Contents

1	Moo	deling T	Fransportation Systems: Preliminary Concepts and				
	App		ı Areas	1			
	1.1	Introduction					
	1.2						
	1.3	Transp	portation System Identification	5			
		1.3.1	Relevant Spatial Dimensions	6			
		1.3.2	Relevant Temporal Dimensions	9			
		1.3.3		13			
	1.4	Model	ling Transportation Systems	17			
	1.5	Model Applications and Transportation Systems Engineering					
		1.5.1	Transportation Systems Design and the Decision-Making				
			Process	20			
		1.5.2	Some Areas of Application	24			
		Refere	ence Notes	27			
2	Tra		tion Supply Models	29			
	2.1	Introd	uction	29			
	2.2	Funda	mentals of Traffic Flow Theory	29			
		2.2.1	Uninterrupted Flows	30			
			2.2.1.1 Fundamental Variables	30			
			2.2.1.2 Model Formulation	32			
		2.2.2	Queuing Models	36			
			2.2.2.1 Fundamental Variables	37			
			2.2.2.2 Deterministic Models	39			
			2.2.2.3 Stochastic Models	43			
	2.3	Conge	sted Network Models	45			
		2.3.1	Network Structure	45			
		2.3.2	Flows	46			
		2.3.3	Performance Variables and Transportation Costs	48			
		2.3.4	Link Performance and Cost Functions	53			
		2.3.5	Impacts and Impact Functions	54			
		2.3.6	General Formulation	55			
	2.4		cations of Transportation Supply Models	56			
		2.4.1	Supply Models for Continuous Service Transportation				
			Systems	59			
			2.4.1.1 Graph Models	59			
			2.4.1.2 Link Performance and Cost Functions	61			
		2.4.2	Supply Models for Scheduled Service Transportation				
			Systems	82			
			2.4.2.1 Line-based Graph Models	83			
			2.4.2.2 Link Performance and Cost Functions	83			
		Refere	ence Notes	87			

xii Contents

3	Random Utility Theory						
	3.1	Introd	luction	89			
	3.2	2 Basic Assumptions					
	3.3	Some	Random Utility Models	95			
		3.3.1	The Multinomial Logit Model	95			
		3.3.2	The Single-Level Hierarchical Logit Model	100			
		3.3.3	The Multilevel Hierarchical Logit Model*				
		3.3.4	The Cross-nested Logit Model*	115			
		3.3.5	The Generalized Extreme Value (GEV) Model*	118			
		3.3.6	The Probit Model	121			
		3.3.7	The Mixed Logit Model*	130			
	3.4	Expec	ted Maximum Perceived Utility and Mathematical				
		Proper	rties of Random Utility Models	133			
	3.5		e Set Modeling				
	3.6	Direct	t and Cross-elasticities of Random Utility Models	143			
	3.7	Aggre	egation Methods for Random Utility Models	148			
	3.A	Deriva	ation of Logit Models from the GEV Model	152			
		3.A.1	Derivation of the Multinomial Logit Model	153			
		3.A.2	Derivation of the Single-Level Hierarchical Logit Model	154			
		3.A.3	Derivation of the Multilevel Hierarchical Logit Model	156			
		3.A.4 Derivation of the Cross-nested Logit Model					
	3.B	Rando	om Variables Relevant for Random Utility Models	161			
		3.B.1	The Gumbel Random Variable	161			
		3.B.2	The Multivariate Normal Random Variable	164			
	Refe	erence N	Notes	166			
4	Trav	vel.Den	nand Models	160			
•	4.1		luction				
	4.2		pased Demand Model Systems				
	7.2	4.2.1	Random Utility Models for Trip Demand				
	4.3		ples of Trip-based Demand Models	181			
	1.5	4.3.1	Models of Spatial and Temporal Characteristics				
		1.5.1	4.3.1.1 Trip Production or Trip Frequency Models				
			4.3.1.2 Distribution Models				
		4.3.2	Mode Choice Models				
		4.3.3	Path Choice Models				
		1.5.5	4.3.3.1 Path Choice Models for Road Networks				
			4.3.3.2 Path Choice Models for Transit Systems				
		4.3.4	A System of Demand Models				
	4.4		Chaining Demand Models				
	4.5						
	т.Э	4.5.1		$\frac{228}{231}$			
		т∕. 1	4.5.1.1 Weekly Household Activity Model				
			4.5.1.2 Daily Household Activity Model				
			4.5.1.3 Daily Individual Activity List Model				
			4.5.1.4 Activity Pattern and Trip-Chain Models				
			T.J. 1. T ACTIVITY I ACCOUNT AND THE CHAIN MODELS	494			

Contents xiii

	11	A1:		225
	4.6		cations of Demand Models	
	4.7	_	nt Transportation Demand Models	
		4.7.1	Multiregional Input-Output (MRIO) models	
		4.7.2		
		Refere	ence Notes	255
5	Basi	ic Statio	c Assignment to Transportation Networks	259
	5.1	Introd	luction	259
		5.1.1	Classification of Assignment Models	259
		5.1.2	Fields of Application of Assignment Models	263
	5.2	Defini	itions, Assumptions, and Basic Equations	265
		5.2.1	Supply Model	
		5.2.2	Demand Model	269
		5.2.3	Feasible Path and Link Flow Sets	274
		5.2.4	Network Performance Indicators	275
	5.3	Uncor	ngested Networks	278
		5.3.1	Models for Stochastic Assignment	
		5.3.2	Models for Deterministic Assignment	
		5.3.3	Algorithms Without Explicit Path Enumeration	
	5.4	Conge	ested Networks: Equilibrium Assignment	
		5.4.1	Models for Stochastic User Equilibrium	
		5.4.2	Algorithms for Stochastic User Equilibrium	
		5.4.3	Models for Deterministic User Equilibrium	
		5.4.4	Algorithms for Deterministic User Equilibrium	
		5.4.5	Relationship Between Stochastic and Deterministic	
			Equilibrium	329
		5.4.6	System Optimum Assignment*	331
	5.5		Interpretation and Parameter Calibration	
	- 1-	5.5.1	Specification and Calibration of Assignment Models	
	5.A		nization Models for Stochastic Assignment	
	5.55		Uncongested Network: Stochastic Assignment	
		5.A.2		
	Refe	erence N	•	
	11011	or circuit	Assignment Models	
			Assignment Algorithms	
_	A Ja	rangad l	Madala for Traffe Againment to Transportation	
6		ancea i works	Models for Traffic Assignment to Transportation	240
	6.1		luction	
	6.2	_	nment with Pre-trip/En-route Path Choice	
		6.2.1	Definitions, Assumptions, and Basic Equations	
		6.2.2	Uncongested Networks	
		6.2.3	Congested Networks: Equilibrium Assignment	
	6.3		brium Assignment with Variable Demand	
		6.3.1	Single-Mode Assignment	368

xiv Contents

			6.3.1.1	Models for Stochastic User Equilibrium	. 372
			6.3.1.2	Models for Deterministic User Equilibrium	. 375
			6.3.1.3	Algorithms	. 379
		6.3.2	Multimo	ode Equilibrium Assignment	. 385
	6.4	Multio	lass Assi	gnment	. 389
		6.4.1		rentiated Congestion Multiclass Assignment	
		6.4.2	Differen	tiated Congestion Multiclass Assignment	. 394
	6.5	Interp		amic Process Assignment	
		6.5.1		ons, Assumptions, and Basic Equations	
			6.5.1.1		
			6.5.1.2	Demand Model	
				Approaches to Dynamic Process Modeling	
		6.5.2		nistic Process Models	
		6.5.3		ic Process Models	
	6.6	Synthe		pplication Issues	
				S	
7	Intr	aperiod	l (Within	-Day) Dynamic Models*	. 421
	7.1	Introd	uction .		. 421
	7.2	Supply		for Transport Systems with Continuous Service .	
		7.2.1	Space-D	Piscrete Macroscopic Models	
			7.2.1.1		
			7.2.1.2	Network Flow Propagation Model	. 435
			7.2.1.3	Link Performance and Travel Time Functions .	. 438
			7.2.1.4	Dynamic Network Loading	. 439
			7.2.1.5	Path Performance and Travel Time Functions	. 440
			7.2.1.6	Formalization of the Whole Supply Model	. 442
		7.2.2	Mesosco	opic Models	. 443
			7.2.2.1	Variables and Consistency Conditions	. 444
			7.2.2.2	Link Performance and Travel Time Functions .	. 447
			7.2.2.3	Path Performance and Travel Time Functions	. 448
			7.2.2.4	Dynamic Network Loading	. 449
			7.2.2.5	Formalization of the Whole Supply Model	. 450
	7.3	Dema	nd Model:	s for Continuous Service Systems	. 451
	7.4	Dema		y Interaction Models for Continuous Service	
		Syster			
				ested Network Assignment Models	
		7.4.2	User Eq	uilibrium Assignment Models	. 458
		7.4.3	Dynami	c Process Assignment Models	. 461
	7.5			c Assignment with Nonseparable Link Cost	
		Functi	ons and Q	Queue Spillovers	. 464
		7.5.1	Network	Performance Model	. 467
			7.5.1.1	Exit Capacity Model	. 472
			7.5.1.2	Exit Flow and Travel Time Model	
			7.5.1.3	Entry Capacity Model	. 475

Contents

			7.5.1.4 Fixed-Point Formulation of the NPM	477
		7.5.2	Network Loading Map and Fixed-Point Formulation of the	
			Equilibrium Model	477
	7.6	Models	s for Transport Systems with Scheduled Services	480
		7.6.1	Models for Regular Low-Frequency Services	482
			7.6.1.1 Supply Models	482
			7.6.1.2 Demand Models	487
			7.6.1.3 Demand–Supply Interaction Models	489
		7.6.2	Models for Irregular High-Frequency Services	489
			7.6.2.1 Supply Models	489
			7.6.2.2 Demand Models	490
			7.6.2.3 Demand–Supply Interaction Models	495
	7.A	The Sir	mplified Theory of Kinematic Waves Based on Cumulative	
		Flows:	Application to Macroscopic Link Performance Models	497
		7.A.1	Bottlenecks	499
		7.A.2	Segments	501
	Refe	rence No	otes	510
8			of Travel Demand Flows	
	8.1		ection	
	8.2		Estimation of Present Demand	
		8.2.1	Sampling Surveys	
			Sampling Estimators	
	8.3		regate Estimation of Demand Models	
			Model Specification	
			Model Calibration	
			Model Validation	530
	8.4		regate Estimation of Demand Models with Stated	
			ence Surveys*	
			Definitions and Types of Survey	
		8.4.2	Survey Design	
			Model Calibration	
	8.5		tion of O-D Demand Flows Using Traffic Counts	
			$\label{eq:maximum} \textbf{Maximum Likelihood and GLS Estimators} \ \dots \ \dots \ \dots$	
			Bayesian Estimators	
			Application Issues	
		8.5.4	Solution Methods	564
	8.6	Aggreg	gate Calibration of Demand Models Using Traffic Counts	569
	8.7		tion of Within-Period Dynamic Demand Flows Using	
			Counts	
		8.7.1	Simultaneous Estimators	
		8.7.2	Sequential Estimators	579
	8.8		ime Estimation and Prediction of Within-Period Dynamic	
			d Flows Using Traffic Counts	
	8.9	Applica	ations of Demand Estimation Methods	582

xvi Contents

		8.9.1	Estimation of Present Demand	. 582
		8.9.2	Estimation of Demand Variations (Forecasting)	. 584
		Refere	ence Notes	. 586
9	Trar		tion Supply Design Models	
	9.1		uction	
	9.2	Genera	al Formulations of the Supply Design Problem	. 592
	9.3	Applic	cations of Supply Design Models	. 595
		9.3.1	Models for Road Network Layout Design	. 596
		9.3.2	Models for Road Network Capacity Design	. 598
		9.3.3	Models for Transit Network Design	
		9.3.4	Models for Pricing Design	
		9.3.5		
	9.4	Some	Algorithms for Supply Design Models	
		9.4.1		
		9.4.2	Algorithms for the Continuous SDP	
		Refere	ence Notes	
10			r the Evaluation and Comparison of Transportation	
			jects	
			uction	
	10.2		ntion of Transportation System Projects	
			Identification of Relevant Impacts	
			Identification and Estimation of Impact Indicators	
			Computation of Users' Surplus Changes	
	10.3		ds for the Comparison of Alternative Projects	
			Benefit-Cost Analysis	
			Revenue-Cost Analysis	
		10.3.3	Multi-criteria Analysis	. 648
			10.3.3.1 Noncompensatory Methods*	. 658
			10.3.3.2 Multiattribute Utility Theory Method (MAUT)*	. 660
			10.3.3.3 Linear Additive Methods*	. 665
			10.3.3.4 The Analytical Hierarchy Process (AHP)*	. 667
			10.3.3.5 Outranking Methods*	. 673
		Refere	ence Notes	. 680
	220	201 1221		
App	pendix	x A Rev	view of Numerical Analysis	. 683
	A.I		nd Functions	
		A.1.1	Elements of Set Topology	. 683
		A.1.2	Continuous and Differentiable Functions	
		A.1.3	Convex Functions	
	A.2		on Algorithms	
	A.3		Point Problems	
		A.3.1	Properties of Fixed-Points	
		A.3.2	Solution Algorithms for Fixed-Point Problems	. 695

Contents xvii

A.4	Optimization Problems			
	A.4.1	Propertie	es of Minimum Points 697	
		A.4.1.1	Properties of Minimum Points on Open Sets 697	
		A.4.1.2	Properties of Minimum Points on Closed Sets 698	
	A.4.2	Solution	Algorithms for Optimization Problems 699	
		A.4.2.1	Monodimensional Optimization Algorithms 699	
		A.4.2.2	Unconstrained Multidimensional Optimization	
			Algorithms	
		A.4.2.3	Bounded Variables Multidimensional	
			Optimization Algorithms 706	
		A.4.2.4	Linearly Constrained Multidimensional	
			Optimization Algorithms 707	
A.5	Variati	onal Ineq	uality Problems	
			es of Variational Inequalities	
	A.5.2	Solution	Algorithms for Variational Inequality Problems 712	
Index .				
Referenc	es			