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PREFACE

In most of the practical situations, the objective function and/
or constraints are nonlinear. The solution methods to deal
with such problems may be called as nonlinear programming.
The present book is focussed on applied nonlinear programming.

A general introduction is provided discussing various
industrial/managerial applications. Convex and concave
functions are explained for single variaSble and multi-variable
examples. As a special case of nonlinear programming,
geometric programming is also discussed. It is expected that
the book will be a useful reference/text for professionals/students
of engineering and management disciplines including operations
research.

Dr. SANJAY SHARMA
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Any optimization problem essentially consists of an
objective function. Depending upon the nature of objective
function (O.F.), there is a need to either maximize or minimize
it. For example,

(a) Maximize the profit

(b) Maximize the reliability of an equipment

(c) Minimize the cost

(d) Minimize the weight of an engineering component or
structure, etc.

If certain constraints are imposed, then it is referred to
as constrained optimization problem. In the absence of any
constraint, it is an unconstrained problem.

Linear programming (LP) methods are useful for the
situation when O.F. as well as constraints are the linear
functions. Such problems can be solved using the simplex
algorithm. Nonlinear programming (NLP) is referred to the
followings:

(a) Nonlinear O.F. and linear constraints

(b) Nonlinear O.F. and nonlinear constraints

(c) Unconstrained nonlinear O.F.

1.1 Applications
In the industrial/business scenario, there are numerous

applications of NLP. Some of these are as follows:
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2 APPLIED NONLINEAR PROGRAMMING

(a) Procurement
The industries procure the raw materials or input items/

components regularly. These are frequently procured in suitable
lot sizes. Relevant total annual cost is the sum of ordering cost
and inventory holding cost. If the lot size is large, then there
are less number of orders in one year and thus the annual
ordering cost is less. But at the same time, the inventory
holding cost is increased. Considering the constant demand
rate, the total cost function is non-linear and as shown in
Fig. 1.1.

There is an appropriate lot size corresponding to which
the total annual cost is at minimum level. After formulating
the nonlinear total cost function in terms of the lot size, it is
optimized in order to evaluate the desired procurement
quantity. This quantity may be procured periodically as soon
as the stock approaches at zero level.

       

 

    Lot size

Fig. 1.1: Total cost function concerning procurement.

(b) Manufacturing
If a machine or facility is setup for a particular kind of

product, then it is ready to produce that item. The setup cost
may include salaries/wages of engineers/workers for the time
period during which they are engaged while the machine is
being setup. In addition to this, the cost of trial run etc., if
any, may be taken into consideration. Any number of items

Total Cost
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may be manufactured in one setup before it is changed for
another variety of product. There are fewer number of setups
in a year if produced quantity per unit setup is more. Large
number of setups are needed in case of less number of units
manufactured and accordingly annual setup cost will be high.
This relationship is shown in Fig. 1.2.

      

 

Quantity

Fig. 1.2: Variation of setup cost with quantity.

Large number of units may be manufactured in a setup
if only this cost is considered. But at the same time, there will
be large number of items in the inventory for a certain time
period and inventory holding cost will be high. Inventory holding
cost per year is related to quantity as shown in Fig. 1.3.

       

 

   Quantity

Fig. 1.3: Variation of holding cost with quantity.

Annual
setup cost

Inventotry
holding cost
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As the total annual cost is the sum of setup cost and
holding cost, combined effect of Fig. 1.2 and Fig. 1.3 will yield
the total cost which is similar to Fig. 1.1. Therefore in the
present case, total relevant cost is a nonlinear function. Analysis
of this cost function is concerned with the trade-off between
machine setup and carrying cost. Objective is to evaluate an
optimum manufacturing quantity or production lot size so that
the total cost is minimum.

(c) Break-even analysis
For the successful operation of any industry, it is of interest

to know the production level at which there is no profit-no
loss. This is known as break-even point. If the manufactured
and sold quantity is less than this point, there are losses.
Profits are earned if produced and marketed quantity is more
than the break-even point. Break-even analysis is the
interaction of sales revenue and total cost where the total cost
is the sum of fixed and variable cost.

Fixed cost is concerned with the investments made in
capital assets such as machinery and plant. Variable cost is
concerned with the actual production cost and is proportional
to the quantity. Total cost line is shown in Fig. 1.4 along with
sales revenue. Sales revenue is the multiplication of sold
quantity and sales price per unit.

        

 

 Break even point Manufactured and sold quantity

Fig. 1.4: Interaction of linear total cost and sales revenue.

Total cost is shown to be linear in Fig. 1.4. However, in
practice, depending on the nature of variable cost and other
factors, the total cost may be non-linear as shown in Fig. 1.5.

Sales
Revenue/
total cost

Sales Revenue

Total cost

Variable cost

Fixed cost
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Fig. 1.5: Interaction between nonlinear total cost and sales revenue.

Nonlinear total cost function and sales revenue line
intersect at two points corresponding to quantity q1 and q2.
Therefore two break-even points exist in the visible range of
quantity. As the profit = sales revenue – total cost, it is zero
if either quantity q1 or q2 are produced and sold. There is
certain quantity which is more than q1 and less than q2, at
which maximum profit can be achieved.

In more complex situations, both the total cost and sales
revenue functions may be nonlinear.

(d) Logistics
Logistics is associated with the timely delivery of goods

etc. at desired places. A finished product requires raw materials,
purchased and in-house fabricated components and different
input items. All of them are needed at certain specified time
and therefore transportation of items becomes a significant
issue. Transportation cost needs to be included in the models
explicitly. Similarly effective shipment of finished items are
important for the customer satisfaction with the overall
objective of total cost minimization. Incoming of the input
items and outgoing of the finished items are also shown in
Fig. 1.6.

Logistic support plays an important role in the supply
chain management (SCM). Emphasis of the SCM is on
integrating several activities including procurement,

Total
cost/

Sales
revenue

Total cost

Sales revenue

q1
q2 Quantity
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manufacturing, dispatch of end items to warehouses/dealers,
transportation etc. In order to consider production and purchase
of the input items together, frequency of ordering in a
manufacturing cycle may be included in the total cost
formulation. Similarly despatch of the finished component
periodically to the destination firm in smaller lots, may be
modeled.

Temporary price discounts are frequently announced by
the business firms. An organization takes the advantage of
this and purchases larger quantities during the period for which
discount was effective. Potential cost benefit is maximized. In
another situation, an increase in the price of an item may be
declared well in advance. Total relevant cost may be reduced
by procuring larger quantities before the price increase
becomes effective. Potential cost benefit is formulated and the
objective is to maximize this function.

 

 
Industrial organization 

Customers

Fig. 1.6: Incoming and outgoing of the items.

The present section discusses some real life applications
in which a nonlinear objective function is formulated. These
functions are either maximized or minimized depending on
the case. Maxima and minima are explained next.

Suppliers

Input items

Finished items(s)
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1.2 MAXIMA AND MINIMA

Consider any function f(x) as shown in Fig. 1.7. f(x) is
defined in the range of x, [A, B]. f(x) is having its maximum
value at x* which is optimal.

   

Fig. 1.7: A function f(x).

Refer to Fig. 1.8 in which behavior of a function f(x) with
respect to x is represented in the range [A, B] of x. Three
number of maximum points are visible i.e. 1, 2, and 3. these
are called as local or relative maxima.

     

Fig. 1.8: Local and global maxima/minima.

f(x)

A x* B x

1

4

2

5

f(x)

A
B

x

3
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Among the values of x at point 1, 2 and 3, optimal solution
with respect to maximization of f(x), lies at point 2. This is
because the value of f(x) at point 2 is maximum as compared
to that at point1 and 3. Therefore point 2 is referred to as
global maximum.

Similarly, in view of the minimization, point 4 and 5 are
referred to as local or relative minima. Point 5 is called as
global minimum because value of f(x) at this point is the least.

Local maximum or local minimum can also be called a
local extremum.

For a maximum or minimum,

df x
dx
( )

= 0 ...(1.1)

For the optimality, second order derivative should be
negative in case of maxima and a positive in case of minima,
i.e.

d f x
dx

2

2
( )

< 0, for maxima ...(1.2)

and
d f x

dx

2

2
( )

> 0, for minima ...(1.3)

1.3 CONVEX AND CONCAVE FUNCTION

Consider a linear function,

y = f(x) = a + bx ...(1.4)

Assume two end points x1 and x2 on the x-axis as shown
in Fig. 1.9. x-coordinate for any intermediate point on the
straight line can be represented by, α x1 + (1 – α) x2 for á lying
between 0 and 1. The end points x1 and x2 are obtained by
substituting α = 1 and 0 respectively. To generalize, coordinate
–x is,

α x1 + (1 – α) x2, for 0 < α < 1

Substituting this value of x in equation (1.4), coordinate
–y is,

y = f(x) = a + b [αx1 + (1 – α) x2]

= a + b x2 + a α + b α x1 – a α – b α x2

(adding and subtracting a α)
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= (a + bx2) + α(a + bx1) – α(a + bx2)

= α (a + bx1) + (1 – α) (a + bx2)

= αf(x1) + (1 – α) f(x2) ...(1.5)

      

Fig. 1.9: A linear function.

Coordinates of any point, say N on the straight line (Fig.
1.9), can be written as,

[α x1 + (1 – α) x2, α f(x1) + (1 – α) f(x2)]

This discussion with reference to a linear function is helpful
in understanding the convex and concave functions.

1.3.1 Convex Function
A nonlinear function f(x) is shown in Fig. 1.10. This

function is of such a nature that the line joining any two
selected points on this function will never be below this
function. In other words, viewing from the bottom, this
function or curve will look convex.

Select any two points on the convex function, say P and
Q. From any point on the line PQ i.e. N, draw a vertical line
NM which meets the convex function f(x) at point L.

As discussed before, x-coordinate of point M is,

α x1 + (1 – α) x2, 0 < α < 1

Value of f(x) at point L can be written as,

f[αx1 + (1 – α) x2]

Value of f(x) at point N on the straight line is given as,
α f(x1) + (1 – α) f(x2), using equation (1.5)

y = f(x)

x1 x2
x

N
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From Fig. 1.10, it can be observed that for a convex
function,

α f(x1) + (1 – α) f(x2) > f [αx1 + (1 – α) x2], 0 < α < 1
 ...(1.6)

Fig. 1.10: Convex function.

1.3.2 Concave Function
Fig. 1.11 represents a nonlinear function f(x). Select any

two points, say, P and Q. The line joining P and Q (or any
other selected points on the function) will never be above this
function f(x). Such a function is known as concave function.
This will look concave if we view it from bottom side.

Locate any point L on the function above the line PQ
and draw a vertical line LM which intersects line PQ at
point N. Obviously x-coordinate for point L and N are similar
i.e.

α x1 + (1 – α) x2, as discussed before.

From (1.5), y-coordinate for point N = α f(x1) + (1 – α)
f(x2), and

y-coordinate for point L = f[αx1 + (1 – α) x2].

Using the property of a concave function,

α f(x1) + (1 – α) f(x2) < f[αx1 + (1 – α) x2], 0 < α < 1

...(1.7)

Differences between convex and concave functions are
summarized in Table 1.1.

f(x)

N

x1 x2
x

P
L

M

Q

← Convex function



INTRODUCTION 11

Fig. 1.11: Concave function

Table 1.1: Difference between convex and concave
functions

Convex function Concave function

(1) Line joining any two above Line joining any two points
will never be below this will never be above this
function. function.

(2) α f(x1) + (1 – α) f(x2) > α f(x1) + (1 – α) f(x2) <
f[αx1 + (1 – α) x2], 0 < α < 1 f[α x1 + (1 – α) x2], 0 < α < 1

(3) Non-negative second order Non-positive second order
derivative indicates a derivative indicates a
function to be convex. function to be concave.

(4) In order to minimize a In order to maximize a

convex function,
d
dx

 f(x) = 0 concave function,
d
dx

f(x) = 0

yields the optimal solution. yields the optimal solution.

(5) If –f(x) is concave, then If –f(x) is convex, then f(x)
f(x) is a convex function. is a concave function.

Example 1. Test whether f(x) = 
18 × 10

x
x
2

4

+ , is a convex

function for positive values of x. Also find out the optimal
solution by minimizing it.

Solution.

Second order derivative, 
d f x

dx

2

2
( )

 = 
36 104

3
×
x

Concave function

P

L

N Q

M
x1

x2 x

f(x)
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As this is positive, the function f(x) is convex.

An optimal solution is obtained by differentiating f(x) with
respect to x and equating it to zero.

df x
dx
( )

=
18 10 1

2
0

4

2
×
x

+ =

or optimal value of x = 600

Substituting x* = 600 in f(x), optimal value of

f(x) =
18 10

600
600

2

4× +

= 600

Example 1.2. Show that f(x) = – (45000/x) – 2x, is a
concave function for positive values of x and also obtain the
optimal value of x.

Solution.

d f x
dx

2

2
( )

=
−90000

3x

As this is negative, f(x) is a concave function. In order to
maximize this function.

df x
dx
( )

= 0

or
45000 22x

− = 0

or x* = 150

1.4 CLASSIFICATION

In order to optimize nonlinear objective function, several
methods are used in practice. The present classification may
not be exhaustive. However, depending on various
considerations, these methods are classified as flows:-

(a) As per the number of variables
(i) Single variable optimization

(ii) Multivariable optimization-if more than one variable
are present in the O.F.
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(b) Depending on the search procedure
Search for the optimum value of any variable will start

from a suitable initial point. After certain number of iterations,
it is expected that the goal will be achieved.

Few methods are as follows:

(i) Unrestricted search–When no idea is available for the
range in which any optimum variable may lie, then a
search is made without any restrictions.

(ii) Restricted search.

(iii) Method of golden section–Initial interval is known in
which a variable lies and a unimodal function is
optimized.

(iv) Quadratic interpolation–If any function can be
approximated by the quadratic function, then a minimum
value of x is obtained using, f(x) = a x2 + bx + c.

Later this minimum value is substituted in actual
function and an iterative process is continued to achieve
any desirable accuracy.

(v) Numerical methods.

(c) Depending on whether the constraints are present
If no constraints are imposed on the O.F., then it is

referred to as an unconstrained optimization. Else, the NLP
problem may be as follows:

Optimize a nonlinear function,

Subject to certain constraints where these constraints may
be in one or more of the forms,

c(x) < 0

d(x) > 0

e(x) = 0

c(x), d(x) and e(x) are functions in terms of decision
variables and represent the constraints. First two types of
constraints are in the inequality form. Third type of constraint
i.e., e(x) = 0, is an equality form.

(d) Specific case of nonlinear O.F.
Suppose that the O.F. is the sum of certain number of

components where each component is like,
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ci x1
a1i . x2

a2i . x3
a3i . . . xn

ani

ci = Positive coefficient

a1i, a2i, . . . ani = Real exponents

x1, x2, . . . xn = Positive variables.

Now, O.F., f(x) = ci
i =
∑

1

N

 . x1
a1i . x2

a2i . . . xn
ani

where N = Number of components in the O.F.

   n = Number of variables in the problem.

Such a function is known as a posynomial. In order to
minimize posynomial functions, geometric programming is
effectively used.

(e) Integrality requirement for the variables
Usually the solutions obtained for an optimization problem

give values in fractions such as 14.3, 201.57 etc. While in
many real life applications, optimum variables need to be
evaluated in terms of exact integers. Examples may be,

(i) How many optimum number of employees are
required?

(ii) Number of components needed to be manufactured,
which will be used later in the assembly of any finished
product.

(iii) Number of cycles for procurement of input items or
raw materials in the context of supply chain
management.

(iv) Optimum number of production cycles in a year so
that the total minimum cost can be achieved.

Nonlinear integer programming problems may be
categorized as follows:

(1) All integer programming problems–This refers to
the cases where all the design variables are needed to be
integers. This is also called pure integer programming
problem.

(2) Mixed integer programming problems–This refers
to the cases in which there is no need to obtain the
integer optimum of all variables. Rather integrality
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requirement is justified for few variables only. In other
words, some of the variables in a set, may have
fractional values, whereas remaining must have integer
values.

The classification as discussed above, is also summarized
briefly in Fig. 1.12. Some of the methods may also be used
satisfactorily for other categories. In addition to that, heuristic
search procedures may also be developed depending on the
analysis of various constraints imposed on the O.F.

NLP is introduced in the present chapter. One variable
optimization is discussed next.

Fig. 1.12: Brief classification of NLP problems/methods.
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If any function has only one variable, then its maximization
or minimization will be referred to one variable or single
variable optimization. For example,

Maximize 4x – 7x2,

Minimize 8x2 – 3x

These are unconstrained one variable optimization
problems. If certain constraints are imposed, such as,

(a) Maximize 4x – 7x2

subject to x > 0.3

(b) Minimize 8x2 – 3x

subject to x < 0.15

Then these will become constrained one variable
optimization problems. Constraints may be imposed after
obtaining the optimum of a function in an unconstrained
form.

Several methods are available for optimization of one
variable problem. As discussed in section 1.3, the function is
differentiated with respect to a variable and equated to zero.
Further some of the methods are also explained in the present
chapter

1. Unrestricted search

2. Method of golden section

3. Quadratic interpolation

4. Newton-Raphson method

16
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2.1 UNRESTRICTED SEARCH

When there is no idea of the range in which an optimum
variable may lie, the search for the optimum is unrestricted. A
suitable initial point is needed in order to begin the search
procedure. As shown in Fig. 2.1, an optimum is shown by sign
X. Assume initial point as x = 0. 0 from where a search is to
be started. It is like finding an address in an unfamiliar city.

From the initial point i.e. x = 0.0, a decision is to be made
whether to move in positive or negative direction. Value of x
is increased or decreased in suitable step length till a close
range of x, in which an optimum may lie, is not obtained. An
exact optimum is achieved in this close range using smaller
step length.

f x( )

f x( *) x

x* xS

Fig. 2.1: Searching for an optimum with step length s.

Example 2.1. Maximize 4x – 8x2. Consider initial point as
zero and step length as 0.1.

Solution:

From x = 0.0, either a movement is to be made in positive
direction or negative direction.

At x = 0, f(x) = 4x – 8x2 = 0

As the step length is 0.1, value of x in negative direction
is 0 – 0.1 = –0.1 and its value in positive direction is 0 + 0.1
= + 0.1

At x = – 0.1, f(x) = – 0.48

At x = + 0.1, f(x) = + 0.32
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As the objective is to maximize and 0.32 > – 0.48, it is
reasonable to proceed in positive direction.

x f(x)
0 0

0.1 0.32
0.2 0.48
0.3 0.48

f(0.3) is not greater than f(0.2), therefore an exact optimum
may lie in the close range [0.2, 0.3]. This is searched using
smaller step length say 0.01 from x = 0.2 after finding suitable
direction.

x f(x)
0.21 0.4872
0.22 0.4928
0.23 0.4968
0.24 0.4992
0.25 0.5

0.26 0.4992

f(0.26) is not greater than f(0.25), therefore optimum
function value is 0.5 corresponding to optimum x* = 0.25.

Example 2.2. Minimize 8x2 – 5.44x. Use initial value of
x = 0.5 and step length = 0.1.

Solution. As the objective is to minimize, lower function
value is preferred.

f(0.5) = –0.72

In order to find out suitable direction, value of x is
increased and decreased by step length = 0.1.

f(0.6) = – 0.384

f(0.4) = – 0.896

as the function has a tendency to decrease in negative direction
from the initial value, the search is made as follows :

x f(x)

0.5 – 0.72

0.4 – 0.896

0.3 – 0.912

0.2 – 0.768
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As f(0.2) is not less than f(0.3), the search is stopped at
this stage. It is restarted from x = 0.3 with smaller step length,
say 0.01. In order to find an appropriate direction for movement,

At x = 0.3 – 0.01 = 0.29, f(x) = f(0.29) = – 0.9048

At x = 0.3 + 0.01 = 0.31, f(x) = f(0.31) = – 0.9176

Further improvement (from the minimization point of
view) is in positive direction, therefore the process in the close
range of [0.3, 0.4] is repeated as follows :

x f(x)

0.31 – 0.9176

0.32 – 0.9216

0.33 – 0.9240

0.34 – 0.9248

0.35 – 0.9240

As f(0.35) is not less than f(0.34), the process is stopped at
this stage. From x = 0.34, consider step length as 0.001.

f(0.339) = – 0.92479

f(0.341) = – 0.92479

As compared to f(0.34) = – 0.9248, no further improvement
is possible in either direction, therefore f(0.34) = – 0.9248 is
optimum function value corresponding to x* = 0.34.

In many practical situations, an idea related to the range
in which an optimum variable may lie is readily available and
the search is restricted to that range only. For example, the
pitch circle diameter of a gear to be assembled in any
equipment may not be greater than 200 mm. Similarly this
diameter may not be less than 50 mm depending on several
factors such as desired output range, convenience in
manufacturing, accuracy and capacity of available machine for
fabricating the gear, etc. The search process may be restricted
to the range [50, 200] mm from the beginning.

Example 2.3. A manufacturing industry is in the business
of producing multiple items in a cycle and each item is produced
in every cycle. Its total relevant annual cost is the sum of
machine setup cost and inventory holding cost. Total cost
function is estimated to be

f(x) = 1150x + 250/x,
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where x is the common cycle time in year. Objective is to
minimize the total cost function f(x) and to evaluate optimum
x for implementation. Apply the search procedure as discussed
before considering x = 0.45 year and step length as 0.01 in the
first stage of the search.

Also solve the problem by testing whether the function is
convex and using the convexity property. Comment on the
importance of the search procedures.

Solution.

f(0.45) = 1073.06

Since f(0.46) = 1072.47 < f(0.44) = 1074.18, and as compared
to f(0.45) = 1073.06, cost improvement is possible in positive
direction.

x f(x)

0.46 1072.47

0.47 1072.41

0.48 1072.83

Starting from 0.47 again and using smaller step length
= 0.001, negative direction is chosen, and

x: 0.469 0.468 0.467 0.466 0.465

f(x): 1072.40 1072.39 1072.3819 1072.3807 1072.384

Therefore the optimal cycle time x is obtained as 0.466
year and total relevant cost as Rs. 1072.38.

In order to test whether the function is convex,

d f x
dx

2

2
( )

=
500

3x
 > 0 for positive x and therefore it

is a convex function.

Using the convexity property, optimum may be obtained
by differentiating f(x) with respect to x and equating to zero,

d f x
dx

( )
= 1150 250 02− =

x

or x* =
250

1150
0 466= . year

and optimum value of total cost, f(x*) = Rs. 1072.38. The results
are similar to those obtained using the search procedure.
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However in many cases, it is difficult to test whether the
function is convex or concave. In other words, it is difficult to
differentiate any function. Properties of convex or concave
function may not be used to evaluate the optimum if it is not
possible to ascertain the type of function. In such situations,
the search procedures become very important in order to
compute the optimal value.

2.2 METHOD OF GOLDEN SECTION

This method is suitable for the situation in which a
maximum lies in the given range and the function is unimodal
in that range. Consider a function f(x) as shown in Fig. 2.2. A
known range of [x1, x2] is available in which an optimum x*
lies.

Fig. 2.2: Optimum x* in the range [x1, x2].

Let there be two points xL and xR in the range [x1, x2]
such that,

xL = Point on the left hand side

xR = Point on the right hand side

Three possibilities may arise

f(xL) < f(xR), f(xL)= f(xR), and f(xL) > f(xR), which are
categorized into two:

(i) f(xL) < f(xR)
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(ii) f(xL) > f(xR)

Take the first case i.e. when f(xL) < f(xR).

This may be true in two situations:

(a) When xL and xR are on either side of the optimum x*,
as shown in Fig. 2.2.

(b) when xL and xR are on one side of the optimum as
shown in Fig. 2.3.

Following statement is applicable in both the situations :

“Optimum should lie in the range [xL, x2] if f(xL) < f(xR)”.
 

f x( )

x1 xL x*xR x2 x

Fig. 2.3: xL and xR on one side of the optimum [f(xL) < f(xR)].

Now take the second case i.e. when f(xL) > f(xR).

This may be true in the three situations as shown in Fig.
2.4.

Fig. 2.4(a) – xL and xR on either side of the optimum and
f(xL) = f(xR).

Fig. 2.4(b) – xL and xR on either side of the optimum and
f(xL) > f(xR).

Fig. 2.4(c) – xL and xR on one side of the optimum and
f(xL) > f(xR).

Following statement is applicable in all the three situations:

“Optimum should lie in the range [x1, xR] if f(xL) = f(xR)”.

Observe this and the previous statement. Out of xL and
xR, only one is changing for the range in which an optimum
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may lie. This discussion is useful for implementing an algorithm
for method of golden section.

(a) f(xL) = f(xR)

(b) xL and xR on either side of the optimum and f(xL) > f(xR)

(c) xL and xR on one side of the optimum and f(xL) > f(xR)
Fig. 2.4: Various situations for f(xL) > f(xR)
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2.2.1 Algorithm
The algorithm for method of golden section is illustrated

by Fig. 2.5 where [x1, x2] is the range in which maximum x*
lies, and

r = 0.5 ( )5 1−  = 0.618034 ~ 0.618

This number has certain properties which may be observed
later.

After initialization as mentioned in Fig. 2.5, following steps
are followed:

 
Initialization:  X1 = x1, X2 = x2, M = (X2 – X1), 

xL =X1 + Mr2, and xR = X1+ Mr 
 

Is 
f(xL) < f(xR) 

? 

 
X1 = xL, M = X2 – X1 

xL = previous xR, xR = X1 + Mr 

 
X2 = xR, M = X2 – X1 

xR = previous xL, xL = X1 + Mr2 

 
Stop if M is considerably small 

 

Fig. 2.5: Algorithm for the method of golden section.

Initialization: X1 = x1, X2 = x2, M + (X2 – X1)

               xL = X1 + Mr2, and xR = X1 + Mr

No Is

f(xL) < f(xR)

?

X1 = xL, M = X2 – X1

xL = previous xR, xR = X1 + Mr

X2 = xR, M = X2 – X1

xR = previous xL, xL = X1 + Mr2

Stop if M is considerably small

Yes
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Step 1 – f(xL) is compared with f(xR) and depending on this
comparison, go to either step 2 or step 3.

Step 2 – iff(xL) < f(xR), X1 = xL and M = X2 – X1

 xL = previous xR and xR = X1 + Mr

Go to step 1.

Step 3 – If f(xL) > f(xR), X2 = xR and M = X2 – X1

xR = previous xL and xL = X1 + Mr2

Go to step 1.

The procedure is stopped if value of M is considerably
small.

Example 2.4. Consider the problem of example 2.1 in which
f(x) = 4x – 8x2, is maximized. Implement the method of golden
section. Use the initial range as [0, 0.5] in which optimum lies.

Solution. Now [x1, x2] = [0, 0.5]

Initialization: X1 = x1 = 0

X2 = x2 = 0.5

M = X2 – X1 = 0.5 – 0 = 0.5

xL = X1 + Mr2 = 0 + (0.5 × 0.6182) = 0.19

xR = X1 + Mr = 0 + (0.5 × 0.618) = 0.31

Iteration 1:

Step 1 – f(xL) = f(0.19) = 0.47

f(xR) = f(0.31) = 0.47

As the condition f(xL) > f(xR) is satisfied step 3 is applicable.

Step 3 – X2 = 0.31 and M = 0.31 – 0 = 0.31

xR = 0.19 and xL = 0 + (0.31 × 0.6182) = 0.12

Iteration 2:

Step 1 – f(xL) = f(0.12) = 0.36

f(xR) = f(0.19) = 0.47

As f(xL) < f(xR), step 2 is applicable.

Step 2 – X1 = 0.12 and M = X2 – X1

= 0.31 – 0.12 = 0.19

xL = 0.19 and xR

= 0.12 + (0.19 × 0.618) = 0.24
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It may be observed that only one value out of xL and xR
is really changing in each iteration. Either xL or xR will take
the previous value of xR or xL respectively.

At any iteration i, value of M = r . (value of M at
iteration, i–1)

For example, M = 0.19 in iteration 2, which is equal to
0.618 (value of M in iteration 1) or 0.618 × 0.31 = 0.19.

Alternatively, value of M (or the range in which optimum lies)
at any iteration i = (x2 – x1) ri

where i = 1, 2, 3, ….

At iteration 1, M = (0.5 – 0) × 0.618 = 0.31

At iteration 2, M = (0.5 – 0) × 0.6182 = 0.19

Iterative process is continued until M is considerably small.

Iteration 3:

Step 1 : f(xL) = f(0.19) = 0.47

f(xR) = f(0.24) = 0.50

Step 2 : X1 = 0.19 and M = 0.31 – 0.19 = 0.12

xL = 0.24 and xR

= 0.19 + (0.12 × 0.618) = 0.26

Iteration 4:

Step 1 : f(xL) = f(0.24) = 0.50

f(xR) = f(0.26) = 0.50

Step 3 : X2 = 0.26, M = 0.26 – 0.19 = 0.07

xR = 0.24, xL = 0.19 + (0.07 × 0.6182) = 0.22

Iteration 5:

Step 1 : f(xL) = f(0.22) = 0.49

f(xR) = f(0.24) = 0.50

Step 2 : X1 = 0.22, M = 0.26 – 0.22 = 0.04

xL = 0.24, xR = 0.22 + (0.04 × 0.618) = 0.24

The process may be continued to any desired accuracy. At
present, value of M = 0.04 with [X1, X2] = [0.22, 0.26], which
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indicates that optimum lies between 0.22 and 0.26. Considering
it a narrow range, even an average works out to be 0.24 which
is very close to exact optimum x* = 0.25.

At any iteration i, xL – X1 = X2 – xR.

For example, at iteration 3,

0.24 – 0.19 = 0.31 – 0.26 = 0.05

2.3 QUADRATIC INTERPOLATION

If it is possible to approximate any function by a quadratic
function or it is difficult to differentiate it, then the quadratic
function is analyzed in order to obtain a minimum. The
minimum thus obtained is substituted in the original function
which is to be minimized and the process is continued to
attain the desired accuracy.

A quadratic function, f(x) = ax2 + bx + c ...(2.1)

Three points x1, x2 and x3 are selected, and

f(x1) = ax1
2 + bx1 + c ...(2.2)

f(x2) = ax2
2 + bx2 + c ...(2.3)

f(x3) = ax3
2 + bx3 + c ...(2.4)

solving these three equations (2.2), (2.3) and (2.4), values of a
and b are obtained as follows :

a = − − + − −
− − −

�

��
�

��
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
x x f x x x f x x x f x

x x x x x x
1 2 3 2 3 1 3 1 2

1 2 2 3 3 1

...(2.5)

b = 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
x x f x x x f x x x f x

x x x x x x
1
2

2
2

3 2
2

3
2

1 3
2

1
2

2

1 2 2 3 3 1

− + − −
− − −

�

�
�

�

�
�

...(2.6)

In order to obtain minimum of equation (2.1),

d f x
dx

( )
= 0

or 2ax + b = 0

or Minimum x* = –b/2a

Substituting the values of a and b from equations (2.5)
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and (2.6) respectively,

x* = 
1
2

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

x x f x x x f x x x f x
x x f x x x f x x x f x

1
2

2
2

3 2
2

3
2

1 3
2

1
2

2

1 2 3 2 3 1 3 1 2

− + − −
− − −

�

�
�

�

�
�

...(2.7)

This minimum x* is used in the iterative process. Three
points x1, x2 and x3 as well as their function values are needed
to determine x*.

An initial approximate point x1 is given,

and x2 = x1 + ∆

where ∆ = step length

As the objective is to minimize, a third point x3 is selected
as follows :

(i) x3 = x1 – ∆, if f(x1) < f(x2)

(ii) x3 = x2 + ∆ = x1 + 2∆, if f(x2) < f(x1)

Example 2.5. Obtain the minimum of the following
function using quadratic interpolation

f(x) = 1200x + 300/x

Initial approximate point may be assumed as x1 = 0.3 and
step length ∆ = 0.1.

Solution.

Iteration 1:

Now x1 = 0.3 and f(x1) = 1360

x2 = x1 + ∆ = 0.3 + 0.1 = 0.4 and f(x2) = 1230

As f(x2) < f(x1), x3 = x1 + 2∆ = 0.5

And f(x3) = 1200

From equation (2.7), x* = 0.48

And f(x*) = 1201

Iteration 2:

x* = 0.48 may replace the initial value x1

Now x1 = 0.48, f(x1) = 1201

x2 = 0.48 + 0.1 = 0.58, f(x2) = 1213.24
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Asf(x1) < f(x2), x3 = x1 – ∆ = 0.48 – 0.1 = 0.38

and f(x3) = 1245.47

From equation (2.7), x* = 0.508

And f(x*) = 1200.15

In order to achieve the desired accuracy, the process may
be continued until the difference between consecutive values
of x* becomes very small.

2.4 NEWTON RAPHSON METHOD

Consider x = a as an initial approximate value of the
optimum of a function f(x) and (a + h) as an improved value.
In order to find out the value of h, expand f(a + h) using
Taylor’s theorem and ignore higher powers of h. Further
following notations may be assumed for convenience

f1(x) = first order derivative

f11(x) = second order derivative

Now f(a + h) = f(a) + hf1(a)

For the minima, f1(a + h) = f1(a) +hf11(a) = 0

or h =
− f a
f a

1

11
( )
( )

Next value of x = a – 
f a
f a

1

11
( )
( )

(2.8)

Example 2.6. Use the Newton Raphson method in order
to solve the problem of Example 2.5 in which,

f(x) = 1200x + 300/x

obtain the minimum considering initial value of x = 0.3.

Solution.

Iteration 1:

f1(x) = 1200 – 300/x2 (2.9)

f11(x) = 600/x3 (2.10)

Now a = 0.1

From (2.9), f1(a) = – 2133.33
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From (2.10), f11(a) = 22222.22

From (2.8), new value of x = 0.3 + 
2133 33
22222 22

.
.

   = 0.396

This value is used as a in the next iteration.

Iteration 2:

Now a = 0.396

Again using (2.9) and (2.10),

f1(a) = – 713.07

f11(a) = 9661.97

From (2.8), new value of x = 0.396 + 
713 07
9661 97

.
.

   = 0.47

Iteration 3:

Now a = 0.47

f1(a) = – 158.08,

f11(a) = 5779.07

New value of x = 0.47 + 0.027 = 0.497

The process is continued to achieve any desired accuracy.

In a complex manufacturing-inventory model, all the
shortage quantities are not assumed to be completely
backordered. A fraction of shortage quantity is not backlogged.
Total annual cost function is formulated as the sum of
procurement cost, setup cost, inventory holding cost and
backordering cost. After substituting the maximum shortage
quantity (in terms of manufacturing lot size) in the first order
derivative of this function with respect to lot size and equated
to zero, a quartic equation is developed, which is in terms of
single variable, i.e., lot size. Newton-Raphson method may be
successfully applied in order to obtain the optimum lot size
using an initial value as the batch size for the situation in
which all the shortages are assumed to be completely
backordered.
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If any equation is in the form, f(x) = 0, and the objective
is to find out x which will satisfy this, then the Newton-
Raphson method may be used as follows:

f(a + h) = f(a) + hf1(a) = 0

or h = 
− f a
f a

( )
( )1 (2.11)

and the next value of x = a – 
f a
f a

( )
( )1 (2.12)

This value of x is used in the next iteration as an
approximate value, a. The process is continued until the
difference between two successive values of x becomes very
small.
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One variable optimization problems were discussed in the
previous chapter. There are many situations in which more
than one variable occur in the objective function. In an
unconstrained multivariable problem, the purpose is to optimize
f(X) and obtain,

X =

x
x

xn

1

2

.

.

�

�

�
�
�
�
��

�

�

�
�
�
�
��

without imposing any constraint.

In a constrained multivariable problem, the objective is to
optimize f(X), and get,

X =

x
x

xn

1

2

.

.

�

�

�
�
�
�
��

�

�

�
�
�
�
��

subject to the inequality constraints such as,

pi (X) < 0, i = 1, 2, ..., k

qi (X) > 0, i = 1, 2, ..., l

32
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f (x)

M

M

and/or, equality constraints,

ri(X) = 0, i = 1, 2, ... m

3.1 DICHOTOMOUS SEARCH

In this search procedure, the aim is to maximize a function
f(x) over the range [x1, x2] as shown in Fig. 3.1

x1 xL xR x2 x

Fig. 3.1: Dichotomized range [x1, x2].

Two points xL and xR are chosen in such a way, that,

M = xR – x1 = x2 – xL ...(3.1)

Consider ∆ = xR – xL ...(3.2)

Solving equations (3.1) and (3.2),

xL =
x x1 2

2
+ − ∆

...(3.3)

xR =
x x1 2

2
+ + ∆

...(3.4)

Value of ∆ is suitably selected for any problem and xL as
well as xR are obtained. After getting the function values f(xL)and
f(xR),

(i) If f(xL) < f(xR), then the maximum will lie in the range
[xL, x2].

(ii) If f(xL) > f(xR), then the maximum will lie in the range
[x1, xR].
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(iii) If f(xL) = f(xR), then the maximum will lie in the range
[xL, xR].

Using appropriate situation, the range for the search of a
maximum becomes narrow in each iteration in comparison
with previous iteration. The process is continued until the
range, in which optimum lies, i.e. (x2 – x1), is considerably
small.

Example 3.1. Maximum f(x) = 24x – 4x2 using
dichotomous search. Initial range [x1, x2] = [2, 5]. Consider ∆
= 0.01 and stop the process if considerably small range (in
which maximum lies) is achieved, i.e. (x2 – x1) = 0.1.

Solution.

Iteration 1:

From equations (3.3) and (3.4),

xL =
2 5 0 01

2
+ − .

 = 3.495

xR =
2 5 0 01

2
+ + .

 = 3.505

f(xL) = 35.0199

f(xR) = 34.9799

As f(xL) > f(xR), then the maximum lies in the range
[x1, xR] = [2, 3.505].

For the next iteration [x1, x2] = [2, 3.505].

Iteration 2:

Again using equations (3.3) and (3.4),

xL =
2 3 505 0 01

2
+ −. .

 = 2.7475

xR = 2 3 505 0 01
2

+ +. .  = 2.7575

and f(xL) = 35.7449

f(xR) = 35.7648

As f(xL) < f(xR), then the maximum lies in the range
[xL, x2] = [2.7475, 3.505].

Iteration 3:

Now [x1, x2] = [2.7475, 3.505].
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xL = 3.12125, f(xL) = 35.9412

xR = 3.13125, f(xR) = 35.9311

f(xL) > f(xR), range for the maximum = [x1, xR] = [2.7475,
3.13125].

Iteration 4:

[x1, x2] = [2.7475, 3.13125]

xL = 2.934375, f(xL) = 35.9828

xR = 2.944375, f(xR) = 35.9876

f(xL) < f(xR), and for the next iteration,

[x1, x2] = [xL, x2] = [2.934375, 3.13125]

Iteration 5:

xL = 3.0278, f(xL) = 35.9969

xR = 3.0378, f(xR) = 35.9943

f(xL) > f(xR), and maximum will lie in the range [x1, xR]
= [2.934375, 3.0378].

Iteration 6:

[x1, x2] = [2.934375, 3.0378]

xL = 2.9811, f(xL) = 35.9986

xR = 2.9911, f(xR) = 35.9997

f(xL) < f(xR), and a range for the maximum = [xL, x2]
= [2.9811, 3.0378].

The process will be stopped as [x1, x2] = [2.9811, 3.0378]
and (x2 – x1) = 0.0567, which is < 0.1.

Consider the average of this small range as maximum,
i.e. (2.9811 + 3.0378)/2 = 3.009. This is very near to the exact
optimum i.e. 3.

3.2 UNIVARIATE METHOD

This is suitable for a multivariable problem. One variable
is chosen at a time and from an initial point, it is increased
or decreased depending on the appropriate direction in order
to minimize the function. An optimum step length may be
determined as illustrated in the example. Similarly each variable
is changed, one at a time, and that is why the name “univariate
method”. One cycle is said to complete when all the variables
have been changed. The next cycle will start from this position.
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The procedure is stopped when further minimization is not
possible with respect to any variable.

Consider a function f(x1, x2). Optimum x1 and x2 are to be
obtained in order to minimize f(x1, x2). Fig. 3.2 is a
representation of the univariate method.

Fig. 3.2 Changing one variable at a time.

From the initial point (x1, x2), only x1 is varied. In order
to find out suitable direction, probe length is used. Probe
length is a small step length by which the current value of any
variable is increased or decreased, so that appropriate direction
may be identified. After determining optimum step length m
(assuming negative direction), value of x1 is changed to that
corresponding to point 1’. From point 1’ repeat the process
with respect to variable x2, without changing x1. Cycle 1 is
completed at point 1 and from this position of (x1, x2) cycle 2
will start, which is completed at point 2. The optimum (x1*, x2*)
correspond to point 3 and the objective is to reach there.

The process is continued till there is no chance of further
improvement with respect to any of the variables.

Example 3.2. Minimize the following function for the
positive values of x1 and x2, using univariate method

f(x1, x2) = 9x 3
x

3x
x

27x1
1

1
2

2
2+ + +

x2

3’

3
(x1*, x2*)

2

2’ 1

n

m
1’ Initial point

(x1, x2)

x1
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Probe length may be considered as 0.05 and an initial
point as (1, 1).

Solution. As the initial point is (1, 1), f(1, 1) = 42

Cycle 1.

(a) Vary x1 :

As the probe length is 0.05,

f(0.95, 1) = 41.42

and f(1.05, 1) = 42.61

Since the objective is to minimize, and 41.42 < 42, negative
direction is chosen. Considering m as step length,

f[(1 – m), 1] = 9 1 3
1

3 1 272( )
( )

( )− +
−

+ − +m
m

m

m can be optimized by differentiating this equation and
equating to zero. In case, it is difficult to differentiate or
evaluate m, simple search procedure may be adopted to obtain
approximate optimal step length m.

Now
df
dm

= 0 shows

2m3 – 9m2 + 12m – 4 = 0

m = 0.5 can be obtained using simple search technique or
other suitable method.

New value of x1 = 1 – m = 1 – 0.5 = 0.5

And f(x1, x2) = f(0.5, 1) = 38.25

(b) Vary x2:

Using the probe length 0.05,

f(0.5, 0.95) = 36.94

and f(0.5, 1.05) = 39.56

Negative direction is selected for varying x2, and
considering step length n,

f(0.5, (1 – n)] = 37.5 +
0 75
1

.
( )−

−
n

 27n

df
dn = 0 shows,

n = 0.83
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New value of x2 = 1 – n = 1 – 0.83 = 0.17

and f(x1, x2) = x(0.5, 0.17) = 19.50

This is corresponding to point 1 as shown in Fig. 3.2.

Cycle 2

(a) Vary x1:

f(0.55, 0.17) = 20.33

f(0.45, 0.17) = 18.88 < f(0.5, 0.17) = 19.50

Again negative direction is chosen and

f[(0.5 – m), 0.17] = 9 0 5
3

0 5
3 0 5

0 17
4 59

2
( . )

( . )
( . )

.
.− +

−
+ − +m

m
m

df
dm = 0 shows

11 76
1

0 5
8 882.

( . )
.m

m
+

−
−  = 0 ...(3.5)

Value of m needs to be obtained which will satisfy above
equation. As we are interested in positive values of variables,
m < 0.5. Considering suitable fixed step size as 0.1, values of
the L.H.S. of equation obtained in terms of m are as follows:

m L.H.S. value for equation (3.5)

0.4 95.824

0.3 19.648

0.2 4.58

0.1 –1.45

Value of m should be between 0.1 and 0.2. Using smaller
step size as 0.01,

m L.H.S. value for equation (3.5)

0.11 –1.01

0.12 –0.54

0.13 –0.05

0.14 0.48

Therefore, approximate value for m is considered as 0.13
and new value of x1 = 0.5 – 0.13 = 0.37.

f(0.37, 0.17) = 18.44, which is less than the previous value
i.e. 19.50 corresponding to f(0.5, 0.17).
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(b) Vary x2:

f(0.37, 0.22) = 19.24

f(0.37, 0.12) = 18.10

Negative direction is chosen, and

f[0.37, (0.17 – n)] = 11.44 + 
0 41

0 17
.

( . )− n  + 27 (0.17 – n)

df
dn

= 0 shows

n = 0.05

and new value of x2 = 0.17 – 0.05 = 0.12

f(x1, x2) = f(0.37, 0.12) = 18.10

The procedure is continued for any number of cycles till
improvement in function values are observed by varying x1
and x2 each. The exact optimum is [x1*, x2*] = [1/3, 1/9].

3.3 PENALTY FUNCTION METHOD

This method is suitable for the constrained optimization
problem such as,

Minimize f(X)

Subject to inequality constraints in the form,

pi(X) < 0, i =1, 2, ..., k

and obtain

X =

x
x

xn

1

2

.

.

�

�

�
�
�
�
��

�

�

�
�
�
�
��

This is transformed to an unconstrained minimization
problem by using penalty parameter and constraints in a
suitable form. The new function is minimized by using a
sequence of the values of penalty parameter. The penalty
function method is also called as sequential unconstrained
minimization technique (SUMT).
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3.3.1 Interior Penality Function Method
A new function Φ is introduced as follows:

Φ(X, r) = f(X) – r 1

1
pii

k

(X)=
∑ ...(3.6)

whereas r is the non-negative constant known as the penalty
parameter. Starting from the suitable initial value of r,
decreasing sequence of the values of penalty parameter, is
used to minimize Φ(X, r) and eventually f(X), in the interior
penalty function method.

Example 3.3.

Minimize f(X) = f(x1, x2) = x1 + 
( 4 x )

3
2

3+

subject to x1 > 1

 x2 > 4

Use the initial value of penalty parameter r as 1 and
multiplication factor as 0.1 in each successive iteration.

Solution. As the constraints need to be written in
“pi(X) < 0” form, these are

1 – x1 < 0

4 – x2 < 0

In order to obtain a new function Φ, equation (3.6) is
used. Sum of the reciprocal of L.H.S. of the constraints, is
multiplied with penalty parameter r, and then this is deducted
from function f(X).

Now Φ(X, r) = Φ(x1, x2, r)

= x1 + 
( )

( ) ( )
4

3
1

1
1

4
2

3

1 2

+ −
−

+
−

�

��
�

��
x

r
x x

...(3.7)

In order to minimize Φ, this is differentiated partially
with respect to x1 and x2, and equated to zero.

∂
∂
Φ
x1

= 1
1

0
1

2−
−

=r
x( )

or x1* = 1 – r ...(3.8)
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∂
∂
Φ
x2

= ( )
( )

4
4

02
2

2
2+ −

−
=x

r
x

or x2* = [16 – r ]1/2 ...(3.9)

x1 and x2 are obtained for any value of r from equations
(3.8) and (3.9) respectively. These are substituted in equation
(3.7) in order to get Φ* and similarly f(X) or f(x1, x2) are
obtained for decreasing sequence of r. As the multiplication
factor is 0.1, this is multiplied with the previous value of r in
each iteration. Calculations are shown in Table 3.1.

Table 3.1: Calculations
Iteration, i r x1* x2*    Φ* f(x1, x2)

1 1 0 3.87 153.79 162.48

2 0.1 0.68 3.96 165.99 168.79

3 0.01 0.9 3.99 169.83 170.93

4 0.001 0.97 3.996 171.10 171.38

5 0.0001 0.99 3.999 171.48 171.59

Values of Φ as well as f are increasing. This is because
r  has been considered as positive. Taking it as negative, a

decreasing trend for Φ and f would have been obtained, along
with Φ > f.

As shown in Table 3.1, with increased number of
iterations, values of Φ and f are almost similar. The process
may be continued to any desired accuracy and it is approaching
to exact optimum f*(x1, x2) = 171.67 along with x1* = 1 and
x2* = 4.

3.4 INDUSTRIAL APPLICATION

The objectives to be achieved in different area of any
industry/business are of many kinds. Some of these are as
follows:

(a) Manufacturing planning and control

(b) Quality management

(c) Maintenance planning

(d) Engineering design

(e) Inventory management
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Machining of the components are often needed in the
manufacturing of a product. The aim may be

(i) the least machining cost per component,

(ii) the minimum machining time per component, or a
suitable combination of both

The decision variables may include cutting speed, feed
and depth of cut, optimum values of which are to be evaluated
subject to the operational constraints. The operational
constraints are of various types such as tool life, surface finish,
tolerance etc.

Different products are designed in any industry depending
on their quality requirements and final application. If this
product is a machine component, then its suitability from
maintenance point of view becomes significant. For many of
the items, maximizing their value is also necessary.

Gears are used for transmission of the motion. Depending
on the parameters such as speed and power to be transmitted,
suitable material for the gear is selected. The objective function
may include

(i) minimize the transmission error,

(ii) maximize the efficiency, and

(iii) minimize the weight.

Various constraints are imposed on the O.F. In addition to
the space constraint, the induced stresses such as crushing,
bending and shear stress must be less than or equal to the
respective allowable crushing, bending and shear stress of the
selected material.

In a business application, while marketing the finished
products, price per unit is not constant. Price per unit may be
lower if larger quantities are to be sold. Total sales revenue
is evaluated by multiplying quantity with price function. Profit
is computed by subtracting total cost from total revenue. This
profit is a nonlinear function in terms of quantity, which needs
to be maximized subject to operational constraints.

The inventories mainly consist of raw material, work-in-
process and finished products. The scope of the inventory
management lies, in most of the cases, in the minimization of
total procurement cost, total manufacturing cost, and the costs
incurred in the supply chain. Objective function is formulated
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as the total relevant cost in many of the situations. The
production-inventory model is optimized subject to certain
constraints. Depending on the problem, there may be
constraints on-

(i) storage space

(ii) capacity

(iii) capital

(iv) machine setup and actual production time.

(v) shelf life.

Example 3.4. A manufacturing industry is engaged in the
batch production of an item. At present, its production batch
size, x1 = 4086 units without allowing any shortage quantity in
the manufacturing cycle. Now the industry is planning to allow
some shortages in the manufacturing system. However it will
not allow the maximum shortage quantity x2, to be more than
4 units in the production-inventory cycle. Total relevant cost
function, f(x1, x2) is estimated to be as follows:

f(x1, x2) = 1370.45
x
x

2
2

1
+ 0.147x1 – 2x2 + 

2448979.6
x1

where x1 = Production batch size

and x2 = Maximum shortage quantity.

Discuss the procedure briefly in order to minimize f(x1, x2)
subject to x2 < 4.

Solution. As discussed in section 3.3, the constraint is
written as,

x2 – 4 < 0

and function, Φ = 1370.45
x
x
2
2

1
+ 0.147x1 – 2x2 + 2448979 6

1

.
x

−
−

�

��
�

��
r

x
1

42 ...(3.10)

A combination of interior penalty function method and
univariate method may be used. For different values of penalty
parameter r, univariate method may be applied in order to
obtain the appropriate x1 and x2 at that stage. Following initial
values are considered :
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r = 1 and multiplication factor = 0.01

x1 = 4086 units

x2 = 1 unit

and after substituting,

Φ = 1198.6694

f = 1198.34

r = 1:

Cycle 1:

One variable is changed at a time, say x2, keeping x1
constant. To find out suitable direction,

Φ(x1, x2, r) = Φ(4086, 0.9, 1) = 1198.7949

and, Φ(4086, 1.1, 1) = 1198.5514

After selecting the positive direction, a fixed step length
of 0.5 is used and the valus are shown in Table 3.2.

Table 3.2: Values of ΦΦΦΦΦ with variation of x2

x2 Φ(4086, x2, 1)

1.5 1198.1553

2 1197.8423

2.5 1197.7636

3 1198.0193

Now Φ(4086, 2.5, 1) = 1197.7636

In order to vary x1,

Φ(4087, 2.5, 1) = 1197.7634

and Φ(4085, 2.5, 1) = 1197.7638

Positive direction is selected and the univariate search is
as shown in Table 3.3.

Table 3.3: Values of ΦΦΦΦΦ with variation of x1

x1 Φ(x1, 2.5, 1)

4087 1197.7634

4088 1197.7634

4089 1197.7633

4090 1197.7634

At the end of cycle 1, Φ(4089, 2.5, 1) = 1197.7633
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Cycle 2:

For the variation of x2,

Φ(4089, 2.4,1) = 1197.7574

Φ(4089,2.6,1) = 1197.7819

Negative direction is selected, and values are

x2: 2.4 2.3

Φ: 1197.7574 1197.7632

Now

Φ(4089, 2.4, 1) = 1197.7574

For the variation of x1, no improvement is there in both
the directions. The search is completed with respect to r = 1.

As the multiplication factor = 0.01,

next value of r = 1 × 0.01 = 0.01

r = 0.01:

Cycle 1:

Using r = 0.01, from (3.10), Φ(4089, 2.4, 0.01) = 1197.1387.

Function value, f(x1, x2) is obtained as equal to 1197.1324

In order to minimize Φ, for the variation of x2, positive
direction is chosen and the values are:

x2: 2.5 2.6 2.7 2.8 2.9

Φ: 1197.0967 1197.0747 1197.0529 1197.0379 1197.0297

x2: 3.0 3.1

Φ: 1197.0284 1197.0339

Now
Φ(4089, 3, 0.01) = 1197.0284
Positive direction is selected for variation of x1 and the

values are:
x1: 4090 4091 4092 4093
Φ: 1197.0282 1197.0281 1197.028 1197.0281

At the end of cycle 1, Φ(4092, 3, 0.01) = 1197.028
Cycle 2:
For the variation of x2

Φ(4092, 3.1, 0.01) = 1197.033

and Φ(4092, 2.9, 0.01) = 1197.029
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No improvement is possible in either direction, and with
respect to r = 0.01,

x1 = 4092 units

x2 = 3 units

f(x1, x2) = Rs. 1197.02

and Φ(x1, x2, r) = 1197.028

Till now, this procedure is summarized in Table 3.4. The
process may be continued to any desired accuracy with next
value of r = (previous value of r) × 0.01 = 0.01 × 0.01 = 0.0001.

Table 3.4: Summary of the results
Value Starting Number of Optimum Φ* f*
 of r point cycles to x1 and

minimize by x2
univariate

method

1 x1 = 4086 2 x1 = 4089 1197.757 1197.13

x2 = 1 x2 = 2.4

0.01 x1 = 4089 1 x1 = 4092 1197.028 1197.02

x2 = 2.4 x2 = 3



Geometric programming is suitable for a specific case of
nonlinear objective function, namely, posynomial function.

4.1 INTRODUCTION

In some of the applications, either open or closed
containers are fabricated from the sheet metal, which are
used for transporting certain volume of goods from one place
to another. Cross-section of the container may be rectangular,
square or circular. A cylindrical vessel or a container with
circular cross-section is shown in Fig. 4.1.

Fig. 4.1 A cylindrical box.
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Assuming it an open box (i.e. without a lid), area of the
sheet metal used for bottom = πr2

where r = Radius in m.

Considering cost of fabricating including material cost as
Rs. 200 per m2,

the relevant cost for the bottom = 200πr2 ...(4.1)

Area of the vertical portion = 2πrh

where h = height in m.

Considering cost per m2 as Rs. 230,

the relevant cost = 230 × 2πrh = 460πrh ...(4.2)

If 90 m3 of the goods are to be transported, then number

of trips needed = 
90

2πr h

Considering the transportation cost as Rs. 4 for each trip
(to and fro),

the cost of transportation = 4
90 360

2

2 1
×

π πr h
r h=

− −

 ...(4.3)

Adding equations (4.1) (4.2) and (4.3), the total relevant
cost function,

       f(r, h) = 200πr2 + 460πrh + 
360 2 1

π
r h− − ...(4.4)

Refer to equation (4.1), the coefficient is 200 π and exponent
of the variable r is 2, and exponent of h is zero, because it can
be written as 200πr2h0

Refer to equation (4.4), the coefficient are 200π, 460π and
360/π, which are all positive. Exponents of variables r and h
are real i.e., either positive or negative or zero. Further r and
h are positive variables. Such a function f represented by (4.4)
is a posynomial. A posynomial function has the following
characteristics:

(i) All the variables are positive.

(ii) Real exponents for these variables.

(iii) Positive coefficient in each component of the O.F.
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Posynomial function, f, stated by (4.4) has three cost
components :

(i) M1 = 200πr2h0

(ii) M2 = 460πr1h1

(iii) M3 = 
360 2 1

π
r h− −

and f = M1 + M2 + M3 = M
N

i
i=
∑

1

where N = number of components in the O.F. = 3.

Number of variables in the present example, n = 2.
Grametric programming is suitable for minimizing a posynomial
function, as explained above.

4.2 MATHEMATICAL ANALYSIS

A posynomial function can be written as,

f = M C
N N

i
i

i
i

a a
n
ax x xi i ni

= =
∑ ∑=

1 1
1 2

1 2. . .... ...(4.5)

where Ci  = Positive coefficient

a1i, a2i, ......., ani = Real exponents

x1, x2, ......., xn = Positive variables

n = Number of variables in the problem

N = Number of components in the O.F.

Differentiating equation (4.5) partially with respect to x1
and equating to zero,

∂
∂

f
x1

 = C
N

i i
a a i

n
a

i

a x x xi ni. . . ...1 1
1

2
2

1

1 −

=
∑  = 1 0

1
1

1
x

a i i
i

.M
N

=
=
∑

Similarly
∂
∂

f
x2

= 1
0

2
2

1
x

a i
i

i
=
∑ =
N

M.
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∂
∂

f
xn

=
1

0
1

x
a

n
ni

i
i

=
∑ =
N

M.

To generalize,

∂
∂

f
xk

= 1 0 1 2
1

x
a k n

k
ki

i
i

=
∑ = =
N

M. , , , ... ...(4.6)

Let x1*, x2*, ... xn* be the optional values of the variables
corresponding to minimization of equation (4.5).

M1*, M2* , ....MN* are the values after substituting the
optimum variables in each component of the O.F.

From (4.5), optimum value of the O.F.,

f* = M M M M1
*

2
*

N
*

N

i
i

* ...= + + +
=
∑

1

Dividing by f* on both sides,

M M M1
*

2
*

N
*

f f f
f
f* * *

*

*...+ + + = =1

or w1 + w2 + ... + wN = 1

where w1, w2, ..., wN are the positive fractions indicating the
relative contribution of each optimal component M1

*, M2, ...,
MN

* respectively to the minimum f *,

To generalize, wi
i

=
=
∑ 1

1

N

...(4.7)

where wi = 
M*

i

f * ...(4.8)

or Mi
* = ωi . f * ...(4.9)

Equation (4.6) can be written as,

aki i
i

. ,*M
N

=
=
∑ 0

1

 substituting the optimum values and
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multiplying with xk* on both sides.

Putting the value of Mi* from (4.9) in above equation,

f a wki i
i

* .
=
∑

1

N

= 0

or a wki i
i

.
=
∑

1

N

= 0, k = 1, 2, ..., n ...(4.10)

The necessary conditions obtained by (4.7) and (4.10) are
used to solve the problem. A unique solution is obtained for wi,
i = 1, 2,.... N if N = n + 1, as will be observed later. This type
of problem is having zero degree of difficulty as N – n – 1 = 0,
where degree of difficulty = (N – n – 1). A comparatively
complicated problem may occur if N > (n + 1) because degree
of difficulty > 1.

Now, f * = ( )*f
wi

i =
∑

1

N

, using equation (4.7)

= ( ) ( ) ...( )* * *f f fw w w1 2 N

=
M M M1

*
2
*

N
*

N

N

w w w

w w w

1 2

1 2�

��
�

��
�

��
�

��
�

��
�

��
... ,

since from equation (4.8),

f * =
M

or
M M M*

* 1
*

2
*

N
*

N

i

iw
f

w w w
= = = =

1 2
...

As Mi* = c x x x ii
a a ai i ni. * . * ... * ,1 2 2

1 2 = 1,  2,  ...,  N  ...(4.11)

f * = 
C1

w
x x xa a

n
a

w

n

1
1 2

11 21 1

1

. * . * ... *
�

�
	




�
�

C2

w
x x xa a

n
a

w

n

2
1 2

12 22 2

2

. * . * ... * ...
�

�
	




�
�
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CN

N

N N N
N

w
x x x

a a an

n

w

. . ...* * *
1 2

1 2�

�
	




�
�

or  f * = 
C C C1 2 N

N

N

N N

w w w
x

w w w
a w a w a w

1 2
1

1 2

11 1 12 2 1
�

�
	



�
�
�

�
	



�
�

�

�
	




�
�

+ +... ( )* ...

( ) ... ( )* ... * ...x xa w a w a w
n

a w a w a wn n n
2

21 1 22 2 2 1 1 2 2+ + + + + +N N N N

or f * = 
C C C1 2 N

N

N

N N

w w w
x x

w w w a w a wi i
i

i i
i

1 2
1 2

1 2 1
1

2
1

�

�
	



�
�
�

�
	



�
�

�

�
	




�
�

�

�

	
	
	

= =
∑ ∑

... ( ) .( )* *

...( )*xn

a wni i
i =
∑ 


�

�
�
�

1

N

Using Equation (4.10),

f * = 
C C C1 2 N

N

N

w w w
x x x

w w w

n
1 2

1
0

2
0 0

1 2�

�
	



�
�
�

�
	



�
�

�

�
	




�
�... ( ) .( ) ...( )* * *

or  f * = 
C C C1 2 N

N

N

w w w

w w w

1 2

1 2�

�
	



�
�
�

�
	



�
�

�

�
	




�
�... ...(4.12)

In order to minimize any posynomial function, w1, w2, ...
wN are obtained using equation (4.7) and (4.10). These are
substituted in equation (4.12) to get optimum function value
f *. Then from equation (4.9), M1*, M2*, ...., MN* are evaluated
and finally using (4.11), optimum x1*, x2*, ...xn* are computed.

In most of the other methods, optimum variables are
obtained and then by substituting them in the O.F., optimum
function value is computed. While in the geometric
programming, the reverse takes place. After geting the
optimum function value, variables are evaluated.

4.3 EXAMPLES

As discussed before, the geometric programming can be
effectively applied it any problem can be converted to a
posynomial function having positive coefficient in each
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component, positive variables and their real exponents. In this
section, the method is illustrated by some examples.

Example 4.1. A manufacturing industry produces its
finished product in batches. From the supply chain management
point of view, it wants to incorporate raw material ordering
policy in its total annual relevant cost and further to minimise
the costs. The management has estimated the total cost function
f, as follows :

f = 0.15x x
63158 x

x
5.75 x

x1 2
1.1 2

1

1
0.6

2
+ +

where x1 = Manufacturing batch size

and x2 = Frequency of ordering of raw material in a
manufacturing cycle.

Minimize f using geometric programming.

Solution.

Now f = 0 15 63158 5 751
1

2
1 1

1
1

2
1

1
0 6

2
1. .. .x x x x x x+ +− −

Number of components in the O.F., N = 3

Number of variables in the problem, n = 2

From (4.7), w1 + w2 + w3 = 1 ...(4.13)

From (4.10), a w kki i
i

. , ,
=
∑ = =

1

0 1 2
3

For k = 1, a w a w a w a wi i
i

1
1

11 1 12 2 13 30 0. ,
=
∑ = + + =

3

or

...(4.14)

For k = 2, a w a w a w21 1 22 2 23 3 0+ + = ...(4.15)

Equations (4.13), (4.14) and (4.15) may also be written in
the matrix form as follows :

      

1 1 1 1
0
0

11 12 13

21 22 23

1

2

3

a a a
a a a

w
w
w

�

�

	
	
	




�

�
�
�

�

�

	
	
	




�

�
�
�

=
�

�

	
	
	




�

�
�
�

...(4.16)
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where a11, a12 and a13 are the exponent of x1 in each component
of the O.F. Similarly a21, a22 and a23 are the exponent of x2 in
each component.

Now exponents of x1 are 1, –1 and 0.6 in first, second and
third component respectively. Similarly exponents of x2 are
1.1, 1 and –1 respectively in the first, second and third
component of the function f.

Using (4.13), (4.14), and (4.15), or a set of equations
represented by (4.16),

w1 + w2 + w3 = 1 ...(4.17)

w1 – w2 + 0.6 w3 = 0 ...(4.18)

1.1 w1 + w2 – w3 = 0 ...(4.19)

as
a
a

a
a

a
a

11

21

12

22

13

23

�

�
	




�
� =

1
1 1

1
1

0 6
1.
.−

−
�

�
	




�
�

Solving (4.17), (4.18) and (4.19),

w1 = 0.096, w2 = 0.4, and w3 = 0.504

From (4.12), f * = C C C
as N = 31 2 3

w w w

w w w

1 2 3

1 2 3�

�
	



�
�
�

�
	



�
�
�

�
	



�
�

As C1, C2 and C3 are coefficients of each component in the
O.F., i.e., C1 = 0.15, C2 = 63158, and C3 = 5.75, substituting the
relevant values,

f * = 
0 15

0 096
63158

0 4
5 75

0 504

0 096 0 4 0 504.
. .

.
.

. . .
�
�	



��

�
�	



��
�
�	



��

   = 427.37

From (4.9), Mi* = wi.f
*

M1* = 0.15 x1*, x2*
1.1 = w1.f

* = 41.03

or 0.15x1* x2*
1.1 = 41.03 ....(4.20)

Now M2* =
63158 2

1
2

x
x

w f
*

*
*.=
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or
63158 2

1

x
x

*

* = 0.4 × 427.37 = 170.95 ...(4.21)

Similarly M3
* =

5.75 x
x

w f1

2
3

0 6

215 39
*

*
*

.

. .= =      ...(4.22)

On solving equations (4.20), (4.21) and (4.22), following
approximate optimal values are obtained,

x1* = 320.17

and x2* = 0.87

Example 4.2. In section 4.1, a problem concerning
fabrication of a cylindrical box is discussed with the objective
of minimizing total relevant cost, which is the sum of
transportation and fabrication cost. The O.F. is formulated and
given by equation (4.4). This is as follows-

f (r, h) = 200 r 460 rh
360

r h2 2 1π π
π

+ + − −

Apply the geometric programming.

Solution.

Now 
1 1 1
2 1 2
0 1 1

1
0
0

1

2

3

−
−

�

�

	
	
	




�

�
�
�

�

�

	
	
	




�

�
�
�

=
�

�

	
	
	




�

�
�
�

w
w
w

or w1 + w2 + w3 = 1

2w1 + w2 – 2w3 = 0

w2 – w3 = 0

On solving, w1 = 0.2

w2 = 0.4

w3 = 0.4

Further the coefficients of the components of the O.F.

are, C1 = 200π, C2 = 460π,  C3 = 
360
π

,  and

f * = C C C1

1

2

2

3

3

1 2 3

w w w

w w w
�

�
	



�
�
�

�
	



�
�
�

�
	



�
�



56 APPLIED NONLINEAR PROGRAMMING

Substituting the values, f * = 1274.69

From (4.9), each component Mi
* = wi f*, and therefore

M1
* = 200πr2 = w1f

* = 0.2 × 1274.69

or 200πr2 = 254.938

or r = 0.637

M2
* = 460πrh = w2.f

* = 0.4 × 1274.69

or rh = 0.3528

As r = 0.637, h = 0.554

The optimum results are obtained as follows

r = 0.637 m

h = 0.554 m

and f * = Rs. 1274.69

Example 4.3. An industry wants to fabricate an open box
of mild steel as shown in Fig. 4.2. This box of rectangular
cross-section will be used for transporting certain volume of
small items for a project. This volume is estimated to be 90 m3.
Transportation cost for each trip (to and fro) is Rs. 6. Assume
that the thickness of mild steel sheet used is 2 mm. Cost of the
material and fabrication costs are estimated to be Rs. 30 per
kg. Find out the dimensions of the box in order to minimize
the total relevant cost. Consider the weight of the material as
7.85 gm/cm3.

Fig. 4.2 An open box of rectangular cross-section.

Solution.

Let L = Length of the box in cm

W = Width of the box in cm
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and H = Height of the box in cm

Now, 2 Nos. of steel sheets used are of the area (L × H)
cm2

2 Nos. of sheets are having area (W × H) cm2 each

1 No. of sheet with area (L × W) cm2

As the thickness of the material is 2 mm = 0.2 cm,

Volume of the material = 0.2 [2(L × H) + 2 (W × H)
+ (L × W)] cm3

and weight = 7.85 × 0.2 [2LH + 2WH + LW) gm

= 1.57 × 10–3 [2LH + 2WH + LW) kg

Cost of the material and fabrication cost in Rs.,

= 30 × 1.57 × 10–3 [2LH + 2WH + LW)

= 0.0942 LH + 0.0942 WH + 0.0471 LW

As the number of trips needed = 
90 106×

LWH
,

Cost of transportation = 
6 90 10 540 106 6× × ×

LWH LWH
=

Total relevant cost function,

f = 0.0942 LH + 0.0942 WH + 0.0471 LW + 540 × 106

L–1 W–1 H–1

Number of cost components in f are 4.

Component

1 2 3 4

Exponents of L 1 0 1 –1

Exponents of W 0 1 1 –1

Exponents of H 1 1 0 –1

and therefore,

1 1 1 1
1 0 1 1
0 1 1 1
1 1 0 1

1
0
0
0

1

2

3

4

−
−
−
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�

	
	
	
	




�

�
�
�
�

�

�

	
	
	
	




�

�
�
�
�

=

�
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w
w
w
w
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or w1 + w2 + w3 + w4 = 1

w1 + w3 – w4 = 0

w2 + w3 – w4 = 0

w1 + w2 – w4 = 0

On solving,

w1 = w2 = w3 = 0.2

and w4 = 0.4

Now C1 = 0.0942

C2 = 0.0942

C3 = 0.0471

and C4 = 540 × 106

f* =
C C C C1

1

2

2

3

3

4

4

1 2 3 4

w w w w

w w w w
�

�
	



�
�
�

�
	



�
�
�

�
	



�
�
�

�
	



�
�

=
0 0942

0 2
0 0942

0 2
0 0471

0 2
540 10

0 4

0 2 0 2 0 2 6 0 4
.

.
.

.
.

.
×
.

. . . .
�
�	



��
�
�	



��
�
�	



��
�

�
	




�
�

= 2487.37

Cost component Mi
* = wi.f

*, i = 1, 2, 3, 4

M1
* = 0.0942 LH = 0.2 × 2487.37

or LH = 5281.04 ...(4.23)

M2
* = 0.0942 WH = w2.f

* = 0.2 × 2487.37

or WH = 5281.04 ...(4.24)

M3
* = 0.0471 LW = 0.2 × 2487.37

or LW = 10562.08 ...(4.25)

M4
* =

540 106×
LWH

 = w4 f
* = 0.4 × 2487.37

or LWH = 542741.93 ...(4.26)

Substituting equation (4.25),

H =
542741 93
10562 08

51 39.
.

.= cm
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From (4.24), W = 102.77 cm

From (4.23), L = 102.77 cm

Therefore the optimal results are as follows :

L* = 102.77 cm

W* = 102.77 cm

H* = 51.39 cm

and f* = Rs. 2487.37
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Convex and concave functions were discussed in Chapter
1 in the context of a single variable problem. For the multi-
variable problem also, optimum results can be achieved by
differentiating the O.F. partially with respect to each variable
and equating to zero, if it can be ascertained whether the
function is convex or concave.

5.1 CONVEX/CONCAVE FUNCTION

The first step to determine convexity/concavity, is to
construct the Hessian. Hessian is a matrix, the elements of

which are ∂
∂ ∂

2f
x xi j

, where i and j are row and column

respectively corresponding to that element.

Example 5.1. Construct the Hessian matrix for—

(a) two variable problem

(b) three variable problem

(c) Four variable problem.

Solution. (a) The Hessian matrix J for a two variable
problem is as follows:

(a) J =

∂
∂

∂
∂ ∂

∂
∂ ∂

∂
∂

2

1
2

2

1 2

2

2 1

2

2
2

f
x

f
x x

f
x x

f
x

�

�

�
�
�
�
�

�

�

�
�
�
�
�

60
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(b) J =

∂
∂

∂
∂ ∂

∂
∂ ∂

∂
∂ ∂

∂
∂

∂
∂ ∂

∂
∂ ∂

∂
∂ ∂

∂
∂

2

1
2

2

1 2

2

1 3

2

2 1

2

2
2

2

2 3

2

3 1

2

3 2

2

3
2

f
x

f
x x

f
x x

f
x x

f
x

f
x x

f
x x

f
x x

f
x

�

�

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

(c) J =

∂
∂

∂
∂ ∂

∂
∂ ∂

∂
∂ ∂

∂
∂ ∂

∂
∂

∂
∂ ∂

∂
∂ ∂

∂
∂ ∂

∂
∂ ∂

∂
∂

∂
∂ ∂

∂
∂ ∂

∂
∂ ∂

∂
∂ ∂

∂
∂

2

1
2

2

1 2

2

1 3

2

1 4

2

2 1

2

2
2

2

2 3

2

2 4

2

3 1

2

3 2

2

3
2

2

3 4

2

4 1

2

4 2

2

4 3

2

4
2

f
x

f
x x

f
x x

f
x x

f
x x

f
x

f
x x

f
x x

f
x x

f
x x

f
x

f
x x

f
x x

f
x x

f
x x

f
x

�

�

�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�

5.1.1 Convex Function
In order to ascertain a convex function, the principal

minors of the Hessian matrix should have positive sign. Let
a Hessian be (n × n) matrix. An mth leading principal minor
is the determinant of the matrix obtained after deleting the
last (n – m) rows and corresponding columns.

Example 5.2. Ascertain whether the following function is
convex for positive values of x1 and x2 : f(x1, x2) = 5x1

–1 + 9x1
– 10x2 + 4x2

2.

Solution. Now
∂
∂

f
x1

= 9
5

1
2−

x

∂
∂ ∂

2

2 1

f
x x

=
∂

∂ ∂

2

1 2
0

f
x x

=

∂
∂

2

1
2
f

x = 10

1
3x
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∂
∂

2

2
2
f

x
=

∂
∂x

x
2

210 8 8− + =� �

J =

10 0

0 8
1
3x

�

�

�
�
�

�

�

�
�
�

When m = 2, n – m = 2 – 2 = 0 and no row or column
are to be deleted and,

second principal minor =

10 0

0 8
1
3x

=
80

0
80

1
3

1
3x x

− =

For the first principal minor, m = 1 and n – m = 2 – 1
= 1 and therefore last row and corresponding column are to
be deleted.

After deleting row 2 and column 2, remaining value

= 
10

1
3x

. First principal minor is 10

1
3x

, which is positive. Second

principal minor i.e., 
80

1
3x

 is also positive for positive x1. The

given function is convex.

Example 5.3. A function consisting of three variables x1,
x2 and x3 is minimized by equating partial derivatives of function
with each variable and equating to zero. In order to ascertain
the optimality with respect to the results achieved, develop the
necessary conditions.

Solution. Hessian matrix = 
A H G
H B F
G F C

�

�

�
�
�

�

�

�
�
�

If A =
∂
∂

2f
x1

2 ,  B =
2∂

∂
f

x2
2 ,  C =

2∂
∂

f
x3

2
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H = ∂
∂ ∂

2f
x x1 2

,   F =
2∂

∂ ∂
f

x x2 3
, and G =

2∂
∂ ∂

f
x x3 1

First principal minor is obtained by deleting last two
rows and last two columns, and the first condition is,

   A > 0 ...(5.1)

Second principal minor is obtained by deleting last row
and last column, and

 
A H
H B  > 0

or   AB > H2 ...(5.2)

Third principal minor should be greater than zero, i.e.

A H G
H B F
G F C

 > 0

or  A
B F
F C

H
H F
G C

G
H B
G F

− + > 0

or   A(BC – F2) – H (HC – FG) + G (HF – BG) > 0

or   ABC + 2FGH > AF2 + BG2 + CH2 ...(5.3)

In order to minimize f, optimum results are obtained by
solving,

∂
∂

f
x1

= 0,
∂
∂

f
x2

0= and
∂
∂

f
x3

0=

The conditions (5.1), (5.2) and (5.3) will need to be satisfied
for optimality.

5.1.2 Concave Function
As discussed before, mth principal minor is obtained as

the determinant of the matrix or value achieved after deleting
last (n – m) rows and corresponding columns. In order to
ascertain a concave function with respect to each variable,
the principal minor should have the sign (–1)m.

First principal minor should have (–1)1 = –1 i.e., negative
sign,
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Second principal minor should have (–1)2 = positive sign,

Third principal minor should have (–1)3 = negative sign,
and so on

Example 5.4. Determine whether the following function
is concave for positive variables—

f(x1, x2) = 8x2 – 7x1 – 10x1
–1 – 6x2

2

Solution.
∂
∂

f
x1

= − +7
10

1
2x

∂
∂

2

1
2
f

x
=

−20

1
3x

∂
∂

2

1 2

f
x x∂

=
∂

∂ ∂

2

2 1
0f

x x
=

∂
∂

2

2
2
f

x
= –12

Now J =
−

−

�

�

�
�
�

�

�

�
�
�

20
0

0 12
1
3x

First principal minor =
−20

1
3x

This is having negative sign, i.e., less than zero.

Second principal minor =
−

−

�

�

�
�
�

�

�

�
�
�

20
0

0 12
1
3x

=
240

1
3x

which is having positive sign, i.e., greater than zero.

Therefore the given function is concave with respect to
x1 and x2 each. In order to maximize this function, optimum
results can be obtained by solving,

∂
∂

f
x1

 = 0 and
∂
∂

f
x2

0=



MULTI-VARIABLE OPTIMIZATION 65

Example 5.5. A function of three variables is maximized
by solving,

       
∂
∂

∂
∂

∂
∂

f
x

0,
f
x

0 and
f
x

0
1 2 3

= = =

Develop the necessary conditions in order to guarantee
the optimality.

Solution. As mentioned in Example 5.2, let

A =
∂
∂

2

1
2
f

x
,    B =

∂
∂

2

2
2
f

x
,   C =

∂
∂

2

3
2
f

x

H =
∂

∂ ∂

2

1 2

f
x x

,  F = ∂
∂ ∂

2

2 3

f
x x

,   and  G =
∂

∂ ∂

2

3 1

f
x x

Hessian matrix = 
A H G
H B F
G F C

�

�

�
�
�

�

�

�
�
�

odd principal minors should be less than zero, i.e., have
negative sign. Even principal minors should be greater than
zero, i.e., have positive sign.

First principal minor = A,

and A < 0 ...(5.4)

Second principal minor,

A H
H B > 0

or AB > H2 ...(5.5)

Third principal minor,

A H G
H B F
G F C

< 0

or ABC + 2FGH < AF2 + BG2 + CH2 ...(5.6)

The conditions (5.4), (5.5) and (5.6) will need to be satisfied
for optimality.
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5.2 LAGRANGEAN METHOD

Consider the following multivariable problem with equality
constraints.

Minimize f(x1, x2, ..., xn)
subject to hi (x1, x2, ..., xn) = 0, i = 1, 2, ... m

The O.F. consists of n variables and m number of
constraints, i.e., h1, h2, ..., hm are imposed on it. The
constraints are in the ‘=0’ form. The method of Lagrange
multipliers is useful in order to optimize such kind of problems.
A new function, i.e., Lagrange function, L is formed,

L (x x xn m1 2 1 2, , ...., , , ,..., )λ λ λ  = f x x xn( , , ..., )1 2

+
=
∑λ i i
i

m

nh x x x
1

1 2( , , ..., )   ...(5.7)

where λ i i m, , , ...,= 1 2  are called Lagrange multipliers.
Negative sign may be used in equation (5.7) in a case of
maximization problem.

Equation (5.7) is a function of (n+m) variables including
the Lagrange multipliers. Differentiating partially with respect
to each variable and equating to zero, yields the optimal values
after solving.

Example 5.6. Minimize the following function using the
method of Lagrange multipliers.

f x x x( , , )1 2 3  = 
250
x

1090x 7 x 5x
7 x
40x

5x
16x1

1 2 3
2
2

1

3
2

1
+ − − + +

subject to x1 + x3 = 4

and x2 + x3 = 12

Solution. Both the constraints are to be written in the
following form—

x1 + x3 – 4 = 0

and x2 + x3 – 12 = 0

Lagrange function

L (x x x1 2 3 1 2, , , , )λ λ =
250

1x  +

1090 7 5
7
40

5
161 2 3

2
2

1

3
2

1
x x x

x
x

x
x

− − + +

                + + − + + −λ λ1 1 3 2 2 34 12( ) ( )x x x x



MULTI-VARIABLE OPTIMIZATION 67

Now,

∂
∂

L
x1

=
− + − − + =250 1090

7
40

5
16

0
1
2

2
2

1
2

3
2

1
2 1x

x
x

x
x

λ ...(5.8)

∂
∂

L
x2

= − + + =7 14
40

02

1
2

x
x

λ ...(5.9)

∂
∂

L
x3

= − + + + =5 10
16

03

1
1 2

x
x

λ λ ...(5.10)

∂
∂λ

L

1
= x1 + x3 – 4 = 0 ...(5.11)

∂
∂λ

L

2
= x2 + x3 – 12 = 0 ...(5.12)

Optimum values of all the five variables are obtained by
solving these equations.

Subtracting (5.11) from (5.12),

              x2 = x1 + 8 ...(5.13)

From (5.11), x3 = 4 – x1 ...(5.14)

Using (5.9) and (5.10),

λ2 = 7 14
40

5 10
16

2

1

3

1
1− = − −x

x
x
x

λ ...(5.15)

Substituting (5.13) and (5.14),

λ1 =
3

10
41
401x

− ...(5.16)

Substituting (5.13), (5.14) and (5.16) in equation (5.8) and
on solving,

              x1 = 0.49

From (5.16), λ1 = –0.41

From (5.13), x2 = 8.49

From (5.15), λ2 = 7 14
40

0 942

1
− =x

x
.

From (5.14), x3 = 3.51
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Following optimal values are obtained,

x1 = 0.49, x2 = 8.49, x3 = 3.51,

λ1 = –0.41 and λ2 = 0.94

Substituting x1, x2 and x3,

optimal function value, f = 1000.92

Example 5.7. Minimize the following function using the
Lagrangean method—

          f ( x , x ) 6x 96
x

4x
x

x
x

1 2 1
1

2

1

1

2
= + + + ...(5.17)

subject to x1 + x2 = 6 ...(5.18)

Also discuss the physical significance of Lagrange
multiplier.

Solution. The constraint is,

x1 + x2 – 6 = 0

and the Lagrange function,

L (x x1 2, , )λ = 6 96 4 61
1

2

1

1

2
1 2x

x
x

x
x
x

x x+ + + + + −λ ( )

Now
∂
∂
L
x1

= 6
96 4 1

0
1
2

2

1
2

2
− − + + =

x
x

x x
λ      ...(5.19)

∂
∂

L
x2

=
4

0
1

1

2
2x

x
x

− + =λ ...(5.20)

∂
∂λ
L

= x1 + x2 – 6 = 0 ...(5.21)

Solving these equations,

x2 = 6 – x1, form (5.21)

Substituting in (5.20), λ =
−

−x
x x
1

1
2

16
4

( )

and from (5.19)

6
96 4 6 1

6 6
4

0
1
2

1

1
2

1

1

1
2

1
− − − +

−
+

−
− =

x
x

x x
x

x x
( )

( ) ( )

or  6
120 1

6 6
0

1
2

1

1

1
2− +

−
+

−
=

x x
x
x( ) ( )
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or        6 6
120 6

6 01
2 1

2

1
2 1 1( )

( )
( )− − − + − + =x

x
x

x x

or     ( )
( )

6
20 6

1 01
2 1

2

1
2− − − + =x

x
x

This is satisfied with x1 = 4.

From (5.21), x2 = 2 and from (5.20), λ = 0.

The optimal values of x1, x2 and λ are 4, 2 and 0
respectively. If the objective is to obtain the unconstrained
minimum, then it can be observed that x1

* = 4 and x2
* = 2.

In other words, the constraint (5.18) satisfies exactly the
unconstrained optimal values and therefore the λ* is obtained
as zero.

optimal function value f* = f(x1
*, x2

*) = f(4, 2) = 52

Let the R.H.S. of the constraint (5.18) be 7 in stead of 6,
i.e., the problem is to minimize.

                 f = 6 96 4
1

1

2

1

1

2
x

x
x

x
x
x

+ + +

subject to x x1 2 7+ =

Following the similar procedure, an equation in terms of
x1 is obtained as follows–

  6
124 1

7 7
0

1
2

1

1

1
2− +

−
+

−
=

x x
x
x( ) ( )

or  6
124 1

7
1

7
0

1
2

1

1

1
− +

−
+

−
�

�
�

�

�
� =

x x
x

x( ) ( )

or              6
124 7

7
0

1
2

1
2− +

−
=

x x( )

Above equation is satisfied with approximate value of x1
*

= 4.235. Remaining values are computed as x2
* = 2.765

and   λ* = –0.39

optimum function value f * = 52.22.

Relaxing the constraint further i.e., x1 + x2 = 8, following
approximate values are obtained,
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x1
* = 4.45, x2

* = 3.55, λ* = –0.5, and f* = 52.71.

With the negative value of the Lagrange multiplier λ,
O.F. value increases as the constraint is relaxed.

If the constraint is tightened, say x1 + x2 = 5, then a
positive value of λ is obtained. However, in this particular
example, the O.F. value is observed to increase. This may be
due to the O.F. being convex in terms of x1 and x2 each. The
computational results are as follows—

x1 = 3.65, x2 = 1.35

λ = 0.9,  f = 52.38

5.3 THE KUHN–TUCKER CONDITIONS

In the previous section, equality constraints were imposed
on the O.F. But, in many cases, inequality constraints are
used. For example, minimize

   f
x

x x x
x
x

x
x

= + − − + +250
1090 7 5

7
40

5
161

1 2 3
2
2

1

3
2

1

subject to x x1 3 4 0+ − ≤

      x x2 3 12 0+ − ≤

The constraints may be converted into equality form as
follows—

x x1 3 4 0+ − + =S1
2

x x2 3 12 0+ − + =S2
2

where S1
2 and S2

2 are slack variables and

S1
2 > 0

S2
2 > 0

Square of S1 and S2 are used in order to ensure the non-
negative slack variables.

Lagrange function,

L = 250 1090 7 5
7
40

5
161

1 2 3
2
2

1

3
2

1x
x x x

x
x

x
x

+ − − + +

+ + − + + + − +λ λ1 1 3 2 2 34 12( ) ( )x x x xS S1
2

2
2
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with λ1 > 0

λ2 > 0

The optimum solution is obtained by differentiating
partially with respect to each variable and equating to zero.
These variables are—

(i) Decision variables x1, x2, x3

(ii) Lagrange multipliers λ1, λ2

(iii) Slack variables S1, S2

∂
∂

λL
S

S
1

1= =2 01

or λ1S1 = 0

Similarly, λ2S2 = 0

In order to generalize, let the problem be—

Minimize f x x xn( , , ..., )1 2

subject to h x x xi n( , , ..., )1 2 0≤ , i = 1, 2, ..., m

Now, using slack variables

 h x x x i mi n i( , , ..., ) , , , ...,1 2
2 0 1 2+ = =S

and  L S S S1 2( , , ..., , , , ..., , , ,..., )x x xn m m1 2 1 2λ λ λ

            = f x x x h x x xn i
i

m

i n i( , , ..., ) ( , ,..., )1 2
1

1 2
2+ +

=
∑λ S

      
∂
∂

L
xj

 = ∂
∂

λ ∂
∂

f
x

h
x

j n
j

i
i

m
i

j
+ =

=
∑

1

1 2, , , ...,

Following conditions are known as the Kuhn-Tucker
conditions—

∂
∂

λ ∂
∂

f
x

h
x

j n
j

i
i

m
i

j
+ = =

=
∑

1

0 1 2, , , ..., ...(5.22)

λihi = 0, i = 1, 2, ..., m ...(5.23)

hi < 0, i = 1, 2, ..., m ...(5.24)

λi > 0, i = 1, 2, ..., m ...(5.25)
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These conditions are needed to be satisfied for optimality.
Equation (5.23) is obtained by analyzing the following conditions
which were discussed before—

λiSi = 0 ...(5.26)

and hi + Si
2 = 0 ...(5.27)

From (5.26), consider the following possibilities—

(i) Si = 0 and λi = 0

Equation (5.23), i.e., λihi = 0 is true as λi = 0

(ii) only λi = 0 and Si(or Si
2) > 0

hiλi = 0 is satisfied

(iii) Si (or Si
2) = 0 and λ i ≠ 0

From (5.27), hi = 0, and hiλi = 0

Therefore (5.26) and (5.27), imply condition (5.23).

Example 5.8. Minimize f x
4
x

x
40x

5 x
8x1

1

2

1

1

2
= + + +

subject to x1 + x2 < 11.

Using the Kuhn-Tucker conditions, obtain the optimal
solution.

Solution. Now h x x= + − ≤1 2 11 0

and                   L = x
x

x
x

x
x

x x1
1

2

1

1

2
1 2

4
40

5
8

11+ + + + + −λ ( )

Using the Kuhn-Tucker conditions from (5.22) to (5.25),

1
4

40
5

8
0

1
2

2

1
2

2
− − + + =

x
x
x x

λ ...(5.28)

        
1

40
5
8

0
1

1

2
2x

x
x

− + =λ ...(5.29)

        λ ( )x x1 2 11 0+ − = ...(5.30)

           x x1 2 11 0+ − ≤ ...(5.31)

                        λ > 0 ...(5.32)

From (5.30), three possibilities are as follows:

(a) λ = 0 and x1 + x2 – 11 ≠ 0
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(b) λ = 0 and x1 + x2 – 11 = 0

(c) λ ≠ 0 and x1 + x2 – 11 = 0

Each of them are analyzed

(a) Substituting λ = 0 in (5.29),

     
1

40
5
8

0
1

1

2
2x

x
x

− =

or           x2 = 5x1

Putting this and λ = 0 in (5.28),

x1 = 2

and x2 = 5x1 = 10

As the condition (5.31) is not satisfied, this solution is not
optimal.

(b) λ = 0 and x2 = 11 – x1

Substituting in (5.29),

x1 = 11/6 and x2 = 11 – x1 = 55/6

Using these values, as the (5.28) is not satisfied, it is not
an optimal solution.

(c) x2 = 11 – x1

From (5.29), λ =
−

−5
8 11

1
40

1

1
2

1

x
x x( ) ...(5.33)

From (5.28),

1
4 11

40
5

8 11
5

8 11
1

40
0

1
2

1

1
2

1

1

1
2

1
− − − +

−
+

−
− =

x
x

x x
x

x x
( )

( ) ( )

or  40 171
275

11
01

2 1
2

1
2x

x
x

− +
−

=
( )

The equation is satisfied with x1
* = 1.9853 and x2

* = 11
– x1 = 9.0147

From (5.33), λ = 0.0027

As all the conditions are satisfied, the optimal results are
achieved with f* = 4.25.
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5.4 INDUSTRIAL ECONOMICS APPLICATION

Industrial economics relate to the managerial problems
concerning cost-volume-profit analysis etc. In the context of
nonlinear analysis, following functions (and their types) interact
with each other—

(i) Nonlinear total cost function and linear total revenue
function (Fig. 5.1).

(ii) Linear total cost function and nonlinear total revenue
function (Fig. 5.2).

(iii) Nonlinear total cost function and nonlinear total
revenue function (Fig. 5.3).

Tota l Cost

Tota l revenue

Q 1 Q 2
Q uantity

Function
values

Fig. 5.1: Nonlinear total cost and linear revenue function.

As the profit is difference between revenue and cost, it
is zero at the intersection of these functions. As shown in
Fig. 5.1, Q1 and Q2 are the quantity corresponding to which
the profit is zero. Maximum profit is obtained somewhere in
the range [Q1, Q2].

Similarly linear cost and nonlinear revenue function are
shown in Fig. 5.2.

In some of the cases, both the functions may be nonlinear.
This situation is represented by Fig. 5.3. Profit function is
determined and then by equating it to zero, two breakeven
points are obtained. Profit may also be maximized in the
computed range of quantity.
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Fig. 5.2 : Linear total cost and nonlinear revenue function.

Fig. 5.3 : Nonlinear cost and nonlinear revenue function.

Example 5.9: Consider the following functions using
quantity Q,
revenue function, R = 25Q
and total cost function, C = 45 + Q + 2Q2

obtain the two values of breakeven points and maximize the
profit in that range.

Solution. This case refers to the linear revenue function
and nonlinear total cost function.

Profit, P = R – C

or P = 25Q – [45 + Q + 2Q2]
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or P = 24Q – 45 – 2Q2

At the breakeven points, P = 0, and therefore

24Q – 45 – 2Q2 = 0

or  2Q2 – 24Q + 45 = 0

or Q = 24 24 360
4

2± −

=
24 216

4
±

∴ Q = 2.33 or 9.67

Two values of breakeven points are 2.33 and 9.67 units.
In order to maximize the profit,

d
d

P
Q = 0

or 24 – 4Q = 0

or optimum Q = 6 units

optimality may be ensured by getting negative second order
derivative.

Example 5.10. Let, the revenue function, R = 55Q – 3Q2

and total cost function, C = 30 + 25Q.

Solve the problem by obtaining breakeven points and
maximizing the profit.

Solution. The present case refers to the linear total cost
and nonlinear revenue function.

Now profit P = R – C = 30Q – 3Q2 – 30

To compute the breakeven points,

30Q – 3Q2 – 30 = 0

or  3Q2 – 30Q + 30 = 0

or  Q = 
30 540

6
±

The breakeven points are 1.13 and 8.87.

To maximize the profit,

d
d

P
Q = 0
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or 30 – 6Q = 0

or optimum Q = 5 units.

Example 5.11. Calculate the quantity at which there is
no profit– no loss and the quantity corresponding to maximum
profit for,

revenue function, R = 71Q – 3Q2

and cost function, C = 80 + Q + 2Q2

Solution. In this example, the revenue as well as cost
functions are nonlinear.

Profit function, P = 71Q – 3Q2 – [80 + Q + 2Q2]

= 70Q – 5Q2 – 80

At P = 0, 5Q2 – 70Q + 80 = 0

and Q =
70 3300

10
±

The quantity at which there is no profit no loss, are

Q = 1.25 and 12.74 units.

For the maximum profit,

d
d

P
Q = 70 – 10Q = 0

and the quantity corresponding to maximum profit is equal to
7 units.

A multivariable problem occurs when profit function
consists of more variables related to multiple items.

5.5 INVENTORY APPLICATION

As shown in Fig. 5.4, quantity Q is ordered periodically
by a business firm. The firm is also allowing maximum shortage
quantity J, which is backordered completely.

Let,

D = Annual demand or demand rate per year

K = Annual backordering or shortage cost per unit

I = Annual inventory holding cost per unit

C = Fixed ordering cost
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Fig. 5.4 : Inventory cycle

Quantity Q is being ordered and it is received
instantaneously. Then it is consumed at a rate D units per
year. As the shortages are allowed in the system, negative
quantities are represented in Fig. 5.4. Similar cycle will start
repeating when the maximum allowable shortages are J.

The cycle time consists of two components—

(i) (Q – J)/D, i.e., the time in which quantity (Q – J) is
consumed completely at the rate D, and

(ii) J/D,

Cycle time =
( )Q J

D
J
D

− +

=
Q
D

...(5.34)

Refer Fig. 5.4. Positive inventory during the cycle exists
for time (Q – J)/D year in the cycle. Inventory is varying from
(Q – J) to zero, and the average positive inventory is (Q – J)/2,
which exists for a fraction of cycle time,

=
(Q J) / D

Q / D
−

=
(Q J)

Q
−
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Annual inventory holding cost,

=
( ) . ( ) .Q J Q J

Q
I− −

2

=
( ) .Q J I

Q
− 2

2
...(5.35)

Similarly shortage quantity varies from zero to J, and
the average shortages are (J/2), which exists for a fraction of
cycle time,

=
J / D
Q / D

= J/Q

Annual shortage (or backordering) cost,

=
J
2

J
Q

K. .

=
KJ

Q

2

2
...(5.36)

As the annual demand is D and quantity Q is ordered
frequently, number of orders placed in one year,

=
D
Q

Annual ordering cost = 
D
Q

C. ..(5.37)

Total annual cost consists of ordering, inventory holding
and backordering cost. Adding equations (5.35), (5.36) and (5.37),
total annual cost,

E =
(Q J) I

Q
KJ
2Q

DC
Q

2 2− + +
2

   ...(5.38)

Now the objective is to minimize equation (5.38), and to
obtain the optimum values of Q, J, and finally E. The problem
can be solved by using any of the suitable methods discussed
in the present book.

A wide variety of the situations can be modeled, some of
which are as follows :
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(i) Fractional backordering or partial backordering, i.e.,
a situation in which a fraction of shortage quantity
is not backordered.

(ii) In stead of instantaneous procurement, the
replenishment rate is finite. This is also appropriate
for production/manufacturing scenario. Shortages may
or may not be included.

(iii) Quality defects can be incorporated in the production
of an item and accordingly total relevant cost is
formulated.

(iv) Multiple items are produced in a family production
environment. Depending on the management
decision, either common cycle time or different cycle
time approach may be implemented. Constraint on
the production time is imposed on the objective
function.

(v) In the multi-item production environment, shelf life
constraint may be incorporated. Storage time for an
item must be less than or equal to the shelf life (if
any) of that item. In order to deal with the problem,
various policies are analyzed and optimum parameters
are evaluated.
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