between the mean utility of an alternative and the portion that is explained by its

other attributes Xkj .

From expression (3.2.4), it can be seen that the choice probabilities of invariant

models depend in part on the differences between the ASC of each alternative j and

that of a reference alternative h. If alternative specific attributes were included in

the systematic utilities of all alternatives, any combination of coefficients β that led

to the same ASC differences between alternatives would result in the same choice

probability values, so the ASCs could not be statistically estimated. For this reason,

when specifying invariant models, the ASC of at least one of the alternatives must

4This term derives from early applications of random utility models to the choice among different

transport modes.
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Vwalking = β1twl

Vauto = β1twla + β2tba + β3mca + β4AVAIL + β5INC + β6AUTO

Vbus = β1twlb + β2tbb + β3mcb + β7twb + β8BUS

Alternative Level of service Socioeconomic

specific attributes (ASA) attributes attributes

AUTO tb = Time on board (generic) AVAIL = # Auto/# licenses

BUS tw = Waiting time at stop (specific) INC = Disposable

twl = Walking time (generic) household income

mc = Monetary cost (generic)

Fig. 3.1 Specification of systematic utilities and classification of attributes

be set to zero; equivalently, ASAs may be included in the systematic utilities of at

most all the alternatives except one.

An elementary example of systematic utilities related to transport mode choice

is given in Fig. 3.1. Many other examples are given in the following chapters.

Utilities are merely a way of capturing the preference ordering among alterna-

tives, and so have no intrinsic units of measurement; alternatively, they can be ex-

pressed in arbitrary dimensionless units, sometimes called utils. From expression

(3.2.5) it can be seen that, in order to sum attributes expressed in different units

(e.g., time and cost), their respective coefficients βk have to be expressed in units

that are inverses of those of the attributes themselves (e.g., time−1 and cost−1).

The coefficients β are sometimes called reciprocal substitution coefficients because

they make it possible to evaluate reciprocal “exchange rates” (rates of substitution)

between attributes. This point is developed in Chap. 4.

The randomness of perceived utilities. Various factors account for the difference

between the utility perceived by an individual decision-maker and the systematic

utility common to all decision-makers with equal values of the attributes. These

factors are related both to the model (factors a, b, and c below) and to the decision-

maker (factors d and e). They include:

(a) Errors in measuring the attributes that are included in the systematic utility. For

example, level-of-service attributes are often obtained from a network model

and so are subject to modeling and aggregation (zoning) errors; other attributes

are intrinsically variable and only their average value can be considered.

(b) Attributes that are not included in the systematic utility because they are not

directly observable or are difficult to evaluate (e.g., travel comfort or total travel

time reliability).

(c) Instrumental attributes that are included in the systematic utility specification

but only imperfectly represent the actual attributes that influence the alterna-

tives’ perceived utility (e.g., modal preference attributes replacing variables

such as the comfort, privacy, image, etc. of a certain transport mode; the to-

tal number of commercial establishments in a given zone replacing the number

and variety of shops).
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(d) Variability among decision-makers, or variations in tastes and preferences

among different decision-makers and, for an individual decision-maker, over

time. Different decision-makers with otherwise identical attributes might have

different utility functions or different values of the reciprocal substitution co-

efficients βk according to personal preferences (e.g., walking distance is more

or less disagreeable to different people). The same decision-maker might weigh

an attribute differently in different decision contexts (e.g., according to different

physical or psychological conditions).

(e) Errors in the evaluation of attributes by the decision-maker (e.g., erroneous es-

timation of travel time).

From the above discussion, it follows that the more accurate a model is (the

greater the number of relevant attributes included in the systematic utilities, the more

precise their determination, etc.), the lower should be the variance of its random

residuals εj . Experimental evidence generally confirms this conjecture.

3.3 Some Random Utility Models

Given the general hypotheses presented in the previous section, different random

utility model forms can be derived by assuming different joint probability distribu-

tion functions for the perceived utility random residuals εj
5 (expression (3.2.3a)).

This section describes the random utility models that are the most widely used in

travel-demand modeling. Models are introduced in order of increasing generality

and analytical complexity. Section 3.3.1 describes the Multinomial Logit (or MNL)

model, which is the simplest functional form. Subsequently, progressive generaliza-

tions of the MNL to the single-level hierarchical or nested logit model (Sect. 3.3.2),

to the multilevel hierarchical or tree logit model (Sect. 3.3.3), to the cross-nested

logit model (Sect. 3.3.4), and to the Generalized Extreme Value (GEV) model

(Sect. 3.3.5) are described. Each of these models includes the MNL as a special

case, and each can be obtained in turn from the GEV model. Finally, Sect. 3.3.6

describes the probit model and Sect. 3.3.7 introduces the mixed logit model.

3.3.1 The Multinomial Logit Model

The multinomial logit model is the simplest random utility model. It is based on

the assumption that the random residuals εj are independently and identically dis-

tributed (i.i.d.) as Gumbel random variables (r.v.) with zero mean and scale para-

5In this section, for the sake of simplicity, the symbol i indicating the generic decision-maker is

systematically taken as understood.
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meter θ .6 The marginal probability distribution function of each random residual is

given by:

Fεj
(x) = Pr[εj ≤ x] = exp

[

− exp(−x/θ − Φ)
]

(3.3.1)

where Φ is Euler’s constant (Φ ≈ 0.577). In particular, the mean and variance of

the Gumbel variable expressed by (3.3.1) are, respectively,

E[εj ] = 0 ∀j

Var(εj ) = σ 2
ε =

π2

6
θ2 ∀j

(3.3.2)

Further characteristics of the Gumbel r.v. are given in Appendix 3.B.

The independence of the random residuals implies that the covariance between

any pair of residuals is zero:

Cov[εj , εh] = 0 ∀j,h ∈ I (3.3.3)

From this it can be deduced that alternative j s perceived utility Uj , which is the

sum of its systematic utility Vj (a constant) and the random εj , is also a Gumbel

random variable with probability distribution function, mean and variance given by:

FUj
(x) = Pr[Uj ≤ x] = Pr[εj ≤ x − Vj ] = exp

[

− exp
(

−(x − Vj )/θ − Φ
)]

E[Uj ] = Vj , Var[Uj ] =
π2θ2

6
(3.3.4)

Based on the above assumptions about the residuals εj (and therefore about the

perceived utilities Uj ), the variance–covariance matrix of the residuals Σε is a scalar

multiple (by σ 2
ε ) of an identity matrix having the same number of rows and columns

as the number of alternatives. Figure 3.2 shows, for a multinomial logit model in-

volving four choice alternatives, a graphic representation of the assumptions made

regarding the distribution of the random residuals and their variance–covariance ma-

trix. This representation, known as a choice tree, should be compared to those of the

hierarchical logit models described in the following sections.

The Gumbel variable has an important property known as stability with respect

to maximization: the maximum of a set of independent Gumbel variables, all with

scale parameter θ , is also a Gumbel variable with parameter θ . More specifically, if

{Uj } is a set of independent Gumbel variables having equal parameter θ but different

means Vj , the variable UM :

UM = max
j

{Uj }

6Some texts define the Gumbel distribution scale parameter to be the reciprocal of θ ; that is,

α = 1/θ . In the text, the θ notation is normally used because of its analytical convenience in

the specification of hierarchical logit models. Clearly, it is possible to express all results in terms

of the parameter α with a simple variable substitution.
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∑

ε

= σ 2
ε I =

π2θ2

6

⎡

⎢

⎢

⎣

A B C D

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤

⎥

⎥

⎦

A

B

C

D

Fig. 3.2 Choice tree and variance–covariance matrix of a multinomial logit model

is again a Gumbel variable with parameter θ and with mean VM given by

VM = E[UM ] = θ ln
∑

j

exp(Vj/θ) (3.3.5)

The variable VM is called the Expected Maximum Perceived Utility (EMPU)7 or the

inclusive utility. The variable Y

Y = ln
∑

j

exp(Vj/θ)

which is proportional to it, is called the logsum because of its analytical form.

Because of the property of stability with respect to maximization, the assumption

of Gumbel-distributed residuals is particularly convenient in random utility models.

In fact, under the assumptions made here, the probability of choosing alternative j

from among those available (1,2, . . . ,m) ∈ I , given by (3.2.4), can be expressed8

in closed form as

p[j ] =
exp(Vj/θ)

∑m
i=1 exp(Vi/θ)

(3.3.6)

Expression (3.3.6) defines the multinomial logit model, which is the simplest and

one of the most widely used random utility models. Under the common assumption

that the parameter θ is independent of the systematic utility, the MNL model is

invariant (see Sect. 3.4) and has a number of important properties that are described

in the following.

Dependence on the differences among systematic utilities.9 In the case of only

two alternatives (A and B), the MNL model (3.3.6) is called binomial logit and can

7The Expected Maximum Perceived Utility variable is dealt with extensively in Sect. 3.4.

8A proof of the Gumbel random variable’s stability with respect to maximization and a derivation

of the multinomial logit model from the general expression (3.2.3) are presented in Appendix 3.B.

9This property and its implications hold for the entire class of invariant models, as was stated in

Sect. 3.2. In the following, the general results are particularized for the logit model, where they can

be obtained analytically.
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Fig. 3.3 Diagram of choice probability p[A] of a binomial logit model

be expressed as

p[A] =
exp(VA/θ)

exp(VA/θ) + exp(VB/θ)
=

1

1 + exp[(VB − VA)/θ ]

As can be seen, the choice probability of alternative A depends on the differ-

ence between the systematic utilities. Furthermore, as shown in Fig. 3.3, this choice

probability is equal to 0.5 if the two alternatives have equal systematic utilities

(VB − VA = 0). It has an S-shaped semisymmetric graph for positive and nega-

tive values of VB − VA. In addition, it tends to one as VB − VA tends to −∞ (as the

systematic utility of alternative A becomes infinitely greater than that of B) and it

tends to zero as VB − VA tends to +∞. The rate of variation of the choice probabil-

ity of A with respect to variations of VB − VA is larger for values of VB − VA close

to zero, where it is almost linear, and increases as the variance of the random resid-

uals (parameter θ) decreases. As the absolute value of VB − VA increases, the slope

of p[A] approaches the horizontal; for large differences VB − VA the variations of

choice probability have low sensitivity to the variations of VB − VA.

Similar considerations apply to the more general case of the multinomial logit

model with m alternatives. From expression (3.3.6) it can be seen that:

p[j ] =
1

1 +
∑

h�=j exp[(Vh − Vj )/θ ]

Influence of residual variance. From (3.3.6) it can be seen that a smaller ran-

dom residual variance (smaller parameter θ ) leads to a larger choice probability

for the alternative with maximum systematic utility. This probability tends to one

(a deterministic utility model) as the variance tends to zero. Conversely, as the

variance of the residuals increases, the exponents Vj/θ tend to the same value

(zero) and the choice probabilities of the different alternatives tend to the same

value, equal to 1/m. The effect of the random residual variance is graphically il-

lustrated in Fig. 3.2 and numerically in Fig. 3.4 for two choice alternatives cor-
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p[A] =
exp[(−0.1 · tA − 1 · mcA)/θ]

exp[(−0.1 · tA − 1 · mcA)/θ] + exp[(−0.1 · tB − 1 · mcB )/θ ]

tA = 20 min cA = 3.6 unit VA = −5.6

tB = 40 min cB = 0.6 unit VB = −4.6

θ = 10 θ = 1 θ = 0.5

pA 0.48 0.27 0.12

pB 0.52 0.73 0.88

Fig. 3.4 Effect of the variance of random residuals on choice probabilities for a binomial logit

model

responding to two paths with attributes given by travel time (t) and monetary

cost (mc).

Independence from irrelevant alternatives. From expression (3.3.6), another general

property of the logit model can easily be deduced. Choice probability ratios between

any two alternatives depend only on the systematic utilities of the two alternatives

and, in particular, are independent of the number and systematic utilities of other

choice alternatives:

p[j ]/p[h] = exp(Vj/θ)/ exp(Vh/θ) (3.3.7)

This property, known in the literature as Independence from Irrelevant Alterna-

tives (IIA), can sometimes lead to unrealistic results.

Consider, for example, the choice between two alternatives A and B having equal

systematic utility. In this case, the logit model probability (3.3.6) of choosing each

alternative is 0.50 and the ratio between the probabilities of choosing A and B is

equal to one:

p[A]/p[B] = exp(VA/θ)/ exp(VB/θ) = 1

Suppose now that a third alternative C is added to the choice set. Alternative C

has the same systematic utility as the other two, but is otherwise very similar to

alternative B . To give a specific example, suppose that the choice is between trans-

port modes, where alternative A is a car and alternative B is a bus. Suppose further

that the systematic utilities of the two are the same so they have the same choice

probability. A third alternative C is introduced, consisting of a new bus line that

runs on the same timetable, makes the same stops, and is generally perceived the

same as B . Alternatives B and C would have the same choice probabilities. More-

over, because of the IIA property, the ratio between the probabilities of choosing

car A and bus B remains equal to one. Therefore, each of the three alternatives

would have a probability of 1/3 of being chosen. Thus, the probability of choos-

ing the car would change from 0.50 to 0.33 simply because of the illusory in-

crease in the number of choice alternatives. This result is clearly paradoxical and

derives from the lack of realism of the basic assumptions of the logit model in the
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case described: namely, that the decision-maker perceives the alternatives as com-

pletely distinct, and therefore that their random residuals are independent. A more

realistic choice model can be obtained by introducing a covariance between the

random residuals of alternatives B and C, as shown in the following sections. In

general, as shown below, a multinomial logit model has the property that any vari-

ation in the choice probability of one alternative (resulting from a change in its

attributes) leads to proportional variations in the choice probabilities of all other

alternatives.

In applications, the multinomial logit model should be used with choice alterna-

tives that are sufficiently distinct for the assumption of independent random residu-

als to be plausible.

3.3.2 The Single-Level Hierarchical Logit Model

The hierarchical logit model10 partially overcomes the assumption of independent

random residuals that underlies the multinomial logit model although retaining a

closed-form analytical expression for the choice probabilities.

To simplify the exposition, this section deals with the case of a single level of

choice hierarchy, with equal choice model parameters. Furthermore, the presenta-

tion of the model relies on a graphic representation of the choice process and a

particular decomposition scheme of the random residuals. These simplifications are

not necessary and are relaxed in the next section dealing with general hierarchical

logit models and in Sect. 3.3.5 dealing with generalized extreme value models.

Suppose that the decision-maker’s choice set I is subdivided into nonoverlap-

ping subsets I1, I2, . . . , Ik, . . . , called groups or nests. Suppose also that the utility

function of the generic alternative j , belonging to the subset Ik , can be expressed11

as

Uj = Vj + εj = Vj + ηk + τj/k ∀j ∈ Ik, ∀k (3.3.8)

with

E[εj ] = E[ηk] = E[τj/k] = 0

Cov[ηk, ηh] = Cov[ηk, τj/k] = Cov[τj/k, τi/k] = 0

As can be seen, it is assumed that the overall random residual εj is decomposed

into the sum of two zero-mean random variables. The first, ηk , takes on one value

for all the alternatives belonging to the same group, although it can assume different

values for different groups. The second, τj/k , takes on different values for each alter-

native. It is also assumed that the variables ηk and τj/k are statistically independent.

10The hierarchical logit model is also known in the international literature as the nested logit model.

11The hierarchical logit model can be obtained in a different and more rigorous way, as a special

case of the GEV model described in Sect. 3.A.2.
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Fig. 3.5 Choice tree of a

single-level hierarchical logit

model

These assumptions imply that the decision-maker perceives alternatives belonging

to the same group as similar; the similarity is captured by the covariance among

the overall random residuals of these alternatives. In a mode choice situation, for

example, the available modes can be divided into two groups: public modes (bus

and train) and private modes (car and motorbike). Assumption (3.3.8) implies that

the decision-maker perceives the modes belonging to the same group to be similar

inasmuch as they share a number of attributes (flexibility, privacy, etc.).

The utility structure and the choice mechanism corresponding to a single-level

hierarchical logit model can be represented by a choice tree, as shown in Fig. 3.5.

In the choice tree, “elementary” choice alternatives (e.g., transport modes) corre-

spond to nodes with no exit links (“leaves” of the tree), whereas the root node o

has no entering links. The intermediate nodes k, one for each group, represent com-

pound alternatives: groups of elementary alternatives. The random residuals ηk and

τj/k are associated with the branches that correspond to groups and to elementary

alternatives, respectively.

The choice tree can be viewed as the representation of a hypothetical choice

process. Starting from the root node, the decision-maker first chooses group k from

the available groups (represented by nodes linked to the root); she then chooses

elementary alternative j from those belonging to group k (represented by the leaves

connected to the node k). The expression for the overall choice probability of an

alternative j , p[j ], is obtained as the product of the conditional probability p[j/k]

of choosing elementary alternative j within group k (lower level), multiplied by the

probability p[k] of choosing group k (upper level):

p[j ] = p[j/k] · p[k] (3.3.9)

The name of the model is derived, in fact, from this probability structure.

To specify the probabilities in (3.3.9), further assumptions on the distribution of

random residuals must be introduced. For the single-level hierarchical logit model, it

is assumed that the random residuals relative to the alternatives available at each de-

cision node (the root and the intermediate nodes) are identically and independently

distributed Gumbel random variables.

Considering first the lower-level nodes (elementary alternatives), the residuals

τj/k are assumed to be i.i.d. Gumbel variables with zero mean and the same pa-

rameter θ for all groups k and all alternatives j . In the choice among alternatives

belonging to group k, the perceived utility associated with alternative j,Uj/k , can
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be expressed as

Uj/k = Vj + τj/k ∀j ∈ Ik, ∀k

E[τj/k] = 0 ∀j ∈ Ik, ∀k

Var[τj/k] = π2θ2/6 ∀j ∈ Ik, ∀k

(3.3.10)

Under these assumptions, the conditional choice probability of the elementary

alternative j can be expressed as

p[j/k] = Pr[Uj/k > Ui/k] = Pr[Vj − Vi > τi/k − τj/k] ∀i ∈ Ik, i �= j (3.3.11)

and, given the assumptions on the distribution of the residuals τj/k , probability

(3.3.11) can be expressed as a multinomial logit model:

p[j/k] =
exp(Vj/θ)

∑

i∈Ik
exp(Vi/θ)

(3.3.12)

At the upper level, the choice is made among groups of alternatives, with each

group k being considered as a compound alternative. Group k will be chosen if any

one of the elementary alternatives belonging to it is chosen. Because the perceived

utilities of elementary alternatives are random, the probability p[k] that group k

is chosen is the same as the probability that one of its elementary alternatives has

the maximum perceived utility among all elementary alternatives in the choice set.

Equivalently, probability p[k] can be obtained by assigning to group k an inclusive

perceived utility U∗
k equal to the utility of its most attractive alternative, that is, the

maximum utility of all the elementary alternatives belonging to the group

U∗
k = max

j∈Ik

{Uj } = max
j∈Ik

{Vj + τj/k} + ηk (3.3.13)

which is again a random variable. The probability that group k is chosen is then

the probability that its inclusive perceived utility U∗
k is greatest among the different

groups.

The perceived utilities Uj = Vj + τj/k of the various alternatives j in group

k are, by assumption (3.3.8), independently distributed Gumbel variables with the

same scale parameter θ . As stated earlier, the maximum of a set of such random

variables is also distributed as a Gumbel variable with parameter θ and with mean

equal to:

V ∗
k = E[U∗

k ] = E
[

max
j∈Ik

{Vj + τj/k}
]

= θ ln
∑

j∈Ik

exp(Vj/θ) = θYk (3.3.14)

where V ∗
k is the Expected Maximum Perceived Utility (EMPU) or inclusive sys-

tematic utility and Yk is the corresponding logsum variable. In the expression for

the inclusive perceived utility (3.3.13), the r.v. max(Vj + τj/k) can be replaced by
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its expected value plus a deviation τ ∗
k

12 from this value, which is another zero-mean

Gumbel variable with parameter θ . Then:

U∗
k = θYk + τ ∗

k + ηk = θYk + ε∗
k (3.3.15)

Thus, the perceived utility of group k has a mean value θYk and a deviation ε∗
k ,

which is the sum of the two zero-mean random variables τ ∗
k and ηk . The basic as-

sumption of the hierarchical logit model is that at each choice level the random

residuals of the available alternatives are i.i.d. Gumbel variables; that is, it is as-

sumed that the ε∗
k are i.i.d. Gumbel variables with zero mean and parameter θo, with

ηk distributed in a way that makes this so:

E
[

ε∗
k

]

= 0 ∀k

Var
[

ε∗
k

]

= π2θ2
o /6 ∀k

(3.3.16)

In accordance with this assumption, the choice probability of group k is ex-

pressed by a multinomial logit model. In fact:

p[k] = Pr
[

U∗
k > U∗

h

]

= Pr
[

θYk − θYh > ε∗
h − ε∗

k

]

∀h �= k

and, given the results of the previous section:

p[k] =
exp(θYk/θo)
∑

h exp(θYh/θo)
=

exp(δYk)
∑

h exp(δYh)
(3.3.17)

where δ is the ratio of parameters θ and θo associated with the two choice levels:

δ = θ/θo (3.3.18)

Replacing expressions (3.3.12) and (3.3.17) in (3.3.9), the choice probability of

the generic elementary alternative j is obtained:

p[j ] = p[j/k] · p[k] =
exp(Vj/θ)

∑

i∈Ik
exp(Vi/θ)

·
exp(δYk)
∑

h exp(δYh)
(3.3.19)

Variances and covariances of the random residuals εj of the elementary alter-

natives’ overall perceived utility (3.3.8) can also be derived. The variance of εj

coincides with that of the random residual ε∗
k because the two variables are the sum

of the same variable (ηk) and another independent Gumbel variable (τ ∗
k and τj/k ,

respectively) with zero mean and the same parameter θ . Therefore:

Var[εj ] = Var
[

ε∗
k

]

= π2θ2
o /6 ∀j (3.3.20)

12From the Gumbel variable’s property of stability with respect to maximization, the r.v. τ ∗
k is

distributed like the variable τj/k associated with each alternative j belonging to group k, that is, as

a Gumbel variable with zero mean and parameter θ .
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The variance of the random residual εj is identical for all elementary alternatives.

There is also a positive covariance between the random residuals of any pair of

alternatives i and j belonging to the same group. In fact:

Cov[εi, εj ] = E
[

(ηk + τi/k) · (ηk + τj/k)
]

= E
[

η2
k

]

+ E[ηkτj/k] + E[ηkτi/k] + E[τi/kτj/k] ∀i, j ∈ Ik

Because all the variables ηk, τi/k , and τj/k have zero mean and are mutually

independent, the first term is equal to the variance of ηk and the others are zero,

because they are the covariances of independent random variables:

Cov(εi, εj )Var(ηk) ∀i, j ∈ Ik (3.3.21)

However, if two elementary alternatives i and j belong to different groups, all

the terms are zero and so also is the covariance between εi and εj .

The variance of ηk can be expressed as a function of the two parameters θ and

θo:

Var[ηk] = Var[εj ] − Var[τj/k] =
π2(θ2

o − θ2)

6
∀k (3.3.22)

From the previous results, the structure of the random residual variance–

covariance matrix can be determined. The elements of the main diagonal are all

equal to the variance of the residuals εj , expressed by (3.3.20). The covariance be-

tween each pair of alternatives belonging to the same group is the same and equal

to the value given by (3.3.21) and (3.3.22), whereas the covariance between alter-

natives belonging to different groups is zero. Therefore, if the alternatives of each

group are ordered sequentially, the resulting variance–covariance matrix has a block

diagonal structure. Figure 3.6 shows a choice tree and the corresponding variance–

covariance matrix.

It is also possible to express the coefficient of correlation between the perceived

utilities of two alternatives i and j as a function of the basic model parameters:

ρij =

⎧

⎨

⎩

Cov[εiεj ]

Var[εi ]1/2 Var[εj ]1/2 =
θ2
o −θ2

θ2
o

= 1 − δ2 if i, j ∈ Ik

0 otherwise
(3.3.23)

The parameters θ, θo, and δ play a major role in the structure of the hierarchical

logit model and in determining the choice probabilities.

First, parameter δ defined by (3.3.18) must take on values in the interval [0,1]. It

is defined by the ratio between two nonnegative quantities and, because the variance

of εj (π
2θ2

o /6) cannot be less than that of one of its components τj/k(π
2θ2/6), the

following must hold.

θo ≥ θ → 0 ≤ δ ≤ 1

As the variance of τj/k tends to that of εj (i.e., as θ tends to θo), parameter δ tends

to one. In this case, the variance of ηk (3.3.22) and the covariance between two alter-
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Fig. 3.6 Choice tree and variance–covariance matrix of a single-level hierarchical logit model

natives belonging to the same group (3.3.21) both tend to zero, and the hierarchical

logit model (3.3.19) reduces to the multinomial logit model.

This can be seen by substituting δ = 1 in (3.3.19), yielding:

p[j ] =
exp(Vj/θ)

∑

i∈Ik
exp(Vi/θ)

·
exp[ln

∑

i∈Ik
exp(Vi/θ)]

∑

h exp[ln
∑

i∈Ih
exp(Vi/θ)]

=
exp(Vj/θ)

∑

h

∑

i∈Ik
exp(Vi/θ)

(3.3.24)

which is a multinomial logit model with a different expression for the summation in

the denominator.

If the variance of τj/k tends to zero (i.e., θ tends to zero), parameter δ will also

tend to zero. In this case, the two probabilities in the model (3.3.19) will be modified

as follows.

– The conditional choice of an elementary alternative within a group degenerates

into a deterministic choice of the alternative with maximum systematic utility:

lim
θ→0

p[j/k] = lim
θ→0

exp(Vj/θ)
∑

i∈Ik
exp(Vi/θ)

=

{

1 if Vj = maxi∈Ik
(Vi)

0 otherwise
(3.3.25)

– The systematic utilities of alternative groups, equal to θYk , assume the value of

the maximum systematic utility among the elementary alternatives in each group:

lim
θ→0

θYk = lim
θ→0

θ ln
∑

i∈Ik

exp(Vi/θ) = max
i∈Ik

(Vi)
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The choice probability of the group therefore becomes

p[k] =
exp[maxi∈Ik

{Vi}/θo]
∑

h exp[maxi∈Ih
{Vi}/θo]

(3.3.26)

Thus, if parameter δ is zero, the random residuals associated with the conditional

utilities of elementary alternatives within a group are zero (Var[τj/k] = 0). In this

case, the choice between groups is modeled by comparing, using a probabilistic

logit model, the alternatives having maximum systematic utility within each group:

a random residual at the group level still exists, and the maximum utility alternative

is deterministically chosen within each group.

Some special cases of the model presented can be analyzed. If a group k consists

of a single alternative j , then p[j/k] = 1 and the general expression (3.3.19) for

this alternative becomes

p[j ] =
exp(Vj/θo)

exp(Vj/θo) +
∑

h�=k exp(δYh)
(3.3.27)

In some applications of the single-level hierarchical logit model, and in particular

for systems of partial share models covered in the next chapter, the systematic utility

Vj of alternative j in group k is decomposed into two parts: one part, Vk , associated

with group k itself; and a second part, Vj/k , associated with the alternative within

the group:

Vj = Vk + Vj/k (3.3.28)

This decomposition leads to an alternative formulation of the choice probabilities

p[j/k] and p[k]. By replacing (3.3.28) in (3.3.12) and (3.3.17), respectively, it fol-

lows that

p[j/k] =
exp(Vj/θ)

∑

i∈Ik
exp(Vi/θ)

=
exp[(Vk + Vj/k)/θ ]

exp(Vk/θ) ·
∑

i∈Ik
exp(Vi/k/θ)

=
exp(Vj/k/θ)

∑

i∈Ik
exp(Vi/k/θ)

(3.3.29)

and

p[k] =
exp(Vk/θo + δY ′

k)
∑

h exp(Vh/θo + δY ′
h)

(3.3.30)

because

δYk = δ ln
∑

j∈Ik

exp(Vj/θ) = δ ln
∑

j∈Ik

exp
[

(Vk + Vj/k)/θ
]

= δ ln

[

exp(Vk/θ) ·
∑

j∈Ik

exp(Vj/k/θ)

]

= δVk/θ + δ ln
∑

j∈Ik

exp(Vj/k/θ)

= Vk/θo + δY ′
k
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where Y ′
k is the logsum variable of group k obtained with the alternative specific

systematic utilities Vj/k .

3.3.3 The Multilevel Hierarchical Logit Model*

The single-level hierarchical logit model described in the previous section is a first

generalization of the multinomial logit model. However, it retains many simplify-

ing features of the multinomial logit model, such as the assumption of identical

covariance between the alternatives belonging to each group and the representation

of a single level of nesting, or correlation, of alternatives. These assumptions can be

generalized considerably, as described in the following.

The starting point is once again the representation of the choice process and of

the covariance between the perceived utilities by means of a general choice tree; the

name “tree logit,” sometimes given to these models, derives from this approach. The

leaves, or terminal nodes, of the tree correspond to elementary choice alternatives

(e.g., different transport modes). Nodes i, j, l in Fig. 3.7 are elementary alternatives

belonging to the total choice set I . Each intermediate node r can be seen as repre-

senting a conditional choice situation in which the decision-maker has available a

set of elementary and/or compound alternatives corresponding to the leaves and/or

intermediate nodes directly linked to node r . Thus, each intermediate node repre-

sents a compound alternative, that is, the set of elementary alternatives that can be

reached by the intermediate node itself. At each intermediate node, the choice is

made among all the elementary alternatives that can be reached, either directly or

indirectly through other intermediate nodes, from the node itself. In the example in

Fig. 3.7, the choice represented by node r is made between alternatives i, j, l, with

the elementary alternatives i and l grouped in the compound alternative f . More

formally, the following elements in Fig. 3.7 can be defined on the choice tree.

o is the root or initial node, the beginning of the decision process

i, j, l are the terminal nodes or leaves, the elementary choice alternatives

r is a generic node of the tree; if this is an intermediate (or structural) node,

it represents both a group of alternatives (compound alternative) and an

intermediate choice

I is the set of elementary alternatives or choice set

Ir is the set of descendant nodes (children) of r ; the set of nodes that can be

reached directly from r ; it represents the set of elementary or compound

choice alternatives available for the conditional choice at r ; Ir = ∅ if r ∈ I

a(r) is the predecessor node (parent or first ancestor) of node r , a node linked

to r by the single directed link (a(r), r) belonging to the graph; a(o) = ∅

Ar is the set of all ancestor nodes of r , the set of nodes belonging to the

unique branch linking the root o and r , but excluding both node r and

the root o,Ar ≡ {a(r), a(a(r)) . . .}

p(r, s) is the first common ancestor node of the pair of nodes r and s
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Fig. 3.7 Choice tree of

multilevel hierarchical logit

models

In this notation, single nodes are indicated with lowercase letters (o, i, j, l, r, s),

groups of nodes with capital letters (A,I), and nodes related in some structural

way to particular other nodes as lowercase letter functions of those other nodes

(a(r),p(r, s)).

At each choice node, whether intermediate or initial, it is assumed that a con-

ditional choice is made among all the available alternatives. These alternatives are

represented by nodes r , and may be either elementary alternatives (leaves of the

tree) or compound alternatives (intermediate nodes). For any such alternative, the

node that represents the choice situation directly involving it is a(r), and the full set

of alternatives in the choice situation is Ia(r).

To model the conditional choice, a perceived utility Ur/a(r) is assigned to each

node (alternative) r . This is a random variable that, as usual, is decomposed into the

sum of its mean, Vr , and a random residual, εr/a(r), with the following properties.

– If r is a leaf of the tree, Vr is the expected value of its perceived utility Ur/a(r).

If r is an intermediate node, Vr is the expected value of the maximum perceived

utility (EMPU or inclusive value) of the alternatives, whether elementary or not,

belonging to Ir ;

– The random residuals εr/a(r) of all nodes r that are descendants of a(r) are as-

sumed to be i.i.d. Gumbel variables with zero mean and parameter θa(r). There-

fore, the variance Var[εr/a(r)] = π2θ2
a(r)/6 is associated with the conditional

choice made at node a(r) from all the elementary alternatives directly or indi-

rectly reached from a(r).

From the above assumptions, it follows that

Ur/a(r) = Vr + εr/a(r) ∀r ∈ Ia(r)

E[εr/a(r)] = 0

Var[εr/a(r)] =
π2θ2

a(r)

6

(3.3.31)

From the results on the expected value of the maximum of Gumbel variables re-

ferred to in Sect. 3.3.1, the systematic utility assigned to any node can be determined
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recursively by starting from the choice tree leaves as

Vr =

{

E[Ur/a(r)] if r ∈ I

θr ln
∑

h∈Ir
exp(Vh/θr) = θrYr if r /∈ I

(3.3.32)

Under the above hypotheses, the conditional probability of choosing alternative

r at the choice node a(r) is expressed by a multinomial logit model:

p
[

r/a(r)
]

=
exp(Vr/θa(r))

∑

r ′∈Ia(r)
exp(Vr ′/θa(r))

(3.3.33)

and also, from (3.3.32):

p
[

r/a(r)
]

=
exp(Vr/θa(r))

exp(Ya(r))
(3.3.34)

If the alternative r is a compound alternative (i.e., r is an intermediate node) in

(3.3.32), the numerator of (3.3.33) becomes:

exp(Vr/θa(r)) = exp

(

θr

θa(r)

Yr

)

= exp(δrYr)

where δr is the ratio of coefficients θr and θa(r). It is analogous to the coefficient δ

introduced in the previous section (see (3.3.18)) and, as such, must be in the inter-

val [0,1]. In this case, expressions (3.3.33) and (3.3.34) can be reformulated as

p
[

r/a(r)
]

=
exp(δrYr)

∑

r ′ exp(Vr ′/θa(r))
=

exp(δrYr)

exp(Ya(r))
(3.3.35)

Finally, the absolute (unconditional) probability of choosing the elementary al-

ternative j ∈ I can be obtained from the definition of conditional probability and

from the assumptions made on the tree choice mechanism:

p[j ] = p
[

j/a(j)
]

· p
[

a(j)/a
(

a(j)
)]

· · · j ∈ I

or

p[j ] = p
[

j/a(j)
]

∏

r∈Aj

p
[

r/a(r)
]

j ∈ I (3.3.36)

Replacing expressions (3.3.34) and (3.3.35) in (3.3.36) yields:

p[j ] =
exp(Vj/θa(j))

exp(Ya(j))
·
∏

r∈Aj

exp(δrYr )

exp(Ya(r))
j ∈ I (3.3.37)

and also

p[j ] =
exp(Vj/θa(j))

exp(Yo)
·
∏

r∈Aj

exp(δrYr )

exp(Yr )



110 3 Random Utility Theory

=
exp(Vj/θa(j))

exp(Yo)
·
∏

r∈Aj

exp
[

(δr − 1)Yr

]

j ∈ I (3.3.38)

Absolute choice probabilities p[j ] can therefore be computed recursively

through the following steps.

– Calculate δr = θr/θa(r) for each node r .

– Recursively calculate values Yr , with expression (3.3.32).

– Calculate probabilities p[j ], j ∈ I , with expression (3.3.38).

Given: θr r /∈ I with θr = 0 if r ∈ I

Ir r /∈ I with Ir = ∅ if r ∈ I

Vj ∀j ∈ I

The model described can be demonstrated with the choice tree in Fig. 3.8. The

leaves of the tree (AI, CD, CP, BS, ST, FT) represent the elementary choice alterna-

tives that, in this example, are the transport modes available for an intercity trip: air

(AI), car driver (CD), car passenger (CP), bus (BS), slow train (ST), and fast train

(FT). The intermediate nodes represent groups of alternatives, or compound alter-

natives. Node CR represents the car, combining the two alternatives of car driver

and car passenger, node LT the public land transport modes (bus, slow train, and

fast train), and node RW combines the railway alternatives. Finally, the respective

values of parameters θ and δ are assigned to each intermediate node and to the root.

Following expression (3.3.36), the choice probability of fast train (FT) can be

written as

p[FT] = p[FT/RW].p[RW/LT].p[LT/o]

where

p[FT/RW] =
exp(VFT/θRW)

[exp(VST/θRW) + exp(VFT/θRW)]
=

exp(VFT/θRW)

exp(YRW)

with

YRW = ln
[

exp(VST/θRW) + exp(VFT/θRW)
]

p[RW/LT] =
exp(θRWYRW/θLT)

exp(θRWYRW/θLT) + exp(VBS/θLT)

=
exp(δRWYRW)

exp(δRWYRW) + exp(VBS/θLT)
=

exp(δRWYRW)

exp(YLT)

with

YLT = ln
[

exp(δRWYRW) + exp(VBS/θLT)
]

(3.3.39)
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Fig. 3.8 Choice tree and variance–covariance matrix for a multilevel hierarchical logit model

p[LT/o] =
exp(θLTYLT/θo)

exp(θLTYLT/θo) + exp(θCRYCR/θo) + exp(VAI/θo)

=
exp(δLTYLT)

[exp(δLTYLT) + exp(δCRYCR) + exp(VAI/θo)]
=

exp(δLTYLT)

exp(Yo)

with

YCR = ln
[

exp(VCD/θCR) + exp(VCP/θCR)
]

Yo = ln
[

exp(δLTYLT) + exp(δCRYCR) + exp(VAI/θo)
]

The absolute choice probability can be written in the form (3.3.38) as follows.

P [FW] =
exp(VFT/θRW)

exp(Yo)
· exp

[

(δLT − 1)YLT

]

· exp
[

(δRW − 1)YRW

]

This choice probability can be thought of as resulting from a choice process in

which the decision-maker first chooses the compound alternative “public land trans-

port” from the available alternatives, which in this case are air, the compound alter-

native “car” and the compound alternative “public land transport”. Subsequently,

she chooses the group “train” from the alternatives available within the land trans-

port group (bus and train), and finally fast train from the two elementary alternatives

(fast and slow train) that make up the train group.
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Returning to the general model, it is possible to express the variances and covari-

ances of the random residuals as functions of the parameters θr . Rigorous demon-

stration of these results involves the use of GEV models described in Sect. 3.3.5.

The same results can be obtained in a less rigorous way using the total variance

decomposition method described for the single-level hierarchical logit model in the

previous section. It is assumed that the total variance of each of the elementary

alternatives j is identical and equal to:

Var[εj ] = π2θ2
o /6 (3.3.40)

The overall random residual of each elementary alternative εj is decomposed into

the sum of independent zero-mean random variables τa(r),r associated with each

link of the choice tree. The total variance of an elementary alternative is equal to the

sum of the variances corresponding to the links of the (single) branch connecting

the root to the leaf that represents the alternative. Furthermore, it is assumed that the

random residual variance of each elementary alternative j that can be reached from

an intermediate node r , and that is associated to the conditional choice represented

by node r itself, is equal to π2θ2
r /6. It follows that, for all these alternatives, the

sum of the contributions of the variances associated with the links that connect r to

j must be identical and equal to π2θ2
r /6:

Var[εj/r ] = π2θ2
r /6 = Var[τa(j),j ] + Var[τa(a(j)),a(j)] + · · · + Var[τr,f (r,j)]

where f (r, j) is the only descendant of r that is on the path from r to j .

In Fig. 3.8, for example, the variances of the elementary alternatives BS, ST, and

FT, corresponding to the conditional choice between public land transport modes

represented by intermediate node LT, are all equal to π2θ2
LT/6. This variance will

correspond to the fraction of variance associated to the link (LT, BS) and to the sum

of the variances associated with links (LT, RW) and (RW, ST) or to the links (LT,

RW) and (RW, FT).

The random residual variance of the elementary alternatives relative to the con-

ditional choice represented by node a(r), the predecessor of r , is in turn the sum

of the variance corresponding to r and the nonnegative term Var[τa(r),r ], associated

with link (a(r), r); this variance will therefore not be less than that associated with

r , or:

θa(r) ≥ θr (3.3.41)

The variance contribution associated with each link (a(r), r) of the graph can be

expressed as

Var[τa(r),r ] =
π2

6

(

θ2
a(r) − θ2

r

)

(3.3.42)

Inequality (3.3.41) can be generalized, assigning zero variance and θj = 0 to the

leaves of the graph, thus yielding:

θj ≤ θa(j) ≤ · · · ≤ θo (3.3.43)
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From the preceding expression and the definition of the coefficients δr = θr/θa(r),

it follows that these coefficients must belong to the interval [0,1].

Continuing with the example in Fig. 3.8, the variance of alternatives ST and

FT involved in the conditional choice between railway services (node RW) will be

π2θ2
RW/6, whereas the variance of alternatives involved in the choice between public

land transport modes (node LT) will be π2θ2
LT/6, with θLT ≥ θRW . The variance

contribution assigned to link (LT, RW) will therefore be π2(θ2
LT − θ2

RW)/6.

The variance decomposition model described here allows one to derive the co-

variances between the perceived utilities of any two elementary alternatives i and j .

This covariance will correspond to the sum of the variances of the random residuals

τa(r),r (which are independent with zero mean) associated with the links common to

the two branches connecting the root to leaves i and j . Because of the tree structure,

these branches can have in common only links from the root to the node where they

separate, which is their last node in common. By repeatedly applying (3.3.42), the

covariance of εi and εj is found to be:

Cov[εi; εj ] =
π2(θ2

o − θ2
p(i,j))

6
∀i, j ∈ I (3.3.44)

where p(i, j) is the first common ancestor of elementary nodes i and j .

If two alternatives have the root node as their first common ancestor, that is, if

they do not belong to any intermediate compound alternative, their covariance is

zero. The correlation coefficient between two elementary alternatives can be de-

duced from expression (3.3.40) and (3.3.44) as follows.

ρ[i, j ] =
Cov[εi; εj ]

[Var[εi] · Var[εj ]]1/2
=

θ2
o − θ2

p(i,j)

θ2
o

= 1 −
θ2
p(i,j)

θ2
o

(3.3.45)

For the tree in Fig. 3.8, the covariance between alternatives ST and FT is given

by π2(θ2
o − θ2

RW)/6, the sum of the variances relative to links (o,LT) and (LT, RW).

The covariance between ST and BS will be π2(θ2
o − θ2

LT)/6 which, as stated before,

is less than or equal to the covariance between FT and ST.

In the literature, the parameter θo is sometimes taken to be equal to one because,

as shown in Chap. 8 on travel-demand estimation, only the parameters δr can be

statistically estimated. Because all the parameters θr but one can be obtained from

the coefficients δr , specifying one of the θr s immediately allows the others to be

determined. Setting θo = 1 leads to a simple expression for the other parameters. In

this case, the covariance and the correlation coefficient between any two elementary

alternatives become, respectively,

Cov[εi, εj ] =
π2(1 − θ2

p(i,j))

6

ρ[εi, εj ] = 1 − θ2
p(i,j)

In conclusion, the structure of the choice tree is also the structure of the covari-

ances between the perceived utilities of the elementary alternatives. Two alternatives
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that have no nodes in common along the branches connecting them to the root o are

independent. On the other hand, the covariance between elementary alternatives i

and j belonging to the same group (their branches meet at an intermediate node)

increases with greater “distance” of their first common ancestor from the root node

and with smaller values of the parameter θp(i,j) associated with this node. Further-

more, the covariance between the perceived utilities of two alternatives i and j

whose first common ancestor is their mutual parent (p(i, j) = a(i) = a(j)) is not

less than the covariance between either of them and any other alternative. Continu-

ing with the example of Fig. 3.8, the covariance between ST and FT will be greater

than or equal to that of either of the two elementary alternatives with any other

elementary alternative.

Choice probabilities are significantly affected by the values of parameters θr ,

and therefore by the levels of correlation between alternatives. Figure 3.9 shows

the values of choice probabilities for the alternatives in Fig. 3.8, for different pa-

rameters θr and assuming that all systematic utilities have the same value: VAI =

VCD = VCP = VBS = VST = VFT . If the alternatives are independent (specifica-

tion 1: θr/θo = 1 ∀r), the model becomes a multinomial logit and all the alternatives

have equal choice probabilities. As the correlation increases, that is, as parameters

θCR, θLT , and θRW decrease, the choice probability of the most correlated alterna-

tives tends to decrease. For example, in specification 3, the alternatives belonging

to the two groups car (CD, CP) and public land transport (BS, ST, FT) are strongly

correlated with a correlation coefficient ρ = 0.9775. They tend to be seen as a single

alternative and their choice probabilities tend to be equal shares of the probability

of a single alternative associated with each group. For the same reasons, the choice

probability of alternative AI, which is not correlated with any other alternative, in-

creases with increases in the correlation of the alternatives belonging to the various

groups (specifications 2 and 3).

From the previous results, it can easily be demonstrated that multinomial logit

and single-level hierarchical logit models are special cases of the multilevel hierar-

chical logit. Two different approaches can be used to show this for the multinomial

logit model. In the first approach, the tree is that of the multinomial logit model

described in Fig. 3.1. In this case, there are no intermediate nodes and the ancestor

a(j) of every leaf j ∈ I is the root o. It then follows that θa(j) = θo,Aj = ∅ and, by

applying expression (3.3.38), that

p[j ] =
exp(Vj/θo)

exp(Yo)

which, by developing the term exp(Yo), gives rise to expression (3.3.6) for the

multinomial logit.

Alternatively the multinomial logit model can be obtained from a tree of any

form in which the parameters θr of all the intermediate nodes are the same and

equal to θo. In this case, it follows from (3.3.44) that the covariance between any

pair of alternatives is equal to zero (the residuals are independent), the coefficients

δr = θr/θa(r) are all equal to one, and (3.3.38) reduces to the MNL expression.
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Specification No. 1 2 3 4 5 6 7

θLT/θo 1.000 0.900 0.150 1.000 1.000 0.800 0.400

θCR/θo 1.000 0.900 0.150 0.800 0.800 0.600 0.200

θRW/θo 1.000 0.900 0.150 0.600 0.200 0.600 0.200

p[AI] 0.166 0.180 0.304 0.190 0.205 0.212 0.280

p[CD] 0.166 0.168 0.169 0.166 0.178 0.161 0.161

p[CP] 0.166 0.168 0.169 0.166 0.178 0.161 0.161

p[BS] 0.166 0.161 0.120 0.190 0.205 0.174 0.165

p[FT] 0.166 0.161 0.120 0.144 0.117 0.146 0.117

p[ST] 0.166 0.161 0.120 0.144 0.117 0.146 0.117

Fig. 3.9 Choice probabilities of the multilevel hierarchical logit model of Fig. 3.8 for varying

parameters

The single-level hierarchical logit model described in the previous section can be

considered as a special case of a tree with only one level of intermediate nodes

a
(

a(j)
)

= o ∀j ∈ I

Furthermore, the parameters θr are all equal to θ whereas the parameter associated

with the root is still indicated by θo. It can easily be demonstrated that the choice

probability (3.3.19) obtained for the single-level hierarchical logit model results as

a special case of expression (3.3.38).

Finally, as in the case of single-level hierarchical logit model, a systematic util-

ity can be assigned to structural or intermediate nodes. This could be the part of

the systematic utility common to all the alternatives connected by an intermediate

node. In this case, if r is a structural node and Vr the systematic utility assigned to

it, (3.3.35) becomes

p
[

r/a(r)
]

=
exp(Vr/θa(r) + δrY

′
r )

exp(Ya(r))

where Y ′
r is the logsum variable associated with a node r calculated without the

systematic utility Vr , “transferred” to the structural node. Specifications of this type

are used in Chap. 4.

3.3.4 The Cross-nested Logit Model*

The single-level and multilevel hierarchical logit models described above allow us

to reproduce only covariance matrices among alternatives’ perceived utilities with a

“block-diagonal” structure. Therefore, in order to reproduce choice contexts under-

lying more general covariance matrix structures,13 the cross-nested logit model has

13It is worth mentioning that the Cross-Nested Logit model, as all other GEV models, is ho-

moskedastic since it allows equal-variance across random residuals.
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Fig. 3.10 Example of path choice and its variance–covariance matrix

Fig. 3.11 Cross-nested

correlation structure for the

path choice example in

Fig. 3.10

been proposed in the literature as a generalization of the hierarchical logit model,

wherein an alternative may belong to more than one group, or nest, with different

degrees of membership.

Consider, as an example, the path choice context reported in Fig. 3.10. There

are four alternatives (paths A,B,C,D). It can be assumed that there is covariance

between the perceived utilities of paths A and B (having link (1,2) in common),

between paths B and C (link (4,5) in common) and between paths C and D (shar-

ing link (1,3)). Such a covariance structure cannot be represented by a tree and,

indeed, the variance–covariance matrix does not in general have a block-diagonal

structure. Using a cross-nested structure, on the other hand, three “cross” nests can

be specified corresponding to the three assumed binary correlations, with alterna-

tive B belonging to nests 1 and 2 and alternative C belonging to nests 2 and 3 (see

Fig. 3.11).

It should be noted that, in the case of cross-nested models, the graph representing

the correlation structure should be referred to as a choice graph (it is no longer a tree)

even though there is no immediate interpretation in terms of a choice process. In the

choice graph, intermediate nodes correspond to a group of alternatives (a nest).

With these assumptions, by adapting the formulation of the single-level hierarchi-

cal logit model, the choice probability of the generic alternative j can be expressed

as

p[j ] =
∑

k

p[j/k] · p[k] (3.3.46)

where k represents the generic nest in the single-level nesting structure. The degree

of membership of an alternative j in a nest k is denoted by αjk and is included in

the interval [0,1]. Degrees of membership have to satisfy the following normalizing
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equation.
∑

k

αjk = 1 ∀j (3.3.47)

The analytical expressions for p[j/k] and p[k] are as follows.

p[j/k] =
α

1/δk

jk eVj /θk

∑

i∈Ik
α

1/δk

ik eVi/θk

; p[k] =
(
∑

i∈Ik
α

1/δk

ik eVi/θk )δk

∑

k′(
∑

i∈Ik′
α

1/δk′

ik′ eVi/θk′ )δk′

(3.3.48)

where Ik is the set of alternatives belonging to nest k, θk is the parameter associated

with an intermediate node, θo is the parameter associated with the root and δk is the

ratio θk/θo. Combining (3.3.46) and (3.3.48) gives

p[j ] =

∑

k[α
1/δk

jk eVj /θk · (
∑

i∈Ik
α

1/δk

ik eVi/θk )δk−1]
∑

k(
∑

i∈Ik
α

1/δk

ik eVi/θk )δk

(3.3.49)

Analogously to the hierarchical logit model, the parameters δk determine the

correlation among the alternatives and, for δk = 1 (i.e., θk = θo) ∀k, the multinomial

logit model (3.3.6) is obtained from (3.3.49):

p[j ] =

∑

k αjke
Vj /θo

∑

k

∑

i∈Ik
αikeVi/θo

=
eVj /θo ·

∑

k αjk
∑

i e
Vi/θo ·

∑

k αik

=
eVj /θo

∑

i e
Vi/θo

The cross-nested logit model can be derived from the general assumptions of

random utility theory as a special case of the Generalized Extreme Value (GEV)

model, as shown in Appendix 3.A.

Unlike the hierarchical logit models presented in the previous sections, the re-

lationship between cross-nested logit model parameters and corresponding covari-

ances cannot be expressed in a closed-form expression. Therefore, CNL covariances

should be calculated through a numerical procedure based on the expression of the

joint distribution of random residuals derivable from the formulation of the CNL

model as a GEV model.

Interestingly, an empirical expression of CNL covariances, incorporating as spe-

cific cases the hierarchical logit covariances, is available in the literature:

Cov[εi, εj ] =
π2θ2

o

6
·
∑

k

(αik)
1/2 · (αjk)

1/2 ·
(

1 − δ2
k

)

Var[εi] =
π2θ2

o

6
·
∑

k

(αik)
1/2 · (αik)

1/2 =
π2θ2

o

6
·
∑

k

αik =
π2θ2

o

6

(3.3.50)

Numerical tests show that conjecture (3.3.50) provides a satisfactory approxima-

tion of the actual covariances when the degrees of membership tend to the 0/1 limit

bounds, whereas a slight overestimation is observed in other cases.
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Fig. 3.12 Choice

probabilities for the example

in Fig. 3.10

αB1 1 0.75 0.5 0.25 0

αB2 0 0.25 0.5 0.75 1

αC2 0 0.25 0.5 0.75 1

αC3 1 0.75 0.5 0.25 0

δ = 0.5

p(A) 0.25 0.2804 0.3039 0.3107 0.2929

p(B) 0.25 0.2196 0.1961 0.1893 0.2071

p(C) 0.25 0.2196 0.1961 0.1893 0.2071

p(D) 0.25 0.2804 0.3039 0.3107 0.2929

Figure 3.12 reports choice probabilities for the example in Fig. 3.10 using various

values of the vector α; equal systematic utilities are assumed.

From these results, it can be observed that an alternative that belongs to several

nests has a lower choice probability than another alternative with the same system-

atic utility but that belongs to only one nest.

3.3.5 The Generalized Extreme Value (GEV) Model*

Generalized Extreme Value models, also known as GEV models, are a further gen-

eralization of logit, hierarchical logit, and cross-nested logit models. Rather than

being a single model, GEV models are a whole class of random utility models. They

are defined by a general mathematical formulation involving a characteristic func-

tion that has certain properties; different specifications of the characteristic function

give rise to different models, including the various logit family models described in

previous sections.

GEV models are consistent with the behavioral hypotheses on which random

utility theory is based, that is, that the generic decision-maker associates a per-

ceived utility to each alternative j belonging to his choice set. This perceived utility

is decomposed into a deterministic part Vj (the systematic utility) and a random

residual εj . The random residual joint distribution function implied by GEV mod-

els is such that the residuals have the same variance and, in general, non-negative

covariances.

A GEV model is defined by means of a continuous and differentiable function

G(y1, y2, . . . , ym) of m nonnegative variables y1, y2, . . . , ym ≥ 0 (m being the num-

ber of choice alternatives) that has the following properties.

(1) G(·) is nonnegative, G(·) ≥ 0.

(2) G(·) is homogeneous of order μ > 0; that is,

G(αy1, αy2, . . . , αym) = αμG(y1, y2, . . . , ym)

(3) G(·) tends asymptotically to infinity for each yj tending to infinity:

lim
yj →∞

G(y1, y2, . . . , ym) = ∞ j = 1,2, . . . ,m
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(4) The kth partial derivative of G(·) (or the order k derivative of G(·)) with respect

to a generic combination of k variables yj , for j = 1,2, . . . ,m, is nonnegative

if k is odd and nonpositive if k is even.

Recall that, by Euler’s theorem, if G(·) is homogeneous of order μ, the

first partial derivative of G(·) with respect to one of its variables yj , ∂G/∂yj =

Gj (y1, y2, . . . , ym), is homogeneous of order μ − 1.

By substituting yi with exp(Vi) (therefore satisfying the nonnegativity of the yi),

the GEV model can be derived from the random utility theory hypotheses. Indeed,

if the function G(·) meets the above conditions (1) to (4), it may be proved that the

function:

F(ε1, ε2, . . . , εm) = exp
[

−G(e−ε1 , e−ε2 , . . . , e−εm)
]

(3.3.51)

is a multivariate extreme value distribution, whose marginals are homoskedastic

Gumbel random variables. Moreover, the probabilistic choice model

p[j ] =
eVj

μ
·
Gj (e

V1 , eV2, . . . , eVm)

G(eV1 , eV2 , . . . , eVm)
(3.3.52)

is a random utility model (GEV model).

In fact, as was seen in Sect. 3.2, the probability of choosing alternative j is equal

to:

p[j/I ] = Pr[Vj − Vk > εk − εj ∀k �= j, k ∈ I ] (3.3.53)

that is, the probability that, for each alternative k �= j, εk < εj + Vj − Vk as εj

assumes any value between −∞ and +∞. Introducing the joint probability density

function of the random residuals εj , f (ε1, ε2, . . . , εm), this probability can also be

expressed as

p[j ] =

∫ Vj −V1+εj

ε1=−∞

∫ Vj −V2+εj

ε2=−∞

· · ·

∫ +∞

εj =−∞

× · · · ×

∫ Vj −Vm+εj

εm=−∞

f (ε1, . . . , εm) dε1 . . . dεm (3.3.54)

Alternatively, if F(ε1, ε2, . . . , εm), is the cumulative distribution function of the ran-

dom residuals, the partial derivative of F with respect to εj ,Fj , is equal to the prod-

uct of the probability density function of εj and the joint distribution function for

all εk with k �= j . The latter, evaluated at εk = Vj − Vk + εj , gives the probability

that each εk �= εj is less than Vj − Vk + εj , for a given value of εj . Consequently,

(3.3.54) can be expressed more synthetically as

p[j ] =

∫ +∞

εj =−∞

Fj (Vj − V1 + εj , . . . , εj , . . . , Vj − Vm + εj ) dεj (3.3.55)
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All the formulations obtained by specifying the joint probability density func-

tion f (ε1, ε2, . . . , εm), or alternatively the joint probability distribution function

F(ε1, ε2, . . . , εm), are consistent with the behavioral assumptions of random util-

ity theory expressed by (3.3.53).

In particular, the function (3.3.51) where G(·) satisfies the properties (1) through

(4) mentioned above, is a cumulative distribution function in that it has the following

three properties.

– F(·) is nondecreasing in the εj over the whole range of definition and has non-

negative mixed partial derivatives up to mth order.

– F(·) tends asymptotically to zero if at least one of its variables tends to minus

infinity; it tends asymptotically to one as all its variables tend to infinity:

lim
εj →−∞

F(ε1, . . . , εm) = 0

lim
ε1,...,εm→+∞

F(ε1, . . . , εm) = 1

– F(·) is continuous from the right.

To demonstrate the first property, it is sufficient to show that the function

G(e−ε1 , e−ε2 , . . . , e−εm) defined earlier is nonincreasing in εj . Indeed, from con-

dition (4) on the mixed partial derivatives of G(·), it follows that:

Gj (·) ≥ 0 j = 1,2,m (3.3.56)

that is, G(.) is nondecreasing with respect to the variables e−εj . Hence:

∂G(.)/∂εj = ∂G(.)/∂e−εj · ∂e−εj /∂εj = Gj (.) · (−e−εj ) ≤ 0

The function G(e−ε1 , e−ε2 , . . . , e−εm) is therefore nondecreasing in e−εj but non-

increasing in εj . Starting from this result, it can be proved through a recursive

approach that the condition on the sign of the partial mixed derivatives of the G

function implies for the F function nonnegative mixed partial derivatives up to mth

order.

As for the second property, from (3.3.51) and condition (3) required for G(·), it

follows that

lim
εi→−∞

F(ε1, . . . , εj , . . . , εm) = lim
εj →−∞

exp
[

−G(e−ε1 , . . . , e−εj , . . . , e−εm)
]

= exp
[

−G(e−ε1 , . . . ,∞, . . . , e−εm)
]

= exp[−∞] = 0

which is the first of the two limits. The second limit results from the homogeneity of

G(·) (condition (2)), which implies that G(0,0, . . . ,0) = 0. Therefore from (3.3.51)
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it follows that

lim
ε1,...,εm→+∞

F(ε1, . . . , εm) = lim
ε1,...,εm→+∞

exp
[

−G(e−ε1 , . . . , e−εm)
]

= exp
[

−G(0, . . . ,0)
]

= exp[−0] = 1

The third property is easily verified, because F(·) is defined by (3.3.51), a continu-

ous function.

Furthermore, it can be demonstrated that the solution of (3.3.55), with F defined

as in (3.3.51), actually gives expression (3.3.52) for the choice probabilities defining

a GEV model.

Indeed, substituting (3.3.51) in expression (3.3.55), and from the homogeneity of

G(·) and Gj (·), it follows that

p[j ] =

∫ +∞

εj =−∞

exp
[

−G(eV1−Vj −εj , . . . , eVm−Vj −εj )
]

· Gj (e
V1−Vj −εj , . . . , eVm−Vj −εj ) · e−εj dεj

=

∫ +∞

εj =−∞

exp
{

−[e−(Vj +εj )]μ · G(eV1 , . . . , eVm)
}

· [e−(Vj +εj )]μ−1

· Gj (e
V1 , . . . , eVm) · e−εj dεj

=

∫ +∞

εj =−∞

{

exp−[e−(Vj +εj )]μ
}G(eV1 ,...,eVm )

· [e−(Vj +εj )]μ−1

· Gj (e
V1 , . . . , eVm) · e−εj dεj

=
eVj · Gi(e

V1 , . . . , eVm)

μ · G(eV1 , . . . , eVm)
·
∣

∣

{

exp−[e−(Vj +εj )]μ
}G(eV1 ,...,eVm )∣

∣

+∞

−∞

=
eVj · Gj (e

V1 , . . . , eVm)

μ · G(eV1 , . . . , eVm)

which is (3.3.52).

Multinomial logit, single-level hierarchical logit, multilevel hierarchical logit,

and cross-nested logit models can be obtained as special cases of the GEV model

by appropriately specifying the function G(·), as shown in Appendix 3.A.

3.3.6 The Probit Model

The probit model overcomes most of the drawbacks of the logit model and its gener-

alizations, although at the cost of analytical tractability. It is based on the hypothesis

that the perceived utility residuals εj are MultiVariate Normal (MVN) r.v. with zero
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mean and fully general variances and covariances:

E[εj ] = 0

Var[εj ] = σ 2
j

Cov[εj , εh] = σjh

(3.3.57)

Further characteristics of the multivariate normal r.v. are given in Appendix 3.B.

Variances and covariances of the random residual vector ε are elements of the m×m

dispersion matrix Σ , where m is the number of alternatives. The multivariate normal

probability density of the residual vector ε is given by

f (ε) =
[

(2π)m det(Σ)
]−1/2

exp[−1/2εTΣ−1ε] (3.3.58)

Perceived utilities Uj are also jointly distributed according to a multivariate nor-

mal distribution with mean vector V and variances and covariances equal to those

of the residuals εj ; U ∼ MVN(V ,Σ).

The choice probability of alternative j , p[j ], can be formally expressed in terms

of the joint probability that utility Uj will assume a value within an infinitesimal

interval and that the utilities of the other alternatives will have lower values. This

probability element must then be integrated over all possible values of Uj to obtain

p[j ] (see (3.3.54)):

p[j ] =

∫

U1<Uj

. . .

∫ +∞

Uj =−∞

. . .

∫

Um<Uj

exp[−1/2(U − V )T Σ−1(U − V )]

[(2π)m det(Σ)]1/2
dU1 . . . dUm (3.3.59)

The probit model is invariant (see Sect. 3.2) if the matrix Σ does not depend on

the vector of systematic utilities V . In this case, the choice probability of a generic

alternative depends only on systematic utility differences. Thus, Alternative Specific

Attributes (ASA) and their coefficients (ASC) can be replaced by their differences

with respect to the value of a reference alternative.

To illustrate the effect of variances and covariances on choice probabilities, con-

sider the case of three alternatives (m = 3), with systematic utilities equal to zero

(VA = VB = VC = 0) and the following variance–covariance matrix.

Σ =

⎡

⎣

1 σAB 0

σAB 1 0

0 0 σ 2
C

⎤

⎦

Figure 3.13 charts the probability p[C] obtained with the probit model (3.3.59)

for varying values of the parameters σAB and σC . As the variance of UC increases

compared with those of the other alternatives, the choice probability of C also in-

creases. The value of the random residual εC eventually dominates the value of VC ,
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Fig. 3.13 Influence of the variance and covariance of residuals on probit choice probabilities

and the perceived utility UC is, with high probability, either much higher or much

lower than the perceived utilities UA and UB (limσC→∞ p[C] = 0.5). Moreover, as

the covariance (in this case identical with the correlation coefficient) between the

residuals of alternatives A and B increases, the choice probability of alternative C

also increases, because A and B are increasingly perceived as a single alternative.

The same effect was shown in Sects. 3.3.2 and 3.3.3 for the hierarchical logit model.

In general, the probit model yields choice probabilities similar to those obtained

from logit and hierarchical logit models if the same variance–covariance matrix is

assumed. Moreover, as mentioned above, it allows for greater flexibility in the spec-

ification of the covariance matrix, whose elements can assume whatever value and

can be “directly” specified, unlike the logit-type models whose covariance matrix is

indirectly defined through the choice network and model parameters.

The flexibility of the variance–covariance matrix can in fact be a problem in the

practical use of the probit model. A variance–covariance matrix can contain up to

(m(m + 1))/2 distinct values, as noted in Sect. 8.3.2, where m is the number of

choice alternatives. When m is large, specification and calibration of all the pos-

sible values can be problematic. Different methods have been proposed to reduce

the number of unknown variance–covariance matrix elements requiring estimation.

All of these methods assume some structure underlying the random residuals. The

parameters of this structure determine the elements of the variance–covariance ma-

trix but are fewer in number than the total number of possible unknowns of such a

matrix.

A first method, known as Factor Analytic Probit, expresses the vector of ran-

dom residuals as a linear function of a vector ζ of independent standard normal



124 3 Random Utility Theory

variables:

εj =

n
∑

k=1

fjkζk, (3.3.60a)

ε = Fζ (3.3.60b)

where

ε is the (m×1) vector of multivariate normal random variables (factors) with

elements εj : ε ∼ MVN(0,Σ)

F is the (m × n) matrix of factor “loadings” with elements fjk , mapping the

vector ζ of standard normal random variables to the vector ε of random

residuals

ζ is the (n × 1) vector of identical and independent standard normal random

variables with elements ζk : ζ ∼ MVN(0, I )

From (3.3.60a), the elements of the variance–covariance matrix Σ of the random

residuals εj can be expressed as a function of the elements fjk of matrix F :

Var[εj ] = E
[

ε2
j

]

= E

[

n
∑

k=1

f 2
jkζ

2
k

]

=

n
∑

k=1

f 2
jk · E

[

ζ 2
k

]

=

n
∑

k=1

f 2
jk, (3.3.62)

Cov[εj , εh] = E[εjεh] = E

[

n
∑

k=1

fjkζk ·

n
∑

k=1

fhkζk

]

=

n
∑

k=1

fjkfhk · E
[

ζ 2
k

]

=

n
∑

k=1

fjkfhk (3.3.63)

or in vectorial form:

Σ = E[εεT] = E[FζζTF ] = FE[ζζT]F T = FIFT = FFT (3.3.64)

Because typically n ≪ m, the number of unknown elements is reduced from

m(m + 1)/2 in the matrix Σ to m · n in the matrix F . In the extreme case (m = n),

the matrix F is low triangular and univocally determined through the Cholesky

factorization of the matrix Σ . A relevant application of the factor analytic repre-

sentation of the probit model is in path choice, as shown in Sect. 4.3.3.1. Another

relevant application based on a particular specification of (3.3.60a) is known in the

literature as the random coefficient probit. It is based on the assumption that the ran-

dom residual εj derives from the variability of utility function coefficients βk over

the population of decision makers. In particular, for each individual i, coefficient βi
k

is assumed equal to an average value βk plus a random residual ηi
k :

βi
k = βk + ηi

k k = 1,2, . . . ,K
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where K is the total number of coefficients used to define the systematic utilities

of the m alternatives. By assuming that the ηi
k are independently distributed normal

variables with zero mean and variance σ 2
k ,

ηi
k ∼ N

(

0, σ 2
k

)

∀i, k

Cov
[

ηi
k, η

i
h

]

= 0 ∀i, k, h

it follows that

U i
j = V i

j + εi
j =
∑

k

βi
kX

i
kj =

∑

k

βkX
i
kj + ηi

kX
i
kj

with:

V i
j =
∑

k

βkX
i
kj ; εi

j =
∑

k

ηi
kX

i
kj ; εi ∼ MVN(0,Σε) (3.3.61)

where Xkj is the value of attribute k in alternative j ; it is equal to zero if attribute

Xk does not appear in the systematic utility of alternative j .

From comparison between (3.3.60a) and (3.3.61) it follows that

f i
jk = σkX

i
jk

and by substituting into (3.3.62) and (3.3.63) then:

Var
[

εi
j

]

=
∑

k

(

Xi
kjσk

)2
(3.3.65)

Cov
[

εi
j , ε

i
h

]

=
∑

k

Xi
kjX

i
khσ

2
k (3.3.66)

that is, in vectorial form:

F = XΣ1/2
η

and from (3.3.64):

Σε = XΣηX
T

Using this approach, the number of unknown elements of the variance–covariance

matrix is reduced from a possible maximum of (m(m + 1))/2 to the K of the ma-

trix Ση .

The flexibility of the probit model is achieved at the cost of computational com-

plexity. The probit model does not possess analytical expressions for its choice prob-

abilities inasmuch as there is no known closed-form solution of the integral (3.3.59).

Numerical integration methods are computationally burdensome when there are

more than about five alternatives. Calculation of probit choice probabilities with

several alternatives is typically carried out by approximation methods. In the fol-

lowing, three traditional approximate methods are described: the so-called Monte
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Carlo or Acceptance–Reject (AR) method, the GHK method, and the Clark approx-

imation. However, it should be said that the last is computationally inefficient and is

rarely used in practice.

The Monte Carlo method generates a sample of perceived utilities for the alter-

natives (these can be thought of as the utilities perceived for each alternative by a

sample of decision-makers) and estimates the choice probability of each alternative

j as the fraction of times that j is the alternative with maximum perceived utility.

More specifically, at the kth iteration, the method generates:

– A vector εk = (εk
1, . . . , εk

m)T of random residuals drawn from a zero-mean multi-

variate normal distribution with dispersion matrix Σ .

– A vector U k of perceived utilities: U k = V + εk .

– A vector pk of deterministic alternative choice probabilities: pk = (0, . . . ,1, . . . ,

0) where the value one is associated to the largest component of U k (the alterna-

tive with maximum perceived utility).

Consequently, after n iterations, the sample estimate p̂[j ] of the probability p[j ] is:

p̂[j ] =
1

n

n
∑

k=1

p[j/εk] =
nj

n
(3.3.67)

where εk denotes the kth draw of vector ε from an MVN(0,Σ) distribution, and nj

is the number of times that alternative j is the maximum perceived utility alternative

in the sample. It can be shown that the estimator (3.3.67) is unbiased and efficient.

With the Monte Carlo method, each extraction can be considered as the execution

of a generalized Bernoulli trial with m possible outcomes, where outcome j corre-

sponds to alternative j with maximum perceived utility, and occurs with probability

p[j ]. The joint sample frequency of the results is thus multinomially distributed and

the sample variance of the estimate p̂[j ] is:

Var
[

p̂[j ]
]

=
1

n
p̂[j ]
(

1 − p̂[j ]
)

(3.3.68)

For large enough values of n, a confidence interval for p[j ] can be obtained by

assuming that p[j ] is approximately distributed as a normal r.v. with meanp̂[j ]

given by (3.3.67) and variance given by (3.3.68).

In applications, drawing a random m-vector ε from an MVN(0,Σ) distribution

can be accomplished indirectly by drawing m independent values from a standard

normal N(0,1) distribution by means of (3.3.60b). In practice, at the generic itera-

tion k the vector εk of pseudorandom draws from a normal multivariate distribution

MVN(0,Σ) can be obtained through:

– Drawing a vector zk of m normal standard independent variables.

– Calculating εk = Fzk where F is known within a factor analytic approach or

through a Cholesky factorization of the matrix Σ .

The Monte Carlo method, albeit simple to interpret and apply, exhibits some the-

oretical drawbacks that can be overcome by using different procedures for calculat-

ing probit probabilities. As described in Chap. 8, methods for random utility model
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estimation are based on specific theoretical properties of the function p[β], that is,

on how choice probabilities change with respect to model parameters. Namely, p[β]

is required to be doubly differentiable and strictly positive. Because p[β] does not

exhibit a closed form for the probit model, these properties depend on how choice

probabilities are simulated. Notably, when applying the Monte Carlo method, p[β]

is a step function (i.e., not continuous) and, in the presence of alternatives with low

systematic utilities, it is not guaranteed to be strictly positive.

A possible solution is represented by the smoothed Monte Carlo method, accord-

ing to which the choice probability vector pk at the generic iteration k is given by

a θ -parameter multinomial logit probability vector pk = (pk
1, . . . , pk

m) rather than

a deterministic vector. This leads to a continuous, doubly differentiable (3.3.67)

function, given as the average of strictly positive logit probabilities rather than 0/1

values. Obviously, probit choice probabilities provided by a smoothed Monte Carlo

represent an approximation of actual probit probabilities, proportional to the value

of the variance parameter θ . In other words, θ should be chosen so as to provide

a satisfactory compromise between speed and stability of convergence, increasing

with θ , and reliability in simulated choice probabilities, decreasing with θ . Those

concepts are extended in Sect. 3.3.7 when describing the mixed logit model.

Another possible solution to the operative problems of the Monte Carlo method

lies in the GHK method, considered in the literature one of the most stable and

accurate. Unlike the Monte Carlo method which supplies contemporaneously an

estimate for the choice probabilities of all the alternatives, the GHK method deter-

mines the probability of choosing a single alternative on each occasion. This makes

it naturally burdensome if the number of alternatives is very high. So as to illustrate

the mechanism, let us consider initially the case of a choice set consisting of three

alternatives, and let us suppose we wish to determine the probability of choosing al-

ternative 1. Allowing for (3.2.2a) and the theoretical properties of invariant random

utility models, the perceived utility of the other two alternatives may be expressed

in differential terms with respect to the utility of the considered alternative:

U2 − U1 = (V2 − V1) + (ε2 − ε1) → U21 = V21 + ε21

U3 − U1 = (V3 − V1) + (ε3 − ε1) → U31 = V31 + ε31

The covariance matrix Σ1 of random residuals ε21 and ε31 may be derived di-

rectly from matrix Σ of residuals ε1 . . . ε3. Then, because we are dealing with a

symmetric and positive definite matrix, it may be expressed by Choleski factoriza-

tion as Σ1 = CCT, given that:

C =

[

c11 0

c21 c22

]

Recalling what was stated above concerning the Monte Carlo method, if z1 and

z2 are two standardized normal r.v. then we may write:

ε21 = c11 · z1 → U21 = V21 + c11 · z1

ε31 = c21 · z1 + c22 · z2 → U31 = V31 + c21 · z1 + c22 · z2
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and the probability of choosing the first alternative may be reformulated as follows.

p[1] = Pr
[

(U21 < 0) ∩ (U31 < 0)
]

= Pr
[

(V21 + c11z1 < 0) ∩ (V31 + c21z1 + c22z2 < 0)
]

= Pr[V21 + c11z1 < 0] · Pr
[

(V31 + c21z1 + c22z2 < 0)/(V21 + c11z1 < 0)
]

= Pr

[

z1 < −
V21

c11

]

· Pr

[(

z2 < −
V31 + c21z1

c22

)/(

z1 < −
V21

c11

)]

If F stands for the distribution law of normal cumulative probability, the proba-

bility product previously written becomes

p[1] = F

(

−
V21

c11

)

·

∫ −V21/c11

−∞

F

(

−
V31 + c21z1

c22

)

f (z1) dz1 (3.3.69)

The first factor of (3.3.69) may be directly obtained from probability tables of

standard normal random variables, and the integral may be calculated numerically

by performing at the generic iteration k the following steps.

– A draw zk
1 is generated of the standard normal random variable z1 truncated at

−V21/c11 (to generate a z1 truncated at −V21/c11 it is enough to generate a stan-

dard normal z and calculate z1 = F−1(zF (−V21/c11)).

– From the standard normal probability tables we calculate the value

ik = F

(

−
V31 + c21z

k
1

c22

)

It may be demonstrated that a correct and efficient estimate of the integral of

(3.3.69) is obtained by calculating the average of values ik on a certain number

of iterations. The product of the two factors thus calculated, inserted into (3.3.69),

supplies a correct and efficient estimate of the choice probability p[1] sought.

Generalization of the procedure to the case of m alternatives is immediate. In this

regard, suffice it to think that for a generic alternative j (with j > 3) we obtain:

p[j ] = Pr[Uij < 0 ∀i �= j ] = Pr

[

z1 < −
V1j

c11

]

· Pr

[(

z2 < −
V2j + c21z1

c22

)

/(

z1 < −
V1j

c11

)]

· Pr

[(

z3 < −
V3j + c31z1 + c32z2

c33

)

/(

z2 < −
V2j + c21z1

c22

)

∩

(

z1 < −
V2j

c11

)]

. . .

The Clark approximation, another traditional method for calculating probit

choice probabilities, is based on an approximation for the maximum of a set of
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normal random variables (the maximum is of course itself a random variable). The

procedure is first illustrated by referring to a choice among three alternatives. In

this case, perceived utilities U1,U2, and U3 are distributed according to a multi-

variate normal distribution with mean vector V = (V1,V2,V3)
T and the following

variance–covariance matrix.

Σ =

⎡

⎣

σ 2
1 σ12 σ13

σ21 σ 2
2 σ23

σ31 σ32 σ 2
3

⎤

⎦

Suppose the choice probability of alternative 3, p[3], is to be computed. Clark’s

results express the mean V12 and the variance S2
12 of the random variable U12 =

max(U1,U2) as

V12 = V2 + (V1 − V2)F (α) + γf (α) (3.3.70)

S2
12 = var[U12] = m12 − V 2

12

where m12 is the second moment around zero of the variable U12, and is given by

m12 = V 2
2 + σ 2

2 +
(

V 2
1 + σ 2

1 − V 2
2 − σ 2

2

)

F(α) + (V1 + V2)γf (α) (3.3.71)

The constants γ and α in expressions (3.3.70) and (3.3.71) are, respectively, the

standard deviation of the random variable (U1 − U2):

γ =
[

σ 2
1 + σ 2

2 − −2σ12

]1/2

and the mean standardized value of the random variable (U1 − U2):

α = (V1 − V2)/γ

The symbols f (α) and F(α) denote, respectively, the value of the probabil-

ity density function and probability distribution function of a standard normal r.v.

N(0,1) evaluated at α:

f (α) = (2π)−1/2 exp(−α2/2)

F (α) =

∫ α

−∞

f (x)dx

Clark’s formulas also give the covariance between variables Uj and U12...j−1 as:

Sj.12...i = cov(Uj ,U12...i) = σij + (Sj.12...i−1 − σij )F (α)

where i = j − 1. Thus the covariance between variables U3 and U12 is:

S3.12 = cov(U3,U12) = σ23 + (σ13 − σ23)F (α)

The probability of choosing alternative 3 is:

p[3] = Pr[U3 ≥ U12] = Pr[U12 − U3 ≤ 0] (3.3.72)
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Although U12 is not in fact normally distributed, Clark’s method assumes that it

can be satisfactorily approximated by a normal r.v. having mean V3, variance S12

and covariance S3.12 with the normal r.v. U3. Thus, the choice probability (3.3.72)

can be evaluated using standard results on the distribution of the difference of two

normal variables (Appendix 3.B.2):

p[3] = F

[

V3 − V12

(σ 2
3 + S2

12 − 2S3.12)1/2

]

(3.3.73)

Choice probabilities for more than three alternatives can be calculated by se-

quentially applying the procedure described above. The probability of choosing the

generic alternative j can be obtained by computing sequentially the mean, variance,

and covariance of nested pairs of perceived utilities ordered in such a way that j is

the last alternative. For example, the mean and variance of U12 = max(U1,U2) as

well as its covariance with U3 are computed first. Subsequently the mean and vari-

ance of the variable U123 = max(U3,U12) are computed together with its covariance

with U4, and so on until the comparison is made between:

U12...j−1 = max
(

Uj−1,max
(

Uj−2 . . .max(U1,U2)
))

and Uj . At this point, the probability p[j ] is obtained by applying expression

(3.3.73). The entire sequence has to be repeated to calculate the probability of each

alternative.

3.3.7 The Mixed Logit Model*

The probit model described in the previous section is a tool able to reproduce choice

contexts characterized by any covariance matrix whatsoever. Contrasting with this

flexibility some applicative problems are encountered, including the already men-

tioned need to simulate choice probabilities numerically. Analysis of this problem

and identification of possible solutions laid the basis for developing a new class of

models that are briefly described below.

First of all, we saw previously that one of the possible simulation methods of

Probit choice probabilities is the smoothed Monte Carlo, at whose generic iteration

the vector of choice probability pk of (3.3.67) is not deterministic but is calculated

by using a multinomial logit of parameter θ , whose value conditions the dichotomy

between convergence velocity and approximation of probit probabilities. As regards

the latter question, it is immediately recognized that the random utility model to

which the choice probabilities calculated with the smoothed Monte Carlo actually

correspond, assumes in practice that the overall residual εj of (3.2.2a) may be bro-

ken down into the sum of two independent terms λj and τj :

Uj = Vj + εj = Vj + λj + τj (3.3.74)
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where λj are normal r.v. with zero mean and any covariance matrix Σ and τj are the

independent Gumbel r.v. with zero mean and parameter of variance θ . The model

(3.3.74) is known in the literature as multinomial probit with logit kernel.14 In gen-

eral, the hypotheses made on the distribution of residuals λj and τj are not restric-

tive, insofar as they may follow any distribution whatsoever, and this generates a

class of random utility models called mixed models. In particular, when residuals τj

are i.i.d. Gumbel random variables, the model (3.3.74) is known in the literature as

mixed logit.

To appreciate that the model (3.3.74) is perfectly consistent with the probabilities

simulated by means of a smoothed Monte Carlo, suffice it to consider that, with

λ∗ a vector of pseudorandom draws λ∗
j of normal residuals λj , (3.3.74) may be

reconsidered in the form Uj = (Vj + λ∗
j ) + τj , and by virtue of the assumption

made on the distribution of τj the corresponding choice probabilities pMNL[j/λ∗]

may be calculated by using a multinomial logit of parameter θ :

pMNL[j/λ∗] =
exp[V j + λ∗

j ]
∑

h∈I exp[V h + λ∗
h]

(3.3.75)

Clearly, with f (λ) the joint probability density law of normal residuals λj , the

choice probabilities p[j ] supplied by the mixed logit are given by

p[j ] =

∫

pMNL[j/λ∗] · f (λ) dλ =

∫

exp[Vj + λ∗
j ]

∑

h∈I exp[Vh + λ∗
h]

· f (λ) dλ (3.3.76)

and a correct estimate of the integral (3.3.76) is obtained immediately with an esti-

mator of type (3.3.67) in which the p[j/εk] are given by (3.3.75).

Downstream of these theoretical considerations it thus appears evident that the

mixed logit model allows us to simulate the choice probabilities with more effi-

cient methods compared with use of the probit. The same considerations can also

be extended to model (3.3.76) regarding the possibility of reducing the number of

unknowns.

In particular, by applying factor analysis (3.3.60a) to the normal component λj

of the overall residual εj of the perceived utility of alternative j one obtains:

εj =

n
∑

k=1

fjkζk + τj (3.3.77)

14The mixed logit model imposes an upper bound on the correlation of any pair of random residuals

due to the positive variance σ 2 of the i.i.d. Gumbel residuals. In fact the maximum correlation

between two alternatives is:

Corr(εj , εh) =
Cov[εj , εh]

[Var[εj ]]1/2 · [Var[εh]]1/2
=

[Var[ξj ]]
1/2 · [Var[ξh]]1/2

[Var[ξj ] + σ 2]1/2 · [Var[ξh] + σ 2]1/2

of choice alternatives), that has the following properties.



132 3 Random Utility Theory

or in vector form:

ε = Fξ + τ

with ζ standing for the vector of dimension (k × 1) of standard normals ζi . The

perceived utility Uj of alternative j may then be expressed as:

Uj = Vj +

n
∑

k=1

fjkζk + τj (3.3.78)

Hence, the variance of the single residual may be written, in analogy with

(3.3.62), in the following way,

Var[εj ] = E

[

n
∑

k=1

f 2
jkζ

2
k

]

+ E
[

τ 2
j

]

=

n
∑

k=1

f 2
jk +

π2θ2

6
(3.3.79)

and the covariance between the residuals of two alternatives is still expressed by

(3.3.63). Note that it is possible to specify the matrix F appropriately in order to

reproduce specific covariance structures; for example, if F = 0 the model (3.3.78)

degenerates into a multinomial logit, whereas to obtain a covariance matrix similar

to that of a single-level hierarchical logit model with n groups, it is sufficient to

assume F of dimension equal to the number of alternatives for the number of groups

and so that the generic element fji is equal to 1 if j belongs to the ith group and 0

otherwise.

The model (3.3.78) is known in the literature as the mixed logit error compo-

nent. As with the random coefficient probit, a random coefficient specification of

component λj may be adopted:

Uj =
∑

k

βkX
i
jk + ηi

kX
i
jk + τj (3.3.80)

having adopted the same notation as in (3.3.61).

Models (3.3.75) and (3.3.76) may then be rewritten in the following way, leading

to the explicit emergence of the joint probability density f (β) of the coefficients:

pMNL[j/β] =
exp[Vj (β)]

∑

h∈I exp[Vh(β)]
(3.3.81)

p[j ] =

∫

pMNL[j/β] · f (β) dβ

=

∫

exp[Vj (β)]
∑

h∈I exp[V h(β)]
· f (β) dβ (3.3.82)

In this sense, the choice probabilities supplied by (3.3.81) should be interpreted

as choice probabilities calculated for a specific draw of the multivariate random vari-

able β , and the absolute choice probabilities are obtained as the average of proba-

bilities (3.3.81) weighted by means of f (β), that is (3.3.82).
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3.4 Expected Maximum Perceived Utility and Mathematical

Properties of Random Utility Models

The Expected Maximum Perceived Utility (EMPU) is an important variable asso-

ciated with each choice context. As was seen in Sect. 3.2, random utility models

are based on the assumption that the ith decision-maker chooses from the avail-

able choice set the alternative j (i) with maximum perceived utility Uj (i), where the

perceived utilities are modeled as random variables:

Uj (i) = max
j

{

U i
j

}

= max(U i) j ∈ I i (3.4.1)

The variable Uj (i) therefore denotes the perceived utility “obtained” by the decision-

maker in the choice context. This variable is not observed by the analyst because it

is the maximum value of unobserved perceived utilities. Therefore Uj (i) can also be

modeled as a random variable.

The expected maximum perceived utility si associated with a given choice con-

text is defined as the expected value of Uj (i) over the alternatives available in the

choice set:

si = si(V ) = E[Uj (i)] = E
[

max
j

(U i)
]

= E
[

max(V i + εi)
]

=

∫

· · ·

∫

· · ·

∫

max(V i + εi)f (ε) dε (3.4.2)

From (3.4.2) it can be deduced that the EMPU is a function of the systematic

utilities of all the alternatives, vector V i , and that it depends on the joint probability

density function of the random residuals f (ε), as well as on the composition of the

choice set I i .15

A number of mathematical properties of random utility models can be demon-

strated using the EMPU variable. These properties are useful for the construction of

travel-demand model systems (see Chap. 4), for the analysis of assignment models

(see Chap. 5), and for the evaluation of transport system projects (see Chap. 10).

In the following, probabilistic (ε �= 0) and deterministic (ε = 0) choice models

are addressed separately.

Mathematical properties of probabilistic choice models. The EMPU associated with

a particular choice context is always greater than or equal to the maximum system-

atic utility:

s(V ) ≥ max(V ) (3.4.3)

15In what follows, for the sake of simplicity, the dependence of the Expected Maximum Perceived

Utility on the joint density function f (ε) and on the choice set I i is not explicitly expressed. When

the choice set is not observed, the Expected Maximum Perceived Utility should be calculated by

averaging over the various choice sets with their respective probabilities. The index i denoting the

generic decision-maker will also be taken as understood.
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By definition,

s(V ) =

∫ ∞

ε1=−∞

· · ·

∫ ∞

εm=−∞

max(V + ε)f (ε) dε

and because f (ε) ≥ 0 and max(V + ε) ≥ Vk + εk, ∀k ∈ I , it follows that

s(V ) =

∫ ∞

ε1=−∞

· · ·

∫ ∞

εm=−∞

max(V + ε)f (ε) dε

≥

∫ ∞

ε1=−∞

· · ·

∫ ∞

εm=−∞

Vkf (ε) dε +

∫ ∞

ε1=−∞

· · ·

∫ ∞

εm=−∞

εkf (ε) dε

= Vk

∫ ∞

ε1=−∞

· · ·

∫ ∞

εm=−∞

f (ε) dε +

∫ ∞

ε1=−∞

· · ·

∫ ∞

εm=−∞

εkf (ε) dε

= Vk + E[εk] = Vk ∀k ∈ I

Therefore s(V ) is greater than or equal to the largest systematic utility, s(V ) ≥

Vk, ∀k ∈ I .

In addition, the mean systematic utility, calculated by weighing the systematic

utility of each alternative k by its respective choice probability pk(V ), is less than

or equal to the EMPU variable. From expression (3.4.3), it follows that

p(V )T V =
∑

k

pk(V )Vk ≤
∑

k

pk(V )max(V ) = max(V ) ≤ s(V )

In order to analyze the EMPU variable in more detail, consider first a multino-

mial logit model with constant parameter θ . For this model, s(V ) can be expressed

in closed form. Referring to the results reported for the maximization of Gumbel

variables,16 the EMPU is given by expression (3.3.5), repeated here:

s(V ) = θ ln
∑

j

exp(Vj/θ) (3.4.4)

It can easily be shown that expression (3.4.4) satisfies condition (3.4.3); Fig. 3.14 il-

lustrates this result. From expression (3.4.4) it can also be deduced that the EMPU of

a multinomial logit model increases if the systematic utility of one or more alterna-

tives increases because the functions ln(·) and exp(·) are both monotonic increasing.

Furthermore, because of the nonnegativity of the exponential function, the EMPU

increases with the number of available alternatives. In fact, the addition of a new

alternative to the choice set results in an increase in the EMPU even if the new al-

ternative has a systematic utility less than that of the alternatives already available.

This is because of the randomness of perceived utilities: there is a positive probabil-

ity that the new alternative will be perceived as having a utility greater than that of

16The maximum of i.i.d. Gumbel variables having scale parameter θ is also a Gumbel variable

with the same scale parameter. See also Appendix 3.B.
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Fig. 3.14 Example of

calculation of the expected

maximum perceived utility

(EMPU)

any other alternative. In this case, the maxj (U
i) will clearly increase, and this will

lead to a general increase in the mean value of maxj (U
i), which is the EMPU.

The example in Fig. 3.14 also illustrates this point.

These properties of EMPU, directly derived here for the multinomial logit model,

also apply to the larger class of invariant random utility models. Recall that, for these

models, the density function of the random residuals does not depend on V .

f (ε/V ) = f (ε) ∀ε ∈ Em (3.4.5)

All of the random utility models described in Sect. 3.3 are invariant if the para-

meters of f (ε) do not depend on the vector V . If the joint density function of the

random residuals f (ε) is continuous with continuous first derivatives, the choice

probabilities p(V ) and the EMPU s(V ) are also continuous functions of V with

continuous first derivatives. All random utility models described in Sect. 3.3 satisfy

these continuity requirements. Under these assumptions, invariant random utility

models share a number of general mathematical properties that are connected with

the expected maximum perceived utility.

(1) The partial derivative of the EMPU with respect to the systematic utility Vk is

equal to the choice probability of alternative k:

∂s(V )

∂Vk

= p[k](V ) (3.4.6)

The gradient of the EMPU is thus equal to the vector of choice probabilities:

∇s(V ) = p(V ) (3.4.7a)

and its Hessian is equal to the Jacobian of choice probabilities:

Hess
[

s(V )
]

= Jac
[

p(V )
]

(3.4.7b)

For a continuous function with continuous first derivatives, the integration and

differentiation operators can be exchanged:
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∂s(V )

∂Vk

=
∂

∂Vk

∫ ∞

ε1=−∞

· · ·

∫ ∞

εm=−∞

max(V + ε)f (ε) dε

=

∫ ∞

ε1=−∞

· · ·

∫ ∞

εm=−∞

∂ max(V + ε)

∂Vk

f (ε) dε (3.4.8)

Because

∂ max(V + ε)

∂Vk

=

{

1 for k such that Vk + εk = max(V + ε)

0 otherwise

the integral (3.4.8) is equal to the probability that the perceived utility of al-

ternative k,Vk + εk , is the largest among all the m alternatives available, from

which expression (3.4.6) derives.

This result can be checked immediately for the multinomial logit model, for

which the EMPU, expressed by (3.4.4), can be differentiated analytically:

∂

∂Vk

[

θ ln
∑

j

exp(Vj/θ)

]

=
exp(Vk/θ)
∑

j exp(Vj/θ)
= p[k](V ) (3.4.9)

Furthermore, because the choice probability p[k] is always greater than or

equal to zero (3.4.6) shows that the derivative of the EMPU with respect to the

systematic utility is always nonnegative: the EMPU increases (or does not de-

crease) as the systematic utility of each alternative increases and, by extension,

as the number of available alternatives increases.17

(2) The EMPU function is convex18 with respect to V , the vector of systematic

utilities.

In fact, for each ε, f (ε) ≥ 0 and max(V + ε) is a convex function of V ; it

follows that the expected maximum perceived utility function s(V ), expressed

by (3.4.2), is a linear combination with nonnegative coefficients of convex func-

tions, and therefore is convex too.

Note that by virtue of property (2) the EMPU function has a Hessian matrix,

Hess(s(V )), which is (symmetric and) positive semidefinite. Consequently, the

Jacobian of choice probabilities, Jac(p(V )), is (symmetric and) positive semi-

definite (see (3.4.7b)).

(3) If the EMPU function is continuous and differentiable then:

s(V ′) ≥ s(V ′′) + p(V ′′)T (V ′ − V ′′) ∀V ′,V ′′ (3.4.10a)

and the choice probabilities are monotonic increasing functions of the system-

atic utilities.

(

p(V ′) − p(V ′′)
)T

(V ′ − V ′′) ≥ 0 ∀V ′,V ′′ (3.4.10b)

17The availability of a new alternative can be seen, in fact, as a change in the systematic utility of

that alternative from minus infinity to a finite value.

18Convexity of a scalar-valued function of a vector is defined in Appendix A.
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Because the EMPU function is convex and differentiable, it follows that

s(V ′) ≥ s(V ′′) + ∇s(V ′′)T (V ′ − V ′′) ∀V ′,V ′′

and its gradient must be an increasing monotonic function (see Appendix A):

(

∇s(V ′) − ∇s(V ′′)
)T

(V ′ − V ′′) ≥ 0 ∀V ′,V ′′

Applying (3.4.7a), the two preceding expressions can be formulated in terms of

the vector of choice probabilities as in (3.4.10a) and (3.4.10b). Moreover, from

(3.4.10a) it follows that:

s(V ′) − s(V ′′) ≥ p(V ′′)T (V ′ − V ′′) ∀V ′,V ′′

s(V ′′) − s(V ′) ≥ p(V ′)T (V ′′ − V ′) ∀V ′,V ′′

Summing the last two inequalities yields:

0 ≥ p(V ′′)T (V ′ − V ′′) + p(V ′)T (V ′′ − V ′) ∀V ′,V ′′

from which (3.4.10b) is easily obtained.

In particular, (3.4.10b) can be expressed for a single alternative, assuming

that the systematic utilities of all other choice alternatives are constant:

pk(V
′
k) ≥ pk(V

′′
k ) if V ′

k ≥ V ′′
k

In other words, the choice probability of a generic alternative does not de-

crease as its systematic utility increases, if all the other systematic utilities re-

main unchanged. Using an analogous argument it can be demonstrated that, as

Vk tends to minus infinity, the choice probability of alternative k tends to zero:

lim
Vk→−∞

p[k] = 0

Mathematical properties of the deterministic choice model. The deterministic choice

model19 is obtained if the random residuals are all equal to zero. In this case, the

perceived utility coincides with the systematic utility and only the alternative(s)

having maximum utility can be chosen:

p[k] > 0 ⇒ Vk = max(V )

and

Vk = max(V ) ⇒ p[k] ∈ [0,1], Vk < max(V ) ⇒ p[k] = 0

19Deterministic utility models and their properties are mainly used in Sect. 4.3.3 on path choice

models and in Chap. 5 on assignment models.
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Note that the deterministic choice model satisfies condition (3.4.5) and can there-

fore be considered an invariant model. If there are two or more alternatives with

(equal) maximum systematic utility, there are infinitely many choice probability

vectors satisfying the above conditions. In this case, the relation p(V ) is not a func-

tion, but a one-to-many map. Let pDET(V ) be one of the possible choice probability

vectors corresponding to vector V through the deterministic choice map.

The following necessary and sufficient condition guarantees that a probability

vector p∗ (with p∗ ≥ 0 and 1T p∗ = 1) is a deterministic choice probability vector:

p∗ = pDET(V ) ⇔ V T p∗ = max(V )1T p∗ = max(V ) (3.4.11a)

Given a vector of deterministic probabilities p∗ = pDET(V ), it follows that

V T p∗ = max(V ) because p∗
k can be positive only for an alternative k having max-

imum systematic utility, and conversely. Furthermore, the condition 1T p∗ = 1 im-

plies that max(V )1T p∗ = max(V ).

In general, for any vector of choice probabilities p, because 1T p = 1 then, as

observed earlier:

V T p ≤ max(V )1T p = max(V ) ∀p : p ≥ 0, 1T p = 1

Consistent with (3.4.11a), equality holds in the above relationship only for a vec-

tor of deterministic probabilities. Combining the above relationship with (3.4.11a),

the following basic relationship can be obtained.

(

V − max(V )1
)T (

p − pDET(V )
)

≤ 0 ∀p : p ≥ 0, 1T p = 1 (3.4.11b)

This is applied in the analysis of deterministic assignment models in Chap. 5.

The deterministic utility model has properties (2) and (3) described above for

probabilistic and invariant models.20 Regarding property (2), the expected maxi-

mum perceived utility of a deterministic model is a convex function of systematic

utilities and is equal to the maximum systematic utility:

s(V ) = max(V ) = pDET(V )T V (3.4.12)

This condition and result (3.4.3) imply that, for a given vector of systematic

utilities V , the EMPU of a deterministic choice model is less than or equal to that of

any probabilistic choice model involving the same systematic utility. A behavioral

interpretation of this result suggests that the presence of random residuals makes the

perceived utility for the chosen alternative, on average, larger than the alternative’s

systematic utility, which is the perceived utility in a deterministic choice model.

Regarding property (3), the deterministic choice map is monotone nondecreasing

with respect to systematic utilities, just as are invariant probabilistic choice func-

tions:

s(V ′) ≥ s(V ′′) + pDET(V ′′)T (V ′ − V ′′) ∀V ′,V ′′ (3.4.13a)

20Property (1) requires the introduction of the concept of subgradients of a convex function.
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or
(

pDET(V ′) − pDET(V ′′)
)T

(V ′ − V ′′) ≥ 0 ∀V ′,V ′′ (3.4.13b)

in perfect formal analogy with expressions (3.4.10).

In fact, from (3.4.11a) it follows that:

max(V ′) = (V ′)T pDET(V ′),

max(V ′′) = (V )T pDET(V ′′)

Subtracting the last two equations term by term gives:

max(V ′) − max(V ′′) = (V ′)T pDET(V ′) − (V ′′)T pDET(V ′′) (i)

Because

(V ′)T pDET(V ′) = max(V ′) ≥ (V ′)T p ∀p

for p = pDET(V ′′) it follows that:

(V ′)T pDET(V ′) ≥ (V ′)T pDET(V ′′)

from which

(V ′)T pDET(V ′) − (V ′′)T pDET(V ′′) ≥ (V ′)T pDET(V ′′) − (V ′′)T pDET(V ′′) (ii)

Therefore, combining (i) and (ii) yields

max(V ′) − max(V ′′) ≥ (V ′ − V ′′)T pDET(V ′′)

which is expression (3.4.13a), because s(V ) = max(V ).

3.5 Choice Set Modeling*

Random utility models represent the choice made by a generic individual i from

the set of alternatives that make up her choice set I i , under the hypothesis that the

modeler is able to specify this set correctly. When this hypothesis is not acceptable,

it is necessary to model explicitly the composition of the generic decision-maker’s

choice set. This problem has been tackled in two fundamentally different ways. The

implicit approach incorporates within the choice model itself attributes related to an

alternative’s actual or perceived availability. The explicit approach uses a distinct

model to explicitly represent the choice set generation.

The first approach has been adopted in many specifications of random utility

models proposed in the literature. Some attributes in the systematic utility function

of an alternative play the role of “proxy” variables, representing the availability or

perception of that alternative. For example, a variable equal to the number of cars

divided by the number of licensed drivers in a household is often used to represent
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car availability in mode choice models. Attributes with this interpretation can be

easily identified in a number of the random utility models described in the next

chapter. The implicit approach is undoubtedly simpler from the application point of

view, although there is a noticeable lack of consistency because “utility” attributes

are mixed with “availability” attributes.

In the explicit approach, the choice probability of an alternative j for decision-

maker i is usually expressed through a two-stage choice model:

pi[j ] =
∑

I i∈Gi

pi[j, I i] =
∑

I i∈Gi

pi[j/I i]pi[I i] (3.5.1)

where

I i is the generic choice set of decision-maker i

Gi is the set made up of all possible nonempty choice sets for decision-maker

i (nonempty subsets of the set of all the possible alternatives)

pi[j, I i] is the joint probability that decision-maker i will choose alternative j and

that I i is his choice set

pi[j/I i] is the probability that decision-maker i will choose alternative j , her

choice set being I i

pi[I i] is the probability that I i is the choice set of individual i

The choice probability conditional on set I i,pi[j/I i], can be represented with

one of the random utility models described in Sect. 3.3.

An example of an explicit choice set generation model can be obtained, starting

from the general model (3.5.1), by assuming that the probabilities that each single

alternative belongs to the choice set are independent of each other:

Pr[j ∈ I i/h ∈ I i] = Pr[j ∈ I i] ∀j,h (3.5.2)

In this case, the probability p[I i] can be expressed as

p[I i] =

∏

h∈I i p[h ∈ I i] ·
∏

k /∈I i [1 − p[k ∈ I i]]

1 − p[I i ≡ ∅]
(3.5.3)

where the first product is extended to all the alternatives included in I i and the

second to all those not included in I i . The denominator of expression (3.5.3) nor-

malizes the probabilities p[I i] to take into account the fact that an empty choice set

(I i ≡ ∅) is usually excluded, under the assumption that the decision-maker’s choice

set includes at least one alternative; the probability that the choice set is empty is

given by

p[I i ≡ ∅] =
∏

j

[

1 − p[j ∈ I i]
]

(3.5.4)
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Replacing expressions (3.5.3) and (3.5.4) in (3.5.1), the choice probability of the

generic alternative is:

pi[j ] =

∑

I i∈Gi {
∏

h∈I i pi[h ∈ I i] ·
∏

k /∈I i [1 − pi[k ∈ I i]] · pi[j/I i]}

1 −
∏

j [1 − pi[j ∈ I i]]
(3.5.5)

Specification of model (3.5.5) requires a model to represent the probability

p[j ∈ I i] that generic alternative j belongs to the choice set. Various authors have

proposed a binomial logit model21:

p[j ∈ I i] =
1

1 + exp(
∑

k γkY
i
kj )

(3.5.6)

where the Yk are “availability/perception” variables mentioned above and the γk are

their coefficients.

The explicit approach, although very interesting and consistent from a theoret-

ical point of view, poses some computational problems. The number of all possi-

ble choice sets (i.e., the cardinality of Gi) grows exponentially with the number

of alternatives. This complicates the calculation of choice probabilities (3.5.1), and

therefore the joint calibration of the parameters βk in the systematic utility and γk

in the choice set model.

An intermediate approach, named Implicit Availability Perception (IAP), ac-

counts for the availability and perception of an alternative by modifying its sys-

tematic utility in the random utility model. This approach is based on a generaliza-

tion of the conventional concepts of availability and choice set membership. Instead

of assuming that an alternative is either available or not, the approach considers

that an alternative may have intermediate levels of availability and perception to a

decision-maker. The decision-maker’s choice set is then viewed as a “fuzzy set”;

it is no longer represented as a set of [0/1] Boolean variables (1 if the alternative

is available or perceived, 0 otherwise), but rather as a set of continuous variables

μI (j) defined on the interval [0,1]. This representation could apply, for example,

to an alternative that is theoretically available but not completely perceived as such

for a particular journey, due to factors that may be either subjective (lack of infor-

mation, time constraints, state of health, etc.) or objective (weather conditions, etc.)

Obviously, extreme values of μI (j) are still possible, corresponding respectively to

the nonavailability and the complete availability and perception of alternative j .

The model accounts for different levels of availability and perception of an al-

ternative by directly introducing an appropriate functional transformation of μI (j)

into the alternative’s utility function:

U i
j = V i

j + lnμi
I (j) + εi

j (3.5.7)

where

21In this application, the Binomial Logit model (3.5.6) should be seen as a convenient functional

relationship rather than a random utility model since it does not represent any “choice”.
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U i
j is the perceived utility of alternative j for decision-maker i

V i
j is the systematic utility of alternative j for decision-maker i

εi
j is the random residual of alternative j for decision-maker i

μi
I (j) is the level of membership of alternative j in the choice set I i of decision-

maker i (0 ≤ μ ≤ 1)

In this way, all the alternatives can be considered as theoretically available. If

alternative j is not available (μi
I (j) = 0), the term lnμi

I (j) forces its perceived

utility U i
j to minus infinity and the probability of choosing it to zero, regardless of

the value of V i
j . Furthermore, choice probabilities of all the other alternatives are no

longer influenced by alternative j . If, on the other hand, an alternative j is definitely

available and taken into consideration (μi
I (j) = 1), the additional term is equal to

zero and the perceived utility has the conventional expression. Intermediate values

of μi
I (j) reduce the utility of the alternative according to its level of availability.

For a generic individual i, the true value of the availability and perception level,

and therefore of the term lnμi
I (j), is unknown to the analyst. It can therefore be

modeled as a random variable, which in turn can be expressed as the sum of its mean

value, E[lnμi
I (j)], and a random residual, ηi

j , defined by the difference lnμi
I (j) −

E[lnμi
I (j)]. Expression (3.5.7) then becomes:

U i
j = V i

j + E
[

lnμi
I (j)
]

+ ηi
j + εi

j (3.5.8)

In order to make expression (3.5.8) more tractable, E[lnμi
I (j)] can be ap-

proximated by its second-order Taylor series expression around the point μ̄i
I (j) =

E[μi
I (j)]. Substituting this approximation in (3.5.8) yields:

U i
j

∼= V i
j + ln μ̄i

I (j) −
1 − μ̄i

I (j)

2μ̄i
I (j)

+ σ i
j with σ i

j = εi
j + ηi

j (3.5.9)

The choice probability of alternative j can therefore be calculated using the ran-

dom utility models described in Sect. 3.3; it will depend on the systematic utility

of each alternative, on the mean availability and perception of each alternative and

on the joint distribution of the random variables σ i
j . For example, if the latter are

assumed to be i.i.d. Gumbel (0, θ) variables, a new multinomial logit model is ob-

tained:

pi[j ] =

exp
[

1
θ

·
(

V i
j + ln μ̄i

I (j) −
1−μ̄i

I (j)

2μ̄i
I (j)

)]

∑

h exp
[

1
θ

·
(

V i
h + ln μ̄i

I (h) −
1−μ̄i

I (h)

2μ̄i
I (h)

)]

(3.5.10)

where the sum in the denominator is extended to all the alternatives theoretically

available to decision-maker i. From the above expression, it can be deduced that,
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everything else being equal, the choice probability of a generic alternative increases

with increases in its mean availability/perception.22

Other functional specifications of choice models can be obtained from expression

(3.5.9). For example, if the perception/availability of two alternatives j and h are

similar (i.e., they are both likely either to be perceived or not to be perceived), a

positive covariance between the residuals ηj and ηh can be assumed.

To specify completely the model (3.5.10) (or a similar model with a different

functional form for the choice probabilities), the mean availability/perception μ̄i
I (j)

must be expressed as a function of the availability and perception attributes using,

for example, a binomial logit model of the form given by (3.5.6):

μi
j (j) =

1

1 + exp(
∑Kj

k=1 γkY
i
kj )

(3.5.11)

Note the different interpretation of the two expressions (3.5.6) and (3.5.11). Ex-

pression (3.5.6) gives the probability that alternative j belongs to the choice set

of a given decision-maker, whereas expression (3.5.11) gives the average degree

of availability and perception of the alternative for decision-makers with the same

attributes Y i
kj .

3.6 Direct and Cross-elasticities of Random Utility Models*

Random utility models can be considered econometric demand functions in every

respect. Choice probabilities can be viewed as mean values of the fractions of a mar-

ket segment (a group of decision-makers with the same characteristics) that select

the different available alternatives.23 Furthermore, random utility models express

these fractions as functions of the available alternatives’ attributes. In the context of

this interpretation, it is possible to extend to random utility models the microeco-

nomic concepts of direct and cross-elasticities of demand functions with respect to

infinitesimal or discrete variations of the variables in the utility function.

Recall that direct elasticity is defined as the percentage variation in the demand

for a certain commodity (in the discussion here, the “demand” for a commodity

j refers to the choice probability of an alternative j ) divided by the percentage

variation in the value of an attribute k of the same commodity Xkj :

E
p[j ]
kj =

�p[j ]

p[j ]

/

�Xkj

Xkj

22This consideration clarifies the importance of information on the availability of alternatives.

23The actual number of decision-makers with the same attributes who actually choose alternative

j is a random variable, so the ratio between this number and the total number of decision-makers

is random as well. The mean of this r.v. is equal to choice probability p[j ] given by the model.



144 3 Random Utility Theory

Analogously, cross-elasticity is defined as the percentage variation in the demand

for a certain commodity j divided by the percentage variation in the value of an

attribute k of another commodity h, Xkh:

E
p[j ]
kh =

�p[j ]

p[j ]

/

�Xkh

Xkh

In the above definitions, the variations in the values of attributes and demand are

assumed to be finite. This case defines the arc elasticity, which is calculated as the

ratio of incremental ratios over an “arc” of the demand curve. Point elasticities are

defined for infinitesimal variations and can be expressed analytically.

The point direct elasticity of the choice probability for alternative j with respect

to an infinitesimal variation in the kth attribute Xkj of its own utility function is

defined as

E
p[j ]
kj =

∂p[j ](X)

∂Xkj

Xkj

p[j ]
=

∂ lnp[j ](X)

∂ lnXkj

(3.6.1)

where X includes the vectors of attributes for all alternatives.

Similarly the point cross-elasticity of the choice probability of alternative j with

respect to an infinitesimal variation of the kth attribute, Xkh, of the utility function

of alternative h is defined as

E
p[j ]
kh =

∂p[j ](X)

∂Xkh

Xkh

p[j ]
=

∂ lnp[j ](X)

∂ lnXkh

(3.6.2)

Both direct and cross-elasticities24 are useful measures of the model’s sensitivity

to variations in the attributes. It is evident from (3.6.1) and (3.6.2) that elasticities

depend on the functional form of the model as well as on the values of attributes and

parameters in the systematic utilities.

Analytic and compact expressions for direct and cross-elasticities (3.6.1) and

(3.6.2) can be obtained for the multinomial logit model with a linear systematic

24The elasticities discussed in this section are disaggregate, i.e. related to variations in the prob-

abilities of a single decision maker or of a group of decision makers sharing the same attribute

values. Aggregate elasticities refer to variations in the average choice fraction:

p̄(j) =

n
∑

i=1

pi(j)

of a group of decision makers with different attributes. Variations are computed with respect to

a uniform infinitesimal variation of a given attribute. In this case, it is possible to express the

aggregate elasticity as a weighted average of individual elasticities. For instance the direct point

elasticity is:

E
p̄[j ]
kj =

∑n
i=1 pi [j ]E

pi [j ]
kh

∑n
i=1 pi [j ]
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utility function Vj = βT Xj . In this case:

E
p[j ]
kj =

(

1 − p[j ]
)

βkXkj/θ (3.6.3)

E
p[j ]
kh = −p[k]βkXkh/θ (3.6.4)

From (3.6.3) it can be deduced that the direct elasticity is positive if attribute

Xkj is positive (as is usually the case) and if its coefficient βk is positive. In other

words, the choice probability of an alternative increases if the value of an attribute

that contributes to its utility (β positive) increases.25 The increase will be higher

for higher values of coefficient βk and attribute Xkj , and for lower values of the

alternative j choice probability. Thus, in a mode choice model, direct elasticities of

the probability of choosing a car with respect to travel time and cost will be negative

because the coefficients βk of these attributes are negative; these elasticities will be

larger, in absolute terms, for an origin–destination pair with relatively large time and

cost values. Lastly, if the probability of choosing the car is low, its elasticity will be

larger, for given values of parameter βk and attribute Xkj .

Similar considerations, although with inverted signs, hold for cross-elasticities,

which will be positive if βk or Xkh are negative, and will be larger for larger absolute

values of βk,Xk , and p[h]. Continuing with the above example, the cross-elasticities

of the probability of using a car with respect to the travel time and cost of another

mode will be positive (because βk < 0).

Qualitatively similar conclusions apply to elasticities of random utility models

other than MNL.

Note that the cross-elasticity (3.6.4) of the multinomial logit model is identi-

cal for all alternatives because a variation in the value of one alternative’s attribute

produces the same percentage variation in the choice probabilities of all other alter-

natives. This result can be considered as a different manifestation of the logit model

independence from irrelevant alternatives property described in Sect. 3.3.1.

Expressions (3.6.3) and (3.6.4) also show that, for given values of coefficients

and attributes, direct and cross-elasticities are higher in absolute terms when the

variance of the random residuals (directly related to the scale parameter θ) is lower.

Conversely, as the random residual variances tend to infinity, the elasticities tend to

zero. Figure 3.15 shows the values of direct and cross-elasticities with respect to a

generic attribute in a multinomial logit model.

For more complex random utility models it is not easy, or even possible, to de-

rive analytic expressions for direct and cross-elasticities. However, it is useful to

discuss elasticities for a single-level hierarchical logit model inasmuch as they pro-

vide some insight into the influence of random residual covariances on direct and

cross-elasticities.

25The result that multinomial logit choice probabilities increase monotonically with respect to

systematic utilities is obtained again. It holds, more generally, for all invariant models described in

previous sections.
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Fig. 3.15 Direct and

cross-elasticities for a

multinomial logit model

XkA XkB XkC XkD

Ep[A] 0.75 −0.25 −0.25 −0.25

Ep[B] −0.25 0.75 −0.25 −0.25

Ep[C] −0.25 −0.25 0.75 −0.25

Ep[D] −0.25 −0.25 −0.25 0.75

Consider the single-level hierarchical logit model in Fig. 3.16; it contains one

nest whose only component is the elementary alternative A, and another nest G

containing elementary alternatives B,C, and D.

It is possible to obtain in closed form the elasticities of the choice probability of

alternative A with respect to a generic attribute Xk that is included in the systematic

utility of all the alternatives. Applying the definitions of elasticity (3.6.1) and (3.6.2)

to the single-level hierarchical logit model in expression (3.3.19) with parameter

θo = 1, the direct elasticity (variation of attribute XkA) and the cross-elasticity with

respect to alternative B (variation of attribute XkB) are, respectively,

E
p[A]
kA =

(

1 − p[A]
)

βkXkA/θ (3.6.5)

E
p[A]
kB = −p[B]βkXkB/θ (3.6.6)

The elasticities in this case are completely analogous to those obtained for the

multinomial logit model, expressed by (3.6.3) and (3.6.4). Things are different,

however, for the choice probability elasticities of alternative B in nest G. Its direct

elasticity (variation of attribute XkB) is

E
p[B]
kB =

{(

1 − p[G]
)

· p[B/G] +
(

1 − p[B/G]
)

/θ
}

βkXkB (3.6.7)

If the hierarchical logit were reduced to a multinomial logit model, that is, if θ = 1,

the direct elasticity (3.6.7) would become analogous to (3.6.3) or (3.6.5). On the

other hand, if θ is less than one, the hierarchical logit elasticity is larger than that of a

multinomial logit model with the same parameters, attributes, and residual variance.

The cross-elasticities of p[B] with respect to variations in attribute XkA of the

“isolated” alternative A, and in attribute XkC of alternative C in the same nest G

are, respectively,

E
p[B]
XkA

= −p[A]βkXkA/θ (3.6.8)

E
p[B]
XkC

= −

[

p[C] +
1 − θ

θ
p[C/G]

]

βkXkC (3.6.9)

Equation (3.6.8) shows that the cross-elasticity of B’s choice probability with

respect to an attribute of alternative A not belonging to B’s nest G is equivalent
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Ep[A] 0.75 −0.25 −0.25 −0.25 0.71 −0.24 −0.24 −0.24 0.61 −0.20 −0.20 −0.20 0.52 −0.18 −0.18 −0.18

Ep[B] −0.25 0.75 −0.25 −0.25 −0.29 0.93 −0.32 −0.32 −0.39 1.80 −0.70 −0.70 −0.47 6.82 −3.18 −3.18

Ep[C] −0.25 −0.25 0.75 −0.25 −0.29 −0.32 0.93 −0.32 −0.39 −0.70 1.80 −0.70 −0.47 −3.18 6.82 −3.18

Ep[D] −0.25 −0.25 −0.25 0.75 −0.29 −0.32 −0.32 0.93 −0.39 −0.70 −0.70 1.80 −0.47 −3.18 −3.18 6.82

Fig. 3.16 Direct and cross-elasticities for a hierarchical logit model
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to that of the corresponding multinomial logit model. On the other hand, the cross-

elasticity with respect to an attribute of an alternative belonging to B’s nest G (and

so correlated with B) is larger for smaller values of parameter θ , that is, for larger

covariance between the two alternatives. If two alternatives are perceived as being

very similar (i.e., their respective random residuals are highly correlated), the prob-

ability of choosing one of them is very sensitive to variations of the attributes of the

other. From (3.6.9) it also follows that if θ = 1 the hierarchical logit model becomes

a multinomial logit model and the cross-elasticity is analogous to (3.6.8).

Direct and cross-elasticities of the hierarchical logit model, for different values of

parameter θ , are shown in Fig. 3.16. For θ = 1, the elasticities reported in Fig. 3.15

are obtained.

The general conclusion from the above example is that, given equal attributes and

coefficients, the more an alternative is perceived as “similar” to other alternatives,

the higher are its direct and cross-elasticities. Thus, for any random utility model,

variations in the attributes of an alternative will have the greatest effects on the

choice probabilities of alternatives that are perceived as close substitutes to it.

3.7 Aggregation Methods for Random Utility Models

Random utility models described in the previous sections express the probability

that a decision-maker i chooses an alternative j as a function of the attributes of

all available alternatives. To highlight the dependence of choice probabilities on the

individual decision-maker, expression (3.2.3a) can be reformulated as

pi
[

j/V (Xi)
]

= Pr
[

Vj

(

Xi
j

)

+ εi
j ≥ Vk

(

Xi
k

)

+ εi
k ∀k ∈ I i

]

(3.7.1)

where Xi
j is the vector of attributes of alternative j for decision-maker i, and Xi

the vector of the attributes of all alternatives. For convenience of notation, (3.7.1)

will be represented more compactly as p[j/Xi] below.

Applications of random utility models for travel-demand modeling often require

the mean value of total demand flows, that is, the mean number of decision-makers

choosing each alternative. Aggregation techniques allow passage from individual

choice probabilities to group, or aggregate, probabilities. To introduce these tech-

niques, it is useful to describe the theoretical aggregation process. Suppose that the

vector Xi of attributes, the functional form, and the coefficients of the random utility

model are known for each individual i of the population. Suppose also that there are

NT individuals in the population and that they choose independently of each other.

Under these assumptions, the number of decision-makers who actually choose the

generic alternative j is a random variable, the sum of NT independent Bernoulli ran-

dom variables yi
j , each of which is equal to one if individual i chooses alternative j

and zero otherwise. The mean number of individuals choosing alternative j,Dj , is

therefore the sum of the means, p[j/Xi], of the NT Bernoulli random variables:

Dj =

NT
∑

i=1

E
[

yi
j

]

=

NT
∑

i=1

p[j/Xi] (3.7.2)
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The average fraction Pj of the population choosing alternative j can be estimated

as

Pj =
1

NT

NT
∑

i=1

p[j/Xi] =
Dj

NT

(3.7.3)

For populations large enough to replace the sum with an integral, (3.7.3) can be

rewritten as

Pj =

∫

X

p[j/X]g(X) dX (3.7.4)

where g(X) represents the joint probability density function of the vector of at-

tributes over the whole population, a measure of the frequency with which the dif-

ferent values of X occur in the population. In practice, the distribution g(X) is not

known and, to calculate the percentage Pj , aggregation techniques that estimate P̂j

using information on a limited number of individuals must be used.

In the literature, various aggregation methods have been proposed; these can be

seen as approximate techniques for integrating (3.7.4).

The methods most frequently applied are:

(1) Average individual

(2) Classification

(3) Sample enumeration

(4) Classification/enumeration

(1) In the first method, an “average individual” is considered, whose attributes X̄

are the average population values calculated from the density g(X). The aggregated

choice percentage is determined as a function of these attributes:

P̂j = p[j/X̄] (3.7.5)

This method is acceptable only if the relationship between the vector of attributes

and the choice probabilities p[j/X] is linear or almost linear. Should the probability

function be convex or concave, the method would, respectively, underestimate or

overestimate the actual value of the fraction of the population choosing alternative

j (see Fig. 3.17). It can also be shown that the deviation of linear estimate P̂j from

its true value is larger for greater dispersion of the values of X in the population,

that is, for larger variances in the marginal distributions of g(X).

(2) The classification method can be seen as an extension of the average individ-

ual method described above. In order to reduce the variance of g(X), the popula-

tion is divided into homogeneous and mutually exclusive classes. Let i represent a

generic class with Ni members. The average individual technique is then applied to

each such class, and the estimated fraction of the population choosing alternative j

becomes:

P̂j =

I
∑

i=1

Ni

NT

P [j/X̄
i
] (3.7.6)
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Fig. 3.17 Bias of average individual estimates of population fractions

where X̄
i

is the vector of attributes for the average individual of the ith class.

In applications, classes are defined on the basis of a few criteria that are ex-

pected to have the greatest effect on systematic utilities. Variables influencing the

distribution of the attributes are often adopted as classification criteria, for exam-

ple, professional status or income. The number Ni of individuals belonging to each

class should be available from statistical sources. The classification technique gives

satisfactory results when the number of classes is limited and the individual classes

are relatively homogeneous with respect to the attributes included in the model.

(3) With the sample enumeration method, it is assumed that the whole population

can be represented by a random sample of individuals (decision-makers) extracted

from it. The average fraction of individuals choosing alternative j in the overall

population is estimated from the probability that j is chosen by the individuals be-

longing to the random sample. If Ns is the number of individuals in the sample,

then:

P̂j =
1

Ns

Ns
∑

h=1

p[j/Xh] (3.7.7)

where Xh is the vector of the attributes relative to the hth individual in the sample.

Expression (3.7.7) applies to the estimation of the mean population choice fraction

when the individuals are chosen using simple random sampling.26

(4) Sample enumeration and classification methods can be combined; this is

equivalent to assuming a stratified random sample of decision-makers. A random

sample of individuals is extracted from each of the I strata (the homogeneous and

26Further elements of sample theory are discussed in Chap. 8 on demand estimation and its bibli-

ography.
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mutually exclusive classes) into which the population is divided. If Ni is the number

of individuals belonging to stratum i and Nsi is the number of sample individuals

extracted from stratum i, the fraction P̂j can be estimated as

P̂j =

I
∑

i=1

Wi

1

Nsi

Nsi
∑

h=1

p[j/Xh] (3.7.8)

where the ratio Wi = Ni/NT is the weight of stratum i in the population.

The total number of decision-makers choosing each alternative j (the aggre-

gate demand for alternative j ) can be calculated by multiplying expressions (3.7.6),

(3.7.7) and (3.7.8) by NT . The ratio between the number of individuals in the pop-

ulation (or a class) and the number of individuals in the sample, NT /Ns or Ni/Nsi ,

is called the “expansion factor” of individuals from the sample to the population.

A number of extensions to these basic methods have been proposed to overcome

difficulties sometimes encountered in their application.

The sample enumeration method allows significant flexibility in the use of ran-

dom utility models, because the attributes considered in vector X might include vari-

ables relating to the individual for which it is difficult, if not impossible, to obtain

mean values over the whole population or subpopulations (classes). This flexibility

is achieved at the cost of greater computational complexity. However, this draw-

back is becoming less important with the steady increase in available computing

power. Another problem associated with the sample enumeration method relates to

the availability of samples of decision-makers for each class i and each choice con-

text (e.g., each traffic zone in the study area). The samples should be large enough to

guarantee adequate coverage of the distribution of attributes X. This would require

large samples of decision-makers for each zone. The prototypical sample method

overcomes this problem by using the same sample of Nsi decision-makers of class

i for different traffic zones, but applying different weights W z
i to each class i in

each zone z (W z
i = Nz

i /NT ). This method requires knowledge of the number, Nz
i ,

of individuals of class i in each zone, which can be obtained from statistical sources

(present scenario), or from sociodemographic forecasts (future scenarios).

In methods based on sample enumeration, estimation of the average number of

individuals choosing alternative j in zone z, Dz
j , requires the expansion factors gz

i

of each class in each zone:

Dz
j =

I
∑

i=1

gz
i

Nsi
∑

h=1

p[j/Xh] (3.7.9)

where these expansion factors can be formally expressed as

gz
i =

Nz
i

Nsi

Sometimes the number Nz
i of individuals of class i in zone z is unknown, es-

pecially when several classes have been defined. In this case, it is not possible to

estimate either the weights of the individual classes (W z
i = Nz

i /NT ) and the aver-
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age choice percentages by (3.7.8), or the expansion factors gz
i and the total number

of individuals choosing alternative j,Dj , by (3.7.9). To overcome this problem, the

target variable method can be adopted. This method is described here in reference

to the calculation of expansion factors; once these are known, the weights W z
i can

easily be calculated. The expansion factors are calculated so that, when the proto-

typical sample is rescaled to its universe, it reproduces the zonal values of selected

aggregated variables, known as target variables T z
t . Typical target variables are the

number of residents by professional status, age, sex, income group, and so on. For-

mally, the expansion factors gz
i must satisfy the following equations.

∑

i

gz
i

Nsi
∑

h=1

K(t,h) = T z
t (3.7.10)

where K(t,h) is the contribution to the t th target variable of the hth component

of the prototypical sample belonging to category i. For example, if the t th target

variable is the number of workers in the zone, individual h of class i will contribute

one if employed, zero otherwise. In general, the number of unknown expansion

factors (i.e., of classes in each zone) is larger than the number Nt of target variables,

so the system of equations (3.7.10) does not have a unique solution. In this case,

the vector gz of expansion factors for the classes in each zone can be obtained by

solving a least squares problem that minimizes the weighted distance from a vector

of reference expansion factors ĝ while, at the same time, satisfying as closely as

possible the system of equations (3.7.10):

gz = argmin
gz≥0

[

∑

i

(

gz
i − ĝi

)2
+ α

Nt
∑

t=1

(

∑

i

gz
i

Nsi
∑

h=1

K(t,h) − T z
t

)2
]

(3.7.11)

Reference expansion factors can be obtained as sample estimates of the fraction

of users belonging to each class. The parameter α is the relative weight of the two

parts of the objective function in (3.7.11), that is, the relative weight that the analyst

associates with the target variables (3.7.10) and to the initial estimates ĝ in the

solution of problem (3.7.11).

Note that this least squares problem imposes nonnegativity constraints on the

variables (3.7.11). It is similar in structure to the problem of estimating O-D demand

flows from traffic count data that is formulated and discussed in Chap. 8, and can be

solved by using the projected gradient algorithm described in Appendix A.

3.A. Derivation of Logit Models from the GEV Model

As stated in Sect. 3.3.5, the choice probability of a GEV model can be expressed as

(see (3.3.52)):

p[j ] =
eVj · Gj (e

V1 , . . . , eVj , . . . , eVm)

μ · G(eV1 , . . . , eVj , . . . , eVm)
(3.A.1)

where Gj (y1, y2, . . . , ym) = ∂G/∂yj .
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In the same section, it was also stated that multinomial logit, hierarchical logit

and cross-nested logit models can be derived as GEV models. For the multinomial

logit and the hierarchical logit this is possible by specifying the function G(·) as

G(eV1 , . . . , eVm) = eYo (3.A.2)

where Yo is the logsum variable relative to the root node of the choice tree for the

model under study. The following sections carry out these derivations.

3.A.1 Derivation of the Multinomial Logit Model

In the case of the multinomial logit model, the choice tree has the root node o di-

rectly connected to all the elementary alternatives j (see Fig. 3.2).

In this case the variable Yo can be expressed as

Yo = ln

m
∑

i=1

eVi/θ

and (3.A.2) becomes:

G(eV1 , . . . , eVm) =

m
∑

i=1

eVi/θ (3.A.3)

It can easily be verified that this function satisfies the four properties mentioned

in Sect. 3.3.5, given some restrictions on parameter θ .

In fact:

(1) G ≥ 0 for any value θ and Vi (i = 1, . . . ,m).

(2)

G(αeV1 , . . . , αeVm) =

m
∑

i=1

(αeVi )1/θ = α1/θ
m
∑

i=1

(eVi )1/θ

= α1/θG(eV1 , . . . , eVm);

that is, G(.) is homogeneous of degree 1/θ , which is positive if θ > 0.

(3)

lim
eVi →∞

G(eV1 , . . . , eVm) = lim
eVi →∞

m
∑

i=1

eVi/θ = ∞, for i = 1,2, . . . ,m.

(4) The first derivative of G(·) with respect to any eVj is equal to

Gk = ∂G(.)/∂eVj =
eVj [(1/θ)−1]

θ
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which is nonnegative for any θ ≥ 0. Furthermore, higher-order mixed deriva-

tives are all zero, and therefore both nonnegative and nonpositive. Condition (4)

is therefore certainly verified if Condition (2) on the positivity of the coefficient

θ is verified.

Substituting expression (3.A.3) in (3.A.1), it follows that

p[j ] =
eVj

1/θ
·

1/θ · eVj (1/θ)−1

∑m
i=1 eVi/θ

=
eVj /θ

∑m
i=1 eVi/θ

which is the expression of the multinomial logit model of parameter θ .

To complete the demonstration, the joint probability distribution of the random

residuals can be derived. In fact, substituting expression (3.A.3) in the joint probabil-

ity distribution function (3.3.51), the product of m Gumbel probability distribution

functions with parameter θ is obtained:

F(ε1, . . . , εm) = exp

[

−

m
∑

i=1

e−εi/θ

]

=

m
∏

i=1

exp[−e−εi/θ ]

Thus expression (3.A.3) for the function G(·) implies that the random residuals

are identically and independently distributed as Gumbel variables with parameter

θ and therefore with variances and covariances defined by expressions (3.3.2) and

(3.3.3). Note that the inclusion of Euler’s constant Φ in the systematic utilities Vi

entails no loss of generality because, as stated in Sect. 3.3.1, MNL choice probabil-

ities are invariant with respect to the addition of a constant to all utilities.

3.A.2 Derivation of the Single-Level Hierarchical Logit Model

In the single-level hierarchical logit model with equal covariances, the choice tree

has the root node o connected to intermediate nodes k to which elementary alterna-

tives j are connected (see Fig. 3.5). The parameters θ associated with all intermedi-

ate nodes k are equal.

With this tree structure, the variable Yo becomes:

Yo = ln
∑

k

exp

(

θ

θo

· Yk

)

= ln
∑

k

(

∑

i∈Ik

eVi/θ

)θ/θo

with

Yk = ln
∑

i∈Ik

eVi/θ

Consequently (3.A.2) becomes:

G(eV1 , . . . , eVm) =
∑

k

(

∑

i∈Ik

eVi/θ

)θ/θo

(3.A.4)
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In this case, it can again be shown that G(.) satisfies the four properties men-

tioned above, given some restrictions on the parameters θ and θo.

In fact:

(1) G ≥ 0 for any value of θ, θo, and Vk , for k = 1, . . . ,m.

(2)

G(αeV1 , . . . , αeVm) =
∑

k

[

∑

i∈Ik

(αeVi )1/θ

]θ/θo

=
∑

k

[

(α)1/θ
∑

i∈Ik

(eVi )1/θ

]θ/θo

=
∑

k

(α)1/θo ·

[

∑

i∈Ik

(eVi )1/θ

]θ/θo

= (α)1/θo ·
∑

k

[

∑

i∈Ik

(eVi )1/θ

]θ/θo

= (α)1/θo · G(eV1 , . . . , eVm);

that is, G is homogeneous of degree 1/θo, which is positive if θo > 0.

(3) limeVk →∞ G(eV1 , . . . , eVm) = ∞, for k = 1,2, . . . ,m.

(4) The first-order partial derivative of G(.) with respect to any eVh is equal to:

Gh = ∂G(.)/∂eVh = θ/θo ·

(

∑

i∈Ik

eVi/θ

)(θ/θo)−1

· 1/θ · eVh[(1/θ)−1] with h ∈ Ik

which is nonnegative if:

θo ≥ 0 (3.A.5)

Inequality (3.A.5) is implied by Condition (2) on the positivity of the homo-

geneity coefficient.

Moreover, second-order mixed derivatives are equal to:

∂2G(.)/∂eVj ∂eVh

=

⎧

⎪

⎨

⎪

⎩

1
θo

· eVj [(1/θ)−1] · ( θ
θo

− 1) · (
∑

i∈Ik
eVi/θ )(θ/θo)−2 1

θ
eVh[(1/θ)−1]

for j,h ∈ Ik ∀k

0, otherwise

which, given (3.A.5), are nonpositive if:

0 ≤ θ ≤ θo (3.A.6)

It can be easily shown that if (3.A.6) holds, Condition (4) is always satisfied for

higher-order mixed derivatives.

Also in this case, therefore, Conditions (2) and (4) impose restrictions on the two

parameters θ and θo (0 < θ ≤ θo) analogous to those described in Sect. 3.3.2.
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Fig. 3.A.1 Choice tree for a

multilevel hierarchical logit

model

Choice probabilities can be obtained by substituting function (3.A.4) in (3.A.1):

p[j ] =
eVj

1
θo

·

θ
θo

· (
∑

i∈Ih
eVi/θ )

θ
θo

−1
· 1

θ
· eVj [(1/θ)−1]

∑

k(
∑

i∈Ik
eVi/θ )

θ
θo

=
eVj /θ

∑

i∈Ik
eVi/θ

·
(
∑

i∈Ih
eVi/θ )

θ
θo

∑

k(
∑

i∈Ik
eVi/θ )

θ
θo

(3.A.7)

which is the expression of the single-level hierarchical logit model with parameters

θo and θ . Introducing the parameter δ = θ/θo and the logsum variable Yk :

Yk = ln
∑

i∈Ik

exp(Vi/θ)

(3.A.7) becomes:

p[j ] =
eVj /θ

∑

i∈Ik
eVi/θ

·
eδYh

∑

k eδYk

which is the expression of the single-level hierarchical logit model (see (3.3.19)).

3.A.3 Derivation of the Multilevel Hierarchical Logit Model

The demonstration that the multilevel hierarchical logit (tree-logit) can be derived

from function (3.A.2) satisfying the four properties mentioned cannot be easily gen-

eralized, because it is difficult to express the choice tree structure in a general form.

To demonstrate the statement that the multilevel hierarchical logit model is a GEV

model, reference to an easily generalizable example is made.

Consider the structure of the choice tree in Fig. 3.A.1.

There are two intermediate levels and three parameters: θo, θ1, θ2. Let VA,VB ,

VC , and VD be the systematic utilities of the four elementary nodes. According to

what was stated in Sect. 3.3.3, it follows that
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δ1 = θ1/θo

δ2 = θ2/θ1

Y2 = ln(eVC/θ2 + eVD/θ2) (3.A.8)

Y1 = ln(eVB/θ1 + eδ2Y2) = ln
[

eVB/θ1 + (eVC/θ2 + eVD/θ2)θ2/θ1
]

Yo = ln(eVA/θo + eδ1Y1) = ln
{

eVA/θo +
[

eVB/θ1 + (eVC/θ2 + eVD/θ2)θ2/θ1
]θ1/θo

}

p[A] =
eVA

eYo

p[B] =
eVB/θ1

eYo
· e(δ1−1)Y1 (3.A.9)

p[C] =
eVC/θ2

eYo
· e(δ1−1)Y1 · e(δ2−1)Y2

Substituting in (3.A.2) the expression for Yo given by (3.A.8) yields:

G(eVA , . . . , eVD ) = eVA/θo +
[

eVB/θ1 + (eVC/θ2 + eVD/θ2)θ2/θ1
]θ1/θo (3.A.10)

It can be verified that, given some restrictions on the parameters θ , this function

satisfies the four properties required of G(·).

In fact:

(1) G ≥ 0 for any value of θj , (j = o,1,2), Vi (i = A,B,C,D).

(2)

G(αeVA , . . . , αeVD ) = (αeVA)1/θo +
{

(αeVB )1/θ1

+
[

(αeVC )1/θ2 + (αeVD )1/θ2
]θ2/θ1

}θ1/θo

= (α)1/θo · (eVA)1/θo +
{

(α)1/θ1 · (eVB )1/θ1

+
[

(α)1/θ2 · (eVC )1/θ2 + (α)1/θ2 · (eVD )1/θ2
]θ2/θ1

}θ1/θo

= (α)1/θo · (eVA)1/θo +
{

(α)1/θ1 · (eVB )1/θ1

+ (α)1/θ1 ·
[

(eVC )1/θ2 + (eVD )1/θ2
]θ2/θ1}θ1/θo

= (α)1/θo · (eVA)1/θo + (α)1/θo ·
{

(eVB )1/θ1

+
[

(eVC )1/θ2 + (eVD )1/θ2
]θ2/θ1

}θ1/θo

= (α)1/θo · G(eVA , . . . , eVD );

that is, G(.) is homogeneous of degree 1/θo, which is positive if θo > 0.

(3) limeVi →∞ G(eVA , . . . , eVD ) = ∞, for i = A,B,C,D;α.

(4) First-order partial derivatives can be expressed as

∂G/∂eVA = 1/θo · eVA(1/θo−1)
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∂G/∂eVB = θ1/θo · (eVB/θ1 + eδ2Y2)δ1−1 · 1/θ1 · eVB (1/θ1−1)

∂G/∂eVC = θ1/θo · (eVB/θ1 + eδ2Y2)δ1−1 · θ2/θ1 · (eVC/θ2 + eVD/θ2)δ2−1

·1/θ2 · eVC (1/θ2−1)

Note that in this case there is no structural symmetry, and the different deriva-

tives differ from each other. First-order derivatives are nonnegative if:

θo ≥ 0 (3.A.11)

Other restrictions on the parameters θ can be deduced from the second-order

mixed derivatives. In particular, it is sufficient to use only the following two

mixed derivatives.

∂2G/∂eVB ∂eVC =
1

θo

· e
VB ( 1

θ1
−1)

·
θ1 − θo

θo

· (eVB/θ1 + eδ2Y2)δ1−2

·
1

θ1
· (eVC/θ2 + eVD/θ2)δ2−1 · e

VC( 1
θ2

−1)

∂2G/∂eVC ∂eVD =
1

θo

· e
VC( 1

θ2
−1)

·
θ1 − θo

θo

· (eVB/θ1 + eδ2Y2)δ1−2

·
θ2

θ1
·
[

(eVC/θ2 + eVD/θ2)δ2−1
]2

·
1

θ2
· e

VD( 1
θ2

−1)

+
1

θo

· e
VC( 1

θ2
−1)

·
θ2 − θ1

θ1
· (eVC/θ2 + eVD/θ2)δ2−2

·
1

θ2
· e

VD( 1
θ2

−1)
· (eVB/θ1 + eδ2Y2)δ1−1 (3.A.12)

Invoking inequality (3.A.11), it can be seen that the first one is nonpositive if:

0 ≤ θ1 ≤ θo (3.A.13)

Invoking (3.A.13) in the second one, it follows that the first term is always

nonpositive and the second term is nonpositive if:

0 ≤ θ2 ≤ θ1 (3.A.14)

Combining expressions (3.A.13) and (3.A.14), it follows that

0 ≤ θ2 ≤ θ1 ≤ θo (3.A.15)

It can be shown that if inequality (3.A.15) holds, Condition (4) is always verified

for the other second-order mixed derivatives not included in (3.A.12), as well

as for higher-order mixed derivatives.
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Choice probabilities for the multilevel hierarchical logit model described here

can be obtained by substituting expression (3.A.10) in (3.A.1), yielding:

p[A] =
eVA

1/θo

·
1/θo · eVA(1/θo−1)

eYo
=

eVA/θo

eYo

p[B] =
eVB

1/θo

·
θ1/θo · (eVB/θ1 + eδ2Y2)δ1−1 · 1/θ1 · eVB (1/θ1−1)

eYo
=

eVB/θ1

eYo
· e(δ1−1)Y1

p[C] =
eVC

1/θo

·
θ1/θo · (eVB/θ1 + eδ2Y2)δ1−1 · θ2/θ1 · (eVC/θ2 + eVD/θ2)δ2−1 · 1/θ2 · eVC (1/θ2−1)

eYo

=
eVC/θ2

eYo
· e(δ1−1)Y1 · e(δ2−1)Y2

equal to the expressions (3.A.9)

The conditions on parameters θ obtained for the three models described so far

are both necessary and sufficient; if they are not satisfied the function G(·) does not

have the properties (1) through (4) and the models are not compatible with random

utility theory.

3.A.4 Derivation of the Cross-nested Logit Model

The cross-nested logit model has a choice graph shown in Fig. 3.11 and can be

obtained as a GEV model by specifying the function G(.) as

G(.) =
∑

k

(

∑

i∈Ik

α
1/δk

ik eVi/θk

)δk

(3.A.16)

with δk = θk/θo and the membership parameters αik in the interval [0,1]. In this

case as well, it can be verified that G(.) satisfies the four properties, given some

restrictions on parameters θk .

In fact:

(1) G ≥ 0 for any value of θk,Vi (i = 1, . . . ,m), aim[0,1].

(2)

G(βeV1 , . . . , βeVm) =
∑

k

(

∑

i∈Ik

α
1/δk

ik (βeVi )1/θk

)δk

=
∑

k

(

β1/θk
∑

i∈Ik

α
1/δk

ik (eVi )1/θk

)δk
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= β1/θo
∑

k

(

∑

i∈Ik

α
1/δk

ik (eVi )1/θk

)δk

= β1/θo · G(eV1 , . . . , eVm);

that is, G(.) is homogeneous of degree 1/θo, which is positive if θo ≥ 0.

(3) limeVk →∞ G(eV1 , . . . , eVm) = ∞, for k = 1,2, . . . ,m.

(4) The first-order partial derivative of G(·) with respect to any eVj is equal to:

Gj = ∂G(.)/∂eVj =
∑

k

[

δk ·

(

∑

i∈Ik

α
1/δk

ik eVi/θk

)δk−1

·
α

1/δk

jk

θk

· (eVj )
1
θk

−1
]

and is nonnegative if

θo ≥ 0 (3.A.17)

Inequality (3.A.17) is implied by Condition (2) on the positivity of the homo-

geneity coefficient.

Moreover, second-order mixed derivatives are equal to:

∂2G(.)/∂eVj ∂eVh =
∑

k

[

α
1/δk

hk ·
1

θk

(eVh)
1
θk

−1
· (δk − 1) ·

(

∑

i∈Ik

α
1/δk

ik eVi/θk

)δk−2

·
α

1/δk

jk

θo

· (eVj )
1
θk

−1
]

If inequality (3.A.17) is satisfied, all terms of the summation are nonpositive if:

0 ≤ θk ≤ θo ∀k (3.A.18)

Thus the condition of nonpositivity is always satisfied (for any value of Vi, aik)

if (3.A.18) is true.

It can be easily shown that Condition (4) for higher-order mixed derivatives

is always verified if (3.A.18) holds.

Choice probabilities can be obtained by substituting the function G(.) expressed

by (3.A.16) in (3.A.1):

p[j ] =
eVj

1/θo

·

∑

k[
α

1/δk
jk

θo
· (
∑

i∈Ik
α

1/δk

ik eVi/θk )δk−1 · (eVj )
1
θk

−1
]

∑

k(
∑

i∈Ik
α

1/δk

ik eVi/θk )δk

=

∑

k[α
1/δk

jk eVj /θk · (
∑

i∈Ik
α

1/δk

ik eVi/θk )δk−1]
∑

k(
∑

i∈Ik
α

1/δk

ik eVi/θk )δk

(3.A.19)

which is the expression for the cross-nested logit model (3.3.49).
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3.B. Random Variables Relevant for Random Utility Models

3.B.1 The Gumbel Random Variable

The Gumbel random variable is a continuous variable that plays a very important

role in building logit-form random utility models. Below we describe the probability

functions of this variable and illustrate some of its important properties. To facili-

tate the immediate application of the results to random utility models, the Gumbel

variable is indicated by U (instead of XG) and its expected value by V (instead of

E[XG]).

The probability density function of a Gumbel r.v. U with mean V and scale

parameter θ is given by:

fU (u) = 1/θ · exp
[

−(u − V )/θ − Φ
]

exp
{

− exp
[

−(u − V )/θ − Φ
]}

(3.B.1)

and its distribution function is:

FU (u) = exp
{

− exp
[

−(u − V )/θ − Φ
]}

(3.B.2)

where Φ is Euler’s constant, approximately equal to 0.577.

The mean and the variance of the Gumbel variable are:

E[U ] = V

Var[U ] = σ 2
U =

π2θ2

6

(3.B.3)

From expressions (3.B.3) it can be deduced that the standard deviation of the

Gumbel r.v. is directly proportional to the parameter θ . Figure 3.B.1 shows some

probability density functions of the zero mean Gumbel r.v. for different values of

parameter θ .

It can easily be demonstrated, by substitution in expression (3.B.2), that if U

is a Gumbel variable with parameters (V , θ), any r.v. obtained from it by a linear

transformation

Y = aU + b

is also a Gumbel r.v. with mean

E[Y ] = aV + b

and the same parameter θ (same variance). From this result, it follows immediately

that the residual of a random utility model ε = U −V (a = 1, b = −V ) is a Gumbel

r.v. with zero mean and parameter θ .

The Gumbel r.v. has the important property of stability with respect to maximiza-

tion. In other words, if Uj , j = 1, . . . ,N , are independent Gumbel r.v. with different

means Vj but the same parameter θ , the maximum of these variables:

UM = max
j=1,...,N

[Uj ] (3.B.4)
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Fig. 3.B.1 Probability density functions of a Gumbel r.v.

is also a Gumbel r.v. with parameter θ .

In fact, the probability distribution function of UM can be obtained as

FUM
(u) = Pr(UM < u) = Pr

[

max
j=1,...,N

{Uj } ≤ u
]

and from the independence of the Uj , it follows that:

Pr
[

max
j=1,...,N

{Uj } ≤ u
]

=
∏

j=1,...,N

Pr[Uj < u] =
∏

j=1,...,N

FUj
(u)

Substituting expression (3.B.2) for the Gumbel probability distribution function into

the previous expression, it follows that

FUM
(u) =

∏

j=1,...,N

exp
{

− exp
[

−(u − Vj )/θ − Φ
]}

which yields:

FUM
(u) = exp

[

− exp(−Φ) · exp(−u/θ) ·
∑

j

exp(Vj/θ)

]

(3.B.5)

If the EMPU variable described in Chap. 3 is denoted by VM then:

VM = θ ln
∑

j

exp(Vj/θ) (3.B.6)
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and, when this is substituted in expression (3.B.5), the result is

FUM
(u) = exp

{

− exp
[

−(u − VM)/θ − Φ
]}

which is still the probability distribution function of a Gumbel random variable with

mean VM and parameter θ , as can be immediately seen by comparison with (3.B.2).

The multinomial logit model can be obtained by using the definition of a random

utility model (3.2.1) and the property of stability with respect to maximization of

the Gumbel r.v. described above.

In fact, from (3.2.1) it follows that

p[j ] = Pr(Uj > UM ′)

with

UM ′ = max
k �=j

{Uk}

This probability can therefore be expressed as the product of the probability that the

perceived utility Uj has a value within an infinitesimal neighborhood of x and the

probability that UM ′ has a value less than x. The resulting probability element must

obviously be integrated with respect to all possible values of x:

p[j ] = Pr(Uj > UM ′) =

∫ +∞

−∞

FUM ′ (x) · fUj
(x) dx (3.B.7)

where FUM ′ and fUj
are the probability distribution function and the probability

density function of the random variables UM ′ and Uj , respectively. If the Uk are

i.i.d. Gumbel variables with parameter θ and mean Vk , then UM ′ , as shown above,

is also a Gumbel variable with the same parameter θ and mean equal to:

VM ′ = θ ln
∑

k �=j

exp(Vk/θ) (3.B.8)

Expression (3.B.7) then becomes:

p[j ] =

∫ +∞

−∞

exp
{

− exp
[

−(x − VM ′)/θ − Φ
]}

· exp
{

− exp
[

−(x − Vj )/θ − Φ
]}

× exp
[

−(x − Vj )/θ − Φ
]

· (1/θ) dx

=

∫ +∞

−∞

exp
{

− exp
[

−(x − Vj )/θ − Φ
]

− exp
[

−(x − VM ′)/θ − Φ
]}

× exp
[

−(x − Vj )/θ − Φ
]

· (1/θ) dx

= exp(Vj/θ − Φ) ·

∫ +∞

−∞

exp
{

− exp(−x/θ) ·
[

exp(Vj/θ − Φ)

+ exp[VM ′/θ − Φ]
}

exp(−x/θ) · (1/θ) dx
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= exp(Vj/θ − Φ)

×

∫ +∞

−∞

exp
[

− exp(−x/θ)
][exp(Vj /θ−Φ)+exp[VM ′/θ−Φ]

exp(−x/θ) · (1/θ) dx

=
exp(Vj/θ − Φ)

exp(Vj/θ − Φ) + exp(VM ′/θ − Φ)

×
∣

∣exp
[

− exp(−x/θ)
][exp(Vj /θ−Φ)+exp[VM ′/θ−Φ]∣

∣

+∞

−∞

=
exp(Vj/θ)

exp(Vj/θ) + exp(VM ′/θ)

and, substituting expression (3.B.8) for VM ′ , it follows that

p[j ] =
exp(Vj/θ)

exp(Vj/θ) +
∑

k �=j exp(Vk/θ)
=

exp(Vj/θ)
∑

k exp(Vk/θ)

which is the multinomial logit model described in Sect. 3.3.1.

3.B.2 The Multivariate Normal Random Variable

The multivariate normal r.v., XMVN , is the generalization of the normal r.v. to n

dimensions. Its probability density function is given by

fXMVN (x) =
[

(2π)n det(ΣX)
]−1/2

exp
[

−1/2(x − µX)TΣ−1
X (x − µX)

]

(3.B.9)

where det(Σ) denotes the determinant of the matrix Σ .

The parameters of a multivariate normal r.v. are the vector µX of the means, with

components μXi
, and the positive semidefinite variance–covariance (or dispersion)

matrix ΣX . In other words:

E[XMVN] = µX, ΣXMVN = ΣX

The equiprobability surfaces of the multivariate normal variable, or the loci of

points in the n-dimensional Euclidean space for which the density function is con-

stant, have the equation:

(x − µX)TΣ−1
X (x − µX) = C2 (3.B.10)

where C is a constant. Expression (3.B.10) is the equation of an ellipsoid with µX

as its center (see Fig. 3.B.2).

Recall that the sum of two univariate normal random variables is again a nor-

mal random variable, a property known as invariance with respect to summation.

Specifically, if X is distributed as N(μX, σ 2
X) and Y is distributed as N(μY , σ 2

Y ),
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Fig. 3.B.2 Equiprobable surfaces of the multivariate normal r.v.

then X +Y is distributed as N(μX +μY , σ 2
X +σ 2

Y + 2 cov(X,Y )); similarly, X −Y

is distributed as N(μX − μY , σ 2
X + σ 2

Y − 2 cov(X,Y )).

The multivariate normal r.v. has the property of invariance with respect to linear

transformations, which can be considered an extension of the property of invariance

with respect to summation of the univariate normal r.v. In other words, if X is a

random vector with probability multivariate normal density function (3.B.9) and A

is a matrix of dimensions (m × n), the vector Y = AX is also multivariate normal

with mean vector and dispersion matrix given by

E[Y ] = AE[X] = AµX,

ΣY = E
[

A(X − µX)(X − µX)T AT
]

= AΣXAT

Furthermore, from (3.B.9) it can be easily deduced that if the n components of

XMVN are noncorrelated (i.e., the matrix Σ is diagonal), then they are also inde-

pendent; that is, the probability density function (3.B.9) is the product of n density

functions of univariate normal random variables with means μXi
and variances σ 2

Xi
.

It is worth recalling that two independent random variables are noncorrelated in any

case.
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Reference Notes

Random utility theory has stimulated, both in theory and in applications, the un-

derstanding and modeling of the mechanisms underlying travel demand. One of the

first systematic accounts of its foundation can be found in the book by Domencich

and McFadden (1975). The book formalizes the theoretical work carried out in the

early 1970s on random utility models and on multinomial logit models in particular.

Theoretical analyses of random utility models can be found in Williams (1977),

Manski (1977), and the book by Manski and McFadden (1981). The book by Ben-

Akiva and Lerman (1985) gives a very comprehensive account of random utility

theory, of logit family models, and of many applied issues dealt with in this chapter

and in Chap. 8. A recent contribution covering advanced topics in random utility

theory is represented by Train (2003).

Williams and Ortùzar (1982) analyze the limitations of random utility (or “com-

pensatory”) models and compare them with other behavioral discrete choice models.

The paper also contains a comprehensive, albeit dated, bibliography on noncompen-

satory models. Detailed analysis of the state of the art in the mid-1980s on the use

of random utility models in modeling travel demand can be found in the note by

Horowitz (1985). More recent systematic reviews of random utility models can be

found in Bath (1997) and in Ben-Akiva and Bierlaire (1999).

As for specific random utility models, references to the single-level hierarchical

logit model can be found in Williams (1977) and Daly and Zachary (1978), and Da-

ganzo and Kusnic (1993) discuss the multilevel hierarchical logit model in its most

general form. The cross-nested logit model is implicitly encompassed in McFad-

den (1978); the first explicit formulation called “ordered GEV” can be traced back

to Small (1987). Vovsha (1997), Vovsha and Bekhor (1998), Wen and Koppelman

(2001), Papola (2004), and Abbe et al. (2007) provide further theoretical formula-

tions and developments. The paired combinatorial logit model was first proposed by

Chu (1989), and was subsequently elaborated by Koppelman and Wen (2000). The

formulation reported in Sect. 3.3.4 is from Papola (2004).

Theoretical analysis of the covariances underlying the cross-nested logit model is

provided by Marzano and Papola (2008). The GEV model was proposed by McFad-

den (1978) and subsequently generalized by Ben-Akiva and Francois (1983). The

demonstration that GEV models are random utility models and the derivation of hi-

erarchical logit models as GEV models is from Papola (1996) and the derivation of

the cross-nested logit model as a GEV model is from Papola (2004).

Detailed analysis of the probit model is contained in the book by Daganzo (1979);

for the calculation of probit choice probabilities reference can be made to Horowitz

et al. (1982) and Langdon (1984). Reference to the factor analytic probit can be

found in Ben-Akiva and Bierlaire (1999) and reference to the random coefficients

(tastes) approach can be found in Ben-Akiva and Lerman (1985) and in Ortuzar and

Willumsen (2001). The GHK method derives the name from its authors: Geweke

(1991), Hajivassiliou and McFadden (1998), and Keane (1994); a different formu-

lation can be found in Bolduc (1999).

The mixed logit model is also a rather recent development of random utility mod-

els. One of the first papers dealing with its theoretical and computational aspects was
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by Ben-Akiva and Bolduc (1996). Other references to this model may be found in

Bolduc et al. (1996) and in Ben-Akiva and Bierlaire (1999); more recent develop-

ments and detailed analysis of model properties and applications can be found in

Train (2003) and in the doctoral dissertation by Walker (2001).

The general approach to modeling choice set alternatives is contained in Manski

(1977). A state-of-the-art review of explicit models of choice set generation and

a number of specifications may be found in Ben-Akiva and Boccara (1995). The

implicit availability perception approach is described in Cascetta and Papola (2001).

The expected maximum perceived utility function and its mathematical proper-

ties are dealt with in Daganzo’s volume (1979). Reference can also be made to the

work of Cantarella (1997), which draws on and generalizes Daganzo’s results.

The definition of elasticity associated with random utility models and the expres-

sions for the multinomial logit model are given in various texts; particular reference

can be made to Domencich and McFadden (1975) and to Ben-Akiva and Lerman

(1985). The results on elasticities of the single-level hierarchical logit model are

from Koppelman (1989).



Chapter 4

Travel-Demand Models

4.1 Introduction

As stated in Chap. 1, travel demand derives from the need to carry out activities

in multiple locations. Thus, the level and characteristics of travel demand are influ-

enced by the activity system and the transportation opportunities in the area.

In order to analyze and design transportation systems, it is necessary to estimate

the existing demand and to predict the changes in it that will result from the projects

being studied and/or from changes in external factors. Mathematical demand models

can be used for all these purposes.

A travel-demand model can be defined as a mathematical relationship between

travel-demand flows and their characteristics on the one hand, and given activity and

transportation supply systems and their characteristics.

A demand flow is an aggregation of individual trips, and each trip is the result

of multiple choices made by the transportation system users, that is, an individual

traveler in the case of passenger transportation or an operator (manufacturer, ship-

per, and carrier) for freight transportation. For a traveler, these choices range from

long-term decisions, such as residence and employment location and vehicle own-

ership, to shorter-term decisions such as trip frequency, timing, destination, mode,

and path. In freight transportation, long-term decisions influencing transportation

demand include the location of production plants and purchasing/selling markets,

ownership of a fleet of freight vehicles, storage facilities, and the like. Short-term

decisions include such factors as shipment frequency, choice of mode, intermodal

operator, and path. The choices underlying a journey are made with respect to differ-

ent choice dimensions; these are defined by a set of available alternatives and by the

values of their relevant attributes. For example, the mode choice dimension is de-

fined by the alternative transportation modes available for a given origin–destination

pair together with their attributes. In a given trip, the user may also make choices

involving other dimensions, such as path and destination.

A large number of mathematical models have been developed to forecast travel

demand1; the different models are based on different assumptions and have differ-

ent specifications. Before describing some of these model families in detail, some

classification criteria are introduced (see Fig. 4.1).

The first classification factor is related to the type of choice (i.e., choice dimen-

sion) that is implicitly or explicitly represented by the model. Decisions in some

1For now the discussion is in terms of passenger travel demand, even though many of the concepts

introduced can be extended to freight transportation demand models. Section 4.7 deals specifically

with freight models.
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TYPE OF CHOICE Mobility or context models

Travel models

SEQUENCE OF CHOICES Trip-based demand models

Trip chaining models

Activity-based models

LEVEL OF DETAIL Disaggregate models

Aggregate models

BASIC ASSUMPTIONS Behavioral models

Descriptive models

Fig. 4.1 Classification of travel-demand models

choice dimensions influence individual trips indirectly, by defining the trip context

or conditions. Decisions about residence and workplace locations, possession of a

driver’s license, and the number of cars owned by the household are examples of

this type of dimension. Residence and workplace locations determine the origin and

destination of work trips, having a driver’s license makes the car available as a trans-

portation mode, and so on. These choice dimensions and the models that represent

them are known as mobility choices and models. Usually, mobility choices are rela-

tively stable over time because there is a high cost associated with changing them;

they can be assumed invariant in the short term.

Travel choices and models refer to the dimensions that characterize journeys (se-

quences of trips) and/or the individual trips that comprise journeys. Decisions about

frequency, destination, transportation mode, and path are examples of this type of

choice dimension.

The second classification factor relates to the approach taken for modeling travel

demand, that is, for predicting the outcome of the travel choice decisions and rep-

resenting the mutual effects of the different decisions on each other. Trip-based

travel-demand models implicitly assume that the choices relating to each origin–

destination trip are made independently of the choices for other trips within the

same and other journeys. This approximation is made to simplify the analysis, and

is reasonable when most of the journeys in the modeling period consist of round

trips (origin–destination–origin).

Trip-chaining travel-demand models, on the other hand, assume that the choices

concerning the entire journey influence each other. In this case, the choice of an

intermediate destination, if any, takes into account the preceding or following des-

tinations on the trip chain, the choice of transportation modes takes into account

the whole sequence of trips in the chain, and so on. Models of this type have been

studied for several years and have been applied to real situations, although less fre-

quently than trip-based demand models. Examples of models of this type are pre-

sented in Sect. 4.4.

Finally, activity-based demand models predict travel demand as the outcome of

the need to participate in different activities in different places and at different times.

They therefore take into account the relationships among different journeys made

by the same person during a day and, in the most general case, between journeys
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made by the various members of the same household. They are often implemented

as microsimulation models, in which the decisions, activities, and trip-making of a

large number of individual households and their members are explicitly represented.

Models of this type are obviously more complex than those described previously

and are aimed at understanding relationships between the demand for travel and

the organization of the different activities of a person and his or her household.

These models are presently at the research stage and are only discussed briefly in

Sect. 4.5.

Models of all types can also be classified as either aggregate or disaggregate,

depending on the level of detail of the representation of demand and/or the factors

that influence it. In aggregate models, the variables (attributes) included in the model

apply to a group of users (e.g., the average times or costs of all the trips between

two traffic zones, or the average number of cars owned by families of a certain

category). In disaggregate models, the variables refer to the individual user (e.g.,

the times or costs of travel between the actual origin and destination points of a

trip, or the number of cars in a specific traveler’s household). The appropriate level

of aggregation of model variables depends on the purpose of demand modeling.

The prevailing use considered in this book is modeling of the entire transportation

system, as represented by a network model. This implies an aggregation level that is

at least zonal because, as explained in Chaps. 1 and 2, the level-of-service variables

obtained from network models relate to pairs of centroid nodes that represent traffic

zones.2

The last classification factor considered here relates to the basic model assump-

tions. Models are called behavioral if they derive from explicit assumptions about

users’ choice behavior and descriptive if they capture the relationships between

travel demand and activity and transportation supply-system variables without mak-

ing specific assumptions about decision-makers’ behavior. There are also mixed

model systems in which some submodels are behavioral and others are descriptive.3

Finally, it should be noted that transportation demand models, as are all models

used in engineering and econometrics, are schematic and simplified representations

of complex real phenomena. They are intended to quantify certain relationships be-

tween the variables relevant to the problem under study. They should not be ex-

pected to reproduce reality perfectly, especially when the reality being modeled is

2It should also be noted that the appropriate level of aggregation might be different in a model’s

calibration and application phases. In other words, it is possible, and even advisable in some cases,

to use disaggregate data for model specification and calibration, as shown in Chap. 8, while using

aggregate (e.g., average) values of zone, user, and transportation system characteristics in model

applications. This corresponds to the application of the aggregation techniques “by representative

user” or “by category” described in Sect. 3.7.

3Differences between behavioral and descriptive models are becoming less important. Indeed,

functional forms such as logit and hierarchical logit, which can be derived from random utility

theory, are increasingly being used to predict aspects of demand that have no direct behavioral

interpretation in terms of a decision-maker’s choice. From this point of view, it would be more

appropriate to classify the models based on their functional form, distinguishing between models

that can or cannot be derived from random utility theory.
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largely dependent on individual behavior, as is the case with transportation demand.

Furthermore, as shown later, different models with different levels of accuracy and

complexity can describe the same situation. However, more sophisticated models

require more resources (data, specification and calibration effort, computing time,

etc.), which must be justified by the application requirements.

The sections in this chapter present the characteristics of different types of trans-

portation demand models, with an emphasis on passenger travel demand. Sec-

tion 4.2 presents the partial share systems of trip-demand models. Individual sub-

models, including trip production (or frequency), distribution, mode choice, and

path choice, as well as an example of an overall model system for interurban travel,

are presented in Sect. 4.3. Sections 4.4 and 4.5 present trip-chaining and activity-

based demand models, respectively. Section 4.6 discusses the interpretation of re-

sults obtained with demand models and the application of these models for different

purposes. Finally, Sect. 4.7 describes some models used to predict freight trans-

portation demand.

4.2 Trip-based Demand Model Systems

As previously stated, trip-based demand models4 predict the average number of trips

that have given characteristics and that are undertaken in a specific reference period

(average trip flows). In formal terms, this can be expressed as follows.

d[K1,K2, . . .] = d(SE,T ;β)

where the average travel-demand flow between two zones having characteristics

K1,K2, . . . ,Kn is expressed as a function of a vector SE of socioeconomic vari-

ables related to the activity system and/or the decision-makers; and of a vector T

of level-of-service attributes of the transportation supply system, typically obtained

from the models described in Chap. 2.5 Demand functions also involve a vector β

of coefficients or parameters.6

Trip characteristics that are often considered relevant in trip-based demand mod-

eling include:

i The user’s class (category of socioeconomic characteristics)

o, d The zones of trip origin and destination

4Travel-demand models typically result from the integration of a number of submodels. In this

respect it would be more appropriate to speak of a system of demand models. The definition of de-

mand model used here corresponds to the microeconomic concept of an aggregate demand function

for transportation services.

5Note that the vector T may include individual level of service or performance attributes as well

as generalized costs, which are combinations of level-of-service attributes. The coefficients used

to combine individual attributes into a generalized cost are among the model parameters.

6All the models presented in this chapter depend on coefficients or parameters that, for the time

being, are assumed known. Model calibration, that is, the estimation of model parameter values, is

discussed in detail in Chap. 8.
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s The trip purpose, or more properly the pair of purposes7

h The time period, that is, the time band in which trips are undertaken

m The mode, or sequence of modes, used during the trip

k The trip path, that is, the series of links connecting centroids o and d

over the network and representing the transportation service provided by

mode(s) m

Therefore, with demand flow denoted by d i
od [s, h,m, k], the demand model can

be formally expressed as

d i
od [s, h,m, k] = d(SE,T ) (4.2.1)

Although different travel choices are generally dependent on each other, it is

usually preferable, for reasons of analytical and statistical convenience,8 to “de-

compose” the global demand function into a product of submodels, each of which

relates to one or more choice dimensions.

The sequence most often used is the following.

d i
od [s, h,m, k] = d i

o · [sh](SE,T ).pi[d/osh](SE,T ) · pi[m/oshd](SE,T )

· pi[k/oshdm](SE,T ) (4.2.2)

where

d i
o · [sh](SE,T ) Is the trip production or frequency model, which gives the number

of users in class i who, from origin zone o, undertake a trip for purpose s

in time period h

pi[d/osh](SE,T ) Is the distribution model, which gives the fraction of users in

class i who, undertaking a trip from origin zone o for purpose s in period

h, travel to destination zone d

pi[m/oshd](SE,T ) Is the mode choice or mode split model, which gives the frac-

tion of users in class i who, traveling between zones o and d for purpose s

in period h, use mode m

pi[k/oshdm](SE,T ) Is the path choice model, which gives the fraction of users

in class i who, traveling between zones o and d for purpose s in period h

by mode m, use path k

7A trip is sometimes described as having a single purpose (e.g., work, study, etc.). This practice

may cause confusion. It would be more precise to define the purpose s of a trip by a pair of pur-

poses, that is, the activities carried out at the origin and at the destination. For example, work trips

should be differentiated into home-to-work (H-W) and work-to-work (W-W) purposes, which are

different. Trips for which the purpose home appears in the origin or destination are often indicated

as home-based, and others as nonhome-based. The characterization of a trip by a pair of purposes

also allows a more precise identification of the most relevant activity system variables.

8The use of a single model would require the definition of a choice set whose elementary alterna-

tives are all feasible combinations of destinations, modes, and paths. This would lead to practical

and econometric difficulties.
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Superscript i designates a class of decision-makers having the same attributes,

parameters, and model functional form. The system of models described above pre-

dicts the average trip-demand flow with its relevant characteristics by initially esti-

mating the total number of trips (trip productions) from each zone o in the reference

period do[sh] and then splitting these trips between the possible destinations, modes,

and paths. For this reason, the model is known as a partial share model (or system

of models). Note that the first two models predict the demand’s spatial and tem-

poral characteristics, and therefore provide the elements of the origin–destination

matrix.

The sequence of submodels in (4.2.2) reflects an assumption about the order

in which decisions involving different choice dimensions are made, and therefore

about how these decisions influence each other. The specification used in (4.2.2),

corresponding to the model structure shown in Fig. 4.2, implies, for example, that

destination choice depends only on trip production or frequency choice, whereas

mode choice depends on destination and frequency choices. In other words, the

decision-maker first chooses the trip destination from among all the available desti-

nation zones, and then the travel mode from among all the modes available for the

chosen od pair.

Different submodel sequences are clearly possible; for example, some specifica-

tions proposed in the literature reverse the order of destination and mode choice in

the sequence (4.2.2). Any sequence should be carefully reviewed in the calibration

phase (see Chap. 8) and compared with reasonable alternatives, in order to deter-

mine the best.

Importantly, the user explicitly chooses each trip’s mode and path, but other travel

dimensions such as trip frequency and destination might depend on higher-level user

choices such as residence and work locations (e.g., for regularly made trips such as

home–work and home–study9). In these cases, the sequence (4.2.2) can be applied

first estimating trip frequency and destination using descriptive models, and then

mode and path choice using behavioral models.

As clarified later, upper-level choices (e.g., destination) are actually made taking

into account the alternatives available at lower levels, such as the modes and paths

available to reach the various possible destinations (see also Fig. 4.2).

Equation (4.2.2), because of its structure, is known as the four-step model.

However, a greater or smaller number of levels can be used, and the fractions

included in the models may differ from those shown. For example, it is possi-

ble to specify a six-level urban demand model that explicitly includes a trip pro-

duction model d i
o.[s] to represent the average number of class i users who travel

from zone o over the entire day; a choice model for the time period h in which

to make a trip of purpose s,pi[h/osx](SE,T ); and a model of parking location

(dp) and type (tp) choice for auto trips (a) between origin o and final destination

d,pi[dptp/oshda](SE,T ):

9If period h is the whole day, it is also possible for these purposes to choose the number of trips to

make (i.e., to return home for lunch or not).
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Fig. 4.2 Four-step trip-based travel-demand model system

d i
od [s, h, a, tp, dp, k] = d i

o · [s](SE,T ) · pi[h/os](SE,T ) · pi[d/osh](SE,T )

· pi[a/oshd](SE,T ) · pi[tpdp/oshda](SE,T )

· pi[k/oshdatpdp](SE,T )

The model structures described here represent trip-based demand over all choice

dimensions. This is common practice if the project being considered and/or the eval-

uation time horizon are such that existing values of performance and/or activity

variables are likely to be modified significantly. In some short-term applications, a

“reduced” version of the model can be used, for example, taking as given existing

origin–destination matrices by purpose and user class d i
od [sh], and predicting only

the mode and path choice decisions:

d i
od [s, h,m,k] = d i

od [sh] · pi[m/oshd](SE,T ) · pi[k/oshdm](SE,T )

Estimates of existing O-D matrices d i
od [sh] can be obtained using a variety meth-

ods, as shown in detail in Chap. 8.
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4.2.1 Random Utility Models for Trip Demand

Regardless of the particular functional form used, each partial share in the previous

structure can be modeled following a descriptive or a behavioral approach.

However, it is worthwhile to derive partial share model systems that are consis-

tent with the general results of random utility theory presented in Chap. 3, where

random utility models were introduced as a tool for representing choices from

among a discrete set of alternatives (1, . . . , j, . . . ,m). Recall that, in the preced-

ing section, a trip was viewed as the result of choices over multiple dimensions. In

the most general case, therefore, random utility models for travel demand consider

alternatives that represent sequences of choices in all the trip dimensions consid-

ered. In a four-step model, for example, an alternative might consist of making a

particular number x of trips, for purpose s, in time period h, in order to reach desti-

nation d , by mode m, and path k. In this case the symbol j , which denoted a generic

alternative in Chap. 3, is equivalent to a sequence [x, d,m, k].

This section proposes two methods for defining a partial share system of models

consistent with the hypotheses underlying random utility models. The first method

factors a random utility model over the whole sequence of travel choice dimensions

into a product of multiple random utility models, each having the same functional

form as the original model but involving only a subset of the choice dimensions. The

results presented in Chap. 3 on the multinomial logit and hierarchical logit models

can be applied for this approach: such models, as was seen, are particularly suited

to this purpose.

By contrast, the second method directly specifies the system of partial shares

using random utility models, and then imposes conditions that ensure a consistent

behavioral interpretation.

The factoring procedure is first described for a situation involving choice in only

two dimensions, destination d and mode m; the more general case is considered

subsequently. To simplify notation, the user class i, origin zone o, trip purpose s,

and time period h are taken as understood here and in the rest of this section. Let

us assume that the systematic utility associated with a particular choice alternative

pair dm, Vdm,10 may be broken down into a part Vd that depends on destination

d , and a part Vm/d that, given the destination choice d , depends on mode m. This

assumption is consistent with the hypothesis stated above that choice dimensions

are considered in sequence: destination choice is affected by mode choice, but the

latter, for a given destination, depends only on the attributes of alternative modes

and not on those of the destination. The term Vd could be a function of the attributes

of the destination, regardless of the mode used to reach it. For shopping trips, for

example, attributes might include the number of shops or area of display space; an

elementary specification might be:

Vd = β1SHOPSd

10As noted, variables (systematic utility, EMPU, random residuals, etc.) are understood to depend

on the origin zone o, trip purpose s, and time period h; thus notations such as Vdm,Vm/d , and

p[dm] are used instead of Vdm/osh,Vm/oshd , and p[dm/osh], respectively.



4.2 Trip-based Demand Model Systems 177

The term Vm/d is instead a function of attributes of both the mode and the desti-

nation, such as travel time and the monetary cost incurred in reaching d by mode m

from o:

Vm/d = β2Tm/d + β3Cm/d

In conclusion, the perceived utility of alternative dm may be expressed:

Udm = Vd + Vm/d + εdm (4.2.3)

Assuming that the residuals εdm are i.i.d. Gumbel with parameter θ , the previ-

ous chapter showed that the probability of choosing alternative dm is given by the

multinomial logit model:

p[dm] =
exp[(Vd + Vm/d)/θ ]

∑

d ′

∑

m′/d ′ exp[(Vd ′ + Vm′/d ′)/θ ]
(4.2.4)

where d ′ and m′ are generic indexes and the sums are extended to all destinations

and to all modes available for each destination for the user class in question.

Factoring (4.2.4) requires finding expressions for the probability of the mode

choice given the destination p[m/d], and of the destination choice p[d].

The probability p[m/d] may be obtained directly by applying the definition of

the random utility model to (4.2.3):

p[m/d] = Pr[Vd + Vm/d + εdm > Vd + Vm′/d + εdm′ ]

= Pr[Vm/d + εdm > Vm′/d + εdm′ ] ∀m′ �= m

and from the assumptions made about the distribution of residuals, we again obtain

the multinomial logit model:

p[m/d] =
exp[Vm/d/θ ]

∑

m′ exp[Vm′/d/θ ]
(4.2.5)

The probability p[d] of choosing destination d regardless of mode may be de-

rived from the stability properties of Gumbel variables with respect to maximization.

Indeed, if U∗
d stands for the utility associated with destination d by the most suitable

mode, then:

U∗
d = Vd + max

m′
(Vm′/d + εdm′) (4.2.6)

and, by the stability property, U∗
d is again Gumbel distributed with expected value

E
[

U∗
d

]

= E
[

Vd + max
m′

(Vm′/d + εdm′)
]

= Vd + θ ln
∑

m′

exp[Vdm′/θ ]

= Vd + θYd (4.2.7)
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where θ is, once again, the parameter associated with random variable U∗
d and Yd is

the logsum variable introduced in Sect. 3.3.1. This allows (4.2.6) to be expressed as

U∗
d = Vd + θYd + ε∗

d (4.2.8)

where ε∗
d is still a Gumbel random variable G(0, θ) with zero mean and parameter θ .

Using the random utility model definition (3.3.6), the probability of choosing

destination d may be calculated by replacing Uj with U∗
d , and a logit model is once

again obtained:

p[d] =
exp[(Vd/θ) + Yd ]

∑

d ′ exp[(Vd ′/θ) + Yd ′ ]
(4.2.9)

Finally, it is easy to verify that the product of p[m/d] and p[d], expressed re-

spectively by (4.2.5) and (4.2.9), again gives p[dm], expressed by (4.2.4).

A different partial share model may be obtained by using a hierarchical logit

model. In this case, the elementary alternatives (dm) are grouped by destination:

group Id thus contains pairs (d,m′) for all the available mode alternatives m′ that

serve destination d . In this case (see Sect. 3.3.2), it is assumed that the random

residual εdm follows a Gumbel distribution with parameter θo and that can be broken

down into the sum of two random variables ηd and τm/d :

Udm = Vdm + εdm = Vd + Vm/d + ηd + τm/d (4.2.10)

As shown in Sect. 3.3.2, the decomposition of εdm into the two components intro-

duces a covariance between the residuals of alternatives dm and dm′:

Cov(εdm, εdm′) = Var(ηd) = (π2/6).
(

θ2
o − θ2

d

)

(4.2.11)

where θo and θd are the parameters of Gumbel distributions associated, respectively,

with the root node and with all the intermediate decision nodes.

The behavioral interpretation of (4.2.11) is that the decision-maker perceives in a

similar fashion the destination/mode alternatives that have the same destination but

not those that have the same mode. Figure 4.3 shows schematically the two utility

function structures corresponding to (4.2.3) and (4.2.10).

By applying the results of Sect. 3.3.2, the probability of choosing mode m con-

ditional on destination d is again provided by a multinomial logit model, the ex-

pression for which may be obtained by substituting j = m,k = d , and θ = θd in

expression (3.3.12):

p[m/d] =
exp[Vm/d/θd ]

∑

m′ exp[Vm′/d/θd ]
(4.2.12)

which is the same as (4.2.5) except for parameter θ .

By the same token, the destination choice probability may be obtained by

(3.3.17):

p[d] =
exp[Vd/θo + δYd ]

∑

d ′ exp[Vd ′/θo + δYd ′ ]
(4.2.13)
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Fig. 4.3 Example of alternative utility function structures corresponding to a logit and hierarchical

logit specification of a model for two destinations and two modes

where

δ = θd/θo (4.2.14)

The probability of choosing pair dm may thus be obtained from (4.2.12) and

(4.2.13) as

p[dm] = p[d] · p[m/d] =
exp[Vd/θo + δYd ]

∑

d ′ exp[Vd ′/θo + δYd ′ ]

·
exp[Vm/d/θd ]

∑

m′ exp[Vm′/d/θd ]
(4.2.15)

Note that the difference between the multinomial logit (4.2.4) and hierarchical

logit models (4.2.15) lies in the value of the parameter δ defined in (4.2.14). As

stated in Sect. 3.3.2, this parameter may take values between 0 and 1; for δ = 1 the

hierarchical logit model coincides with the logit.

Extension of the results to choices involving more than two dimensions is im-

mediate. For example, the factored multinomial logit model for the sequence of

choices [d,m,k] becomes:

p[dmk] =
exp[Vd/θ + Yd ]

∑

d ′ exp[Vd ′/θ + Yd ′ ]
·

exp[Vm/d/θ + Ym/d ]
∑

m′ exp[Vm′/d/θ + Ym′/d ]

·
exp[Vk/dm/θ ]

∑

k′ exp[Vk′/dm/θ ]
(4.2.16)

where the logsum variables are defined as

Yd = ln
∑

m′

exp[Vm′/d/θ + Ym′/d ] = ln
∑

m′

∑

k′

exp
[

(Vm′/d + Vk′/dm′)/θ
]

Ym/d = ln
∑

k′

exp[Vk′/dm/θ ] (4.2.17)
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The hierarchical logit model for these three choice dimensions takes the form:

p[dmk] =
exp[Vd/θd + δdYd ]

∑

d ′ exp[Vd ′/θd + δdYd ′ ]
·

exp[Vm/d/θm + δmYm/d ]
∑

m′ exp[Vm′/d/θm + δmYm′/d ]

·
exp[Vk/dm/θk]

∑

k′ exp[Vk′/dm/θk]
(4.2.18)

where

δd =
θm

θd

; δm =
θk

θm

with

{

θd > θm > θk

δd , δm < 1

and the inclusive variables Y have the expressions:

Yd = ln
∑

m′

exp[Vm′/d/θm + δmYm′/d ] (4.2.19)

Ym/d = ln
∑

k′

exp[Vk′/dm/θk] (4.2.20)

It is possible to define a form of factoring that is “weaker” than the one discussed

here for logit and hierarchical logit models. In this second approach, the models

that express the different steps of a partial step structure such as (4.2.2) are ran-

dom utility models having different functional forms, such as logit for mode choice

and probit for path choice. Therefore, the models corresponding to the sequence

of partial choices cannot be obtained by factoring a single model that represents

the choice of a compound alternative [d,m,k]. In this case, to maintain an inter-

pretation consistent with the behavioral assumptions of random utility models, it is

necessary for the model of each choice dimension to include an Expected Maximum

Perceived Utility (EMPU) variable that reflects choice dimensions that are lower in

the decision hierarchy.

For example, if in (4.2.10) we suppose that τm/d is distributed jointly as multi-

variate normal, the probability of choosing mode m in (4.2.12) will be given by a

probit model, and the utility of destination choice is:

U∗
d = Vd + max

m′
(Vm′/d + τm′/d) + ηd = U∗

d = Vd + sd(Vm′/d) + τ ∗
d + ηd

where sd is the EMPU that reflects mode choice. Moreover, if we assume that the

sum of random variables τ ∗
d and ηd is a Gumbel random variable G(0, θ) with zero

mean and parameter θ , the destination choice model is a multinomial logit:

p[d] =
exp[(Vd + sd(Vm′/d)/θ)]

∑

d ′ exp[(Vd ′ + sd ′(Vm′/d ′)/θ)]

This approach may be extended to all choice dimensions by deriving partial share

models analogous to those given by (4.2.16) and (4.2.18)

p[d,m,k] = p[d](V d , sd) · p[m/d](V m/d , sm/d) · p[k/dm](V k/dm)
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where the EMPU are expressed as:

sm/d = E
[

max
k′

(Vk′/dm + τk′/dm)
]

sd = E
[

max
m′

(Vm′/d + sm′/d + τm′/d)
]

and the models that represent the various steps may have any functional form pro-

vided that they can be obtained from the assumptions of random utility models.

4.3 Examples of Trip-based Demand Models

This section describes some of the models often applied within a four-step structure,

and also introduces some possible extensions such as inclusion of parking type and

location choice within mode choice models. An example of an entire model system

for interurban travel demand is presented at the end of the section.

4.3.1 Models of Spatial and Temporal Characteristics

4.3.1.1 Trip Production or Trip Frequency Models

A trip production or trip frequency model estimates the average number of trips

d i
o.[sh] undertaken in period h for purpose s by a user of class i with origin in

zone o; this is called the trip rate mi[osh]. The total production of trips by users of

class i for purpose s in period h by zone o can therefore be expressed as follows.

d i
o[sh] = ni[o]mi[osh] (4.3.1)

where ni[o] is the number of users in zone o belonging to class i.

As explained above, the trip production models used in applications fall into

two main categories: descriptive models and behavioral models (or more properly,

random utility models).

Descriptive Models As discussed in Sect. 4.2, descriptive models are generally

used to represent regularly made trips, such as home-based work and home-based

school trips.

Classification tables are the simplest descriptive trip production models. For each

user class i, assumed to be homogeneous with respect to a given trip purpose, the

average number of trips mi[osh] for purpose s in period h is directly estimated, most

commonly from travel survey data. Figure 4.4 is an example of a classification table

showing the daily trip rates for home-based work, school, and other trip purposes,

obtained as the average of the trip rates estimated in the mid-1980s in five medium-

sized Italian towns. Note the different definitions of user class adopted for different
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trip purposes: workers in the various economic sectors for home-based work trips,

students of different levels for home-based school trips, and the family for home-

based other purpose trips. The main limitation of classification table models is that

trip frequencies and demand levels are not expressed as functions of socioeconomic

variables other than those used to define the classes. In addition, limitations in data

availability and the difficulty of forecasting the future number of users for detailed

user classes generally keep the number of classes relatively small, even when a more

detailed breakdown might be appropriate.

Trip rate regression models are more sophisticated. These models express the trip

rate mi[osh] for a user of class i and for purpose s as a function, typically linear, of

variables corresponding to the user class and the zone of origin:

mi[osh] =
∑

j

βjX
i
jo (4.3.2)

The attributes Xjo are usually the mean values of socioeconomic variables such

as income, number of cars owned, and so on, but they may also include level-of-

service attributes such as zonal accessibility, defined by the inclusive variable Yx in

(4.3.5) or by some other variable. The name trip rate regression is derived from the

statistical model, linear regression, which is used to specify the variables Xj and to

estimate the coefficients βj .

In early applications, model (4.3.2) was specified at the level of traffic zones.

Thus, its explanatory variables represented attributes of an entire zone (e.g., popu-

lation, employment, number of shops, etc.) More recently, these models have been

applied at a more disaggregate level, typically households and individuals. The ap-

plication of model (4.3.2) at a disaggregate level, however, can lead to problems

because some combinations of variable values and coefficients may result in nega-

tive trip rates. Hence it is better to use logit or other random utility specifications for

disaggregate trip rate models.

Random Utility Models Behavioral models are generally applied to represent

trips that are not regularly made. In a random utility framework, the trip rate mi[osh]

can be expressed as

mi[osh] =
∑

x

xpi[x/osh](SE,T ) (4.3.3)

where pi[x/osh](SE,T ) represents the probability that a user in zone o undertakes

x trips for purpose s in period h. Alternatively, the trip rate mi[osh] can be obtained

as the product of the outputs of two models: a trip production model that covers

a longer time period, for example, the whole day g, and a departure time choice

model:

mi[osh] =
∑

x

xpi[x/osg](SE,T ) ·
∑

yh

yhp
i[yh/osx](SE,T )
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Purpose Type of user Trip rate

H-W Worker in the Industrial sector 1.024

Worker in the Service sector 1.084

Worker in the Private Services sector 1.245

Worker in the Public Services sector 0.931

H-Sc Primary school student 0.84

Lower secondary school student 0.87

Upper secondary school student 0.86

Vocational secondary school student 0.88

H-Sndg Family 0.25

H-Sdg Family 0.11

H-Ps Family 0.16

H-Sr Family 0.27

H-Acc Family 0.11

H-oth Family 0.13

Trip purpose code Trip purpose

H-W Home–work

H-Sc Home–school

H-Sndg Shopping for nondurable goods

H-Sdg Shopping for durable goods

H-Ps Personal services

H-Sr Social–recreational

H-Acc Accompanying others

H-Oth Other purposes

Fig. 4.4 Daily urban trip production rates

where yh represents the number of trips undertaken in period h out of all trips x

made over the whole period g[yh = 0,1, . . . , x].

Specification of the full model requires definition of the alternatives, of the choice

set and of the model that predicts choices from this set.

Definition of Choice Alternatives As stated, the choice alternatives in this case

consist of different numbers of trips undertaken in period h.

Definition of Choice Set The choice set depends on the reference period. If h is

a short period (i.e., the peak hour), so that the probability of undertaking more than

one trip can be ignored, the choice set generally consists of two alternatives: one

trip and no trip (x = 0,1). For the sake of simplicity, the choice set is intentionally

bounded (x = 0,1,2 or more) for larger periods.

Functional Form The binary and multinomial logit are the random utility models

most frequently used to predict the trip frequency choice pi[x/osh] in (4.3.3). If

h is so short that the probability of making more than one trip during the period is

negligible, a binary logit model can be applied to the alternatives of undertaking the

trip or not. Otherwise, a multinomial logit model gives the probability pi[x/osh] of
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undertaking x trips, with x equal to 0,1,2, . . . , n or more trips:

pi[x/osh] =
exp(V i

x/θo)
∑

j=0,...,n exp(V i
j /θo)

(4.3.4)

Systematic utility functions include variables that represent the need or the pos-

sibility of carrying out activities connected with the purpose being modeled. These

variables may relate either to the household or the individual. Household-level vari-

ables include, for example, total income and household size, whereas individual-

level variables include occupational status, gender, family role, age, and so on. Other

variables often used in the systematic utility of trip frequency models relate to the

origin area, and especially its accessibility with respect to the possible destinations

for the trip purpose. Accessibility can be expressed by the EMPU corresponding to

the destination choice model, for example, the logsum Yx given by the following

expression for a logit distribution model,

Yx = ln
∑

d ′

exp[Vd ′/θd + δdYd ′ ] (4.3.5)

Figure 4.5 gives an example of a trip frequency model for the morning peak pe-

riod in an urban area. A model of this type should be considered a method for quan-

titative analysis of the determinants of urban mobility11 rather than an operational

tool. Applying it to predict travel demand in an entire urban area would require a

considerable amount of information. However, the same is not true of all behavioral

models: operational trip frequency models are sometimes used to develop forecasts

for large study areas; the intercity trip frequency models described in Sect. 4.3.4 are

examples of this type of model.

Clearly, random utility models (4.3.3), or family or individual regression models

(4.3.2) require more information12 than the trip rate model (4.3.1). The latter, how-

ever, has the shortcoming of not being sensitive to variables other than those that

define the user classes.

11Analysis of the model coefficients may suggest factors that influence urban trip-making for pur-

poses other than commuting and study. For example, the results shown in Fig. 4.5 suggest that the

frequency of activities (and trips) increases with income level. Greater accessibility of the resi-

dence zone with respect to the location of commercial activities increases shopping trip frequency,

but is not significant for business and personal service trips. There is a greater tendency for women

and unemployed persons to undertake trips; young people tend to have less mobility, in the time

period considered, especially for shopping; there is a substitution effect with other members of the

family for shopping (positive coefficient for the TOF variable), whereas there is a complementarity

effect for other purposes (negative TOF coefficient). Carrying out other activities (coefficient of

the TOP variable) reduces the time available to engage in the activity (trip purpose) considered and

so on. Note, also, that the accessibility coefficient, in accordance with the behavioral interpretation

of the model, should turn out to be within the interval (0,1).

12The sample enumeration aggregation technique, described in Sect. 3.7, should therefore be used

for more sophisticated model specifications.
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VTRIP = β1CA + β2WRK + β3AGE + β4INL + β5WMN + β6ACC

VNOTRIP = β7TOP + β8TOF + β9NT

Type of variable Name of variable

Socioeconomic Car availability CA

Working status WRK

Age AGE

Income level INL

Woman WMN

Location Accessibility ACC

Time availability No. of other trips made by the person for other purposes TOP

Individual–family

relationships

No. of trips of made by other family members for the same purpose TOF

Alternative specific NOTRIP NT

attributes (ASA)

CA Dummy variable: 0 = car not available; 1 car available

WRK Dummy variable: 0 = nonworker; 1 = worker

AGE Dummy variable: 0 = ≤35 years; 1 = ≥35

INL Income level in 6 points scale: 0 = low income; 5 = high income

WMN Dummy variable: 0 = man, 1 = woman

No trip Trip

TOP TOF NT CA WRK AGE INL WMN ACC

Shopping 0.55 0.61 1.35 0.24 −2.69 −2.53 0.08 0.60 0.11

t 5.4 3.7 5.4 1.2 −9.7 −8.0 1.5 3.8 1.7

Other purposes 0.22 −1.18 2.66 – −0.34 −0.34 0.20 0.53 –

t 2.2 −10.9 15.3 −2.0 −2.0 3.5 3.3

Goodness-of-fit statistics

ρ2 % right LR

Shopping 0.431 0.847 1904

Other purposes 0.689 0.933 3041

Fig. 4.5 Trip frequency model for the morning peak period

4.3.1.2 Distribution Models

Distribution models express the percentage (probability) pi[d/osh] of trips made

by users of class i going to destination d , given the origin zone o, purpose s, and

time period h. For simplicity of notation, the user class index is omitted here.

Distribution models can be divided into descriptive and behavioral models.

Descriptive Models One of the best-known descriptive distribution models is the

gravity model, whose name derives from its resemblance to Newton’s law of gravity.

In its typical formulation, this model provides the actual demand flow dod [sh] rather

than the destination shares p[d/osh] for each od pair:

dod [sh] = αdo · [sh]d · d [sh]f (Cod) (4.3.6a)
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where α is a constant, do · [sh] and d · d [sh] represent, respectively, the total trip

production from o and total trip attraction to d for purpose s in period h,13 Cod is a

variable related to the generalized transportation cost, and f (Cod) is an impedance

(sometimes called friction) function that decreases with Cod . Typical expressions

for this function are:

f (Cod) = exp(−βCod) (4.3.7a)

f (Cod) = C
−β
od (4.3.7b)

f (Cod) = C
−β
od exp(−βCod) (4.3.7c)

In order to satisfy (1.3.1) and (1.3.2) of Sect. 1.3.3, the constant α is usually

replaced by two factors that depend on the origin and destination zones (a doubly

constrained gravity model):

dod [sh] = AoBddo · [sh]d · d [sh]f (Cod) (4.3.6b)

where

Ao = 1/
∑

d ′

Bd ′d.d ′f (Cod ′) Bd = 1/
∑

o′

Ao′do′ .f (Co′d)

The two equations above are mutually dependent and therefore constants A0 and

B0 are unknown quantities of a nonlinear equation system that can be solved by an

iterative procedure.

When only one of these two conditions is satisfied, that is, (1.3.1) (a singly con-

strained gravity model14) in (4.3.6b), then Bd = 1 and

dod [sh] =
do.[sh] · d.d [sh]f (Cod)
∑

d ′ d.d ′ [sh]f (Cod ′)
= do.[sh] · p[d/osh] (4.3.6c)

13See Sect. 1.3.3. Trip attractions d · d [sh] can be computed as a function of the zonal character-

istics using models similar to those used to calculate trip productions do · [sh]: for example, a trip

attraction classification table or linear regression model.

14Gravity models originally derived their name from their similarity with Newton’s law of uni-

versal gravitation. Singly and doubly constrained gravity models were subsequently derived from

entropy maximization principles. In this approach, the entropy measure of a given trip distribution

is expressed as a function of the number of possible microstates (i.e., individual trips between each

origin–destination pair) that satisfy the distribution. The entropy function is then maximized sub-

ject to constraints on the total number of trips produced by (and in some models attracted to) each

zone, and to the total cost (distance) of transportation. Distribution models that maximize this en-

tropy are referred to as singly (and doubly) constrained gravity models. Although these models are

still commonly used, they do not provide the flexibility of random utility models (whether these

are interpreted behaviorally or not), and also do not allow for the introduction of attributes that

account for the perceived attractiveness of different destinations. It should be pointed out that more

sophisticated destination choice models are still relatively unstudied. Indeed, because of the pos-

sibility of spatial autocorrelation, the multinomial logit model’s assumption of i.i.d. disturbances

is questionable for traffic zones near each other. In this case cross-nested logit or probit models

should be used. Models should also take account of travelers’ different degrees of familiarity with

potential destinations through choice set modeling procedures.
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with

p[d/osh] =
d.d [sh]f (Cod)

∑

d ′ d.d ′[sh]f (Cod ′)
(4.3.8)

It is easy to verify that model (4.3.8) is invariant with respect to the aggregation

or disaggregation of traffic zones, given equal “distance” from the origin. In other

words, with a specification such as (4.3.8) the probability p[d] of choosing a zone

d that is aggregated from two smaller zones d1 and d2 is equal to the sum of the

probabilities p[d1] and p[d2]. Indeed, if the cost is constant:

Cod = Cod1
= Cod2

⇒ f (Cod) = f (Cod1
) = f (Cod2

)

then because d.d = d.d1 + d.d2 it follows that

p[d] =
d.df (Cod)

d.df (Cod) +
∑

d ′ �=d d.d ′f (Cod ′)

=
d.d1

f (Cod1
)

d.d1
f (Cod1

) + d.d2
f (Cod2

) +
∑

d ′ �=d d.d ′f (Cod ′)

+
d.d2

f (Cod2
)

d.d1
f (Cod1

) + d.d2
f (Cod2

) +
∑

d ′ �=d d.d ′f (Cod ′)

= p[d1] + p[d2]

The property of invariance with respect to zonal aggregation is very useful in

application because it provides results that do not depend on the particular level of

spatial disaggregation that is used.

Random Utility Models Random utility distribution models represent the proba-

bility pi[d/osh] that a user of class i chooses destination d , given the origin zone

o, purpose s, and time period h.

Definition of Choice Alternatives It is generally assumed that the zones in the

study area zone system represent elementary destination choice alternatives. In re-

ality, the destination where one chooses to carry out an activity is not a traffic zone

but rather a specific location or locations (i.e., an office or a shopping center) within

a traffic zone, and it is these specific locations that are the elementary destination

alternatives. Therefore, a traffic zone should be modeled as a compound alternative

that results from the aggregation of its elementary destination alternatives.

Different model functional forms can be derived depending on whether the ele-

mentary alternatives are taken to be the traffic zone or the specific destination loca-

tions; therefore the two cases are discussed separately.
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(1) Alternative: Traffic Zone

Definition of Choice Set In this case, the choice set generally consists of all the

traffic zones in the study area. This hypothesis is unrealistic because it leads to

excessively large choice sets. It is easy to verify that in reality the user knows and

considers only a small set of alternatives when choosing destinations. Therefore,

the user’s formation of a choice set should be modeled using one of the approaches

presented in Sect. 3.5.

Functional Form Multinomial logit models are commonly used for destination

choice modeling:

p[d/osh](SE,T ) =
exp(Vd/θd)

∑

d ′ exp(Vd ′/θd)
(4.3.9)

where Vd/osh = E[Ud/osh] is the systematic utility of destination zone d and θd

represents the Gumbel distribution parameter of Ud/osh.

In general, the attributes of the systematic utility Vd/osh can be grouped into

attributes of the activity system in zone d , or attractiveness attributes; and attributes

that quantify the accessibility or cost of travel between zones o and d .

Attractiveness attributes are variables that measure the attractiveness of a zone as

a destination; they might be a function of the number of employees (i.e., the number

of workers of a given category) for home–work trips, the number of students of a

certain grade school for home–study trips, the number of retail employees for home–

shopping trips, and so on. Attractiveness attributes can also be alternative specific

attributes, for example, a dummy variable equal to one for zones in the urban center

zone and zero for the others, reflecting the greater symbolic value of the center for

social and cultural reasons.

Cost attributes, as for nonbehavioral models, are variables expressing the gener-

alized cost of a trip from o to d ; therefore, their utility function coefficients βk are

negative. A wide variety of cost attributes can be considered, from the straight-line

distance between zone centroids to generalized cost variables that take account of

different contributions (walk time, in vehicle time, monetary cost, and so on) for

each of the modes available between o and d .

From (4.3.9) it follows that

p[d/osh] =
exp(β1Ad − β2Cod)

∑

d ′ exp(β1Ad ′ − β2Cod ′)
(4.3.10)

where Ad is the attractiveness variable of zone d and Cod the cost variable for trav-

eling from origin o to destination d . In applications a logarithmic transformation

of the attractiveness attribute (A′
d = ln(Ad)) is usually adopted, hence (4.3.10) be-

comes:

p[d/osh] =
A

′β1

d exp(−β2Cod)
∑

d ′ A
′β1

d ′ exp(−β2Cod ′)
(4.3.11)
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Purpose Ad β1 β2

H-W Firm employees 1.10 0.70

Service employees 0.93 0.70

Private service employees 0.93 0.83

Public service employees 0.93 0.58

H-Sc Elementary school students 0.90 2.52

Primary school students 0.95 2.24

Secondary school students 1.00 0.35

H-Ps Service employees 0.91 0.78

H-Acc Primary and secondary school students 0.20 1.35

H-Sndg Trade employees 1.61 2.54

Fig. 4.6 Coefficients of a nonbehavioral urban trip distribution model

By taking β1 equal to one in (4.3.11) there results a behavioral distribution model

that is formally analogous to the gravity model (4.3.8), in which the sum of the trips

attracted by a zone is replaced by the zone attractiveness and the cost function is of

a negative exponential type (4.3.7a). Consequently, model (4.3.11) also satisfies the

property of invariance with respect to zonal aggregation if the attractiveness variable

satisfies Ad = Ad1 + Ad2.

In this case, the difference between descriptive and behavioral models is merely

a matter of interpretation (see footnote 3). For instance, model (4.3.11) can be used

to represent the probability of shopping in destination zone d as a function of its

utility, which is assumed to increase with zonal attractiveness and to decrease with

trip cost; or alternatively it can be used to predict the fraction of individuals who

travel to work in zone d , where this fraction tends to be greater for zones with a

larger number of employees and which are easier to reach from the origin zone.

This tendency exists because users tend to make mobility choices (choice of home

and work location) so as to minimize the cost of home–work trips.

If in model (4.3.11) the logarithmic transformation of the cost attribute is also

applied (Cod = ln(Cod)) it follows that

p[d/osh] =
A′

d
β1C′

od
−β2

∑

d ′ A′
d ′

β1C′
od ′

−β2
(4.3.12)

which is analogous to a gravity model (4.3.8) with cost function (4.3.7b).

As an example, Fig. 4.6 presents coefficients β1 and β2 of model (4.3.12) for

selected user classes and for daily home–work, home–study, and home–other trips

(personal services, accompanying others, and shopping for nondurable goods). The

cost variable is the straight-line distance between zone centroids. The coefficients

presented are typical values for average-size representative cities.

(2) Alternative: Elementary Destination

Definition of Choice Set In this case the choice dimension is represented by the

choice of a specific destination location within a traffic zone. Because the real inter-
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est of the analyst is to reproduce the distribution of trips between traffic zones and

not between elementary destinations, a procedure to aggregate elementary destina-

tions into traffic zones is needed, in order to obtain a choice set analogous to the

previous case.

Functional Form As previously noted, traffic zone d is a compound alternative

composed of the aggregation of Md elementary destination alternatives; a nested

logit model is therefore usually used to predict pi[d/osh]. In this case, (4.3.9) be-

comes:

p[d/osh] =
exp(Vd/osh/θd + δdYd)

∑

d ′ exp(Vd ′/osh/θd + δdYd ′)

=
exp[(Vd/osh + sd)/θd ]

∑

d ′ exp[(Vd ′/osh + sd ′)/θd ]
(4.3.13)

where

Vd/osh = E[Ud/osh] systematic utility of the traffic zone d , common to all elemen-

tary destinations in d

θd parameter of the Gumbel distribution of Ud/osh

sd = θrYd = θr ln
∑

r ′=1,...,Md

exp(Vr ′/d/θr) (4.3.14a)

(EMPU relative to the elementary destination choice)

Vr/d = E[Ur/d ] systematic utility of the elementary destination r conditional upon

traffic zone d

θd parameter of the Gumbel distribution of Ur/d

δd = θr/θd ≤ 1

As previously stated, the attributes in a distribution model include attractiveness

attributes of the destination zone d and cost attributes associated with travel between

the od pair. Inasmuch as most network supply models represent travel between zone

centroids but not within zones, cost attributes change if the traffic zone changes,

but not if the elementary destination changes, and therefore the transportation cost

Cod is generally included in Vd/osh. Conversely, attractiveness attributes such as the

number of employees in a certain category can be related to a single elementary

destination, and so are usually part of Vr/d .

With some simple steps, another equivalent specification of sd can be derived

from (4.3.14a):

sd = V d + θr lnMd + θr ln

[

1

Md

∑

r ′=1,...,Md

exp
[

(Vr ′/d − V d)/θr

]

]

(4.3.14b)
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where

V d =
1

Md

∑

r ′=1,...,Md

Vr ′/d

This expression is particularly advantageous when the attractiveness of individual

elementary destinations cannot be determined. Indeed (4.3.14b), except for the last

term on the right side (which represents a heterogeneity term) can be easily calcu-

lated if the number Md of the elementary destinations is known. Indeed, by setting:

Vr/d = Ar

Hence:
∑

r ′=1,...,Md

Vr/d =
∑

r ′=1,...,Md

Ar = Ad

where Ar is the number of employees of the elementary destination r and Ad repre-

sents the number of employees within traffic zone d (generally known from statisti-

cal sources).

To understand the sense of (4.3.14b), the situation in which all the elementary

destinations within d have the same systematic utility (i.e., an equal value of attrac-

tiveness) the heterogeneity term is equal to zero and the systematic utility of traffic

zone d is given by the sum of the common term Vd/osh, of the utility of any elemen-

tary destination and of a positive “size” variable lnMd . The larger the elementary

alternatives in d , the greater is Md .

For some trip types the number of elementary destinations Md in zone d can be

calculated (e.g., the number of stores for shopping purposes). More frequently, the

level of definition of trip purposes does not allow an accurate identification of the

type of elementary destination and therefore of the number of elements in the choice

set (e.g., for “other” purpose trips the actual elementary destination is unknown). In

this case the size variable lnMd can be replaced by a size function that estimates the

unknown number of elementary alternatives in terms of other variables of the same

zone (e.g., employees per sector, number of shops, etc.):

Md =
∑

k

βkZkd

In this case it can be demonstrated that all the size function coefficients βk but

one can be identified; the unidentified coefficient can be arbitrarily set to one (see

Chap. 5) and therefore (4.3.14b) becomes:

sd/osh = V d + θr ln

(

Z1d +

K
∑

k=2

βkZkd

)

(4.3.14c)

Examples of models with size functions are presented in Sect. 4.3.4.
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4.3.2 Mode Choice Models

Mode choice models predict the fraction (or probability) pi[m/oshd] that users of

class i select mode m to travel from zone o to zone d for trip purpose s in time

period h. Mode choice is an example of a travel decision that can be easily modified

for different journeys, and so for which performance or level-of-service attributes

have considerable influence. It was no accident that the first random utility models

were formulated to analyze transportation mode choice.

Definition of Choice Alternatives

In very simple cases the alternatives of a mode choice model are the individual

transportation modes. In some cases “mixed” modes, that is, combinations of dif-

ferent modes such as car + train and car + bus, or different services of the same

transportation mode (e.g., intercity, regional and night for the railway mode), are

considered as choice alternatives. In interurban contexts, because of the high reg-

ularity and low frequency of transit services, the user is generally well informed

about schedules and costs and tends to associate with each mode the utility of the

most convenient service. In accordance with random utility theory, the logsum of

lower choice dimensions (services) should be associated with the modes that offer

them. To simplify the problem, some joint models of mode and service choice have

been proposed.

Definition of Choice Set

Identification of the relevant alternatives depends on the transportation system un-

der study. For example, modes such as walking or bicycle are typically considered

to be choice alternatives in an urban system but, for obvious reasons, not for interur-

ban systems. The definition of the choice set of each decision-maker is particularly

important for mode choice models: not all transportation modes are available for

all trips, either because of an objective impossibility (e.g., the personal car is not

available to a user without a driving license) or because it is not perceived as an al-

ternative for a particular trip (e.g., motorized modes may not be considered for very

short trips).

Mode availability has been handled in mode choice models using the different

approaches described in Sect. 3.5, usually via a combination of several heuristic

methods. Objective nonavailability is usually dealt with by excluding the alterna-

tives from the choice set of the decision-maker or user class; whereas contingent

nonavailability or nonperception is generally accounted for by including availabil-

ity/perception variables in the systematic utility specification. The attributes of car,

bicycle, and motorcycle availability in the specification described in Fig. 4.7 should

be interpreted in this way. Recently, IAP models that implicitly represent the prob-

ability of an alternative being available/perceived (as described in Sect. 3.5) have

been applied to mode choice.
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Functional Form

The systematic utility functions of mode choice models usually include level-of-

service and socioeconomic attributes. As discussed in Chap. 2, level-of-service or

performance attributes describe the characteristics of the service offered by the spe-

cific mode. Examples are travel time (possibly broken into access/egress time, wait-

ing time, on-board time, etc.), monetary cost, service regularity, number of transfers,

and so on. These attributes have negative coefficients because they usually represent

disutilities for the user. In addition to level-of-service attributes, utility functions

may include Alternative Specific Constants (ASCs) or modal preference attributes,

variables that account for each mode’s qualitative characteristics (e.g., the privacy of

the car) or for attributes that are not otherwise included (e.g., service regularity for

metro systems). In Chap. 3 it was shown that ASCs can be included in the systematic

utility of all alternatives but one. Thus, after the effects of the other attributes in the

utility function are accounted for, an ASC represents the remaining preference of

users for a mode compared to a reference alternative. It follows that the coefficient

of the ASC might have a positive or negative sign.

The ratios of level-of-service attribute coefficients in a linear utility function,

also called the marginal rates of substitution, often have a meaningful interpreta-

tion. Among these, the rates of substitution between level-of-service attributes and

monetary cost are particularly relevant, as these express the equivalent monetary

value of the level-of-service attributes. If βt and βc are, respectively, the coefficients

of travel time and monetary cost, the perceived Value of Time (VOT) implicit in

mode choice behavior will be:

VOT =
βt

βc

[h−1]

[mon.unit−1]
= [mon.unit/h] (4.3.15)

Level-of-service attributes, and in particular times, monetary costs, and the like,

should take into account alternatives in the “lower” choice dimension, in this case

path choice. Thus, level-of-service attributes should refer to the different paths that

the user can take on the network of each mode. This is done by using the EMPU of

path choice which, in multinomial logit or hierarchical logit models, is the logsum

variable Ym/d . Sometimes, for the sake of simplicity, attributes are calculated only

for the “minimum” cost path, although this introduces a theoretical inconsistency

if path choice is not predicted with the deterministic utility (minimum cost) model

described in the next section.

Socioeconomic attributes include characteristics of the decision-maker or her

household. Typical examples are gender, age, family income, and car ownership

and availability (number of cars owned by the household or the ratio between the

cars owned and number of driving licenses).

Finally, in more sophisticated specifications some attributes may depend jointly

on service and user characteristics. For example, monetary cost can be divided by

user income, or differentiated by income level with different coefficients. In both

cases the value of time varies by income, and is usually higher for users with higher

income.
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WALKING

Twalking Time (h) −6.8237

BICYCLE

Tbk Time (h) −8.2718

Nbcl/Nad Number of bicycles owned in family per adult 0.6646

Bcl Alternative specific attribute −1.5818

MOTORCYCLE

Tmbk Time (h) −8.2718

Age Age variable (1 if ≤35 years, 0 otherwise) 0.6863

Nmbk/Nad Number of scooters and motorbikes owned in family per adult 1.8572

Mbk Alternative specific attribute −2.3789

CAR

Tcar Time (h) −1.6142

Mccar Monetary cost (€) −0.3338

Park Parking (1 for priced parking destinations, 0 otherwise) −1.1469

Hfam Position in the family (1 if head of family, 0 otherwise) 0.4931

Ncar/Nad Number of cars owned in family per adult 0.4014

Car Alternative specific attribute −1.7103

BUS

Tbus Total travel time (h) −1.6142

Mcbus Monetary cost (€) −0.3338

Ntrn Number of transfers −0.1772

Bus Alternative specific attribute −1.7827

lnL(βML) −475

lnL(0) −697

ρ2 0.317

% right 0.651

Fig. 4.7 Alternatives, attributes, and coefficients of an MNL mode choice model for urban com-

muting trips

With respect to functional form, multinomial logit mode choice models are often

used:

pi[m/oshd] =
exp(V i

m/oshd)
∑

m′ exp(V i
m′/oshd

)
(4.3.16)

Figure 4.7 shows the alternatives, attributes, and coefficients of a logit mode

choice model for commuting trips in a medium-sized Italian city. Other examples

of MNL mode choice models are presented in Sect. 4.3.4, and in Chap. 8 on trans-

portation demand estimation.

Hierarchical logit specifications are also being increasingly used. These models

assume different levels of correlation between the perceived utilities of different

mode groups, for example, private and public modes, and/or between different ser-

vices of the same mode. A hierarchical logit mode choice model could also be used

to predict the joint choice of mode and parking in urban areas.

In some applications to urban areas, specification of the systematic utility of the

car mode includes level-of-service attributes related to parking, such as the time
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spent looking for a free parking space, parking cost, and walking distance to and

from the parking space. In the most general case where several locations and types

of parking are available, private modes such as auto are represented as groups of

alternatives, each alternative corresponding to a specific parking location (dp) and

parking type (tp) together with the given mode.

The lower-level multinomial logit model for parking choice can be specified as

follows.

pi[dptp/oshda] =
exp(V i

dp tp
)

∑

d ′
p t ′p

exp(V i
d ′
p t ′p

)

with

V i
dp tp

= βtsTsrdp tp + βcMci
dp tp

+ βtwTwldp/d

where the variables are:

dp, tp Parking location (zone) and type (free on street, paid on-street, paid off-

street, illegal etc.)

Tsrdp tp Average search time to find a parking space of type tp in zone dp

Mci
dp tp

Monetary cost (price or expected fine) of the alternative depending on the

user class i (e.g., related to parking duration)

Twldp/d Time on foot needed to reach final destination d from location dp

In this case, the logsum inclusive variable Y i
p can be expressed as

Y i
p = ln

∑

d ′
p t ′p

exp
(

V i
d ′
p t ′p

)

and included in the systematic utility of the car alternative in the mode choice MNL

model.

An example of a hierarchical logit mode and parking choice model in an urban

area is given in Fig. 4.8.

4.3.3 Path Choice Models

Path choice models predict the fraction (or probability) pi[k/oshdm] of trips by

users of class i on path k of mode m from o to d for trip purpose s in time period h.

The path choice models used in practice are all behavioral, and the relevant attributes

are, for the most part, performance or level-of-service variables obtained from the

network supply models described in Chap. 2.

Path choice behavior and the models representing it depend on the type of ser-

vice offered by the different transportation modes. In particular, the case where the
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Vcar = βtb · Tcar + δp · Yp +βc · Mccar +βCar · Car

Vmbk = βtb · Tmbk + δp · Yp +βc · Mcmbk +βAge · Age + βMbkMbk

Vbus = βtb · Tb +βtw · twb +βc · Mcb

Vwalk = βtwalk · Twalk +βWalk · Walk

with

Tcar = Car travel time [h] Mccar = Monetary cost Car [€]

Tmbk = Motorbike travel time [h] Mcmbk = Monetary cost Motorbike

Tbb = Bus in vehicle time [h] Mcb = Monetary cost Bus [€]

Twb = Bus waiting time [h]

Twl = Walking time [h]

Age = Dummy variable of value 1

if age is <35 years, 0 otherwise

Car, Mbk, Walk = Mode Specific Attributes

dp = parking destination zone

Yp = ln
∑

d ′
p t ′p

exp(V i
d ′
p t ′p

)

tp = type of parking: free limited duration

paid on street

paid off street

illegal

Vdp tp = βtsTsrdp tp + βcMci
dp tp

+ βtwTwldp/d

With

Tsr = Average time spent finding a parking space [h]

Mc = Parking monetary cost [€]

Twl = Walking time from parking location to destination [h]

Model of parking choice

Tsr Mc Twl

−18.168 −3.358 −19.386

Model of modal choice

T Tw Twl Mc Yp Age Car Mbk Walk

−1.961 −4.902 −4.314 −0.550 0.199 2.331 0.921 −1.631 3.127

Fig. 4.8 A hierarchical logit model of mode and parking choice in an urban area

whole path is chosen before starting the trip (pre-trip choice) can be distinguished

from that where the path is chosen in two phases and is completely defined only dur-

ing the trip itself (pre-trip/en-route mixed choice). Pre-trip choice behavior is usu-
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ally assumed when representing path choice for continuous service systems; typical

examples are road networks for private modes such as car, motorcycle, and the like.

Pre-trip choice behavior is also assumed for scheduled transportation services with

low frequency and high regularity, under the assumption that users know the ser-

vice timetable and makes their decisions before beginning the trip (see Sect. 7.6.1).

On the other hand, pre-trip/en-route mixed behavior is usually assumed for sched-

uled transportation systems with high frequency and/or low regularity, for example,

urban transit systems (see Sect. 6.2).

As for all behavioral models, specification of a path choice model involves three

phases: definition of the alternatives, identification of the set of possible alterna-

tives (the choice set), and definition of the choice model. The first two phases are

particularly important for path choice.

In the discussion below, behavioral assumptions and choice models are described

separately for pre-trip and mixed path choice behavior, taking as examples road net-

works and transit networks with high frequency/low regularity. Path choice models

for low-frequency/high-regularity scheduled services are covered in Chap. 7.

4.3.3.1 Path Choice Models for Road Networks

Definition of Choice Alternatives The assumption usually made for road net-

works is that, before making a trip, the user chooses a sequence of road segments to

follow to the destination. This can be represented as a path,15 a sequence of nodes

and links on the graph that represents the road system, as described in Chap. 2. Only

elementary (loopless) paths are considered, and thus their number is finite.

Definition of Choice Set Definition of the paths considered as choice alternatives,

that is, definition of the choice set, is particularly important because the topologi-

cal complexity of the network could generate an unrealistically large number of

paths between a single O-D pair. The set of feasible paths Kodm connecting the

centroids od over the mode m network should in principle be defined through an

explicit choice set model, as described in Sect. 3.5. In practice, however, two types

of heuristic approaches are used.

15Pure pre-trip choice behavior assumes that users do not ever modify the route that they choose

at the beginning of their journey. In reality even for continuous service modes there are situa-

tions where users modify their routes by adapting to conditions encountered during the journey

(e.g., accidents and unexpected traffic jams). This type of behavior is even more prevalent when

real-time information technologies (variable message signs, radio traffic news, in-vehicle naviga-

tion systems) provide information on the current or predicted state of the network or suggest a

route to take. Route choice models that take account of “mixed” behavior in continuous service

networks are, however, still at the research stage and are not dealt with here. Furthermore, static

assignment models are intended to simulate recurrent congestion: the route choice models used for

static assignment can be assumed to reflect normal conditions and thus rule out accidents or other

nonrecurrent events.
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Selection criteria Specification

Topological A path is feasible (Dial efficient) if each link moves away from the

origin and/or moves towards the destination; see Sect. 5.3.3

K ∈ Kod if Zo,i < Zo,j ∀(i, j) ∈ k

Comparison of costs Paths with a generalized cost not exceeding the minimum cost by

more than a factor of α

K ∈ Kod if gk ≤ (1 + α)gmin

Progressive The n paths with the lowest generalized costs

Multi-attribute Minimum paths with respect to various attributes (usually

performance variables such as travel time, monetary cost, motorway

distance, etc.)

Behavioral Paths excluding behaviorally unrealistic link sequences (e.g.,

repeated entrances and exits for the same motorway)

Distinctive Paths overlapping for no more than a given percentage of their length

Fig. 4.9 Criteria for path feasibility on road networks

The exhaustive approach considers all elementary paths on the network. This ap-

proach may generate a large number of paths that share many links and so are cor-

related in their perceived (dis)utilities. Furthermore, given the computational com-

plexity of explicitly enumerating all the paths in a network, this operation is usually

carried out implicitly (implicit path enumeration) by algorithms that simultaneously

calculate path choice probabilities and assign flows, as described in Chap. 5.

The selective approach, on the other hand, applies heuristic behavioral rules to

identify only a subset of the elementary paths. For example, a path may not include

more than one entrance and one exit from the same motorway, may not go farther

away from the destination, may not have a generalized cost exceeding the mini-

mum path cost by more than a given amount, and so on. Various criteria for the

selection of feasible paths have been proposed in the literature. They relate to dif-

ferent application contexts (urban/interurban networks) and to different algorithms

for generating paths and calculating choice probabilities and link flows. Examples

of selection criteria are given in Fig. 4.9. In this table, Zo,i and Zo,j represent the

minimum cost to reach node i and node j from origin o (see Chap. 5).

In general the selective approach requires explicit path enumeration between

each O-D pair, and usually applies a combination of criteria. Chapter 5 describes

some algorithms for path enumeration, and Fig. 4.10 depicts an example of the

complete set of elementary paths and a selective set for an origin–destination pair.

For more sophisticated feasible path generation models, the criteria to be used must

be “calibrated” as are other parameters in the model. Calibration can be carried out

by comparing the paths generated by the model with the paths perceived (or chosen)

by a sample of users, adjusting the model to maximize the coverage of the latter by

the former.

Some experimental results suggest that a good level of coverage of the paths

used by users, at least for interurban networks, can be achieved by generating the
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Fig. 4.10 Examples of exhaustive and selective set of feasible paths

first n paths for some intuitively reasonable criterion (e.g., minimum time, minimum

monetary cost, maximum motorway use, etc.).

The selective approach guarantees better control of the feasibility of the gener-

ated paths while allowing the use of performance attributes that are not additive

over links, as shown later. These advantages are obtained at the expense of greater

computational complexity.

Conversely, implicit path enumeration methods are computationally more effi-

cient and are typically used in the assignment models implemented in commercial

software. However, it should be emphasized that there has been no systematic analy-

sis of the computational complexity and memory requirements of the two methods.

Recent literature suggests a growing tendency towards explicit path enumeration

models in applications (see Chap. 5), perhaps because of the increasing power of

the computing resources that are routinely available.

Functional Form Specification of a path choice model requires, as usual, defin-

ition of the attributes in the systematic utility function and of the joint probability

distribution of random residuals, that is, the choice probability functional form. It

is usually assumed that the variables influencing path choice are disutility attributes
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that enter in the utility function specification with negative coefficients,16 for exam-

ple, travel times, monetary cost, distance, and the like. Thus it follows that

Uk = Vk + εk ∀k ∈ Kodm (4.3.17a)

Vk = −gk (4.3.17b)

where gk is the average generalized cost of path k expressed in utility units and

Kodm is the set of paths connecting the pair od via mode m. Systematic utility and

average cost should be differentiated by user class, V i
k and gi

k , although in what

follows the superscript i is omitted for simplicity.

In Sect. 2.3.3 it was stated that the average path cost is usually a linear combi-

nation17 of performance attributes with coefficients estimated from a path choice

model:

gk =
∑

n

βnznk (4.3.18a)

If each path attribute znk is the sum of the corresponding link variables rnl , the

path cost gk will be purely additive:

cl =
∑

n

βnrnl gADD =
∑

n

βnzn =
∑

n

βn∆
Trn = ∆Tc (4.3.18b)

where δlk are the (0/1) elements of the link–path incidence matrix ∆ and cl is the

average cost of link l introduced in Chap. 2.

In some cases, however, the average cost might include some variables that can-

not be obtained as the sum of link variables (nonadditive cost gNA
k ). This occurs,

for example, if the monetary cost depends nonlinearly on path length, or if there is

a dummy variable for minimum travel time or maximum motorway length paths. In

the most general case, the expression (4.3.17b) therefore becomes:

Vk = −gADD
k − gNA

k

Generally, nonadditive path cost variables require explicit path enumeration.

Figure 4.11 shows some example systematic utility specifications for path choice

models in urban and interurban road networks.

The probability of choosing path k can be obtained with any random utility model

and depends on the distribution of random residuals εk in (4.3.17a).

16More sophisticated specifications may also include socioeconomic attributes of the driver such

as gender, income, and so on.

17When the generalized cost depends on a single attribute (such as travel time in urban networks),

this is multiplied by a marginal utility coefficient β to convert it into utility.
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PATH CHOICE MODEL FOR URBAN ROAD NETWORKS

Vk = β1TTPk + β2TTSk + β3Lk + β4NTSk + β5NLTk + β6MTWk

TTP = Travel time on primary roads [h]

TTS = Travel time on secondary roads [h]

L = Total length [km]

NTS = Number of traffic-signal intersections on the path

NLT = Number of left turns

MTW = Dummy variable for the maximum motorway path

TTP TTS L NTS NLT MTW ρ2 % right L ratio

−16.462 −61.257 −9.601 −0.209 −2.296 3.158 0.403 0.532 844.344

t −7.514 −16.445 −1.224 −1.143 −3.978 2.678

PATH CHOICE MODEL FOR HEAVY VEHICLES IN INTERURBAN ROAD NETWORKS

Vk = β1TTk + β2Mck + β3MLk + β4 MinTk + β5 MaxMk + β6HVPk + β7CFk

TT = Travel time [h]

Mc = Monetary cost [€]

ML = Total motorway length [km]

MinT = Dummy variable for minimum time path (0/1)

MaxM = Dummy variable for maximum motorway use path (0/1)

HVP = Dummy variable for minimum time path for perishable and/or high value goods (0/1)

CF = Path commonality factor

VOT = Value of time [€/h]

TT Mc ML MinT MaxM HVP CF VOT ρ2 LR ratio

−4.525 −0.0165 0.013 −0.9524 68.5605 0.176 −2440

t −19.3 −6.7 12.3 −12.9

−3.110 −0.0155 0.012 1.785 −0.839 50.1515 0.250 −2222

t −14.2 −6.1 11 20.8 −11.6

−5.440 −0.018 0.012 2.292 2.585 −1.296 75.5555 0.306 −2055

t −20.5 −6.9 10.5 19.9 20.1 −15.7

−3.650 −0.015 0.009 3.370 3.702 3.788 −1.205 60.8335 0.450 −1630

t −14.1 −5.6 7.5 21.6 22 22.1 −14

Fig. 4.11 Examples of multinomial logit path choice models in urban and interurban road net-

works

The simplest path choice model is the deterministic utility model, which is a

special case of a random utility model in which the variance of the residuals εk is

assumed to be equal to zero:

Uk = Vk = −gk

In this case, a path k can be used only if, from among the set of alternative paths,

its cost gk is the least:

p[k/osdm] > 0 ⇒ gk ≤ gh ∀h �= k, h, k ∈ Kodm (4.3.19)

As already noted in Sect. 3.4, the deterministic utility model does not provide a

unique path choice probability vector, except when there is a unique minimum cost
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Fig. 4.12 Application of a logit model to highly overlapping paths

path. In this latter case:

p[k/osdm] =

{

1 if gk < gh ∀h �= k, h, k ∈ Kodm

0 otherwise
(4.3.20)

Although deterministic choice models are arguably less realistic than general

probabilistic models, for computational reasons they are often applied with implicit

path enumeration to very congested networks. In such cases, they give results that

are largely comparable with those obtained from probabilistic models, as shown in

Sect. 5.4.5.

The probabilistic choice models generally used to calculate path choice proba-

bility are logit and probit. In this application, the multinomial logit model takes the

form:

p[k/oshdm] =
exp(−gk/θ)

∑

h∈Kodm
exp(−gh/θ)

(4.3.21)

The multinomial logit model results when the random residuals εk are assumed

to be i.i.d. Gumbel variables with parameter θ , where θ is proportional to the resid-

uals’ standard deviation. As shown in Chap. 8, the parameter θ cannot be estimated

separately for linear utility functions of the type (4.3.18a), so is assimilated in the

coefficients βh. The urban and interurban path choice models described in Fig. 4.11

have a multinomial logit specification.

The assumption of i.i.d. residuals that underlies the logit model and implies its

independence of irrelevant alternatives property (see Sect. 3.3.1) is unrealistic when

the paths in the choice set overlap (share links). In this case, it may be conjectured

that the perceived costs of heavily overlapping paths are highly correlated, giving

rise to choice probabilities that are smaller than those of other paths that have the

same average costs but overlap less or not at all. In the extreme case of two paths that

overlap almost completely, the MNL model gives them unrealistically large choice

probabilities, as shown in Fig. 4.12. To reduce the effects of the IIA property, the

multinomial logit model should be used with an explicit path enumeration method

that eliminates highly overlapping paths.
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Alternatively, if it is assumed that the residuals εk follow a multivariate normal

distribution, the choice model has the probit form. The most widely used specifica-

tion assumes that the variance of the random residuals is proportional to an additive

path cost attribute zk , and that the covariance of the residuals of two paths is pro-

portional to the cumulative value of the cost attribute over the links that are shared

by the two paths (zkh):

var[εk] = ξzk, k ∈ Kodm (4.3.22a)

cov[εk, εh] = ξzkh, h, k ∈ Kodm (4.3.22b)

Usually, the variables zk used to define the distribution differ from the actual path

cost gk (e.g., length or uncongested cost). These specifications satisfy the random

utility model’s property of additivity described in Sect. 3.4 and are useful in the

analysis of the theoretical properties of equilibrium assignment models, as discussed

in Chap. 5.

Note that the specification (4.3.22a), (4.3.22b) of the random residual variance–

covariance matrix depends on a single calibration parameter ξ , and can be derived

by applying the factor-analytic probit model described in Sect. 3.3.6 to the path

choice context. To see this, assume that a perceived disutility ul is associated to

each link l, with:

ul = E[ul] + ηl = −cl + ηl

The link random residuals, ηl (l = 1,2, . . . ,L), are independent normal variables

ηl ∼ N(0,σ l) with:

Var[ηl] = σl = ξrl

Cov[ηl, ηj ] = 0

η ∼ MVN(0,Ση) Ση = ξDIAG(r)

where rl is the link-related performance variable corresponding to path attribute

z and DIAG(r) is the (nL × nL) diagonal matrix containing these link variables.

Assuming further that the path utility is the sum of its link utilities, it follows that

Uk =
∑

l

δlkul = E[Uk] + εk

E[Uk] =
∑

l

δlkE[ul] = −
∑

l

δlkcl = −gk

εk = Uk − E[Uk] =
∑

l

δlk(ul + cl) =
∑

l

δlkηl

Var[εk] =
∑

l

δlk · var[ηl] =
∑

l

δlk · ξrl = ξzk
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Cov[εk, εh] = E[εk, εh] = E

[

∑

l

δlkηl ·
∑

l

δlhηl

]

= E

[

∑

l∈hk

η2
l

]

=
∑

l∈hk

var
[

η2
l

]

= ξzkh

that is, the relationships (4.3.22a), (4.3.22b). Because the sum of normal variables

is again a normal variable, then:

ε ∼ MVN(0,Σ)

where Σ is the variance–covariance matrix with elements given by (4.3.22a),

(4.3.22b).

In other words, specification (4.3.22a), (4.3.22b) of the probit model can be ob-

tained by applying the factor analytic probit to the path choice context with:

ε = ∆T η = ∆T Σ1/2
η ζ = ∆T

[

ξ · DIAG(r)
]1/2

ζ = Fζ

where

ε is the (np ×1) vector of multivariate normal distributed path random resid-

uals, ε ∼ MVN(0,Σ)

∆ is the (nl × np) link–path incidence matrix

η is the (nl × 1) vector of independent normal distributed link random resid-

uals, η ∼ MVN(0,Ση)

ζ is the (nl × 1) vector of i.i.d. standard normal random variables, ζ ∼

MVN(0, I )

F ∆T Σ
1/2
η = ∆T [ξDIAG(r)]1/2 is the (np ×nl) matrix that maps the random

vector ζ into path choice random residuals ε

np is the total number of paths

nl is the total number of links, usually nl ≪ np

It can be easily shown that matrix F specified above, introduced in (3.3.62) and

(3.3.63), yields (4.3.22a) and (4.3.22b) respectively.

This representation of the probit path choice model is also used in Sect. 5.3.3 for

the specification of an algorithm for network assignment to uncongested networks.

The ability of the probit model to handle path overlapping, or perceived cost

correlation, makes it particularly suitable for applications with exhaustive path gen-

eration (implicit enumeration). Furthermore, the difficulty of explicitly calculating

probit choice probabilities can be overcome with algorithms that are based on Monte

Carlo simulation, as mentioned in Sect. 3.3.6. These algorithms are discussed in de-

tail in Chap. 5.

A modification to the logit path choice model was recently proposed to overcome

the problems deriving from the logit IIA property while at the same time retaining

a convenient analytical form. This modification is called the C-logit model and has

the following specification.

p[k/oshdm] =
exp[(−gk)/θ − CFk]

∑

h∈Kodm
exp[(−gh)/θ − CFh]

(4.3.23)
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The term CFk , known as the commonality factor, reduces the systematic utility of

a path according to its degree of overlap with other paths. The commonality factor

can be specified in various ways, for example, as

CFk = ln

(

1 +
∑

h�=k

zhk

(zhzk)1/2

)

(4.3.24a)

where the attributes zh, zk , and zhk are analogous to those described for the probit

model. Expression (4.3.24a) shows immediately that the attribute CFk is inversely

proportional to path k’s degree of independence from other paths, and is equal to

zero if no other path shares links with path k. In this case:

zhk = 0 ∀h �= k → CFk = ln(1) = 0

Conversely the attribute CFk is larger the more other paths share links with

path k. For given path costs, the C-logit model (4.3.23) reduces the probability

of choosing heavily overlapping paths and increases the probability of choosing

nonoverlapping paths. Furthermore, in the limiting case of N completely overlap-

ping paths, the C-logit choice probabilities tend to 1/N of the probability that a

multinomial logit model would calculate if the N coincident paths were considered

as one. These results are illustrated in Fig. 4.13, which presents logit, C-logit, and

probit choice probabilities for a network similar to that in Fig. 4.12 and for different

values of the coefficient of variation (cv). As can be seen, C-logit and probit proba-

bilities are very similar and are lower than those obtained from the logit model for

heavily overlapping paths. Some calibrations of interurban truck path choice models

confirm the significance of the CFk attribute (see Fig. 4.11).

Expression (4.3.24a) allows computation of the path commonality factor by

adding up the values for the links making up the path; consequently, it lends itself

to use in implicit path enumeration algorithms similar to Dial’s (see Chap. 5).

Other specifications of CF have been proposed, including:

CFk =
∑

l∈k

wlk lnNl (4.3.24b)

where the summation is extended to all links l belonging to path k,wlk is equal to

the weight of link l in path k:

wlk =
rl

zk

and Nl is the number of paths between the same O-D pair using link l.

Expression (4.3.24b) takes into account the relative weight of shared links in the

overall path cost; for example, if two paths h and k share the same link l:

wlh > wlk → CFk > CFh

The attribute CF is larger for a path whose shared links contribute a larger frac-

tion to its total length or cost.
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Link Paths Link costs

A B C

1 0 1 1 14

2 1 0 0 K

3 0 1 0 2

4 0 0 1 2

K = 16

Path Cost Logit CLogit Probit

(∀θ) (∀θ) ξ = 1

A 16 0.333 0.478 0.450

B 16 0.333 0.261 0.275

C 16 0.333 0.261 0.275

K = 17

Path Cost Logit CLogit Probit

cv = 0.1 cv = 0.3 cv = 1.1 cv = 0.1 cv = 0.3 cv = 1.1 cv = 0.1 cv = 0.3 cv = 1.1

A 17 0.091 0.227 0.302 0.156 0.350 0.442 0.162 0.342 0.421

B 16 0.454 0.387 0.349 0.422 0.325 0.279 0.419 0.329 0.289

C 16 0.454 0.387 0.349 0.422 0.325 0.279 0.419 0.329 0.289

Fig. 4.13 Comparison among path choice probabilities with logit, C-logit, and probit models

Another useful expression for CF is the following.

CFk = ln

[

1 +
∑

h�=k

(

zhk

(zhzk)2
·
zk − zhk

zh − zhk

)]

(4.3.24c)

As (4.3.24c) shows, the CF of a path also depends on the cost of its nonshared

links. In this way, the ratio CFA/CFB between the commonality factors of two

paths increases as the overlap between them (the percentage of common cost with

respect to the total one) increases, as zA > zB .

The C-logit model has a behavioral interpretation as an Implicit Availability Per-

ception (IAP) model (discussed in Sect. 3.4) that simultaneously represents both the

perception of paths as alternatives as well as the choice among the perceived alter-

natives. The commonality factor CFk can in fact be interpreted as an attribute of the

model, giving the degree of membership µIodm
(k) of path k in the set of perceived

paths Iodm:

µIodm
(k) ∝ exp(−CFk) (4.3.25)

that is, it is assumed that the perception of path k as an elementary alternative is

larger if its overlap with other paths is smaller, and vice versa. On the other hand,

the first-order IAP logit model described in Sect. 3.4 can be formally expressed as

p[k/odm] =
µIodm

(k) · exp(−gk/θ)
∑

h∈Kodm
µIodm

(h) · exp(−gh/θ)
(4.3.26)
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Substituting expression (4.3.25) into (4.3.26) gives expression (4.3.23).

4.3.3.2 Path Choice Models for Transit Systems

As stated in Chap. 2, public transportation systems offer services that are both non-

continuous in space (i.e., only provided between discrete points such as stations

or stops) and in time (i.e., available only at times corresponding to departures and

arrivals). The supply models (transportation networks) representing such systems

follow two main approaches: line-based and run-based. The choice between these

depends on service frequency and regularity, and on the resulting assumptions about

users’ behavior. The discussion below refers to path choice models for scheduled

services with frequencies high enough to justify a line-based18 representation as

described in Sect. 2.4.2.1 and restated in Fig. 4.14 for the reader’s convenience.

This assumption is consistent with the assumption of within-day stationarity that

underlies this chapter. In this representation, a path corresponds to a complete trip.

As is the case for modeling other choice contexts, complete specification of a

path choice model for scheduled service networks involves three phases: definition

of choice alternatives, identification of the set of alternatives, and specification of

the model that predicts the choice among alternatives. This in turn implies selection

of the attributes and systematic utility of the alternatives as well as the functional

form of the choice model.

Definition of Choice Alternatives For high-frequency transportation services, it

is unrealistic to assume that the only things that the user considers as pre-trip choice

alternatives are the elementary paths on the graph that represents the service lines.

If this were the case, a user would consider the paths defined by each of the lines

connecting a given pair of stops to be different and mutually exclusive, even when

these lines provide equivalent service. Consider a user traveling in the network rep-

resented by the graph in Fig. 4.15. If the user chose path b shown in Fig. 4.16 and

line 5 belonging to it, he would, on arrival at stop F , refuse to board a vehicle of

line 6 that happened to arrive at the stop earlier than a vehicle of line 5, despite the

fact that the two lines are completely equivalent. This is not realistic.

To overcome these potential problems, a path choice model should allow for the

possibility that users’ pre-trip choice alternatives include multiple equivalent lines

or, put differently, multiple paths on the graph that represents the public transporta-

tion services. The basic assumption in the definition of choice alternatives is that,

prior to their trips, users of high-frequency transit systems do not have complete

information on the service options that will be available. For example, users may

18Route choice for regular, low-frequency scheduled services with explicit run representation is

usually assumed to be completely pre-trip and the models that represent it are analogous to those

described for road networks. In this case, however, the choice alternatives are the single runs or

sequences of runs that can be represented as paths on the diachronic network. This point is dealt

with extensively in Chap. 7.
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Fig. 4.14 Line-based representation of a scheduled transportation system

be unable to predict their arrival times at stops or the arrival times of the vehicles

(trains, buses, etc.) on the different lines that call at each stop.

Under this hypothesis, it is assumed that the departing user chooses a travel strat-

egy rather than a predetermined path. A strategy is a set of pre-defined travel alter-

natives together with decision rules that the user applies to select one of them in

response to random or unknown events that may arise during the trip. In the ex-

ample given in Fig. 4.15, one strategy could be to go to stop F and board the first
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Fig. 4.15 Example of a transit line-based network

vehicle belonging to line 5 or 6; another possible strategy could be to go to stop F

and board vehicles of line 5 only.

Two types of choice behavior are involved in choosing a path under the above

assumptions.

En-route choice behavior underlies user choices made during the trip. This be-

havior describes how users respond to unknown or unpredictable events. The type

of adaptive choice behavior and the set of alternatives to which it is applied define a

strategy.

Pre-trip choice behavior underlies user choices made before departure. It in-

cludes the comparison of possible alternative strategies and the choice of one of

them based on its characteristics or attributes, for example, its perceived average

trip cost. Pre-trip choices are analogous to those made for path choice in continuous

service networks and, in general, for choices in other dimensions.

It follows that the definition of choice alternatives (strategies) for high-frequency

transit systems requires assumptions about en-route behavior. Usually it is assumed

that en-route choices take place at diversion nodes (stops) m, and that the en-route

decision rule is to board the first vehicle arriving on any of a given set of lines ALm,

called the set of attractive lines.19 The choice of boarding and alighting stops, on the

19More complex rules of en-route behavior have been proposed. For example, the user may be

assumed to decide between boarding the first arriving vehicle, or waiting for a vehicle of another

line, based on a comparison of the expected cost of the different options, and given the information

available at that moment. Such models of en-route behavior require a great deal of information and

get close to the microsimulation of network journeys; for these reasons, they are not typically used

for demand assignment to large scale networks. Models of this type are described in Chap. 7 for

irregular scheduled services.
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other hand, is assumed to be made pre-trip. To continue the example of Fig. 4.15,

a strategy cannot include the option of alighting at stop C or at stop D of line 1,

because it is assumed that these are pre-trip choices. This means that there are no

events unknown to the user that would require a decision between either stop. Anal-

ogously, a strategy cannot include moving to stop A to take line 1 or to stop B to

take line 4.

If it is assumed that user and vehicle arrivals at stops can be modeled as Poisson

random processes with constant probability of arrival at any time, the probability

of a boarding line l belonging to the set ALm of attractive lines at stop m can be

expressed as

Pr[l/m,ALm] = ϕl

/

∑

n∈ALm

ϕn (4.3.27)

where ϕl represents the frequency (number of arrivals/time unit) of line l. Expres-

sion (4.3.27) also holds under an assumption of Poisson user arrivals and of deter-

ministic equally spaced arrivals of vehicles on the lines belonging to ALm.

In terms of the line-based graph, a travel strategy (i.e., a pre-trip adaptive choice

alternative) can be represented by a subgraph known as a hyperpath. Elementary

paths are possible strategies: they are strategies that do not include adaptive choices

and are considered simple hyperpaths. Strategies that include one or more en-route

stops with adaptive choices made there can be represented as the union of simple

hyperpaths, having the property that multiple links emanate only from diversion

nodes.20 These subgraphs are known as composite hyperpaths. Figure 4.16 enumer-

ates all the hyperpaths of the line network in Fig. 4.15.

Each diversion node m of hyperpath j corresponds to a set ALmj of attractive

lines belonging to that hyperpath. A diversion probability ηlj can be associated with

the boarding links l ≡ (m,n) that connect the diversion node m to the nodes n of

the lines in ALmj . This is the probability, expressed by (4.3.27), of using the line

corresponding to link l of hyperpath j as a result of the random events that affect

enroute choices:

ηl,j = pr
[

l = (m,n)/m,ALmj

]

= ϕl

/

∑

n∈ALm,j

ϕn if l ∈ ALmj boarding link (4.3.28)

Typically a diversion probability of one is assigned to all nonboarding links be-

longing to the hyperpath:

ηlj = 1 if l ∈ j, l nonboarding link

20A link emanating from a diversion node represents boarding a line serving the corresponding

stop, as defined in Chap. 2 and represented graphically in Fig. 4.14. For a formal definition of a

hyperpath in terms of graph variables, see Sect. 6.2.
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Fig. 4.16 a Enumeration of simple hyperpaths for the transit network of Fig. 4.15. b Enumeration

of composite hyperpaths for the transit network of Fig. 4.15

and a zero probability is assigned to the links not belonging to hyperpath j :

ηlj = 0 if l /∈ j

For example, the diversion set ALm6 corresponding to diversion node m in com-

posite hyperpath 6 in Fig. 4.16b consists of lines 3 and 4: ALm6 = {3,4} and the

diversion probability of boarding link l on line 3 can be calculated as

ηl6 = ϕ3/(ϕ3 + ϕ4) = 6/18 = 0.33

Using the diversion probabilities ηlj , the probability ωkj of following path k of

hyperpath j during a given trip can be determined. Assuming statistical indepen-

dence of the random events underlying en-route choices, the probability of follow-

ing path k within hyperpath j is equal to the product of the diversion probabilities

for all links l belonging to path k; that is,

ωkj =
∏

l∈k

ηl,j (4.3.29)



212 4 Travel-Demand Models

Fig. 4.16 (continued)

which yields:

ωkj = 0 k /∈ j

This probability is obviously equal to one if path k coincides with (simple) hy-

perpath j . Continuing with the previous example, the probability ωa6 of following

path a within hyperpath 6 is equal to 0.33; the probability of following the same

path within another hyperpath is different, for example ωa1 = 1, ωa2 = 0, and so

on. Note that a path may belong to more than one hyperpath.

The probability λlj of traversing a link l of hyperpath j can also be calculated

as the sum of the probabilities of following any of the paths k on hyperpath j that

includes link l:

λlj =
∑

k:l∈k

ωkj =
∑

k

δlkωkj (4.3.30)

where δlk is an element of the link–path incidence matrix. This yields:

λlj = 0 if l /∈ j

Continuing with the example in Fig. 4.16b, the probability of traversing all the

links belonging to path b in hyperpath 2 is equal to one; the probability of traversing

link (r, s) is equal to 0.67 in hyperpath 7 and to 0.40 in hyperpath 9. A user choosing

a given strategy (or a hyperpath representing it) does not know before starting the
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trip which path and therefore which lines and links she will travel on because these

depend on random events such as the sequence of vehicle arrivals at each stop.

On different trips, the same user following the same strategy might use different

lines, paths and links with probabilities given by (4.3.28), (4.3.29), and (4.3.30),

respectively. Furthermore, on each trip she will experience different travel times

and, in general, different costs. However, the expected value of these times and

costs can be expressed as a function of the probabilities ωkj , as shown shortly.

Definition of Choice Set Once choice alternatives (strategies and hyperpaths)

have been defined, the issue of choice set definition can be considered. As was dis-

cussed for path choice on road networks, two general approaches can be followed to

identify the set of feasible choice alternatives. In the exhaustive approach, all strate-

gies (or the hyperpaths that represent them) are feasible. This approach is typically

associated with implicit enumeration of the hyperpaths. In the selective approach,

only the hyperpaths that satisfy certain conditions are feasible. For example, hyper-

paths including paths with more than one transfer may be excluded from the choice

set if there are direct paths and hyperpaths. In applications, the most commonly used

approach is the exhaustive one, given the computational complexity associated with

the explicit enumeration of hyperpaths.

Functional Form Specification of the choice model requires selection of the at-

tributes and of the functional form of the random utility model. Let Jod,m be the set

of hyperpaths connecting the pair o, d on the network of the scheduled service tran-

sit mode (or modes) m. It is assumed that the perceived utility Uj of each hyperpath

j belonging to Jod,m has a negative systematic utility Vj equal to the mean cost xj

of the hyperpath:

Uj = Vj + εj = −xj + εj ∀j ∈ Jodm (4.3.31)

The average cost of hyperpath xj can be expressed as the sum of an additive part

xADD
j and a nonadditive part xNA

j that, in this case (and unlike that of path costs on

continuous service networks), is always present:

xj = xADD
j + xNA

j (4.3.32)

The additive cost xADD
j is a linear combination of the attributes (typically in-

vehicle, boarding, alighting, dwelling, and access/egress times) associated with the

nonwaiting links belonging to the hyperpath:

xADD
j = βbTbj + βbrTbrj + βalTalj + βdTdj + βaTaj (4.3.33)

where the βs are the respective coefficients.

This cost can be obtained from the generalized costs of the individual links cl

and the probabilities of traversing the single links (λlj ), or equivalently from the

additive path costs gADD
k and the probabilities of following these paths ωkj :

xADD
j =

∑

k

ωkjg
ADD
k =

∑

k

ωkj

(

∑

l∈k

cl

)

=
∑

l

λljcl (4.3.34)
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The nonadditive cost can be expressed as the sum of the waiting times (costs)

Twj , as well as any further nonadditive costs, that is, costs that cannot be associated

with single links such as fixed fares or transfer costs Nj .

xNA
j = βwTwj + βNNj

where βw and βN are the equivalent costs of the different nonadditive cost items

(computed from their marginal rates of substitution with respect to cost).

The average waiting time (cost) Twj connected with hyperpath j can be calcu-

lated starting from waiting times twlj associated with each waiting link l that enters

diversion node m; as discussed in Sect. 2.4.2.2, this can be expressed as

twlj =

{

θ/
∑

n∈ALm,j
ϕn if l is a diversion link

0 otherwise
(4.3.35)

where θ is a parameter taking values from the interval [0.5–1], depending on the

probability laws of user and vehicle arrivals (see Sect. 2.4.2.2).

The average total waiting cost Twj associated with hyperpath j can be expressed

as

Twj =
∑

k∈j

ωkj

[

∑

l∈k

twlj

]

=
∑

l

λlj twlj (4.3.36)

From (4.3.35) it follows that the waiting time twlj for diversion link l depends on

the hyperpath, and therefore that the total waiting time Twj cannot be expressed as

a linear combination of link attributes independently of the hyperpath; it is therefore

a nonadditive hyperpath attribute.

The model of choice among alternative hyperpaths can be expressed formally as

the probability qj that hyperpath j has maximum perceived utility:

qj = Pr[−xj + εj ≥ −xj ′ + εj ′ ] ∀j ′, j, j ′ ∈ Jod (4.3.37)

For hyperpath choice models there are again two possible approaches. The deter-

ministic choice approach (Var[εj ] = 0) assigns all the demand to the minimum gen-

eralized cost hyperpath(s). In contrast, the random utility approach, typically based

on logit and probit forms, assigns a positive choice probability to all hyperpaths

in the choice set. When applying the MNL model to hyperpath choice, however,

the problems resulting from the IIA property are even more significant than in its

applications to path choice because hyperpaths typically include a large number of

overlapping lines. Alternatively, it is possible to use a probit model with a variance–

covariance matrix structure similar to that for paths on road networks.

There are currently no examples in the literature of hyperpath choice models cal-

ibrated and validated from observed behavior; this can be explained at least in part

by the difficulty of obtaining information on the alternatives (hyperpaths) chosen by

users.
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Finally, once the hyperpath choice probabilities have been calculated, it is possi-

ble to obtain path probabilities:

p[k/osdm] =
∑

j

ωkjqj (4.3.38)

4.3.4 A System of Demand Models

This section presents the system of interurban passenger trip-demand models devel-

oped and used in the Information System for Transportation Monitoring and Plan-

ning in Italy (SIMPT). The system, presented schematically in Fig. 4.17, includes

models for mobility choices (individual holding of driver’s license and household

automobile ownership) and partial share trip-demand models.

All of the models have a logit specification and the sequence of frequency/

distribution/mode choice models has a three-level hierarchical logit structure with

EMPUs that take into account the influence of “lower” choice dimensions on “up-

per” levels, as described in Sect. 4.2. The individual submodels and their variables

are briefly described below.

The driver’s license holding model (Fig. 4.18) is a binomial logit with license

possession or nonpossession alternatives for each individual in a household. Its sys-

tematic utility attributes include the socioeconomic characteristics of the individual

(age, gender, and professional status) and the household (income). The urbaniza-

tion level of the residence zone is also significant. Densely urbanized zones usually

have a more efficient public transportation system and provide better accessibility

to various urban functions, reducing the need to use a car. The coefficients indi-

cate that factors such as gender, age, professional status, and family income have

a significant effect on license possession. Furthermore, it can be observed that the

coefficients of socioeconomic variables that describe gender and age (women 18–48

and women > 48) are positive and increasing in the systematic utility of not holding

a license. This result can be interpreted as an indicator of the delay with which the

female population has gained access to car use, even though this gap is closing for

younger generations.

The car ownership model (Fig. 4.19) predicts the choice of the number of cars

owned in a household. The model is a trinomial logit, with alternatives 0, 1, 2, or

more cars. The significant attributes are again household socioeconomic variables

such as income, number of license holders, number of workers, and of students. The

urbanization level of the residence zone reduces the utility (and the probability) of

owning two or more cars, confirming the interpretation given for this variable in the

license possession model.

The trip-demand model system estimates the average number d i
od [s, h,m, k] of

interprovincial round trips undertaken by an individual i between the zones of res-

idence o and destination d , for purpose s, in time period h, with mode m and
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Fig. 4.17 Structure of a model system for interurban trip demand

path k:

d i
od [s, h,m, k] =

∑

x

xpi[x/osh](SE,T ) · pi[d/osh](SE,T )

· pi[m/oshd](SE,T ) · pi[k/oshdm](SE,T ) (4.3.39)

where

pi[x/osh] is the probability that individual i undertakes x interprovincial trips for

purpose s in period h, obtained with the trip frequency model
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ρ2 = 0.437 Age Age Employed Average High Dense Woman Woman Asa

18–24 25–56 (0/1) income income urban 18–48 > 48

(0/1) (0/1) 40–80 ml > 80 ml zone (0/1) (0/1)

(0/1)

License 0.173 1.146 1.279 0.716 1.229

t 2.1 16.4 19.5 10.2 5.9

No license 0.262 1.197 2.384 −1.022

t 5.1 17.1 34.9 −16.2

Fig. 4.18 License holding model

ρ2 = 0.376 ASA No of No of Family Average High Dense No of

workers univ. head income income urban zone licenses
stud. (0/1) 40–80 ml > 80 ml (0/1)

0 cars −1.33 −1.44 −0.99 −0.73

t −13.5 −17.2 −4.3 −7.2

1 car −0.48 1.06

t −24.6 27.3

2 or more cars 1.01 1.53 −0.56

t 12.4 6.1 −6.9

Fig. 4.19 Car ownership model

pi[d/osh] is the probability of choosing destination d , obtained with the distribu-

tion model

pi[m/oshd] is the probability of choosing mode m, obtained with the mode choice

model

pi[k/oshdm] is the probability of choosing path k in the mode m network, obtained

with the path choice model

Five travel purposes are considered: commuting, professional business, study,

recreation, and tourism, and other purposes.

The trip-frequency model pi[x/osh] has a logit structure with three alternatives:

no trips, one trip, and more than one trip in the reference time period h (two winter

weeks). The average number of trips undertaken by each individual is therefore ob-

tained as a weighted average of the number of trips corresponding to each frequency

class (respectively, zero, one, and the average number estimated by the sample) with

weights given by the probability of choosing each frequency class (see (4.3.3)). The

attributes in the systematic utility functions are the socioeconomic characteristics

of the household (income level, number of members and cars in the household)

and of the traveler (age group, professional status, license possession) and the in-

clusive utility associated with destination choice [Y i
o = ln

∑

d exp(V i
od)]. Because

the model expresses the probability of undertaking journeys outside the province

of residence, it includes a “self-attractivity” variable (e.g., total employment in the

province) in the systematic utility of the no-trip alternative. This variable reflects the

relatively small need to carry out activities outside the province for individuals who,

other things equal, live in areas with more opportunities satisfying their needs. The

accessibility variable in the utility of making one or more round-trips has a positive
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ρ2 = 0.7061 Total Accessibility Average High Male Manager ASA

employment Y i
o income income (0/1) (0/1)

(×106) in zone O (40–80 ml) > 80 ml

0 journeys 0.11

t 4.8

1 journey 0.14 0.61 1.53 0.96 0.33 −4.80

t 2.3 5.3 7.2 4.9 10.2 −13.5

2 or more journeys 0.14 0.61 1.53 2.34 1.47 −5.592

t 2.3 4.9 11.3 −14.5

Fig. 4.20 Travel frequency model for professional business purpose

ρ2 = 0.3129 Y i
od Service employment Size Same region

X1d (×103) (0/1)

0.334 1.000 0.913 1.787

t 61.3 – 13.8 42.3

Fig. 4.21 Destination choice model for professional business purpose

coefficient between zero and one, consistent with the behavioral interpretation of

the hierarchical logit model. Figure 4.20 shows as an example the attributes and the

coefficients calibrated for the professional business purpose trip-frequency model.

The distribution model pi[d/osh] has a multinomial logit specification. Its sys-

tematic utility includes the mode choice logsum variable Y i
od to capture the (inverse)

separation between two zones. In order to account for the unknown number of el-

ementary destinations in each zone, size functions are used as zone attractiveness

attributes (see Sect. 4.3.1.2). In summary, the utility function of the distribution

model can be expressed as

V i
od = β1Y

i
od + β2 ln

(

Xi
1d +

Ks
∑

k=2

βkX
i
kd

)

+

K
∑

k=Ks+1

βkX
i
kd

with Y i
od = ln

∑

m

exp
(

V i
odm

)

where the third term includes all the attributes common to the elementary destina-

tions included in d , for example, a “same region” dummy variable introduced to

represent the greater attractiveness, other attributes equal, of zones belonging to the

same region. The size functions differ by trip purpose and include variables such as

service and commerce employment, number of tourist facilities, and the like.

In the example presented in Fig. 4.21 for professional business trips, service em-

ployment is used in the size function as an indicator of the number of elementary

destinations included in each zone. The coefficient of the logsum variable Y i
od lies

in the interval [0,1].

The mode choice model pi[m/oshd] is a multinomial logit with six mode or

service alternatives: car, bus, air, slow train (interregional, express), fast train (in-

tercity), and night train. The (generic) attributes considered for each mode are to-
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tal travel time and monetary cost. There are two different coefficients for monetary

cost, one for low-income users and the other for medium- to high-income users. This

accounts for the different willingness to pay and value of time of users with differ-

ent incomes, as described in Sect. 4.3.2. The values of time (VOT) perceived by

low-income and medium- to high-income users were found to be significantly dif-

ferent. In the example presented in Fig. 4.22 for the professional business purpose,

the VOT is approximately 5.5 Euros per hour for low-income travelers and 12.5

Euros per hour for medium- to high-income travelers. For recreation and tourism

and for other trip purposes, the VOT differences are less dramatic: for medium- to

high-income individuals, the value of time is approximately 50% higher than for

low-income travelers.

Other level-of-service attributes are also included in the model, such as the

number of transfers and the average headway for scheduled modes/services. These

modes also include a dummy variable equal to one if the destination zone is not a

medium or large city. The negative coefficient of this variable can be interpreted as

an (aggregated) measure of the difficulty of reaching the final destination from the

service terminal (e.g., station) in low-density zones, due to less extensive local pub-

lic transportation services. Finally, the model specification includes car availability

(number of cars divided by the number of licensed drivers in the household) as a

socioeconomic variable linked to the availability of that alternative.

The path choice model for the road network pi[k/oshdm] is also a multino-

mial logit model; the choice alternatives are obtained through an explicit path enu-

meration technique that eliminates heavily overlapping paths. The variables used

measure level-of-service exclusively. Path choice predictions for scheduled service

networks (slow train, fast train, bus, and air) are made by applying a logit model to

a choice set of hyperpaths that are explicitly enumerated on the line-based network

with heuristic feasibility rules. Path choice models are applied to origin–destination

matrices by mode and trip purpose; these are obtained with the aggregation tech-

nique described below.

The aggregation procedure estimates aggregate origin–destination demand flows

starting from individual representative trips. Because the models described involve

multiple socioeconomic variables at the individual and household level, it would not

be feasible to identify user classes characterized by equal values of these attributes.

The aggregation procedure is based on the sample enumeration technique described

in Sect. 3.7 with the identification of a representative sample of individuals and

households and the application of zonal expansion factors calculated to match zonal

values of aggregate target variables.

4.4 Trip-Chaining Demand Models*

As was stated in Sect. 4.1, traditional travel-demand models represent the trips that

comprise a journey (a sequence of trips starting and ending at home) assuming that

the decisions (choices) made for each trip are independent of those made for other

trips in the same journey. It was also noted that these assumptions are reasonable
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ρ2 = 0.758 Time Mon. cost Mon. cost Car Nonurban No. of Time Asa

[h] low inc. med-high avail. destin. transf. headway Train Air Bus

[€] [€] (0/1) [h] IR IC Nite

Car −1.23 −0.22 −0.098 3.81

Interregional −1.23 −0.22 −0.098 −3.72 −0.97 −0.60 0.95

Interurban −1.23 −0.22 −0.098 −3.72 −0.97 −0.60 −0.54

Night −1.23 −0.22 −0.098 −3.72 −0.97 −0.60 9.96

Air −1.23 −0.22 −0.098 −3.72 −0.97 −0.60 −1.62

Bus −1.23 −0.22 −0.098 −3.72 −0.97 −0.60 −2.31

t −26.2 −5.4 −15.7 30.3 −18.0 −5.4 −24.0 −0.6 −4.4 3.6 −12.7 −14.4

Fig. 4.22 Mode and service choice model: for professional business
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Fig. 4.23 Examples of round-trip and chain journeys

when the journey is a “round-trip” with a single destination and two symmetric

trips.

However, human activities have become increasingly complex, especially in ur-

ban areas. One reflection of this in the domain of transportation is an increasing

number of journeys that connect multiple and disparate activities in different loca-

tions, that is, journeys consisting of sequences of trips that influence each other in

complex ways (Fig. 4.23). For example, if a personal car is not used for the first trip

in a journey, it will not be available for subsequent trips either. A number of demand

models have been proposed in the literature to address the sequence, or chain, of

trips making up a journey. Some of these models represent the activities carried out

(i.e., the different purposes of the journey) together with the trips that link them.

The mathematical models proposed to represent trip or activity chains do not

have a standard structure as, for example, trip demand models do. This is due both

to the relatively recent interest in these models (so there are fewer examples of

them), and to the greater complexity of the phenomenon to be represented.

However, the most commonly used modeling structure, and the one closest to the

structure described in the previous sections for single trips, is based on the concept

of a primary activity (destination) for a particular journey. In other words, it is as-

sumed that each journey is associated with a primary activity (or purpose), and that

this activity is conducted in a particular place, known as the primary destination.

Experimental studies suggest that the activity that the user perceives as primary for

a particular journey is determined by relatively few criteria. These include:

• Hierarchical level of purpose (in decreasing order, workplace or study, services

and professional business, other purposes)

• Duration of the activity (the primary activity is that which, within the highest

hierarchical level, takes the most time)

• Distance from zone of residence (the primary activity, given the same hierarchi-

cal level and duration, is that which is carried out in the place farthest from the

residence)
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Adopting this definition, a system of demand models for trip sequences (jour-

neys) can be specified with a partial share structure analogous to the standard four-

step model described in Sect. 4.2. To avoid excessively complicated notation, it is

assumed here that the journeys have at most two destinations (see Fig. 4.24). One

of the possible partial share structures for trip chaining is the following.

d i
od1d2o

[s1h1m1s2h2m2h3m3] = ni[o]pi[x = 1/os1h1](SE,T )

· pi[d1/os1h1](SE,T )

· pi[s2h2/osh1d1](SE,T )

· pi[d2/os1h1d1s2h2](SE,T )

· pi[h3/os1h1d1s2h2d2](SE,T )

· pi[m1m2m3/os1h1d1s2h2d2h3](SE,T )

(4.4.1)

where

d i
od1d2o

[s1m1h1s2m2h2m3h3] is the average number of journeys with origin in zone

o undertaken by users of class i and composed of trips for primary activ-

ity s1, carried out in zone d1 in time period h1, and secondary activity s2,

carried out in zone d2 in time period h2, and returning home in the time

period h3; these trips are undertaken with modes m1,m2, and m3, respec-

tively. Round-trips are a special case in which s2 is the return trip home, d2

coincides with the origin, and m3 and h3 are not meaningful

pi[x = 1/os1h1](SE,T ) is the frequency model expressing the probability that an

individual of class i living in zone o undertakes a journey21 for primary

purpose s1 in time period h1

pi[d1/os1h1](SE,T ) is the primary destination choice model; it gives the proba-

bility that the journey for primary purpose s1 undertaken in time period h1

by individuals of class i in zone o has its primary destination in zone d1

pi[s2h2/os1h1d1](SE,T ) is the journey type model; it gives the probability of un-

dertaking a trip for a secondary purpose s2 (which may or may not involve

a secondary activity) in time period h2 for a user of class i who has decided

to undertake a primary journey in d1 in time period h1. Note that the time

period h2 may be before or after h1; that is, the secondary destination may

be reached before or after the primary one, as indicated in Fig. 4.24. Fur-

thermore, if a trip is not undertaken for a secondary purpose, the journey is

a round-trip and s2 is the “return home” purpose

pi[d2/os1h1d1s2h2](SE,T ) is the secondary destination choice model, expressing

the probability of choosing zone d2 to carry out activity s2, if this is not the

21It is assumed that h1 is defined such that the probability of undertaking more than one journey

for the same purpose in the same time period is negligible.
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Fig. 4.24 Types of journey simulated by the model (4.4.1)

return trip home, in time period h2 for a user who is undertaking a journey

for primary purpose (activity) s1 in zone d1 in time period h1. This model

is obviously meaningless if the journey is a round-trip

pi[h3/os1h1d1s2h2d2](SE,T ) is the return home time period distribution model;

it gives the probability of returning home in time period h3, conditional on

all the elements that define the chain (os1h1d1s2d2h2) or round-trip (os1d1)

journey

pi[m1m2m3/os1h1d1s2h2d2h3](SE,T ) is the mode sequence choice model for the

entire sequence of trips conditional on the elements defining it. Note that

all mode choices are modeled simultaneously to take into account consis-

tency constraints between successive trips. Some modes (in particular pri-

vate modes) are available for later trips only if they have been used in the

first trip

In all of the above, the parameters SE and T denote, as usual, the vectors of

socioeconomic and level-of-service attributes included in the models.

Path choice models are equivalent to those described in Sect. 4.3.3. It is usually

assumed that the probability of choosing a certain path depends exclusively on the

origin–destination pair, the mode, and the time period of each single trip, and is

not influenced by other trips within the same journey. For this reason, they are not

presented here in order to simplify the analytical formulation.

Figure 4.25 is the graphical representation of the structure of the model systems

described here. It can be observed that, just as in trip-demand model systems, some

choice dimensions are conditional on others; for example, the journey type depends

on the primary destination, and the secondary destination depends on the journey

type and primary destination. Upper choice dimensions take into account the lower

ones through EMPU variables that are represented by dotted arrows in Fig. 4.25.

In the figure, some models in expression (4.4.1) have been further factored into the

product of two models. In particular, the trip frequency models (primary, secondary,

and return home) in a certain time period have been factored into the product of the

probability of undertaking the trip and the probability of choosing a certain time
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Fig. 4.25 Structure of a trip-chaining model system

period. The probability of returning home is assumed to be equal to one and is

therefore not modeled.

Different specifications of the whole sequence as well as of individual models

can be adopted within the partial share structure. A simplified model system that

represents trip-chaining travel demand in urban areas is given here as an example.

The overall model is a hierarchical logit, with inclusive logsum variables linking

the different choice dimensions; however, the distribution of trips (activities) in time

periods h1, h2, and h3 is assumed to be given. The system considers four possible

primary purposes: work, study, other purposes constrained by destination (profes-

sional business, personal services, medical treatment, etc.), and other purposes not

constrained by destination (shopping, recreational, other purposes).

The main models for primary purpose “other nonconstrained” are given below.

The mode choice model is not included inasmuch as it is analogous to those de-

scribed in previous sections, the only significant difference being that the choice

alternatives are not single modes or services but rather feasible combinations of

them, where feasibility is determined by the journey structure. For round-trip jour-

neys, it is assumed that the return mode is the same as the outward mode; for chain

journeys, it is assumed that if a car or motorcycle is used for the first trip, it must

be used for the next two; but all combinations of walking and public transportation

modes are possible.
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Yos1
EMP HSWF STU RETIRED NOJOURNEY

0.1904 −0.5879 0.06948 0.5017 0.3607 0.2795

t 14.6 −26.2 3.10 12.7 18.6 8.30

Fig. 4.26 Parameters of the journey frequency model for nonconstrained other purposes

Journey frequency model pi[x/os1h1](SE,T ). The journey frequency model is

a binomial logit with systematic utilities of the two alternatives (to undertake or not

a journey for the primary purpose) given by:

V i
journey s1

= β1Y
i
os1

+ β2EMP + β3HSWF + β4STU + β5OTHER

V i
Nojourney s1

= β6Nojourney
(4.4.2)

where

Y i
os1

ln
∑

d1
exp(V i

os1d1
) is the logsum variable corresponding to the primary

destination choice for purpose s1; it represents the accessibility of the res-

idence zone with respect to all the possible destinations where the primary

activity can be conducted

EMP is a dummy variable, equal to one if the individual is employed, zero oth-

erwise

HSWF is a dummy variable, equal to one if the individual is a housewife, zero

otherwise

STU is a dummy variable, equal to one if the individual is a high school or

university student, zero otherwise

RETIRED is a dummy variable, equal to one if the individual is retired, zero other-

wise

NOJOURNEY is the alternative specific attribute (ASA) of not undertaking a jour-

ney for primary purpose s1

Figure 4.26 presents the parameters calibrated for model (4.4.2) for an average

weekday. Accessibility of the residence zone increases the probability of under-

taking the journey and the logsum inclusive variable has a coefficient in the inter-

val (0,1). The occupational status (category) of the individual considerably influ-

ences the probability of undertaking journeys for nonconstrained other purposes;

employed individuals in particular show less utility for these trips compared with

other purposes, other things equal, probably because of their reduced time avail-

able.

Primary destination choice model pi[d1/os1h1](SE,T ). The primary destina-

tion choice model is a multinomial logit with a systematic utility function of the

form:

V i
od1s1h1

= β1Y
i
od1h1

+ β2SZd1/o + β3 ln(EMPretd1
+ β4EMPservd1

) (4.4.3)

where
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Yod1h1
SZd1/o Size EMPretd1

(103) EMPservd1
(103)

1.428 1.003 0.7725 1.000 0.065

t 19.1 9.70 19.4 – 2.73

Fig. 4.27 Parameters of the primary destination choice model for other unconstrained purposes

Y i
od1h1

ln
∑

m exp(V i
od1mh1

) is the mode choice logsum variable, which accounts

for the (dis)utility for user class i of moving from o to d1 in departure

interval h1 using the available transportation modes

SZd1/o is a dummy variable equal to one if the zone d1 is the residence zone o,

zero otherwise

EMPretd1
, EMPservd1

are the total employment in the retail and service sectors,

respectively, representing the attractiveness of each primary destination.

Because the number of actual elementary destinations in each zone is un-

known, this is approximated by means of a size function as described in

Sect. 4.3.1.2

The coefficients shown in Fig. 4.27 indicate an increase in a zone’s systematic

utility as its attractiveness grows. Furthermore, the systematic utility increases as the

logsum associated with mode choice increases or decreases the perceived mean cost.

Also, the residence zone has an extra utility, probably due to the approximations in

computing intrazonal level-of-service attributes.

Journey-type choice model pi[s2/os1h1d1h2](SE,T ). This model represents the

choice between two alternatives: either undertaking a further trip on the journey for

a secondary purpose (trip-chain journey) or returning home (round-trip journey).

The model is therefore binary logit with the following systematic utility functions.

Vchain = β1ML + β2EMP + β3STU + β4OTHER + β5MRNG

+ β6AFTN + β7EVNG (4.4.4)

Vround = β8ROUND + β9DACCod1

where

ML is a dummy variable, equal to one if the individual is male, zero otherwise

EMP is a dummy variable, equal to one if the person is employed, zero otherwise

STU is a dummy variable, equal to one if the person is a high school or university

student, zero otherwise

OTHER is a dummy variable, equal to one if the person is a housewife, retired, or

unemployed, zero otherwise

MRNG is a dummy variable, equal to one if the trip starts before 12:00 (h1 < 12),

zero otherwise

AFTN is a dummy variable, equal to one if the trip starts between 12:00 and 16:00

(12 < h1 < 16), zero otherwise

EVNG is a dummy variable, equal to one if the trip starts between 16:00 and 20:00

(16 < h1 < 20), zero otherwise

ROUND is the alternative specific attribute for the round-trip alternative
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ML EMP STU OTHER MRNG AFTN EVNG ROUND DACCod1

1.708 0.4185 1.107 −0.3559 0.5295 −1.311 0.1835 4.4640 0.3934

t 24.8 7.30 11.10 −4.80 8.60 −11.9 3.10 61.9 7.8

Fig. 4.28 Parameters of the journey type choice model for “other unconstrained” purposes

DACCod1
is the accessibility differential of the residence zone o and primary des-

tination zone d1; accessibilities are calculated as logsum variables with re-

spect to destination choice for the purpose being considered

The coefficients obtained from the calibrations are shown in Fig. 4.28. As can

be seen, employees and students have, all else equal, a greater utility for chained

trips, most likely because of their limited time budget. The systematic utility (and

therefore probability) of undertaking chain trips is higher during the morning than

the evening and, to an even greater extent, than the afternoon.

The role of the accessibility attribute DACCod deserves further comment. If a

residence zone has a larger accessibility with respect to the possible destinations for

“other unconstrained purposes” than the primary destination, the return home prob-

ability increases. On the other hand, if the residence zone has a lower accessibility,

the probability of undertaking a chain trip increases. All else equal, a person who

lives in the suburbs and undertakes a primary trip to the city center is more likely to

undertake a trip chain than a person in the opposite situation who, once home, can

undertake another journey for other purposes.

Secondary destination choice model pi[d2/os1h1s2h2](SE,T ). The secondary

destination choice model is a multinomial logit with systematic utility functions

similar to those described above for the primary destination choice model:

V i
od2

= β1Y
i
d1d2oh2

+ β2ZNo + β3 ln(EMPretd2
+ β4EMPservd2

) (4.4.5)

where

Y i
d1d2oh2

mode choice model logsum inclusive variable, accounting for the (dis)util-

ity of all modes from primary destination d1 to secondary potential desti-

nation d2 and to residence zone o

SZd2/o dummy variable equal to one if zone d2 is the residence zone o, zero other-

wise

EMPretd2
,EMPservd2

total employment in the retail and service sectors, respec-

tively; these are included in the size function, which expresses the attrac-

tiveness of zone d2 as a potential secondary destination

The coefficient estimates, shown in Fig. 4.29, are in line with expectations. All

else equal, they give a larger utility to secondary destinations with lower general-

ized transportation cost and larger attraction capacity (greater number of elementary

destinations).
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Y i
d1d2oh2

SZd2/o Size EMPretd2
(103) EMPserd2

(103)

0.417 1.865 0.684 1.0000 0.618

t 2.90 5.00 3.80 – 1.0

Fig. 4.29 Parameters of the secondary destination choice model for “other unconstrained” pur-

poses

4.5 Activity-Based Demand Models

Trip-chaining demand models provide the ability to represent relationships between

the different trips that constitute an individual’s travel chain, and so generalize con-

siderably conventional trip-based models. However, they do not address the fun-

damental factors that determine the actual formation and choice of particular trip-

chains and round-trips. To address such questions, it is necessary to consider ex-

plicitly the activities that individuals and households undertake, and that give rise

to travel demand. Models that derive travel patterns from a representation of these

more basic activities are called activity-based demand models. They are the subject

of active research, and operational models have been implemented in a few urban

areas.

This section provides a very brief overview of activity-based models and indi-

cates some of the challenges that development and application of these models must

confront. In view of the rapid pace of development in this area, specific current

models are not described; the interested reader may refer to the literature for such

information.

A number of factors account for the high level of interest in activity-based mod-

els. As noted above, the complexity of urban living has resulted in correspondingly

complex tripmaking behavior. Trip-chaining is an important component of this be-

havior, but conventional demand models ignore this and trip-chaining models only

predict choices from among pre-determined chains. Activity-based models, on the

other hand, offer the possibility of understanding and predicting both the formation

of trip-chains as well as the choice among them.

This improved understanding has very practical applications. Many of the ac-

tivity and transportation system interventions that have been proposed to manage

congestion can best be analyzed in terms of their effects on the activities from

which travel demand is derived. For example, telecommuting and more flexible

work schedules may affect the location and timing of work activities, and so also

the demand for and time periods of home–work trips. Similarly, road user charges

that vary by time of day or level of congestion affect the generalized travel cost that

users associate with travel at different times, but the impacts on travel demand in

different time periods depend in part on users’ ability to rearrange or reschedule the

activities that underlie their tripmaking. In both cases, the overall effect of the in-

tervention may be to cause users to reorganize their entire schedule of activities and

the resulting tripmaking. For example, greater work time flexibility may allow users

to shop on their way to work, and so eliminate a separate shopping trip formerly

made at a different time. Conversely, peak period road user charges may dissuade

users from combining shopping or other trips with their primary return trip home
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from work, and cause these purposes to be accomplished through separate trips in

off-peak periods.

As stated, activity-based models derive travel demand and its characteristics from

users’ involvement in other activities, for which the location and scheduling (tim-

ing and duration) are explicitly considered. The activities considered may include

those undertaken at home, as well as those that require travel. Most frequently,

activity-based models take residence and work locations as given, although some

researchers have proposed incorporating these longer-term decisions into the mod-

eling framework. Other distinguishing features of these models are their disaggre-

gate focus, generally considering households and the individuals within them to be

the basic decision-making units. In this context, the interrelationships between the

activity and travel decisions made by different members of a household must be ac-

counted for. Similarly, the identification of households and individuals in terms of

user classes reflects their activity needs, commitments, and constraints, in addition

to more conventional user class definition criteria such as income. This typically

entails a much more detailed description of household characteristics than is com-

mon in conventional models. Finally, the activity patterns predicted by the models

are translated into trip-chains, with the corresponding starting and ending locations,

time periods, modes, and other attributes of the individual trips in the chain.

Broadly speaking, activity-based models follow one of two alternative ap-

proaches. Econometric activity-based models represent the various activity pattern

and travel decisions using mathematical expressions that are susceptible to estima-

tion using econometric methods. These models are frequently of random utility type,

so the mathematical expressions specify the systematic utility functions and the as-

sociated distributions of the random residuals in a utility maximization framework,

and can be estimated using methods discussed elsewhere in this book.

Alternatively, activity-based models may be implemented as computer simula-

tions (generally probabilistic) of the activity and travel decision processes of individ-

ual households. These simulations may invoke random utility models to represent

some components of the decision processes, but they typically also apply additional

logic and rules to reflect aspects of the household’s decision protocols that may not

be convenient to express in purely mathematical form. A simulation model can re-

flect essentially any decision process that a household and its individual members

apply to decide about the nature, location, and timing of their activities and of the

trips between them. Of course, this generality brings with it considerable challenges

in specifying, estimating, and validating the model and its components.

Regardless of the model type, the development and application of activity-based

models must confront a number of difficult problems. To begin with, the data re-

quired to estimate and validate these models includes both conventional transporta-

tion survey data (describing the origins, destinations, purposes, times, modes, etc.

for a sample of trips or trip-chains) as well as surveys of household activities to

obtain details on household characteristics, in-home and outside activities, and con-

straints on decisions affecting activity participation and tripmaking. Particular mod-

els may require the collection of specific additional data such as stated preference

surveys for estimation.
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The number of possible activity organization and tripmaking choice alternatives

– combinations of specific activities, their ordering in time, their scheduling and

location, together with the travel mode and route taken to access them – is extremely

large. Thus, activity-based models must implement a choice set generation step that

prunes the set of possible alternatives to a smaller and more manageable size. In

econometric models, this is frequently done by application of simple heuristics that

generate a choice set that is considered reasonable. Simulation models may apply

more complex search and selection rules to identify the pertinent choice set.

In practice, activity-based models are generally applied at the level of individual

households (or of very detailed household classes), and their results are then ag-

gregated. Thus, application of these models requires quite detailed information on

the characteristics of households and individuals in the study area at the geographic

level of model zones or finer. Typical sources of current and forecast household

and population data do not generally provide breakdowns of the characteristics and

location of the population at the required levels of detail. Consequently, it is of-

ten necessary to generate a synthetic population whose aggregate attributes match

household and population characteristics known from available sources, and whose

detailed attributes represent a reasonable joint distribution of characteristics subject

to the aggregate constraints. (This can be thought of as filling in a multidimensional

table given constraints on sums or averages of its rows, columns, or other sets of

elements.)

For example, an activity-based model might require data on the occupational

status of each member of a household, whereas available statistics might provide

separate data on the distributions of household sizes, population ages, and occupa-

tional status of the working-age population by zone. A population generator would

then develop a set of households with complete specification of the occupational

status of their members, in such a way that the aggregate distributions are respected.

A number of methods have been proposed to generate synthetic populations from

standard data sources.

As mentioned, simulation-based models are generally probabilistic: repeated

model executions with identical data give different outputs. Thus, simulation mod-

els must typically be run multiple times to generate a set of realizations sufficient

to compute sample distributions, mean values, or other statistics of the output vari-

ables. Econometric models, which are typically based on random utility theory, may

provide probabilities directly; however, because a complete activity-based model

may comprise a number of separate econometric models, or include models for

which the output probabilities cannot be computed analytically, determining the

distribution or statistics of econometric model outputs may again require sampling

multiple times from the model.

Most applications of activity-based models determine only the mean values of

the model output variables: the average number of trip-chains having certain char-

acteristics. There is increasing interest, however, in applying these models in an inte-

grated supply–demand framework, where the model’s output trip-chains are loaded

on a network model and the resulting levels of service are fed back to the activity-

based model, iterating until consistency is achieved. In this case, use of the mean
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values of activity-based model output variables as inputs to the network model may

not give correct results because network levels of service vary nonlinearly with de-

mand. It would be more correct to include the network model with the activity-

based model in the sampling process, generating multiple joint realizations of both

activity-based and network model outputs, and deriving the desired output statistics

from the joint sample.

It can be seen that application of activity-based models involves a very consid-

erable amount of computation: sampling multiple times from a large number of de-

tailed household classes or even from a synthetic representation of every household

in a study area. Because of the long model run-times on conventional computing

hardware, there is increasing interest in running these models in high-performance

computing environments such as on supercomputers or on a computer cluster.

In conclusion, activity-based models are at the frontier of travel-demand model

development and application. They offer the prospect of representing very complex

aspects of travel behavior, but present a number of challenges that researchers and

advanced practitioners are working actively to overcome. Significant advances in

this area of travel-demand modeling can be expected in the future.

4.5.1 A Theoretical Reference Framework

In this section a possible theoretical formulation for the specification of a system

of models in activity-based-style is presented. The overall structure of the proposed

framework is shared by several models proposed in the literature and is shown in

Fig. 4.30.

This particular architecture aims to explicitly model all travel phenomena related

to activity pattern and travel choices: from household weekly activities to individual

single trips. It is composed of five submodels:

• Weekly household activity model, which reproduces the number and types of ac-

tivities carried out by households within a week

• Daily household activity model, which reproduces the distribution over days of

the week of all household activities

• Daily individual activity list model, which distributes daily activities among the

household components

• Daily individual activity pattern model, which combines the individual daily ac-

tivities leading to actual activity patterns and related trip-chain sequences

• Trip-chain model, which reproduces the organization of all trips provided within

an activity pattern

Figure 4.30 shows that each choice level is related to the previous and subsequent

levels. The three upper levels refer to longer-term decisions, because they reproduce

the activity organization among household members in a fixed period of time, and

the latter two levels represent shorter-term travel decisions. A possible approach to

deal with the reciprocal relationships among the different submodels is to frame the
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Fig. 4.30 Modeling

architecture

overall modeling architecture within a hierarchical model approach where each sub-

model is conditional upon previous ones and takes into account subsequent models

as in Fig. 4.2.

In the following subsections some more details are given for several submodels

mainly regarding a possible definition and formalization of the choice alternatives.

4.5.1.1 Weekly Household Activity Model

The model aims to reproduce the whole set of activities carried out by a household

within a week. Given a list of possible activities (work, study, shopping, sport, etc.),

the generic alternative wi is given by the set of activities carried out by a household

of type i within a week. Formally we may write:

wi =
(

xi
w;1, x

i
w;2, . . . , x

i
w;a, . . . , x

i
w;na

)

∀i ∈ {1,2, . . . , nh}, ∀wi ∈ {1,2, . . . ,Ci
w} (4.5.1)

where

xi
w;a

is the number of times that an activity of type a is performed by household

i within a week in alternative w

na is the number of possible activities

nh is the number of different household types

Ci
w is the choice set, that is, the set of all possible weekly sets of activities for

household i
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Just as an example, alternative wi could be composed by: xi
w,1 = 12 work activ-

ities, xi
w,2 = 8 study activities, and so on (assuming, for instance, that 1 stands for

Work and 2 for Study).

Relevant attributes are the household’s characteristics and may include the num-

ber and age of employed adults, the number and age of nonadults, the dwelling-

place, income, number of driving licenses, number of cars, and so on, as well as a

logsum variable related to the lower choice dimensions.

4.5.1.2 Daily Household Activity Model

In this case the model aims to reproduce how the set of weekly activities identified

by the previous model is split into daily activity sets. The generic alternatives d i
g/w ,

are given by any set of daily activities consistent with the weekly set of activities wi .

Formally we may write:

d i
g/w =

(

xi
g/w;1, x

i
g/w;2, . . . , x

i
g/w;a, . . . , x

i
g/w;na

)

∀g ∈ {1,2, . . . , ng = 7} (4.5.2)

where

ng(= 7) is the number of days in a week

xi
g/w;a

is the number of times that an activity of type a is carried out during day g

by the household of type i given the weekly household set of activities w

The following constraints have to be satisfied.

ng
∑

g=1

xi
g/w,a = xi

w,a ∀a ∈ {1,2, . . . , na}, ∀wi ∈ Ci
w, ∀i ∈ {1,2, . . . , nh} (4.5.3)

For example if, as in the previous example, xi
w,1 = 12 work activities, xi

w,2 = 8

study activities, the following conditions have to be satisfied.

7
∑

g=1

xi
g/w,1 = 12,

7
∑

g=1

xi
g/w,2 = 8 1 = Work, 2 = School

Constraints (4.5.3) implicitly define the choice set Ci
g/w of this choice dimen-

sion. However, it is useful in practical implementation to reduce the combinatorial

complexity of the problem by dropping alternatives which are manifestly unfeasi-

ble or unlikely to occur. Relevant attributes are in principle similar to those of the

previous models.
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4.5.1.3 Daily Individual Activity List Model

This submodel reproduces the distribution of daily activities among the components

of a household. This leads to daily individual activity lists that are the starting points

for reproducing the daily travel choices of each individual. In this case the generic

alternative ki
r/g,w is given by the daily activity list of each component r of household

i, that is, types and numbers of activities he carries out during a day g given the daily

set of household activities dg/w:

ki
r/g,dg/w

=
(

xi
r/g,dg/w;1, . . . , x

i
r/g,dg/w;a, . . . , x

i
r/g,dg/w;na

)

∀r ∈
{

1,2, . . . , ni
r

}

(4.5.4)

where

xi
r/g,dg/w;a

is the number of times that an activity of type a is carried out by compo-

nent r of household i in day g, given the daily set of household activities

dg/w

ni
r is the number of components of the type i household

The following constraints have to be satisfied.

ni
r

∑

r=1

xi
r/g,dg/w;a = xi

g/w;a ∀a ∈ {1,2, . . . , na}, ∀g ∈ {1,2, . . . , ng = 7},

∀wi ∈ Ci
w, ∀i ∈ {1,2, . . . , nh} (4.5.5)

Once again, constraints (4.5.5) implicitly define the choice set of this submodel

(Ci
r/g,w) but in order to reduce the combinatorial complexity of the problem, this

can be reduced by dropping unlikely activity lists.

Relevant attributes are also in this case similar to those of the previous models

but concern the specific individual and obviously include gender and occupational

status.

4.5.1.4 Activity Pattern and Trip-Chain Models

This model reproduces how different activity patterns can be generated from a given

daily individual activity list. Figure 4.31 exemplifies some possible activity patterns

(right) that can be generated from a given daily individual activity list (left).

It is worth noting that the daily individual activity list provides the number of

times each activity is carried out within the day (one in this case), except for home

which can be repeated several times. The number of times (minus one) activity home

is repeated in a given activity pattern implicitly determines the number of trip-chains

related to that activity pattern. For instance, three chains are associated with the

second activity pattern in Fig. 4.31 (H-P/D-O-H-W-H-L-H) because activity home

is replicated four times.



4.6 Applications of Demand Models 235

Fig. 4.31 Activity pattern production from a given activity list

Also in this case the number of possible activity patterns that can be associated

with each activity list can be reduced by considering only those that are significant

in the observed sample.

Relevant attributes are also in this case socioeconomic characteristics of the indi-

vidual. The logsum variable related to the subsequent trip-chain model includes the

generalized costs of the different chains. Therefore the choice of the activity pattern

is influenced by the network congestion at different times of the day.

Given an activity pattern (i.e., a given succession of trip-chains), the role of the

trip chain model (which can be similar to that described in Sect. 4.4) is to reproduce

when and how these trip-chains are carried out within the day, introducing not only

consistency within the generic trip-chain (as described in Sect. 4.4) but also among

the different chains of the day, mainly in terms of activity duration and departure

time.

4.6 Applications of Demand Models

To conclude the discussion of passenger travel-demand models, it is useful to com-

ment on the nature, domains, and modalities of their application.

The “true” values of demand flows (present and predicted) are generally un-

known to the analyst and as such must be represented as random variables. Demand

models provide possibly unbiased estimates of the mean values of demand flows

having particular characteristics (user class, purpose, time period, origin, destina-

tion, mode, path, etc.). In some cases the variances and covariances of the estimates

can also be computed. For example, in a four-level demand model and a single trip

for each purpose s in time period h, the demand flow dod [s, h,m, k] can be modeled

as a multinomial random variable. In other words, the demand estimates obtained

with a partial share model are the mean (expected) values of random variables that,

assuming statistical independence of individual decisions, can be assumed to fol-

low a multinomial distribution. It is therefore possible to express the variances and

covariances of demand flows obtained from the models:

E
[

dod [shmk]
]

= n[osh]p[xdmk/osh]



236 4 Travel-Demand Models

Var
[

dod [shmk]
]

= n[osh]p[xdmk/osh]
[

1 − p[xdmk/osh]
]

(4.6.1)

Cov
[

dod [shmk]dod ′ [shm′k′]
]

= n[osh]p[xdmk/osh]p[xd ′m′k′/osh]

The actual deviations of model estimates from “true” demand flows are certainly

larger than what the variance (4.6.1) would suggest. After all, models, however so-

phisticated they may be, are only simplified representations of the complex phe-

nomena underlying mobility. The probabilities p[xdmk/osh] are therefore only

estimates of real percentages whose deviation (variance) can only be determined

empirically.

The practical uses of demand models fall into three categories: to estimate exist-

ing demand and its changes, for quantitative analysis of the characteristics of mo-

bility, and as components of the system of demand–supply interaction (assignment)

models. These three model application domains have a number of implications that

are briefly discussed below.

Estimation of existing demand and changes in it. This is the classic use of demand

models. Once specified and calibrated, models represent transportation demand and

can be applied to existing activity and transportation supply systems to estimate un-

known demand flows. Alternatively, the models can be used to forecast the changes

in travel demand brought about by changes in the activity and/or transportation sup-

ply systems. For both these applications, a variety of techniques is available depend-

ing on the application context, and the models and their outputs can be integrated

with other information available.

When models are applied to estimate existing demand and/or to predict changes

in it, model results must be aggregated in order to obtain estimates of total demand

flows between different origin–destination pairs. The different aggregation tech-

niques described in Sect. 3.7 for aggregate and disaggregate random utility models

can be used for this purpose. Aggregate models require aggregation by user class,

implicitly assumed in expression (4.2.2), whereas disaggregate models can be ag-

gregated using sample enumeration techniques with variables that correspond to the

present situation or that are predicted for a future scenario. These topics are dealt

with in more detail in Chap. 8.

Tools for quantitative mobility analysis. Demand models can also be used as

statistical tools for quantitative analysis of mobility phenomena. In this case the

models are seen as relationships that allow the influence on mobility of both socioe-

conomic and level-of-service variables to be evaluated. The emphasis here is not

on model application to obtain aggregate demand estimates (present or future) but

rather on specification and estimation of the coefficients of the model itself.

Some of the models described in this chapter could be used, for example, for a

quantitative analysis of the effects of factors such as age, sex, income, and occupa-

tional status on different aspects of mobility. For this use, the model variables might

be very detailed because neither their current values over the whole population of

travelers nor their future values are required.

Demand models for assignment to transportation networks. The outputs of de-

mand models are often used as inputs to assignment models, which predict the flows
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and service levels of various elements of the supply system in response to the de-

mand. For this type of application, the models are considered to be demand func-

tions. They express origin–destination flows by different modes during a time period

as a function of socioeconomic variables SE and of generalized path costs g. Path

choice models are typically incorporated in the assignment models themselves.

In formulating assignment models, demand models are represented with a nota-

tion that is slightly different from the one used thus far. Because assignment models

incorporate path choice, the path choice model is separated from those on other

levels (choice dimensions). In this case, the generic partial share model becomes

d i
od [hmk](SE,T ) = d i

od [hm](SE,T )pi
od,k

(

gi
od,m

)

where, as shown in more detail in Chap. 5, gi
od,m is the vector of generalized path

costs corresponding to the O-D pair od on the mode m network and to user class i,

and path choice attributes other than those that contribute to the generalized trans-

portation cost are implicit. As stated in Sect. 4.3.3, path cost is the negative of sys-

tematic utility, Vk = −gk . Generalized path costs gi
od,m convert to common (cost)

units the different components of the vector T . It should also be noted that trip

purpose s does not appear explicitly in the previous expression because, in an as-

signment context, the index i will denote the user group defined by the pair (user

class, trip purpose).22

In assignment models the aggregate O-D flow for user class i is denoted by d i
odm

if the demand is considered inelastic (not affected by variations in generalized costs

due to network congestion), and by d i
odm(s(g)) if the demand is considered elas-

tic in some or all dimensions. In elastic demand models, changes in other choice

dimensions resulting from path cost changes are predicted using the EMPU vari-

able sm/od , corresponding to path choice on the mode network m in time period

h for users of class i. The EMPU variables for all O-D pairs can be arranged in a

column vector sm. The different notation for demand flow d i
odm and demand func-

tions d i
odm(s(g)) does not mean that the latter cannot be obtained with the demand

models described in this chapter. Rather, it underlines the dependence of demand on

congestion-related costs in the analysis of interactions between elastic demand and

supply (elastic demand assignment models). This notation is taken up in more detail

in Chap. 5.

22Because a user class consists of individuals who can be represented by the same demand models

(alternatives, parameters, and attributes), its definition depends on the models themselves, includ-

ing the travel choice dimensions that they address. In Chap. 5 the classes are defined in terms of

path choice models. Given the reduced number of attributes in these models, fewer classes might

be used for assignment than for other choice dimensions. The assignment model classes can often

be obtained by aggregating the more detailed classes. This is particularly true for individual-level

models where, for the assignment model, individual trips can be aggregated to obtain O-D trip

matrices for a given user group.
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4.7 Freight Transportation Demand Models*

The demand for freight transportation is closely connected to the production and dis-

tribution of goods, that is, to the study area’s economic system and its interactions

with the external economic system. Many of the definitions presented for passenger

travel demand can be extended to freight transportation demand, although their in-

terpretation is in general very different. A system of freight demand models can be

formally expressed as

dod [K1,K2, . . .] = d(SE,T ,β) (4.7.1)

Here, demand flows represent movements of freight quantities (usually expressed

in tons); the relevant characteristics, K1,K2, . . . , are normally associated with com-

modity type (raw materials, semifinished products, finished products, etc.), with sec-

tors of economic activity, with characteristics of firms (e.g., firm size, logistic orga-

nization), transportation characteristics (e.g., shipping frequency, size, and value)

as well as with transportation modes.23 The SE variables reflect the economics of

production (value of production by sector, number, and size of production units,

etc.) and consumption (household consumption, imports, etc.); and the transporta-

tion system variables T are related as before to the attributes of the different trans-

portation modes and services (times, costs, service reliability, etc.). Vector β denotes

as usual the model coefficients; it is not explicitly included in the discussion below.

These considerations suggest that the mechanisms underlying the formation of

freight transportation demand and its fulfillment by transportation services are con-

siderably more complex and interrelated than those for passenger demand. There

is no single decision-maker for freight, but rather a complex and connected set of

decision-makers responsible for production, logistics (storage and shipping), distri-

bution, and marketing.

Schematically, the decision-makers who influence the level and composition

of freight transportation demand can be grouped into three categories. Producers

of goods and services decide how much and how to produce, and where and at

what prices to sell; consumers, either intermediate (production companies) or final

(households, businesses, public agencies), decide how much and what to consume;

and transportation companies24 decide how to provide transportation services.

Some of the classifications of passenger demand models can be extended to

freight models. Models can be disaggregate or aggregate depending on whether

their variables refer to disaggregate units such as individual companies or individ-

ual shipments, or to aggregate units such as all the companies of a given category

23The concept of mode is quite different in freight and passenger transportation. In freight trans-

portation, it encompasses both physical (the sequence of transportation modes used for a con-

signment) and organizational (the sequence of entities that are responsible for the transportation)

aspects of the movement. As a consequence, some authors consider freight mode choice as a choice

of transportation service rather than of transportation mode.

24In practice, the entities involved in freight transportation supply are often classified as shippers,

who organize the whole shipment, and carriers, who provide the actual transportation service(s).
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and/or economic sector. Furthermore, freight demand models can be behavioral or

descriptive depending on whether they are based on explicit assumptions regard-

ing the behavior of market agents, or on empirical relationships between freight

transportation demand and causal variables corresponding to the economic and/or

transportation system.

Freight transportation demand models have been studied and applied to a lesser

extent than passenger models, mainly because of the complexity of the underly-

ing phenomena that influence freight transportation. There is no universal paradigm

but rather only individual examples, which depend on the type of application and

the data available. Just as with four-step passenger demand models, described in

Sect. 4.2, the most recent and sophisticated freight demand model systems result

from the integration of macroeconomic models, which represent the level (quantity)

and spatial distribution of goods exchanged among different economic zones (lead-

ing to origin–destination matrices); and of transportation models, which simulate

mode and path choice. Moreover, models that explicitly disaggregate macroeco-

nomic demand to lower-level geographic units are often required in order to guar-

antee consistency among the different geographic units (e.g., zones) used at each

modeling stage.

There is a broad and well-established body of literature on macroeconomic mod-

els; some suggestions for in-depth reading are presented in the bibliographical notes.

In general, macroeconomic models can be classified based on their geographic level

(international, national, regional/urban) and their adopted approach (generation, dis-

tribution, and joint generation–distribution models). Generation and distribution

models have the same structure as the corresponding passenger models: the former

are usually regression models or, rarely, random utility models, and the latter are

singly constrained entropy/gravity or linear programming models. Joint generation–

distribution models directly determine the origin–destination matrix through explicit

representation of the pattern of economic exchanges among study area subareas and

from/to external areas. Models in this category include Spatial Price Equilibrium

(SPE), Computable General Equilibrium (CGE), and input–output models; in some

applications doubly constrained gravity models are also applied.

SPE models represent the production and consumption of each zone and each

economic sector through supply and demand curves that depend on prices. The de-

termination of equilibrium prices, volumes of exchanged goods and transportation

costs can be formulated, under certain assumptions, as a nonlinear programming

problem subject to linear constraints. Although SPE models can be extended and

generalized in a variety of ways, they have been criticized as lacking realism be-

cause of the deterministic assumptions embodied in some model formulations, ac-

cording to which goods are traded between two zones only if the sale price in the

origin (production) zone plus the transportation cost is equal to the sale price in

the destination (consumption) zone. This leads to positive demand flows for a few

origin–destination pairs and zero for the others (contrary to empirical evidence).

Even if a modified model formulation, called dispersed SPE (DSPE), partially over-

comes this problem, other limits remain; many of these are due to the use of zonal

demand and supply functions that do not take into account the relationships between

economic sectors, and to the lack of data for calibrating these functions.
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CGE models explicitly represent the economic behavior of households, govern-

ment, and businesses, and represent the whole pattern of economic exchanges as

the solution of an equilibrium problem. This formulation can take into account the

spatial dimension of the problem and the effects of transportation level-of-service

attributes (spatial CGE or SCGE models). Although the results to date are very en-

couraging, there are few examples of SCGE models of large-scale problems, mainly

due to the lack of data needed for model calibration and application.

Input–output models start with an explicit representation of the interdependen-

cies among the different sectors of the economy to predict the quantity of goods

produced by and exchanged among different zones. This group includes a variety

of models that differ from each other with respect to the elements of the economic

system that they consider as fixed or variable, and with respect to their implicit or

explicit representation of the price system. These models, when formulated at a re-

gional level, have proved to be very flexible and practical tools. In this application

they are called MultiRegional Input–Output (MRIO) models. They are described in

the next section.

As previously stated, macroeconomic models are usually coupled with trans-

portation models (typically mode and path choice models), which in most cases are

identical to those already described for passenger transportation. Innovative models

that use the tour-based approaches described in Sect. 4.4 to explicitly represent the

choice of a transportation service rather than a transportation mode have also been

described in the literature.

In the following, the general structure of multiregional input–output models is

described (Sect. 4.7.1), and some models for freight mode choice are described in

Sect. 4.7.2. Examples of both model types are drawn from an integrated model sys-

tem that was used to predict freight demand in Italy, and whose structure is repre-

sented in Fig. 4.32.

4.7.1 Multiregional Input–Output (MRIO) models

The application of macroeconomic models to freight demand prediction usually in-

volves two phases, as illustrated in Fig. 4.32. The first phase predicts the exchange

(or trade) between economic sectors and regions in monetary terms; the second

phase transforms these monetary exchanges into quantity exchanges (tons). This

results in O-D matrices that are inputs to mode/service and path choice models.

A multiregional input–output model can be used for the first phase.

Such models assume that the study area is divided into nz zones in accordance

with the zoning principles described in Chap. 1. It should be noted that applica-

tions of macroeconomic models tend to use relatively large zones; this is due to the

geographic level at which the statistical information required by the model is typ-

ically reported. Indeed, zones frequently coincide with entire geographic regions,

hence the name MRIO. The transition to a finer zoning system, which is necessary

for the representation of mode choice and network assignment, can be conducted in
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Fig. 4.32 Model system structure for freight transportation demand

the second phase, where monetary values are transformed into physical quantities,

for example, using descriptive demand models. (Except where otherwise noted, the

terms zone and region have equivalent meanings in the discussion below.)

Economic activities are divided into ns sectors that represent the production and

consumption of goods (e.g., agriculture and industrial sectors) or services (e.g.,

banking and commerce). The various actors within each sector are assumed to be

homogeneous with respect to their economic behavior. A large number of small

sectors would tend to ensure a more accurate description of significant economic

phenomena and greater plausibility of the assumption of behavioral homogeneity;
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Sectors

Goods 1 Agriculture, forestry, and fisheries
manufacturing 2 Energy products

3 Ferrous and nonferrous minerals and metals

4 Nonmetallic minerals and products
5 Chemical and pharmaceutical products
6 Metal products and machinery
7 Means of transportation
8 Foods, drinks, and tobacco
9 Textile products, clothing, leather goods, and footwear

10 Paper, paper products, printing and publishing, other industrial products
11 Wood, rubber

Service 12 Buildings and civil engineering
sectors 13 Retail, hotels, and public utilities

14 Transportation and communication

15 Banking and insurance
16 Other services for sale
17 Services not for sale

Final demand components

Household consumption

Public consumption

Investments

Changes in stock levels

a

Region i Sectors of production Final demand Regional export International

S1 . . . Sm . . . export

Sectors of production S1 . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .

Sn . . . . . . Knm
i . . . Y n

i Y n
REGi Y n

ESTi

. . . . . . . . . . . . . . . . . . . . . . . .

Added value . . . . . . . . . . . .

Value of production . . . . . . Xm
i . . .

Regional import . . . . . . Jm
REGi . . .

International import . . . . . . Jm
ESTi . . .

b

Fig. 4.33 a Sectors of the economy and components of final demand for the national model.

b Simplified structure of a regional input–output table

on the other hand, in practice it is necessary to take into account the aggregation

levels of available data. Figure 4.33a shows the 17 macrosectors used to represent

the Italian economy for the above-mentioned system of national models.

As stated, input–output models use a table of sectoral interdependencies to repre-

sent the pattern of economic exchanges among sectors in a region. This fundamental

instrument of economic analysis, known as a regional input–output table, is schema-

tized in Fig. 4.33b; all variables are measured in monetary units, usually with respect

to a given year.
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To give a formal description of the MRIO model, it is necessary to introduce

some new variables. Consider a zone (region) i and let:

Kmn
i be the value of the production in sector m (intermediate demand) used for

the production of sector n in zone I

Ym
i be the value of final demand of sector m in zone i. Figure 4.33a illustrates

the final demand elements taken into account in the Italian national model

Y be the vector of final demand, with dimensions (nz · ns × 1), obtained by

ordering the elements Ym
i for each sector m and each zone I 25

Ym
REGi be the value of exports in sector m from zone i to all other zones of the

study area

Y REG be the vector of zonal exports, with dimensions (nz · ns × 1)

Ym
ESTi be the value of exports in sector m from zone i to outside the study area

Y EST be the vector of exports from the study area, with dimensions (nz · ns × 1)

Xm
i be the value of total production of sector m in zone i

X be the vector of total production, with dimensions (nz · ns × 1)

Jm
REGi be the value of imports in sector m to zone i from all other zones of the

study area

J REG be the vector of zonal imports of dimensions (nz · ns × 1)

Jm
ESTi be the value of imports in sector m to zone i from outside the study area

J EST be the vector of imports from outside the study area of dimensions

(nz · ns × 1)

In detail, variables Kmn
i define a block of dimension ns · ns in the input–output

table: a row m describes the value of the goods and services of sector m used for

production by each other sector n of zone i. For instance, part of the output of the

engineering industry (industrial machinery) may be used to produce goods within

the same sector or used in other industrial sectors (e.g., the textile industry) or used

for the production of services (such as office equipment). On the contrary a column n

identifies the value of goods and services of each sector m needed for production of

n in zone i. For instance, the production of goods in the chemical industry requires

goods and services from all the other sectors (e.g., industrial machinery and metal

products).

The sum of variables Kmn
j of row m, of the final demand and of the exports

(to outside the study area) of goods and services of sector m from zone i provides

the total demand for goods of sector m in zone i. Similarly, the sum of the variables

Kmn
j of column n and of the value added provides the production value Xn

i of goods

and services of sector n in zone i; the sum of production Xn
i and imports (from other

zones and from outside the study area) of sector n to zone i defines the total supply

(availability) of goods and services of sector n in i.

In the context of a multiregional study, the input–output table in question refers

to a single zone, having exchanges both with other zones in the study area as well

25The structure presented here for vector Y is the same for all the vectors presented below, and is

not repeated.



244 4 Travel-Demand Models

as with the external world. This approach can also be applied in a national input–

output table, but in this case would take into account only trade with the rest of the

world.

In light of the above, an equilibrium condition between the supply (column sum)

and demand (row sum) of goods and services of sector m in zone i can be written

as follows.

Xm
i + Jm

REGi + Jm
ESTi =

∑

n

Kmn
i + Ym

i + Ym
REGi + Ym

ESTi (4.7.2)

All input–output models can be derived starting from the system of nz ·ns (4.7.2).

In applications, interest generally lies in assessing the production changes that result

from changes in final demand and/or transportation supply; input–output models

that consider the nz · ns production values Xm
i as unknowns to be solved for are

called demand-driven models.

In order to derive a demand-driven MRIO model from equilibrium condition

(4.7.2), it is first necessary to express the relationship between the (monetary) values

of production and intermediate demand by defining technical coefficients amn
i :

amn
i =

Kmn
i

Xn
i

which represent the value of the product of sector m (input) required to produce

a unit of value of sector n (output) in zone i. These coefficients depend on the

production technologies available in zone i; in general, the lower the coefficient

amn
i , the more efficient is production in i because a lower input value is required to

produce an output unit. The elements amn
i corresponding to a given zone i can be

ordered in a square matrix Ai(ns ×ns), known as the matrix of technical coefficients

of zone i. Different zones may have different production technologies and technical

coefficient matrices. The matrices Ai can be arranged in a block diagonal matrix A

of dimensions (nz · ns × nz · ns), in which each block relates to a zone. Figure 4.34

presents an example of some of the variables introduced, for a 3-region, 2-sector

system (market).

Moreover, the specific other zones in the study area that are associated with the

economic quantities of a given zone i (intermediate demand for production, im-

port/export values, final demand) in (4.7.2) must be explicitly represented, through

trade coefficients, in order to calculate interregional freight flows. Apart from some

exceptions (discussed below), trade coefficients cannot generally be derived from

the input–output table and therefore have to be estimated from surveys. Unlike tech-

nical coefficients, trade coefficients have been defined in a variety of different ways

in the literature, each definition leading to a somewhat different formulation of the

MRIO model. According to the first formulation proposed, a trade coefficient tmn
ji

expresses the percentage of goods and services of sector m in zone j that is used

for producing goods and services of sector n in zone i. Because it is difficult to ob-

tain the percentages tmn
ji directly, trade coefficients can be hypothesized independent
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Vector of Production by Sector X (3 · 2 × 1)

Region A Sector 1 X1
A

Sector 2 X2
A

Region B Sector 1 X1
B

Sector 2 X2
B

Region C Sector 1 X1
C

Sector 2 X2
C

Matrix of Technical Coefficients A (3 · 2 × 3 · 2)

Region A Region B Region C

Sector 1 Sector 2 Sector 1 Sector 2 Sector 1 Sector 2

Region A Sector 1 a11
A a12

A 0 0 0 0

Sector 2 a21
A a22

A 0 0 0 0

Region B Sector 1 0 0 a11
B a12

B 0 0

Sector 2 0 0 a21
B a22

B 0 0

Region C Sector 1 0 0 0 0 a11
C a12

C

Sector 2 0 0 0 0 a21
C a22

C

Matrix of Exchange or Trade Coefficients T (3 · 2 × 3 · 2)

Region A Region B Region C

Sector 1 Sector 2 Sector 1 Sector 2 Sector 1 Sector 2

Region A Sector 1 t1
AA 0 t1

AB 0 t1
AC 0

Sector 2 0 t2
AA 0 t2

AB 0 t2
AC

Region B Sector 1 t1
BA 0 t1

BB 0 t1
BC 0

Sector 2 0 t2
BA 0 t2

BB 0 t2
BC

Region C Sector 1 t1
CA 0 t1

CB 0 t1
CC 0

Sector 2 0 t2
CA 0 t2

CB 0 t2
CC

O/D Matrix of Value Exchanges N (3 · 2 × 3 · 2)

Region A Region B Region C

Sector 1 Sector 2 Sector 1 Sector 2 Sector 1 Sector 2

Region A Sector 1 N11
AA N12

AA N11
AB N12

AB N11
AC N12

AC

Sector 2 N21
AA N22

AA N21
AB N22

AB N21
AC N22

AC

Region B Sector 1 N11
BA N12

BA N11
BB N12

BB N11
BC N12

BC

Sector 2 N21
BA N22

BA N21
BB N22

BB N21
BC N22

BC

Region C Sector 1 N11
CA N12

CA N11
CB N12

CB N11
CC N12

CC

Sector 2 N21
CA N22

CA N21
CB N22

CB N21
CC N22

CC

Fig. 4.34 Variables for a 3-region, 2-sector MRIO model
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of the usage sector in the destination zone, that is, tmn
ji = tmji∀n, thereby making it

possible to estimate them. This assumption yields the constraint:

tmei +
∑

j

tmji = 1 (4.7.3)

where tmei represents the external (outside the study area) trade coefficients and the

sum extends over all study area zones. Trade coefficients can be arranged in a matrix

T , known as the exchange or trade matrix, of dimensions (nz ·ns ×nz ·ns), in which,

for each pair of zones, there is a square diagonal submatrix. Each diagonal element

of this submatrix provides, for the sector corresponding to the diagonal’s row and

column, the trade coefficient between the two zones. Note that the external trade

coefficients tmei do not appear explicitly in matrix T , but instead influence the matrix

values through constraint (4.7.3). Figure 4.34 presents an example of matrix T for

a 3-region, 2-sector system.

Below, a MRIO model is derived, starting from (4.7.2) and assuming technical

coefficients. Some extensions of the MRIO model, which allow for elasticity in the

trade and technical coefficients, are then presented.

MRIO model with constant coefficients. By introducing the trade coefficients de-

fined above, equilibrium condition (4.7.2) can be rewritten as follows.

Jm
REGi =

∑

n

∑

j �=i

tmjiK
mn
i +

∑

j �=i

tmjiY
m
i

=

(

∑

j �=i

tmji

)(

∑

n

Kmn
i + Ym

i

)

(4.7.4a)

Jm
ESTi =

∑

n

tmei K
mn
i + tmei Y

m
i = tmei

(

∑

n

Kmn
i + Ym

i

)

(4.7.4b)

∑

n

Kmn
i =

∑

n

tmii K
mn
i +

∑

n

∑

j �=i

tmjiK
mn
i +

∑

n

tmei K
mn
i (4.7.4c)

Ym
i = tmii Y

m
i +

∑

j �=i

tmjiY
m
i + tmeiY

m
i (4.7.4d)

Ym
REGi =

∑

n

∑

j �=i

tmij Kmn
j +

∑

j �=i

tmij Ym
j

=
∑

j �=i

[

tmij

(

∑

n

Kmn
j + Ym

j

)]

(4.7.4e)

Equations (4.7.4a) and (4.7.4b) indicate that imports, from other zones in the

study area and from the external world, respectively, of goods and services of sector

m in zone i are used both for production reuse and to satisfy final demand. Similarly,

(4.7.4c) and (4.7.4d) express that production reuse and final demand are satisfied

through both internal production and study area and external imports.



4.7 Freight Transportation Demand Models 247

The relations above also show that some of the trade coefficients, that is, tmii and

tmei , can be directly calculated from input–output tables. From (4.7.4b) it follows that

tmei =
Jm

ESTi
∑

n Kmn
i + Ym

i

(4.7.5)

and combining (4.7.3) with (4.7.4a) it follows that

tmii = 1 −
Jm

ESTi + Jm
REGi

∑

n Kmn
i + Ym

i

Substituting this expression for the technical coefficient into (4.7.4a)–(4.7.4e)

and the latter into equilibrium condition (4.7.2) yields:

Xm
i =

∑

n

∑

j

tmij amn
j Xn

j +
∑

j

tmij Ym
j + Ym

ESTi

which can be expressed in vector terms as

X = T AX + T Y + Y EST (4.7.6)

Model (4.7.6) is usually applied to predict regional production by sector, that

is, to calculate vector X, starting from scenarios (assumptions) about the vector of

study area final demand Y and external exports Y EST. Once the vector X has been

calculated, the matrix of O-D freight demands can be estimated, as shown later. The

MRIO model with constant coefficients assumes that the elements of matrices A

and T are constant and known (equal, e.g., to their current values). In this case, the

solution of the linear equation system (4.7.6) can be expressed in closed form as

X = (I − T A)−1 · (T Y + Y EST) (4.7.7)

where I is the identity matrix of dimensions (nz · ns × nz · ns).

The MRIO model (4.7.7) is known as a model with endogenous imports, be-

cause it represents a case where an increase in final demand is met by an increase

in both internal production as well as imports from outside the study area. In other

words, an increase in final demand Ym
i yields an increase in production Xm

i and

hence also in intermediate inputs Kmn
i , under the assumption of constant technical

coefficients. As a consequence, the denominator of (4.7.5) increases as Ym
i increases

and therefore, in order to keep the external trade coefficients constant, the numer-

ator represented by foreign imports also has to increase. Consequently, in a MRIO

model with endogenous imports the level of external imports increases consistently

with changes in final demand, whereas the ratio between external imports and total

availability, which can be seen as a measure of the dependence of the study area

economy on the external world, remains constant.

Figure 4.35 gives a numerical example of the application of model (4.7.7) to a

situation with three regions and two sectors. Analysis of the results provides some
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general indications about the performance of MRIO models. If a zone’s final de-

mand increases, the production in other zones also increases. The example presents

two scenarios. The second assumes an increase in the final demand of region A,

which causes an increase in production of the different sectors in the same region

and in other regions. Furthermore, the production increase in region B is greater than

that in region C because the former has higher exchange coefficients with region A

than the latter, for example, because of lower transportation costs. It can also be ob-

served that because the increase in final demand in region A is greater for sector 2

(+300) than for sector 1 (+200) and the production technology of sector 2 makes

greater use of intermediate products of the same sector, the production increase in

sector 2 is greater than that of sector 1 in all regions.

MRIO models with variable coefficients. Application of the MRIO model with

constant coefficients assumes that the exchange and technical coefficients are in-

dependent of variables such as production level, relative prices, and generalized

transportation costs. This hypothesis is only reasonable for short-term forecasts. To

overcome this limitation, various extensions of model (4.7.7) have been proposed in

which the exchange coefficients (matrix T ) and/or the technical production coeffi-

cients (matrix A) are expressed as functions of other transportation and economic

variables. In this sense, these extensions can be referred to as variable coefficient

models.

In an initial specification, known as a MRIO model with elastic trade coefficients,

the coefficients tmij are obtained from an explicit descriptive or random utility model

that simulates the choice of supply zone. It is usually assumed for a number of

reasons (product heterogeneity within sectors, market mechanisms differing from

pure competition, omitted attributes, etc.) that a zone’s imports come from multiple

zones (probabilistic model), rather than exclusively from the zone(s) that has (have)

minimum acquisition cost (deterministic model).

The systematic utility of acquiring from zone i the product m used in zone j,V m
ij ,

is usually a function of several variables among which are the total production of

sector m in zone i,Xm
i , and the average unit acquisition cost qm

ij :

V m
ij = V

(

Xm
i , qm

ij

)

(4.7.8)

In applications, acquisition source percentages are determined with a multino-

mial logit model:

tmij =
exp(V m

ij )
∑

k exp(V m
kj )

(4.7.9)

In general, then, the overall trade matrix is a function of the vector X and of the

acquisition cost matrix q .

T = T
(

V (X,q)
)

(4.7.10)

Interpretation of the attributes included in the specification of acquisition source

percentages requires further comment. The value of total production of sector m

in zone i,Xm
i , can be considered a proxy of supply diversity. This attribute should
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Technical Coefficient Matrix A (3 · 2 × 3 · 2)

Region A Region B Region C

Sector 1 Sector 2 Sector 1 Sector 2 Sector 1 Sector 2

Region A Sector 1 0.30 0.10 0.00 0.00 0.00 0.00

Sector 2 0.20 0.40 0.00 0.00 0.00 0.00

Region B Sector 1 0.00 0.00 0.40 0.20 0.00 0.00

Sector 2 0.00 0.00 0.30 0.70 0.00 0.00

Region C Sector 1 0.00 0.00 0.00 0.00 0.35 0.20

Sector 2 0.00 0.00 0.00 0.00 0.25 0.40

Matrix of Exchange or Trade Coefficients T (3 · 2 × 3 · 2)

Region A Region B Region C

Sector 1 Sector 2 Sector 1 Sector 2 Sector 1 Sector 2

Region A Sector 1 0.50 0.00 0.30 0.00 0.10 0.00

Sector 2 0.00 0.40 0.00 0.35 0.00 0.15

Region B Sector 1 0.30 0.00 0.60 0.00 0.20 0.00

Sector 2 0.00 0.35 0.00 0.50 0.00 0.25

Region C Sector 1 0.20 0.00 0.10 0.00 0.70 0.00

Sector 2 0.00 0.25 0.00 0.15 0.00 0.60

Vectors of final demand Y (2

hypotheses)

Vector of production by sector X

(3 · 2 × 1) for the 2 hypotheses Y

Sector Y 1 Y 2

Region A 1 100 300

2 200 500

Region B 1 400 400
2 200 200

Region C 1 300 300

2 300 300

Results

Sector X1 X2

Region A 1 498 697

2 734 1045

Region B 1 770 964

2 945 1290

Region C 1 625 766

2 771 1011

Fig. 4.35 Numerical example of a 3-region, 2-sector MRIO model, assuming no external trade

flows

actually be used through its logarithm (lnXm
i ) and considered as a size function (see

Sect. 4.3.1.2) expressing the unknown number of elementary choice alternatives. If

there were other attributes Mm
kj correlated to the number of production units, the size

function would have the more general expression:

ln

(

Xm
i +

∑

k

γkM
m
ki

)

A nonbehavioral interpretation of (4.7.8) and (4.7.9) simply reflects the obser-

vation zones with lower acquisition cost and larger productions are associated with

higher acquisition percentages. This may be due to agglomeration behavior in which

production units tend to be set up near their supply and/or distribution markets.

In the most general case, the average unit acquisition cost qm
ij can be expressed

as a function of the average unit price (price index) of products m in i,pm
i , and of
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the average unit transportation cost of product m from i to j, cm
ij :

qm
ij = pm

i + cm
ij (4.7.11)

The average unit transportation cost can in turn be expressed as a function of the

generalized transportation costs of the different modes/services available between

the two zones, either as a weighted average of these costs, or as the EMPU of a

random utility mode/service choice model. For example, in the national model used

as an example in this section, trade coefficients were determined through a multino-

mial logit model, in which the sale prices pm
i were assumed to have no influence

(i.e., were assumed equal for all zones). The specification of the systematic utility

adopted for this model was:

V m
ij = βm

1 Cm
ij + βm

2 Regionij + βm
3 ln

(

Xm
j

)

where

Cm
ij is the logsum of transportation costs derived from the mode choice model

Regionij is a same-zone dummy variable, equal to 1 if i = j , 0 otherwise

Xm
j is the total production of zone j in sector m

The MRIO model with elastic trade coefficients can be formally expressed by

substituting expression (4.7.10) in the general equation (4.7.6):

X∗ + J = T (X∗,q)AX∗ + T (X∗,q)Y (4.7.12)

In model (4.7.12) the production vector X can no longer be obtained as the so-

lution of a system of linear equations (4.7.7), because the coefficients are nonlinear

functions of the unknown vector X through the expressions (4.7.10). Calculation

of the vector X∗ can therefore be viewed as the solution of a fixed-point problem.

Theoretical properties and solution algorithms of fixed-point problems are briefly

described in Appendix A.

The model described can be further generalized in different ways depending on

which variables are endogenous, and therefore must be predicted. A model that ex-

plicitly represents the determination of average unit prices could be called MRIO

with elastic prices. Unit sale prices of product m in zone i,pm
i , depend on the aver-

age unit production cost of m in i, km
i , and on the unit value (labor, capital, profits,

etc.) added to production em
i . The former, in turn, depends on the average unit acqui-

sition cost of intermediate goods and services h required for production of m, q̄h
i . In

formal terms:

pm
i = km

i + em
i (4.7.13)

with

km
i =

∑

h

ahm
i q̄h

i

Note that in (4.7.13), the technical coefficients ahm are to be interpreted as the

quantity of product h required to produce a unit of product m in zone i. The average
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unit acquisition cost of h in i can in turn be expressed as a weighted average of the

unit acquisition costs from the different zones l that produce h:

q̄h
i =

∑

l

qh
li t

h
li (4.7.14)

From expressions (4.7.11), (4.7.13), and (4.7.14) it can be deduced that the vector

of unit acquisition costs depends on itself through prices, and on trade coefficients:

q∗ = f
[

q∗,T (X), . . .
]

In this case an equilibrium value q∗ must be found for the vector q . The prob-

lem (4.7.12) gets further complicated because q in this case also depends on the

unknown vector X.

The model can be further extended and generalized along several lines. One ex-

tension is to introduce production capacity constraints in the different zones. In this

case the price pm
i , or rather the added value em

i , can be expressed as a function of

the ratio between production demand Xm
i (given by (4.7.2)) and production capac-

ity. In other words, if the level of production that a sector requires for intermediate

and final uses exceeds the production capacity in zone i, the sale prices pm
i increase

and the acquisition percentages from that zone decrease (see (4.7.10)) until an equi-

librium configuration between demand and production capacity is reached.

Another line of extension is to express the dependence on prices of other key

variables, such as technical coefficients, imports, and household consumption. For

example, elements amn
i of matrix A can be replaced by functions amn

i (Xn
i ,qi) which

may depend on the total level of production of sector n in zone i,Xn
i , to take into

account (dis)economies of scale, and on the vector of average unit acquisition costs

for intermediate factors, to allow for possible substitutions between the factors as

functions of the relative acquisition costs. With (dis)economies of scale, the quan-

tity of product m required to produce a unit n diminishes (increases) as the total

production of n increases. For substitution effects involving the production of n, the

quantity of a product m whose acquisition cost is particularly high can be reduced

by using a greater quantity of another factor. In this type of model, added value fac-

tors, in particular labor, are usually included explicitly; furthermore, in determining

the final demand vector, the household consumption in a zone is usually assumed to

depend on the household income there.

Once the vector X of production for each sector and zone has been calculated

from expression (4.7.7) or (4.7.12), it is possible to compute the resulting exchange

or trade matrix N , whose elements Nnm
ij represent the value of sector n produced

in zone i and consumed by sector m in zone j . The trade matrix N has dimensions

(nz · ns × nz · ns) and is obtained by ordering blocks of dimensions (ns × ns), rep-

resenting, for a given zone pair, the monetary value of the products of each sector

of the production zone exchanged with each sector of the consumption zone. Fig-

ure 4.34 gives an example of the structure of the matrix N in a situation with three

regions and two sectors. Matrix N can be expressed as a function of the variables
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obtained by solving the input–output model or one of its generalizations such as

N = T ADg(X) + T Dg(Y ) (4.7.15)

where the matrices Dg(X) and Dg(Y ) are obtained by arranging the elements of

the vectors X and Y , respectively, along the main diagonal of a square matrix with

(nz · ns) rows and columns.

Finally, matrix N provides the total flows Nn
ij of goods produced in sector n in

zone i and consumed in zone j . These flows are expressed in monetary units and

can be computed by adding up the values corresponding to all consumption sectors:

Nn
ij =

∑

m

Nnm
ij

The last step is the transformation of the O-D matrices Nn
ij from values into

physical quantities (tons) by freight class (market segments). This transformation is

normally done using value/quantity coefficients estimated for the current situation,

and then modified exogenously according to the forecasting scenarios.26 Freight

classes, identified on the basis of shipment size and/or of the manufacturing com-

pany, are closely linked to the structure and attributes of the mode choice models

that are discussed in the next section.

In conclusion, a number of models having different levels of complexity and

different input data requirements are available for the prediction of freight trans-

portation demand. The most highly structured formulations of such models aim to

represent the entire economy and then derive from that the demand for trade in

goods. However, this wider approach requires a considerable amount of data, much

of which might not be necessary if the aim of the modeling is limited to the predic-

tion of freight transportation demand.

A further consideration concerns the interaction between macroeconomic and

transportation models. The formulations described above assume that generalized

transportation costs cm
ij are known. However, these depend on the production costs

of carriers such as road and railway haulage companies, which depend in turn on

a variety of factors including the level-of-service variables for the various modes

(travel times, congestion levels, etc.) as well as the carriers’ production structure

(production functions). It is therefore possible, at least in principle, to introduce

additional feedback cycles and related equilibrium problems between generalized

transportation costs and goods (and passenger) flows on the various modal networks

through mode and path choice models.

26Value/quantity transformation coefficients can differ significantly from unit market prices be-

cause they capture the differences between physical goods movements and commercial transac-

tions. For example, a single commercial transaction may correspond to several freight movements

due to intermediate storage locations and so on. Given the increasing relevance of freight logistics

on transportation demand, value/quantity transformation coefficients should be explicitly modeled

as functions of relevant variables of the logistic cycle of the industrial sector to which they apply.
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4.7.2 Freight Mode Choice Models

A number of formulations have been proposed for models that represent the choice

by freight shippers and carriers from among available transportation modes and ser-

vices. These models are derived using a variety of approaches (descriptive, micro-

economic, inventory, random utility). The following section discusses freight mode

choice models that are based on the random utility paradigm, because they are con-

sistent with the general approach to demand modeling adopted in this book, and

many of the models proposed using other approaches can be considered generaliza-

tions of random utility models.

Random utility models applied to represent freight mode choice can be character-

ized as aggregate or disaggregate according to the data used for their specification,

calibration, and application. Aggregate models are based on data and attributes cor-

responding to aggregate freight flows between different zones with available trans-

portation modes. These models mainly use level-of-service attributes (e.g., average

consignment times, average prices, etc.) Although they are simple to apply, aggre-

gate models have proved to have only limited analysis capabilities because many

important decision factors cannot be taken into account without a greater level of

disaggregation.

For these reasons, disaggregate mode choice models have been the more actively

studied in recent years. These typically follow the random utility paradigm and can

be divided into two types: consignment models, which represent mode choice for

individual consignments; and logistic models, which represent a sequence of logis-

tic choices including consignment size and frequency, as well as the transportation

mode.

Consignment mode choice models are more frequently used in applications. They

usually have a functional form that belongs to the logit family, most often of the

multinomial logit type although hierarchical logit models have also been proposed

in some applications. Choice alternatives typically correspond to the transporta-

tion modes available for a given consignment (truck, train, ship, air) and differ-

ent services are also frequently distinguished (e.g., conventional railway or inter-

modal road/railway). The level-of-service attributes normally used include travel

time, cost, and reliability. Other attributes frequently included in specifications cor-

respond to characteristics of the consignment (e.g., size, goods class, frequency) and

of the firm (e.g., annual invoicing, availability of own trucks, or availability of rail-

way sidings). Figure 4.36 shows an example of a consignment mode choice model

calibrated for the Italian national model.

Logistic mode choice models are newer and so far have had few applications

despite their theoretical interest and their usefulness for evaluating innovative sup-

ply combinations (logistic + transportation services). These models represent mode

choice in the context of the logistic decisions made by the firm that chooses the

transportation mode; depending on the particular situation, this firm might be the

vendor or purchaser of the items being transported. It is assumed that the choice of

a transportation mode depends on the logistic cost of its use, which in turn is made

up of different components such as
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Alternatives: Train, Road, Combined Rail + Road

Vtrain = βTt Tt + βMcMct + βp>30 · p > 30 + βHVG · HVG + βtrain · TRAIN

Vroad = βTr Tr + βMcMcr + βPSH · PSH

Vcombined = βTcTc + βMcMcc + βCOMB · COMB

Tt = Train travel time

Tr = Road travel time

Tc = Combined travel time

Mct = Train monetary cost

Mcr = Road monetary cost

Mcc = Combined monetary cost

p > 30 = Dummy variable: 1 if the shipment weights more than 30 t, 0 otherwise

PSH = Dummy variable: 1 if goods are perishable, 0 otherwise

HVG = Dummy variable: 1 for of high value goods, 0 otherwise

TRAIN = Alternative Specific Attributes (ASA)

COMB

Tt Tr Tc Mc p > 30 PSH HVG TRAIN COMB

−0.06 −0.15 −0.12 −1.47 1.20 0.86 −0.64 0.29 −3.34

t −1.7 −2.2 −2.0 −3.2 0.6 1.1 −1.2 0.5 −2.5

Fig. 4.36 Example of freight consignment mode choice model

• Costs associated with order management

• Costs of transportation (transportation service rates)

• Costs of loss and damage

• Costs of capital immobilized during transportation

• Costs of carrying inventory

• Costs of stockout (inadequate inventory to meet demand)

• Costs connected with the nonavailability or delayed arrival of equipment for

transportation

• Costs of unreliability (early or delayed arrival and related costs of longer storage

or stocking larger inventories)

Logistic costs depend on a number of factors such as the total (annual) quantity

of shipments during a given commercial relation, the average frequency and size of

the shipments, and the value of the goods. Furthermore, they depend on the char-

acteristics of the service offered by the different modes such as price, reliability of

shipment times, and the possibility of theft and damage. Direct information on all

the components of the logistic cost is very difficult to obtain, so it is assumed that

the systematic utility function for each mode j is a combination of variables Xi
jk

linked to the logistic cost items of a certain commercial relation i and that the coef-

ficients βk are the unknown cost factors. As things stand, considerable information

is required to specify and calibrate such models, and their current use is mostly lim-

ited to analysis of the factors that influence mode choice rather than to large-scale

applications.
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Reference Notes

The literature on transportation demand models is very broad and covers a period of

more than 40 years.

The first partial share demand model systems were formulated in the 1950s and

1960s although with time they have undergone a number of developments, both

formal and interpretive. A descriptive treatment of the traditional system can be

found in the books by Wilson (1974) and Hutchinson (1974).

Since the mid-1970s, a number of travel forecasting model systems based on

random utility theory have been proposed. Examples can be found in the books

by Domencich and McFadden (1975), Richards and Ben-Akiva (1975), Manheim

(1979), Ben-Akiva and Lerman (1985), and Ortuzar and Willumsen (2001). The

systems of random utility models proposed in the literature are mainly based on

factoring logit and hierarchical logit models. The general formulation of systems

of partial share models based on different random utility models integrated through

EMPU variables, as proposed in Sect. 4.2.1, is original.

Among the first examples of trip generation models based on cross-classification

tables, the work of Oi and Shuldiner (1962) should be mentioned. An example of be-

havioral models of trip frequency at the urban level is contained in Biggiero (1991),

and at the interurban level in Cascetta et al. (1995).

Distribution models with size functions were proposed by Richards and Ben-

Akiva (1975), Koppelman and Hauser (1978), and Kitamura et al. (1979); a sum-

mary can be found in Ben-Akiva and Lerman (1985). References to descriptive or

gravity distribution models can be found in Wilson (1974). An example of an urban

behavioral destination choice model with explicit choice set simulation is contained

in Cascetta and Papola (2009).

Descriptions of mode split models of the logit or nested logit type are extremely

numerous in the literature; the books by Ben-Akiva and Lerman (1985) and Ortuzar

and Willumsen (2001) give many examples.

Cascetta (1995) contains a systematic analysis of the different hypotheses under-

lying path choice models. Relatively few path choice models for road networks have

been calibrated from empirical data. Models of this type include those by Ben-Akiva

et al. (1984), Cascetta et al. (1995), and Russo and Vitetta (1995). Specification of

the probit path choice model is described in Sheffi (1985). The C-Logit model is

described in Cascetta et al. (1996). Vovsha and Bekhor (1998) proposed the first

cross-nested logit formulation for path choice, which they called link-nested logit.

Marzano and Papola (2004a) provide a comparison of the theoretical and opera-

tional properties of different random utility path choice models, and propose a new

cross-nested logit formulation for path choice, called path multilevel logit.

A systematic analysis of path choice models for schedule-based transit networks

is provided by Nuzzolo and Russo (1997) and by Nuzzolo et al. (2003). The inter-

pretation of pre-trip/en-route behavior is described in Cascetta and Nuzzolo (1986),

the concept of travel strategy is formulated in Spiess and Florian (1989), and the

representation of a travel strategy as a network hyperpath is proposed by Nguyen

and Pallottino (1988).
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Theoretical contributions and applications of trip frequency, distribution, mode,

and path choice models have been made for both urban and interurban contexts.

The most exhaustive Italian application in this field is the demand model system

for medium-size urban networks implemented within the context of the Progetto Fi-

nalizzato Trasporti sponsored by the CNR (National Council for Research), whose

results are summarized in Cascetta and Nuzzolo (1988). The system of interurban

travel-demand forecasting models described in Sect. 4.3.4 was calibrated for the

Italian National Modal System SIMPT and is described in Cascetta et al. (1995).

Several trip-chaining (journey) demand models are described in the literature; an

analysis and bibliographical commentary can be found in Ben-Akiva et al. (1996).

Trip-chaining models based on the concept of primary destination (activity) are de-

scribed in Antonisse et al. (1986) and Algers et al. (1993). The model system de-

scribed in Sect. 4.4 is based on the work of Cascetta et al. (1995).

One of the first contributions on the activity-based approach is given by Adler

and Ben-Akiva (1979) who proposed a model explicitly considering the daily activ-

ity program. An interesting review on the subject is provided by Jones et al. (1990).

Golob and McNally (1997) sought to explicitly model all the interactions within the

family and among the different activities of the day from both a spatial and a tempo-

ral perspective. Explicit activity participation models can be found in Ben-Akiva and

Bowman (1998) and in McNally (2000). Interesting recent contributions have been

made by Bhat et al. (2004), Olaru and Smith (2005), and Lee and McNally (2006),

whereas application to real cases can be found in Ben-Akiva and Bowman (1998),

Bowman and Ben-Akiva (2001) and in Bifulco et al. (2003) who also propose the

modeling architecture presented in this book.

The literature on freight demand models follows different classification criteria.

The contributions by Harker (1985), Picard and Nguyen (1987), Zlatoper and Aus-

trian (1989), Mazzarino (1997), and Regan and Garrido (2001), among others, are

noteworthy. SPE models are described in Frietz et al. (1983) and in the books by

Harker (1985, 1987). An introduction to CGE and SCGE models can be found in

Bergman (1990). A CGE model for predicting freight demand at a national level has

been proposed by Roson (1993).

Chenery (1953), Izard (1951), Moses (1955), and Leontief and Strout (1963) con-

tributed to the development of the MRIO model with constant coefficients. Miller

and Blair (1985) provide a systematic overview of input–output techniques. Leon-

tief and Costa (1987) and Costa and Roson (1988) propose some applications of

the MRIO model to freight transportation demand prediction. Application of the

MRIO model with elastic trade coefficients to Italian freight demand prediction is

described in Cascetta et al. (1996). Its generalization to include price equilibrium

and production constraints was introduced by de la Barra (1989) and, more recently,

by Zhao and Kockelman (2003), whose literature review provides further references.

The derivation of the MRIO model from the input–output table row–column balance

constraints is taken from Marzano and Papola (2004b), who also provide a taxon-

omy of different input–output models proposed in the literature.

The literature on freight mode split models is quite substantial. An analysis of

factors influencing the behavior of operators can be found in the volume by Bayliss
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(1988); analysis and classification of the different mode split models is provided

in Winston (1983); and examples of disaggregate consignment models calibrated

in Italy are in Nuzzolo and Russo (1995). Modenese Vieira (1992) and Russo and

Cartenì (2005) provide a description of the theoretical assumptions of logistic ran-

dom utility models together with some empirical results.



Chapter 5

Basic Static Assignment to Transportation
Networks

5.1 Introduction

Traffic assignment models simulate the interaction of demand and supply on a trans-

portation network. These models allow calculation of performance measures and

user flows for each supply element (network link), resulting from origin–destination

(O-D) demand flows, path choice behavior, and the mutual interactions between

supply and demand.

Assignment models combine the supply and demand models described in the pre-

vious chapters; for this reason they are also referred to as demand–supply interac-

tion models. More specifically, as seen in Chap. 4, path choices and flows depend on

generalized path costs; moreover, demand flows themselves are generally influenced

by path costs in choice dimensions such as mode and destination. Furthermore, as

seen in Chap. 2, link and path performance measures and costs generally depend

on flows as a result of congestion. There is therefore a circular dependency among

demand, flows, and costs; assignment models represent this dependency. Figure 5.1

illustrates the general modeling framework.

Assignment models play a central role in comprehensive transportation system

models because their outputs describe the state of the system, or rather, the mean

state and its variation. Assignment model outputs, in turn, are inputs required for

design and/or evaluation of transportation projects.

5.1.1 Classification of Assignment Models

The system state simulated through assignment models depends on assumptions

about user behavior (demand functions, path choice, available information) and the

approach used for representing supply–demand interactions. Several classification

criteria may be applied.

First, the fundamental classification factor for assignment models is the approach

used for studying supply and demand interactions. One approach, user equilibrium
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Fig. 5.1 Schematic representation of assignment models

assignment,1 represents equilibrium configurations of the system, that is, configura-

tions in which demand, path, and link flows are consistent with the costs that they

produce in the network. From a mathematical point of view, equilibrium assignment

can be defined as the problem of finding a flow vector that reproduces itself based

on the correspondence defined by the supply and demand models. This problem can

be easily formulated with fixed point models, or else with variational inequality or

optimization models, as shown in the following sections.

The alternative approach for representing supply–demand interactions leads to

between-period (or day-to-day) dynamic process assignment models. In this case it

1The concept of equilibrium in transportation systems can be compared with supply–demand equi-

librium in classical economics. The analogy, however, is more formal than substantial. As seen in

Chap. 2, transportation network “supply” (travel cost) functions express the average cost of using

a facility as a function of the number of its users. Economic supply functions, on the other hand,

relate the service quantity to be produced to the production cost and the sale price of the service. In

a given transportation system, and therefore for a given service supply, the equilibrium condition

defines the congruence between the demand and the functioning of the supply system, whereas

equilibrium in a market defines the congruence between the behavior of two “groups”: consumers

and producers. Furthermore, some special aspects of the transportation system, such as the network

structure of the supply, make the mathematical treatment of the problem more complex.
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is assumed that the system evolves over time (i.e., in successive reference periods),

through possibly different feasible states, as a result of changes in the number of

users undertaking trips, path choices, supply performance, and so on. One of the

mechanisms that drives the changes from one state to another is the dependency

between flows and costs. In a given reference period the system state – defined by

the demand, path, and link flows and the corresponding costs – may be internally

inconsistent, and this may cause a change towards a different state in the follow-

ing reference periods. Dynamic process assignment models explicitly simulate the

evolution of the system state based on the mechanisms underlying path choice and

information acquisition, which in turn determine user choices in successive refer-

ence periods. By analogy, equilibrium assignment could be termed within-day static

assignment. Dynamic process models can be further categorized as deterministic or

stochastic, depending on whether the system state is modeled using deterministic or

stochastic (random) variables.

The dependence of link performance variables on flows is the other main supply-

based classification factor. When link costs are independent of flows (i.e., congestion

effects are negligible), UNcongested network (UN) assignment models result. On

the other hand, if link costs depend on flows, congested network assignment models

are obtained.

Assignment models can be classified based on assumptions regarding supply

characteristics. The first classification factor is the nature of the transportation ser-

vice being represented; service can be classified as either continuous or scheduled,

as introduced in Chaps. 1 and 2.

Assignment models can be distinguished based on their hypotheses regarding

path choice behavior presented in Sect. 4.3.3. In general, the particular path fol-

lowed for a trip may result from a sequence of decisions made before and during

the trip; these are referred to as pre-trip and en-route choices, respectively. Pre-

trip choice, which takes place at the origin before a journey is begun, considers as

alternatives either single paths to be followed without deviation from origin to des-

tination, or decision strategies for en-route choice among paths. En-route choices

involve a strategy for determining the path to follow as a result of decisions made

during the journey in response to information received while traveling. Many models

consider only fully pre-trip behavior, where the pre-trip choice is between alterna-

tive O-D paths, and the chosen path is followed unswervingly to the destination. In

all cases, user choice takes into account the cost attributes of the choices offered by

the network. For example, the pre-trip path choice model represents the choice of

single paths or hyperpaths as a function of the corresponding cost attributes. Mod-

els based on random utility theory are typically used to simulate these choices. In

particular, deterministic choice models assume that the perceived utility of a path

is deterministic, and that users will only choose the alternative(s) having maximum

average utility (minimum average cost). On the other hand, probabilistic or stochas-

tic choice models assume that the perceived utility of a path is a random variable,

and express the probability that users will choose each of the available alternatives,

as described in Sect. 4.3.

With respect to demand segmentation, assignment models are called multiuser

class models if users are subdivided into several classes. Users in different classes
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Fig. 5.2 Assignment model

classification factors
Supply factors

Type of service Continuous

Scheduled

Congestion effects Uncongested networks

Congested networks

Demand factors

Demand segmentation Single user class

Multiple user classes

Demand elasticity Fixed demand

Variable demand

Path choice behavior Fully pre-trip

Pre-trip/en-route

Path choice model Deterministic

Probabilistic

Dynamics factors

Within-period variability Within-period static

Within-period dynamic

Demand–supply interaction User equilibrium

Deterministic dynamic process

Stochastic dynamic process

have distinct travel perceptions, behaviors, and/or impacts, whereas all users in a

given class are considered sufficiently similar that they can be represented by a sin-

gle model. In this way, different choice models might be applied to different trip

purposes or user socioeconomic categories such as income. Similarly, different ve-

hicle types (motorcycles, cars, commercial vehicles, etc.) might be represented in a

road network model. Single-user class assignment is a special case where all users

share the same choice model and have the same network effects, and are distin-

guished only in terms of their origins and destinations.

A demand-related classification factor is the dependence of O-D demands on

path performance measures and costs. Fixed (or inelastic) demand assignment mod-

els assume that O-D demand flows are independent of changes in network costs that

may occur as a result of congestion. Variable demand models, on the other hand,

assume that demand flows vary with congestion costs; demand flows are therefore

a function of path costs resulting from congestion, as well as of activity system at-

tributes. Depending on the modeling context, demand might be assumed variable in

certain choice dimensions only. For example, it might be assumed that the total O-D

matrix is cost-independent (meaning that frequency and destination choices are not

influenced by cost variations), but that mode choice is affected by the relative costs

of the available modes; in this way, multimode assignment models are obtained. Ob-

viously, from a practical viewpoint, demand elasticity is relevant only for congested

networks where costs depend on flows.

Transportation systems can be represented under two contrasting assumptions

regarding the within-period variability of their characteristics. This chapter does not

consider possible variations of demand and/or supply within the reference period
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considered for the network analysis (e.g., the morning peak-period). The assignment

models presented here are thus within-period (or within-day) static. This hypothesis

is realistic only if travel demand and supply characteristics can reasonably be as-

sumed constant over a reference period that is long compared to typical trip times in

the system. Thus static assignment models are mainly adopted for planning applica-

tions. Otherwise, within-period (or within-day) dynamic assignment models should

be adopted; these require extensions of the demand models and, to an even greater

extent, the supply models. Dynamic assignment models can also be classified using

the criteria discussed in this section; they are addressed in Chap. 7.

Figure 5.2 summarizes the different assignment model classification factors dis-

cussed above. The technical literature does not usually refer to assignment models

using such a complete taxonomy. Nonetheless, it is a useful exercise to classify an

assignment model according to the full set of factors considered here, as the as-

sumptions underlying the model are then clearly identified.

5.1.2 Fields of Application of Assignment Models

Models described above may be adopted for several types of application, as briefly

discussed in the following.

Assignment models as estimators of the present state of the transportation system. In

this monitoring application, the assignment model receives as inputs the present net-

work and O-D demand flows, and is applied to estimate other quantities that would

be too costly or complicated to measure directly. Typically the relevant variables

are the flows using different supply elements (road sections, intersection turning

movements, lines of public transport services, motorway toll barriers) represented

by links in the network model, the congestion levels of these elements (usually ex-

pressed by flow/capacity ratios or load factors), the performance attributes (travel

times, monetary costs etc.) comprising the generalized cost of links and paths (used

as inputs to demand models), and external impacts (emission and concentration of

air pollutants, noise levels, fuel consumption, traffic revenues, etc). In fact, although

costs and impacts were introduced and discussed in the presentation of supply mod-

els, in congested networks they depend on link flows and therefore cannot be calcu-

lated without the application of an assignment model and its estimated flows. The

results of assignment models can complement direct observations such as link flow

counts or path travel time measurements, because such observations are usually not

available for all elements of the system. The network variables listed can be used

both in project design (identification of critical points, analyses of supply inefficien-

cies, levels of accessibility, etc.), and in monitoring the effects of planned actions, as

shown in Chap. 10. For this type of application, fixed (present) demand assignment

models can be used.
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Assignment models for simulating the effects of modifications to the transportation

system. In this application, assignment models are used to estimate the changes in

relevant network variables due to changes in supply and/or demand. As shown in

Chap. 9, this is the typical application of representing models as design tools. The

relevant effects of different actions, or projects, are simulated in order to define the

technical elements of the project (design) and/or compare alternative hypotheses

(evaluation). In this application, the supply and demand models (or the input vari-

ables to demand functions) will correspond to the projects and to the future demand

scenarios (see Sect. 8.8). If the project network is congested, variable demand mod-

els should be adopted, at least for the demand dimensions that are expected to be

affected by the planned actions. Different assignment models can be adopted for the

design and evaluation phases. Computationally efficient models such as DUE are

often used for design, either through supply design models described in Chap. 9,

or through successive trials (inasmuch as several runs are usually required at this

stage). Assignment models used to provide measures that allow the comparison of

alternative projects should be able to simulate flows and other indicators as accu-

rately as possible, even at the cost of a greater computational effort, such as stochas-

tic assignment models.

Assignment models for the estimation of travel demand. Assignment models are

seeing increasing application for the estimation of O-D demand flows and/or for

the calibration of demand models. This type of application, which is dealt with at

length in Sects. 8.5 and 8.6, reverses the usual role of assignment models. When as-

signment models are used in this way, they provide relationships connecting present

(unknown) O-D flows to the traffic flows measured on some network links, rather

than predicting link traffic flows from known demand flows. For theoretical reasons

regarding the uniqueness of path choice probabilities and flows, it is preferable to

use probabilistic (stochastic) assignment models rather than deterministic ones for

this purpose.

This chapter describes the theoretical foundations and the structure of some of

the simplest algorithms for solving basic within-day static assignment models, say

single-class single-mode equilibrium assignment with fixed demand and fully pre-

trip path choice. Section 5.2 reviews the main definitions and hypotheses adopted in

the development of supply and demand models assuming a single-user class, fully

pre-trip path choice, and fixed demand. Then, under these hypotheses, uncongested

network assignment models and congested network equilibrium assignment models

are presented in Sects. 5.3 and 5.4, respectively. Section 5.5 reports some consider-

ations about application and calibration issues.

Extensions to combined pre-trip/en-route path choice behavior, assignment with

variable demand and/or multimodal systems, assignment with multiple user classes

and a general introduction to dynamic process assignment (which is still mainly a
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research topic), are described in Chap. 6. Extensions of supply, demand, and de-

mand/supply interaction models to within-period dynamic systems with continuous

or scheduled services are discussed in Chap. 7.

Algorithms described in Chaps. 5 and 6 are based on simple and effective solu-

tion approaches that are applicable to assignment models for large-scale networks.

However, exhaustive analysis of the many existing algorithms lies beyond the scope

of this book. Algorithms for the within-day dynamic assignment models presented

in Chap. 7 are still at a research stage and are not considered here.

5.2 Definitions, Assumptions, and Basic Equations

This section summarizes the definitions and assumptions underlying the demand

and supply models discussed in Chaps. 2 and 4, respectively. A single mode is con-

sidered here (single-mode assignment), and it is assumed that the O-D demand flows

for this mode are known and independent of the congested link costs (fixed-demand

assignment). It follows that path choice is the only choice dimension explicitly sim-

ulated. Users are considered to be homogeneous; that is, they share common behav-

ioral and cost characteristics regardless of trip purpose, and differ only in terms of

their origins and destinations (single-user class assignment). Also, path choice is

considered to be a completely pre-trip decision. These assumptions are not uncom-

mon in practical work, for example, in simple analyses of road networks.

The symbols and definitions introduced in Chaps. 2 and 4 are repeated below

for the convenience of the reader (to simplify notation, the underlying analysis time

band h and mode m are omitted, and user category i and trip purpose s are not

considered due to assumptions made above). Let:

o be a origin centroid node

d be a destination centroid node

od be an origin–destination pair

Kod be the set of paths for O-D pair od; each path k is uniquely associated with

one and only one O-D pair od such that k ∈ Kod , assumed in the following

nonempty (each O-D pair, say, is connected by at least one path) and finite

∆od be the link–path incidence matrix for O-D pair od

∆ be the overall link–path incidence matrix, obtained by placing side by side

the blocks ∆od corresponding to each O-D pair

An example is shown in Fig. 5.3.

In the following, it is assumed that the set of network links is nonempty and finite.

Furthermore, for each O-D pair od, the set of available paths Kod is not empty if

there is at least one path connecting o and d , and it is finite because we consider only

elementary (loopless) paths. As a result, the link and path variables considered in

this chapter are finite-dimensional, and analysis can take place in finite-dimensional

vector spaces unless otherwise noted.
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Fig. 5.3 Example of a graph and its link–path incidence matrix

5.2.1 Supply Model

Transportation supply is simulated with a (congested) network model, as described

in Chap. 2. A (generalized) cost ca is associated with each link a; if travel time
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Fig. 5.4 Example of the

relationship between link

costs and path costs

(nonadditive costs are zero

for the sake of simplicity)
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g = gADD + gNA = ∆Tc + gNA

ta is the only component of cost, it yields: ca = βta . Furthermore, each path k is

associated with a path cost2 gk , consisting of two types of cost attribute:

Linkwise additive (or generic) path costs that are obtained by adding up the cor-

responding costs of the links on the path, regardless of the particular O-D pair and/or

path (for instance travel time); these costs may depend on link flows in the case of

congested networks; Linkwise nonadditive (or specific) path costs that are specific

to the path and/or O-D pair, in the sense that they cannot be determined by adding up

the generic costs of the links on the path (for instance, some types of tolls or fees).

In the following analysis, these costs are assumed to be independent of congestion.

Therefore, we do not consider path costs that are simultaneously nonadditive and

dependent on congestion. Let:

c be the link cost vector, with entries ca

gADD
od be the vector of additive path costs for users of O-D pair od, consisting of

elements gADD
k , k ∈ Kod

gNA
od be the vector of nonadditive costs for users of O-D pair od, consisting of

elements gNA
k , k ∈ Kod

god be the vector of total path costs for users of O-D pair od, consisting of

elements gk, k ∈ Kod

The relationship between link costs and path costs is given for each O-D pair od

by the following equations (see Figs. 5.3 and 5.4):

gADD
od = ∆T

odc ∀od

god = gADD
od + gNA

od = ∆T
odc + gNA

od ∀od
(5.2.1)

The above relation can be expressed using matrix notation. Let:

gADD = [gADD
od ]od be the overall vector of additive path costs, consisting of the

vectors of additive path costs gADD
od for all O-D pairs

gNA = [gNA
od ]od be the overall vector of nonadditive path costs, consisting of the

vectors of nonadditive path costs gNA
od for all O-D pairs

2In the following sections, the indices that designate the specific origin and destination served by

path k are usually omitted, because each path is uniquely associated with an O-D pair. On occasion,

however, the O-D and path indices are both specified for emphasis.
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Fig. 5.5 Example of the

relationship between link

flows and path flows
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g = [god ]od be the overall vector of the total path costs, consisting of the vectors

of total path costs god for all O-D pairs

A flow fa is associated with each link a. Link flows are measured in units com-

mensurate with demand flows. Let:

f be the link flow vector, with entries fa .

In congested networks, as described in Chap. 2, link costs depend on link flows

through the cost functions:

c = c(f ) (5.2.2)

In turn, link flows depend, through the network flow propagation model, on the

flow associated with each path. In particular, for a given O-D pair, the path flows

induce the corresponding O-D specific link flows through the link-path incidence

matrix. Furthermore, the total flow on a link is the sum of the flows induced by all

paths and all O-D pairs. (Demand, path, and link flows are assumed to be expressed

in consistent units.) Let:

hod be the path flow vector for users of O-D pair od, the elements of which are

the flows hk for all k ∈ Kod

f od be the vector of O-D specific link flows f od
a , resulting from the trips for

O-D pair od over available paths

The relationship between link flows and path flows is expressed by the following

equations (Fig. 5.5):

f od = ∆odhod ∀od

from which

f =
∑

od

f od =
∑

od

∆odhod (5.2.3)

All the above relations can be expressed using matrix notation. Let:

h = [hod ]od be the overall vector of path flows, consisting of the vectors of path

flows

hod for all O-D pairs
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The whole supply model is defined by (5.2.1) to (5.2.3) which combine to express

the relationship between path costs and path flows that was introduced in Chap. 2:

god = ∆T
odc

(

∑

od

∆odhd

)

+ gNA
od ∀od (5.2.4)

The above relations can be expressed using matrix notation.

g = ∆T c(∆h) + gNA

If the cost functions (are continuous and) have continuous first derivatives with

respect to link flows, the supply model (is also continuous and) has continuous first

derivatives with respect to path flows. The presence of nonadditive path costs guar-

antees that any linear transformation does not modify the results of the model.

5.2.2 Demand Model

As stated earlier, it is assumed here that O-D demand flows are known and inde-

pendent of cost variations; thus path choice – the way that paths flow themselves

through the network – is the only choice dimension explicitly simulated. It is also

assumed that the demand flows for different O-D pairs are expressed in consistent

units. For private passenger modes such as a car, for example, they are typically

measured in vehicles or drivers per unit of time, whereas for public (scheduled)

transport modes they are usually expressed in terms of passengers per unit of time.

Let:

dod ≥ 0 be the demand flow for O-D pair od, defined by the elements of the O-D

matrix corresponding to the purpose, mode, and time band being analyzed

d the demand vector, whose components are the demand values dod for each

O-D pair od

Path choice behavior is simulated with random utility models, assuming that the

relevant component of the systematic utility is equal to the negative of the general-

ized path cost (utility function; Sect. 4.3.3):

V od = −βgod + V ◦
od ∀od (5.2.5)

where

β is a utility parameter3 (see Chap. 3), which is omitted in the following

because it is assumed included in the scale parameter within the choice

function, introduced below (see Sects. 4.2 and 5.5)

V od is a vector whose elements consist of the systematic path utilities Vk, k ∈
Kod , for users of O-D pair od

3Note that this parameter is measured in units inverse with the utility. Therefore a change in the

measurement units of the cost-related attributes does not affect the systematic utility value.
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V ◦
od is a vector whose elements are the parts of the systematic utility that de-

pend on attributes other than path costs (such as users’ socioeconomic at-

tributes); with no loss of generality, from a mathematical point of view

attributes in vector V ◦
od may be considered within nonadditive path cost

vector or vice versa, hence for simplicity this term is generally omitted

in the following sections (clearly any change of the reference utility value

does not modify the results of the model)

Thereafter, (path or link) costs are assumed measured in units commensurate with

the utility by using appropriate coefficients (with the same meaning of β coefficients

introduced in Chap. 3).

Path choice probabilities depend on the systematic utilities of the available paths

through the path choice function. Let:

pod,k = p[k/od] ≥ 0 be the probability that a user on a trip from origin o to desti-

nation d will use path k, k ∈ Kod , with
∑

k∈Kod
pod,k = 1

pod ≥ 0 be the vector of path choice probabilities for users of O-D pair od, whose

elements are the probabilities pod,k, k ∈ Kod , with 1Tpod = 1

As seen in Sect. 4.2, a random utility model used to simulate path choice is given

by

pod,k = p[k/od] = Prob[Vk − Vj ≥ εj − εk ∀j ∈ Kod ] ∀od, k

pod = pod(V od) ∀od

where εj denotes the random residual corresponding to the perceived utility of

path j . If the random residuals are equal to zero (εj = 0), then the variance–

covariance matrix of the random residuals is null (Σ = 0), and the resulting choice

model is deterministic. On the other hand, if the variance–covariance matrix of the

random residuals is nonnull and nonsingular, |Σ | �= 0, then the model is probabilis-

tic (see Sect. 3.2).

A relation between path choice probabilities and path costs for O-D pair od,

known as the path choice map, is obtained by combining the path choice function

with the systematic utility function:

pod,k = pod,k(V od) = pod,k(−god) ∀od, k

pod = pod(V od) = pod(−god) ∀od

The flow hk on path k connecting O-D pair od, k ∈ Kod , is simply given by the

product of the demand flow dod and the probability of choosing path k:

hk = dodpod,k

and is measured in demand units. Thus, for each O-D pair, the relationship between

path flows, path choice probabilities and demand flows is given by:

hod = dodpod(V od) ∀od (5.2.6)
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The whole demand model is defined by the relations (5.2.5) and (5.2.6) which,

combined, describe the relationship between path flows and path costs:

hod = dodpod(−god) ∀od (5.2.7)

The above equation (5.2.7) is a particular specification of (4.2.2) consistent with the

assumptions introduced at the beginning of this section. It should be noted that the

choice function pod() may vary with O-D pair.

All the above relations can be expressed using matrix notation (Fig. 5.6). Let:

P be the path choice probability matrix, with a column for each O-D pair

od, a row for each path k, and element (k, od) given by p[k/od] if path k

connects the O-D pair, otherwise zero (P is a block diagonal matrix with

blocks given by the vectors pod )

The previous equations become:

P = P (V ) = P (−g)

h = P (V )d

h = P (−g)d

Different probabilistic path choice models (|Σ | �= 0; see Sect. 4.3.3) can be spec-

ified according to different assumptions on the joint probability density function of

perceived utilities or random residuals. In any case a (one-to-one) function pod( )

is obtained. An example is provided in Fig. 5.6a. Some useful general requirements

for stochastic assignment are discussed below.

Continuity of the path choice model, pi = pi(gi), assures that small changes in

path costs induce small changes in choice probabilities. If it is also continuously

differentiable it has a continuous Jacobian, Jac[pi(gi)]. This feature, assured by

commonly used joint probability density functions, guarantees continuity of the re-

sulting SNL function. Thus it is useful to state existence of stochastic user equilib-

rium.

Monotonicity of the path choice model, pi = pi(gi), ensures that an increase

in the cost of a path k induces a decrease in the corresponding choice probabil-

ity. More generally, the path choice model, pi = pi(gi), should be nonincreasing

monotone with respect to path costs. This feature guarantees monotonicity of the

resulting SNL function. Hence it is useful to state uniqueness of solutions of sto-

chastic user equilibrium. It is ensured if no other parameter of the perceived utility

joint probability density functions depends on the mean, say the systematic utility.

The resulting choice function is called invariant (see Sect. 3.4).

Independence of linear transformations of utility ensures that no change in the

scale of the utility affects the model results (as guaranteed by commonly used ran-

dom residual joint probability density functions, such as Gumbel, or Normal distri-

butions). For instance, it is not relevant whether travel time is measured in hours or

minutes.

In addition to the above mathematical requirements, some modeling require-

ments presented below are useful to effectively simulate path choice behavior.
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Fig. 5.6a Example of

demand model with

probabilistic path choice
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Similarity of perception of partially overlapping paths rules out counterintuitive

results. Indeed two partially overlapping paths are likely not perceived as two totally

separate paths. Introducing a positive covariance between any two overlapping paths

can simulate similarity, as in the probit choice model, or a communality factor as in

the C-logit choice model (see Sect. 4.3.3).

Independence of link segmentation (within the network model) ensures that if a

link is further divided into sublinks and link costs redefined such that path costs are

not affected, path perceived utility distribution is not affected either, nor are choice

probabilities. This feature is clearly guaranteed for path explicit formulations of the

distribution of perceived utility (e.g., logit model). If the distribution of perceived

utility is formulated from link distributions (e.g., some probit specifications) this

feature is only guaranteed for distributions stable w.r.t. summation (e.g., Normal

distribution).

Negativity of perceived utility ensures that no user perceives a positive utility to

travel along any path. This feature is ensured by assuming lower bounded distribu-

tions (for instance, log-normal, or Gamma). According to this feature a nonelemen-

tary path is always a worse choice than the elementary path within it, thus support-

ing the assumption of considering elementary paths alone. On the other hand, if this

feature is not presented, a nonelementary path may be a better choice than the el-
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Fig. 5.6b Example of a

demand model with

deterministic path choice

gT =
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]

pod,k

{
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ementary path within it; hence, nonelementary paths should be included within the

path choice set (which may no longer be finite), possibly leading to unrealistic sit-

uations (some algorithmic drawbacks may also arise). Several adopted distributions

(Gumbel, MVN) fail to satisfy this requirement, even though this condition is not

relevant in practice.

Deterministic path choice models (Σ = 0; see Sect. 3.2) usually result in a one-

to-many map because, if there are several minimum cost paths between an O-D

pair od, the choice probability vector pDET,od , and therefore the path flow vector

hDET,od , are not uniquely defined. An example is given in Fig. 5.6b. General re-

quirements discussed above can be quite easily extended to a deterministic choice

model.

It can be useful to reformulate the deterministic demand model (5.2.7) as a sys-

tem of inequalities. This system is obtained by applying to each O-D pair condition

(3.4.11a) on deterministic choice probabilities pDET,od ; it is repeated here for the

convenience of the reader:

(V od)T (pod − pDET,od) ≤ 0 ∀pod : pod ≥ 0, 1T pod = 1 ∀od
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Noting that V od = −god and multiplying the above inequality by dod ≥ 0 ∀od

yields:

gT
od(hod − hDET,od) ≥ 0 ∀hod : hod ≥ 0, 1T hod = dod ∀od (5.2.7b)

Condition (5.2.7b) underlies the deterministic assignment models described below.

The deterministic demand model corresponds to a condition where, for each O-D

pair, the cost of each path actually used is equal, and is less than or equal to the cost

of any path not used:

hDET,k > 0 ⇒ gk = min(god) k ∈ Kod

gk > min(god) ⇒ hDET,k = 0 k ∈ Kod

In the literature, this condition is known as Wardrop’s first principle.

The above inequalities are equivalent to the definition of the deterministic path

choice model reported in Sect. 4.3.3. Thus the probability pod,k that a user of O-D

pair od chooses path k is strictly positive only if the cost of path k is less than or

equal to the cost of any other path that connects the O-D pair.

5.2.3 Feasible Path and Link Flow Sets

Vectors of path flows h are said to be feasible if they are compatible with the network

topology and the O-D demand flows d . The set Sh of feasible path flows contains

nonnegative vectors h ≥ 0 such that, for each O-D pair od, the sum of the elements

of (sub)vector hod is equal to the corresponding demand flow:

∑

k∈Kod

hod,k = dod

or

1T hod = dod

The above condition is definitely verified by any path flow vector hod given by

(5.2.7), due to features of the choice probability vector pod, as well as its nonnega-

tivity.

The set Sh of feasible path flow vectors can therefore be expressed as

Sh =
{

h = [hod ]od : hod ≥ 0, 1T hod = dod ∀od
}

(5.2.8)

The set Sh is bounded because the path flow vector elements for each O-D pair od

belong to the interval [0, dod ]; hence it is compact because it is also closed. It is

also convex because it is defined by a system of linear equations and inequalities.

Furthermore, it is nonempty if at least one path is available for each O-D pair. More-

over, regardless of the path cost vector g = [god ]od , the result of the demand model
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(5.2.7) is by definition always a vector of feasible path flows:

h =
[

hod = dodpod(−god)
]

od
∈ Sh ∀g = [god ]od

In a similar way, a link flow vector is feasible if it is compatible with the network

topology and the demand flows d . Thus, a vector of link flows f is feasible if,

according to the supply model (see (5.2.3)), it corresponds to a feasible path flow

as defined in the demand model. The set Sf of feasible link flows can be formally

expressed4 as

Sf (d) =

{

f : f =
∑

od

∆odhod ,hod ≥ 0, 1T hod = dod ∀od

}

(5.2.9)

that is,

Sf = {f : f = ∆h, ∀h ∈ Sh}

Formulation (5.2.9) highlights the role of the demand flow vector d in the definition

of the feasible link flow set Sf .

If the set of available paths for each O-D pair is nonempty and finite (see Appen-

dix A), the set Sf is nonempty, compact (bounded and closed), and convex because

it is obtained through a linear transformation of the feasible path flow vector set

which, as seen above, also has these characteristics.

It should be noted that, in general, there are more paths than links in a transporta-

tion network; this means that the incidence matrix ∆ has more columns than rows,

and is therefore noninvertible. It follows that multiple feasible path flow vectors may

lead to the same feasible link flow vector.

5.2.4 Network Performance Indicators

Each pattern of path and link costs and flows can be summarized by indicators that

refer either to an O-D pair or to the system as a whole; these indicators are used in

the following sections.

The total cost TCod associated with an O-D pair od is given by the sum of the

products of the corresponding path costs and flows:

TCod =
∑

k∈Kod

hkgk = (god)T hod ∀od

4The set Sf of admissible link flows may be equivalently defined, without explicitly considering

path flows, by a system of linear equations and disequations, which express the summability of

link flows with a common destination d (or origin o), and their conservation at each node (i.e., the

balance between the entering and exiting flow by destination or origin) and the nonnegativity of

link flows, as occurs, for example, in hydraulic or electrical networks. These relations allow us to

easily capture the similarities (and differences) with models adopted for network analysis in other

branches of engineering.
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The corresponding (weighted) average cost ACod is obtained by dividing by the

demand flow:

ACod = TCod/dod = (god)T hod/dod ∀od

The total network cost T C is given by the sum of the total O-D costs over all O-D

pairs:

TC =
∑

od

TCod =
∑

od

∑

k∈Kod

hkgk =
∑

k

hkgk = gT h

The network-level average cost AC is obtained by weighting the average costs of

all the O-D pairs by the corresponding demand flows, that is, by weighting the path

costs by the path flows:

AC =

(

∑

od

ACoddod

)

/

(

∑

od

dod

)

=

(

∑

od

∑

k∈Kod

hkgk

)

/

(

∑

od

∑

k∈Kod

hk

)

=

(

∑

od

TCod

)

/

(

∑

od

dod

)

= TC/d.. = gT h/1T h = gT h/1T d

where d.. =
∑

od dod =
∑

od

∑

k∈Kod
hk = 1T h = 1T d denotes the total demand

flow.

With reference to additive and nonadditive path costs, the following also holds:

TC = (gADD)T h + (gNA)T h = (∆T c)T h + (gNA)T h = cT f + (gNA)T h

an expression that, when nonadditive path costs are zero (gNA = 0), reduces to:

TC = cT f =
∑

a

faca (5.2.10)

In other words, in the absence of nonadditive costs the sum of the link costs multi-

plied by the corresponding flows coincides with the total network cost.

An Expected Maximum Perceived Utility (or EMPU), sod , can be associated with

each O-D pair od; it depends on the path choice model (see Sect. 3.4). The EMPU is

a function of the systematic utilities of the available paths (neglecting here the other

attributes V ◦
od for the sake of simplicity):

sod = sod(V od) = sod(−god) = sod

(

−∆T
odc − gNA

od

)

∀od (5.2.11)

Recall (see Sect. 3.4) that the EMPU is greater than or equal to the maximum sys-

tematic utility and therefore to the average systematic utility as well:

sod ≥ max(V od) ≥ (V od)T pod = (V od)T hod/dod ∀od

The EMPU is therefore greater than or equal to the negative of the minimum cost

over all the paths, which in turn is greater than or equal to the negative of the average
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O-D

pair

Path Cost Flow Total

cost

Average

cost

−min(g) exp(−C/θ) Average EMPU

s = θ ×
ln(
∑

exp(−C/θ))

Total

EMPU

1–4 1 6 90 540 0.00248

2 4 245 980 0.01832

3 2 665 1330 0.13534

Total 1000 2850 0.15613 −1857

2.85 2.00 −1.85

2–4 4 4 404 1616 0.01832

5 2 1096 2192 0.13534

Total 1500 3808 0.15365 2810

2.54 2.00 −1.87

3–4 6 1 800 800 0.36788

Total 800 800 0.36788 800

1.00 1.00 −1.00

Total network 3300 7458 5467

values

Average network 2.26 1.75 −1.66

values

Fig. 5.7 Performance indicators for the network in Fig. 5.3

cost:

sod ≥ −min(god) ≥ −(god)T hod/dod = −ACod ∀od

The total EMPU, TS, is defined as the sum of each O-D pair’s EMPU multiplied by

the corresponding demand flow:

TS =
∑

od

dodsod(V od) =
∑

od

dodsod(−god) =
∑

od

dodsod

(

−∆T
odc − gNA

od

)

The corresponding average EMPU, AS, is obtained by dividing by the total demand

flow:

AS =
∑

od

dodsod

/

∑

od

dod =
∑

od

dodsod/d.. = TS/d..

In conclusion, the total cost is an estimate, made without considering the effect

of dispersion, of the disutility users receive when distributing themselves among

paths according to path flows h, whereas the EMPU is the disutility users perceive

when making path choices leading to path flows h including the effect of dispersion.

From the preceding considerations, the following relations hold between the total

and average values of EMPU and cost.

TS ≥ −TC AS ≥ −AC

Numerical examples of network indicators are presented in Fig. 5.7.

As examples, the preceding relationships are applied to two different path choice

models for which the EMPU can be calculated in closed form. The first example is
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a logit path choice model with parameter θod , which gives (see Sect. 3.4):

TS =
∑

od

dodθod ln

(

∑

k∈Kod

exp(Vk/θod)

)

=
∑

od

dodθod ln

(

∑

k∈Kod

exp(−gk/θod)

)

≥ −
∑

od

dod min(god) ≥ −
∑

od

dod

∑

k∈Kod

gk(hk/dod) = −TC

The second example is a deterministic path choice model, for which the EMPU

is equal to both the maximum systematic utility and the average systematic utility

(Sect. 3.4); the total EMPU is thus equal to the negative of the total cost:

TS =
∑

od

dod max(V od) =
∑

od

dodV T
odpod =

∑

od

dodV T
od(hod/dod) = −TC

because, in this case, elements of the choice probability pod vector and therefore

the path flow vector hod are nonzero only for minimum cost paths (Sect. 4.3.3).

5.3 Uncongested Networks

Assignment to uncongested networks is based on the assumptions that costs do not

depend on flows.5 In other words, path flows, and thus link flows, are obtained from

path choice probabilities that are themselves computed from flow-independent link

performance attributes and costs.

Uncongested assignment models are used for the analysis of relatively uncon-

gested road transportation systems (generally, link cost functions are almost flat

with respect to flows for flow-capacity ratios up to values around 0.50–0.70). They

are also often used for analyzing public transport systems, for which costs may be

assumed independent of link passenger flows if the available capacity is sufficient.

Furthermore, uncongested network assignment models are a key component of con-

gested network assignment models, which are described in the following sections.

UNcongested network (UN) assignment models are defined by the demand

model (5.2.7), expressing path flows as a function of path costs and demand flows:

hUN,od = hUN,od(god ;dod) = dodpod(−god) ∀od

hUN = hUN(g;d) = P (−g)d
(5.3.1)

5In the literature these are sometimes referred to as network loading models. In this book that term

refers to a specific component of the supply model, and is an alternative expression for network

flow propagation models. Network loading is intended to capture the effects of users moving over

the network and inducing link loads, rather than the full range of demand–supply interactions

implied by assignment models. This meaning of the term is also well established in the context of

within-day dynamic supply models.
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Fig. 5.8 Schematic

representation of uncongested

network assignment models

The path costs g can be obtained from the link costs c with (5.2.1), and the link

flows f corresponding to the path flows h are given by (5.2.3). Figure 5.8 depicts

these relationships graphically, applying the framework in Fig. 5.1 to the case of

uncongested network assignment.

General uncongested network assignment models can also be expressed in terms

of link variables by combining (5.3.1) with (5.2.1) and (5.2.3). The result is called

the uncongested network assignment map, which associates a link flow vector with

each demand flow vector and link cost vector, and can be expressed in an aggregate

or disaggregate way as

f UN = f UN(c;d) =
∑

od

dod∆odpod

(

−∆T
odc − gNA

od

)

∀c

f UN = f UN(c;d) = ∆P (−∆T c − gNA)d ∀c

(5.3.2)

Note that link flows depend nonlinearly on the link costs, but linearly on the demand

flows, so that the effect of each O-D pair can be evaluated separately.

In the next sections, probabilistic and deterministic path choice models, which

lead respectively to stochastic and deterministic uncongested network assignment

models and algorithms, are considered in turn.
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5.3.1 Models for Stochastic Assignment

If path choice behavior is simulated through a probabilistic random utility model, the

resulting assignment model is known as a Stochastic UNcongested network (SUN)

assignment. In this case, the resulting link or path flows correspond to a situation in

which, for each O-D pair, the perceived cost of the used paths is less than or equal to

the cost of every other path; this can be viewed as a generalization of Wardrop’s first

principle, mentioned above (Sect. 5.2.2). Using the probabilistic path choice mod-

els studied in Sect. 4.3.3, recall that each vector of link and path costs determines a

unique choice probability vector. Hence the uncongested assignment map, (5.3.2),

is given by the stochastic uncongested assignment function, f SUN(c;d). This func-

tion is a one-to-one correspondence that, for a given vector of link costs c, outputs

a vector of link flows f belonging to the nonempty, compact, and convex set of

feasible link flows (Fig. 5.9):

f SUN = f SUN(c;d) =
∑

od

dod∆odpod

(

−∆T
odc − gNA

od

)

∈ Sf ∀c (5.3.3)

Formulations of SUN analogous to (5.3.2b) and (5.3.1a, 5.3.1b) in terms of path

costs and flows are possible, but are not presented here for the sake of brevity.

Apart from the demand vector, the parameters of the stochastic uncongested as-

signment function include those of the path choice model (such as the coefficients of

the systematic utility and the variance of the random residuals), and those of the sup-

ply model (such as travel times and generalized costs, together with the graph topol-

ogy). Under certain assumptions on the path choice function, the function (5.3.3)

has features that will be useful in the analysis of stochastic equilibrium assignment

models, and for this reason are described in Sect. 5.4.1.

Variance and covariance of link and path flows, considered as random variables.

Assuming probabilistic path choice behavior (with known demand flows dod ) and

independent user choices, the path flows hod can be considered as realizations of

multinomial random variables H od . The values hod calculated with the stochastic

uncongested network assignment model represent the means of H od , as was shown

at the beginning of Sect. 4.5, for the most general case of demand models involving

all choice dimensions. Therefore, the mean, variance, and covariance of the ele-

ments of the path flow random vector H can be expressed as

E[Hk] = hSUN,k = dodpod,k ∀od, k

Var[Hk] = dodpod,k(1 − pod,k) ∀od, k

Cov[Hk,Hj ] =

{

−dodpod,kpod,j k, j ∈ Kod

0 otherwise
∀od, k, j
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Fig. 5.9 Stochastic UNcongested network (SUN) assignment with the path choice model of

Fig. 5.6a

The first equation expresses the elements of the mean vector hSUN = E[H ] of

random vector H , and the last two equations give the elements of its variance–

covariance matrix ΣH . If the path flow vector h = [hod ]od is considered to be a

realization of the random vector H , then the link flow vector f = ∆h, obtained from

h by a linear transformation, is a realization of a link flow random vector F . Thus the

mean vector and variance–covariance matrix of random vector F can be expressed

in terms of the corresponding values of the path flow random variable, hSUN =

E[H ] and ΣH . In fact E[F ] = ∆E[H ] = ∆hSUN = f SUN and ΣF = ∆T ΣH ∆.

Assignment function computation. The link flow vector defined by the stochastic

uncongested assignment function for a given link cost vector can easily be calcu-
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lated when explicit path enumeration can be carried out as shown below; otherwise

algorithms described in Sect. 5.3.3 can be used.

When paths are explicitly enumerated, path costs can be easily computed from

link costs by applying the link–path incidence relationship (5.2.1). Nonadditive

costs can be easily handled. Similarly, path flows can be obtained by applying the

demand model (5.2.7) and its extensions, and link flows can be computed from

path flows using the congruence relationship (5.2.3). Eventually, EMPU, given by

sod = sod(−∆T
odc − gNA

od ), which is related to the path choice alternatives available

for O-D pair od, can also be readily calculated.

It should be recalled that, for probit path choice models, it is not possible ana-

lytically to calculate choice probabilities or to evaluate the demand model (5.2.7)

and its extensions. Nonetheless, unbiased estimates of path choice probabilities and

of the corresponding path flows can be obtained in the probit case by applying a

Monte Carlo sampling technique.6 The method generates a random vector realiza-

tion, where each component of the vector is considered the perceived cost random

residual of an O-D path. The corresponding path perceived cost is computed by

adding the path systematic cost to the residual. The perceived costs of all O-D paths

are computed in this way. For each O-D pair, the demand flow is assigned to the

path with the minimum perceived cost. These steps are repeated for each of a sam-

ple of m random vector realizations, and the resulting path flows are averaged. These

averages are unbiased estimates of the stochastic uncongested network path flows:

h̄
m

=
∑

j=1,m

hj/m

where

hj = hSPA(g + εj ) is the vector of path flows obtained by assigning the demand

flow of each O-D pair to the shortest path w.r.t. the perceived path costs

g + εj

g is the vector of systematic path costs

εj ← MVN(0,Σ) is the j th (in a sample of m) perceived path cost random residual

vector; in probit path choice, εj is obtained as a realization of a multivariate

normal random variable with zero mean and variance–covariance matrix Σ

hm is an unbiased estimate of the SUN assignment path flow vector, obtained

from a sample of m perceived path cost vectors

Moreover, the average perceived shortest path cost, computed with respect to the

paths that connect an O-D pair, is an unbiased estimate of EMPU associated with

the O-D pair path choice alternatives.

In practice, the path flow estimate h̄
m

can be obtained by evaluating the following

recursive equations up to j = m, starting with j = 0 and h̄
o = 0:

j = j + 1

6In fact, this approach can be adopted for any random residual distribution.
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εj ← MVN(0,Σ)

hj = hSPA(g + εj )

h̄
j =

(

(j − 1)h̄
j−1 + hj

)

/j

In applications, direct use of this approach can be computationally burdensome

because of the need to generate multiple realizations of a multivariate normal ran-

dom variable with nonzero covariances, εj ← MVN(0,Σ). On the other hand, the

method allows arbitrary covariance structures (due, e.g., to positive or negative cor-

relations between the perceived cost random residuals of different links). When this

generality is not required, it is convenient to generate perceived path costs from link

costs, adopting the same approach described in Sect. 5.3.3.

5.3.2 Models for Deterministic Assignment

Under the assumption of deterministic path choice behavior, the demand flow of

each O-D pair is assigned to the minimum cost path(s) (i.e., paths with maximum

systematic utility), whereas no flow is assigned to other paths. For this reason, Deter-

ministic UNcongested network (DUN) assignment is also known as all-or-nothing

assignment.7 In general, as has already been noted, multiple path choice probability

vectors may correspond to a single vector of link and path costs. It follows that the

general uncongested network assignment relationship (5.3.2) must be specified as

the deterministic uncongested network assignment map hDUN = hDUN(g;d) ∈ Sh,

which is a one-to-many (or point-to-set) map between path costs and flows. In other

words, because there may be several alternative minimum cost paths connecting an

origin to a destination, a given path and link cost vector may correspond to multi-

ple vectors of deterministic uncongested network path and link flows. Consequently,

study of the properties of deterministic network loading frequently uses indirect for-

mulations, equivalent to (5.3.2), based on the formulation of the deterministic de-

mand model as a system of inequalities (5.2.7b). Summing the inequalities (5.2.7b)

over all O-D pairs yields expression (5.3.4):

gT (h − hDUN) ≥ 0 ∀h ∈ Sh (5.3.4)

The resultant path (or link) flows satisfy Wardrop’s first principle. Figure 5.10

presents an example of the deterministic uncongested network assignment model.

7When using a stochastic uncongested network assignment, a positive choice probability can be

associated with a path whose systematic cost is greater than the minimum; it is equal to the proba-

bility that the path has maximum perceived utility (or minimum perceived cost) in the path choice

set. Because of this, O-D flows are spread over multiple paths and stochastic uncongested net-

work assignment is sometimes referred to as multipath assignment, as compared to all-or-nothing

assignment that corresponds to the deterministic case.
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Fig. 5.10 Deterministic UNcongested network (DUN) assignment, with the path choice model in

Fig. 5.6b

If nonadditive path costs are zero, gNA = 0, total path costs coincide with addi-

tive costs gT = (gADD)T = cT ∆, and it is easy to verify that (5.3.4) is equivalent

to:

cT (f − f DUN) ≥ 0 ∀f ∈ Sf (5.3.5)

On the other hand, when there are nonadditive path costs expression (5.3.4) is

equivalent to:

cT (f − f DUN) + (gNA)T (h − hDUN) ≥ 0 ∀f = ∆h, ∀h ∈ Sh (5.3.6a)
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In order to facilitate the analysis and solution (see Sect. 5.3.3) of model (5.3.6a), it

can be reformulated without any explicit reference to path flows. Let:

GNA = (gNA)T h be the total nonadditive cost corresponding to a feasible path flow

vector h

GNA
DUN = (gNA)T hDUN be the total nonadditive cost of the deterministic uncon-

gested assignment of path flow vector hDUN

The following relationship, involving link flows f DUN and total nonadditive cost

GNA
DUN, holds for deterministic uncongested network assignment.

cT (f − f DUN) + 1
(

GNA − GNA
DUN

)

≥ 0

∀f = ∆h, ∀GNA = (gNA)T h ∀h ∈ Sh (5.3.6b)

The model (5.3.6b) can be made formally similar to the model (5.3.5) by consider-

ing an additional pseudolink a, with which is associated an additional row within

matrix ∆, with “flow” GNA and cost 1. The existence of solutions of any of the in-

equality systems (5.3.4) and (5.3.6) is assured, because they are defined over com-

pact feasible sets. Demand flows affect the solution because they appear in the defi-

nition of the feasible sets over which the problems are defined.

Formulation with optimization models. Deterministic uncongested network assign-

ment can also be formulated with an optimization model, more precisely, with a

linear programming model. It is easy to verify that, if the nonadditive path costs are

zero, the inequality system (5.3.5) is equivalent to an optimization model with lin-

ear objective function and a set of linear equality and inequality constraints as given

below.

f DUN(c;d) = argmin
f

cT f

f ∈ Sf (d)

(5.3.7)

where the notation Sf (d) highlights the role of the demand flow vector in the def-

inition of the feasible link flow set. If there are nonadditive path costs, the relation

(5.3.7) becomes:

(

f DUN(c;d),GNA
DUN

)

= argmin
f ,GNA

cT f + 1 · GNA

f = ∆h, GNA = (gNA)T h, h ∈ Sh

(5.3.8)

These formulations are most easily understood by considering that the assignment

of each demand flow to a minimum cost path corresponds to the case where the

cost for each user and the total network cost are both minimum (the link costs being

independent of flows).
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Regardless of the model adopted, the link flow vector (or rather one of the vec-

tors) resulting from deterministic uncongested network assignment can easily be

calculated when using path choice models based on explicit path enumeration.

When nonadditive path costs are equal to zero, a link flow vector can easily be

obtained without explicit path enumeration using procedures based on algorithms

for the calculation of minimum cost paths (see Sect. 5.3.3), or by directly solving

optimization models (5.3.7) and (5.3.8).8

5.3.3 Algorithms Without Explicit Path Enumeration

Algorithms for assignment to noncongested networks and those for determining the

minimum cost paths on which they are based, are exact algorithms, in the sense that

convergence to the solution sought is guaranteed in a finite number of steps, which

generally depends on the number of nodes.

Shortest Path Algorithms

Modeling of path choice behavior in assignment algorithms frequently involves

identification of the shortest paths between pairs of nodes. In particular, assign-

ment algorithms that incorporate deterministic path choice assumptions require the

identification of the shortest path (or paths) between each pair of nodes, whereas

stochastic uncongested network assignment algorithms that incorporate probabilis-

tic path choice models sometimes compute shortest paths as a step in the processing.

Furthermore, models that construct a relevant path set by applying a selective ap-

proach and explicitly enumerating paths (described in Sect. 4.3.3) generally involve

the solution of a shortest path problem. For example, the relevant path set could be

specified as the set of paths that minimize different link attributes such as distance,

monetary cost, and travel time; alternatively, they might be identified as the first k

shortest paths with respect to some link attribute.

If only elementary paths (those without loops) are relevant, there are a finite

number of them and in principle they could be enumerated for each pair of origin

and destination nodes. The shortest such path could then be identified by inspection.

When explicit enumeration of all paths is not feasible due to their large number, as

is often the case, algorithms that avoid explicit enumeration must be adopted. These

are described here.

Applications in transportation network assignment typically do not require the

determination of the shortest path between all possible pairs of nodes, but only be-

tween pairs of origin and destination nodes (O-D pair) relative to centroids (intro-

duced in Chap. 1). It should be remembered that each centroid is represented in the

8Note that by using definition (5.2.9) in Sect. 5.2.3, for the feasible set of link flows Sf , the opti-

mization problem known in the literature as the linear minimum cost multicommodity flow problem

is obtained.
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network model by two unconnected nodes: an origin node, with only exiting links,

and a destination node, with only entering links (Chap. 2).

Nonetheless, rather than computing the shortest path for each individual O-D pair

in turn, it is often easier to compute the set of shortest paths between an origin (or

destination) node and all other network nodes (including the possible destination

nodes), looping over the origins (or destinations) until shortest paths for all O-D

pairs have been found. This approach is usually more computationally efficient than

determining all O-D paths one at a time, and corresponds more closely to the typical

processing logic of assignment algorithms (which generally treat all flows from an

origin or to a destination in one step). This section therefore describes the basic

structure of algorithms for computing shortest paths from an origin node o to all

network nodes (forward shortest paths), or from all network nodes to a destination

node d (backward shortest paths).9

For simplicity, the performance variable associated with each link is referred to

as cost, inasmuch as in practice it often represents a generalized transportation cost.

However, it could just as well be any other performance measure (distance, travel

time, etc.). Only link-additive performance measures are considered unless other-

wise noted. Moreover, the link performance variable is assumed to be nonnegative.

Let:

ca = cij ≥ 0 be the cost on link a = (i, j)

Zi,j ≥ 0 be the cost of the shortest path between any pair of nodes i and j ; note

that in general it may happen that Zi,j �= Zj,i (due, e.g., to one-way streets,

slopes, etc.)

Shortest path costs satisfy the triangle inequality:

Zi,j + Zj,k ≥ Zi,k ∀i, j, k

This can be seen by noting that if, for a pair of nodes i and k, there were a node

j for which Zi,j + Zj,k < Zi,k , then the cost of the path from i to k through node j

would be less than Zi,k , contradicting the definition of Zi,k as the cost of the shortest

path from i to k. Because i and k are arbitrary, this relationship holds in particular

for origin and destination nodes, and shortest paths between them.

The triangle inequality implies that link costs and shortest path costs satisfy the

Bellman principle, which states that a shortest path is itself made up of shortest

paths:

If link (i, j) belongs to the shortest path between o and j

then Zo,i + cij = Zo,j otherwise Zo,i + cij ≥ Zo,j

More generally:

If link (i, j) belongs to the shortest path between o and d

then Zo,i + cij + Zj,d = Zo,d otherwise Zo,i + cij + Zj,d ≥ Zo,d

9The two problems are obviously equivalent because it is sufficient to change the directions of all

the network links to convert one problem to the other.
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If there is only one shortest path between each pair of nodes in a network, the

second assertion of each of the above two formulations of the Bellman principle

holds as a strict inequality. It can easily be seen that, for an uncongested network,

the Bellman principle is equivalent to the first Wardrop principle discussed above.

It should be recognized that if there is only one shortest path between each pair

of nodes (or, when there are several shortest paths, if only one is considered), the set

of shortest paths from an origin node o to the other network nodes forms a forward

tree10 T (o) rooted at node o. Any forward tree can be described by specifying, for

each node j , the unique link that enters it (or equivalently by specifying the initial

node of this entering link). Similarly, the set of shortest paths from all network

nodes to a destination node d forms a backward tree T (d) rooted at node d . Any

backward tree can be described by specifying the unique link that exits from each

node i (or equivalently by specifying the final node of this exiting link). The use of

the same notation for forward trees from an origin o and for backward trees towards

a destination d is not ambiguous, because we only consider trees rooted at the origin

or destination nodes: in this case, the type of root (origin or destination) defines the

type of tree (forward or backward).

Given any forward tree T (o) from origin node o, let:

XT (o),i ≥ 0 be the cost along the unique path from node o to node i in tree T (o)

It follows that

XT (o),i + cij = XT (o),j ∀(i, j) ∈ T (o)

A tree T (o) from origin node o is the shortest path tree (or is one such tree when

there are multiple shortest paths between some pairs of nodes) if and only if the

following condition, deduced from the Bellman principle, is verified.

XT (o),i + cij ≥ XT (o),j ∀(i, j) /∈ T (o) (5.3.9)

In this case, the values XT (o),i are the shortest path costs Zo,i .

Similarly, given a backward tree T (d) towards destination node d , let:

Xi,T (d) ≥ 0 be the cost along the unique path from node i to destination d in tree

T (d)

It follows that

cij + Xj,T (d) = Xi,T (d) ∀(i, j) ∈ T (d)

In this case, a tree T (d) to destination node d is the shortest path tree (or is one

such tree when there are multiple shortest paths between some pairs of nodes) if and

only if the following condition is verified.

cij + Xj,T (d) ≥ Xi,T (d) ∀(i, j) /∈ T (d) (5.3.10)

10In a directed graph, a tree rooted at node n,T (n), is a subgraph having the property that a single

path connects node n and every other node in the graph. In a forward tree, the root has only exiting

links and the paths are oriented from the root towards every other node. In a backward tree, the

root has only entering links, and the paths are oriented from every other node towards the root.



5.3 Uncongested Networks 289

In this case the values Xi,T (d) are again the shortest path costs Zi,d .

The algorithms commonly used to compute forward (resp., backward) shortest

path trees are based on the iterative updating of the values XT (o),i (resp., Xi,T (d)),

called the node labels. In each iteration a node is chosen, and the labels of immedi-

ately downstream (resp., upstream) nodes are examined and updated as required. It-

erations continue until condition (5.3.9) (resp., (5.3.10)) holds everywhere, at which

point the minimum path costs have been found. Bookkeeping operations carried out

along with the label updates enable the specific minimum path to (resp., from) each

node to be traced.

The number of steps that an algorithm requires to compute the minimum path

tree depends on its strategy for choosing, in each iteration, the node at which to

verify whether further updating steps are needed.

Under the assumption of nonnegative costs, a node label cannot be updated if it

is examined from a node with a higher label. This observation is the basis of the

class of label-setting algorithms which, in each iteration, set (make permanent) the

label of the node with the lowest label among those that have not yet been set. The

algorithm then updates the labels of adjacent nodes. Label-setting algorithms need to

maintain information about the ordering of nodes according to their labels; different

algorithms employ different data structures for this purpose, and their efficiency

depends strongly on this. The algorithms require as many iterations as there are

nodes, because each iteration sets one node label. Note that the nodes are set in

order of increasing labels (shortest path cost).

Label-correcting algorithms do not examine nodes in order of their labels and so

are generally simpler to implement. On the other hand, node labels become perma-

nent only at the end of the algorithm. In these algorithms, the number of updating

steps depends on the node choice strategy.

Examples of updates for a forward tree from origin o, and for a backward tree

towards destination d , are shown in Figs. 5.11a and 5.11b.

When there are multiple shortest paths between a particular O-D pair, the set

of shortest paths from an origin (or towards a destination) is no longer a tree. The

algorithms presented above will determine only one of the shortest paths; the par-

ticular one identified depends on the order in which the nodes are examined. The

algorithms can easily be modified to compute all possible shortest paths, although

in practice this is rarely done.

Algorithms for Uncongested Network Deterministic Assignment

Under the assumption of deterministic path choice behavior, all users traveling from

an origin to a destination choose the shortest path between them (Sect. 5.3.2); this

leads to deterministic uncongested network assignment. Algorithms for DUN as-

signment are known as all-or-nothing assignment algorithms.

As observed above, if multiple shortest paths connect an O-D pair, then path

flows, and therefore link flows, are not uniquely defined. However, shortest path

algorithms usually compute a single path between each O-D pair. The specific path



290 5 Basic Static Assignment to Transportation Networks

Fig. 5.11 Example of forward (a) and backward (b) label-setting shortest path algorithms

identified depends on the implementation details of the algorithm and in particular

on the ordering of the nodes.

Link flows can therefore be calculated by assigning all the flow of each O-D

pair to the links of a shortest O-D path, and nothing to the links of other paths.

In practice, all-or-nothing algorithms generally process the entire tree of shortest

paths from an origin or to a destination, rather than individual shortest O-D paths.
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Fig. 5.12 Example of sequential forward algorithm for DUN assignment

They can be implemented with two different approaches. Both start with an empty

network.

In the sequential approach, once a shortest path tree from an origin o has been

calculated, the O-D demand dod from the origin towards each destination d is added

to the flows on all the links on the path from o to d . The DUN link flows result when

all O-D specific flows have been accumulated on each link in this way. An example

of the sequential algorithm is given in Fig. 5.12. The procedure is analogous if the

shortest path tree towards each destination d is calculated.

In contrast to the sequential approach, other DUN assignment algorithms follow

a simultaneous approach. Simultaneous algorithms are computationally more effi-

cient and can be extended to DUN assignment models for transit networks (shortest

hyperpaths) as described in Sect. 6.2. These algorithms are particularly efficient if

each shortest path tree designates the nodes in order of increasing minimum cost

from the origin (or to the destination). As discussed above, such an order is auto-

matically obtained from label-setting shortest path algorithms.
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Simultaneous algorithms from an origin are based on the calculation of the flow

entering each node, defined as the sum of the flows on the links incident to the node.

Considering one origin o at a time, each destination node d is initially assigned the

corresponding demand flow dod as its entering flow; all other nodes are tentatively

assigned a zero entering flow. Once the tree of shortest paths from origin o has been

calculated, the algorithm examines each node i in decreasing order of minimum

cost, starting with the node farthest from origin o (i.e., the node i with the highest

value Zoi ), working backward until o is reached. The flow entering a node i is as-

signed to the unique previous link in the shortest path tree, and added to the flow

entering the initial node of this link. The order adopted is such that, when a node

i is examined, all nodes farther from the origin have already been examined. Con-

sequently there cannot be any node still to be examined from which the flow could

contribute to the flow entering node i.11

For each O-D pair od, the EMPU associated with deterministic path choice is

given by the cost on the shortest path, sod = Zod .

An example of the application of a simultaneous algorithm is given in Fig. 5.13.

The procedure is analogous if shortest path trees towards each destination d are

calculated.

Algorithms for Uncongested Network Stochastic Assignment

In stochastic assignment to noncongested networks it is assumed that each user asso-

ciates with each path connecting its O-D pair a value of perceived utility represented

with a random variable, whose expected value is given by the opposite of the path

cost (see Sect. 4.3.3).12

Below we describe first an algorithm without explicit path enumeration in the

case of a probit path choice model based on a Monte Carlo technique. The algorithm

may also be applied to different choice models, assuming that random residuals

relative to paths are distributed according to a multivariate variable which may be

obtained from independent univariate variables relative to links. We then describe an

algorithm without explicit path enumeration relative to a particular implementation

of the logit model to represent path choice.

11Using a simultaneous algorithm, given an origin (or a destination), two additions are carried

out for each link in the shortest path tree, regardless of the tree structure; that is, the algorithm

requires 2(n − 1) additions, where n is the number of nodes. Using a sequential algorithm, on the

other hand, the number of additions depends on the structure of the shortest path tree. This number

ranges between the number of links of the tree, n−1, when the paths within the tree do not overlap

at all; and the value nd (n − nd − 1) + nd = nd (n − nd ) (assuming n > nd where nd is the number

of destinations) in the case of maximum overlap.

12According to these hypotheses, a positive choice may also be associated with a nonminimum

(systematic) cost path, given by the probability of the path being the maximum perceived utility,

that is, the minimum perceived cost. This is why stochastic network loading is sometimes termed

multipath assignment, contrasting with all-or-nothing assignment to deterministic loading.



5.3 Uncongested Networks 293

Fig. 5.13 Example of simultaneous forward algorithm for DUN assignment

Monte Carlo Algorithms

This algorithm is commonly used in the hypothesis of a probit path choice model.

In this case it proves to be an exact algorithm with finite convergence, apart from the

numerical estimation errors described below. The algorithm may also be applied to

different choice models, assuming that random residuals relative to paths are distrib-

uted according to a multivariate variable which may be obtained from independent

univariate variables relative to links.

The probit path choice model results from the assumption that the perceived

path utility random residuals follow an MVN(0,Σ) multivariate Normal distribu-

tion, with zero mean and variance–covariance matrix Σ . This model can account

for overlapping paths by introducing a positive covariance between the perceived

utilities of two paths sharing some links, but it does not allow calculation in closed

form of path choice probabilities. However, unbiased estimates of path choice prob-

abilities and their corresponding SUN path and link flows can be obtained using a

Monte Carlo technique somewhat similar to the algorithm described in Sect. 3.3.6.
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An assignment algorithm that does not require explicit path enumeration can

be developed for any path choice model specification, probit or otherwise, assum-

ing that users associate with each path a perceived utility that can be modeled by

a random variable whose expected value is given by the negative path cost (see

Sect. 4.3.3):

U = V + ε = −g + ε (5.3.11)

with

E[g] = g = −V = −E[U ] Var[g] = 0

E[ε] = 0 Var[ε] = Var[U ] = Σ

where

U is the vector of perceived path utilities, with expected value V = E[U ] and

variance–covariance matrix Var[U ] = Σ

g = −V is the vector of path costs, given by the negative of the systematic path

utility vector V

ε = U − E[U ] is the vector of path utility random residuals

Because of the assumption of additive path costs, the relationship between link

and path costs expressed by the link–path incidence matrix ∆ allows us to ex-

press (5.3.11) in terms of link utilities, costs and random residuals. Let:

u be the vector of perceived link utilities, with expected value v = E[u] and

variance–covariance matrix Var[u] = Σa

c = −v be the vector of link costs, given by the negative of the systematic link

utility vector v

η = u − E[u] be the vector of link utility random residuals

It follows that

U = ∆T u (5.3.12)

g = ∆T c (5.3.13)

ε = ∆T η (5.3.14)

thus

u = −c + η (5.3.15)

with

E[c] = c = −E[u] Var[c] = 0

E[η] = 0 Var[η] = Var[u] = Σa

Because relationships (5.3.12) to (5.3.14) are linear, the variance–covariance ma-

trix of path random residuals Σ depends on the variance–covariance matrix of link
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random residuals Σa through the relationship:

Σ = ∆T Σa∆ (5.3.16)

These results can be interpreted as a specification of a path choice model in which

users perceive the costs of individual links, and the perceived cost of a path is equal

to the sum of the perceived costs of its links.

A SUN algorithm that does not require explicit path enumeration can be devel-

oped from the above relationships, together with the assumptions that the choice set

consists of all elementary paths, and that the variance–covariance matrix Σ has the

structure described in Sect. 3.3. Let:

gk be the cost of path k

gkj be the cost on the links shared by paths k and j

σkk = σ 2
k be the variance of the random residual of path k, a main diagonal element

of the variance–covariance matrix Σ

σkj be the covariance between the random residuals of paths k and j , an off-

diagonal element of the variance–covariance matrix Σ

ξ be the proportionality coefficient between path costs and elements of the

variance–covariance matrix (expressed in units that are consistent with

costs and utilities)

Under these assumptions about the structure of the variance–covariance matrix, it

follows that

σ 2
k = σkk = ξgk

σkj = ξgkj

Referring to the relationship between link and path costs expressed by the link path

incidence matrix ∆, then:

gk =
∑

a

δakca =
∑

a

δ2
akca

gjk =
∑

a

δakδaj ca

and

σkk = ξ
∑

a

δ2
akca

σkj = ξ
∑

a

δakδaj ca

If we indicate by DIAG(c) the diagonal matrix whose main diagonal elements are

given by link costs c, we have:

Σ = ξ∆T DIAG(c)∆ (5.3.17)
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Turning now to the particular case of SUN assignment with probit path choice, it

may be assumed that each link random residual ηa is independently distributed as a

univariate normal N(0, σ 2
a ) random variable with zero mean and variance σ 2

a = ξca .

Therefore the vector η is a multivariate normal MVN(0,Σa) random variable with

zero mean and diagonal variance–covariance matrix defined by:

Σa = ξDIAG(c) (5.3.18)

In this case the path random residuals deriving from the linear relationship (5.3.14),

ε = ∆T η, follow a multivariate normal MVN(0,Σ) distribution with variance–

covariance matrix given by the relationship (5.3.16) which, combined with (5.3.18),

provides the relationship (5.3.17).

Therefore, a realization of normally distributed path random residuals, ε ∼

MVN(0,Σ), can be obtained from a realization of link random residuals η, obtained

by independently drawing the residual ηa of each link a from a univariate normal

N(0, σ 2
a ) distribution.

It should be stressed that the link attributes used to define the variance–covariance

matrix through relation (5.3.17) may be different from the actual link costs c that

express the systematic utility of links, v = −c, and therefore of paths, V = −g. For

example, it might be assumed that the perceived degree of similarity of two overlap-

ping paths, expressed by the covariance of their random residuals, is proportional to

the length of the links that they share, but that the systematic link cost is a function

of the travel time (dependent on flows for congested networks). These assumptions

ensure that the SUN assignment function is nonincreasing monotone with respect

to (congested) link costs and has symmetric Jacobian (Sect. 5.3.1). The (sufficient)

condition for uniqueness of the resulting stochastic equilibrium is therefore ensured

(as described in Sect. 5.4.1), as is the convergence of stochastic equilibrium algo-

rithms described in Sect. 5.4.2.

From an algorithmic point of view, in order to calculate SUN assignment flows

with a probit path choice model, a sample of normally distributed perceived link cost

vector realizations must be generated. For each perceived link cost vector realization

in the sample, the demand flow for each O-D pair is assigned to the perceived short-

est path using a DUN (all-or-nothing) assignment algorithm, described in the next

subsection. The average of the link flows obtained for the different link cost vectors

of the sample is an unbiased estimate of the probit SUN link flows. The algorithm

can be stated formally by introducing the following variables.

ca the (systematic) cost on arc a

η
j
a ← N(0, σ 2

a = ξca) the j th (in a sample of m) realization of the perceived cost

random residual for link a, obtained by drawing from a normal distribution

with zero mean and variance σ 2
a = ξca

r
j
a = ca + η

j
a the j th perceived cost for link a

rj = [rj
a ]a the j th vector of perceived link costs, with elements r

j
a

f
j
DNL = f DUN(rj ) the deterministic uncongested network assignment link flow

vector corresponding to link costs rj (computed as described in the next

subsection)
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f̄
m

an unbiased estimate of the vector of stochastic uncongested network as-

signment link flows

With m elements in the sample, we have:

f̄
m

=
∑

j=1,m

f
j
DNL/m

The link flow estimate f̄
m

can be obtained by evaluating the following recursive

equations up to j = m, starting with j = 0 and f̄
0
= 0.

j = j + 1

η
j
a ← N

(

0, σ 2
a = ξca

)

∀a

rj =
[

ca + η
j
a

]

a

f̄
j =

(

(j − 1)f̄
j−1 + f DNL(rj )

)

/j

For each O-D pair od, the average of the various shortest path costs Z
j

od obtained

from the different realizations of the link random residuals is an unbiased estimate

of the negative path choice EMPU variable: s̄m
od = −

∑

j=1,m Z
j
od/m.

Unlike other algorithms in this chapter, this algorithm, which is an example of

the class of Monte Carlo algorithms, does not yield exact link flow values, but only

a sequence of unbiased estimates whose precision increases with the number of

iterations.

In practice, the algorithm continues until a stop criterion is met: for example,

a pre-assigned maximum number of iterations jmax. The algorithm could also ter-

minate when the relative difference between the link flow vector estimates in two

successive iterations falls below a pre-assigned threshold δ using a suitable vector

norm |f̄ j − f̄
j−1|/|f̄ j−1| < δ, such as maxa |f̄ j

a − f̄
j−1
a |/|f̄ j−1

a | < δ. However,

this criterion is not very effective because, as the number of iterations j increases,

it tends to be verified in any case, so it is effectively the same as specifying a max-

imum number of iterations. More correctly, the algorithm should be stopped when

the sample estimate of the precision of link flows falls below a given threshold,

maxa[var(f̄ m
a )(1/2)/f̄ m

a ] ≤ δ. Alternatively, a statistical test of equality between two

successive averages can be used. It can easily be proved that, whatever convergence

criterion is adopted, the calculation time is roughly equal to m times the time needed

to carry out a deterministic uncongested network assignment (with any of the algo-

rithms described in the next subsection).

An example of the Monte Carlo algorithm is given in Fig. 5.14.

Dial Algorithm

For logit path choice models, link flows can be computed without explicit path enu-

meration using an algorithm known in the literature as the Dial algorithm, after its
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Fig. 5.14 Example of the Monte Carlo algorithm for probit SUN assignment

author. This algorithm is based on a particular specification of the logit path choice

model, for which the set of relevant paths consists only of efficient paths with re-

spect to the origins; these paths are made up of links a = (i, j), termed efficient

links, such that the cost of the shortest path from an origin o to the link initial node

i is less than the cost of the shortest path from the origin to the final node j ; that is,
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Zo,i < Zo,j . Note that if link costs are strictly positive, the links of a shortest path

tree are efficient by definition and therefore shortest paths are among the efficient

paths. Thus the efficiency condition must be tested only for links that do not belong

to the shortest path tree. Efficient paths with respect to the destinations can be de-

fined analogously. It is also possible to define efficient paths with respect to both

origins and destinations; in this case, each O-D pair must be analyzed separately, re-

sulting in lower computational efficiency. Note that if link costs are strictly positive,

the links of a shortest path tree are uniquely defined.

Even though the algorithm was originally proposed with reference to the relevant

path sets described above, any other relevant path set resulting in an acyclic graph

will also work, because in this case at least one complete ordering of nodes may

be built up consistently with the acyclic graph. Let pos(i) be the position of node i

in such an order that origin o has the first position, pos(0) = 1. Relevant paths are

made up of links a = (i, j), termed efficient links, such that the position of the link

initial node i is less than the position of the final node j ; that is, pos(i) < pos(j).

This path choice set definition is a topological selective approach, in the sense

defined in Sect. 4.3.3. For brevity, the discussion here considers only the case of

efficient paths with respect to the origins.

Figures 5.15a through 5.15c illustrate efficient paths from origin 1 to destination

4 for the same network topology but different link cost vectors. Notice that with

configuration (a), only the shortest paths are efficient. This is no longer the case for

the costs shown in (b) and (c). These examples show that efficiency does not depend

only on topology.

Theoretical analysis of the Dial algorithm is based on an equivalent formulation

of the logit path choice model that highlights the role of link costs in determining

path costs. This formulation allows simultaneous analysis of all paths to all destina-

tions from a given origin o. Recall from Sect. 4.3.3.2 that the logit probability pod,k

that users traveling from origin o to destination d choose path k is given by

pod,k = exp(−gk/θ)
/

∑

j∈Kod

exp(−gj/θ) ∝ exp(−gk/θ) (5.3.19)

where

θ = (
√

6/π)σ is the scale parameter of the logit model, which is proportional to

the standard deviation of the random residuals

gk is the cost of path k

Kod is the set of (relevant) paths connecting the O-D pair od

If (additive) path costs gk are expressed as the sum of link costs cij through the

congruence relationship (5.2.1), expression (5.3.19) yields:

pod,k ∝ exp

(

−
∑

(i,j)∈k

cij/θ

)

=
∏

(i,j)∈k

exp(−cij/θ) (5.3.20)

Alternatively, if each path is considered to be a sequence of nodes j and

links (i, j), the probability pod,k of choosing a path k can be expressed as the prod-
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Fig. 5.15 Examples of efficient paths

uct of the conditional probabilities Pr[(i, j)/j ] of choosing each link (i, j) of path k,

conditional on the link’s downstream node j being on the path (Fig. 5.16):

pod,k =
∏

(i,j)∈k

Pr
[

(i, j)/j
]

(5.3.21)
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Fig. 5.16 Path k from origin o to destination d through link (i, j)

The two probabilities pod,k calculated with (5.3.21) and (5.3.20) will be equal

if the probability Pr[(i, j)/j ] is given by a particular logit model. In this model,

the alternatives in the choice set are the efficient links (i, j) incident to (entering)

node j . The systematic utility Vij/j of each such alternative is the sum of the neg-

ative link cost cij and a logsum variable Yi that takes into account the utilities of

all the efficient paths from the origin o to the initial node i of the link. The model

parameter is θ :

Pr
[

(i, j)/j
]

= exp(Vij/j/θ)
/

∑

(m,j)∈BS(j)

exp(Vmj/j/θ) (5.3.22)

Vij/j = −cij + θYi (5.3.23)

Yi = ln

(

∑

(n,i)∈BS(i)

exp(Vni/i/θ)

)

(5.3.24)

where

BS(j) is the backward star of node j : the set of links (i, j) incident to node j

Yi is the logsum variable of the utilities of the links incident to node i.

The relationships (5.3.22) to (5.4.24) yield:

Pr
[

(i, j)/j
]

= exp
(

(−cij + θYi)/θ
)

/

∑

(m,j)∈BS(j)

exp
(

(−cmj + θYm)/θ
)

= wij/Wj

with

wij = exp
(

(−cij + θYi)/θ
)

= exp(−cij/θ) exp(Yi)

= exp(−cij/θ)
∑

(n,i)∈BS(i)

exp(Vni/i/θ)

Wj =
∑

(m,j)∈BS(j)

exp
(

(−cmj + θYm)/θ
)

=
∑

(m,j)∈BS(j)

wij
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The probability Pr[(i, j)/j ] of choosing link (i, j) conditional on the final node

j can therefore be expressed as the ratio between a weight wij associated with link

(i, j), and a weight Wj associated with node j . Note that the definition of the link

weights yields:

wij = exp(−cij/θ)
∑

(n,i)∈BS(i)

exp(Vni/i/θ) = exp(−cij/θ)Wi

Furthermore, nonefficient links (links (i, j) with Zo,i ≥ Zo,j ) have weight

wij = 0, consistent with the assumption that a link (i, j) belongs to an efficient

path if and only if the shortest path from the origin to its initial node i is less than

the shortest path to its final node j .

From the above, the link weights wij , node weights Wj , and probabilities

Pr[(i, j)/j ] can all be determined using a system of recursive equations equiva-

lent to relations (5.3.22)–(5.3.24). They are computed for each link, starting from

the origin o with Wo = 1, and proceeding to other nodes i in order of increasing

minimum cost Zo,i :

wij =

{

exp(−cij/θ)Wi if Zo,i < Zo,j

0 if Zo,i ≥ Zo,j

(5.3.25)

Wj =
∑

(m,j)∈BS(j)

wmj (5.3.26)

Pr
[

(i, j)/j
]

= wij/Wj (5.3.27)

Substituting relationships (5.3.25) to (5.3.27) in (5.3.21) yields expression

(5.3.20).

In fact, the weights of the path nodes, apart from the origin and the destination,

are irrelevant. Because the final node of one link is the initial node of the next link

along the path, these weights appear in both the numerator and the denominator of

successive factors in the product, and cancel (see Fig. 5.17):

pod,k =
∏

(i,j)∈k

Wi exp(−cij/θ)/Wj

=
∏

(i,j)∈k

exp(−cij/θ)Wo/Wd ∝
∏

(i,j)∈k

exp(−cij/θ)

The Dial algorithm for SUN assignment is based on the iterative calculation of

the weights of the nodes and links, for each origin o, using relationships (5.3.25)

and (5.3.26). The processing of nodes in order of increasing minimum cost from the

origin ensures that the recursive relationships (5.3.25) and (5.3.26) can be applied,

that is, that when the weight wij of a link (i, j) is to be computed, the weight Wi of

its initial node i has already been determined.

Of course the same condition occurs if the relevant path set results in an acyclic

graph, because in this case nodes may be completely ordered w.r.t. the acyclic graph.
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pod,k =
Wo exp(−αcoa)

/W a

· · · × · · ·
/W i exp(−αcij )

/W j

×
/W j exp(−αcjm)

/Wm

· · · × · · ·
/W z exp(−αczd )

Wi

Fig. 5.17 Node and link weights

Let pos(i) be the position of node i as introduced above; processing nodes by in-

creasing position from the origin ensures that the recursive relationships (5.3.25)

and (5.3.26) can be applied, that is, that when the weight wij of a link (i, j) is to be

computed, the weight Wi of its initial node i has already been determined.

When the weights of all the nodes and links are known, the demand flow dod to

each destination d is assigned to the network by starting at the destination and pro-

ceeding in reverse order of node cost, splitting each node’s flow among its incident

links according to the probabilities in expression (5.3.27). (This is somewhat similar

to the simultaneous DUN assignment procedure described above.)

For an origin o, the path choice EMPU for a destination d is given by the des-

tination’s inclusive variable sod = Yd . Figure 5.18 provides an example application

of the Dial algorithm. The computation time for the algorithm is two or three times

greater than that needed for DUN assignment to the same network.

The algorithm can be extended to calculate SUN assignment link flows for C-

logit path choice models (described in Sect. 4.3.3.1), provided that one O-D pair is

examined at a time and an appropriate specification of the commonality factor is

adopted.

Observe that the shortest paths used to define efficient paths can be calculated

using link attributes that are different from the link costs c used to determine path

choice probabilities. For example, efficient paths could be defined in terms of their

physical length (or other attribute), while simulating users’ choice among these

paths using a cost proportional to their travel time. In this case, the shortest paths

and the distances Zo,i would be calculated from the physical lengths of the links,

and link weights wij and node weights Wi would be calculated using the costs

(times) cij . With this approach, the set of efficient paths is independent of link costs.

This property is important for stochastic equilibrium assignment because it is nec-

essary to guarantee that the SUN function is increasing monotone in terms of the

(congested) link costs and has a symmetric Jacobian (see Sect. 5.4.1). Therefore,

the (sufficient) condition for uniqueness of stochastic equilibrium is ensured, as is

the convergence of the stochastic equilibrium algorithms described in Sect. 5.4.2.
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Fig. 5.18 Application of the Dial algorithm for logit SUN assignment

5.4 Congested Networks: Equilibrium Assignment

Equilibrium assignment is generally expressed by fixed point models, that is, sys-

tems of nonlinear equations, or by variational inequalities. Hence only asymptoti-

cally converging algorithms are available.
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We consider here the situation where O-D demands are fixed, but link perfor-

mance measures and costs depend on link flows through the performance and cost

functions introduced in Chap. 2. Conversely, link flows depend on link costs through

the path choice probabilities, as described by the uncongested network assignment

map. The user equilibrium approach to the study of the supply–demand interactions

assumes that the state of the real-world system can be represented by a configuration

of path flows that is consistent with the corresponding path costs.13 Equilibrium path

flows and costs are defined by a system of nonlinear equations obtained by combin-

ing the supply model (5.2.4) with the demand model (5.2.5)–(5.2.6):

g∗
od = ∆T

odc

(

∑

od

∆odh∗
od

)

+ gNA∗
od ∀od

V ∗
od = −g∗

od ∀od

h∗
od = dodpod

(

V ∗
od

)

∀od

or

g∗
od = ∆T

odc

(

∑

od

∆odh∗
od

)

+ gNA∗

od ∀od

h∗
od = dodpod

(

−g∗
od

)

∀od

Equivalent equilibrium assignment models expressed in terms of link variables

can be formulated by the system of nonlinear equations obtained by combining the

uncongested network assignment map (5.3.2) with the flow-dependent cost func-

tions (5.2.2):

c∗ = c(f ∗)

f ∗ =
∑

od

dod∆odpod

(

−∆T
odc∗ − gNA

od

)

or

c∗ = c(f ∗)

f ∗ = f UN(c∗;d)

The above system of equations shows that, in congested networks, link flows may

depend nonlinearly on demand flows (unlike uncongested network assignment).

Thus, in this case, the effect of each O-D pair cannot be evaluated separately.

13This assumption can be justified by considering the equilibrium configuration as a state towards

which the system evolves (see Sect. 6.5). According to this interpretation, the equilibrium approach

is valid for the analysis of the recurrent congestion conditions of the system, in other words, for

those conditions systematically brought about by a sufficiently large sequence of reference periods

to guarantee that the system will achieve the equilibrium state (and remain in it for a sufficient

length of time).
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Fig. 5.19 Schematic representation of fixed demand equilibrium assignment models

The circular dependence between flows and costs expressed by the equilibrium

approach is depicted in Fig. 5.19. This figure particularizes the general framework

in Fig. 5.1 for the fixed demand assumption made in this section, and highlights the

role of the uncongested network assignment model in the equilibrium framework.

The formulation and analysis of the theoretical properties (existence and unique-

ness) of equilibrium flows (and costs) depend on the type of model adopted to simu-

late path choices: probabilistic or deterministic. This selection defines, respectively,

stochastic and deterministic equilibrium assignment models and corresponding so-

lution algorithms, which are the subjects of the following sections.

In general, algorithms for calculating equilibrium flows are based on recursive

equations which, starting from an initial feasible link flow vector f 0 ∈ Sf , generate

a sequence of feasible link flow vectors:

f k = ϕ(f k−1) ∈ Sf
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In each step, an assignment algorithm attempts to improve the solution estimate

obtained in preceding steps, but an exact equilibrium solution will not generally be

found in a finite number of steps. However, if at any step k the equilibrium flow

vector is generated, all subsequent elements of the sequence will remain equal to

the equilibrium vector:

f k = f ∗ ⇒ f j = f ∗ j > k

Furthermore, if link flow vectors in two successive steps are equal, they are the

equilibrium vector:

f k = f k−1 ⇒ f k = f ∗

Under certain assumptions on the cost functions and the path choice model, it can

be demonstrated that the sequence defined by the recursive equations converges to

the equilibrium flow vector f ∗, provided that it is unique:

lim
k→∞

f k = f ∗

Below it is worth distinguishing the particular case of cost functions with a sym-

metric Jacobian from the general case. Remember that the algorithms described,

reported for the sake of example, are only those more widely used and more simply

implemented, and are essentially based on calculating link cost and flow functions

of assignment to noncongested networks, using the algorithms described in the pre-

vious section.

5.4.1 Models for Stochastic User Equilibrium

Stochastic User Equilibrium (SUE) assignment is obtained by applying the equi-

librium approach to congested networks under the assumption of probabilistic path

choice behavior. The resulting path flows h∗ correspond to the condition in which,

for each O-D pair, the perceived cost of the paths used at equilibrium is less than

or equal to the perceived cost of every other path. Equilibrium path flows can be

expressed as the solution of a fixed-point model defined on the feasible path flow

set Sh and obtained by combining the supply model (5.2.4) with the demand model

(5.2.7):

h∗
od = dodpod

(

−∆T
odc

(

∑

od

∆odh∗
od

)

− gNA
od

)

∀od (5.4.1)

with

h∗ =
[

h∗
od

]

od
∈ Sh

An equivalent fixed-point model using link flow variables f ∗ (and therefore de-

fined on the feasible link flow set Sf ) can be obtained by combining the stochastic
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uncongested network assignment function (5.3.3) (disaggregated here by O-D pair

to facilitate the analysis) with the flow-dependent cost functions (5.2.2):

f ∗ = f SUN

(

c(f ∗)
)

or f ∗ =
∑

od

dod∆odpod

(

−∆T
odc(f ∗) − gNA

od

)

(5.4.2)

with

f ∗ ∈ Sf

The corresponding equilibrium costs can be obtained with the equations reported in

Sect. 5.2. Fixed-point models expressed in terms of link or path cost variables are

also possible to develop.

An example of stochastic equilibrium using a logit path choice model for a two-

link/path network is given in Fig. 5.20. The stochastic equilibrium pattern is ob-

tained at the intersection of the curves representing the supply and (inverse) demand

equations. Note that the stochastic equilibrium configuration does not correspond to

equal (systematic) costs on the two paths, which means that the intersection point

of the two curves does not correspond to a zero value of the difference g1 − g2. In

other words, at stochastic equilibrium, some travelers have higher (systematic) path

costs than others. This result obviously depends on the assumptions made about

path choice behavior. The perceived path cost is modeled as a random variable and

therefore some users may choose higher (systematic) cost paths because they per-

ceive them as least cost.

The existence and uniqueness of stochastic equilibrium flows and costs are guar-

anteed, respectively, by the continuity and the monotonicity of the cost functions,

provided that the path choice model guarantees the continuity and monotonicity of

the stochastic uncongested network assignment function (as described below). Note

that these conditions for existence and uniqueness are only sufficient; that is, there

can be noncontinuous and/or nonmonotone cost functions that also give rise to a

unique equilibrium configuration. In the following, existence and uniqueness are

explicitly analyzed for equilibrium link flow variables only; these conditions then

ensure the existence and uniqueness of the corresponding link costs c∗ = c(f ∗), and

of the path costs and flows g∗ and h∗, obtained through relations (5.2.1) and (5.2.7)

respectively.

Continuity of the Stochastic Uncongested Network Assignment Function. If the path

choice model is a continuous function having continuous first partial derivatives

with respect to path costs, as is the case for typical probabilistic (|Σ | �= 0) models,

then the stochastic uncongested network assignment function is also continuous and

has continuous first partial derivatives with respect to link costs. In this case, in

other words, a “small” variation in link costs induces a “small” variation in link

flows.
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c1 = c0

(

1 + a1
f1

Cap1

)γ

= 30

(

1 + 2

(

f1

500

)4)

;

c2 = c0

(

1 + a2
f2

Cap2

)γ

= 350

(

1 + 2

(

f2

500

)4)

;

h1 + h2 = dod = 1000; h1 = f1; h2 = f2;

Supply equation ∆g1,2(f1) = g1(f1) − g2(f2 = d − f1)

Demand equation f1(∆g1,2) = do,d

1

1 + exp(∆g1,2/θ)
f2 = dod − f1

Fig. 5.20 Example of Stochastic User Equilibrium (SUE; θ = 100)
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Existence of Stochastic User Equilibrium Link Flows. The fixed-point model (5.4.2)

has at least one solution if the cost function c = c(f ) and the path choice func-

tion pod = pod(V od) (which defines the stochastic uncongested network assign-

ment function f = f SUN(c;d)) are both continuous.

The equilibrium solution f ∗ is a fixed point of the composite function y =

f SUN(c(x)) which, under the above assumptions (and for a connected network),

is a continuous function defined over the nonempty, compact, and convex set Sf .

Furthermore, the function y = f SUN(c(x)) assumes values only in the feasible set

Sf ; thus all of the assumptions of Brouwer’s theorem on the existence of fixed points

are satisfied (see Appendix A).

The continuity of the cost functions over the feasible flow set (and therefore the

existence of the equilibrium solution) requires that the cost functions be defined

for any feasible link flow value, even if a particular link flow is greater than the

physical capacity of that link (recall, however, that link flows are bounded above by

the demand flows). Still, if explicit capacity constraints are added, the set of feasible

flows might be empty: there may be no link flow vector that corresponds to the travel

demand and simultaneously does not exceed the capacity of each network link. Such

a limit case corresponds to an excess of demand compared to the available capacity

of the system.

Monotonicity of the Stochastic Uncongested Network Assignment Function. If the

path choice model is defined by a nondecreasing monotone function of the sys-

tematic utility, as in the case of additive probabilistic models (as demonstrated in

Sect. 3.4), the stochastic uncongested network assignment function is monotone

nonincreasing with respect to link costs. Thus, if the cost of one or more of the links

increases, the flow (or flows) on these links decreases, and vice versa. This property

is formally expressed as

(

f SUN(c′) − f SUN(c′′)
)T

(c′ − c′′) ≤ 0 ∀c′, c′′

Given any two link cost vectors c′ and c′′, consider the following notation.

g′
od = ∆T

odc′ + gNA
od V ′

od = −g′
od p′

od = pod(V ′
od)

h′
od = dodp′

od f ′ =
∑

od

∆odh′
od

g′′
od = ∆T

odc′′ + gNA
od V ′′

od = −g′′
od p′′

od = pod(V ′′
od)

h′′
od = dodp′′

od f ′′ =
∑

od

∆odh′′
od

Assuming that the path choice model is additive and the choice map is monotone

nondecreasing (see Sect. 3.4) we obtain:
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(

pod(V ′
od) − pod(V ′′

od)
)T

(V ′
od − V ′′

od) ≥ 0 ∀od

and it follows from the nonnegativity of the demand flow dod ≥ 0 that

dod

(

pod(V ′
od) − pod(V ′′

od)
)T

(V ′
od − V ′′

od) ≥ 0 ∀od

(h′
od − h′′

od)T (V ′
od − V ′′

od) ≥ 0 ∀od

∑

od

(h′
od − h′′

od)T (V ′
od − V ′′

od) ≥ 0

Because V od = −god = −∆T
odc − gNA

od , the above reduces to:

−
∑

od

(h′
od − h′′

od)T (g′
od − g′′

od) ≥ 0

∑

od

(h′
od − h′′

od)T
(

∆T
odc′ + gNA

od − ∆T
odc′′ − gNA

od

)

≤ 0

∑

od

(h′
od − h′′

od)T ∆T
od(c′ − c′′) ≤ 0

from which (f ′ − f ′′)T (c′ − c′′) ≤ 0 follows.

Note that two different vectors of link costs c′ and c′′ usually generate two dif-

ferent vectors of additive path costs ∆T
odc′ and ∆T

odc′′ and therefore two vectors of

systematic utility V ′
od and V ′′

od . Thus, the assumption that the path choice model is

additive (see Sect. 3.4) with respect to the path systematic utility is equivalent to the

assumption that, for each O-D pair, the distribution parameters of the path utility

random residuals εod (such as the parameter θ in a logit model or the variance–

covariance matrix Σ in a probit model) do not depend on the additive path costs,

and therefore on the link costs relevant to congestion. However, they may depend on

other reference variables (such as distance, free flow costs, etc.).14 Note that, under

this assumption, the Jacobian of the function f SUN = f SUN(c),Jac[f SUN(c)] =
∑

od dod∆odJac[pod(−∆T
odc − gNA

od )]∆T
od is symmetric and negative semidefinite,

because the Jacobian Jac[pod(−∆T
odc − gNA

od )] is symmetric and positive semidefi-

nite (see Sect. 3.4).

Uniqueness of Stochastic User Equilibrium Link Flows. The fixed-point model

(5.4.2) has at most one solution if the link cost functions c = c(f ) are strictly in-

14If the random residual variance of a path depended on the path cost, then, as the cost increased,

the corresponding increase in variance might lead to an increase in the path choice probability

itself.
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creasing15 over the set of feasible link flows:

[

c(f ′) − c(f ′′)
]T

(f ′ − f ′′) > 0 ∀f ′ �= f ′′ ∈ Sf

and the path choice models are additive (and are expressed by continuous functions

pod = pod(V od) with continuous first partial derivatives).

As previously shown, under this assumption the stochastic uncongested network

assignment function f SUN(c) is monotone nonincreasing with respect to the link

costs:
[

f SUN(c′) − f SUN(c′′)
]T

(c′ − c′′) ≤ 0 ∀c′, c′′

The proof is then completed by reductio ad absurdum. Suppose that two different

equilibrium link flow vectors existed, f ∗
1 �= f ∗

2 ∈ Sf . Then with c∗
1 = c(f ∗

1) and

c∗
2 = c(f ∗

2), the equilibrium definition f ∗
1 = f SUN(c∗

1) and f ∗
2 = f SUN(c∗

2) and

the monotonicity of the stochastic uncongested network assignment function with

c′ = c∗
1 and c′′ = c∗

2 yield:

[

f ∗
1 − f ∗

2

]T (
c∗

1 − c∗
2

)

≤ 0

From the monotonicity of the cost functions, with f ′ = f ∗
1 �= f ′′ = f ∗

2 , it also

follows that
[

c∗
1 − c∗

2

]T (
f ∗

1 − f ∗
2

)

> 0

Thus, there is a contradiction between the monotonicity of the cost functions and

that of the stochastic uncongested network assignment function.

A sufficient condition for the strict monotonicity of the cost functions is that

the Jacobian matrix Jac[c(f )] of the cost vector c(f ) is positive definite over the

set Sf (see Appendix A). In the case of separable cost functions, ca = ca(fa), the

Jacobian matrix is diagonal and its elements are the derivatives of the cost functions

of each link with respect to the corresponding link flow. In the usual case when

cost functions are increasing with respect to flow,16 the derivatives are positive, the

Jacobian matrix is positive definite, and the equilibrium flow vector f ∗ is unique.

However, there are real situations in which the cost functions are not monotone.

In applications, the nonuniqueness of equilibrium, or the difficulty of demon-

strating it a priori, gives rise to problems in both computation and interpretation.

Although it is only possible to demonstrate convergence of the solution algorithms

if the solution is unique (see Sect. 5.4.2), nonunique equilibria leave open the possi-

bility that a particular calculated equilibrium flow vector may not be the appropriate

one with which to design or evaluate the transportation system under study. In other

15In the case of logit or probit path choice models, for which path choice probabilities are strictly

greater than zero regardless of cost, it is possible to demonstrate the uniqueness of equilibrium

flows even for cost functions that are monotone but not strictly so: [c(f ′)− c(f ′′)]T (f ′ −f ′′) ≥ 0

∀f ′,f ′′ ∈ Sf .

16The link cost functions reported in Chap. 2 are all strictly increasing with respect to link flows.
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words, the system may attain different equilibrium patterns, and each of these would

need to be verified and analyzed.

Stochastic equilibrium link flows can be calculated with various algorithms, the

simplest of which use the stochastic uncongested network assignment function as

described in the next section.

Appendix 5.A at the end of this chapter presents some optimization models for

fixed demand SUE with separable cost functions, which may be used for dealing

with SUE under some limiting assumptions. It should be noted that it is hard, if not

impossible, to extend them to deal with issues addressed in Chap. 6. At this point,

they are presented mainly for the purpose of completeness.

5.4.2 Algorithms for Stochastic User Equilibrium

As mentioned above, the fixed-point problem (5.4.2) can be solved with an algo-

rithm that generates a sequence of estimated link flow solution vectors f k , starting

from an initial feasible solution f 0 ∈ Sf . The flow estimate at step k is obtained by

combining the solution estimate at step k − 1 with an auxiliary flow vector f k
SUN,

obtained from a SUN assignment based on link costs that correspond to the estimate

at step k − 1. The algorithm can be described by the following system of recursive

equations, starting from f 0 ∈ Sf and k = 0.

k = k + 1 (5.4.3)

ck = c(f k−1) (5.4.4)

f k
SUN = f SUN(ck) (5.4.5)

f k = f k−1 + 1/k
(

f k
SUN − f k−1

)

(5.4.6)

In general, this procedure is known as the Method of Successive Averages

(MSA). Because the solution estimate at iteration k, f k , is the average of flows from

the first k SUN assignments, the algorithm is called the Flow Averaging (MSA-FA)

algorithm. Note that the cost vector ck is always feasible, in the sense that it rep-

resents the exact costs that result from a feasible flow pattern. An initial solution

estimate f 0 ∈ Sf can easily be obtained from a SUN assignment using free flow

costs f 0 = f SUN(c(f = 0)). A fixed point is found if the auxiliary SUN flows are

equal to the current solution estimate:

f k
SUN − f k−1 = 0

In practice, the algorithm is stopped when the relative difference between the SUN

link flows and the current solution estimate at iteration k falls below a pre-assigned
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threshold δ, as measured using a suitable vector norm |f k
SUN − f k−1|/|f k−1| < δ;

one such norm is maxa |f k
SUN,a − f k−1

a |/|f k−1
a |.

The convergence speed of the MSA algorithm close to the solution may be rather

slow because the step length 1/k gets increasingly smaller. Therefore, it might be

best after a certain number of iterations to restart the algorithm, using the current

solution estimate as the new initial solution. This approach leads to a multiphase

algorithm, where each phase is characterized by a pre-determined maximum number

of MSA iterations, increasing with each successive phase: for example, 5 iterations

in the first phase, 10 in the second, 15 in the third, and so on. This approach is,

however, a heuristic one whose convergence properties remain unknown.

If the cost functions c = c(f ) are continuous and strictly monotone increasing,

and if the SUN assignment function f = f SUN(c) is continuous and monotone non-

increasing, then the fixed-point problem (5.4.2) has a unique solution, as shown

in Sect. 5.4.1. Under these assumptions, application of Blum’s theorem (see Ap-

pendix A) guarantees that, if the Jacobian of the cost functions is symmetric, the

sequence of link flow solution estimate vectors f k generated by the MSA-FA al-

gorithm almost certainly converges to the equilibrium link flow vector. An example

application of the MSA-FA algorithm is given in Figs. 5.21a and 5.21b.

Monotonicity of the SUN assignment function is ensured if the distribution of

path choice model random residuals does not depend on the congestion level. With

a logit path choice model, this condition is met if the parameter θ and the definition

of efficient paths are independent of the link costs c (they might depend, however, on

free flow costs, or on other link attributes that do not vary with congestion). Analo-

gously, with a probit path choice model, this condition is met if the random residual

variance–covariance matrix Σ is independent of the link costs c (but again it might

depend on free flow costs or on other attributes that do not vary with congestion).

In the case of a probit path choice model, the Monte Carlo assignment algorithm

only provides an unbiased estimate of SUN flows, as was seen in Sect. 5.3.3. In

this case, Blum’s theorem guarantees almost definite convergence of the MSA-FA

algorithm. The convergence threshold δ that can be achieved depends on the number

of iterations carried out within the SUN assignment algorithm. (Because the SUN

assignment is executed as one step of the MSA, its Monte Carlo iterations are called

inner iterations, whereas the flow averaging iterations of the MSA are called outer

iterations.)

To improve the overall efficiency of the SUE algorithm, a two-phase approach is

sometimes used. In this approach, the Monte Carlo SUN algorithm is first run with

a small number (say 1–3) of inner iterations until the MSA algorithm finds a flow

vector close to the equilibrium solution. The previously discussed stop criterion

cannot be applied in this phase because of the small number of inner iterations;

thus termination of the first phase is usually based on a comparison of successive

solution estimates f k ∼= f k−1. In the second phase, a larger number (say 30–60)

of inner iterations is run, depending on the convergence threshold, and the correct

stop criterion can be used. Another approach is to let the maximum number of inner

iterations of the SUN algorithm increase with the outer iteration index of the MSA

algorithm: for example, two iterations within the SUN algorithm for the first ten

iterations of the MSA algorithm, then four for the next ten, and so on.
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The MSA algorithm could also be applied to SUE problems with nonseparable

cost functions; in this case, however, convergence cannot be guaranteed. A different

stochastic equilibrium algorithm for nonseparable cost functions (asymmetric Jaco-

bian) can be obtained by applying the method of successive averages to link costs

rather than flows. This results in the Cost Averaging (MSA-CA) algorithm, specified

by the following system of recursive equations, starting with f 0 ∈ Sf , c0 = c(f 0),

and k = 0:

k = k + 1 (5.4.7)

f k = f SUN(ck−1) (5.4.8)

xk = c(f k) (5.4.9)

ck = ck−1 + 1/k(xk − ck−1) (5.4.10)

Note that the link flow vector f k at each iteration k is feasible, in the sense that

it represents the flows resulting from an SUN assignment based on feasible costs.

The algorithm terminates if the SUN flows calculated with costs xk are equal to

the flow vector f k :

f SUN

(

c(f k)
)

− f k = 0

In practice, the algorithm terminates when the difference f SUN(c(f k)) − f k is be-

low a pre-assigned threshold δ, as determined using a suitable norm, as discussed

above. Note that the termination test is computationally demanding, because it re-

quires a further SUN assignment.

The convergence of the MSA-CA algorithm is, in general, slower than that of

the MSA-FA algorithm.17 From a practical point of view, it may be convenient to

perform some initial iterations using the MSA-FA algorithm in order to approach

the equilibrium solution, and then to apply the MSA-CA algorithm using the current

solution as the initial solution (two-phase algorithm). The considerations discussed

for the MSA-FA algorithm with probit path choice model apply also in this case.

An application of Blum’s theorem (see Appendix A) shows that convergence of

the MSA-CA algorithm is ensured if the conditions for existence and uniqueness of

the solutions hold and the Jacobian of the SUN function is symmetric. Existence and

uniqueness require, respectively, continuous and strictly increasing monotone cost

functions and a continuous and nondecreasing monotone SUN function. The last

condition is met if the distribution of random residuals in the path choice model is

independent of congestion. In this case, moreover, the Jacobian of the SUN function

is symmetric (as noted in Sect. 5.3.1).

The stochastic equilibrium problem with nonseparable cost functions can also be

solved through the inverse cost function algorithm mentioned in the bibliographic

notes. It could also be solved by applying the diagonalization algorithm, as de-

17Some computational results suggest that the speed of convergence can be increased by reducing

the step length by a factor β ∈ ]0,1[, ck = ck−1 + β/k(yk − ck−1).
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PATHS

Paths Nodes

1 1-2-4

2 1-2-3-4

3 1-3-4

4 2-3-4

5 2-4

6 3-4

PARAMETERS OF COST FUNCTIONS

Arc c0 a Cap γ

1-2 10 2 1000 4

1-3 22 2 1000 4

2-3 13 2 2500 4

2-4 20 2 1000 4

3-4 11 2 3300 4

COST FUNCTION TYPE

c1 = c0

(

1 + a
f

Cap

)γ

LOGIT PARAMETER

θ = 30

ITERATIONS

Iteration Link c(f = 0) f 0
SNL f 0

0

1-2 10 675 675

1-3 22 325 325

2-3 13 1060 1060

2-4 20 1115 1115

3-4 11 2185 2185

Iteration

(k)

µ = 1/k Link c(f k−1) f k
SNL f k

1 1.000

1-2 14 480 480

1-3 22 520 520

2-3 14 1403 1403

2-4 92 577 577

3-4 11 2723 2723

2 0.500

1-2 11 668 574

1-3 25 332 426

2-3 20 1009 1206

2-4 20 1159 868

3-4 11 2141 2432

3 0.333

1-2 12 617 589

1-3 23 383 411

2-3 15 1098 1170

2-4 32 1019 919

3-4 11 2281 2381

4 0.250

1-2 12 596 591

1-3 23 404 409

2-3 15 1133 1161

2-4 37 963 930

3-4 11 2337 2370

Fig. 5.21a Example of the MSA-FA algorithm for SUE assignment with link variables (first iter-

ations only)

scribed for deterministic equilibrium in next subsection. SUE under some limiting

assumptions can also be solved through optimization techniques based on models

presented in Appendix 5.A at the end of this chapter.
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PATHS

Paths Nodes

1 1-2-4

2 1-2-3-4

3 1-3-4

4 2-3-4

5 2-4

6 3-4

PARAMETERS OF COST FUNCTIONS

Arc c0 a Cap γ

1-2 10 2 1000 4

1-3 22 2 1000 4

2-3 13 2 2500 4

2-4 20 2 1000 4

3-4 11 2 3300 4

COST FUNCTION TYPE

c1 = c0

(

1 + a
f

Cap

)γ

LOGIT PARAMETER

θ = 30

FIRST ITERATIONS

Iteration Path C(F = 0) p0 F 0
SNL F 0

0

1 30 0.360 360 360

2 34 0.315 315 315

3 33 0.325 325 325

4 24 0.467 700 700

5 20 0.533 800 800

6 11 1.000 800 800

Iteration

(k)

µ = 1/k Path C(F k−1) pk F k
SNL F k

1 1.000

1 106 0.046 46 46

2 39 0.435 435 435

3 34 0.520 520 520

4 25 0.905 1357 1357

5 92 0.095 143 143

6 11 1.000 800 800

2 0.500

1 31 0.394 394 220

2 42 0.274 274 354

3 36 0.332 332 426

4 31 0.410 615 986

5 20 0.590 885 514

6 11 1.000 800 800

3 0.333

1 44 0.281 281 240

2 38 0.336 336 348

3 35 0.383 383 411

4 26 0.545 817 930

5 32 0.455 683 570

6 11 1.000 800 800

4 0.250

1 50 0.352 352 254

2 38 0.148 148 366

3 34 0.500 500 380

4 26 0.296 444 890

5 37 0.704 1056 610

6 11 1.000 800 800

Fig. 5.21b Example of the MSA-FA algorithm for SUE assignment with path
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5.4.3 Models for Deterministic User Equilibrium

Deterministic User Equilibrium (DUE) assignment is obtained by applying the equi-

librium approach for congested networks under the assumption of deterministic path

choice behavior. Deterministic equilibrium link flows f ∗, path flows h∗, and the

corresponding costs c∗ and g∗ can be determined with a fixed-point model obtained

by simultaneously applying the supply model (5.2.4) and the demand model (5.2.7),

as in the stochastic equilibrium case (an alternative is to utilize the deterministic

uncongested network assignment map and flow-dependent cost functions). In this

case, however, there are some mathematical complications arising from the fact that

the deterministic demand model is expressed (such as the corresponding determin-

istic uncongested network assignment map18) by a one-to-many map, as was noted

in Sect. 5.2.2 (and in 5.3.2).

For this reason, the properties of deterministic equilibrium are usually studied

through indirect formulations. The most general is the variational inequality formu-

lation based on the specification of the deterministic demand model as the system

of inequalities (5.2.7b):

g(h∗)T (h − h∗) ≥ 0 ∀h ∈ Sh (5.4.11)

By combining the demand model obtained by summing (5.2.7b) on all O-D pairs

with the supply model (5.2.4), expression (5.4.11) is obtained. In the case of con-

gested networks, therefore, the resulting path (or link) flows correspond to the con-

dition expressed by Wardrop’s first principle.

Equivalent variational inequality models expressed in terms of link flows are

obtained by combining the link cost functions (5.2.2) with the inequality systems

(5.3.5) or (5.3.6) that represent deterministic uncongested network assignment:

c(f ∗)T (f − f ∗) ≥ 0 ∀f ∈ Sf (5.4.12)

c(f ∗)T (f − f ∗) + (gNA)T (h − h∗) ≥ 0 ∀f = ∆h, ∀h ∈ Sh (5.4.13)

Expressions (5.4.12) and (5.4.13) apply, respectively, to cases with zero and

nonzero nonadditive path costs. Note that expressions (5.4.11)–(5.4.13) are different

from those used for deterministic uncongested assignment in that the path and link

costs depend on flows. In the presence of nonadditive path costs, the considerations

presented in Sect. 5.3.2 hold, and (5.4.13) can be expressed in terms of link flows

18For the deterministic uncongested network assignment map, it is possible to demonstrate prop-

erties analogous to those of the stochastic uncongested network assignment function. In partic-

ular, the deterministic uncongested network assignment map is semicontinuous, and the set of

flows associated with each link’s cost is nonempty, compact, and convex. Furthermore, the map is

monotone nonincreasing with respect to link costs. These properties permit analysis of the exis-

tence and uniqueness of the deterministic user equilibrium flow configurations analogously to the

analysis carried out for stochastic user equilibrium flows in Sect. 5.4.1.
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f ∗ and of the total nonadditive cost GNA∗ at deterministic equilibrium:

c(f ∗)T (f − f ∗) + (GNA − GNA∗) ≥ 0

∀f = ∆h, GNA = (gNA)T h, ∀h ∈ Sh (5.4.14)

An example of deterministic user equilibrium assignment for a two-link/path net-

work is shown in Fig. 5.22. Note that the deterministic equilibrium flows correspond

to the intersection point of the supply and demand curves (in this case, step curves)

and they result in costs that are equal for the two paths since both are used.

Conditions ensuring the existence and uniqueness of deterministic equilibrium

link flows and costs are similar to those described for stochastic equilibrium. In

particular, the continuity and monotonicity of the cost functions guarantee, respec-

tively, the existence and uniqueness of the solution. It should be noted once again

that these existence and uniqueness conditions are only sufficient; there may exist

nonmonotone cost functions that give rise to a unique equilibrium vector.

Existence of Deterministic User Equilibrium Link Flows. The variational inequali-

ties (5.4.11)–(5.4.13) have at least one solution if the cost functions are continuous

functions defined on the nonempty, compact, and convex set of the feasible path

flows Sh or link flows Sf .

This is a general property of variational inequalities, which can be proved using

Brouwer’s theorem (see Appendix A).

The considerations regarding the continuity of cost functions discussed for SUE

models apply also for DUE models. The existence of equilibrium link flows ensures

the existence of the corresponding link costs c∗ = c(f ∗), and of path costs and flows

g∗ and h∗, given by the expressions reported in Sect. 5.2.

Uniqueness of Deterministic User Equilibrium Link Flows. The variational inequal-

ity (5.4.14), which expresses deterministic equilibrium in terms of link flows, has

at most one solution if the link cost functions c = c(f ) are strictly increasing with

respect to link flows:

[

c(f ′) − c(f ′′)
]T

(f ′ − f ′′) > 0 ∀f ′ �= f ′′ ∈ Sf

The same result holds for the variational inequality (5.4.12), which is a special

case of (5.4.14) when nonadditive costs are zero.

The proof is by reductio ad absurdum. Assume that there exist two differ-

ent equilibrium link flow vectors f ∗
1 �= f ∗

2 ∈ Sf , corresponding to two differ-

ent feasible path flow vectors, h∗
1 �= h∗

2 ∈ SF , and that GNA∗
1 = (gNA)T h1 and

GNA∗
2 = (gNA)T h∗

2 are the relative values of total nonadditive cost. Because f ∗
1 is
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c1 = c0,1

(

1 + a1
f1

Cap1

)γ

= 30

(

1 + 2

(

f1

500

)4)

;

c2 = c0,1

(

1 + a2
f2

Cap2

)γ

= 200

(

1 + 2

(

f2

500

)4)

;

F1 + F2 = dod = 1000; F1 = f1; F2 = f2;

Supply equation ∆C1,2(f1) = C1(f1) − C2(f2 = d − f1)

Demand equation f1(∆C1,2) =

⎧

⎪

⎨

⎪

⎩

0 if ∆C1,2 > 0

∈ [0, d1,2] if ∆C1,2 = 0

d1,2 if ∆C1,2 < 0

f2 = dod − f1

Fig. 5.22 Example of Deterministic User Equilibrium (DUE)
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an equilibrium flow vector, f ∗
1 and GNA∗ must satisfy (5.4.14); letting f = f ∗

2 ∈ Sf

and GNA = GNA∗
2 then yields:

c
(

f ∗
1

)T (
f ∗

2 − f ∗
1

)

+
(

GNA∗
2 − GNA∗

1

)

≥ 0

Furthermore, f ∗
2 and GNA∗

2 must also satisfy (5.4.14); again letting f = f ∗
1 ∈ Sf

and GNA = GNA∗
1 yields:

c
(

f ∗
2

)T (
f ∗

1 − f ∗
2

)

+
(

GNA∗
1 − GNA∗

2

)

≥ 0

Adding the two above relationships gives:

c
(

f ∗
1

)T (
f ∗

2 − f ∗
1

)

+ c
(

f ∗
2

)T (
f ∗

1 − f ∗
2

)

≥ 0

or

[

c(f ∗
1) − c

(

f ∗
2

)]T (
f ∗

1 − f ∗
2

)

≤ 0

which contradicts the monotonicity of the cost functions.

The considerations regarding the monotonicity of the cost functions already ex-

pressed for stochastic equilibrium also hold for the deterministic model. Moreover,

the uniqueness of equilibrium link flows ensures the uniqueness of the correspond-

ing equilibrium link and path costs, c∗ = c(f ∗) and g∗ = ∆T c∗ + gNA. In general,

however, uniqueness of link flows, and therefore of link and path costs, does not

ensure the uniqueness of path flows, because there might exist different path flow

vectors that induce the same link flow vector f ∗, and that correspond to the equilib-

rium costs c∗ and g∗.

The nonuniqueness of DUE path flows is not particularly relevant in practice if

the main objective of equilibrium analysis is the modeling of link flows. However,

knowledge of path flows is useful or necessary in some applications (such as the

estimation of the O-D flows from traffic counts, described in Chap. 8); in such cases,

this characteristic of deterministic equilibrium assignment may result in theoretical

and/or algorithmic drawbacks.

Formulation with Optimization Models. Under certain assumptions on the cost func-

tions, fixed demand deterministic equilibrium assignment problems can also be for-

mulated as optimization models. These models allow the use of simple and efficient

solution algorithms (described in the following). In particular, under the assump-

tions of separable cost functions and absence of nonadditive path costs, determinis-

tic equilibrium is given by the solution to:

f ∗ = argmin
∑

a

∫ f a

0

ca(ya) dya f ∈ Sf (5.4.15)
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Fig. 5.23 Example of an optimization model for the DUE flows of Fig. 5.22

Figure 5.23 is a graphic illustration of the model (5.4.15) and a diagram of the

function z(f ) =
∑

a

∫ f a

0 ca(ya) dya , known as the integral cost, for the two-link

network introduced in Fig. 5.22. (The relation between the integral cost and the total

cost c(f )T f is analyzed in Sect. 5.4.4.) Note that the point where the function z(f )

attains a minimum corresponds to the value of the flows for which the path costs

are equal, which are the deterministic equilibrium flows (because both the paths are

used).

The formulation (5.4.15) can be extended to nonseparable cost functions as long

as they have a symmetric Jacobian (separable functions, with diagonal Jacobian, are
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clearly a special case of this):

f ∗ = argmin

∫ f

0

c(y)T dy f ∈ Sf (5.4.16)

The assumption that the cost functions have a symmetric Jacobian is critical for

the formulation of the model (5.4.16) because, in general, the value of a line integral

depends on the path of integration. However, when the Jacobian Jac[c(·)] of the

integrand c(·) is symmetric, Green’s theorem ensures that the value of the integral

does not depend on the path of integration (because the set is convex).19 In this case,

the integral depends only on the limits of integration. Indeed, because the lower limit

is zero, the value of the integral depends only on the link flow. It is worth pointing

out that in practice the Jacobian of nonseparable cost functions is rarely symmetric

because the way in which the flow on a link i affects the cost of another link j

is generally different from the way in which the flow on link j affects the cost on

link i.

The relationship between solutions f ∗ of the constrained optimization model

(5.4.15) and an equilibrium vector can be analyzed by verifying their relationship

with solutions of the variational inequality (5.4.12), as shown below (the demonstra-

tions refer to general features of optimization problems and variational inequalities;

see Appendix A).20

Equivalence of Optimization Model for DUE. If the cost functions c(f ) are con-

tinuous with continuous first partial derivatives and symmetric Jacobian, a vector

f ∗ solving the optimization model (5.4.15) is an equilibrium flow vector (but not

necessarily vice versa).

The function z(f )
∫ f

0 c(y)T dy is differentiable with a continuous gradient be-

cause ∇z(f ) = c(f ), and therefore its minimum points satisfy the necessary condi-

tion for a minimum:

∇z(f ∗)T (f − f ∗) ≥ 0 ∀f ∈ Sf

Because ∇z(f ∗) = c(f ∗), (5.4.12) holds. Furthermore, the function z(f ) is dif-

ferentiable, and therefore continuous, on a compact (and convex) set; it therefore has

at least one minimum point, consistent with the existence conditions of the solutions

of (5.4.12).

19If a function c(f ) has a symmetric Jacobian Jac[c(f )], it is the gradient of a function z(f ),

∇z(f ) = c(f ), and conversely. In this case, furthermore, the Jacobian of c(f ), Jac[c(f )] is the

(symmetric) Hessian matrix of z(f ), Hess[z(f )].
20Under the same assumptions, a direct (although more complicated) demonstration that the equiv-

alent optimization model solutions are equilibrium values is also possible; it is obtained by apply-

ing the theory of constrained optimization. Note that the equivalence conditions are stricter than

those necessary to define the variational inequality models.
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If the cost functions c(f ) are continuous and with continuous first partial deriv-

atives and symmetric positive semidefinite Jacobian Jac[c(f )], a vector f ∗ solving

the fixed optimization model (5.4.15) is an equilibrium flow vector, and vice versa.

Under the above assumptions, z(f ) is differentiable with continuous gradient

and continuous positive semidefinite Hessian matrix, because ∇z(f ) = c(f ) and

Hess[z(f )] = ∇2z(f ) = Jac[c(f )]. Therefore z(f ) is convex, and its minimum

points f ∗ are defined by the necessary and sufficient condition:

∇z(f ∗)T (f − f ∗) ≥ 0 ∀f ∈ Sf

Because ∇z(f ∗) = c(f ∗), (5.4.12) holds. (Furthermore, z(f ) is convex on a convex

set, and therefore has at least one minimum point, consistent with the existence

conditions of the solutions of (5.4.12).)

If nonadditive path costs differ from zero, the optimization model becomes:

f ∗,GNA∗
= argmin

∫ f

0

c(y)T dy + GNA (5.4.17)

f = ∆h

GNA = (gNA)T h

h ∈ Sh

The model (5.4.17) has properties analogous to those shown above for model

(5.4.16).

When the cost function c(f ) has a symmetric positive definite Jacobian, the ob-

jective functions of models (5.4.15), (5.4.16), and (5.4.17), respectively, have a sin-

gle minimum point (i.e., they are unimodal). In particular, the objective function of

model (5.4.15) is strictly convex and therefore has a single minimum point, consis-

tent with the uniqueness conditions presented for variational inequality models, be-

cause under this assumption the cost functions are strictly increasing. On the other

hand, the objective function of model (5.4.17) is convex with a single minimum

point, inasmuch as it is the sum of a function that is strictly convex with respect to

the variables f and a linear function with respect to the variable GNA.

5.4.4 Algorithms for Deterministic User Equilibrium

Deterministic user equilibrium link flows can be calculated with various algorithms

that directly solve the variational inequality or optimization models (in the case of

cost functions with symmetric Jacobian).21 Some simple algorithms that use deter-

ministic network loading are described in the following.

21Note that, by using the definition (5.2.9) in Sect. 5.2.3, for the feasibility set of link flows Sf

an optimization problem is obtained which is known in the literature as convex minimum cost

multicommodity flow.
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The optimization problem (5.4.16), having a nonlinear objective function and

linear constraints, can be solved using an adaptation of the Frank–Wolfe algorithm

(see Appendix A). Starting from an initial feasible solution f 0 ∈ Sf , this algorithm

generates a sequence of feasible link flow vectors f k by solving a sequence of linear

problems that approximate problem (5.4.17); each such problem is defined in terms

of the current solution estimate f k−1. The solution of each linear problem identifies

a direction along which the objective function is minimized to determine the new

solution estimate f k .

Specifically, the objective function z(f ) is approximated around a point f̄ ∈ Sf

by a linear function z̄(f ), using a first-order Taylor’s series approximation:

z(f ) ∼= z(f̄ ) + ∇z(f̄ )T (f − f̄ ) = z̄(f )

The optimization problem (5.4.16) is thus approximated by a linear programming

problem, that is, a problem with linear objective function z̄(f ) and the same linear

constraints f ∈ Sf :

argmin
f ∈Sf

z(f ) ∼= argmin
f ∈Sf

z̄(f ) = argmin
f ∈Sf

z(f̄ ) + ∇z(f̄ )T (f − f̄ )

or

argmin
f ∈Sf

z(f ) ∼= argmin
f ∈Sf

∇z(f̄ )T f (5.4.18)

Note that the gradient of the objective function z̄(f ) of problem (5.4.16) at a

point f̄ is equal to the link cost vector evaluated at that point, ∇z(f ) = c(f ). Hence

expression (5.4.18) becomes:

argmin
f ∈Sf

z(f ) ∼= argmin
f ∈Sf

c(f̄ )T f (5.4.19)

The linear optimization problem expressed by (5.4.19) consists of finding a feasible

link flow vector that minimizes total travel costs in a network where link costs are

given by the fixed vector c(f ). The solution to this problem is obtained by assigning

all the flow of each O-D pair to the minimum cost path between them. Thus, this

problem corresponds to the optimization model (5.3.7) described in Sect. 5.3.2 for

deterministic unncongested network assignment, and it can be solved with one of

the DUN algorithms described in Sect. 5.3.3. A DUN algorithm is formally denoted

as

f DUN(c) DUN link flows corresponding to link cost vector c

The Frank–Wolfe algorithm for the calculation of DUE link flows with fixed

demand and with cost functions having symmetric Jacobian can be described by the

following system of recursive equations, starting at f 0 ∈ Sf and k = 0.

k = k + 1

ck = c(f k−1) (5.4.20)
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f k
DUN = f DUN(ck) (5.4.21)

µk = argmin
µ∈[0,1]

ψ(µ) = z
(

f k−1 + µ
(

f k
DUN − f k−1

))

(5.4.22)

f k = f k−1 + µk
(

f k
DUN − f k−1

)

(5.4.23)

The MSA-FA algorithm presented for stochastic equilibrium, (5.4.3) to (5.4.6), is

quite similar to the Frank–Wolfe algorithm. The main difference is in the determi-

nation of the step size µk : in the MSA it is 1/k and so depends only on the iteration

index, whereas in the Frank–Wolfe algorithm it results from an optimization prob-

lem (5.4.22). However, the MSA-FA algorithm may show a slower convergence.

Equation (5.4.22) defines a one-dimensional nonlinear optimization problem in

the scalar variable µ that can be solved with a line search algorithm such as the bi-

section algorithm (see Appendix A). The bisection algorithm requires the derivative

of the function ψ(µ) = z(f k−1 + µ(f k
DUN − f k−1)), which can easily be obtained

from the link costs:

dψ(µ)/dµ = ∇z
(

f k−1 + µ
(

f k
DUN − f k−1

))T (
f k

DUN − f k−1
)

= c
(

f k−1 + µ
(

f k
DUN − f k−1

))T (
f k

DUN − f k−1
)

Note that in order to apply the bisection algorithm it is not necessary to actually

compute the value of the function ψ(µ).

From expression (5.4.23) it can be deduced that the solution estimate at iteration

k, f k , is a convex combination of the first k DUN assignments; it is thus a feasible

solution, f k ∈ Sf , because DUN assignment outputs are feasible and the set of fea-

sible flows Sf is convex. An initial feasible solution f 0 ∈ Sf can easily be obtained,

for example, with a DUN algorithm using free flow costs, f 0 = f DUN(c(f = 0)).

The algorithm stops when the product of the objective function gradient and the

descent direction is greater than or equal to zero (see Appendix A):

∇z(f k−1)T
(

f k
DUN − f k−1

)

= c(f k−1)T
(

f k
DUN − f k−1

)

≥ 0

It can easily be deduced that if the algorithm stops, the current solution estimate

f k is the DUE flow vector. In practice, the algorithm terminates when the absolute

value of the product c(f k−1)T (f k
DUN − f k−1) is below a stop threshold δ, which is

defined relative to the total cost to avoid dependence on the measurement units:

∣

∣(ck)T
(

f k
DUN − f k−1

)∣

∣

/(

(ck)T f k−1
)

< δ

Convergence of this algorithm near the solution may be rather slow because it tends

to zigzag; thus, a number of algorithms that modify the descent direction f k
DUN −

f k−1 have been developed (some of which are referred to in Appendix A). An

example application of the Frank–Wolfe algorithm is given in Fig. 5.24.

If the cost functions c = c(f ) are continuous with continuous first partial deriv-

atives and symmetric positive definite Jacobian, the function z(f ) has only one
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PATHS

Paths Nodes

1 1-2-4

2 1-2-3-4

3 1-3-4

4 2-3-4

5 2-4

6 3-4

PARAMETERS OF COST FUNCTIONS

Arc c0 a Cap γ

1-2 10 2 1000 4

1-3 22 2 1000 4

2-3 13 2 2500 4

2-4 20 2 1000 4

3-4 11 2 3300 4

COST FUNCTION TYPE

c1 = c0

(

1 + a
f

Cap

)γ

ITERATIONS

Iteration Link c(f = 0) f 0
AoN f 0

0

1-2 10 1000 1000

1-3 22 0 0

2-3 13 0 0

2-4 20 2500 2500

3-4 11 800 800

Iteration

(k)

µ Link c(f k−1) f k
AoN f k

1 0.69592

1-2 810 0 304

1-3 22 1000 696

2-3 13 1500 1044

2-4 25920 0 760

3-4 53 3300 2540

2 0.14868

1-2 67 1000 408

1-3 720 0 592

2-3 147 2500 1260

2-4 807 0 647

3-4 457 3300 2653

22 0.00006

1-2 153 1000 488

1-3 369 0 512

2-3 216 2500 1275

2-4 694 0 714

3-4 478 3300 2586

23 0.00002

1-2 153 1000 488

1-3 369 0 512

2-3 216 0 1275

2-4 694 2500 714

3-4 478 800 2586

2-4 23 1500 679

3-4 11 1800 2620

Fig. 5.24 Example of the Frank–Wolfe algorithm for DUE assignment

minimum point, f ∗, as stated in Sect. 5.4.3. In this case, the function ψ(µ) also has

only one minimum point. Under these assumptions, it can be demonstrated by using
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results from optimization theory that the sequence of (feasible) link flow vectors f k

generated by the Frank–Wolfe algorithm converges to the vector of DUE link flows.

The calculation of fixed demand DUE link flows for nonseparable cost functions

(including the case of asymmetric Jacobian) is based on algorithms that solve the

variational inequality model (5.4.12).

Variational inequality can be solved using the diagonalization algorithm. This

algorithm generates a sequence of feasible link flow vectors f k , starting from an

initial feasible solution f 0 ∈ Sf , by solving a sequence of separable cost function

problems that approximate problem (5.4.12). In particular, at a solution estimate f ∈

Sf the cost function of link a, ca(f ), is approximated by a separable cost function,

c̄a(fa), obtained by diagonalizing the function’s Jacobian:

ca(f1, . . . , fa−1, fa, fa+1, . . .) ∼= c̄a(f̄1, . . . , f̄a−1, fa, f̄a+1, . . .) = c̄a(fa) ∀a

Therefore, variational inequality (5.4.12) is approximated by a variational inequality

with separable cost functions c̄a(fa):

c(f ∗)T (f − f ∗) ∼=
∑

a

c̄a(fa)
(

fa − f ∗
a

)

≥ 0 ∀f ∈ Sf (5.4.24)

which, in turn, is equivalent to problem (5.4.16) for fixed demand DUE assignment

with symmetric Jacobian cost functions. Thus problem (5.4.24) can be solved as

described previously. Let:

f DUE[c(·)] be the DUE link flows resulting from link cost functions c(·) with sym-

metric Jacobian; f DUE can be calculated, for example, with the Frank–

Wolfe algorithm

The diagonalization algorithm can be described by the following system of re-

cursive equations, starting with f 0 ∈ Sf and k = 0:

c̄k
a(fa) = ca

(

f k−1
a , . . . , f k−1

a−1 , fa, f
k−1
a+1 , . . .

)

∀a (5.4.25)

f k = f DUE

[

c̄k
a(fa)

]

(5.4.26)

The algorithm is therefore equivalent to performing a sequence of DUE assignments

with separable cost functions. These are obtained by defining a new cost function

for each link. The only variable in the new link cost function is the corresponding

link flow; flows on other links are set equal to the previous equilibrium solution

estimate. The diagonalization algorithm can also be applied by averaging over the

successive DUE vectors for separable cost functions, as described by the following

system of recursive equations, starting with f 0 ∈ Sf and k = 0.

k = k + 1

c̄k
a(fa) = ca

(

f k−1
1 , . . . , f k−1

a−1 , fa, f
k−1
a+1 , . . .

)

∀a

f k
DUE = f DUE

[

c̄k
a(fa)

]
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f k = f k−1 + (1/k)
(

f k
DUE − f k−1

)

It can easily be deduced that, in both cases, if the diagonalization algorithm con-

verges to a solution, this is the equilibrium DUE assignment for the problem with

nonseparable cost functions. Consistent with the results described in Sect. 5.4.3,

if the cost functions are continuous and differentiable with positive definite Jaco-

bian, variational inequality (5.4.12) has one and only one solution. Under this as-

sumption, the sequence of link flow vectors f k generated by the diagonalization

algorithm converges to the equilibrium link flow vector under some technical con-

ditions on the maximum value of an appropriate norm of the Jacobian matrix. In

practice, to speed up the application of the algorithm, the convergence threshold

of the Frank–Wolfe algorithm is decreased at each iteration of the diagonalization

algorithm; alternatively a deterministic uncongested network assignment f DUN(·)

is heuristically substituted for the symmetric deterministic equilibrium f DUE[·] as-

signment.

5.4.5 Relationship Between Stochastic and Deterministic

Equilibrium

The deterministic path choice model underlying deterministic equilibrium models

can be considered a special case of a random utility model in which the variance

of the random residuals is null. For this reason, stochastic equilibrium flows are in-

creasingly closer to deterministic equilibrium flows as the random residual variance

goes to zero. Figure 5.25 shows the curves expressing the demand model for the

example used in Figs. 5.20 and 5.22 for various values of the parameter θ (which is

proportional to the standard deviation of random residuals of the path choice model).

The figure clearly shows that, as the variance decreases, the probabilistic demand

curve progressively approaches the curve corresponding to the deterministic model,

and SUE flows approach DUE flows.

Deterministic and stochastic models give similar results in the case of very con-

gested networks. If link flows are close to capacity, the derivatives of the cost func-

tions, representing the cost variations introduced by an additional user, are most

likely larger than the random residuals. In other words, a flow distribution very dif-

ferent from deterministic equilibrium would induce large cost differences between

the different paths, and these are likely to be correctly perceived by almost all the

users.

This effect is shown in Fig. 5.26, where the link cost functions vary in such a

way that their derivatives increase but their flow values where they intersect remain

fixed. In other words, the DUE flows remain unchanged as the system becomes more

congested, and thus more sensitive to small flow variations. As the figure shows, as

the cost curves vary, SUE flows change and approach DUE flows.

The closeness of deterministic and stochastic equilibrium flows means that for

very congested networks it is possible to use DUE assignment as an approximation
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Fig. 5.25 Relationship between SUE and DUE flows for different random residual standard devi-

ations (see Figs. 5.20 and 5.22)

to SUE assignment. This is good for practical problems, because DUE flows are

easier to compute, as shown in Chap. 7. However, it should be noted that for other

applications (assignment to lightly congested or nonuniformly congested networks,

estimation of the O-D matrix from traffic counts, etc.) the deterministic model is not

a good substitute for the stochastic one. Furthermore, as pointed out in the preceding

section, it is not possible to guarantee the uniqueness of deterministic equilibrium

path flows, nor (as shown in Sect. 6.4) of flows per user class in the case of multiclass

assignment.
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Cost functions

c1 = c0,1

(

1 + a1
f1

Cap1

)γ1

;

c2 = c0,2

(

1 + a2
f2

Cap2

)γ2

;

Parameters of the Cost Functions

Case c0,1 c0,2 a1 a2 Cap1 Cap2 γ1 γ2

A 30 200 2 2 500 500 5.06 2

B 30 200 2 2 500 500 4 4

C 30 200 2 2 500 500 3.17 12

θ = 100

Fig. 5.26 Relationship between SUE and DUE flows for varying cost functions

5.4.6 System Optimum Assignment*

System optimal assignment models derive from assumptions that are significantly

different from those underlying user equilibrium models. Indeed, it is assumed that

users cooperate to minimize total system cost, rather than try individually to mini-
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mize their own costs as in user equilibrium models (or they are indifferent to costs,

e.g., freight transport). For congested networks, the two assignment problems are

generally different; for uncongested networks, however, the problem is the same

as the deterministic assignment problem. Note that under the assumptions of sys-

tem optimal assignment, some users may follow a nonminimum (perceived or sys-

tematic) cost path. Wardrop’s second principle expresses the assignment condition

under which the total cost on the network is minimal; it is also known as System

Optimum (SO) assignment.

Knowledge of system optimum flows can be a useful reference element in the

analysis of congested networks. Although the behavioral assumptions underlying

SO are not realistic for the modeling of individual tripmaker behavior, minimization

of total costs corresponds to (one of) the typical system management objectives that

network operators attempt to achieve through available control instruments (prices,

traffic-light regulation, service frequency, etc.).22 Furthermore, SO assignment can

be applied for the assignment of flow units that lack autonomous decision capability,

such as freight vehicles.

SO assignment is defined by an optimization model expressed in terms of link

flows, with an objective function consisting of the total cost presented in Sect. 5.2

(ignoring nonadditive path costs for the sake of simplicity):

f SO = argmin c(f )T f (5.4.27)

f ∈ Sf

Note that it is unnecessary to introduce assumptions on the symmetry of the cost

function Jacobian to formulate system optimum assignment through an optimization

model (which in this case is the direct formulation, rather than an equivalent indirect

one as with DUE). The existence and uniqueness of optimum system flows and costs

are discussed below.

Existence. The optimization model (5.4.27) has at least one solution if the cost func-

tions, c = c(f ), are continuous.

Under these assumptions, the objective function z(f ) = c(f )T f , is continuous

on the nonempty (under the assumption of a connected network), and compact (as

well as convex) set Sf , and therefore has at least one minimum point (see Appen-

dix A).

Existence and uniqueness. The optimization model (5.4.27) has one and only one

solution if the cost functions c(f ) have continuous first and second partial deriv-

atives; their Jacobian Jac[c(f )] is continuous and positive definite (cost functions

22Formal models for supply design are dealt with in Chap. 9.
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are strictly increasing); and the Hessian matrix Hess[ca(f )] of each cost function

ca = ca(f ) is positive semidefinite (each cost function is convex).

Under these assumptions, the cost functions have continuous first derivatives and

are therefore differentiable and continuous, a condition guaranteeing the existence

of a solution. Furthermore, the gradient ∇z(f ) of the function z(f ) = c(f )T f is

given by

∇z(f ) = Jac
[

c(f )
]

f + c(f )

and its Hessian matrix Hess[z(f )] is given by

Hess
[

z(f )
]

= Jac
[

∇z(f )
]

= Jac
[

c(f )
]T

+
∑

a

faHess
[

ca(f )
]

+ Jac
[

c(f )
]

Both z(f ) and Hess[z(f )] are continuous, so that the function z(f ) = c(f )T f

is twice differentiable. Finally, the Hessian matrix Hess[z(f )] is symmetric posi-

tive definite because it is the sum of symmetric positive semidefinite matrices and

of symmetric positive definite matrices. Therefore, the function z(f ) = c(f )T f ,

defined over the convex set Sf , is strictly convex and has one and only one mini-

mum point.

System optimum flows do not generally coincide with DUE flows, as is shown

by the example illustrated in Fig. 5.27. The figure shows that, with respect to the

DUE flows, the shift of some users to a path that is slightly more expensive but

less congested significantly reduces the total cost borne by all users. However, if

link costs are independent of flows (i.e., if Jac[c(f )] = 0), the solutions to the two

problems coincide.

If f ∗ is a minimum point of the function z(f ) = c(f )T f it follows that

∇z(f ∗)T (f − f ∗) ≥ 0 ∀f ∈ Sf

and because

∇z(f ∗) = Jac
[

c(f )
]

f + c(f ) :
(

Jac
[

c(f )
]

f + c(f )
)T

(f − f ∗) ≥ 0 ∀f ∈ Sf

a condition that is different in general from the variational inequality (5.4.15) that

expresses deterministic equilibrium. However, if link costs are independent of the

flows (Jac[c(f )] = 0) then the above inequality coincides with the variational in-

equality; the deterministic user equilibrium problem is reduced to the determinis-

tic uncongested network assignment problem and can be expressed by the model

(5.3.7), which is equivalent in this case to model (5.4.27) that expresses the system

optimum assignment problem.

Of particular interest is the example in Figs. 5.28a and 5.28b, known in the lit-

erature as Braess’ paradox. The paradox involves a network where the addition of

a new link causes an increase in the total cost under deterministic equilibrium as-

signment, while leaving the system optimum total cost unchanged. In the first case,
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Fig. 5.27 System optimum (SO) flows on the test network of Fig. 5.22
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the SO link flows minimize the total cost. For this reason, the addition of a link can-

not increase the overall system cost because the SO link flow pattern corresponding

to zero flow on the new link is a feasible solution of the new SO problem. In user

equilibrium, on the other hand, the objective of each individual is to minimize her

own transport cost and the equilibrium link flow pattern corresponding to the intro-

duction of a new link may cause an increase in total cost. It should be pointed out,

however, that conditions analogous to the Braess paradox are not often found in real

systems.23

The system optimum model (5.4.27) can be reformulated to be formally analo-

gous to the DUE optimization model (5.4.15). To this end, consider the marginal

cost function b(f ). It is the gradient ∇z(f ) of the function z(f ) = c(f )T f :

b(f ) = ∇z(f ) = Jac
[

c(f )
]T

f + c(f ) (5.4.28)

The interpretation of the function (5.4.28) is more straightforward in the case of

separable cost functions c(f ), where the functions b(f ) are also separable. Under

this assumption, if the first derivative of the link a cost function ca(fa) is denoted

by c′
a(fa), it follows that

ba(fa) = c′
a(fa)fa + ca(fa)

In the general (nonseparable) case, if the cost functions have continuous first and

second derivatives, the Jacobian Jac[b(f )] of b(f ) is symmetric. In this case the

line integral of b(f ) between the limits 0 and f does not depend on the path of

integration, and the integral’s value coincides with the total cost:

∫ f

o

b(y)T dy = c(f )T f

If the cost functions c(f ) have continuous first and second derivatives, the marginal

costs b(f ) have continuous cost derivatives; thus they are differentiable and contin-

uous. Furthermore, the Jacobian Jac[b(f )] of the gradient function b(f ) = ∇z(f ),

coinciding with the Hessian matrix of the function z(f ) is symmetric.

System optimum assignment can therefore be formulated as an optimization

model using the marginal cost function b(y) defined in (5.4.28):

f SO = argmin z(f ) =

∫ f

0

b(y) dy f ∈ Sf (5.4.29)

The optimization model (5.4.29) is formally analogous to the optimization model

(5.4.15) for the (symmetric) DUE and can be solved with the same algorithms de-

scribed (see Fig. 5.26).

23Results reported in the literature indicate that cost functions characterized by a stronger form of

monotonicity preclude the occurrence of Braess’ paradox.



336 5 Basic Static Assignment to Transportation Networks

Fig. 5.28a Example of Braess’ paradox

An operational interpretation of the model (5.4.29) is that if link costs were mod-

ified so as to make the costs that users perceive coincide with the marginal costs

b(f ), then individual deterministic path choice based on such costs would lead to

a flow pattern that minimized the total cost c(f )T f . One way (but not the only

one) of enforcing these costs is by introducing flow-dependent link tolls equal to

b(f ) − c(f ) = Jac[c(f )]f . If the link cost functions are separable, this expres-

sion for the toll value reduces to c′
a(fa)fa . Chapter 9 returns to this point in the

discussion of supply design models.
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Fig. 5.28b Example of Braess’ paradox

Finally, it may be deduced through similar arguments that system optimum as-

signment does not generally coincide with stochastic equilibrium. In this case as

well, it is possible to derive conditions sufficient to ensure the equivalence of the

two problems; however, these lead to rather unrealistic cost functions.



338 5 Basic Static Assignment to Transportation Networks

The Frank–Wolfe algorithm, presented as a solution method for symmetric de-

terministic user equilibrium (Sect. 5.4.4), can also be applied to solve the SO, as

formulated through the optimization model (5.4.27). The algorithm is described by

the following system of recursive equations, starting from f 0 ∈ Sf :

bk = ∇z(f k−1) = Jac
[

c(f k−1)
]

f k−1 + c(f k−1) (5.4.30)

f k
DUN = f DUN(gk) (5.4.31)

µk = argmin
µ∈[0,1]

ψ(µ) = z
(

f k−1 + µ
(

f k
DUN − f k−1

))

(5.4.32)

f k = f k−1 + µk
(

f k
DUN − f k−1

)

(5.4.33)

Note that, unlike deterministic user equilibrium, calculation of the gradient of

function z(f ) in (5.4.30) requires calculation of the cost function Jacobian, a task

that is easy only for separable functions. Equation (5.4.32) defines the step size µk

as a solution to the one-dimensional nonlinear optimization problem in the scalar

variable µ. This model can be solved with any of a variety of line search algorithms,

such as the golden section algorithm (see Appendix A), which avoid the use of the

derivative of the function ψ(µ) (because this derivative depends on the gradient of

the function z(f ) and therefore on the Jacobian of the cost functions).

The algorithm stops if the scalar product of the gradient of the objective function

and the descent direction is greater than or equal to zero (see Appendix A):

∇z(f k−1)T
(

f k
DUN − f k−1

)

=
(

f k
DUN − f k−1

)T (
Jac

(

c(f k−1)
)

f k−1 + c(f k−1)
)

≥ 0

In order to avoid calculating the gradient of the function z(f ), the algorithm can

terminate when the relative difference between the values of the function z(f ) in

two successive iterations is below a stopping threshold δ:

∣

∣z(f k) − z(f k−1)
∣

∣

/

z(f k−1) < δ

The function z(f ) is strictly convex, and has a unique minimum point, if the

Jacobian Jac[c(f )] of the cost functions c(f ) is continuous and positive definite

(the cost functions are strictly increasing) and each link cost function ca = ca(f )

has a Hessian matrix Hess[ca(f )] that is continuous and positive semidefinite (each

cost function is convex). The function ψ(µ) is strictly convex if the function z(f )

is strictly convex. Under these conditions, it can be shown that the sequence of

(feasible) link flow vectors f k generated by the Frank–Wolfe algorithm converges

to the SO link flow vector.

5.5 Result Interpretation and Parameter Calibration

It is worth recalling that none of the models formulated under the assumption of

within-day stationarity allow modeling of queuing due to oversaturation phenom-
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ena, which cannot be analyzed in a static context. Thus, if the solution of such an

assignment model yields a flow exceeding link capacity, the results of the model

may be used as indicators of critical points on the network, but can no longer be

interpreted rigorously as estimates of system steady state. Within-day dynamic as-

signment models, described in Chap. 7, should be adopted to analyze such situations

more accurately.

Regardless of the application, assignment models should be seen as simplified

representations of real complex phenomena. Thus, the link flows resulting from any

assignment model24 might more correctly be denoted as f SIM. Assuming that the

flows occurring in the real transportation system are represented by a random vari-

able, due to uncertainty about their values, with expected value f , the link flows

f SIM may be considered only an estimate of the expected value f . The relation

between actual flows and the flows resulting from an assignment model can be for-

mally expressed as

f = f SIM + εSIM = ∆P SIMd + εSIM (5.5.1)

The matrix P SIM represents the path choice fractions resulting from the assignment

model and it generally differs from the matrix P of actual fractions. The vector

εSIM represents the deviations between (the expected value of) actual flows and

the flows resulting from the assignment of demand d . These errors derive from

the simplifying assumptions adopted in the system definition (delimitation of study

area and zoning); in the specification of supply, path choice, and supply–demand

interaction models; and in the estimation of the average demand flow d . Different

assumptions will produce different flows f SIM and errors εSIM. This point is dealt

with in greater detail in Sect. 8.5. For now, note that even if the actual average

demand flows were assigned to the network, other error sources would produce

assignment errors εSIM.

With respect to the choice of the supply–demand interaction model, some exper-

imental evidence indicates that the more realistic the underlying assumptions, the

smaller the assignment errors. For example, for given network and demand flows,

both stochastic and deterministic equilibrium models estimate link flows closer

to the observed ones than those resulting from uncongested network assignment

models; probabilistic models are more accurate than deterministic ones for lightly

congested or nonuniformly congested networks; and hyperpath assignment models

are more precise than path-based assignment models for high-frequency and low-

regularity public transport systems.

Figure 5.29 reports some experimental curves showing the assignment errors

obtained with different assignment models for an urban road network against the

counted flows. The assignment errors are measured through the relative standard

24Completely analogous considerations can be expressed with regard to the other variables that

result from the assignment model, such as link costs, path costs and flows, performances, and so

on.
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Fig. 5.29 Experimental relationships between the relative standard deviation of assignment errors

and measured flow

deviation Cv of the assignment errors, that is, the ratio between the standard devi-

ation of the errors between computed and assigned flows in a given range of mea-

sured flows, and the average flow in that range. In Fig. 5.29 DUN and SUN refer to

assignments to noncongested networks (made by using zero-flow costs), DUE and

SUE refer to equilibrium assignments to congested networks, and STODYN refers

to results obtainable with a stochastic model such as those described in Sect. 6.5.3.

Unfortunately, despite the very large number of applications to real transportation

systems, the literature provides few systematic comparative analyses of different

assignment models based on large databases, so that general conclusions on the rel-

ative merits of the different models in different application contexts cannot currently

be drawn.
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Specification and calibration of path choice models can be carried out using dis-

aggregate and/or aggregate data. Disaggregate specification and calibration consists

of the selection of the functional form and the attributes (specification) and the sta-

tistical estimation of the coefficients (calibration) on the basis of the paths chosen

by a (random) sample of users. Methodologies for disaggregate specification and

calibration of path choice models are completely analogous to those used for any

random utility model and are described in Chap. 8. In the case of path choice mod-

els, however, disaggregate data are not easy to collect and analyze.25 Thus aggregate

specification and calibration techniques are often adopted. These techniques specify

and calibrate path choice models by minimizing a measure of distance, usually the

squared errors between simulated flows f SIM and the flows f OBS counted on some

links. Aggregate calibration of path choice models requires the application of an

assignment model, and are considered again more formally in Sect. 8.6.

5.5.1 Specification and Calibration of Assignment Models

Assignment models, as with all of the mathematical models described in this vol-

ume, should be calibrated. The specification of the model and its parameters should

reproduce as closely as possible the available data on the system state. However,

assignment models are affected by a wide variety of assumptions and parameters,

because they incorporate all of the assumptions and the parameters of demand and

supply models described in this volume. For this reason, a calibration procedure

formally derived from the theory of statistical interference has not been proposed.

Some partial procedures aimed at selecting assumptions and parameters specific to

the assignment model have been applied in a limited number of cases. These usually

assume that the supply model and demand functions or O-D flows have been cali-

brated separately, and focus on the choice of the supply–demand interaction model

and the specification and calibration of path choice models.

5.A. Optimization Models for Stochastic Assignment

This appendix presents some optimization models for stochastic assignment that

can be used for stochastic assignment under certain limiting assumptions. When

they can be applied, they provide results equivalent to those from the more gen-

eral fixed-point models discussed in the previous sections. However, it is hard or

25In reality, it is often a complex task to determine the path actually followed during a journey.

Also, even when a path choice model has been specified and calibrated on disaggregated data, it is

useful to carry out an aggregated recalibration. From a theoretical point of view, this can be seen as

a correction of the parameters to compensate for the errors of the disaggregate model aggregation

process.
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even impossible to extend them to deal with the issues addressed. Hence they are

presented mainly for the purpose of completeness.

These optimization models can also be compared with the deterministic assign-

ment optimization models described earlier. Equivalent optimization models can

be used to specify mathematical programming algorithms for the calculation of

stochastic assignment link flows. In some special cases, these algorithms can be

reduced to the fixed-point algorithms described earlier (e.g., the MSA-FA for sto-

chastic equilibrium), but more generally they are still an open research area. Fur-

thermore, equivalent optimization models for stochastic assignment can be included

in bilevel optimization formulations of models for supply design models or O-D

demand estimation using traffic counts.

In the following, nonadditive path costs are assumed equal to zero. Formal proofs

are not reported, because they can be long and quite cumbersome.

5.A.1 Uncongested Network: Stochastic Assignment

For the logit path choice model with parameter θ independent of link costs, it can

be demonstrated that SUN link and path flows are solutions of the following opti-

mization model.

(f SUN,hSUN) = argmin
∑

a

cafa + θ
∑

k

hk(lnhk − 1) f = ∆h, h ∈ Sh

(5.A.1a)

Note that path flows appear explicitly as variables. In terms of the path flows alone,

because
∑

a cafa =
∑

k hkgk , it follows that

(hSUN) = argmin
∑

k

hkgk + θ
∑

k

hk(lnhk − 1)

h ∈ Sh

(5.A.1b)

It can easily be seen that the objective functions in models (5.A.1a) and (5.A.1b) are

convex if path flows are nonnegative.

In both models (5.A.1a) and (5.A.1b), the second term of the objective function

goes to zero when parameter θ goes to zero, that is, when the variance of the path

choice random residuals becomes small. In this case, the path choice model becomes

deterministic and both models (5.A.1a) and (5.A.1b) coincide with the optimization

model described in Sect. 5.3.2 for the DUN assignment.

5.A.2 Congested Network: Stochastic User Equilibrium

As with the previous model, for a logit path choice model with parameter θ indepen-

dent of link costs, it may be demonstrated that, if cost functions have a symmetric
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Fig. 5.A.1 Equivalent optimization model of SUE: logit assignment

Jacobian, then stochastic equilibrium (SUE) link and path flows are solutions of the

following optimization model.

(f ∗,h∗) = argmin

∫ f

0

c(y)T dy + θ
∑

k

hk(lnhk − 1)

f = ∆h, h ∈ Sh

(5.A.2a)

Note that path flows appear explicitly as variables. Because f = ∆h, model (5.A.2a)

can be expressed in terms of path flows alone:

h∗ = argmin

∫ ∆h

0

c(y)T dy + θ
∑

k

hk(lnhk − 1)

h ∈ Sh

(5.A.2b)
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The objective functions of models (5.A.2a) and (5.A.2b) are (strictly) convex if the

path flows are nonnegative and the cost functions are (strictly) increasing.

Considering the relationship with the corresponding DUE model, the second

term of (5.A.2a) and (5.A.2b) goes to zero as the parameter θ goes to zero, that

is, as the variance of the random residuals gets smaller. In this case, the path choice

model becomes deterministic and model (5.A.2a) coincides with the optimization

model described in Sect. 5.4.3 for DUE with symmetric Jacobian cost functions.

Figure 5.A.1 illustrates the equivalent optimization model for SUE logit assignment

in a simple two-link network.

In the case of a general additive path choice model and cost functions with a

symmetric Jacobian, it can be shown that equilibrium link flows are a solution of

the following unconstrained optimization model.

f ∗ = argmin
f

∑

od

dodsod

(

−∆T
odc(f )

)

+ c(f )T f −

∫ f

0

c(y)T dy (5.A.3)

where sod = sod() is the path choice EMPU for O-D pair od. Unlike the equiva-

lent optimization model for DUE assignment network, constraints f ∈ Sf are not

needed because they can be proven to be satisfied by all solutions of the model.

Reference Notes

Assignment Models

The traffic assignment problem has been the subject of extensive research for several

decades. Exhaustive analyses of the models (and algorithms) for uncongested net-

work and user equilibrium assignment are reported in the books by Sheffi (1985),

Thomas (1991), Ortuzar and Willumsen (2001), and Patriksson (1994), the latter

being mainly devoted to deterministic assignment models. For deterministic assign-

ment models, the article by Florian and Hearn (1995) can also be referred to and

the state of the art for stochastic assignment models is described in Cantarella and

Cascetta (1998).

However, the approach proposed in this chapter to assignment models – or more

properly to models of supply–demand interaction on transportation networks – is

original. This approach allows, through a minimal set of hypotheses and equations, a

consistent specification of uncongested network assignment models as well as fixed-

point models and variational inequality models for user equilibrium on congested

networks; elsewhere in the literature these are usually obtained independently of one

another. This approach is based on the fixed-point approach proposed by Daganzo

(1983) and further developed by Cantarella (1997).

The proposed classification of assignment models is another original contribution

of this book. Deterministic user equilibrium models with separable cost functions

and system optimum models were first formulated using optimization models in the
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pioneering work of Beckman et al. (1956), based on Wardrop’s (1952) statement

of traffic assignment principles. But it was not until the 1970s, with the increased

power and availability of computing resources, that the assignment problem began

to receive ongoing theoretical attention and to see a greater number and variety

of applications. Recently, Maher et al. (2005) proposed a relation between system

optimum and stochastic equilibrium.

The extension of the optimization model to symmetric deterministic equilibrium,

the formulation of asymmetric deterministic equilibrium using variational inequality

models, and the establishment of corresponding equilibrium existence and unique-

ness conditions, are dealt with in the work of Dafermos (1971, 1972, 1980, 1982b)

and Smith (1979). These articles also describe extensions of DUE models to vari-

able demand and multiclass assignment. More complex optimization models pro-

posed by various authors for asymmetric deterministic user equilibrium assignment

are described and compared by Hearn et al. (1984). Bernstein and Smith (1994) ana-

lyzed deterministic equilibrium with lower semicontinuous link cost-flow functions.

Stochastic User Equilibrium (SUE) models were introduced by Daganzo and

Sheffi (1977) (see also Daganzo (1979) for SUE probit models). Optimization mod-

els for symmetric SUE were proposed by Fisk (1980) in the case of the logit path

choice, and by Daganzo and Sheffi (1982) and Sheffi and Powell (1982) in the gen-

eral case.

Fixed-point models for SUE assignment were introduced by Daganzo (1983),

who also analyzed variable demand assignment (with the hypernetwork approach

referred to in Sect. 6.3) and multiclass assignment (Sect. 6.4). The compact notation

and the related reformulation of the optimization problem for SUE models was first

adopted by Cascetta (1987). Cantarella (1997) developed a general treatment using

fixed point models of multimodal/multiclass variable demand equilibrium assign-

ment, pre-trip/en-route path choice behavior, including stochastic as well as deter-

ministic user equilibrium. In Cantarella and Cascetta (1998) the general problem of

the stochastic equilibrium assignment models was discussed.

An analysis of stochastic assignment models with different formulations of ran-

dom residuals was developed by Mirchandani and Soroush (1987). Nielsen (1997)

analyzed the advantages and drawbacks of several distributions of link perceived

costs. Cantarella and Binetti (2002) described and analyzed Gammit path choice

models within stochastic equilibrium assignment. Watling (1999) proposed a gener-

alization of SUE models by expressing moments of the distribution of multinomially

distributed path flows. Bifulco (1993) proposed some extensions to simulate parking

policies.

Some extension and application may be found in Nielsen et al. (1998), Nielsen

(2000), and Nielsen et al. (2002). A national scale application was proposed by

Russo and Vitetta (1995).

The introduction of hard link capacity constraints in deterministic or stochas-

tic equilibrium models, studied by several authors in the context of a static ap-

proach, has been thoroughly analyzed by Ferrari (1997) for deterministic models.

Bell (1995) proposed an application for a particular stochastic equilibrium model.

A further line of research relates to equilibrium models in which the values of

an (uncongested) cost attribute are distributed among the users; monetary costs, for
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example, might follow the distribution of value of time. These models can be consid-

ered an extension of multiclass assignment models to an infinite number of classes

when, for example, the Value of Time (VoT) is represented by a continuous random

variable. Deterministic equilibrium has been specified in this case with extensions

of variational inequality models by Leurent (1993, 1995, 1996) and by Marcotte

and Zhu (1996), Marcotte et al. (1996), as well as by Dial (1996). The extension

of stochastic equilibrium fixed point models has been dealt with by Cantarella and

Binetti (1998).

Assignment Algorithms

General formulations of the assignment algorithms are reported in the books cited

above. The literature proposes several algorithms for finding the shortest path tree,

which are useful for deterministic uncongested network assignment. Comprehen-

sive treatment of algorithms for transportation networks and a comparison of their

performances can be found in Gallo and Pallottino (1988), Ahuja et al. (1993),

Cherkassky et al. (1996), and Pallottino and Scutellà (1997).

Implementation of stochastic uncongested network assignment algorithms is dis-

cussed in Sheffi (1985). For the logit path choice model, the Dial algorithm de-

scribed in Sect. 5.3.3 is an original generalization of the algorithm described in the

original work by Dial (1971); see also Van Vliet (1981). An adaptation of Dial’s

algorithm to the C-logit path choice model is described in Russo and Vitetta (2003).

The Monte Carlo approach to stochastic uncongested network assignment was

first proposed by Burrell (1968). Its application to probit SUN assignment is de-

scribed in Sheffi and Powell (1982). Maher and Hughes (1997, 1998) have proposed

an approach to probit SUN assignment based on Clark’s approximation. Other ap-

plications of the SUE assignment models are in Maher (1997, 1998).

The adaptation of the Frank–Wolfe algorithm to the calculation of determinis-

tic equilibrium flows is described in the original works of Le Blanc et al. (1975)

and Nguyen (1976). As noted, many improvements to this algorithm have been pro-

posed, such as the PARTAN (Florian and Spiess 1983), or other variations, namely in

Fukushima (1984) and Lupi (1986). An interpretation of the Frank–Wolfe algorithm

as a variational inequality algorithm is described in Van Vliet (1987). The diagonal-

ization algorithm for nonseparable cost functions is analyzed in Florian and Spiess

(1982); other algorithms for nonseparable cost functions are described in Nguyen

and Dupuis (1984) and Hearn et al. (1984).

The MSA-FA algorithm for stochastic equilibrium is covered in Sheffi and Pow-

ell (1982), and its convergence is demonstrated in Powell and Sheffi (1982) as an op-

timization algorithm. Daganzo (1983) described the MSA-FA algorithm as a fixed-

point algorithm, following Blum (1954), as well as the inverse cost function algo-

rithm. The MSA-CA algorithm, and the internal cycle fixed-point algorithms for

variable demand assignment are covered in Cantarella (1997). External cycle MSA

algorithms described in Sect. 5.4.2 are an original contribution of this book. Other
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algorithms for the solution of logit SUE symmetric models, based on the minimiza-

tion model proposed by Fisk (1980), are described in Bell et al. (1993), Chen and

Alfa (1991a, 1991b), and Damberg et al. (1996).

For the logit path choice model, the optimization model presented for the SUE

assignment problem derived from Fisk (1980). For the probit path choice model a

broad presentation may be found in Sheffi (1985), who also reported proof of ex-

istence and uniqueness. For the probit path choice model a broad presentation may

be found in Sheffi (1985), who also reported proof of existence and uniqueness (see

also Daganzo, 1982). For the logit path choice model with parameter θ independent

of link costs, the optimization model presented for the SUN assignment problem

has been derived from the SUE assignment one for this book. Other algorithms for

stochastic equilibrium (with separable cost functions) under some limiting assump-

tions may be developed by resolving optimization models presented in the chapter

appendix.



Chapter 6

Advanced Models for Traffic Assignment
to Transportation Networks

6.1 Introduction

Assignment to a transportation network has already been introduced in Chap. 5.

Here we continue the analysis of assignment in the absence of within-day dynamics.

In Sect. 6.2 we describe assignment with preventive-adaptive path choice, Sect. 6.3

covers the extension to the case of variable demand and/or multimodal assignment,

and Sect. 6.4 deals with multiclass assignment models. In Sect. 6.5 we introduce as-

signment with day-to-day dynamics (dynamic process). As each of these extensions

may be combined in banal fashion with each of the others, combined cases are not

treated explicitly (e.g., multiclass assignment with variable demand); in Sect. 6.6

we present an overall scheme that allows straightforward comparison of these ex-

tensions. Also in this chapter, as in Chap. 5, the algorithms described are only those

used more commonly or that are simpler to implement.

6.2 Assignment with Pre-trip/En-route Path Choice

Treatment of assignment with preventive-adaptive path choice uses the following

scheme adopted in Chap. 5: definitions and assignment to a noncongested and equi-

librium assignment, so as to make comparison easier.

6.2.1 Definitions, Assumptions, and Basic Equations

The previous chapter dealt with the situation in which users, before starting their

trip, choose between alternative paths that they then follow without deviation to

their destination. However, the analysis can quite easily be extended to include both

pre-trip and en-route path choice behavior. This is relevant, for example, when mod-

eling public transport systems with high frequency and/or low reliability. In this

case (as was seen in Sect. 4.3.3.2) the appropriate pre-trip choice alternatives are

en-route path choice strategies that can be represented by network hyperpaths (see

Sect. 4.3.3.2), whereas en-route choices are made during the trip itself at each di-

version (waiting) node where different lines are available (Fig. 6.1). The approach
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described in this section can be applied to other transportation systems once en-route

diversion nodes and the related choice behavior have been specified.

The main modifications required to handle such cases concern the demand model

defined in Sect. 5.2 by (5.2.7). In particular, the difference between path and hyper-

path costs and flows is defined by the path choice probabilities within the hyper-

paths. Referring to notation introduced in Sect. 4.3.3.2 (see Fig. 6.1), let:

ωod,kj be the conditional probability of choosing path k within hyperpath j for a

user of O-D pair od

Ωod be the matrix of conditional path choice probabilities ωod,kj within the hy-

perpaths for O-D pair od

By analogy with the path definitions in Sect. 5.2, additive and nonadditive costs

can be considered for each hyperpath. Let:

xADD
od be the hyperpath additive cost vector for users of O-D pair od

xNA
od be the hyperpath nonadditive cost vector for users of O-D pair od

xod be the vector of the total hyperpath costs for users of O-D pair od

As was seen in Sect. 4.3.3.2, the hyperpath additive costs xADD
od are usually de-

fined by a linear combination of on-board time Tb, access/egress times Ta, and

boarding and alighting times Tbr and Tal, all converted to utility units by suitable

coefficients:

xADD
od = βbTb + βbrTbr + βalTal + βdTd + βaTa ∀od

Furthermore, nonadditive hyperpath costs xNA
od frequently include performance

attributes that cannot be computed from generic link costs. Examples include the

waiting time Twod and number of transfers Nod , again converted to utility units by

suitable coefficients:

xNA
od = βwTwod + βNNod ∀od

The relationship between the hyperpath costs and the additive path costs is ex-

pressed by the following.

xADD
od = ΩT

odgADD
od ∀od

In the following, it is assumed for simplicity of notation that any nonadditive path

costs gNA
od have been included in the nonadditive hyperpath costs xNA

od , and therefore

the path costs god coincide with the additive costs gADD
od (see Fig. 6.2).

xod = ΩT
odgod + xNA

od ∀od (6.2.1)

The choice of strategy, that is, of the hyperpath representing its topology, is sim-

ulated by a random utility model in which the systematic utility of a hyperpath is

the negative of its systematic cost, analogously to (5.2.5) (Sect. 4.3.3.2):

V od = −xod + V ◦
od = −ΩT

odgADD
od − xNA

od + V ◦
od ∀od (6.2.2)
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Fig. 6.1 Example of conditional path choice matrix
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Fig. 6.2 Relationship

between path and hyperpath

costs for the network in

Fig. 6.1

x = ΩT g + xNA

x = ΩT • g + xNA

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

471

461

481

816

474

667

630

594

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0.40 0.60 0

0 0.44 0 0.56

0 0 0.55 0.45

0 0.27 0.40 0.33

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎣

421

421

451

771

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

50

40

30

45

35

50

35

45

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

where

V od is a vector with an element for each hyperpath j , given by the systematic

utility Vj of the hyperpath j for users of O-D pair od

V ◦
od is a vector with elements that capture the effects of attributes that cannot be

assigned to hyperpath costs (such as user socioeconomic attributes); these

are ignored for simplicity

The hyperpath choice probabilities depend on the systematic utilities of the hy-

perpaths, and therefore on the systematic costs. Let1:

q[j/od] be the probability that a user chooses hyperpath j during a trip from origin

o to destination d (with trip purpose, time band, and mode not explicitly

indicated)

qod be the vector of hyperpath choice probabilities for users of O-D pair od; its

elements are the probabilities q[j/od] for all available hyperpaths j ; this

set is assumed to be nonempty (each O-D pair is connected by at least one

hyperpath) and finite (only elementary hyperpaths are considered)

As shown in Sect. 4.3.3.2, hyperpath choice probabilities can be expressed

through random utility models as

q[j/od] = Prob[Vj − Vmj ≥ εm − εj ∀m] ∀od, j

qod = qod(V od) ∀od

where εj is the random residual corresponding to the perceived utility of hyper-

path j .

Combining the hyperpath choice model with the systematic utility specification

gives a relation between hyperpath choice probabilities and costs for O-D pair od,

1As was done in previous sections, it is assumed that users belong to a single class, are traveling

for the same purpose, and have the same hyperpath choice models. Generalization to multiclass

assignment is dealt with in Sect. 5.4.
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Q = Q(V ) = Q(−x)

y = Q(V )d

h = Ωy = ΩQd

h = Ω • y
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Fig. 6.3 Relationship between path and hyperpath flows for the network in Fig. 6.1

known as the hyperpath choice map:

qod = qod(V od) = qod(−xod) ∀od

The (average) flow yj on the hyperpath j connecting O-D pair od is given by the

product of the corresponding demand flow dod and hyperpath choice probability:

yj = dodq[j/od]

and is measured in demand flow units. Let:

yod be the hyperpath flow vector for O-D pair od, whose elements are the flows

yj for all available hyperpaths j

For each O-D pair od, the relation between hyperpath choice probabilities and

flows and demand flows, analogous to (5.2.6), is expressed by

yod = dodqod(V od) ∀od (6.2.3)

Each path k that connects O-D pair od may belong to several hyperpaths, so that

the flow hk is given by the sum of the hyperpath flows yj weighted by the probability

ωod,kj that path k is used within the hyperpath j (an example is reported in Fig. 6.3):

hk =
∑

h

ωod,kjyj ∀k

hod = Ωodyod = dodΩodq,od ∀od

(6.2.4)

The complete demand model, for situations of combined pre-trip and en-route

path choice behavior, is defined by relations (6.2.1)–(6.2.2) that specify the sys-

tematic utility, and by relations (6.2.3)–(6.2.4) that define the path flows. When

combined, these lead to a relation between path flows and costs that generalizes
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expression (5.2.7):

hod = dodΩodq,od

(

−ΩT
odgod − xNA

od

)

∀od (6.2.5)

By combining the demand model (6.2.5) with the supply model (5.2.4), the as-

signment models described in Chap. 5 can be extended to handle combined pre-trip

and en-route path choice behavior. In this case, it is useful to express the relation

between link and hyperpath flows and costs. Let:

λod,aj be the probability that users of O-D pair od traverse link a within hyper-

path j

Λod be the matrix, for users of O-D pair od, of link-hyperpath traversing prob-

abilities λod,aj for each link a within each hyperpath j

The relationship between link-hyperpath traversing probabilities and path choice

probabilities within a hyperpath (analogous to the link-path incidence relationships

described in Chap. 2 and repeated in Sect. 5.2) is expressed by the following rela-

tions (Fig. 6.4).

λod,aj =
∑

k

δod,akωod,kj ∀l ∀od

Λod = ∆odΩod ∀od

(6.2.6)

The relationship among hyperpath costs, link costs, and additive path costs is

expressed by the following equation, obtained by combining expressions (6.2.1),

(6.2.6), and (5.2.1) (nonadditive path costs gNA
od have been included in the nonaddi-

tive hyperpath costs xNA
od ; thus path costs coincide with additive costs: god = gADD

od ).

xod = xADD
od + xNA

od = ΩT
od∆T

odc + xNA
od = ΛT

odc + xNA
od ∀od (6.2.7)

Similarly, the relationship between link and hyperpath flows is expressed by the

following equation, obtained by combining expressions (6.2.4), (6.2.6), and (5.2.3)

(Fig. 6.5).

f =
∑

od

∆odhod =
∑

od

∆odΩodyod =
∑

od

Λodyod (6.2.8)

Combined pre-trip/en-route behavior assignment can therefore be expressed by

relations (6.2.7)–(6.2.8) and (6.2.3)–(6.2.4), together with the cost functions (5.2.2).

It clearly follows from this formulation that the pre-trip assignment models ex-

pressed by relations (5.2.1) and (3.5.6) are special cases that can be obtained from

combined pre-trip/en route assignment models by setting Ωod = I , for which it

would follow that ∆od = Λod ,yod = hod and xod = god . In fact, in pre-trip assign-

ment each hyperpath corresponds to a single path (simple hyperpath), and en-route

choices are not considered.

The set of feasible hyperpaths and link flows Sy and Sf are defined, as in

Sect. 5.2.3, by

Sy =
{

y = [yod ]od : yod ≥ 0,1T yod = dod ∀od
}

(6.2.9)
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h = ΩQ(−ΩT g − xNA)d

Λ = ∆Ω

Λ =

(Links × Hyperpaths)

1 2 3 4 5 6 7 8

1-2 1 0 0 0 0 0 0 0

1-6 0 1 1 1 1 1 1 1

2-3 1 0 0 0 0 0 0 0

3-4 1 0 0 0 0 0 0 0

4-5 1 0 0 0 0 0 0 0

5-12 0 1 1 1 1 1 1 1

6-7 0 1 1 1 1 1 1 1

7-8 0 1 0 0 0.4 0.44 0 0.27

7-9 0 0 1 0 0.6 0 0.55 0.40

7-10 0 0 1 0 0.6 0 0.55 0.40

8-11 0 0 1 0 0.6 0 0.55 0.40

9-11 0 0 0 1 0 0.56 0.45 0.33

10-11 0 0 0 1 0 0.56 0.45 0.33

11-12 0 1 1 1 1 1 1 1

= ∆ •

(Links × Paths)

1 2 3 4

1-2 1 0 0 0

1-6 0 1 1 1

2-3 1 0 0 0

3-4 1 0 0 0

4-5 1 0 0 0

5-12 1 0 0 0

6-7 0 1 1 1

7-8 0 1 0 0

7-9 0 0 1 0

7-10 0 0 0 1

8-11 0 1 0 0

9-11 0 0 1 0

10-11 0 0 0 1

11-12 0 1 1 1

Ω

(Paths × Hyperpaths)

1 2 3 4 5 6 7 8

1 1 0 0 0 0 0 0 0

2 0 1 0 0 0.4 0.44 0 0.27

3 0 0 1 0 0.6 0 0.55 0.40

4 0 0 0 1 0 0.56 0.45 0.33

Fig. 6.4 Incidence and traversing probability matrices for the network of Fig. 6.1

Sf =

{

f =
∑

od

Λodyod , [yod ]od ∈ Sy

}

(6.2.10)

As in Sects. 5.2.1 and 5.2.2, all the above relationships can be expressed in matrix

terms. Let:

Ω be the overall matrix of conditional path choice probabilities for all paths,

all hyperpaths, and all O-D pairs, obtained by placing side by side the

blocks Ωod corresponding to each O-D pair od

xADD be the overall vector of hyperpath additive costs, consisting of the hyper-

path additive cost vectors xADD
od for each O-D pair od
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x = xADD + xNA = ΩT ∆T c + GNA = ΛT c + xNA

f = ∆h = ∆Ωy = Λy

f = ∆ • h
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f = Λ • y
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Fig. 6.5 Relationship among link, path, and hyperpath flows for the network of Fig. 6.1

xNA be the overall vector of hyperpath nonadditive costs, consisting of the hy-

perpath nonadditive cost vectors xNA
od for each O-D pair od

x be the overall vector of total hyperpath costs, consisting of the vectors of

the total hyperpath cost vectors xod for each O-D pair od

y be the overall vector of hyperpath flows, consisting of the vectors of the

hyperpath flows yod for each O-D pair od

Q be the hyperpath choice probability matrix, with a column for each O-D

pair od and a row for each hyperpath j , with entries given by q[j/od] if

hyperpath j connects the O-D pair, and zero otherwise (in other words, the

matrix Q is block diagonal with blocks given by the vectors qod)

Λ be the overall matrix of link-hyperpath traversing probabilities, consisting

of the blocks Λod for each O-D pair od
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6.2.2 Uncongested Networks

The uncongested network assignment models described in Sect. 5.3 can therefore

easily be extended to the case of combined pre-trip/en-route choice. In particular,

the uncongested network assignment model can be expressed in terms of link flows

by an equation similar to (5.3.2):

f UN = f UN(c;d) =
∑

od

dodΛodq,od

(

−ΛT
odc − xNA

od

)

(6.2.11)

Uncongested network assignment models with combined pre-trip/en-route be-

havior can be probabilistic or deterministic depending on the hyperpath choice

model adopted. In the case of probabilistic choice behavior, the Stochastic UNcon-

gested network (SUN) assignment models can be expressed by a function similar to

(5.3.3):

f SUN = f SUN(c;d) =
∑

od

dodΛodqod

(

−ΛT
odc − xNA

od

)

(6.2.12)

which retains the properties of continuity and monotonicity discussed in Sect. 5.4.1.

In the case of deterministic choice behavior, the relationship between hyperpath

flow and costs can be expressed with a system of inequalities similar to (5.3.4):

xT (y − yDUN) ≥ 0 ∀y ∈ Sy (6.2.13)

If nonadditive path costs are not explicitly considered, then by substituting (6.2.7)

and (6.2.8) in (6.2.13) it follows that

cT (f − f DUN) + (xNA)T (y − yDUN) ≥ 0 ∀f = Λy, ∀y ∈ Sy (6.2.14)

Because of the presence of nonadditive costs, the considerations discussed in

Sect. 5.3.3 hold, and (6.2.14) can be expressed in terms of link flows f DUN and

total nonadditive costs XDUN = (xNA)T yDUN corresponding to deterministic as-

signment:

c(f DUN)T (f − f DUN) + (X − XDUN) ≥ 0 ∀f = Λy, ∀X = (xNA)T y, ∀y ∈ Sy

Below we describe shortest hyperpath algorithms as an extension of shortest path

algorithms. Then their application to uncongested network assignment is presented.

Shortest Hyperpath Algorithms

The algorithms described in Sect. 5.3.3 for the computation of shortest paths can

be extended to identify shortest hyperpaths, such as those relevant to modeling the

pre-trip/en-route path choice behavior described in Sect. 6.2. In the following, for

the sake of simplicity, it is assumed that all origins and destinations are connected;



358 6 Advanced Models for Traffic Assignment to Transportation Networks

Fig. 6.6 Diversion nodes and adjacent elements

that is, there is at least one hyperpath from each origin to each node, and from each

node to each destination. For a transit system, it is assumed that the only costs due

to en-route choices are waiting times at stops; this leads to nonadditive hyperpath

costs, as described. By analogy to shortest path problems, let:

ca = tmn ≥ 0 be the cost of link a = (m,n), corresponding to travel time com-

ponents such as boarding, on board travel, alighting, and access/egress

times. These attributes are associated to the corresponding types of links.

(If needed, the different time components can be multiplied by appropri-

ate conversion coefficients that, for the sake of simplicity, are not explicitly

indicated here.) As explained above, the waiting time associated with a

waiting link is not an intrinsic network attribute because it depends on the

hyperpath under consideration. It can be derived from the frequency of the

lines as described below. Let:

Zo,d ≥ 0 be the cost of the shortest hyperpath between nodes o and d

Diversion nodes, where en-route choices are made, correspond here to stops

where users decide which transit line to board (see Sects. 4.3.3.2 and 6.2). Con-

sistent with the transit network model described in Sect. 2.3, from each diversion

node m there are boarding links a = (m,n) connecting to the different lines avail-

able at the stop, and a waiting link connects the stop node to the diversion node m

(Fig. 6.6). Let:

DN be the set of diversion nodes

pr(m) be the stop node preceding diversion node m, connected to it by the waiting

link (pr(m),m)

ϕm,n > 0 be the frequency of the line accessed through boarding link a = (m,n).

This value and the boarding time t sm,n are associated with each boarding

link. For the sake of simplicity, all boarding times are assumed constant

and equal in the following; t sm,n = t s
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The topology of a hyperpath j is defined by a sequence of nodes with the property

that at most one link may exit from a nondiversion node n /∈ DN, and multiple

(boarding) links a = (m,n) may exit from a diversion node m ∈ DN. (Examples

of hyperpaths are given in the figures in Sect. 4.3.3.2.) When the topology of a

hyperpath is known, a waiting time can be defined for each waiting link as a function

of the frequencies of the lines that belong to that hyperpath. Because of randomness

in the arrivals of users and, possibly, vehicles at a stop, the waiting time is a random

variable. In what follows, we are concerned only with the average (expected value)

of this and related random variables. For a hyperpath j , let:

X
j

m,d be the cost or travel time from node m to node d along hyperpath j

ALm,j be the set of boarding links from diversion node m in hyperpath j

Φ
j
m be the sum of the frequencies of the lines that belong to hyperpath j and

are available at diversion node m

t
w,j
m be the waiting time on the (unique) waiting link (pr(m),m) that enters

diversion node m on hyperpath j

Assuming random user arrivals, the (average) waiting time is inversely propor-

tional to the sum of the frequencies of the lines in the hyperpath. The proportionality

parameter θ ∈ [0.5,1.0] depends on the service regularity (see Sect. 2.3):

Φ
j
m =

(

∑

(m,n)∈ALm,j

ϕmn

)

(6.2.15)

tmw,j = θ
/

(

∑

(m,n)∈ALm,j

ϕmn

)

= θ/Φ
j
m (6.2.16)

The average travel time from diversion node m to destination d is the frequency-

weighted average of the travel times on the lines accessible from node m in hyper-

path j (as noted in Sect. 6.2):

X
j

m,d =
∑

(m,n)∈ALm,j

(

t s + X
j

n,d

)(

ϕmn/Φ
j
m

)

(6.2.17)

The average travel time X
j

pr(m),d to reach destination d from the stop node pr(m)

connected to diversion node m can be defined as the sum of the average time from

the diversion node X
j

m,d and the average waiting time t
w,j
m :

X
j

pr(m),d = X
j

m,d + t
w,j
m (6.2.18)

Relation (6.2.17) allows us to express Zm,d , the average minimum travel time from a

diversion node m to the destination d , as the frequency-weighted average of the min-

imum times along the lines from node m that belong to the shortest hyperpath j∗:

Zm,d =
∑

(mn)∈ALm,j∗

(t s + Zn,d)
(

ϕm,n/Φ
j∗

m

)
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The shortest travel time Zpr(m),d from the stop node pr(m) connected to diversion

node m can be obtained by summing the shortest travel time from the diversion node

Zm,d and the waiting time t
w,j∗

m :

Zpr(m),d = Zm,d + t
w,j∗

m

(to be compared with the shortest travel time along the access network). All the

above relations can be used to extend the Bellmann principle to the shortest hyper-

path problem.

It should be noted that if the forward shortest hyperpath tree from an origin o to

all the other nodes were searched, it would be necessary, at each stop, to distinguish

users by destination, to take account of the different lines available. For this reason,

it is useful to adopt algorithms based on an extension of the backward updating step,

previously defined for shortest paths, that allows the determination of the shortest

hyperpath tree from all nodes towards the destination.

Now consider a hyperpath j (not necessarily the shortest one); the backward

updating step from node n is similar to the step already described for shortest paths

(Sect. 5.3.3) unless node n is the end of a boarding link (m,n) (see Fig. 6.6). In this

case, the updating step must be extended to check whether including the boarding

link a = (m,n) in hyperpath j will reduce the average travel time from node pr(m).

Let:

Φ
j
m, t

w,j
m be the values at node m of the cumulative frequency and the average wait-

ing time of this hyperpath, as defined by (6.2.15) and (6.2.16)

The average travel times from waiting node m and stop node pr(m) on hyperpath j

are given by (6.2.17) and (6.2.18), respectively. Note that the node pr(m) might be

connected to the destination d through other paths using the access links.

In what follows it is assumed that a label-setting algorithm will be adopted, for

reasons that become clear below. Thus, let:

Zn,d be the minimum cost or travel time between line node n and destination d ,

already known when node n is examined

If boarding link (m,n) is added to hyperpath j , a further line with frequency ϕm,n

is available at stop node m. Therefore, there is an additional path available to reach

destination d . The new hyperpath j ′ that includes this path reduces the average

travel time from node pr(m) to destination d if:

X
j ′

pr(m),d ≤ X
j

pr(m),d (6.2.19)

To analyze the implications of (6.2.19), note that at node m the hyperpath j ′ has

a larger cumulative frequency and a smaller waiting time than hyperpath j . This can

be seen by applying the relationships (6.2.15) and (6.2.16) (Fig. 6.7):

Φ
j ′

m = Φ
j
m + ϕmn (6.2.20)

t
w,j ′

m = θ/Φ
j ′

m = t
w,j
m

[

Φ
j
m/

(

Φ
j
m + ϕmn

)]

(6.2.21)
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Fig. 6.7 Diversion node, waiting link, boarding links

The inclusion of the additional line causes a change in the average travel time from

node m to destination d . From (6.2.17):

X
j ′

m,d = X
j

m,d

[

Φ
j
m/

(

Φ
j
m + ϕmn

)]

+
(

Zn,d + t smn

)[

ϕmn/
(

Φ
j
m + ϕmn

)]

= X
j

m,d +
(

Zn,d + t smn − X
j

m,d

)

ϕmn/
(

Φ
j
m + ϕmn

)

(6.2.22)

because [Φ
j
m/(Φ

j
m +ϕmn)] = 1−[ϕmn/(Φ

j
m +ϕmn)]. Thus, after the introduction of

boarding link (m,n), the average travel time from waiting node pr(m) to destination

d through diversion node m becomes:

X
j ′

pr(m),d = X
j ′

m,d + t
w,j
m (6.2.23)

or

X
j ′

pr(m),d = X
j

m,d +
(

Zn,d + t smn −X
j

m,d

)

ϕmn/
(

Φ
j
m +ϕmn

)

+ t
w,j
m

[

Φ
j
m/

(

Φ
j
m +ϕmn

)]

Combining the above relationship with condition (6.2.19), we obtain:

X
j

m,d +
(

Zn,d + t smn − X
j

m,d

)

ϕmn/
(

Φ
j
m + ϕmn

)

+ t
w,j
m

[

Φ
j
m/

(

Φ
j
m + ϕmn

)]

≤ X
j

m,d + t
w,j
m (6.2.24)

(

Zn,d + t smn − X
j

m,d

)

ϕmn/
(

Φ
j
m + ϕmn

)

≤ t
w,j
m ϕmn/

(

Φ
j
m + ϕmn

)

Zn,d + t smn ≤ X
j

m,d + t
w,j
m

because [ϕmn/(Φ
j
m + ϕmn)] > 0. Therefore link l = (m,n) is worth including if:

Zn,d + t smn ≤ X
j

pr(m),d (6.2.25)

On the other hand, given a hyperpath j ′ that contains boarding link a = (m,n), it

is not possible to reduce the total travel time by excluding link a from the hyperpath

if condition (6.2.25) is verified (and conversely if the condition is not verified).

Therefore condition (6.2.25) is both necessary and sufficient. Condition (6.2.25)

shows that, to reduce the average travel time and find the shortest hyperpath, it is

worth including a new line if the travel time with the new line, including boarding

time, is less than the travel time, including waiting time, without the line. If this is



362 6 Advanced Models for Traffic Assignment to Transportation Networks

so, inclusion of the new line reduces the waiting time so that even if the average

travel time from the diversion node increases, the average travel time from the stop

node decreases.

The shortest hyperpath for a pair (o, d) might not include any waiting links (and

therefore boarding, line, and alighting links). In this case it consists only of access

links, meaning that the shortest path on the access network has a lower cost than any

paths using a transit line.

The algorithms for calculating the tree of shortest hyperpaths towards a destina-

tion d are similar to those described in Sect. 5.3.3 for shortest paths. The main dif-

ference is the updating step that, for hyperpaths, also includes operations to update

the tentative diversion node label, using condition (6.2.25) and relations (6.2.22) and

(6.2.23) to update the labels (average travel times). In this way, a stop node might

be connected to destination d by other paths through the access links adjacent to it.

The tree of shortest hyperpaths towards a destination node can be described by the

unique link that exits from each nondiversion node, and the set of boarding links

that exit from each diversion node; these boarding links identify the lines included

in the shortest hyperpath.

Note that the node made permanent at each iteration should be the one with the

least value of label among nonpermanent nodes, and the updating step should be

performed from this node. Therefore, to identify a shortest hyperpath tree towards a

destination, label-setting algorithms should be adopted.

In addition, consider a further boarding link (m, r) not included in hyperpath j

such that Zr,d ≤ Zn,d , or Zr,d + t s ≤ Zn,d + t s . If condition (6.2.25) is verified for

link (m, r), and therefore it is worth including link (m,n) to reduce the average

cost, it is also verified for link (m,n), and including also link (m, r) is even more

appropriate. Observation further supports the adoption of label-setting algorithms,

in which the updating of the line nodes n connected to a diversion node m through

boarding links (m,n) is carried out by increasing values of Zn,d . Otherwise it would

be necessary to check, at each new inclusion, whether some of the boarding links

already included should be removed.

Label-setting algorithms terminate after as many updating steps as there are

nodes, because at each step a node label is made permanent. Node labels are made

permanent in order of increasing minimum costs or travel times to the destination.

At the end of the algorithm, the waiting times, specific to the shortest hyperpaths,

and the set of boarding links for each diversion node, are also determined. The

shortest hyperpath tree T (d), towards destination d , can be described by the one

link exiting from each node n, but several boarding links may exit from a diversion

node.

It is worth noting that a hyperpath connecting an O-D pair may well not contain

any waiting link (likewise any boarding link, or line, or alighting), and only contain

pedestrian links; that is, the cost of the shortest pedestrian path cannot be improved

by riding transit.
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Algorithms for Uncongested Network Assignment with Hyperpaths

Uncongested network assignment models, which hold for noncongested networks,

are often adopted to analyze public transportation systems in which it may be

roughly assumed that costs do not depend on user flows. Moreover, noncongested

network assignment algorithms constitute an element of equilibrium assignment al-

gorithms (for congested networks) described in the sections below.

If hyperpaths are explicitly enumerated, then calculation of link flows is straight-

forward using the sequence of relations given in Sect. 6.2. In general, however, as

already noted, explicit enumeration of hyperpaths is extremely burdensome, and UN

assignment algorithms that avoid explicit enumeration are adopted, making use of

the shortest hyperpath algorithms previously described.

Deterministic hyperpath-based UN assignment algorithms assume that users

choose the shortest hyperpath between each O-D pair (Sect. 6.2). In this case, the

shortest hyperpath tree algorithm identifies a shortest hyperpath between each O-D

pair. Link flows can be calculated by assigning the demand flow for each O-D pair

to the links of the shortest hyperpath, and summing over all O-D pairs. If there are

multiple shortest hyperpaths for some O-D pairs, then hyperpath flows, and there-

fore link flows, are not uniquely defined.

The backward simultaneous algorithm, discussed for DUN assignment (all-or-

nothing) in Sect. 5.3.3, can be extended to handle shortest hyperpaths. In this case

as well, the algorithm requires that we know the order of node labels on shortest

hyperpath trees to each destination. The operations performed at a diversion node

must be modified. In this case the exit flow must be divided among all boarding links

included in the hyperpath tree, proportionally to their probabilities (depending on

line frequencies). The application of DUN algorithms to shortest hyperpaths yields

the link flows f DUN as a function of both the costs c of nonwaiting links and the

line frequencies ϕ. It is also possible to calculate the hyperpath total nonadditive

cost XNA
DUN, given by the total waiting time, which can be determined with shortest

hyperpath algorithms without explicit enumeration.

Stochastic uncongested network assignment algorithms with probit choice mod-

els can easily be extended to transit networks by extending all-or-nothing algorithms

as described below. The extension essentially requires multiple sampling of per-

ceived link costs (and possibly frequencies), as in the Monte Carlo algorithm de-

scribed in Sect. 5.3.3. However, very few examples of this approach have appeared

in the literature. The generalization to logit hyperpath choice models without ex-

plicit hyperpath enumeration is still at the research stage (see bibliographical notes).

6.2.3 Congested Networks: Equilibrium Assignment

The fixed demand equilibrium assignment models described in Sect. 5.4 can easily

be extended to situations of combined pre-trip/en-route path choice. It is usually

assumed, as is done for nonadditive path costs, that nonadditive hyperpath costs
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(such as waiting times at transit stops) are not affected by congestion; that is, they

do not depend on the link flows.2 Under this hypothesis, a system of equations in

terms of equilibrium path variables, namely costs g∗ and flows h∗, is obtained by

combining the supply model (5.2.4) with the demand model (6.2.5):

g∗
od = ∆T

odc

(

∑

od

∆odh∗
od

)

∀od

h∗
od = dodΩodqod

(

−ΩT
odg∗

od − xNA
od

)

∀od

An analogous formulation in terms of equilibrium hyperpath variables, again

costs and flows, is also possible:

x∗
od = ΛT

odc

(

∑

od

Λody∗
od

)

+ xNA
od ∀od

y∗
od = dodqod(−xod) ∀od

As in the case of assignment with fully pre-trip path choice behavior, an equiva-

lent formulation in terms of link variables can be expressed by the system of equa-

tions obtained by combining the uncongested network assignment map (6.2.11) with

the cost functions (6.2.2):

c∗ = c(f ∗)

f ∗ = f UN(c∗;d) =
∑

od

dodΛodqod

(

−ΛT
odc∗ + xNA

od

)

In the case of Stochastic User Equilibrium (SUE), a fixed-point model similar to

model (5.4.2) in link flows is obtained:

f ∗ = f SUN

(

c(f ∗);d
)

=
∑

od

dodΛodqod

(

−
(

ΛT
odc(f ∗) + xNA

od

))

(6.2.26)

with

f ∗ ∈ Sf

Stochastic user equilibrium can also be formulated with fixed-point models in

terms of path or hyperpath flow variables, or link, path, or hyperpath cost vari-

ables; these formulations are not reported here for the sake of brevity. Under the

assumption of flow-independent nonadditive costs, the conditions for existence and

uniqueness analyzed in Sect. 5.4.1 still hold; in particular, the cost-flow functions

for on-board, access, boarding, and alighting links must be, respectively, continuous

2In other words, it is assumed that service congestion affects the perceived cost of on-board time,

but not waiting time. This precludes modeling a situation in which congestion causes some users

to wait longer because the vehicles are too crowded to board.
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and/or strictly increasing.3 Extension of the results described for the case of flow-

dependent nonadditive costs (such as waiting costs) is not straightforward and is not

pursued here.

Deterministic User Equilibrium (DUE) assignment can be analyzed with vari-

ational inequality models. In particular, expressing the hyperpath cost functions

as x(y) = ΛT c(Λy) + xNA, models similar to the variational inequality (5.4.11)–

(5.4.13) are obtained:

x(y∗)T (y − y∗) ≥ 0 ∀y ∈ Sy

c(f ∗)T (f − f ∗) + (xNA)T (y − y∗) ≥ 0 ∀f = Λy, ∀y ∈ Sy

Nonadditive hyperpath costs can be handled as described in Sect. 5.4.3. The

above expression can be formulated in terms of link flows f ∗ and total nonaddi-

tive cost X∗:

c(f ∗)T (f − f ∗) + (X − X∗) ≥ 0 ∀f = Λy, ∀X = (xNA)T y, ∀y ∈ Sy

The optimization models described in the previous sections and in the appendix

for deterministic or stochastic assignment can also be easily applied in this case,

within the limits of the assumptions.

Algorithms for Fixed-Demand Equilibrium Assignment with Hyperpaths

The algorithms described in Sects. 5.4.2 and 5.4.4 for fixed demand stochastic or de-

terministic equilibrium assignment can be extended to situations with pre-trip and

en-route path choice. The main modification occurs in the calculation of the UN

flows with the procedure described in the previous section. Furthermore, it is nec-

essary to consider explicitly the nonadditive waiting time component of hyperpath

costs.

In the case of stochastic equilibrium, the fixed-point problem (6.2.26) can be

solved with the MSA-FA and MSA-CA algorithms already described, where each

iteration involves a stochastic uncongested network assignment to the hyperpaths.

In the case of symmetric deterministic equilibrium, the optimization model

(5.4.16) becomes:

(f ∗,XNA∗) = argmin z(f ,X) =

∫ f

0

c(x)T dx + XNA

f = Λy,XNA = (xNA)T y, y ∈ Sy

(6.2.27)

where

3In the case of logit or probit path choice models, for which a path has a choice probability

strictly greater than zero independent of cost, it can be demonstrated that the uniqueness of the

equilibrium flows is also ensured in the case of cost functions which are not strictly monotone:

(c(f ′) − c(f ′′))T (f ′ − f ′′) ≥ 0, ∀f ′,f ′′ ∈ Sf .
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xNA is the vector of nonadditive hyperpath costs (i.e., waiting times), consisting

of the vectors of nonadditive hyperpath costs xNA
od for each O-D pair od

(these costs are assumed to be independent of congestion)

XNA = (xNA)T y is the total nonadditive cost corresponding to the hyperpath flow

vector y

This model can be solved with the Frank–Wolfe algorithm described in Sect. 5.4.4,

considering as problem variables the link flow vector f and the nonadditive hyper-

path total cost (total waiting time) XNA.

The following variables are needed to describe the algorithm.

∇z(f ,XNA) = [c(x),1] gradient of the function z(f ,XNA)

f DUN ∈ Sf link flows resulting from DUN assignment to hyperpaths as a function

of the total costs c on nonwaiting links, and the line frequencies ϕ

XNA
DUN total nonadditive hyperpath cost resulting from the nonadditive hyperpath

assignment as a function of nonwaiting link costs c and line frequencies ϕ

(f DUN,XNA
DUN) = DUN(c,ϕ) a function giving f DUN and XNA

DUN in terms of c

and ϕ

Given an initial solution, (f 0,XNA0), that can easily be found with a DUN as-

signment algorithm using zero flow costs, (f 0,XNA0) = DUN(c(f = 0),ϕ), the

Frank–Wolfe algorithm for the solution of the model (6.2.27) can be described by

the following system of recursive equations.

ck = c(f k−1) (6.2.28)
(

f k
DUN,XNAk

DUN

)

= DUN(ck,ϕ) (6.2.29)

µk = argmin
µ∈[0,1]

ψ(µ) = z
((

f k−1 + µ
(

f k
DUN − f k−1

))

,

(

XNAk−1 + µ
(

XNAk
DUN − XNAk−1

)))

(6.2.30)

f k = f k−1 + µk
(

f k
DUN − f k−1

)

(6.2.31)

XNAk

= XNAk−1 + µk
(

XNAk
DUN − XNAk−1

)

(6.2.32)

Equation (6.2.30) defines a one-dimensional nonlinear optimization problem in the

scalar variable µ that can be solved with any of a number of algorithms, such as

the bisection algorithm (see Appendix A). This algorithm uses the derivative of the

objective function ψ(µ), which can be easily computed from link costs:

dψ(µ)/dµ = ∇z
[(

f k−1 + µ
(

f k
DUN − f k−1

))

,
(

XNAk−1

+ µ
(

XNAk
DUN − XNAk−1

))]T
·
[(

f k
DUN − f k−1

)

,
(

XNAk
DUN − XNAk−1

)]

=
[

c
(

f k−1 + µ
(

f k
DUN − f k−1

))

,1
]T

[(

f k
DUN − f k−1

)

,
(

XNAk
DUN − XNAk−1

)]
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= c
(

f k−1 + µ
(

f k
DUN − f k−1

))T (

f k
DUN − f k−1

)

+
(

XNAk
DUN − XNAk−1

)

Note that the algorithm does not require calculation of the function ψ(µ).

If the cost functions c = c(f ) are continuous with continuous first partial deriva-

tives and with positive definite symmetric Jacobian, the term
∫ f

0
c(v)T dv is a strictly

convex function of f . In this case the function z(f ,XNA) has one and only one min-

imum point (f ∗,XNA∗), as already seen above. Furthermore, the function ψ(µ) has

one and only one minimum point. In this case, results of optimization theory can be

invoked to demonstrate that f k , the sequence of (feasible) link flow vectors gener-

ated by the Frank–Wolfe algorithm, converges to the deterministic equilibrium link

flow vector, as do the values XNA,k .

Deterministic equilibria with nonseparable cost functions can be analyzed us-

ing variational inequality models that are expressed in terms of link flows f ∗ and

total nonadditive cost XNA∗. This problem can be solved with the diagonalization

algorithm.

6.3 Equilibrium Assignment with Variable Demand

In variable demand assignment models, the O-D demand flows are assumed to de-

pend on transportation costs. These models simulate supply–demand interactions

when path cost variations due to variations in congested link costs4 influence user

behavior other than path choice (such as the decision to travel, to what destination,

by what mode, etc.). The dependence of demand on cost is expressed by the demand

models described in Chap. 4.

If demand models are based on random utility theory, the demand flow for each

O-D pair generally depends on the values of the (systematic) utilities associated with

the paths available for the various O-D pairs, through the EMPU of path choice. This

can be seen as an “average” over the systematic utilities (i.e., costs) of the available

paths. This is described in Sect. 3.4 and in Sect. 4.2 on the general structure of

demand models.

For uncongested networks, variable demand assignment is not meaningful, be-

cause path costs, EMPUs, and thus demand flows are independent of link flows.

Link and path flows can then be obtained using the uncongested network assignment

models described in Sect. 5.3. For congested networks, by contrast, costs depend

on flows, and a further mutual dependence between flows and costs is introduced

through the demand function.

For variable demand equilibrium assignment, it is useful to distinguish be-

tween single- and multimode problems. In single-mode assignment, dealt with in

4Fixed-demand assignment models also occur when demand flows are assumed to depend on flow-

independent path cost attributes, such as free-flow times or generalized costs.
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Sect. 6.3.1, there is one mode for which link costs depend on flows, and either the

demand elasticity does not depend on mode split at all, or link costs for all other

modes are not congestion-dependent. In the latter case, level-of-service attributes of

the uncongested modes are known before the solution of the assignment model and

play a role similar to fixed parameters of the congested mode’s demand model. Once

the congested mode equilibrium assignment has been solved and the cost attributes

of this mode have been determined, demand for the other (uncongested) modes can

be obtained and assigned using uncongested network assignment models, one mode

at a time.

In multimode assignment, dealt with in Sect. 6.3.2, there is more than one mode

with link costs that depend on flows (congested modes). In this case, the cost at-

tributes of congested modes cannot be known before the solution of the assignment

model, and the equilibrium assignment problem must be solved simultaneously (at

least for the congested modes). Note that the various congested modes may have

separate supply (network) and path choice models.

To clarify the difference between the two types of variable demand assignment,

consider a situation involving the choice between two modes, car and bus. If bus

travel times are independent of the link flows, its level-of-service attributes are in-

dependent of congestion. They can be calculated through the network model and

then used as fixed parameters of the mode choice model that computes demand

flows for the car mode. The known costs of the bus mode and the cost functions for

the car mode allow the specification of a single-mode congested assignment prob-

lem with variable demand to determine car mode flows and costs. When this model

is solved and the car mode equilibrium attributes are found, the bus mode demand

flows will be determined and an uncongested network assignment can be performed

for the buses. On the other hand, if the costs of both modes depend on the network

flows, it is necessary to assign the demand of both modes at the same time to find

the congested cost pattern for each of them. These costs have to be consistent with

the mode choice, path choices, and the network flows of both modes.

6.3.1 Single-Mode Assignment

The demand function for travel between O-D pair od by mode m during time band

h (not explicitly indicated in the following) can be expressed as

dod = dod(s) ∀od

or in matrix terms:

d = d(s)

where

d is the demand flow vector, with element dod for each O-D pair od

s is the path choice EMPU vector, with element sod for each O-D pair od
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In general, the demand function simulates the dependence between demand flows

and EMPU, and will vary depending on the particular choice dimensions that are

considered variable with respect to congestion costs. For example, if demand is

variable with respect to destination choice, the demand flow dod depends only on

the elements of the vector s for O-D pairs having the same origin zone o, dod =

dod(sod1, . . . , sodn, . . .). If the demand flow dod of O-D pair od depends only on

the EMPU of the same O-D pair, we have the special case of separable demand

functions dod = dod(sod); this may arise in the case of variable trip frequency or trip

production models.

The EMPU depends in turn on the values of the path systematic utility through

relation (5.2.8) given in Sect. 5.2:

sod = sod(V od) ∀od

Note that the EMPU is defined as a utility and consistently measured. Thus, the

EMPU of path choice models is negative, because the systematic utility of each path

is generally negative, being the additive inverse of the corresponding systematic

cost.

From the systematic utility expression (5.2.5) it follows that:

dod = dod

(

s(V )
)

= dod

(

s(−g)
)

∀od (6.3.1)

or in matrix notation:

d = d
(

s(V )
)

= d
(

s(−g)
)

If destination choice, for example, is simulated with a logit model having parameter

θ1, and path choice is simulated with a logit model having parameter θ2, an elemen-

tary specification of the previous expression could be:

dod = do. exp
(

(β1Ad + β2sod)/θ1

)

/

∑

j

exp
(

(β1Aj + β2soj )/θ1

)

∀od

sod = θ2 ln

(

∑

k∈Kod

exp(−gk/θ2)

)

∀od

where

do. is the total flow leaving from zone o, assumed constant

Ad is the attraction attribute of the destination zone d

β1, β2 are conversion coefficients in the systematic utility function

In the variable demand assignment models described below, it is assumed that

the demand flow dod for each O-D pair od is nonnegative and bounded above by a

positive value; that is, dod ∈ [0, dod,max]. It is therefore possible to define the set of

feasible demand flow vectors as

Sd =
{

d : dod ∈ [0, dod,max] ∀od
}
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Under this hypothesis, the sets of feasible path and link flows, Sh and Sf , respec-

tively, described in Sect. 5.2, are compact and convex (and nonempty if the network

is connected), as in the case of fixed demand.

Three approaches can be followed, as described below.

Internal Approach The general variable demand model can be written:

hod = dod

(

s(−g)
)

pod(−god) ∀od (6.3.2)

in matrix notation:

h = P (−g)d
(

s(−g)
)

Note that expression (6.3.2) is the equivalent of expression (5.2.7) that was derived

for the case of fixed demand. On the other hand, the supply model remains un-

changed, as expressed by the relation (5.2.4).

The variable demand single-mode equilibrium approach assumes that the state

of the system can be represented by a path flow configuration h∗ that is mutually

consistent with the corresponding path costs g∗, as defined by the supply model

(5.2.4) and the demand model (6.3.2):

g∗ = ∆T c(∆h∗) + gNA

h∗ = P (−g∗)d
(

s(−g∗)
)

The corresponding equilibrium demand flows d∗ are given by (6.3.1). An equiva-

lent formulation of the variable demand single-mode equilibrium assignment model

can be developed in terms of link variables. In this case, the system of equations

in terms of equilibrium link flows f ∗ is obtained by combining the cost functions

(5.2.2) with the equation obtained from the combination of the uncongested network

assignment map (5.3.2), the demand function (6.3.1), and the path cost expression

(5.2.1):

c∗ = c(f ∗)

f ∗ = f UN-EL(c∗;d) = ∆P (−∆T c∗ − gNA)d
(

s(−∆T c∗ − gNA)
)

The analysis of variable demand equilibrium assignment can easily be carried out

for the internal approach through direct extension of the fixed demand equilibrium

assignment models described in Sect. 5.4, distinguishing the cases of stochastic and

deterministic equilibrium.

External Approach The circular dependence between demand flows and costs

can also be expressed externally to the equilibrium between (link and path) flows

and costs. At the inner level, for a given vector of demand flows, (fixed demand)

equilibrium link flows and costs are defined by the path choice model and by the

cost functions. At the outer level, the equilibrium between the costs resulting from

the (fixed demand) equilibrium assignment and the demand flows defined by the

demand functions is defined. Let:
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f UE-FIX = f UE-FIX(d) be the implicit correspondence between the fixed demand

equilibrium link flows f UE-FIX and the demand flows d . This corre-

spondence is defined by the solution of one of the models described in

Sect. 5.4. It is a function (one-to-one correspondence) if equilibrium flows

are unique.

External variable demand equilibrium assignment can therefore be formulated

with a system of nonlinear equations:

d∗ = d
(

s
(

−∆T c(f ∗)
))

f ∗ = f UE-FIX(d∗)

Combining the two previous equations results in a fixed-point problem (with an

implicitly defined function) with respect to the demand flows d∗ or link flows f ∗.

Formulations with respect to link cost or EMPU are also possible. The external

approach can be adopted to define solution procedures, but it is difficult to analyze

theoretically.

Hypernetwork Approach It is also possible to adapt fixed demand assignment

models to deal with variable demand by expanding the network model with appro-

priately defined links into so-called hypernetworks. (This hypernetwork approach

is not related to the hyperpath approaches discussed above.) Behavior in nonpath

choice dimensions can thus be simulated as can path choice in a modified network.

This approach is difficult to generalize, and can be used in some cases only. The

expanded network model also contains fictitious links that simulate frequency, des-

tination, mode, or other travel choice behavior in the same way that path choice

behavior is simulated in conventional networks.

This approach can be applied only to some demand functions, and is briefly de-

scribed below with reference to deterministic equilibrium. For the sake of simplicity,

frequency is assumed to be the only variable demand dimension. The hypernetwork

approach to model elasticity of other demand components is similar. For each O-D

pair od, a fictitious path consisting of a single link is added to the network. To sat-

isfy the demand conservation constraint, a flow equal to the excess demand flow,

h0
k = dod,max − dod , is assigned to this path; this flow represents the potential de-

mand flow that is not traveling (Fig. 6.8). Let:

dmax be the maximum demand flow vector

h0 = dmax − d be the vector of excess path flows

f 0 = f 0 be the vector of excess link flows

A fictitious cost function c0
od = c0

od(f 0) can be associated with each such new

link. This function is obtained from the inverse demand function that relates mini-

mum cost to demand flows as discussed in Sect. 6.3.1.2:

Zod(d) = Zod(dmax − dmax + d) = Zod(dmax − h0) = g0
od(h0) = c0

od(f 0)
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Fig. 6.8 Hypernetwork

approach

It can easily be verified that the variational inequality model (5.4.11) for fixed

demand deterministic equilibrium applied to this network is equivalent to the vari-

ational inequality model (6.3.6) for variable demand deterministic equilibrium ap-

plied to the original network. Thus, the variable demand DUE problem can be solved

by applying a fixed demand DUE algorithm to the expanded network.

6.3.1.1 Models for Stochastic User Equilibrium

The fixed demand SUE path flow fixed-point model (5.4.1) can easily be extended to

variable demand situations by combining the supply model (5.2.4) and the demand

model (6.3.2):

h∗ = P
(

−∆T c(∆h∗) − gNA
)

d
(

s
(

−∆T c(∆h∗) − gNA
))

(6.3.3)

with

h∗ ∈ Sh

The equivalent fixed demand SUE link flow fixed-point model (5.4.2) for the

fixed demand SUE problem can also be easily extended to variable demand:

f ∗ =
∑

od

dod

(

s
(

−∆T c(f ∗) − gNA
))

∆odpod

(

−∆T
odc(f ∗) − gNA

od

)

(6.3.4)

with

f ∗ ∈ Sf

Equilibrium link costs are given by c∗ = c(f ∗), and therefore the corresponding

demand flows are given by d∗
od = dod(s(−∆T c∗ − gNA)).

The analysis of the existence and uniqueness of solutions is a straightforward

extension of the results given in Sect. 5.4.1. It requires explicit assumptions on the

demand functions that are sufficient to ensure continuity and monotonicity of the
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following stochastic uncongested network assignment function (with variable de-

mand).

f SUN-EL(c) = f SUN

(

c∗;d
(

s
(

−∆T c − gNA
)))

=
∑

od

dod

(

s
(

−∆T c − gNA
))

∆odpod

(

−∆T
odc − gNA

od

)

Below, existence and uniqueness are analyzed explicitly only for equilibrium link

flows. These properties of the equilibrium link flows also ensure the existence and

uniqueness of the corresponding equilibrium link costs c∗ = c(f ∗), path costs and

flows g∗ and h∗, and demand flows d∗
od .

Existence of Variable Demand Stochastic User Equilibrium Assuming that

each O-D pair is connected and that demand flows are bounded, the fixed-point

model formulated in terms of link flows (6.3.4) has at least one solution if the

cost functions c = c(f ) and the component functions of f SUN-EL are all contin-

uous. These component functions are the path choice probability functions pod =

pod(V od), EMPU functions sod = sod(V od), and demand functions dod = dod(s).

The proof is similar to that in Sect. 5.4.1 for fixed demand.

Monotonicity of the Variable Demand Stochastic Uncongested Network As-

signment Function If path choice models are defined by functions that are

monotone nondecreasing with respect to the systematic utilities, as is the case of

probabilistic additive models (with |Σ | 
= 0; see Sect. 3.4), and if demand functions

are nonnegative, bounded, and nondecreasing with respect to the EMPU:

[

d(s′) − d(s′′)
]T

(s′ − s′′) ≥ 0 ∀s′, s′′

then the variable demand stochastic uncongested network assignment function is

monotone nonincreasing with respect to link costs. Thus if the cost of a set of links

increases, the corresponding flows do not increase. This property is expressed for-

mally as

(

f SUN-EL(c′) − f SUN-EL(c′′)
)T

(c′ − c′′) ≤ 0 ∀c′, c′′

Under these assumptions, given the two systematic utility vectors V ′
od and V ′′

od ,

corresponding to the paths that connect O-D pair od, the following relations involv-

ing the corresponding path choice probabilities and the EMPU hold (see Sect. 3.4).

pod(V ′
od)T (V ′

od − V ′′
od) ≥ sod(V ′

od) − sod(V ′′
od)

sod(V ′
od) − sod(V ′′

od) ≥ pod(V ′′
od)T (V ′

od − V ′′
od)

Letting s′
od = sod(V ′

od) and s′′
od = sod(V ′′

od), multiplying the first relation by

dod(s′) ≥ 0 and the second by dod(s′′) ≥ 0 gives:

dod(s′)pod(V ′
od)T (V ′

od − V ′′
od) ≥ dod(s′)

(

sod(V ′
od) − sod(V ′′

od)
)
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dod(s′′)
(

sod(V ′
od) − sod(V ′′

od)
)

≥ dod(s′′)pod(V ′′
od)T (V ′

od − V ′′
od)

Hence, summing over all O-D pairs:

∑

od

dod(s′)pod(V ′
od)T (V ′

od − V ′′
od) ≥

∑

od

dod(s′)
(

sod(V ′
od) − sod(V ′′

od)
)

∑

od

dod(s′′)
(

sod(V ′
od) − sod(V ′′

od)
)

≥
∑

od

dod(s′′)pod(V ′′
od)T (V ′

od − V ′′
od)

Furthermore, from the monotonicity of the demand functions, it follows that

∑

od

dod(s ′)
(

sod(V ′
od) − sod(V ′′

od)
)

≥
∑

od

dod(s′′)
(

sod(V ′
od) − sod(V ′′

od)
)

Therefore, the following expression is obtained.

∑

od

dod(s′)pod(V ′
od)T (V ′

od − V ′′
od) ≥

∑

od

dod(s′′)pod(V ′′
od)T (V ′

od − V ′′
od)

from which, letting h′
od = dod(s′)p′

od and h′′
od = dod(s′′)p′′

od , we deduce:

∑

od

(h′
od − h′′

od)T (V ′
od − V ′′

od) ≥ 0

Given two different link cost vectors c′ and c′′, let

g′
od = ∆T

odc′ + gNA
od V ′

od = −g′
od

g′′
od = ∆T

odc′′ + gNA
od V ′′

od = −g′′
od

Therefore, analogous to the exposition in Sect. 5.3.1, with

f ′ =
∑

od

∆odh′
od f ′′ =

∑

od

∆odh′′
od

we finally obtain: (f ′ − f ′′)T (c′ − c′′) ≤ 0.

Note that, under these assumptions, the Jacobian Jac[f SUN-EL(c)] is symmetric

negative semidefinite because the Jacobian Jac[pod(V od)] is symmetric positive

semidefinite (see Sect. 3.4).

Uniqueness of Variable Demand Stochastic User Equilibrium The link flow

fixed-point model (6.3.4) has at most one solution if the link cost functions c = c(f )

are strictly increasing with respect to the feasible link flows:

[

c(f ′) − c(f ′′)
]T

(f ′ − f ′′) > 0 ∀f ′ 
= f ′′ ∈ Sf ;

if demand functions are nonnegative, bounded, and nondecreasing with respect to

the EMPU:
[

d(s′) − d(s′′)
]T

(s′ − s′′) ≥ 0 ∀s′, s′′
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and if path choice models are additive, in the sense defined in Sect. 5.3.1, and ex-

pressed by continuous functions pod = pod(V od) with continuous first partial deriv-

atives.

The proof is similar to that provided in Sect. 5.4.1 for fixed demand. Under the

above assumptions, the variable demand SUN function f SUN-EL(c) is monotone

nonincreasing with respect to the link costs.

The considerations expressed in Sect. 5.4.1 on the existence and uniqueness of

the solutions, and on the continuity and monotonicity of the cost functions, can

be directly extended to variable demand models. As for the demand functions,

their monotonicity implies that variations in path cost induce opposite variations

in EMPUs and therefore in demand flows. In other words, the increase in a link

cost, and therefore in the cost of the paths including it, cannot induce an increase in

the demand flows between the O-D pairs connected by these paths. This property is

always guaranteed if the demand functions are defined through probabilistic choice

models, which are invariant with respect to the EMPU of path choice (deterministic

demand models also satisfy the monotonicity requirement).

6.3.1.2 Models for Deterministic User Equilibrium

When path choice behavior is simulated with a deterministic model, the EMPU is

given, as stated in Sect. 3.4, by the maximum systematic utility, or the negative of

the minimum path cost:

sod = sod(V od) = max
k∈Kod

(Vod,k) = − min
k∈Kod

(god,k) = −Zod ∀od

where

Zod = −sod is the minimum cost of the paths connecting O-D pair od

Z = −s is the vector of the minimum path costs between all O-D pairs

The demand functions d(·) are, in the case of deterministic assignment, usually

expressed in terms of minimum cost, that is, the negative of the EMPU:

dod = dod(−s) = dod(Z) ∀Z ∀od

or equivalently

d = d(Z) ∀Z (6.3.5a)

As an example, consider the case of a logit model that simulates destination

choice, analogous to that described previously, whereas path choice is simulated

with a deterministic model. Expression (6.3.5a) becomes:

dod = do exp
(

(β1Ad − β2Zod)/θ1

)/

∑

j

exp
(

(β1Aj − β2Zoj )/θ1

)

∀od

where
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do is the total flow leaving zone o, assumed constant

Ad is the attraction attribute of the destination zone d

θ1 is the destination choice model logit parameter

β1, β2 are the systematic utility conversion coefficients

The indirect formulation of fixed demand deterministic equilibrium through vari-

ational inequality models, described in Sect. 5.4.3, can be extended to variable de-

mand. For this purpose, it is necessary to assume that the demand functions (6.3.5a)

are invertible5; that is, it is possible to define the inverse demand function6 giving,

for each demand flow vector d , the corresponding vector of minimum path costs Z.

This is the vector of minimum path costs that, through the demand function, would

generate the demand vector d :

Z = Z(d) ∀d ∈ Sd (6.3.5b)

The inverse demand function (6.3.5b) has the same properties of continuity and

monotonicity as the demand function (6.3.5a). In particular, it is strictly decreasing

if (and only if) the demand function (6.3.5a) is strictly decreasing. Thus, for an in-

crease in demand flows, the inverse demand function associates a decrease in costs.

This property is guaranteed if the demand function is defined by additive proba-

bilistic choice models specified in terms of minimum path costs (or by deterministic

models).

The variational inequality formulation of variable demand deterministic equilib-

rium assignment can be achieved by extending the path flow model (5.4.11) de-

scribed in Sect. 5.4.3 for fixed demand. In the case of variable demand, this model

becomes (excluding nonadditive path costs for simplicity of notation):

g(h∗)T (h − h∗) − Z(d∗)T (d − d∗) ≥ 0 ∀h ∈ Sh ∀d ∈ Sd (6.3.6)

In fact, applying condition (3.4.11a) on the deterministic choice probabilities

pDET,od (as introduced in Sect. 3.4) to each O-D pair od yields:

V T
odpDET,od = max(V od) ∀od

Given path costs g∗
od , let Z∗

od = min(g∗
od) be the minimum path cost for each

O-D pair od. Assuming V ∗
od = −g∗

od yields max(V ∗
od) = −Z∗

od . Furthermore, let

d∗
od be the demand flow corresponding to minimum cost Z∗

od ; that is, Z∗ = Z(d∗) is

consistent with the inverse demand function. Multiplying the above equation by the

5A strictly monotone continuous function is always invertible, and an invertible and continuous

function is strictly monotone (see Appendix A).

6It should be noted that it is usually very difficult to get closed form expressions for the inverse

demand functions Z = Z(d), even in the case of simple demand models. This characteristic consid-

erably limits the application to variable demand deterministic equilibrium of variational inequality

models (but not of fixed-point models). In the case of logit-type demand models, an equivalent

optimization model can be adopted, as shown below.
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nonnegative demand flow d∗
od ≥ 0 ∀od yields:

(

g∗
od

)T
hDET,od = Z∗

odd∗
od ∀od (a)

because

hDET,od = d∗
odpDET,od ∀od

Generally, the following condition also holds (see Sect. 3.4).

V T
odpod ≤ max(V od) ∀pod : pod ≥ 0, 1T pod = 1 ∀od

Given the path costs g∗
od , with V ∗

od = −g∗
od and max(V ∗

od) = −Z∗
od , multiplying

the above equation by any feasible demand flow dod ≥ 0 ∀od yields:

(

g∗
od

)T
hod ≤ Z∗

oddod ∀hod : hod ≥ 0, 1T hod = dod ∀dod ≥ 0 ∀od

thus
(

g∗
od

)T
god ≤ Z∗

oddod ∀hod : h ∈ Sh, ∀dod : d ∈ Sd ∀od (b)

because hod = dodpod ∀od .

Subtracting (a) from (b) yields:

(

g∗
od

)T
(god − gDET,od) ≤ Z∗

od

(

dod − d∗
od

)

∀hod : h ∈ Sh, ∀dod : d ∈ Sd ∀od

Summing up the above equation for all O-D pairs, and letting Z∗ = Z(d∗), a

deterministic demand model with variable demand is obtained:

(g∗)T (h − hDET) ≤ Z(d∗)T (d − d∗) ∀h ∈ Sh, ∀d ∈ Sd

Combining the above demand model (b) with the supply model (5.2.4), say

g(h∗) = ∆T c(∆h∗) + gNA, relation (6.3.6) is obtained.

Expression (6.3.6) can easily be reformulated in terms of link flows, extending

the model (5.4.12) described in Sect. 5.4.3. Expressing equilibrium path costs in

terms of link costs according to the supply model, it follows, as in (5.2.4), that

c(f ∗)T (f − f ∗) − Z(d∗)T (d − d∗) ≥ 0 ∀f ∈ Sf ∀d ∈ Sd (6.3.7)

The existence of (link or path) flows and costs and the uniqueness of link flows

and costs as well as of the demand flows for variable demand deterministic user

equilibrium are guaranteed respectively by the continuity and monotonicity of the

cost functions and of the (inverse) demand functions.7

7To this end, note that both models (6.3.6) and (6.3.7) can be expressed as a variational

inequality defined for a suitable function ϕ(x), with vector x drawn from a suitable set

S : ϕ(x∗)T (x − x∗) ≥ 0, ∀x ∈ S. In particular, in the model (6.3.6), the vector x is defined by

the path and demand flow vectors h and d ; the set S is defined by the product of the sets of feasible

path and demand flows Sh and Sd ; and the function ϕ(x) is defined by the path cost functions and

the negative of the inverse demand function g(h) and Z(d). The same holds for the model (5.4.7)

expressed in terms of link flows and demand flows.
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Existence of Variable Demand Deterministic User Equilibrium Variational in-

equalities (6.2.6) and (6.2.7) have at least one solution if the cost functions, defined

over the nonempty, compact, and convex set of feasible path or link flows, and the

inverse demand functions, defined over the nonempty, closed, and bounded interval

of demand values, are both continuous.

The proof is similar to that described for fixed demand in Sect. 5.4.1.

Uniqueness of Variable Demand Deterministic User Equilibrium Link Flows

The variational inequality (6.3.7) expressed in terms of link flows has at most one

solution if the link cost functions c = c(f ) are strictly increasing with respect to

link flows:
[

c(f ′) − c(f ′′)
]T

(f ′ − f ′′) > 0 ∀f ′ 
= f ′′ ∈ Sf

and the inverse demand functions, Z = Z(d), are strictly decreasing8 with respect

to the demand flows (i.e., the demand functions are strictly decreasing with respect

to the minimum cost):

[

Z(d ′) − Z(d ′′)
]

(d ′ − d ′′) < 0 ∀d ′ 
= d ′′ ∈ Sd

The proof, parallel to that described for fixed demand in Sect. 5.4.3, is per-

formed by a reductio ad absurdum. If there existed two different equilibrium link

flow vectors f ∗
1 
= f ∗

2 ∈ Sf , corresponding to two feasible demand flow vectors

d∗
1,d

∗
2 ∈ Sd (not necessarily different), they both would satisfy (6.3.7) and there-

fore, with f = f ∗
2 ∈ Sf and d = d∗

2 ∈ Sd , we would have:

c
(

f ∗
1

)T (

f ∗
2 − f ∗

1

)

− Z
(

d∗
1

)T (

d∗
2 − d∗

1

)

≥ 0

Furthermore, f ∗
2 and d∗

2 would also respect (6.3.7) and therefore, with f = f ∗
1 ∈

Sf and d = d∗
1 ∈ Sd , we would have:

c
(

f ∗
2

)T (

f ∗
1 − f ∗

2

)

− Z
(

d∗
2

)T (

d∗
1 − d∗

2

)

≥ 0

Adding the above two relations gives:

c
(

f ∗
1

)T (

f ∗
2 − f ∗

1

)

− Z
(

d∗
1

)T (

d∗
2 − d∗

1

)

+ c
(

f ∗
2

)T (

f ∗
1 − f ∗

2

)

− Z
(

d∗
2

)T (

d∗
1 − d∗

2

)

≥ 0

or
[

c
(

f ∗
1

)

− c
(

f ∗
2

)]T (

f ∗
1 − f ∗

2

)

−
[

Z
(

d∗
1

)

− Z
(

d∗
2

)]T (

d∗
1 − d∗

2

)

≤ 0

which, if d∗
1 
= d∗

2 , contradicts the assumption of the monotonicity of the cost func-

tions and the inverse demand functions. Analogously, if there existed two different

8Note that strict monotonicity is needed here, in contrast to stochastic user equilibrium.
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vectors of feasible demand flows d∗
1 
= d∗

2 ∈ Sd and corresponding vectors of equi-

librium link flows f ∗
1,f

∗
2 ∈ Sf , this would again result in a contradiction.

Note that, as in the case of fixed demand, the uniqueness of link flows and equi-

librium demand does not imply the uniqueness of equilibrium path flows.

Formulation with Optimization Models Variable demand deterministic user

equilibrium can also be formulated with optimization models. These allow simple

solution algorithms to be used (see Sect. 6.3.1.3). Equivalent optimization models

require that cost functions and inverse demand functions have symmetric Jacobians.

In particular, assuming for the sake of simplicity the absence of nonadditive path

costs, the model (5.4.14) can be extended in the following form.

(f ∗,d∗) = argmin

∫ f

0

c(x)T dx −

∫ d

0

Z(y)T dy (6.3.8)

f ∈ Sf

d ∈ Sd

In general, formulation (6.3.8) is of limited use in practice because it is difficult

to express the inverse demand function Z = Z(d) in closed form, and therefore to

prove the symmetry of its Jacobian.

This condition holds, however, if the demand model is of the logit type, like that

described at the beginning of this section. In this case, the following holds.

∫ d

0

Z(y) dy = (θ1/β2)
∑

od

(dod lndod − dod) + (β1/β2)
∑

od

(Addod) (6.3.9)

with
∑

od

dod = do ∀o

Analogously, the integral (6.3.9) can be explicitly computed for logit mode choice

model demand with attributes independent of congestion for the other transportation

modes.

6.3.1.3 Algorithms

This section briefly describes extensions of the fixed demand equilibrium assign-

ment algorithms to variable demand equilibrium assignment problems. The algo-

rithms described can also be adapted to solve multimode equilibrium assignment

problems, but this is not discussed in detail.

As seen in Sect. 6.3, variable demand assignment models assume that the levels

of O-D demand flow depend on congested transportation costs. This assumption im-

plies that users’ behavior on choice dimensions other than path choice (e.g., mode,

destination) is influenced by variations in path costs resulting from variations in
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congestion levels. In single-mode assignment, it is assumed that only one mode’s

costs depend on congestion. In this case, the dependence of demand flows on path

costs can be expressed by demand functions that depend on the EMPU function for

the path choice model (see Sect. 6.3):

s = s(V = −g)

d = d(s)

Calculation of link and demand flows for variable demand (single-mode) equilib-

rium assignment can be carried out applying any of three different approaches de-

scribed below.

Internal cycle algorithms are based on an extension of the algorithms that solve

fixed demand equilibrium assignment problems described in Sect. 5.4. It is straight-

forward to extend to variable demand problems the MSA-FA or MSA-CA algo-

rithms presented therein for fixed demand stochastic equilibrium. In each iteration,

these algorithms compute the EMPUs and therefore the demand flows correspond-

ing to costs in the previous iteration, before proceeding to UN assignment of that

demand. This approach is simple to apply with or without explicit path enumeration.

In the case of deterministic assignment for noncongested networks (without ex-

plicit path enumeration) the algorithms described in Sect. 5.3.3 may be extended. In

particular, for each origin o, using an algorithm to determine the minimal path tree,

one also calculates the minimum costs Zod to each destination d ; this value, except

for its sign, constitutes the value of satisfaction sod = −Zod , between the od pair

from which one can determine the demand flow dod to be loaded onto the minimum

path from o to d , and hence determine the link flows.

In the case of logit SUN (without explicit path enumeration), the Dial algorithm

described in Sect. 5.3.2 can easily be extended. In particular, for each origin o, after

the calculation of the node weights Wi and the link weights wij , in the first phase

of the algorithm, the inclusive variable Yd is obtained for each destination d . This

variable is the EMPU sod between the O-D pair od. The demand flow dod can thus

be computed and loaded on the network with the Dial algorithm.

In the case of probit SUN (without explicit path enumeration), the Monte Carlo

algorithm described in Sect. 5.3.2 can also be quite easily extended: for each O-D

pair od, the average of the shortest path costs corresponding to the sampled per-

ceived costs is an unbiased estimate of the negative EMPU s̄od . From these esti-

mates, the demand flows dod can be estimated and, from them, link flows can in

turn be determined:

s̄m = s̄m(c)

d̄ = d(s̄)

f̄
m

= f̄
m
(c,d)

where

s̄m = s̄m(c) is a vector of unbiased estimates of the EMPUs for all O-D pairs od,

obtained with a sample of m perceived link cost realizations with mean c
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f̄
m

= f̄
m
(c,d) is an unbiased estimate of SUN link flows resulting from demand

flows d and a sample of m vectors of perceived link costs with mean c

Note that direct application of this approach, given a vector c, requires two repeti-

tions of the estimation process, first for the EMPUs and then for link flows. Thus

other approaches are usually adopted when SUN is embedded within an algorithm

for stochastic equilibrium.

In the case of deterministic UN assignment (without explicit path enumeration),

the algorithms described in Sect. 5.3.3 can again be easily extended. In particular,

the algorithm for determining the shortest path tree from each origin o gives the

minimum cost Zod between o and all destinations d . The negatives of these values

are the EMPUs, sod = −Zod , from which demand flows dod can be computed and

assigned to the links of the shortest path between o and d .

Whatever procedure is adopted for UN assignment – stochastic or deterministic,

with or without explicit path enumeration – the MSA-FA algorithm for internal cycle

variable demand equilibrium can be defined by the following system of recursive

equations, given f 0 ∈ Sf and d0 ∈ Sd at k = 0.

k = k + 1 (6.3.10)

ck = c(f k−1) (6.3.11)

f k
UN = f UN

(

ck,d
(

s
(

−∆T ck
)))

(6.3.12)

f k = f k−1 + 1/k
(

f k
UN − f k−1

)

(6.3.13)

where

f UN(c,d) are the link flows resulting from a UN assignment with costs c and de-

mand flows d

d = d(s(−∆T c)) are the demand flows corresponding to the EMPUs that result

from link costs c

The internal cycle MSA-FA algorithm can be further extended by averaging both

EMPU values and link flows, as described by the following system of recursive

equations, given f 0 ∈ Sf , s0 = s(−∆T c(f 0)) and k = 0.

k = k + 1 (6.3.14)

ck = c(f k−1) (6.3.15)

dk = d(sk−1) (6.3.16)
(

sk
UN,f k

UN

)

= UN(ck,dk) (6.3.17)

sk = sk−1 + 1/k
(

sk
UN − sk−1

)

(6.3.18)

f k = f k−1 + 1/k
(

f k
UN − f k−1

)

(6.3.19)

where
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(sUN,f UN) = UN(c,d) are the EMPU and flows resulting from a UN assignment

with link costs c and demand flows d ; they can be computed simultane-

ously using one of the procedures described in Sect. 5.3.3.

This algorithm, called MSA-FSA, is particularly useful with probit path choice

models because it avoids the double Monte Carlo application at each iteration.

Convergence of the MSA-FA and MSA-FSA algorithms for equilibrium prob-

lems with nonseparable cost functions (asymmetric Jacobian) has not been proved.

In this case, it is possible to adopt an immediate extension of the MSA-CA algo-

rithm.9 In particular, the MSA-CA algorithm can be described by the following

system of recursive equations, given f 0 ∈ Sf , c0 = c(f 0) and k = 0:

k = k + 1 (6.3.20)

f k
UN = f UN

(

ck−1,d
(

s
(

−∆T ck−1
)))

(6.3.21)

c̄k = c(f k) (6.3.22)

ck = ck−1 + 1/k
(

c̄k − ck−1
)

(6.3.23)

Note that the link flow vector f k = f UN(ck−1) at iteration k is feasible.

In general, it is possible to average both demand flows and link costs, with an

algorithm called MSA-CDA. The algorithm is described by the following system of

recursive equations, given f 0 ∈ Sf ,d0 ∈ Sd , c0 = c(f 0) and k = 0.

k = k + 1 (6.3.24)

f k = f UN(ck−1,dk−1) (6.3.25)

d̄
k
= d

(

s(−AT ck)
)

(6.3.26)

c̄k = c(f k) (6.3.27)

dk = dk−1 + 1/k(d̄
k
− dk−1) (6.3.28)

ck = ck−1 + 1/k(c̄k − ck−1) (6.3.29)

The convergence of the internal cycle algorithms described above has been ana-

lyzed only for separable demand functions di = di(si). In this case, the fixed demand

equilibrium conditions already discussed for the MSA-FA and MSA-CA algorithms

continue to hold, with the further requirement that the demand functions di = di(si)

be continuous, differentiable, nondecreasing monotone, and bounded.

Among the internal cycle algorithms, the equivalent optimization problem (6.3.8)

could be solved with the Frank–Wolfe algorithm for variable demand symmetric de-

terministic equilibrium. However, this approach would require explicit formulation

of the inverse demand function Z(d), expressing the minimum costs Z in terms of

9In the case of asymmetric Jacobian it is also possible to adopt the diagonalization algorithm

(described in Sect. 5.4 for fixed demand equilibrium), but no convergence proof has been provided.
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demand flows d ; moreover the inverse demand function would need to have a sym-

metric Jacobian. Both these conditions are difficult to meet in practice. In any case,

the resulting algorithm would require modifications of the DUN algorithm.

External cycle algorithms solve a formulation of variable demand equilibrium

assignment models in which the circular dependence between demand flows and

costs is expressed externally to the flow-cost equilibrium. As stated in Sect. 6.3, this

defines a two-level problem. Equilibrium between flows and costs is computed at the

inner level for a given set of demand flows. The outer level computes equilibrium

between the costs resulting from the inner-level equilibrium assignment and demand

flows obtained from demand functions. Let:

f UE-FIX = f UE-FIX(d) be the implicit correspondence between fixed demand equi-

librium link flows f UE-FIX and demand flows d . This correspondence ex-

presses the solution of one of the models described in Sect. 5.4. If the equi-

librium link flow vector is unique for a given demand vector, the above

correspondence is a one-to-one function. Its value can be calculated with

one of the algorithms described in Sect. 5.4.

Variable demand equilibrium assignment can be formulated with a system of

nonlinear equations:

d∗ = d
(

s
(

−∆T c(f ∗)
))

(6.3.30)

f ∗ = f UE-FIX(d∗) (6.3.31)

Combining the two equations (6.3.30) and (6.3.31), we obtain a combined fixed-

point problem (with an implicitly defined function) in either the demand flows d∗

or the link flows f ∗:

d∗ = d
(

s
(

−∆T c
(

f UE(d∗)
)))

(6.3.32)

f ∗ = f UE-FIX

(

d
(

s
(

−∆T c(f ∗)
)))

(6.3.33)

The fixed-point problem can also be formulated in terms of link costs or EMPU

values.

The simplest external cycle algorithms are based not only on the iterative applica-

tion of a fixed demand equilibrium assignment algorithm for calculating link flows

and costs with given demand flows but also on the demand function for calculating

demand flows with given costs and EMPUs. In particular, an external cycle algo-

rithm of this type can be specified by the following system of recursive equations,

given an initial feasible value of the demand flows d0 ∈ Sd at k = 0.

k = k + 1

f k = f UE-FIX(dk−1) (6.3.34)

ck = c(f k) (6.3.35)

sk = s(−∆T ck) (6.3.36)
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dk = d(sk) (6.3.37)

The initial value of the demand flows d0 can be obtained, for example, with EMPUs

corresponding to zero flow link costs: c0 = c(f = 0), s0 = s(−∆T c0),d0 = d(s0).

A more sophisticated external cycle algorithm is obtained by applying the MSA

to the fixed-point problem (6.3.32) in demand flows d∗. The resulting algorithm is

described by the following system of recursive equations, given d0 ∈ Sd and k = 0.

k = k + 1 (6.3.38)

f k = f UE-FIX(dk−1) (6.3.39)

ck = c(f k) (6.3.40)

sk = s(−∆T ck) (6.3.41)

dk = dk−1 + (1/k)
(

d(sk) − dk−1
)

(6.3.42)

Similarly, an external cycle algorithm can be specified by applying the MSA method

to the fixed-point problem (6.3.33) in link flows. This produces an algorithm de-

scribed by the following system of recursive equations, given f 0 ∈ Sf and k = 0.

k = k + 1 (6.3.43)

ck = c(f k−1) (6.3.44)

sk = s(−∆T ck) (6.3.45)

dk = d(sk) (6.3.46)

f k = f k−1 + (1/k)
(

f UE-FIX(dk) − f k−1
)

(6.3.47)

In both cases, termination tests should compare the value computed in the previ-

ous iteration, (dk−1 or f k−1) with the auxiliary value obtained within the iteration

(d(sk) or f UE-FIX(d∗)).

Other algorithms can be specified by applying the MSA method to fixed-point

problems expressed in terms of EMPUs, link costs, or pairs of variables. In any of

these cases, it is easily deduced that, if an external cycle algorithm converges to a

solution, then this is the equilibrium solution sought. The convergence of external

algorithms has not yet been completely analyzed nor have convergence conditions

on assignment models and demand functions been established. External algorithms

are easily implemented starting from existing fixed demand assignment implemen-

tations, and can accommodate a wide variety of demand functions.

Note the difference between the external ((6.3.38) to (6.3.42)) and internal

((6.3.10) to (6.3.13)) cycle algorithms. In the former, a fixed demand equilibrium as-

signment, requiring several UN assignments, is performed in each iteration and the

resulting link flows are averaged. Conversely, in the internal cycle algorithm only

one UN assignment is performed in each iteration and the resulting link flows are

averaged. No systematic comparisons of the two approaches have been published.

From the purely computational point of view, the relative efficiency is certainly re-

lated to the relative complexity of computing UN flows and demand flows.
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6.3.2 Multimode Equilibrium Assignment

The previous models can be extended to multimode assignment in which mode at-

tributes, useful for simulating mode choice behavior, depend on congested costs

for more than one mode. Obviously, in addition to mode and path choice, demand

models can be variable with respect to other choice dimensions, such as frequency

and destination. To specify these models it is useful to modify the notation used in

Sect. 5.2 by introducing a further subscript to designate the mode m. Let:

∆od,m be the link-path incidence matrix for the O-D pair od and mode m

∆ be the overall link-path incidence matrix, obtained by arranging the blocks

∆od,m side by side, corresponding to each O-D pair od and each mode m

c be the link cost vector ca

gADD
od,m be the additive path cost vector for the O-D pair od and mode m

gADD be the overall additive path cost vector, composed of the vectors gADD
od,m

corresponding to each O-D pair od and each mode m

gNA
od,m be the additive path cost vector for the O-D pair od and the mode m

gNA be the overall nonadditive path cost vector, composed of vectors gNA
od,m cor-

responding to each O-D pair od and each mode m

god,m be the total path cost vector for the O-D pair od and the mode m

g be the overall total path cost vector, composed of the vectors god,m corre-

sponding to each O-D pair od and each mode m

hod,m be the path flow vector for of the O-D pair od and the mode m

h be the overall path flow vector, composed of the path flow vectors hod,m

corresponding to each O-D pair od and each mode m

In general, in the case of multimode assignment it is appropriate to consider ex-

plicitly both user flows per mode (e.g., car passengers and motorcycles, individual

transportation modes, and passengers on buses, trolley-buses, trams, etc., collective

transportation modes) and the corresponding vehicle flows. Hence it would be nec-

essary to introduce one variable of vehicle flow and one for passengers for each

mode with reference to each link. It is thus possible to analyze both vehicle on-

board congestion due to the number of users (flow) present, and congestion due to

the possible mix of vehicle flows. This circumstance does not obviously occur if the

vehicle flows of the various modes are physically separate, for example, cars, buses

with dedicated lanes, or underground trains.

However, under some simple assumptions adopted in applicative practice, it is

not necessary to introduce two types of flow variables, but is sufficient to consider

only passenger flows: vehicle flows of individual transportation modes are assumed

to be linearly related to the relative passenger flows through the crowding coef-

ficient, and to be measured by equivalent vehicles. In addition, with reference to

public transportation modes, vehicle flows are assumed to be predetermined (result-

ing from service scheduling) and also expressed by equivalent vehicles. Hence this

flow is considered a constant flow present on the links. Both these types of flows

contribute to determining the cost on shared links.
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For instance, consider the presence of two modes, car (A) and bus (B) with-

out overlapping lines, with reference to a link a relative to the road network (see

Chap. 2). In general, it would be necessary to introduce the following flow vari-

ables.

fa[P,A] flow of passengers (P ) in cars (A) on link a

fa[V,A] flow of vehicles (V ) of cars (A) on link a

fa[V,B] flow of vehicles (V ) of buses (B) on link a

Note that there is no point introducing bus passenger flows on link a. As regards

mode A, if ω is the crowding coefficient, then: fa[P,A] = ωfa[V,A]. Because it

is not necessary to consider on-board car congestion, it is sufficient to use only

the flow variable fa[P,A], assuming that the path flows and demand flows that

combine to determine this variable are measured in passengers. The flow fa[P,A]

may be considered the characteristic flow of mode A for link a,f A
a . Assuming

that the cost on link a, ca , is a function of the overall flow crossing it, then:

ca = ca(fa[P,A]/ω + fa[V,B]), that is, the crowding coefficient, is used to ad-

just the capacities in the cost functions, whereas flow fa[V,B] may be considered

a parameter of the function, insofar as it is not variable. The term fa[V,B] is ex-

pressed in equivalent cars using an appropriate coefficient greater than 1. For link l

of the bus service network (see Chap. 2) let:

fa[P,B] be the passenger flow (P ) in buses (B) on link a

fa[V,B] be the vehicle flow (V ) of buses (B) on link a

Note that there is no point introducing car flows on link a. The cost on link

a, ca is made up by the result of two congestion effects. On-board time on link

a, tba , depends on vehicle flows on the corresponding road link a, already intro-

duced according to a nonseparable function: tba = tba(fa[P,A]/ω + fa[V,B]).

The disutility due to the bus crowding coefficient on link a, dra , depends on flow

fa[P,B] : dra = dra(fa[P,B]). Thus flow fa[P,B] may be considered the char-

acteristic flow of mode B for link a,f B
a . Hence:

ca = wtba

(

fa[P,A]/ω + fa[V,B]
)

+ dra
(

fa[P,B]
)

= ca

(

f A
a , f B

a

)

where w is a suitable coefficient of homogenization. Flow fa[V,B] combines with

other similar flows to form flow fa[V,B]. Such considerations may be easily ex-

tended to the case of more than one mode with partly overlapping public transporta-

tion lines. Thus it is sufficient to have one flow variable per link.

To conclude the analysis of the supply model, it is generally assumed that the

cost functions are nonseparable. It is also assumed that a link may be used by more

than one mode, for example, in the case of pedestrian links crossed by users of the

“foot” mode and public transport mode.10 Let:

10In the special case, not relevant for the analysis below, where each link is used by one mode only,

and the cost on a link depends only on the flows of the corresponding mode, the entire network is

separable into independent modal networks that share only the centroid nodes.
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f od,m be the vector of mode- and O-D-specific link flows, with entries given by

the flow on link a,f
od,m
a , corresponding to the pair od and mode m

f be the overall link flow vector

c be the link cost vector

In analogy with the results presented in Sect. 5.2, and assuming that link flows for

each pair od and each mode m are measured in commensurate units, the following

holds.

fa =
∑

m

∑

od

f od,m
a

The following relationships (analogous to (5.2.1)–(5.2.3)) relate the variables

introduced,

god,m = gADD
od,m + gNA

od,m = ∆T
od,mc + gNA

od,m ∀od,m (6.3.48)

c = c(f ) (6.3.49)

f =
∑

m

∑

od

f od,m =
∑

m

∑

od

∆od,mhod,m (6.3.50)

The multimodal supply model is expressed by the following relationship (analo-

gous to (5.2.4)).

god,m = ∆T
od,mc

(

∑

m

∑

od

∆od,mhod,m

)

+ gNA
od,m ∀od,m (6.3.51)

Path choice behavior can be simulated with a random utility model, possibly dif-

ferent for each mode. For example, a deterministic model might be used for public

transport modes, whereas probit models might be specified for car and truck modes.

Assuming for simplicity completely pre-trip choice behavior, let:

V od,m be the vector of systematic utilities for paths related to the O-D pair od and

the mode m

p[k/odm] be the probability of using path k for a trip from origin o to destination

d by mode m (with purpose and time band not explicitly indicated)

pod,m be the vector of path choice probabilities for the O-D pair od and mode m

dod,m be the demand flow of the users between the O-D pair od with mode m,

element of the O-D matrix for mode m

The following relationships (analogous to (5.2.5) and (5.2.6)) hold between the

variables introduced.

V od,m = −god,m + V ◦
od,m ∀od,m (6.3.52)

hod,m = dod,mpod,m(V od,m) ∀od,m (6.3.53)

where
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V ◦
od,m is a vector with elements consisting of the systematic utility components

that depend on attributes other than path costs (such as the socioeconomic

characteristics of the users). It is omitted in the following for simplicity of

notation

The demand flow dod,m for the pair od on mode m is generally defined by a

system of demand models that includes a mode choice submodel, and is therefore a

function of the path choice EMPU for the various modes (analogous to (6.3.1)):

dod,m = dod,m(s) ∀od,m (6.3.54)

where

s is the vector of the path choice EMPU, with a component sod,m for each

O-D pair od and each mode m

Finally, the EMPU depends on the vector of systematic utilities (analogous to

(5.2.8)):

s = s(V ) (6.3.55)

Thus, the whole multimode demand model is expressed by the equation (analo-

gous to (6.3.2)):

hod,m = dod,m

(

s(−g)
)

pod,m(−god,m) ∀od,m (6.3.56)

Note that the demand model (6.3.56) is an extension of model (5.2.7) derived in the

case of fixed demand. It is also a particular specification of the general partial share

demand model (4.2.2) introduced in Chap. 4.

By combining supply and demand models we may formulate models for multi-

mode equilibrium assignment analogous to the variable demand single-mode user

equilibrium assignment described in the previous subsection. The fixed-point mod-

els are more flexible and easy to formulate, while retaining the properties described,

if the mode choice model within the demand model is specified as a random utility

model:

f ∗ =
∑

od,m

dod,m

(

s
(

−
(

∆T c(f ∗) + gNA
)))

∆od,mpod,m

(

−
(

∆T
od,mc(f ∗) + gNA

od,m

))

The analysis of existence and uniqueness of the solutions is a simple extension of

that developed in Sect. 6.3.1 for single-mode user equilibrium. In particular, to prove

existence the mode choice model needs to be specified by continuous functions,

whereas to prove uniqueness it needs to be specified by monotone functions, in the

sense defined in Sect. 5.3.1. These conditions hold for invariant probabilistic models

expressed by continuous functions with continuous first partial derivatives.
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6.4 Multiclass Assignment

The assignment models described in the previous sections were developed under the

assumption that users are homogeneous with respect to relevant behavioral models

and parameters. In the following, these models are extended to deal with the case of

multiclass assignment, that is, under the assumption that users fall into a number of

distinct classes. Users of a given class share all the behavioral characteristics such as

specification, parameters, and attributes of the relevant demand models, including

path choice. All these features may be different from those of other classes. Users of

a given class share the same category and trip purpose as defined in Chap. 4.11 The

definition of the user classes depends on the type of application. For example, in ur-

ban systems, classes may be identified on the basis of trip purpose, socioeconomic

category and activity duration (influencing parking duration) because different travel

costs (parking tolls) and different time values may be associated with these charac-

teristics. In intercity systems, classes may be defined by vehicle type (auto, light

and heavy commercial vehicles), trip purpose, and socioeconomic characteristics,

because motorway tolls, time values, and path choice models may be different.

In what follows, for the sake of simplicity, reference is made to fixed demand

single-mode assignment with fully pre-trip path choice behavior. The results can

easily be extended to models with pre-trip/en-route choice behavior and/or with

variable demand.

The notation presented in Sect. 5.2 remains valid, but a further subscript i, in-

dicating the user class, is added. Some straightforward changes in notation are de-

scribed below. Let:

∆od,i be the link-path incidence matrix for the O-D pair od and class I 12

∆ be the overall link-path incidence matrix obtained by arranging side by side

the blocks ∆od,i corresponding to each O-D pair od and class i

dod,i be the demand flow for the O-D pair od and class i (for a given mode and

time band)

d be the demand vector, with elements consisting of the demand flows dod,i

It is assumed that demand flows of each user class are measured in common

units, using conversion coefficients as required for users with different effects on

congestion (see Sect. 2.3). For individual modes, such as car, demand flows are

typically expressed in vehicles per unit time, whereas for public modes they are

typically expressed in passengers per unit time.

Transport supply is simulated with a network model analogous to those described

in Chap. 2. However, the cost of traversing link a may be different for users of

different classes. A cost and flow is therefore associated with each link a and each

class i. Let:

11In the limit, each segment can consist of a single user, and in this way disaggregated assignment

models are obtained. Models of this type are at present only in the research stage.

12Different classes corresponding to the same O-D pair may have different incidence matrices if

they have different available path sets.
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f i
a be the flow of user class i on link a

f i be the link flow vector for class i, with entries f i
a

fa =
∑

i f
i
a be the total flow on the link a, the sum of the flows of the various

classes and measured in units commensurate with the demand flows

f =
∑

i f
i be the vector of the total link flow, with entries f i

a

ci
a be the cost on link a for class i

ci be the link cost vector for class i, with entries ci
a

The average cost of a path for users of class i can be expressed as the sum of two

terms: additive path costs with respect to class i link costs, possibly dependent on

congestion; and nonadditive path costs, which include all the specific path and/or

class costs, and are assumed to be independent of congestion. Let:

gADD
od,i be the additive path cost vector for O-D pair od and class i

gNA
od,i be the nonadditive path cost vector for O-D pair od and class i

god,i be the total path cost vector for O-D pair od and class i

Consistency between link and path costs for each O-D pair od and each class i,

as in Chap. 2, is expressed by the following relation (analogous to (5.2.1)).

gADD
od,i = ∆T

od,ic
i ∀od ∀i

god,i = gADD
od,i + gNA

od,i = ∆T
od,ic

i + gNA
od,i ∀od ∀i

(6.4.1)

Congestion phenomena are simulated by assuming that the cost ci
a is a function

of the class flows on the same link a, and possibly on other links. Thus, we consider

cost functions that are nonseparable with respect to class flows as well as link flows.

This effect is usually represented using cost functions similar to those described in

Chap. 2, in which the congested link performance attributes for each class depend

on the total link flows13:

ci = ci(f 1, . . . ,f i, . . .) = ci(f ) = ci

(

∑

i

f i

)

∀i (6.4.2)

For example, the road link travel time for car users can depend on the total flow

of the other vehicle types (motorcycles, trucks, etc.), converted into commensurate

units. The cost functions of different classes, for example, cars and trucks, may be

different, but it is assumed that they all depend on the overall link flow.

Consistency between link and path flows is expressed by the following relation

(analogous to (5.2.3)).

f i =
∑

od

∆od,ihod,i ∀i (6.4.3)

13It is also possible to specify cost functions for class i depending only on the flow f i ; these

models, however, are seldom adopted as they do not correspond to known congestion phenomena.
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The multiclass supply model is thus described by the following equation (analo-

gous to (5.2.4)), obtained by combining (6.4.1) to (6.4.3).14

god,i = ∆T
od,ic

i

(

∑

i

∑

od

∆od,ihod,i

)

+ gNA
od,i ∀od ∀i (6.4.4)

Path choice behavior for each class i can be simulated through a random utility

model having systematic utility equal to the negative of the systematic path cost:

V od,i = −god,i, + V ◦
od,i ∀od ∀i (6.4.5)

where

V od,i is a vector with elements consisting of the systematic utility Vod,i,k of path

k connecting the pair od for the class i

V ◦
od,i is a vector of systematic utility attributes other than those included in path

costs, for simplicity of notation taken as understood in the following

Path choice probabilities depend on the systematic utilities of alternative paths

through the path choice model. Let:

pod,i = pod,i(V od,i) be the path choice probabilities vector for O-D pair od and

class i

hod,I be the path flow vector for O-D pair od and class i

The path choice model is expressed (analogously to (5.2.6)) by

hod,i = dod,ipod,i(V od,i) ∀od ∀i (6.4.6)

The complete demand model is obtained by combining (5.2.5) and (5.2.6):

hod,i = dod,ipod,i(−god,i) ∀od ∀i (6.4.7)

If behavior in other dimensions, such as mode and destination choice, also depends

on path costs, then variable demand multiuser assignment models, such as those

discussed in Sect. 6.3, are obtained. Extensions of the models to combined pre-

trip/en-route path choice behavior are analogous to those presented in Sect. 6.2.

Multiclass assignment models can be specified by combining the supply model

(6.4.4) with the demand model (6.4.7). In the following sections, multiclass assign-

ment models are analyzed separately for the special case where the congestion func-

tion of each class is a linear transformation of a common congestion function (undif-

ferentiated congestion), and for the case of congestion functions that differ between

classes (differentiated congestion).

14The supply model (6.4.4) can also be interpreted as an instance of the general network supply

model (5.2.4) in which each physical link is represented by several network links, one for each

class.



392 6 Advanced Models for Traffic Assignment to Transportation Networks

6.4.1 Undifferentiated Congestion Multiclass Assignment

In undifferentiated congestion multiclass assignment, it is assumed that the cost

function of each class can be expressed as a linear transformation of a cost function

that is common to all the classes and that depends on total link flows. These costs

are called reference costs. Therefore, multiclass equilibrium assignment can be for-

mulated in terms of total flows and reference link costs. Under these assumptions,

expression (6.4.2) for the link cost function becomes:

ci
a = ci

a(f ) = γi c̄a(f ) + ci
0,a ∀i (6.4.8)

where

c̄a = c̄a(f ) is the reference cost function of link a

γi ≥ 0 is the ratio (assumed independent of the link) between the link cost for class

i and the reference cost; if γi = 0 the class i costs are uncongested

ci
0,a is the cost of link a specific to class i, assumed independent of congestion

All costs are assumed to be expressed (through conversion coefficients) in units

commensurate with the utility. The reference cost function c̄a(f ) may represent

disutility related to the average travel time, and ci
0,a may represent the disutility

connected to monetary costs, possibly different for different classes and/or with

different substitution coefficients. The coefficients γi can express the ratios between

class-specific and average travel times.

Using expression (6.4.8), the consistency between link and path costs is ex-

pressed for each O-D pair od and class i by the following relation.

god,i = ∆T
od,i

(

γi c̄ + ci
0

)

+ gNA
od,i ∀i ∀od

god,i = γi∆
T
od,i c̄ + ∆T

od,ic
i
0 + gNA

od,i ∀i ∀od

where

c̄ is the vector of reference link costs

ci
0 is the vector of class i specific link costs

gNA
od,i is the vector of nonadditive path costs for O-D pair od and class i

god,i is the total path cost vector for O-D pair od and class i

The average cost of a path between O-D pair od for a user of class i therefore

consists of two components:

– Additive (and generic) costs, the sum of reference link costs, possibly dependent

on congestion, given by γi∆
T
od,i c̄;

– Congestion-independent path costs consisting of:

• (Additive and) Class-specific costs, the sum of class-specific link costs, given

by ∆T
od,ici,0;

• Nonadditive costs, which cannot be expressed as the sum of link costs, given

by gNA
od,i .
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Let:

gSPNA
od,i = γi∆

T
od,ic

i
0 + god,i

NA be the vector of specific and/or nonadditive path

costs for O-D pair od and class i

A relationship between link and path costs analogous to (6.4.1) can be formulated:

god,i = γi∆
T
od,i c̄ + gSPNA

od,i ∀od ∀i (6.4.9)

The undifferentiated congestion multiclass supply model is thus described by the

following relation obtained by combining (6.4.3) with (6.4.8) and (6.4.9) and the

reference cost functions given by (5.2.2):

god,i = γi∆
T
od,i c̄

(

∑

i

∑

od

∆od,ihod,i

)

+ gSPNA
od,i ∀od ∀i (6.4.10)

Path choice behavior is simulated by a random utility model, expressed by

(6.4.6), in which the systematic utility of a path is equal to the negative of the path

average cost for class i, as expressed in the relation (6.4.5). In the case of a logit

path choice model, parameter γi cannot be identified separately from parameter θ .

In the case of a deterministic path choice model, γi is not relevant because it does

not change the maximum systematic utility alternative, that is, the minimum cost

path.15

Under the given assumptions, undifferentiated congestion multiclass assignment

models can therefore be defined with respect to total path or link flows, consistent

with reference link costs and the interaction between classes. The considerations

expressed in the previous sections are still valid. In particular, the sets of feasible

path SF and link Sf flows are defined as in Sect. 5.2.

Undifferented congestion uncongested network multiclass assignment models are

expressed by

f UN(c̄;d,γ ) =
∑

od,i

dod,i∆od,ipod,i

(

−γi∆
T
od,i c̄ − gSPNA

od,i

)

(6.4.11)

The stochastic uncongested network assignment function retains the properties of

continuity and monotonicity discussed in Sect. 5.3.3 if the coefficients γi are non-

negative. In the case of deterministic assignment, systems of inequalities analogous

to those presented in Sect. 5.3.3 can be developed.

Undifferentiated congestion equilibrium multiclass assignment models are de-

fined by the system of equations obtained by combining the supply model (6.4.10)

and the demand model (6.4.7). An equivalent formulation, in terms of total link

flows f and reference link costs c̄, can be expressed by the system of equations ob-

tained by combining the UN assignment map (6.4.11) with the reference cost func-

tions given by (5.2.2). Stochastic or deterministic user equilibrium assignment can

15More generally, note that the results of deterministic path choice models are not modified even

by a nonlinear relationship between systematic utilities and path cost, as long as this relationship

is strictly increasing.
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be formulated with fixed-point or variational inequality models, respectively, analo-

gous to the models presented in the previous sections. Continuity and monotonicity

of the link reference cost functions are required for the existence and uniqueness of

the equilibrium solution.

It can easily be deduced that parameters γi (assumed to be nonnegative) do not

alter the existence and uniqueness conditions of equilibrium solutions. They do in-

fluence the value of the SUE solution and, as noted earlier, do not influence DUE

assignment.

Finally, it must be noted that in stochastic equilibrium, once the equilibrium total

link flows f ∗ are known, it is possible to compute equilibrium reference costs c̄∗

and therefore class-specific link and path costs, ci and gi , respectively. From these

costs, class-specific path flows hi and hence link flows f i can be obtained:

f i =
∑

od

∆od,ipod,i

(

−γi∆
T
od,i c̄(f ) − gSPNA

od,i

)

∀i

The existence and uniqueness of stochastic equilibrium total link flows ensure

the existence and uniqueness of class-specific flows. On the other hand, in the case

of deterministic models, multiple class-specific link flows could be associated with

the same link cost vector if there were several minimum cost paths. Thus, in the case

of deterministic multiclass equilibrium, the existence of total equilibrium link flows

ensures the existence of class flows, but the uniqueness of total link flows does not

guarantee the uniqueness of class-specific link flows. To guarantee the uniqueness

of class link flows in this case, an explicit formulation in terms of class flows is

necessary, as in the case of differentiated congestion assignment.

6.4.2 Differentiated Congestion Multiclass Assignment

Differentiated congestion multiclass assignment models can be formulated with re-

spect to the path or link flows of each class. These must be consistent with the

corresponding costs experienced by each class. In the case of congested network

assignment, cost functions generally differ for each class, and depend on the total

flow of all classes (6.4.2). The single-class assignment models described in previ-

ous sections can easily be extended by considering link flows and costs per class,

defining for each class i the sets of feasible path and link flow vectors Si
h and Si

f ,

respectively.

Differentiated congestion multiclass uncongested network assignment models

can be expressed in terms of class link flows by combining (6.4.13) with the de-

mand model (6.4.7):

f i
UN

(

ci;d i

)

=
∑

od

dod,i∆od,ipod,i

(

−
(

∆T
od,ic

i + gNA
od,i

))

∀ci ∀i (6.4.12)

The stochastic uncongested network assignment function retains the properties

of continuity and monotonicity discussed in Sect. 5.4.3, which are useful to prove
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existence and uniqueness of equilibrium flows as discussed below. In the case of

deterministic uncongested network assignment, systems of inequalities analogous

to those presented in Sect. 5.3.3 can be specified.

Differentiated congestion multiclass equilibrium assignment models are defined

by combining the supply model (6.4.4) and the demand model (6.4.7). An equiva-

lent formulation in terms of link variables can be expressed by combining the UN

assignment map (6.4.12) with the cost functions (6.4.2). Extension to variable or

multimodal demand assignment (Sect. 6.3) or to combined pre-trip/en-route path

choice behavior (Sect. 6.2) is relatively straightforward.

Stochastic multiclass equilibrium can be formulated with fixed-point models

analogous to those described in the previous sections, and deterministic multiclass

user equilibrium can also be formulated with variational inequality models.

Existence conditions for multiclass equilibrium require continuity of the cost

functions ci() for each class i with respect to the flows of the various classes,

f 1, . . . ,f i, . . . . Note that continuity with respect to the total flows f also ensures

the continuity with respect to the individual class flows f i , and therefore the exis-

tence of an equilibrium.

Uniqueness conditions for multiclass equilibrium require, for each class i, the

monotonicity of the cost functions ci = ci() with respect to the flows of the various

classes, f 1, . . . ,f i, . . . , as defined by the following condition,

∑

i

[

ci(f 1, . . . ,f i, . . .) − ci(y1, . . . ,yi, . . .)
]T

(f i − yi) > 0

∀(f 1, . . . ,f i, . . .) 
= (y1, . . . ,yi, . . .) : f i, yi ∈ Si
f ∀i

or

∑

i

[

ci

(

∑

j

f j

)

− ci

(

∑

j

yj

)]T

(f i − yi) > 0

∀(f 1, . . . ,f i, . . .) 
= (y1, . . . ,yi, . . .) : f i, yi ∈ Si
f ∀i (6.4.13)

It should be noted that strict monotonicity of the class cost functions with respect

to total link flows, as defined by the following condition

[

ci(f ) − ci(x)
]T

(f − x) > 0 ∀i

∀f =
∑

j

f j 
= x =
∑

j

xj : f i, xi ∈ Si
f ∀i

or

[

ci

(

∑

j

f j

)

− ci

(

∑

j

xj

)]T
∑

j

(f j − xj ) > 0 ∀i (6.4.14)

∀
∑

j

f j 
=
∑

j

xj : f i, xi ∈ Si
f ∀i
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does not imply strict monotonicity of the class cost functions with respect to class

flows, as defined by (6.4.13). (The sum over index i of inequalities (6.4.14) does not

necessarily imply condition (6.4.13).16) Therefore, equilibrium uniqueness cannot

be concluded under these conditions.

It should also be noted that, in a multiclass assignment model, the symmetry of

the cost function Jacobian that is necessary for an optimization model formulation

of DUE, relates not only to the effect of link flow on the costs of different links but

also of class flow on the cost of other classes on the same link. Similarly, separability

of cost functions requires that ci
a , the cost of class i on link a,a depends only on f i

a ,

the flow a of the same class on the same link. This second condition is almost never

satisfied in applications.

In general, the problem of differentiated congestion multiclass equilibrium as-

signment can be formulated by extending the corresponding single-class models.

However, the (sufficient) uniqueness conditions are seldom satisfied.

6.5 Interperiod Dynamic Process Assignment**

User equilibrium models define a priori the relevant state of the system as that

in which average demand and costs are mutually consistent. In contrast, dynamic

process assignment models simulate the evolution of the system over a sequence of

similar periods (days or portions of days17), and the possible convergence of the sys-

tem over time to a stable condition. For this reason, dynamic process models are also

known as nonequilibrium models. As was noted in Chap. 1, this type of dynamic is

known as interperiod or day-to-day dynamics. Dynamic process models are based

on (nonlinear) time-discrete dynamic systems theory or on stochastic process the-

ory, according to whether the state of the system is described by deterministic or

random variables.

Dynamic process models, which are a sector of growing research interest, can be

seen as a generalization of equilibrium models because they simulate the conver-

gence of the supply–demand system towards possibly different equilibrium states,

and the transient states visited due to modifications in supply and/or demand. Fur-

thermore, under some rather mild assumptions, equilibrium configurations of the

system described in previous sections can be modeled as attractors of the system,

that is, states in which the system stops evolving. Finally, the dynamic approach al-

16Note that the two conditions (6.4.13) and (6.4.14) coincide if two flow vectors are considered

that differ only in terms of class flows. The same circumstance obviously occurs in the case of a

single-user class.

17For the sake of simplicity, the generic reference period is identified as a “day”. Note that the

periods need not be successive. For example, if the aim is not to explicitly simulate the development

of the system but only to study its convergence properties, reference can be made only to weekdays

or to periods of fictitious behavior updating.
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Fig. 6.9 Schematic representation of Dynamic Process (DP) assignment models

lows analysis of the stability of equilibrium configurations and provides a complete

statistical description of the system’s evolution.

In general, the specification of a dynamic process model requires a more de-

tailed representation of users’ behavior than does the specification of an equilibrium

model. It requires in particular the explicit modeling of two phenomena (Fig. 6.9)

that are not relevant in the equilibrium approach:

– The users’ choice updating behavior, that is, how present choices are influenced

by the choices made on previous days, including phenomena such as habit (choice

updating model);

– The users’ learning and forecasting mechanisms, that is, how experience and in-

formation on previous transport costs influence present choices, including phe-

nomena such as memory and information diffusion (utility updating model).
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6.5.1 Definitions, Assumptions, and Basic Equations

This section presents the basic relationships that define a dynamic process assign-

ment model. For the sake of clarity, fixed demand single-mode single-class18 assign-

ment is considered. It is also assumed that path choice behavior is probabilistic and

fully pre-trip. Some of the variables presented in Sect. 5.2 need to be redefined in

order to associate them with the evolution of the system over a sequence of reference

periods (interperiod or day-to-day dynamics). Let:

t be the generic reference period, assumed for the sake of simplicity to be a

day

∆od be the link path incidence matrix for O-D pair od, assumed to be indepen-

dent of the day

∆ be the total link path incidence matrix

ht
od be the vector of path flows for O-D pair od on day t

ht be the total vector of the path flows on day t

f t be the vector of the link flows on day t

r t
n be the vector of nth link performance attributes on day t

ct be the vector of (average) link costs on day t

gt
od be the vector of (average) path costs for O-D pair od on day t

g be the total vector of (average) path costs on day t

6.5.1.1 Supply Model

Supply is simulated by applying the relations (5.2.1)–(5.2.3) to the costs and flows

on day t . Ignoring for simplicity any nonadditive path costs (gNA
od = 0), it follows

that

gt
od = ∆T

odct

gt = ∆T ct
(6.5.1)

ct = c(f t ) (6.5.2)

f t =
∑

od

∆odht
od

f t = ∆ht

(6.5.3)

18A dynamic process assignment model can also be multiclass and applied to different levels of

aggregation by considering, for each O-D pair, homogeneous classes of users, each consisting, in

the extreme case, of a single user (completely disaggregated assignment).
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Combining (6.5.1)–(6.5.3), we obtain the following relation between path costs

gt and path flows ht on day t .

gt
od = ∆T

odc

(

∑

od

∆odht
od

)

∀od

gt = ∆T c(∆ht )

(6.5.4)

Equations (6.5.4) define the supply model corresponding to day t . It is readily

apparent that the relation (6.5.4) is analogous to (5.2.4) that defines the supply model

in the static case.

6.5.1.2 Demand Model

The modeling of day-to-day dynamic path choice behavior requires extending the

static demand model relations (5.2.5)–(5.2.7). In particular, the relationships be-

tween the costs on different days and the attributes influencing user choices, as well

as the choice updating mechanisms on subsequent days, must be made explicit.

Let:

dod ≥ 0 be the demand flow for the users of O-D pair od, assumed to be indepen-

dent of the day for the sake of simplicity (consistent with the fixed demand

hypothesis)

d be the demand vector, whose components are the demand values dod for

each O-D pair

V t
od be the vector of systematic path utilities forecast on day t by the users of

O-D pair od

V t be the total vector of systematic path utilities forecast on day t

The utility updating model simulates the way in which perceived utilities on day t

are influenced by utilities and costs on previous days (and possibly by other sources

of information). In principle, a disaggregate assignment model could model the up-

dating of the individual utility of user i by expressing the dependence of U
i,t
k , the

perceived utilities for all paths k on day t , on the perceived utilities on previous days

and on the corresponding actual costs. This can be expressed symbolically as

U
i,t
od = U

(

U
i,t−1
od U

i,t−2
od , . . . , gt−1

od , gt−2
od , . . .

)

This model, however, is not applicable to aggregate assignment. Furthermore, it

would be complex to specify choice models based on random utility theory given

the serial correlation of the day t random residuals with those of previous days. The

models proposed in the literature are special cases; they assume that utility updating

is applied to average (systematic) utilities through a function V (), known as a filter.

The filter is a generalization of the systematic utility function that is defined in the

static case by relation (5.2.5):
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V t
od = V od

(

V t−1
od ,gt−1

od ,V t−2
od ,gt−2

od , . . .
)

∀od

V t = V (V t−1,gt−1,V t−2,gt−2, . . .)

For the sake of simplicity, it is assumed in the following that the expected (or

predicted) average utilities on day t depend only on the actual costs gt−1 and the

expected utilities V t−1 on the previous day.

V t
od = V od

(

V t−1
od ,gt−1

od

)

∀od

V t = V (V t−1,gt−1)
(6.5.5)

Note that, under this assumption, the actual costs on days prior to t −1 still influence

the choice behavior on day t , because they influence the expected utility V t−1 on

the previous day.

A simple example of a utility updating model is defined by an exponential filter

in which the expected utility on day t is expressed by a convex combination of

the previous day’s expected utility V t−1, and the (negative of the) actual path costs

−gt−1, as defined by the supply model (6.5.4). Relation (6.5.5) then becomes:

V t = −βgt−1 + (1 − β)V t−1 ∀od (6.5.6)

where

β ∈ ]0,1] is the average weight attributed by the users to the actual costs on day

t − 1; if β = 1, the expected utility is equal to the negative actual cost on

day t − 1, and the costs on previous days do not influence user behavior.

This parameter is usually assumed to be independent of the day and may

differ according to user class

Given the linear relationship between link and (additive) path costs, the exponen-

tial filter can also be applied to link costs:

xt = βct−1 + (1 − β)xt−1 (6.5.7)

where xt is the vector of expected link costs on day t . In this case, the expected path

utilities on day t are given by19

V t
od = −∆T

odxt

V t = −∆T xt

19Note that the two cost updating models, or systematic utility models, correspond to two assump-

tions that differ in terms of their underlying behavioral mechanism. In the case of model (6.5.5),

it is assumed that the user remembers and averages path costs on successive days; whereas in the

case of model (6.5.5), it is assumed that the user remembers the costs of individual links, which are

put together later to obtain the path values. The two formulations are equivalent for the assump-

tions made here, but they might not be for other cost updating models and/or in the presence of

nonadditive path costs.
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The choice updating model simulates the way in which choices on day t are

influenced by choices made on previous days. The most general approach can be

expressed by a square matrix Rt , known as a conditional choice matrix, which has

a number of rows and columns equal to the number of paths. The elements r t
k,j ∈

[0,1] are the conditional path choice fractions, that is, the fraction of users choosing

path k on day t given that path j was chosen on day t − 1. Because r t
k,j = 0 if paths

k and j do not connect the same O-D pair, the following holds,
∑

k∈Kod r t
k,j = 1

∀j ∈ Kod .

The path flow vector on day t,ht , can be expressed as the product of the condi-

tional choice matrix Rt and the path flow vector on the previous day, ht−1:

ht
k =

∑

j∈Kod

r t
k,jh

t−1
j ∀k ∈ Kod ∀od

ht
od = Rt

odht−1
od ∀od

ht = Rtht−1

Note that the path flow vector on day t is feasible, ht ∈ Sh, if the path flow vector

on the previous day is feasible, ht−1 ∈ Sh (i.e., if it is nonnegative and satisfies the

demand conservation constraint).

The elements of the conditional choice matrix (or rather their average values)

Rt can be simulated with a random utility model involving the expected utilities on

day t (and possibly other days and/or other attributes not expressed here). In this

way, we obtain a generalization of the path choice models used in the static case:

Rt
od = Rod

(

V t
od

)

Rt = R(V t )

Combining the two previous relationships, a generalization of the static model

relation (5.2.6) is obtained:

ht
od = Rod

(

V t
od

)

ht−1
od ∀od

ht = R(V t )ht−1
(6.5.8)

A simple example of a choice updating model for the modeling of the condi-

tional choice matrix is the exponential filter model. This model assumes that each

day some users repeat the choices made the previous day, and others reconsider (al-

though do not necessarily change) their choices with a probability independent of

the choice made on the previous day:

r t
kk = αpt

k + (1 − α) ∀k ∈ Kod ∀od

r t
kj = αpt

j ∀j 
= k, j ∈ Kod ∀k ∈ Kod ∀od

where
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pt
k ∈ ]0,1] is the probability that on day t a user reconsidering the choice made the

previous day chooses the path k ∈ Kod

α ∈ ]0,1] is the probability that a user reconsiders the choice made the previous

day. Therefore (1 − α) is the probability that the previous day’s choice is

repeated; if α = 1 all the users reconsider their previous day choices; this

parameter is usually assumed to be independent of the day20 but may differ

by user class

Under this model, it follows that

ht
k =

∑

j∈Kod

αpt
kh

t−1
j + (1 − α)ht−1

k

= αpt
k

∑

j∈Kod

ht−1
j + (1 − α)ht−1

k ∀k ∈ Kod ∀od

Because dod =
∑

j∈Kod hk , we obtain:

ht
od = αdodpt

od + (1 − α)ht−1
od

The path choice probability pt
k is usually obtained with one of the path choice mod-

els described in Sect. 4.3.3, pt
od = pod(V t

od). The relation (6.5.8) therefore becomes

(cf. (5.2.6)):

ht
od = αdodpod

(

V t
od

)

+ (1 − α)ht−1
od (6.5.9)

By combining the two recursive equations (6.5.5) and (6.5.8), we get a relation-

ship between the path flows ht on day t and path costs gt−1 on day t − 1 which

defines the demand model corresponding to day t :

ht
od = Rod

(

V od

(

V t−1
od ,gt−1

od

))

ht−1
od ∀od

ht = R
(

V (V t−1,gt−1)
)

ht−1
(6.5.10)

This relation is a generalization of the static case (5.2.7). If exponential filters

are adopted to formulate utility and choice updating models, expression (6.5.6) be-

comes:

ht
od = αdodpod

(

−βgt−1
od + (1 − β)V t−1

od

)

+ (1 − α)ht−1
od (6.5.11)

6.5.1.3 Approaches to Dynamic Process Modeling

A dynamic process model is identified by the combination of the recursive equations

(6.5.10) that define the choice model, and the recursive equations (6.5.5) that specify

20In some more sophisticated choice updating model formulations, the parameter is replaced by a

model that expresses the probability of reconsidering the choices as a function of socioeconomic

attributes and service-level type (difference between expected values and actual values, informa-

tion, etc.).
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how the expected utilities and the supply model (6.5.4) are updated. The state of the

system on day t is defined by the vectors of predicted systematic utilities V t and

by the path flows ht ; these variables capture the net results of the utility and choice

updating models as a function of the state on the previous day21:

V t = V
(

V t−1,∆′c(∆ht−1)
)

(6.5.12)

ht = R(V t )ht−1 (6.5.13)

The set of feasible states S, known as the state space, is defined by the vectors of

expected path utilities V t ∈ Rn, and the feasible path flows ht ∈ Sh : S = Sh × Rn.

Given an initial state, the recursive equations (6.5.12) and (6.5.13) define a dy-

namic process model (Fig. 6.9). If the vectors of path flows ht and predicted utilities

V t are modeled as deterministic variables, a deterministic process model results;

whereas if they are modeled as random variables, a stochastic process model is ob-

tained (Fig. 6.10). A deterministic process model can also be interpreted as a process

that approximates the expected values of the corresponding stochastic process.

Note that the terms stochastic and deterministic have different meanings when

they refer to dynamic process formulations versus path choice models in assign-

ment. In the former case, they relate to the actual representation of the system, that

is, to assumptions made by the analyst about the deterministic or probabilistic na-

ture of the state variables. In the latter, they relate to assumptions made in modeling

path choices, that is, the absence or presence of a random residual in the utility func-

tions, and therefore the form of path choice models. Equilibrium models, whether

deterministic or stochastic, imply a deterministic system representation.

Below we briefly analyze the implications and some theoretical results with re-

gard to the two types of dynamic process. Note that a model of a deterministic

process may also be interpreted as an average process that approximates the ex-

pected value of the corresponding stochastic process. To make the text clear for

readers unfamiliar with dynamic processes some brief theoretical comments are also

included.

6.5.2 Deterministic Process Models

Deterministic process models derive from the assumption that the path flows and

utilities predicted on day t are represented by deterministic variables, that is, that

the actual flows and utilities coincide with their average values. System evolution

over time, in terms of path flows and utilities, is defined by the recursive equations

(6.5.12) and (6.5.13). A model of this type allows analysis of the evolution of the

21The adoption of different formulations for the cost and choice updating models can lead to dif-

ferent definitions of the system state. For example, if a moving average filter of k previous days is

specified for the cost updating model, the state of the system on day t is defined by the path flows

and costs on those k days.
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Fig. 6.10 Graphic representation of deterministic and stochastic process models

system over time, including in particular whether it converges and, if so, towards

which subset of the state space.

In the theory of (nonlinear) time-discrete dynamic systems, given a transition

function xt = ψ(xt−1) relating the state on day t to the state on the previous day

t −1, any proper subset A ⊂ S of the state space S = {xt } ⊆ RN , having a dimension

strictly smaller than the dimension N of S,22 is called an attractor if:

22In other words, N is the number of the components of the vector that describes the state of the

system.
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Types of attractor A Number of Dimension

points in A of A (<N)

Nonchaotic Fixed-point

The system always occupies the

same point

1 0

Trajectories starting from

near states remain close

k-Periodic

The system periodically

occupies k points

k 0

Quasi-periodic

The system moves on a torus

(or a set of tori)

∞ Integer

Chaotic A-periodic

The system moves in a fractal set

∞ Noninteger

Fig. 6.11 Attractors of a deterministic dynamic process

– The system cannot evolve towards a state outside the attractor starting from a

state inside it;

– The attractor is properly contained in another subset B ⊆ S (called the basin

of A), such that if the initial state is contained in B the final state tends to be

contained in A;

– A is minimal in the sense that it does not properly contain other attractors.

In other words, if the initial state is sufficiently close to the attractor, the system

evolves towards it and, once reached, does not leave. Note that a system may have

several attractors, each with its own basin.23 A classification of attractors is given in

Fig. 6.11 (examples are given in Fig. 6.12). If a fixed-point state, say x∗ = ψ(x∗) is

reached, the system stops evolving, even though it may be not an attractor.

Recursive equations (6.5.12) and (6.5.13) are an instance of the transition func-

tion ψ relating the state on day t to the state on the previous day t − 1:

(ht ,V t ) = ψ(ht−1,V t−1) (6.5.14)

In the case of model (6.5.14) the dimension of the state space is N = 2np , where np

is the number of paths.

If a fixed-point state (h∗,V ∗) (not necessarily an attractor) is reached, the evolu-

tion of the system stops:

(ht ,V t ) = (ht−1,V t−1) = (h∗,V ∗)

that is,

(h∗,V ∗) = ψ(h∗,V ∗) (6.5.15)

23The boundary points between different attractor basins are singular points of behavior (saddle

points, e.g.) that can be ignored in a first analysis: small variations from such initial states move

the development of the system towards the basin of an attractor.
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Fig. 6.12 Evolution of a deterministic process model for the system in Fig. 5.20. (The parameter

θ has a different value here in order to highlight the evolution over time)
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This condition, combined with (6.5.12) and (6.5.13), leads to:

V ∗ = V
(

V ∗,∆′c(∆h∗)
)

h∗ = R(V ∗)h∗

In general, fixed-point states depend on the utility and choice updating models (and

are different from equilibrium states).

An example of a deterministic process is obtained by adopting exponential filter

specifications for the utility and choice updating models presented in Sect. 6.5.1.2.

In this case, (6.5.6) can be reformulated as

V t = −β∆T c(∆ht−1) + (1 − β)V t−1 (6.5.16)

ht = αP (V t )d + (1 − α)ht−1 (6.5.17)

Similarly, the model can be expressed in terms of link flows and expected costs:

xt = βc(f t−1) + (1 − β)xt−1 (6.5.18)

f t = αf SUN(xt ) + (1 − α)f t−1 (6.5.19)

Fixed-point states of the process defined by (6.5.16) and (6.5.17) are given by

g∗ = ∆T c(∆h∗) (6.5.20)

h∗ = P (−g∗)d (6.5.21)

and for the process defined by (6.5.18)–(6.5.20) in terms of link flows and costs by:

c∗ = c(f ∗) (6.5.22)

f ∗ = f SUN(c∗) (6.5.23)

In this case, it can be immediately verified that the formulations in terms of path

and link variables are equivalent. Furthermore, the fixed-point states coincide with

the stochastic user equilibrium states defined in Sect. 5.4, and the conditions of ex-

istence and uniqueness discussed still hold. Note also that the definition, existence,

and uniqueness of fixed-points do not depend on the parameters α and β , which

specify the choice and utility updating filters, respectively.24

Examples of the evolution of the transportation system described in Fig. 5.20

(Chap. 5) for different values of the parameters are given in Fig. 6.12. It should be

noted that for some values of the parameters, link flows converge to a fixed-point

state that coincides with the SUE configuration.

By applying the theory of nonlinear dynamic systems, it is possible to identify

conditions ensuring that a fixed-point state is (locally) stable; that is, it has an at-

traction basin that is (a subset of) the state space S. In particular, if the transition

24This condition, which is not generally valid, can be extended to a larger class of cost (but not of

choice) updating models.
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function xt = ψ(xt−1) is continuous and differentiable with continuous Jacobian

Jac[ψ(xt−1)], a fixed-point x∗ is stable if all the eigenvalues25 λ∗
j of the Jacobian

at the fixed-point Jac[ψ(x∗)] have absolute values less than one: |λ∗
j | < 1. This con-

dition constrains the eigenvalues to lie in the interior of a circle of unit radius on the

complex plane (Argand plane).

To facilitate the comparison with equilibrium, the following analysis considers

the model formulated in terms of link flows and costs (6.5.18), (6.5.19). Assume

also that the transition function (f t , ct ) = ψ(f t−1, ct−1) is continuous and differ-

entiable with a continuous Jacobian Jac[ψ(f t−1, ct−1)]. It is worth noting that the

transition function Jacobian, and therefore its eigenvalues, depend on the utility and

choice updating models, which therefore influence the stability of a fixed-point state.

In this case, the dynamic system is defined by 2nL variables where nL is the num-

ber of links and the Jacobian has 2nL eigenvalues, two for each link a, denoted by

λa and λnL+a . Under these assumptions, a fixed-point state defined by (6.5.22) and

(6.5.23) is stable if all the eigenvalues of the Jacobian calculated at the fixed-point

Jac[ψ(f ∗, c∗)] have absolute values less than one:

∣

∣λ∗
a

∣

∣ < 1 ∀a
∣

∣λ∗
nL+a

∣

∣ < 1 ∀a

The Jacobian Jac[ψ(f , c)] of the transition function (x,y) = ψ(f , c) for the

model (6.5.18) and (6.5.19) at the point (f , c) is given by

Jac
[

ψ(f , c)
]

=
(1 − β)I βJ c

α(1 − β)J f (1 − α)I + αβJ f J c

where

J c = Jac[c(f )] is the Jacobian of the cost functions at point f : if it is positive

definite, the cost functions are strictly increasing

J f = Jac[f SUN(c)] =
∑

i di∆iJac[pi(−∆T
i c)]∆T

i is the Jacobian of the stochas-

tic uncongested network assignment function; under the assumptions

that guarantee the monotonicity of the SUN assignment function (see

Sect. 5.3.1), it is symmetric and negative semidefinite

The elements of the Jacobian Jac[ψ(f , c)] depend on the parameters α and β ,

which specify the choice and utility updating filters, respectively. Therefore the val-

ues of these parameters affect the stability of a fixed-point.

25An eigenvalue of a square matrix J is a number λ such that: Jω = λω, with ω 
= 0. The vector

ω is called an eigenvector of the matrix J corresponding to the eigenvalue λ. Eigenvalues are

solutions of the algebraic equation |J − λI | = 0 (where | · | denotes the determinant function),

and are equal in number to the dimension of the matrix J (possibly with repetitions). A general

real matrix may have real or complex eigenvalues (and eigenvectors) that occur in conjugate pairs;

a symmetric matrix can only have real eigenvalues (and eigenvectors).
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In the special case in which α = β = 1, the Jacobian becomes

Jac
[

ψ(f , c)
]

=
0 J c

0 J f J c

and the eigenvalues are given by

λa = γj ∀a

λn+a = 0 ∀a

where γj is one of the nL eigenvalues of the matrix J f J c.

The elements26 of the matrix J f J c, and therefore its eigenvalues, depend on the

parameters of the system such as the demand flows, the link capacities, the random

residuals variance, and so on.

In the more general case, if α ∈ ]0,1] and/or β ∈ ]+0,1], for each of the nL

eigenvalues of the matrix J f J c , two eigenvalues λa and λnL+a of the Jacobian

Jac[ψ(f , c)] can be defined as a function of the parameters α and β . The stability

condition can be rewritten as a function of the nL eigenvalues γa ; it is now repre-

sented by an ellipse on the complex plane that must contain the eigenvalues γa . In

other words, if the system parameters are such that the points representing the nL

eigenvalues γa are contained in the ellipse, the fixed-point, or the system’s equilib-

rium state, is stable. This ellipse, whose semiaxes depend only on the parameters α

and β , is symmetrical with respect to the real axis and intersects it at two points (see

Fig. 6.13).

In general, an increase in demand flows and/or a decrease in link capacities and/or

a reduction in the variance of the random residuals tends to move the eigenvalues

γa outside the stability region, whereas an increase in the parameters α and β tends

to reduce the area of the region. Note that whatever the values of α and β , the

ellipse is to the left of the point on the real axis with coordinates γR = 1, γI = 0.

Therefore, if all the eigenvalues γa have a real part less than one, γR,a < 1, it is

always possible to find sufficiently small values of the parameters α and β defining

an ellipse that includes all the eigenvalues γa . In this case, the stability of the fixed-

point would be ensured. If the parameters α and β do not satisfy this condition, the

fixed-point is not stable even if it is unique and, according to results of the theory

of nonlinear dynamic systems, the system may converge towards quasi-periodic or

aperiodic attractors. Conversely, if some eigenvalues have a real part greater than

one, γR,k ≥ 1, the fixed-point is not stable for any values of α and β; yet there may

be other (stable) fixed-points.

In the system described in Fig. 6.12, for example (for a given path choice and the

supply models), as the parameters α and β increase, the system evolves towards at-

tractors other than the fixed-point state, which in turn becomes unstable. This effect

is shown in Fig. 6.13.

26The elements of the matrix J f J c , and therefore its eigenvalues, are dimensionless; the stability

of a fixed-point is therefore not influenced by the unit of measurement adopted.
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Fig. 6.13 Stability regions of a fixed-point state for α = β

It is interesting to analyze the relationship between the above considerations and

the stochastic equilibrium uniqueness conditions described in Sect. 5.4.1. In partic-

ular, it was shown that, under the assumption that the SUN assignment function is

monotone with symmetric negative semidefinite Jacobian as described in Sect. 5.3.1,

if the cost functions have a positive definite Jacobian J c (strictly increasing) the

stochastic equilibrium is unique. In this case, it can be shown that the eigenvalues

γa of the matrix J f J c always have a nonpositive real part, γR,a ≤ 0. In accordance

with the previous considerations, this excludes the possibility of multiple fixed-point

states, and therefore of multiple equilibria. Also, it is interesting to note that if the

Jacobian of the cost functions is symmetric, each of the eigenvalues γa of the matrix

J f J c is real (and nonpositive).

A deterministic process model can also be used as an algorithm to find fixed-

point attractors, that is, stochastic equilibrium states. In this case, the model can be

defined as a dynamic process algorithm; the parameters α and β have no behavioral

interpretation and are simply chosen to guarantee the convergence of the algorithm

(i.e., the stability of the fixed-point).27

6.5.3 Stochastic Process Models

Stochastic process models derive from the assumption that (V t ,ht ), the predicted

utilities and path flows on day t , are random vectors. These models allow one to ob-

27For this purpose, compare the algorithm MSA-FA, described in Sect. 5.4.2, with model (6.5.18)–

(6.5.19), assuming: α = 1/t, β = 1.
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tain a statistical description of the system states and to model explicitly phenomena

such as the randomness of link and path performance. The state of the system on day

t, (V t ,ht ), can therefore be interpreted as a particular realization of random vectors

(W t ,Xt ). Expressions (6.5.12) and (6.5.13) define the expected values of W t and

Xt as a function of the state (V t−1,ht−1) on the previous day and the vector of

actual path costs, expressed by the random vector Gt−1:

V t ← W t

with E[W t ] = V (V t−1,Gt−1)
(6.5.24)

ht ← H t

with E[H t ] = R(V t )ht−1
(6.5.25)

(where x ← X means that x is a realization of the random variable X).

Equation (6.5.24) expresses the randomness of V t , the vector of average per-

ceived utilities across users on day t . The expected value E[W t ] depends on the

actual value of the average path cost on day t − 1. The randomness of path costs

Gt−1 might simulate various factors. One of the most important is the uncertainty

about link costs which, for a given value of ht−1, might take on values ct−1 different

from the average values c(∆ht−1). In this case, the link costs ct−1 can be modeled

as the realization of a random vector Ct , and path costs are a linear transformation

of Ct :

ct−1 ← Ct−1 gt−1 ← Gt−1 = ∆T Ct−1

with

E[Ct−1] = c(∆ht−1) E[Gt−1] = ∆T c(∆ht−1)

The randomness of the path flow vector ht derives from the unpredictability of

user path choices. It is often assumed that the choices made by different individual

users are independent of each other, but are all made with probabilities given by the

demand model R(V t ), that depends on the average perceived utilities across users.

Under these assumptions H t
od , the path flow vector for O-D pair od on day t , is a

multinomial random variable.

The stochastic process (6.5.24) and (6.5.25) is called a discrete time, homoge-

neous Markov process. It is Markovian because the state on the day t depends only

on the state on the previous day t − 1. It is homogeneous because the cost and net-

work assignment functions and the cost and choice adjustment parameters are inde-

pendent of the day. It is discrete time because the evolution over time is described

by the integer day index t .

Given an initial state (ho,V o), a model of this kind theoretically allows the de-

termination, for each subsequent day t , of the probability that the system is in a

particular state (h1,V 1) of the state space. The probability function φt (h,V ) is re-

cursively defined as the probability that the system is in state (ht ,V t ) on day t ,

conditional on its being in state (ht−1,V t−1) on the previous day t − 1:

φt (h,V ) = Pr[ht = h,V t = V /ht−1,V t−1]
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Under these assumptions, the path flows ht are a realization of a discrete random

vector, and the predicted utilities V t are generally a realization of a continuous

random vector. Thus the function φt (h,V ) must be considered a joint probability

mass function with respect to h, and a joint probability density function with respect

to V . In applications to transportation systems, it is often interesting to know the

probabilities of path flows (and therefore of link flows). The marginal probability

function π t (h) of the path flows h on day t is given by:

π t (h) = Pr[ht = h/ht−1,V t−1] =

∫

V

φt (h,V ) dV

According to the theory of stochastic processes, an ergodic set is a minimal sub-

set of the state space such that there is a zero probability that the system transitions

to a state outside it starting from a state inside it. An ergodic set is minimal in the

sense that it does not properly contain any other ergodic subsets. With each ergodic

set is associated a probability function, known as the stationary probability distrib-

ution, expressing the probability that, as t → ∞, the system is in a state that belongs

to the set:

π∗(h) = lim
t→∞

π t (h)

Only states belonging to the ergodic set have a nonzero stationary probability.

A stochastic process is called stationary or ergodic if it has, respectively, at least

one or only one stationary probability distribution π∗(h). For the specific case dis-

cussed here, this stationary probability distribution is π∗(h,V ).28 A stochastic er-

godic process is said to be regular if its probability distribution converges towards

the unique stationary probability distribution regardless of the initial state (or its

distribution).

In this case, a unique (stationary) probability distribution of the system state can

be associated with each system specification independently of the initial state. The

stationary probabilities π∗(h), one for each vector h belonging to the ergodic set,

can be interpreted as the probabilities of observing the system in the state corre-

sponding to the path flow vector h during any period of observation t sufficiently

far from the initial one. Relevant statistics (average, variances, etc.) can be calcu-

lated with a single (pseudo-)realization of the process, simulated with Monte Carlo

techniques. The transient states visited from a given initial state toward a new sta-

tionary distribution following modifications in supply and/or demand can also be

analyzed. The probability distribution of each day can be estimated by averaging

several (pseudo-) realizations of the process for the same transient day t .

28A stochastic process can be interpreted as a deterministic process in the (infinite-dimensional)

space of density functions π(h), whose state on day t is given by π t (h). In this interpretation,

an ergodic set is a fixed-point state of the deterministic process. The properties of stationarity,

ergodicity, and regularity correspond to the existence, uniqueness, and (global) stability of this

fixed-point state, which is a deterministic process attractor in that it is (globally) stable.
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A special case, often adopted in applications,29 is obtained if the randomness

of the vector of average predicted utilities is ignored, that is, if it is assumed that

V t = W t . This is equivalent to assuming that the costs realized on day t coincide

with the average values given by the cost functions:

V t = V
(

V t−1,∆T c(∆ht−1)
)

(6.5.26)

ht ← H t

with E[H t ] = R(V t )ht−1
(6.5.27)

In this case, the marginal probability π t (h) (i.e., the probability on day t of path

flows h) is given by

π t (h) = Pr[ht = h/ht−1,V t−1]

= Pr
[

ht = h,V t = V
(

∆T c(∆ht−1),V t−1
)

/ht−1,V t−1
]

(An example of the more complicated case of a stochastic process with random costs

and thus random expected utilities is presented in Sect. 7.6.2.)

It can be demonstrated that the regularity of stochastic processes defined by

(6.5.26) and (6.5.27) is ensured given the rather general assumptions that the net-

work is connected and that the cost functions and the SUN assignment function

are continuous. In this case, therefore, a unique probability distribution of path and

link flows can be associated with each demand and supply specification, indepen-

dently of the initial state, and all relevant statistics can be calculated with a single

(pseudo-)realization of the process, simulated by Monte Carlo techniques.

According to the law of large numbers, as demand flows increase, the evolution

of the system described by a stochastic process better approximates the evolution

of the corresponding deterministic process model. In this case, the expected values

of the path and link flows resulting from a stochastic process model can be well

approximated by a corresponding deterministic process, simulating the evolution of

average values (the process of averages). From this point of view, stochastic process

models seem more suitable for disaggregate detailed analyses, whereas determinis-

tic processes are best suited for the modeling of the evolution of system averages at

an aggregate level, and for equilibrium stability analyses.

An example of a stochastic process can be obtained by applying exponential

filters for the specification of utility and choice updating models:

V t = −β∆T c(∆ht−1) + (1 − β)V t−1 (6.5.28)

ht ← H t

with E[H t ] = αP (V t )d + (1 − α)ht−1
(6.5.29)

29The proposed formulation could easily be extended to consider the costs as random variables

as well. Note, however, that by adopting a probabilistic path choice model, a perceived utility of

randomness is introduced; this can also be attributed implicitly to the randomness of the attributes

that appear in the systematic utility (in this case, the path costs).
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Similarly, in terms of predicted link flows and costs, we have:

xt = βc(f t−1) + (1 − β)xt−1 (6.5.30)

f t ← F t

with E[F t ] = αf SUN(xt ) + (1 − α)f t−1
(6.5.31)

Another particular stochastic process model is a renewal process. These processes

are such that the state on day t is a realization of a probability distribution inde-

pendent from previous days. In this case, the Markovian property of the system

expressed by (6.5.24) and (6.5.25) does not hold. This condition can be formally

expressed as

φt (h,V ) = Pr[ht = h,V t = V /ht−1,V t−1] = Pr[ht = h,V t = V ]

If the joint probability function φt (h,V ) is constant for each t , the renewal

process is stationary. Under these assumptions, renewal process models can sim-

ulate systems for which the expected (predicted) utilities of users are independent

of the actual costs incurred on previous days (e.g., they may be based on long-term

averages or on uncongested values) and there are no habit effects (e.g., α = 1 in

models (6.5.29) and (6.5.31)). An example of a renewal process model in the case

of a stochastic supply model with random costs can be expressed by the following

equations.

V t = W t (MVN variable)

with

E[W t ] = −∆T co = −go

ht ← H t (multinomial variable)

with

E[H t ] = P (V t )d

A renewal process model is specified for simulating within-day dynamic irregular

transit systems in Sect. 7.6.2.

Finally, it should be noted that regularity of a stochastic process is a weaker prop-

erty than fixed-point existence, uniqueness, and stability of the corresponding deter-

ministic process. In other words, the stability of a system, in the engineering sense,

requires not only that there exist a unique stationary distribution towards which the

system state distribution converges, but also that the stationary distribution be uni-

modal.

Comparison between deterministic or stochastic models and equilibrium models

(with fixed demand) is illustrated in Figs. 6.14 and 6.15 which report the various for-

mulations. Further examples of dynamic process models are reported in Sect. 7.6.2.
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Fig. 6.14a Synopsis of user equilibrium assignment models
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Fig. 6.14b Synopsis of user equilibrium assignment models
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Fig. 6.15a Synopsis of user equilibrium and dynamic process assignment models (for simplicity, systematic utility is not considered to be a random variable)
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Fig. 6.15b Synopsis of user equilibrium and dynamic process assignment models (for simplicity, systematic utility is not considered to be a random variable)
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6.6 Synthesis and Application Issues

The assignment models described in the previous sections are summarized, using

the notation introduced in this chapter, in Fig. 6.14 where different models for user

equilibrium assignment are compared, and in Fig. 6.15 where “basic” equilibrium

models are compared with dynamic process assignment models.

In general, in the case of uncongested networks and fixed demand, the assignment

model defines a relationship between output link flows and costs, and input demand

flows on the other hand. This relationship is expressed by the UN assignment map.

In the case of congested networks and/or variable demand, the assignment relation-

ship includes link cost functions and/or demand functions as inputs; this relationship

is implicitly defined by equilibrium assignment or dynamic process models.

Reference Notes

Extension of deterministic assignment to pre-trip/en-route path choice behavior for

transit networks was proposed by Nguyen and Pallottino (1988) and Spiess and

Florian (1989). Extensions of DUE assignment models to transit networks and the

analysis of its theoretical properties can be found in Nguyen and Pallottino (1988)

and Wu et al. (1994). Recently, Bouzaiene-Ayari et al. (1995, 1997) analyzed several

approaches to represent user behavior at a bus stop within assignment models, in-

cluding congested waiting times. The algorithm for computing shortest hyperpaths

and its applications extension to DUE appear in Nguyen and Pallottino (1988), as

well as Spiess and Florian (1989), and Wu et al. (1994). A comprehensive review of

hyperpaths and related topics may be found in Gallo et al. (1993). Algorithms for

stochastic assignment with logit hyperpath choice are described by Nguyen et al.

(1993). Extension to stochastic assignment was analyzed by Cantarella (1997) and

Cantarella and Vitetta (2000).

As already stated in the bibliographical note in Chap. 5, the use of fixed-point

models for stochastic (or deterministic) equilibrium was introduced by Daganzo

(1983), who also analyzed multiclass assignment with variable demand (following

the hypernetwork approach cited). Cantarella (1997) developed a general treatment

using fixed-point models of multimodal/multiclass variable demand equilibrium as-

signment, pre-trip/en-route path choice behavior, including stochastic as well as de-

terministic user equilibrium.

Internal cycle algorithms for assignment with variable demand are treated by

Cantarella (1997). External cycle algorithms constitute an original contribution in

this book. A general presentation may be found in Cantarella and Cascetta (1998).

See also the bibliographical survey reported therein.

A further line of development consists of equilibrium models in which a (noncon-

gested) cost attribute such as monetary cost is distributed among users, following,

for example, the distribution of the value of time (for application to stochastic as-

signment and an analysis of the literature, see Cantarella and Binetti (1998)). Such
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models may be considered an extension of multiclass assignment models to an in-

finite number of classes should the value of time be represented by a continuous

random variable.

In recent years, dynamic process (nonequilibrium) models for representing

supply–demand interaction have received increasing attention from transportation

system analysis researchers (Cantarella and Cascetta 1995). Initial contributions

(Daganzo and Sheffi 1977; and Horowitz 1984) analyzed particular models for the

study of equilibrium stability; Cascetta (1987, 1989) proposed stochastic process

models to represent supply–demand interactions rather than to analyze equilibrium

configurations. Since then, stochastic and deterministic process models have been

proposed by various authors including Davis and Nihan (1993) and Watling (1996,

1999).



Chapter 7

Intraperiod (Within-Day) Dynamic Models*

7.1 Introduction

The models presented in the previous chapters describe the steady-state behavior of

the transport system. Invariance in time of the variables concerned means it can be

represented by a single snapshot; a representation that we could therefore call static.

The result of an equilibrium assignment, for example, photographs that particular

condition of system behavior in which path (or link) flows and costs are mutually

consistent and, as stated above, stationary. This configuration could be observed in

the real world only if demand, path choices, and supply system remained constant

for a sufficiently long period of time that the system could reach a steady-state con-

dition. Thus, although difficult to observe in reality, as described in Chap. 1, it may

be assumed as being representative of average system conditions in the simulation

period adopted.

However, the simplifications induced by this assumption of stationarity do not

allow the system’s internal behavior to be represented. Indeed, with this approach we

only know the model response – path and link costs and flows – to the input stimulus:

O-D demand flows. This correspondence is then independent of the previous system

history (which is why such models are also known as models without memory).

In other words, the models that follow this approach do not allow us to explicitly

represent the inner dynamics of the system and describe its causal evolution in time.

For these reasons, in systems theory one refers to them as static models.1

Clearly, given the impossibility of representing the internal behavior of the sys-

tem we cannot effectively simulate transport systems such as highly congested ur-

ban road systems. Indeed, in this case it is impossible to represent the dynamics of

some important phenomena, especially the creation, propagation, and dissipation of

queues (in other words, congestion), a phenomenon that occurs, for example, when

a link is temporarily oversaturated. Just as it is not possible to reproduce effects

caused by nonstationary demand or supply (see, e.g., demand peaks in rush hours or

1A simple example of a static model for a physical system may be taken from standard circuit

theory. Consider a circuit consisting of two resistances in series, r and R, linked around a source

of voltage V , and of an intermediate socket between the two resistances (voltage divider system).

Every time the voltage V is varied at the source (input), we obtain a different voltage v at the

intermediate socket (output). This adaptation is not instantaneous despite the very high velocity

at which it occurs. A complete description of the phenomenon would require assessment of the

transient phase. For practical purposes it is sufficient to know only the final voltage v and we

can thus adopt a simple input–output functional relationship that can be obtained from standard

circuit theory: v = V · R/(R + r). As this formula is algebraic, each value of V has only one

corresponding value of v. Note that the model is unable to describe the transient that follows the

variation in voltage in input V , which is why it is called static.

E. Cascetta, Transportation Systems Analysis,

Springer Optimization and Its Applications 29,

DOI 10.1007/978-0-387-75857-2_7, © Springer Science+Business Media, LLC 2009
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temporary reductions in link capacity), that is, the effects of all real-time control or

user information strategies (i.e., strategies based on knowledge of the current sys-

tem state; see, e.g., traffic responsive systems). Moreover, for low-frequency public

transport services (e.g., two flights a day), it is worth questioning the assumptions

introduced in previous chapters of supply stationarity (and continuity) and of mixed

preventive–adaptive user choice behavior. In summary, it may be stated that where

transient system behavior needs to be evaluated, or furthermore, the system itself

functions only transiently, a modeling approach based on the stationarity hypothesis

clearly proves ineffective.

For the above reasons various dynamic models were recently developed, usually

termed Dynamic Traffic Assignment models (DTA) or also models with within-day

dynamics, given their capacity to reproduce dynamics within the reference period

of the system in question. The need to explicitly simulate the system’s inner work-

ings and reproduce its evolution in time leads to major reformulation of the mod-

els described in the previous chapters, as regards the demand models and, to an

even greater extent, supply models. Especially in the latter, simple algebraic rela-

tions that, under the assumption of within-day stationarity, correlate the variables

involved, are in many cases substituted by differential equations that describe the

evolution in time of the same variables.

It is worth noting that the flow configuration resulting from a static equilibrium

assignment may be viewed within the more general framework of dynamic assign-

ment. Indeed, the response of a dynamic model in which both the input variables

and the supply model are stationary may verge towards the configuration of flows

and costs identified by static equilibrium assignment.2

This chapter therefore covers supply, demand, and within-day assignment mod-

els. Their formulation and level of complexity depend on the type of supply system

concerned. As we saw in Chap. 2, transport services and corresponding supply mod-

els may be divided into two main classes: continuous and discrete. The former refers

to services available at any moment and accessible from arbitrary locations, such as

services supplied by individual road modes (car, bicycle, etc.). The latter concerns

services available only at certain times that can be accessed only from specific loca-

tions (stops, terminals, stations, airports, etc.).

Hence in Sect. 7.2 we introduce within-day dynamic supply models for continu-

ous services that, as stated above, are significantly more complex than static ones.

For the same services, the following section presents demand models, which are a

direct extension of static ones. Section 7.4 covers assignment models, obtained by

combining supply models and demand models. Section 7.5 presents a specific for-

mulation that allows solving the assignment problem on large road networks. For

discrete services, given their intrinsically discrete structure in time and space, static

models of supply, demand, and assignment may be directly extended with within-

day dynamics (see Sect. 7.6). Finally Appendix 7.A provides some details about

supply models applied in Sect. 7.5.

2At least within the limits in which dynamic supply models are consistent with static ones.
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7.2 Supply Models for Transport Systems with Continuous

Service

The first dynamic models of traffic flow proposed in the 1950s represented traffic

flow basing on the analogy with the lines of water flow in rivers. Using this ap-

proach, individual vehicles are treated as a continuous (one-dimensional) fluid, for

which variables such as flow, density, and velocity can be defined at each point in

space and time. Evolution in time of these state variables is modeled using a partial

derivative equation that comprises both the conservation of mass (vehicles) and an

experimental relation between flow and density. In accordance with a classification

based on the level of detail in the models, this approach to modeling vehicle flow is

called macroscopic.

Macroscopic models may be further divided according to their representation

of space, assuming that time is always treated continuously. In space-continuous

models the state variables are defined at each point in space, even if their resolution

generally requires discretization both of space and time. By contrast, space-discrete

models (known also as link-based models) are closer to static models: the basic

variables affecting link performance, such as density or speed, do not vary along the

link. Their resolution requires, however, at least a discretization of time.

Mesoscopic models represent road flow at the level of detail of the single vehicle

(or group of vehicles generally called a packet). In this case, although representa-

tion of the traffic is discrete, the movement of each individual vehicle depends on

laws that describe relations between aggregate flow variables (e.g., mean speed as a

function of density), or on probabilistic functions (see models based on the analogy

with gas kinetics, which describe speed distribution dynamics).

Microscopic models describe the movements of individual vehicles as the result

of individual disaggregate choices and interactions with other vehicles and with the

road environment. Path choice, decisions to accelerate or change lanes, behavior at

intersections, and so on, of each individual vehicle, are generally explicitly modeled.

Moreover, each flow entity has its own characteristics that may include: vehicle

characteristics, such as type or access to trip information; vehicle performance, such

as maximum acceleration or maximum speed; and driver characteristics, such as

reaction time or desired speed.

Microscopic models consider the driver–vehicle system as a single entity and do

not simulate closed-cycle interactions between the driver and vehicle. However, the

control process of the vehicle effected by the driver is captured by submicroscopic

models that explicitly represent activities such as steering, gear-changing, or brake-

and accelerator-pedal control. Use of such models is limited to detailed analysis

of the vehicle–driver–environment system and is not extended to flow propagation

problems on the network, which is why it is not included in the classification intro-

duced below.

Figure 7.1 presents a classification of nonstationary network flow models for

continuous services. The classification proposed is based both on the representa-

tion of user flow (continuous or discrete) and on the performance functions adopted

(aggregate or disaggregate).
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Fig. 7.1 Classification of dynamic supply models for continuous services

The field of application of the various approaches varies appreciably. For exam-

ple, macro- and mesoscopic models are particularly suitable for simulating the road

system in designing control strategies: they permit explicit state–space modeling,

which may be easily included in optimization schemes. Although dependent on net-

work dimensions and processing capacity, the calculation time for such models is

generally appreciably lower than real-time, allowing their use in online applications.

By contrast, in microscopic simulation models the calculation times increase con-

siderably with the increase in road system congestion, that is, with the increase in

vehicle numbers to be simulated, generally restricting their use to offline test appli-

cations.

Aside from the above considerations, the choice of model to be used is generally

influenced by the level of detail required by the application. For example, when the

individual behavior of system users has to be simulated, disaggregate models such

as microscopic ones have to be used.

However, it is worth noting that a more detailed simulation model does not nec-

essarily supply more accurate results. This is why great importance is attached to

the availability of real data on which to calibrate such models. The quantity and

complexity of data to be recorded increase with the level of detail of the approach

adopted, and might thus be a significant reason for choosing the approach itself.

From the modeling point of view, macroscopic and mesoscopic dynamic supply

models, which adopt aggregate performance functions, express system flows and

performance according to the path flows and physical characteristics of the system

as in the static case. Figure 7.2 shows the general structure of such a dynamic supply

model.

As may be noted, this structure is very similar to that of static models, introduced

in Chap. 2. The only difference lies in the dependence of the flow propagation on

link performance: the number of users on a link at a given moment depends on

travel times required by users to reach that link which, in turn, depends on the num-

ber of users encountered on the network links in the previous instants (i.e., on the

congestion level encountered). This circular dependence between the network flow

propagation model and the link performance model does not allow the resolution
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Fig. 7.2 Diagram of supply models with within-day dynamics

of the two models in sequential fashion, as in the static case, and gives rise to a

problem known in the literature as Dynamic Network Loading (DNL). Although the

structure of the dynamic supply model, as represented in Fig. 7.2, is formally anal-

ogous to the static case, the relations comprising the models and generally the set

of relations that allow us to express path costs as a function of path flows (overall

supply model) are no longer linear nor algebraic, but often differential (e.g., in the

time variable). In this regard, the introduction of time dependence of the variables

ensures that travel times assume a twofold role: as in the static case, they represent
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part of the generalized cost perceived by the user, that is, link and path costs; on the

other hand, they enter as an independent variable in the various components of the

supply model, ensuring its temporal consistency.

As regards the individual components of the supply model, for macroscopic and

mesoscopic models all the concepts and notation concerning the graph models intro-

duced for continuous transport services in the static case (centroid nodes, paths, etc.)

are extended directly to within-day dynamics. The other components are covered in

the following sections.

Microscopic supply models deserve special mention. For such models, no struc-

ture like that represented in Fig. 7.2 can be identified. As stated above, the perfor-

mance functions of these models are disaggregate; that is, they refer to the individual

vehicle. Thus, link and path performance (such as average travel time on a link in

a time interval) are not calculated explicitly, but can be obtained downstream of the

simulation by aggregating the performance observed for individual vehicles (e.g.,

by averaging the travel times of vehicles that crossed the link in that interval).

The same topological and functional representation of supply departs consider-

ably from that used in the static case and in macro- and mesoscopic dynamic mod-

els. Some link characteristics are no longer exogenous to the supply model (and, as

such, input data of the model), but can be extrapolated from the results of one or

more simulations (see, e.g., link capacity, which is no longer calculated a priori and

supplied as input to the model together with other link characteristics, but is also

a result of simulations, as it can be calculated as the maximum number of vehicles

that can cross the link). In general, for such models, the level of detail of the sup-

ply is much higher than in other cases, and all the elements of the road systems are

explicitly represented (vehicles, infrastructure, organization, etc.). Due to its com-

plexity and the considerable differences over the modeling structure represented in

Fig. 7.2, description of this approach lies beyond the scope of this chapter and is not

covered below.

In the following section, we therefore present space-discrete macroscopic supply

models, and Sect. 7.2.2 deals with mesoscopic models.

7.2.1 Space-Discrete Macroscopic Models

7.2.1.1 Variables and Consistency Conditions

In this section we introduce (i) the variables of space-discrete continuous-flow dy-

namic models, following a classification into three groups: topological variables,

flow/concentration variables, and time/cost variables; (ii) temporal consistency con-

ditions; and (iii) network consistency conditions of the variables.

Topological Variables The topological characteristics of a trip are represented by

using a graph. Let:

a be the index of a link of length La
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k be the index of a path, consisting of a sequence of adjacent links

ak
1, ak

2, . . . , ak
nk where ak

i , with i = 1,2, . . . , nk , is the ith link of path k

and nk the number of links along k

ak
i+1 be the link that follows ak

i on path k

ak
i−1 be the link that precedes ak

i on path k

Flow and Concentration Variables For the sake of analytical convenience we

assume that all the flow and concentration variables are (continuous and) differen-

tiable functions of time τ ≥ 0. The terms temporal profile or temporal trajectory are

used to underline the dependence of the dynamic variables upon time. Let:

hk(τ ) ≥ 0 be the instantaneous flow of users who begin their trip at time τ and

follow path k. Assuming flow and time are continuous, the users are con-

sidered as infinitesimal particles of fluid that leave the origin of path k with

an instantaneous flow hk(τ ). The number of users leaving on path k in the

infinitesimal interval of width dτ around τ is thus given by hk(τ ) · dτ (see

Fig. 7.3)

hod(τ ) ≥ 0 be the vector of instantaneous path flows that leave at instant τ , made

up by the instantaneous flows on all paths connecting origin–destination

pair od(hk(τ ) : k ∈ Kod)

h(τ ) ≥ 0 be the vector of path flows leaving at time τ , for all O-D pairs

f k

ak
i ,s

(τ ) ≥ 0 be the instantaneous flow of users who follow path k and cross-section

s of link ak
i at time τ . Unlike the static case, link flow at time τ generally

varies from section to section (see Fig. 7.4). Of all the sections of a link,

the entry (s = 0) and exit (s = Lak
i
) sections are of special interest

uk

ak
i

(τ ) = f k

ak
i ,0

(τ ) ≥ 0 be the instantaneous flow traveling along path k and entering

link ak
i at time τ (entry flow)

wk

ak
i

(τ ) = f k

ak
i ,Lai

(τ ) ≥ 0 be the instantaneous flow traveling along path k and exit-

ing link ak
i at time τ (exit flow)

nk

ak
i

(τ ) ≥ 0 be the load of users traveling along k, on link ak
i at time τ

fa,s(τ ), ua(τ ),wa(τ ), na(τ ) be, respectively, the total flow crossing section s from

link a, the total flows entering and exiting from a, and the total load on a,

all at time τ

The relations between specific path link variables and total link variables defined

above are as follows.

fa,s(τ ) =
∑

k

δakf
k
a,s(τ ) ∀a (7.2.1a)

ua(τ ) =
∑

k

δaku
k
a(τ ) (7.2.1b)

wa(τ ) =
∑

k

δakw
k
a(τ ) (7.2.1c)
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Fig. 7.3 Temporal profile of a path flow and its trajectories on the network

Fig. 7.4 Instantaneous flows through different cross-sections of a link

na(τ ) =
∑

k

δakn
k
a(τ ) = Laka(τ ) (7.2.1d)

where δak is the element on row a and column k of the link-path incidence matrix

∆,La the length of link a, and ka(τ ) the density of users on link a at time τ (see

Chap. 2).

Travel Time and Cost Variables In supply models with within-day dynamics, as

stated above, the travel time variable plays a twofold role. As in static models it rep-

resents a level of service and link performance variable, included as a component of

the generalized cost perceived by users. However, the variable is required to ensure

internal time congruence of relations defined between the dynamic model variables.

Hence travel time is distinct from other performance variables.
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Link and path travel times may also assume different values with variations in

time, as both the transport supply and the level of network congestion may vary in

time. We therefore need to introduce a series of new variables correlated to travel

time. We assume that also travel times are (continuous and) differentiable functions

of absolute time τ . Hence let:

t
f

ak
i

(τ ) ≥ 0 be the forward link travel time function, which yields the quantity of

time taken by the fluid particle entering link ak
i at time τ , to cross the link

tb
ak
i

(τ ) ≥ 0 be the backward link travel time function, which yields the quantity of

time taken by the fluid particle exiting from link ak
i at time τ , to cross the

link

τL

ak
i

(τ ) ≥ τ be the exit time function, which yields the time in which the fluid particle

entering link ak
i at time τ leaves the link

τE

ak
i

(τ ) ≤ τ be the entry time function, which yields the time in which a fluid particle

leaving link ak
i at time τ entered the link

ecak
i
(τ ) be the generalized extra-cost required to cross link ak

i entering at time τ .

The generalized extra-cost expresses all the perceived disutility compo-

nents for link ak
i other than travel time. It includes performance variables

such as tolls (variable in time), converted into disutility units

Below it is shown that exit and entry time functions are “well-defined” (in other

words, a single exit or entry time corresponds to each time, τ ) due to the congru-

ence conditions introduced. Moreover, between the exit and entry time functions the

following relation holds,

τ ′′ = τL

ak
i

(τ ′) ⇔ τ ′ = τE

ak
i

(τ ′′) ∀τ ′, τ ′′ : τ ′ ≤ τ ′′,

whence it derives that the entry time function is the inverse of the exit time function

(used below in its place and indicated simply by τ−1

ak
i

(·)) and vice versa. Hence:

τE

ak
i

(·) = τ−1

ak
i

(·).

By definition, between the travel time functions and the exit time functions the

following relations hold (see Fig. 7.5).

τL

ak
i

(τ ) = τ + t
f

ak
i

(τ ) (7.2.2a)

τ−1

ak
i

(τ ) = τ − tb
ak
i

(τ ). (7.2.2b)

The time variables may also be associated with path fractions (see Fig. 7.6). In

particular:
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Fig. 7.5 Temporal consistency of forward and backward link travel times

Fig. 7.6 Temporal consistency of forward and backward path fractions travel times

T
f

ak
i

(τ ) is the forward travel time of the path fraction up to ak
i , in other words, the

amount of travel time required to reach the beginning of link ak
i starting at

time τ from the origin node (i.e., the first link of path k, ak
1 )

T b

ak
i

(τ ) be instead, is the backward travel time of the path fraction up to ak
i , in other

words, the amount of travel time required to reach the beginning of link ak
i

at time τ , having followed path k
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Fig. 7.7 Relation between link travel times and path fraction travel times

Temporal Consistency and the FIFO Condition Temporal consistency of the

supply model requires that the following relations hold between forward link travel

time functions and corresponding backward functions (see Fig. 7.5):

t
f

ak
i

(τ ) = tb
ak
i

(

τ + t
f

ak
i

(τ )
)

tb
ak
i

(τ ) = t
f

ak
i

(

τ − tb
ak
i

(τ )
)

and analogous relations between forward travel time of a path fraction and the cor-

responding backward functions (see Fig. 7.6):

T
f

ak
i

(τ ) = T b

ak
i

(

τ + T
f

ak
i

(τ )
)

T b

ak
i

(τ ) = T
f

ak
i

(

τ − T b

ak
i

(τ )
)

Moreover, travel times of a path fraction and link travel times are related by the

following equations (see Fig. 7.7).

T
f

ak
i+1

(τ ) = T
f

ak
i

(τ ) + t
f

ak
i

(

τ + T
f

ak
i

(τ )
)

(7.2.3a)

T b

ak
i+1

(τ ) = tb
ak
i

(τ ) + T b

ak
i

(

τ − tb
ak
i

(τ )
)

(7.2.3b)
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Fig. 7.8 Representation of the FIFO rule on a link

Furthermore, having assumed that user flows are represented with a partially

compressible one-dimensional fluid, the travel time functions must be such that an

infinitesimal fluid particle entering link a at time τ ′′ can never reach nor overtake

another particle that has entered the same link at a previous time τ ′ < τ ′′. Otherwise,

this would mean that the fluid entering between τ ′ and τ ′′ may be compressed into a

null space (infinite density), in other words that the assumption of one-dimensional

fluid (or absence of turbulence along the link) is violated. This condition is generally

reported in the literature as a strict condition of First In–First Out (FIFO) and may

be formulated, respectively, in terms of forward or backward link travel times, as

(see Fig. 7.8):

τ ′ + t
f

ak
i

(τ ′) < τ ′′ + t
f

ak
i

(τ ′′) (7.2.4a)

τ ′ − tb
ak
i

(τ ′) < τ ′′ − tb
ak
i

(τ ′′) ∀τ ′ < τ ′′ (7.2.4b)

or, in equivalent fashion, exploiting relations (7.2.2), as

τL

ak
i

(τ ′) < τL

ak
i

(τ ′′)

τ−1

ak
i

(τ ′) < τ−1

ak
i

(τ ′′) ∀τ ′ < τ ′′.

It can be easily shown that, if all the link travel time functions observe the FIFO

rule, path fraction travel times also respect it. Analogously with link time functions,

we can then write:

τ ′ + T
f

ak
i

(τ ′) < τ ′′ + T
f

ak
i

(τ ′′) (7.2.5a)

τ ′ − T b

ak
i

(τ ′) < τ ′′ − T b

ak
i

(τ ′′) ∀τ ′ < τ ′′. (7.2.5b)
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When the strict inequality of the above relations is replaced by a weak inequality,

we obtain the weak FIFO condition which, for brevity’s sake, is not covered below.

Equations (7.2.4) and (7.2.5) imply that (τ + t
f
a (τ )) and (τ − tba (τ )) (i.e., τL

a (τ )

and τ−1
a (τ )), and (τ + T

f

ak
i

(τ )) and (τ − T b

ak
i

(τ )), are strictly increasing functions

of time τ , and hence well-defined and invertible (as stated above). Besides, if the

FIFO condition were not imposed, two particles could cross the same section at the

same time. Hence, for the same section and at a single instant in time, we would

have different values of speed and acceleration, and the inverse function of the exit

time, τ−1
a (·), would not be correctly defined.

Assuming that functions t
f
a (τ ) and tba (τ ) can be differentiated, we can demon-

strate that the following condition is equivalent to respecting the FIFO rule.

dt
f
a (τ )

dτ
> −1 ∀τ.

Indeed, (7.2.4a) may be rewritten as

t
f
a (τ ′′) − t

f
a (τ ′)

τ ′′ − τ ′
> −1 ∀τ ′ < τ ′′,

hence

lim
τ ′′→τ ′

t
f
a (τ ′′) − t

f
a (τ ′)

τ ′′ − τ ′
> −1.

The similar condition in terms of backward travel time is:

dtba

dτ
(τ) < 1 ∀τ.

This last relation is particularly suited to immediate physical interpretation: in

order that the FIFO rule is not violated, link travel time must not decrease more

rapidly than the advancing of absolute time.

Network Consistency Network consistency requires that the time profiles of path

flow and link flow variables satisfy the conservation equations in each instant.3

Hence, for the first link ak
1 along path k (i.e., which exits from origin centroid node):

uk

ak
1

(τ ) = hk(τ ) ∀k. (7.2.6a)

For each pair of adjacent links ak
i , a

k
i+1, up to the last link along path k, flow

conservation at the nodes, at time τ , requires that entry flows and exit flows satisfy

3As in telecommunications networks and unlike hydraulic or electrical networks, the flows that

move on a transport network should be distinguished by origin and destination; we should also

underline that they can also be distinguished by path.
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Fig. 7.9 Relation between users’ load on a link at one time and cumulative entry and exit flows

from the link up to the same time

the following equation,

wk

ak
i

(τ ) = uk

ak
i+1

(τ ) ∀k, i. (7.2.6b)

By contrast, flow conservation on the link, for each link ak
i along path k, at time

τ , is expressed by the following differential equation,

dnk

ak
i

(τ )

dτ
= uk

ak
i

(τ ) − wk

ak
i

(τ ) ∀k, i. (7.2.7)

This equation is equivalent to the finite-difference equation (2.2.2) introduced in

Chap. 2 and referred to observed variables (entry flow and number of users present

on a road segment). Once integrated, it yields the loading on the link at time τ :

nk

ak
i

(τ ) =

∫ τ

0

uk

ak
i

(t) dt −

∫ τ

0

wk

ak
i

(t) dt + nk

ak
i

(0)

= U k

ak
i

(τ ) − W k

ak
i

(τ ) + nk

ak
i

(0) (7.2.8)

where:

U k

ak
i

(τ ) =

∫ τ

0

uk

ak
i

(t) dt and W k

ak
i

(τ ) =

∫ τ

0

wk

ak
i

(t) dt

are the cumulative flows up to time τ , respectively, for entry and exit from link ak
i ,

of users following path k. Equation (7.2.8) thus expresses the relation between the
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Fig. 7.10 Necessary condition for the FIFO rule (forward travel time)

number of users on a link (i.e., link load) and the cumulative entry and exit flows

(see Fig. 7.9).

7.2.1.2 Network Flow Propagation Model

In this section we introduce the network flow propagation model, which expresses

the relation between path flows and link flows.

Having defined in the previous section flow conservation at time τ for network

nodes and links, we first need to formalize the problem of flow propagation in time,

along a link. Helping us in this purpose is the hypothesis that the flow is partly com-

pressible and one-dimensional, hence that the FIFO rule holds. If the latter holds,

the total number of vehicles entering link ak
i up to time τ equals the total number of

vehicles exiting from the same link up to time τ + t
f
a (τ ) (see Fig. 7.10)4:

U k

ak
i

(τ ) = W k

ak
i

(

τ + t
f

ak
i

(τ )
)

∀i, k (7.2.9a)

and, similarly, proceeding backwards:

U k

ak
i

(

τ − tb
ak
i

(τ )
)

= W k

ak
i

(τ ) ∀i, k. (7.2.9b)

Differentiating the previous relations we obtain:

uk

ak
i

(τ ) = wk

ak
i

(

τ + t
f

ak
i

(τ )
)

· 1 +

dt
f

ak
i

(τ )

dτ
∀i, k (7.2.10a)

4Equations (7.2.9) are not sufficient conditions for respect of the FIFO rule, as they also hold in

the presence of overtaking maneuvers. In this case, they are satisfied provided, for each vehicle on

the link, the difference between the number of vehicles overtaking and being overtaken is nil.
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uk

ak
i

(

τ − tb
ak
i

(τ )
)

· 1 −

dtb
ak
i

(τ )

dτ
= wk

ak
i

(τ ) ∀i, k. (7.2.10b)

Assuming that the FIFO rule holds, each of (7.2.10) expresses the dynamic prop-

agation of the flow along a link. Equation (7.2.10a) states that, if the flow on link

ak
i at time τ is decelerating (dt/dτ > 0), the flow exiting the link after the travel

time required to cross it will be less than the flow entering at τ . Vice versa, if the

flow on the link is accelerating (dt/dτ < 0), the flow exiting the link will exceed

that entering. The same conclusions may be reached by (7.2.10b). However, when

the link travel time at time τ is constant (dt/dτ = 0) (in noncongested networks

with constant supply or in steady-state conditions in the system this occurs at every

time and for every network link), the flow exiting from a link is simply translated

in time compared with the entry flow. In Sect. 7.2.1.4 we show that, in the case of

steady-state behavior of the system (see static models), the hypothesis of stationary

flows entering the network also means that entry and exit flows from each link are

the same and constant; that is: uk

ak
i

= wk

ak
i

.

Moreover, any of (7.2.10), under the hypothesis of positive entry flows ua(τ ) > 0,

and positive exit flows wa(τ ) > 0, guarantees that the FIFO rule holds. The opposite

does not hold true, because the assumption of FIFO rule validity and respect of any

of (7.2.10) means only that entry and exit flows have the same sign.

Dynamic flow propagation along a path may therefore be derived from propaga-

tion along a link. Indeed, the flow traveling along path k and entering link ai+1 at

time τ (i.e., the entry flow uk
ai

(τ )) may be expressed as a function of path flow hk

exiting from the centroid node at a previous instant in time (out of simplicity, we

omit the superscript k in the link notation, meaning ai = ak
i ). To this end (7.2.10)

and (7.2.6) can be applied. In the case of backward travel times, for example, by

substituting (7.2.6b) into (7.2.10b), we obtain:

uk
ai+1

(τ ) = uk
ai

(

τ − tbai
(τ )

)

· 1 −
dtbai

(τ )

dτ
∀i, k. (7.2.11)

The entry flow uk
ai

(τ − tbai
(τ )) in the right-hand side of (7.2.11) may in turn be

expressed by (7.2.10b) as a function of the entry flow on the previous link, ai−1, in

a previous moment:

uk
ai

(

τ − tbai
(τ )

)

= uk
ai−1

(

τ − tbai
(τ ) − tbai−1

(

τ − tbai
(τ )

))

·

(

1 −
dtbai−1

(τ − tbai
(τ ))

dτ

)

. (7.2.12)

Substituting (7.2.12) into (7.2.11) and iterating the previous steps until we obtain

in the second member of (7.2.11) the entry flow on the first link of path k, we obtain

the relation sought between the flow entering a link at a certain time τ (having

followed path k) and the corresponding path flow; in other words, the flow on path
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k which, having left at a previous time, reached the above link exactly in τ :

uk
ai+1

(τ ) = hk
(

τ − T b
ai+1

(τ )
)

·

i
∏

j=1

(

1 −
dtbaj

(τL
aj

)

dτ

)

(7.2.13a)

where T b
ai+1

(τ ), backward travel time of the path fraction up to ak
i+1, is given by

the sum of the travel times on all the links that precede ai+1 (each calculated in the

instant of exiting from the link itself):

T b
ai+1

(τ ) =

i
∑

j=1

tbaj

(

τL
aj

)

(7.2.14a)

in which τL
aj

is the exit time from link aj , calculated from τ by subtracting link

travel times up to aj :

τL
aj

= τ − tbai
(τ ) − tbai−1

(

τ − tbai
(τ )

)

− · · · − tbaj+1

(

τ − tbai
(τ ) − · · ·

)

.

The similar expression in terms of forward travel times is:

uk
ai

(

τ + T
f
ai

(τ )
)

=
hk(τ )

∏i−1
j=1(1 +

dt
f
aj

(τ+T
f
aj

(τ ))

dτ
)

(7.2.13b)

where the time required to reach the beginning of link ai following path k and

leaving at τ, T
f
ai+1

(τ ), may be expressed as

T
f
ai

(τ ) =

i−1
∑

j=1

t
f
aj

(

τ + T
f
aj

(τ )
)

. (7.2.14b)

Each of (7.2.13) thus expresses the dynamic flow propagation along a path.

The dynamic model of network flow propagation is obtained by substituting, for

each network link, either of the two (7.2.13) into (7.2.1b), that is, summing all the

flows that, following different paths, enter a certain link at the same time. The model

may be solved once we know the time profile of the path flow vector entering the

network (h(τ ), ∀τ > 0), and the time profile of forward or backward link travel

times (t
f
a (τ ) ◦ tba (τ ),∀τ > 0). The profile of path flows h(τ ) is known to constitute

model input data. Link travel times may instead be calculated using the link per-

formance functions presented in the section below. We show that link travel time is

generally a function of user load on the same link and hence of user flows entering

and exiting from the link. Thus, as anticipated in Sect. 7.2, a circular dependence is

configured between the network flow propagation model and the link performance

model. The solution of the two models comes via the solution to the fixed-point

problem known in the literature as dynamic network loading. This allows us to ob-

tain the time trajectory of each of the system state variables (u,w,n, k) for each

network link.
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7.2.1.3 Link Performance and Travel Time Functions

The functions that express link travel time according to link flows are fundamental

both for dynamic supply models and their static counterparts. Most of the dynamic

models proposed in the literature adopt functions that explicitly (travel time func-

tions), or implicitly (exit time functions), measure link travel time against the num-

ber of users on the link. Exit time functions directly express the flow exiting from a

certain link according to its load wa(τ ) = wa(na(τ )). However, such functions lead

to a series of theoretical incongruences and therefore are not covered below.

Travel time functions express the travel time ta(τ ) of a vehicle arriving at the start

of link a at time τ , according to traffic conditions at that instant. Most of the mod-

els proposed in the literature adopt separable travel time functions, in other words,

functions that express the travel time on link a, t
f
a (τ ) (or, tba (τ )), as a function only

of the link load a,na(τ ):

t
f
a (τ ) = ta

(

na(τ )
)

. (7.2.15)

Determination of the backward travel time as a function of the exit time function

requires solution to the fixed-point problem that is unique only if the FIFO rule

holds. Indeed, from (7.2.2b) we have:

tba (τ ∗) = ta
(

na

(

τ − tba (τ ∗)
))

.

Although various functional forms have been proposed for (7.2.15), not all lead

to results consistent with the FIFO rule.

In applications two distinct link types are generally considered: running links

represent the real movement of the vehicle, such as that of a vehicle traveling on an

urban or motorway road section and queuing or waiting links represent waiting at

intersections, toll barriers, and the like (see Fig. 7.11).

It can be shown that for running links, a linear travel time function as follows,

ta
(

na(τ )
)

= t0
a +

1

Qa

· na(τ ) (7.2.16a)

where t0
a is the free flow travel time, means that the flow exiting link a, wa , never

exceeds link capacity Qa , guarantees respect of the FIFO condition, and ensures the

model’s congruence.

Figure 7.12 illustrates the flow exiting a link according to the number of vehicles

on the link itself, for a function of type (7.2.16a).

A similar function derived from deterministic queuing models may be applied

for queuing links. Indeed, all the concepts introduced up to this point are applied to

queuing models (see Sect. 2.2.2). The only difference is that, in the case of queuing,

travel time is spent waiting rather than in movement along the link. The flow en-

tering and that exiting from the link correspond to the rates of arrival and departure

from the queue; the load is equivalent to the number of users in the queue, and so



7.2 Supply Models for Transport Systems with Continuous Service 439

Fig. 7.11 Diagram of a road

intersection with running and

queuing links

Fig. 7.12 Exit flow

corresponding to a linear

function of travel time

(7.2.16a)

forth. In this case, (7.2.16a) may be rewritten as

twa

(

na(τ )
)

=
1

Qa

+
1

Qa

na(τ ) (7.2.16b)

where the “zero load” time is equal to the average service time; that is, twa = 1/Qa .

7.2.1.4 Dynamic Network Loading

Dynamic network loading may be expressed by combining the network flow prop-

agation model with that of link performance, and imposing time and space congru-

ence of network flows. In the case of forward travel times, for example, a possible

formulation is obtained by combining (7.2.13b), (7.2.14b), (7.2.15), (7.2.8), and

(7.2.1d), (7.2.16b), as reported below for the reader’s convenience.

uk
ai

(

τ + T
f
ai

(τ )
)

=
hk(τ )

∏i−1
j=1

(

1 +
dt

f
aj

(τ+T
f
aj

(τ ))

dτ

)

∀i, k, τ (7.2.17a)

T
f
ai

(τ ) =

i−1
∑

j=1

t
f
aj

(

τ + T
f
aj

(τ )
)

(7.2.17b)
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t
f
ai

(τ ) = tai

(

nai
(τ )

)

(7.2.17c)

nai
(τ ) =

∑

k

δaik

(∫ τ

0

uk
ai

(t) dt −

∫ τ

0

wk
ai

(t) dt + nk
ai

(0)

)

(7.2.17d)

wk
ai

(τ ) = uk
ai+1

(τ ) (7.2.17e)

to which initial conditions (e.g., uai
(0) = wai

(0) = nai
(0) = hk(0) = 0, ∀i, k)

should be added.

Note that if link travel times do not vary in time (dta/dτ = 0, ∀a, τ ), as, for ex-

ample, occurs in the case of a noncongested network in which the supply is constant,

the time profile of the flow entering any link along path k is equal to the time profile

of path flow hk , shifted of the time required to reach the link itself (as was seen for

flow propagation on a link). In other words, (7.2.17a) (i.e., (7.2.13b)) becomes:

uk
ai

(

τ + T
f
ai

(τ )
)

= hk(τ ) ∀i, k, τ.

Regardless of whether the network is congested, if the system functions under

steady-state conditions (i.e., hk(τ ) = hk = const. ∀k, τ and dta/dτ = 0, ∀a, τ ),

we may write:

uk
ai

(

τ + T
f
ai

)

= hk = uk
ai

∀i, k, τ

that is, the partial flow that enters a link following a certain path is constant and equal

to the corresponding path flow.5 Hence, as in any instant τ it holds that wk
ai

(τ ) =

uk
ai+1

(τ ), then we also obtain:

wk
ai

= uk
ai

= hk = f k
ai

.

Substituting hk to f k
ai

into (7.2.1a), it is possible to calculate the link flow as the

sum of (stationary) path flows which cross it:

f a =
∑

k

δakh
k.

The latter, as noted in Chap. 2, describes the network flow propagation model in

the static case, and is indeed equivalent to (2.3.1).

7.2.1.5 Path Performance and Travel Time Functions

Path performance and travel time functions may be calculated directly by link per-

formance and travel time functions.

5Flow constancy in time gives rise to the statement (although formally not correct) that flow prop-

agation in the static case is “instantaneous,” given that at each instant each partial link flow is equal

to the corresponding path flow entering the network at the same time.
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Equation (7.2.3a), applied recursively from the first to the ith link of path k,

gives rise to the summation (7.2.14b). The latter, expressed as a function of only

link travel times, is resolved in a nested sum of the same times:

T
f

ak
i

(τ ) = t
f

ak
1

(τ ) + t
f

ak
2

(

τ + t
f

ak
1

(τ )
)

+ t
f

ak
3

(

τ + t
f

ak
1

(τ ) + t
f

ak
2

(

τ + t
f

ak
1

(τ )
))

+ · · · + t
f

ak
i−1

(

τ + t
f

ak
1

(τ ) + · · · + t
f

ak
i−2

(

τ + t
f

ak
1

(τ ) + · · ·
))

. (7.2.18)

Similarly, for backward travel times, (7.2.14a) may be expressed as

T b

ak
i

(τ ) = tb
ak
i−1

(τ ) + tb
ak
i−2

(

τ − tb
ak
i−1

(τ )
)

+ tb
ak
i−3

(

τ − tb
ak
i−1

(τ ) − tb
ak
i−2

(

τ − tb
ak
i−1

(τ )
))

+ · · · + tb
ak

1

(

τ − tb
ak
i−1

(τ ) − · · · − tb
ak

2

(

τ − tb
ak
i−1

(τ )

− · · · − tb
ak

3

(

τ − tb
ak
i−1

(τ ) − · · ·
)))

. (7.2.19)

The previous equations may be easily used to express, as a function of link travel

times, the total travel time on the whole path, the extra-costs of the path (assuming

additive link attributes) and generalized costs. Thus let:

T T
f

k (τ ) be the total forward path travel time function, in other words the time

required to travel the whole path k, from origin to destination, starting at

time τ

T T b
k (τ ) be the total backward path travel time function, in other words the time

required to travel the whole path k, from origin to destination, completing

the path at instant τ

ECk(τ ) be the generalized extra-cost of path k starting at time τ

gk(τ ) br the total generalized cost along path k starting at time τ

In the case of forward performances, for example, then:

T T
f
k (τ ) = t

f

ak
1

(τ ) + t
f

ak
2

(

τ + t
f

ak
1

(τ )
)

+ · · · + t
f

ak
nk

(τ + · · · )

= T
f

ak
nk

(τ ) + t
f

ak
nk

(τ + · · · )

(7.2.20a)

ECk(τ ) = ecak
1
(τ ) + ecak

2

(

τ + t
f

ak
1

(τ )
)

+ · · · + ec
f

ak
nk

(τ + · · · ) (7.2.20b)

gk(τ ) = βtT T
f

k (τ ) + ECk(τ ) (7.2.20c)

where ak
nk

is the last link of path k. The relations between the vectors of forward

path travel time functions T T f (τ ) (with a component for each path of the network)

and the forward link travel time functions t(τ ) (with a component for each link of

the network) may be expressed as

T T f (τ ) = Γ
(

t(τ ′), τ ′ ≥ τ
)

. (7.2.21)
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Equations (7.2.20) constitute the dynamic equivalent of the cost composition ex-

pressed by supply model (2.2.5) and (5.2.1) for static networks. In the static case,

the order in which different link performance costs or attributes are summed to ob-

tain path costs is unimportant. This no longer holds for within-day supply models

for which link times and costs must be summed in their topological order along path

k to respect the time sequence in which the links are crossed.

7.2.1.6 Formalization of the Whole Supply Model

The equations introduced in the previous sections express the dependence of entry

and exit flows, of loads, and link and path times and costs in one instant, upon path

flows starting from origins at previous times. The equations that define the complete

supply model for congested networks, in respect of the FIFO rule, may be expressed

symbolically as

f = Φ
[

t(τ ),h(τ )
]

(7.2.22a)

t(τ ) = t
(

f (τ ′), τ ′ ≤ τ
)

(7.2.22b)

T T f (τ ) = Γ
(

t(τ ′), τ ′ ≥ τ
)

(7.2.22c)

where:

t(τ ) is the vector of link travel times at time τ

T T f (τ ) is the vector of forward path travel times at time τ

f (τ ) is the vector of flow or load variables which are relevant to travel time

functions at time τ

h(τ ) is the vector of path flows at time τ

Γ symbolically expresses the relation between link and path travel times

(see (7.2.21))

Φ symbolically expresses the dynamic loading model of the network (see

(7.2.17))

In the context of within-day dynamics of continuous flow, these equations are

equivalent to the static equations:

f = ∆h

c = c(f )

g = ∆T c.

Note that (7.2.22) reflect the condition by which, in congested networks, the time

for covering a link in a certain instant τ , depends on the load on all the network links

that precede it along all the paths that lead to it, in the instants prior to τ (τ ′ ≤ τ).

Link flows and load in any one time depend on the link travel time profiles of all the

links that precede it, up to that moment.
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The solution to the dynamic supply model described above is based on the dis-

cretization of the integrodifferential equations that describe it. Given the large num-

ber of equations involved, what is important is also the sequence in which they are

processed.

Note that this formulation of the supply model assumes that the only variables

that affect link travel times are link loads, only at the moment of arrival at the link.

This assumption, albeit convenient in solution terms as well as being close to the

static case, is only appropriate for deterministic queuing links and very short running

links.

As hinted in the introductory Sect. 7.2, other supply models for continuous flows

(namely space-continuous models) are based on the application of systems of dif-

ferential equations derived from space-continuous traffic flow models for each link,

together with equations that guarantee flow conservation at each node.

The solution to such models, at least in theory, ensures the definition of variables

such as flow, speed, and density at each point s and each instant τ . However, their

solution requires discretization of space ∆s, and hence in computational terms they

may be considered similar to space-discrete models with an appropriate definition

of link length (i.e., ∆s = La).

7.2.2 Mesoscopic Models

Discrete flow models assume that users are discrete units; these units can be either

individual vehicles or groups of vehicles moving together over the network and

experiencing the same trip conditions. Discrete flow units are referred to below as

packets, which includes the special case of single-vehicle packets.

As mentioned in Sect. 7.2, mesoscopic models simulate network performance at

an aggregated level; as in discrete-space continuous-flow models, aggregated vari-

ables of capacity, flows, and occupancy are used. Traffic, however, is represented

discretely by tracing the trips of individual packets; each packet is characterized by

a departure time and by a path to its destination. It is often assumed that packets

are concentrated at a point (concentrated or vertical packets); the smaller the size

of the packets, the more realistic is this assumption. Mesoscopic models can be ap-

plied to general networks and extended to simulate queue-formation and spill-backs

with reasonable computing times. On the other hand, they do not allow detailed

simulation of the behavior of individual vehicles (overtaking, lane-changing, etc.).

Most discrete flow models are based on some form of time discretization, that is,

a division of the reference period into intervals [j ] (which, for the sake of simplic-

ity, are assumed below to be of equal duration DT). These models often assume that

relevant flow variables are averaged over time intervals. They also assume that users

begin their trips at a representative time instant τj in interval [j ], for example, its be-

ginning or midpoint (see Fig. 7.13). In principle, the duration of departure intervals

can differ from the duration of averaging intervals; for example, some models use

very short departure intervals while averaging the variables over longer intervals. To
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Fig. 7.13 Path flows and trajectories in discrete time: discrete flow models

simplify notation in the following discussion, only the single-interval case is con-

sidered; the generalization to multiple intervals is straightforward. Furthermore, it

is assumed that the representative time instant of each interval is its final one; that

is, τj = [j ].DT .

A general framework is more difficult to formalize for discrete time-discrete flow

models than for continuous models, because there are several possible ways to dis-

cretize the relevant variables. The framework proposed in the following is general

enough to include a number of models that have been presented in the literature.

7.2.2.1 Variables and Consistency Conditions

Discrete model variables and their structural relationships must first be defined.

Time Variables The discretization of time requires the introduction of time vari-

ables in addition to the absolute time τ . Let:

τ(j) be an arbitrary instant in time interval [j ], τ(j) ∈ ([j − 1].DT, [j ].DT )

τj be the representative instant in time interval [j ], here assumed to be its

end-point, τj = [j ].DT

Topological Variables Topological variables are the same as in the continuous-

flow continuous-time case and are not restated.
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Flow and Occupancy Variables The flow variables have the same definitions as

in the continuous case, but in discrete flow models they represent “counts,” that is,

the number of users in an interval [j ], rather than flows, that is, temporal densities,

as shown in Fig. 7.13. In the following, however, they are referred to equivalently as

units (in a time interval) or flows, to simplify the notation and facilitate the extension

of continuous flow results. Let:

kj be an arbitrary packet, identified by its path k (which implies its O-D pair)

and its departing interval [j ] from the origin; it is assumed that only one

packet can leave on a given path in any time interval

dod [j ] be the number of users departing from origin o in the representative instant

of interval [j ] and traveling to destination d

hk[j ] be the number of users starting their trip along path k, k ∈ Kod , in the rep-

resentative instant of interval [j ]; hk[j ] can be thought of as the size of the

packet kj

f k
a,s[j ], uk

a[j ],wk
a[j ] be, respectively, the number of users traveling on path k who

cross section s of link a, and the number of users on path k who enter and

leave link a during interval [j ]

fa,s[j ], ua[j ],wa[j ] be, respectively, the total (over all paths) number of users who

cross section s of link a, and the total number of users who enter and

leave link a during interval [j ]. Note that they correspond to the variables

m(s|τj−1, τj ), introduced in Sect. 2.2.2, with symbols modified to parallel

those used for continuous models

Flow variables can also be defined with respect to any subinterval of interval j ,

for example, the interval [τj−1, τ (j)] from the interval’s beginning up to time τ(j).

In this case the variables have as argument the specific instant in which they are

calculated τ(j), for example, f k
as[τ(j)] and so on. Let:

na(τj ), na(τ (j)) be the link occupancy in time instants τj and τ(j), respectively

n̂a[j ] be the average load on link a during interval [j ]. Clearly:

n̂a[j ] =
1

DT

∫ [j ]·DT

[j−1]·DT

na(τ (j)) dτ(j)

Ua[τj ]Ua[τ(j)],Wa[τj ],Wa[τ(j)] be the cumulative in-flows and out-flows of

link a up to the representative instant of interval [j ], τj , and up to an

arbitrary time instant within that interval, τ(j), respectively. Cumulative

in-flows and out-flows are related to interval-specific values by:

Ua[τj ] =
∑

j ′≤j

ua[j
′] (7.2.23a)

Wa[τj ] =
∑

j ′≤j

wa[j
′] (7.2.23b)

Equations (7.2.1), expressing the total flows as sums of path flows, and (7.2.6b),

expressing flow conservation at nodes, also hold in the discrete case. In-flows and
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out-flows are also related to link occupancy through link conservation equations

analogous to (7.2.7) and (7.2.8):

na(τj ) − na(τj−1) = ua[j ] − wa[j ] (7.2.24a)

na(τj ) = Ua[τj ] − Wa[τj ] (7.2.24b)

Travel Time and Cost Variables In general, link and path travel times are contin-

uous variables that vary with time τ as in the continuous case. In the discrete case,

however, not all instants τ are meaningful because not all correspond to the arrival

(or departure) of a packet (see Fig. 7.13). Below, time and cost variables are defined

in terms of an arbitrary instant τ . Let:

t
f
a (τ ), tba (τ ) be the forward and backward travel time on link a for a packet that,

respectively, enters or leaves the link at time τ . Forward and backward

link travel times are related through mutual consistency equations identical

to (7.2.5), which are restated here for convenience:

t
f
a (τ ) = tba

(

τ + t
f
a (τ )

)

tba (τ ) = t
f
a

(

τ − tba (τ )
)

Because, in discrete flow models, users are individually identifiable units (pack-

ets kj ), it is possible to define temporal variables associated with a specific packet.

Let:

τu
a [kj ], τ

w
a [kj ] be, respectively, the entrance and exit times on link a of packet kj .

Consistency of travel times requires that (see Fig. 7.14):

τw
a [kj ] = τu

a [kj ] + t
f
a

(

τu
a [kj ]

)

(7.2.25a)

τu
a [kj ] = τw

a [kj ] − tba
(

τw
a [kj ]

)

(7.2.25b)

The FIFO discipline also applies to discrete models if it is assumed that packets

cannot overtake each other, or if no explicit overtaking mechanism is introduced.

The formal representation of the FIFO rule is identical to that for continuous flow

models in terms of forward and backward travel time, respectively:

τ ′ + t
f
a (τ ′) < τ ′′ + t

f
a (τ ′′) ∀τ ′ < τ ′′

τ ′ − tba (τ ′) < τ ′′ − tba (τ ′′) ∀τ ′ < τ ′′

Alternative conditions for the FIFO rule, analogous to those introduced in

Sect. 7.2.1.1 for continuous models, can be stated. It should be observed, however,

that, for discrete models, this condition is not so important because a packet is iden-

tified by the very nature of the model rather than implicitly through the trajectory

crossing a given point at a given time.

As for the continuous case, the general discrete dynamic supply model can be

formalized through link and path performance functions and the network flow prop-

agation model.
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Fig. 7.14 Relationship among link entrance, exit, and travel times of a packet on a link

7.2.2.2 Link Performance and Travel Time Functions

The dependence of link travel time on link “flow” variables for congested networks

can be expressed through a variety of models. It is possible to specify separable

and nonseparable cost functions, the latter possibly allowing for spill-back effects

from downstream links. The simpler separable travel time functions are similar to

the functions described in Sect. 7.2.1.2 for running and queuing links.

Forward travel time on running link a can be expressed as a linear function of

arrival time. It can thus vary for different time instants τ(j) within interval j :

t
f
a

(

τ(j)
)

= t0
a +

1

Qa

· na

(

τ(j)
)

(7.2.26)

Other models express the travel time via the average speed computed as a func-

tion of link density, as in the fundamental diagram of traffic flow described in

Chap. 2:

t
f
a

(

τ(j)
)

=
La

Va(na(τ (j))/La)
(7.2.27)

Given the discrete nature of the models, various assumptions can be made regard-

ing the computation of travel times for packets entering the link in a given interval.

Some models proposed in the literature assume that the travel times are equal for

all packets that enter the link in a given interval. In this case occupancy variables

in (7.2.26) and (7.2.27) correspond to a representative time of interval j , typically

its start-point τj−1, and are constant for all users entering the link during the in-

terval. Alternatively, travel times can be computed as functions of the average link

occupancy during the previous interval n̂a[j − 1], or the same interval n̂a[j ]. In
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the latter case, however, link travel time for users entering the link during the in-

terval depends on the number of users who enter the link later in the same interval;

this may cause inconsistencies and counterintuitive results, and should be avoided.

Other more accurate models compute travel times for each packet, for example, as

a function of the instantaneous link occupancy at the entrance time.

7.2.2.3 Path Performance and Travel Time Functions

The concepts of the forward and backward travel time needed to reach link ak
i along

path k when leaving or arriving in a given instant can be immediately extended

to discrete supply models. These variables are denoted by T
f

ak
i

(τj ) and T b

ak
i

(τ (j)),

respectively, to stress the fact that departures can occur only at the representative

time of each interval τj , whereas arrivals can be at any time during the interval

τ(j); see Fig. 7.13.

Therefore, the relationships between forward and backward travel times in the

discrete case become:

T
f

ak
i

(τj ) = T b

ak
i

(

τ + T
f

ak
i

(τj )
)

T b

ak
i

(

τ(j)
)

= T
f

ak
i

(

τ(j) − T b

ak
i

(

τ(j)
))

As with the continuous case, the forward (backward) total travel time on path k

for a given departure (arrival) time can be defined for the discrete case, denoting

the variables by T T
f

k (τj ) and T T b
k (τ (j)), respectively. The FIFO rule for partial

and total path travel times can also be extended to discrete flow models, as shown

by (7.2.5).

Similarly the relationship between link and path travel times is analogous

to (7.2.3) and, when applied recursively, leads to a “nested” structure:

T
f

ak
i

(τj ) = t
f

ak
1

(τj ) + t
f

ak
2

(

τj + t
f

ak
1

(τj )
)

+ t
f

ak
3

(

τj + t
f

ak
1

(τj ) + t
f

ak
2

(

τj + t
f

ak
1

(τj )
))

+ · · · + t
f

ak
i−1

(

τj + t
f

ak
1

(τj ) + · · · + t
f

ak
i−2

(

τj + t
f

ak
1

(τj ) + · · ·
))

(7.2.28)

In the discrete flow case, however, (7.2.28) can be expressed more straightfor-

wardly using τu

ak
i

[kj ], the packet arrival time at link ak
i

T
f

ak
i

(τj ) = t
f

ak
1

(τj ) + t
f

ak
2

(

τu

ak
2

[kj ]
)

+ t
f

ak
3

(

τu

ak
3

[kj ]
)

+ · · · + t
f

ak
i−1

(

τu

ak
i−1

[kj ]
)

(7.2.29)

The same construct applies to total path travel time T T
f

k (τj ), to other path-

additive attributes ECk(τj ) and finally to the total path cost gk(τj ):

T T
f
k (τj ) = t

f

ak
1

(τj ) + t
f

ak
2

(

τu

ak
2

(

τj [kj ]
)

+ t
f

ak
3

(

τu

ak
3

[kj ]
)

+ · · · + t
f

ak
nk

(

τu
ak
nk

[kj ]
)

= T
f

ak
nk

(τj ) + t
f

ak
nk

(

τu
ak
nk

[kj ]
)

(7.2.30a)
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ECk(τj ) =ec
f

ak
1

(τj ) + ec
f

ak
2

(

τu

ak
2

[kj ]
)

+ ec
f

ak
3

(

τu

ak
3

[kj ]
)

+· · · + ec
f

ak
nk

(

τu
ak
nk

[kj ]
)

(7.2.30b)

gk(τj ) = βtT T
f

k (τj ) + ECk(τj ) (7.2.30c)

Formally, the relationship between the vector of total path travel time T T f (τj )

for a given departure time τj , and travel times on the links making up each path, can

be expressed symbolically as

T T f (τj ) = Γ
(

t(τ ′), τ ′ ≥ τj

)

(7.2.31)

Equation (7.2.31) is the equivalent of (7.2.21) in the continuous-flow case.

7.2.2.4 Dynamic Network Loading

Unlike the continuous-flow case, the DNL model for discrete flows can easily be

formulated explicitly because packets can be identified as they move across the net-

work. In this case, the in-flow on link a in interval [j ] can be expressed as

ua[j ] =
∑

k

∑

l≤j

δak[l, j ] · hk[l] (7.2.32)

where the δak(l, j) are zero/one variables analogous to the elements of the static

link-path incidence matrix; they are equal to one if the packet kl (of intensity hk[l])

enters link a during interval j , and zero otherwise:

δak[l, j ] =

{

1 if τu
a [kl] ∈ ([j − 1]DT, [j ]DT )

0 otherwise

Obviously the δak[l, j ] are all equal to zero if link a does not belong to path k

(compare (7.2.32) with (7.2.17a)).

Equation (7.2.32) can also be formulated using matrix notation as

u[j ] =
∑

l≤j

∆[l, j ] · h[l] (7.2.33)

which is close to its static counterpart f = ∆h.

Similar equations can be stated for the out-flow wa[j ] from link a in time inter-

val j :

wa[j ] =
∑

k

∑

l≤j

δ′
ak[l, j ] · hk[l] (7.2.34)
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where δ′
ak[l, j ] is equal to one if packet kl (of intensity hk[l]) leaves link a during

interval j , 0 otherwise:

δ′
ak[l, j ] =

{

1 if τw
a [kl] ∈ ([j − 1]DT, [j ]DT )

0 otherwise

and in matrix terms:

w[j ] =
∑

l≤j

∆′[l, j ] · h[l] (7.2.35)

Note that the elements of dynamic incidence matrices depend on link travel times

and, for congested networks, on link flows and occupancies. In this respect they

should be denoted as

δak[l, j ] = δak[l, j ]
(

t(τ ′); τ ′ ∈ (τl, τj )
)

The overall DNL model that relates link flows and occupancies to path flows can

be expressed by combining the previous equations:

na(τj ) − na(τj−1) = ua[j ] − wa[j ] (7.2.36a)

ua[j ] =
∑

l≤j

∆[l, j ] · h[l] (7.2.36b)

wa[j ] =
∑

l≤j

∆′[l, j ] · h[l] (7.2.36c)

τu
ak [kl] = τl + T

f

ak
i

(τl) (7.2.36d)

τw
ak [kl] = τu

ak [kl] + t
f

ak

(

τu
ak [kl]

)

(7.2.36e)

t
f
a (τ (j)) =

La

Va(na(τj−1)/La)
(7.2.36f)

The above set of equations has been specified under the assumption that link

travel time functions depend on link occupancy at the beginning of each interval;

the model can be expressed in a similar form with reference to an arbitrary time

instant τ(j).

7.2.2.5 Formalization of the Whole Supply Model

Equations (7.2.36) can be expressed symbolically as nonlinear vector functions that

relate link flows (in-flows and out-flows) and occupancies for an interval j , to the

vector of path flows that depart in intervals from l to j and to the link travel times

in intervals between τl and the end of interval j , τj

f [j ] = Φ
(

h[l], t(τ ′); l ≤ j, τ ′ ∈ [τl, τj ]
)

(7.2.37a)
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Expression (7.2.37a) can be further combined with the equation relating link

travel times to link occupancies for congested dynamic network loading models:

f [j ] = Φ
(

h[l], t(n(τ ′)); l ≤ j, τ ′ ∈ [τl, τj ]
)

(7.2.37b)

The global supply model is completed by the symbolic relationships relating path

travel times to link travel times:

T T f (τl) = Γ
(

t(n(τ ′)); τ ′ ≥ τl

)

(7.2.38)

and path generalized transportation costs to travel times and other link costs:

g(τl) = βtT T f (τl) + EC(τl) (7.2.39)

7.3 Demand Models for Continuous Service Systems

Demand models used in dynamic assignment express the relationship between path

flows and path costs. The “minimal” demand model in this context relates to path

and departure time choice; it is included in some form in all dynamic assignment

models, and is described in this section. Other models that simulate users’ learning

and choice adjustment mechanisms are needed for dynamic process assignment;

they are briefly described in the next section on demand–supply interaction.

The flow hk(τ ) of users who depart at time τ on path k connecting O-D pair

od can be represented with elastic demand profile models; these simulate not just

path choice but also departure time choice given either the desired arrival time at

destination τd , or the desired departure time from the origin τo.

The continuous time-continuous flow model is discussed first. Let:

dod(τd) be the flow of trips between the O-D pair od with desired arrival time τd

pod ,k (τ/τd) be the probability of choosing time τ and path k, given the O-D pair

od and the desired arrival time τd

Vk(τ/τd) be the systematic utility of path k and departure time τ , given the desired

arrival time τd

V od(τ/τd) be the vector of systematic utilities of all paths connecting O-D pair od

for a given departure time τ and desired arrival time τd

The demand conservation condition over the whole reference interval [0, T ] can

be formally expressed as (compare with hk = pod,k · dod in the static case):

hk(τ ) =

∫ T

o

pod,k(τ/τd) · dod(τd)dτd (7.3.1)

Choice probabilities of departure time τ and path k are usually expressed with

random utility models that depend on the systematic utilities of available path-

departure time alternatives:

pod,k(τ/τd) = pod,k

(

Vod(τ ′/τd), ∀τ ′
)

(7.3.2a)
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Such models are usually single-level random utility models with mixed continu-

ous (departure time)/discrete (path) alternatives, as, for example, multinomial logit:

Pod,k(τ/τd) =
exp(Vk(τ/τd))

∑

j∈Kod

∫ T

o
exp(Vj (θ/τd)) dθ

(7.3.2b)

They can be partial share models as well. The combined choice probability is

sometimes expressed as the product of path choice probability given the departure

time, and the departure time choice probability:

pod,k(τ/τd) = pod(τ/τd).pod [k/τ, τd ]

Some empirical results on elasticities of demand with respect to changes in de-

parture time and path seem to suggest a different sequence:

pod,k(τ/τd) = pod [k].pod(τ/k, τd) (7.3.2c)

Some dynamic assignment models proposed in the literature assume determinis-

tic utility departure time and path models. In this case, as for static systems, choice

probabilities cannot be expressed in closed form, because there may exist several

departure time–path alternatives with equal systematic disutilities. Indirect expres-

sions similar to the static models described in Chap. 4 can be adopted in this case:

pod,k(τ/τd) > 0 ⇒ Vod,k(τ/τd) ≥ Vod,k′(τ ′/τd) ∀τ ′, k′

Deterministic choice models, however, are arguably less realistic when applied

to continuous departure times than they are in the static case.

Systematic utility functions proposed for the simulation of combined path–

departure time choice typically include, in addition to path attributes, the schedule

delay, that is, the penalty for arriving early or late with respect to the desired arrival

time (see Fig. 7.15). For desired arrival time τd , we have:

Vk(τ/τd) = βtT T
f
k (τ ) + ECk(τ ) + βeEAPk

(

τ, τd , T Tk(τ )
)

+ βlLAPk

(

τ, τd , T Tk(τ )
)

(7.3.3a)

where

EAPk(τ, τd , T T
f

k (τ )) is the penalty for arriving earlier than τd when departing at

time τ and following path k. This penalty is usually considered only if the

early arrival is above a minimum threshold ∆e:

EAPk

(

τ, τd , T T
f

k (τ )
)

=

{

τd − ∆e − (τ + T T
f

k (τ )) if τd − ∆e − (τ + T T
f

k (τ )) > 0

0 otherwise
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Fig. 7.15 Systematic utility function with respect to desired arrival time

LAPk(τ, τd , T T
f
k (τ )) is the penalty for arriving later than τd when departing at

time τ and following path k. This penalty is usually considered only if the

delay is above a minimum threshold ∆l :

LAPk

(

τ, τd , T T
f

k (τ )
)

=

{

τ + T T
f

k (τ ) − τd − ∆l if τ + T T
f

k (τ ) − τd − ∆l > 0

0 otherwise

When users have a desired departure time from the origin (τo), rather than a

desired arrival time at the destination (τd), the expression for the systematic utility

is still a function of path travel time and schedule delay, but in this case the schedule

delay does not depend on the path travel time T T
f

k (τ ):

Vk(τ/τo) = βtT T
f
k (τ ) + ECk(τ ) + βeEDP(τ, τo) + βlLDP(τ, τo) (7.3.3b)

where

EDP(τ, τo) is the penalty for departing at a time τ that is earlier than τo; it is usually

considered only if the early departure is above a minimum threshold ∆e:

EDP(τ, τ0) =

{

τ0 − ∆e − τ if τ0 − ∆e − τ > 0

0 otherwise

LDP(τ, τo) is the penalty for departing at a time τ that is later than τo, usually

considered only if the delay is above a minimum threshold ∆l :

LDP(τ, τ0) =

{

τ − τ0 − ∆l if τ − τ0 − ∆l > 0

0 otherwise
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All the coefficients β in (7.3.3) are negative. Furthermore, the schedule early/

delay penalties should have coefficients βe and βl with absolute values greater than

the travel time coefficient (|βe| > |βt |, |βl | > |βt |) in order to avoid unrealistic user

behavior, for example, large probabilities for alternatives with very high early/delay

arrival penalties but with smaller travel times. Empirical results for work-related

trips show that the disutility of late arrivals is larger than that for early arrivals

(|βe| < |βl |), as shown in Fig. 7.15.

The global within-day dynamic demand model with elastic demand profile is

expressed by (7.3.1) to (7.3.3) relating path flows to path travel times, extra costs,

and schedule early/delay penalties for different departure times.

In fixed demand profile models, it is assumed that the distribution of demand

flows over departure times is known and independent of variations in travel times;

that is, the probabilities pod(τ/τd) or pod(τ/τo) are given. It follows that, for a

given departure time, path is the only choice dimension considered:

hk(τ ) = dod(τ ).pod,k

(

V od(τ )
)

(7.3.4)

where

dod(τ ) is the O-D demand flow leaving at time τ

pod,k(τ ) is the probability that trips starting at time τ will choose path k

V od(τ ) is the vector of the systematic utilities Vk[τ ] of the different paths, k ∈ Kod

connecting the O-D pair od

Path choice models in this case are analogous to those described in Sect. 4.3.3;

the systematic utility of a path k can be expressed as a function of the path-related

attributes introduced previously by:

Vk(τ ) = βtT T
f

k (τ ) + ECk(τ ) (7.3.5)

The within-day dynamic demand model with a fixed demand profile is expressed

by (7.3.4) and (7.3.5) connecting path flows to path travel times for a given departure

time τ .

Considering now discrete time dynamic demand models, the necessary modifi-

cations to the previous discussion are straightforward. The only difference is that

alternative departure times are the discrete intervals [j − 1], [j ], [j + 1], or their

representative instants τj−1, τj , τj+1. Simultaneous departure time and path choice

probabilities are thus expressed as pod,k[τj/τd ]. A multinomial logit specification

can be:

pod,k[τj/τd ] =
exp(Vk[τj/τd ])

∑

τj ′

∑

k′∈Kod
exp(Vk′ [τj ′/τd ])

Alternatively the probability could be expressed using a partial share specifica-

tion similar to (7.3.2c) introducing a correlation structure among adjacent departure

intervals, for example, with a cross-nested logit model.

The previous results for choice models and systematic utility specifications ap-

ply also to the discrete departure time case. Discrete departure time models can
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be adopted for the continuous flows. In fact, some specifications of continuous de-

parture time choice models assume that travelers do not choose among an infinite

number of departure instants, but rather among a finite number of time intervals

(e.g., five minutes long), and that actual departure times are uniformly distributed

within the chosen interval. In this case, the multinomial logit probability of leaving

at time τ(j) following path k would be:

pod,k

(

τ(j)/τd

)

=
1

DT

exp(Vk[j/τd ])
∑

j ′

∑

k′∈Kod
exp(Vk′ [τj ′/τd ])

7.4 Demand–Supply Interaction Models for Continuous Service

Systems

Demand–supply interaction models for within-day dynamic continuous service sys-

tems are conceptually analogous to those described for the equivalent static systems.

In the following sections, formal results are given for both uncongested and con-

gested network assignment. These can be approached either through equilibrium or

through dynamic process models. Both the continuous and discrete flow cases are

discussed for uncongested and user equilibrium assignment models; on the other

hand, dynamic process models, with and without information, are formulated only

for the discrete flow case.

Dynamic Traffic Assignment (DTA) models are rather complex and few oper-

ational formulations have been developed (one of these is presented in Sect. 7.5).

Furthermore, compared to the static case, few theoretical results on the existence

and uniqueness of DTA solutions are currently available.

For simplicity, the following considers only (within-day dynamic) demand mod-

els with desired departure time τo. Extension to the case of desired arrival time is

straightforward.

7.4.1 Uncongested Network Assignment Models

Dynamic assignment models for uncongested networks can be represented schemat-

ically as in Fig. 7.16. In this case link travel times do not depend on link occupancies.

In the continuous-flow case, the assignment model can be specified as

tf (τ ) = t0(τ ) (7.4.1a)

T T f (τ ) = Γ
(

t0(τ )
)

(7.4.1b)

V od(τ/τo) =βtT T (τ ) + EC(τ ) + βeEDP(τ, τo)

+ βlLDP(τ, τo) (7.4.1c)
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Fig. 7.16 Within-day dynamic traffic assignment for uncongested networks

h(τ ) =

∫ T

0

P
(

V od(τ/τo)
)

· d(τo) dτo (7.4.1d)

f (τ ) = Φ
(

h(τ ), t0(τ )
)

(7.4.1e)

Equations (7.4.1c) and (7.4.1d) represent the within-day dynamic demand mod-

els. On the other hand, (7.4.1a), (7.4.1b), and (7.4.1e) make up the supply model

consisting of the link performance model, the path performance model, and the
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dynamic network flow propagation model, respectively. The uncongested dynamic

assignment model (UND) can be deterministic (DUND) or stochastic (SUND) de-

pending on the path choice model used in (7.4.1d).

The Dynamic Network Loading model (DNL) has been formulated symbolically

in terms of an unspecified link flow vector f , because, if FIFO holds, the different

formulations in terms of in-flow, out-flow, or link occupancy are equivalent. For

instance, (7.4.1e) can be stated in terms of in-flows on the link a as (see (7.2.1b)

and (7.2.13a))

ua(τ ) =
∑

k

δak · hk
(

τ − T b
a,k(τ )

)

·

i−1
∏

j=1

(

1 −

dtb
ak
j

(τL

ak
j

)

dτ

)

where, for each path k that passes through link a, the second term product is ex-

tended to all the links that precede a along k (i.e., it is extended until the (i − 1)th

link of path k, where ak
i = a, ∀k ⊇ a) and the backward travel time T b

a,k(τ ) are in-

dependent of link flows (the network being uncongested) but, in general, dependent

on time τ :

T b
a,k(τ ) = T 0

a,k

(

t0(τ )
)

(7.4.1f)

From (7.4.1), in principle, both demand and link travel times vary with τ . How-

ever, in the absence of congestion, (7.4.1) can be solved sequentially to obtain path

performances and link flows. In uncongested networks it is usually assumed that link

travel times are constant over time; that is, t
f
a (τ ) = t0

a . Thus the system of equations

(7.4.1) becomes:

tf (τ ) = t0 (7.4.2a)

T T f (τ ) = Γ (t0) (7.4.2b)

V od(τ/τo) =βtT T (τ ) + EC(τ ) + βeEDP(τ, τo)

+βlLDP(τ, τo) (7.4.2c)

h(τ ) =

∫ T

0

P
(

V od(τ/τo)
)

· d(τo)d(τo) (7.4.2d)

f (τ ) = Φ
(

h(τ ), t0
)

(7.4.2e)

Here the only exogenous dynamic elements are the demand flows, which induce

time-varying path and link flows. In particular, (7.4.2b) becomes:

T T
f

k (τ ) =
∑

k

δak · t0
d ∀τ

or

T T f (τ ) = ∆T · t0 ∀τ
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In the discrete-flow case, the uncongested network assignment model can be for-

mally specified as

tf (τj ) = t0
j (7.4.3a)

T T f (τj ) = Γ (t0
j ) (7.4.3b)

V od(τj/τo) =βtT T f (τj ) + EC(τj ) + βeEDP(τj , τo)

+βlLDP(τj , τo) (7.4.3c)

h(τj ) =
∑

τo

P
(

V od(τj/τo)
)

· d(τo) (7.4.3d)

f [j ] = Φ
(

h(τj ), t
0
j ′; j

′ < j
)

(7.4.3e)

Note that time dependency in the above equations can be expressed equivalently

in terms of the representative time instant of interval j , τj , or simply as [j ].

Equations (7.4.3c) and (7.4.3d) represent the within-day dynamic demand mod-

els and (7.4.3a), (7.4.3b), and (7.4.3e) represent, respectively, the link performance,

path performance, and dynamic network flow propagation components of the overall

supply model. The DNL can also be stated as

f [j ] =
∑

l≤j

∆[l, j ] · h[l]

Note that, if link travel times are constant for all time intervals of the simulation

period (i.e., t
f
a (τ ) = t0

a ) the matrix ∆ does not depend on the starting interval l, but

only on the difference between j and l.

7.4.2 User Equilibrium Assignment Models

Dynamic equilibrium assignment on congested networks can be specified through

fixed-point models by combining supply and demand models. For within-day dy-

namic systems, the dependency of travel times on link flows (loads) introduces two

feedback loops (see Fig. 7.17): a path cost and flow loop that exists in static models,

and a link flow and link travel time loop that is unique to dynamic models.

In the continuous-flow case, user-equilibrium models can be formally stated as a

fixed-point problem in travel times, costs, and flows. The problem is derived from

the following system of nonlinear equations.

tf (τ ) = tf
(

f (τ )
)

(7.4.4a)

T T f (τ ) = Γ
(

tf (τ ′); τ ′ ≤ τ
)

(7.4.4b)

V od(τ/τo) =βtT T f (τ ) + EC(τ ) + βeEDP(τ, τo)

+βlLDP(τ, τo) (7.4.4c)
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Fig. 7.17 Dynamic user equilibrium traffic assignment

h(τ ) =

∫ T

0

P
(

V od(τ/τo)
)

· d(τo)d(τo) (7.4.4d)

f (τ ) = Φ
(

h(τ ), tf (τ ); τ ′ ≤ τ
)

(7.4.4e)

Equation (7.4.4e) expresses the dependency of f (τ ), the link flow vector at

time τ , on the path flow vectors h and on link travel time vectors t in all previ-

ous time instants τ ′ < τ . This can be more explicitly stated, for instance, in terms of
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in-flows on a link a, as (see Sect. 7.4.1)

ua(τ ) =
∑

k

δak · hk
(

τ − T b
a,k(τ )

)

·

i−1
∏

j=1

(

1 −

dtb
ak
j

(τL

ak
j

)

dτ

)

where the instants (previous to τ) in which path flows leave, reaching link a in τ ,

are expressed as a function of backward travel time T b
a,k(τ ) (defined by (7.2.19)),

and dependence of the flow entering a, in τ , on travel times on the links preceding

it along the paths that cross a, in all the previous instants, is included in the product.

Below is a formal fixed-point specification of dynamic user-equilibrium conti-

nuous-flow models in terms of link flows:

f ∗(τ ) = Φ

(

∑

τo

P
(

βtΓ
(

t
(

f ∗(τ ′)
)

+ EC
(

t
(

f ∗(τ ′)
)

+ βeEDP(τ, τo)

+ βlLDP(τ, τo)
)

· dτo , tf
(

f ∗(τ ′)
)

; τ ′ < τ

)

Dynamic user equilibrium models may be deterministic or stochastic depending

on the model of path and departure time choice. Existence and uniqueness con-

ditions for continuous-flow dynamic user equilibrium models are currently being

studied (see the reference notes at the end of this chapter).

In the discrete-flow case, the models can be formulated as follows.

tf (τj ) = tf
(

f (τj )
)

(7.4.5a)

T T f (τj ) = Γ
[

tf (τj ′); j ′ = 1, . . . , j
]

(7.4.5b)

V od(τj/τo) =βtT T f (τj ) + EC(τj ) + βeEDP(τj , τo)

+βlLDP(τj , τo) (7.4.5c)

h(τj ) =
∑

τo

P
(

V od(τj/τo)
)

· d(τo) (7.4.5d)

f (τj ′) = Φ
(

h(τj ′), tf (τj ′); j ′ = 1, . . . , j
)

(7.4.5e)

Equation (7.4.5e) is analogous to (7.4.1e) for the uncongested network case. It

can be stated more explicitly as

f [j ] =
∑

l≤j

∆[l, j ] · h[l] (7.4.5f)

The difference with respect to the uncongested network is that, in this case, ∆ is

a function of link travel times t in all the previous intervals up to interval j :

∆[l, j ] = ∆[l, j ]
(

tf (τi); i = l, . . . , j
)

(7.4.5g)
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Below is a formal fixed-point specification of a dynamic user equilibrium model.

f ∗[τj ] =
∑

τo

∑

l=1,...,j

∆[l, j ]
(

tf
(

f ∗[i]; i = l, . . . , j
))

P
[

βtΓ
(

tf
(

f ∗[i]; i = l, . . . , j
))

+ EC
(

tf
(

f ∗[i]; i = l, . . . , j
))

+ βeEDP(τl, τo) + βlLDP(τl, τo)
]

· dτo

Existence and uniqueness conditions for the fixed-point formulation have not

been stated; however, in this case it is more difficult to arrive at general conditions,

if indeed it is possible at all, given the discreteness of time and flows (i.e., packets).

7.4.3 Dynamic Process Assignment Models

Dynamic process models require models that simulate the mechanisms of learning

(utility updating) and choice updating (see Fig. 7.18). These models can be seen as

doubly dynamic assignment models.

As in the static case, to formalize a dynamic process model we need to distin-

guish between expected (or anticipated) and actual path performance attributes on

day t . The former are the attributes (e.g., the travel time on a given path) that users

expect to encounter on the network on a given day t ; the latter are what they actu-

ally experience. Recall that, because of inertia and/or habit, users do not necessarily

reconsider their choices every day t .

In the discrete-flow case, let us consider, for the sake of simplicity, that path

travel time is the only attribute updated from one day to the next and let:

T T
f,t
exp(τj ) be the (forward) travel time that users expect to experience on day t if

they depart at representative time instant τj

T T
f,t
act (τj ) be the (forward) travel time that users actually experience on day t when

they depart at representative time instant τj

A deterministic dynamic process model, in which the travel time and choice up-

dating models are simple exponential filters, can be formally stated as follows.

tf,t−1(τj ) = tf,t−1
(

f (τj )
)

(7.4.6a)

T T
f,t−1
act (τj ) = Γ

(

tf,t−1(τj ′); j ′ = 1, . . . , j
)

(7.4.6b)

T T
f,t
exp(τj ) = βT T

f ,t−1
act (τj ) + (1 − β)T T

f,t−1
exp (τj ) (7.4.6c)

V t
od(τj/τo) =βtT T

f,t
exp(τj ) + EC(τj ) + βeEDP(τj , τo)

+βlLDP(τj , τo) (7.4.6d)

ht (τj ) = α
∑

τo

P
(

V t
od(τj/τo)

)

· d(τo) + (1 − α) · ht−1(τj ) (7.4.6e)
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Fig. 7.18 Dynamic process assignment model (without information)

f t [j ] = Φ
(

ht (τj ′), tf,t (τj ′); j ′ = 1, . . . , j
)

(7.4.6f)

where β and α are, respectively, the weight given to the experience of the previous

day t − 1 and the fraction of users reconsidering their choice (assumed here to be

constant for each day t).

Note that given the mesoscopic nature of the model, models to update individual

packets can be easily implemented. In this case, for instance, it is possible to update

expectations based only on the travel time experienced in the actual prior day trip.

Dynamic process models for within-day dynamic systems can be expanded to

include real-time information that may be available to some users. This class of



7.4 Demand–Supply Interaction Models for Continuous Service Systems 463

Fig. 7.19 Dynamic process assignment model (with pre-trip information)

assignment model is currently the subject of active development due to growing

interest in Advanced Traveler Information Systems (ATIS). Two cases may be dis-

tinguished: information is available only before starting a trip (i.e., pre-trip infor-
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mation) and information is available during the journey (i.e., en-route information).

The former case requires other demand models that represent the information acqui-

sition process (see Fig. 7.19); the latter requires, in addition, models that simulate

users’ decisions at diversion nodes to comply with prescriptive information or to

reconsider prior choices based on updated information (see Fig. 7.20)

Dynamic process models may be deterministic or stochastic, just as within-day

static models, depending on assumptions made about the variables involved (average

or deterministic variables or random variables). Full specification of these models

requires assumptions on the type of information given and the information strategy,

that is, how the information disseminated to users is related to the actual system

state (see Fig. 7.21). In general, several information strategies are possible: ATIS

can provide, for instance, historical information based on network performances in

previous time periods with similar characteristics (e.g., time of day, day of week,

weather conditions, etc.), real-time information on prevailing network conditions,

or forecasts of what is going to happen on the network (i.e., predictive information).

It is worth noting that predictive information is derived from forecasts of future

conditions, but these conditions are themselves affected by how users react to the

predictions that they receive. In other words, there is a circular dependency between

predictive information and network performance; this can again be seen as a fixed-

point problem. Furthermore, based on the type of information provided, any of these

information systems can be described as descriptive (i.e., travel or congestion phe-

nomena) or prescriptive (i.e., route guidance or turning movements).

Due to the multiple possible types of information and the necessity to distinguish

between user categories (e.g., informed and noninformed, regular and nonregular,

etc.) it is not possible to develop a general formulation for dynamic assignment

models with ATIS; for this reason these models are not described here.

7.5 Dynamic Traffic Assignment with Nonseparable Link Cost

Functions and Queue Spillovers6

In this section, with respect to the formulation described in Sect. 7.4.2, two main im-

provements are introduced, thus achieving the possibility of solving the within-day

Dynamic Traffic Assignment (DTA) problem on large road networks while simulat-

ing explicitly the formation and dispersion of vehicle queues.

In Sect. 5.4 it was shown that the equilibrium flow pattern can be expressed as

the solution of a fixed-point problem obtained by combining: (a) the supply model

with the demand model; or (b) the uncongested network assignment map7 and flow-

dependent link cost functions, thereby making it possible to use an implicit path

enumeration approach. In the static case the equivalence of the two formulations

6Guido Gentile and Natale Papola are the co-authors of this section.

7Under the assumption of probabilistic path choice behavior, the one-to-many map becomes a

one-to-one function.
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Fig. 7.20 Dynamic process assignment model (with pre-trip/en-route information)
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Classification Example

Information type

Descriptive “Congestion ahead”

“Travel time to

airport 5 min”

Prescriptive “Turn left”

Pre-trip Information available
via the Internet, or

Information television

availability En-route Variable Message

Signs (VMS) or

In-Vehicle Navigation

Systems (IVNS)

Information Historical

time-dimension Real-time (or prevailing)

Predictive (or self-consistent)

Fig. 7.21 Classification of information types

is proved and the uncongested network assignment map, also called the Network

Loading Map (NLM), is available without requiring the explicit enumeration of

path alternatives for each of the route choice models generally utilized in practice

(deterministic, logit, probit). The first improvement consists then in extending ap-

proach (b) to the dynamic case, thus paving the way for the implementation of robust

solving algorithms.

The second improvement consists in extending the continuous formulation of

the DTA developed in the previous sections, so as to reproduce spill-back conges-

tion within the Link Performance Model (LPM), which is a crucial step towards

satisfactory simulation of highly congested networks.

The dynamic user equilibrium is then expressed as a fixed-point problem where

the current variables are the temporal profiles of the link flows, consistent with the

scheme depicted in Fig. 7.22.

Note that Fig. 7.22 shows that the approach followed in this section does not

involve the solution of a Dynamic Network Loading (DNL) problem within the

fixed-point formulation, thus achieving the reciprocal consistency between flows

and travel times only jointly with the equilibrium.

Finally, none of the models presented in this section (unlike many others pro-

posed in the literature) requires a limitation to be set on the time intervals intro-

duced for solving the continuous formulation. In practice, this enables us to define

a few long intervals of five to ten minutes to cover the simulation period, instead

of many short intervals of a few seconds, thus making a decisive step towards the

implementation of efficient DTA algorithms.
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Fig. 7.22 Scheme of the fixed-point formulation for the DTA with spill-back congestion without

explicit path enumeration

7.5.1 Network Performance Model

We now introduce a particular link performance model capable of reproducing

queue spillovers, which is the main traffic phenomenon occurring on highly con-

gested road networks. The prevalent nonseparability of this link cost function has

suggested the term Network Performance Model (NPM). Because the NPM can be

easily plugged into any dynamic model requiring an LPM, its relevance goes beyond

the specific formulation of DTA presented in this section.

Proper simulation of spill-back congestion requires the formation and dispersion

of vehicle queues to be explicitly represented under the condition that the queue

length never exceeds the link length. To this end, any interaction among the flows

on adjacent links will be translated in terms of time-varying link entry and exit

capacities. The spill-back phenomenon is then modeled as a hypercritical flow state,

either propagating backwards from the endpoint of a link until its initial point, or

originating on the latter, which reduces the capacities of the links belonging to its

backward star and eventually affects their flow states.

The key idea here is to introduce the spill-back representation directly in the

LPM, without affecting the network flow propagation model internal to the NLM.

On this basis the DTA can still be formulated as the system of a NLM based on

implicit path enumeration and of a suitable LPM. The latter will be provided by the

NPM, which is a system of spatially nonseparable macroscopic flow models specif-

ically aimed at simulating the propagation of congestion due to queue spillovers

among adjacent links.

To represent the spill-back phenomenon, we assume that each link is character-

ized by two time-varying bottlenecks, one located at the initial point and the other

located at the end point, called “entry capacity” and “exit capacity,” respectively.

The entry capacity, bounded from above by the physical capacity which is typi-

cally related to the number of road lanes, is meant to reproduce the effect of queues
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propagating backwards from the endpoint of the link itself, which can reach the ini-

tial point, thereby inducing spill-back conditions on the upstream links. In this case

the entry capacity is set to limit the current inflow at a value that keeps the number

of vehicles on the link equal to the storage capacity currently available, which is

related to the queue density along the link. The latter changes dynamically in time

and space as a function of the outflows at previous instants. Specifically, any change

in the rate of the space freed by vehicles exiting the link at the head of the queue

takes some time to become actually available at the tail of the queue, whereas the

jam density multiplied by the length is just the upper bound of the storage capacity,

which can be reached only if the queue is not moving.

The exit capacity, bounded from above by the saturation capacity which is typ-

ically related to the regulation of the road intersection, is meant to reproduce the

effect of queue spillovers propagating backwards from the downstream links, which

in turn may generate hypercritical flow states on the link itself. For given inflows,

outflows, and intersection priorities,8 the exit capacities are obtained as a function

of the entry capacities based on flow conservation at the node.

The NPM is specified as a circular chain of three models, namely the “exit capac-

ity model,” the “exit flow and travel time model,” and the “entry capacity model,”

whose system can be formulated and solved through a fixed-point problem to de-

termine the temporal profiles of the bottleneck capacities and the link exit flows,

for given inflows and outflows, and the link travel times and costs are determined

accordingly. The three models, described separately in the following sections, are

synthesized in Fig. 7.23, which shows how the entry capacities may be taken as

current variables in the fixed-point formulation of the NPM.

It is worth pointing out that the exit flows, which are derived from the forward

propagation of the inflows, are by definition different from the outflows, although

the two coincide at the solution of the DNL9 which in the proposed formulation is

reached jointly with equilibrium.

To keep focusing on the extreme points of the link and avoiding its spatial dis-

cretization into many short segments, a wave model is assembled as the composition

of three elements: the initial bottleneck, the running segment, and the final bottle-

neck. The general properties of bottlenecks and segments are analyzed in the context

of the Simplified Theory of Kinematic Waves (STKW) based on cumulative flows

in Appendix 7.A.

The initial bottleneck keeps the flow entering the running segment below its phys-

ical capacity, specified by the fundamental diagram, and reproduces the effects of

queue spillovers coming from the initial point of the link itself.

The running segment aims at simulating the movement of vehicles along the link

when no queue is present (i.e., in hypocritical conditions), and the effect of spill-

back on the entry capacity when the queue reaches the initial point of the link.

The final bottleneck keeps the flow exiting the running segment below its satu-

ration capacity, which is usually lower than the physical capacity due to the pres-

8Intersection priorities are usually assumed proportional to the saturation capacities.

9The DNL guarantees that travel times and flows are reciprocally consistent.
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Fig. 7.24 Link model and flow notation

ence of an intersection at the end of the link, and reproduces the effects of queue

spillovers coming from the links exiting from such intersection.10

Because the above three elements are in series, the leaving flow of one element

corresponds to the arriving flow of the subsequent one. Thus, we deal with five dis-

tinct flow temporal profiles and two time-varying capacity constraints, as depicted in

Figs. 7.24 and 7.25, where the link and node models are sketched, respectively11:

u(τ) the inflow, that is, the arriving flow to the initial bottleneck for each time τ ,

with cumulative U(τ)

µ(τ) the entry capacity of the initial bottleneck, with cumulative M(τ)

γ (τ) the leaving flow from the initial bottleneck, which is equal to the arriving

flow to the running segment, with cumulative Γ (τ)

λ(τ) the leaving flow from the running segment in hypocritical condition, which

is equal to the potential arriving flow to the final bottleneck, with cumula-

tive Λ(τ)

ψ(τ) the exit capacity of the final bottleneck, with cumulative Ψ (τ)

φ(τ) the exit flow, that is, the leaving flow from the final bottleneck, with cumu-

lative Φ(τ)

w(τ) the outflow, with cumulative W(τ), which unlike the exit flow satisfies flow

conservation at nodes when coupled with inflows12

Performances are denoted as follows.

10The saturation capacity can be assumed to be time-varying, so as to simulate the alternations

in a traffic light between green and red; however, in many applications these are insignificant with

respect to the within-day dynamic of traffic, so that the saturation capacity is often taken as constant

in time, thus aiming at reproducing only the average effect of the junction regulation.

11The index referring to the link is omitted whenever unambiguous.

12Inflows and outflows are also referred to for short as link flows, because they are the current

variable of the fixed-point formulating the DTA, whereas all other flow and capacity variables are

internal to the NPM.
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Fig. 7.25 Node model and flow notation

t (τ) the exit time from the final bottleneck, for vehicles arriving at the running

segment at time τ 13

c(τ ) the link cost, for vehicles arriving at the running segment at time τ

Finally, we introduce below the notation for the main link characteristics:

S saturation capacity

C physical capacity

L length

ω◦(q),ω+(q) hypocritical and hypercritical wave speed as a function of flow q

v◦(q), v+(q) hypocritical and hypercritical vehicular speed as a function of flow q

When “mergings” and “diversions” are separated at the graph level, as often oc-

curs to represent turn penalties and prohibitions, the maneuver flows, which play a

role when the available entry capacity at a node is split among its upstream links,

13At the solution of the DNL, the vehicles entering the link arrive immediately at the running

segment, because by definition no vehicle queues at the initial bottleneck, otherwise meaning that

spill-back conditions are violated.
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coincide with the link inflows and outflows, respectively.14 Therefore, to simplify

exposition, in the following we consider only these two types of nodes.15

7.5.1.1 Exit Capacity Model

In this section, the exit capacities of upstream links are determined on the basis of

the entry capacities of the downstream links, and of the link flows at the node.

When considering a merging x (i.e., an intersection with a single exiting link)

the problem is to split the entry capacity µb(τ ) of the link b = FS(x) available at

time τ among the links belonging to its backward star, whose outflows compete to

get through the intersection. In principle, it is assumed that the available capacity is

distributed proportionally to the saturation capacity Sa of each link a ∈ BS(x).16

However, in this way it may happen that for some link a the outflow wa(τ )

is lower than the share of entry capacity assigned to it, so that only a lesser por-

tion of the latter is actually exploited. Let Ωb(τ ) ⊆ BS(x) be the set of such links.

The rest of the entry capacity µb(τ ) −
∑

a∈Ωb(τ) wa(τ ) shall then be distributed

among the links making up the complementary set BS(x)\Ωb(τ ) with the same

partition criterion. Moreover, when no spill-back phenomenon is active, that is,
∑

a∈BS(x) wa(τ ) < µb(τ ), the exit capacity ψa(τ ) of each link a ∈ BS(x) shall

be set equal to its saturation capacity Sa .

On these bases, we have:

ψa(τ ) = Sa · ξb

(

τ,Ωb(τ )
)

(7.5.1)

Ωb(τ ) =
{

a ∈ BS(x) : wa(τ ) < ψa(τ )
}

(7.5.2)

where we denoted for any given set of links Ω ⊆ BS(x):

ξb(τ,Ω) =

{

µb(τ )−
∑

a∈Ω wa(τ )
∑

a∈BS(x)\Ω Sa
if Ω ⊂ BS(x);

1 otherwise.
(7.5.3)

Note that a set Ωb(τ ) satisfies jointly (7.5.1) and (7.5.2) if and only if every link

a ∈ BS(x) with a saturation ratio wa(τ )/Sa < ξb(τ,Ωb(τ )) belongs to Ωb(τ ) it-

self and every link a with wa(τ )/Sa ≥ ξb(τ,Ωb(τ )) does not. Because it is based

on (7.5.3) ξb(τ,Ω) decreases adding to Ω links for which wa(τ )/Sa > ξb(τ,Ω),

14The extension of the exit capacity model to intersections with both mergings and diversions

requires the DTA to be formulated in terms of maneuver flows at nodes.

15This leads to overlooking the phenomenon of performance deterioration due to a misuse of in-

tersection capacity, which occurs when at a real node working as several separate mergings some

users occupy the intersection although they cannot cross it due to the presence of a queue on their

successive link. In this case, we should assume “polite behavior” where users wait until the neces-

sary space becomes available.

16More general partition criteria require the introduction of priority coefficients that scale oppor-

tunely the saturation capacities.
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whereas it increases removing from Ω links for which wa(τ )/Sa < ξb(τ,Ω),

and vice versa. The partition set Ωb(τ ) can be easily proved to be unique, and

it can be simply obtained by iteratively adding to an initially empty set Ω∗

each link a ∈ BS(x)\Ω∗ such that wa(τ )/Sa < ξb(τ,Ω
∗). Finally, we prove that

(7.5.1) yields ψa(τ ) ≤ Sa for each link a ∈ BS(x). Assume by contradiction that

ξb(τ,Ωb(τ )) > 1. Based on (7.5.1), we obtain ψa(τ ) > Sa ; moreover, by definition

Sa ≥ wa(τ ). Based on (7.5.2) we then have Ωb(τ ) = BS(x), which, considering

(7.5.3), contradicts the hypothesis. The fact that (7.5.1) also holds for links belong-

ing to Ωb(τ ) enhances the continuity of the model.

When considering a diversion x, that is, an intersection with a single entering

link, the problem is to determine at the generic time τ the most severe reduction to

the outflow from the link a = BS(x) among those produced by the entry capaci-

ties of the links belonging to its forward star. Again, when no link is spilling back,

the exit capacity is set at the saturation capacity. When only one link b ∈ FS(x) is

spilling back, that is, ub(τ ) ≥ µb(τ ), the exit capacity ψa(τ ) scaled by the share

of vehicles turning on link b is set equal to the entry capacity in order to ensure

capacity conservation at the node while satisfying the FIFO rule applied to the ve-

hicles exiting from link a : ψa(τ ) ·ub(τ )/wa(τ ) = µb(τ ). When more than one link

b ∈ FS(x) is spilling back, the exit capacity is the most penalizing among the above

values. On this basis, we have:

ψa(τ ) = min
{

Sa;µb(τ ) · wa(τ )/ub(τ ) : b ∈ FS(x),ub(τ ) ≥ µb(τ )
}

(7.5.4)

Combining the solution of system (7.5.1) to (7.5.3) with (7.5.4), we can express

the exit capacity model in the following compact form.

ψ = ψ(u,w,µ;S) (7.5.5)

Note that, in contrast with the models presented in the following two subsections,

this model is spatially nonseparable, because the exit capacities of all the links be-

longing to the backward star of a given node are determined jointly, and temporally

separable, because all relations refer to the same instant.

7.5.1.2 Exit Flow and Travel Time Model

The model input is the temporal profile of the inflow (i.e., the flow arriving at the

initial bottleneck) and the temporal profile of the two bottleneck capacities, whereas

the output of the model is the temporal profile of the exit flow (i.e., flow leaving the

final bottleneck) and then the temporal profile of the exit time, for any given entry

instant. However, as shown in Fig. 7.23, although the exit flow model is involved

in the fixed-point formulation of the NPM, the travel time model is not, and link

performances are therefore obtained only after mutually consistent entry and exit

capacities have been found.
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Applying (7.A.6) to the initial bottleneck, we determine the arriving flows to the

running segment which are consistent with the time-varying entry capacity, corre-

sponding to given inflows:

Γ (τ) = min{U(σ) + M(τ) − M(σ) : σ ≤ τ } (7.5.6)

Applying (7.A.45) to the endpoint, we forward propagate the arriving flow to

the running segment throughout the link as being hypocritical, thus obtaining the

potential arriving flow at the final bottleneck:

Λ(τ) = min
{

Γ (σ) + γ (σ ) · L ·
[

1/ω◦
(

γ (σ )
)

− 1/v◦
(

γ (σ )
)]

: σ

+ L/ω◦
(

γ (σ )
)

= τ
}

(7.5.7)

The above equation exploits the analytical solution of the STKW based on cu-

mulative flows. It’s worth noting that, indeed, any link performance model yielding

exit flows for given entry flows can replace (7.5.7) to simulate the running segment.

Applying (7.A.6) to the final bottleneck, we determine the exit flows that are

consistent with the time-varying exit capacity, corresponding to given arriving flows

at the final bottleneck:

Φ(τ) = min
{

Λ(σ) + Ψ (τ) − Ψ (σ) : σ ≤ τ
}

(7.5.8)

A full understanding of the above equations requires thorough reading of Appen-

dix 7.A, to which the reader is referred for any detail.

As shown in the scheme of Fig. 7.23, when the above exit flow model is ap-

plied, the exit capacities are consistent with the entry capacities to enable spill-back

propagation through the nodes. This implies that the delay generated by the initial

bottleneck is taken into account as the delay incurred at the final bottlenecks within

the travel times of the upstream links. Indeed, this is exactly the main mechanism of

the NPM, whose role is to transfer to backward links the excess travel time that any

separable LPM would attribute to a link where spill-back conditions occur.

Therefore, the link exit time t (τ ) at time τ is obtained, as depicted in Fig. 7.26, by

applying (7.A.2) to the sequence of the sole running segment and final bottleneck,

that is, without the initial bottleneck, through the following implicit expression:

Φ
(

t (τ )
)

= Γ (τ) (7.5.9)

This way we avoid computing the initial bottleneck delay twice; moreover, at the

solution of the DNL (i.e., at equilibrium, in this case) the entry capacity constraint

u(τ) ≤ µ(τ) is satisfied at any time τ , and thus such delay is null.

In presence of time intervals with null flow, (7.5.9) does not allow us to obtain a

single value of exit time. To take these circumstances into account, once the cumu-

lative exit flow temporal profile is known, the exit time temporal profile is calculated

conventionally as

t (τ ) = max
{

τ + L/v◦(0),min
{

σ : Φ(σ) = Γ (τ)
}}

(7.5.10)
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Fig. 7.26 Computation of the link exit time based on the cumulative leaving flow from the initial

bottleneck and the cumulative exit flow from the link by applying the FIFO rule

where L/v◦(0) is the free flow travel time of the running segment.

Combining (7.5.6) with (7.5.7) and the result with (7.5.8), we can express the

exit flow model in the following compact form for all the links at once.

Φ = Φ(u,µ,ψ) (7.5.11)

where bold symbols denote temporal profiles of vector variables.

Combining (7.5.6) with (7.5.10), we can express the travel time model in the

following compact form.

t = t (u,µ,Φ) (7.5.12)

7.5.1.3 Entry Capacity Model

In this section, we represent the effect on the entry capacity of queues which, being

generated at the endpoint of the link by the exit capacity, reach the initial link point,

thus inducing spill-back conditions.

To better explain the proposed approach for modeling the phenomenon of queue

spillovers, let us assume, for the moment, that the queue is incompressible; that

is, only one hypercritical density exists. In this case, hypercritical kinematic waves

have an infinite speed (see Fig. 7.A.3). Therefore, any hypercritical flow state oc-

curring at the endpoint would propagate backward instantaneously, so that at any

instant when the queue exceeds the link length, the entry capacity would be equal to

the exit capacity. Note that also in this case the queue does not reach the initial point

instantaneously, because there, consistent with the Newell Luke Minimum Princi-

ple (NLMP) presented in Appendix 7.A, the exiting hypercritical flow state does not

prevail on the entering hypocritical flow state until the number of vehicles that have
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entered the link exceeds the number of vehicles that have exited the link plus the

storage capacity, which in this case is constant in time and equal to the link length

multiplied by the hypercritical density.

Actually, in the general case, hypercritical flow states may occur at different den-

sities and their kinematic wave speeds are not only much lower, in absolute value,

than the vehicle free flow speed, implying that the delay affecting the backward

translation in space from the end to the initial point of the flow states produced by

the exit capacity is not negligible, but also different from each other, which gener-

ates a distortion in their forward translation in time.

The spill-back effect on the entry capacity can be investigated by exploiting the

analytical solution of the STKW based on cumulative flows, expressed by (7.A.46).

Using this approach, we can avoid evaluating the queue length temporal profile,

when the aim is only to determine the presence of spill-back. Indeed, this would be

cumbersome, because the speed and density of the queuing vehicles vary over time

and space as a function of the exit capacity. More simply, we just identify the time

intervals when some leaving hypercritical flow state, propagating backward along

the link, reaches the initial point and prevails on the arriving hypocritical flow state.

Applying (7.A.46) to the initial point, we backward propagate the exit flow from

the running segment throughout the link, thus obtaining the potential leaving flow

from the initial bottleneck:

G(τ) = min
{

Φ(σ) + φ(σ) · L ·
[

1/v+
(

φ(σ)
)

− 1/ω+
(

φ(σ)
)]

: σ + L/ω+
(

φ(σ)
)

= τφ(σ ) = ψ(σ)
}

(7.5.13)

where G(τ) is the maximum cumulative flow that can enter the running segment,

consistent with the spill-back phenomenon.

According to the NLMP, the flow state consistent with the spill-back phenom-

enon occurring at the initial point is the one implying the lowest cumulative flow.

Therefore, when at the generic time τ the cumulative inflow U(τ) equals or exceeds

the maximum cumulative flow G(τ), such that spill-back actually occurs at that in-

stant, the derivative dG(τ)/dτ of the latter temporal profile may be interpreted as

an upper bound to the inflow. This permits us to determine the proper value µ(τ) of

the entry capacity that maintains the queue length equal to the link length. When no

spill-back is occurring, µ(τ) is equal to the physical capacity C. Formally, we have:

µ(τ) =

{

dG(τ)/dτ, if G(τ) ≤ U(τ)

C, otherwise
(7.5.14)

Combining (7.5.13) with (7.5.14), we can express the entry capacity model in the

following compact form.17

µ = µ(u,ψ,Φ;C) (7.5.15)

17The dependency of µ on ψ is solely due to the need for backward propagating only the hyper-

critical portions of the exit flow temporal profile.
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7.5.1.4 Fixed-Point Formulation of the NPM

For given link flows the NPM allows us to determine (see Fig. 7.23 and the left-

hand side of Fig. 7.27) link travel times and capacities consistent with the traffic

flow theory that ensure the propagation of congestion through the network. It can be

formulated by combining (7.5.11) and (7.5.5) with (7.5.15), yielding the following

fixed-point problem in terms of entry capacity temporal profiles:

µ = µ
(

u,ψ(u,w,µ;S),Φ
(

u,µ,ψ(u,w,µ;S)
)

;C
)

(7.5.16)

Although not formally proved, the above fixed-point problem behaves as a con-

traction and converges in a few iterations to a solution. However, when travel de-

mand is very high, a solution may not exist due to the possible prevalence of grid-

locks, which are queues spilling over intersections that generated them.18 For given

link flows, the solution to (7.5.16), if any, is denoted as follows.

µ = µ∗(u,w) (7.5.17)

Combining (7.5.17) with (7.5.5), the result and (7.5.17) with (7.5.11), the result

and (7.5.17) with (7.5.12), yields a performance function, expressing the link exit

times in terms of the link flows:

t = t
(

u,µ∗(u,w),Φ
(

u,µ∗(u,w),ψ
(

u,w,µ∗(u,w);S
)))

= t∗(u,w) (7.5.18)

The cost for users entering a link at any given time is assumed to depend on the

travel time at that instant. Hence in compact form we have:

c = ĉ(t) (7.5.19)

Finally, substituting (7.5.18) in (7.5.19), we obtain:

c = ĉ
(

t∗(u,w)
)

= c∗(u,w) (7.5.20)

which jointly with (7.5.18) expresses the LPM synthetically.

7.5.2 Network Loading Map and Fixed-Point Formulation of the

Equilibrium Model

In the following, we briefly address both route choice and network flow propagation

by adopting an implicit path enumeration approach. Referring to users traveling

towards a single destination d , the formulation is based on the concepts of link

18This problem can be alleviated by a proper setting (raising) of priority coefficients to favor cir-

culation in roundabouts and other close cycles of the graph.
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Fig. 7.27 Variables and models of the fixed-point formulations for the NPM (left-hand side) and

for the DTA with spill-back (right-hand side) in terms of link flows f = (u,w)

conditional probability and node satisfaction, whose notation and definitions are

introduced below.

pd
a (τ ) = probability of using link a, conditional on crossing node T L(a) at time τ

zd
x (τ ) = expected value of the maximum perceived utility at time τ , relative to the

paths Kxd connecting node x to d which are considered by the user

It can be proved that the following expressions of the node satisfaction and of the

link conditional probability are consistent with a logit route choice model in which

users consider all and only “efficient” paths (a path is efficient if each of its links is
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efficient):

zd
x (τ ) =

{

θ · ln
(
∑

a∈FS(x)∩EA(d) exp
(−ca(τ )+zd

HD(a)
(ta(τ ))

θ

))

, if x �= d;

0, otherwise

(7.5.21)

pd
a (τ ) =

{

exp
(−ca(τ )+zd

HD(a)
(ta(τ ))−zd

T L(a)
(τ )

θ

)

, if a ∈ EA(d);

0, otherwise
(7.5.22)

where EA(d) is the set of the efficient links that get closer to the destination with

reference to a “distance” pattern on the network which is constant in time.

The solution of the triangular system formed by (7.5.21) in topological order,

combined with (7.5.22), yields the route choice model, which can be expressed in

compact form as

z = z(c, t) (7.5.23)

p = p(z, c, t) (7.5.24)

Similar expressions can be derived for the deterministic case:

zd
x (τ ) =

{

max{−ca(τ ) + zd
HD(a)(ta(τ )) : a ∈ FS(x) ∩ EA(d)}, if x �= d;

0, otherwise

(7.5.25)
{

pd
a (τ ) · [zd

x (τ ) + ca(τ ) − zd
HD(a)(ta(τ ))] = 0, if a ∈ EA(d);

0, otherwise
(7.5.26)

where by definition it is pd
a (τ ) ≥ 0 and

∑

a∈FS(x)

pd
a (τ ) = 1. (7.5.27)

Because the solution to the system (7.5.26) and (7.5.27) is nonunique, when more

than one link exiting from node x yields the maximum utility zd
x (τ ), the symbol

“=” in (7.5.24) should be replaced by the symbol “∈”. The generalization of the

deterministic route choice model to the case where the set of alternatives coincides

with all acyclic paths is available but lies outside the scope of this outline. Moreover,

the deterministic model can be exploited within a Monte Carlo simulation to address

the case of probit route choice.

We assume that the origins and destinations are connected to the rest of the net-

work by dummy links or infinitesimal length with infinite physical and saturation

capacities, so that for all other nodes the flow conservation equation holds.

Therefore, the inflow ud
a(τ ) on the generic link a is given by the link conditional

probability pd
a (τ ) multiplied by the flow exiting from node T L(a). The latter is
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given, in turn, by the sum of the outflow wd
b (τ ) from each link b ∈ BS(T L(a)) ∩

EA(d) of its efficient backward star, whereas the inflow ud
FS(o)(τ ) on the dummy

link FS(o) exiting from origin o is instead equal to the demand flow Dd
o (τ ) from o

to d . Then we have:

ud
a(τ ) =

{

Dd
HD(a)(τ ), if T L(a) is an origin

pd
a (τ ) ·

∑

b∈BS(T L(a))∩EA(d) w
d
b (τ ), otherwise

(7.5.28)

Based on (7.A.3), given the exit time temporal profile of link a, the outflow is

related to the inflow temporal profile as follows.

wd
a

(

ta(τ )
)

= ud
a(τ )/

[

dta(τ )/dτ
]

(7.5.29)

where the weight dta(τ )/dτ stems from the fact that users enter the link at a certain

rate and exit it at a different rate, which is higher than the previous one, if the travel

time is decreasing, and lower, otherwise.

Obviously, ua(τ ) and wa(τ ) are given by the sum for all destinations of ud
a(τ )

and wd
a (τ ), respectively.

The solution of the triangular system formed by (7.5.28) and (7.5.29) in reverse

topological order, yields the network flow propagation model, which can be ex-

pressed in compact form as

(u,w) = ϕ(p, t;D) (7.5.30)

Combining (7.5.23) with (7.5.24) and the result with (7.5.30) yields a formulation

based on implicit path enumeration of the NLM:

(u,w) = ϕ
(

p(z(c, t), c, t), t;D
)

= ϕ∗(c, t;D) (7.5.31)

On this basis the DTA can be formalized (see Fig. 7.27) as a fixed-point problem

in terms of link flow temporal profiles by substituting into the NLM (7.5.31) the

LPM (7.5.18) to (7.5.20):

(u,w) = ϕ∗
(

c∗(u,w), t∗(u,w);D
)

(7.5.32)

The above fixed-point problem can be, as usual, solved by means of an MSA.

7.6 Models for Transport Systems with Scheduled Services19

Scheduled transportation services, such as those provided by airplanes, trains, and

buses, can be considered discrete in both time and space: they can be accessed only

19Agostino Nuzzolo is the co-author of this section.



7.6 Models for Transport Systems with Scheduled Services 481

Run Line Service Initial Departure Intermediate Terminal

type station time stops station

1 AA Intercity A 9.30 – D

2 BB Regional A 9.50 B/C D

3 AA Intercity A 10.30 – D

4 CC Intercity A 11.30 D E

Fig. 7.28 Time schedule, runs, and lines

at certain times and only at specific locations such as airports, rail stations, and bus

stops. In a within-day dynamic context, supply, demand, and demand–supply inter-

actions for scheduled service systems can be explicitly modeled by starting from the

timetable, which defines runs and lines (see Fig. 7.28). A run r represents a connec-

tion with a given time schedule (e.g., a given train connection), whereas a line ln, as

defined in Chap. 2, may be regarded as a set of runs of similar characteristics (e.g.,

stops, travel times, quality of service, etc.). Within-day dynamic models explicitly

simulate supply and demand for runs rather than for lines, unlike static models for

scheduled service systems described in previous chapters.

Dynamic models to simulate within-day dynamic scheduled service systems dif-

fer according to a number of factors related to system service characteristics. The

main classification factors that apply to dynamic models are frequency, regularity,

and information available to users.

Service frequency can be related directly to the frequency of the line in the ref-

erence period: the number of runs made on the line during such a period or, for

overlapping lines, the sum of the frequencies of all attractive lines connecting the

O-D pair. Service regularity is a measure of how closely the schedule is followed.

Regularity, or rather its opposite, can be measured in different ways depending on

the analysis purpose. If regularity is assumed to influence user behavior in line-based

systems such as buses and trains, deviations from the schedule might, for example,

be related to the average headway of runs belonging to the same line.

Regular services are usually associated with low frequencies, typical of systems

that operate outside of urban areas, such as (intercity) rail or air. By contrast, irreg-

ular services generally correspond to high frequencies, such as bus or underground

lines in urban or metropolitan areas. In any case, frequency and regularity are con-

tinuous variables and their segmentation in terms of “high” and “low” is conven-

tional and somewhat arbitrary. In models, they correspond to different hypotheses

on users’ behavior and to different model systems. As such, they are at the analyst’s

discretion.

Information on services may be available to the user before a trip (i.e., at home)

and/or en route (i.e., at stops). In both cases, the information might include data

on waiting times, travel times, and on-board occupancy. Static information on run

schedules is traditionally available from timetables. Intelligent Transportation Sys-

tems (ITS) have both significantly expanded the range of information available to

the traveler, through Advanced Traveler Information Systems (ATIS), and also im-

proved the performance of transit services, through Advanced Public Transportation

Control Systems (APTCS).
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Different supply and demand models are used to simulate scheduled service sys-

tems depending on their different characteristics. In the case of low frequencies and

regular services, supply is modeled through deterministic dynamic networks. Users

are assumed to have full information before starting their trip, and to choose a spe-

cific run based on expected performance attributes. Models analogous to those used

to represent path choice in continuous service networks (see Sect. 4.3.3.1) can be

applied to represent run choice.

On the other hand, supply models for high frequencies and irregular services are

based on stochastic dynamic networks. Because users may not have full information

before starting their trip, they are assumed to follow a mixed pre-trip/en-route choice

behavior, as described in Sect. 4.3.3.2. It is commonly assumed that en-route choices

occur at stops and involve the decision to board a particular run or to wait for a later

and more suitable run. The choice of boarding stops is considered made before

starting the trip, inasmuch as it is not influenced by unknown events.

As with other assignment models, dynamic assignment models for scheduled

services can be decomposed into supply, demand, and supply–demand interaction

models. A general framework for within-period dynamic assignment models for

scheduled service systems is shown in Fig. 7.29.

In the following, the two cases of low-frequency regular services and high-

frequency irregular services are addressed separately. It should be noted that dy-

namic traffic assignment for scheduled services is a newer and significantly less

researched subject than DTA for continuous service systems. The models described

here are thus somewhat less established than those that apply to the continuous case.

7.6.1 Models for Regular Low-Frequency Services

For regular low-frequency services, it is assumed that each run follows its scheduled

departure and arrival times, that users have all relevant information before starting

their trips, and that they choose access/egress terminals as well as runs according to

their desired arrival or departure times.

In the following subsections, the within-day dynamic supply, demand, and

demand–supply interaction models for this situation are discussed.

7.6.1.1 Supply Models

In general, within-period dynamic supply models of scheduled services consist of

a network model (graph plus link performance and cost functions) and the network

loading or flow propagation relationships that connect path costs to link costs and

link flows to path flows. The main differences between dynamic supply models for

scheduled and continuous service systems are in the graph model; the convenient

linear loading relationships introduced in Chap. 2 for static systems remain applica-

ble for scheduled service systems.



7.6 Models for Transport Systems with Scheduled Services 483

Fig. 7.29 Schematic representation of within-day dynamic transit assignment models

The graph model used for scheduled services is known as a space–time or di-

achronic graph. In this graph, some nodes represent events that take place at a given

instant and therefore have an explicit time coordinate. Each run is described by

means of a subgraph (Fig. 7.30) whose nodes represent the arrival and departure

times of the vehicles (trains, planes, buses) at stations and whose links represent

either travel from one station to another or dwelling at a given station. Other nodes

represent the arrival or departure of users at the station to board or alight from each

particular run. These nodes are connected, through boarding and alighting links, to

the nodes representing the departure and arrival of that run. The arrival and depar-
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TIMETABLE

Run Terminal A Terminal B Terminal C

Arr. Dep. Arr. Dep. Arr. Dep.

IC634 08.25 08.30 – – 12.00 12.05

IC640 08.55 09.00 10.10 10.15 13.15 13.18

IC741 10.58 11.00 12.35 12.37 14.00 14.02

Fig. 7.30 Diachronic graph representation of scheduled services

ture nodes of different runs at a station may also be connected by links that represent

user transfers between the runs. This set of nodes and links is usually defined as a

run subgraph.

Temporal centroid graphs are another kind of subgraph of a diachronic graph;

they represent the times and locations of trip departures and arrivals. To simulate

users’ choices among different runs or sequences of runs, it is necessary to intro-

duce the desired departure times from the origin τo, or the desired arrival times at

the destination τd . Even if in principle these desired times are continuous variables,

they are typically represented by discrete time intervals (e.g., five minutes long) in

applications. Possible desired departure or arrival times are represented as temporal

centroid nodes having the same spatial coordinates as the zone centroids introduced

in Chaps. 1 and 2, and with time coordinates given by representative instants of

the corresponding discrete time intervals (e.g., one node every five minutes). Nodes

of the temporal centroid graph also represent the actual time of departure from the

origin to the boarding terminal or the actual time of arrival at the destination from

the alighting terminal. The difference between the desired and actual times of de-



7.6 Models for Transport Systems with Scheduled Services 485

parture from the origin is modeled by a link that connects the temporal centroid

(representing the user’s desired departure time) to a temporal node representing the

actual time the user leaves the origin to catch a particular run (Fig. 7.31). A similar

subgraph represents the desired and actual times of arrival at the destination, and the

difference between them.

The graph model for the overall system is usually completed with links that rep-

resent access (egress) from (to) the centroids, and that have the corresponding travel

times and costs. Figure 7.31 shows a diachronic graph for a desired departure time

situation; similar graphs can be built for a desired arrival time.

Diachronic graphs are very convenient because they exploit the intrinsically dis-

crete service structure (the services being available only at certain time instants); this

allows the use of very efficient network algorithms similar to those described for sta-

tic continuous networks. Other models that represent regular services are based on

timetable manipulations. These models are conceptually analogous to the graph rep-

resentation, which we prefer because it is more consistent with the general approach

to supply modeling followed throughout this book.

A trip is represented in a diachronic graph by a path k starting from the desired

departure time on the temporal centroid subgraph and ending at the arrival time

at the destination (see Fig. 7.31). Note that, unlike continuous service graphs, the

desired departure time is uniquely associated with each path. The same sequence of

runs for a different desired departure time corresponds to a different path k′. In the

same way, a path k uniquely identifies the actual departure time (interval) τj .

In diachronic network models, performance variables and their relationships to

flows are generally similar to those described above for static models. As in Chap. 2,

link performance or level of service attributes rnl are variables expressing average

values of individual attributes perceived by users and associated with a given link.

Examples of link attributes are monetary cost, access time, early or late schedule

delay, on-board travel time, number of transfers, egress time, and so on. In the same

way, the average generalized transportation cost, or simply the link cost, is the

total disutility associated with each link. The link cost cl is a (dis)utility function,

typically linear, of link performance attributes that underlie travel-related choices

and, in particular, path choices:

cl =
∑

i

βi · ril

Depending on system characteristics (low frequency and regularity, booking of

seats, etc.), it might be appropriate to assume that link performances and costs are

independent of flows, and to model supply as in a noncongested network. In some

cases, however, it can be appropriate to take into account congestion effects. Be-

cause of congestion, a link’s performance attributes, and thus its average link cost,

may depend on the number of users on the link and, possibly, on other links of the

graph. In congested regional bus or rail systems, for example, passengers may not

all have a seat and may even have difficulty boarding some runs. Referring to on-

board links (see Fig. 7.32), separable cost functions similar to those introduced in

Sect. 2.4.2.2 may be used to represent discomfort (2.4.32) and on-board travel time
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Fig. 7.31 Example of diachronic graph for low-frequency services

(2.4.27). Penalty functions can be adopted to represent the possibility of not being

able to board a given run due to overcrowding.

Note that early or late schedule delay penalties, EAPk(τ, τd) or EDPk(τ, τo) and

LAPk(τ, τd) or LDPk(τ, τo), introduced in Sect. 7.3 for continuous service dynamic

demand models, can be represented as additive costs on the links in the temporal

centroid graph that connect the two nodes corresponding to the desired and actual

departure or arrival times; see Fig. 7.31.

Performance attributes and generalized transportation cost (disutility) can be ex-

tended from links to paths. The average generalized transportation cost gk of a path

k is defined as a scalar quantity that combines the different performance attributes

perceived by users for the whole trip. As in Chap. 2, path cost in the most general

case is made up of two parts: linkwise additive cost, gADD
k , and nonadditive cost,

gNA
k , assuming that they are commensurate:

gk = gADD
k + gNA

k =
∑

l

δlkcl + gNA
k (7.6.1)
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Fig. 7.32 Link classification

at stops

or in matrix terms:

g = ∆T c + gNA (7.6.2)

where ∆ is the link-path incidence matrix. Nonadditive costs must be introduced

when the cost is nonlinear with respect to distance (e.g., fares based only on origin

and destination, independently of the run or sequence of runs followed).

The average number of users (in a time unit) following path k is called the path

flow hk . The link flow fl represents the average number of users on link l. Thus, the

flow on a link that represents a connection between two successive stops of a par-

ticular run is the average number of travelers using that service segment. Following

the terminology and notation of within-day static models, the number of users on a

link or following a path in the diachronic network may be referred to as a flow, even

though it is conceptually and dimensionally a number rather than a rate (users per

time unit).

In within-day dynamic supply models for scheduled services, the flow on a link

can be obtained by summing the flows on all the paths that include the link. This

leads to a linear network loading model identical to the within-day static case:

fl =
∑

k

δlkhk (7.6.3)

f = ∆h (7.6.4)

7.6.1.2 Demand Models

Demand models used in dynamic assignment for low-frequency regular scheduled

service networks are analogous to those described above for discrete-time models

of continuous services; they express the relationship between path flows and path

costs.
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The user flow on a path k connecting O-D pair od and departing in interval [j ]

can be obtained with elastic demand profile models, which simulate departure in-

terval choice as a function of the desired arrival time τd or the desired departure

time τo. In this case, there is no need to model departure time choice separately

from path choice because the former is implicitly included in each path alternative.

Path choice models for scheduled service systems determine the probability

pod,k(τj/τo) of choosing path k and the related actual departure time τj , given O-D

pair od and desired departure time τo (or alternatively desired arrival time τd ). Pre-

trip path choice models assume that users choose the path that minimizes the per-

ceived disutility, taking into account attributes such as access and egress times and

costs, travel time, number of transfers, monetary cost, comfort, and early or late

schedule delay. These attributes are typically combined in a path cost variable as

described in the previous section. Other attributes (e.g., socioeconomic variables)

can be included in a Vok term.

Most models proposed in the literature to simulate path choice also simulate

choice set formation (see Sect. 4.3.3). It is typically assumed that only some of the

topologically feasible paths belong to the choice set. Paths are selected by applying

dominance rules such as:

– Runs that leave before and arrive after other runs in the choice set are not included

in the set.

– Paths must satisfy criteria relative to maximum number of transfers, maximum

time spent in transfers, maximum travel time, and so on.

The total systematic utility of a given path k can thus be expressed as

Vod,k(τj/τo) = gk(τj/τo) + Vok (7.6.5)

Note that in (7.6.5) the departure time τj of the first run and the desired depar-

ture time τo, both associated with path k, have been made explicit in analogy with

continuous service models.

A logit specification of the path choice model for desired departure time τo at the

origin is:

pod,k(τj/τo) =
exp(Vod,k(τj/τo))

∑

k′ exp(Vod,k′(τj/τo))
(7.6.6)

If there are several service types (e.g., intercity and regional) and classes (e.g.,

first and second class), the interdependence of choice dimensions can be accounted

for by assuming a positive correlation among the random residuals of the perceived

utilities of paths that share the same service type, class, and so on. In this case, a

multilevel hierarchical logit path choice model could be adopted.

The average flow hk on path k can be expressed as

hk = dod(τo) · pod,k(τj/τo) (7.6.7)

Note that (7.6.7) is the equivalent of (7.3.1) for continuous-service continuous-

flow models.
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7.6.1.3 Demand–Supply Interaction Models

Given the supply and demand models described in the previous subsections, within-

day dynamic assignment models for regular low-frequency scheduled service net-

works reduce to within-day static assignment on a diachronic network. It is also

possible in this case to distinguish among uncongested network, user equilibrium,

and dynamic process assignment models.

Because paths correspond to composite choice alternatives that include departure

time, access–egress terminals, and runs, random utility choice modes are the only

form that has been adopted and calibrated for this type of problem in practice. These

give rise to analogues for scheduled service systems of static stochastic assignment

models (SUN, SUE, etc.).

The general theoretical results on existence and uniqueness of solutions de-

scribed in Chap. 5 can be applied to this case and are not repeated here.

7.6.2 Models for Irregular High-Frequency Services

For irregular high-frequency services, the complexity of the real system increases

considerably with respect to both user behavior and performance variables. Differ-

ent within-day dynamic models can be specified for these systems under different

assumptions. In this section, one such model is described. We stress, once more,

that this area is very little researched, and that further theoretical developments and

applications are to be expected in the future.

In this model, users are assumed to make their choices at different times during

their trips. The choice of the first boarding stop and the attractive line set is made

before the trip begins (pre-trip choice). During the trip, users choose the runs to

board at transfer points by adapting to the actual succession of run arrivals and to

information given (if any) about waiting times. It is further assumed that, because of

the high frequency and the irregularity of services, the actual departure time from the

origin is equal to the desired departure time, so users arrive at stops independently

of run departure times. Thus if τo is the (desired) departure time from the origin

and ta,os the access time to stop s, the user arrives at the stop at the absolute time

τso = τo + ta,os .

In the following subsections, supply, demand, and demand–supply interaction

models consistent with the above assumptions are described.

7.6.2.1 Supply Models

The diachronic network model described in Sect. 7.6.1 can also be adopted, with

some differences, in the case of irregular services. Due to irregularity, the actual

arrival and departure times of a run on day t can differ from the scheduled times

and from the times on other days. This may be represented by a vector of random
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variables b whose elements are the arrival time ba,rs and the departure time bp,rs

of each run r at each stop s. In the following, bt indicates a realization of vector

b representing day t and Gt is the corresponding diachronic graph (see Fig. 7.31).

Equations (7.6.1) through (7.6.4), which express the relationships of path costs and

flows with link costs and flows, can still be used once a link–path incidence matrix

∆t for graph Gt is defined. It is usually assumed that the means of random variables

ba,rs and bpr,s coincide with the scheduled arrival and departure times.

The vector b is related to another vector y with components yrl and yrs repre-

senting, respectively, the running time of run r on running link l and the dwelling

time of run r at stop s (dwelling link). Due to service irregularity, y can also be

modeled as a vector of random variables. The components of the two vectors b and

y are related through the following recursive equations.

ba,rs = bp,r(s−1) + yr,l, l ≡
(

(s − 1), s
)

, bp,rs = ba,rs + yr,s

Thus, given the initial departure time of run r , for a given vector yt it is possible

to generate a vector bt and vice versa. In applications, the random vector y is often

modeled from empirical observations. One of the models proposed is a MultiVariate

Normal (MVN) with mean ȳ (the scheduled running and dwelling times) and a

variance–covariance matrix Σy whose elements can implicitly represent a variety

of phenomena such as

– The propagation of delays between successive sections of the same line,

cov(yr,l−1, yrl) > 0

– The persistence of perturbation factors on a given line section,

cov(yr,l, yr+1,l) > 0

– The reduction in a run’s dwelling time due to a longer dwelling time of the previ-

ous run at the same stop,

cov(yr−1,s, yrs) < 0

From the algorithmic point of view, a configuration Gt of the diachronic network

can be generated by sampling a vector bt or yt from the multivariate distribution

assumed for b or y. If y is assumed to be distributed MNV(ȳ,Σy), the Monte Carlo

method with a Cholesky factoring of the matrix Σy can be used for this purpose.

In any case, the resulting vector yt must be modified to satisfy feasibility re-

quirements. This might include ensuring correspondence between generated times

and the allowed speeds for transit vehicles, preventing overtaking between succes-

sive runs, and so on.

7.6.2.2 Demand Models

In general, several different boarding stops s can be reached and many runs are

available from a given origin temporal centroid (see Fig. 7.33). Path choice on a
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Fig. 7.33 Example of diachronic graph for high-frequency irregular services

realization Gt of the diachronic network thus implies choice of access stop and

choice of the run(s) leading the user to the destination.

Path choice models give the probability pod [r, s|τo] of choosing a path including

run r at boarding stop s, given the O-D pair od and the desired departure time from

the origin τo (or the arrival time at stop s, τs,o). Because of the different choice

behaviors assumed for pre-trip choices (stop s) and en-route choices (run r), this

probability can be expressed as

pod [r, s/τo] = pod [r/s, τs,o]pod [s/τo] (7.6.8)

This is the product of two probabilities: the probability of choosing run r at stop

s, given the arrival time τs,o; and the probability of choosing stop s, given the desired

origin departure time τo.

Given the irregularity of services, some further assumptions have to be made on

available information and the related choice set in order to model choice probabili-

ties in (7.6.8).

If real-time information about waiting times is available at stops, the user can

consider as choice alternatives the runs of different lines according to their actual
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Fig. 7.34 Example of path choice set

arrival times on any particular day t . Thus an initial choice set of runs Ks[τs,o,b
t ]

may be defined for users departing from origin o for destination d at time τo, ar-

riving at stop s (where there is an ATIS providing information on run waiting or

arrival times) at a time τs,o and finding a supply configuration bt . (Here and in the

following, the index od, when not stated, is understood.) This set (see Fig. 7.34) is

specified by line runs connecting stop s directly or indirectly to destination d and

satisfying some feasibility rules, such as

– The set includes the first run of each line that leaves after the user’s arrival at the

stop at time τs,o.

– The runs are not dominated (i.e., there are no runs leaving before and arriving

after other runs of the choice set).

– The runs satisfy criteria such as the maximum number of transfers, maximum

transfer time, maximum travel time, and so on.

The set Ks[τs,o,b
t ] depends on the user’s arrival time τs,o at the stop, because

different runs will be accessible to users at different times; it depends also on the

system configuration bt because, for the same arrival time on different days, differ-

ent choice sets may be available due to random variations in system performance.

Furthermore, should an arriving run be too crowded to board, the set can be

modified while the user waits at the stop. When a run of a specific line included in

Ks[τs,o,b
t ] arrives and has no available places, the user can decide to extend the

choice set, introducing the next run of the same line.

For example, with reference to Fig. 7.35, for a configuration bt and a user arriving

at τ1, the run choice set consists of run 1 of line b, run 2 of line a, and run 1 of line

c. This set will differ if the user arrives in τ2 or if he arrives in τ1 of day t + 1 and

finds a different supply configuration bt+1. In the latter case, if there is congestion

(e.g., on run b1) the choice set may be extended to run 2 of line b.
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Fig. 7.35 Dependence of run choice set on configuration bt and arrival time τs,o

The choice set may change while the user waits at the stop not only because of

congestion, but also because if an arrival is not boarded, the corresponding run is

eliminated from the set. This point is clarified below.

A set of arrival times for the runs belonging to Ks[τs,o,b
t ] can be associated

with each choice set Ks[τs,o,b
t ] for any arrival time τ+ of run r+. In the following,

Ks[τ+,bt ] denotes the set available at time τ+ > τs,o of arrivals of run r+ at the

stop, with respect to which the user makes her choice.

A sequential mechanism can be assumed to simulate run choice. When a run r+

of the path choice set Ks[τ+,bt ] arrives at time τ+ > τs,o, the user chooses, in an

intelligent adaptive way, to get on r+ if the perceived utility Ur+ is greater than the

utility Ur∗ of all other runs r∗ ∈ Ks[τ+,bt ] yet to arrive. In formal terms we have:

pod [r+/s, τ+] = Prob[Ur+ > Ur∗]

∀r∗ �= r+ with τ ∗ > τ+, r+ and r∗ ∈ Ks[τ+, bt ] (7.6.9a)

As usual, perceived utilities can be specified as the sum of a systematic utility,

expressed as a linear combination of attributes, and a random residual. A possible

specification is:

Ur+ = Vr+εr+ = βCFWCFWr+ + βbT br+ + βcT cr+ + βCFBCFBr+

+ · · · + βnNnr+ + βpTpr+ + εr+ (7.6.9b)

Vr∗ = Vr∗εr∗ = βCFWCFWr∗ + βbT br∗ + βcT cr∗ + βCFBCFBr∗

+ · · · + βnNnr∗ + εr∗ (7.6.9c)

where
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CFWr+ ,CFWr∗ are the on-board comfort attributes (function of on-board crowd-

ing experienced at the stop)

T wr∗ is the waiting time (equal to the difference between the arrival time of run

r+ and the arrival time of run r∗, provided by an information system)

T br+ and T br∗ are on-board times

T cr+ and T cr∗ are transfer times

Nnr+ and Nnr∗ are the number of transfers

CFBr+ ,CFBr∗ are the “route” on-board comfort (a function of the amount of on-

board crowding experienced in the following links)

Tpr+ is the time already spent at the stop (equal to the difference between arrival

time of run r+ and the user arrival time τs at the stop) simulating a possible

“impatience effect” (βp > 0)

Note that in this model users cannot make their definitive choice upon arrival at

stop at time τso, even if full information about waiting times is available, because

the boarding comforts CFW of subsequent arrivals are not known. Of course, if

the user does not choose run r+, the choice is reconsidered when the subsequent

run arrives and so on (sequential run choice behavior). Other more or less complex

choice mechanisms can also be assumed.

If it is assumed that the random residuals ε in (7.6.9a) are i.i.d. Gumbel dis-

tributed, the choice probability pod [r+/s, τ+] at time τ+ of the arriving run r+,

conditional on not choosing previous runs and relative to the choice set Ks[τ+,bt ],

can be expressed by a logit model:

pod [r+/s, τ+] −
exp(Vr+)

∑

r∈Ks [τ+,b′] exp(Vr)
(7.6.10)

The total probability of choosing a given run r can be expressed as the product

of the conditional probability (7.6.10) and the probability of not having chosen any

previous run r belonging to the choice set Ks[τ
−,bt ]:

pod [r/s, τs,o] =
∏

r−=1,...,r−1

(

1 − pod [r−/s, τ−]
)

· p[r/s, τ ] (7.6.11)

where each conditional probability depends on the arrival time τs,o and may be

computed through (7.6.9) and (7.6.10).

The probability pod [s/τo] of choosing boarding stop s can be specified with a

different model that refers to a choice set Sod of boarding stops. The choice set can

be specified following different rules (e.g., by considering all stops within a certain

distance from the origin). A perceived utility Us(τo) can be associated with each

stop in the choice set:

Us(τo) = Vs(τo) + εs = βT · Xs + βH · Hs + εs (7.6.12)

where βT is the vector of the model parameters, Xs is a vector of stop-specific at-

tributes (e.g., access time, presence of shops, etc.), and Hs is an “inclusive utility”
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expressing the average utility associated to all runs available at stop s. To model the

inclusive utility, further assumptions have to be made on how travelers acquire and

process information on system performance. This model is closely connected to the

approach followed to simulate demand–supply interactions. One possible specifica-

tion of Hs is based on the frequencies of the lines that are available at each stop and

that belong to a feasible path on the line graph. This model is justified by the hy-

potheses of the lack of regularity (and information) and the high service frequencies

of the system. Assuming a logit path choice model among the lines ln belonging to

a set Lns(o, d) of lines available at s to serve O-D pair od , the inclusive utility is

proportional to the logsum variable Hs :

Hs = ln
∑

ln∈Lns (o,d)

exp(Vln,od)

with Vln,od depending on average (scheduled) level of service attributes of the line

ln and given by:

Vln = βwT wln + βbT bln + βcT cln + βnNn

where the symbols have the same interpretation as in (7.6.9) but the coefficients are

in principle different because they represent a different choice mechanism. Alterna-

tively, the average cost of the minimum hyperpath connecting s to the destination

d can be associated with each stop s. This model has the advantage of exploiting

all the theoretical results and the computational algorithms described in Chaps. 5

and 7. In this case, it follows that Hs ≡ xmin
sd .

Using a logit model, the stop choice probability can be expressed as

pod [s/τo] =
exp(Vs(τo))

∑

s′∈Sod
exp(Vs′(τo))

(7.6.13)

Thus the total choice probability of a path k represented by departure time τo,

boarding stop s, and run r (7.6.8) can be obtained through expressions (7.6.10),

(7.6.11), and (7.6.13).

Finally, the average path flow hk can be expressed as

hk = dod(τo) · pod [r, s/τo] = dod(τo) · pod [r, s/τo] · pod [s/τo]

k ≡ (τo, s, r)

7.6.2.3 Demand–Supply Interaction Models

Given the irregularity of the system and the assumptions made about user behavior,

especially at stops, demand–supply interactions should be modeled using a Sto-

chastic Dynamic Process (SDP) approach. In this approach, service irregularities,
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Fig. 7.36 Example of loads on the same section of the same run in different days

represented by random vectors b and y, are simulated through a stochastic sup-

ply model. User choices at day t can be assumed to be independent multinomially

distributed random variables with path choice probabilities given by (7.6.8). Fig-

ure 7.36 shows the number of users on the same section of the same run simulated

on successive days for an urban transit network of realistic size under severe irreg-

ularity conditions.

The type of SDP model depends on a number of assumptions. First are the as-

sumptions made about users’ learning (cost-updating) mechanisms. If it is assumed

that their pre-trip choices are based on average line attributes (see Sect. 7.6.2.2),

stop choice probabilities pod [s/τo] do not change over successive days, whereas

run choice probabilities are affected by random events occurring at each day t but

do not depend on previous days. Under these assumptions, the stochastic process is

a renewal process; that is, the joint probability distribution of the variables describ-

ing the system state is independent of the states occupied in previous days. This

assumption is reasonable for uncongested systems, where explicit utility updating

mechanisms can be ignored and users base their choices on line frequencies because

of the unreliability of the timetable.

Matters are further complicated by congestion effects. Given the randomness of

the system, congestion levels vary over successive days. If users are assumed to

choose the boarding stop based on uncongested attributes (as might be typical of

infrequent users), congestion plays a role only in run choices at stops and the sto-

chastic process is still a renewal one. Other (regular) users base their pre-trip choices

on the congestion levels that they expect as a result of their previous experience. In

this case, a utility updating filter similar to the ones described in Sect. 6.5 has to be

introduced, and the process becomes Markovian.
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7.A. The Simplified Theory of Kinematic Waves Based

on Cumulative Flows: Application to Macroscopic Link

Performance Models20

Macroscopic link performance models, aimed at reproducing travel times as a func-

tion of link inflows under the assumption of the fluid paradigm,21 can be classified

into two groups: space-continuous and space-discrete, as mentioned in Sect. 7.2.

The former are typically formulated as a system of differential equations in time

and space that is solved through finite-difference methods. Such models yield accu-

rate results, but require considerable computing resources, because their algorithmic

implementation relies on a dense space discretization; for this reason they are also

referred to as point-based. Altogether, they are very effective but somewhat ineffi-

cient.

The latter do not require any space discretization, and for this reason are also

termed link-based. They can in turn be divided into whole link models and wave

models.

The former yield link performances as a function of the space-average density

(i.e., the number of vehicles on the link) without considering the propagation of

flow states along the link. Such models are very simple and, for this reason, widely

applied in DTA, but the representation of travel times becomes increasingly ineffec-

tive as the length of the link increases (see Sect. 7.2.1.3).

The latter, based on the Simplified Theory of Kinematic Waves (STKW), take

(implicitly) into account the propagation of flow states, yielding link performances

as a function of the traffic conditions that the vehicle encounters by traveling along

the link. These models require minimal computing resources, and yield realistic

results both in urban and extraurban contexts.

In this section we analyze the general properties of bottlenecks and segments

under the STKW based on cumulative flows, because these are the main building

blocks of any macroscopic link performance model.

In general, the bottleneck is defined as a gate with a null length and a constant

or time-varying capacity, and a segment is assumed to be a homogeneous channel

with a positive length and a time-constant capacity. Therefore, each element has

a length L (for bottlenecks L is infinitesimal) and a capacity θ(τ ) (for segments

θ(τ ) = C is constant in time).

With reference to any element two general properties hold true: the FIFO rule

and the Newell–Luke Minimum Principle (NLMP). The latter states that:

– Among all possible states that may affect a given point of an element, bottleneck,

or segment, the one yielding the minimum cumulative flow dominates the others.

Let q(x, τ ) be the flow of vehicles crossing point x ∈ [0,L] at time τ , and let t (τ )

be the leaving time of a vehicle arriving to the element at time τ . The cumulative

20Guido Gentile and Natale Papola are the co-authors of this section.

21Vehicles are represented as particles of a mono-dimensional partially compressible fluid.
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flow Q(x, τ) (see (7.2.8) and Fig. 7.9) is given by

Q(x, τ) =

∫ τ

0

q(x,σ ) · dσ (7.A.1)

Based on the fluid paradigm, the FIFO rule holds, and can be expressed formally

as

Q(0, τ ) = Q
(

L, t (τ )
)

(7.A.2)

or equivalently as

q(0, τ ) = q
(

L, t (τ )
)

· ∂t (τ )/∂τ (7.A.3)

which is obtained by differentiating (7.A.2) with respect to time using the chain

rule.

On this basis, once the cumulative flow temporal profiles at the initial and end-

points of any element, or series of elements, are known, the exit time temporal pro-

file can be easily determined, as depicted in Figs. 7.10 and 7.26.

The solution of (7.A.2) is based on the discretization of time in adjacent intervals

(τi−1, τi], with i = 1, . . . , n. Under the classical numerical approximation that the

flows are constant during each interval, we can apply the following algorithm, where

we assume that Q(0, τn) = Q(L, τn),Q(0, τ0) = Q(L, τ0) = 0, and T0 is the free

flow travel time of the element, or series of elements.

t (τ0) = τ0 + T0

j = 1

for i = 1 to n do

until Q(L, τj ) ≥ Q(0, τi) do j = j + 1 (7.A.4)

if Q(0, τi) = Q(0, τi−1) then

t (τi) = τi + T0

if t (τi) < t(τi−1) then t (τi) = t (τi−1)

else

t (τi) =τj−1 +
[

Q(0, τi) − Q(L, τj−1)
]

· (τj − τj−1)/
[

Q(L, τj )

− Q(L, τj−1)
]

(7.A.5)

The input of the algorithm is Q(0, τi) and Q(L, τi), and the output is t (τi), for

i = 0, . . . , n.

The cycle (7.A.4) aims to find, for each instant τi in chronological order, the

earliest instant τj such that Q(L, τj−1) < Q(0, τi) ≤ Q(L, τj ). Because the leaving

flow is by definition constant during the interval (τj−1, τj ], the cumulative leaving

flow increases linearly with slope [Q(L, τj )−Q(L, τj−1)]/(τj −τj−1) . Therefore,

in the general case where Q(0, τi) > Q(0, τi−1), the exit time t (τi) results from the

simple proportion in (7.A.4). In the particular case where no flow arrives at the



7.A The Simplified Theory of Kinematic Waves Based on Cumulative Flows 499

element in the interval (τi−1, τi], the exit time t (τi) may be undetermined; it is thus

set by definition as the maximum between the free flow exit time τi + T0 and the

exit time t (τi−1).

The following two sections are devoted to addressing the problem of determining

the cumulative leaving flows for given arriving flows in the case of bottlenecks and

segments, respectively.

7.A.1 Bottlenecks

Bottlenecks play a crucial role in modeling link performances in the context of DTA,

because they allow explicit simulation of the formation and dispersion of vehicle

queues, and hence evaluation of the delay due to the presence of intersections, which

is an important part of the total travel time in highly congested urban networks.

A bottleneck can be conveniently formulated in terms of cumulative flows so

as to yield the leaving flow by constraining the arriving flow below the bottleneck

capacity, under the consideration that the former is stocked in a queue if it is not

served at the moment, whereas the latter cannot be stocked if it is not utilized at the

moment.

Based on the NLMP the cumulative flow leaving the bottleneck at time τ is the

minimum among each cumulative outflow that would occur if the queue began at a

previous instant σ ≤ τ ; that is;

Q(L, τ) = min
{

Q(0, σ ) + Θ(τ) − Θ(σ) : σ ≤ τ
}

(7.A.6)

where Θ(τ) is the cumulative bottleneck capacity at time τ ; that is;

Θ(τ) =

∫ τ

0

θ(σ ) · dσ (7.A.7)

The above expression (7.A.6) can be explained as follows. If there is no queue

at a given time τ , the cumulative leaving flow Q(L, τ) is equal to the cumulative

arriving flow Q(0, τ ). If a queue arises at time σ < τ , from that instant until the

queue eventually vanishes, the outflow equals the bottleneck capacity, and then the

cumulative leaving flow Q(L, τ) at time τ results from adding to the cumulative

arriving flow Q(0, σ ) at time σ the integral of the bottleneck capacity between σ

and τ ; that is, Θ(τ)−Θ(σ). Note that, if there is no queue at time τ , the cumulative

leaving flow is the same as the case when the queue arises exactly at σ = τ .

Although not essential, below we illustrate in Fig. 7.A.1 the common case of

bottlenecks with a time-constant capacity as an example of the above time-varying

capacity model to facilitate the understanding of the NLMP. In this particular case,

(7.A.6) becomes

Q(L, τ) = min
{

Q(0, σ ) + θ · (τ − σ) : σ ≤ τ
}

(7.A.8)
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Fig. 7.A.1 Bottleneck with time-constant capacity

Fig. 7.A.2 Bottleneck with time-varying capacity

To explain (7.A.8), refer to Fig. 7.A.1, where the arriving and leaving cumulative

flows are depicted. Let us consider a straight line with slope θ and let it translate

vertically from the bottom upwards until it becomes tangent to a point where the

temporal profile of the arriving flow is locally convex, like A in the figure. Just on

the right of that point with time σ ′, as τ increases, the arriving flow becomes higher

than the bottleneck capacity θ , meaning that the state q(0, σ ′) prevails over the state

θ , in terms of cumulative flows, until the point where the straight line intersects

the cumulative arriving flow temporal profile, like B in the figure, where the queue

disappears and q(0, σ ′′) > θ . We see that the segment of straight line A–B belongs

to the lower envelope of the possible flow states in the sense of the NLMP.
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Figure 7.A.2 depicts instead a graphical interpretation of the general equation

(7.A.6) for a bottleneck with a time-varying capacity, where the temporal pro-

file Q(L, τ) of the cumulative leaving flow is the lower envelope of the follow-

ing curves: (a) the cumulative arriving flow Q(0, τ ); (b) the family of functions

Q(0, σ )+Θ(τ)−Θ(σ) with τ > σ , for every time σ , each obtained as the vertical

translation of the temporal profile relative to the cumulative bottleneck capacity that

goes through the point (σ,Q(0, σ )). No queue is present when curve (a) prevails;

therefore, the queue arises at time σ ′ and vanishes at time σ ′′.

Let N(τ) be the number of vehicles queuing to exit the bottleneck at time τ ; that

is,

N(τ) = Q(0, τ ) − Q(L, τ) (7.A.9)

Equation (7.A.6) can be numerically solved by means of the following algorithm.

N(τ0) = 0

for i = 1 to n do

N(τi) = N(τi−1) + Q(0, τi) − Q(0, τi−1)

if N(τi) ≤ Θ(τi) − Θ(τi−1) then

Q(L, τi) = Q(L, τi−1) + N(τi)

N(τi) = 0

else

Q(L, τi) = Q(L, τi−1) + Θ(τi) − Θ(τi−1)

N(τi) = N(τi−1) − Θ(τi) + Θ(τi−1)

The input of the algorithm is Q(0, τi) and Θ(τi), and the output is Q(L, τi) and

N(τi), for i = 0, . . . , n.

The number of vehicles desiring to leave the bottleneck during the interval

(τi−1, τi], for short called here the demand, is given by the number of vehicles

N(τi−1) queuing to exit the bottleneck at the beginning of the interval, plus the num-

ber of vehicles Q(0, τi)−Q(0, τi−1) that arrive at the bottleneck during the interval.

But, due to the capacity constraint, only the number of vehicles Θ(τi) − Θ(τi−1),

for short called here the supply, can at most exit the bottleneck. If the supply is

higher than the demand, then all such vehicles will actually leave the bottleneck

during the interval, and no vehicle will be queuing to exit the bottleneck at the end

of the interval; otherwise, only a number of vehicles equal to the supply will leave

the bottleneck during the interval, and the rest of the demand will be queuing to exit

the bottleneck at the end of the interval.

7.A.2 Segments

Segments aim at simulating the movement of vehicles along the links. Thus they

are the main elements of moderately congested extraurban networks, where queues

are not a prevalent phenomenon, and most links are so long that the presence of

intersections plays a negligible role in the representation of travel times.
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The modeling of a segment can be conveniently addressed in the framework of

the STKW based on cumulative flows, of which a brief review is given below.

The STWK is founded on the following assumptions.

(a) The segment is a homogeneous channel.

(b) The vehicles change their speed, whenever needed, with infinite decelerations

and accelerations.

(c) The fundamental diagram of traffic flow described in Sect. 2.2.2.2 for stationary

conditions still holds for nonstationary traffic.

Specifically, based on (c) we have:

q(x, τ) = k(x, τ ) · v(x, τ ) (7.A.10)

v(x, τ ) = v
(

k(x, τ )
)

(7.A.11)

where k(x, τ ) and v(x, τ ) are respectively the density and speed at point x and

time τ .

Based on (7.A.10), (7.A.11) also defines a relation between flow and density,

called the fundamental diagram:

q(x, τ ) = q
(

k(x, τ )
)

. (7.A.12)

In the following we assume that the fundamental diagram is strictly concave;

that is, it has only one maximum. Thus the (critical) density KC at which it takes

the maximum flow (capacity) C divides the flow states in hypocritical (denoted by

apex ◦) and hypercritical (denoted by apex +), so that it is possible to derive the

following inverse one-valued functions:

k(x, τ ) = k◦
(

q(x, τ )
)

(7.A.13)

k(x, τ ) = k+
(

q(x, τ )
)

(7.A.14)

v(x, τ ) = v◦
(

q(x, τ )
)

(7.A.15)

v(x, τ ) = v+
(

q(x, τ )
)

(7.A.16)

Dealing with nonstationary traffic, we state a conservation condition ensur-

ing that vehicles are not created or lost along the segment. Let us consider an

infinitesimal time interval [τ, τ + dτ ] and an infinitesimal portion of the seg-

ment [x, x + dx]. Under the assumption that the flow remains constant during

the infinitesimal time interval, but varies along the segment, the number of ve-

hicles crossing point x is q(x, τ ) · dτ , whereas those crossing point x + dx is

[q(x, τ ) + ∂q(x, τ )/∂x · dx] · dτ . Under the assumption that the density remains

constant along the infinitesimal portion of the segment, but varies during the time,

the number of vehicles present at time τ is k(x, τ ) · dx, whereas those present at

time τ + dτ is [k(x, τ ) + ∂k(x, τ )/∂τ · dτ ] · dx. The increase in vehicles present on

the infinitesimal portion of the segment that occurs during the infinitesimal time in-

terval must be equal to the number of vehicles that entered the infinitesimal portion
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Fig. 7.A.3 The fundamental diagram

of the segment during the infinitesimal time interval minus those that exited it:

[

k(x, τ) + ∂k(x, τ )/∂τ · dτ
]

· dx − k(x, τ ) · dx = q(x, τ ) · dτ

−
[

q(x, τ ) + ∂q(x, τ )/∂x · dx
]

· dτ (7.A.17)

Therefore we have (see (2.2.3)):

∂k(x, τ )/∂τ + ∂q(x, τ )/∂x = 0 (7.A.18)

Moreover, let us analyze the function q(x, τ ) yielding the flow state at a given

point (x, τ ) in the time–space plane, looking for the points in the neighborhood of

(x, τ ) that are affected by its same flow state. If we consider the flow as the elevation

of the point, this is like aiming to determine the contour line passing through (x, τ ).

Therefore, we are formally seeking a direction dx/dτ in the time–space plane such

that:

dq = ∂q(x, τ )/∂x · dτ + ∂q(x, τ )/∂τ · dx = 0 (7.A.19)

Based on (7.A.18), it is:

ω(x, τ) = dx/dτ = 1/
[

∂k(x, τ )/∂q(x, τ )
]

(7.A.20)

where we have introduced the notation ω(x, τ) for such a direction, which in the

time–space plane is a speed.

Because each point in the neighborhood of (x, τ ) belonging to the straight line

in the time–space plane with slope ω(x, τ) passing through that point is affected by

a same flow state, the latter will propagate as a wave keeping the same direction,

which is therefore referred to as the wave speed.
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This way we have shown that the solution in terms of flows to the system defined

by (7.A.18), (7.A.13), and (7.A.14) is such that the generic hypocritical flow state

propagates forward along the segment at a constant speed:

ω(x, τ) = ω◦
(

q(x, τ )
)

= 1/
[

dk◦(q)
)

/dq
]

(7.A.21)

and the generic hypercritical flow state propagates backward along the segment at a

constant speed:

ω(x, τ) = ω+
(

q(x, τ )
)

= 1/
[

dk+(q)
)

/dq
]

(7.A.22)

One of the most simple specifications for (7.A.11) is the Greenshields linear

model, already introduced in Sect. 2.2.2.2:

v(k) = V · (1 − k/KJ) (7.A.23)

where V is the free flow speed and KJ is the jam density. The resulting capacity C

is 0.25 ·V ·KJ and the critical density KC is 0.5 ·KJ . In this case (7.A.21)–(7.A.22)

and (7.A.15)–(7.A.16) become, respectively:

ω◦(q) = V · (1 − q/C)0.5 (7.A.24)

ω+(q) = −ω◦(q) (7.A.25)

v◦(q) = 0.5 ·
[

V + ω◦(q)
]

(7.A.26)

v+(q) = 0.5 ·
[

V + ω+(q)
]

(7.A.27)

Another interesting model is the triangular fundamental diagram, which can be

obtained from a simple car following approach.

The speed v is a function of the density k due to the need to keep a sufficient

distance from the vehicle ahead taking into account: (a) the reaction time RT and (b)

the length of the vehicle LV, including a safety margin. Indeed, if the vehicle ahead

starts a break while traveling at a stationary state with speed v, the space run by

the vehicle behind during the reaction time is: RS = v · RT . Under the assumption

that the braking power of the two vehicles is alike, the distance required to avoid

collision is: 1/k = RS + LV . Moreover we need to consider the speed limit or the

free flow speed V of the road, so that for a given density k it is:

v = min
{

V,1/(k · RT ) − LV/RT
}

(7.A.28)

The jam density, i.e. the maximum density, is obtained for the second case

of (7.A.28) at v = 0 : KJ = 1/LV . Using the stationary flow equation q = k · v,

we then obtain the flow as a function of the density:

q = min{k · V,1/RT − k · LV/RT } (7.A.29)

The capacity, i.e. the maximum flow, is obtained when k · V = 1/RT − k ·

LV/RT , that is at the critical density KC = 1/(V · RT + LV ). Hence: C =

KC · V = 1/(RT + LV/V ).
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The hypercritical wave speed is given by the ratio of the capacity and the dif-

ference between the jam density and the critical density: ω = Q/(KJ − KC) =

LV/RT . Therefore we have:

ω◦(q) = V (7.A.30)

ω+(q) = LV/RT (7.A.31)

v◦(q) = V (7.A.32)

v+(q) = LV/(1/q − RT ) (7.A.33)

In the case of NL lanes, densities and flows are scaled by NL, so that (7.A.33)

becomes:

v+(q) = LV/(NL/q − RT ) (7.A.34)

Flow states can disappear along the segment. In fact, where two kinematic

waves with speed ω1 = ω(q1) and ω2 = ω(q2) collide, an interface (or shockwave)

emerges separating the two flow states q1 and q2, whose speed ω12 is given by the

change in flow across the interface over the change in density, that is,

ω12 = (q1 − q2)/(k1 − k2) (7.A.35)

where k1 = k(q1), k2 = k(q2) and, for the sake of brevity, we denoted functions

ω(q) and k(q), regardless of the flow state q being hypocritical or hypercritical,

because (7.A.35) holds in any of the possible cases. Moreover, where two shock-

waves with speed ω12 and ω23 collide, a new shockwave emerges with speed ω13

separating the two flow states q1 and q3, whereas the flow state q2 disappears.

On the other hand, because the segment is a homogeneous channel, flow states

can arise only at the initial and endpoints.

Equation (7.A.35), which is a consequence of the conservation equation, can

be easily derived on the basis of purely geometric considerations. We address in

the following the case where two different flow states, say q1 and q2, hold at two

adjacent subspaces of the time–space plane as depicted in Fig. 7.A.4, where, without

loss of generality, it is q1 < q2.

Considering the triangle BDE, the two similar triangles BDF and GEF, and the

two similar triangles ABC and CDE, we get the following system in the three un-

known ω12, t and s, after denoting CD and DE as t and s, respectively:

ω12 = s/(1/q1 + t) (7.A.36)

(1/k2 + s)/(1/q1 + t) = q2/k2 (7.A.37)

s/t = q1/k1 (7.A.38)

By substituting t = s · k1/q1, obtained from (7.A.38), into (7.A.37), we have:

s = (q2 − q1)/(k2 · q1 − k1 · q2) (7.A.39)

t = k1/q1 · (q2 − q1)/(k2 · q1 − k1 · q2) (7.A.40)
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Fig. 7.A.4 Speed of an interface on the time–space plane

Fig. 7.A.5 Speed of an interface on the fundamental diagram

Finally, using (7.A.39) and (7.A.40) into (7.A.36) yields (7.A.35).

As this equation shows, the slope of the interface ω12 in Fig. 7.A.5 is equal to the

slope of the segment joining the two points, (k1, q1) and (k2, q2), on the fundamental

diagram in Fig. 7.A.5. When point 2 tends to point 1, the slope of the interface tends

to the derivative ω1 = 1/[dk(q1))/dq], as stated by (7.A.21) and (7.A.22).

The theory of the NLMP allows us to solve the wave model in terms of cumu-

lative flows with reference to any specific point of the segment as a function of the

boundary conditions, which are the flow states arising at the initial and end points,

specifically:
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(a) Hypocritical flows arriving at the segment when the queue does not reach the

initial point. That is, no spilling back is occurring from the segment, formally

q(0, τ ) < µ(τ), where µ(τ) is the entry capacity at time τ .

(b) Hypercritical flows leaving the segment when a queue is present at the endpoint

of the segment, formally q(L, τ) = ψ(τ), where ψ(τ) is the exit capacity at

time τ .

We now address the forward propagation of hypocritical inflows and the back-

ward propagation of hypercritical outflows separately.

The instant e◦(x, τ ) ≥ τ when the forward kinematic wave generated at time τ

on the initial point of the segment by the hypocritical inflow q(0, τ ) < µ(τ) reaches

the generic point x is given by

e◦(x, τ ) = τ + x/ω◦
(

q(0, τ )
)

(7.A.41)

In general, e◦(x, τ ) is not invertible, because more than one kinematic wave gen-

erated on the initial point may reach point x at the same time.

By definition, all the points in the time–space plane constituting the straight line

trajectory produced by a kinematic wave are characterized by the same flow state.

Figure 7.A.5 shows that the number of vehicles traveling at speed v◦(q) that pass an

observer traveling at speed ω◦(q) along the hypocritical wave relative to flow q for

any infinitesimal space ds moved in the same direction is equal to the time interval

ds · [1/ω◦(q) − 1/v◦(q)] multiplied by that flow. Therefore, integrating along the

segment22 from the initial point to point x, we obtain the cumulative flow H ◦(x, τ )

that may be observed at time e◦(x, τ ) in that point:

H ◦(x, τ ) = Q(0, τ ) + q(0, τ ) · x ·
[

1/ω◦
(

q(0, τ )
)

− 1/v◦
(

q(0, τ )
)]

(7.A.42)

The instant e+(x, τ ) ≥ τ when the backward kinematic wave generated at time τ

on the endpoint of the segment by the hypercritical outflow q(L, τ) = ψ(τ) reaches

the generic point x is given by23

e+(x, τ ) = τ − (L − x)/ω+
(

q(L, τ)
)

(7.A.43)

As above, e+(x, τ ) is not invertible, because more than one kinematic wave gen-

erated on the endpoint may reach point x at the same time.

Figure 7.A.6 shows that the number of vehicles traveling at speed v+(q) encoun-

tered by an observer traveling at speed −ω+(q) along the hypercritical wave relative

to the flow q for any infinitesimal space ds moved in the opposite direction is equal

to the time interval ds · [1/v+(q)− 1/ω+(q)] multiplied by that flow. Therefore, in-

tegrating along the segment from the endpoint to point x, we obtain the cumulative

flow H+(x, τ ) that may be observed at time e+(x, τ ) in that point:

H+(x, τ ) = Q(L, τ) + q(L, τ) · (L − x) ·
[

1/v+
(

q(L, τ)
)

− 1/ω+
(

q(L, τ)
)]

(7.A.44)

22The flow state along the wave is constant.

23Recall that ω+(q) is negative.
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Fig. 7.A.6 Flow traversing a hypocritical kinematic wave

Fig. 7.A.7 Flow traversing a hypercritical kinematic wave

Based on the NLMP, of all kinematic waves that pass through a given point in

the time–space plane the one yielding the minimum cumulative flow dominates the

others.

Because the minimum operator is associative, we can separate the hypocritical

flow states coming from upstream and the hypercritical flow states coming from

downstream. This way the cumulative flow on point x at time τ is given by

Q◦(x, τ ) = min
{

H ◦(x, σ ) : e◦(x, σ ) = τ, q(0, σ ) < µ(σ)
}

(7.A.45)

Q+(x, τ ) = min
{

H+(x, σ ) : e+(x, σ ) = τ, q(L,σ ) = ψ(σ)
}

(7.A.46)

Q(x, τ) = min
{

Q◦(x, τ ),Q+(x, τ )
}

(7.A.47)
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where Q◦(x, τ) or Q+(x, τ ) is not defined; that is, no hypocritical or hypercritical

wave reaches point x at time τ , respectively. Their value resulting from the mini-

mum operator is conventionally set equal to infinity.

Because hypocritical speeds are always higher than hypercritical speeds, forward

propagating as hypocritical a hypercritical flow does not affect the overall model

(7.A.47), therefore the condition q(0, σ ) < µ(σ) in (7.A.45) can be omitted.

In conclusion, the flow state occurring on the generic point of the segment is the

result of the interaction among hypocritical flow states coming from upstream and

hypercritical flow states coming from downstream. With reference to the endpoint,

the flow states coming from downstream are the hypercritical leaving flows gener-

ated by the exit capacity when a queue is present, whereas the flow states coming

from upstream can be determined by forward-propagating the temporal profile of

the cumulative arriving flows as hypocritical. With reference to the initial point, the

flow states coming from upstream are the arriving flows, and the flow states coming

from downstream can be determined by back-propagating the hypercritical portion

of the temporal profile of the cumulative leaving flows.

The numerical solution of (7.A.45) and (7.A.46) can be easily addressed under

the assumption that the arriving flows and leaving flows, respectively, are constant

in each time interval. In this case, to the constant flow qi , hypocritical or hyper-

critical, at the extreme point during the interval (τi−1, τi] a linear cumulative flow

at point x corresponds, that is, a segment in the time-vehicles plane between the

points (e(x, τi−1, qi), H(x, τi−1, qi)) − (e(x, τi, qi), H(x, τi, qi)), where functions

e(x, τ, q) and H(x, τ, q) express (7.A.41) to (7.A.43) and (7.A.42) to (7.A.44), re-

spectively, for the two cases. If we connect these segments, for i = 1, . . . , n, through

additional segments between the points (e(x, τi, qi), H(x, τi, qi)) − (e(x, τi, qi+1),

H(x, τi, qi+1)), for i = 1, . . . , n − 1, then Q(x, τi) can be obtained as the minimum

number of vehicles among the values taken at time τi by the segments that are de-

fined at such instant. It is worth pointing out that connecting the segments through

straight lines implies an approximation, because the points (e(x, τi, q), H(x, τi, q))

for q ∈ [qi, qi+1] actually form a curve in the time–vehicles plane. The following

algorithm can be applied to determine efficiently the cumulative flow at point x,

where q0 is assumed to be null, and τn+1 = ∞.

for i = 0 to n do Q(x, τi) = ∞

j = 0

until τj > e(x, τ0, q0) do

Q(x, τj ) = 0

j = j + 1

for i = 1 to n do

if e(x, τi−1, qi) > e(x, τi−1, qi−1) then

until τj ≥ e(x, τi−1, qi−1) do j = j + 1

until τj > e(x, τi−1, qi)

H =H(x, τi−1, qi−1) + [τj − e(x, τi−1, qi−1)] · [H(x, τi−1, qi)

− H(x, τi−1, qi−1)]/[e(x, τi−1, qi) − e(x, τi−1, qi−1)]

if Q(x, τj ) > H then Q(x, τj ) = H
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j = j + 1

else

until τj ≤ e(x, τi−1, qi−1) do j = j − 1

until τj < e(x, τi−1, qi)

H =H(x, τi−1, qi−1) + [τj − e(x, τi−1, qi−1)] · [H(x, τi−1, qi)

− H(x, τi−1, qi−1)]/[e(x, τi−1, qi) − e(x, τi−1, qi−1)]

if Q(x, τj ) > H then Q(x, τj ) = H

j = j − 1

until τj ≥ e(x, τi−1, qi) do j = j + 1

until τj > e(x, τi, qi)

H =H(x, τi−1, qi) + [τj − e(x, τi−1, qi)] · [H(x, τi, qi) − H(x, τi−1, qi)]

/[e(x, τi, qi) − e(x, τi−1, qi)]

if Q(x, τj ) > H then Q(x, τj ) = H

j = j + 1

The input of the algorithm is qi and the output is Q(x, τi), for i = 0, . . . , n.

The algorithms scans in chronological order, for i = 1, . . . , n, first the additional

segment between the points (e(x, τi−1, qi), H(x, τi−1, qi−1)) − (e(x, τi−1, qi),

H(x, τi−1, qi)) searching for any τj such that e(x, τi−1, qi−1) ≤ τj ≤ e(x, τi, qi),

and then the segment between the points (e(x, τi−1, qi), H(x, τi−1, qi)) − (e(x, τi,

qi), H(x, τi, qi)) searching for any τj such that e(x, τi−1, qi) ≤ τj ≤ e(x, τi, qi).

While scanning, if the value taken at τj by the segment under analysis is lower than

the current estimate of the cumulative flow Q(x, τj ), then the latter is updated to

the former; this way, at the end of the procedure, Q(x, τ) is at each τi the lower

envelope of all above segments, and elsewhere a piecewise linear approximation is

considered.

Reference Notes

Although dynamic traffic assignment is a relatively new research subject, a wide

body of literature has been produced over the last 15 years (and only some of this

output is cited here).

The first to propose DTA as a research subject of its own in a form similar to

the present formulations were Ben-Akiva et al. (1984). The framework adopted in

this chapter to present supply, demand, and supply–demand interaction models is

original. The formulation reported in Sect. 7.5 is taken from Bellei et al. (2005) and

Gentile et al. (2004, 2007), where solution algorithms are also devised.

Continuous-flow models were first investigated by the scientific community.

Continuous-flow link performance models can be classified into two major

groups: space-continuous and space-discrete. Among the models belonging to the

first group we recall METANET, proposed by Messmer and Papageorgiou (1990),

which derives from a second-order approximation to the Theory of Kinematic

Waves (TKW), and the Cell Transmission Model proposed by Daganzo (1994,
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1995). The latter is consistent with the Simplified Theory of Kinematic Waves

(STKW), that is, the first-order approximation of the TKW, independently proposed

by Lighthill and Witham (1955) and Richards (1956). The models belonging to the

second group do not require any spatial discretization. Specifically, whole link mod-

els (e.g., Astarita 1996; Ran et al. 1997) do not take into account the propagation

of flow states along the link, because performances are assumed to depend on a

space-average state variable, such as density (Heydecker and Addison 1998). This

yields a poor representation of travel times, which gets worse as the link length in-

creases (Daganzo 1995). Despite this major deficiency, these models are widely used

in DTA because of their simplicity (e.g., Friesz et al. 1993; Tong and Wong 2000).

Wave models, based on the simplified theory of kinematic waves, implicitly take into

account the propagation of flow states along the link, yielding link performances as

a function of the traffic conditions encountered while traveling throughout the link.

For a theoretical analysis of the “Newell–Luke minimum principle” reference can

be made to Newell (1993) and to Daganzo (1997), where the relevant aspect of the

STKW can also be found. These models were first developed for bottlenecks with

constant capacity, that is, when only two speeds may occur on the link: the free-flow

speed and the queue speed (Newell 1993; Arnot et al. 1990; Ghali and Smith 1993;

Bellei et al. 2005). Recently, these models have been extended to the case of long

links and time-varying capacity (Gentile et al. 2005, 2007).

Continuous-flow models were adopted in the seminal work of Merchant and

Nemhauser (1978), who addressed system-optimal DTA with a single origin. The

first to identify the dynamic network loading model as a component of any DTA

model were Cascetta and Cantarella (1991). The continuous-flow supply model de-

scribed is based on the work of Friesz et al. (1989), who introduced the travel time

link flow propagation model and equivalent conditions for respect of the FIFO rule.

Recently more general equivalent conditions for FIFO were stated by Chabini and

Kachani (1999), who also investigated the properties of uniqueness and existence of

the continuous-flow single-link network DNL problem. Some heuristic algorithms

have been proposed in the literature for solving the supply model for general net-

works (Astarita 1996; Wu et al. 1998; Xu et al. 1999).

In the literature there are several papers proposing discrete flow supply mod-

els, both at the mesoscopic level (Cascetta and Cantarella 1991; Jayakrishnan et al.

1994; Ben-Akiva et al. 1984; Cantarella et al. 1999), and at the microscopic level

(Yang and Koutsopoulos 1996). In general it can be said that little or no effort has

been made either to propose a general formulation of discrete flow models or to

investigate their theoretical properties as for continuous models. In this respect, the

general framework proposed here for discrete flow models is original.

Demand models of departure-time choice were first proposed by Abkowitz

(1981) and Small (1982); a joint departure time-path choice model for urban net-

works was proposed by Cascetta et al. (1992). More complex departure-time and

path switching models were proposed by Mahamassani and Liu (1999).

Most models proposed in the literature for demand–supply interactions are either

deterministic or stochastic user equilibrium models.

Papers on continuous flow models have frequently proposed ways to extend to

time-varying demand and link flows the deterministic (Wardrop’s) user equilibrium
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equivalent formulations (i.e., optimization or variational inequalities). Among these,

the papers of Boyce et al. (1991), Janson (1989), Vythoulkas (1990), Friesz et al.

(1993), Wie et al. (1990), and the book by Ran and Boyce (1994) can be referred to.

Static stochastic user equilibrium was formulated as a fixed-point problem by Da-

ganzo (1983) and Cantarella (1997). However, the general formulation of continu-

ous and discrete flow within-day dynamic, fixed-point models is original. Examples

of dynamic process models are those proposed by Cascetta and Cantarella (1991),

Cantarella et al. (1999), Jayakrishnan et al. (1994), and Jha et al. (1998).

Dynamic assignment for transit or other scheduled services has received consid-

erably less attention in the literature. The idea of representing the schedule by a

diachronic network can be credited to Nuzzolo and Russo (1996). Some examples

of dynamic assignment models for low-frequency regular services can be found in

Cascetta et al. (1996) and Nuzzolo et al. (2000) for multiple-service rail networks,

and in Cascetta and Papola (2003) for mode-service choice simulation on multi-

modal bus and rail networks. Dynamic assignment for irregular scheduled services

is a still newer area. The papers by Hickman and Wilson (1995), Hickman and Bern-

stein (1997), and Nuzzolo et al. (1999) are among the first presented in the literature.

The books by Wilson and Nuzzolo (2004, 2008) provide an up-to-date and complete

review of assignment models to scheduled service networks, as well as an overview

of their applications.



Chapter 8

Estimation of Travel Demand Flows

8.1 Introduction

The analysis and design of transportation systems require the estimation of present

demand and the forecasting of (hypothetical) future demand. These estimates and

forecasts can be obtained using a variety of information sources and statistical pro-

cedures.

To estimate present demand, surveys can be conducted, typically by interviewing

a sample of system users; direct estimates of the demand can then be derived using

results from sampling theory.

Alternatively, demand (present or future) can be estimated using models similar

to those described in Chap. 4. Model estimation requires that the models be specified

(i.e., the functional form and the variables are defined), calibrated (i.e., the unknown

coefficients are estimated), and validated (i.e., the ability to reproduce the available

data is tested). These operations can be performed using disaggregate information

about a sample of individuals. The type of survey and the size of the sample in-

volved in model estimation are often different from those used for direct demand

estimation. Once the models have been specified and calibrated, they can be applied

to the present configuration of the activity and transportation systems in order to

derive estimates of present demand; they can also be applied to hypothetical config-

urations representing possible future states of these systems (scenarios) in order to

derive forecasts of future demand.

Aggregate data can also be used for direct demand estimation and for the specifi-

cation and calibration of demand models. Flows measured on network links are the

most sophisticated form of aggregate data and can complement other disaggregate

data and the corresponding estimation methods.

The different types of survey and estimation methodologies are covered in this

chapter as follows. Section 8.2 analyzes surveys and methods for direct demand

estimation. Section 8.3 describes disaggregate estimation methods for the specifi-

cation, calibration, and validation of demand models based on traditional revealed

preference surveys. Section 8.4 describes some theoretical and operational aspects

of stated preference survey and calibration techniques, based on the information

elicited from a sample of individuals in hypothetical scenarios. Section 8.5 de-

scribes methods using traffic counts to estimate present demand, and Sect. 8.6 ex-

plores methods using traffic counts for aggregate calibration of demand models.

Sections 8.7 and 8.8 extend some of the methods discussed in previous sections to

deal with within-period dynamic estimation. Finally, Sect. 8.9 summarizes method-

ologies to estimate the different components of travel demand and discusses their

fields of application. The topics listed are discussed for passenger travel demand;

extensions to freight demand are relatively straightforward.
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8.2 Direct Estimation of Present Demand

Travel demand is the aggregation of individual trips made during a reference period

(e.g., part or all of a typical day) by the users of a given system under study. Full

knowledge of demand would therefore require information on the characteristics of

the trips undertaken by all the users in the reference period. Furthermore, as noted

in Chap. 1, such information should extend over several reference periods in order

to compute average values. This complete census-like knowledge of travel demand

is neither practicable nor necessary. The economic and organizational costs of the

associated data collection effort would make the operation practically infeasible in

most cases. For these reasons, present travel demand is typically estimated through

sampling estimators, that is, estimators based on information about a sample of

system users.

In Sect. 8.2.1, sampling surveys often used for direct demand estimation are de-

scribed; estimators derived from sampling theory are covered in Sect. 8.2.2.

8.2.1 Sampling Surveys

The basic idea of sampling techniques is to estimate the population-level values of

variables of interest from values observed in a relatively small group of individuals

(a sample) belonging to the population.

Several types of sample surveys can be used for direct estimation of travel de-

mand; these surveys, sometimes referred to generically as origin–destination sur-

veys, may differ in their statistical characteristics and in the quality of information

obtained. A comprehensive description of the various surveys is beyond the scope

of this book; some typologies are briefly described below as examples.

With “on-board” surveys, a sample of users of one or more transportation modes

is interviewed. The interviews can be conducted either at the roadside for car drivers

and their passengers, or on board vehicles or at terminals (stations, airports, etc.) for

scheduled transportation services. The sample of users is obtained by randomly in-

terviewing a pre-determined fraction of the users of the chosen mode. In the case of

surveys conducted at specific locations (road sections, stations, etc.), this requires

counting the total number of travelers passing the point (count of the universe) and

interviewing a given number of travelers selected through a random mechanism.

When on-board surveys are conducted to estimate internal–external and external–

external demand, they are also referred to as cordon surveys. In general, the informa-

tion that can be gathered in these surveys is relatively simple because the interview

has to be done in a short period of time during the trip, and it usually refers only to

the trip or journey under way.

With household surveys, a sample of families or persons living within the study

area is interviewed. For family-based surveys, the sample is extracted randomly

from the set of all resident families (simple random sample) or from the set of fam-

ilies living in each traffic zone (stratified random sample). The family members
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in the sample are interviewed about the trips taken in a given reference period. The

same approach can be used for individual- rather than for family-based surveys. The

method of interviewing travelers in their homes usually is rather expensive but pre-

cise information is generally obtained because of the direct interaction between the

interviewee and the interviewer. Household telephone surveys are becoming more

and more popular; they have lower costs, although they usually yield less precise

interview results.

There are several other types of sample surveys such as destination surveys, in

which travelers are interviewed at trip destinations (workplaces, schools, shops,

etc.); and e-mail surveys, in which travelers are interviewed by e-mail. These sur-

veys, although less costly than household surveys, may produce biased results be-

cause of the systematic lack of information from some market segments.

The number of persons to be interviewed depends on the aims of the survey

and the precision required for the estimates. Surveys aiming at direct estimation

of present demand usually require larger samples than those needed to calibrate

demand models.

In applications, different types of survey are employed to estimate different com-

ponents of travel demand: for example, cordon surveys for internal–external and

external–external trips, and household surveys for internal trips.

Whatever the type of survey, the statistical design of a sampling survey for de-

mand estimation consists of several standard phases:

– Definition of the sampling unit (person, family, vehicle, etc.) and of the method

for enumerating the population universe (e.g., lists of residents or counts of pass-

ing vehicles);

– Definition of the sampling strategy, that is, the method for extracting the sample

of individuals to be interviewed;

– Definition of the estimator, that is, the function used to estimate the unknown

quantities from the information obtained by the survey;

– Definition of the number of units in the sample (sample size).

The definition of the sampling unit is largely influenced by practical matters such

as the type of survey (household, on-board, etc.) and the availability of information

about the universe. For example, if a list of families living in a given area is available,

but that of individuals is not, the logical sampling unit will be the family rather than

the individual. In the case of on-board surveys, the sampling unit will be the vehicle

if the survey is carried out at the roadside, or the passenger if the interviews are at

the terminals.

For the choice of sampling strategy, almost all surveys utilize probabilistic sam-

pling, that is, methods of sample extraction that define a priori the possible out-

comes, assign a probability to each outcome, and randomly extract the elements of

the sample according to this probability. In applications, the most commonly used

probabilistic sampling strategies are as follows.

– Simple random sampling: all the elements of the population have an equal prob-

ability of belonging to the sample.
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– Stratified random sampling: the population is divided into nonoverlapping, ex-

haustive groups (strata). A simple random sample of elements is drawn from each

stratum, but the selection probabilities in different strata may be different.

– Cluster sampling: sampling units (e.g., people) are grouped in clusters (e.g., fam-

ilies or the passengers of a vehicle). Clusters are then extracted randomly with a

pre-determined probability (simple random cluster sampling) or subdivided into

strata and sampled with different probabilities (stratified random cluster sam-

pling). A further possibility is two-stage cluster sampling, in which a sample of

clusters (e.g., a sample of families) is first selected, and then a sample of individu-

als within each cluster is extracted. In this case, the probability that an individual

belongs to the sample is the product of the probability of selecting the cluster to

which he or she belongs and the probability that the individual is then extracted

within the cluster.

The choice of the estimator, that is, the function of sample results, obviously

depends on the variables to be estimated and on the sampling strategy adopted. In

fact it can be demonstrated that an estimator that is statistically efficient for one

strategy might not be for another.

The choice of the estimator and definition of the sample size involve a more

substantial methodological content, and are discussed in the next subsection.

8.2.2 Sampling Estimators

Present travel demand can be estimated starting from the results of the sampling sur-

veys described in the previous section. The problem of estimating origin–destination

demand flows with certain characteristics (e.g., trip purpose and transport mode) and

the main statistical properties of some sampling strategies is addressed below.

Simple random sampling. In this case, a sample of n elements is drawn at random

from a universe of N users. For example, in a household survey the sample of n

families is obtained from the universe of the N families living in the study area. Let

dod
1 be the demand flow between origin o and destination d with the characteristics

concerned, and ni
od be the number of these trips undertaken by the ith element (e.g.,

family) of the sample. Estimates of demand flows with given characteristics but not

distinguished by origin–destination zone can be obtained in the same way. Let nod

be the total of trips obtained from the sample. Clearly,

nod =
∑

i=1,...,n

ni
od (8.2.1)

1For simplicity of notation, demand flow characteristics such as user class, trip purpose (s), time

of day (h), and mode (m) are generally taken as understood and so omitted.
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The sample estimate d̂od of the demand flow for the whole universe can be ob-

tained as follows,

d̂od = (N/n)nod = (1/α)nod = Nn̄od (8.2.2)

where α = n/N is the sampling rate and n̄od = nod/n is the average number of trips

per element with the desired characteristics.

Sampling theory shows that the variance2 of d̂od can be estimated as:

Var[d̂od ] = N2ŝ2(1 − α)/n (8.2.3)

where ŝ2 is the sample estimate of the variance of the random variable ni
od :

ŝ2 = 1/(n − 1)
∑

i=1,...,n

(

ni
od − n̄od

)2
(8.2.4)

In some surveys, a sample element (e.g., a car driver for cordon surveys) under-

takes at most one trip with the required characteristics (e.g., for a given purpose

and/or in a given time period). In other surveys, the required information is whether

the sample element has a given characteristic (e.g., made a trip with a given purpose

or in a given time period). In such cases ni
od is either zero or one, and n̄od is the

sample estimate of the percentage of travelers who have undertaken a trip with the

given characteristics. This percentage is indicated below by P̂od .

P̂od =
∑

i=1,...,n

ni
od/n (8.2.5)

In this case the sampling estimate of the variance of ni
od given by (8.2.4) can be

expressed as the variance of a Bernoulli random variable:

ŝ2 ∼= P̂od(1 − P̂od) (8.2.6)

In fact, from (8.2.4), bearing in mind that in this case ni2
od ≡ ni

od , we have:

ŝ2 =
[

1/(n−1)
]

∑

i=1,...,n

(

ni2
od + n̄2

od −2ni
od n̄od

)

∼= P̂od + P̂ 2
od −2P̂ 2

od = P̂od(1− P̂od)

where the “almost equal” (∼=) results from assuming n equal to (n − 1). In the case

under study, the estimate of the variance of P̂od is given by

Var[P̂od ] = P̂od(1 − P̂od)(1 − α)/n

2The coefficient (1−α), known as the finite population correction coefficient, accounts for the fact

that the population has a finite number of members; therefore, if a census (complete enumeration)

were conducted, α = 1 and the estimate would be the “true” value with zero variance. The weight

of the correction coefficient, however, is negligible for the sampling rates used in practice for direct

demand estimation.
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Stratified random sampling. In this case, the total population is divided into K

groups of users, or strata; stratum k has a population of Nk members and nk ele-

ments are drawn at random from it. This type of sampling is the most widely used

in practical demand surveys. In cordon surveys, the strata include users traveling

through the different survey sections, whereas in household surveys the strata are

often comprised of the families living in each zone (geographical stratification). In

the first case, the sample is “structurally” stratified because the users can only be

reached in this way; in the second, the stratification is a choice made to obtain a

predetermined coverage of each zone.

If nik
od denotes the number of trips with the required characteristics undertaken

by the ith element in the sample of stratum k, an estimate of the total number of

trips can be obtained as follows.

d̂od = N
∑

k=1,...,K

wk

∑

i=1,...,nk

nik
od/nk = N

∑

k=1,...,K

wkn̄
k
od (8.2.7)

where nk
od is the average number of trips observed in the kth stratum, and wk =

Nk/N is the weight of the stratum k with respect to the universe.

The variance of d̂od , the stratified sampling estimate, can be estimated as follows,

Var[d̂od ] ≈ N2
∑

k=1,...,K

w2
k ŝ

2
k (1 − αk)/nk (8.2.8)

where ŝ2
k is the sample estimate of the variance of nik

od :

ŝ2
k = 1/(n − 1)

∑

i=1,...,nk

(

nik
od − n̄k

od

)2

and αk is the sampling rate in the kth stratum.

It can be shown that the sampling estimators (8.2.2), (8.2.5), and (8.2.7) are un-

biased and consistent estimators of the unknown demand if the interviews do not

contain systematic distortions of the information provided (e.g., underreporting of

trips). The same can be said of the variance estimators (8.2.3) and (8.2.8). Variance

estimates can be used to calculate the confidence limits of d̂od . If the sample is large

enough to apply the central limit theorem, it can be assumed that the estimator d̂od

follows a normal distribution. The upper and lower confidence limits of the estimate,

LS
1−γ (dod) and LI

1−γ (dod), define an interval which, with probability (1 − γ ), in-

cludes the true value of dod . On the assumption of a sufficiently large sample, these

limits can be obtained as

LS
1−γ (dod) = d̂od + z1−γ /2 Var[d̂od ]1/2

and

LI
1−γ (dod) = d̂od + zγ /2 Var[d̂od ]1/2
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where z1−γ /2 and zγ /2 are the 1 − γ /2 and γ /2 percentiles of the normal standard

variable. For γ = 0.05, these percentiles are 1.96 and −1.96 and the confidence

limits are the extremes of the interval which with a probability of 0.95 contains the

true value.

The ratio IR(1 − γ ) between the width of the confidence interval and the value

to be estimated is called the relative confidence interval at (1 – γ ) percent of the

estimate d̂od :

IR(1 − γ ) =
[

LS
1−y(dod) − LI

1−y(dod)
]

/dod (8.2.9)

Expressions for the estimators and their variances for sampling strategies other

than simple and stratified random sampling are more complex. However, the latter

can still be used as first approximations. For exact expressions of the estimators and

their variances in more complex sampling schemes, specialized texts in sampling

theory should be consulted.

In principle, the sample size could be calculated according to the level of preci-

sion required by using expression (8.2.9) and substituting tentative values obtained

from other studies for the variances ŝ2 and ŝ2
k and for the variable dod . For example,

in the case of simple random sampling, if an IR(1 − γ ) relative confidence interval

of the estimate n̄od is required at a given confidence level and the coefficient of vari-

ation (CV = s/n̄od) of the variable ni
od is known, the sample size n can be obtained

by combining expressions (8.2.2), (8.2.3), and (8.2.9) as follows.

n ≈ 4
CV2z2

1−γ /2(1 − α)

IR(1 − γ )2
(8.2.10)

A similar expression can be obtained for a given relative confidence interval of

the O-D demand flows d̂od .

In practice, the computation of the sample size theoretically required by a sur-

vey is rarely possible because several parameters for the computation are obtained

from the survey itself. Furthermore, the sample size required for sufficiently precise

estimates of some parameters, and especially of the single elements of an O-D ma-

trix, would be too large to be feasible. The usual practice is to choose a sample size

used with other “successful” surveys, verifying that some aggregate estimates (e.g.,

the level of demand or the number of trips in each zone for each purpose) have a

satisfactory minimum precision.

As an example, Fig. 8.1 shows the sampling rate for urban household origin–

destination surveys recommended by the U.S. Bureau of Public Roads as a function

of the resident population.

Finally, it should be noted that the use of models as estimators of present demand

is becoming increasingly widespread (see Sect. 8.9). This is due not only to the

generally low level of precision that results from direct estimation but also to the

effectiveness of specification and calibration techniques of demand models.
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Fig. 8.1 Sampling rates for

household surveys in relation

to resident population

(BPR-USA)

Resident population Sampling rate

Recommended Minimum

0.200 0.100

50,000 150,000 0.125 0.050

150,000 300,000 0.100 0.030

300,000 500,000 0.067 0.020

500,000 1,000,000 0.050 0.015

More than 1,000,000 0.040 0.010

8.3 Disaggregate Estimation of Demand Models

Estimation of travel demand by means of mathematical models, whether they are

applied to the present situation or to hypothetical scenarios, requires the specifi-

cation, calibration, and validation of such models. In other words, it is necessary

to define the functional form and the variables included in the model, to estimate

the model’s coefficients or parameters, and to verify its statistical quality. A good

demand model is usually the outcome of a trial and error process in which the

specification–calibration–validation cycle is repeated several times until a satisfac-

tory result is obtained. In this process the modeler’s judgment and experience play

a central role.

These operations, which together are called model estimation, can be performed

starting from information on the travel behavior of a sample of users. This approach

is called disaggregate estimation3 of demand models. In general, surveys used to

gather basic information are of two different classes: surveys of actual travel behav-

ior in a real context (Revealed Preference or RP surveys) or surveys of hypothet-

ical travel behavior in fictitious scenarios (Stated Preference or SP surveys). The

traditional method of revealed preference is based on surveys analogous to those

described in Sect. 8.2.1. They provide information on users’ actual choices in situa-

tions relevant for the model to be calibrated (e.g., on the transportation mode chosen

for the calibration of a mode choice model). Survey design therefore consists of the

definition of the sample size, the questionnaire, and the sampling strategy. Stated

preference (SP) surveys, on the other hand, are conceptually equivalent to a labo-

ratory experiment designed with a larger number of degrees of freedom. Given the

complexity of the subject, SP survey designs and their use for the calibration of

demand models are covered separately in Sect. 8.4. The remainder of the present

section considers the specification, calibration, and validation of demand models

from RP survey results.

Irrespective of their interpretation (behavioral or descriptive) and functional

form, demand models can be viewed as mathematical relationships giving the prob-

ability that a user i chooses a particular travel option from among those available.

3A different method, which can be called aggregate calibration, uses aggregate and indirect infor-

mation on users’ travel behavior, usually traffic counts, to specify and calibrate demand models.

There are also mixed methods, which use both disaggregate and aggregate information. Aggregate

and mixed estimators of demand model parameters are covered in Sect. 8.6.
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Thus a mode choice model p[m/ods] expresses the probability that a user, ran-

domly selected from those who undertake a trip for purpose s between zones o and

d , uses mode m. This section addresses the problem of building demand models or

model systems, referring generically to a generic choice model that expresses the

probability pi[j ] that a user i chooses travel option j from among those available.

Section 8.3.1 discusses some general considerations relevant to model specifi-

cation. Section 8.3.2 covers calibration methods, and finally Sect. 8.3.3 describes

some validation methods.

8.3.1 Model Specification

The specification of a demand model can be defined as the complete identification

of its mathematical structure, that is, the definition of its functional form and of the

dependent and independent (explanatory) variables that it incorporates.

The choice of a model’s functional form (e.g., multinomial logit or hierarchical

logit) depends on many factors such as its computational tractability, the results

obtained in similar cases, or the a priori expectations regarding the correlation of

random residuals. In general, the assumptions can be tested a posteriori using the

statistical tests described in Sect. 8.3.3.

The choice of the explanatory variables clearly depends on the specific type of

model. However, there are some rules that should be observed to avoid problems in

the calibration phase. In general, variables that are collinear (i.e., linearly dependent

on each other) should be avoided. Indeed, if the systematic utility function is linear

with respect to collinear attributes, infinitely many combinations of their coefficient

values give equal values of systematic utilities and choice probabilities. This makes

it impossible to estimate (identify) separately those coefficients during model cali-

bration. A typical example of collinearity might be introduced when one attribute is

derived from another. This would happen, for example, if travel time were derived

from distance by assuming a constant speed; travel time and distance should not

then be included in the model specification as two distinct variables.

It must be also taken into account that, for invariant random utility models, as

described in Chap. 3, the choice probabilities depend on the differences between the

perceived utilities of the alternatives and not on the absolute level of same perceived

utilities. It is thus possible to add a constant to the perceived utility of each alterna-

tive, without changing the corresponding choice probabilities. This property gives

rise to a correct specification rule according to which in an invariant random utility

model with m alternatives at most m − 1 independent ASA may be introduced. In-

deed, if βASA
j is the coefficient of ASA relative to alternative j and V ′

j the remaining

part of systematic utility, from (3.2.4) we may write:

p[j ] = Pr
[

V ′
j + βASA

j + εj ≥ V ′
i + βASA

i + εi ∀i ∈ 1 . . .m
]

Consequently, by adding to the systematic utilities of all alternatives a constant

equal to βASA
k of alternative k chosen arbitrarily, the previous formula may take the
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following form,

p[j ] = Pr
[

V ′
j +

(

βASA
j − βASA

k

)

+ εj ≥ V ′
i +

(

βASA
i − βASA

k

)

+ εi ∀i ∈ 1 . . .m
]

and this shows that the calculated choice probabilities, introducing the ASA into all

the alternatives, are equal to those that would be obtained by introducing them into

all the alternatives except one, chosen arbitrarily.

With similar steps it may be demonstrated that the user’s socioeconomic at-

tributes, such as income or car ownership, may be introduced at most in the utility

function of all the alternatives except for one and not through specific variables of

the alternative. For example, two “high income” variables cannot be introduced into

systematic utilities of car and taxi alternatives with different coefficients.

As mentioned in Sect. 3.2, in the model specification phase it is necessary to de-

fine the expression of systematic utilities of alternatives as a function of explicative

variables (attributes) identified in accordance with the rules described up to here.

Usually one resorts to a functional dependence that is linear in the coefficients and

may be linear (3.2.5a) or not (3.2.5b) in the attributes. At times it is worth intro-

ducing a nonlinearity also in respect of the coefficients; an interesting functional

parametric transformation for nonnegative variables is that of Box–Cox:

xk →
(

x
λk

k − 1
)

/λk if λk 
= 0

xk → log(xk) if λk = 0

where λk is the parameter of transformation. It defines a family of functions that

includes, as special cases, linear (λk = 1), exponential (λk 
= 0) and logarithmic

transformation (λk = 0). It must also be stressed that the Box–Cox transformation

introduces some difficulties into the estimation process due to the nonlinearity in λk

of the utility functions. These difficulties may be avoided by estimating the model

iteratively for different values of λk and choosing the model and λk values that

supply the best results.

8.3.2 Model Calibration

Random utility models can be viewed as mathematical relationships expressing the

probability pi[j ](X,β, θ) that individual i chooses alternative j as a function of

the vector X of attributes for all the available alternatives; of the systematic utility

parameter vector β; and of the joint probability function of the random residuals θ .

Choice probabilities depend on X and β through systematic utility functions, which

are usually specified as linear combinations of the attributes X (or their transforma-

tions) with coefficients given by the parameters β:

Vj

(

Xi
j

)

=
∑

z

βzX
i
zj = βT Xi

j (8.3.1)
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Structural parameters θ include all parameters related to the random residual

probability distribution function. Thus, in the case of the multinomial logit models,

θ is the scale parameter of the Gumbel random variables. In the hierarchical logit, θ

consists of scale parameters θo and θ r associated with structural nodes. In the probit

model, θ consists of all the elements of the variance–covariance matrix, and so on.

Calibrating the model requires estimating the vectors β and θ from data on the

choices made by a sample of users. It should be observed that in general not all the

coefficients can be identified, that is, estimated separately. We return to this point in

greater detail later with reference to specific examples.

The Maximum Likelihood method. Maximum Likelihood (ML) is the method most

widely used for estimating model parameters. In maximum likelihood estimation,

the probability of observing the choices made by a sample of users (the sample

likelihood) is expressed as a function of the unknown model parameters, and the pa-

rameter estimates are those which maximize that probability. The sample likelihood

depends not only on the model and its parameters, but also on the sampling strategy

adopted. The cases of simple and stratified random sampling are considered in the

following.

In the case of simple random sampling of n users, the observations are statisti-

cally independent and the probability of obtaining the observed choices is the prod-

uct of the probabilities that each user i chooses j (i), that is, the alternative actually

chosen by him or her. The probabilities pi[j (i)](Xi;β, θ) are computed by the ran-

dom utility model and therefore depend on the coefficient vectors. Thus, the proba-

bility L of observing the whole sample is a function (the likelihood function) of the

unknown parameters:

L(β, θ) =
∏

i=1,...,n

pi
[

j (i)
]

(Xi;β, θ) (8.3.2)

The maximum likelihood estimate [β, θ ]ML of the vectors of parameters β and θ

is obtained by maximizing (8.3.2) or, more conveniently, its natural logarithm (the

log-likelihood function):

[β, θ ]ML = arg max lnL(β, θ) = arg max
∑

i=1,...,n

lnpi
[

j (i)
]

(Xi,β, θ) (8.3.3)

Figure 8.2 shows an elementary example of the maximum likelihood estimation

of a single parameter.

In the calibration of some models, the n users may naturally be grouped in sets

of ni users, with all users in a set choosing the same alternative and having the

same attributes. A typical example is an aggregate distribution model in which the

users traveling between the same O-D pair possess the same attributes, namely the

trip costs between zone pairs and the attraction variables of each destination. In this
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case, the likelihood function and its logarithm can be expressed as

L(β, θ) =
∏

i

pi
[

j (i)
]ni (Xi,β; θ)

lnL(β, θ) =
∑

i

ni lnpi
[

j (i)
]

(Xi;β, θ)

In stratified random sampling, nh users are sampled randomly from the Nh mem-

bers of each stratum (h = 1, . . . ,H) with a sampling rate αh = nh/Nh. The proba-

bility of observing the sample choices and therefore the likelihood function, depends

on the method used to identify the strata.

If the population is stratified using, either directly or indirectly, the attributes X

but not the choices to be modeled, the strategy is known as exogenous stratified

sampling. Typical examples are geographical stratification (the level-of-service at-

tributes depend on the zone or zone pair on which the stratification is carried out)

and/or income stratification.

For samples obtained through exogenous stratified sampling, it can be demon-

strated that the log-likelihood function is:

lnL(β,θ) =
∑

h=1,...,H

∑

i=1,...,nh

lnpi
[

j (i)
]

(Xi;β, θ) + const. (8.3.4)

which, apart from a constant term, coincides with the function (8.3.3) obtained for

a simple random sample with size n =
∑

h=1,...,h nh.

If the stratification is based on the choices made by the users, the sampling strat-

egy is known as choice-based stratified sampling. This is the case, for example, if

the sample used to calibrate a mode choice model is obtained by randomly select-

ing a sample of users of each transport mode; the population of each stratum is

comprised of all users choosing each mode. The exact closed form log-likelihood

function is rather complex for this sampling strategy. As an approximation, the max-

imum likelihood estimator with exogenous weights can be adopted; in this case the

function lnL(β, θ) is expressed as

lnL(β, θ) =
∑

h=1,...,H

(

wh

αh

)

∑

i=1,...,nh

lnpi
[

j (i)
](

Xi
j ;β, θ

)

(8.3.5)

which, apart from the weights wh and αh, coincides with (8.3.4) and therefore with

(8.3.3). To apply the maximum likelihood estimator with exogenous weights to a

choice-based stratified sample, it is therefore necessary to have an estimate of the

weight of each stratum, that is, of the fraction of the total population choosing each

alternative. This information can be obtained from official statistics, or estimated

from another simple random sample with smaller or less detailed questionnaires.

Under rather general assumptions, maximum likelihood estimators have many

desirable asymptotic statistical properties such as consistency, efficiency, and nor-

mality, regardless of the model used to express the probabilities pi[j ]. Furthermore,
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n = 3 j = A,B p[A] =
exp(−βCA)

exp(−βCA) + exp(−βCB )

User j (i) Ci
A Ci

B

1 A 3 5

2 A 2 1

3 B 4 3

L(β) =
exp(−3 · β)

exp(−3 · β) + exp(−5 · β)
·

exp(−2 · β)

exp(−2 · β) + exp(−1 · β)

·
exp(−3 · β)

exp(−3 · β) + exp(−4 · β)

β p1[A] p2[A] p3[B] L(β) ln(L(β))

0.20 0.60 0.45 0.55 0.148 −1.91

0.40 0.69 0.40 0.60 0.165 −1.80

0.60 0.77 0.35 0.65 0.175 −1.74

0.80 0.83 0.31 0.69 0.178 −1.73

1.00 0.88 0.27 0.73 0.173 −1.75

1.20 0.92 0.23 0.77 0.163 −1.81

Fig. 8.2 Maximum likelihood estimation of a single parameter
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it is possible to obtain approximate estimates of the variances and covariances of the

components of βML, because its variance–covariance matrix Σ is asymptotically

equal to the negative inverse of the log-likelihood function’s Hessian, evaluated at

the point (β, θ)ML:

∑

β,θ

= −

[

∂2 lnL(β, θ)

∂(β, θ)∂(β, θ)T

]−1

(β,θ)ML

(8.3.6)

If the sample is sufficiently large, expression (8.3.6) can be used to estimate

variances and confidence limits for the coefficients.

From the algorithmic point of view, maximum likelihood estimation requires

the solution of an unconstrained maximization problem, like (8.3.3). This problem

can be solved by applying a gradient algorithm of the type described in Appen-

dix A. The gradient of the objective function can be calculated either analytically

or numerically, depending on the functional form of the model pi[j (i)] to be cali-

brated.

Maximum Likelihood Estimators for some random utility models. The explicit for-

mulation of the functions lnL(β, θ) in expressions (8.3.3) through (8.3.5), the pos-

sibility of estimating the coefficients, as well as the properties of the unconstrained

optimization problem all depend on the type of model used. Estimators for multino-

mial and hierarchical logit models can be derived analytically and are described

below.

If the probabilities pi[j ](Xi;β, θ) are obtained with a multinomial logit model

having a systematic utility linear in the coefficients βk , the objective function (8.3.3)

can be expressed analytically:

lnL(β, θ) =
∑

i=1,...,n

[

∑

k=1,...,K

βkX
i
kj (i)/θ − ln

∑

j∈Ii

exp

(

∑

k=1,...,K

βkX
i
kj/θ

)]

or in vector form:

lnL(β, θ) =
∑

i=1,...,n

[

βT Xi
j (i)/θ − ln

∑

j∈Ii

exp
(

βT Xi
j/θ

)

]

(8.3.7)

In this case, the parameters to be estimated are the Nβ coefficients βk , plus a

single scale parameter θ . As previously noted, not all parameters can be estimated

separately because the values of the log-likelihood function (8.3.7) do not depend on

the Nβ +1 single parameters but rather on the Nβ ratios βk/θ . It can be immediately

verified, in fact, that the two vectors [β1, β2, . . . , θ ] and [αβ1, αβ2, . . . , αθ ] give the

same value of the function (8.3.7). Thus, it would be impossible to estimate βk and θ

separately, because there are infinitely many combinations of them giving the same

choice probabilities and therefore the same log-likelihood function value. If the ratio
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βk/θ is denoted by β ′
k , the vector β ′ is:

β ′ = β/θ = [β1/θ,β2/θ, . . .]

and expression (8.3.7) becomes4:

lnL(β ′) =
∑

i=1...n

[

β ′T Xi
j (i) − ln

∑

j∈Ii

exp(β ′T Xi
j )

]

(8.3.8)

The first-order partial derivatives of (8.3.8) with respect to the generic parameter

β ′
k define the gradient of the objective function; they can be expressed in closed

form:

∂ lnL(β ′)

∂β ′
k

=
∑

i=1...n

[

Xi
kj (i) −

∑

j∈Ii

Xi
kj

exp(β ′T Xi
j )

∑

h∈Ii
exp(β ′T Xi

h)

]

or in more compact notation:

∂ lnL(β ′)

∂β ′
k

=
∑

i=1...n

[

Xi
kj (i) −

∑

j∈Ii

Xi
kjp

i[j ](Xi,β ′)

]

(8.3.9)

The second-order partial derivatives of lnL(β ′) can also be expressed in closed

form:

∂2 lnL(β ′)

∂β ′
k∂β

′
l

= −
∑

i=1...n

∑

j∈Ii

pi[j ](β ′) ·

(

Xi
jk −

∑

h∈Ii

Xi
hkp

i[h]

)

·

(

Xi
j l −

∑

h∈Ii

Xi
hlp

i[h]

)

(8.3.10)

These derivatives are used in some algorithms to solve the optimization problem

(8.3.3), and can also be used to obtain a sample estimate of the variance–covariance

matrix ΣML of the estimator β ′
ML given by (8.3.6).

Under rather general assumptions, it can be shown that the Hessian matrix of the

objective function (8.3.8), whose components are given by the second derivatives

(8.3.10), is definite negative; this implies that the function lnL(β ′) is strictly con-

cave. There is therefore a unique vector β ′
ML that maximizes the function lnL(β ′),

and the algorithms described in Appendix A converge to this value.

4Note that the terms of the summations in (8.3.7) and (8.3.8) are the difference between the sys-

tematic utility for the chosen alternative, Vj (i)(X,β), and the satisfaction associated with all the

available alternatives:

lnL(β ′) =
∑

i=1...n

[

Vj (i)(X
i ,β) − s(X,β)

]

and this difference, as can be seen from Sect. 3.4, is always less than zero.
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Fig. 8.3 Choice tree

structure for a nested

hierarchical model

These results can be extended to the case of functions lnL(β ′) given by (8.3.4)

and (8.3.5) for stratified samples.

In the case of hierarchical logit models, the choice probabilities depend on the

structure of the choice tree. For the sake of simplicity, the discussion refers to the

example in Fig. 8.3, in which the structural nodes have the indicated parameters θ

and δ. The results can be extended to any choice tree structure.

In this case we have:

p[A] =
eVA/θo

eVA/θo + eθ1Y1/θo
=

eVA/θo

eVA/θo + [eVB/θ1 + (eVC/θ2 + eVD/θ2)θ2/θ1]θ1/θo

Substituting the expressions for the systematic utilities, we have:

p[A] =
e
∑

k βkXkA/θo

e
∑

k βkXkA/θo + [e
∑

βkXkB/θ1 + (e
∑

k βkXkC/θ2 + e
∑

k βkXkD/θ2)θ2/θ1]θ1/θo

(8.3.11)

The choice probabilities and the log-likelihood function depend not only on the

Nβ coefficients βk , but also on the Nθ parameters θr , one for each intermediate node

plus one (θo) for the root. It can also be observed that the structural coefficients

always appear in (8.3.11) as ratios. Each coefficient βkj in the systematic utility of

an alternative j is divided by the parameter θa(j) of its parent node, whereas each

parameter θr of an intermediate node r is divided by the parameter θa(r) of its parent

node, which may be an intermediate node or the root.

In hierarchical logit models, the Nβ + Nθ − 1 ratios rather than the individual

Nβ +Nθ parameters are estimated. In fact, it can be verified immediately that a vec-

tor [β1, β2, . . . , βNβ , θ1, θ2, . . . , θNθ ], and a vector [αβ1, αβ2, . . . , αβNβ , αθ1, αθ2,

. . . , αθNθ ] substituted in expression (8.3.11) give the same value of p[A]. All the

parameters can therefore be identified but one. The parameters usually identified

are the ratios β i
kj = βkj/θa(j) and δr = θr/θa(r).

5 From the previous expressions it

5Note that the estimates of a given coefficient βk obtained with different specifications of the

random utility model (multinomial logit, hierarchical logit, probit) are usually different because

they contain different scale coefficients.
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can also be deduced that the coefficients βk of a generic attribute appearing in the

utilities of alternatives belonging to different nests, for example βkA and βkC , must

satisfy a consistency relationship:

βkA = βkC ⇒ β ′
kA = β ′

kCδ1δ2

From these considerations, if the vector of the ratios βkj/θa(j) is denoted by

β ′ and the vector of the ratios θr/θa(r) by δ, the log-likelihood function becomes

lnL(β ′, δ). It can be shown that, for a given δ, this function is concave with respect

to the vector β ′, but that it is not concave with respect to the vector δ. Figure 8.4

shows the graph of the objective function lnL(β ′, δ) for a simple hierarchical logit

model as a function of a single parameter δ, where the vector β ′ is equal to the

(unique) value that maximizes the log-likelihood function for the value of δ in the

abscissa. The figure shows the nonconcavity of the function and two local maxima.

For this reason, the problem (8.3.3) is sometimes solved using heuristic algorithms

that maximize the log-likelihood function with respect to the vector β ′ for a set

of fixed values of δ, and subsequently search for the overall maximum within the

limited set of trial vectors δ (e.g., grid search). Other algorithms solve the problem

(8.3.3) directly, with an appropriate definition of the ascent direction.

Another possibility for the calibration of hierarchical logit models is the sequen-

tial estimation of the parameters of multinomial logit models corresponding to each

node of the choice tree associated with the decision process. The calibration process

is started from the intermediate nodes that include only elemental alternatives. Pa-

rameters calibrated at one stage are kept fixed in the following stages. This type of

calibration is known as limited information estimation, because the only information

incorporated in each estimation concerns users who have chosen elemental alterna-

tives (leaves) of the tree and/or compound alternatives (structural nodes) connected

to the intermediate node under study. There are, however, both theoretical and prac-

tical problems connected with limited information maximum likelihood estimation.

The method is theoretically suboptimal because it can produce an objective function

value that is lower than the global maximum. Furthermore, the objective function

values are sometimes even lower than those obtained from calibrating a multinomial

logit model with equal systematic utilities, which is clearly a contradiction because

the latter is a special case of the hierarchical logit model with all δs equal to one.

From the practical point of view, it is very difficult in this method to estimate the

coefficient of a generic attribute if the attribute is included (with the same coeffi-

cient value) in the systematic utilities of alternatives belonging to different groups.

Each group is calibrated separately and there is no convenient way to impose equal-

ity constraints between coefficient values common to multiple groups. For these

reasons the sequential estimation method is not to be recommended.

The same considerations reported for the hierarchical logit model can be easily

extended to the cross-nested logit model, which requires estimation of the degrees

of membership in addition to the variance parameters (see Sect. 3.3.4). It should

be noted that the mathematical properties of the maximum likelihood for the cross-

nested logit model, as well as the corresponding identification issues, are still under

analysis.
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Fig. 8.4 Log-likelihood for a hierarchical logit model as a function of the parameter δ

Estimation of nonclosed-form random utility models (e.g., probit, mixed logit)

can be theoretically carried out by introducing a Maximum Simulated Likelihood

(MSL) estimation, that is, introducing in expressions (8.3.3) through (8.3.5) an esti-

mate p̂i[j (i)] of the choice probability for the alternative j (i) provided through one

of the methods described in Chap. 3. As a consequence, statistical properties of MSL

estimators depend also on the procedure adopted for simulating choice probabilities.

From an operational standpoint, the maximum simulated likelihood estimation faces

some problems: the reader can refer to the specific literature for a deeper analysis.

Concerning the identification of the probit model parameters, as mentioned in

Sect. 3.3.6, the covariance matrix related to an m-alternatives choice set is charac-

terized at most by m(m+1)/2 distinct elements. In fact, under the hypothesis of the

invariant utility model, choice behavior depends on the joint distribution function

of the differences of perceived utilities with respect to an alternative chosen as ref-

erence. That is, the corresponding covariance matrix has order m − 1 and therefore

exhibits m(m − 1)/2 distinct values. Taking into account the further degree of free-

dom provided by the choice of the scale factor, the covariance matrix of an invariant

m-alternatives probit model is uniquely defined by m(m − 1)/2 − 1 distinct values.

8.3.3 Model Validation

Once a demand model has been specified and calibrated, it must be validated. In this

phase the reasonableness and the significance of estimated coefficients are verified,

as well as the model’s ability to reproduce the choices made by a sample of users. In

addition, the assumptions underlying the functional form assumed by the model are

tested. All of these activities can be completed with appropriate tests of hypotheses

for a sample of users.
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Informal tests on coefficients. These tests are based on expectations regarding the

signs of the calibrated coefficients and the relationships between their values.

Wrong signs of the coefficients are likely indicators of attribute errors in the

survey results database, or of model misspecification. For example, in a road path

choice model, it may happen that paths including toll motorway sections are chosen,

even though they have approximately the same average travel time and are more ex-

pensive than untolled paths. If the model specification does not somehow account

for the greater driving comfort on a motorway, the calibration procedure may re-

sult in a positive cost coefficient in an attempt to increase the systematic utility,

and therefore the choice probability, of motorway alternatives. A different model

specification, for example, introducing an attribute equal to the length of the motor-

way section on each path, should adjust the cost coefficient to the expected negative

value.

Other checks can be performed on the ratios of the coefficients of different at-

tributes. As stated in Chap. 4 (see (4.3.15)), the ratio between time and monetary

cost coefficients can be interpreted as a Value of Time (VOT), and can be compared

with the results of other calibrations and with expectations about users’ willing-

ness to pay. The parameters of attributes corresponding to different components of

travel time (e.g., waiting and on-board time) should have increasing absolute values

for more onerous components. In general, the results reported in the scientific and

technical literature are very helpful in these analyses.

As an example, consider the mode choice model described in Fig. 8.5; the time

and cost coefficients are negative, and the availability coefficients (car, motorcycle,

and bicycle) are positive. Furthermore, the perceived value of time is about 5 €/h.

It can also be seen that the disutility associated with time on foot is about five times

that of time on board and so on.

Formal tests on coefficients. For sufficiently large samples, the asymptotic properties

of maximum likelihood estimates can be exploited to test different assumptions on

βML.6

Student t -Tests on Particular Coefficients

These tests check the null hypothesis that the true value of a coefficient βk is

equal to zero and its estimate βML
k differs from zero due to sampling errors (H0 :

βk = 0). They are based on the Student t statistic:

t =
βML

k

Var[βML
k ]1/2

(8.3.12)

6For simplicity of notation, no distinction is made in what follows between the vector β of coeffi-

cients in the utility function and the vector θ of structural coefficients, or more precisely between

the vectors β ′ and δ′ of identifiable parameters. The vector β is to be understood as the set of all

the coefficients to be estimated.
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VCar = βT · Ta + βCA · CA + βHF · HF + βCAR · CAR

Vmotorbike = βT · Tm + βMAN · MAN + β21−35 · 21 − 35

Vbus = βT · Tb + βT accb<10 · Taccb<10

Vwalking = βT wlk · Twlk + βWLK · WLK

Tc, Tm, Tb = Travel times of the modes car, motorcycle, bus;

Twlk = Walking travel time;

Taccb<10 = Dummy variable = 1 if access time to bus is less than ten minutes;

0 otherwise;

CA = Car availability (no. cars/no. licenses in the household);

MAN = Dummy variable = 1 if the user is male, 0 otherwise;

HF = Dummy variable =1 if the user is head of family, 0 otherwise;

21–35 = Dummy variable = 1 if the user is aged between 21 and 35, 0 otherwise

CAR, WLK = Alternative Specific Attributes (ASA);

Coefficients βT βT wlk βT accb<10 βCA βHF βMAN β21–35 βCAR βWLK

Estimate −0.748 −4.560 1.247 1.758 0.452 0.990 1.684 1.411 3.929

Std. dev. 0.338 0.431 0.472 0.384 0.225 0.532 0.466 0.560 0.548

t −2.213 −10.59 2.642 4.573 2.012 1.962 3.616 2.519 7.168

Test H Test statistic 95th percentile

t student βt = βT wlk 7.53 1.96

LR(0) β = 0 588.01 16.92

LR(βASA) β = βASA 285.83 14.06

Goodness of fit test

ρ2 0.424

ρ̄2 0.411

Fig. 8.5 Parameters and statistics for a mode choice logit model

Alternatively, the Student t statistic can be used to test the hypothesis that two

coefficients βk and βj are equal (H0 : βk = βj ):

t =
βML

k − βML
j

(Var[βML
k ] + Var[βML

j ] − 2cov[βML
j βML

k ])1/2

In both cases, under the null hypothesis the statistic t is distributed as a Stu-

dent t variable with degrees of freedom equal to the sample size minus the number

of estimated coefficients. Given typical sample sizes, it is usually assumed that the

t statistic is distributed as an N(0,1) standard normal variable, which is the limit

distribution of the Student t-variable as the sample size increases. Sample estimates

of variances and covariances can be computed through expression (8.3.6). As is well

known, the null hypothesis is rejected with a probability α of making a Type I er-

ror (e.g., rejecting a true assumption) if the t statistic value is outside the interval

(zα/2, z1−α/2), which for α = 0.95 is equal to ±1.96. The values of the Student t sta-

tistics (8.3.12) for the coefficients of the model reported in Fig. 8.5 show that all the

coefficient estimates are significantly different from zero with α = 0.95. The reader
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can check the significance of the coefficients of the different models described in

Chap. 4.

Chi-Square Tests on Vectors of Coefficients

To test the null hypothesis that the true coefficient vector β or one of its sub-

vectors is equal to a given vector β∗(H0 : β = β∗), the following statistic can be

used.

chi2(β∗) = (βML − β∗)T
−1
∑

β

(βML − β∗) (8.3.13)

If the null hypothesis is true, the χ2 statistic is asymptotically distributed as a

chi-square variable with degrees of freedom equal to the number of components

of β .

Note that expressions (8.3.12) and (8.3.13) can be used to obtain the confidence

interval for a single coefficient as well as the confidence region for a vector of coef-

ficients.

Likelihood ratio tests on vectors of coefficients. The likelihood ratio test is similar

to the previous one in that it tests the null hypothesis that the vector β , or one of

its subvectors, is equal to a vector β∗. The vector β∗ may be defined implicitly by

imposing some constraints on β , for example, by specifying a feasibility set B (with

β ∈ B). In both the implicit and the explicit case, β∗ can be seen as the vector that

maximizes the log-likelihood function under the constraints:

β∗ = arg max
β∈B

lnL(β)

For instance, one can test the hypothesis that β is null or that only some of its

components are null; in the latter case the other components of β∗ will be estimated

by solving the constrained maximization problem.

The null hypothesis Ho : β = β∗ can be tested using the Likelihood Ratio statistic

LR:

LR(β∗) = −2
[

lnL(β∗) − lnL(βML)
]

(8.3.14)

which, under the null hypothesis, is asymptotically distributed as a chi-square vari-

able with degrees of freedom equal to the number of constraints imposed in estimat-

ing β∗.

The LR statistic is always greater than zero because the unconstrained maximum

lnL(βML) of the function lnL(β) is not smaller than the constrained maximum

of the same function, lnL(β∗). Note that the LR test is equivalent, but not equal

from the numerical point of view, to the chi-square test described above when the
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constraints completely identify the vector β∗. For example, in the case β∗ = 0 it

yields:

LR(0) = −2
[

lnL(0) − lnL(βML)
]

(8.3.15)

The null hypothesis β∗ = 0 corresponds to assuming a “true” model with all coef-

ficients equal to zero, which therefore predicts equal probabilities for all alternatives

(Vj = 0 ∀j ⇒ p[j ] = 1/J ). The larger the difference between the likelihood of

observing the users’ choices with the calibrated model (lnL(βML)) and the corre-

sponding probability with a zero coefficients model (lnL(0)), the less likely is this

hypothesis. Under the null hypothesis, the statistic LR(0) will be distributed as a

chi-square variable with degrees of freedom equal to Nβ .

A more challenging specification of the test is obtained by comparing the cal-

ibrated model with a model whose only parameters are the alternative specific at-

tributes βASA. The vector β∗ = βML
ASA is obtained by maximizing the log-likelihood

function lnL(β) with all the other coefficients constrained to be equal to zero: the

number of ASA and their coefficients, NASA, can at most be equal to one less than

the number of alternatives; that is, NASA ≤ (J − 1). In this case the LR statistic

becomes:

LR(βASA) = −2
[

lnL
(

βML
ASA

)

− lnL(βML)
]

(8.3.16)

Figure 8.5 shows the statistics LR(0) and LR(βASA) with their respective degrees

of freedom. These statistics far exceed the 95th percentile of the corresponding chi-

square variables with Nβ and Nβ − NASA degrees of freedom, and therefore the

assumptions that the “true” model has either null coefficients or mode-specific con-

stants only can be rejected with a very low probability of error.

Statistics and tests on goodness of fit. The model’s ability to reproduce the choices

made by a sample of users7 can be measured by using the rho-square statistic:

ρ2 = 1 −
lnL(βML)

lnL(0)
(8.3.17)

This statistic is a normalized measure in the interval [0,1]. It is equal to zero if

L(βML) is equal to L(0) (i.e., the model has no explanatory capability); it is equal

to one if the model yields the probability one of observing the choices actually made

by each user in the sample (i.e., the model has perfect ability to reproduce observed

choices).

7In theory, the model’s goodness of fit should be tested on a sample of observations different from

the sample used for the calibration (a hold-out sample). In practice, this procedure is not always

followed to make the best use of all the available information, given the limited size of many

available samples.
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Alternatively, it is possible to use an adjusted value of the rho-square statistic,

sometimes named the rho-square bar, which replaces the log-likelihood function

lnL(βML) by its unbiased estimate lnL(βML) − Nβ , where Nβ is the number of

parameters estimated in the model:

ρ̄2 = 1 −
lnL(βML) − Nβ

lnL(0)
(8.3.18)

Expression (8.3.18) attempts to eliminate the effect of the number of parameters

in the model’s specification, in order to allow comparison of models with different

numbers of parameters.

The adjusted rho-square statistic can be used to compare two models (model 1

and model 2) whose vectors β1 and β2 cannot be obtained as a special case of each

other.8 In this case, under the null hypothesis that model 1 is “true,” the probability

that the statistic ρ̄2
2 of model 2 is for sampling reasons larger by some z than that of

model 1, is less than the value of the probability distribution function of an N(0,1)

standard normal variable computed for the value

z̄ = −
[

−2z lnL(0) + (N1 − N2)
]1/2

(8.3.19)

or

Pr
(

ρ̄2
2 − ρ̄2

1 > z
)

≤ φ(z̄); z > 0 (8.3.20)

where φ(z̄) is the value of the p.d.f. of N(0,1) and N1 and N2 are the number of

parameters in models 1 and 2 respectively.

In addition to the statistics ρ2 and ρ̄2, other informal statistics are used to assess

the goodness of fit of a model. One of these statistics (% right) relates to the per-

centage of observations in the sample for which the alternative actually chosen is

that with maximum probability as predicted by the model. Other synthetic statistics

are the choice percentage observed and predicted by the model for each alternative.

The former is given by the ratio between the number of users choosing each alter-

native and the total number of users to whom it is available. The latter is obtained

as the average of choice probabilities given by the model for the users to whom the

alternative is available.

Tests on the functional form. The statistical tests described above examine different

hypotheses on the coefficients βML obtained from the calibration of a model, where

the model specification is assumed given. This section describes some statistical

tests that compare different hypotheses on the functional form of the model itself.

Two generic alternative specifications can be compared using the ρ̄2 test in

(8.3.20). Alternatively, specific tests related to particular functional forms can be

8This type of assumption is known as “nonnested”.
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used. For example, in Chap. 3 it was shown that the multinomial logit model is a

special case of a single-level hierarchical logit if δ = 1 (expression (3.3.24)), and of

the multilevel hierarchical logit if δr = 1 for each intermediate node r of the choice

tree (Sect. 3.3.3). The hypothesis that the “true” model is a multinomial logit can be

tested by calibrating hierarchical logit models and testing the null hypothesis that

the estimates δML are equal to one. These tests can be conducted using the statistics

described previously for testing hypotheses on single or multiple parameters.

For the multinomial logit model, the Independence of Irrelevant Alternatives

(IIA) property discussed in Sect. 3.3.1 can be tested directly. Under the IIA hy-

pothesis, the choice model for any subset I ′ of alternatives (a partial choice set)

contained in I (the universal choice set), I ′ ⊆ I , is still a multinomial logit model:

pi[j/I ′] = exp
(

β̄T Xi
j

)

/

∑

h∈I ′

exp β̄T Xi
h (8.3.21)

where β̄ indicates the subvector of coefficients included in the systematic utilities

of the alternatives contained in I ′ (e.g., β̄ will not contain the ASA coefficients of

alternatives not belonging to I ′). The number of these coefficients will be Nβ̄ ≤ Nβ .

The maximum likelihood estimator β̄ML
1′ for the model (8.3.21) can be obtained for

the subsample of observations choosing the alternatives in I ′. If the IIA hypothesis

is true, the vector β̄ML
I of the Nβ̄ coefficients obtained by calibrating the model for

all the alternatives over the whole sample and the vector β̄ML
1′ described previously

must be statistically equivalent. This hypothesis can be tested using the statistic:

(

β̄
ML

I − β̄
ML

1′

)T
(ΣβI

− Σ β̄1′
)−1

(

β̄
ML

I − β̄
ML

1′

)

(8.3.22)

which under the null hypothesis is distributed as a chi-square variable with Nβ̄ de-

grees of freedom. The matrices ΣβI
and

∑

β̄1′
are the variance–covariance matrices

of the estimates β̄ML
I and β̄ML

1′ of the Nβ̄ common components. To test the IIA hy-

pothesis, the test should be carried out on different subsets I ′ of the universal choice

set I .

8.4 Disaggregate Estimation of Demand Models with Stated

Preference Surveys*

The information on travel behavior needed to specify and calibrate demand models

can also be obtained using Stated Preference (SP) surveys. This term refers to a set

of techniques that use statements made by interviewees about their preferences in

hypothetical scenarios. SP techniques are based on the possibility of “controlling

the experiment” by designing the choice context rather than recording choices in

a given (generally uncontrolled) choice context, which was the case with Revealed

Preference (RP) surveys described in the previous section. SP surveys have several

advantages over RP surveys, which can be summarized as follows.
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– They allow the investigation of choice alternatives not available at the time of the

survey (e.g., new modes or services in a mode choice context).

– They can control the variation of relevant attributes outside the presently observed

range to obtain better estimates of the corresponding coefficients. For example,

the monetary cost of travel in urban areas usually falls within a limited range of

values.

– They can introduce new attributes not present in the real choice context (e.g.,

passenger information, vehicle air-conditioning, and other on-board services).

– They can collect more information, that is, larger samples, per unit cost because

each interviewee is usually asked about several choice contexts.

These advantages are obtained at the price of introducing some distortion in the

results and in the models calibrated. Distortions stem from the possible differences

between stated and actual choice behavior: if the user experienced a real situation,

her behavior might be different from that stated during the SP survey. These dif-

ferences in behavior may be due to a variety of factors. For example, the context

suggested might be or appear to be unrealistic, some attributes of the suggested al-

ternative relevant to the decision-maker might be missing, or there may be fatigue

and justification bias effects. Analysis of the possible causes of distortion and of

their remedies is outside the scope of this book. However, it should be noted that

some of these problems are inherent to the SP survey technique, whereas others can

be solved by careful design and execution of the surveys, bringing them as close as

possible to real choice contexts.

From the above, it is clear that SP surveys, in spite of their considerable applica-

tion potential, should be seen as complementary to, rather than competing with, RP

techniques. The advantages and disadvantages of the two techniques compensate

for each other and, as shown in the following, the techniques can be used jointly to

build demand models.

Different SP techniques and approaches are appropriate for different aims. In the

following, reference is made to the SP techniques most widely used for the specifi-

cation and calibration of travel demand models. In particular, Sect. 8.4.1 introduces

some definitions and the main types of surveys, Sect. 8.4.2 describes some aspects

of SP survey design, and Sect. 8.4.3 deals with model calibration methods using the

combined results of RP and SP surveys.

8.4.1 Definitions and Types of Survey

A stated preference experiment is fully characterized by a number of elements: the

composition of the choice contexts proposed to the decision-maker interviewee, the

selection of the choice contexts proposed, the type of preference response elicited

from the decision-maker and the way in which the interview is conducted.
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During the interview, the decision-maker is usually presented with different sce-

narios or choice contexts. A scenario is defined by the set of alternative options9;

each option is associated with some attributes or factors defining its characteristics.

Figure 8.6 shows two choice contexts (scenario A and scenario B), each consisting

of two alternative modes and their attributes.

In the choice contexts proposed, the attributes vary between a predetermined

number of values, or levels. These levels can be defined in absolute terms, for exam-

ple, specific travel times and costs, or obtained as percentage variations with respect

to the values of the attributes for a real context known to the decision-maker (e.g.,

times and costs relative to current values for certain origin–destination pairs).

The decision-maker can be asked to express his preference in different ways:

– Choice, that is, an indication of which option he would choose in that context;

– Ranking, that is, ordering of the available options according to his preference;

– Rating, that is, the assignment of a vote of preference on a predefined scale for

each alternative option.

Note that the three types of preference provide an increasing quantity of in-

formation but require increasing involvement of the decision-maker. Furthermore,

“choice” and “ranking” coincide when the choice context consists of only two alter-

native options.

The number of possible scenarios depends on the number of combinations of the

design elements introduced, namely the number of options, the number of attributes,

and the number of levels for each attribute. Because the total number of scenarios

might be very large and not all the combinations are equally “useful,” one of the

elements in the design of an SP experiment will be the selection of the scenarios to

be proposed to the decision-maker(s).

Finally, the interviews can be conducted using different procedures. In traditional

methods, the decision-maker is asked to fill in pre-printed paper forms. In more

sophisticated computer-aided techniques, the scenarios are generated in real-time,

taking previous answers into account.

8.4.2 Survey Design

Designing an SP survey requires the definition of all the elements described above.

It must be recalled that, in spite of the operational guidelines and the theoretical

9Choice alternatives in any scenario depend on the functional form of the model to be calibrated.

With multinomial logit models, due to the IIA property, estimates of the systematic utility coef-

ficients do not depend on the number of alternatives proposed, so that the scenario might include

any subset of the alternatives included in the model. In the case of models for which the IIA is not

valid, for example, hierarchical logit and probit, scenarios must be designed to account explicitly

for the structure of the model. For example, alternatives belonging to different groups, as well as

multiple alternatives for the same group, must be included in some scenarios for hierarchical logit

models.
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Fig. 8.6 Hypothetical scenarios for an SP survey

analyses, SP survey design, even more than with traditional surveys, is a synthesis

based on the analyst’s experience and sensitivity. The main operational suggestions

resulting from many years of research and experimentation are summarized below.

– Scenario realism: results of SP surveys are significantly better if choice scenarios

are in the direct experience of the decision-maker. For example, in a survey for

the calibration of a mode choice model, an RP interview can be carried out on an
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actual journey of a certain type, and then SP scenarios can be obtained from that

journey by varying the attributes or by introducing a new mode. In this way the

distortion effects described above can be reduced considerably. It is obvious that

this type of survey requires more preparation. Portable computers can generate in

real-time the level-of-service attributes for the different modes.

– “Choice” rather than “ranking” and “rating”. It seems that greater simplicity

and less ambiguity of preference statements compensate for the smaller amount

of information produced by this type of experiment. In addition, it is possible to

use results and estimation techniques analogous to those applied to RP surveys.

– Scenario simplification. It seems that proposing a limited number of alternative

options defined by a reduced number of attributes produces better results.

– Limitation of the number of scenarios proposed to each decision-maker in order

to avoid fatigue effects that deteriorate the quality of results. Experience suggests

that each decision-maker should be confronted with no more than nine or ten

scenarios.

The latter aspect is strictly connected to the most theoretical phase of survey de-

sign, namely scenario selection. In most cases the number of scenarios theoretically

possible is very large; in fact, subdividing the n factors into k groups of ni elements

(i = 1,2, . . . , k) taking on mi levels, the total number N of possible scenarios will

be:

N =

k
∏

i=1

m
ni

i

The number of factors must be computed taking into account the fact that an

attribute present in p alternatives counts for p different factors.

A full factorial design considers all possible scenarios. There are many tech-

niques10 for reducing the number of scenarios in a full factorial design, generating a

subset of scenarios with desirable properties. Some results for the case of two levels

per factor are given below; the case of several levels can be reduced by decomposing

a multilevel factor into many two-level factors and introducing some compatibility

constraints on the combinations of levels that the new factors can assume.

Figure 8.7 lists all the possible scenarios, indicating with + and − the two levels

of each factor for an experiment with three factors and two levels (N = 8); factors

are time and cost for the car (TC and CC) and time for the bus (TB).

It is also assumed that the experiment associated with the ith scenario (ith row of

the matrix in Fig. 8.7) yields an observation of the variable Ui not known a priori.

In the example, this variable could be the difference in the perceived utility between

the two alternatives (rating), or a binary indicator of the alternative preferred by the

decision maker (ranking and choice). Let lij indicate the level of the j th factor in the

10These techniques are derived from multivariate statistical analysis and, in particular, from exper-

imental design techniques. They are designed to allow the analysis of direct and indirect effects of

relevant variables by means of linear models, and therefore do not correspond exactly to the case

of demand models, which are typically nonlinear with respect to explanatory variables (attributes).
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Scenario No. Average Factors Interactions Result of choice

TC CC TB TC, CC TC, TB CC, TB TC, CC, TB

1 + − − − + + + − U1

2 + + − − − − + + U2

3 + − + − − + − + U3

4 + + + − + − − − U4

5 + − − + + − − + U5

6 + + − + − + − − U6

7 + − + + − − + − U7

8 + + + + + + + + U8

Divisor 8 4 4 4 4 4 4 4

Fig. 8.7 Example of full factorial design with levels and main interaction effects

ith scenario of the matrix in Fig. 8.7. Under the assumptions made here, lij assumes

the values +1 and −1 corresponding to the “high” and “low” level of the factor. The

complete experiment is called a contrast for factor j if:

∑

i=1,...,N

lij = 0 (8.4.1)

that is, if the number of high levels (+) is equal to the number of low levels (−) in

the N scenarios making up the experiment. Two contrasts involving factors j and h

are said to be orthogonal if:
∑

i=1,...,N

lij lih = 0 (8.4.2)

that is, if the numbers of scenarios in which the levels of the two factors are concor-

dant (++,−−) is equal to the number in which they are discordant (+−,−+).

The variation (total variance) of the variables Ui can be explained in terms of the

“main effects” and “interaction effects” of the factors considered in the experiment.

The main effect of factor j,P(j), is defined as the difference between the two

averages Ū+ and Ū− of the variable U calculated, respectively, from the (+) and

(−) values of the factor. If the vector lj is a contrast, it therefore follows that:

P(j) =
2

N

∑

i=1,...,N

lijUi (8.4.3)

For the example in Fig. 8.7, the main effect of factor TC is therefore:

P(TC) =
1

4
(U2 + U4 + U6 + U8) −

1

4
(U1 + U3 + U5 + U7)

The interaction effect between the factors j and h, I(j,h), is defined as the differ-

ence between the averages of the variable U obtained for the concordant values, (+)

(+) or (−) (−), and the discordant values, (+) (−) or (+) (−), of the two factors.
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If the two vectors lj and lh are contrasts, we have:

I(j,h) =
2

N

∑

i=1,...,N

lij lihUi (8.4.4)

For the example of Fig. 8.7, the interaction effect of factors TC and CC is there-

fore:

I(TC ,CC ) =
1

4
(U1 + U4 + U5 + U8) −

1

4
(U2 + U3 + U6 + U7)

Furthermore, from (8.4.4) it follows that, analogously to the levels of a factor,

the level of interaction between two factors (j, h) for the ith scenario, li(j,h), can

be defined as lij · lih; the interaction effect between the two factors can therefore be

expressed as

I(j,h) =
2

N

∑

li(j,h)Ui (8.4.5)

Analogously, the interaction effect of three factors (j,h, k) can be defined as

I(j,h,k) =
2

N

∑

i=1,...,N

lij lihlikUi (8.4.6)

and the interaction level of three factors can be expressed as li(j,h,k).

Figure 8.7 shows the two-factor interaction levels and the unique three-factor

interaction level as well as the average column, I , for which all variables mi are

equal to (+1). These variables allow the average of U to be expressed as

U =
1

N

∑

i=1,...,N

miUi

Under the assumption of orthogonal contrasts, the N values taken by the variable

U can be entirely explained as a linear combination, with coefficients ai , of the

average, the main effects and the interaction effects between the different factors. In

the case of the example in Fig. 8.7, we have:

Ui = α1mi + α2li(TC) + α3l2(CC) + α4li(TB) + α5li(TC CC)

+ α6li(TC TB) + α7li(CC TB) + α8li(TC CC TB)

Many experiments, however, lead to the conclusion that most of the overall vari-

ance of the variable U is explained by the main effects (approximately 80%), and

the two-factor interaction effects explain a limited fraction of the global variance

(3–6%). Furthermore, the variance explained by the interactions of more than two

factors is usually negligible. In other words, if the variable U were expressed as a

linear combination of the average and of the main effects, the variance explained

by the model would be around 80% of the total variance observed for the variable

U and so on. Based on these results, techniques have been developed for selecting
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less than the full factorial design. Examples are techniques to reduce the number

of scenarios presented to each decision-maker, while retaining the orthogonality of

the contrasts and the possibility of evaluating at least the main effects of the factors

considered.

The first technique, known as block decomposition of the full factorial design,

is based on the principle of subdividing the set of alternative scenarios into groups

(blocks) that are presented to different decision-makers. In order to obtain blocks

satisfying the properties (8.4.1) (contrasts) and (8.4.2) (orthogonality between con-

trasts) one or more “block variables” is selected and the scenarios corresponding

to the same value of the block variable, or concordant (discordant) values of many

block variables, are grouped together. The block variables normally used are high-

level interactions, because the effects on the variance of the block variables and their

interactions can be estimated only approximately on the basis of the observation of

all the interviewees. Figure 8.8 shows two subdivisions into blocks of the full design

in Fig. 8.7. In the first case, the eight scenarios are divided into two blocks of 4 (8/2)

scenarios, using the interaction level of the three factors (TC, CC TB) as the block

variable. In the second case, 4 blocks (8/2 × 2) of two scenarios each are obtained

by using as block variables the interaction level of the two factors (TC, CC) and of

the two factors (TC, TB).

Another partialization technique of the full factorial design, known as fractional

factorial design, eliminates some scenarios completely while retaining orthogonal

contrasts that allow the estimation of the main effects. If the resulting number of sce-

narios is still too high to be presented to a single decision-maker, they can be further

broken down into blocks by using the method described previously. A fractional

factorial design can be obtained from the full design through a “defining relation-

ship.” The simplest case is that in which the level of a given factor is obtained from

those of all the others resulting from a full design which excludes the factor to be

obtained. The level of the “derived” factor is assumed equal to the level of a higher-

level interaction effect. For example, in the case of Fig. 8.9 it is assumed that the

level of the factor TB is equal to that of the interaction effect (TC, CC), where the

levels of TC and CC are those defined in a two-factor full design (N = 22). In this

case the following “defining relationship” is adopted.

TB = (TC,CC); that is, liTB = liTC · liCC (8.4.7)

The design in Fig. 8.9 is thus obtained as follows.

– Development of the full factorial design for the two factors TC and CC

– Calculation of the interaction effect level (TC, CC)

– Definition of the level of factor TB using (8.4.7)

With a fractional factorial design, the possibility of estimating some interaction

effects is lost, as these effects get confounded with the retained ones. Confounded

effects can be identified by manipulating the defining relationship of the fractional

factorial design. Thus, recalling that the product of the levels of the same factor is

equal to the average factor I , relationship (8.4.7) gives:

TB × TB = TB × TC × CC = I
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Sc. No. Factors Block var. Alternatives organized by block Sc. No.

TC CC TB TC, CC, TB Block TC CC TB

1 − − − − I Block I − − − 1

2 + − − + II + + − 4

3 − + − + II + − + 6

4 + + − − I − + + 7

5 − − + + II Block II + − − 2

6 + − + − I − + − 3

7 − + + − I − − + 5

8 + + + + II + + + 8

Sc. No Factors Block var. Alternatives organized by block Sc. No

TC CC TB TC, CC TC, TB Block TC CC TB

1 − − − + + IV Block I + − − 2

2 + − − − − I − + + 7

3 − + − − + II Block II − + − 3

4 + + − + − III + − + 6

5 − − + + − III Block III + + − 4

6 + − + − + II − − + 5

7 − + + − − I Block IV − − − 1

8 + + + + + IV + + + 8

Note: Sc. = scenario

Fig. 8.8 Construction of two and four blocks from the full factorial design in Fig. 8.7

Scenario Factors Interaction Factor

No. TC CC TC, CC TB

1 − − + +

2 + − − −

3 − + − −

4 + + + +

Fig. 8.9 Example of fractional factorial design for the full factorial design in Fig. 8.7

TC × TB = TC × TC × CC = CC (8.4.8)

CC × TB = CC × CC × TC = TC

that is, the three-factor interaction effect (TC, CC, TB) gets confounded with the av-

erage and the two-factor interaction effects (TC, TB) and (CC, TB) get confounded

with the primary effects of the factors CC and TC, respectively. Obviously, the two-

factor interaction effect (TC, CC) is confounded with the primary effect TB by con-

struction.

The “length” of the defining relationship (i.e., the number of factors in it) is

known as the resolution of a fractional factorial design. The resolution of (8.4.7) is

equal to 3. The number of scenarios in a fractional factorial design depends on the

number of defining relationships; for each defining equation, under the assumption

of two levels for each factor, the number of scenarios halves. Obviously, the choice
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of defining relationships must be based on the analyst’s expectations concerning the

particular effects that should not be confounded to explain the observed behaviors.

To give a more detailed example, suppose there are seven factors generically

indicated by A,B,C,D,E,F,G with two levels each. The full factorial design has

27 = 128 scenarios, and a fractional factorial design with 27−1 = 64 scenarios can

be obtained with a single defining relationship. For example:

G = (ABCDEF)

A design with 27−4 = 8 scenarios can be obtained with 4 defining relationships,

for example:

D = (A,B); E = (A,C); F = (B,C); G = (A,B,C)

and so on.

Note the difference between the two methods described for partializing the full

factorial design. With the block variables method, the whole full factorial design is

used, even if it is presented to several decision-makers; with the fractional design; on

the other hand, some scenarios are completely eliminated. In the former case many

scenarios are generated but, given the number of decision-makers in the sample, less

information (preference statements) is obtained for each scenario; with the fractional

factorial design, the opposite occurs.

It should be pointed out that SP surveys are often aimed at the calibration of

random utility models whose systematic utility function includes the values of indi-

vidual attributes or their functional transformation. This specification assumes that

the interactions between the attributes (or factors) can be disregarded in explaining

the choice behaviors of decision-makers. Thus, the SP survey design should allow

at least the evaluation of all the main effects of the factors considered.

8.4.3 Model Calibration

The results of an SP survey can be used to calibrate demand models involving the

choice dimensions proposed to the decision-makers. The estimation methods used

in practice are analogous to those described for revealed preferences in Sect. 8.3.2.

In fact, each scenario i presented to a decision-maker can be seen as an element of a

sample of observations of choice behaviors. The final size of the SP sample is thus

equal to:

nSP =
∑

z=1,...,NSP

nz

where nz is the number of scenarios presented to the zth decision-maker and NSP is

the number of decision-makers included in the SP survey.

The attributes proposed for the different alternatives can be associated with each

scenario i. The chosen alternative is the one explicitly chosen by the decision-maker
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in choice surveys, or the one with greatest attractiveness in ranking or rating surveys.

Under the approximate assumption that the nSP observations are statistically inde-

pendent,11 it is possible to formulate likelihood and log-likelihood functions for the

SP sample that formally coincide with expressions (8.3.2) and (8.3.3), and all the

results described previously can be extended to the estimation of SP-based models.

As stated in the introduction to this section, SP surveys should be considered

complementary to traditional RP surveys and the combined use of the two can bal-

ance their respective merits and shortcomings. From the point of view of demand

modeling, it is therefore useful to carry out joint calibrations using RP and SP sur-

veys on the same sample or on different samples of users. Random utility models

explaining RP and SP choices should be specified separately because their attributes,

random residuals, variances, and, in principle, even functional forms might be differ-

ent. Possible specifications of the perceived utilities in both models are formalized

below.

RP MODEL:

URP
ji = βT XRP

ji + ηT WRP
ji + εRP

ji = V RP
ji + εRP

ji i = 1, . . . , nRP (8.4.9)

where

URP
ji is the perceived utility associated with alternative j by decision-maker i in

the RP context

XRP
ji is the vector of common RP/SP attributes of alternative j for decision-

maker i; these attributes appear in the specification of the SP model with

the same coefficients

WRP
ji is the vector of the RP-specific attributes of alternative j for decision-

maker i

εRP
ji is the random residual of alternative j for decision-maker i

V RP
ji is the systematic utility of the RP model associated with alternative j for

decision-maker i

β and η are the vectors of unknown parameters to be estimated

SP MODEL:

USP
ji = βT XSP

ji + γ T ZSP
ji + εSP

ji = V SP
ji + εSP

ji i = 1, . . . , nSP (8.4.10)

where

USP
ji is the perceived utility associated with alternative j in the hypothetical sce-

nario i

XSP
ji is the vector of common RP/SP attributes of alternative j for scenario i

11In practice, it would be more correct to assume the existence of a correlation between observa-

tions of the choices of each individual. This can be obtained, for example, by introducing a common

random residual for all the observations of a same respondent within a mixed logit formulation.
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ZSP
ji is the vector of the SP-specific attributes of alternative j for scenario i

εSP
ji is the random residual of alternative j for scenario I

V SP
ji is the systematic utility of the SP model associated with alternative j for

scenario i

β and γ are the vectors of unknown parameters to be estimated

Specific attributes of the RP model may involve variables not included among the

SP factors. Specific attributes of the SP model may include quality attributes, such as

on-board comfort, services contemplated in the SP survey, or ASA for alternatives

not available in the RP context (e.g., new transport modes or services).

State dependence or state inertia is an SP-specific attribute often included in the

specification (8.4.10). This attribute represents the conditioning of the SP decision-

maker by the alternative actually chosen in the RP context. Inertia is often modeled

as a dummy variable equal to one if user i chooses alternative j in the RP context,

zero otherwise. Its coefficient is usually found to be statistically significant and pos-

itive indicating, given the values of other attributes, a larger perceived utility and

choice probability for the alternative that is actually chosen in the real context. Ob-

viously the state dependence attribute can be used only if the RP and SP surveys

relate to the same sample of decision-makers.

The definition of the choice probabilities pi
RP[j ] and pi

SP[j ] obviously depends

on the assumptions about the distribution of the random vectors εRP and εSP. As-

suming that εSP
ji and εRP

ji are i.i.d. Gumbel variables with parameters θSP and θRP, re-

spectively, the probability of choosing alternative j in observation (decision-maker

or scenario) i assumes the form of a multinomial logit model for both the RP and

the SP models:

pi
RP[j ] =

exp(V RP
ji /θRP)

∑

h exp(V RP
hi /θRP)

; pi
SP[j ] =

exp(V SP
ji /θSP)

∑

h exp(V SP
hi /θSP)

(8.4.11)

A scale factor taking into account the possibility that the variances of the vectors

εRP and εSP might be different is usually introduced for joint RP/SP calibration.

In fact, as stated in Sect. 8.3, for logit family models it is not possible to estimate

the parameter θ separately from the coefficients βk , so that the estimates β̂ML
k are

in reality ratios β ′
k = βk/θ . To take into account the possible difference in the vari-

ances of the residuals εRP and εSP, a scale factor µ, equal to the ratio between the

parameters θ of the two random vectors, is introduced:

µ2 =
Var[εRP]

Var[εSP]
=

θ2
RP

θ2
SP

; that is, µ =
θRP

θSP
(8.4.12)

The log-likelihood function for the RP and SP samples can therefore be expressed

including the parameter θRP in all the other coefficients:

lnLRP(β ′,η′) =
∑

i=1,...,nRP

lnpRP

[

j (i)
](

XRP
i ,WRP

i ,β ′,η′
)

(8.4.13)
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lnLSP(β ′,γ ′,µ′) =
∑

i=1,...,nSP

lnpSP

[

j (i)
](

XSP
i ,ZSP

i ,β ′,γ ′,µ′
)

(8.4.14)

where the probabilities p[j (i)] are obtained by using the following systematic util-

ities:

V RP
ij = β ′T XRP

ij + η′T WRP
ij β ′ = β/θRP η′ = η/θRP

V SP
ij = µβ ′T XSP

ij + γ ′T ZSP
ij γ ′ = γ /θSP µβ ′ = β/θSP

The combined estimate of the parameters (β ′,η′,γ ′,µ) can therefore be obtained

by maximizing the log-likelihood function of the joint sample, which is the sum of

expressions (8.4.13) and (8.4.14) under the assumption that the RP and SP samples

are independent:

(β ′,η′,γ ′,µ′) = arg max
[

lnLRP+SP(β ′,η′,γ ′,µ)
]

= arg max
[

lnLRP(β ′,η′) + lnLSP(β ′,γ ′,µ)
]

(8.4.15)

Note also that under the hypothesis that the two choice models pRP[j (i)] and

pSP[j (i)] are multinomial logit (such as (8.4.11)), the global log-likelihood func-

tion (8.4.15) is concave in the parameters β ′,η′, and γ ′, but not in the scale factor

µ as is the case with the hierarchical logit model. This implies that the maximiza-

tion of (8.4.15) cannot use the gradient algorithms described in Appendix A for the

multinomial logit model. A possible solution uses, on the one hand, the gradient al-

gorithms to maximize the function lnL(β ′, δ′,γ ′,µk) for a predefined value µk of

the scale factor and a one-dimensional line search algorithm that explores different

values of µ (see Appendix A).

Experimental evidence indicates that the combined use of RP and SP data for

estimating the parameters usually results in an improvement in statistical precision

and in more reasonable parameter values. Furthermore, it is not possible to define

a priori whether the scale factor µ must be greater or less than one. In fact, there

are reasons both for a larger variance of RP random residuals (less precise attributes

used for calibration, omitted attributes, etc.) and for the opposite (less realism of the

choice context, fatigue effect, etc.). As an example, Fig. 8.10 reports the results of

the calibrations of a multinomial logit mode choice model using RP and SP data

separately and jointly.

The joint calibration on RP and SP data of more complex random utility models is

further complicated if the joint density function of the vectors εRP and εSP involves

more than one parameter. If the two models pRP[j ] and pSP[j ] were hierarchical

logit models with the same tree structure (the same vector of parameters δ), it would

still be possible to introduce a scale factor µ relating the variances of the two random

vectors. For different correlation structures or other functional forms it would be

more complicated to synthesize the different structures of the variance–covariance

matrices of εRP and εSP with few parameters.
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Parameters (attributes) RP model SP model RP/SP model

β1 (travel time) −3.277 (−2.2) −2.585 (−3.9) −2.82 (−3.9)

β2 (cost) −2.863 (−3.5) −1.336 (−5.9) −1.371 (−2.4)

V.O.T. 0.591 €/h 0.999 €/h 1.062 €/h

β3 (access time) −6.606 (−1.2) −3.176 (−3.5) −4.776 (−4.8)

β4 (waiting time) −10.40 (−2.3) −19.62 (−4.1) −20.86 (−4.0)

β5 (no. of motorbikes) 5.391 (3.9) 2.831 (3.6) 2.848 (5.5)

β6 (no. of cars) 3.175 (2.5) 1.933 (4.4) 1.528 (3.9)

β7 (chain) −1.399 (−1.2) −1.730 (−2.3) −0.4545 (−1.7)

η1 (ASA car RP) −1.370 (−1.2) −4.271 (−4.9)

η2 (ASA motorbike RP) −4.492 (−3.3) −6.076 (−6.8)

γ1 (ASA car SP) −9748 (−1.8) −1.923 (−3.1)

γ2 (ASA motorbikes SP) −1.499 (−2.3) −2.480 (−3.4)

γ3 (Inertia) 2.603 (4.4)

Scale factor µ 0.786 (4.0)

STATISTICS

lnL(0) −105.4668 −408.6838 −514.1506

LnL(β) −55.4268 −210.4182 −282.2376

LR 100.08 396.53 463.826

RHO2 0.4745 0.4851 0.6612

RP Model

V RP
car =β1Tb + β2Mc + β6Ncβ7CH + η1CARRP

V RP
Motorbike =β1Tb + β2Mc + β5Nm + η2MOTORBIKERP

V RP
Bus =β1Tb + β2Mc + β3Ta + β4Tw

SP Model

V SP
car =β1Tb + β2Mc + β6Ncβ7CH + γ1CARSP + γ3IN

V SP
Motorbike =β1Tb + β2Mc + β5Nm + γ2MOTORBIKESP + γ3IN

V SP
Bus =β1Tb + β2Mc + β3Ta + β4Tw + γ3IN

Attributes

Tb = Travel time on board [h]

Mc = Monetary cost [€ · 103]

Nm, Nc = No. of motorbikes and cars in household

Ta = Access time [h]

Tw = Waiting time [h]

CH = Dummy variable (0/1), 1 if the trip belongs to a chain

(sequence of more than 2 trips)

Car, Motorbike = Alternative Specific Attributes (ASA)

IN = Inertia variable (0/1), 1 if mode was chosen in the RP survey

Fig. 8.10 Separate and joint RP/SP calibrations of a multinomial logit mode choice model

8.5 Estimation of O-D Demand Flows Using Traffic Counts

This section covers methods aimed at improving estimates of present origin–

destination demand flows by combining direct and/or indirect (model) estimators
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with other aggregate information related to the flows. This aggregate information

will be considered here to be traffic counts, that is, counts of user flows, on some

elements (links) of the transportation supply system (network).12 The problem of

estimating O-D flows by combining traffic counts with all the other available in-

formation is sometimes referred to in the literature as the origin–destination count

based estimation (ODCBE) problem.

From a certain point of view, the problem of estimating O-D flows by using traffic

counts can be considered as the inverse assignment problem. Chapter 5 posed the

assignment problem as that of calculating link flows starting from O-D flows, and

network and path choice models. Conversely, the problem under study here is that

of calculating O-D flows starting from measured link flows, using network and path

choice models (see Fig. 8.11).

Estimation of O-D matrices using traffic counts has received considerable atten-

tion in recent years both from theoretical and empirical points of view. This can be

easily explained given the cost and complexity of sampling surveys, as well as the

lack of precision of direct and model estimators of O-D flows. In contrast to this,

user flows on network links (traffic counts) are cheaply and easily obtainable, often

automatically. Furthermore, in many transportation engineering applications, O-D

flow estimates are primarily used to predict traffic flows resulting from changes in

the supply system (network). The focus is on estimating and predicting aggregate

implications of the O-D matrix, that is, the total link flows, rather than individual

O-D flows, and it is expected that a matrix capable of reproducing such aggregates

with good precision will also give good predictions following network changes.

Before solving the O-D estimation problem, it is necessary to express formally

the relationship between the vector of observed flows and the unknown O-D demand

flows, by reformulating some of the relationships presented in the previous chapters.

As stated in Chaps. 2 and 5, the link flow fl in the reference period can be expressed

as the sum of reference period flows on the paths that include link l:

fl =
∑

k δlkhk where δlk is the element of the link-path incidence matrix ∆.

Path flows can be expressed as the product of the total O-D demand flow by the

percentage (fraction) of users following each O-D path:

fl =
∑

k

δlkhk =
∑

k

δlk

∑

i

pkidi (8.5.1)

12This is both the most frequent and most complex case. Other aggregate information sources

can be easily represented as particular cases of link counts by properly specifying the “assign-

ment equation” (8.5.2). Total generated and/or attracted flows, average trip length, distribution of

trip lengths, and total flows crossing internal cordons are examples of other aggregate informa-

tion about O-D flows that can be seen as special cases. In the following it is also assumed that

flow-counting locations are given; that is, the links are given as input to the problem of O-D de-

mand estimation. Although this is sometimes the case, count locations should be determined based

on the information they provide. The problem of determining optimal counting locations can be

formulated as a network design problem similar to those described in Chap. 9.
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Fig. 8.11 Relationship

between traffic assignment

and estimation of O-D flows

from traffic counts

where pki is the fraction of the flow di
13 between the ith O-D pair using path k.

Note that, in this expression, the variables (link flows, O-D flows, path flows, and

path fractions) indicate the “true” values for the system and the reference period

under study.

Equation (8.5.1) can be expressed differently as

fl =
∑

i

di

∑

k

δlkpki =
∑

i

mlidi (8.5.2)

or

fl = mT
l d

where mli =
∑

k δlkpki is the assignment fraction, that is, the fraction of the flow

di using link l, and ml is the column vector obtained by ordering these fractions.14

13For simplicity of notation in this section, the generic element of the demand vector is denoted as

di , i.e., using a single index for the O-D pair as in Chap. 5, instead of the double index dod used

previously.

14Note that values of pki , and therefore mli , are “true” values, that is, the actual fractions of users

who use a given path or a given link in the reference period.
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Using matrix notation, expression (8.5.2) becomes

f = ∆h = ∆Pd = Md (8.5.3)

All the variables introduced here refer to the links for which traffic counts are

available (nl being their number), to the paths using them and to the O-D flows

using those paths (nOD being their number). Thus the matrix M , or assignment

matrix, has dimensions (nl × nOD). The relationship (8.5.3) between link flows and

O-D demand flows is known as the assignment relationship or map; Fig. 8.12 shows

an example of the assignment map for an elementary network.

When several paths are available between an O-D pair, the elements mli of the

assignment relationship are not uniquely defined, and therefore must be estimated.

Path choice and network assignment models described in Chaps. 4 and 5 provide

methods for obtaining estimates p̂ki of the fractions pki and estimates m̂li of the

fractions mli .

In the case of pre-trip, deterministic, or probabilistic path choice models, frac-

tions p̂ki can be expressed as probabilities of choosing each path k connecting the

ith O-D pair as a function of the path cost vector g (see Sect. 4.3.3.1):

p̂ki = p[k/i](g) (8.5.4)

In the case of mixed pre-trip/en-route path choice models (often used for high-

frequency public transport networks), the probability of choosing path k for O-D

pair i can be obtained from the choice probability q[j/i] of hyperpath j , which de-

pends on the vector of hyperpath costs x, and from the probabilities ωkj of following

path k within hyperpath j (see Sect. 4.3.3.1):

p̂ki =
∑

j

ωkjq[j/i](x) (8.5.5)

To underline the dependence of assignment matrix estimates m̂li on the path

choice model and, through this, on the link costs c, the matrix M̂ can be formally

expressed as

M̂ = ∆P̂ (c) (8.5.6)

M̂ = ∆ΩQ(c) (8.5.7)

leaving as understood the relationship between additive path costs and link costs.

If link and path costs are known,15 an estimate M̂ of the “true” assignment ma-

trix M can be calculated through path choice models (8.5.4) and (8.5.5). It is to be

expected that M̂ may differ from the true assignment matrix M because of the ap-

proximations implicit in any assignment model (network extraction, cost functions,

15The calculation of the assignment matrix M̂ in the case of congested networks for which the link

costs are not known is covered in Sect. 8.5.4 on solution methods.



8.5 Estimation of O-D Demand Flows Using Traffic Counts 553

Fig. 8.12 Assignment map for an elementary network

path choice model, etc.). Thus, a vector εSIM 16
of assignment-related errors should

be added when substituting M̂ for M in (8.5.3):

f = Md = (M̂ + ESIM)d = M̂d + εSIM (8.5.8)

where ESIM is the matrix of differences between the true assignment matrix and

that obtained with the assignment model; and εSIM is the vector of differences, or

assignment errors, between the flows resulting from the assignment of “true” de-

mand and “true” flows. In other words, if the “true” vector of demand flows d16

16It should be remembered that the components of the “true” vectors d and f are the flows between

each O-D pair and on each link, averaged over different observation periods.
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were known, its assignment to the network would produce a flow vector v:

v = M̂d = v(d) (8.5.9)

which is different from the “true” link flow vector f . These differences are the

components of the vector εSIM:

f = v + εSIM

Flow counts are a further source of error. Like all measures, traffic counts are

affected by errors that depend, among other things, on the technique used (manual,

automatic, etc.). Furthermore, the counts are usually conducted over several days,

sometimes on different days for different links, whereas the “true” demand vector d

represents the average O-D flows in periods with similar characteristics (e.g., peak

hour of the average weekday). Thus, if f̂ is the vector of measured flows, it will

differ from the “true” vector f by a vector εOBS of measurement errors:

f̂ = f + εOBS (8.5.10)

By combining (8.5.8) and (8.5.10), it is possible to express the relationship be-

tween the vector of counts f̂ , the assignment matrix M̂ and the “true” O-D demand

flow vector d as

f̂ = M̂d + εSIM + εOBS = v(d) + ε (8.5.11)

where the vector ε is the algebraic sum of the vectors εSIM and εOBS. It is usually

assumed that the assignment model and the counts are unbiased estimators of the

“true” flows, that is, that the vector ε is a zero mean random vector E(ε) = 0.

Empirical evidence seems to support this assumption.

Usually the information on O-D flows contained in traffic counts, represented by

the system of stochastic equations (8.5.11), is not sufficient to estimate the vector d .

Indeed, even assuming that ε is null, the number of independent equations in the

linear system (8.5.3) is usually much less than the number of unknown O-D flows

to be estimated. The example in Fig. 8.13 shows that even for an elementary net-

work with a single path for each O-D pair, there are many O-D matrices that, when

assigned to the network, exactly reproduce the flows observed on the links.

Furthermore, because in general the vector ε differs from zero, the system of

linear equations f̂ = M̂d may not have a solution. In summary, the information

contained in the counts must be combined with that from other sources to estimate

the unknown O-D demand flows.

The additional information can be of two types: sampling or experimental infor-

mation derived from demand surveys, and nonexperimental information represent-

ing the a priori knowledge of the analyst. In the former case, the classic theory of

statistical interference can be applied; in the latter, Bayesian estimators should be

used. The two methods, whose statistical foundations are described in the following
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sections, give rise to several estimators, some of them having similar formal repre-

sentations.17 In fact, if d̂ is the vector representing the initial information (i.e. the

information on O-D-demand not given by the counts), the ODCBE problem can be

expressed in general form as

d∗ = arg min
x≥0

[

z1(x, d̂) + z2(v(x), f̂ )
]

(8.5.12)

where x is the unknown demand vector. The two functions z1(x, d̂) and z2(v(x), f̂ )

can be considered as different “distance” measures: z1 measures the “distance” of

the unknown demand x from the a priori estimate d̂ and z2 measures the “distance”

of the flows v(x) obtained by assigning x to the network from the traffic counts f̂ .

An intuitive interpretation of the problem (8.5.12) is that it searches the vector d∗

that is closest to the a priori estimate d̂ , and, once it is assigned to the network,

produces the flows v(d∗) closest to the counts f̂ .

In general, the functional form of the two terms z1(·) and z2(·), depends on the

type of information available (experimental or nonexperimental) and on the prob-

ability laws associated with such information. The statistical bases of the various

estimators and their resulting functional forms are described in the following sec-

tions.

8.5.1 Maximum Likelihood and GLS Estimators*

Classic estimators of d can be derived from Maximum Likelihood (ML) or Gener-

alized Least Squares (GLS) theory, depending on whether explicit assumptions on

the probability distribution of the random residuals εSIM and εOBS are made.

Maximum likelihood estimators dML are obtained by maximizing the probability

of observing both the additional sampling survey results and the counted flows. Un-

der the usually acceptable assumption that these two probabilities are independent,

the maximum likelihood estimator can be expressed as

dML = arg max
x∈S

[

lnL(n/x) + lnL(f̂ /x)
]

(8.5.13)

where

x is the “unknown” demand vector, of dimension (nOD × 1), whose compo-

nents xod are the trip flows between the O-D pair od (which from now on

are denoted with a double index)

n is the vector of O-D demand counts, with dimension (nOD ×1). The generic

component of n, nod , is the number of trips in the sample that were ob-

served between the O-D pair od

17This can be seen as confirmation of the essentially interpretative nature of the difference between

the objective and subjective approaches in probability theory and statistical inference.
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Fig. 8.13 O-D matrices corresponding to the same link flows vector

f̂ is the vector of observed flows, or traffic counts, with dimension (nl × 1)

lnL(n/x) is the log-likelihood function of demand counts, that is, the logarithm of

the probability of observing the sampling vector n if x is the (true) demand

vector

lnL(f̂ /x) is the log-likelihood function of the traffic counts, that is, the logarithm

of the probability of observing the vector of the counts f̂ if x is the (true)

demand vector

S is the feasibility set of the (true) demand vector, usually taken to be the

nonnegative orthant; that is, S = {x : x ≥ 0}

Maximum likelihood estimators can therefore be obtained by solving the con-

strained maximization problem expressed by (8.5.13) once the log-likelihood func-

tions lnL(n/x) and lnL(f̂ /x) have been specified. This requires the formulation
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of hypotheses on the probability laws of O-D demand counts n and of traffic counts

f̂ , conditional on the demand vector x.

It is usually assumed that traffic counts are random variables with means given by

the flows v(x) obtained by assigning the demand x. By (8.5.11), this implies that the

vector εSIM has a zero mean. The probability laws most widely used for count data

are the Poisson and the multivariate normal. If it is assumed that the traffic counts

on each link l are independently distributed as Poisson random variables with mean

equal to vl(x), that is,

E[f̂ l] = vl(x) = m̂
T
l x (8.5.14)

then the probability of observing f̂ is given by the product of the probabilities of

observing its individual components:

L(f̂ /x) =
∏

l=1,...,nL

exp(−vl(x))vl(x)f̂ l

f̂l !
(8.5.15)

and the log-likelihood function becomes18

lnL(f̂ /x) ∼=
∑

l=1...nL

(

f̂l lnvl(x) − vl(x)
)

+ const. (8.5.16)

where the constant denotes other terms that do not depend on the unknown demand

vector x, and which are therefore irrelevant for the maximization problem (8.5.13).

If the traffic counts are jointly distributed according to a multivariate normal

random variable with mean vector v(x) and variance–covariance matrix W , the

likelihood of observing the vector f̂ is proportional to:

L(f̂ /x) ∝ exp

[

−
1

2

(

f̂ − v(x)
)T

W−1
(

f̂ − v(x)
)

]

(8.5.17)

and the log-likelihood function becomes:

lnL(f̂ /x) = −
1

2

(

f̂ − v(x)
)T

W−1
(

f̂ − v(x)
)

+ const. (8.5.18)

The log-likelihood function of O-D demand counts depends on the type of sam-

pling adopted (see Sect. 8.2). In the simplest case of stratified random sampling

by zone of origin, a simple random sample of no trips is extracted from the do. trips

originating from each zone o (e.g., sampling at the entrances of a motorway network

or at the cordon sections of the study area). Here it can be assumed that the number

of trips sampled from each origin to all destinations is distributed as a multinomial

random variable. It can further be assumed that the probability of observing the

18Equation (8.5.16) is obtained from (8.5.15) by using Stirling’s approximation: ln(x!) ∼= x lnx −

x.
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whole vector n is the product of the probability functions of these variables over all

origins:

L(n/x) =
∏

o

[(

no!/
∏

d

nod !

)

∏

d

(xod/xo)
nod

]

(8.5.19)

where xod/xo is the unknown probability of observing a trip with destination d .

From (8.5.19) the log-likelihood function can be obtained:

LnL(n/x) =
∑

od

nod lnxod + const. (8.5.20)

with the further constraint that the number of trips generated in each zone o is equal

to the number of those counted do., or:

S =

{

x :
∑

d

xod = do.;x ≥ 0

}

If the number of trips sampled at each origin is sufficiently large (a few dozen

or more), the multinomial variable can be closely approximated by the product of

independent Poisson variables (one for each O-D pair), with parameters equal to the

means αoxod , where αo is the sampling rate for origin o:

αo =
no

do.

In this case the functions L(n/x) and lnL(n/x) given by (8.5.19) and (8.5.20)

can be approximated by:

L(n/x) =
∏

od

exp(−αoxod)(αoxod)nod

nod !
(8.5.21)

and

lnL(n/x) =
∑

od

(

nod ln(αoxod) − αoxod

)

+ const. (8.5.22)

Analogous expressions can be obtained for more complex sampling methods; in

applications, however, expressions (8.5.21) and (8.5.22) are often used as reasonable

approximations.

In conclusion, the general maximum likelihood estimator dML given by expres-

sion (8.5.13) is made more detailed by substituting expression (8.5.16) or (8.5.18)

for the log-likelihood function of traffic counts, and expression (8.5.20) or (8.5.22)

for the log-likelihood function of the O-D demand counts (see Fig. 8.14).

Generalized Least Squares (GLS) is the other estimator derived within the clas-

sic theory of statistical inference. The GLS estimator provides the estimate of an

unknown vector, in this case the O-D demand flow vector, starting from a system
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of linear stochastic equations. The latter can be obtained by combining the demand-

related information contained in the traffic counts, expressed by (8.5.11), and in the

direct estimate d̂ , obtained from O-D demand counts:

f̂ = M̂x + ε E(ε) = 0 Var[ε] = W

d̂ = x + η E(η) = 0 Var[η] = Z
(8.5.23)

where d̂ is the O-D demand vector whose components d̂od are the sample estimates,

obtained using the methods described in Sect. 8.2. For example, in the case of simple

random sampling with rate α, these estimates will be:

d̂od =
nod

α

The vector η in expression (8.5.23) is the vector of sampling errors whose com-

ponents are the differences between the true unknown demand x and the sample

estimates d̂ . If the estimator adopted is unbiased the vector η has zero mean. The el-

ements of the variance–covariance matrix Z can be estimated using the appropriate

expressions for variances and covariances of sample estimates.

The GLS estimator of the demand vector can therefore be expressed as

dGLS = arg min
x∈S

[

(d̂ − x)T Z−1(d̂ − x) + (f̂ − M̂x)T W−1(f̂ − M̂x)
]

(8.5.24)

Expression (8.5.24) is often applied assuming that the matrices Z and W are

diagonal, that is, ignoring the covariances between the components of vectors εSIM

and η. This is done both because these covariances are difficult to express and also to

reduce memory requirements and computing times. Under this simplified assump-

tion, expression (8.5.24) becomes:

dGLS = arg min
x≥0

[

∑

od

(d̂od − xod)2

Var[ηod ]
+

∑

l

(f̂l −
∑

od m̂l,odxod)2

Var[εl]

]

(8.5.25)

The intuitive interpretation given for (8.5.12) can be extended to (8.5.25): the

demand vector dGLS minimizes the sum of squared differences between it and the

O-D flows estimated from the sample, and between the flows resulting from its

assignment and the counted link flows. Furthermore, the squared differences have

weights inversely proportional to the variances of their respective errors. In other

words, poorer estimates of differences from a component d̂od (those with higher

Var[ηod ]) will be weighted less, and the same is true for the flows.

Note also the role of information on the vector d contained in traffic counts. If this

information did not exist, the second term of (8.5.24) and (8.5.25) would disappear,

and the estimate of dGLS would coincide with d̂ because the latter minimizes the

quadratic objective function (setting it to zero). A similar observation can be made

for the maximum likelihood estimators.

From the formal point of view, the GLS estimator coincides with the maximum

likelihood estimator if both the demand estimates and the traffic counts are assumed
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to be distributed as multivariate normal random variables with means x and M̂x,

and with variance–covariance matrices Z and W , respectively.

8.5.2 Bayesian Estimators*

Bayesian methods estimate unknown parameters by combining experimental (or

sampling) information with nonexperimental (a priori or “subjective”) informa-

tion.19 In the particular case of O-D demand estimation, the experimental infor-

mation comes from traffic counts, whereas nonexperimental information may come

from old O-D estimates to be updated, from estimates obtained with demand mod-

els, or simply from analyst “expectations.” In each case, d̂ will indicate the demand

vector derived from nonexperimental information. Bayesian estimators are obtained

from the a posteriori probability function h(x/f̂ , d̂) of the unknown demand vector

x conditional on a priori information d̂ and on experimental information f̂ . Accord-

ing to Bayes’ theorem, the a posteriori probability is proportional to the product of

two factors: the a priori probability function g(x/d̂), which expresses the distri-

bution of subjective probability attributed to the unknown vector given the a priori

estimate d̂ ; and the probability, or likelihood, function L(f̂ /x), which expresses the

probability of observing the traffic counts f̂ conditional on the unknown demand

vector x:

h(x/f̂ , d̂) ∝ L(f̂ /x)g(x/d̂) (8.5.26)

A family of Bayesian estimators for demand flows dB can be obtained by maxi-

mizing20 the a posteriori probability (8.5.26) or its natural logarithm:

dB = arg max
x∈S

[

lng(x/d̂) + lnL(f̂ /x)
]

(8.5.27)

The detailed specification of a Bayesian estimator depends on the assumptions

made about the probability functions L(f̂ /x) and g(x/d̂). With respect to the func-

tion L(f̂ /x), (8.5.16) and (8.5.18), corresponding to the assumptions of indepen-

dent Poisson and multivariate normal random variables respectively, can be used.

19Bayesian estimators coincide with “classic” estimators under the assumption that the subjective

estimates are obtained from sampling surveys. This shows that “classic” estimators can be obtained

as special cases in the context of Bayesian statistics.

20In theory, different Bayesian estimators can be derived from different properties of the a poste-

riori probability function. The maximizing estimator given by (8.5.27) corresponds to the mode of

the a posteriori probability function (8.5.26). Another estimator could be obtained by finding the

expected value of the a posteriori function:

dB = E[x/f̂ , d̂] =

∫

x∈S

xh(x/f̂ , d̂) dx

In practice, however, the calculation of this expected value estimator would be very complex be-

cause it is not usually possible to solve analytically the multiple integral that defines it.
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The a priori probability function, g(x/d̂), can be specified in different ways; the

formulations proposed in the literature are described below.

If it is assumed that the unknown demand vector is a multinomial random vari-

able resulting from the distribution of total demand d , among all possible O-D pairs,

with probabilities πod derived from the matrix d̂ :

πod =
d̂od

d̂..
d̂.. =

∑

od

d̂od

the function g(x/d̂) can be written as

g(x/d̂) =
(
∑

od xod)!
∏

od xod !

∏

od

(d̂od/d̂..)xod (8.5.28)

Using Stirling’s approximation (lnx! ∼= x lnx − x), the logarithm of (8.5.28) can

be expressed as

lng(x/d̂) =
∑

od

xod ln

(

∑

od

xod

)

+
∑

od

xod ln(d̂od/d̂.. xod) (8.5.29)

Furthermore, if the total number of trips (
∑

od xod = d̂..) is assumed to be

known, expression (8.5.29) further simplifies to:

lng(x/d̂) = −
∑

od

xod ln(xod/d̂od) + const. (8.5.30)

The negative of function (8.5.30) is known as the entropy function of the un-

known vector x.

Alternatively, it may be assumed that the components xod are independently dis-

tributed Poisson random variables, with mean (parameter) equal to d̂od . In this case

the function g(x/d̂) becomes:

g(x/d̂) =
∏

od

exp(−d̂od)xod

xod !
d̂

xod

od (8.5.31)

The latter, using Stirling’s approximation, can be expressed as

lng(x/d̂) = −
∑

od

xod

[

ln(xod/d̂od) − 1
]

+ const. (8.5.32)

The negative of function (8.5.32) is known as the information function of the

unknown vector x.

Finally, it may be assumed that the vector x is a multivariate normal random vari-

able with mean d̂ and variance–covariance matrix ZB ; in this case the probability
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function is proportional to:

g(x/d̂) ∝ exp

[

−
1

2
(x − d̂)T Z−1

B (x − d̂)

]

and its logarithm becomes:

lng(x/d̂) = −
1

2
(x − d̂)T Z−1

B (x − d̂) + const. (8.5.33)

If the a priori probability function g(x/d̂) and the traffic counts probability func-

tion L(f̂ /x) are both assumed to be multivariate normal variables, expressions

(8.5.18) and (8.5.33) are substituted in the general expression (8.5.27) and the re-

sulting Bayesian estimator is formally analogous to the generalized least squares

estimator d̂GLS. However, the similarity between the two estimators is only formal,

because the vector d̂ and the variance–covariance matrices Z and ZB have different

interpretations. In the GLS estimator, the vector d̂ is a direct demand estimate from

sampling surveys, and the matrix Z includes its sampling variances and covariances.

In Bayesian estimators, d̂ is an a priori estimate of the O-D demand vector, and ZB

is made up of variances and covariances that summarize the analyst’s confidence in

the estimate.

The formal analogy of the two estimators should, however, be considered an ad-

vantage because it allows the use of the same model and algorithm in very different

estimation situations. This generality of the GLS estimator has contributed to its

widespread use in applications.

8.5.3 Application Issues

We stated that different estimators combining traffic counts f̂ and other informa-

tion d̂ can be expressed in a general form as the vector d∗ solving the constrained

minimization problem21;

d∗ = arg min
x∈S

[

z1(x, d̂) + z2

(

v(x), f̂
)]

(8.5.34)

Figure 8.14 summarizes the functional forms of z1(·) and z2(·) described above,

together with the corresponding assumptions.

The application of these methods in practice poses a number of problems that are

briefly addressed below.

The choice of functional form from among the various possibilities obviously

depends on the type of available information about the O-D flows and therefore on

21The problem (8.5.34) can be easily applied to maximization problems by changing the sign of

the objective function.
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GENERAL ESTIMATION MODEL

d∗ = arg minx∈S

[

z1(x, d̂) + z2(v(x), f̂ )
]

Distance from the initial estimate Distance from flow counts

z1(x, d̂) z2(v(x), f̂ )

Generalized Least Squares (GLS) Generalized Least Squares (GLS)

(d̂ − x)T Z−1(d̂ − x) (f̂ − v(x))T W−1(f̂ − v(x))

or or
∑

od (xod − d̂od )2/Var[ηod ]
∑

l∈M (f̂l − vl(x))2/Var[εl]

Maximum Likelihood (ML) Maximum Likelihood (ML)

Poisson Poisson

−
∑

od (nod ln(αodsxod ) − αodxod ) −
∑

l∈M (f̂l lnvl(x) − vl(x))

Multinomial MVN

−
∑

od nod lnxod (f̂ − v(x))T W−1(f̂ − v(x))

or
∑

l∈M (f̂l − vl(x))2/Var[εl]

Bayes Bayes

Poisson Poisson
∑

od xod ln[(xod/d̂od ) − 1] −
∑

l∈M (f̂l lnvl(x) − vl(x))

MVN MVN

(d̂ − x)T Z−1(d̂ − x) (f̂ − v(x))T W−1(f̂ − v(x))

or or
∑

od (xod − d̂od )2/Var[ηod ]
∑

l∈M (f̂l − vl(x))2/Var[εl]

Multinomial
∑

od xod ln(xod/d̂od )

Fig. 8.14 Functional forms of the terms z1(·) and z2(·)

the estimation context (classic or Bayesian). The generalized least squares estima-

tor is “robust” because it can be adopted in both cases and, as a classic estimator,

does not require explicit assumptions on the probability, or likelihood, function of

traffic and demand counts. Obviously this robustness is paid for in terms of statisti-

cal properties that are less satisfactory than those of other estimators if probability

distributions are known for traffic and demand counts.

The literature presents a number of studies comparing the statistical performance

of various estimators. Statistical performance can be measured by the “divergence”

between the estimates d∗ obtained for different specifications of the model (8.5.34)

and the true demand vector d . The mean square error between the two demand

vectors, MSE(d∗,d), is one of the most popular divergence measures:

MSE(d∗,d) =
1

nOD

∑

od

(

d∗
od − dod

)2

where nOD is the number of O-D pairs.
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An alternative measure is the ratio between the square root of the mean square

error and the average demand, which is analogous to the coefficient of variation of

a random variable:

RMSE% =
MSE(d∗,d)1/2

d../nOD

Obviously, the lower the MSE and RMSE% are, the better is the estimator d∗.

Numerical results seem to confirm the theoretical indications and suggest that, un-

der a wide range of hypotheses on the information contained in d̂ and f̂ , the GLS

estimator gives more stable results compared with other estimators.

The use of GLS estimators requires the definition of variance–covariance ma-

trices Z and W . This issue arises only in the case of GLS estimators and should

be seen as a further degree of freedom because variances and covariances are im-

plicitly defined by the distributions underlying the other functional forms of z1(·)

and z2(·). For example, expression (8.5.16) for z2(v(x), f̂ ) implies the assump-

tions that traffic counts are independent Poisson variables, their deviations from the

mean v(x) are independent (Cov(εlεm) = 0) and their variance is equal to the mean

(Var[εl] = vl(x)).

In applications, covariances among the components of ε and η are usually ig-

nored; that is, matrices Z and W are assumed to be diagonal. If d̂ is a sample esti-

mate, the variance of the sampling error ηod depends on the sampling strategy and

can be computed, for example, by using formulas (8.2.3) and (8.2.8). In Bayesian

estimation, variances are a measure of analyst “confidence” in the a priori estimates

and therefore cannot be objectively defined. The variances of the residuals εOBS
l can

be obtained through empirical relationships expressing the coefficient of variation

CV of assignment errors for different assignment models as a function of measured

flows. An example of this type of result was shown in Fig. 5.29 of Chap. 5.

8.5.4 Solution Methods

The main computational problem in solving the ODCBE models is the calculation of

the assignment map v(x), that is, the assignment matrix M̂ expressed by (8.5.6) and

(8.5.7). The elements m̂li , depend on path choice probabilities, (8.5.4) and (8.5.5),

which in turn are functions of path (or hyperpath) costs and hence of link costs, as

formally expressed by (8.5.6) and (8.5.7).

In general, given the path or hyperpath choice model, computation of the as-

signment matrix for given costs c can be carried out with relatively straightforward

modifications to the network loading algorithms described in Sect. 7.3. Furthermore,

in the case of congested networks, link costs depend on the link flow vector f . So-

lution of the ODCBE problem has two levels of complexity according to whether

the link cost vector is known.
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Link costs known. Let us assume that an estimate ĉ of link costs is available. This is

the case if the network is uncongested or moderately congested, and link costs can

be estimated independently of flows. Alternatively, link costs can be estimated for

congested networks either directly through network (travel time) surveys or indi-

rectly through cost functions and flow counts on congested links ĉl = cl(f̂l). Direct

network surveys can be carried out automatically with surveillance systems based

on vehicle location and remote transmission technologies.

If link costs are known, the assignment matrix M̂(ĉ) can be estimated indepen-

dently of the demand vector; thus d∗ can be estimated by applying model (8.5.34):

d∗ = arg min
x∈S

[

z1(x, d̂) + z2

(

M̂(ĉ)x, f̂
)]

(8.5.35)

Model (8.5.35) is a constrained minimization problem that can be solved with

different algorithms, depending on the constraints defining the set S. Often the feasi-

bility set S is defined by nonnegativity constraints on the demand flows (xi ≥ 0 ∀i).

The projected gradient algorithm, described in Appendix A, can be used in this case.

It is usually possible to formulate explicitly the gradient of the objective function.

For the GLS estimator, under the assumption that the matrices Z and W are diago-

nal, the ith component of the gradient can be expressed as

Gri =
∂

∂xi

[

∑

i

(xi − d̂i)
2

Var[ηi]
+

∑

l

(f̂l −
∑

i m̂lixi)
2

Var[εl]

]

= 2

[

(xi − d̂i)

Var[ηi]
+

∑

l

m̂li(
∑

j m̂ljxj − f̂l)

Var[εl]

]

Figure 8.15 reports the main variables of an application of the projected gradient

algorithm for the calculation of dGLS on a test network.

Link costs unknown. Estimates of link costs might not be available for all links. This

is typically the case with congested networks, for which the information described

above is often not available. In this case a problem of circular dependence arises,

because it is possible to estimate link flows v(d∗) and costs c(v(d∗)) by assigning

the demand d∗ that solves problem (8.5.35), which is expressed in terms of link

flows and costs. The estimation problem can be formalized as a fixed-point problem

as described below.

Let d = δ(M̂) be the solution of the estimation problem (8.5.35) for a given

assignment matrix M̂ :

d = δ(M̂) = arg min
x∈S

[

z1(x, d̂) + z2(M̂x, f̂ )
]

If the above problem has only one solution, the relationship d = δ(M̂) can be

considered to be a function that associates with each assignment matrix M̂ an es-

timate of the demand vector d . The assignment matrix M̂ can be expressed as a
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Fig. 8.15a Application of the projected gradient algorithm for the computation of dGLS (input

data)

function of demand flows: if we combine the relationship connecting the assign-

ment matrix to link costs, M̂ = M̂(c), with the cost functions c = c(f ), and intro-

duce the relationship between link and demand flows through the assignment model

f = v(d), we get:

M̂ = M̂
(

c
(

v(d)
))
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Fig. 8.15b Application of the projected gradient algorithm for the computation of dGLS (main

variables and comparison statistics)

Thus the ODCBE problem can be expressed as a fixed-point model that is ob-

tained by combining the two functions d = δ(M̂) and M̂ = M̂(c(v(d))):

d∗ = δ
(

M̂(d∗)
)

or

d∗ = arg min
x∈S

[

z1(x, d̂) + z2

(

M̂
(

c
(

v(d∗)
))

x, f̂
)]

(8.5.36)

Alternatively, the ODCBE problem for congested networks can be stated as a

bilevel optimization problem. This is the case when the equilibrium assignment map

is expressed through an optimization model, as described in Sects. 5.4 and 5.A for

DUE and SUE, respectively. In this case, the problem can be stated formally as

d∗ = arg min
x∈S

[

z1(x, d̂) + z2

(

v(x), f̂
)]

(8.5.37)

v(x) = arg min
f ∈Sf (x)

z(f̂ )

where z(·) is the objective function corresponding to the DUE or SUE equivalent

optimization problem and the dependence of the link flow feasibility set on the de-

mand vector has been stated explicitly. Obviously, the bilevel optimization approach
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requires that the assignment problem can be expressed by an optimization model;

that is, it must satisfy the mathematical properties stated in Chap. 5: continuous cost

functions with symmetric Jacobian. If this is the case, the two formulations (8.5.36)

and (8.5.37) are equivalent.

Problems (8.5.36) and (8.5.37) are computationally more complex than problem

(8.5.35) because it is necessary simultaneously to solve the constrained optimization

problem (8.5.35) given the demand estimate, and the equilibrium assignment prob-

lem that gives the link flows and costs.22 The fixed-point problem (8.5.36) can be

solved by using fixed-point iterative algorithms, which alternately solve the demand

estimation and the assignment problems by averaging the results until convergence.

For example, the MSA algorithm described in Appendix A and applied in Chap. 5

to calculate SUE equilibrium flows can be adopted here. Given an estimate dk−1

from iteration k − 1, the main steps of the algorithm in step k are as follows.

• Calculation of assignment matrix M̂
k

corresponding to demand dk−1:

– Assignment of demand dk−1 to the network and computation of the corre-

sponding flows

vk = v(dk−1);

– Estimation of the link costs and assignment matrix from the obtained flows

ck = c(vk)

M̂
k
= M̂(ck)

– Estimation of the auxiliary demand vector yk

yk = arg min
x∈S

[

z1(x, d̂) + z2(M̂
k
x, f̂ )

]

– Updating the demand estimate with a weighted average of dk−1 and yk :

dk =
k − 1

k
dk−1 +

1

k
yk

This procedure is repeated until a suitable termination test (yk ∼= dk−1) is satis-

fied. The MSA algorithm could be applied to other variables such as link costs or

assignment fractions.

22In the literature, the fixed-point formulation has been proposed mainly for SUE assignment,

where the equilibrium assignment map is defined uniquely, and the bilevel formulation has been

proposed for DUE assignment.
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8.6 Aggregate Calibration of Demand Models Using Traffic

Counts

The aggregate information on travel demand contained in traffic counts23 can also be

used to estimate the parameters of (calibrate) demand models. As stated in Chap. 4,

demand models can be viewed as functions relating the demand flows to variables

that characterize the activity system SE and the transport system T through a vector

of unknown parameters β .24

d = d(SE,T ;β) (8.6.1)

For a given specification of the model and given values of SE and T , expression

(8.6.1) can be considered a relationship between demand flows and the unknown

vector β . This section discusses the problem of combining traffic counts with other

information (experimental or not) to estimate the unknown parameters β . As in

the case of O-D flow estimation, the problem can be formulated following either

classical or Bayesian approaches.

The classical approach is appropriate when other experimental information is

available, typically from RP or SP sampling surveys, for the calibration of demand

models. The estimates β̂ resulting from the methods described in Sects. 8.3 and 8.4

can be viewed as realizations of random variables; thus the estimate of a component

β̂i diverges from the “true” value by an unknown quantity σi :

β̂i = βi + σi (8.6.2)

If β̂i is a maximum likelihood estimate, the variance of σi can be calculated as

the inverse of the Hessian matrix of the log-likelihood function; see (8.3.6). Further-

more, the estimator is (asymptotically) unbiased: E(σi) → 0.

In a Bayesian approach, β̂ can include a priori expectations on the parameters,

such as values obtained in a similar study area. In this case, expression (8.6.2) can

be viewed as a relationship between the “true” parameter and an initial value and

the variance of σi is a measure of the analyst’s “confidence” in the initial estimate.

The two approaches coincide if the a priori estimates are obtained from sampling

surveys.

To use traffic counts to estimate β , it is necessary to express the relationship

that links these counts to the unknown parameters of a demand model. In general,

23The methods described in this section, although presented in terms of traffic counts, can easily be

extended to mixed (aggregate/disaggregate) or purely aggregate calibration, using other kinds of

aggregate data. For example, the model parameters can be calibrated from estimates d̂od of demand

flows derived from different sources (data from transport companies or sampling estimates). In this

case the assignment matrix M̂ relating the aggregate counts to the demand vector is the identity

matrix. Other aggregate data can complement or substitute for traffic counts.

24The vector β denotes all the identifiable parameters of the specific demand model system, in-

cluding those that characterize the random residual probability density function. It will include,

for example, the coefficients β ′
i of a multinomial logit model and the coefficients β ′

i and δj of a

hierarchical logit model.
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to calibrate a direct demand model, that is, a single model that encompasses the

sequence generation, distribution, and mode choice, it is necessary to have counts

on the different modal networks. Let f̂ m be the vector of flows (measured) on the

mode m network and f̂ be the vector obtained by sequentially ordering all the vec-

tors f̂ m. The relationship between the traffic counts f̂ m and the “true” mode m

demand vector dm is basically analogous to (8.5.11), which now becomes:

f̂ m = M̂mdm + εSIM
m + εOBS

m (8.6.3)

The vector of O-D mode m flows, as obtained from the direct demand model,

can be expressed as dm(β) where, for the sake of simplicity, the vectors SE and T

are understood.25 Even if the “true” parameter vector β were known, the demand

obtained from the model would diverge from the “true” demand by a vector of errors

εMOD
m :

dm = dm(β) + εMOD
m (8.6.4)

and by substituting (8.6.4) in (8.6.3) we have:

f̂ m = M̂mdm(β) + εm (8.6.5)

where the vector εm is the sum of all the error components:

εm = εSIM
m + εOBS

m + M̂mεMOD
m

and has zero mean if the vectors εSIM
m ,εOBS

m ,εMOD
m have zero mean.

The relationship (8.6.5) can be extended to the set of counting links belonging to

different modal networks:

f̂ = M̂d(β) + ε (8.6.6)

where the vectors f̂ ,d(β), and ε are obtained by sequentially ordering the vectors

of the different modes for which traffic counts are available. Similarly the assign-

ment matrix M̂ is obtained by sequentially ordering the modal assignment matrices.

The two sources of information about β , expressed, respectively, by (8.6.2) and

(8.6.6), can be combined in different ways, leading to different estimators of β that

result from the classic or Bayesian interpretation of the initial estimate β̂ and from

the assumptions about the probability distribution of vectors σ and ε. It is possible

to specify maximum likelihood, generalized least squares, and Bayesian estimators

of β analogous to those described in Sects. 8.5.1 and 8.5.2. Most estimators can be

expressed in the general form:

β∗ = arg min
b∈SB

[

z1(b, β̂) + z2

(

M̂d(b), f̂
)]

(8.6.7)

25Note that the O-D demand on a given mode m usually depends on the level of service attributes

of all the competing modes. For this reason, the vector dm has been expressed as a function of the

vector T , which includes the attributes of all transport modes. Furthermore, because it is assumed

that the assignment matrix M̂ is known, the vector of the unknown parameters β does not include

those involved with path choice. This assumption is relaxed in what follows.
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Note that the unknown parameter vector b has significantly fewer components

than the O-D demand vector x (dozens of components instead of hundreds or thou-

sands). Thus, problem (8.6.7) has a smaller dimensionality than the ODCBE prob-

lem (8.5.12). Conversely, the optimization problem (8.6.7) is “more nonlinear” than

in the direct demand estimation case, because the nonlinearity of demand models

as a function of unknown parameters is added to the nonlinearity of functions z1(·)

and z2(·). The feasibility set SB may coincide with the entire Euclidean space, as

in the case of the maximum likelihood estimation dealt with in Sect. 8.3, or alterna-

tively constraints may be imposed on the “expected” signs of the coefficients (e.g.,

negative cost coefficients).

Model (8.6.7) can also be specified when only aggregate traffic counts or other

information sources are available. In this case, the aggregate estimator results from

the minimization of the “distance” z2(·) between the observed traffic counts and the

link flows obtained by assigning the O-D flows generated by the demand model. Un-

like the ODCBE problem, it is possible to use only traffic counts because the number

of independent counts is in general much larger than the number of unknown model

parameters.

β∗ = arg min
b∈SB

z2

(

M̂d(b), f̂
)

NonLinear Generalized Least Squares (NLGLS) is one of the most widely used

specifications of problem (8.6.7). This, in its simplified form, becomes:

β∗ = arg min
b∈SB

[

∑

i

(bi − β̂i)

Var[σi]

2

+
∑

l

(f̂l −
∑

i m̂lidi(b))2

Var[εl]

]

(8.6.8)

Problem (8.6.8), can be solved by a gradient or a projected gradient algorithm

similar to those described in Appendix A, according to whether constraints on the

components of b have been imposed. The kth component of the gradient for objec-

tive function (8.6.8) can be expressed as

GRk =
∂

∂bk

[

∑

i

(bi − β̂i)
2

Var[σi]
+

∑

l

(f̂ l −
∑

i m̂lidi(b))2

Var[εl]

]

=
2(bk − β̂k)

Var[σk]
+ 2

∑

l

(
∑

i m̂lidi(b) − f̂ )

Var[εl]
·
∑

i

m̂li

∂di(b)

∂bk

(8.6.9)

The calculation of the partial derivative of the demand function for the ith O-D

pair with respect to the generic parameter β obviously depends on the specification

adopted for the demand models being calibrated. Analytical calculation of these

derivatives can be very cumbersome, or even impossible (e.g., for probit models);

in these cases recourse is had to numerical differentiation methods.
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The methods described have been applied to rather simple aggregate demand

models, such as traditional four-stage models.26 The results obtained are generally

satisfactory. Figure 8.16 shows an application of estimator (8.6.8) to the coefficients

of a four-stage demand model for the city of Reggio Calabria, starting from two

different initial parameter vectors. There are no systematic comparisons in the liter-

ature of alternative specifications for z1(·) and z2(·).

From the statistical point of view, model (8.6.7) can be considered a two-stage

mixed (disaggregate/aggregate) estimator of parameters β if it uses disaggregate in-

formation (choices made by a sample of users) to estimate β̂ , as well as aggregate

information (traffic counts f̂ ) to correct this initial estimate. It is also possible to

formulate a “simultaneous” mixed estimator, such as a maximum likelihood estima-

tor that maximizes the probability of observing both the choices j (i) of a sample of

users and also the traffic counts f̂l . In this case, assuming that the observations are

independent and that users’ choices j (i) are obtained with a simple random sample,

the estimate βML can be obtained by combining the log-likelihood function (8.3.3)

with one of the functions z2(·) described in Fig. 8.14, expressing the log-likelihood

of observing the counts as a function of the assignment matrix and of the parameter

vector β:

βML = arg max
b∈Sb

[

∑

i

lnpi
[

j (i)
]

(b) + z2

(

M̂d(b), f̂
)

]

Little is currently known about the simultaneous mixed estimator or about its

properties compared with those of the sequential estimator.

A final consideration relates to path choice parameters. In all previous analyses,

it has been assumed that the path choice model providing the elements p̂ki of matrix

P̂ , and therefore the matrix M̂ , was given. In other words, it was assumed that the

parameters βPATH in the systematic utility and in the random residual distribution

were known. Consequently, these parameters were not included in the vector β to be

estimated. However, the estimation problem can be specified to improve an initial

estimate β̂
PATH

of these parameters by using traffic counts. In this case, the general

expression of the model (8.6.7) becomes:

β∗ = arg min
b∈Sb

[

z1(b, β̂) + z2

(

M̂(b)d(b), f̂
)]

(8.6.10)

where the vector βPATH has been included in the general parameter vector β and

in the variable vector b. Comparing expressions (8.6.7) and (8.6.10), the latter is

even more nonlinear because the elements of the assignment matrix now depend on

unknown parameters.

A similar approach can be followed for the specification of joint estimators of

O-D demand flows and path choice parameters. This case results in the following

26In the case of disaggregate demand models, and sample enumeration aggregation techniques, all

the previous expressions still hold. However, each calculation of the demand flow vector requires

the application of the entire aggregation procedure, which might be quite burdensome.
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Model Purpose Attributes β̂1 β∗ β̂2 β∗

β1 Gener. H-WPL Workers 0.46 0.604 0.230 0.602

β2 Gener. H-SC Students 0.86 0.902 1.015 0.900

β3 Distrib. H-WPL Distance 1.02 0.346 1.103 0.347

β4 Distrib. H-WPL Workplaces 0.70 0.570 1.008 0.550

β5 Distrib. H-SC Distances 0.93 0.900 0.335 0.908

β6 Distrib. H-SC School places 0.35 0.272 0.346 0.269

β7 Mod. ch. H-WPL Walking time 1.19 1.424 1.848 1.649

β8 Mod. ch. H-WPL On-board time 0.54 0.628 0.466 0.559

β9 Mod. ch. H-WPL Cost car/bus 1.80 0.100 1.541 0.100

β10 Mod. ch. H-WPL ASA car 2.54 2.543 3.536 3.352

β11 Mod. ch. H-WPL ASA bus 2.29 2.330 2.116 3.179

β12 Mod. ch. H-SC Walking time 2.18 2.207 3.436 2.737

β13 Mod. ch. H-SC On-board time 0.39 0.506 0.349 0.642

β14 Mod. ch. H-SC Cost bus 1.58 1.713 1.315 1.980

β15 Mod. ch. H-SC ASA bus 1.53 1.544 0.796 2.632

Demand model

dodm(H − WPL) = β1 Worko

exp[β3 ln distod +β4 ln WPLd ]
∑

d ′ exp[β3 ln distod ′ +β4 ln WPLd ′ ]
·

exp[Vm/od ]
∑

m′ exp[Vm′/od ]

dodm(H − SC) = β2 Studo

exp[β5 ln distod + β6 ln ScPLd ]
∑

d ′ exp[β5 ln distod ′ + β6 ln ScPLd ′ ]
·

exp[Vm/od ]
∑

m′ exp[Vm′/od ]

Mode choice models

H-WPL Vwalk =β7Tw Number of counts

Vcar =β8Tc + β9Mc + β10Car Road : 30

Vbus =β8Tb + β9Mc + β11Bus Public transport : 6

Pedestrians : 26

H-SC Vwalk =β12Tw

Vbus =β13Tb + β14Mc + β15Bus

Fig. 8.16 Example of demand model calibration with traffic counts

formulation.

β∗,d∗ = arg min
b∈Sb
x∈Sd

[

z1(x, d̂) + z2(b, β̂) + z3

(

M̂(b)x, f̂
)]

(8.6.11)

where the vector β coincides with βPATH. Problem (8.6.11) simultaneously esti-

mates the path choice model parameters and demand flows that minimize the “dis-

tances” from their respective initial estimates and from the observed traffic counts.

Other combined estimators of model parameters and/or demand flows can be

specified along the lines described thus far. It should be observed that investigations

of the statistical properties and computational issues of these estimators are at a very

early stage of research.
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8.7 Estimation of Within-Period Dynamic Demand Flows Using

Traffic Counts

The O-D flow estimators discussed in Sect. 8.5 were specified under the usual as-

sumption of a within-day static system, that is, assuming that on average all rel-

evant variables are constant within the reference period. In this section the sta-

tistical framework proposed for the static problem is generalized and extended to

the dynamic O-D estimation case. This problem can be formally stated as that of

combining time-varying traffic counts with other available information to estimate

time-varying O-D demand flows. The problem is conceptually analogous to the

one discussed in Sect. 8.5. The main difference lies in the further complexity in-

troduced by the within-day dynamic framework, as discussed in Chap. 7. In this

section some models developed for solving the Dynamic O-D Count Based Estima-

tion (DODCBE) problem are presented, starting with formal relationships between

traffic counts and O-D flows. The DODCBE problem has been recently formulated

in conjunction with its inverse problem of dynamic traffic assignment (see Chap. 7),

and is much less studied than its static counterpart.

Relationships Between Demand and Counts

Relationships between link flows and O-D flows are expressed in terms of dis-

crete time intervals, because this is how flows are counted in practice.

Let the total study period J be divided into nj intervals j = 1, . . . , nj , of equal

duration T , so that J = nj · T . Let dod [j ] represent the number of users moving

between O-D pair od and leaving the origin during the interval j , and let d[j ] be

the column vector obtained by arranging the O-D flows for this interval. Let d̂od [j ]

denote a priori information (an initial estimate of the true demand dod [j ]), and let

d̂[j ] be the corresponding vector.

For each interval j a link flow fl[j ] can be associated with each link l of the net-

work,27 or more precisely to each section of a link: it is the number of users crossing

the section in that interval. In general, link counts over an interval are affected by

measurement errors εOBS
l [j ]; the measured flow f̂l[j ] is therefore only an estimate

of the actual flow fl[j ]. In vector form:

f̂ [j ] = f [j ] + εOBS[j ] (8.7.1)

The link flow fl[j ] is comprised of O-D flows that depart during the same or earlier

intervals, and that reach link l in interval j . This can be formally expressed by

defining the quantity m
od,t
lj ∈ [0,1] as the fraction of O-D flow dod [t] contributing

27As noted in Chap. 7, user flows in a dynamic network model may differ at different cross-sections

of the same link. The generic flow at section s of link l was denoted by fl,s [0]. In the following, it

is assumed that only one counting section is associated to a counted link, and the link flow relates

to that counting section. Furthermore, to be consistent with the notation used for the static case, a

generic link is denoted l, unlike in Chap. 7.
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to the flow on link l in interval j , which gives:

fl[j ] =

j
∑

t=1

∑

od

m
od,t
lj dod [t] (8.7.2)

Equation (8.7.2) can be expressed in matrix form by introducing the (nl × nod)

assignment fraction matrices M[t, j ], analogous to the within-day static counterpart

defined in (8.5.11):

f [j ] =

j
∑

t=1

M[t, j ]d[t]

This equation assumes that demand flows and counts before the first interval are

negligible, which introduces a positive bias in O-D estimates for the first interval.

The assumption can be easily relaxed if an estimate is available of O-D demand

leaving before the study period.

Let hk[j ] be the path flow, that is, the average number of travelers per time unit

following path k between O-D pair od who leave from their origin during period j .

Path flows can also be expressed as the product of the O-D demand dod [t] and

the probability (average fraction) p[k/t] of choosing path k given the departure

interval t :

hk[t] = dod [t] · p[k/t] (8.7.3)

In order to express assignment fractions m
od,t
lj in terms of path choice probabili-

ties, the formal dependence of link flows on path flows must be introduced:

fl[j ] =
∑

od

∑

k∈Kod

j
∑

t=1

bkt
lj hk[t] (8.7.4)

where the summation is extended to all paths belonging to the set Kod of paths

connecting O-D pair od.

In the above expression, bkt
lj is the crossing fraction, that is, the fraction of path

flow hk[t] crossing a section of link l in interval j ; the above fractions depend on

how link flows are defined, when each path flow reaches link l, and how it moves

on it.

By combining (8.7.3) and (8.7.4), and comparing with (8.7.2), we obtain:

m
od,t
lj =

∑

k∈Kod

bkt
lj p[k/t] (8.7.5)

Equation (8.7.4) can be expressed in matrix form:

f [j ] =

j
∑

t=1

B[t, j ]h[t]

where B[t, j ] is the crossing fraction matrix B[t, j ] = {bkt
lj }.
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m
AC,j−1
lj = 0.60 m

BC,j−1
lj = 0.70

m
AC,j
lj = 0 m

BC,j
lj = 0.20

fl[j ] = 0.60dAC,j−1 + 0.70dBC,j−1 + 0.20dBC,j

Fig. 8.17a Relationship between within-day dynamic traffic counts and O-D flows: continuous

path flow representation

In practice, path choice and Dynamic Network Loading (DNL) models only pro-

vide estimates p̂[k/t] and b̂kt
lj of the true values p[k/t] and bkt

lj ; see Chap. 7. Esti-

mates of assignment fractions can thus be formally expressed as

m̂
od,t
lj =

∑

k∈Iod

b̂kt
lj p̂[k/t] (8.7.6)

If path flows hk[j ] are modeled as space-continuous packets, crossing fractions

may take any value in the interval [0,1]. More commonly, path flows are modeled

as space-discrete packets, and for these models the crossing fractions are either 0 or

1, depending on whether packet [k, j ] crosses the counting section on link l during

interval t .

Figure 8.17 shows an elementary example of the relationship between within-

day dynamic traffic counts and O-D demand flows, for both space-continuous and

space-discrete path flows.
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m
AC,j−1
lj = 1 m

BC,j−1
lj = 1

m
AC,j
lj = 0 m

BC,j
lj = 0

fl[j ] = dAC,j−1 + dBC,j−1

Fig. 8.17b Relationship between within-day dynamic traffic counts and O-D flows: discrete path

flow representation

The estimated values of crossing fractions b̂kt
lj , path choice probabilities p̂[k/t],

and resulting assignment fractions m̂
od,t
lj are expected to be different from the true

ones. As already seen in the static context, this implies that, even if the true demand

vector d[t] were known and assigned to the network substituting m̂ instead of m

in (8.7.2), the resulting link flows would differ from the actual ones by a random

error term εSIM (modeling error):

fl[j ] =

j
∑

t=1

∑

od

m̂
od,t
lj dod [t] + εSIM[j ] (8.7.7)

or in matrix form:

f [j ] =

j
∑

t=1

M̂[t, j ]d[t] + εSIM (8.7.8)
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Equations (8.7.1) and (8.7.8) can be combined into:

f̂ [j ] =

j
∑

t=1

M̂[t, j ]d[t] + ε (8.7.9)

where the random vector ε is the sum of the two (independent) vectors εOBS and

εSIM.

Within-Period Dynamic Estimators of O-D Demand Flows Using Traffic Counts

In Sect. 8.5, it was shown that most O-D demand static estimators can be obtained

by solving a constrained optimization problem of the form:

d∗ = arg min
x∈S

[

z1(x, d̂) + z2

(

v(x), f̂
)]

(8.7.10)

In this section the estimators previously proposed for the static context are ex-

tended to the dynamic estimation problem.

The problem here is to estimate O-D demand flows d[t] for each interval from

counts f̂ [j ]. Two alternative approaches are possible. The simultaneous approach

applies an estimator that gives, in a single step, the entire O-D demand pattern

(d[1], . . . , d[n]) for all intervals by processing all available count data. The sequen-

tial approach involves multiple steps; each step estimates the O-D demand vector for

one period only, using counts for that period and the previous one and if possible, the

O-D demand estimates developed for previous periods. The following subsections

describe these two estimators.

8.7.1 Simultaneous Estimators

Static estimators can be extended in a straightforward manner to the simultaneous

estimation framework. In this case, however, the single unknown demand vector has

to be replaced by the nj vectors (x[1], . . . ,x[j ], . . . ,x[nj ]). Likewise, the counted

flow vector is replaced by (f̂ [1], . . . , f̂ [j ], . . . , f̂ [nj ]). The general form of the

estimator then becomes:

d∗[1] . . .d∗[nj ] = arg min
x[1]≥0,...,x[nj ]≥0

[

z1

(

x[1], . . . ,x[nj ]; d̂[1], . . . , d̂[nj ]
)

+ z2

(

x[1], . . . ,x[nj ]; f̂ [1], . . . , f̂ [nj ]
)]

(8.7.11)

All specifications of objective functions z1(·) and z2(·) reported in Sects. 8.5.1

and 8.5.2 can be extended and substituted in (8.7.11), thus obtaining ML, GLS,
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or Bayesian estimators depending on the distribution assumptions made about the

random residuals εj . For example, for a GLS estimator they become:

z1 =

n
∑

j=1

(

x[j ] − d̂[j ]
)T

Z−1[j ]
(

x[j ] − d̂[j ]
)

z2 =

n
∑

j=1

(

j
∑

t=1

M̂[t, j ]x[t] − f̂ [j ]

)T

W−1

(

j
∑

t=1

M̂[t, j ]x[t] − f̂ [j ]

)

8.7.2 Sequential Estimators

In this method, the O-D demand vector is estimated one interval j at a time. There

are two advantages to this approach. The first is the reduction of computational com-

plexity that results from decomposing a large optimization problem into a number

of smaller and more manageable ones; the second is that the estimates obtained for

one interval can be used as the initial estimates for a subsequent interval.

The main idea in this approach is to express the counts in a given period as a

linear (stochastic) function of the unknown demand of the same period only. This is

achieved by equating the demand in earlier periods to the corresponding estimates

d∗[t], which will have already been computed:

f̂ [j ] =

j−1
∑

t=1

M̂[t, j ]d∗[t] + M̂[j, j ]x[j ] + ε[j ] (8.7.12)

The general formulation of the static estimation problem can be adapted to this

context, leading to

d∗[j ] = arg min
x[j ]≥0

[

z1

(

x[j ], d̂[j ]
)

+ z2

(

x[j ]/d∗[1], . . . ,d∗[j − 1]; f̂ [j ]
)]

(8.7.13)

where f̂ [j ] is given by (8.7.12).

In the case of a GLS estimator, the objective functions z1 and z2 become:

z1 =
(

x[j ] − d̂[j ]
)T

Z−1[j ]
(

x[j ] − d̂[j ]
)

z2 =

(

j−1
∑

t=1

M̂[t, j ]d∗[t] + M̂[j, j ]x[j ] − f̂ [j ]

)T

× W−1

(

j−1
∑

t=1

M̂[t, j ]d∗[t] + M̂[j, j ]x[j ] − f̂ [j ]

)
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8.8 Real-Time Estimation and Prediction of Within-Period

Dynamic Demand Flows Using Traffic Counts

By virtue of their distinctive characteristics, simultaneous estimators covered in

Sect. 8.7.1 and sequential estimators from Sect. 8.7.2 may be optimally used in dif-

ferent application contexts. Indeed, given an observation period T subdivided into

nt intervals of length t , a simultaneous estimator is run once, fed with the traffic

counts for all nt intervals, producing an estimate of O-D flows for all nt intervals.

Hence such estimators are computationally demanding and may only be applied

downstream of period T (i.e., when data for the whole period are made available).

These two circumstances make this type of estimator optimal for offline, typically

planning, applications.

Instead, a sequential estimator is run nt times (once for each interval of length t),

fed each time with traffic counts for the interval being estimated and producing an

estimate of O-D flows for that one interval. Hence such estimators are computation-

ally much more efficient and may be applied downstream of each interval t (in other

words, as soon as counts for that interval are made available) without waiting for the

end of period T . These two circumstances make this type of estimator optimal for

applications in which O-D flows have to be predicted/estimated in real-time (as in

certain online traffic or infomobility management applications), where traffic count

data are used to correct O-D flows as they are made available (i.e., in real-time).

Of the more efficient procedures proposed in the literature on this point, mention

should be made of those based on using the Kalman filter. The Kalman filter for the

state estimation problem is a recursive estimator able to combine information from a

model with information derived from measurements made on the system. The filter

is applied to a linear state–space model of a real system28:

x[j + 1] = A[j ] · x[j ] + B[j ] · u[j ] + D[j ] · w[j ]

y[j ] = C[j ] · x[j ] + v[j ] + ε[j ]
(8.8.1)

where x[j ] are the state variables, u[j ] and v[j ] the control and measurement in-

puts, w[j ] and ε[j ] the model and measurement errors, and A,B,C, and D, their

respective coefficient matrices, which are time-dependent in the case of a nonsta-

tionary system. The errors w[j ] and ε[j ] due to the model and the measurements,

respectively, are white stochastic processes with zero mean and known covariance

matrices Q[j ] and R[j ]:

E
[

w(j)w(i)T
]

=

{

Q[j ] if i = j

0 otherwise

E
[

ε(j)ε(i)T
]

=

{

R[j ] if i = j

0 otherwise

(8.8.2)

28In the case in which the system is nonlinear we may resort to an extended Kalman filter.
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The first equation of (8.8.1), called the state equation, links the system state at instant

j + 1, to the state, the inputs, and noise at instant j . The second equation, known as

the output or measurement equation, defines the system output at instant j .

Estimation of the state variables made by the Kalman filter entails at each step j

a prediction phase in which the unknown vector of the state variables is calculated

from the model, and an updating or adjustment phase in which the prediction is

adjusted on the basis of the measurements made. In the adjustment phase, the model

information and the measurements are weighted with their respective variances. The

algorithm supplies the value of the state variables that minimize the estimation error,

that is, the difference between estimation of the state and the actual state.

The filter estimates are obtained by solving the following equation,

x̂F [j ] = x̂P [j ] + K[j ] ·
[

y[j ] − C[j ] · x̂P [j ] − v[j ]
]

(8.8.3)

where x̂P is the one step prediction at j , obtained by solving the following recursive

equation,

x̂P [j ] = A[j − 1] · x̂F [j − 1]+B[j − 1] ·u[j − 1]+D[j − 1] ·w[j − 1] (8.8.4)

The matrix K[j ] is called the gain matrix:

K[j ] = P P [j ] · C[j ]T +
[

C[j ] · P P [j ] · C[j ]T + R[j ]
]−1

(8.8.5)

and represents a compromise between two distinct requirements: the need to use

measurements available to adjust the model estimate of the future state and not

to downgrade this estimate because of errors in measurements. The gain matrix is

proportional to the covariance matrix of the estimate error P P [j ], which must be

updated for every step through the following formula.

P P [j + 1] = A[j ] · P F [j ] · A[j ]T + D[j ] · Q[j ] · D[j ]T (8.8.6)

where P F [j ] is given by:

P F [j ] =
[

I − K[j ] · C[j ]
]

· P P [j ] (8.8.7)

and I is the identity matrix.

In applying the Kalman filter to the estimate/forecast of O-D demand flows x[j ],

because there are no control inputs the state equations (8.8.1) are expressed as fol-

lows.

x[j + 1] = A[j ] · x[j ] + D[j ] · w[j ] (8.8.8)

In general, the measurement equations correspond to assignment equations (8.7.12)

that relate link flows measured at instant j to unknown demand flows to instant j

and to demand flows already estimated for previous instants, and may be boiled

down similarly to the general expression (8.8.1) as follows.

f̂ [j ] = C[j ] · x[j ] + v[j ] + ε[j ] (8.8.9)
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where C[j ] represents the assignment matrix M̂[j, j ] and v[j ] the contribution

to link flows from the O-D assignment flows for instants prior to j and already

estimated at previous steps (
∑j−1

t=1 M̂[t, j ]d∗[t]).

Note that the model described above is independent of an a priori estimate of

demand flows. Alternatively, if historical data are available on demand flows, this

important additional information may be allowed for, considering as state variables

no longer the demand flows but the deviations of such flows from the historical data.

In this case the state equations (8.8.8) become:

x[j + 1] − dH [j + 1] = A[j ] ·
[

x[j ] − dH [j ]
]

+ D[j ] · w[j ] (8.8.10)

where dH [j ] represents the historical flow demand vector for period j and the mea-

surement equations become:

f̂ [j ] − f H [j ] = C[j ] ·
[

x[j ] − dH [j ]
]

+ v′[j ] + ε[j ] (8.8.11)

where

v′[j ] =

j−1
∑

t=1

M̂[t, j ]
[

d∗[t] − dH [t]
]

(8.8.12)

It is worth pointing out that if the variables are not flows but their deviations from

historical data, the hypothesis that the errors of model w[j ] may be normally dis-

tributed proves even more convincing.

8.9 Applications of Demand Estimation Methods

The methods described in this chapter can be used to estimate demand flows for an

existing system or for hypothetical transportation and/or activity system scenarios.

These estimates can in turn be used to determine link flows and performances with

an assignment model and/or to analyze the structure of the travel demand in a given

area. Obviously, different techniques, or combinations of techniques, can be used

for different applications and for different demand components. Below, the main ap-

plication areas and corresponding demand estimation methodologies are described,

with the results of the previous sections being summarized (see Fig. 8.18).

8.9.1 Estimation of Present Demand

Estimation of average demand flows in the reference period can be performed either

by using sampling surveys and direct estimation methods, or by applying a system

of demand models to the present configuration of the system. In the former case, the

sampling methods described in Sect. 8.2 are used. From a practical point of view,
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Area of

application

Estimation method Input data Complementary

techniques

Estimation of

present demand

Direct estimation Sampling surveys Estimation of O-D

matrices with

traffic counts

Model estimation • Model parameters

• Attributes of the activity

systems SEP

• Attributes of the transport

system T P

Estimation of

demand variations

(forecast)

Model estimation • Model parameters

• Attributes of the activity

systems (scenarios) SEF

• Attributes of the transport

system (projects) T F

Pivoting on the

present demand

Fig. 8.18 Application of demand estimation methods

it should be noted that different types of sampling surveys are typically used for

the estimation of different demand components. In particular, on-board or en-route

surveys are often used to estimate internal–external and external–external flows,

whereas household surveys are used to estimate internal demand flows.

Demand models can be used as estimators of present demand by applying them

with present values of the attributes of the activity system SEP and of the trans-

portation supply system T P . Model estimation of present demand can be formally

expressed as

d̂P
MOD = d(SEP ,T P ; β̂) (8.9.1)

where β̂ indicates the estimate of the parameter vector. Expression (8.9.1) can be

applied to estimate demand flows with different levels of aggregation, for example,

by origin, destination, and mode.

The model-based estimation of present demand deserves a few comments.

– The rationale of the method is that, for a given sample size, estimates of the

parameters β̂ are significantly more precise than direct sampling estimates of d̂ .

The underlying assumption of the method is that deviations between true demand

flows and model-based estimates are less dispersed than deviations between direct

estimates and the true demand flows. This assumption has received some limited

empirical validation.

– Application of demand models requires the aggregation of the results. The differ-

ent aggregation techniques described in Sect. 3.7 can be used to obtain estimates

of the trip flows between the different origin–destination pairs. Aggregation by

categories (aggregate models) and sample enumeration (disaggregate models) are

the most common options.

– Models used for present demand estimation might be different and less sophisti-

cated than those used to predict demand variations following changes in the ac-
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tivity or transportation system. In the former case, the sole function of the model

may be to describe the observed phenomenon. However, it is reasonable to as-

sume that a model that captures underlying behavioral decision-making should

be a better predictor. Again, models of various levels of complexity can be used

to estimate different components of present demand based on their importance.

In particular, internal–external demand can be estimated with simpler models that

require less information than those used to estimate demand flows within the

study area.

– Model specification, calibration and validation can be conducted using the dis-

aggregate methodologies described in Sects. 8.3 and 8.4, if possible integrated

with the mixed aggregate/disaggregate estimation method using traffic counts, as

described in Sect. 8.6.

The two methods (direct estimation and model-based estimation) are generally

used to estimate different components of present demand. For example, it is quite

common to use direct estimation for internal–external and external–external demand

(for which it is both easier to conduct direct cordon surveys and more compli-

cated to formulate demand models) and model-based estimation for internal de-

mand. Finally, present demand can be estimated by combining direct estimation

and/or model-based estimation with aggregate information on traffic counts, using

the methods described in Sect. 8.5.

8.9.2 Estimation of Demand Variations (Forecasting)

The classic use of demand models is to represent demand variations following

changes in the activity system and/or the transportation supply system. There is

obviously a close interdependence between the characteristics of demand models

and the project under study, inasmuch as the model must be “elastic” with respect

to variables describing the changes whose effects are to be evaluated. For exam-

ple, when developing the circulation plan of an urban road network, it is sometimes

assumed that all aspects of travel demand will remain unchanged by the plan ex-

cept for user path choices. This implies that the present O-D demand matrix for the

“car” mode can be used to measure the impacts of alternative plans, and that the

only demand model necessary for this application is the path choice model used for

fixed demand assignment. On the other hand, if the same plan is included in a wider

project aimed at modifying the current modal split, for example, by introducing

parking charges, it would be necessary to use both mode and path choice models,

which could be applied to present O-D matrices of total demand.

For short-term projects it is generally assumed that socioeconomic variables of

the activity system remain unaffected and the transportation performance variables

are modified by the project. These variations may affect travel choices in several

dimensions (path, mode, destination, frequency). In this case, the application of the

demand models can be formally expressed as

d̂F
MOD = d(SEP ,T F ; β̂) (8.9.2)
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where d̂F
MOD indicates the vector of the model-based estimates of “future” demand

flows and T F indicates the vector of level-of-service attributes corresponding to the

project.

Medium- to long-term projects usually require quantifying their effects over a

correspondingly long period. In this case, it is necessary to forecast the evolution

of these variables. In general, it is very difficult to develop reliable medium- to

long-term forecasts of the evolution of significant activity system variables such as

resident population and income levels, the organization of economic production,

family lifestyles, and the location of manufacturing and service activities. Even if

some activity system variables can be considered endogenous to the model system,

particularly transport–land use interaction models, the evolution of other exogenous

variables must still be forecast. In practice, for long-term applications, different sce-

narios29 for the evolution of the variables SEF are used. Demand models are ap-

plied to each scenario and the resulting ranges of variation of the key variables can

be used to design and evaluate project alternatives, as shown in Chap. 10. Estimation

of demand flows over long periods can therefore be formally expressed as

d̂F
MOD = d(SEF ,T F ; β̂) (8.9.3)

The comments on model calibration and aggregation techniques can be extended

to both of the applications (8.9.2) and (8.9.3).

Another method, known as pivoting, forecasts future demand by estimating the

change that it represents relative to present demand. This approach assumes that

it is possible to obtain estimates, d̂
P

, of present demand that are better than those

obtained using only demand models. This may be the case if other sources of in-

formation on present demand are available (e.g., traffic counts), so that direct or

model-based estimates of present demand are improved with such information. In

this case, modeling errors can be reduced by using the models as predictors of rela-

tive demand changes and, therefore, obtaining “future” demand estimates as

d̂F
od = d̂P

od ·
dod(SEF ,T F ; β̂)

dod(SEF ,T P ; β̂)
(8.9.4)

The general form (8.9.4) must be specialized for the particular demand dimensions

to which it is applied. For example, by applying the method to modal O-D matrices

and leaving to network assignment the determination of path choice probabilities

and flows (see Fig. 8.19), expression (8.9.4) becomes:

dF
od [shm] = d̂P

od [shm] ·
dod [shm](SEF ,T F ; β̂)

dod [shm](SEP ,T P ; β̂)
(8.9.5)

29A scenario can be defined as a set of internally consistent assumptions regarding the exogenous

variables of a model system. In some applications, scenarios are obtained from separate macro-

economic models that require fewer input variables (e.g., population and economic growth rates).

The outputs of these models are used to generate consistent sets of disaggregate input variables for

travel demand models.
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Fig. 8.19 Application of the pivoting method

The use of the pivoting method in the form of (8.9.4) requires a double appli-

cation of the model to both present (SEP ,T P ) and future (SEF ,T F ) scenarios.

Furthermore, the method must be adapted for practical applications; for example,

(8.9.5) would not allow the estimation of demand associated with the introduction

of a new mode of transport for which no present demand exists. These distortions

can be corrected in various ways, for example, by applying the pivoting method par-

tially to foresee changes in present demand in some dimensions and then directly

applying the models to the other dimensions.

Reference Notes

Direct demand estimation is based on the application of sampling surveys and esti-

mators. A description of “classical” travel demand surveys can be found in manuals

such as the one from RRL (1965) and EPA (1996). For statistical sampling theory,

refer to the texts by Cochran (1963) and Yates (1981). Applications to travel demand

estimation are covered in several articles, such as those of Smith (1979) and Brog

and Ampt (1982), as well as in the volume by Ortuzar and Willumsen (2001).

The literature on specification, calibration, and validation of demand models is

quite substantial. The books by Domencich and McFadden (1975) and Ortuzar and

Willumsen (2001), as well as the articles by Horowitz (1981, 1982) and Manski and

McFadden (1981) address various statistical aspects of the calibration of disaggre-

gate models. A review of the field as of the early 1980s is contained in Gunn and

Bates (1982). The work of Manski and Lerman (1977) studies model calibration

based on nonrandom samples. A detailed and systematic discussion of the subjects

in Sect. 8.3 is contained in the volume by Ben-Akiva and Lerman (1985), and the

reader is referred to its comprehensive bibliography.
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Recent advances in random utility model estimation are reported in the book

by Train (2003), who also provides an exhaustive insight into model estimation

in the presence of repeated observations (panel data), and reports theoretical and

operational details on simulated log-likelihood estimation for nonclosed random

utility models.

Stated preference survey techniques have been the subject of growing interest

over the last 10 to 15 years and are an area in continuous evolution from both the

theoretical and application points of view. An exhaustive review on this subject is

provided by Louviere et al. (2000). A discussion of the theoretical aspects of SP

techniques can be found in the works of Hensher et al. (1988), Louviere (1988), and

Ortuzar (1992), whereas practical aspects are covered in Pearmin et al. (1991). The

statistical bases of factorial survey designs are described in greater detail in texts on

experimental design such as Box et al. (1978). The calibration of demand models

from combined SP–RP surveys is dealt with in Ben-Akiva and Morikawa (1990)

and Bradley and Daly (1992). An application to mode choice modeling is described

in Biggiero and Postorino (1995), from which the example in Fig. 8.10 is taken.

Estimation of demand flows using traffic counts is a subject that has been in-

tensely researched over the last two decades. A state of the art and literature review

can be found in Cascetta and Improta (1999). The general statistical bases are ad-

dressed in Cascetta and Nguyen (1986). For estimation of O-D demand flows using

traffic counts, there are several papers on particular estimators or specific applica-

tions. The papers by Van Zuylen and Willumsen (1980) on the maximum entropy es-

timator, Maher (1983) on Bayesian estimators, Cascetta (1984) proposing the GLS

estimator, Bell (1991) on applications of the GLS method, and Di Gangi (1988) on

a numerical comparison of the statistical performances of different estimators are

all of interest.

The problem of estimating O-D flows using traffic counts in congested networks

is more recent; it has been studied by a number of authors, typically as a bilevel

programming problem for DUE assignment: see Florian and Chen (1995) and Yang

(1995). The fixed-point formulation and the MSA algorithm described in Sect. 8.5,

with some variants, are described in Cascetta and Postorino (2001).

Estimation of model parameters using traffic counts and other sources is a well-

established heuristic practice, but has received relatively limited theoretical atten-

tion. Among the first papers proposing methods for aggregate estimation of coeffi-

cients using traffic counts, those by Cascetta (1986) proposing GLS estimators and

by Willumsen and Tamin (1989) describing an estimator for gravity type models

are of note. The paper by Cascetta and Russo (1997) describes the general statisti-

cal framework discussed in Sect. 8.6. The combined estimation (both aggregate and

disaggregate) of model parameters and O-D flows using traffic counts is original.

In the literature, various methods have been proposed to estimate time-varying

O-D flows using traffic counts. Among others, Cremer and Keller (1987) propose

sequential estimators for a simple network using traffic counts alone. Cascetta et

al. (1993) propose dynamic estimators obtained by optimizing a two-term objec-

tive function as described in Sect. 8.7. Nguyen et al. (1989) proposed different si-

multaneous estimators on a general transit network. The Kalman filtering approach
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was first used for real-time prediction of time-varying O-D flows by Okutani and

Stephanades (1984) and Ashok and Ben-Akiva (2002) propose to use deviation with

respect to historical O-D flows instead of O-D flows as state variables. A recent

contribution on the dynamic O-D matrix estimation was provided by the doctoral

dissertation of Lindveld (2003). Overall validation of the effectiveness of the pro-

cedure for estimating O-D flows using traffic counts both in static and in dynamic

contexts was recently provided by Marzano et al. (2008).



Chapter 9

Transportation Supply Design Models

9.1 Introduction

This chapter outlines a wide range of methods and mathematical models that may

assist the transportation systems engineer in designing projects or other interven-

tions. It should be stated at the outset that supply design models1 are not meant to

“automate” the complex task of design, especially when the proposed actions can

significantly alter the performance of the transportation system. In this case, as we

have seen, a project may have structural effects ranging from changes in land use

to modifications in the level and structure of travel demand. On the other hand, the

elements of the transportation supply to be designed may assume a very large num-

ber of possible configurations: circulation directions in an urban road network or the

lines and frequencies of a transit system are two cases in point. In the presence of

such a large number of possibilities, it is practically impossible to explore and com-

pare all the feasible configurations in order to identify the optimum with respect to

a given set of objectives and constraints.

From the modeling perspective, supply design models belong to a different class

from the models described thus far and, in some respects, can be considered as ex-

tensions or generalizations of these models. The mathematical models described

in the previous chapters aim at simulating the relevant aspects of a transportation

system under the assumption that the supply (facilities, services, and prices) and

activity systems are exogenously given. These models can be used as “design tools”

by simulating the main effects of exogenously specified projects, verifying their

technical compatibility and evaluating their “convenience” as shown in Chap. 10.

This approach is known as “what if.” By contrast, supply design models provide

“what to” indications, that is, how to alter supply in order to optimize given objec-

tives while satisfying given constraints (see Fig. 9.1). Clearly, in order to identify

solutions for the design problem, it is necessary to evaluate the system responses

(demand, flows, and performances) to the possible actions; therefore the simulation

model is a component of the design model. The cost of this generalization is not

only the simplification of the real design problem, but also the simplification of the

simulation models, which now become submodels of a wider model.

An interesting interpretation of the differences between simulation and design

models can be given in terms of game theory. The design problem can be seen as a

Stackelberg game. One of the two players (or groups of players), called the leader,

1In the literature, supply design problems and their corresponding models are often called network

design problems (NDP). This definition, as shown, applies to a wide subset of the entire range of

supply design problems, specifically those that refer to the definition of network elements.
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Fig. 9.1 Two approaches to transportation supply design

knows in advance the reactions of the other player (or group of players), called

the follower, to her actions. In this case, the leader is the designer (or manager) of

the supply system and the followers are the users of the transportation system. The

designer is able to anticipate user reactions and exploits this information to achieve

his objectives.2 In this context, the simulation models represent the tools to predict

user reactions, whereas supply design models provide the leader with the “winning”

strategy. On the other hand, within the context of game theory, the simulation model

can be interpreted as a description of a Nash game, in which the generic player (i.e.,

the user) does not know the possible reactions of the other players.

Supply design models typically simplify the actual design problem, accounting

for only some control variables and simulating the relationships between these vari-

ables and the system through simplified models. In general, the design problem is

expressed as one of optimizing an objective function under certain constraints; the

solution, or solutions, of this problem are then used as starting points for successive

extensions and comparative evaluation described in Chap. 10. Obviously, the more

“elementary” is the intervention to be designed, the closer the formulation of the

2The model described corresponds to a monopoly market situation. In reality, the situation is often

more complex. For example, in the transportation market, there might be multiple operators (e.g.,

air service, railway, and road managers), each with their own objectives and constraints and with the

ability to forecast the demand reactions to their own actions as well as those of their competitors.

Supply design models currently available are not yet capable of simulating this type of oligopolistic

market situation.
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Fig. 9.2 Classification of

supply design models
Design (control) variables Network topology

Performances

Prices and fares

Objectives Society’s

Operator’s

Constraints External

Technical

Demand/flow/cost consistency

Simulation model Assignment model

supply design model is likely to be to the real problem. Thus, the problem of de-

signing traffic signal control parameters at an isolated intersection can be expressed

by an optimization model that, among all possible values, searches for those min-

imizing the total delay, or maximizing the total capacity of the intersection. The

resulting optimal control parameters can be directly used in the real world.

On the other hand, if the problem is to design the transportation system of an

entire region, it is practically impossible to represent the complexity of the objec-

tives and constraints. In this case, one or more simplified design models can be

formulated, for example, to define the road network, the public transport network,

and the pricing structure, which jointly or separately minimize the total generalized

user costs under budget, technical, and environmental constraints. In any case, the

solution or solutions of the partial problems will only be the starting point for the

further phases of design, evaluation, and negotiation, which will lead eventually to

choices by society. The design models proposed in the literature and most often used

in applications can be classified on the basis of some elements described below and

summarized in Fig. 9.2.

Design (control) variables. Design problems can be divided into three groups

with respect to the control variables: network topology or layout (e.g., of the road

network or public transport lines), performances of supply elements (e.g., transit

line frequencies or traffic signal control parameters), and pricing (e.g., air, rail, park-

ing, or motorway fares). The design variables may be discrete (topology and perfor-

mances) or continuous (prices and performances) according to the specific problem.

Obviously a model can, and often does, aim at defining the optimal combination of

different types of variables.

Objectives. The design can be developed from different perspectives; in other

words, the design model can be defined to optimize (maximize or minimize) dif-

ferent objective functions. Design models can account for society’s objectives, such

as minimization of total generalized user costs, and/or the operator’s objectives,

such as minimization of investment and/or management costs or maximization of

net revenues from traffic. The social objectives underlying larger projects are sig-

nificantly simplified. The objective function may be mixed, that is, a combination

of society’s and the operator’s objectives as in benefit-cost analysis, described in
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Sect. 10.3.1. Other objective functions correspond to multiattribute utility functions

in multi-criteria analysis, as described in Sect. 10.3.3.

Constraints. Most supply design models can be formulated as constrained op-

timization problems and, as is often the case in modeling, some objectives can be

introduced as constraints (and vice versa) for computational convenience. Some of

these constraints may be external, for example, the maximum available budget or

the maximum concentration levels of pollutants. In the former case, the implicit ob-

jective is to minimize the cost; in the latter, it is to reduce air pollution. Technical

constraints relate to aspects of the system such as maximum flow-capacity ratios,

and minimum and maximum frequencies of bus lines. Some specifications of the

design model use a third category of constraints representing the consistency be-

tween demand, flows, design variables, and system performances. These constraints

represent the system simulation model and are considered in the next section.

Simulation model. The simulation model that is usually most relevant to design

problems is the assignment (or demand–supply interaction) model. As shown in

previous chapters, such models can be based on within-day static or dynamic system

representations, on deterministic or stochastic path choice models, and may or may

not account for congestion effects. Furthermore, the assignment model may assume

fixed or elastic demand according to whether demand flows are considered constant

with respect to the values of the design variables.

Although transportation supply design models have received considerable scien-

tific and professional attention, they have not reached a level of theoretical complete-

ness and/or breadth of applications comparable to those described in previous chap-

ters for simulation models. Furthermore, design problems have not been studied at

the same level of detail as these other models. It is difficult to present general results

for all supply models, as they are specific to the design problem and to a number of

assumptions that can be made in connection with each of them. A systematic review

of all the supply models presented in the literature and of their transportation engi-

neering implications would require a book on its own. Rather, this chapter briefly

analyzes this broad application area. General formulation of the supply design mod-

els is described first in Sect. 9.2; some specialization of the general model to the

most common design problems is introduced in Sect. 9.3 without analyzing either

the specific models proposed or the implications of related results. Finally Sect. 9.4

describes some algorithms that can be applied to solve various design problems.

9.2 General Formulations of the Supply Design Problem

The supply design problem (SDP) can be formulated as a constrained optimization

model, maximizing or minimizing an objective function w(·) that depends on de-

sign variables y and link flows f . Representation of the system and its variables

can be within-day static or dynamic. Although some SDP models for dynamic sys-

tems are covered in the literature, most specifications refer to static systems and
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assignment models. This is not surprising, given both the recent development and

computational complexity of dynamic assignment models which, as shown later, are

used repeatedly in an SDP. For these reasons, the following deals with static models.

As stated in Chap. 5, link flows resulting from a static assignment model can

be expressed as a function of the O-D demand flows (vector d), network topology

(link-path incidence matrix ∆), and path choice probabilities (matrix P ). In general,

both the network topology and path choice probabilities depend on the supply con-

figuration, either directly or through link costs and cost functions. Demand flows are

constant if the assignment model assumes fixed demand, and depend on supply per-

formances if demand is elastic. The general supply design model can be formulated

as

y∗ = arg opt
y

w(y,f ∗) (9.2.1a)

subject to the constraints:

f ∗ = ∆(y)P
[

y,g(f ∗,y)
]

d
[

g(f ∗,y)
]

(9.2.1b)

y,f ∗ ∈ E (9.2.1c)

y,f ∗ ∈ T (9.2.1d)

where y∗ is the optimal solution of the supply design problem and f ∗ is the equilib-

rium flow vector; (9.2.1b) expresses the consistency constraint among supply perfor-

mances, demand, and flows (i.e., the equilibrium assignment); (9.2.1c) identifies the

set of supply parameters satisfying the external constraints; and (9.2.1d) expresses

the system of technical constraints. Furthermore, the notation ∆(y) indicates that, in

the case of design variables influencing the network topology, both the paths and the

link–path incidence matrix depend on the values of the design variables; the same

holds for the path choice probabilities, as expressed by P (y,g), where g is the path

cost vector.

The formulation (9.2.1) is based on explicit representation of the assignment

model as a fixed-point model. As was seen in Chap. 5, this formulation presents

some mathematical problems for deterministic user equilibrium (DUE) assignment.

In this case, the consistency constraint (9.2.1b) is usually replaced by a variational

inequality, which for fixed demand becomes (see Sect. 5.4.3):

c(f ∗,y)T (f − f ∗) ≥ 0 ∀f ∈ S(y,d) (9.2.1e)

Expression (9.2.1e) makes explicit the dependence of the link flow feasibility set

S on demand and design parameters. For elastic demand, the analogous expression

is given in Sect. 6.3.1.2.

The design model can be formulated differently if the assignment model is for-

mulated as an optimization problem. In this case, model (9.2.1) can be expressed

as a bilevel optimization model where the value of the first-level objective function

w(·) depends on the solution of a second-level optimization problem, usually with
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a different objective function z(·):

y∗ = arg opt
y

w
(

y,f (y)
)

(9.2.2a)

y ∈ E

y ∈ T

f (y) = arg min
f ∈Sf

z(f ,y,d) (9.2.2b)

The specific form of the objective function z(·) in (9.2.2b) depends on the par-

ticular assignment model (see Chap. 5 for DUE and the SUE specifications). For an

uncongested network assignment model, the link cost vector depends exclusively on

the design variables, c = c(y), simplifying the specification and the solution of the

design model.

The actual specification of the supply design model, whether in the form (9.2.1)

or in (9.2.2), comes from the particular design problem and the assumptions. Exam-

ples of specifications are given in the next section. As mentioned earlier, the design

variables can be divided into three categories: topological or network layout vari-

ables, usually discrete, that are denoted in the following by the vector yTOP; supply

performance variables, continuous or discrete, denoted by yPER; and price variables,

usually continuous, indicated by yPRI. Consequently, in the general case the vector

y of design variables can be decomposed into three subvectors:

yT = (yTOP,yPER,yPRI)T (9.2.3)

The objective function can assume different forms depending on the goal of the

project. Social objective functions w1(·) usually correspond to the network indica-

tors described in Sect. 5.2.4. The most common specification is in terms of the total

actual cost, which in the absence of nonadditive path costs can be expressed as

w1(y,f ) =
∑

l

cl(y,f )fl (9.2.4)

The total Expected Maximum Perceived Utility (EMPU) with respect to path

(and possibly mode) choice is seldom adopted as an objective function3 because

of its computational complexity, even if it is a more appropriate measure of user’s

surplus, as shown in Sect. 10.2.3:

w1(y,f ) =
∑

od

dodsod

(

−∆T (y)c(y,f )
)

(9.2.5)

3The two objective functions (9.2.4) and (9.2.5) coincide only in the case of deterministic path

choice models.
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Operator objective functions w2(·) express the total investment and operations and

maintenance (O&M) costs in terms of the design parameters y or functional trans-

formations of them:

w2(y) =
∑

j

bj (yj )yj (9.2.6)

where bj is the unit cost related to each design variable yj . For example, if the

design variables are 0/1 topological variables that indicate whether to include the

connection j , bj is the investment and/or O&M cost for that connection. Another

type of operator objective function includes traffic revenues, which depend on the

design price variables, and which may be associated either with individual links

(vector yPRI
L ) or with O-D pairs (vector yPRI

OD ).

w2

(

yPRI
L ,f

)

=
∑

l

yPRI
l fl (9.2.7)

w2

(

yPRI
OD ,d

)

=
∑

od

yPRI
od dod (9.2.8)

In the case of multiobjective optimization, objective functions are usually ex-

pressed as linear combinations of two or more of the above functions. For example,

the total user and operator cost is usually obtained by adding (9.2.4) and (9.2.6) with

coefficients representing the relative weight of the two objectives. Furthermore, ex-

pression (9.2.6) can also be used to specify an overall (external) budget constraint:

∑

j

bj (yj )yj ≤ B (9.2.9)

where B represents the maximum available budget.

Little can be said about the mathematical properties of supply design models

in general, or about the existence and uniqueness of the solution y∗ in particular,

since the solution depends on the particular specification adopted. In most cases nei-

ther the objective function nor the constraints have convexity properties sufficient to

guarantee solution uniqueness. In fact, many models have shown multiple solutions,

or local optima, corresponding to similar values of the objective function. This may

have significant practical implications because nearly equivalent solutions can be

generated, among which the best solution can be chosen on the basis of a wider set

of objectives and criteria. Similar comments can be made regarding the existence of

solution y∗, which obviously depends on the definition of the constraints; erroneous

or incompatible specifications could lead to problems without any feasible solution.

9.3 Applications of Supply Design Models

Supply design models have been studied in greater detail for certain classes of “par-

tial” problems, which are described below. For more complex projects, the actions
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to be jointly designed may involve many elements of the supply system and many

modes. In the case of tactical urban transportation planning, for example, actions

may include the directions and traffic signal control of the road network, the avail-

ability of parking areas on- and off-street, the structure and frequency of the transit

lines, parking and transit pricing, and so on. Similarly, for a railway system program,

design variables may include the structure of the lines, the timetables of individual

runs, and the fare structure. Design problems of this complexity are usually solved

by formulating separate design models for one or more individual components, fol-

lowing a sequence related to the (implicit) hierarchy of the objectives.

9.3.1 Models for Road Network Layout Design

Design problems in this class identify the road connections to be built or the opti-

mal circulation scheme for a given network of facilities. The design variables for

these models are discrete topological variables represented by the vector yTOP, with

a component for each possible road connection. These variables are a subset of the

expanded road network links that include the existing connections as well as possi-

ble future connections to be designed.

Typically in the optimal infrastructure layout problem, roads are assumed to be

bidirectional and the design variables are binary variables yTOP
j = 0/1, indicating

that the link j is to be excluded (zero) or included (one) in the solution. Figure 9.3

shows an example of the initial configuration and some possible alternative con-

figurations with the corresponding values of the design variables for a small test

network. This SDP is often associated with extraurban road networks.

For this problem, the objective function is usually specified as a linear combina-

tion of the total transportation cost (9.2.4) and the total construction and O&M cost

(9.2.6), where bj (y
TOP
j ) is the cost to build, maintain, and operate the road connec-

tion represented by link j . To ensure comparability of the two terms, transportation

and construction/operation costs should be expressed in monetary units and cover

the same period, for example, a generic average year. This can be accomplished by

“projecting” into a given year (typically the first year of operation) the values of

O-D flows and the annual user transportation costs. Similarly, the operator cost will

be the equivalent annual amount of the total investment cost and the yearly O&M

cost.

External constraints usually include a budget constraint (9.2.9) and, in some

cases, constraints on the total level of pollutants emitted. Some specifications may

include network constraints that ensure the connection of all origin–destination

pairs, the conservation of flow at nodes, and so on, as described in Sect. 5.2. It

should be noted, however, that network constraints are necessary only if the as-

signment model is deterministic (DUN or DUE) and is expressed by a variational

inequality or an optimization model formulated in terms of link variables. Recall

that, in stochastic assignment models, these constraints are implicit in the relation-

ships between demand and link flows as expressed by (9.2.1b). Many specifications
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Fig. 9.3 Design variables for an optimal infrastructure layout problem

of this model consider fixed demand, using the modal O-D matrices established for

the reference year.

A simplified specification of the design problem is:

y∗TOP = arg min
yTOP

∑

l

cl

(

yTOP,f ∗
)

· f ∗
l (9.3.1)
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subject to the constraints:

yTOP
j = 0/1

f ∗ = ∆(yTOP)P
[

yTOP,g(f ∗,yTOP)
]

d

∑

j

yTOP
j · bj ≤ B

The optimal functional layout problem considers the optimal circulation scheme,

that is, the optimal configuration of traffic directions for a road network, typically

an urban network. Optimal circulation schemes may be needed for two conflicting

reasons. The single-direction use of a road increases the available width for this

direction and, in turn, the saturation flow at its intersections. This reduces the wait-

ing time for a given flow. On the other hand, two-way roads generally reduce the

distance between an O-D pair and increase the number of conflict points at inter-

sections. The design variables are still discrete variables yTOP associated with each

link, and can assume different values (e.g., 0, 1 or 2), according to whether the link

is used in both directions or in each of the two ways (see Fig. 9.4).

The cost functions of each link j depend on the variable yj ; furthermore, the

objective function usually includes only the users’ generalized cost (9.2.4), the con-

struction cost of existing roads being null and the difference in O&M costs being

negligible. The link constraints are analogous to those described for the infrastruc-

ture layout problem and the same considerations hold.

The model is sometimes specified by introducing external constraints that limit

flow/capacity ratios for particular links. These constraints express the need for both

technical functionality (flows near capacity induce instability phenomena and pos-

sible spill-backs at intersections) and pollution reduction (emissions are higher for

low commercial or average speeds). Another type of external constraint requires

that the distance between each O-D pair on the shortest path not exceed the shortest

feasible distance, that is, the minimum distance on a fully bidirectional road config-

uration, by more than a specified amount. In this case, the implicit “equity” objective

is to distribute penalties among users.

The optimal urban road network layout problem, discussed below, is usually as-

sociated with the control of intersections that determine road link capacity. As was

seen in Sect. 2.4.1.2, the capacity of a signalized intersection movement is given by

the product of the saturation flow and the ratio of the movement’s effective green

time to the cycle length.

9.3.2 Models for Road Network Capacity Design

Capacity design models optimize link capacity in a road network of a given topol-

ogy. The design variables are generally continuous, expressed by a vector yPER

whose components are link capacities. The problem may assume two different

forms, typically corresponding to interurban (or rural) and urban road networks.
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Fig. 9.4 Design variables for an optimal functional layout problem

For interurban or rural road network capacity design, the decision variables are

the link capacities, usually constrained to be between specified minimum and max-

imum values. Formulation of the model is substantially similar to that described for

the optimal network layout problem; the objective function can be expressed as the

sum of user costs and construction costs. Budget and congestion-level constraints

(maximum flow/capacity ratios) are also typically included.

The capacity of an interurban or rural road depends, to a first approximation,

on its cross-section (lane number and width, lateral clearance, etc.). In practice, ca-

pacities do not range over all possible values, but rather take values from a finite

set, corresponding to the different section types. From this point of view, the design

variables should be discrete even though, in the literature, they are often approxi-

mated as continuous. In the discrete capacity case, the problem is analogous to that

described in the preceding section, with the difference that the design variables can

assume several discrete values corresponding to the different section types.

Urban road network capacity design often addresses the problem of finding op-

timal traffic signal control parameters for a subset of intersections (the traffic signal

setting problem). In the most simplified formulations, it is assumed that intersections

are “isolated”; that is, the traffic signal coordination between adjacent intersections
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Intersection A Phase plan

Cycle TcA

Total lost time LTA

Phases JA = {1A,2A,3A}

Variables yPER
1A = G1A/(TcA − LTA)

yPER
2A = G2A/(TcA − LTA)

yPER
3A = G3A/(TcA − LTA)

Constraint on total cycle length

G1A + G2A + G3A = TcA − LTA

Intersection B Phase plan

Cycle TcB

Total lost time LTB

Phases JB = {1B ,2B }

Variables yPER
1B = G1B/(TcB − LTB)

yPER
2B = G2B/(TcB − LTB)

Constraint on total cycle length

G1B + G2B = TcB − LTB

Vector of variables

yPER = [yPER
1A , yPER

2A , yPER
3A , yPER

1B , yPER
2B ]T

Constraints

yPER
1A + yPER

2A + yPER
3A = 1

yPER
1B + yPER

2B = 1

Fig. 9.5 Design variables and constraints for an optimal signal setting problem

has no effect. This assumption implies that offsets between the green times of dif-

ferent intersections are not relevant control variables. It can also be assumed that,

for each intersection, the overall duration of the cycle and the structure of the traffic

signal phases are known. This implies that for each node (or group of nodes) n, rep-

resentative of a signalized intersection, the set Jn of phases jn and the set of links

I (jn) for which flows receive green in the same phase is known. In this case, the

design variables yPER can be identified as the effective green to cycle length ratios,

with the latter reduced by the lost times for each phase. The design variables are

therefore continuous over the interval (0,1) (see Fig. 9.5).
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Note the difference between capacity design of signalized intersections for the

entire network and for a single intersection. In the former, as the green/cycle ra-

tios vary, capacities also vary and, because of the effect of assignment constraints

(9.2.1b), link flows vary as well. In the latter, it is assumed that flows are known and

invariant with respect to capacity parameters.

The specification usually adopted for the capacity design model is analogous

to that presented for the road network layout problem. The objective function to

be minimized is the total generalized cost (usually time) spent on the network.

Construction costs are not taken into consideration and the external constraints

might include maximum levels of congestion and pollution. Technical constraints

set the maximum and minimum duration of each phase and require that the sum of

green/cycle ratios over all phases is equal to one for each intersection.

Two different approaches can be followed to optimize the traffic signal control

parameters: local and global. In the global approach, the control parameters of all

intersections are jointly optimized to minimize the total travel time on the network.

In the local approach, each signalized intersection is optimized to minimize the total

user delay at the intersection. In this case, a circular dependence among flows, costs,

and control parameters arises and the resulting problem can be seen as a fixed-point

problem. This problem can be modeled as an asymmetric user assignment problem.

A possible simplified formulation of the global optimal signal setting problem

is:

y∗PER = arg min
yPER

∑

l

cl

(

yPER,f ∗
)

· f ∗
l (9.3.2)

subject to:

0 ≤ yPER
jn ≤ 1

∑

jn∈Jn

yPER
jn = 1 ∀n

yPER
jn Tcn ≥ Tmin ∀n

f ∗ = ∆P
[

yPER,g(f ∗,yPER)
]

d

where Tcn is the duration of the cycle at intersection n and Tmin is the minimum

value for a green time interval.

More complex traffic signal control problems introduce other design variables,

including offsets between green times in nearby intersections, cycle length for each

intersection, and sequence and number of phases. In the first case, the link delay

models described in Chap. 2 should account for the effects of platoon dispersion

between coordinated intersections.
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9.3.3 Models for Transit Network Design

It is usually assumed that the relevant supply variables for high-frequency urban

transit systems are service frequencies rather than actual timetables (see Sect. 2.4.2).

Under this assumption, the design problem identifies the optimal layout for the lines

as well as their service frequencies in the reference period (e.g., rush hour). In this

case, the design model simultaneously identifies the topological configuration and

the optimal performances of the supply system.

The design variables are the discrete layout variables yTOP
ln , equal to one if the

physical link l (e.g., a road or railway section) belongs to line n, and zero otherwise,

and the continuous performance variables yPER
n , representing the service frequency

of each line n; see Fig. 9.6. The layout variables are equivalent to the duplication of

physical links in line links, that is, to the implicit construction of the line network

model described in Chap. 2. For this reason, link variables in this model are written

with a double index.

The objective function usually includes the user generalized cost and the opera-

tor cost, expressed in commensurate terms. For urban transit systems, the function

w1(·) expressing user costs is different from (9.2.4) under the usual assumptions

on mixed preventive/adaptive path choice behavior. In this case, alternative travel

strategies are represented by hyperpaths on the lines, and average path costs include

a nonadditive component associated with waiting times at stops (see Sect. 4.3.3.2).

Formally, the objective function w1(·) can be expressed as

w1(y
TOP,yPER) =

∑

n

∑

l /∈Jw

clnfln(y
TOP,yPER)

+
∑

l∈Jw

∑

k

twk
l (y

TOP,yPER)f k
l (yTOP,yPER) (9.3.3)

where cln is the generic additive cost associated with link l and line n (e.g., on-board

or access travel times); Jw is the set of waiting links; k is the generic hyperpath; twk
l

is the waiting time (cost) associated with link l and hyperpath k; fln is the user flow

on on-board link l belonging to line n; and flk is the flow on waiting link l belonging

to hyperpath k; see Sect. 4.3.3.2.

The overall operator cost w2(·) is usually expressed using the unit running cost

CEn for each journey (bus, train, etc.) of line n, expressed in monetary units per

distance or time unit:

w2(y
TOP,yPER) =

∑

n

∑

l

yTOP
ln CEnLlny

PER
n (9.3.4)

where Lln is the length (or round trip time) of link l on line n.

The assignment constraints can be expressed using the formulation introduced in

Chap. 6 as
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Fig. 9.6 Design variables for an optimal line layout and frequency problem

f (yTOP,yPER) = Λ(yTOP,yPER)Q
(

ΛT (yTOP,yPER)c(yTOP)

+ xNA(yTOP,yPER)
)

d (9.3.5)

where it is implicitly assumed that the network is not congested and that the link

crossing probability matrix Λ, and the nonadditive hyperpath costs xNA, both de-

pend on the topological configuration of the lines (yTOP) and on the respective fre-

quencies (yPER).

The technical constraints of the problem usually restrict the flow fln on each line

link l to the capacity of line n, which can be expressed as the product of the capacity

Capn of each vehicle and the frequency of line n:

fln ≤ Capny
PER
n ∀l
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Furthermore, the frequencies must be nonnegative, and equal to zero if the line

is not active and below a maximum technically feasible value yPER
max :

0 ≤ yPER
n ≤ yPER

max

Another possible technical constraint is a budget constraint on the vehicle stock.

This constraint can be expressed as a function of the travel time tl of each line link,

because the number of vehicles necessary for a line of frequency yPER
n is equal to

the product of the frequency for the total travel time of the line:

∑

n

∑

l

tly
PER
n · yTOP

ln ≤ Nmax (9.3.6)

with Nmax equal to the maximum number of available vehicles.

Finally, a technical constraint sometimes introduced, although not easily ex-

pressed in formal terms, requires that lines must have their terminals in a given

set of nodes.

A simplified version of the transit design problem assumes that the topological

configuration of all the lines (the components of vector yTOP) is given. In this case,

the design problem is reduced to the calculation of optimal service frequencies, that

is, the components of the vector yPER, with a significant reduction in the number of

variables and in computational complexity. A minimum required service frequency

may be added to the technical constraints.

For interurban or rural services (with low frequency and high regularity), the

supply design problem is quite different, as are the models used to simulate these

services. As was seen in Sect. 7.6.1, the diachronic network models used to simu-

late regular low-frequency services are based on the explicit representation of the

service schedule. Optimal schedule design models define the departure and arrival

times of each run of a pre-defined set of lines. Furthermore, in the most general

case, they jointly determine the lines and their departure and arrival times, under a

set of technical constraints. The latter are the feasible range of travel times (feasible

commercial speeds), the available vehicle stock, the range of acceptable connec-

tion times between different lines at intermediate stops, and so on. The problem of

optimal service scheduling has not been extensively covered in the literature.

9.3.4 Models for Pricing Design

Pricing design models can be applied to different contexts. Prices, generally repre-

sented as continuous variables yPRI, may be related to the different transportation

supply elements: road tolls, parking, air and rail fares, and the like. Specification

of the design variables yPRI will depend on the assumed pricing structure, that is,

on how prices are computed and applied. If constant access prices are assumed, for

example, constant road tolls at motorway entrance/exit points or constant parking

fares, the components yPRI
j of the vector can be associated with the network links j ,
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representative of the toll points or parking facilities. If the price is proportional to

the distance covered, for example, road tolls or rail fares proportional to the journey

length, the price parameter yPRI
l can be associated with each link l, corresponding

to a section with a physical length.

The objectives of pricing design might also differ in different situations. If the

pricing policy is meant to improve the efficiency of the transportation system, for

example, by reducing the overall generalized cost of the system and/or the overall

pollution level, the resulting pricing is known as efficiency pricing. A typical exam-

ple of efficiency pricing design is road pricing, that is, charging a driver for the use

of roads according to the social cost (typically the total travel time) that her use pro-

duces. In this case, the social objective function4 is w1(y
PRI) =

∑

l cl(f l)fl . The

efficiency road pricing design problem with fixed demand can therefore be formu-

lated as

y∗PRI = arg min
yPRI

∑

l

cl(f
∗)f ∗

l (9.3.7)

subject to the constraints:

yPRI ≥ 0

f ∗ = ∆P
(

g(f ∗,yPRI)
)

d

In the special case of DUE assignment with separable cost functions, problem

(9.3.7) is equivalent to the system optimal (SO) assignment problem described in

Sect. 5.4.6. This problem is a single-level optimization problem and the optimum

price y∗PRI
l can be calculated as

y∗PRI
l = c′

l(f
∗
l )f ∗

l ∀l (9.3.8)

where c′
l(fl) is the first derivative of the cost function.

However, it should be noted that the price vector y∗PRI given by (9.3.8) is not, in

general, a unique solution to the problem (9.3.7). Under deterministic path choice,

there may be other vector solutions to the general problem (9.3.7) with different

operational impacts (e.g., less expense to users or the possibility of applying the

price only to certain network links).

The formulation (9.3.7) of the road pricing problem assumes that O-D demand

d is fixed. The resulting prices tend to reduce the total travel time by modifying

path choices; this is achieved by increasing the generalized cost on a link as a func-

tion of its congestion level. However, many empirical results indicate that the most

significant congestion reductions can be obtained by focusing on demand flows. To

address this problem it is necessary to consider the O-D demand for the car mode

4The economic interpretation of this objective function, which differs from the individual user

generalized cost, is that the monetary cost can be considered a transfer from users to system oper-

ators who, in principle, can return it to the users in another form (see Sect. 10.3.1 on benefit–cost

analysis).
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dC as variable. For example, it may be assumed that demand is variable with respect

to mode choice and that roads are the only congested mode, that is, that only road

costs are dependent on link flow f C and design prices y∗PRI. It may be appropri-

ate to impose further constraints on the problem (9.3.7), for example, requiring that

road link flows are below a pre-determined fraction of the corresponding capacities.

Under these assumptions, the efficiency road pricing problem with variable de-

mand can be formulated as

y∗PRI = arg min
yPRI

∑

l

cl(f
∗)f ∗

l (9.3.9)

subject to:

yPRI ≥ 0

f ∗ = ∆P
(

gC(yPRI,f ∗)
)

dC
(

sC(yPRI,f ∗), sB
)

where sC(·) and sB are (nod × 1) vectors of EMPU variables related to path choice

for car and bus modes.

The pricing design model has a different form when maximizing traffic revenues

or net profits (revenues minus costs). In the former case, for example, assuming

a single operator in the market, the operator’s objective function w2(·) is the total

revenue, and the problem can be formulated as

y∗PRI = arg max
yPRI

∑

l

yPRI
l f ∗

l (9.3.10)

subject to:

f ∗ = ∆P
(

gC(yPRI,f ∗)
)

dC
(

gC(yPRI,f ∗),gB
)

yPRI ≥ 0

where the modal O-D demand flows are considered price elastic.

Pricing design models for other types of transport infrastructure (e.g., rail lines

or airport slots) and service (e.g., train or air connections) can be formulated in a

similar way. Typically, optimal infrastructure use prices are computed with respect

to social objectives (efficiency pricing) whereas service prices are computed with

respect to operator objectives. The literature contains relatively few descriptions of

applications of these methods.

9.3.5 Models for Mixed Design

Complex projects involving an areawide transportation system or multiple aspects

of a transportation company’s services would require design models that integrate

two or more of the models described earlier. For example, a regional transportation
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plan usually involves the optimal design of road and rail infrastructure, rail and bus

services, road and transit pricing, and so on. Similarly, definition of a road project

financing scheme includes the optimal design of new infrastructure and pricing sys-

tems. Clearly, the computational complexity of these problems increases exponen-

tially and the (few) examples published in the literature are based on a number of

ad hoc simplifying hypotheses specific to the individual problem. Solution algo-

rithms are generally based on the sequential solution of separate design problems

corresponding to separate design variables.

9.4 Some Algorithms for Supply Design Models

Using mathematical programming terminology, supply design models can be char-

acterized as discrete, continuous, or mixed optimization problems; such models

are generally nonlinear with nonlinear constraints, or bilevel optimization models

with ill-defined mathematical properties. For most of these problems, optimal al-

gorithms – algorithms that can be proven to converge to global or local optimal

solutions – do not exist.

For this reason, heuristic algorithms have generally been used in applications

with, in many cases, satisfactory results. This is especially relevant given that the

goal is to define interventions in the physical system with the help of design models

rather than to solve a mathematical problem per se. In what follows, some examples

of heuristic algorithms are briefly presented for discrete and continuous problems.

These algorithms are applicable to a wide range of design models. A comprehensive

review lies beyond the scope of this book.

9.4.1 Algorithms for the Discrete SDP

A number of algorithms have been proposed for solving discrete SDPs; most solve

specific network design problems. These algorithms can be classified in two groups:

– Exact algorithms that yield globally optimal solutions, such as total enumeration

and “branch and bound” algorithms

– Heuristic algorithms that yield suboptimal solutions (local optimum or near op-

timal solution), such as add-and-delete algorithms, neighborhood search algo-

rithms, genetic algorithms, and simulated annealing algorithms

In general, exact algorithms can be applied only to small networks, whereas

heuristic algorithms can be applied to relatively large networks. To facilitate com-

parisons here, the algorithms are applied to the small network of Fig. 9.7 for the

uncongested road layout design problem with a deterministic route choice model.

The algorithms can be extended to other discrete design problems (e.g., optimal

layout of transit lines).

Add-and-delete algorithms. These perform a sequence of insertion and deletion

operations starting from an initial solution. The insertion operation adds design links
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Link number Link Travel time (c) Construction cost (b)

Design links

1 1–2 8 800

2 2–7 12 1000

3 6–7 15 1500

4 1–6 10 600

5 4–5 20 500

Existing links

1–3 10 –

2–4 10 –

3–4 15 –

3–5 10 –

3–6 10 –

4–7 10 –

Demand OD (d1−7) 1000

Fig. 9.7 Test network (starting configuration)

sequentially to generate new solutions. For each possible addition, the resulting ob-

jective function value is calculated, and the link with the largest objective function

improvement is added to the current configuration. The insertion routine continues

to add links until no further link insertion improves the objective function. The dele-

tion routine is then invoked. This operation deletes links from the current configura-

tion, calculating the objective function for each possible deletion. The link with the

largest objective function improvement is deleted from the current configuration.

The deletion routine continues to delete links until no link deletion improves the

objective function. If at least one link is deleted, the algorithm repeats the insertion

tests; otherwise the algorithm stops. In the last generated network configuration, no

link insertion or deletion could improve the objective function value.

Inclusion or deletion of link l in iteration it is indicated by a 1 in the corre-

sponding component of the design vector yTOP
it,l . The results of an application of the

add-and-delete algorithm to the test network of Fig. 9.7 are summarized in Fig. 9.8.
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Solution User Construction Objective

costs costs function value

Starting solution

yTOP
0 = [0,0,0,0,0] 35000 0 35000

Insertion operation

First insertion

yTOP
1,1 = [1,0,0,0,0] 28000 4000 32000

yTOP
1,2 = [0,1,0,0,0] 35000 5000 40000

yTOP
1,3 = [0,0,1,0,0] 35000 7500 42500

yTOP
1,4 = [0,0,0,1,0] 35000 3000 38000

yTOP
1,5 = [0,0,0,0,1] 35000 2500 37500

Best inserted link

yTOP
1 = [1,0,0,0,0] 28000 4000 32000

Second insertion

yTOP
2,2 = [1,1,0,0,0] 20000 9000 29000

yTOP
2,3 = [1,0,1,0,0] 28000 11500 39500

yTOP
2,4 = [1,0,0,1,0] 28000 7000 35000

yTOP
2,5 = [1,0,0,0,1] 28000 6500 34500

Best inserted link

yTOP
2 = [1,1,0,0,0] 20000 9000 29000

Third insertion

yTOP
3,3 = [1,1,1,0,0] 20000 16500 36500

yTOP
3,4 = [1,1,0,1,0] 20000 12000 32000

yTOP
3,5 = [1,1,0,0,1] 20000 11500 31500

No inserted link improves objective function

Deletion operation

First deletion

yTOP
3,1 = [0,1,0,0,0] 35000 5000 40000

yTOP
3,2 = [1,0,0,0,0] 28000 4000 32000

No deleted link improves objective function

Optimal solution

yTOP
opt = [1,1,0,0,0] 20000 9000 29000

Fig. 9.8 Add and delete algorithm applied to the test network of Fig. 9.7
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Neighborhood search algorithms. Starting from an initial solution, these algo-

rithms generate the set of solutions that can be reached directly from the current

solution by an elementary operation, called a move. Each such solution is termed

a neighbor of the current solution, and the set of all neighbors is called the neigh-

borhood. The next solution is chosen by selecting either the best solution (the de-

scent/ascent method) or a random solution (the Monte Carlo method) from among

all neighbors. The algorithm ends when no neighbor of the current solution improves

the objective function in the descent method, or when the objective function does

not significantly improve over the last m iterations in the Monte Carlo method. The

results of an application of the neighborhood search algorithm to the test network

of Fig. 9.7, using the descent method, are summarized in Fig. 9.9.

The neighborhood search algorithm is similar to the add-and-delete algorithm

described previously; the main difference is the sequence in which insertions and

deletions are performed. In add-and-delete algorithms, a link can be added to the

current solution only in insertion routines and can be deleted only in deletion rou-

tines. In the neighborhood search, at each step all the links can be added or deleted.

However, practical applications have shown that neighborhood search algorithms

are better suited to find local optima close to their starting solution. Consequently,

they are best used as second-stage algorithms, coupled with other algorithms that

explore the entire feasible set.

Genetic algorithms. These algorithms, often used for combinatorial problems,

mimic the mechanisms of genetics and natural selection. They are heuristic algo-

rithms that start with an initial population (set of initial feasible solutions) and itera-

tively generate a new population with a higher probability of containing the optimal

(or near-optimal) solution. Each feasible solution is an element (named a chromo-

some) of the population, and is composed of genes. A gene is a group of variables

satisfying “local” constraints, such as the number of lanes to be allocated in each di-

rection for an urban road network design problem. Future populations are generated

with three operations: reproduction, crossover, and mutation.

The reproduction operation randomly generates a new population from the cur-

rent population. When generating the new population, current solutions with a

higher objective function values have a higher probability of surviving; thus only

the fitter solutions will be submitted to the subsequent crossover and mutation rou-

tines. Survival probabilities are defined by the fitness function, a monotone increas-

ing (decreasing) function of the objective function for maximization (minimization)

problems. One possible specification of the fitness function is:

ff (i) = exp(−αwi)

where i is an element of the current population (a feasible solution), α is a para-

meter and wi is the corresponding value of the objective function. Reproduction

probabilities can be computed as

pr(i) =
ff (i)

∑

j ff (j)
=

exp(−αwi)
∑

j exp(−αwj )
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Solution User Construction Objective

costs costs function

Starting solution

yTOP
0 = [0,0,0,0,0] 35000 0 35000

Neighborhood generation

yTOP
1,1 = [1,0,0,0,0] 28000 4000 32000

yTOP
1,2 = [0,1,0,0,0] 35000 5000 40000

yTOP
1,3 = [0,0,1,0,0] 35000 7500 42500

yTOP
1,4 = [0,0,0,1,0] 35000 3000 38000

yTOP
1,5 = [0,0,0,0,1] 35000 2500 37500

Next solution

yTOP
1 = [1,0,0,0,0] 28000 4000 32000

Neighborhood generation

yTOP
2,1 = [0,0,0,0,0] 35000 0 35000

yTOP
2,2 = [1,1,0,0,0] 20000 9000 29000

yTOP
2,3 = [1,0,1,0,0] 28000 11500 39500

yTOP
2,4 = [1,0,0,1,0] 28000 7000 35000

yTOP
2,5 = [1,0,0,0,1] 28000 6500 34500

Next solution

yTOP
2 = [1,1,0,0,0] 20000 9000 29000

Neighborhood generation

yTOP
3,1 = [0,1,0,0,0] 35000 5000 40000

yTOP
3,2 = [1,0,0,0,0] 28000 4000 32000

yTOP
3,3 = [1,1,1,0,0] 20000 16500 36500

yTOP
3,4 = [1,1,0,1,0] 20000 12000 32000

yTOP
3,5 = [1,1,0,0,1] 20000 11500 31500

No neighbor improves objective function

Optimal solution

yTOP
opt = [1,1,0,0,0] 20000 9000 29000

Fig. 9.9 Neighborhood search algorithm applied to the test network of Fig. 9.7

where the summation is extended to all the elements of the current population. The

crossover routine generates a new population by randomly exchanging parts (genes)

between the feasible solutions (chromosomes). The mutation routine generates a
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Fig. 9.10a Genetic algorithm for a discrete road network design problem: test network

new population by randomly “mutating” a gene (variable) of a “chromosome” (so-

lution). The algorithm stops when the objective function no longer improves with

new solutions, for example, in their average or min/max values over the most recent

iterations.

One of the differences between genetic algorithms and those previously consid-

ered is that the outcome of the former is a population of feasible solutions with sim-

ilar objective function values. Comparisons can be made among these values based

on individual components of the objective function as well as on other variables. By

contrast, optimization algorithms seek a single “best” solution.

The algorithm can be adjusted by setting the parameters of the fitness functions,

as well as the number of crossover and mutation operations at each iteration. An

example of a cycle of reproduction – crossover – mutation is provided in Figs. 9.10a

and 9.10b for a road network design problem to determine the number of lanes in

each direction. In this case, each gene represents the configuration of a given road

and has two components, one for each direction.
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Parameters of the algorithm

Number of design links 5

Design variables Lanes in each direction

Lanes in each design link 2

Population 3 elements

Fitness function exp(−0.0001wi)

Number of crossovers 1

Number of mutations 1

Starting population Objective function

Solution 1: Present configuration y1 = [0,0;0,0;0,0;0,0;0,0] 35000

Solution 2: Random configuration 1 y2 = [1,1;1,1;1,1;0,0;0,0] 44000

Solution 3: Random configuration 2 y3 = [0,0;0,0;1,1;1,1;1,1] 46500

Reproduction

Reproduction Probability (RP) exp(−0.0001wi)/
∑

j exp(−0.0001wj )

RP1 = 58.8% range [0;0.588)

RP2 = 23.5% range [0.588;0.823)

RP3 = 17.7% range [0.823;1]

Random number extraction New population

0.456 → Solution 1 y1 = [0,0;0,0;0,0;0,0;0,0] 35000

0.672 → Solution 3 y2 = [0,0;0,0;1,1;1,1;1,1] 46500

0.089 → Solution 1 y3 = [0,0;0,0;0,0;0,0;0,0] 35000

Crossover

Random solution selection

Solution 1 y1 = [0,0;0,0;0,0;0,0;0,0]

Solution 2 y2 = [0,0;0,0;1,1;1,1;1,1]

Random cut points selection

Point 1 → 2 [x, x;x, x; | x, x;x, x;x, x]

Point 2 → 4 [x, x;x, x;x, x;x, x; | x, x]

New population

Solution 1 (crossed) y1 = [0,0;0,0; | 1,1;1,1; | 0,0] 44000

Solution 2 (crossed) y2 = [0,0;0,0; | 0,0;0,0; | 1,1] 37500

Solution 3 y3 = [0,0;0,0;0,0;0,0;0,0] 35000

Mutation

Random solution selection

Solution 3 y3 = [0,0;0,0;0,0;0,0;0,0]

Random mutation link Link 1 → [x,x;x, x;x, x;x, x;x, x]

New random link configuration y3 = [2,0;0,0;0,0;0,0;0,0] 32000

New population

Solution 1 y1 = [0,0;0,0;1,1;1,1;0,0] 44000

Solution 2 y2 = [0,0;0,0;0,0;0,0;1,1] 37500

Solution 3 (Mutated) y3 = [2,0;0,0;0,0;0,0;0,0] 32000

Fig. 9.10b Genetic algorithm for the discrete road network design problem of Fig. 9.10a
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Fig. 9.11 General scheme of

feasible direction algorithms

for continuous SDP

9.4.2 Algorithms for the Continuous SDP

Algorithms for continuous supply design problems are based on the principles of

nonlinear optimization (see Appendix A). The optimal solution can be expressed in

a closed form only for few simple problems (e.g., transit frequency optimization for

a single line or cycle length, and green/cycle ratios for an isolated intersection with

fixed flows). In general it is necessary to implement algorithms to perform a local

search along a feasible direction, that is, a direction that moves towards a local opti-

mum. The solution reached will be the global optimum only if the objective function

is convex. If the objective function is convex, the solution reached will be the global

optimum. However, it is impossible to demonstrate convexity of the objective func-

tion for most network design problems. The general scheme of a feasible direction

nonlinear optimization algorithm is presented in Fig. 9.11.

Different algorithms can be specified according to their movement directions. If

the movement direction can be shown to be an ascent or descent direction (e.g., the

gradient or its opposite) the algorithm is exact, otherwise it is heuristic. The amount

of movement along the direction can be determined by a linear search or by a fixed

or variable step length according to the computational difficulty.

Below are two example applications of the gradient algorithm to continuous net-

work design problems: traffic signal setting and transit line frequency optimization.
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Link Running time Variable Saturation flow

1 10 yPER
1 = y1a 1000 vph

2 8

3 13 yPER
2 = y2a 1000 vph

4 10

5 10 yPER
1 = 1 − y1b 1000 vph

6 10

7 4 yPER
2 = 1 − y2b 1000 vph

Demand

O1 − D1 = 700 vph

O2 − D2 = 900 vph

Delay function tw(fl, y
PER
n ) = 3 + 5[fi/(y

PER
n si)]

4

Objective function w(y) = [c(y,f ∗)]T f ∗

Fig. 9.12a Projected gradient algorithm for the optimal signal setting problem: test network
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Iteration 1 2 3 4 5 6 7 8 9

y1 it 0.500 0.400 0.300 0.300 0.300 0.275 0.275 0.275 0.269

y2 it 0.500 0.401 0.306 0.306 0.306 0.285 0.285 0.285 0.287

f ∗
1 , f ∗

3 292 309 327 327 327 330 330 330 326

f ∗
2 , f ∗

4 408 391 373 373 373 370 370 370 374

w(yit ) 138,719 91,315 74,771 74,771 74,771 74,011 74,011 74,011 74,002

Step size 0.100 0.100 0.100 0.050 0.025 0.025 0.013 0.006 0.006

∂w/∂y1 378,527 94,661 35,000 35,000 35,000 4,000 4,000 4,000 −1,000

∂w/∂y2 373,340 88,501 29,000 29,000 29,000 −1,000 −1,000 −1,000 −2,000

max |∂w/∂yn| 378,527 94,661 35,000 35,000 35,000 4,000 4,000 4,000 2,000

∆y1 −0.100 −0.100 −0.100 −0.050 −0.025 −0.025 −0.013 −0.006 −0.006

∆y2 −0.099 −0.096 −0.083 −0.041 −0.021 +0.006 +0.003 +0.002 −0.003

y1it+1 0.400 0.300 0.200 0.250 0.275 0.250 0.262 0.269 0.263

y2it+1 0.401 0.306 0.223 0.265 0.285 0.291 0.288 0.287 0.284

w(yit+1) 91,315 74,771 84,864 74,864 74,011 74,150 74,030 74,002 74,053

Step size red. NO NO YES YES NO YES YES NO YES

Stop test NO NO NO NO NO NO NO NO YES

VALID Steps OPTIMAL Solution

Fig. 9.12b Projected gradient algorithm for the optimal signal setting problem of Fig. 9.12a

An algorithm for optimal signal setting. An example of continuous SDP is the

global optimization of traffic signal settings for urban networks. Under the assump-

tion that each intersection (node n) has only two phases (a and b), the control vari-
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Fig. 9.13a Projected gradient algorithm for the optimal transit frequency problem: test network

ables are the ratios of effective green time to cycle length, one for each intersection:

yPER
n = Ga

n/Tcn = 1 −
(

Gb
n/Tcn

)

∀ intersection n

where

Ga
n is the effective green time for phase a at intersection n

Gb
n is the effective green time for phase b at intersection n

Tcn is the cycle length for intersection n

For such a problem, the number of variables is equal to the number of signalized

intersections, because there is only one decision variable for each of them. The
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Numerical results

Iterations → 1 2 3 4 5

y1 it 3 5 7 7 8

y2 it 3 3,92 4,78 4,78 4,41

f2−4 150 168 178 178 193

f4−8 350 368 378 378 393

f3−5 150 132 122 122 107

f5−9 250 232 222 222 207

Operator cost 105,000 153,387 200,506 200,506 208,268

Users cost 587,700 433,621 360,288 360,288 349,536

Total costs (wk) 692,700 587,008 560,794 560,794 557,805

Bus number 6 8 9 9 10

Step size 2 2 2 1

∂w/∂y1 −78,500 −21,492 −4,580 −4,580

∂w/∂y2 −36,084 −9,198 1,657 1,657

Max|∂w/∂yi | 78,500 21,492 4,580 4,580

∆y1it 2 2 2 1

∆y2 it 0.92 0.86 −0.72 −0.36

y1 it+1 5 7 9 8

y2 it+1 3.92 4.78 4.05 4.41

Total costs (wit+1) 587,008 560,794 558,624 557,805

Bus number 8 9 11 10

Step size red. NO NO YES NO

Stop test NO NO NO YES

Fig. 9.13b Projected gradient algorithm for the optimal transit frequencies problem of Fig. 9.13a

social objective function to be minimized can be the total user cost on the network,

as given by (9.3.2).

To solve this problem, a projected gradient algorithm with numerical calculation

of derivatives and variable step length can be used; the algorithm follows the general

framework reported in Fig. 9.11 and computes the descent direction as the opposite

of the numerical gradient. The descent direction is projected back to the feasible

region (i.e., some components being set to zero) if the next trial solution violates a

constraint.

In order to find the step length, the descent direction can be normalized by di-

viding its components by the maximum absolute value. The algorithm proceeds

with a fixed step length each time the objective function value is improved and the

constraints on the variables are satisfied. The step length is reduced each time the

objective function value worsens in an iteration, and the algorithm stops when the

step length is less than a fixed value. A numerical example of the optimal signal set-

ting problem was performed for the small network with two controlled intersections

described in Fig. 9.12a. The assignment model used in the example is stochastic

user equilibrium with multinomial logit path choice and an MSA algorithm to com-

pute the equilibrium flows (see Sect. 5.4.2). The main variables generated by the

projected gradient algorithm are presented in Fig. 9.12b.

An algorithm for optimal transit frequencies. Another example of a continuous

network design problem is the optimization of transit frequencies.



Reference Notes 619

This problem looks for the optimal frequencies yPER
j for a transit network with

given transit lines. The objective function is the sum of user and operator costs

expressed by (9.3.3) and (9.3.4), respectively, taking into account only frequency

control variables yPER. The constraints included in this model are the assignment

constraints (9.3.5), minimum and maximum frequency constraints, and the vehicle

budget constraint (9.3.6).

In Fig. 9.13 numerical results of an application of the projected gradient algo-

rithm on a test network are shown. The step length can be reduced if the objective

function increases, and/or if the budget constraint is violated.

Reference Notes

There is a large body of literature on network (supply) design models, many con-

tributions considering only network features without considering price parameters.

The general formulation proposed in this chapter is original. Almost all proposed

models assume the demand as rigid: supply modifications do not influence user mo-

bility choices except for route choice.

The numerous papers proposed in the literature can be classified in several ways:

by transportation system (road, transit, multimodal), by kind of variable (continu-

ous, discrete, mixed), by assumptions on demand (rigid, elastic), by solution ap-

proaches (simulation, optimization), and by solution algorithms (exact, heuristic,

metaheuristic).

Design of topological variables of road networks has been tackled by discrete

variable models in papers by Billheimer and Gray (1973), Boyce and Janson (1980),

Poorzahedy and Turnquist (1982), and Solanki et al. (1998), which propose heuristic

solution algorithms, and in papers by Le Blanc (1975), Los and Lardinois (1982),

and Chen and Alfa (1991a, 1991b), advocating branch-and-bound solution algo-

rithms.

Continuous variable models have been proposed in papers by Dantzing et al.

(1979), Marcotte (1983), Le Blanc and Boyce (1986), Suwansirikul et al. (1987),

and Meng et al. (2001), that propose heuristic solution algorithms; Abdulaal and Le

Blanc (1979) and Davis (1994) propose, instead, descent algorithms; and Friesz et

al. (1992) propose simulated annealing techniques. Models to solve network design

and location problems jointly have been proposed in papers by Melkote and Daskin

(2001) and Drezner and Wesolowsky (2003).

General formulation of the signal setting design problem, with the distinction

between local and global approaches, is reported in papers by Marcotte (1983),

Cantarella et al. (1991), Cantarella and Sforza (1991, 1995), and Cascetta et al.

(1999, 2006). Abdelfatah and Mahmassani (1999) propose a dynamic approach to

the problem.

The local approach has been widely studied in the literature; papers by Allsop

(1977), Smith (1979), Dafermos (1980, 1982a, 1982b), Fisk and Nguyen (1982),

Florian and Spiess (1982), Meneguzzer (1995), Smith and Van Vuren (1993), and
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Cascetta et al. (1999) faced the problem from a static point of view. Dynamic mod-

els have been proposed in papers by Han (1996), Hu and Mahmassani (1997), and

Lo et al. (2001). Cantarella and Improta (1991) consider also offsets as decisional

variables. Real-time actuated traffic signals have been studied in a paper by Mir-

chandani and Head (2001). Wong and Yang (1999) proposed group-based methods.

The solution of the signal setting design problem from the global point of view

has been covered in papers by Sheffi and Powell (1983), Yang and Yagar (1995),

Heydecker (1996), Wong and Yang (1997), Ziyou and Yifan (2002), and Cascetta et

al. (1998, 2006). Wong et al. (2002) propose group-based methods.

Joint design of topological variables and signal settings in an urban context

has been tackled in papers by Cantarella and Vitetta (1994, 2006), Gallo (2002),

Cantarella et al. (2006), and Gallo et al. (2009), which propose heuristic or meta-

heuristic algorithms.

The transit network design problem is widely studied in the literature; a recent

review is reported in Guihaire and Hao (2008). Because the literature is very exten-

sive, below we refer to only more recent papers. Models and methods to design only

line frequencies have been proposed in papers by Shih and Mahmassani (1991),

Constantin and Florian (1995), Russo (1995) and Crisalli (1996). The design of the

whole network is treated in papers by Baaj and Mahmassani (1991, 1995), Pattnaik

et al. (1998), Iman (1998), Soehodo and Koshi (1999), and Montella and Gallo

(2002). Design of feeder lines to rail systems is studied in papers by Rama Moorthy

(1997), Martins and Pato (1998), Chien and Schonfeld (1998), and Chieng and Yang

(2000).

Multimodal network design problems, under the assumption of variable demand,

are introduced in papers by Montella et al. (2000, 2007); a multimodal model to

optimize parking fares is proposed in D’Acierno et al. (2006); and in D’Acierno et

al. (2003) the optimization of transit fares is studied.



Chapter 10

Methods for the Evaluation and Comparison
of Transportation System Projects

10.1 Introduction

As stated in Chap. 1, transportation systems engineering can be defined as a disci-

pline aimed at the functional design of physical and/or organizational interventions

on transportation systems. A set of coordinated, internally consistent actions on a

transportation system are referred to here as a project or plan. Transportation sys-

tem modeling allows the prediction of the impacts of projects in order to assess their

technical suitability and to support intermediate and final decision-makers through

the process of project evaluation.

The range of transportation system projects is very diverse, and so also are the

points of view from which their consequences can be evaluated. Projects might

involve transportation facilities, control systems, services, and/or fares. Similarly,

projects can be designed and evaluated from the perspective of the community that

they will serve, or from the perspective of the service and/or facility operators.

Design and decision-making are two interdependent activities. Decision-making

for transportation systems is often more complex than for systems in other sectors

of engineering. This is especially true when the decision-maker must consider, ei-

ther directly or indirectly, the effects of proposed actions on the larger community.

Projects that involve decisions and/or points of view which are only relevant to an

operator, such as the organization of freight distribution or the design of a traffic

signal control system, may only require a relatively simple and straightforward de-

cision process. On the other hand, it often happens that projects undertaken by a

transportation agency, such as a reorganization of transit lines, lead to impacts that

are external to the agency but that may influence its final decisions. For this reason,

this chapter mainly considers complex projects with a wide range of impacts.

The decision-making process can address the evaluation of an individual project

or the comparison of multiple alternative projects. The first case examines the eco-

nomic, financial, and other impacts of carrying out a particular project, such as con-

structing a new road. In the second case, the decision-making process is intended to

help choose the best among different possible solutions whose economic or finan-

cial impacts have been previously determined. An example is the choice between

different possible alignments for a particular road.

The following sections focus on the activities relating to project evaluation and

comparison. Section 10.2 identifies relevant project impacts and discusses their

quantification using the models and methodologies described in the previous chap-

ters. Section 10.3 then presents economic and financial analysis techniques used in

project evaluation, and multicriteria analysis methods for the comparison of alter-

native projects.
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10.2 Evaluation of Transportation System Projects

Because it is an activity intended to support decision-making, evaluation necessarily

depends on the decision-maker’s perspective. A classic example of this dependency

is the difference between the financial and the economic analysis of a project.

Financial analysis is traditionally associated with private operators that attempt

to maximize profit under constraints such as regulations, service obligations, con-

cessions, and the like. In this case benefits and costs have a natural expression in

monetary terms: the former come from the revenues from service sales and sub-

sidies, if any, and the latter from the financial costs of service production such as

construction, maintenance, and operating costs, tolls, taxes, and so on.

Economic analysis is traditionally associated with a public decision-maker.1 Al-

ternative projects are evaluated taking into account their benefits and costs (general

positive and negative impacts) with respect to the objectives of the community, or

rather of different groups in the community that are homogeneous in terms of their

socioeconomic characteristics and of project impacts on them. Indeed, some trans-

portation system users may benefit from a particular project (reduced travel times

and costs, increased accessibility, etc.) whereas others may receive lesser advan-

tages or even disadvantages from it (increased travel times and costs, etc.). This

might occur in an urban area, for example, as a result of the shifting of congestion

from one zone to another due to traffic signal control strategies, reserved lanes for

public transportation, limited access traffic zones, and the like. The contrast is even

more evident if the benefits to system users are compared with the costs borne by

some nonusers, for example the increase in noise and air pollution for residents in

zones close to a new motorway or a new airport.

Quantitative techniques for the evaluation for public infrastructure projects have

been the object of many theoretical studies and practical applications over the

decades. Begun in the United States in the 1930s during the New Deal as a set

of methods and criteria for the evaluation of water resource projects, both the theory

and the practice of this discipline have rapidly evolved. In recent years the aim and

scope of project evaluation have expanded as a result of major changes in the trans-

portation arena. These developments include changes in the values and the level of

participation of different stakeholder groups, deregulation of some sectors of the

transportation market, and involvement of private capital in financing infrastruc-

ture construction and/or service operations. The systematic analysis of the results

achieved in this field is well beyond the scope of this book. The following sections

consider the role of quantitative methods in the overall activity of project evalua-

tion.

1In reality, companies operating transportation services also have several objectives and/or must

take into account the impacts of their decisions on different subjects. Economic analysis, in the

broad sense, should be extended to all the main decision-makers who operate in a transportation

system, although with different objectives and constraints.
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10.2.1 Identification of Relevant Impacts

The impacts of a transportation project can be defined as the consequences of the

project as they relate to specific groups that are affected by it (i.e., groups that are ho-

mogeneous with respect to an issue under consideration). It follows that the breadth

of the evaluation task and the evaluation approach followed are determined by the

selection of impacts to be considered in the evaluation. The range of impacts typ-

ically considered in transportation project evaluation has widened over time, hand

in hand with improvements in models and in computing power. Similarly, there

has been expanded recognition of the different and often contrasting objectives and

goals of stakeholders and decision-makers. Indeed, the role of the decision-maker

has also become increasingly complex as transportation system financing and man-

agement options have grown more diverse. In the past, the decision-maker was typ-

ically viewed as an anonymous and uninvolved public official who was expected

somehow to reconcile the objectives of the general public and the transportation

service providers. This has evolved to a more explicit recognition of the distinct

nature of the different roles, in particular those of the public institutions, the ma-

jor interest groups, and the transportation service providers independently of their

public or private nature.

First-generation quantitative evaluation exercises were undertaken to support in-

vestment in motorways and were later extended to consider transportation system

projects in the broader sense. These studies typically took into account only the

monetary and monetarily quantifiable effects (benefits and costs) to the users of the

planned facilities resulting from building and operating these facilities and services.

The former included the changes2 in level-of-service attributes such as travel time,

in the monetary cost of tolls and vehicle operation, and sometimes in the expected

number of accidents. The monetary costs for service and/or infrastructure operators

(agency costs) included construction costs, investment costs in vehicles and tech-

nologies, changes in maintenance and operating costs, as well as changes in rev-

enues from service sales. The effects for the operator sometimes included changes

in transfer payments with other public authorities (e.g., reimbursements for service

obligations, duties and taxes on gasoline and real estate, etc.).

With better understanding and modeling of the mechanisms underlying trans-

portation systems, the range of effects considered for the users of the transportation

system has gradually increased. More consideration is now given to impacts on

all users, both current and project-induced, calculating the changes in generalized

costs, both perceived and not perceived, for the different transportation modes. An-

alysts often distinguish the impacts on different user classes (market segments), that

is, groups of users that are homogeneous in terms of their trip purpose, socioeco-

nomic characteristics, and level-of-service attributes. As for the effects on operators,

the construction, maintenance, and running costs calculated on the basis of market

2As shown more clearly in the following, effects on users are measured in terms of changes induced

in their choices.
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prices are increasingly disaggregated and expressed in terms of the resources con-

sumed (manpower, materials, capital), because market prices do not always reflect

the actual social value of these resources.

The perspective and range of effects considered in transportation project evalu-

ation has been further widened by consideration of project external effects. These

are impacts on members of society who are not directly involved in the use of the

transportation system. Examples of nonuser impacts are given below, subdividing

the external effects into economic, land use, social, and environmental. It should be

noted that the classification of some impacts can be somewhat arbitrary, and that

analysts do not always agree on the characterization of some of these.

Economic impacts can be defined as changes in the state of the economic system

brought about by a project. This includes changes in residential and commercial

property values and in economic production resulting from changes in accessibil-

ity; and changes in the economic consequences of accidents directly and indirectly

related to the project. Economic externalities are directly measurable in monetary

units, or at least can easily be translated into such units.

Land use impacts are related to land use and its quality. Examples of land use

impacts are changes in land use type (e.g., from residential to commercial) and in-

tensity, or more generally the relocation of housing and economic activities brought

about by accessibility differentials. This category includes changes in the geograph-

ical structure of a region or in the urban quality of specific neighborhoods.

Social impacts can be defined as impacts on social values and changes in the

relationships among people and social institutions such as the family, local commu-

nities, education, government bodies, and so on, brought about by the project. In this

case too there are effects of different types: social effects of accidents, changes in

accessibility to social activities (schools, public offices, parks, etc.), changes in co-

hesion and stability of local communities, as well as impacts on historic and cultural

sites. Changes in social equity, that is, changes in the distribution of travel-related

opportunities with respect to space (zone) and socioeconomic status (income class

or age) can also be considered as social impacts.

Finally, environmental impacts can be defined as the effects of a project on the

physical environment. These can be further classified as effects on the ecosystem,

on noise and air pollution, and on visual perception. Transportation system projects,

especially new infrastructure in rural areas, can alter the ecological balance of plant

and animal populations. Furthermore, any transportation system generates noise and

air pollution, and a project may significantly change their intensity and distribution

in the affected areas. Lastly, transportation infrastructure and vehicles affect the

viewscape over a potentially large area. The nature and severity of these impacts

depend on the visibility of the transportation facility and its contrast with the back-

ground.

Figure 10.1 summarizes some of the potential impacts of a transportation system

project on different groups. It is obvious that not all the impacts listed are relevant

to the evaluation of all projects. In certain cases, particular effects might be absent

or their magnitude might be considered negligible; in other cases some impacts may

be present but deemed irrelevant to the analysis.
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*Users (by class)

– Differences of net utility (surplus) perceived by users

– Differences of costs not perceived by users

*Agencies and operators (for each subject involved)

– Differences in resources (manpower, materials, capital) and costs needed for building trans-

portation infrastructure, vehicles and control systems (investments)

– Differences in resources and costs for maintenance of the infrastructure and technologies

– Differences in resources and costs for the operation of transportation services

– Expropriation and relocation costs

– Differences in traffic revenues

– Changes in taxes paid by users (fuel, etc.) and nonusers (property, etc.)

– Differences in transfer payments between government agencies

*Nonusers of the transportation system (for each homogenous group)

Economic impacts

– Differences in the production of different economic sectors

– Differences in the economic impacts of accidents

– Differences in property values

Land use impacts

– Differences in the location of households and economic activities

– Differences in urban structure and “quality”

Social impacts

– Impacts on the preservation of historic and cultural sites

– Difference in accessibility to social activities (school, social and religious centers, recre-

ational activities, etc.)

– Modifications in the structure and cohesion of local communities

– Changes in the social effects of accidents

– Changes in the distribution of users’ surplus by zone and socioeconomic group (impact on

equity)

– Changes in visual and aesthetic impacts

Environmental impacts

– Changes in the ecosystem

– Changes in noise and air pollution

Fig. 10.1 Classification of impacts for the evaluation of transportation system projects
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10.2.2 Identification and Estimation of Impact Indicators

The effects of a transportation project can be represented by a set of variables known

as impact indicators or measures of effectiveness (MOE). Because, at a detailed

level, a project can have a large number of different impacts, and it would be im-

practical to handle all the related variables, it is common practice in analysis to use

a smaller number of performance indicators that are obtained by aggregating the

detailed impacts and their measures.

Some impact indicators are quantitative variables such as travel time or tons of

CO emissions; others are intrinsically qualitative and can only be expressed by de-

scriptive variables (such as little, much, etc.) or on an arbitrary scale (such as from

A to F).

The effects of a project are usually evaluated in differential terms, that is, as

changes in the values of impact variables between the project (P ) and nonproject

(NP) states. The latter, sometimes known as the reference or baseline solution, is

defined as the option to maintain the present state of the system, or to implement

projects that have already been accepted and that are not subject to the evaluation.

The definition of the baseline alternative may require considerable care.

The time dimension is an important factor in estimating impacts. Different project

impacts generally follow different profiles over time. For example, construction and

investment costs are spent in a relatively short period of time at the beginning of the

project, whereas maintenance and operating costs continue throughout the entire

life of the project. Furthermore, with the passing of time some effects change in

intensity or even in direction: user travel costs may increase during the construction

phase due to capacity reductions and other disturbances, and then decrease when

the infrastructure is in service.

For analysis purposes, the total economic life3 of the project is divided into a

set of reference periods, with conditions assumed to be stationary during each pe-

riod. Such periods might be, for example, different times during a year or different

periods during a typical day, both during construction and during representative op-

eration years. As was seen in Chap. 1, impact indicators are typically computed

for these reference periods and then extrapolated to longer time periods. As shown

in Fig. 10.2, many impacts can be predicted using the models described in pre-

vious chapters. The estimation of these impacts requires modeling the system in

the Project (P ) and NonProject (NP) states followed by calculation of differences

(changes) in the variables measuring quantifiable impacts.

The resources needed for construction, maintenance, and operation and their cor-

responding costs can be estimated either (i) analytically, from the actual design of

the proposed facilities and services, or (ii) synthetically, using statistical relation-

ships known as production functions. These functions estimate the resources needed,

3The “economic life” of a project can be defined conventionally as its period of validity. For in-

frastructure, this may be considered to be the period for which no major extraordinary maintenance

works are necessary. The arbitrariness of this definition is partly compensated for by the possibility

of a residual value of the project at the end of the period under consideration.
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Fig. 10.2 Main components of an impact assessment process

for example, to build and equip a unit length of typical infrastructure, to produce ve-

hicles and technologies with given characteristics, or to maintain infrastructure and

operate a transportation service of a given type. Alternatively, construction, main-

tenance, and operation cost functions directly estimate the corresponding costs in

monetary terms.

Traffic revenues can be calculated by multiplying the number of predicted users

of tolled infrastructure and/or for-pay services by the corresponding charges.

A variety of other impacts can be calculated from the models described earlier in

this book. For example, the probability of accidents and their consequences, fuel

consumption, and noise and air pollution can all be evaluated through the rele-

vant link impact functions described in Sect. 2.3.3. The ease of access to different

services can be measured through accessibility variables derived from destination
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choice models (as discussed in Sect. 4.3.1.2) or developed in other ways described

in the literature. In any case, generalized costs or level-of-service attributes play a

key role in the measurement of accessibility.

The calculation of transportation system user benefits requires a further elabo-

ration of the concepts and demand models described in previous chapters, and is

covered in the following section.

10.2.3 Computation of Users’ Surplus Changes

The impacts perceived by users can be calculated as a change in net perceived utility

(or surplus) associated with the travel choices made in the project and nonproject

situations. Either of two different calculation approaches can be applied, depending

on whether the underlying demand model is a behavioral random utility model or a

descriptive nonbehavioral model. The two approaches are analyzed and compared

in the following sections.

(a) Random Utility Demand Models

Random utility demand models are based on explicit assumptions about the choice

behavior of decision-makers or users. These assumptions can be used to estimate

changes in average perceived utilities for the choice dimensions affected by a

project. As an example, consider the classic choice sequence defined by the de-

cision of user i to make x trips for a particular purpose from zone o to destination d

by mode m and following path k.

In this case, the utility U i
P perceived by user i for the sequence that would be

chosen in the project situation P can be expressed as:

U i
P =

∑

βkX
iP
kj (i) + εi

j (i) = V i
xodmk

(

XP
j (i)

)

+ εi
xodmk (10.2.1)

where j (i) indicates the specific sequence (x o d m k) chosen and the vector of

attributes XP
j (i) includes level-of-service (times, costs, etc.) and other variables cor-

responding to j (i) in the situation P . Because in general some attributes Xi
kj (i)

have positive coefficients (i.e., they represent utilities) whereas others have negative

coefficients (costs), expression (10.2.1) represents the perceived net utility (utility

minus cost), or surplus. A simple specification of the systematic utility Vxodmk for

shopping trips might be:

Vxodmk(X) = β1NOTRIP + β2SHPd − β3todmk − β4mcodmk (10.2.2)

where x takes the value zero or one, NOTRIP is an alternative-specific variable

for the choice not to make a trip, (x = 0), SHPd is the number of shops in zone

d, todmk and mcodmk are, respectively, the travel time and monetary cost to go to d
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by mode m departing from origin o and following path k. The linear combination

of travel time and monetary cost is often called the generalized path cost, godmk =

β3todmk + β4mcodmk .

In random utility models, the user is assumed to choose the alternative that max-

imizes the perceived utility (10.2.1), but this is unknown to the analyst and so is

represented as a random variable. The impacts of a project on a homogeneous group

of transportation system users can be expressed by the change of the expected value

of the surplus perceived by group members. This corresponds to the mean value of

the perceived utility (surplus) of the chosen alternative, that is, the alternative with

maximum utility. The mean value of the perceived surplus thus coincides with the

mean value of the maximum perceived utility among all the available alternatives,

that is, with the Expected Maximum Perceived Utility (EMPU) variable discussed

in Chap. 3.

Inasmuch as the model specification, the attributes considered, and the system-

atic utility coefficients βk in (10.2.1) usually all depend on the trip purpose and

the socioeconomic characteristics of the decision-maker, the EMPU variable s is

calculated separately for a representative user of each class i4 in each zone o:

sP (o, i) = E
[

max
xdmk

U i
P (xdmk)

]

(10.2.3)

As shown in Chap. 3, if the residuals εxodmk are i.i.d. Gumbel variables with

parameter θ = 1, the EMPU (10.2.3) can be expressed in closed form as a logsum

variable:

sP (o, i) = ln
∑

xdmk

exp
[

V i
xdmk

(

XP
i

)]

(10.2.4)

Similar closed-form expressions can be obtained for other models belonging to

the logit family. The total utility of all the (homogeneous) users of class i in zone o

in the project situation SP (o, i) can be estimated as

SP (o, i) = NP
o (i)sP (o, i) (10.2.5)

where NP
o (i) is the number of such users. Note that NP

o (i) includes both actual and

potential users (potential users are those who could travel but choose not to).

The perceived surplus change brought about by the project for users of class i in

zone o can then be expressed as

DSP (o, i) = SP (o, i) − SNP(o, i) (10.2.6)

where SNP(o, i) is the total perceived surplus in the nonproject situation, and is

calculated in the same way as described above.

4As stated in Chap. 4, the class is a group of users sharing the same values of behavioral parameters

that are relevant to the specific application. A user class is usually defined by the pair (socioeco-

nomic category, trip purpose). In the limiting case of completely disaggregate models, the class i

may coincide with a single individual.
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Vxdmk = β1NOTRIP + β2SHPd + β3Todk

SS(o) = 100 ln
[

exp(β1NOTRIP) + exp(β2SHPd1
+ β3Tod1k1

) + exp(β2SHPd1

+ β3Tod1k2
) + exp(β2SHPd2

+ β3Tod2k3
) + exp(β2SHPd2

+ β3Tod2k4
)
]

Non-project Project

β1 = 1 T NP
od1k1 = 6 gNP

od,k1 = 1.2 T P
od1k1 = 5 gP

od,k1 = 1.0

β2 = 0.015 T NP
od1k2 = 7 gNP

od,k1 = 1.4 T P
od1k2 = 5 gP

od,k1 = 1.0

β3 = −0.2 T NP
od2k3 = 10 gNP

od,k1 = 2.0 T P
od2k3 = 6 gP

od,k1 = 1.2

T NP
od2k4 = 10 gNP

od,k1 = 2.0 T P
od2k4 = 7 gP

od,k1 = 1.4

SNP(o) = 236.2 SP (o) = 283.4 ∆S(o) = 47.2

Fig. 10.3 Example of calculation of surplus change with a behavioral model

The monotonicity of the EMPU variable, discussed in Sect. 3.5, ensures that

the net utility change is positive or negative according to whether the systematic

utility of each alternative increases or decreases when passing from the nonproject

to the project state. Reductions in cost attributes and/or increases in utility attributes

will lead to increases in the total surplus, and vice versa. By the same property,

the total surplus will increase if the number of available alternatives increases; this

may happen if the project makes available new transportation modes or services.

Figure 10.3 provides an example of the calculation of perceived surplus for a logit

choice model over the sequence xdmk for shopping trips.

Assuming that it is valid to sum the utilities of different people, aggregate utilities

of users in different classes and/or in different traffic zones can be calculated. The

perceived impact of project P over all users is therefore given by:

DSP =
∑

i

∑

o

DSP (o, i) (10.2.7)
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It should be noted, however, that in many applications the perceived surplus

changes should be analyzed at the level of disaggregate user groups in order to high-

light the distribution of project (dis)benefits among the different groups or zones in

the study area.

Average perceived surplus sP (o, i) and total utility changes calculated by (10.2.6)

and (10.2.7) are expressed in dimensionless measurement units, sometimes called

utils. In order to compare them with other effects of the project P , these values can

be expressed in monetary units by dividing them by the coefficient of the monetary

cost coefficient βc , which has units of (monetary units)−1.

If perceived utility changes from the project do not influence trip frequencies,

and therefore the total demand level for each class of users remains constant, the

surplus of nontravelers does not change and the total perceived surplus of users of a

given class and origin can be expressed as

SP (o, i) = do.(i)E
[

max
dmk

U i(dmk/os)
]

= do.(i) · sP (o, i) (10.2.8)

where do(i) is the number of trips with origin o undertaken by users of class i in

the reference period. Similar simplified expressions can be derived for fixed origin–

destination demand flows.

(b) Descriptive Demand Models

A different methodology is applied to evaluate user impacts when descriptive de-

mand models are used. In this case the model can be interpreted as a “demand func-

tion” relating the number of users undertaking trips with given characteristics to the

average generalized trip cost and other explanatory variables. This cost is defined,

in analogy with Chap. 2, as a (linear) combination of the amount of resources spent

by the user on a trip (time, money, stress, etc.), with weights reflecting the user’s

travel behavior. The cost parameters (weights) may vary according to trip purpose

and socioeconomic category (i.e., user class), and are generally estimated together

with other coefficients of the demand model; this is commonly done for path and

mode choice models.

In the following, the generalized cost of a trip undertaken by a user of class i

between o and d by mode m and following path k is indicated by godmk(i). This

is equivalent to the cost gk on path k in the network for mode m; for uniformity of

notation, the zone pair od that the path and mode (or mode combination) connect is

explicitly noted.

A simplified specification of the generalized cost analogous to that implicit in

expression (10.2.2) is:

godmk(i) = β1(i)t
i
odmk + β2(i)mci

odmk (10.2.9)

where t and mc are, respectively, the travel time and the monetary cost. (The coef-

ficients here have been explicitly associated with user class i.) As above, the gener-
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Fig. 10.4 Demand curve of a single O/D pair, mode, and path system

alized cost can be expressed in monetary units by dividing it by the cost coefficient

β2(i).

To introduce the method for calculating perceived surplus changes with descrip-

tive demand models, consider first a simple system consisting of a single O-D pair

connected by a single mode and a single path, as shown in Fig. 10.4. Assume that

all users belong to one class; that is, that they have the same behavioral parameters.

In this case, the demand model can be formally written as dod = dod(god), which

gives the average number of users undertaking a trip for each value of the general-

ized average cost in the reference period.

The relationship dod(god) can be represented in a two-dimensional graph and

usually has a form similar to that shown in Fig. 10.4. (Strictly speaking, the figure

represents the inverse demand curve, which is itself an important analytical con-

struct. Alternatively, the figure can be considered to represent the demand curve

itself, but using transposed axes.) The demand curve, in its traditional neoclassical

interpretation, represents the ordering of individual trips by users on the basis of the

generalized cost that they are willing to pay to undertake the trip; this is a measure

of the utility of the trip to the user. In other words, the marginal trip corresponding

to each point on the horizontal axis has a total utility (or willingness to pay) equal

to the corresponding value of the generalized cost on the vertical axis. An increase

in the cost would discourage this marginal user from making the trip and therefore

reduce the value of the demand dod .

All users of a given class incur the same generalized cost. Let gNP
od be this cost

and dod(gNP
od ) be the number of users traveling in the nonproject situation. For all

trips undertaken, except the marginal one, there is a net utility, or surplus, given by

the difference between the amount that the user would be willing to pay to make

the trip, and the cost that is actually paid (see Fig. 10.4). If as a result of project

P the generalized cost is reduced to gP
od , the number of users traveling increases to

dod(gP
od), as shown in Fig. 10.5.

To calculate the total surplus change resulting from project P , a distinction

should be made between trips undertaken in the situation NP and the new trips that

are only undertaken because of the cost reduction (trips generated or induced by the
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Fig. 10.5 Surplus change

between project (P ) and

nonproject (NP) states: case

of cost reduction

project).5 For a trip by user i in the first group, the surplus change will be given by:

DS =
(

U i − gP
od

)

−
(

U i − gNP
od

)

= gNP
od − gP

od (10.2.10)

that is, by the difference between the generalized cost in the nonproject and project

situations. The total surplus change DS′
p for all the trips/users of this group is there-

fore:

DS′
p = dod

(

gNP
od

)

·
(

gNP
od − gP

od

)

(10.2.11)

and is represented by the area A in Fig. 10.5.

A trip i that is generated by the cost reduction brought about by project P will

have a surplus U i − gP
od in the project situation, and zero in the nonproject situa-

tion. The total surplus change for the d∗
od = dod(gP

od) − dod(gNP
od ) project generated

trips is therefore given by the area B in Fig. 10.5. Typically it is assumed that all

generated trips d∗
od experience identical utility, given by the average value of the

interval [gNP
od , gP

od ] (i.e., U i = (gNP
od +gP

od)/2), and therefore the total surplus for the

generated demand can be calculated as

DS∗
p = d∗

od

[

gNP
od + gP

od

2
− gP

od

]

=
1

2
d∗
od

(

gNP
od − gP

od

)

(10.2.12)

Equivalently, if the demand curve is approximated by a line between dod(gNP
od ) and

dod(gP
od), the change in surplus for generated trips results from the formula for the

area of the (approximate) triangle B .

The total surplus change is given by the sum of the terms (10.2.11) and (10.2.12):

DSp = DS′
p + DS∗

p = dod

(

gNP
od

)(

gNP
od − gP

od

)

+
1

2

[

dod

(

gP
od

)

− dod

(

gNP
od

)](

gNP
od − gP

od

)

=
1

2

[

dod

(

gP
od

)

+ dod

(

gNP
od

)]

·
(

gNP
od − gP

od

)

(10.2.13)

Expression (10.2.13) can be interpreted as the product of the average demand be-

tween situations P and NP by the change in the corresponding generalized cost.

5Extra trips undertaken because of the effect of the generalized cost reduction are sometimes called

the demand generated or induced by the project P .
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Fig. 10.6 Surplus change

between project (P ) and

nonproject (NP) states for a

cost increase

Equivalently, with the linear approximation mentioned above, this expression can

be interpreted as the area of the (approximate) trapezoid consisting of the two parts

A and B .

The exact expression for the surplus change can be obtained by calculating the

hatched area in Fig. 10.5 as the integral of the demand function d(g):

DSp = −

∫ gP

gNP

d(g)dg (10.2.14)

The results described still hold if the project increases the generalized cost (gP
od >

gNP
od ), as shown in Fig. 10.6. In this case, there will clearly be a reduction of surplus

and a decrease in the number of trips. The surplus change can also be obtained

through the algebraic sum of (10.2.11) and (10.2.12), which in this case are both

negative.

The concept of surplus change and expressions (10.2.13) and (10.2.14) can be

generalized to the case of multiple cost “dimensions” (e.g., multiple destinations

and/or modes and/or paths). However, this generalization is neither straightforward

nor universal. Consider, in fact, a slightly more complex case with two possible

alternatives, for example, two paths with costs g1 and g2 (see Fig. 10.7); the two

demand curves can be defined as d1(g1g2) and d2(g1g2). The demand, that is, the

number of trips, on each path depends on the cost of both paths with a graph similar

to that shown in Fig. 10.7. (The demand function can be obtained by combining trip

generation and path choice models, e.g.) In this case the integral (10.2.14) can be

replaced by:

DS = −

∫ (gP
1 ,gP

2 )

(gNP
1 ,gNP

2 )

∑

i=1,2

di(g1, g2) dg1 dg2 (10.2.15)

However, the value of this integral usually depends on the path of integration

between the two limits.6

To determine the surplus change, two heuristic approaches can be followed, cor-

responding to two approximate methods for the evaluation of integral (10.2.15).

6The integral (10.2.15) depends only on the extremes of integration if the Jacobian of demand func-

tions is symmetrical with respect to generalized path costs: ∂d1
∂g2

= ∂d2
∂g1

. This condition is seldom, if

ever, met by usual demand models.
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Fig. 10.7 Demand curves for a system with two paths

Fig. 10.8 Calculation of the surplus change with the average demand method

The first approach, which can be called the average demand method, calculates

the surplus change as

DSP =
1

2

∑

i=1,2

(

dNP
i + dP

i

)(

gNP
i − gP

i

)

(10.2.16)

where dNP
i and dP

i are, respectively, equal to di(g
P
1 , gP

2 ) and di(g
NP
1 , gNP

2 ). The

expression (10.2.16) can be interpreted as the summation extended to all relevant

dimensions (in this case, the two paths) of the product of the average demand be-

tween states P and NP, and the cost change in that dimension.

Expression (10.2.16) corresponds to the sum of the two hatched areas in

Fig. 10.8.

The alternative approach, which can be called the average cost method, reduces

the problem to a single choice dimension by considering an average trip cost ḡ given

by the weighted average of the costs in each dimension:

ḡP = p1

(

gP
1 , gP

2

)

gP
1 + p2

(

gP
1 , gP

2

)

gP
2

ḡNP = p1

(

gNP
1 , gNP

2

)

gNP
1 + p2

(

gNP
1 , gNP

2

)

gNP
2

(10.2.17)
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Fig. 10.9 Total demand

curve as a function of the

average trip cost

where p1 and p2 are the demand shares of each dimension, pi = di/(d1 +d2). In this

approach, the demand curve expresses the total demand dT = d1 + d2 as a function

of the average cost ḡ (see Fig. 10.9). The surplus change can therefore be calculated

from expression (10.2.13):

DSP =
1

2

[

dT (ḡP ) + dT (ḡNP)
]

(ḡNP − ḡP ) (10.2.18)

The surplus change expressed by (10.2.18) can be interpreted intuitively as the

product of the average of the total demand between the states P and NP and the

change in average cost between the two states. Comparing expressions (10.2.16)

and (10.2.18), it is clear that the two approaches give different results, as can be

seen in the example presented in Fig. 10.10.

The partial share demand model can be conveniently expressed as the product of

the demand level and the fraction of trips with given characteristics:

d i
odmk = d i

o.(SEigi)pi
dmk/o(SEigi) (10.2.19)

where d i
o. is the number of trips from zone o undertaken by users of class i, and

pi
dmk/o is the fraction of these trips with the characteristics dmk.

As noted in Chaps. 4 and 5, both d i
o and pi

dmk/o depend on a vector of socioeco-

nomic and activity system attributes SE, as well as on a vector of level of service

attributes, expressed by the perceived generalized costs for all destinations, by all

modes and on all paths gi . (In the following, the dependence of demand on the SE

variables is implicit.) The surplus change for user class i resulting from the passage

from state NP with costs gNPi to state P with costs gP i , can be calculated by ex-

tending the two previous approximate expressions to the general case. The average

demand method, expressed by (10.2.16), therefore yields:

DSp(o, i) =
1

2

∑

dmk

[

d i
odmk(g

NPi) + d i
odmk(g

P i)
]

·
(

gNPi
odmk − gP i

odmk

)

(10.2.20)

On the other hand, the average cost method, expressed by (10.2.18) yields:

DSp(o, i) =
1

2

[

d i
o.(g

P i) + d i
o.(g

NPi)
]

· (ḡNPi − ḡP i) (10.2.21)
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Nonproject (NP) gNP
od1k1

= 1.2 dod1k1
(gNP) = 100 · pNP

od1k1
= 36

do(g
NP) = 100

gNP
od1k2

= 1.4 dod1k2
(gNP) = 100 · pNP

od1k2
= 30

gNP
od2k3

= 2.0 dod2k3
(gNP) = 100 · pNP

od2k3
= 17

gNP
od2k4

= 2.0 dod2k4
(gNP) = 100 · pNP

od2k4
= 17

Project (P) gP
od1k1

= 1.0 dod1k1
(gP ) = 100 · pP

od1k1
= 29

do(g
P ) = 100

gP
od1k2

= 1.0 dod1k2
(gP ) = 100 · pP

od1k2
= 29

gP
od2k3

= 1.2 dod2k3
(gP ) = 100 · pP

od2k3
= 23

gP
od2k4

= 1.4 dod2k4
(gP ) = 100 · pP

od2k4
= 19

Average demand method

DSP (o) =
1

2

∑

dmk

[

dodmk(g
NP) + dodmk(g

P )
]

·
(

gNP
odmk − gP

odmk

)

= 0.5 ·
[

(36 + 29) · 0.20 + (30 + 29) · 0.4 + (17 + 23) · 0.8 + (17 + 19) · 0.6
]

= 45.1

Average cost method

DSP (o) =
1

2

[

do.(g
P ) + do.(g

NP)
]

· (ḡNP − ḡP )

= 0.5 · (100 + 100) ·
[

(1.2 · 0.36 + 1.4 · 0.30 + 2.0 · 0.17 + 2.0 · 0.17)

− (1.0 · 0.29 + 1.0 · 0.29 + 1.2 · 0.23 + 1.4 · 0.19)
]

= 41.0

Fig. 10.10 Calculation of surplus change applying the average demand and average cost methods

to the system of Fig. 10.3
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with

ḡP i =
∑

dmk

pi
dmk/o(g

P i)gP i
odmk

and

ḡNPi =
∑

dmk

pi
dmk/o(g

NPi)gNPi
odmk

Expressions (10.2.20) and (10.2.21) are the equivalent of expression (10.2.6) for

descriptive demand models. The surplus change for all system users can be calcu-

lated by adding the results of expressions (10.2.20) or (10.2.21) for all user classes,

all zones, and all trip purposes. However, because the surplus changes resulting from

a project may be positive for some user classes, zones, or phases of the project and

negative for others, it is helpful to keep these values separate, just as for behavioral

demand models.

Figure 10.10 provides an example of the calculation of DSp for users in a single

market segment with two alternative destinations and two modes (or paths) to each

destination.

(c) Comparison Between Calculation Methods

The change of perceived net utility (surplus) for transportation system users can be

calculated either by following the behavioral interpretation of random utility models

or by treating the model as a descriptive demand function. In the second case, the

exact calculation poses some definition problems and two different simplified ap-

proaches have been proposed. The behavioral approach is certainly more consistent

and elegant because it is based on an explicit theory of behavior. It also has two

further advantages7 in practice.

The first advantage stems from the possibility of taking into account surplus

changes resulting from changes in attributes that are not traditionally considered as

components of the generalized cost. This allows the evaluation of surplus changes

produced for example by improvements in the availability of transportation services

(e.g., new connections) or in travel comfort, or by the provision of travel information

to users. To do this obviously requires that the corresponding variables be included

as explicit or implicit attributes (e.g., alternative specific constants) in the systematic

utility functions.

Such effects could not be assessed with the descriptive method because they do

not correspond to a reduction in the generalized cost (which usually only incor-

porates attributes such as time, monetary cost, etc.). Paradoxical results could be

obtained when increased demand for a mode of superior quality, but with greater

7In spite of the advantages of the behavioral approach to the calculation of surplus change, in

applications descriptive models are often adopted, even when demand models have logit or other

random utility specifications. This can be explained, at least partly, by the persistence of tradition.
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generalized cost, yields a negative surplus change, that is, a seeming disbenefit for

its users.

The other advantage arises from the possibility of computing changes in users’

surplus corresponding to the introduction of alternatives that are not available in the

nonproject situation, again avoiding obvious paradoxes.

This point can be clarified with the example in Fig. 10.11. In the NP situation,

the system offers a single alternative (e.g., a single path) for the pair (o, d). In the

P situation, a second path with a higher generalized cost is added. The total de-

mand is assumed to be constant and the split between the two paths is obtained with

the binomial logit model shown in the figure. With the behavioral method, the sur-

plus change can be calculated by computing the surplus change (10.2.6) from the

logsum variable (10.2.4). Because the expected maximum perceived utility func-

tion is monotone increasing with respect to the number of available alternatives (see

Sect. 3.5), the users’ surplus in situation P is greater than in situation NP.

Calculation of surplus change with descriptive methods, on the other hand, poses

some problems in this case. First, the average demand method corresponding to

expression (10.2.20) cannot be used because it is not possible to define a cost gNP
2

for the new path. The average cost method corresponding to expression (10.2.21)

can be used because it only requires computation of the total demand dNP and dP

and the weighted average of path costs for situations P and NP. However, because

of the increase in the average cost, the method gives a negative surplus change,

that is, a reduction in the net utility for the system’s users. This outcome is clearly

paradoxical inasmuch as an increase in capacity should correspond to an increase in

users’ surplus if some users are using the new path. The explanation is to be found

in the difference between the assumptions underlying the demand model and the

calculation of the surplus.

The logit model, beyond its behavioral interpretation, assigns a positive proba-

bility to alternatives with greater generalized cost, implying that the cost perceived

by the users is different from the average cost. Conversely, the average cost method

assumes that users perceive the average cost of the alternative chosen.

The two methods give the same outcome only for deterministic utility choice

models. In this case, all demand would choose path 1 in both the NP and P situa-

tions, the average cost would be equal to g1, and the surplus change would be equal

to zero.

This result can be generalized because, as discussed in Sect. 3.4, the EMPU vari-

able for deterministic choice coincides with the maximum utility (minimum cost)

value. However, if the demand model were a deterministic utility model, it would

be a behavioral model and the previous discussion of such models would apply.

The surplus change can also be calculated using a mixed approach in which the

average cost descriptive method (10.2.21) is applied but replacing the average costs

ḡP and ḡNP by the corresponding EMPU values s̄P and s̄NP, calculated for the

choice dimensions for which a behavioral model is used. With a multinomial logit

model in three dimensions d m k with parameter θ = 1, for example, the surplus
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DESCRIPTIVE APPROACH

DS = 100 ·
[

10 − (0.73 · 10 + 0.27 · 15)
]

= −135

BEHAVIORAL APPROACH

Vk = −0.2 · gk

SNP = 100 ln
[

exp(−0.2 · 10)
]

= −200

SP = 100 ln
[

exp(−0.2 · 10) + exp(−0.2 · 15)
]

= −169

DS = +31

Fig. 10.11 Calculation of the surplus change applying descriptive and behavioral approaches

would be given by:

sP (o) = ln
∑

d ′m′k′

exp[Vd ′m′k′ ] = Yo.

which is the accessibility from zone o to all destinations via all available modes and

paths.

In this case, the curve expressing the demand level do(s) as a function of the

EMPU variable on choice dimensions d, m, and k can be interpreted as the order-

ing of the trips with respect to the corresponding average perceived net utility. The

number of users making a trip increases with s. Figure 10.12 shows a diagram of

the demand function with respect to the inclusive utility, with the shaded area cor-

responding to the surplus change for an increase in the EMPUs.8 A linear approxi-

mation can again be used for the calculation of surplus change:

DS = 1/2(dP + dNP)(sP − sNP)

bearing in mind that EMPU and cost have opposite signs.

From the previous discussion it follows that, as far as possible, changes in surplus

should be computed using expected maximum perceived utility variables, especially

8A surplus increase can result both from a reduction of generalized costs and from an increase of

attractiveness of some zones.



10.3 Methods for the Comparison of Alternative Projects 641

Fig. 10.12 Demand function

with respect to EMPU values

when the project increases the number of available alternatives.9 If the EMPU ap-

proach is not used, the surplus change should be computed using a mixed approach

based on the EMPU variables for the choice dimensions that are most closely related

to the changes in the transportation system, such as mode and path choice.

10.3 Methods for the Comparison of Alternative Projects*

A number of methods are available for comparing alternative transportation sys-

tem projects. This section briefly presents the quantitative methods that are most

frequently used in practice. In Sect. 10.3.1 the focus is on benefit-cost analysis as

an example of an economic evaluation method; Sect. 10.3.2 describes revenue-cost

analysis methods used for financial evaluation; and Sect. 10.3.3 deals with Multi-

Criteria analysis methods.

Basic elements of these methods are described here to provide an overview of the

various approaches used to compare projects, summarizing their assumptions and

possibilities. A systematic presentation is well beyond the scope of this book, and

the interested reader should refer to the extensive literature in this area for further

information.

10.3.1 Benefit-Cost Analysis

Benefit-Cost (B/C) analysis expresses the impacts of each alternative project in

monetary units. For each alternative, a single aggregate measure of economic worth

is formed by algebraically adding the different impacts, considering benefits as pos-

itive and costs (disbenefits) as negative, and taking account of the time when these

9The descriptive approach was introduced to deal with the case in which the project results in

the reduction of generalized transportation costs, particularly for road systems. Furthermore, the

implicit demand models were often deterministic and this, as it has been shown, implies that there

will be no “pathological” results. These conditions, however, are not necessarily met by all the

applications of the method.
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occur. (The definition and quantification of benefits and costs depend, of course,

on the stakeholders for whom the analysis is performed.) The alternative with the

highest worth is preferred.

Applications of the B/C method from the viewpoint of a single public decision-

maker (typically a government agency) may consider for each year t of the eco-

nomic life of project Pi all or some of the following effects.

CC Difference between the construction costs of the project and the costs of

construction and other major works (reconstruction, rehabilitation), if any,

required for the nonproject alternative. (Recall that already-committed in-

vestments should be included in the NP situation.) In some applications, a

negative construction cost CC (i.e., a benefit) is assumed for the final year:

this corresponds to the residual value of the project at the end of the analy-

sis period. In this way it is possible to mitigate the unavoidable arbitrariness

in the definition of the technical life of the project

CVT Difference between investment costs in vehicles and technologies for the

project and nonproject situations. Here again, the np situation might require

such investments

CMO Difference between maintenance and operating costs for the project and

nonproject situations

REV Difference between direct (sale of transportation services) and indirect

(commercial activities) revenues in the project and nonproject situations

TR Difference between government revenues from taxes and duties in the

project and non-project situations

DS Change in transportation system user perceived surplus in the project and

nonproject situations, expressed in monetary units. This is typically ob-

tained by adding up the changes in perceived surplus for different user

classes

UNPB Change in benefits not perceived by the users between the project and non-

project situations. These benefits might include costs changes due to acci-

dents or vehicle operations (lubricants, tires, etc.). And other non out-of-

pocket costs not perceived by the users in their travel-related choices. All

these benefits are expressed in monetary units; the variable has a positive

sign if there is a reduction in these costs

NUI Change in the nonuser impacts between the project and nonproject situa-

tions. Impacts on the environment (e.g., reduction of pollutant emissions)

and on the economy and land use system can be included in this variable

after conversion to monetary units. These impacts are sometimes referred

to as indirect benefits and are positive if the benefits increase

The above variables are usually evaluated using market prices, when available.

Transfer payments (VAT, sales, income and fuel taxes, etc.) are sometimes excluded

from the market price because these do not correspond to actual consumption of

economic resources; for example, construction, maintenance, and operation costs

may be computed by evaluating the corresponding resource costs at market prices

minus VAT and other taxes. In some applications, market prices are replaced by
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shadow prices or opportunity costs, which are considered more accurately to reflect

the marginal value of a particular resource to the community. Shadow prices may

be assigned when there is no market price for a resource, when the price is distorted

by market imperfections, or when it is felt desirable to take into account social ob-

jectives or constraints that are not adequately reflected by market mechanisms. The

opportunity cost of labor, for example, might be lower than the market price of man-

power when there is a high level of unemployment, and unemployment reduction is

one of the objectives of the project. In this case, the opportunity cost could be ob-

tained as the difference between the net market price and the unemployment subsidy

for each category of workers.

The apparent monetary value of costs or benefits that occur in the future may

be influenced by the effects of inflation. It is common in economic B/C analysis to

ignore these effects by measuring all monetary values in constant (real) monetary

units.

It is important to stress that the variables considered and the way they are com-

puted both depend on the viewpoint from which B/C analysis is performed.

Whatever point of view is adopted, the evaluation must avoid double counting

of an individual project effect by quantifying its impacts with different variables

having the same sign. An example of such double counting is given by increased

accessibility (reduction of the generalized transportation cost) of one zone compared

with others. This effect often leads to an increase in real estate values in the zone

as a consequence of the willingness of residents and/or firms to pay for the greater

accessibility. If the change in user surplus and the change in real estate values were

both counted as benefits, the accessibility effect of the project would be accounted

for twice and, in this particular case, the overall benefits would be overestimated. In

this example the change in real estate values should not be considered, or it should be

accounted for with opposite signs for those who benefit from them (i.e., the property

owners) and those who incur costs (i.e., renters or buyers). It is clear that these

impacts will be very different for the different stakeholders, and their distribution

among different groups in society should be taken into account.

Some effects may be present with different signs in two or more variables: for

example, user fares may be counted as revenue with a positive sign (benefit) and

in the perceived surplus change with a negative sign (cost). The same effect occurs

with gasoline taxes, and other variables. Effects of this kind could even be excluded

from the B/C analysis, as proposed by some analysts for traffic revenues. Their ex-

clusion, however, is acceptable only in the special case in which the effects count

linearly in all terms. In the previous example, this would be the case if the monetary

cost appears linearly in generalized user costs and if surplus change is computed

through descriptive methods (10.2.20) and (10.2.21) with fixed demand. However,

if this variable appears nonlinearly in different terms, for example, if the monetary

cost is used in the EMPU variable (10.2.4) and (10.2.6) for the evaluation of user

surplus changes, and/or if there are changes in the level of demand, the variable

must necessarily be accounted for twice. Figure 10.13 shows graphically the differ-

ence between user surplus and revenue changes in the case where generalized cost

coincides with monetary cost; the two changes would coincide only in the special

case of fixed demand (areas B and C equal zero).
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∆rev. = dP · mcP − dNP · mcNP = (A + D) − (B + D) = A − B

∆surplus = A + C

|∆rev.| �= |∆surplus|

Fig. 10.13 Difference between surplus and revenue changes

Once the relevant effects have been defined and measured in monetary units,

different alternative projects are then compared using aggregate indicators of project

worth. Benefits and costs that occur in different years are compared by applying the

interest or discount rate r . This is defined as the relative increase in the value of a

monetary amount M after one year:

r =
M t+1 − M t

M t

M t+1 = (1 + r)M t

The discount rate is generally assumed to remain constant over time, so the value

M t , after t years of an amount Mo available today, can therefore be calculated as

M t = Mo(1 + r)t

from which it follows that the value today (the present value) Mo of an amount M t

occurring t years in the future is:

Mo =
M t

(1 + r)t
(10.3.1)

With this formula, the various annual benefits and costs occurring over a project’s

life can be converted into equivalent amounts in year 0 as needed. This allows

projects with different benefit and cost time streams to be directly compared.

Several synthetic indicators have been proposed for comparing the time streams

of benefits and costs of different projects Pi . The Net Present Value (NPV) is the

equivalent value in year 0 of the time stream of annual project costs and benefits:

NPV i(r) =

T
∑

t=1

(DSt
i + UNPBt

i + NUIt
i + TRt

i + REV t
i − CCt

i − CVT t
i − CMOt

i)

(1 + r)t

(10.3.2)
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Fig. 10.14 Net present value as a function of the discount rate

where T is the number of years included in the time stream and r is the applicable

discount rate per year. The Internal Return Rate (IRR) is defined as the value of the

discount rate ro such that the NPV calculated over a period of T years is equal to

zero:

IRRi = ro; NPV i(ro) = 0 (10.3.3)

Using the net present value criterion, a project Pi is preferable to the nonpro-

ject alternative NP if its NPV is positive, and project Pi is preferable to project

Pj if NPV i > NPVj . The relative ranking of project Pi compared to Pj may de-

pend significantly on the discount rate r used for the NPV calculation, as shown

in Fig. 10.14. Projects with lower investment costs and fewer benefits are usually

favored by higher values of r (project P2 in Fig. 10.14), whereas lower discount

rates tend to favor more costly projects with greater future benefits (project P1 in

Fig. 10.14). This is because higher discount rates tend to reduce the present value of

project benefits, which usually occur some years after the investment is made; con-

versely, the present value of project investment costs, which are typically incurred

in the early years, is less sensitive to the discount rate.

In terms of the internal rate of return criterion, a project Pi is preferable to the

nonproject alternative NP if its IRR is above the social discount rate, and is prefer-

able to project Pj if IRRi > IRRj .

The discount rate used for project evaluation can be selected in several different

ways. One possibility is to use an appropriate prevailing market or government inter-

est rate. If costs and benefits are measured in real (constant monetary units) terms,

the inflation rate is subtracted from prevailing interest rates. Other more complex

methods determine the social opportunity cost of capital from the returns poten-

tially achievable from alternative uses, from the marginal social utility of consump-



646 10 Methods for the Evaluation and Comparison of Transportation System Projects

tion, or based on the risk connected to the project. This subject has been discussed

at length in the economic literature, to which the interested reader is referred. Here

it is worth mentioning that the choice of discount rate implies important value judg-

ments regarding present versus future impacts; these should be explicitly stated and

will generally depend on the point of view of the analysis.

Proper application of benefit/cost analysis for transportation project evaluation

can require considerable care. The most frequent criticism raised in practical appli-

cations of B/C analysis is that the evaluation of a project’s user and nonuser impacts

is incomplete or inexact. In some applications, impacts are computed only for the

users of the planned facilities, ignoring the effects on other parts of the transporta-

tion system and on other stakeholders. Although in some cases this approximation

may be acceptable, in others it may significantly distort the results of the analysis.

Because of the interdependencies inherent in a transportation system, it frequently

happens that a project’s impacts on those who do not use it are comparable in mag-

nitude to its impacts on its users. This and other similar criticisms can be overcome

by analyzing the transportation system and stakeholder impacts with the methods

described in previous sections.

More fundamentally, however, B/C analysis as an evaluation method has been

subjected to a number of criticisms of its theoretical foundations.

(i) The use of market prices as indicators of the social value of resources is theo-

retically correct only under key assumptions of socially optimal income distribution

and perfectly competitive markets. In reality, both assumptions are almost always

far from the truth. Use of market prices implies value judgments about the prevail-

ing income distribution and is inconsistent with the theory of welfare economics that

underlies B/C analysis. As an alternative, shadow prices can be used if the project is

expected to contribute to the pursuit of “social” objectives. For example, objectives

such as reduction of unemployment, air pollution, or energy consumption can be

reflected in shadow prices of labor and fuel. However, the rigorous calculation of

shadow prices is extremely complex, and in practice rough estimates are often used.

(ii) The aggregation of project impacts across different groups implies value

judgments regarding the optimality of the prevailing income distribution, and indif-

ference to the income redistribution that may be caused by the project. For example,

the method assumes that a generalized cost increase for some users can be exactly

offset by a cost reduction of the same magnitude for other users. Furthermore, the

quantification of perceived user impacts may depend on the user’s income; for ex-

ample, if the value of time is related to income, travel time savings of the same

amount would produce larger perceived surplus changes for higher-income groups.

(iii) The implicit decision criterion (Kaldor criterion) underlying B/C analysis

is that a project is worthwhile if the individuals receiving benefits from the project

could adequately compensate those incurring disbenefits and still be better off than

without the project. In reality, such compensations rarely take place. Nonetheless,

in B/C analysis one project is considered preferable to another if the equivalent

monetary value remaining after such compensations is greater, regardless of the

actual occurrence of these transactions.

(iv) Benefit/cost analysis only considers impacts that are, or can be, expressed

in monetary units, thus ignoring those that cannot reasonably be measured in this



10.3 Methods for the Comparison of Alternative Projects 647

way. This implicitly favors the objective of economic efficiency over other social

and environmental objectives.

On the basis of these criticisms, many economists argue that, from the point of

view of a public decision-maker, B/C analysis should have a role that is essentially

normative and/or conventional. As a normative tool, the main elements of the analy-

sis, that is, types of impacts to be considered, prices, discount rates, and the like,

should be fixed by the agencies that fund public projects. This allows a variety of

alternative project proposals to be evaluated and compared on a common and eq-

uitable basis. As a conventional tool, the parameters used in B/C analysis should

be derived and consolidated from practical applications of the method in specific

sectors.

Put differently, B/C analysis should not be considered as a comprehensive eval-

uation method, but rather as a tool for evaluating economic impacts for some stake-

holders of the decision process, taking into account only the monetary or monetarily

quantifiable costs and benefits of projects. In this interpretation, B/C analysis can be

considered as a way to evaluate projects’ economic efficiency impacts for the in-

volved stakeholders. Thus several B/C indicators could be computed, representing

different stakeholders such as users, service operators, and public agencies. These

indicators could then be used together with others in the context of a wider multi-

criteria analysis discussed below.

10.3.2 Revenue-Cost Analysis

The financial evaluation of a project involves an assessment of the investments and

subsequent revenues of all operators, bodies, and enterprises (public and/or private)

involved in planning and/or implementing the project. It can be seen as a special case

of cost-benefit analysis, where the only costs and benefits considered are those that

give rise to financial inputs and outputs. It is conducted using market prices (actual

and/or expected). Thus, the result of an evaluation is expressed in monetary terms;

it measures the overall financial impacts of a proposed project on its stakeholders.

The goal of revenue-cost analysis is to identify the financially preferred alternative:

generally the one that maximizes net revenues.

As in benefit/cost analysis, the reference situation (which is not necessarily the

status quo, but may include already committed projects and/or other baseline ac-

tions) is considered a possible alternative. The criterion commonly used in the eval-

uation of the financial worth of a project is the present value of its net revenues, de-

fined in incremental terms in comparison with the nonproject situation. The project’s

Net Present Value (NPV) is calculated as

NPV i(r) =

T
∑

t=1

(REV t
i − CCt

i − CVT t
i − CMOt

i)

(1 + r)t
(10.3.4)

where the variables CC, CVT, and CMO were defined in the previous section. Here

REV is the difference between direct revenues in the project and nonproject situ-
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ations. In addition to the sales of transportation services, public contributions or

other transfers should be considered as revenues as well. It is common in revenue-

cost analysis to express values in current monetary terms, that is, incorporating the

effects of inflation on the magnitude of future revenues and costs. In this case the

discount rate (e.g., the market interest rate) need not be reduced by the inflation rate.

In order to accept a project, its NPV must be positive; when there are multiple

alternatives, the one with the highest NPV is preferable.

Two other criteria are also often used:

– The ratio of discounted revenues to discounted costs

– The internal rate of return (IRR), defined as the discount rate for which the

project’s NPV is 0

Although the approaches and methods of financial analysis derive from invest-

ment analyses carried out in the private sector, financial analysis can also be of use in

the analysis of public sector investments. There are, however, significant differences

between the two approaches. For example:

– The private operator is interested in maximizing profit, that is, the difference be-

tween revenues and costs; the public operator may only aim to cover part of its

costs, because it pursues goals related to equity criteria among different social

groups and minimization of net costs

– The private operator generally considers a short-term analysis period (e.g.,

5 years); the public operator often considers a long-term period (20 to 40 years)

– The private operator usually considers only the direct users (the producers and

providers of production factors); the public operator generally considers all users

(direct and indirect), that is, the citizens

– The private operator compares the profits deriving from an investment with more

favorable opportunities; the public operator considers social welfare in addition

to economic criteria when deciding if a project should be implemented

10.3.3 Multi-criteria Analysis

Transportation system projects may produce a variety of impact types, and decision-

makers generally have multiple goals. Each impact affects one or multiple stake-

holders and, as such, can be transformed into an objective. Thus, increasing users’

surplus, reducing costs, increasing revenues, increasing social equity and accessi-

bility, increasing the efficiency of the transportation system, reducing environmen-

tal impacts, and inducing economic growth in a given area are all objectives that

an individual decision-maker or stakeholder may want simultaneously to pursue.

However, these objectives often conflict with each other; the maximization of users’

surplus might, for example, conflict with the reduction of noise and air pollution and

with the minimization of capital investment costs.

MultiCriteria (MCA) (or MultiObjective (MOA)) analysis establishes prefer-

ences between options by reference to an explicit set of objectives that have been
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identified, and for which performance indicators (that measure the degree to which

an objective is attained) have been defined. Good decisions need clear objectives.

These should be specific, measurable, agreed, realistic, and time-dependent.

It is sometimes useful to classify objectives according to their timeframe, for

example, ultimate, intermediate, and immediate objectives; it is particularly useful

to distinguish between ultimate and immediate ones. Ultimate objectives are usually

framed in terms of strategic or higher-level variables, such as the target level of

economic growth, or sustainable development. Immediate objectives are those that

can be directly linked with the outputs of a policy, program, or project.

To compare the contribution of different options towards given objectives, it is

necessary to have criteria that reflect the options’ performance in meeting those

objectives. In simple situations, the process of identifying and assessing objectives

and criteria may alone provide enough information for decision-makers. However,

where a level of detail broadly akin to cost-benefit analysis is required, multicriteria

analysis offers a number of ways of aggregating the data on individual criteria to

provide indicators of the overall performance of each available option.

A key feature of multicriteria analysis is its emphasis on the judgment of the

decision-making team in establishing objectives and criteria, in estimating relative

importance weights, and, to some extent, in judging the contribution of each op-

tion towards each evaluation criterion. Its foundation, in principle, is the decision-

maker’s own choice of objectives, criteria, weights, and her assessments of the op-

tions’ performance towards achieving the objectives, although “engineering” data

such as times and costs can of course also be incorporated in this process. Multicri-

teria analysis can bring a degree of structure, analysis, and openness to classes of

decisions that lie beyond the practical reach of cost-benefit analysis.

In general, a multicriteria method consists of the following main steps (see

Fig. 10.15)10: (i) establish the decision context; (ii) identify the options (alternative

projects or more generally alternative courses of action) to be appraised; (iii) iden-

tify objectives and criteria; (iv) assign scores; (v) assign weights; (vi) combine the

weights and the scores for each option to derive a limited set of aggregate values;

(vii) examine the results; and (viii) conduct a sensitivity analysis. Each of these steps

is discussed in the paragraphs below.

(i) A first step is always to establish a shared understanding of the decision con-

text. This consists of the entire complex of administrative, political, and social struc-

tures that surround the decision being made. Central to this context are the objec-

tives of the decision-making body, the administrative and historical environment,

the set of people who may be affected by the decision, and an identification of those

responsible for the decision.

It is crucial to have a clear understanding of objectives. Towards what overall

ambition is this decision seeking to contribute? Multicriteria analysis is about mul-

tiple conflicting objectives: there are ultimately trade-offs to be made. Nonetheless,

in applying multicriteria analysis it is important to identify a number of high-level

objectives, for which there will usually be subobjectives. To establish objectives it

10Figure 10.15 has been taken from the DTLR multicriteria manual.
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Fig. 10.15 Applying multicriteria analysis: detailed steps
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is essential to establish who the decision-makers are and who may be affected by

the decision.

The aims of transportation systems decision-making typically involve general

public goals such as providing accessibility for different parts of a geographic area,

increasing equity, or reducing pressure on the environment. They may also include

specific objectives more related to the particular interests of decision-makers, for ex-

ample, the overall objective of increasing political support for the local government

may include subobjectives such as improving the relationships with its constituents,

with relevant interest groups, with the media and so on.

(ii) It is unlikely that the decision-making group will arrive at the stage of for-

mally structuring the multicriteria analysis without having some intuition about the

decision options. As discussed in Sect. 1.5, options may include infrastructure, con-

trol systems, services, and/or fares. Sometimes the initial problem statement will in-

clude an unmanageably large number of possibilities, and it will be an early function

of multicriteria analysis to provide a structured screening of alternatives to identify

a short list, using basic data and quick response procedures.

(iii) Objectives are the general goals that are pursued, and towards which the pro-

posed options are expected to contribute. Objectives can be very broad, for example,

improve the environment, and may be further disaggregated into a variety of subob-

jectives, for example, reduce air pollution and noise pollution. Objectives should be

defined taking into account the perspectives of different interest groups.

Criteria and subcriteria are the performance measures by which the options will

be judged. Whether in a decision-making team or as an individual, an effective way

to start the process of identifying criteria is first to recapitulate briefly the general

aims and more specific objectives and then to brainstorm responses to the question,

“What would distinguish between a good choice and a bad one in this decision

problem?”

The viewpoint of stakeholder groups is generally important. One way to include

them is directly to involve the affected parties in some or all steps of the multicriteria

analysis. This might be appropriate, for example, in local planning situations. A sec-

ond approach is to examine policy statements that reflect their concerns. A third pos-

sibility is to encourage one or more of the members of the decision-making team to

role-play the position of key stakeholder groups, to ensure that this perspective is

not overlooked when criteria are being derived. The number of criteria should be

kept as low as is consistent with making a well-founded decision. There is no rule

to guide this judgment and it will certainly vary from application to application.

The different objectives of the decision-makers are transformed into evaluation

criteria or performance indicators; examples are given below. The performance indi-

cator corresponding to the objective of increasing users’ utility might be the differ-

ence between the total users’ surplus in the project and nonproject situations. Values

of NPV and IRR may correspond to the objective of increasing economic efficiency;

the indicator corresponding to the objective of reducing air pollution might be the

change in total pollutant emissions; and so on. Some objectives may involve crite-

ria expressed qualitatively (e.g., with terms such as little, much, etc.). This could

be appropriate for objectives such as preserving the historical identity of an area or
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minimizing the visual impact of new infrastructure. In these cases qualitative criteria

can be transformed into quantitative variables by indirect quantitative determination

techniques.

(iv) In many multicriteria techniques, the various performance indicators are first

transformed to allow their comparison. Suppose that M evaluation criteria corre-

sponding to the objectives of the project have been identified, and that the value of

the mth performance indicator for the j th project is represented by the variable xmj .

Variables xmj are usually all expressed on a scale having values that increase with

the level of satisfaction, so that better levels of performance lead to higher value

scores. This may mean a reversal of the natural units. When xmj measures a disben-

efit, for example, the quantity of emitted pollutants or distance to the nearest transit

service, the reduction with respect to the maximum value taken by the indicator can

be substituted for it:

x′
mj =

(

max
k

xmk

)

− xmj

Let smj be the score of option j relative to criterion m. It is conventional to

assign a value score to each criterion using an interval scale between 0 and 100.

The advantage of an interval scale is that differences in scores are consistent within

each criterion; note, however, that such scales do not permit conclusions that, for

example, a score of 80 represents a performance that on some absolute standard is

five times as good as a score of 16 (statements of this type would require the use of

a ratio scale).

The first step in establishing an interval scale for a criterion is to define the levels

of performance corresponding to any two reference points on the scale; minimum

and maximum scores of 0 and 100 are used in the examples below. One possibility

(global scaling) is to assign a score of 0 to represent the worst level of performance

that is likely to be encountered in a decision problem of the type being addressed,

and 100 to represent the best level. Another option (local scaling) associates 0 with

the performance level of the poorest performing project in the currently considered

set, and 100 with the best performing one. Formally:

sGLOB
mj =

xmj − xWORSE
m

xBEST
m − xWORSE

m

× 100 (a)

sLOC
mj =

xmj − mink xmk

maxk xmk − mink xmk

× 100 (b)

(10.3.5)

The choice between local and global scaling should make no difference to the

ranking of options. An advantage of global scaling is that it more easily accommo-

dates new projects if these exhibit performance values that lie outside those of the

original set.

Once the endpoints are established for each criterion, there is a way in which

scores may be established for the individual projects under consideration. Specifi-

cally, it uses a value function to translate a project’s measure of performance with

respect to a criterion into a value score on the chosen interval scale. The value func-

tions used in many multicriteria analysis applications can for practical purposes be
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Fig. 10.16 Regional jobs

Fig. 10.17 Distance to

public transport

assumed to be linear.11 For example, if one criterion corresponds to number of re-

gional full-time jobs created, with a minimum likely level of 200 and a maximum of

1000, then a simple graph allows conversion from the natural scale of measurement

to a 0–100 range. This is shown in Fig. 10.16.

Any project’s score with respect to the regional job creation criterion is assessed

by simply locating on the horizontal axis the number of jobs created, and reading on

the vertical axis the corresponding score. Thus a project that creates 600 jobs, say,

would receive a score of 50.

Where higher measurements on the scale of natural units correspond to worse

rather than better performance, the slope of the function that maps performance

onto the interval scale score is simply reversed, as in Fig. 10.17.

(v) Weighting is another fundamental stage in multicriteria analysis. A weight

wm ≥ 0 is attributed to each criterion m; it measures the importance of the corre-

sponding objective compared to the others. Obviously, in defining weights decision-

makers must express value judgments. In principle, different sets of weights can be

11However, on same occasions it may be desirable to use a nonlinear function. For example, it is

well known that human reaction to changes in noise levels measured on a decibel scale is nonlinear.

Alternatively, there are sometimes thresholds of achievement above which further increments are

not greatly appreciated. For example, in valuing office area, initial increments above the absolute

minimum space lead to high estimates of the marginal value of increased room size, but after an

acceptable amount of space is available, further marginal increments are valued much less highly.
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associated to the same set of objectives in order to express the point of view of

different stakeholders in the decision process.

Many methods have been proposed to estimate the unknown weights of an indi-

vidual decision-maker as well as to reach a compromise weighting among multiple

decision-makers. In the most direct approach for the latter, known as the DELPHI

method, each decision-maker is independently asked to express the weight that he

or she would apply to each objective or criterion. The interviews are subsequently

repeated, but in this second round each interviewee is told the weights previously

stated by the other decision-makers before being asked again to assign weights to

the objectives or criteria. The process is repeated until a compromise agreement is

reached.

When weights cannot be obtained directly from decision-makers, other proce-

dures can be used. For example, it is possible to infer the implicit weights that would

justify a posteriori the choices previously made in similar contexts for projects of

the same type and size. In a different approach, the decision-maker is asked to ex-

press preferences between pairs of alternative hypothetical projects; the implicit set

of weights can be estimated so as to reproduce as closely as possible the stated

choices. Yet other methods estimate the weights by asking the decision-maker to

perform explicit trade-offs, for example, to choose between solutions that improve

the attainment of some objectives while worsening others.12

The evaluation matrix or impact tableau presents the evaluation indicators

(xmj , x
′
mj , or smj ). The number of rows of this matrix is equal to the number of

evaluation criteria, and the number of columns is equal to the number of alternative

projects under consideration. Figure 10.18 presents an example of such a matrix.

A project j is dominated if there exists at least one project h satisfying all the

objectives better than, or at least as well as, project j :

xmj ≤ xmh ∀m = 1, . . . ,M (10.3.6)

with at least one of the inequalities (10.3.6) holding strictly.

A nondominated project is also called efficient. The set of nondominated projects

that satisfy any additional imposed constraints (e.g., budget constraints) is called

the project efficiency frontier or boundary. It can be shown that each point on this

boundary is an optimal solution to the decision problem for some specific set of

objectives/criteria weights.

The Dominance method can be applied to eliminate all the inefficient alterna-

tives. The procedure is as follows.

• The first two alternatives are compared; if one of the two is dominated by the

other, then it is eliminated

• The noneliminated alternatives are compared with a third alternative; any domi-

nated alternatives are eliminated

12Notice that this approach is equivalent to the calibration of implicit decision-maker utility func-

tions based on revealed and/or stated preferences. It is conceptually analogous to the calibration

of demand models with utility functions for transportation-related choices and can be addressed

using the parameter estimation techniques described in Chap. 8.
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Objectives Evaluation Project Weights

criteria 1 2 . . . J . . . J

1 1 x11 x12 . . . x1j . . . x1J w1

2 2 x21 x22 . . . x2j . . . x2J w2

. . . . . . . . . . . . . . . . . . . . . . . . . . .

i m xm1 xm1 . . . xmj . . . xmJ wm

. . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .

N M xM1 xM1 . . . xMj . . . xMJ wM

Fig. 10.18 Evaluation matrix of J alternative projects with respect to M criteria

Evaluation criteria Alternatives

A B C

Reduction of km of congested network 89 72 68

Reduction of total travel time on network 1606 1500 1100

Veh-km 130 140 98

Fig. 10.19 Evaluation matrix

• At each step a new alternative is introduced and compared with the others, after

which the dominated alternatives are eliminated

• At step J − 1 the comparison among the J alternatives is finished and the set of

all nondominated alternatives has been identified

Note that, after application of this method, multiple nondominated alternatives may

still remain.

Following is a simple example of this method. The objective is to identify the

best among three road alignments, taking into account criteria such as the impact

that the road construction has on the entire network, measured in terms of:

– Reduction of the extent of congested network (expressed in km)

– Reduction of total travel time on the network (expressed in equivalent veh-hr)

– Traffic usage of each road (expressed in thousands of veh-km/day)

From Fig. 10.19, it follows that alternative C is dominated by alternatives A and

B because the impacts of C are all lower. However, neither A nor B dominates the

other. Therefore the nondominated alternatives are A and B.

(vi) Multicriteria analysis techniques proposed in the literature generate a set

of nondominated solutions (projects) and assist the decision-maker in selecting a

reasonable compromise between contrasting objectives.

In some application areas, there exist techniques that generate a continuous set

of nondominated projects, defined by continuous decision variables with explicit

relationships (preferably linear) between these variables and their impacts.13 Trans-

13The continuous variable supply design problem discussed in Chap. 9 is an example of this. The

main difference with the problems described in Chap. 9, though, is that there are multiple objective

functions (indicators) rather than a single objective function.
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portation system projects rarely meet these requirements, however, because of the

discrete (“lumpy”) nature of many projects (new infrastructure, e.g.), the intrinsic

nonlinearity of the system (cost functions and demand models) and the complexity

of the relationships between control variables and effects (e.g., changes in equilib-

rium flows and costs resulting from a transportation network project). Alternative

projects are assumed to be nondominated because dominated ones, by the assump-

tion of monotonicity of preferences, could never be optimal choices under any set

of weights.

The roles of the analyst and the decision-maker vary greatly among the dif-

ferent techniques proposed. According to some authors, the analyst’s task should

end after informing the decision-maker about the list of nondominated projects and

their characteristics and impacts, presented in a way that facilitates understanding

by nonspecialists. Other methods assume that interaction between the analyst and

the decision-maker continues throughout the decision-making process.

The following paragraphs describe multicriteria methods that are representative

of the different approaches. In general, MCA methods can be divided into two

classes: compensatory and noncompensatory.

Noncompensatory methods (see Sect. 10.3.3.1) do not permit trade-offs between

attributes. An unfavorable value in one attribute (performance indicator) cannot be

offset by a favorable value in other attributes. Each attribute must stand on its own.

Hence comparisons are made on an attribute-by-attribute basis. The multicriteria

methods in this category are noted for their simplicity, which is why they are also

called elementary methods.

Compensatory methods permit trade-offs between attributes. A decline in one

attribute may be acceptable if it is offset by an enhancement in one or more other

attributes.

When compensation is acceptable, most multicriteria methods involve implicit

or explicit aggregation of each option’s performance across all the criteria to form

an overall assessment of the option, on the basis of which the alternative options

are compared. The principal difference between the main families of multicriteria

methods is the way in which this aggregation is done.

The multicriteria analysis methods described in this section concentrate on pre-

scriptive14 approaches to decision making, that is, approaches that give support to

the decision-maker. There is no universally accepted normative model of how indi-

viduals should make multicriteria choices.

The compensatory methods covered below are briefly summarized here. Multiat-

tribute utility theory methods (Sect. 10.3.3.2), which are the ones that come closest

to universal acceptance, are based on three building blocks: the evaluation matrix,

methods to define criteria independence, and specification and calibration of a util-

ity function U . The latter expresses the decision-maker’s overall assessment of an

14Note that the term prescriptive may be interpreted in either a strong or a weak sense. The discus-

sion here is not meant to imply the strong sense of giving an order or instruction to the decision-

maker. Rather, the procedures reported here should be interpreted in the weaker sense as providing

support or advice for the decision-maker.
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option in terms of the value of its performance with respect to each of the separate

criteria.

If it can be either proved or reasonably assumed that the criteria are independent

of each other, and if uncertainty is not formally accounted for by the multicriteria

analysis method, then the simpler linear additive evaluation method (Sect. 10.3.3.3)

is applicable. The linear model shows how an option’s values with respect to multi-

ple criteria can be combined into one overall value.

The Analytic Hierarchy Process (AHP), discussed in Sect. 10.3.3.4, also develops

a linear additive method but, in its usual form, derives the criterion’s weights and the

alternative scores based, respectively, on pairwise comparisons between criteria and

between alternatives. Thus, for example, in assessing weights, the decision-maker is

asked a series of questions, each of which ascertains how important one particular

criterion is relative to another for the decision being addressed.

A rather different approach from any of those mentioned so far depends upon

the concept of outranking (Sect. 10.3.3.5). Outranking methods seek to eliminate

alternatives that are, in a particular sense, dominated. However, weights are used to

give more influence to some criteria than to others when identifying the dominated

options.

One option is said to outrank another if it outperforms the other on a sufficient

number of important criteria and, conversely, if it is not outperformed by the other in

the sense of having a significantly inferior performance on any individual criterion.

Each option is then assessed in terms of the extent to which it sufficiently outranks

the full set of options being considered, as measured against a pair of threshold

parameters.

An interesting feature of outranking methods is that it is possible, under certain

conditions, to determine that two options cannot be compared, in which case they

are classified as incomparable. Incomparability of two options is not the same as

indifference between them. It might, for example, be associated with missing infor-

mation at the time the assessment is made; this is not an unlikely occurrence in many

decision-making exercises. Building this possibility into the mathematical structure

of outranking allows formal analysis of a problem to continue without having ei-

ther to declare (without justification) indifference between the options or to drop the

options entirely, simply because full information is not currently at hand.

Finally Sect. 10.3.3.6 introduces the constrained optimization method. This

method is based on the observation that any multiobjective and multidimensional

decision-making problem can be changed into a single-objective constrained opti-

mization problem and solved as a linear programming problem in binary variables.

(vii) Whatever comparison technique is used in multicriteria analysis, sensitivity

analysis is of considerable importance. Sensitivity analysis explores how dependent

the analysis outcome is on the parameter assumptions. In other words, it attempts

to establish whether the solution obtained (the ordering of the alternatives) is robust

with respect to changes in the parameters, which are intrinsically arbitrary. Sensi-

tivity analyses can be carried out by different methods having different levels of

sophistication. The description of these methods is beyond the scope of this book

and can be found in the specialized literature.
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10.3.3.1 Noncompensatory Methods*

This section outlines some of the procedures applied to establish preferences be-

tween options when:

– Each option is evaluated against a common set of criteria that are set out in the

evaluation matrix

– The decision-maker is not willing to allow compensation, that is, strong perfor-

mance on one criterion to compensate for weak performance on some other cri-

terion

Use of noncompensatory evaluation methods severely restricts the extent to

which, in practice, overall preferences between options can be established.

Noncompensatory methods generally involve the introduction of performance

thresholds for one of more criteria. This reflects a judgment that the selected criteria

should be prioritized in this way compared to others for which no thresholds are

given. Thresholds can be of three different types:

– “Acceptable minimum”: the worst value, in terms of achievement of the objective,

that the decision-maker considers acceptable

– “Desirable minimum”: the worst value, in terms of achievement of the objective,

that the decision-maker considers satisfactory

– “Target”: the optimum value of the objective

Once the thresholds have been defined, it is possible to use a series of noncom-

pensatory techniques to evaluate the alternatives. Common techniques include the

following methods.

Disjunctive

Conjunctive

Maxmin

Maxmax

Lexicographic

Elimination by aspects

The Disjunctive constraint method evaluates an alternative on the basis of its best

attribute, regardless of all other attributes. The procedure is:

– The decision-maker establishes a desirable threshold value for each attribute

– For a given alternative, each attribute is compared with its threshold

– If at least one attribute value is better than or equal to the threshold, the alternative

is selected, otherwise it is eliminated

Let x∗
m be the desirable threshold value of the mth attribute; then alternative j is

selected if:

∃m : xmj ≥ x∗
m ∀m = 1,2, . . . ,M (10.3.7)

assuming that higher values of the attribute are better; the inequality is reversed if

lower values are better.
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Evaluation criteria Thresholds

Acceptable

threshold

Desirable

threshold

Target

Reduction of km of congested network 70 75 80

Reduction of total travel time on network 1200 1300 1600

Veh-km 100 130 150

Fig. 10.20 Attribute thresholds

Evaluation criteria Alternatives

A B C

Reduction of km of congested network 1 0 0

Reduction of total travel time on network 1 1 0

Veh-km 1 1 0

(1 = threshold attained; 0 = threshold not attained)

Fig. 10.21 Disjunctive method

Evaluation criteria Alternatives

A B C

Reduction of km of congested network 1 0 0

Reduction of total travel time on network 1 1 0

Veh-km 1 1 0

(1 = threshold attained; 0 = threshold not attained)

Fig. 10.22 Conjunctive method

From the comparison between the desirable threshold values in Fig. 10.20 and

the performance indicators, it follows that alternatives A and B are both selected be-

cause each alternative attains the threshold for at least one attribute (see Fig. 10.21).

In the Conjunctive constraint method, a minimum acceptable threshold is es-

tablished for each attribute, and each attribute of an alternative is required to meet

or exceed this standard. If the threshold is an accurate reflection of the decision-

maker’s expectations, the solutions obtained by this method will be acceptable.

The procedure is:

– The decision-maker establishes a minimum acceptable threshold value minm for

each attribute m

– For a given alternative, each attribute is compared with the corresponding thresh-

old

– Alternative j is selected if:

xmj ≥ min
m

∀m = 1,2, . . . ,M (10.3.8)

again assuming that higher values of the attribute are better.

According to this method alternative A is selected (see Fig. 10.22).
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The Maxmin method finds the lowest attribute value (min) of each alternative

and then chooses the alternative having the highest (max) of these values. The logic

is that a chain is as strong as its weakest link. This method is applicable only when

attribute values are comparable with each other: either measured with the same units

or transformed to a common scale.

In contrast, the Maxmax method selects an alternative by its best attribute value.

It too is applicable only when attributes are comparable.

These techniques may have application domains in which they are reasonable,

but they may not be very useful for general decision-making.

Another approach to noncompensatory choice requires the decision-maker to

provide supplementary information about the ranking of individual criteria in terms

of their perceived importance. This approach then considers each criterion in turn

and works as a sequential elimination method.

Specifically, in lexicographic elimination, all alternatives are first compared in

terms of the criterion deemed most important. If there is a unique best performing

alternative in terms of this criterion, then it is selected as the most preferred. If there

is a tie, then the selection process moves on to the second most important criterion

and, considering only the alternatives that previously tied for first, seeks the ones

that score best on the second criterion. Again, if this leads to a unique selection,

then this alternative is designated as the preferred one. If not, the process is repeated,

applying the third most important criterion to the alternatives that tied for both the

first and second criteria, and so on until a unique option is identified or all criteria

have been considered.

The elimination by aspects (EBA) method combines elements of both lexico-

graphic ordering and the conjunctive/disjunctive methods. Alternative attributes are

compared against corresponding thresholds. They are examined criterion by crite-

rion and, for each criterion, alternatives that do not attain the threshold are elimi-

nated. The criteria are examined, not in order of their importance to the decision-

maker, but rather in an order that attempts to maximize the number of alternatives

that fail to pass. This process is continued until only one alternative remains.

Neither the lexicographic elimination nor the elimination by aspects method has

contributed much to the practice of public sector decision-making.

10.3.3.2 Multiattribute Utility Theory Method (MAUT)*

Multiattribute utility theory methods explicitly compute the utility of the different

options under consideration. The options are then compared with each other on the

basis of their utility values, and the preferred alternative is the one with the highest

utility. In the context of choice among different projects, the utility of a project

represents the decision-maker’s level of satisfaction with it, which derives from the

project’s performance with respect to the different points of view considered in the

evaluation. Therefore if m criteria for each alternative j are considered, a utility

function u(j) = f (x1j , x2j , . . . , xmj ) needs to be determined, where element xij is

project j ’s attribute value for the ith criterion.
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The core of MAUT is the procedure for estimating the decision-maker’s utility

function. This is done by first determining the value of u for a set of attribute values

xi,. The utility function is then obtained either by interpolation or by using a curve-

fitting method to obtain a continuous function. The curve-fitting method uses known

functional forms that satisfy the qualitative characteristics of the decision-maker’s

utility. The coefficients of the utility function are then estimated using quantitative

information pertaining to the case under study. This procedure can be recommended

when the number of attributes and options is high. However, whatever estimation

technique is adopted, the value of the utility function u must first be determined for

a number of points.

Determination of the value of u at selected points is carried out using a lottery

mechanism. A lottery is defined as a list of possible outcomes (x1, x2, . . . , xm) with

a probability (p1,p2, . . . , pm) associated with each. A binary lottery has two pos-

sible outcomes xi and xj with probability pi and pj = 1 − pi , respectively; it is

usually denoted as (xi,pi;xj ).

For the sake of simplicity, consider the case of a single attribute x, so that u =

f (x). Suppose that the utility of an alternative i is a monotone increasing function of

the attribute x so that xi > xj ⇒ ui > uj in the interval [xw, xb], whose endpoints

are, respectively, the worse and the best values that the decision-maker assigns to

attribute x. The method described here determines the utility of alternative a by

reference to a lottery x̃a having n possible outcomes xa
i with probabilities pi . The

utility of this lottery is equal to:

ua =

n
∑

i=1

pi · u
(

xa
i

)

= E
[

u(x̃a)
]

(10.3.9)

Two lotteries that have the same utility are considered equivalent, so alternative

a is preferred to alternative b if

E
[

u(x̃a)
]

≥ E
[

u(x̃b)
]

(10.3.10)

The following definitions are very important for the direct determination of the

utility functions. Consider a lottery x̃; its certainty equivalent is the value x̂ for

which:

u(x̂) = E
[

u(x̃)
]

(10.3.11)

Two utility functions u1 and u2 are strategically equivalent if they produce the

same preference order between two given lotteries. Therefore two utility functions

that are strategically equivalent have the same certainty equivalent.

In order to estimate the value of u at points in the interval [xw, xb], either of two

distinct methods can be used, one based on the concept of the certainty equivalent

and the other on equivalent lotteries. In both cases the decision-maker should be

interviewed in order to understand her preferences. Initially the decision-maker is

asked to identify the endpoints of the interval within which she thinks that the values

of x can vary. After the worse and best values xw and xb have been identified, the

utility function u(x) is constrained so that u(xw) = 0 and u(xb) = 1.
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Fig. 10.23a Example of the certainty equivalent method

With the certainty equivalent method, the decision-maker is presented with the

binary lottery (xb,p;xw); the p value is usually taken equal to 0.5. The decision-

maker is asked to indicate the value x̂ of the lottery’s certainty equivalent; that is,

she is asked to evaluate the quantity x̂ such that, if it were available as a certain

outcome, it would have the same utility as the given lottery. This defines one point

of the utility function:

u(x̂1) = p1 · u(xb) + (1 − p1) · u(xw) = p1 with p1 = 0.5 (10.3.12)

In an analogous way, it is possible to determine other points on the function

by considering two new lotteries derived from the preceding one: (x̂,p2;xw) and

(xb,p3; x̂); see Fig. 10.23a.

However, this method presents some limits: (i) if different p values are used,

different u(x) functions may be obtained; (ii) errors can be propagated in the esti-

mation procedure, as the utility in one step is derived from the utility computed in

the previous step; (iii) the decision-maker compares a certain outcome with a lottery,

that is, with uncertain outcomes, therefore the method is not precise.

The equivalent lottery method eliminates problems (ii) and (iii). The decision-

maker only compares uncertain outcomes and the utility is calculated step by step

independently of the values computed before. The decision-maker is asked to com-

pare two lotteries, one (xb,p;xw) defined by the interval endpoints, the other de-

fined by xw and by an intermediate value xi , which has probability pi (usually 0.5)

assigned by the interviewer. Therefore she is asked to determine the probability p

that satisfies the following equation.

u(xb ,p;xw) = u
(

xi,pi;xw

)

(10.3.13)

With probability p = 0.5, the utility function value at xi is obtained as follows.

u(xi) =
pi

p
· u(xb) =

pi

p
= 2pi (10.3.14)
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Fig. 10.23b Example of the equivalent lottery method

By asking the decision-maker to make the comparison described for m in-

termediate points, the values u(xi) of the utility function at m different points

xi, I = 1, . . . ,m can be obtained (see Fig. 10.23b).

Once several points (xi, ui; ) on the utility function have been obtained, a contin-

uous function u(x) that passes through them can be estimated using, for example,

least squares methods. The functional forms used for this purpose should obey some

theoretical properties. For instance, the utility function of a risk averse (neutral,

prone) decision-maker should be concave (linear, convex). Classes of risk averse

and risk neutral functions are:

u(x) = a + b(−e−cx) (10.3.14a)

u(x) = a + b(cx) (10.3.14b)

respectively, where a and b > 0 are constants to ensure that u is scaled appropriately

(e.g., from zero to one) and c is positive for increasing utility functions and negative

for decreasing ones. The parameter c indicates the degree of the decision-maker’s

risk aversion. For the linear case (10.3.14b), parameter c can be set at +1 or −1 for

the increasing and decreasing cases, respectively.

So far only one-dimensional utility functions of the type u = f (x) have been dis-

cussed. However, the choice among alternative projects requires the decision-maker

to evaluate those projects with respect to a variety of criteria such as noise, cost,

and travel time. In this case the decision-maker’s utility function is a function that

aggregates all the criteria considered in the decision-making process. More specif-

ically, it is a function of the type u = f (x), where X = (x1, x2, . . . , xn) represents

the vector of project attributes.

The estimation of this function can be onerous. However, in practice the problem

is simplified by assuming that the utility components related to different attributes

are additively independent; that is,

u(X) =

n
∑

i=1

ki · ui(xi) (10.3.15)
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The total utility function is the weighted average of the individual functions

ui(xi). The weights (i.e., the ki coefficients) are scaling constants and are deter-

mined by asking the decision-maker appropriate questions concerning his prefer-

ences regarding the different attributes. Successive ki values can be obtained via a

lottery mechanism, applying a procedure similar to the one described above for the

determination of points on the utility function u(x). This procedure is outlined next.

In order to compute the ki values, attribute vectors Xw = (x1w, x2w, . . . , xmw)

and Xb = (x1b, x2b, . . . , xmb) are first constructed. Xw represents the situation in

which each attribute has the worst value in the previously determined interval and

Xb is the situation where each attribute has the best value. These vectors have utility

equal to

Uw(X) =

n
∑

i=1

kiui(xi) = 0 and Ub(X) =

n
∑

i=1

kiui(xi) = 1.

Moreover, the vector Xi = (x1w, x2w, . . . , xi−1w, xib, xi+1b, . . . , xmb) having

utility equal to

U(Xi) =

n
∑

i=1

kiui(xi) = ki

is defined as well. The decision-maker is asked to provide the probability p for

which he is indifferent between the lottery (Xb,p;Xw) and the certain outcome Xi .

This means that the decision-maker is asked to estimate the impact of a variation in

each ui on the global utility U . Because the decision-maker is indifferent between

(Xb,p;Xw) and Xi , they have the same utility. It follows that the ki values can be

obtained from the expression ki = U(Xi) = pU(Xb) + (1 − p)U(Xw) = p.

Following is an example of this procedure. The objective is to choose the best

location for intersections or ramps on limited access divided highways. Eight differ-

ent scenarios (alternative projects), identified as a1 to a8, are under consideration.

The criteria corresponding to the different objectives are as follows: public financial

costs (c1), users’ nonmonetary costs (c2), energy consumption (c3), pollution (c4),

residential impact (c5), and safety (c6). With respect to these criteria, the following

impact variables have been defined: x1(ai), the monetary cost of project construc-

tion in millions of Euro; x2(ai), the travel time spent on the network in hours per

day; x3(ai), the fuel consumption in kilograms per day; x4(ai), the pollutant emis-

sions in kilograms per day; x5(ai), the weighted average of the volume/capacity

ratio on urban roads; and x6(ai), the weighted average of the percentage of time

spent waiting to pass on two-lane rural roads.

Figure 10.24 presents the evaluation matrix.

Suppose that the utility function u = f (x1, x2, . . . , x6) is expressed by equation

(10.3.15). The ki weights shown in Fig. 10.25 satisfy the condition
∑6

i=1 ki = 1.

These were determined by interviewing the decision-maker with questions such

as “Would you prefer bringing x1 and x6 from x1w and x6w to x1b and x6b ,

rather than increasing all the other four attributes from the worse value to the
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Alternative Evaluation criteria

projects M€ h/day kg/day kg/day V/C %

1 10.25 80500 251000 23845 0.80 0.68

2 9.50 81800 255000 24225 0.85 0.73

3 10.75 82000 250000 23750 0.86 0.70

4 10.00 80600 253000 24035 0.87 0.64

5 10.50 79100 249000 23655 0.79 0.65

6 10.25 80900 252000 23940 0.82 0.73

7 11.50 78500 249000 23655 0.78 0.62

8 10.75 79400 251500 23892 0.83 0.67

Fig. 10.24 The evaluation matrix

k1 k2 k3 k4 k5 k6

0.2540 0.0745 0.0745 0.1350 0.1750 0.2870

Fig. 10.25 Weights

best?” As the answer is positive it follows that k1 + k6 > 0.5. By asking anal-

ogous questions involving pairwise comparisons between criteria, relations of

the type k2 = k3, k1 > k6, and so on are obtained. To obtain numerical val-

ues, the decision-maker is asked to evaluate the probability p for which he

is indifferent between: the certain outcome (x1b, x2w, x3w, x4w, x5w, x6w), whose

utility is u(x1b, x2w, x3w, x4w, x5w, x6w) = k1u1(x1b) + k2u2(x2w) + k3u3(x3w) +

k4u4(x4w) + k5u5(x5w) + k6u6(x6w) = k1 and, on the other hand, the lottery

((x1b, x2b, x3b, x4b, x5b, x6b),p; (x1w, x2w, x3w, x4w, x5w, x6w)), with utility equal

to p. It follows that the value of k1 is equal to p. For consistency, the computed nu-

merical values should satisfy the relations introduced above; if they do not, the con-

tradictions should be pointed out to the decision-maker, who should then be asked to

revise his preferences on the basis of the previous results. After having determined

for each attribute the endpoints of the interval within which the decision-maker

thinks the values vary, three points are determined with the certainty equivalent

method for each interval x.25, x.50, and x.75. The utility values u(x) equal to 0.25,

0.50, and 0.75 correspond to these intervals. These points are shown in Fig. 10.26.

Utility functions ui of the form u(x) = Ax2 + Bx + C are then fit through the

points. The utility values for each alternative are reported in Fig. 10.27; they were

computed with (10.3.14). From Fig. 10.27 it follows that the best alternative is x5.

10.3.3.3 Linear Additive Methods*

The linear additive multicriteria method has a transparency and straightforward in-

tuitive appeal that ensures it a central role in any discussion of multicriteria analysis.

The weighted sum method is the most commonly used linear additive method and

it can be seen as a special case of MAUT with wi = ki and u(xi) = xi . It assumes

that the utility produced by an alternative can be expressed as a linear function
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Utilities Points for each alternative

x0.0 x.25 x.50 x.75 x1.0

u1 12.25 11.529 10.634 9.613 8.000

u2 83500 82250 80121 78685 76500

u3 256500 254360 251880 249670 246500

u4 25000 24496 23770 23044 22000

u5 0.88 0.862 0.825 0.771 0.700

u6 0.75 0.734 0.701 0.659 0.600

Fig. 10.26 Points for each alternative

u(a1) u(a2) U(a3) u(a4) u(a5) u(a6) U(a7) u(a8)

0.597 0.398 0.445 0.561 0.679 0.443 0.655 0.555

Fig. 10.27 Utilities of the alternatives

Evaluation criteria Weights Alternatives

A B C

Investment costs 0.200 1 1.25 2

Travel time 0.067 30 15 10

V/C ratio 0.333 20 30 40

CO emissions 0.333 1000 750 100

HC emissions 0.067 10 12 2

Fig. 10.28 Evaluation matrix with quantitative elements

of the normalized measures of the performance of the alternatives relative to each

criterion:

ui =
∑

m

wmismi (10.3.16)

The performance measure weights can be established by pairwise comparisons; this

is described in detail in Sect. 10.3.3.4. The ranking of the alternatives is based on

the utility values: the preferred alternative is the one that maximizes ui .

Following is an example of this procedure. Consider the construction of a new

road having three possible alignments. The criteria are investment costs (millions

of Euros), travel time (minutes), volume/capacity ratio (V/C), CO emissions (tons),

and HC emissions (tons). The evaluation matrix is shown in Fig. 10.28.

Figure 10.29 reports the normalized matrix obtained using (10.3.5).

The application of (10.3.16) to the elements of Fig. 10.29 gives the following

values of the utilities for the three alternatives.

uA = 0.345 uB = 0.441 uC = 0.711

It follows that the preferred alternative is C.
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Evaluation criteria Weights Alternatives

A B C

Investment costs 0.200 0.500 0.375 0.000

Travel time 0.067 1.000 0.500 0.333

V/C ratio 0.333 0.500 0.750 1.000

CO emissions 0.333 0.000 0.250 0.900

HC emissions 0.067 0.167 0.000 0.833

Fig. 10.29 Normalized evaluation matrix

10.3.3.4 The Analytical Hierarchy Process (AHP)*

Procedures based on the approach named the Analytic Hierarchy Process (AHP)

begin by organizing into a hierarchy the various elements that are involved in the

decision-making process. Knowledge of the relationships between a level and the

next one up in the hierarchy is essential. For example, a choice problem involving

alternative transportation projects may involve three hierarchical levels: at the low-

est level are the projects, at the next higher level are the different points of view

on the basis of which the projects will be evaluated, and at the highest level is the

ultimate objective to be achieved. Choice requires knowledge of the impacts of the

projects with respect to the different points of view, and of the importance of the

different points of view with respect to the ultimate objective. Sometimes other in-

termediate levels are present: for example, between the levels representing the ulti-

mate objective and the points of view, there may be a further level defining different

socioeconomic scenarios that affect the importance of the points of view. These in-

dividual scenarios would be related to the final objective by their probabilities of

occurrence.

Consider a decision-making process and divide the set of elements of such a

process into z subsets in an ordered sequence of levels, so as to impose a hierarchical

structure on the process. The level 1 has only one element; nr is the number of

elements on level r ; and yr
i is the element that occupies position i in level r , as

follows.

y1
1

y2
1 y2

2 . . . y2
n2−1 y2

n2

...

yr
1 yr

2 . . . yr
nr−1 yr

nr

yz−1
1 yz−1

2 . . . yz−1
nz−1−1 yz−1

nz−1

yz
1 yz

2 . . . yz
nz−1 yz

nz

(10.3.17)

Let a
i,r
j,k be a number that measures the relative importance of element yr+1

j com-

pared to yr+1
k on level r + 1, where the comparison is made with respect to element
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yr
i on level r . The AHP method assumes that

a
i,r
k,j = 1/a

i,r
j,k a

i,r
j,k · a

i,r
k,h = a

i,r
j,h (10.3.18)

The value a
i,r
j,k is the j, k element of a matrix Br

i (nr+1 ·nr+1), where the elements

of the main diagonal are equal to 1 and the symmetric elements j, k, and k, j are

inverses of each other. A matrix that satisfies this property is called reciprocal; if the

second equation of (10.3.18) is also verified, it is also called consistent.

Matrix Br
i has rank 1, because any row j can be obtained by multiplying row 1

by a
i,r
j,1:

a
i,r
j,1 · a

i,r
1,k = a

i,r
j,k ∀k ∈ (1 . . . nr+1) (10.3.19)

Br
i has therefore a single nonzero eigenvalue λr

i , which is equal to the matrix

trace nr+1. Let the corresponding eigenvector be wr
i .

It follows, as a consequence of (10.3.18), that the elements a
i,r
j,k of Br

i can

be expressed as ratios between numbers drawn from a set of nr+1 numbers

γ
i,r
1 , γ

i,r
2 . . . γ

i,r
nr+1

:

a
i,r
j,k =

γ
i,r
j

γ
i,r
k

∀j, k ∈ (1 . . . nr+1) (10.3.20)

Let γ r
i be the vector with elements γ

i,r
1 , γ

i,r
2 . . . γ

i,r
nr+1

; it follows that

Br
i γ

r
i = nr+1γ

r
i (10.3.21)

and, because λr
i = nr+1, it follows that γ r

i is the same as the eigenvector wr
i of Br

i .

As the components of wr
i are only defined up to a multiplicative factor, let us

assume that the sum of these components is equal to 1, and let us interpret such

components as normalized measures of the importance (weights) of the elements of

level r + 1 of the hierarchy with respect to the element yr
i of level r .

Let W r
r+1(nr+1 · nr) be the matrix whose columns are the vectors wr

i ∀i ∈

(1 . . . nr), and let wr−1
i be the normalized eigenvector of matrix Br−1

i , whose el-

ements are the weights of level r of the hierarchy with respect to yr−1
i of level

r − 1.

Let wr−1
i,r+1 be the product of matrix W r

r+1 by wr−1
i :

W r
r+1 · wr−1

i = wr−1
i,r+1 (10.3.22)

Let us assume that the components of wr−1
i,r+1, whose sum is equal to 1, are the

normalized weights of the elements of level r + 1 of the hierarchy with respect to

element yr−1
i of level r − 1.

Let W r−1
r+1 be the matrix whose components are the vectors wr−1

i,r+1, i ∈

(1 . . . nr−1), and wr−2
j be the normalized eigenvector of matrix Br−2

j ; then the prod-

uct W r−1
r+1 · wr−2

j provides the weights of level r + 1 with respect to yr−2
j of level

r − 2.
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γi/γj Outcome of the comparison

1 Equal importance

3 Moderately greater importance

5 Greater importance

7 Much greater importance

9 Extremely greater importance

2, 4, 6, 8 Intermediate values

Fig. 10.30 Pairwise comparison scale

In this way, by assigning a quantitative measure to the relative importance of each

pair of elements in a given level r +1 with respect to each element of the next higher

level r , the normalized list of weights of the elements of a given level with respect

to any element of an upper level can be obtained. In particular, the normalized list

of weights of the elements of level z (alternative projects) with respect to the single

element of level 1 (the final objective) can be determined in this way.

The attributes of the elements can be tangible, meaning that they can be obtained

through computation, or intangible, meaning that they can be deduced only in a

qualitative way and are therefore subjective.

When the attributes are tangible, the best way of obtaining the relative impor-

tance of two elementsyr+1
j , yr+1

k , expressed by a
i,r
j,k in matrix Br

i , is by considering

the ratio of their attributes. Let e
i,r+1
j , e

i,r+1
k be the attributes of yr+1

j and yr+1
k , re-

spectively, with respect to yr
i : if e

i,r+1
j > e

i,r+1
k then yr+1

j is more important than

yr+1
k , so the attributes are favorable, and we set a

i,r
j,k = e

i,r+1
j /e

i,r+1
k . On the other

hand, if e
i,r+1
j > e

i,r+1
k then yr+1

j is less important thanyr+1
k , so the attributes are

unfavorable, and we set a
i,r
j,k = e

i,r+1
k /e

i,r+1
j .

When the attributes are unfavorable, the relative importance of two elements is

qualitatively assessed using a numerical scale to provide values corresponding to the

different qualitative judgments. Figure 10.30 shows the pairwise comparison scale

of Saaty.

When the attributes are tangible, matrix Br
i satisfies both properties of (10.3.18),

and it is easy to verify that

γ
i,r
j =

e
i,r+1
j

∑nr+1

k=1 e
i,r+1
k

(10.3.23)

if the attributes e
i,r+1
k ∀k = 1 . . . nr+1 are favorable. On the other hand, if the at-

tributes are unfavorable then:

γ
i,r
j =

1/e
i,r+1
j

∑nr+1

k=1 1/e
i,r+1
k

(10.3.24)

When the attributes are intangible, it is not a problem to satisfy the first condition

of (10.3.18) (i.e., the reciprocal condition), but it is difficult to satisfy the second
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condition (i.e., consistency). In this case, if λmax is the principal eigenvalue of matrix

Br
i and nr+1 is its rank, the consistency index CI of Br

i is defined as

CI =
λmax − nr+1

nr+1 − 1
(10.3.25)

which represents the average value of Br
i , which would be equal to zero if the matrix

were consistent. The consistency ratio is CR = CI/ACI, where ACI is the mean

value of CI for a random matrix of rank nr+1. ACI values for typical values of nr+1

are shown below:

nr+1 2 3 4 5 6 7 8 9 10

ACI 0.0000 0.4887 0.8045 1.0591 1.1797 1.2519 1.3171 1.3733 1.4055

The consistency of Br
i can be accepted if CR < 0.1, and in this case the principal

eigenvector Br
i provides a good estimate of the weights γ

i,r
j , j = 1, . . . , nr+1.

Following is a detailed example application of the AHP method described

above.15 The purpose is to recommend the best transportation system management

(TSM) strategy for reducing traffic congestion and emissions in a town.

Step 1: Setting Up the Hierarchy

The first step is to set up a decision process hierarchy (see Fig. 10.31). The first

level denotes the overall goal of the decision-maker. In this example, this is to find

the best TSM strategy for reducing congestion and pollution. The second level de-

fines factors that contribute to this goal. The number of factors considered in the

AHP depends on the problem; in the present case the factors are environment, tech-

nology, cost, and average vehicle speed (i.e., effectiveness for travelers). Environ-

ment and speed are obviously factors that relate to the goal of reducing congestion

and pollution, but technology (e.g., construction and management methods) and cost

are always highly important considerations in transportation planning. The last level

of the hierarchy then describes the alternative TSM strategies, which are to be eval-

uated in terms of the criteria in the level above. The number of alternatives is not

limited in the AHP, but this example focuses on two alternatives to make the process

more clear. Let us consider only High Occupancy Vehicle lanes and an increase in

parking charges as possible strategies for reducing congestion and pollution. The

analytical hierarchy process will aid the process of choosing which alternative is the

best for achieving this goal.

Step 2: Comparison of Characteristics

In the next step, the factors from the second level of the hierarchy are compared

with each other to determine the relative importance of each factor in accomplishing

the overall goal. The easiest way is to prepare a matrix with factors (i.e., environ-

ment, technology, cost, and speed) listed at the top and on the left. Based on the

15The example reported here is taken from Boulter (1999).
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Fig. 10.31 A hierarchy of priorities

Environment Technology Cost Speed

Environment 1 4 3 2

Technology 1/4 1 1/2 1/3

Cost 1/3 2 1 1/2

Speed 1/2 3 2 1

Fig. 10.32 Comparison of characteristics

resulting judgment of the decision-maker, the matrix is then filled in with numerical

values denoting the importance of the factor on the left relative to the importance

of the factor on the top. A high value means that the factor on the left is relatively

more important than the factor at the top. In Fig. 10.32 for example, environment is

considered to be four times as important as technology, whereas average speed of

vehicles is only half as important as the environment. When a factor is compared

with itself the ratio of importance is obviously one. The eigenvalue of the compari-

son matrix is 4.026, whereas the CI is 0.009 and CR is 0.011.

In this example the priorities are clear. Because the overall goal is to reduce

congestion and emissions, environment and speed are deemed the most important

factors and thus are assigned the highest value in the matrix. Environment is slightly

more important than speed. Cost is a less important factor compared to the positive

effects achievable, that is, reduction of congestion and pollution. The technology

involved in implementing the different alternatives is less important than the cost.

Thus in the matrix, cost is assigned the value 2 relative to technology. Once the ma-

trix has been filled in, the decision-maker can move to step 3, in which the priority

vector is established.

Step 3: Establish the Priority Vector

In this step the decision-maker uses the numbers from the matrix in Fig. 10.33 to

determine an overall priority weight for each factor. To do this, the decision-maker

computes the sum of the values in each row of the matrix and divides each result by

the sum of the results for all the rows.

The calculations are reported in Fig. 10.33.
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Environment 1 + 4 + 3 + 2 = 10

Technology 1/4 + 1 + 1/2 + 1/3 = 2.08

Cost 1/3 + 2 + 1 + 1/2 = 3.83

Speed 1/2 + 3 + 2 + 1 = 6.5

22.41 Total

⇒ 10 : 22.41 = 0.45

2.08 : 22.41 = 0.09

3.83 : 22.41 = 0.17

6.5 : 22.41 = 0.29

Fig. 10.33 The priority vector

Environment HOV lanes Parking

HOV lanes 1 2

Parking charge 1/2 1

Technology HOV lanes Parking

HOV lanes 1 1

Parking charge 1 1

Cost HOV lanes Parking

HOV lanes 1 1/3

Parking charge 3 1

Speed HOV lanes Parking

HOV lanes 1 4

Parking charge 1/4 1

Fig. 10.34 Comparison of alternative TSM strategies

Step 4: Comparison of Alternatives

The decision-maker moves from level 2 to level 3 of the hierarchy and makes

a pairwise comparison of the two alternatives at the bottom of the hierarchy in

Fig. 10.34. In this example the elements to be compared are the HOV lanes and

the increase in parking charges, with the comparison to be made on the basis of how

much one is better than the other in satisfying the factors from level 2.

In order to show how the numerical values have been assigned, it is useful to look

at one or two examples in detail. The first case in Fig. 10.34 shows that, in terms

of the impact on the environment, HOV lanes are between equally and moderately

more important than parking charges (following Saaty’s scale). This is because the

carpooling that is necessary for the use of HOV lanes immediately reduces the num-

ber of vehicles on the road and thus reduces pollution. Numerical values, obtained

by analyzing the system using mode choice and assignment models, could be used

to assess the importance of the two options. In terms of cost, the increase in park-

ing charges seems more desirable, as this is a much cheaper option than building

additional lanes for HOVs, even when the cost of employing officers to enforce the

parking charges is considered. The remaining two cases show similar evaluations of

the two TSM strategies in terms of their technology and speed impacts.

Step 5: Establish the Priority Vectors for the Alternatives

This follows the same procedure as Step 3.

The results from Steps 3 and 5 can be summarized in the two priority matrices

shown in Fig. 10.36.
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Environment: 1 + 2 = 3 Technology: 1 + 1 = 2

0.5 + 1 = 1.5, the sum is 4.5 1 + 1 = 2, the sum is 4

Then 3 : 4.5 = 0.67 Then 2 : 4 = 0.5

1.5 : 4.5 = 0.33 2 : 4 = 0.5

Cost: 0 + 0.33 = 1.33 Speed: 1 + 4 = 5

3 + 1 = 4, the sum is 5.33 0.25 + 1 = 1.25, the sum is 6.25

Then 1.33 : 5.33 = 0.25 Then 5 : 6.25 = 0.8

4 : 5.33 = 0.75 1.25 : 6.25 = 0.2

Fig. 10.35 Priority vector for the alternatives

Env. 0.45

Tech. 0.09

Cost 0.17

Speed 0.29

Env. Tech. Cost Speed

0.67 0.5 0.25 0.8

0.33 0.5 0.75 0.2

Fig. 10.36 Priority matrices

Step 6: Obtaining the Overall Ranking

The final step in determining which alternative best fulfills the goal of reducing

traffic congestion and emissions is to calculate the overall ranking for both alterna-

tives. This is accomplished by multiplying the criteria priority vector by the alter-

native priority vector. For example, the priority vector for the environment criterion

is 0.45, and the priority vector for the HOV alternative is 0.67; the HOV alterna-

tive’s rating with respect to the environment criterion is thus 0.45 ∗ 0.67 = 0.30.

Results of the application of this method to each criterion and alternative are shown

in Fig. 10.37. It can be seen that HOV lanes have received an overall rating of

0.62 whereas the increase in parking charges has received a rating of only 0.39.

Therefore, HOV lanes are the best TSM strategy for reducing traffic congestion and

emissions in this hypothetical case study.

10.3.3.5 Outranking Methods*

Partial aggregation methods assume that, for each pair of actions (or projects), the

decision-maker can either express his preference or indifference between them or

declare them to be not comparable. Preferences expressed in this situation will not

necessarily be consistent and may not allow a complete ranking of alternatives.

The ELECTRE (ELimination Et Choix Traduisant la REalité) decision methods are

based on this approach.

Four different versions of the ELECTRE software are available. The first (ELEC-

TRE I) was designed to select “the best” alternatives from among a given set. The

second, third, and fourth versions (ELECTRE II, III, IV) were developed to rank a

set of alternatives.

At the basis of the ELECTRE methods lies the concept of “outranking.” Option A

outranks option B if there are enough arguments to decide that A is at least as good

as B, although there is no overwhelming reason to reject that statement. The heart
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Alternatives Criteria priority Alternative priority Product of

vector vector vector

Environment

HOV 0.45 0.67 0.30

Parking charge 0.45 0.33 0.15

Technology

HOV 0.09 0.5 0.05

Parking charge 0.09 0.5 0.05

Cost

HOV 0.17 0.25 0.04

Parking charge 0.17 0.75 0.13

Speed

HOV 0.29 0.8 0.23

Parking charge 0.29 0.2 0.06

HOV total 0.62

Parking charge total 0.39

Fig. 10.37 Overall ranking of alternatives

of the evaluation procedure depends on the verification, for each pair of alternatives,

of the outranking assumption. The latter is based on two conditions that should both

be satisfied:

– A concordance condition (the majority of the criteria should be in favor of alter-

native ai )

– A discordance condition (none of the criteria should be too much against ai )

The satisfaction of both conditions is verified through concordance and discor-

dance indices that are computed by comparing pairs of alternatives criterion by cri-

terion. It is clear that if an alternative performs better with respect to all criteria, then

it is definitely preferred to the others (dominating alternative). The opposite occurs

if its performance is worse with respect to all the criteria (dominated alternative). In

intermediate cases, a rule is defined that fixes the acceptable limits of the outranking

assumption.

Whatever the version, ELECTRE methods require weights wm and performance

indicators smi . for each alternative i and criterion m.

ELECTRE I defines the index of concordance cij of the project i compared with

project j as a standardized measure of the preference for project i compared to

project j ; the index is equal to one if i dominates j :

cij =

∑

m∈Sij
wm

∑

n=1...M wn

(10.3.26)

where Sij ≡ {m : smi ≥ smj } is the set of criteria for which project i is as good as or

better than j and smj is the normalized performance indicator defined by (10.3.5).

Obviously, the closer index cij is to one (i.e., the more project i is preferred to
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project j ), the greater will be the weights wm of the criteria for which i is superior

to j .

The discordance index dij of project i compared to project j is a standardized

measure of the “inferiority” of i compared to j . It is equal to one if the maximum

weighted deviation in favor of j among all the criteria for which j is superior,

coincides with the maximum absolute weighted deviation between i and j for all

the criteria. In formal terms, it results:

dij =
maxm∈Iij

[wm(lmj − lmi)]

maxn[wn|lni − lnj |]
(10.3.27)

where Iij ≡ {m : lmi < lmj } is the set of criteria indices for which project i is inferior

to j .

Concordance and discordance indices can be used in different ways to compare

available alternatives. The mobile threshold method calculates the concordance and

discordance indices for all ordered pairs of alternative projects. This ordering of

alternatives can be obtained by fixing two thresholds, c̄ and d̄ (with c̄ ≤ d̄), and

rejecting all project pairs (i, j) such that cij is less than c̄ (i.e., pairs for which i is

not significantly superior to j ) and/or dij is greater than d̄ (i.e., i is clearly inferior

to j ). Pairs of alternative projects that meet both requirements satisfy:

cij ≥ c̄ and dij ≤ d̄

These pairs are considered to give a significant indication of the superiority of

alternative i over alternative j . If the resulting pairs still do not lead to a unique

ordering (e.g., i is preferable to j, j is preferable to k but k is preferable to i),

the values of the thresholds c̄ and d̄ are modified by increasing the former and

reducing the latter until a set of project pairs expressing a unique preference ordering

is obtained (see Fig. 10.38).

Some multicriteria analyses are intended for application to choice contexts where

no precise numerical data are available. This may be the case when many criteria

do not naturally lend themselves to numerical measurement or when there is insuf-

ficient budget to carry out a detailed modeling of project impacts. It should be clear

that for these cases the somewhat arbitrary qualitative assessment of project impacts

means that the criteria weights are themselves somewhat arbitrary. Within this range

of methods, the REGIME method is outlined in detail.

The starting point of this method is to calculate, for each pair of alternatives i

and j , a concordance index defined as in the ELECTRE methods.

Given two alternatives i and j , the regime index rij is then computed; it can be

interpreted as an indicator of the preference for alternative i compared to j :

rij = cij − cji (10.3.28)

Because the weights wM are ordinal, it is impossible to compute a numerical

value for rij . Therefore the REGIME analysis focuses on the sign of the regime

index.
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Alternatives A, B, C, D

c̄ = 0.30 d̄ = 0.70

Pairs of alternatives Concordance indices Discordance indices

A-B 0.40 0.20

A-C 0.70 0.50

B-A 0.60 0.50

B-C 0.65 0.30

C-B 0.35 0.60

C-D 0.35 0.40

c̄ = 0.45 d̄ = 0.50

Pairs of alternatives Concordance indices Discordance indices

A-C 0.70 0.50

B-A 0.60 0.50

B-C 0.65 0.30

Ordering B > A > C

Fig. 10.38 Example application of the ELECTRE IV mobile threshold method

Evaluation Weights Alternatives

criteria A B C

1 ++ − −− − − −

2 + + + + ++ +

2 + + + + ++ + + +

4 + + + − − − −− −

5 + −− − − − −

Fig. 10.39 Evaluation matrix with ordinal elements

Ordinal information about weights and/or effects is enough to determine the sign

of rij . In this sense the qualitative evaluations that define the importance of the dif-

ferent criteria are sufficiently clear to conclude with certainty that the criteria for

which alternative i dominates j are more important than those for which j domi-

nates i. A matrix can be filled in with all the possible pairs of alternatives i and j .

Element ij is +1 if i is preferred to j and −1 otherwise.

An example clarifies this procedure. Let us interpret Fig. 10.39 expressed in or-

dinal terms.

The series −−−+++ should be interpreted as an increasing ordinal scale from

negative impacts (disadvantages or costs with a maximum of negativity indicated as

−−−) to positive impacts (advantages or benefits, with a maximum of positivity in-

dicated as +++). The series of ordinal values of weights should be associated with

a series of cardinal values. Each weight expressed in ordinal terms can be replaced

by a score between 1 and 5 and then the values are normalized by dividing them by

their sum. In this example the following correspondences have been accepted (see

Fig. 10.40):

The concordance indices can be calculated according to the ELECTRE method.

In Fig. 10.41 the concordance indices and the regime indices are reported for each

pair of alternatives.
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Qualitative weight + + ++ + + + + + + Total

Quantitative weight 1 1 3 5 5 15

Normalized weight 0.067 0.067 0.200 0.333 0.333 1.000

Fig. 10.40 Qualitative, quantitative, and normalized scores

Pairs of alternatives Concordance index Regime index

A-B 0.334 −0.332

A-C 0.267 −0.466

B-A 0.666 +0.332

B-C 0.267 −0.466

C-A 0.733 +0.466

C-B 0.733 +0.466

Fig. 10.41 Concordance and regime indices for each pair of alternatives

Alternatives A B C Total

A −− −1 −1 −2

B +1 −− −1 0

C +1 +1 −− +2

Fig. 10.42 Regime indices matrix

The pairwise comparison is reported in Fig. 10.42, where element ij is equal to

+1 or −1 if the regime index is positive or negative and, then, if the alternative of

the ith row is better or worse than the one of the j th column (or vice versa).

It follows that the classification is C-B-A without ambiguity.

10.3.3.6 Constrained Optimization Method*

The constrained optimization method is based on the principle that any multiobjec-

tive and multidimensional decision-making problem can be converted into a con-

strained single-objective optimization problem and solved using integer program-

ming techniques with binary variables. This transformation can be done in the fol-

lowing way.

– By choosing an objective to maximize or minimize

– By considering the other objectives as constraints, whose minimum or maximum

level of achievement should be respected

– By assigning to each project alternative j a binary variable xj , which takes the

value 1 if alternative j is to be implemented and 0 if not. (It is not possible to

implement part of a project)

Following is an example of this method.

Suppose that one or more projects are to be chosen from among six candidate

projects, identified by a code from x1 to x6. For all projects, it is assumed that the



678 10 Methods for the Evaluation and Comparison of Transportation System Projects

Year x1 x2 x3 x4 x5 x6

0 −100 −200 −200 −100 −200 −300

1 18 30 0 25 50 40

2 18 30 0 25 50 40

3 18 30 5 20 40 40

4 18 30 10 20 40 40

5 18 30 10 20 40 40

6 18 30 20 15 30 40

7 18 30 20 15 30 40

8 18 30 30 15 30 40

9 18 30 30 15 30 40

10 −82 30 40 10 20 40

11 18 30 40 10 20 40

12 18 30 40 10 20 40

13 18 30 50 10 20 40

14 18 30 50 10 20 40

15 18 30 50 5 10 40

16 18 30 50 5 10 40

17 18 30 50 5 10 40

18 18 30 50 5 10 40

19 18 30 50 5 10 40

20 18 30 100 5 10 40

NPV 50.62 144.10 116.75 68.06 136.12 158.80

(6%)

Fig. 10.43 Annual benefits and NPV for each project

investment is concentrated at the end of year 0 and that the net benefits are concen-

trated at the end of each year of the economic project life. Figure 10.43 indicates

the annual benefits and the NPV associated to each of the six investments.

Furthermore, assume that projects x1 and x2 are mutually exclusive (e.g., two

links that connect the same O/D pair). Moreover, project x3 cannot be implemented

if project x4 is not, whereas x4 can be carried out by itself (x3 is a project that

depends on the implementation of x4, whereas x4 is an independent project). The

projects do not otherwise interact, so their individual annual benefits and NPV are

additive.

The choice of the investments to carry out is made in a context where the avail-

able financial resources K are exogenously defined and insufficient to finance all

the projects.

To formalize the decision-making problem among the different objectives (e.g.,

NPV maximization, investment cost minimization, etc.) the function to maximize

or minimize must be chosen. In this case, for example, the total NPV of the selected

alternatives will be maximized, using a discount rate of 6%.

Three different exogenous constraints should be considered:

– The total cost of the selected projects cannot exceed K

– Some alternatives are complementary

– Some alternatives are mutually exclusive
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The binary programming problem can be formulated in the following way:

max
∑

j

NPVj (6%)xj j = 1, . . . , n (10.3.29)

subject to:

xj (1 − xj ) = 0 Variable xj can only assume the values 0 or 1 if this constraint is to

be respected

x3 − x4 ≤ 0 If project 4 is implemented (x4 = 1) then project 3 can be either im-

plemented (x3 = 1;x1 − x3 = 0) or not (x3 = 0); if project 4 is not im-

plemented (x4 = 0), then project 3 cannot be (x3 = 0 necessarily). This

constraint expresses the dependency of project 3 on project 4

x1 + x2 ≤ 1 Implementation of either project 1 or 2 precludes implementation of

the other (e.g., x2 = 1 necessarily implies x1 = 0). The projects are mutu-

ally exclusive. It is possible that neither is implemented
∑

j q0jxj ≤ K The total investment necessary to finance the selected projects

should be less than the available budget K . (Here q0j represents the in-

vestment cost of project j )

The solution of the above binary programming problem identifies the set of

projects to be implemented, that is, those that maximize the objective function sub-

ject to all the constraints.

By solving the same problem with a different budget constraint, the list of

projects to be implemented may change. This may also happen if constraints of

a different nature are included: for example, constraints on the expected maximum

number of annual accidents on the regional network (e.g.,
∑

j INCjXj ≤ INC∗,

where INC∗ is the maximum acceptable number of annual accidents).

Each alternative formulation of the decision-making problem produces an “eval-

uation scenario,” characterized by the choice of a given objective function, by the

set of technical, physical, and behavioral constraints and by the targets defined by

the decision-maker/analyst for the other objectives and constraints.

The information derived from the different scenarios is used to generate new

scenarios to test, so increasing the level of knowledge with respect to the impacts of

the various objectives on the decision-making problem. Examples of the important

conclusions that can be drawn from this procedure include the following.

– The contributions of the selected alternatives, in each scenario, to the criteria that

are considered relevant by the decision-makers

– The robust alternatives, that is, those that tend to be selected a larger number of

times in the different scenarios

The procedure ends when a satisfactory solution is obtained as a good compro-

mise between the different relevant objectives.
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Reference Notes

The method proposed for the calculation of surplus changes for transportation sys-

tem users is original; it extends the “classical” results for aggregate models and

those in Williams (1977) for behavioral models. The paper by Jara-Diaz and Friesz

(1982) deals with the evaluation of user surplus changes using descriptive demand

functions involving multiple service attributes.

The traditional approach of benefit-cost analysis is covered in Wohl and Mar-

tin (1967), Hutchinson (1974) and Stopher and Meybourg (1976). Alternative ap-

proaches such as cost-effectiveness analysis are described in Stopher and Meybourg

(1976) and Meyer and Miller (2001).

The literature on welfare economics applied to investment analysis is quite sub-

stantial and a systematic analysis is well beyond the scope of this book. Among

the many texts on the subject, reference can be made to the classic book of Mishan

(1974), Trezza et al. (1978), and some chapters of the volume by Adorisio (1986).

Applications to the evaluation of transportation system investments can be found

in almost all books on transportation planning. A critical review of financial analysis

techniques is presented by Fleming and Giugale (2001).

Although there are some clear links back to earlier work, the works of Von Neu-

mann and Morgenstern (1947) and later by Savage (1954) are generally considered

to be the starting point for multicriteria analysis in terms of a normative theory

of how individuals should rationally choose between competing options. More re-

cent fundamental contributions to these techniques can be found in Chankong and

Haimes (1983), Voogd (1983), Haimes and Chankong (1985), Nijkamp et al. (1990),

and Rostirolla (1998). The DLTR multicriteria analysis manual by Dodgson et al.

(2000) is an important reference. It provides guidance for government officials and

other practitioners on how to undertake and make the best use of multicriteria analy-

sis for the appraisal of options for policy and other decisions, including but not

limited to those having implications for the environment. It covers a range of tech-

niques that can be of practical value to public decision-makers, and is increasingly

being used in the United Kingdom and in other countries. The paper by Shiftan et

al. (2002) is also fundamental for the application of these methods to transportation

projects.

Examples of elimination by aspects models can be found in Tversky (1972).

Keeney and Raiffa’s (1993) book is the key guide to multiattribute utility applica-

tions. More recent references that cite examples and indicate the range of potential

applications include Menichini (2003) (the example presented in this book is his)

and Dyer (2005). Von Neumann and Morgenstern (1947) discussed some paradoxes

that are at the base of the MAUT method. One of these is the Allais paradox.

Examples of linear additive multicriteria methods are presented by Edwards

(1971) and Edwards and Barron (1994).

The analytic hierarchy process method was originally devised by Saaty (1990).

It has proved to be one of the most widely applied multicriteria methods; see, for

example, Zahedi (1986), Shim (1989), Boulter (1999), Chavarria (2002), and Ferrari

(2003) for summaries of applications.
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Outranking as a basis for multicriteria analysis originated in France in the work

of Bernard Roy and colleagues in the mid-1960s and has continued to be applied

and extended since that time. For a summary of the European school of multicrite-

ria analysis thinking, see Roy and Vanderpooten (1996). Vinckie’s book (1992) pro-

vides a clear introduction to the best-known outranking methods, of which there are

several. Nijkamp and Van Delft (1977) and Voogd (1983) both suggest procedures

for a qualitative outranking analysis. Examples of the regime method are reported

in Hinloopen and Nijkamp (1990), de Luca (2000), and De Montis et al. (2000).

Di Maio and Rostirolla (2002) present applications of the constrained optimization

method.

A different response to the imprecision that surrounds much of the data on which

public decision making is based has been to look to the developing field of fuzzy

sets to provide a basis for decision-making models. The fundamentals of decision-

making in a fuzzy environment are presented by Zadeh (1976) and Zimmerman

(1995). See Munda (1995) for a detailed description of the NAIADE method. How-

ever, a detailed description of these methods is beyond the scope of this book.



Appendix A

Review of Numerical Analysis

This appendix contains an overview of numerical analysis for the formulation,

analysis, and solution of the mathematical models described in the text.

A.1 Sets and Functions

A.1.1 Elements of Set Topology

In this section some properties of numerical sets are outlined, with reference to

the n-dimensional Euclidean space En. Numerical sets are made up of points in

En; that is, vectors (assumed to be column vectors) with n real components xT =

(x1, . . . , xn), among which the Euclidean norm (or module) ‖x‖ = (
∑

i x
2
i )1/2 =

(xT x)1/2 and the corresponding Euclidean distance are defined.

The sphere of radius δ and center x is defined as a neighborhood Nδ(x) of radius

δ of the point x ∈ En:

Nδ(x) =
{

y : ‖y − x‖ < δ
}

A point x ∈ En is said to be interior to the set S ⊆ En, if there is at least a

neighborhood of finite radius δ entirely contained in S. A point x ∈ En is at the

boundary of the set S if all the neighborhoods of x, however small the radius δ,

contain points belonging and points not belonging to S. A nonempty set S is said to

be open if all the points belonging to S are interior points (i.e., if no boundary point

belongs to the set); S is closed if all the boundary points belong to the set. A set S

is said to be limited if (for all the points belonging to it) a neighborhood of finite

radius including all the points of the set can be found:

∀x ∈ S ∃δ > 0, δ finite: S ⊆ Nδ(x)

A closed and limited subset of En is compact (and vice versa).

For example, the set S = {(x1, x2) : x2
1 + x2

2 ≤ 1} of the points belonging to the

circle with unitary radius and center in the origin is a closed and limited set, and the

set S1 = {(x1, x2) : x2
1 + x2

2 < 1} is an open and limited set. The boundary of S and

S1 consists of the set S2 = {(x1, x2) : x2
1 + x2

2 = 1}.

Given two points x1 and x2, the set of points x defined by:

{

x : x = µx1 + (1 − µ)x2, µ ∈ [0,1]
}
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Fig. A.1 Illustration of convex and nonconvex sets

is called a segment of extremes x1 and x2.

A nonempty set S is said to be convex if all the points of the segment joining any

two points belonging to the set, belong to the set itself (Fig. A.1).

x = µx1 + (1 − µ)x2 ∈ S ∀µ ∈ [0,1], ∀x1,x2 ∈ S (A.1.1)

The intersection of convex sets is a convex set. Sets defined by a system of linear

equalities and/or inequalities, also known as polyhedral sets, are convex sets.

In fact, given S = {x : Ax ≤ b} if x1 and x2 belong to S, let x be any point

belonging to the segment with extremes x1 and x2, it yields:

x = µx1 + (1 − µ)x2 µ ∈ [0,1], hence

Ax = A
(

µx1 + (1 − µ)x2

)

= µAx1 + (1 − µ)Ax2 ≤ µb + (1 − µ)b

= bµ ∈ [0,1]

Thus, point x belongs to S. An analogous demonstration can be repeated for the

set S ≡ {x : Ax = b}.

Given a point x∗, for each nonnull vector, call direction, h 
= 0,the set of points

lying on the half-line of origin x∗ and direction defined by the vector h is a ray

emanating from x∗ along direction h. This set is formally defined by:

{x : x = x∗ + µh, µ ≥ 0}

A vector h is a feasible direction at the point x∗ for the set S, if it is possible to

move along the direction of a finite quantity from the point x∗ and remain within

the set S:

∃µ∗ > 0 : x = x∗ + µh ∈ S ∀µ < µ∗,µ ≥ 0

Given a set S, the set D(x∗) of the feasible directions at a point x∗ belonging to S

(Fig. A.2) is formally defined as

D(x∗) = {h 
= 0 : ∃µ∗ > 0 : x = x∗ + µh ∈ S ∀µ < µ∗, µ ≥ 0}

For a convex set S, the set of feasible directions at point x∗ can also be defined

as

D(x∗) =
{

h = (x − x∗) : x ∈ S
}
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Fig. A.2 Illustration of

feasible directions

A.1.2 Continuous and Differentiable Functions

A scalar-valued function of a vector y = f (x), with values in E1 and defined on

an open set S ⊆ En is said to be continuous at point x∗ ∈ S if small variations

of the variables x induce small variations in the variable y. Formally, the function

y = f (x) is said to be continuous at point x∗ if for any neighborhood Nδ(y
∗) of

the point y∗ = f (x∗), however small, there is a neighborhood Nε(x
∗) of point x∗

such that the points x belonging to them have values y = f (x) in the neighborhood

of y∗:

∀δ > 0, ∃ε > 0 : y = f (x) ∈ Nδ

(

y∗ = f (x∗)
)

∀x ∈ Nε(x
∗)

A scalar function of vector f (x) with values in E1 and defined on a closed set

S ⊆ En is said to be differentiable at the point x∗ ∈ S if there is a vector, known

as the gradient of the function in the point and denoted by ∇f (x∗), such that the

difference between the value of the function at any point x ∈ S and its linear approx-

imation in x∗ along ∇f (x∗), given by f (x∗)+∇f (x∗)T (x−x∗), is an infinitesimal

of superior order with respect to the norm of the vector (x − x∗):

lim
x→x∗

f (x) − f (x∗) − ∇f (x∗)T (x − x∗)

‖x − x∗‖
= 0 ∀x ∈ S (A.1.2)

The components of the vector ∇f (x∗) are the partial derivatives of the function:

∇f (x∗)T =

[

∂f (x∗)

∂x1
,
∂f (x∗)

∂x2
, . . . ,

∂f (x∗)

∂xn

]

(A.1.3)

A function with continuous first partial derivatives can be proved differentiable,

and also continuous.

The gradient of a function can be represented in the space En with the same

dimensionality of the definition set S. In the same space the level curves of the
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Fig. A.3 Level curves and gradient

function (loci of the points x to which the same value of f (x) corresponds) can be

defined. The gradient at each point x∗ is a vector perpendicular to the tangent at the

level curve f (x∗) and, as shown, points towards increasing values of the function

(see Fig. A.3).

Given a scalar function f (x), defined in S, a point x∗ ∈ S and a direction vector

h such that x∗ + µh ∈ S for values of µ less than µ∗, the directional derivative of

the function in x∗ along direction h can be defined as the limit:

f ′(x∗,h) = lim
µ→0

f (x∗ + µh) − f (x∗)

µ
(A.1.4)

If f (x) is differentiable in x∗, it is rather easy to demonstrate that the directional

derivative can be expressed in terms of the gradient:

f ′(x∗,h) = ∇f (x∗)T h (A.1.5)

A direction h along which it is possible to move by a finite quantity starting from

x∗, increasing the value of the function, at least in a neighborhood of x∗, is known as

an ascent direction. In other words, a direction h is an ascent direction if a positive

scalar θ∗ can be found such that for each 0 < θ < θ∗ it results that:

f (x∗ + θh) > f (x∗) (A.1.6)
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It can be demonstrated (by using the property of the directional derivative (A.1.5)

and the theorem of sign permanence) that a direction h is an ascent direction if and

only if the directional derivative of f (x) at point x∗ along direction h is positive:

f ′(x∗,h) = ∇f (x∗)T h > 0 (A.1.7)

Similarly, the directions along which it is possible to move starting from x∗, causing

a decrease in the function value, are known as descent directions, and have negative

directional derivative at ∇f (x∗)T h < 0.

The gradient of a differentiable function, at whatever point it differs from zero,

is an ascent direction. In fact, under the assumptions made, it results that:

f ′
(

x∗,∇f (x∗)
)

= ∇f (x∗)T ∇f (x∗) =
∥

∥∇f (x∗)
∥

∥

2
> 0 (A.1.8)

Vice versa, the direction opposite to the gradient −∇f (x∗), if different from zero,

is a descent direction of f (x) in x∗.

A scalar function f (x) is said to be doubly or twice differentiable in x if there is

a vector ∇f (x∗) and a symmetric matrix H f (x∗) of dimensions (n × n) such that:

lim
x→x∗

f (x) − f (x∗) − ∇f (x∗)T (x − x∗) − 1/2(x − x∗)T H f (x∗)(x − x∗)

‖x − x∗‖2
= 0

∀x ∈ S (A.1.9)

Equation (A.1.9) expresses the condition that the difference between the value

of the function and its quadratic approximation is an infinitesimal of superior order

with respect to the square norm of the vector (x −x∗). The matrix H f (x∗) is called

the Hessian matrix of f (x) at x∗ and its components are the second-order partial

derivatives of f (x) at x∗:

H f (x∗) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂2f (x∗)

∂x2
1

. . .
∂2f (x∗)
∂x1∂xn

. . . . . .

. . . . . .

. . . . . .
∂2f (x∗)
∂x1∂xn

. . .
∂2f (x∗)

∂x2
n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(A.1.10)

A function can be proved doubly differentiable if it has continuous second partial

derivatives. In this case the first partial derivatives are differentiable (because they

have continuous partial derivatives), thus the function is differentiable and therefore

continuous. Furthermore, the second partial derivatives do not depend on the order

of derivation and the Hessian matrix is symmetric.

Taylor’s formulae of the first- and second-order relative to the scalar function

f (x) around the point x∗ are, respectively,

∃x◦ ∈ (x∗,x) : f (x) = f (x∗) + ∇f (x◦)T (x − x∗) ∀x ∈ S (A.1.11)
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∃x◦ ∈ (x∗,x) : f (x) =f (x∗) + ∇f (x∗)T (x − x∗) + 1/2(x − x∗)T

× H f (x◦)(x − x∗) ∀x ∈ S (A.1.12)

where x◦ is a point within the segment (x∗,x). Equations (A.1.11) and (A.1.12) ob-

viously require f (x) to be differentiable of the first- and second-order, respectively.

An m-vectorial function g(x) associates a vector of m components, that is, a

point of Em, to an n-dimensional vector, that is, a point of En; it is a vector in m

functions:

g(x) =
[

g1(x), g2(x), . . . , gm(x)
]T

that associates with each n-dimensional vector x ∈ S an m-dimensional vector g(x).

The function g(x) is said to be differentiable at point x∗ if all its component

functions are differentiable. The Jacobian matrix of g(x) is a matrix of dimensions

(m × n) that has the gradients of the component functions gi(x) as its rows:

Jac
[

g(x∗)
]

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂g1(x
∗)

∂x1
. . .

∂g1(x
∗)

∂xn

. . . . . .

. . . . . .

. . . . . .
∂gm(x∗)

∂x1
. . .

∂gm(x∗)
∂xn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(A.1.13)

An n-vectorial function of vector g(x) (in this case m = n) defined in a set S ⊆

En is strictly increasing monotone if for each pair of different points x1 
= x2 ∈ S it

results that:

(

g(x1) − g(x2)
)T

(x1 − x2) > 0 ∀x1 
= x2 ∈ S (A.1.14)

The function is said to be nondecreasing monotone if weak inequality holds

(≥ 0). Similarly, functions can be denoted as strictly decreasing or nonincreasing

monotone if the reversed inequalities hold. If the two points, x1 
= x2 ∈ S, differ

only in the ith component, that is, x1,i 
= x2,i , with x1,j = x2,j ∀j 
= i, from in-

equality (A.1.14) it follows that:

(

gi(x1,i) − gi(x2,i)
)T

(x1,i − x2,i) > 0

Hence all the component functions are increasing monotone functions of every com-

ponent of the vector x for given values of all other components (scalar functions of

scalar).

If the Jacobian matrix Jac[g(x)] of the function g(x), assumed to be differ-

entiable, is positive (negative) semidefinite over the whole set of definition S, the

function g(x) is nondecreasing (nonincreasing monotone). If the Jacobian is posi-

tive (negative) definite, the function is monotone strictly increasing (decreasing).
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Fig. A.4 Geometrical interpretation of the definition of convex function

A.1.3 Convex Functions

A scalar function of vector f (x) defined in the convex set S ⊆ En is termed convex

if for any pair of points x1 and x2 belonging to S the following relationship holds.

f
(

µx1 + (1 − µ)x2

)

≤ µf (x1) + (1 − µ)f (x2) ∀µ ∈ [0,1] (A.1.15)

The geometrical interpretation of (A.1.15) is that the value of the function calculated

at whatever point of the segment joining x1 and x2 is not greater than the linear

combination of the values calculated at the endpoints (see Fig. A.4).

It can be demonstrated that a differentiable function is convex if and only if it

satisfies the following condition,

f (x2) ≥ f (x1) + ∇f (x1)
T (x2 − x1) ∀x2,x1 ∈ S ⊆ En (A.1.16)

that is, if the value of the function in x2 is not lower than the value of its linear ex-

trapolation starting from x (see Fig. A.5). By inverting points x1 and x2 in (A.1.16)

and summing the two expressions we also get:

(

∇f (x1) − ∇f (x2)
)T

(x1 − x2) ≥ 0 (A.1.17)

that is, the gradient of a convex differentiable function is a monotone nondecreasing

vectorial function of the vector x.

It can also be shown that the necessary and sufficient condition for a doubly

differentiable function to be convex is that its Hessian matrix is positive semidefinite
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Fig. A.5 Geometrical interpretation of the convexity of a differentiable function

over the whole set of definition S:

xT H (x∗)x ≤ 0 ∀x,x∗ ∈ S (A.1.18)

If the inequalities (A.1.15), (A.1.16), and (A.1.17) and (A.1.18) hold with the

sign of strict inequality, the function is said to be strictly convex.

A function f (x) given by a linear combination with positive coefficients of con-

vex functions f i(x) is convex:

f (x) =
∑

i

µif
i(x) µi > 0

It is also strictly convex if at least one of the component functions is strictly convex.

The function f (x) is said to be (strictly) concave if −f (x) is (strictly) convex.

In this case f (x) verifies (A.1.15) through (A.1.18) with the inequalities inverted.

A linear function is both convex and concave because (A.1.15) holds with the sign

of equality.

A.2 Solution Algorithms

A mathematical problem with a solution given by a vector x∗ ∈ S is termed solvable

in closed form if there is a relationship allowing the calculation of the solution (or

solutions) of the problem as a function of the parameters of the problem itself.

Consider, for example, the problem of searching for the null points of a func-

tion f (x) in the set S, that is, the problem of solving the equation f (x) = 0, with
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the condition that the solutions belong to the set S. In the case of a second-order

polynomial function, ax2 + bx + c, the null points are a solution to the equation:

ax2 + bx + c = 0. The equation is known to have two solutions x1 and x2 (real or

conjugate complex) within E, which can be calculated in closed form by means of

the formula: x1,2 = (−b ± (b2 − 4ac)1/2)/(2a); then it can be verified whether any

of them belongs to set S.

More in general, when a closed-form solution cannot be found, recursive equa-

tions generating a succession of points {x1, . . . ,xk,xk+1, . . .} are adopted; that is,

xk+1 = ϕ(xk) (A.2.1)

Equation (A.2.1) defines an algorithm solving the problem, if the recursive equation

stops in the solution being sought x∗:

x∗ = ϕ(x∗)

and vice versa if it is found that the point at which the equation stops x∗ = ϕ(x∗) is

the solution sought.

An algorithm is said to be feasible if all the elements of the succession belong

to the set of feasible solutions, xk ∈ S. An algorithm is finitely convergent if it can

be demonstrated that there is a finite number n such that xn = x∗ (a closed form

solution therefore is an algorithm convergent in one step). A resolutive algorithm is

said to be asymptotically convergent if it can be demonstrated that the succession

of points converges to the solution sought: that is, limk→∞ xk = x∗. If no form of

convergence can be demonstrated, the issue remains open and the algorithm is to be

considered heuristic, as the algorithms for which nonconvergence can be proven (at

least for some instances of the problem).

A.3 Fixed-Point Problems

Let ψ(x) be an n-vectorial function of a vector x defined in a set S ⊆ En, with

values in the set T = ψ(S) = {ψ(x) : x ∈ S} ⊆ En; the point x∗ ∈ S is called a

fixed-point if the function has a value equal to the argument (see Fig. A.6):

x∗ = ψ(x∗) x∗ ∈ S (A.3.1)

(Note that specifying a solution algorithm for any mathematical problem based on

the recursive equation (A.2.1) is equivalent to defining a function ϕ(x) having as

its fixed-point the solution of the mathematical problem under study.) Fixed-point

problems, found in various branches of engineering and economics, can easily be

related to nonlinear systems of equations (and vice versa):

x∗ − ψ(x∗) = 0 x∗ ∈ S
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Fig. A.6 Simple and compound fixed-points

A particularly interesting case of the fixed-point problem, called the compound

fixed-point problem, is identified in the search for equilibrium configurations be-

tween two vectors, x ∈ Sx ⊆ En and y ∈ Sy ⊆ Em (also with n 
= m) which recip-

rocally influence each other (see Fig. A.6b); that is:

{

y∗ = η(x∗) x∗ ∈ Sx y∗ ∈ Sy

x∗ = ρ(y∗) y∗ ∈ Sy x∗ ∈ Sx

(A.3.2)

In fact, by combining the previous relationships, a compound fixed-point problem

in the variable x is obtained:

x∗ = ρ
(

η(x∗)
)

x∗ ∈ Sx (A.3.3a)

with η(Sx) ⊆ Sy and ρ(η(Sx)) ⊆ Sx . Similarly, an equivalent1 fixed-point problem

in the variable y can be defined:

y∗ = η
(

ρ(y∗)
)

y∗ ∈ Sy (A.3.3b)

with ρ(Sy) ⊆ Sx and η(ρ(Sy)) ⊆ Sy .

The properties of the nonlinear equations system (A.3.2) or of each of the two

compound fixed-point problems (A.3.3a) and (A.3.3b) depend on the characteristics

of the two functions involved, y = η(x) and x = ρ(y), and on the sets of definition

of the variables, Sx and Sy .

1Two mathematical problems are said to be equivalent if the solutions of one problem are also

solutions of the other and vice versa. In this case, analysis of the theoretical properties of the solu-

tions such as their existence and uniqueness, and the convergence analysis of resolutive algorithms

can be carried out for only one of the two problems.
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A.3.1 Properties of Fixed-Points

Sufficient conditions for the existence and uniqueness of the solution of a fixed-

point problem are given by the well-known Banach’s theorem2 which also allows

the specification of an asymptotically convergent resolutive algorithm; only a re-

stricted class of functions, however, satisfies these conditions. What follows, there-

fore, describes weaker conditions (some of these conditions can be extended with

some mathematical complications).

Sufficient conditions for the existence of at least one solution of the fixed-point

problem (A.3.1), that is, for the existence of at least one fixed-point of a function,

are given by Brouwer’s theorem stated below.

Brouwer’s theorem The fixed-point problem (A.3.1) has at least one solution; that

is, the function ψ(x) defined in the set S ⊆ En with values in the set T = ψ(S) ⊆ En

has at least one fixed-point if:

T is a subset of S,T ⊆ S, i.e. ψ(x) ∈ S ∀x ∈ S

S is a nonempty compact and convex set

ψ(x) is a continuous function

Application of Brouwer’s theorem to compound fixed-point problems, such as

that defined by (A.3.3a), requires both the functions η(x) and ρ(y) to be continuous,

the definition set to be a nonempty, compact, and convex set, and Sx ⊆ ρ(η(Sx));

that is, ρ(η(x)) ∈ Sx ∀x ∈ Sx .

A graphic illustration of the relevance of some of the assumptions of Brouwer’s

theorem is given in Fig. A.7, for a simple case.

Sufficient conditions for the uniqueness of the solution of the fixed-point problem

(A.3.1), that is, for the existence of at most one fixed-point of a function, are given

by the simple theorem described below.

Theorem The fixed-point problem (A.3.1) has at most one solution; that is, the

function defined in the set ψ(x) with values in the set S ⊆ En has at most one fixed-

point, if T = ψ(x) ⊆ En, and ψ(x) is a monotone nonincreasing3 function, over

the whole set S:

(

ψ(x′) − ψ(x′′)
)T

(x′ − x′′) ≤ 0 ∀x′,x′′ ∈ S

In fact, if there existed two different fixed-point vectors, x∗
1 
= x∗

2 , that is, x∗
1 =

ψ(x∗
1) ∈ S,x∗

2 = ψ(x∗
2) ∈ S for the monotonicity of the function ψ(x), it would

2Banach’s theorem requires the function ψ(x), defined over S with values in T ⊆ S, to be a con-

traction (implying monotonicity) over a complete set (a weaker property than that of compactness),

or that the function ψ(x) is a quasi-contraction (implying monotonicity) over a compact set. Note

that in both cases the function is continuous.

3In general, it is sufficient to have: (ψ(x ′) − ψ(x ′′))T (x ′ − x′′) < (x′ − x′′)T (x′ − x′′) ∀x′ 
=

x′′ ∈ S.
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Fig. A.7 Illustration of the assumptions of Brouwer’s theorem

follow that

∥

∥

(

x∗
1 − x∗

2

)
∥

∥

2
=

(

x∗
1 − x∗

2

)T (

x∗
1 − x∗

2

)

≤ 0

In contradiction to the condition ‖(x∗
1 − x∗

2)‖
2 > 0 for any x∗

1 
= x∗
2 .

Uniqueness conditions can be extended to compound fixed-point problems, such

as that defined by (A.3.3a), in the case of two monotone functions in the opposite

direction (and at least one of the two strictly monotone), as shown in the theorem

described below.
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Theorem The compound fixed-point problem (A.3.3a) has at most one solution, i.e.

the compound function ψ(x) = ρ(η(x)) defined in the set Sx ⊆ En with η(Sx) ⊆ Sy

and ρ(η(Sx)) ⊆ Sx , has at most one fixed-point if the two functions ρ(.) and η(.)

are monotone in the opposite direction. For example:

y = η(x) is a strictly increasing function; that is,

(

η(x′) − η(x′′)
)T

(x′ − x′′) > 0 ∀x′ 
= x′′ ∈ Sx

x = ρ(y) is a nonincreasing function; that is,

(

ρ(y′) − ρ(y′′)
)T

(y ′ − y′′) ≤ 0 ∀y′,y′′ ∈ η(Sx)

In fact, if there existed two different fixed-point vectors, x∗
1 
= x∗

2 , that is, x∗
1 =

ρ(η(x∗
1)) and x∗

2 = ρ(η(x∗
2)), denoted y∗

1 = η(x∗
1) and y∗

2 = ρ(x∗
2), from which

x∗
1 = ρ(y∗

1) and x∗
2 = ρ(y∗

2), for the monotonicity of the function ρ(y) it would

follow that

(

x∗
1 − x∗

2

)T (

y∗
1 − y∗

2

)

=
(

ρ
(

y∗
1

)

− ρ
(

y∗
2

))T (

y∗
1 − y∗

2

)

≤ 0

In contradiction to the monotonicity of function η(x), for x∗
1 
= x∗

2:

(

η
(

x∗
1

)

− η
(

x∗
2

))T (

x∗
1 − x∗

2

)

=
(

y∗
1 − y∗

2

)T (

x∗
1 − x∗

2

)

> 0

A.3.2 Solution Algorithms for Fixed-Point Problems

In general, solution algorithms for solving fixed-point problems are more recent and

less developed than those for optimization problems, described in the next section.

Algorithms for fixed-point problems (A.3.1) are usually based on the explicit

calculation of the Jacobian of the function ψ(x), and eventually on the calculation

of its eigenvalues, or an estimate of them. This approach is generally difficult to

apply to large-scale problems; for this reason what follows describes some solution

algorithms whose application requires only the calculation of the function ψ(x). In

particular, given a sequence {µk}k>0 satisfying the condition:

∑

k>0

µk = ∞,
∑

k>0

µ2
k < ∞ (A.3.4)

an algorithm for the solution of a fixed-point problem can be specified by the fol-

lowing recursive equation,

xk+1 = xk + µk

(

ψ(xk) − xk
)

that is, xk+1 = (1 − µk)x
k + µkψ(xk) (A.3.5)

with x1 ∈ S.
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By using Blum’s theorem (not reported here because of its complexity), it can

be demonstrated that if the function ψ(x) has a unique fixed-point x∗ = η(x∗);

the relationship (A.3.5) defines a sequence convergent4 to the fixed-point x∗. That

is, limk→∞ xk = x∗, if the function ψ(x) is continuous and monotone nonincreas-

ing and the set S is nonempty, compact, and convex (as required by the sufficient

conditions of existence and uniqueness). From a practical point of view, the algo-

rithm is stopped when xk ∼= ψ(xk), for example, when a norm value of the vector

of components (xk
i − ψi(x

k))/xk
i is lower than a pre-assigned threshold. Stop tests

based on the distance between values of the vector x, between successive iterations

(i.e., xk+1 ∼= xk) are to be avoided because this difference tends to zero because

of the structure of the algorithm, regardless of the proximity to the solution of the

fixed-point problem.

If the sequence {µk}k>0 also satisfies the condition

µk ∈ (0,1) (A.3.6)

the elements of the sequence generated by the relationship (A.3.5) belong to the

set S,xk ∈ S,S being convex. This property is especially useful in practical terms

because it provides a feasible solution to the problem at whatever iteration the algo-

rithm stops.

The sequence with the largest elements satisfying both conditions (A.3.4) and

(A.3.6) is given by {µk = 1/k}k>0. In this case the relationship (A.3.5) leads to the

so-called Method of Successive Averages or MSA:

xk+1 = xk + (1/k)
(

ψ(xk) − xk
)

∈ S (A.3.7)

that is,

xk+1 =
(

(k − 1)xk + ψ(xk)
)

/k ∈ S

with x1 ∈ S.

The above observations can also be applied to the compound fixed-point problem

(A.3.3a). In this case the relationship (A.3.5) becomes:

xk+1 = xk + µk

[

ρ
(

η(xk)
)

− xk
]

(A.3.8)

with x1 ∈ Sx .

If the function x = ρ(y) is continuous and monotone nonincreasing, the function

y = η(x) is continuous and strictly monotone increasing, and the set S is nonempty,

compact, and convex and the compound function ρ(η(x)) has a unique fixed-point

x∗ = ρ(η(x∗)) (according to the sufficient conditions of existence and uniqueness).

In this case by using Blum’s theorem, it can be demonstrated that the relationship

(A.3.8) defines a sequence convergent to the fixed-point x∗ and if the function y =

η(x) has a symmetrical and continuous Jacobian.

4If the function ψ(x) is the realization of a random variable, and an unbiased estimate of its value is

available, convergence is almost certain. (This is the most general of the cases originally analyzed

in Blum’s theorem.)
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A.4 Optimization Problems

Optimal points x∗ of a scalar function of a vector f (x) are the points corresponding

to minimum or maximum values of the function. For simplicity, what follows makes

reference only to minimum points.5 Formally, let f (x) be a scalar function defined

in a set S ⊆ En; the point x∗ is called a local minimum point of the function if there

is a neighborhood Nδ(x
∗) of radius δ such that the following condition holds.

f (x) ≥ f (x∗) ∀x 
= x∗, x ∈ Nδ(x
∗)

If this condition holds for all the points of S, point x∗ is called a global minimum

point of the function f (x) over S. In general, a continuous function f (x) over a

compact set S always has at least one global minimum point. A function with a

unique minimum point is termed unimodal; an example of this kind of function is

given by the strictly convex functions defined previously.

The problem of the search for the minimum points x∗ of a function is called a

minimum or minimization problem, f (x) the objective function, and S the feasibil-

ity set. The minimization problem is formally expressed as:

x∗ = argminf (x) (A.4.1)

x ∈ S

Minimization problems and fixed-point problems are related to each other. In-

deed, the fixed-point problem (A.3.1) defined by the function ψ(x) is equivalent

to a minimum problem defined by the objective function with nonnegative values

f (x) = (ψ(x) − x)T (ψ(x) − x), f (x) being 0 if and only if ψ(x) − x = 0.

The definition of local and global minimum points cannot be used in the search

for such points inasmuch as it would require the calculation of f (x) over all the

points in S and comparison of their values. It is therefore essential to find necessary

and/or sufficient conditions for the minimum points expressed in terms of “local”

properties of the function. Such conditions are reported in the following by differ-

entiating the case in which the minimum point is interior to an open set and that in

which it may be on the boundary of a closed set.

A.4.1 Properties of Minimum Points

A.4.1.1 Properties of Minimum Points on Open Sets

A necessary condition for which point x∗ is a local minimum for the differentiable

function f (x) defined in an open set S is that it is a point of stationarity of the objec-

tive function, that is, that in x∗ we have ∇f (x∗) = 0. In fact, if x∗ is a point interior

5The results reported and the algorithms described can easily be extended to maximum points,

bearing in mind that the maximum points of a function correspond to the minimum points of the

opposite function −f (x).
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to S, any direction is feasible. Furthermore, because x∗ is a local minimum point,

the directional derivative calculated in x∗ must be nonnegative for any direction:

∇f (x∗)T h ≥ 0 ∀h (A.4.2)

Because −∇f (x∗) is a feasible direction, the condition (A.4.2) holds only if the

gradient is null.

Note that the nullity of the gradient in x∗ is only a necessary condition for x∗ to

be a local minimum point. In particular, local maximum points also satisfy the same

condition.

If x∗ is a point of stationarity of the continuous and second-order differentiable

function f (x), with continuous first and second derivatives, the sufficient condition

for x∗ to be a local minimum is that the Hessian matrix in x∗ is positive semidefinite.

In fact, applying Taylor’s second-order formula (A.1.12), it follows that

f (x) = f (x∗) + 1/2(x − x∗)T H f (x◦)(x − x∗) (A.4.3)

where x◦ is a point of the segment (x,x∗). If H f (x) is positive definite for the

sign permanence theorem, a neighborhood of x∗,Nδ(x
∗), can be found such that

H f (x) is positive definite at all points within this neighborhood. If x belongs to

this neighborhood, all the points of the segment (x,x∗) belong to it and so does x◦.

From this it follows that

1/2(x − x∗)T H f (x◦)(x − x∗) ≥ 0 ⇒ f (x) ≥ f (x∗) ∀x ∈ Nδ(x) (A.4.4)

If the function f (x) is convex, the Hessian matrix is positive semidefinite in

all S and from (A.4.4) it follows that the nullity of the gradient is a necessary and

sufficient condition for x∗ being a global minimum point. The minimum points of

a convex function make up a convex set. Furthermore, if the function is strictly

convex, a point of stationarity is also the unique global minimum point.

A.4.1.2 Properties of Minimum Points on Closed Sets

In general, the closed set S is defined by equality and/or inequality relationships,

known as constraints. The case of m inequalities constraints is discussed below.

Equality constraints can be reduced to two inequalities: gi(r) = 0 is equivalent to

gi(x) ≤ 0 and −gi(x) ≤ 0 or used to reduce the number of variables:

S ≡
{

x : gi(x) ≤ 0 i = 1,2, . . . ,m
}

Using the m-vectorial function of vector g(x), the constraints can be expressed as

g(x) ≤ 0

With this notation the optimization problem can formally be expressed as

minf (x)

g(x) ≤ 0
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Unlike the previous case, the minimum point might lie on the boundary of the

set S. In this case, not all directions are feasible; in particular, the gradient may not

be a feasible direction and the stationarity of the function in x∗ does not have to be

verified by a minimum point.

Denoting D(x∗), the set of feasible directions at the minimum point x∗, because

of the results (A.1.7) and (A.1.8) on directional derivatives, the function must have

nonnegative directional derivatives in x∗ for all the feasible directions:

∇f (x∗)T h ≥ 0 ∀h ∈ D(x∗) (A.4.5a)

If the set S is convex and x is a point belonging to S, the direction (x − x∗) is

feasible by definition and (A.4.5a) becomes:

∇f (x∗)T (x − x∗) ≥ 0 ∀x ∈ S (A.4.5b)

In general the two conditions (A.4.5a) or (A.4.5b) are only necessary for point x∗

to be the minimum.

They are also sufficient if the objective function f (x) is convex. Also in this case

the minimum points of a convex function make up a convex set. In the case of a

strictly convex function, there is a unique minimum point.

A.4.2 Solution Algorithms for Optimization Problems

This section describes some solution algorithms for particular optimization prob-

lems which have been mentioned in previous chapters.

A.4.2.1 Monodimensional Optimization Algorithms

These algorithms solve the problem of finding the minimum of a function f (θ) of

a scalar variable θ . If the value θ of minimizing f (θ) in the interval (θmin, θmax)

is indicated by θ∗, the monodimensional optimization problem can be expressed as

follows.

θ∗ = argmin
θmin≤θ≤θmax

f (θ) (A.4.6)

In practice, the problem (A.4.6) is rarely solved as such. However, it is an ele-

ment common to many solution algorithms for more complex problems because, as

shown, it allows us to obtain the minimum of a vector function along a direction h

starting from a point x∗. In this case, the points of the straight line passing from x∗

oriented as the vector h are expressed as x∗ + θh and as θ varies, the points of the

whole straight-line (−∞ < θ < +∞) or of the half-line concordant with h (θ > 0)

are described (see Sect. A.1.1).
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Fig. A.8 Uniform search algorithm

Fig. A.9 Illustration of the golden section algorithm

The most straightforward algorithm solving the problem (A.4.6) is the “uniform

search.” The interval θmin, θmax, is subdivided into subintervals of equal widths δ

with extremes at the “grid points” θ1 = θmin, θ2, . . . , θn = θmax; the objective func-

tion is evaluated in each of the n points θk and θ∗ is the point corresponding to the

lowest value of the function (Fig. A.8). If the function is convex, the actual minimum

point lies in the interval θ∗ ± δ.

More efficient algorithms for convex functions are based on the principle of

“reduction of the uncertainty interval.” At each iteration, an interval of extremes

(ak, bk) is obtained which includes the minimum of the function, called the interval

of uncertainty. The width of this interval is reduced at each iteration.

In the following, the main steps of one such algorithm, known as the “method

of the golden section,” is described. The name derives from its use of the property

of the golden section of a segment to recompute the value of the f (θ) only once at

each iteration (see Fig. A.9). The algorithm is asymptotically convergent if f (.) is a

convex function (even in a weaker sense than that described in Sect. A.1.3).
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Golden Section Algorithm

(k is just the counter of iterations, irrelevant for computation)

The maximum width ε, allowed for the uncertainty interval is chosen.

The extremes of the initial interval are set:

a1 = θminb1 = θmax

This gives the points:

α1 = a1 + 0.382(b1 − a1) and β1 = a1 + 0.618(b1 − a1)

The values of the function f (α1) and f (β1) are calculated.

WHILE (bk − ak) > ε

IF f (αk) is greater than f (βk) (Case 2 in Fig. A.9) THEN

Let ak+1 = αk and bk+1 = bk .

By definition of the golden section, we have

αk+1 = βk, f (αk+1) = f (βk), and βk+1 = ak+1 + 0.618(bk+1 − ak+1).

Compute f (βk+1).

OTHERWISE (Case 1 in Fig. A.9)

Let ak+1 = ak and bk+1 = βk .

By definition of the golden section, we have

βk+1 = αk, f (βk+1) = f (αk) and αk+1 = ak+1 + 0.382(bk+1 − ak+1).

Compute f (αk+1).

END

END

The solution of the problem is θ∗ = ak+bk

2

As an example, Fig. A.10 reports the relevant variables of the golden section

method for the following problem,

min
−3≤θ≤5

(θ2 + 2θ)

with stop threshold ε = 0.2.

The algorithms discussed thus far are based exclusively on evaluations of the

objective function in different points without using derivatives. If the function is

differentiable, and especially if its derivative f ′(θ) is easily calculated, algorithms

exploiting the “information” contained in the derivative can be used to solve the

problem (A.4.6). The main steps of the bisection algorithm which halves the uncer-

tainty interval at each iteration on the basis of the value assumed by the derivative at
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k ak bk αk βk f (αk) f (βk) ε

1 −3.00 5.00 −0.104 2.104 −0.197184 8.634816 8.00

2 −3.00 2.10 −1.152 −0.104 −0.976789 −0.197184 5.10

3 −3.00 −0.10 −1.952 −1.152 −0.094366 −0.976789 2.90

4 −1.95 −0.10 −1.152 −0.773 −0.976789 −0.948402 1.85

5 −1.95 −0.77 −1.525 −1.152 −0.724456 −0.976789 1.18

6 −1.52 −0.77 −1.152 −1.045 −0.976789 −0.997966 0.75

7 −1.15 −0.77 −1.045 −0.910 −0.997966 −0.991941 0.38

8 −1.15 −0.91 −1.065 −1.045 −0.995813 −0.997966 0.24

9 −1.06 −0.91 −1.045 −0.966 −0.997966 −0.998854 0.15

10 −1.05 −0.91 −0.966 −0.959 −0.998854 −0.998323 0.13

11 −1.05 −0.96 −1.014 −0.966 −0.999805 −0.998854 0.09

12 −1.05 −0.97 −1.017 −1.014 −0.999727 −0.999805 0.08

13 −1.02 −0.97 −1.014 −0.984 −0.999805 −0.999756 0.05

14 −1.02 −0.98 −1.005 −1.014 −0.999976 −0.999805 0.03

15 −1.02 −1.01 −1.016 −1.005 −0.999757 −0.999976 0.00

Fig. A.10 Relevant variables of the golden section algorithm

the midpoint of the current uncertainty interval are described below. The algorithm

is asymptotically convergent if the function f (θ) is convex (also in a weaker sense

than that introduced in Sect. A.1.3).

Bisection Algorithm

(k is just the counter of iterations, irrelevant for computation)

The maximum width ε, allowed for the uncertainty interval is chosen.

If the function is convex, the condition f ′(θmin) ≥ 0 implies that θmin is a minimum

point; analogously f ′(θmax) ≤ 0 implies that θmax is a minimum point. Otherwise,

the extremes of the initial interval are set:

a1 = θmin, b1 = θmax

REPEAT

The derivative f ′(θk) is calculated at the midpoint of the uncertainty interval

θk = 1/2(ak + bk).

IF f ′(θk) = 0 THEN

ak+1 = bk+1 = θk

OTHERWISE

IF f ′(θk) > 0 THEN

Let ak+1 = ak, bk+1 = θk

OTHERWISE f ′(θk) < 0

Let ak+1 = θk , bk+1 = bk

END
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END

UNTIL bk+1 − ak+1 < ε

The solution of the problem is θ∗ =
ak+1+bk+1

2

k ak bk θk f (θk) f ′(θk) ε

1 −3.00 5.00 1.00 3.00 4.00 8.00

2 −3.00 1.00 −1.00 −1.00 0.00 4.00

3 −1.00 1.00 0.00 0.00 2.00 2.00

4 −1.00 0.00 −0.50 −0.75 1.00 1.00

5 −1.00 −0.50 −0.75 −0.94 0.50 0.50

6 −1.00 −0.75 −0.88 −0.98 0.25 0.25

7 −1.00 −0.88 −0.94 −1.00 0.13 0.13

8 −1.00 −0.94 −0.97 −1.00 0.06 0.06

9 −1.00 −0.97 −0.98 −1.00 0.03 0.03

10 −1.00 −0.98 −0.99 −1.00 0.02 0.02

11 −1.00 −0.99 −1.00 −1.00 0.01 0.01

Fig. A.11 Illustration of the bisection algorithm

Figure A.11 illustrates the bisection algorithm for the previous problem.

A.4.2.2 Unconstrained Multidimensional Optimization Algorithms

The unconstrained multidimensional optimization problem:

x∗ = argminf (x)

x ∈ En
(A.4.7)

can be solved by using different algorithms, some of which are based exclusively on

the calculation of the values of the objective function, others on the use of first and

second-order derivatives.
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A brief description of some descent direction algorithms follows. These algo-

rithms make use of the results described in Sect. A.1 and, at each iteration k, search

for the minimum of the function f (x) along a direction of negative directional

derivative hk (linear minimization). The algorithms converge towards a null gra-

dient point (stationarity point) of the function f (x); they converge towards a global

minimum point if the objective function is convex. The simplest of such algorithms,

known as the gradient algorithm, assumes the opposite of the gradient as the descent

direction. The main steps of the algorithm are given below.

Gradient Algorithm

(k is just the counter of iterations, irrelevant for computation)

The stop parameter ε is fixed. This can be either the maximum gradient module or

the maximum deviation between the values of f (x) in two successive iterations.

An initial point x1 is chosen.

REPEAT

Calculation of the search direction

hk = −∇f (xk)

Monodimensional search. The value of the parameter θ minimizing the function

of a single variable f (xk + θhk) is sought

θk = argmin0≤θ≤θ∗ f (xk + θhk)

where θ∗ is a prefixed, large enough value. The line search can be carried out by

using one of the algorithms described in the previous section.

Calculation of the next point as

xk+1 = xk + θkhk

UNTIL

The module of the function gradient in xk+1 is less than the stop threshold:

‖∇f (xk+1)‖ < ε

or the relative difference of two successive values of the objective function is less

than the stop threshold:

[f (xk)−f (xk+1)]

f (xk)
< ε

Figure A.12 describes an application of the gradient algorithm to the minimiza-

tion of the function:

f = (x1 − 2)4 + (x1 − 2x2)
2

with stop parameter ε = 0.10.
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k xk f (xk) ∇f (xk) ‖∇f (xk)‖ hk = −∇f (xk) θk xk+1

1 (0.00,3.00) (−44.00,24.00) 50.12 (44.00,−24.00) 0.062 (2.70,1.51)

52.00

2 (2.70,1.51) (0.73,1.28) 1.47 (−0.73,−1.28) 0.24 (2.52,1.20)

0.34

3 (2.52,1.20) (0.80,−0.48) 0.93 (−0.80,0.48) 0.11 (2.43,1.25)

0.09

4 (2.43,1.25) (0.18,0.28) 0.33 (−0.18,−0.28) 0.31 (2.37,1.16)

0.04

5 (2.37,1.16) (0.30,−0.20) 0.36 (−0.30,0.20) 0.12 (2.33,1.18)

0.02

6 (2.33,1.18) (0.08,0.12) 0.14 (−0.08,−0.12) 0.36 (2.30,1.14)

0.01

7 (2.30,1.14) (0.15,−0.08) 0.17 (−0.15,0.08) 0.13 (2.28,1.15)

0.009

8 (2.28,1.15) (0.05,0.08) 0.09

0.007

Fig. A.12 Graphic representation and relevant variables for an application of the gradient algo-

rithm

This figure shows a typical characteristic of the gradient algorithm: in the first

iterations a rapid decrease in the objective function is observed, whereas successive

iterations show smaller reductions and zigzagging towards the optimum value. The

problem (A.4.7) can be solved with other algorithms whose structure is similar to

that described above, apart from the calculation of the descent direction hk . These

algorithms, in order to accelerate convergence, use directions obtained by “deflect-

ing” the gradient and for this reason they are denoted “deflected gradient.”
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Fletcher and Reevers’ conjugate gradient algorithm deflects the opposite gradient

at each iteration, adding a positive multiple of the direction used in the previous

iteration. In the case of quadratic objective function (f (x) = xT Hx), this algorithm

generates a series of conjugate directions (from which it derives its name) with

respect to the matrix H , and converges at the optimum point in a finite number of

iterations equal to the number of components of x. In the general case, it usually

converges more quickly than the gradient algorithm, and in particular solves the

zigzagging problems in proximity of the minimum point typical of the gradient.

The description of the conjugate gradient algorithm is basically similar to that

of the gradient algorithm. The only difference lies in the calculation of the descent

direction which is substituted as follows.

hk = −∇f (xk) + αkh
k−1 with αk =

‖∇f (xk)‖2

‖∇f (xk−1)‖2

A.4.2.3 Bounded Variables Multidimensional Optimization Algorithms

The problem of minimizing the objective function, imposing constraints on the

lower and/or upper bounds of the components of the vector x is slightly more com-

plex than that of unconstrained optimization (A.4.8). In this case the constraint gi(x)

can be written as

xi ≥ ci and/or xi ≤ ci

The variables xi can be easily modified so that the constraints are always ex-

pressed in the form xi ≥ 0. Therefore the problem of optimization with inequality

constraints can be formally expressed as

min
x≥0

f (x) (A.4.8)

The problem (A.4.8) can be solved by using a feasible directions algorithm sim-

ilar to those described previously. The main difference is that the descent direction

used for the unconstrained problem (A.4.7) (i.e., the opposite gradient) is not neces-

sarily a feasible direction with respect to the feasibility set defined by the constraints

of the problem. To solve this inconvenience when it occurs, the descent direction

can be “projected” over the feasibility set as in the projected gradient algorithm

described below.

Projected Gradient Algorithm

(k is just the counter of iterations, irrelevant for computation)

The stop parameter ε is fixed, a feasible initial point x1 is chosen (e.g., x1 = 0),

and the value of the objective function f (x1) is calculated.

REPEAT

Calculation of the search direction. The components of the direction hk are
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equal to the components of the gradient with changed sign if these components

are feasible (i.e., if xk
i is positive and/or the gradient component is negative).

Vice versa if the j th component of the gradient changed of sign is not feasible,

the corresponding component of hk
i is set at zero; this corresponds to the

projection of −∇f (xk) over the hyperplane perpendicular to the j th axis.

hk
i = −

∂f (xk)
∂xi

if xk
i > 0 and/or −

∂f (xk)
∂xi

≥ 0

hk
i = 0 otherwise

Monodimensional search. The minimum of the function f (xk + θhk) is searched

for in the interval [0, θ∗] where θ∗ is the maximum value allowing nonexit from

the feasibility set (i.e., ensuring the nonnegativity of all the components of xk+1):

θk = argmin0≤θ≤θ∗ f (xk + θhk)

with θ∗ = maxi
xk
i

−hk
i

for i : hk
i < 0, otherwise θ∗ = ∞

(Note that for hk
i < 0, xk

i > 0 must result because of previous step)

Calculation of the next point

xk+1 = xk + θkhk

UNTIL ‖hk‖ < ε

thus verifying the impossibility of any further move along the projected gradient

or heuristically, on the percentage decrease of the objective function in the last

two iterations:

|
f (xk+1)−f (xk)

f (xk)
| < ε

A.4.2.4 Linearly Constrained Multidimensional Optimization Algorithms

The problem of minimizing the objective function over a closed set defined by linear

inequality and/or equality constraints can be stated formally as

minf (x)

Ax ≤ a

Bx = b

(A.4.9)

This problem can be solved with different algorithms which differ in the way they

generate the “feasible descent direction” hk , that is, a direction along which it is

possible to move while reducing the objective function f (x) and remaining within

the set S defined by the constraints. A description of the Frank–Wolfe algorithm

follows which at each iteration generates the direction hk , minimizing a linear ap-

proximation of f (x).
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Also in this case it is possible to demonstrate that if f (x) is a convex function,

the algorithm converges to the solution of the problem (A.4.9).

Figure A.13 illustrates the application of the Frank–Wolfe algorithm to the fol-

lowing optimum problem.

minx2
1 + 2x2

2 − 2x1x2 − 10x2

0 ≤ x1 ≤ 4

0 ≤ x2 ≤ 6

with stop parameter ε = 0.10.

Frank–Wolfe Algorithm

(k is just the counter of iterations, irrelevant for computation)

The stop parameter ε is fixed; a feasible initial point x1 is chosen.

REPEAT

Generation of the feasible direction. The linear programming problem is solved:

yk = argmin∇f (xk)T y

Ay = a

By ≤ b

The problem is equivalent to the minimization of the linear approximation of

f (x) at point xk given by

fL(y) = f (xk) + ∇f (xk)T (y − xk)

once the constant terms are eliminated. This problem can be solved with the

simplex algorithm or one of its variants.6

The descent direction is hk = yk − xk

Monodimensional search. The linear minimum of the function

f (xk + θhk) is searched for:

θk = argmin0≤θ≤1 f (xk + θhk)

for θ in the interval [0,1]. Points xk and yk correspond to the extreme values

of θ ; because both are feasible by construction and the set S is convex, all the

points of the segment that joining them are feasible.

6The solution of problem introduced is generally one of the vertices of the set defined by the linear

equations and inequalities. Therefore the Frank–Wolfe algorithm can move only along directions

pointing to the vertices and presents zigzagging problems in proximity of the minimum similar to

those described for the gradient algorithm.
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Calculation of the next point

xk+1 = xk + θkhk

UNTIL ∇f (xk)T (xk+1 − xk) > −ε

or, more simply (but less effectively), |f (xk) − f (xk+1)|/f (xk) < ε.

A.5 Variational Inequality Problems

Let ϕ(x) be a vectorial function of a vector defined in a convex set S ⊆ En, with val-

ues in the set T = ϕ(S) = {ϕ(x) : x ∈ S} ⊆ En; the mathematical problem, called

variational inequality, with solution in the point x∗ ∈ S, is defined as

ϕ(x∗)T (x − x
∗) ≥ 0 ∀x ∈ S (A.5.1)

In other words, the problem of the variational inequality of a vectorial function of a

vector consists in the search for point x∗ at which the vector function ϕ(x∗) has a

nonnegative scalar product (i.e., angles ≤ π/2) with all the vectors joining point x∗

with every other point x of the set of definition S.

Variational inequality problems can be considered a generalization of minimiza-

tion problems, in particular of the conditions of virtual minimum (A.4.5b), because

the vectorial function of vector ϕ(x) is not required to be the gradient of a scalar

function of vector f (x). To show this, let us consider the generic minimization

problem:

x
∗ = argminf (x)

x ∈ S
(A.5.2)

If the function f (x) is differentiable, its gradient ∇f (x) is a vectorial function of

vector, and the virtual minimum conditions are given by

∇f (x∗)T (x − x
∗) ≥ 0 ∀x ∈ S (A.5.3)

It then results that the variational inequality (A.5.1) in the function ϕ(x) = ∇f (x)

coincides with the expression of the necessary minimum conditions of the prob-

lem (A.5.2). Furthermore, if the gradient ∇f (x) exists, the minimization problem

(A.5.2) can be reformulated as

x
∗ = argmin z(x) =

∫ x

0

∇f (t)T dt

x ∈ S

(A.5.4)
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k ∇f (xk) yk θk xk+1 f (xk+1) f (xk) − f (xk+1)

0 0.000

0.000

1 0.000 (4,6) 0.750 3.000 −22.500 22.500

−10.000 4.500

2 −3.000 (4,0) 0.119 3.119 −23.213 0.713

2.000 3.969

3 −1.700 (4,6) 0.206 3.301 −23.446 0.233

−0.362 4.385

4 −2.168 (4,0) 0.063 3.344 −23.622 0.176

0.938 4.111

5 −1.534 (4,6) 0.144 3.439 −23.728 0.106

−0.244 4.383

6 −1.888 (4,0) 0.045 3.464 −23.816 0.089

0.654 4.186

Fig. A.13 Graphic representation and significant variables for application of the Frank–Wolfe

algorithm
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On the other hand, given a vectorial function of vector ϕ(x) with symmetric Jaco-

bian Jac[ϕ(x)], a minimization problem can be defined:

x∗ = argminf (x) =

∫ x

0

ϕ(t)T dt

x ∈ S

(A.5.5)

In general, the value of the curvilinear integral appearing in (A.5.4) depends on the

integration path. However, if the Jacobian Jac[ϕ(x)] of the integrating function ϕ(x)

is symmetric, the value of the integral is independent of the integration path, being

the set of definition convex (Green’s theorem). In other words, if and only if the

integrating function ϕ(x) has symmetrical Jacobian, the former can be the gradient

of a function f (x), that is, ∇f (x) = ϕ(x), of which Jac[ϕ(x)] is the (symmetrical)

Hessian matrix. If the equivalent minimization problem (A.5.5) is correctly defined,

the necessary conditions of virtual minimum are given by

∇f (x∗)T (x − x∗) ≥ 0 ∀x ∈ S (A.5.6)

that is,

ϕ(x∗)T (x − x∗) ≥ 0 ∀x ∈ S

It can immediately be seen that the condition (A.5.6) is formally coincident with the

variational inequality (A.5.1).

If the function ϕ(x) is continuous and differentiable with symmetrical and semi-

definite positive Jacobian Jac[ϕ(x)], a vector x∗ solving the constrained optimiza-

tion model (A.5.5) solves the corresponding variational inequality (A.5.1) and vice

versa.

In this case, the objective function of the problem (A.5.5) f (x) is differentiable

with continuous gradient and continuous positive semidefinite Hessian matrix, be-

cause ∇f (x) = ϕ(x), and Hess[f (x)] = Jac[ϕ(x)]. Therefore f (x) is convex, and

so the conditions of virtual minimum (A.5.6) are necessary and sufficient.

A.5.1 Properties of Variational Inequalities

Sufficient conditions for the existence of at least one solution of the variational

inequality (A.5.1) can be obtained by applying Brouwer’s theorem, as follows.

Theorem The variational inequality problem (A.5.1) has at least one solution if :

S is a nonempty, compact and convex set

ϕ(x) is a continuous function

Sufficient conditions for the uniqueness of the variational inequality solution are

given by the following theorem.
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Theorem The variational inequality (A.5.1) has at most one solution if :

ϕ(x) is a strictly monotone increasing function; that is,

(

ϕ(x′) − ϕ(x′′)
)T

(x ′ − x′′) > 0 ∀x′,x′′ ∈ S

In fact, if there existed two different vectors solving the variational inequality,

x∗
1 
= x∗

2 ∈ S, we would have:

ϕ
(

x∗
1

)T (

x − x∗
1

)

≥ 0 ∀x ∈ Sx (A.5.7a)

ϕ
(

x∗
2

)T (

x − x∗
2

)

≥ 0 ∀x ∈ Sx (A.5.7b)

From (A.5.7a) for x = x∗
2:

ϕ
(

x∗
1

)T (

x∗
2 − x∗

1

)

≥ 0 (A.5.8a)

Furthermore, from (A.5.7a) for x = x∗
1 , it results that:

ϕ
(

x∗
2

)T (

x∗
1 − x∗

2

)

≥ 0 (A.5.8b)

that is,

−ϕ
(

x∗
2

)T (

x∗
2 − x∗

1

)

≥ 0

Adding (A.5.8a) and (A.5.8b), it would follow that:

(

ϕ
(

x∗
1

)

− ϕ
(

x∗
2

))T (

x∗
2 − x∗

1

)

≥ 0

that is,
(

ϕ
(

x∗
2

)

− ϕ
(

x∗
1

))T (

x∗
2 − x∗

1

)

≤ 0

which contradicts the monotonicity assumption.

A.5.2 Solution Algorithms for Variational Inequality Problems

Solution algorithms for the variational inequality problem (A.5.1), in the case of

the function ϕ(x) with symmetric Jacobian, are based on algorithms solving the

equivalent minimization problem (A.5.5) described in Sect. A.4.2. Note that in this

case the gradient ∇f (x) of the objective function of the minimization problem, used

by the algorithm, is given by the function ϕ(x) defining the variational inequality.

In the general case of a function ϕ(x) with nonsymmetric Jacobian, various so-

lution algorithms can be adopted; even though their convergence analysis usually

requires conditions that are not easily verifiable. One of the simplest, called the diag-

onalization algorithm, generates a succession of vectors xk , starting from a feasible
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point x0 ∈ S, solving a succession of variational inequalities defined by functions

with diagonal Jacobians approximating the problem (A.5.1). In particular, at a point

x∗ ∈ S, the ith component function ϕi(x) of the vectorial function ϕ(x), can be ap-

proximated by a function ϕ∗
i (xi) obtained by fixing all the other components of x at

their values x∗
j (i.e., by diagonalizing the Jacobian):

ϕi(x1, . . . , xi−1, xi, xi+1, . . .) ∼= ϕ∗
i

(

x∗
1 , . . . , x∗

i−1, xi, x
∗
i+1, . . .

)

= ϕ∗
i (xi) ∀i

Thus the variational inequality (A.5.1) can be approximated by a variational in-

equality defined by a function of ϕ∗(x) with diagonal Jacobian:

ϕ(x∗)T (x − x∗) ∼=
∑

i

ϕ∗
i (xi)

(

xi − x∗
i

)

≥ 0 ∀x ∈ Sx (A.5.9)

The solution of the approximate variational inequality (A.5.9) can be obtained

by solving the equivalent minimization problem (A.5.5), with one of the algorithms

described in Sect. A.4.2.
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additive _ 213, 350

additive and class specific _ 392

additive and generic _ 392

additive path _ 51, 200, 213

generalized transportation _ 50, 51, 61,

485

generalized transportation link _ 48

hyperpath additive _ 350

hyperpath nonadditive _ 350

link _ function 328

link _ vector 50

link-wise additive path _ 51, 267

linkwise nonadditive path _ 267

nonadditive _ 200, 214
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nonadditive path _ 53, 200, 213

path _ vector 53, 274

reference _ 392

transportation _ 50, 54, 186, 190, 237

Cost function(s)

_ vector 54

Ackcelik _ 78

BPR _ 64

extraurban _ 66

hyperbolic _ 67

intersection _ 69, 80

link _ 53, 61, 83, 438, 447

parking link _ 81

toll-barrier _ 67

urban road _ 66

Webster _ 77

Critical density 34, 504

Critical speed 34

Cross elasticity see Elasticity

Cross nested logit model 115

Cumulative flows 497

Cycle length 71

Decision-making process 20

Decision-maker (rational) 90

Delay

_ for signalized intersections 77

deterministic _ functions 42, 69

overall _ models 77

queueing _ see Queueing

schedule _ see Schedule delay

stochastic _ 68, 77

stochastic _ models 76

total _ 42

Demand

_ estimation see Estimation

_ model(s) see Travel demand model(s)

see Logit model(s)

see Probit model(s)

_ temporal variation see Temporal

variations of Travel Demand

intermediate _ 243

Demand-driven 244

Density

jam _ 34

Departure curve 39

Destination choice model see Distribution

model

Deterministic choice model

_ (mathematical properties) 137

Deterministic process model 403

Diagonalization algorithm 328

Dial algorithm 297

Distribution model(s) 173, 185

Diversions 471

Diversion probability 210

Driving license holding model 215, 217

Dynamic(s)

_ demand-supply interaction models

455, 489, 495

_ supply models 423

_ user equilibrium 466

day-to-day _ 260, 396

within-day _ 421

Dynamic Network Loading (DNL) 425, 439,

449, 466

continuous models 439

discrete models 449

Dynamic Traffic Assignment (DTA) 422, 464

Dynamic User Equilibrium 466

Dynamic process 260

Economic

_ activity sectors 242

_ analysis 622

_ impacts 624

Elastic demand see Demand

Elasticity

_ of hierarchical logit models 146

_ of Logit models 144

_ of random utility models 143

cross _ 144

direct _ 143

link _ 144

point _ 144

Elastic trade coefficients 248

ELECTRE methods 673

Elementary destination 189

En-route choice behavior 209

Environmental impacts 624

Ergodic 412

Estimation

_ of demand variations (forecasting) 584

_ of within-period dynamic demand flows

using traffic counts 574

_ of O-D demand flows using traffic

counts 549

_ of travel demand flows 513
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direct _ of present demand 514

disaggregate _ of demand

models 520, 534

real time _ and prediction of within-

period dynamic demand flows

using traffic counts 580

Estimator(s)

Bayesian _ 560

Generalized Least Squares (GLS) _ 555

Maximum Likelihood (ML) _ 555

Non Linear Generalized Least Squares

(NLGLS) _ 571

sampling _ 516

sequential _ 579

simultaneous _ 578

within-period dynamic _ of O-D demand

flows using traffic counts 578

Expected Maximum Perceived Utility

(EMPU) 132

_ in hierarchical logit models 102, 108

_ in logit models 97

Explicit path enumeration see Path choice

Factor Analytic Probit 124

Factorial Design

fractional _ 543

full _ 540

FIFO 43

_ condition 431

Financial analysis 622

Fixed point problems 691

properties of _ 693

solution algorithms for _ 695

stability regions of a _ state 410

Feasibility studies 25

Feasible path and link flow sets 274

Fixed-point formulation 477

Flow(s) 15, 31, 46

_ conservation 31

attracted _ 15

equivalent _ 53

exit _ 473

generated _ 15

hypercritical _ 503

hypocritical _ 503

link _ 46, 427

link _ vector 268

path _ 48

path _ vector 48, 55

relationship between link _ and path _

48, 267

relationship between stochastic and

deterministic equilibrium _ 329

saturation _ 71

user _ 86

vehicle _ 29

Fluid approximation 38

Forward

_ shortest paths 287

_ tree 288

Free-flow speed 34, 504

Freight transportation demand model

238

Frequency

cumulated _ 85

Fundamental diagram of traffic

flow 34, 503

Game theory 589

Nash game 590

Stackelberg game 589

General flow conservation equation 31

Generalized Extreme Value (GEV) 118

Generalized least squares estimators see

Estimators

GHK method 127

Graph 45, 59

_ model(s) 59

access _ 83

diachronic _ 82, 483

line _ 83

line-based graph models 83

run _ 82

transportation _ 58

Gravity model see Travel demand model

Greenberg’s model 35

Greenshield’s model 36

Gumbel random variable 161

Headway(s) 30

Hyperpath(s) 210

_ additive cost(s) 213, 350

_ choice map 353

_ choice probability 214, 352

_ nonadditive cost(s) 213, 350

composit _ 210

shortest _ algorithms 357

simple _ 210
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Impact(s) 54, 623

_ function 55

_ indicators 626

economic _ 625

environmental _ 625

land use _ 625

social _ 625

Implicit Availability Perception (IAP)

models 141

Implicit path enumeration see Path choice

Inclusive variables see Expected Maximum

Perceived Utility (EMPU)

Independence from Irrelevant

Alternatives (IIA) 99

Inflow

cumulative_ 476

Information

descriptive vs. prescriptive _ 464

historical _ 466

predictive _ 464

pre-trip vs. en-route 466

real-time 466

Internal Return Rate (IRR) 645

Intersection(s)

_ link 69

priority _ 80

signalized _ see Signalized

intersection(s)

Interzonal trips 6

Intraperiod dynamics 421

Intraperiod stationarity 48

Intrazonal trips 6

Inverse of the exit time function 429

Jam density 34, 504

Journey

_ demand models see Trip chaining

models

_ frequency model 225

_ type choice model 226

Kalman filter 580

Kinematic waves

Simplified Theory of _ 497

Land-use impacts 624

Lane group 72

Level Of Service (LOS) attributes see

Attributes

Lexicographic elimination 660

Likelihood

_ Ratio tests 533

Linear additive methods 665

Line-based graph models 83

Link(s)

_ capacity 65

_ cost function 53, 61, 83, 438, 447

_ cost vector 50

_ flow 46

_ flow vector 268

_ model 470

_ performance 53, 61, 83, 438, 447

_ performance function 53, 61, 83, 438,

447

_ performance models 516

_ travel time function 67, 429, 438, 447

access _ 83

alighting _ 83

boarding _ 83

connector _ 58

dwelling _ 83

extraurban road _ 66

intersection _ 69

line _ 83

motorway _ 64

parking _ 81

queueing _ see Queueing

real _ 58

running _ 59, 64, 438

toll-barrier _ 67

urban road _ 66

waiting _ 61, 67, 83, 438

Link-path incident matrix 46, 47, 265

Logit model(s)

_ multilevel (tree) 107

_ single-level 100

C-logit 204

Cross-nested _ 115

Hierarchical _ 100

Nested _ see Hierarchical _

Mixed _ 130

Tree _ see Hierarchical multilevel _

Logsum variable see Expected Maximum

Perceived Utility (EMPU)

Macroscopic models see Traffic flow(s)

Market segments 17

Markov process 411
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Maximum Likelihood (ML) Method 523

Maximum Perceived Utility see Expected

Maximum Perceived

Utility (EMPU)

Maximum Simulated Likelihood 530

Maxmin method 660

Maxmax method 660

Mergings 471

Mesoscopic models see Traffic flow(s)

Method of Successive Averages

(MSA) 313, 696

_ Cost Averaging (MSA-CA) 315

_ Flow Averaging (MSA-FA) 314

Mixed logit model see Logit model(s)

Microscopic models see Traffic flow(s)

Mobility

_ choices 170

_ models 170

Modal preference attributes 193

Modal split model(s) see Mode choice

model(s)

Mode choice model(s) 142

consignment _ 253

logistic _ 253

Model(s) see also Travel demand model(s)

_ calibration 522, 545

_ estimation see Disaggregate estimation

of demand models

_ specification 521

_ validation 530

Monitoring 24

Monte Carlo method 126, 293

smoothed _ 127, 130

Motorway links 64

MSA see Method of Successive Averages

(MSA)

Multiattribute Utility Theory (MAUT) 660

Multi-Criteria analysis 648

Multinomial logit model see Logit model(s)

Multiobjective optimization 595

MultiRegional Input-Output (MRIO)

models 240

_ with constant coefficients 246

_ with elastic prices 250

_ with elastic trade coefficients 248

_ with variable coefficients 248

matrix of technical coefficients 244

Multivariate Normal 122, 126, 164

Nash game see Game theory

Neighborhood of finite radius 683

Nested logit model see Logit model(s)

Net Present Value (NPV) 644

Network

_ Flow Propagation (NFP) 48, 268, 435,

467

_ layout variables 594

_ Loading (NL) 278

_ loading map 466, 467

_ models 45, 56

_ performance indicators 275

_ performance model 467

base _ 59

diachronic _ 46, 482

synchronic _ 45

Newell Luke Minimum

Principle 475, 497

Node(s)

_ model 471

access _ 83

centroid _ 7, 46

cordon _ see Cordon centroid

diversion _ 83, 209

flow conservation at the_ 433

line _ 360

stop _ 83

temporal centroid 484

zone centroid 7, 19, 58

Noncompensatory methods 658

Nonequilibrium models 369

Nonproject state 626

Nonstationary models 421

Numerical analysis 683

O-D

_ flow 15

_ matrix 15

Offset see Signalized intersection(s)

On-board travel time 83

Operations management programs 26

Opportunity costs 643

Optimization model(s)

_ for stochastic assignment 341

Optimization problems 697

Out-flow

cumulative continuous _ 434

cumulative discrete _ 445

Outranking methods 657

Over-saturation 41, 71, 75
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Packet(s) 423

Parking

_ choice model 195

_ links 81

Partial share model 174, 176, 178

Path(s)

_ choice see Path choice

_ cost 51

_ cost vector 53, 274

_ flow 48

_ flow vector 48, 55

additive _ cost 51

backward shortest _ 287

efficient _ 298

explicit _ enumeration 198, 466

feasible _ 274

forward shortest _ 287

implicit _ enumeration 198

linkwise additive _ costs 51, 267

linkwise nonadditive _ costs 53,

200, 267

shortest _ algorithms 286

Path choice

_ exhaustive approach 198

_ model see Path choice model

_ selective approach 198

explicit path enumeration 198, 466

implicit path enumeration 198

Path choice model(s)

_ for road network 197

_ for transit systems 207

shortest hyperpath algorithms 357

shortest path algorithms 286

Performance

_ attribute see Attribute(s)

_ indicators 22

_ variable(s) 48

_ vector 50

additive path _ variables 51

supply _ variables 594

Planning process 20

Point elasticity see Elasticity

Poisson random variables 557, 561

Pre trip

_ choice 196

_ choice behavior 197, 209

_/en route mixed choice 196

Primary activity destination 222

Priority intersection 80

Probability function 161

Probit model(s) 121

Factor-Analytic _ 123

Random Coefficient _ 124

Queue

_ discipline 43

_ lenght 39

_ spillover 464

Queueing

_ delay 42

_ links 438

_ theory 36

deterministic _ models 68, 75

models for _ links 83

server 36

stationary _ system 40, 43

Random residuals 91, 270

Random utility model(s) 95

_ for trip demand 176

additive _ 92

aggregation methods for _ 148

mathematical properties of _ 132

Reciprocal substitution

_ coefficients 94

_ rates 94

REGIME method 675

Renewal process 414

Revealed Preference (RP) 520

Revenue-Cost analysis 647

Rho-square statistic 534

Route choice model see Path choice model

Running time 61, 64

Sample enumeration see Aggregation

method(s)

Sampling

_ estimator(s) see Estimator(s)

_ rate 517, 519, 520, 524

_ strategy 515

_ surveys see Survey(s)

_ unit 515

cluster _ 516

simple random _ 515

stratified random _ 516

Saturation flow 71

Schedule delay 452

early arrival penalty 452
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early departure penalty 453

late arrival penalty 453

late departure penalty 453

Scheduled service(s) 82

_ system 480

_ with irregular high frequency 489

_ with regular low frequency 482

Segments 59, 501

Selective approach 198

Sequential estimator 579

Server see Queueing

Service line 83

Service pattern 43

Shadow prices 643

Shippers 238, 253

Shockwave 505

Shortest

_ hyperpath algorithms 357

_ path algorithms 286

Signalized intersection(s)

delay for _ see Delay

effective green/cycle ratio 71

effective green time 71

effective red time 71

traffic-light cycle 71

Signal setting optimization see Supply

Design Problem(s) (SDP)

Simultaneous estimator 578

Size

_ function 191, 218, 249

_ variable 191

Social objective function 594

Socioeconomic attributes see Attribute(s)

Space continuous models 424, 497

Space discrete models 424, 426, 497

Space mean speed 31

Spatial Price Equilibrium (SPE)

models 239

Specification

_ of demand models see Model

specification

Specific attributes see Attribute(s)

Spillback 476

Stackelberg game see Game theory

Stated Preference (SP) 520, 536

Stationary flow conservation equation 33

Stationary probability distribution 412

Statistic(s)

_ and test(s) on goodness of fit 534

Rho-square _ 534

Stochastic process 403, 410

_ models 403

Strategic planning 25

Student t-tests 531

Study area 6

Supply Design model(s) see Supply Design

Problem(s) (SDP)

Supply Design Problem(s) (SDP) 589

_ constraints 592

_ objectives 591

_ simulation model 592

_ variables 591

algorithms 607

general supply design model 593

mixed design 606

objective function 591

operator objective functions 595

optimal functional layout problem 598

optimal infrastructure layout

problem 596

pricing design 604

road network capacity design 598

road network layout design 596

traffic signal setting problem 600

transit network design 602

urban road network capacity design 599

“what if. . . ” approach 589

“what to. . . ” approach 589

Supply model 29, 266, 421

Supply performance variables 594

Surplus 594, 625, 628

Survey(s)

_ design 520, 538

cordon _ 514

destination _ 515

household _ 515

mail _ 515

on-board _ 514

Revealed Preference (RP) _ 520

sampling _ 514

Stated Preference (SP) _ 520

statistical design of sampling _ 515

Synchronic networks 45

System optimal assignment 331

Tactical planning 26

Target variable method see Aggregation

method(s)

Technical coefficients 244
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Temporal centroid 484

Temporal dimensions of Travel demand

9

Temporal variations of Travel Demand 9

between-period variations 12

cyclic variations 12

estimation of demand variations

(forecasting) see Estimation

long term variations (trends) 11

Test(s)

_ on the functional form 535

Chi-square _ 533

formal _ on coefficients 531

informal _ on coefficient 531

Likelihood ratio _ 533

Student t- _ 531

Theory of Kinematic Waves 497

Time mean speed 30

Time-varying bottleneck 470, 499

Toll-barrier links 47

Topological variables 426, 444, 595, 596

Total delay see Delay(s)

Trade

_ coefficients 244

_ matrix 246

Traffic assignment models see Assignment

models

Traffic counts

aggregate calibration of demand models

using _ see Calibration

estimation of within-period dynamic

demand flows using _ see

Estimation

estimation of O-D demand flows

using _ see Estimation

Traffic flow(s) see also Flow(s)

_ theory 29

macroscopic _ models 423, 426

mesoscopic _ models 423, 443

microscopic _ models 423

Traffic-light see Signalized intersection(s)

Traffic signal setting problem see Supply

Design Problem(s) SDP

Traffic revenues 627

Traffic analysis zones 6

Travel demand

_ model(s) see Travel demand model(s)

temporal variations of _ see Temporal

variations of Travel Demand

Travel demand model(s) 169

aggregate _ 171

behavioral models 89, 171, 182, 187

calibration of _ see Calibration

descriptive _ 171, 181, 186

deterministic utility model 98, 137, 201

disaggregate _ 171

elasticity of _ see Elasticity

estimation of _ see Estimation

four-step model 174

gravity model 185, 189

interpretative models see Behavioral

models

noninterpretative models see Descriptive

models

specification of _ see Specification

trip-based _ 170, 175

trip-chaining _ 171, 219

validation of _ see Validation

Transportation systems 1, 5

Travel

_ demand flow(s) 169, 172

_ choices 170

_ models 170

_ strategy 208, 210

Tree Logit model see Logit model(s)

Trip-chaining models see Travel demand

model(s)

Trip frequency model(s) see Trip

production model(s)

Trip production model(s) 181

descriptive_ 181

Trip rate 181

_ regression models 181

Undersaturation 40, 71, 74

Urban road

_ links 66

_ network capacity 599

User categories 464

User flows see Flow(s)

Users’ surplus 628

Util(s) 94

Utility

_ updating model 397

perceived _ 90

systematic _ 91

Validation

_ of demand models 530
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Value Of Time (VOT) 193

Variable Demand

_ Single-Mode assignment 368

_ Multimode Equilibrium

assignment 385

Variance–covariance matrix

_ of random residuals 92

_ of the cross-nested logit model 116

_ of the factor analytic probit model 124

_ of the mixed logit model 132

_ of the multilevel hierarchical logit

model 111

_ of the multinomial logit model 97

_ of the probit model 122

_ of the random coefficient probit

model 125

_ of the single-level hierarchical logit

model 104

Variational inequality 318

_ problems 709

Vehicle flows see Flow(s)

Vertice(s) see Node(s)

Waiting

_ link see Link(s)

_ time see also Delay

Wardrop’s

_ first principle 274

_ second principle 382

Wave speed 503

Webster formula 79

Within-day 421

Zone centroids 7

Zoning 6
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