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Preface
The central topic of this monograph are bilevel programming problems

– problems whose first formulation dates back to 1934 when they have
been formulated by H.v. Stackelberg in a monograph on market economy.
One special type of bilevel programming problems, called Stackelberg
games, has been considered over the years within economic game theory.

Bilevel programming problems have been introduced to the optimiza-
tion community in the seventies of the 20th century. After that moment
a rapid development and intensive investigation of these problems begun
both in theoretical and in applications oriented directions. Contributions
to its investigation have been delivered by mathematicians, economists
and engineers and the number of papers within this field is ever growing
rapidly.

Bilevel programming problems are hierarchical ones – optimization
problems having a second (parametric) optimization problem as part
of their constraints. In economics, this reflects the right of subaltern
parts of large economic units to find and select their own, best decisions
depending on the “environmental data” posed by the management. In
engineering and in natural sciences this “inner” or “lower level” problem
can be used to find a correct model for nature. In all situations, the
“outer” or “upper level” problem is used to reflect our aim for reaching
a certain goal. And the sense of bilevel programming is that we cannot
realize this without considering the reaction of the subaltern part or
nature on our decisions.

From the mathematical point of view, bilevel programming problems
are complicated problems: they are NP-hard; their formulation has in-
herent difficulties even with respect to the notion of a solution; for many
of its reformulations as one-level optimization problems regularity con-
ditions cannot be satisfied at any feasible point.

It is the aim of this monograph to present the theoretical foundations
of bilevel programming. Focus is on its optimistic and pessimistic (or
weak and strong) solution concepts. Different reformulations as one level
optimization problems will be introduced and the relations between the
original and the reformulated problems are highlighted. A larger part
of this monograph is dedicated to optimality conditions, a smaller part
to solution algorithms. In the last chapter the discrete bilevel program-
ming problem is considered and I aim to give some useful directions for
investigating it.

I have included a thorough overview of used results in parametric
nonlinear optimization.

The book addresses several types of readers. The primal audience are
applied mathematicians working in mathematical optimization, opera-



viii

tions research or economic modelling. It is intended that graduated and
advanced undergraduate student should use it to get a deeper insight
into a rapidly developing topic of mathematical optimization. I have
separated the proofs of the theorems from the theorems itself and hope
that this is helpful for the readers to get an overview over the theory
more quickly. A larger number of applications should show the wide
fields of possible applications. With both these I hope to initiate or
intensify the reader’s interest in own contributions to the theory and
applications of bilevel programming.

During my work in bilevel programming I had fruitful and helpful
discussions on the topic with many colleagues. It is impossible to men-
tion all of them but I can only single some of them out. The first is
Klaus Beer who introduced this topic to me. I want to thank Jonathan
Bard, Evgenij Gol’stein, Diethard Pallaschke, and Danny Ralph for joint
work on related topics. My gratitude is to Diethard Klatte, Jiri Out-
rata, Stefan Scholtes, and Heiner Schreier. And I want also to thank
my Ph.D. students Diana Fanghänel, Heidrun Schmidt, Steffen Vogel
for their contributions to the topic and for their helpful comments on
parts of the manuscript.

Stephan Dempe



Chapter 1

INTRODUCTION

Bilevel programming problems are mathematical optimization prob-
lems where the set of all variables is partitioned between two vectors
and and is to be chosen as an optimal solution of a second math-
ematical programming problem parameterized in Thus, the bilevel
programming problem is hierarchical in the sense that its constraints
are defined in part by a second optimization problem. Let this second
problem be introduced first as follows:

where
This prob-

lem will also be referred to as the lower level or the follower’s problem.
Let         denote the solution set of problem (1.1) for fixed  Then

is a so-called point-to-set mapping from into the power set of
denoted by

Denote some element of by and assume for the moment
that this choice is unique for all possible Then, the aim of the bilevel
programming problem is to select that parameter vector describing the
“environmental data” for the lower level problem which is the optimal
one in a certain sense. To be more precise, this selection of is conducted
so that certain (nonlinear) equality and/or inequality constraints

are satisfied and an objective function is minimized, where
Throughout

the book we will assume that all functions F, G, H, are sufficiently

1



This problem is the bilevelprogramming problem or the leader’s problem.
The function F is called the upper level objective and the functions G and
H are called the upper level constraint functions. Strongly speaking, this
definition of the bilevel programming problem is valid only in the case
when the lower level solution is uniquely determined for each possible
The quotation marks have been used to express this uncertainity in the
definition of the bilevel programming problem in case of non-uniquely
determined lower level optimal solutions. If the lower level problem has
at most one (global) optimal solution for all values of the parameter,
the quotation marks can be dropped and the familiar notation of an
optimization problem arises.

The bilevel programming problem (1.3) is a generalization of sev-
eral well-known optimization problems: It is a realization of a decom-
position approach to optimization problems [88] if on

Minimax problems of mathematical programming [65] arise if
for each and In both instances, is in-

dependent of the particular choice of In such circumstances
“ min ” can be replaced by ordinary minimization in the formulation of
(1.3). If the dependency of both problems in is dropped, problem
(1.3) can be interpreted as one of finding the best point in the set of op-
timal solutions of problem (1.1) with respect to the upper level objective
function. In this case we obtain one approach for attacking bicriteria
optimization problems [130]. What distinguishes bilevel optimization
from bicriteria optimization is that in the latter both objective func-
tions F and are considered jointly. In such cases the aim is to find
a best compromise between the objectives. Such a compromise yields
a solution that, in general, is not a feasible solution to the bilevel pro-
gramming problem: Considered as a bilevel problem, the lower level

smooth, i.e. that all the gradients and Hessian matrices of these functions
exist and are smooth. Clearly this assumptions can be weakened at
many places but it is not our intention to present the results using the
weakest differentiability assumptions. In most cases, the generalization
of the presented material to the case of, say, locally Lipschitz functions
is straightforward or can be found in the cited literature.

The problem of determining a best solution can thus be described as
that of finding a vector of parameters for the parametric optimization
problem (1.1) which together with the response proves to
satisfy the constraints (1.2) and to give the best possible function value

for That is

FOUNDATIONS OF BILEVEL PROGRAMMING2
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problem has to be solved, i.e., is minimized over the feasible set, and
F is then minimized over the resulting set of optimal solutions. An
example illustrating this difference is given in Chapter 3. If the func-
tion is equal to the Lagrangean
of a mathematical optimization problem then
problem (1.3) is equivalent to its dual. Moreover, one way of treating
so-called improper optimization problems [90] uses bilevel programming.

Bilevel programming problems can be converted into ordinary (one-
level) optimization problems by at least three different approaches:

Implicit function theorems can be applied to derive a local description
of the function If this description is inserted
into problem (1.3) an optimization problem with implicitly defined
objective and/or constraint functions arises [67, 226]. Based on the
stability results in Chapter 4 we will discuss these ideas in Chapters
5 and 6.

The lower level problem can be replaced by its Karush-Kuhn-Tucker
conditions, by a variational inequality or by a semi-infinite system of
inequalities. This results in a typical one-level mathematical program
[20, 24, 85] which is often called Mathematical Program with Equi-
librium Constraints or MPEC [23, 188, 224]. Recently, the resulting
problem aroused a lot of interest. But note that, even under certain
regularity assumptions, the resulting problem is in general not equiv-
alent to the bilevel problem. It is also only possible to apply this
approach to the so-called optimistic position of bilevel programming
and there seems to be no efficient way to use it in the pessimistic
one. A more detailled investigation of this approach will be given in
Chapters 5 and 6.

The lower-level objective in problem (1.1) can be replaced by an
additional non-differentiable equation where

The function is locally Lipschitz continuous under as-
sumptions which are not too restrictive [153]. This approach has been
used for deriving optimality conditions for bilevel programming [297]
and designing algorithms for finding global optimal solutions [262].
We discuss these ideas in Chapter 5.

The bilevel programming problem demonstrates that applications in
economics, in engineering, medicine, ecology etc. have often inspired
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mathematicians to develop new theories and to investigate new math-
ematical models. The bilevel programming problem in its original for-
mulation goes back to H.v. Stackelberg [267] who, in 1934, introduced
a special case of such problems when he investigated real market situ-
ations. This particular formulation is called a Stackelberg game which
we discuss in Chapter 2. Even though bilevel programming problems
were first introduced to the optimization community by J. Bracken and
J. McGill [47, 48] in 1973/74, it was not until about five years later that
intensive investigation of bilevel programming problems began (cf. e.g.
[2, 19, 27, 41, 54, 99, 263, 285]). Since that time there has been a rapid
development and broad interests both from the practical and the theoret-
ical points of view (cf. e.g. the bibliography [278], the three monographs
on mathematical programs with equilibrium constraints [188, 224] and
bilevel programming [26] and the two edited volumes on bilevel program-
ming [6, 205]).

Some words seem to be in order to distinguish the present monograph
from previous work. The edited volumes [6, 205] collect many interesting
papers reflecting selected applications of bilevel programming, solution
algorithms, and theoretical properties. Both monographs [188, 224] are
devoted to MPECs. On the one hand MPECs are slightly more gen-
eral than bilevel programming problems in the cases when the lower
level optimal solution is uniquely determined for all parameter values
or when the optimistic position can be used. On the other hand, a
reduction of the bilevel problem to an MPEC is not possible in each
situation. This is as well reflected in neglecting the pessimistic position
as in the recognition that not every feasible solution to an MPEC is also
feasible to the corresponding bilevel programming problem. The recent
monograph [26] gives a comprehensive overview over all the “classical”
results in bilevel programming especially with respect to algorithms for
the search for a global optimal solution. In almost all topics in [26] a
unique lower level optimal solution for all parameter values is assumed.
All three monographs are very interesting sources of results also for the
bilevel programming problem showing the rich theory developed by their
authors.

In distinction to the previous work it is our aim to reflect the theoret-
ical foundation of bilevel programming as well as the new developments
using nondifferentiable approaches for bilevel programming problems.
Special attention will be given to the difficulties arising from non-unique
lower level solutions.

The outline of the book is as follows. After a Chapter on applications
of bilevel programming we will use the linear case for introducing the
bilevel problem and illustrating its geometric nature in Chapter 3. Re-



lations to standard optimization problems are discussed and equivalence
to the Boolean linear optimization problem is shown. Many authors
have verified the of bilevel programming. We include one
such result showing strong Optimality conditions and
some algorithms for computing optimal solutions of the bilevel problem
conclude Chapter 3.

Chapter 4 will collect some theoretical results from parametric opti-
mization which will be helpful in the sequel. The formulation of existence
results of (global) optimal solutions relies on continuity results for the
point-to-set mapping Optimality conditions as well as solution al-
gorithms can rely on directional derivatives resp. generalized Jacobians
of the function describing (local) optimal solutions of the lower level
problem.

Chapter 5 is devoted to necessary as well as sufficient optimality con-
ditions. Here we will discuss different approaches for the formulation
of such conditions: approaches based on directional derivatives of lower
level solutions, ideas using Clarke’s generalized Jacobian of the func-
tion and results derived using equivalent formulations of the bilevel
programming problem. One of the main topics in this Chapter is con-
cerned with the different notions of optimality in case of non-uniquely
determined lower level optimal solutions. Then, at least two different
approaches to attack the problem are discussed in the literature: the
optimistic and the pessimistic approaches. In the optimistic approach
the leader supposes that he is able to influence the follower such that
the latter selects that solution in which is best suited for him. Us-
ing the pessimistic point of view the leader tries to bound the damage
resulting from the worst possible selection of the follower with respect
to the leader’s objective function. Results about the relations of bilevel
programing problems to its various reformulations as well as the ques-
tion of satisfiability of constraint qualifications for these reformulations
can be found here.

Many attempts for constructing algorithms solving bilevel program-
ming problems have been made in the last few years. Some of these will
be described in Chapter 6. However it is not our intention to provide ex-
tensive numerical comparison between the different algorithms since such
a comparison would be formidable at best and most likely inconclusive.
The recent books [26, 224] as well as the papers [100, 131, 135, 225, 269]
can be used to get a feeling about the numerical behavior of the various
algorithms.

Chapter 7 is devoted to bilevel programming problems with non-
unique lower level optimal solutions. We will discuss the stability of
bilevel programming problems with respect to perturbations as well as

Introduction 5



If all proofs, which are concentrated at the ends of the respective
chapters, are omitted, Chapters 2, 3, 5, 6, 7, and 8 give an overview
about recent results in bilevel programming. If the reader is inter-
ested in a quick and comprehensive introduction into bilevel program-
ming we refer to Chapters 2 and 3. The material in Chapters 5, 6,
7, 8 will give a broad and deep insight into the foundations and into
the different attempts to attack bilevel programming problems.

The Chapter 4 can be used as complementary source in parametric
optimization. Here we have also included a number of proofs for ba-
sic results which can be found in different original sources. One of
the main topics is an introduction to piecewise continuously differen-
tiable functions and its application to the solution function of smooth
parametric optimization problems.

The proofs of the results in all chapters are concentrated in the re-
spective sections at the end of the chapters. This is done to make
the reading of the monography more fluently and to obtain a quicker
and easier grip to the main results.

different approaches related to the computation of optimal solutions.
One of the mail topics here is also to give some material concerning the
possibilities to compute optimal solutions for the bilevel programming
problem not using the reformulation of the lower level problem via the
Karush-Kuhn-Tucker conditions or variational inequalities. Most results
which can be found so far in the literature are devoted to the optimistic
position. Some ideas in Chapter 7 can also be used to attack the pes-
simistic bilevel problem. The latter one is a very complicated problem,
but in our opinion, it deserves more attacks in research.

The last Chapter 8 is used to introduce the discrete bilevel program-
ming problem which can only seldom be found in the literature. But
saying that this results from low practical relevance is absolutely wrong.
Bilevel programming problems are difficult to attack and this is even
more true for discrete ones. Here we give attempts into three direc-
tions and hope that our ideas can be used as starting points for future
investigations: We present a cutting plane algorithm applicable if the
constraints of the lower level problem are parameter-independent, some
ideas for the computation of bounding functions for branch-and-bound
algorithms as well as an idea for the application of parametric discrete
optimization to bilevel programming.

It is our intention to write a book which can be used in different
directions:

FOUNDATIONS OF BILEVEL PROGRAMMING6



Chapter 2

APPLICATIONS

The investigation of bilevel programming problems is strongly moti-
vated by (real world) applications. Many interesting examples can be
found in the monographs [26, 188, 224] and also in the edited volumes
[6, 205]. We will add some of them for the sake of motivation.

2.1 STACKELBERG GAMES
2.1.1            MARKET ECONOMY

In his monograph about market economy [267], H.v. Stackelberg used
by the first time an hierarchical model to describe real market situations.
This model especially reflects the case that different decision makers try
to realize best decisions on the market with respect to their own, gener-
ally different objectives and that they are often not able to realize their
decisions independently but are forced to act according to a certain hier-
archy. We will consider the simplest case of such a situation where there
are only two acting decision makers. Then, this hierarchy divides the
two decision makers in one which can handle independently on the mar-
ket (the so-called leader) and in the other who has to act in a dependent
manner (the follower). A leader is able to dictate the selling prices or
to overstock the market with his products but in choosing his selections
he has to anticipate the possible reactions of the follower since his profit
strongly depends not only on his own decision but also on the response
of the follower. On the other hand, the choice of the leader influences
the set of possible decisions as well as the objectives of the follower who
thus has to react on the selection of the leader.

It seems to be obvious that, if one decision maker is able to take on
an independent position (and thus to observe and utilize the reactions

7



8 FOUNDATIONS OF BILEVEL PROGRAMMING

of the dependent decision maker on his decisions) then he will try to
make good use of this advantage (in the sense of making higher profit).
The problem he has to solve is the so-called Stackelberg game, which
can be formulated as follows: Let X and Y denote the set of admissible
strategies     and of the follower and of the leader, respectively. Assume
that the values of the choices are measured by means of the functions

and denoting the utility functions of the leader resp.
the follower. Then, knowing the selection of the leader the follower has
to select his best strategy such that his utility function is maximized
on X:

Being aware of this selection, the leader solves the Stackelberg game for
computing his best selection:

If there are more than one person on one or both levels of the hierarchy,
then these are assumed to search for an equilibrium (as e.g. a Nash or
again a Stackelberg equilibria) between them [110, 260, 263].

Bilevel programming problems are more general than Stackelberg
games in the sense that both admissible sets can also depend on the
choices of the other decision maker.

2.1.2         COURNOT-NASH EQUILIBRIA
Consider the example where decision makers (firms) produce one

homogeneous product in the quantities [224]. Assume
that they all have differentiable, convex, non-negative cost functions

and get a revenue of when selling their products on

the common market. Here is a so-called inverse demand
function describing the dependency of the market price on the offered
quantity of that product. Assume that the function is continuously
differentiable, strictly convex and decreasing on the set of positive num-
bers but the function is concave there.
Let be a bounded interval where firm believes to
have a profitable production. Then, for computing an optimal quantity
yielding a maximal profit the firm has to solve the problem
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which has an optimal solution where the abbreviation de-
notes Now, consider the situation
where one of the firms (say firm 1) is able to advantage over the others
in the sense that it can fix its produced quantity first and that all the
other firms will react on this quantity. Then, firms compute a
Nash equilibrium between them by solving the problems (2.1) for

simultaneously. Let

This implies that the firm 1 will produce a positive quantity [224]. Sup-
pose that the Nash equilibrium between the firms

is uniquely determined for each fixed Then, firm 1 has to
solve the following problem in order to realize its maximal profit:

which can also be posed in the following form:

where

and

This is a simple example of a Stackelberg game.

2.1.3 PRINCIPAL-AGENCY PROBLEMS
In modern economics a generalization of this model is often treated

within Principal-Agency Theory. In the following we will describe one
mathematical problem discussed within this theory taken from [231].
Possible generalizations of this model to more than one follower and/or
more than one decision variable in both of the upper and lower level
problems are obvious and left to the reader.

In the problem discussed in [231] one decision maker, the so-called
principal has engaged the other, the agent to act for, on behalf of, or
as representative for him. Both decision makers have made a contract
where it is fixed that the principal delegates (some part of) jurisdiction to
the agent thus giving him the freedom to select his actions (more or less)
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according to his own aims only. Hence, having only an expectation about
the results of his actions and using an utility function for
measuring the value of the reward from the principal against the
effort for his action the agent tries to maximize the expected utility
of his action

where X is the set of possible results of the actions of the agent.
The density function is used to describe the probabilities of real-
izing the result if the agent uses action The reward
is paid by the principal to the agent if result is achieved. The function

is also part of the contract made by both parties. From
the view of the principal, the function describes a system of incentives
which is used to motivate the agent to act according to the aims of the
principal. Thus, the principal has to select this function such that he
achieves his goals as best as possible. Assuming that the principal uses
the utility function to measure his yield result-
ing from the activities of the agent and that he uses the same density
function to evaluate the probabilities for realizing the result       he will
maximize the function

where S is a set of possible systems of incentives and solves (2.2) for
a fixed function The model (2.2), (2.3) for describing the principal-
agency relationship is not complete without the condition

where maximizes (2.2). If this inequality is not satisfied, the agent will
not be willing to sign the contract with the principal. Inequality (2.4)
is a constraint of the type (1.2) which is used to decide about feasibility
of the principal’s selection after the follower’s reply.

Summing up, the principal’s problem is to select maximizing
the function (2.3) subject to the condition that solves (2.2) for
fixed function and (2.4) is satisfied. This problem is an example
for bilevel programming problems.

In modern economics, this model and its generalizations will be used
to describe a large variety of real-life situations, cf. e.g. [92, 93, 112,
145, 166, 167, 231, 237, 238].
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2.2 OPTIMAL CHEMICAL EQUILIBRIA
In producing substances by chemical reactions we have often to answer

the question of how to compose a mixture of chemical substances such
that

the substance we like to produce really arises as a result of the chem-
ical reactions in the reactor and

the amount of this substance should clearly be as large as possible or
some other (poisonous or etching) substance is desired to be vacuous
or at least of a small amount.

It is possible to model this problem as a bilevel optimization problem
where the first aim describes the lower level problem and the second one
is used to motivate the upper level objective function.

Let us start with the lower level problem. Although the chemists are
technically not able to observe in situ the single chemical reactions at
higher temperatures, they described the final point of the system by a
convex programming problem. In this problem, the entropy functional

is minimized subject to the conditions that the mass conserva-
tion principle is satisfied and masses are not negative. Thus, the obtained
equilibrium state depends on the pressure and the temperature T in
the reactor as well as on the masses of the substances which have been
put into the reactor:

where denotes the number of gaseous and N the total number of
reacting substances. Each row of the matrix A corresponds to a chemical
element, each column to a substance. Hence, a column gives the amount
of the different elements in the substances; is the vector of the masses
of the substances in the resulting chemical equilibrium whereas denotes
the initial masses of substances put into the reactor; is a submatrix
of A consisting of the columns corresponding to the initial substances.
The value of gives the chemical potential of a substance which
depends on the pressure and the temperature T [265]. Let
denote the unique optimal solution of this problem. The variables T,
can thus be considered as parameters for the chemical reaction. The
problem is now that there exists some desire about the result of the
chemical reactions which should be reached as best as possible, as e.g.
the goal that the mass of one substance should be as large or as small as
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possible in the resulting equilibrium. To reach this goal the parameters
T, are to be selected such that the resulting chemical equilibrium

satisfies the overall goal as best as possible [221]:

2.3       ENVIRONMENTAL ECONOMICS
2.3.1      WASTE MINIMIZATION

The conditions for the production of some decision maker are often
influenced by the results of the economic activities of other manufactur-
ers even if they are not competitors on the market. This will become
more clear in an environmental setting when one producer pollutes the
environment with by-products of his production and the other manufac-
turer needs a clean environment as a basis for his own activities. A very
simple example for such a situation is a paper producing plant situated
at the upper course of some river influencing the natural resource water
of a fishery at the lower course of the same river. A higher productivity
of the paper plant implies a lower water quality in the river since then
more waste is led into the river by the plant. This implies a decreasing
stock of fish in the river and hence a decreasing income for the fishery.
If the paper plant does not recover for the pollution of the environment,
the fishermen only have to pay for the resulting damage, i.e. for the neg-
ative external effect caused by the waste production of the plant. Let

denote the profit of the paper plant and of the fishery,
resp., depending on their respective economical efforts and Here,
the common profit obtained by the fishery depends on the effort of the
paper plant and will be decreasing with increasing Without loss of
generality, the functions and are assumed to be concave,
while is decreasing on the space of non-negative arguments. If
both parties try to maximize their respective profits, the market will fail
since the fishery will be destroyed by the waste produced by the plant.

Now assume that the government is interested in saving the fishery.
Then it has to correct the failure of the market e.g. by a tax which has
to be paid by the producer of the external effect [232]. In this case, the
external effect will be internalized.

Let for simplicity this tax depend linearly on Then, the profit
function of the paper plant changes to where is the
tax rate determined by the government and the paper plant will now
maximize its profit depending on Denote the optimal effort by
The larger the smaller of the paper plant will be. Hence, the
damage for the fishery will be decreased by increasing This can indeed
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save the fishery. Consequently, the optimal effort of the fishery
also depends on the tax rate

Now, it is the government’s task to determine the tax rate. For doing
so, e.g. a welfare function can be used measuring the social welfare in
dependence on the paper and the fish produced by both industries and
on the value of the tax paid by the paper plant. Let, for simplicity, this
function be given by Then, the government can decide to
determine such that is maximized where
and are the optimal decisions of the paper plant and the fishery
induced by a fixed value of In a very natural way, this leads to a
formulation as a bilevel programming problem (cf. e.g. [248]):

subject to the conditions that solves the problem

solves

given and the upper level constraint

is also satisfied. Clearly, as formulated here, this is rather a problem
with three levels than a bilevel one. For multilevel problems the reader
is referred e.g. to [4, 22, 41, 56, 287]

For a more detailed discussion of this approach to environmental econ-
omy, the interested reader is referred to [283].

In [72, 239], a similar problem has been considered where some au-
thority asks for an optimal waste disposal price and two followers have
to solve a two stage economic order quantity model describing the man-
ufacturing of new and the repair of used products in a first shop and the
employment of the products in a second one. Here, the waste disposal
rate (and hence the repair rate) clearly depends on the waste disposal
price.

Some arguments for the necessity of ecological investigations together
with some implications of product recovery management for the produc-
tion can also be found in [273]. These can be used in a similar way to
formulate bilevel problems which are helpful to find reasonable decisions.
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2.3.2       BIOFUEL PRODUCTION
The following problem has been described in [29].. Led by the high

subsidies for the agricultural sector and the need to reduce the envi-
ronmental pollution associated with automobile emissions, the French
government decided to explore the possibilities to encourage the petro-
chemical industry to use farm crops for producing biofuel. Different
nonfood crops as wheat, corn, rapseet, and sunflower can be used for
this purpose. Unfortunately, industry’s cost for producing biofuel from
nonfood crops is significantly higher than it is when hydrocarbon-based
raw materials are used to produce fuel. To encourage the industry to use
farm output, government incentives in form of tax credits are necessary.

For developing one possible model, the industry is assumed to be
neutral and to produce any profitable biofuel. The agricultural sector
is represented by a subset of the farms in some region of France. We
will describe the model for only one farm, it can easily be enlarged by
adding more farms. The farm can either let some part of its land unused
or use it for nonfood crops. In each case it will have some revenue either
in form of set-aside payments from the government for leaving part of
the land fallow or in form of subsidies from the European Union plus
income for selling the nonfood crops to the industry. By maximizing
the total profit, the farm decides by itself how much of the land will be
used to produce nonfood crops and how much will be left fallow. Let

denote the amount of land left fallow, used for
the different nonfood crops, and used for various kinds of food crops by
some farmer. Let denote the summation vector
Than, the farmer’s problem consists of maximizing the income of the
farm

subject to constraints describing the total amount of arable land of the
farm (2.6), restrictions posed by the European Union (2.7) on the per-
centage of the land either left fallow or used for non-food crops, and
such reflecting agronomic considerations (2.8). The first inequality in
(2.9) is a special bound for sugar beet production. denote the
income and the price vector for food resp. nonfood crops, is the vector
of subsidies for nonfood crops paid by the European Union, are the
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farmer’s costs for producing nonfood crops and is the unit set-aside
payment for unused land.

The government plays the role of the leader in this problem. Its aim
is to minimize the total value of tax-credits given to the petro-chemical
industry minus the savings from the set-aside payments for the land
left fallow. Let denote the vector of the unit amounts of biofuel

produced from one unit of the different nonfood crops
and be the variable government tax credit given to industry for biofuel

Then, the government has to solve the problem

subject to constraints on the available land (2.11), the amount of biofuel
produced (2.12) and the price paid by industry for nonfood crops (2.13).
In the paper [29], the industry is modeled as a neutral element which
means that the prices paid by industry are fixed functions
of the tax credits which must not be negative and guarantee some profit
for the industry. The model can be enlarged by a third level to include
the industry’s problem.

2.4 DISCRIMINATION BETWEEN SETS
2.4.1 THE MAIN IDEA

In many situations as e.g. in robot control, character and speech recog-
nition, in certain finance problems as bank failure prediction and credit
evaluation, in oil drilling, in medical problems as for instance breast can-
cer diagnosis, methods for discriminating between different sets are used
for being able to find the correct decisions implied by samples having cer-
tain characteristics [82, 118, 193, 194, 258, 264]. In doing so, a mapping
To is used representing these samples according to their characteristics
as points in the input space (usually the Euclidean space)
[193]. Assume that this leads to a finite number of different points. Now,
these points are classified according to the correct decisions implied by
their originals. This classification can be considered as a second map-
ping from the input space into the output space given by the set of
all possible decisions. This second mapping introduces a partition of the
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input space into a certain number of disjoint subsets such that all points
in one and the same subset are mapped to the same decision (via its
inverse mapping). For being able to determine the correct decision im-
plied by a new sample we have to find that partition of the input space
without knowing the mapping

Consider the typical case of discriminating between two disjoint sub-
sets and of the input space [193]. Then, for approximating this
partition, piecewise affine surfaces can be determined separating the sets

and (cf. Fig. 2.1 where the piecewise affine surfaces are given by
the bold lines). For the computation of these surfaces an algorithm is
given in [193] which starts with the computation of one hyperplane (say

separating the sets and as best as possible. Clearly, if both sets
are separable, then a separating hyperplane is constructed. In the other
case, there are some misclassified points. Now, discarding all subsets
containing only points from one of the sets, the remaining subsets are
partitioned in the same way again, and so on. In Fig. 2.1 this means
that after constructing the hyperplane the upper-left half-space is dis-
carded and the lower-right half-space is partitioned again (say by
At last, the lower-right corner is subdivided by

2.4.2       MISCLASSIFICATION MINIMIZATION
This algorithm reduces this problem of discriminating between two

sets to that of finding a hyperplane separating two finite sets and



Applications 17

of points as best as possible. In [194] an optimization problem has been
derived which selects the desired hyperplane such that the number of
misclassified points is minimized. For describing that problem, let A
and B be two matrices the rows of which are given by the coordinates of
the and points in the sets and respectively. Then, a separating
hyperplane is determined by an vector and a scalar
as with the property that

provided that the convex hulls of the points in the sets and are
disjoint. Up to normalization, the above system is equivalent to

Then, a point in belongs to the correct half-space if and only if the
given inequality in the corresponding line of the last system is satisfied.
Hence, using the step function and the plus function which are
component-wise given as

we obtain that the system (2.15) is equivalent to the equation

It is easy to see that the number of misclassified points is counted by the
left-hand side of (2.16). In [194], for the step function
is characterized as follows:

and we have

Using both relations, we can transform the problem of minimizing the
number of misclassified points or, equivalently, the minimization of the
left-hand side function in (2.16) into the following optimization problem
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[194]

This problem is an optimization problem with linear complementarity
constraints, a generalized bilevel programming problem. In [193] it is
shown that the task of training neural networks can be modeled by a
similar problem.

2.5        FURTHER APPLICATIONS
The list of reported applications of bilevel programming is very long

and quickly increasing. In the following some more applications will be
shortly touched. Of course, this list is far from being complete and is
only included to give an impression of the many different fields where
bilevel programming applications can be found.

An hierarchical optimization problem motivated by a variety of de-
fense problems is formulated in [48]. Especially they investigated
problems such as strategic offensive and defensive force structure de-
sign, strategic bomber force structure and basing as well as allocation
of tactical aircraft to missions.

The Bracken–McGill problem [49] for computing optimal production
and marketing decisions subject to the constraint that the firm’s min-
imum share function for each product is not less than some given
constant is an example for a principal-agency relationship where the
agent’s variables do not appear in the upper level problem.

If a firm is organized in a hierarchical manner with one superior unit
and several subordinate units where each subordinate unit is assumed
to control a unique set of variables and tries to maximize its own
objective function over jointly dependent strategy sets, an example
of bilevel programming arises if the superior unit for example wants
to optimally allocate the resources between the subordinate units
[21, 91, 149, 247, 281].

An equilibrium facility location problem attempts to find the best
location for a new facility of a firm, to compute the production level
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of this new facility and to plan the shipping patterns such that the
locating firm’s profit is maximized. The main feature of the equilib-
rium facility location problem is it that this model accounts for the
changes in the market prices and production levels at each of the com-
peting firms resulting from the increase of the overall supply of the
products resulting from the production of the new facility [207, 208].

Different traffic planning or transportation problems with congestion
can be found in [35, 198, 200, 204]. An example is the following:
A superior unit wants to optimally balancing the transportation, in-
vestment and maintenance costs of a traffic network where the users
behave according to Wardrop’s first principle of traffic equilibrium
[198]. A related urban transport problem is considered in [95] where
road taxing and transit ticket prices are to be determined.

In [5] bilevel programming is applied to conflict resolution in inter-
national river management. India and Bangladesh share water from
the Ganges river and obtain hydroelectric power, irrigation, and flood
protection by use of a series of dams in both countries. Both countries
make investments in reservoirs and decide about the size of dams and
groundwater storage, levels of water use for irrigation and hydroelec-
tric power. Situations where either India or Bangladesh is the leader
as well as an arbitrator (the UN) is involved are investigated. The
related problem of the Indus basin model is considered in [44].

Optimum operating configuration of an aluminum plant is investi-
gated in [219]. Here, in the lower level costs are minimized resulting
from activities and raw material consumption in the rodding and an-
ode areas of the aluminium smelter. The objective in the upper level
maximizes the output of aluminium.

Several optimum shape design problems can be found e.g. in [224].
One example of such problems is the following: Consider a rigid
obstacle and an elastic membrane above it. A rigid obstacle does not
give in as a result of the contact pressure of the membrane on it.
We are interested in the shape of the membrane above the obstacle.
Assume that the obstacle can be described by a function

where for some positive constant
The function is assumed to belong to the Sobolev space

defined on cl with



20 FOUNDATIONS OF BILEVEL PROGRAMMING

where denotes the boundary of Then, the membrane is
given as

with belonging to a subset of the space of
Lipschitz continuous functions over the interval [0, 1],

with a constant The boundary-value problem with a rigid
obstacle consists in computing a function

where is a force that is perpendicularly applied to the
membrane and abbreviates the Laplace operator. Note that
this problem can equivalently be written as a variational inequality
in an infinite dimensional space.

The packaging problem with rigid obstacle aims to minimize the area
of the domain under the condition that a part of the membrane
has contact with the obstacle throughout a given set This prob-
lem (and its generalizations) has various applications in the formu-
lation of other problems as e.g. filtration of liquids in porous media,
the lubrication problem, elastic-plastic torsion problems etc.

In [119] different bilevel models are presented which can be used
to minimize greenhouse-gas emissions subject to optimally behaving
energy consumers. In one model the tax for greenhouse-gas producing
technologies is significantly increased. In a second model, this tax
is complemented by subsidies for the development and introduction
of new ecological technologies. Comparing numerical calculations
show that both approaches can be used to reduce the greenhouse-gas
emissions significantly but that the second approach imposes much
less additional costs on the consumers.

The linear bilevel programming problem is the one which has mostly
been considered in application oriented papers. Among others, such ap-
plications are the network design problem [34, 37, 38, 197, 198, 200, 271]
and the resource allocation problem [56, 91, 216, 247, 286]. Nonlinear
resource allocation problems have been investigated in [145, 281].



Chapter 3

LINEAR BILEVEL PROBLEMS

With this chapter the investigation of bilevel programming problems
(1.1), (1.3) starts. We begin with the simplest case, the linear bilevel
programming problem. This problem will be illustrated by Figure 3.1 in
the one-dimensional case. After that we will investigate the relations be-
tween bilevel and other mathematical programming problems, describe
properties of and possible solution algorithms for linear bilevel program-
ming problems. The chapter also gives different optimality conditions
for linear bilevel problems.

3.1 THE MODEL AND ONE EXAMPLE
Let us start our considerations with the linear bilevel programming

problem which is obtained from (1.1), (1.3) if all functions defining this
problem are restricted to be affine. At almost all places throughout the
book we will consider only problems where the upper level constraints
(1.2) depend only on

Let for the moment the lower level problem be given as

where and the matrices as well as the
vector are of appropriate dimensions. Note that the description of the
parametric linear optimization problem in this form is not an essential re-
striction of the general case provided that we have linear right-hand side
perturbations only. The case when the objective function of the lower
level problem depends on the parameter as well as the case when both
the right-hand side and the objective function are linearly perturbed can
be treated in a similar way. If we have nonlinear perturbations or if the

21
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matrix depends on then the material in this chapter cannot be
applied directly and we refer to the consideration of nonlinear bilevel
programming problems. Let for the moment

denote the set of optimal solutions of problem (3.1). Then, the bilevel
programming problem can be stated as

where and all other dimensions are determined such that they
match with the above ones. Note again that the formulation with the
quotation marks is used to express the uncertainity in the definition
of the bilevel problem in case of non-uniquely determined lower level
optimal solutions.

Example: Consider the problem of minimizing the upper level objec-
tive function

subject to and solving the lower level problem

The set of all pairs satisfying the constraints of both the lower and
the upper levels, denoted by M, as well as the minimization directions of
the objective functions of both the lower and the upper level problems,
marked by the arrows, are depicted in Figure 3.1.

The feasible set of the lower level problem for a fixed value of is just
the intersection of the set M with the set of all points above the point

on the Now, if the function is minimized on
this set, we arrive at a point on the thick line which thus is the optimal
solution of the lower level problem:

In doing this for all values of between 1 and 6, all points on the thick
lines are obtained. Hence, the thick lines give the set of feasible solu-
tions to the upper level problem. On this set, the upper level objective
function is to be minimized:
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The global optimal solution is found at the point with an
optimal function value of 12.

From Figure 3.1 we see that, even in its simplest case of linear func-
tions, the bilevel programming problem is a nonconvex and nondiffer-
entiable optimization problem. Hence, the occurrence of local optimal
and/or stationary solutions is possible.

It should be mentioned that the bilevel programming problem can
be considered as a special case of multilevel programming problems
(cf. e.g. [5, 22, 39]). These problems can be modelled as follows:
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Here we have a hierarchy of not only two but of levels and the constraint
set of the level problem is given by explicit inequality and equality
constraints as well as the solution set mapping of the level prob-
lem. Here, the level problem has the variables of the first levels
as parameters and is used to choose an optimal decision for the variables
of the level. Hence, these problems are a sequence of (parametric)
optimization problems each but one of them having the next problem
as part of its constraints. Multilevel linear optimization problems have
been investigated e.g. in the papers [22, 39, 41, 214, 284, 287]. We will
not consider multilevel programming problems in what follows but re-
strict ourselves to bilevel problems.

Problems with multiple leaders [259] and multiple followers [21, 145,
294] have been considered in the literature. In most of the cited papers
different decision makers on the same level of hierarchy are assumed to
behave according to a Nash equilibrium in that level (cf. also [110]).

3.2 THE GEOMETRIC NATURE OF LINEAR
BILEVEL PROGRAMMING

Figure 3.1 suggests that the feasible set of the linear bilevel program-
ming problem could be composed by the union of faces of the set M. We
will show that this is a general property for the linear bilevel problem.

DEFINITION 3.1 A point-to-set mapping is called polyhe-
dral if its graph

is equal to the union of a finite number of convex polyhedral sets.

Here, a convex polyhedral set is the intersection of a finite number of
halfspaces [241].

THEOREM 3.1 The point-to-set mapping is polyhedral.

The proofs of this and other theorems are given in Section 3.7 at the
end of this Chapter.

Using Theorem 3.1 the linear bilevel programming can be solved
by minimizing the objective function on each of the components of
grph subject to the upper level constraints of problem (3.2). Each
of these subproblems is a linear optimization problem. Hence, as a corol-
lary of Theorem 3.1 we obtain

COROLLARY 3.1 If the optimal solution of the lower level problem (3.1)
is uniquely determined for each value of the parameter then there is
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This result has been formulated also in [23, 43, 55].

REMARK 3.1 A generalization to problems with lower level problems
having linear constraints and a quasiconcave resp. fractional objective
function can be found in [52, 53].

Using the proof of Theorem 3.1 it is also easy to see that the graph of
is connected. This implies that the feasible set of the linear bilevel

programming problem (3.2) is also connected. The following example yet
shows that this is not longer valid if constraints are added to the upper
level problem which depend on the lower level optimal solution.

Example: Consider the problem of minimizing the upper level objec-
tive function

subject to and solving the lower level problem

Figure 3.2 illustrates the feasible set of this example. The optimal

an optimal solution of the problem (3.2) which is a vertex of the set
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solution of the lower level problem is equal to

but only for the inequality holds.

It should be noted that the feasible set of the problem in the last example
extremely changes if the upper level constraint is moved into the
lower level problem. Then, the feasible set of the upper level problem is
again connected and equal to the set of all points with

Also note that the position of constraints is not arbitrary from the practi-
cal point of view. A constraint placed in the lower level problem restricts
the feasible decisions of the follower. If the same constraint is placed in
the upper level problem it restricts the decisions of the leader in the
sense that the feasibility of his selections is investigated after the fol-
lowers choice, i.e. it is an implicit constraint to the leaders task. This
problem is even more difficult if the follower’s selection is not uniquely
determined for some values of the parameter since in this case some of
the follower’s selections can imply that the leader’s selection
is feasible but others can reject the same value It has been shown in
[250] that an upper level constraint involving the follower’s reply can be
moved into the lower level problem provided that there is at least one
optimal solution of the lower level problem which is not affected by this
move for each value of the parameter.

In general, the optimal solution of the bilevel programming problem
is neither optimal for the leader if the follower’s objective function is
dropped [55] nor is it the best choice for both the leader and the follower
if the order of play is deleted. This can be seen in the Example on page
31 and was also the initial point for the investigations in [288]. But, if
the game is an hierarchical one then it is not allowed to assume that both
decision makers can act simultaneously. This means that the leader has
to anticipate that the follower has the right and the possibility to choose



3.3 EXISTENCE OF OPTIMAL SOLUTIONS
Consider now the linear bilevel programming in a slightly more general

setting where the lower level programming problem is replaced by

for Then again, the point-to-set mapping
is polyhedral. If the lower level optimal solution is uniquely determined
for all parameter values then it is possible to use Theorem
to prove the existence of optimal solutions for the bilevel programming
problem. By use of parametric linear programming [220] it is easy to
see that if problem (3.4) has a unique optimal solution for all parameter

an optimal solution under the conditions posed by the leader’s selection.
Pareto optimal solutions are in general not optimal for minimizing either
of the objective functions. In this connection it is necessary to point out
that the solution strongly depends on the order of play [27]. This is
illustrated in Figure 3.3 where is the respective optimal solution
of the problem if the player has the first choice.
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– –feasible set 2nd player moves first

feasible set 1st player moves first



28 FOUNDATIONS OF BILEVEL PROGRAMMING

values then these solutions define a continuous function
with for all for which problem (3.4) has an optimal
solution. Then, if this solution is inserted into the bilevel programming
problem (3.2), we get the problem

with well-defined minimization with respect to This is a continuous
nondifferentiable optimization problem. Using Theorem we
get

THEOREM 3.2 If the set is not empty and
compact, the lower level problem (3.4) has at most one optimal solution
for all and the feasible set of problem (3.2) is not empty, then
this problem has at least one optimal solution.

Such (global) optimal solution and also all local optimal solutions can be
found at vertices of some polyhedral sets. These sets are the projection
of the solution set of one of the following systems of linear (in)equalities
onto Each if these systems corresponds to two index sets

and is determined as

If the objective function of the lower level problem does not depend
on the choice of the leader, then this implies that optimal solutions of
problem (3.1), (3.2) can be found at vertices of the set

which is similar to the result of Corollary 3.1
(see also [42] where the result first appears).

The uniqueness assumption of Theorem 3.2 cannot be satisfied at least
in the case of linear lower level optimization problems having a parameter
in the objective function but no parametrization of the feasible set unless
the optimal solution is constant over the set Then, since the leader
(or the upper level decision maker) has no control about the real choice
of the follower, he will be hard pressed to evaluate his objective function
value before he is aware of the follower’s real choice. In the literature
several ways out of this situation can be found, each requiring some
assumptions about the level of cooperation between the players. We will
discuss only two of them.
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In the first one the leader assumes that he is able to influence the
follower to select in each case that solution out of which is the
best one for the leader. This results in the so-called optimistic or weak
bilevel programming problem:

in which the objective function is minimized with respect to both the
upper and the lower level variables. An optimal solution of problem (3.7)
is called optimistic optimal solution of the bilevel programming problem
(3.2), (3.4). It has been shown in [43] that this approach is possible
e.g. in the case if the follower can participate in the profits realized by
the leader. Note that, if this problem has an optimal solution, it can
equivalently be posed as

where

[187]. If this way out is not possible the leader is forced to choose an
approach bounding the damage resulting from an unfavourable selection
of the follower. This is reflected in the so-called pessimistic or strong
bilevel problem :

where

A pessimistic optimal solution of the bilevel programming problem (3.2),
(3.4) is defined to be an optimal solution of the problem (3.9).

For the optimistic bilevel problem we can use the polyhedrality of the
point-to-set mapping to investigate the existence of optimal solu-
tions. Recall that this implies that the optimistic bilevel programming
can be decomposed into a finite number of linear optimization problems
the best optimal solution of which solves the original problem. This
implies

THEOREM 3.3 Consider the optimistic bilevel programming problem
(3.7) and let the set
be nonempty and bounded. Then, if the feasible set of the problem (3.7)
is not empty, problem (3.7) has at least one optimal solution.
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Here again we can restrict the search for solutions to the vertices of
convex polyhedral sets (3.6). If the pessimistic bilevel problem is used
then the existence of optimal solutions is not guaranteed in general as
can be seen using the following

Example: Consider the problem

subject to and

The feasible set and the minimization direction for the objective function
of this problem are shown in Figure 3.3. Then,
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where M(0, 0) denotes the feasible set of the follower’s problem. Hence,
for we have

Since the optimal objective function value of the bilevel problem
cannot be below -22, but for we have and the
upper level objective function value is equal to -21. Hence, the infimal
value of is equal to —22 and it is not attained. The pessimistic
bilevel problem has no optimal solution.

Here, the infimal value of the objective function in (3.2) again corre-
sponds to a vertex of some convex polyhedral set. This vertex is
optimal if it is feasible for the problem (3.9) which is the case at least if

contains a unique point.

3.4 RELATIONS TO OTHER MP PROBLEMS
As already shown in the introduction, bilevel programming is closely

related to other problems in mathematical programming. Here we will
give two more connections which are not so obvious.

3.4.1 MULTICRITERIA OPTIMIZATION
The relations between bilevel programming and bicriteria optimiza-

tion can easily be illustrated considering Figure 3.1. Here, the line
between the points A and B constitutes the set of all Pareto optimal
(cf. e.g. [130]) points of the problem

where the same notations have been used as in formulae (3.1), (3.2).
Note, that the only efficient point which is feasible for the bilevel pro-
gramming problem is point A which has the worst possible function
value for the upper level objective function. Hence, in general it is not
possible to use methods of multi-criteria optimization for solving bilevel
programming problems directly (cf. also [66, 199, 288]). It is easy to
see that an (optimistic or pessimistic) optimal solution of the bilevel
programming problem is Pareto optimal for the corresponding bicriteria
optimization problem if for some But this is in general
not true if is not parallel to [201]. A related result is also given in
[204]. This is also illustrated by the following example:
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Example: Consider the linear bilevel programming problem:

where

Then, minimization of implies

or

Inserting this into the upper level objective function leads to

Thus,

is the unique (global) optimal solution of the linear bilevel programming
problem.

On the other hand, this solution is not efficient (Pareto optimal) and
also not weakly efficient for the bicriteria optimization problem

since it is dominated by

and also by each point

for each sufficiently small
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The vector-valued objective function values for the bicriteria opti-
mization problem for the three points are

resp.

for sufficiently small This shows that the optimal solution of
a linear bilevel programming problem need not to be efficient for the
corresponding vectorial optimization problem.

In [102] it has been shown that the relations between linear bilevel
and linear multicriteria programming problems are closer than the above
observation suggests. Namely, for each linear bilevel programming prob-
lem, there is some linear multicriteria problem such that the global opti-
mal solution of the first problem and an optimal solution for minimizing
the upper level objective function on the set of Pareto optimal points of
the second problem coincide. And, vice versa, the problem of minimiz-
ing a linear function on the set of Pareto optimal points of some linear
multicriteria optimization problem can be transformed into a bilevel pro-
gramming problem.

Let us explain the ideas in [102] showing these relations.
First, consider a linear bilevel programming problem (3.1), (3.2) and

construct a multicriteria problem such that the bilevel problem is the
same as finding a best efficient solution of this problem. Let A be a
(quadratic) submatrix of full row rank

composed of the rows of the matrix Construct the mul-
ticriteria optimization problem

THEOREM 3.4 ([102]) A point is feasible to (3.2) with the lower
level problem (3.1) if and only if it is a Pareto optimal solution of the
problem (3.10).
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COROLLARY 3.2 ([102]) The bilevel programming problem (3.1), (3.2)
is equivalent to the problem of minimizing the upper level objective func-
tion over the set of Pareto optimal solutions for the
multicriteria problem (3.10).

Now, we show how to come back from the problem of finding a best
Pareto optimal solution in some multicriteria optimization problem to a
bilevel one. Let

be a multicriteria optimization problem having objective functions.
Then, for any point with every optimal solution of the following
problem is a Pareto optimal solution for (3.11):

Moreover, by variation of the point over the feasible set of problem
(3.11) we can compute the whole set of Pareto optimal solutions for
(3.11).

Let there be a measure for the quality of some Pareto optimal
solution of (3.12) which is to be minimized. Then, the question of finding
the best Pareto optimal solution of (3.12) can be restated as

THEOREM 3.5 ([102]) For  the following statements are equiva-
lent:

is a Pareto optimal solution of the problem (3.11),

is an optimal solution of the problem (3.12) for

there exists a point such that is a feasible solution to (3.13).

In [291] the relations between the set of Pareto optimal points (for the
problem where the objective functions of all decision makers are handled
equally) and the multilevel programming problem is also investigated.
It is shown that in the bilevel case there is always a point which is at
the same time Pareto optimal for the bicriteria problem and feasible for
the bilevel one. Such a point need not to exist in the multilevel case. In
[288] the question is posed if the solution of a linear bilevel problem is
more likely to be accepted by the practitioners than an Pareto optimal
solution which gives both the follower and the leader a higher profit.
Then, various procedures are proposed which can be used to “improve”
the bilevel optimal solution.
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3.4.2 LINEAR 0-1 PROGRAMMING
The linear bilevel programming problem (3.4), (3.7) in the optimistic

approach can be equivalently transformed into a one-level problem with
complementarity constraints

There are several ways to treat the complementarity conditions. One
is the use of zero-one variables to transform them into linear conditions
[99] which will be outlined in the following. Let be a sufficiently
large constant. Then, the conditions

are equivalent to

[158]. If problem (3.4), (3.7) has a bounded optimal solution, this can
be used to compose the equivalent linear mixed-integer programming
problem:

There are different attempts to go the opposite way [11, 279]. These
ideas are not only interesting from its own but also for clarifying the
complexity of the algorithmic solution of the linear bilevel programming
problem [25, 36, 116, 133]. The approaches in [11, 279] use upper level
linear constraints depending on the follower’s variables, resulting in a
problem which is a little bit more general than problem (3.4), (3.7). Let

be a mixed 0-1 optimization problem. The restriction to 0-1 variables
is of no lost of generality. The transformation is based on the knowledge



36 FOUNDATIONS OF BILEVEL PROGRAMMING

that the optimal value of the simple program

which results in if the optimal objective function value is re-
stricted (in the upper level) to zero. This leads to the following problem
equivalent to (3.14) [11]:

It is an important implication of this result that not only the problems
(3.14) and (3.15) are equivalent but that also certain algorithms solving
the problems compute the same sequence of subproblems.

3.5 OPTIMALITY CONDITIONS
In the following we will give three kinds of optimality conditions for

linear bilevel programming problems. They all use equivalent optimiza-
tion problems to (3.4), (3.7) as starting point. The first one is a nondif-
ferentiable equivalent to the problem having the Karush-Kuhn-Tucker
conditions in place of the lower level problem. Applying the optimality
conditions for locally Lipschitz continuous problems to the letter one,
we get F. John respectively Karush-Kuhn-Tucker type necessary opti-
mality conditions for the bilevel programming problem. Note that this
approach is valid only in the optimistic case. The second approach ap-
plies both to the optimistic and the pessimistic formulations. It uses the
notion of a region of stability for linear parametric optimization where
the optimal basis of the problem remains optimal. Here, local optimality
for the bilevel problem means that the objective function value cannot
decrease on each of the regions of stability related to optimal basic solu-
tions of the lower level problem for the parameter under consideration.
The last approach is a condition for a global optimal solution of the
bilevel programming problem and uses linear programming duality to
formulate a parametric nonconvex quadratic optimization problem. It
is shown that the optimal function value of this problem is equal to
zero if and only if an optimal solution corresponds to a feasible solution
for the bilevel problem. Thus, global optimality for the bilevel problem
is related to the lower bound for the parameter values leading to zero
optimal function values of the quadratic problem.
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3.5.1 KKT CONDITIONS
The necessary and sufficient optimality conditions for the linear lower

level problem (3.4)

are

which can equivalently be written as

where the ‘ min ’ operator is understood component-wise. Denote

This implies that the linear bilevel programming problem in its opti-
mistic formulation (3.7) can be equivalently posed as

Problem (3.16) is a nondifferentiable optimization problem with Lip-
schitz continuous constraints. Necessary optimality conditions can be
obtained by use of Clarke’s generalized derivative [61]. Note that the
generalized derivative for a pointwise minimum min of two
differentiable functions is included in the convex hull of
the derivatives of the functions if both are active [61]:

Thus, the following Lagrangian seems to be appropriate for describing
the optimality conditions for the problem (3.16) [249]:

The following theorem gives F. John type conditions. The theorem to-
gether with its proof originates from an application of a result in [249] to
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the linear bilevel programming problem. Besides the derivatives of the
Lagrangian with respect to the variables complementarity con-
ditions will appear in the necessary optimality conditions with respect
to all constraints. In short, the theorem shows the existence of a vector

satisfying the following system:

Here and in what follows, the symbol denotes the gradient of the
function at the point The gradient is a row vector. We
will use to indicate that the gradient is taken only with respect
to while keeping fixed.

Surprisingly, in these equations we do not have non-negativity con-
straints for the multipliers and but only, that they both have the
same sign in their components. This comes from the nondifferentiability
of the last constraint in (3.16).

exist and a nonvanishing vector
satisfying

Note that for a feasible point the relation
together with implies that

Hence, the inequality is indeed satisfied for all
in Theorem 3.6.

Theorem 3.6 is a Fritz John type necessary optimality condition. To
obtain a Karush-Kuhn-Tucker type condition, a regularity assumption

THEOREM 3.6 If  is a local minimizer of problem then there
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is necessary which is given below. Let be feasible for (3.16).
The following; relaxation is connected with problem (3.16):

We will need the following generalized Slater’s condition for this problem:

DEFINITION 3.2 The generalized Slater’s condition is satisfied for prob-
lem (3.17) if the gradients of all the equality constraints (with respect
to are linearly independent and there exists a feasible point

satisfying all the inequality constraints as proper inequalities.

Any feasible solution of problem (3.17) is also feasible for problem (3.16).
Hence, a local optimal solution of problem (3.16) is also a local optimal
solution of problem (3.17). The opposite statements are in general not
true. The generalized Slater’s condition can be assumed to be satisfied
for problem (3.17) but not for problem (3.16) as long as the strict com-
plementarity slackness condition does not hold (see Theorem 5.11). The
F. John necessary optimality conditions for problem (3.17) are weaker
than the conditions of Theorem 3.6 since they do not contain the con-
ditions for i with

The original version of the following result for optimization problems
with variational inequality constraints can be found in [249].

exist and a vector
satisfying

THEOREM 3.7 If is a local minimizer of problem (3.7) and the
generalized Slater’s condition is satisfied for problem (3.17) then there
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3.5.2 NONEXISTENCE OF DESCENT
DIRECTIONS

3.5.2.1 THE OPTIMISTIC CASE

Starting here we will change the notion of an optimistic optimal so-
lution of the bilevel programming problem a little bit to one which is
more oriented at our initial point that the leader has control over only.
If problem (3.7) has an optimal solution, it is equivalent to problem
(3.8). But with respect to (3.8) we can define the optimality only with
respect to the variable and can add some corresponding with

as some corresponding realization of the follower. In
a way similar to the pessimistic optimal solution, from now on a point

is called a (local) optimistic optimal solution of the bilevel problem
if is a (local) optimal solution of the problem (3.8) and is
such that

Consider an optimal vertex of the lower level problem

for Note that the concentration to equality constraints is of no loss
of generality, but the ideas below are easier to describe for this model.
Let B be a corresponding basic matrix, i.e. a quadratic submatrix of
with rg and let the corresponding basic solution be given as

with the formulae

Also, for simplicity we assume that rg If this is not the case,
all investigations are done in some affine submanyfold of determined
by solvability of the linear system of equations This
manyfold gives additional upper level constraints on Then, optimality
of the basic matrix B is guaranteed if

where is the subvector of corresponding to basic variables. This
basic matrix need not be uniquely determined.

ters such that B remains an optimal basic matrix:
DEFINITION 3.3 The region of stability is the set of all parame-
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The number of different regions of stability is finite, each of them is a
convex polyhedral set. For each sufficiently small perturbation of
such that problem (3.18) has a solution there exists at least one basic
matrix B of (3.18) at such that both (cf. Figure 3.5).
Due to the vertex property of optimal solutions in Corollary 3.1 this
implies that, in order to verify (local) optimality of a feasible point
for problem (3.7) we have to check if is an optimal solution of
the problem (3.7) restricted to each of the regions of stability. Let

denote the upper level objective function value of an optimistic optimal
solution of the lower level problem and consider the set of all basic
matrices corresponding to the basic solutions of this problem:

where denotes the basic components of The set can contain
more than one matrix and the matrices in can correspond to
more than one optimal solution of the lower level problem. In this case,
however, not only the follower but also the leader is indifferent between
all these different solutions.

Let for some basic matrix B. Then, for the corresponding
optimal solutions the relations

hold. Thus, for the difference of the upper level objective function values
the relation
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is true. This leads to the following optimality condition:

gramming problem (3.7) with given by (3.18), this means, let
is not a local optimistic optimal solu-

tion of the bilevel problem (3.2), (3.18) if and only if one of the following
two conditions is satisfied:

or

there exist and such that
and

This Theorem is a consequence of the results in [77] (cf. also Chapter
5). Clearly, the first case corresponds to optimal solutions of the lower
level problem which are not the best ones with respect to the upper level
objective function, hence they are not feasible from the optimistic point
of view.

It should be noted that all the conditions in Theorem 3.8 can be
checked by solving linear optimization problems. For computing the set

the family of all vertices of a convex compact polyhedron is to be
computed which can be done e.g. with an algorithm in [83].

3.5.2.2 THE PESSIMISTIC CASE

Consider now the pessimistic linear bilevel programming problem
(3.9). This consists of minimizing the generally not lower semicontinu-
ous, piecewise affine-linear function (cf. Figure 3.6). Each
of the affine-linear pieces corresponds to one basic matrix and at a kink
of the function more than one basic matrix is optimal for the lower
level problem (3.18). Let be a (local) pessimistic optimal solution of
the bilevel programming problem (3.2), (3.18) or equivalently a local
optimal solution of the minimization problem (3.9)

with determined by (3.18).
can be a point where the objective function has a kink or a jump.

We remark that an optimal solution of this problem need not to exist,
i.e. the infimal value of the objective function can correspond to a jump
where the function value is not situated at the smallest function value.

THEOREM 3.8 Let be feasible for the optimistic linear bilevel pro-
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Nevertheless, since the function is maximized over a convex poly-
hedral set for computing the value of

each objective function value in (3.9) corresponds to a basic solution in
the lower level problem. Hence, we can follow the lines in the previous
subsection for investigating (local) optimality for (3.9) of some candidate

Points where has a jump are characterized by being not
lower semicontinuous. Since upper semicontinuity of implies that
lim sup at a jump of this inequality is satisfied as a

strong inequality:

for at least one sequence converging to This implies that we
have to do two things:

Given a candidate with and we have
to check if the function has a jump at the point     or
not. If it has no jump there (cf. the point in Figure 3.6) then we
can use the ideas of the previous subsection to test if we have found
a (local) pessimistic optimal solution.

If the function has a jump at (as at the point in Figure 3.6),
then cannot be a (local) pessimistic optimal solution.
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Let again denote the set of all basic matrices corresponding to
basic optimal solutions in and assume that the linear lower level
problem (3.18) is a generic one, i.e. that, for each there
exists a parameter value such that the optimal solution and the
optimal basis of problem (3.18) are uniquely determined for that
Denote the set of all points with this property by

Then, by convexity of

THEOREM 3.9  Let be feasible for the pessimistic linear bilevel
problem (3.9) with defined by (3.18), that is, let

Let the above genericity assumption
be satisfied. Then, is not a pessimistic local optimum of the bilevel
programming problem (3.2), (3.18) in any of the following two cases:

Under the first condition of the theorem, the (by feasible
points have objective function values
sufficiently close to but the point

is infeasible. If the second condition is satisfied then the
feasible points again have better function
values than

Note that the first case in Theorem 3.9 implies that
but that the satisfaction of this strong inequality does in general not
imply that the function has a jump at

The following example shows that the restriction to points
is necessary in Theorem 3.9.

Example: Consider the small problem

There exist a basis and a point with
and

and there exist a basis and a point with
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at the point Then, for

Thus, and we have the optimal solution This
corresponds to the basic matrix

with But, if for the other basic
matrix

is taken, then we get and
there exists no point For this basic matrix we get a
direction of descent But note, that in this example the
point with is the pessimistic solution in for no with

Hence, this basic matrix cannot be used to verify optimality.

The following theorem gives a sufficient optimality condition:

THEOREM 3.10 Let the assumptions of Theorem 3.9 be satisfied. If both
conditions

for all the equation hold and

for all and all with the
inequality

is satisfied,

then is a local optimal solution of (8.9), (3.18) (or a local pes-
simistic optimal solution of the bilevel problem (3.2), (3.18)).

The proof of this theorem follows from a more general result in Theorem
5.25. Note, than in distinction to that result, we do not need a strong
inequality in the second condition by piecewise linearity of Note
that this theorem is more restrictive than Theorem 3.9 since

is assumed here. In Theorem 3.9 this condition is weakened to
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3.5.3 TWO AUXILIARY PROBLEMS
To investigate it, the linear bilevel programming problem is replaced

by one of several problems. Most widely used is the problem arising if the
lower level problem is replaced by its Karush-Kuhn-Tucker conditions.
Let be a fixed parameter vector. Then, is an optimal solution of the
problem (3.4), if and only if there exists such that

satisfies

This leads to a first problem replacing the optimistic formulation (3.7)
of the bilevel programming problem:

Both problems are equivalent if (local) optimistic optimality of the
bilevel programming problem is investigated via problem (3.7). But
this is no longer true if the approach in problem (3.8) is taken. We will
come back to this phenomenon in Section 5.5.

In [67, 188], this problem has been used to construct optimality condi-
tions by use of the tangent cone to the Karush-Kuhn-Tucker set mapping
of the lower level problem. This tangent cone is in general not convex
but the union of finitely many convex polyhedral cones. The resulting
optimality conditions have a combinatorial nature: To check optimality
the minimal optimal value of a finite family of linear optimization prob-
lems is to be compared with zero. We will come back to this in Chapter
5.

An alternative approach has been used in [134]. By linear program-
ming duality, the point is optimal for (3.4) at if and only if there
exists such that satisfies

Moreover, for arbitrary feasible points of the primal and the dual
problems we have by weak duality. Then, the
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following problem is posed:

Let denote the optimal value of problem (3.23). A feasible solution
of the problem (3.23) with zero objective function value is a feasible
solution for problem (3.2), (3.4) with an upper level objective function
value not larger than Hence, searching for the lowest possible value of

such that the global optimal function value of problem (3.23) is equal
to zero is equivalent to computing an optimistic global optimal solution
of the linear bilevel programming problem (3.2), (3.4).

THEOREM 3.11 ([134]) A point is a (global) optimal solution of
(3.7) if and only if for any the relation
holds.

Problem (3.23) is a nonconvex quadratic optimization problem. Since
the objective function is bounded from below by linear programming
duality, it has a (global) optimal solution provided the feasible set is
not empty [164]. Moreover, by the special perturbation, the optimal
objective function value of the problem is not decreasing for decreasing

3.6 SOLUTION ALGORITHMS
In this section different algorithms for solving linear bilevel program-

ming problems will be outlined. We start with some results about the
complexity of the (linear) bilevel programming problem which gives a
first imagination about the difficulties connected with the solution of
bilevel programming problems on the computer.

Bilevel problems are nonconvex and nondifferentiable optimization
problems (see Fig. 3.1). This poses the question of searching for a global
optimum which is discussed in Subsection 3.6.5. Global optimization
is often associated with enumeration algorithms which are outlined in
Subsection 3.6.2. Other classes of algorithms do not intend to compute
global but rather local optima as e.g. descent algorithms (see Subsection
3.6.3) or penalty methods (cf. Subsection 3.6.4). We don’t want to go
into the details of the algorithms but rather outline the basic ideas. A
comparison of the numerical behavior of codes realizing them can be
found in [26]. Also, proofs for theorems on correctness of algorithms are
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omitted since the development of solution algorithms is not a central
topic of this book.

3.6.1 NUMERICAL COMPLEXITY
Complexity theory [104] tries to use relations between different prob-

lems for a classification of the problems into the “easy” and the “diffi-
cult” ones. For the easy problems, solution algorithms are known which
solve arbitrary instances of the problem (obtained by fixing the data)
with a number of elementary operations (multiplication, addition, divi-
sion, subtraction, comparison) which can be bounded by a polynomial
in the number of digits necessary to store the problem data in the com-
puter memory (e.g. by use of binary encoding schemes). Such problems
are the linear programming problem, the minimum spanning tree prob-
lem etc. The family of these problems is the class of the polynomially
solvable problems. A nondeterministic algorithm decomposes into two
parts: a first one in which a guess is made for a solution of the prob-
lem and a second one in which this point is tested if it really solves the
problem. In a polynomial nondeterministic algorithm both the storage
of the guessed point as well as the test in the second part can be done
with a numerical effort which can be bounded by a polynomial in the
length of the input data provided that the guessed point really solves
the problem. There is no bound on the time needed for finding a so-
lution in practice on the computer. Clearly, the class is a subclass
of the family of problems solvable by polynomial nondeterminis-
tic algorithms. Optimization problems do often not belong to the class

due to nonexistence of (polynomially testable) optimality criteria.
For a minimization problem the corresponding decision problem asks for
the existence of a feasible solution with an objective function value not
larger than a given constant. For the traveling salesman problem e.g.,
the decision problem asks for the existence of an Hamiltonian circuit of
length bounded by a given constant and not for the Hamiltonian circuit
itself. Decision problems related to optimization problems often belong
to the class The most difficult problems in the class form the
subclass -complete problems. The construction of the class

is done in such a way that if one problem in the class proves
to be polynomially solvable than both classes and coincide. It is
the most important question in this circumstance if the classes and

coincide or not with the negative answer assumed to be true by almost
all scientists. The optimization problems corresponding to the decision
problems in the class are members of the class of -hard
problems. The 0/1 knapsack and the traveling salesman problems are

-hard, their decision variants are -complete. A large number of
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-complete and -hard problems can be found in the monograph
[104].

For showing that some problem II is -complete another problem
has to be found which is known to be -complete and to prove

that this problem is a “subproblem” of II. This means that we have to
describe a polynomial algorithm transforming an arbitrary instance B
of into some instance A of II such that the answer to A is yes if and
only the answer to B is yes.

THEOREM 3.12  ([81])  For any           it is        -hard to find a solution
to the linear bilevel programming problem (3.1), (3.2) with not more than

times the optimal value of the bilevel problem.

It can be seen easily in the proof of this theorem, that the lower level
problem has a unique optimal solution for all values of the parameters.
Thus, a distinction between optimistic vs. pessimistic optimal solutions
is not necessary here. The Theorem 3.12 implies that it is not likely
to find a polynomial algorithm for globally solving the linear bilevel
programming problem.

The proof of this Theorem (given in the Section 3.7) uses a transfor-
mation of the problem 3SAT to the bilevel programming problem. Since
3SAT is no number problem, Theorem 3.12 even shows that the lin-
ear bilevel programming problem is -hard in the strong sense [103].
A fully polynomial approximation scheme is a solution algorithm pa-
rameterized in the accuracy of the computed solution which, for each
given accuracy provides an -optimal solution in time polynomial in
the length of the problem and in [103]. The proof of Theorem 3.12
shows that the subproblems equivalent to 3SAT have nonnegative inte-
ger optimal function values zero or one for all instances. This implies
that there cannot be a fully polynomial approximation scheme for the
bilevel programming problem (unless ) [103].

Other proofs for -hardness of the linear bilevel programming prob-
lem can be found in [25, 36, 116, 133]. The result in [133] is the strongest
one since it shows an even higher complexity of the multi-level linear
programming problem.

3.6.2 ENUMERATIVE ALGORITHMS
3.6.2.1 SEARCH WITHIN THE VERTICES OF THE

FEASIBLE SET

We consider the optimistic formulation of the linear bilevel program-
ming problem (3.4), (3.7). As a result of Theorem 3.1 we can restrict
the search for a (global) optimal solution to the vertices of the convex
polyhedral components of the graph of As given in Section 3.3



50 FOUNDATIONS OF BILEVEL PROGRAMMING

each such vertex is determined by two sets I, J of active constraints:

Hence, we can reformulate the linear bilevel programming problem as
the problem of finding such index sets I, J for which the following linear
optimization problem has the smallest optimal function value:

This search can be realized by an enumeration over all the different
possible sets I, J which of course results in a large and fortunately un-
necessary amount of computations. Different ideas for minimizing the
computational effort by use of intelligent search rules for new sets I, J
which with high probability lead to improved solutions have been pro-
posed [27, 55]. In [177] it is shown that this approach can lead to a
polynomial algorithm for the linear bilevel programming problem if the
follower controls a fixed number of variables only. The reason is that
then only a polynomial number of different basic matrices for the lower
level problem exist and that the resulting linear optimization problems
(3.24) can be solved in polynomial time [148].

Solving the problem (3.1), (3.7) with the K-th best algorithm of [42],
the enumeration of vertices is realized in the following simple way: Start-
ing with the optimal solution of

a set M is constructed containing all the neighboring vertices of the set

to the already investigated vertices. In each step the best point with
respect to the upper level objective function in the set M is checked for
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feasibility for the bilevel programming problem. If it is feasible then it
is a global optimal solution of (3.1), (3.7). Otherwise it is excluded from
M and all of its neighboring vertices are included in M.

REMARK 3.2 An algorithm for the three-level linear programming prob-
lem based on the best algorithm of [42] can be found in [287].

3.6.2.2 SEARCH FOR ACTIVE INEQUALITIES
In [116] it is explored that optimality in the lower level implies that

a minimum number of inequality constraints in problem (3.1) has to be
satisfied as equations. This can be formulated by the help of additional
(logical) inequalities using artificial variables. A branch-and-bound al-
gorithm for the search for a global optimistic optimal solution can be
developed. Branching is done by fixing one (or some of the) artificial
variable(s) to zero or one. Fixing one variable to the value one is equiv-
alent to demanding equality in the corresponding inequality constraint.
Setting an artificial variable to zero means that the related inequality is
strict or (by linear programming duality) that the dual variable is equal
to zero. Both conditions are then used to decrease the number of vari-
ables in the lower level problem and to derive further additional (logical)
relations. In doing so, the lower level problem step-by-step reduces to
one with uniquely determined feasible solution for each parameter value
which then can be inserted into the upper level problem. For computing
bounds linear optimization problems are solved arising if the lower level
objective function is dropped in the current problems.

3.6.3 DESCENT ALGORITHMS
This approach can be considered as an implementation of the neces-

sary optimality conditions in Theorem 3.8.
Using the optimistic position, the bilevel programming problem (3.7),

(3.18) can be transformed in that of minimizing the upper level objective
function

subject to

This problem possesses its decomposition into a hierarchical problem
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where

By

evaluating requires solving a linear optimization problem. The
algorithm starts with a first optimal basic matrix for the lower level
problem (3.18) which can be obtained e.g. by first computing an optimal
vertex solution of the problem

followed by computing a vertex solution Then,
is a first feasible solution of the bilevel programming problem

(3.7), (3.18) and the optimal basic matrix B corresponding to can
be used to start the process. At satisfiability of the necessary
optimality condition in Theorem 3.8 is tested:

First, compute This

means that an optimistic solution corresponding to is computed.

Second, test by enumerating all the optimal basic matrices in the

part reduces to evaluating

After both steps have been performed a new better point
is obtained and the steps are repeated until the process stagnates.

In most of the cases there seems to be some hope that the number
of different basic matrices for is small. In this case, the second step
is not too expensive. If there does not exist a descent direction, then

is a local optimal solution by Theorem 3.8. On the other hand, if a
descent direction can be found than stepping forward along this direction
a new parameter value is obtained for which a new basic matrix of
appears. An algorithm of this type has first been developed in [66]. Note
that this idea can also be used to compute a solution in the pessimistic
case (3.9) and that the restriction to equations in the lower level problem
is no loss of generality. Details are left to the interested reader.

3.6.4 PENALTY FUNCTION METHODS
Consider the bilevel programming problem in its optimistic version

(3.1), (3.7). As already mentioned in (3.22) a feasible solution to

lower level problem for if there exists a descent direction. This
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(3.1) is optimal for if and only if there exists a vector     such that
satisfies the system

This can be used to formulate a penalty function approach for solving
the problem (3.1), (3.7) [292]:

with sufficiently large. We use a decomposition approach to solve
this problem for a fixed

where denotes the optimal value of the following parameterized
problem

for fixed   Then, the function is concave [241] and the minimum
in (3.28) is attained at a vertex of the feasible set

of problem (3.28) provided that the problem (3.27) has a solution. The
following Theorem is an obvious implication of finiteness of the number
of vertices of problem (3.28):

THEOREM 3.13 ([292]) Let the set

be nonempty and bounded. Then, there exists a finite value such
that, for each the global optimal solution of the problem
(3.28) together with an optimal solution of the problem (3.29) is
also a global optimal solution of the problem (3.1), (3.7).
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The difficulty with this approach is that for each value of the penalty
parameter the outer nonconvex problem (3.28) has to be solved globally.
But Theorem 3.13 extends also to the case when the upper level problem
(3.28) is solved locally but the linear lower level problem (3.29) is solved
globally (see also [187, 289]):

THEOREM 3.14 ([292]) Let the set

be nonempty and bounded. Then, there exists a finite value such
that, for each the local optimal solution of the problem (3.28)
together with an optimal solution of the problem (3.29) is also a
local optimal solution of the problem (3.1), (3.7).

In [292] some ideas for estimating the value and an algorithm for
computing an optimal solution for the optimistic bilevel linear program-
ming problem based on these ideas are given. If we replace the lower
level problem (3.1) by the more general (3.4) then problem (3.29) is no
longer a linear optimization problem but a nonconvex quadratic one.
This makes the investigation much more difficult. We will come back to
the penalty function approach to bilevel programming in Section 6.3.

3.6.5 GLOBAL OPTIMIZATION
Consider the linear bilevel programming problem with inequality con-

straints using the optimistic position

where again denotes the set of optimal solutions to the lower level
problem (3.1). Let

denote the optimal objective function value of problem (3.1).

THEOREM 3.15 ([33]) The optimal value function is convex and
piecewise affine-linear on Moreover, either
we have for all

The function can be used to formulate an equivalent problem to
(3.30):
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This is an optimization problem with a reverse convex constraint. Such
problems have been extensively investigated e.g. in [129]. In [276] a
branch-and-bound algorithm is proposed for solving problem (3.31).
First the problem is transformed into a quasiconcave optimization prob-
lem in the following way.

Let be an optimal basic solution of the linear relaxed problem

If this solution is feasible for (3.31) then, of course it is also an optimal
solution for the bilevel problem (3.30). Hence, assume in the following

Let

and

Here A — B denotes the Minkowski difference of the sets A, B:

The sets C, D have been constructed such that and D is
a convex polyhedron. Both sets C, D can be assumed to be nonempty
since otherwise problem (3.31) has no solution. C is a convex set having
a polar set

Consider a point

Then, for all Hence, the
convex cone K is a subset of C,              Indeed,     is feasible for problem
(3.1) with which implies:

Thus,

where and denotes the row of
[241].
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Using these sets problem (3.31) can equivalently be stated as

Let Then there exists such that
Since is a convex cone we can regularize this inequality such that the
left-hand side is not smaller than 1 for suitable Thus,
problem (3.34) possesses a decomposition into an hierarchical problem

where

if solves (3.35), then any

solves (3.30).

For solving problem (3.30) it thus suffices to solve problem (3.35) which
can be done by the application of the branch-and-bound approach. This
starts with minimizing the function on some simplex T with

By subdividing T into smaller and smaller simplices, an optimal
solution of (3.35) is approached. The initial simplex is composed by the
vectors and branching is essentially done by partitioning
the cone For bounding, a linear program is solved whose optimal
function value can be used to compute lower bounds for For
a detailed description of the algorithm the reader is referred to [276].
A similar idea for globally solving bilevel linear programs is derived in
[275].

3.7 PROOFS
PROOF OF THEOREM 3.1: By linear programming duality,
if and only if there exists such that

THEOREM 3.16 ([276]) The function is quasiconcave and lower
semicontinuous. The problems (3.30) and (3.35) are equivalent in the
following sense: The global optimal values of both problems are equal and
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For any sets consider the solution set
M(I, J) of the system of linear (in)equalities

Then, conditions (3.36) are satisfied. The set M ( I , J) is polyhedral and
so is its projection on Since the graph of is equal to the
union of the sets M ( I , J), the assertion follows.

It should be noted that if a set M(I, J) is not empty then its projection
on the space is equal to the set of all solutions of the system

This set obviously determines a face of the convex polyhedral set
Moreover, if some inner point of a face of

the set is feasible, i.e. then
the whole face has this property.

but be not Pareto optimal for (3.10). Then, there exists satisfying
with

where

Thus, since we have By
rg this leads to the equation

Feasibility of to (3.10) implies that satisfies all
constraints of the lower level problem (3.1) which by
results in contradicting

Now, let be Pareto optimal for the problem (3.10) but be not
feasible for (3.1), (3.2). Of course, is feasible for (3.1) for Then,
there exists satisfying such that
But then, which contradicts
the Pareto optimality of

PROOF OF THEOREM 3.4: First, let be feasible to (3.1), (3.2)

PROOF OF THEOREM 3.5: If is a Pareto optimal solution of the prob-
lem (3.11) the optimal objective function value of the problem (3.12) for
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is equal to and is one optimal solution. This im-
plies feasibility of to (3.13). This shows that the first assertion in
the Theorem implies the second one and the third one follows from the
second assertion. Now, let be such that is a feasible problem to
(3.13). Then, is an optimal solution of (3.12) for which implies
that is Pareto optimal for (3.11).

(3.7). Then, by linear programming duality, there exists such that
is a local optimizer of the equivalent problem (3.16). By

Theorem 6.1.1. in [61] there exists a nonvanishing vector
such that

where for a set M and a vector a the formula            abbreviates the
Minkowski sum Now, if
set But, if
then In the third case, if

take for some
with Then,
for and

Application of the special structure of the func-
tions F and G gives the desired result.

REMARK 3.3 It can be seen in the proof that all the inequalities
hold.

PROOF OF THEOREM 3.7: To shorten the explanations we will use the
functions F and G in the proof. The result will then follow if the struc-
ture of these functions is applied.

Let in the F. John conditions of Theorem 3.6 the multiplier
Note that by linearity of all the functions we have

and the same is true for the function Then using the points
and from the generalized Slater’s con-

dition we get

PROOF OF THEOREM 3.6: Let be a local minimizer of problem
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which implies since for and otherwise
and all other terms are zero by the properties of in Theorem
3.6 and Now, if we get by the generalized
Slater’s condition. This contradicts Theorem 3.6. Hence, and
without loss of generality,

PROOF OF THEOREM 3.11: The proof is done in three steps:

• If then the optimal solution of problem (3.23)
satisfies the conditions (3.22) as well as Hence,
by linear programming duality, the point is feasible for the
problem (3.7) and we have

On the other hand, if is feasible for the problem (3.7) then there
exists a vector such that is feasible for (3.23) with

and the objective function value of this problem
is equal to zero by linear programming duality. Since the objective
function of this problem is bounded from below by zero this solution
is then also an optimal one.

Hence, if and only if there is no feasible solution for the
bilevel programming problem (3.7) having This
implies the result.

PROOF OF THEOREM 3.12: We adopt the proof in [81] and consider
the problem 3-SAT: Let be Boolean variables, con-
sider clauses of disjunctions of maximal three of the Boolean variables
and their negations. Does there exist an assignment of values to the
Boolean variables such that all the clauses are at the same time true?

We will transform an arbitrary instance of 3-SAT into a special in-
stance of (3.1), (3.2). Let, for each of the Boolean variables two real
upper level variables be considered with the constraint
Then, for each of the clauses construct an inequality where
the variables stand for one of the variables or if resp. ap-
pears in the clause, is an additional upper level variable. Add lower
level variables and the lower level constraints
Then, the lower level problem reads as
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Clearly, given this problem has the optimal solution
for all To form the upper level problem, consider

where the variables are dummies for or as pointed out above.
The decision version of the bilevel problem asks for a feasible solution
of problem (3.38) having at most some predefined objective function
value. Clearly, the instance of the problem 3-SAT has the answer yes if
and only if the optimal objective function value of (3.38) is minus one.
This shows that the problem 3-SAT is a subproblem of the bilevel linear
programming problem. Since 3-SAT is -complete [104], the linear
bilevel programming problem is -hard.

Now we show that the computation of an approximate solution to
the linear bilevel programming problem is of the same complexity as
computing an optimal solution. This is verified by transforming the
approximate solution into a feasible solution with no worse objective
function value in the upper level objective function. Let

be an e-optimal solution, i.e. for the optimal objective

function value and then in the
lower level and we set Also, set to a value
between and which is eventually necessary to retain feasibility
(actually, is decreased up to the next inequality constraint is satisfied
as equation). Doing this, the upper level objective function value cannot
increase. This can be performed one-by-one thus decreasing the number
of non-integral variables but not increasing the objective function value.

In an analogous manner the case when can be treated:
Hence, all variables get integral values in this

way, and the value of will reach either zero or one and the objective
function value will decrease to Clearly, this procedure is a
polynomial one showing that it is as difficult to compute an -optimal
solution as computing an optimal one.



Chapter 4

PARAMETRIC OPTIMIZATION

In this chapter we formulate some results from parametric optimiza-
tion which will be used in the sequel. We start with some necessary
definitions and (Lipschitz) continuity results of point-to-set maps. Up-
per resp. lower semicontinuity of the solution set mapping will
prove to be the essential assumption needed for guaranteeing the exis-
tence of optimal solutions to bilevel programming problems in Chapter
5. Uniqueness and continuity of the optimal solution is needed for con-
verting the bilevel programming problem into a one-level one by means
of the implicit function approach already mentioned in the Introduction.
We will investigate this approach in Chapters 5 and 6. Some algorithms
for solving the bilevel problem presuppose more than continuity of the
optimal solution of the lower level problem. Namely, directional dif-
ferentiability respectively Lipschitz continuity of the solution function
of parametric optimization problems are needed. Below we will derive
necessary conditions guaranteeing that this function is a
thus having these properties.

At many places we will not use the weakest possible assumptions for
our results. This is done to keep the number of different suppositions
small. For the investigation of bilevel programming problems we will
need rather strong assumptions for the lower level problem making it not
necessary that the auxiliary results are given by use of the most general
assumptions. Proofs of many theorems in this Chapter are given in
Section 4.6. In about two proofs validity of the desired result is verified
under stronger assumptions than stated in the respective theorem. This
is done since it was our aim to describe the main tools for the proof but
to avoid lengthy additional investigations needed for the full proof.

61
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Parametric optimization is a quickly developing field of research.
Many deep results can be found in the monographs [17, 18, 46, 96, 113,
171].

4.1 OPTIMALITY CONDITIONS
We start with a short summary of results in smooth programming

and an introduction of some notions used in the sequel.
Let the parametric optimization problem in the lower level be stated

without loss of generality as

Here,

ciently smooth (vector-valued) functions. For the investigation of con-
tinuity properties for parametric optimization problems the reader is
referred e.g. to the papers [12, 120, 121, 152, 154, 155]. Quantitative
and qualitative properties of the optimal solution and of the optimal ob-
jective function value of this problem with respect to parameter changes
are of the main interest in this chapter.

Subsequently the gradient of a function is a row
vector, and denotes the gradient of the function for fixed
with respect to only. Problem (4.1) is a convex parametric optimization
problem if all functions are convex and the
functions are affine-linear on for each fixed

It is a linear parametric optimization problem whenever all
functions are affine-

linear on for each fixed                Let                        be the so-called
optimal value function defined by the optimal objective function values
of problem (4.1):

and define the solution set mapping by

Here, is the power set of i.e. the family of all subsets of
By definition, is a point-to-set mapping which maps to the
set of global optimal solutions of problem (4.1). For convex parametric
optimization problems, is a closed and convex, but possibly empty
subset of Denote by with
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another point-to-set mapping, the feasible set mapping . The set of local
minimizers of problem (4.1) is denoted by

where

is an open neighborhood of We will need some regularity assumptions.
Let

(MFCQ) We say that (MFCQ) is satisfied at if there exists a
direction satisfying

and the gradients are linearly independent.

We will use the convention in what follows that, if (MFCQ) is sup-
posed without reference to a point than we assume that it is valid for
all feasible points (MFCQ) is the well-known Mangasarian-
Fromowitz constraint qualification [195]. Denote by

the Lagrangian function of problem (4.1) and consider the set

of Lagrange multipliers corresponding to the point
Then, we have the following result:

THEOREM 4.1 ([105]) Consider problem (4.1) at
with Then, (MFCQ) is satisfied at if and only if

is a nonempty, convex and compact polyhedron.

The set

is called the set of stationary solutions of problem (4.1). Clearly, if
(MFCQ) is satisfied at each point with then

and we have if (4.1) is a convex parametric optimization
problem.
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It is a direct consequence of the definition that if and only
if there are vectors and such that the triple
solves the system of Karush-Kuhn-Tucker conditions (KKT conditions
for short) :

4.2 UPPER SEMICONTINUITY OF THE
SOLUTION SET MAPPING

By the structure of bilevel optimization problems as stated in the
Introduction, the investigation of the properties of parametric optimiza-
tion problems is crucial for our considerations. We will only give a short
explanation of the results used in the following. Since the optimal value
function of parametric optimization problems is often not continuous
and since the continuity properties of point-to-set mappings are of a dif-
ferent nature than those for functions, relaxed continuity properties of
functions and point-to-set mappings will now be introduced:

DEFINITION 4.1 A function : is lower semicontinuous at a
point if for each sequence with we have

and upper semicontinuous at provided that

for each sequence converging to The function is contin-
uous at if it is lower as well as upper semicontinuous there.

DEFINITION 4.2 A point-to-set mapping is called upper
semicontinuous at a point if, for each open set Z with
there exists an open neighborhood of with for each

is lower semicontinuous at if, for each open set
Z with there is an open neighborhood such that

for all

For a nonempty set and a point we define the distance
of from A as
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DEFINITION 4.3 A point-to-set mapping with nonempty
and compact image sets is upper Lipschitz continuous at a point

if there are an open neighborhood and a constant
such that for all the inclusion holds,
where denotes the unit sphere in It is locally Lipschitz continuous
at if an open neighborhood and a constant exist
such that for all the inclusion
is satisfied.

The following compactness assumption will make our considerations
more easy. This assumption can be replaced by the inf-compactness
assumption [290].

(C) The set is non-empty
and compact.

Assumption (C) guarantees that the feasible set of problem (4.1) is
non-empty and compact for each too. This implies
that as well as are compact sets for each

THEOREM 4.2 ([240]) Consider problem (4.1) at and let the
assumptions (C) and (MFCQ) be satisfied for each Then,
the point-to-set mappings and are upper semicontinuous at

The local solution set mapping is in general not upper semicontin-
uous for non-convex parametric optimization problems. This can easily
be verified when considering the unconstrained optimization problem of
minimizing the function which has a local optimal so-
lution at only for positive With respect to the global solution
set mapping we can maintain the upper semicontinuity:

THEOREM 4.3 ([17]) If for the problem (4.1) the assumptions (C) as
well as (MFCQ) are satisfied then, the global solution set mapping is
upper semicontinuous and the optimal value function is continuous
at

The solution set mapping of the parametric programming problem
(4.1) is generally not continuous and there is in general no continuous
selection function for that point-to-set mapping. Here, a selection
function of is a function with
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This can be shown by use of the following very simple example:

Example: Consider the problem:

Then,

Continuity of the solution set mapping can be guaranteed only under
stronger assumptions (cf. e.g. [17]). Let

(SSOC) The strong sufficient optimality condition of second order
(SSOC) is said to be satisfied at if, for each
and for each satisfying

we have
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The local optimal solution is called strongly stable if
there exist open neighborhoods of and
of and a uniquely determined continuous vector-valued function :

such that is the unique local optimal solution of
problem (4.1) in for all

THEOREM 4.4 ([157]) Let and let the assumptions (MFCQ)
and (SSOC) be satisfied for problem (4.1) at with

Then, the local optimal solution is strongly stable.

REMARK 4.1 The results in [157] are somewhat stronger than presented
in Theorem 4.4. It is shown there that under (LICQ) a KKT point

is strongly stable if and only if a certain regularity condition
is satisfied for the Hessian matrix of the Lagrangian function with respect
to hold (which is weaker than the (SSOC)). If the linear independence
constraint qualification (LICQ) is violated but (MFCQ) holds, an opti-
mal point is strongly stable if and only if (SSOC) is satisfied. The
interested reader is also referred to the interesting paper [154] on strong
stability.

The following example borrowed from [107] shows that it is not possible
to weaken the assumed second order condition.

Example: Consider the problem

The feasible set of this problem is illustrated in Fig. 4.2 for
and Then, for the unique optimal solution is

and

The (MFCQ) is satisfied and we have

Also,

is positive for all if but not if Hence,
(SSOC) is not satisfied.

Now consider the optimal solution for Then,
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which means that the optimal solution is not strongly stable.

In some cases strong stability of local optimal solutions is not enough,
stronger properties are needed. The following theorem states upper Lip-
schitz continuity of the mapping for some

Upper Lipschitz continuity of the local solution set mapping
alone has also been shown in in [108, 257]. Using the results

in [126], this also implies upper Lipschitz continuity of the mapping

THEOREM 4.5 ([240]) Consider problem (4.1) at a point
and let the assumptions (MFCQ) and (SSOC) be satisfied. Then, there
exist open neighborhoods and a constant such that

for all

Another quantitative stability property which is not touched here is
Holder continuity of the function This property has been investi-
gated e.g. in the papers [46, 109, 209].

DEFINITION 4.4 A function is called locally Lipschitz con-
tinuous at a point if there exist an open neighborhood of

and a constant such that

It is locally upper Lipschitz continuous if for some open neighborhood
of and a certain constant the inequality

holds.
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Note, that upper Lipschitz continuity is a weaker property than Lip-
schitz continuity in the sense that one of the points in the neighborhood

is fixed to We remark that, to avoid a even larger number
of different assumptions, we have used conditions in Theorem 4.5 which
are more restrictive than those in the original paper. Under the origi-
nal presumptions, the solution set mapping does not locally reduce to
a function but it is locally upper Lipschitz continuous as a point-to-set
mapping. Under the assumptions used, the optimal solution function
is a locally upper Lipschitz continuous function due to strong stability,
but it is generally not locally Lipschitz continuous as shown in the next
example. Hence, for deriving Lipschitz continuity of local optimal solu-
tions of problem (4.1) we need more restrictive assumptions than those
established for guaranteeing strong stability of a local optimal solution.

Example: [257] Consider the problem

at This is a convex parametric optimization problem satis-
fying the assumption (C). At the unique optimal solution
the assumptions (MFCQ) and (SSOC) are also valid. Hence, the solu-
tion is strongly stable. It can easily be seen that the unique optimal
solution is given by

The components of the function are plotted in Figure 4.3 in a
neighborhood of the point But, the function is not locally
Lipschitz continuous at This can be seen by the following: Take

Then

for from above.
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A suitable approach to show local Lipschitz continuity of the optimal so-
lution of a parametric optimization problem is the concept of a piecewise
continuously differentiable function. Another approach to characterize
optimization problems having locally Lipschitz continuous solutions is
given in [172]. We will not follow this strong result here since our main
aim is the computation of the directional derivative of the optimal solu-
tion and local Lipschitz continuity is rather a by-product in this way.

4.3 PIECEWISE CONTINUOUSLY
DIFFERENTIABLE FUNCTIONS

Piecewise continuously difFerentiable functions are continuous selec-
tions of finitely many continuously differentiable functions. Examples
are the pointwise maximum or minimum of finitely many smooth func-
tions in Such functions have been investigated in the last few years
as important examples of nonsmooth functions. Optimization problems
involving piecewise continuously differentiable functions are one inter-
esting class within nonsmooth optimization. We will see that, under
suitable assumptions, the solution function of a smooth optimization
problem has this property, too. As an corollary of this property we de-
rive that the optimal solution function is then also locally Lipschitzian
and directionally differentiable. Hence, the bilevel programming prob-
lem proves to be equivalent to a Lipschitz optimization problem under
the same assumptions. This will be useful in Chapters 5 and 6. A very
comprehensive treatment of can be found in [251].
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ously differentiable function (or for short) at if there
exist an open neighborhood with and a finite number of
continuously differentiable functions such
that is continuous on and

This means that the function is a continuous selection of finitely many
continuously differentiable functions. The index set of the active selec-
tion functions at a point is denoted by

A selection function is active on the set

By continuity, the sets are closed and
In the following we will need also the definition of the con-

tingent cone to a set:

DEFINITION   4.6  Let                 and                     The  set

is called the contingent cone to C at

The following example should illustrate the notion of a

Example: Consider the problem

with two parameters and Then, is a continuous selection of three
continuously differentiable functions
in an open neighborhood of the point

DEFINITION 4.5 A function is called a piecewise continu-
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where

The sets and the function are illustrated in Figure
4.4.

have a number of nice properties which are of great use
in the following. We focus here on Lipschitz continuity and different dif-
ferentiability properties as generalized differentiability in Clarke’s sense,
directional and pseudodifferentiability.

THEOREM 4.6 ([114]) are locally Lipschitz continuous.
As a Lipschitz constant the largest Lipschitz constant of the selection
functions can be used.

For locally Lipschitz continuous functions the generalized gradient in the
sense of Clarke can be defined. Since we deal only with finite dimensional
spaces the following definition can be used for the generalized gradient
[61]:

is the generalized gradient of the function at

DEFINITION 4.7  Let  be a locally Lipschitz continuous func-
tion. Then
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For a vector valued differentiable function we adopt the
convention that the Jacobian of this function is also denoted by
and that the gradients of the component functions form the rows of the
Jacobian. This will not lead to any confusion since in any case the kind
of function considered will be clear. Then, the generalized Jacobian is
analogously defined:

THEOREM 4.7 ([163, 251]) Let   be a Then,

We will also apply this Theorem in an analogous manner to vector-
valued functions. Then, it shows that the generalized Jacobian of the
vector-valued function is equal to the convex hull of the Jacobians of all
selection functions for which We will call all
these selection functions strongly active and use the abbreviation

DEFINITION 4.8 A locally Lipschitz continuous function
is called semismooth at a point if for each nonzero vector

the sequence converges whenever is a sequence with

and for all

THEOREM 4.8 ([58]) are semismooth.

Later on we will call a function semismooth provided that
each of its component functions is semismooth
in the sense of Definition 4.8. Then, Theorem 4.8 can analogously be
applied to this case.

if for each direction the following one-sided limit exists:

The value is the directional derivative of the function at
in direction

Having a closer look on the proof of Theorem 4.8 it can be seen that
functions are directionally differentiable. This is also a consequence of a

DEFINITION 4.9 A function is directionally differentiable at
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result in [203]. Moreover, it is also obvious that for locally Lipschitz con-
tinuous, directionally differentiable functions the function
is Lipschitz continuous again (with the same Lipschitz constant). In [80]
it is shown that the function is uniformly directionally dif-
ferentiable in the sense that for each and for each there
exist numbers and such that

for all and provided that the above assumptions
are satisfied.

DEFINITION 4.10 A directionally differentiable function is
called Bouligand differentiable (B-differentiable) at if the directional
derivative gives a first-order approximation of at

A locally Lipschitz continuous, directionally differentiable function is
also B-differentiable [251] and is a continuous selection of linear
functions:

This result can be improved to

[280]. Since all these results follow more or less directly from the proof
of Theorem 4.8 their proofs will be dropped.

ferentiable at if there exist an open neighborhood of and
an upper semicontinuous point-to-set mapping with
nonempty, convex and compact values such that

where (the row vector) and

for each sequences w i t h f o r

all

DEFINITION 4.11 ([206]) A function is called pseudodif-
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It has been shown in [206] that pseudodifferentiable functions are locally
Lipschitz continuous and that locally Lipschitz continuous, semismooth
functions are pseudodifferentiable. In the latter case, the generalized
gradient in the sense of Clarke can be used as the pseudodifferential
Since it is in general difficult to compute the Clarke generalized gradient
but it is easy to compute a pseudodifferential with larger values for

we will use another proof to verify that a
is pseudodifferentiable.

Note that a continuously differentiable function is pseudodifferen-
tiable with

THEOREM 4.9 ([206]) Let be a continuous function which
is a selection of a finite number of pseudodifferentiable functions:

where has the pseudodifferential
Then is pseudodifferentiable and, as pseudodifferential, we can take

It should be noticed that by simply repeating the proof of Theorem 4.8
it can be shown that semismoothness of a is maintained
if the Clarke generalized gradient is replaced by the pseudodifferential.

4.4 PROPERTIES OF OPTIMAL SOLUTIONS
4.4.1 DIRECTIONAL DIFFERENTIABILITY

In this section focus is on differential properties of the optimal solution
of the parametric optimization problem (4.1):

The example on page 69 has shown that without more restrictive as-
sumptions than (MFCQ) and (SSOC) it is not possible to get Lipschitz
continuity of the local solution function Let and let

Then, using the Karush-Kuhn-Tucker conditions it
is obvious that is also a stationary point of the enlarged problems

and
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Moreover, if a sufficient second-order optimality condition is satisfied for
(4.1) then is locally optimal for both problems, too. Now, (SSOC)
at for (4.1) guarantees strong stability of provided that a
regularity condition is satisfied. (MFCQ) for (4.1) implies that this con-
dition is also satisfied for (4.17) but not validity of a regularity condition
for problem (4.18). The linear independence constraint qualification is
satisfied for (4.18) if (MFCQ) holds for (4.1) and is a vertex of

The following example shows that it is in general not possible
to restrict the considerations to the vertices of if the parametric
properties of problem (4.1) are investigated and this problem is replaced
by (4.18) to get a deeper insight into (4.1).

Example: Consider the following problem

Define

Then,

Moreover,

and

Then, for the Lagrange multiplier converges to

for which both components are positive. But the gradients
and are linearly d e p e n d e n t , i s not a vertex of

at with
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In order to ensure that each local optimal solution of (4.1) is also
a local optimal solution of problem (4.18) for some vertex

(and hence the linear independence constraint qualification is
satisfied) we use the following assumption:

(CRCQ) The constant rank constraint qualification is said to be satisfied
for problem (4.1) at a point if there exists an open

neighborhood of such that, for each subsets

the family of gradient vectors
has the same rank for all

THEOREM 4.10 ([235]) Consider the problem (4.1) at and let
the assumptions (MFCQ), (SSOC) and (CRCQ) be satisfied at a sta-
tionary solution Then, the by Theorem 4.4 uniquely de-
termined function with is a

It has been shown in the proof of this theorem, that the local solution
functions of the problems

can be used as selection functions for index sets I satisfying the following
two conditions:



78 FOUNDATIONS OF BILEVEL PROGRAMMING

(C1) There is such that and

(C2) The gradients
are linearly independent.

In the following we will denote the vertex set of by
the above selection functions of by and the family of all sets
7 satisfying both conditions (C1) and (C2) for a fixed vertex

by As a corollary of the Theorems 4.6 to 4.10 we find

COROLLARY 4.1 The local optimal solution function is

locally Lipschitz continuous, the generalized Jacobian in the sense of
Clarke is given by

directionally di f ferent iable with

B-differentiable, and

pseudodifferentiable with a pseudodifferential

At least if the lower level problem (1.1) is a parametric convex opti-
mization problem, we can now replace the bilevel programming problem
(1.1), (1.3) by the Lipschitz optimization problem

Then, solution algorithms for this problem could be based on ideas using
the generalized Jacobian or the directional derivative of the function

Hence, we need effective formulae for the computation of at least
one element of the generalized Jacobian and of the directional derivative
of the function These formulae are given next. We start with the
directional derivative.

THEOREM 4.11 ([235]) Consider problem (4.1) at a point and
let be a local optimal solution where the assumptions
(MFCQ), (SSOC), and (CRCQ) are satisfied. Then the directional
derivative of the function in direction coincides with
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the unique optimal solution of the convex quadratic programming prob-
lem

for arbitrary vectors solving

For later use, denote the solution set of problem (4.21) by

Summing up, for computing the directional derivative of the local opti-
mal solution function at in direction the following algorithm
can be used:

Method for computing the directional derivative:
Input: parametric optimization problem (4.1) at the point

where (MFCQ), (SSOC), and (CRCQ) hold and a direc-
tion
Output: directional derivative of the function at in

direction
1. Compute an optimal solution of the problem (4.21):

2. solve

It should be noted that, for computing this directional derivative, the
solution of two standard optimization problems is necessary which can
be done in polynomial time [218].

The Example on page 69 can be used to illustrate the necessity of the
assumptions in Theorem 4.10 especially that Lipschitz continuity cannot
be achieved without (CRCQ). The local optimal solution function
is directionally differentiable even without (CRCQ) and even under a
weaker sufficient optimality condition of second order than (SSOC) [257].
Under these weaker assumptions the directional derivative proves to be
the optimal solution of some minimax problem provided this problem has
a unique optimal solution [257]. The paper [68] investigates directional
differentiability of under (MFCQ) and (SSOC) without (CRCQ). It
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is shown that the directional derivative of can again be computed
by solving but now only for some suitably chosen vector

We will also mention that similar results under weaker
directional versions of the (MFCQ) and the (SSOC) have been obtained
e.g. in the papers [13, 107]. The Example on page 76 shows the difficulty
in computing the directional derivative [68] in this case. The following
Example shows that it is not possible to drop the strong differentiability
assumptions while maintaining the directional differentiability of

Example: [176] Consider the problem

where

at Then, the assumptions (C), (MFCQ) and (SSOC) are satisfied
except of the smoothness assumption with respect to the function

is only once continuously differentiable at zero. It is easy to see that

This function is continuous, but not directionally differentiable at zero
in direction

The Example on page 71 can be used to show that, even if the optimal
solution function proves to be a its directional derivative
need not to be a continuous function of the reference point:

Example: Consider the Example on page 71 at Let
Then,

Hence,

Thus, for we obtain
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4.4.2 THE GENERALIZED JACOBIAN
Now consider the problem of finding at least one element of the gen-

eralized Jacobian of the function By Theorems 4.7 and 4.9,

Here,

In general it is not so easy to decide if

int Supp

and the selection of will falsify the generalized Jacobian of
the function This can be seen in the following

Example: [78] The parametric optimization problem

has the solution function

Let be the point of interest with optimal solution
At this point, the solution function can be represented by a continuous
selection of the continuously differentiable functions

which both are strongly active at Hence, applying Theorem 4.7
immediately yields

and
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At it is and the conditions

(MFCQ), (SSOC), and (CRCQ) hold with

One can easily show that is the unique Lagrange multiplier.
Therefore we have at the point Now
we consider the four possible choices for /:

I = {1,2}: Then and therefore

c1 int is not an element of the

generalized Jacobian indeed.

I = {2}:

hence

and

Here it is int and we get

Considering I = {1} analogously to the latter case yields

implies and with cl int

Again we have



Parametric optimization 83

We recognize from this example that it is in general not easy to find one
element of the generalized Jacobian of the function without additional
assumptions. Such assumptions are:

(LIN) The gradients with respect to both and
are linearly independent.

In the following at some places we will use the abbreviations

(FRR) For each vertex the matrix

has full row rank

(SCR) For a vertex a set and a direction
strict complementarity slackness is satisfied in problem

The condition (LIN) is much weaker than the usual linear indepen-
dence constraint qualification

(LICQ) The gradients

are linearly independent

since it does not imply that the Lagrange multiplier of problem (4.1)
is unique. It is trivially satisfied for any instance with right-hand side
perturbed constraints. This assumption guarantees that for each vertex

of the set there is some direction such that
is the unique optimal solution of the problem (4.21) [68]:

and thus, in some sense, that no basic representations of the vertices of
the unperturbed Lagrange multiplier set are superfluous. Assumption
(FRR) is a certain nondegeneracy assumption. If is a vertex of

and (MFCQ) holds, the quadratic matrix
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has full rank Hence, (FRR) means that the degener-
acy generated by adding the rows with
is compensated by adding the columns related to the gradients with
respect to

Note that the assumption (SCR) makes sense only in the case when
the Lagrange multiplier of the problem is uniquely
determined and the gradients

are linearly independent.

THEOREM 4.12 Consider the problem (4.1) at a point and let
the assumptions (MFCQ), (SSOC), and (CRCQ) be satisfied there.

• [71] Take any vertex and a set Let
be a direction such that condition (SCR) is satisfied. Then

• [73] If condition (FRR) is valid then

The assumption in the first assertion is difficult to be verified since we
have to answer two questions together: First the question if the set of
inner points of is not empty and then the question of
how to find an element in this set. This is an even more restrictive task
than to decide if int In the second assertion the
assumption guarantees that int for all possible
index sets. This is a rather unnecessarily restrictive assumption since we
are in general interested in only one element of the generalized Jacobian
of and in this case we compute the whole generalized Jacobian.
The proof of this Theorem shows that it is sufficient to suppose that
the matrix M has full row rank for just one vertex
Then we get an element of too. But this assumption again is
difficult to be verified and how to find this vertex and the corresponding
index set

REMARK 4.2 It should be mentioned that in [190, 225] conditions have
been formulated which guarantee the computability of generalized Ja-
cobians of the function In both papers, the linear independence
constraint qualification (LICQ) is used which implies uniqueness of the
Lagrange multiplier. The condition in [225] can then be obtained from
(FRR) by use of the Motzkin Theorem on the alternative. The result in
[190] applies to problems with parameter-independent constraints only.
In that case, (FRR) is implied by it. The assumption (SCR) together



Parametric optimization 85

with the linear independence constraint qualification (LICQ) has been
used in [94] to compute an element of the generalized Jacobian of

The next simple example shows that the assumptions of the first asser-
tion in Theorem 4.12 are possibly never satisfied.

Example: [71] Consider the problem

Then, assumptions (MFCQ), (SSOC), (CRCQ) are satisfied
for each Moreover, hence

But i.e. assumption (SCR) cannot be
satisfied.

Theorem 4.12 shows that it is possible to compute elements of the gen-
eralized Jacobian of a local solution function provided that some addi-
tional assumptions are satisfied. But this is not natural. Under (MFCQ),
(SSOC), and (CRCQ) the function is locally Lipschitz continuous.
Hence it is almost everywhere differentiable in which case the generalized
Jacobian consists of just one element. Also, the directional derivative is
piecewise linear, i.e. the parameter space decomposes into a finite num-
ber of convex cones and the directional derivative is linear on each of
these cones. Take one direction pointing into the interior of one of these
cones. Then, the local solution function behaves almost as a differen-
tiable function on points in that direction. This is exploited to derive the
next result. Formally, start with the Karush-Kuhn-Tucker conditions of
problem given as

If these conditions are satisfied, then there is at least one set with

such that

and
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i.e., such that the following system has a solution:

Clearly, the set is in general not uniquely determined. For all index
sets

define the sets

system has a solution}

i.e. the set of all for which I can be used instead of in the conditions
The sets are generally not disjoint. But, due to

Theorem 4.11 we have

for all problems (4.1) that meet the conditions (MFCQ), (SSOC), and
(CRCQ) at As the solution set of a system of linear equations and
inequalities, the set of all points                  satisfying                        is a
convex polyhedron and so is also the set (since the directional
derivative is positively homogeneous, the sets             are even
convex polyhedral cones). Hence, the boundary of is composed
by a finite number of lower dimensional faces. Since the number of

that a vector is chosen according to a uniform distribution over the
unit sphere in Then, the vector does not belong
to any of these boundaries with probability one: More formally, let
denote the event that, for fixed there exist a vertex
and an index set                  with                            Then,

The following algorithm uses this probability result. It first selects a
direction randomly and checks thereafter if it does belong to the interior

different sets              (for vertices                          and sets is
finite, the union of their boundaries is also of lower dimension. Assume
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of some of the sets This is performed by verifying the necessary
conditions in

LEMMA 4.1 ([78]) Let the problem (4.1) satisfy (MFCQ), (SSOC),
(CRCQ), and (LIN) at the point Assume that there exists

such that for some index set I with
for Then,

• the optimal solution of problem (4.21) is unique and coincides with
and

• the gradients with respect to

are linearly independent.

COROLLARY 4.2 If the assumptions of the preceeding Lemma are sat-
isfied, the optimal solution as well as the corresponding Lagrange mul-
tipliers of the problem are unique and depend linearly on

If we are luckily able to select a direction then it is
possible to compute an element of the generalized Jacobian of the local
solution function

THEOREM 4.13 ([78]) Consider problem (4.1) for at a local op-
timal solution and assume that (MFCQ), (SSOC), and (CRCQ) are
satisfied there. Let be chosen such that for the corresponding

there exists an I with Then there exists
a set with such that the continuously differen-
tiable function is a strongly active selection function. Moreover

for for a vertex of the
Lagrange multiplier set of problem

Summing up we obtain the following algorithm computing an element
of the generalized Jacobian of the function with probability one:

Method of active constraints:
Input: parametric optimization problem (4.1) at the point

where (MFCQ), (SSOC), and (CRCQ) hold;

REMARK 4.3 Using it is not very difficult to see that
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Output: a matrix, which is an element of the generalized Jacobian
of the solution function with probability 1;
1. choose randomly;
2. find a which is furthermore a vertex of
3. solve and determine the set of active constraints /
and Karush-Kuhn-Tucker multipliers of this problem;
if strong complementarity holds in

then calculate according to [97]
else calculate a vertex of the set of Lagrange multipliers

of the problem and delete all unnecessary inequality
constraints. Calculate according to [97].

It should be noted that this algorithm has a polynomial running time
provided that the chosen direction belongs to the interior of some set

Indeed, the linear optimization problem has then a unique
optimal solution by Lemma 4.1 which can be computed in polynomial
time e.g. by interior point algorithms [144]. The same class of algorithms
can be used to solve quadratic, strictly convex optimization problems
again in polynomial time [218]. Standard algorithms for solving systems
of linear equations with quadratic regular coefficient matrix are also of
polynomial time.

4.5 PROPERTIES OF THE OPTIMAL VALUE
FUNCTION

Now we turn over to the investigation of the optimal value function

of the problem (4.1) and investigate its continuity and differentiability
conditions. Properties of this function can be found in the papers [ill,
234, 242, 243]. The function is locally Lipschitz continuous under
presumably weak assumptions:

THEOREM 4.14 ([153]) Consider problem (4.1) at and let the
assumptions (C) and (MFCQ) be satisfied at all points with

Then, the optimal value function is locally Lipschitz
continuous at

Let

denote the set of solutions of problem (4.1) for As a
corollary of this Theorem we immadiately get
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COROLLARY 4.3 ([153]) Let the assumptions (C), (MFCQ) be satisfied
for the convex optimization problem (4.1) at Then, there exists

such that is locally Lipschitz continuous at for each

The next Theorem gives some quantitative bounds on the local behavior
of the function For this we need the upper and lower Dini direc-
tional derivatives of a function Let be a fixed
direction and a fixed point. Then,

denotes the upper and

the lower Dini directional derivatives at in direction Clearly, if
both directional derivatives coincide then the function is directionally
differentiable at the point in direction

THEOREM 4.15 ([106]) Consider the problem (4.1) at a parameter
value and let assumptions (C) and (MFCQ) be satisfied at all
points Then, for any direction

and

COROLLARY 4.4 ([106]) If in addition to the assumptions in Theorem
4.15 also the linear independence constraint qualification (LICQ) is sat-
isfied at all points then the optimal value function

is directionally differentiable at and we have

where for each the set reduces to a singleton
continuously depending on

For a similar result under weaker assumptions the interested reader is
referred to the paper [108]. Investigations of methods for computing
the directional derivative of the function can be found e.g., in the
papers [210, 211]. For existence results and properties of the optimal
value function using second order multipliers we refer to the paper [243].
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The next theorem shows that directional differentiability of the optimal
value function can also be shown for convex optimization problems by
use of the then necessary and sufficient saddle point condition:

THEOREM 4.16 ([127]) Consider the convex parametric optimization
problem (4.1) and assume that the conditions (C) and (MFCQ) are sat-
isfied at some point Then, the optimal value function
is directionally differentiable at and we have

Note that in the differentiable case, (MFCQ) is satisfied at one feasi-
ble point of a convex optimization problem if and only if the so-called
Slater’s condition holds. Hence, (MFCQ) is satisfied at one feasible point
if and only if it is valid at all feasible points. Next we will consider the
generalized gradient of the locally Lipschitz continuous optimal value
function

THEOREM 4.17 ([106]) Consider problem (4.1) and let the assumptions
(C) and (MFCQ) at all points be satisfied. Then, the optimal
value function is locally Lipschitz continuous by Theorem 4.14 and
the generalized gradient satisfies

In the next three corollaries we will see that, under more restrictive
assumptions, we even get equality in Theorem 4.17. To achieve that
result in the first case we need a further definition.

DEFINITION  4.12 Let be a locally Lipschitz continuous
function with generalized gradient at Then, the Clarke
directional derivative               at              in direction            is defined
as

The function is called Clarke regular provided that the ordinary direc-
tional derivative                  exists and                                     for all

It is easy to see that for all [61].

COROLLARY 4.5 ([106]) If the assumptions of Theorem 4.17 are satis-
fied and (LICQ) is satisfied at every then
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where Moreover, the junction is Clarke regular in
this case.

The situation is better in the convex case as it is shown in

COROLLARY 4.6 ([261]) Consider the convex parametric optimization
problem (4.1) at the point and let the assumptions (C) and
(MFCQ) be satisfied there. If reduces to a singleton, then

If the problem functions are convex both in and we can even drop
the uniqueness assumption for the set of global optimal solutions:

COROLLARY 4.7 ([261, 272]) Let, under the assumptions of Corollary
4.6 all functions be convex in both and all
functions be affine linear in both variables. Then

We will end this Chapter with the remark that interesting additional
theorems on properties of optimal value functions can be found in the
monograph [46].

4.6 PROOFS
PROOF OF THEOREM 4.2: First it is shown that the point-to-set map-
ping is locally bounded at                which means that there are
an open neighborhood and a nonempty
compact set such that

Arguing from contradiction, let there be sequences con-
verging t o and                                                                                                                                                   with                                         and

for all Without loss of generality we can assume

that the sequence                                converges to some vector            with

Then we have from (4.8),
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and hence Again from (4.8),

which implies that

Let be a point satisfying the (MFCQ). Then there is some such
that

This implies

Thus Hence, by (4.28)

with which contradicts (MFCQ). This yields local boundedness
of Together with assumption (C) we obtain the existence of a
compact set K’ such that for all sufficiently close
to

Now, consider any convergent sequence satisfy-
ing the conditions (4.8). Then, for the limit point of this sequence these
conditions are also valid. This implies closedness of both point-to-set
mappings and Together with local boundedness, this im-
plies upper semicontinuity [17].

PROOF OF THEOREM 4.3: The proof is done in several steps. First we
prove that the feasible set mapping M ( . ) is continuous.

Continuity of the functions together with assumption (C) imply
upper semicontinuity of the mapping M(.).
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Let Then, the (MFCQ) implies the existence of a se-
quence converging to with

Hence, Now, for each there exist
constants such that

Using the implicit function theorem, the linear independence of the
gradients (cf. (MFCQ)) implies the exis-
tence of at least one continuous function defined on an open
neighborhood with But
then, there is with for all

This guarantees that for all
Hence, M ( . ) is lower semicontinuous.

Now, we show continuity of the optimal value function Let
be a sequence converging to First, let be defined

by for all Then, by (C), the s e q u e n c e h a s at
least one accumulation point and by upper semiconti-
nuity of M(.). This implies

Now let Then, by lower semicontinuity of M(.) there
exists a sequence converging to with for all

This implies that

Now, since the optimal value function is continuous, each ac-
cumulation point of a sequence with satisfies

i.e. which by assumption (C) implies
upper semicontinuity of

PROOF OF THEOREM 4.4: The original proof in [157] uses degree theory
(cf. Chapter 6 in [222]). We will give here a proof which is (in part) valid
under an additional assumption not using this theory. It should also be
mentioned that Theorem 4.4 consists of only some part of the original
theorem in [157].

First note that validity of a sufficient second order condition implies
that a local optimal solution is isolated, i.e. that there is some open
neighborhood of not containing another local optimal
solution.
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Now we show the existence of local optimal solutions sufficiently close
to for perturbed problems (4.1). Consider the perturbed problem

If cl is assumed (without loss of generality) to be compact, the
problem (4.29) has an optimal solution for all for which the feasible
set is not empty. The (MFCQ) is satisfied for this problem at the
point which implies that the feasible set of problem (4.29) is
not empty for all in some open neighborhood of Thus, the
set of global optimal solutions of problem (4.29) is not empty,

Then, by (SSOC) we have and
is upper semicontinuous at by Theorem 4.3. This implies the

existence of an open set such that
for all Then, the additional constraint in (4.29) is not
active and all points in are local optimal solutions of (4.1).

Next we show that (SSOC) persists in some open neighborhood of
Assuming the contrary, l e t b e a se-

quence of points with

for all

and

for some satisfying

where Without loss of generality we can
assume that for all and that By upper

semicontinuity of (cf. Theorem 4.2) the sequence
converges without loss of generality to This
implies that and

as well as

But this contradicts (SSOC).

This implies that for each in some open neighborhood
there exist only a finite number of isolated local optimal so-

lutions in We will show uniqueness of the local optimal so-
lution of perturbed problems using the stronger linear independence
constraint qualification (LICQ).
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For the more general proof the reader is referred to the original paper
[157]. The linear independence constraint qualification implies the
(MFCQ) and guarantees that consists of exactly one point.

For               let                               be two sequences with
for all and Let without

loss of generality for all Then, by upper
semicontinuity (cf. Theorems 4.2 and 4.3) we have and

By

and stationarity,

Using Taylor’s expansion formula (or the existence of the second order
derivative),

which implies

where is without loss of generality assumed to be the limit point
of By (LICQ) and upper semicontinuity
of             we have that                 for                and all sufficiently large
and                    This implies                            for all
and all sufficiently large Hence,

or

for                    For the limit point       of                                             this
implies
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Analogously

Conditions (4.30)—(4.32) contradict (SSOC) which concludes the
proof.

In the following proof we need the definition of a pseudo Lipschitz con-
tinuous point-to-set mapping:

DEFINITION 4.13 A point-to-set mapping is called pseudo
Lipschitz continuous at a point with if there exist
open neighborhoods and and a constant

such that

PROOF OF THEOREM 4.5: We will only show that the function is
upper Lipschitz continuous at For a proof of the full theorem, upper
Lipschitz continuity of the solution set mapping of systems of linear
(in)equalities [126] can be used or the original proof in [240]. The ideas
for our proof are borrowed from [257]. Without loss of generality assume
that Suppose that the the conclusion of
the theorem is not true, i.e. that there exists a sequence such
that

From Theorem 4.4 we know that Let be an accumu-

lation point of the bounded sequence and without
loss of generality assume

By Theorem 4.1 there exist and the sequence
has all accumulation points in the set by Theo-

rem 4.2. If without loss of generality convergence of this sequence is
assumed, we have                            for some vertex                                    for
sufficiently large This implies that

for sufficiently large Now, for we have
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which results in

By (4.34) and the assumption, this leads to

Analogously,

By

for all and by for

by (4.33), (4.34). By (4.35), (4.36) and (SSOC) there exist such
that

for each sufficiently large
Let be such that and

Then,
are linearly dependent. Hence, (4.35), (4.36) imply that also

which by (SSOC) has the consequence that (4.37) is
valid for all vertices Thus,

for sufficiently large Let
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Then, by finiteness of the number of vertices of the convex polyhedron
and parametric linear programming, without loss of generality

for all By pseudo Lipschitz continuity of the
feasible set under (MFCQ) [244] there exist a sequence such
that                      and                                            for all     and a number

such that This implies

by (4.33). This contradicts (4.38) and proves the Theorem.

To verify Theorem 4.6 we need

LEMMA 4.2 ([251]) Let be a continuous function, and
let closed nonempty sets be given with

Then, there exist numbers with
and such that

PROOF The proof is done by induction on the number of different sets
for which there exist points such that we indeed have If

then the claim is obviously true. Let the proof be shown for all
cases in which the curve meets not more t h a n o f the sets
Now, let intersect of the sets Then, there is an index

with                     Let                                                        By continuity
of and closedness of we have and for all

Moreover, there exists a further set with Then,
for the interval there are at most of the sets intersecting with

The proof now follows by use of the result supposed.

PROOF OF THEOREM 4.6: The following proof can be found in [251].
Let be arbitrary points in the neighborhood used in the
definition of a and for
Let the selection functions be denoted by and define
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Then, are closed due to the supposed continuity of By Lemma
4.2 there exist points such that

Then,

where is the Lipschitz constant of the selection function which
exists since continuously differentiable functions are Lipschitz continuous
on each bounded set. This implies that the Lipschitz constant

for the function is independent of the points which

proves the theorem.

PROOF OF THEOREM 4.7: Let the set C denote the right-hand side of
the equation under consideration:

Since are continuously differentiable and int the
inclusion is obvious.

To show the opposite inclusion first assume that is such that
is differentiable at Since the number of selection functions is finite
there exists at least one selection function with int
Then, there exists a s e q u e n c e c o n v e r g i n g t o

Thus, we get

Since both and are differentiable at in
this case.

Now, let be not necessarily differentiable at and let
be an extreme point of Then, by definition, there exists a se-
quence converging to such that exists for all and

Hence, by use of the previous part of the proof,
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for each there exist an index with int and a
sequence int converging to By continuity,

int for sufficiently large But then,
By finiteness of there exists a subsequence

of such that for all elements in this subsequence.
Let without loss of generality itself have this property. Then,

which verifies

PROOF OF THEOREM 4.8: Take any direction with
Define

Define a relation on J as follows: Two indices are said to
be related i f there exist i n d i c e s w i t h and

and

By definition this means that there exist sequences
converging to

and zero, resp., such that converges to Obvi-
ously, this relation is an equivalence relation. We will show now that
there is only one equivalence class determined by this relation.

Let be one (non-empty) equivalence class and assume that the
set is also not empty. Let

denote the distance of from Then, if
and Analogously, f o r l e t

Then, Now, let

and take such t h a t f o r all

with the convex cone Then,
and zero is a extreme point of C. By the definition of and (4.39),
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for Let

Analogously, define

for It is easy to see that by (4.39) and
(4.40). Take

and form the sets,

for The set Q is convex since is an extreme point of
Hence, it is connected. The sets are closed. Then, by

definition both

Since Q is connected, this implies that either or
But each of these relations is not possible due to the definitions of
the sets and the equivalence classes This shows that
there is only one equivalence class.

Let and take any sequence                                           converg-
ing to Then, by continuous differentiability of the sequence

converges to

Now, assume that are different indices and let
Then, there exist sequences

converging to and zero,
respectively, with Thus, for

all by continuity of Hence we get the first order approximations

which imply that Using the above equivalence
relation we can show that is independent on the choice of
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Now take arbitrary and converging to
and zero, respectively, with Take such that

for all Then, by Theorem 4.7 for each there are
numbers with

By Lipschitz continuity, for sufficiently large and
the sequence is bounded, thus having accumulation points.
Also the sequence of vectors is bounded. Take any con-
vergent subsequences of both sequences and assume without loss of
generality that both sequences itself converge to and
with Then, by the second part of this proof,

for each independently of the chosen accumulation point.

PROOF OF THEOREM 4.9: The arguments used here mainly parallel
those used in the proof of Theorem 1.5 in [206]. We show the result
for The desired result then follows by induction. Clearly, the
point-to-set mapping has nonempty, convex and compact values. It
is easy to see that is a closed point-to-set mapping. Since each of the
mappings is locally bounded, the same can be said for which in
turn implies that is upper semicontinuous [17].

We now show that (4.16) holds or, in other words, that for each
there exists a such that

for all points in the set and for all
Since the functions are pseudodifTerentiable there

exist corresponding                          such that for all                     and all
points in we have
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To show that inequalities (4.42) imply (4.41) we will consider all the
different cases of coincidence between the functions
If then, by continuity, there is some open neigh-
borhood of such that
for all in that neighborhood. Then for each in that neighborhood,
the result follows from (4.42).

Now let the function values at coincide:
and put Take a fixed point

If it happens that then
the result again follows from (4.42) since we have only to consider
for evaluating (4.41). Consider now the last case when

Then                   if there exists                 with
for some Hence, if we multiply the relations (4.42) for
by and for by and add the two, we obtain (4.41).

PROOF OF THEOREM 4.10: By continuity of the function and
(MFCQ) there exist open neighborhoods and

such that on Let
Since the (MFCQ) persists on a suffi-

ciently small neighborhood of we can assume that it is satis-
fied in (else we shrink the neighborhoods again).
Then, there exists a vertex of (the bounded, nonempty and
polyhedral set) such that

Hence, is also a stationary point of the problem

By Theorem 4.2 and (CRCQ) all the accumulation points of the
functions f o r t e n d i n g t o a r e vertices of the set
and for all Moreover, by (CRCQ) the
gradients are
linearly independent. Hence, (SSOC) is valid on a certain open neigh-
borhood of and the point is also a local optimal solution of
(4.43). Let denote the unique continuous function of local op-
timal solutions in of problem (4.43) for (cf. Theorem
4.4). Then, by [97] the function is continuously differentiable
on some open neighborhood of Let, without loss of generality, this
neighborhood coincide with

Now we have shown that, for each point sufficiently close
to there exists a continuously differentiable function
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with Since there are only a finite number of different
sets the proof follows.

To prove Theorem 4.11 we need some auxiliary results and some nota-
tion. Let

denote the set of optimal solutions of problem (4.21) and be the
set of all points satisfying

Then, by use of the Karush-Kuhn-Tucker conditions for problem (4.21)
it is easy to see that the set             does not depend on           as long as

This set is empty whenever Moreover,
the problem has a feasible (and thus a uniquely determined
optimal) solution if and only if

LEMMA 4.3 ([235]) Consider the perturbed Karush-Kuhn-Tucker con-
ditions for problem (4.1)

where and let be the
set of Lagrange multipliers of this problem. Then, for each direction
for each sequence                  converging to      with                                and

each we have

converging to Since is convex we can assume that            for
all Let Then, by Theorem 4.2 the
sequence is bounded and converges without loss of generality
to some As in [68] it is easy to see that
Hence

PROOF Fix a direction a vector and a sequence
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Let Then,
and From the Karush-Kuhn-Tucker conditions of
(4.1) we get

Due to the (CRCQ) and [17] the point-to-set mapping

is lower semicontinuous for Thus, taking there
exists a sequence converging to such that

and

for sufficiently large
Now, w e construct p o i n t s c o n v e r g i n g t o

Let and put

If then for sufficiently large Moreover,

Thus, we have that converges to 1 for Let
and

for all Then, again converges to 1 and converges to
for

For proving the lemma we have to show that
for all large First, by construction,
for                   and                  for                              This implies               for
all Considering analogously all these three cases it is easy to see that
the complementarity condition for

and is satisfied.
To conclude the proof we mention that due to the definition of the

mapping the condition

is satisfied for all
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is characterized as the unique solution of the following
affine variational inequality describing first order necessary and sufficient
optimality conditions for the problem

and

Let which exists by Corollary 4.1 and take any sequence
converging to zero. Then,

Let be a sequence with
for all Then, without loss of generality, there exists

Considering the difference

for yields

Our aim is it to show that satisfies the above variational in-
equality posed using an arbitrary vector First we show
that belongs to If then for large yield-

ing Similar considerations in
the case and for the equality constraints show that

Since we have
Now take a sequence converging to with

whose existence is guaranteed by Lemma 4.3. Then, simi-
larly to (4.47) we get

PROOF OF THEOREM 4.11: The vector solving the problem
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Due to

for all and and for all we get

Let If then
which implies for sufficiently large

On the other hand, if then
and This implies

(4.46).

PROOF OF THEOREM 4.12:

We start with the first assertion: If is a direction such that
(SCR) is satisfied, then problem is solvable and

is equal to the unique optimal solution of this problem.
By linear programming duality and non-emptiness of the feasible
set of problem we have Let

denote the (unique) Karush-Kuhn-Tucker vector of prob-
lem Directional differentiability of (SCR) and

for all
imply that for all sufficiently small.
Hence, is also the unique optimal solution of the enlarged
problem

for and small For this problem, the linear indepen-
dence constraint qualification is satisfied at
Hence, its Karush-Kuhn-Tucker multiplier vector is uniquely deter-
mined and is also directionally differentiable [137]. This multiplier

is equal to its directional derivative is
at Hence, with

is one Karush-
Kuhn-Tucker multiplier vector for problem (4.1) for sufficiently small

where Thus,
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and small Consequently, for each suf-
ficiently small All these arguments remain true if the direction

is slightly perturbed which implies that
Hence, i s differentiable a t each p o i n t w i t h
and sufficiently small, which leads to

Let, without loss of generality,

for Then, by (FRR), the matrix        defined by

has rank (note that we have added
columns and the same number of rows which contain

a unit matrix of full dimension). Here denotes the unit vector.
Hence, the system of linear equations has a solu-
tion for arbitrary right-hand side Take a right-hand side vector
which has the value for each component corresponding to a
left-hand side

Now consider the second assertion: Let for some vertex
Then, the optimal solution function of the problem

(4.19) is continuously differentiable [97] and Consider
the necessary and sufficient optimality conditions of first order for
problem
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the value in each component for left-hand side and
vanishes in all other components. Let be a solution of
the resulting linear system. Then, satisfies the Karush-
Kuhn-Tucker conditions for the problem Moreover,
strict complementary slackness is satisfied for this system. Together
with the first part, this completes the proof.

PROOF OF LEMMA 4.1:

Since the problem has a feasible solution if and only if
for each we have Let

there exist a vector with Then,

for all and all Then, by direct
calculation we get

for all i.e. in an open neighborhood of some
This implies

Since we also have

But this contradicts assumption (LIN). Hence, the first assertion is
true.

Assume that there exist numbers such that

and
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Since the relations
and are
satisfied, this implies that also

for all which is an open neighbourhood of Thus,

Together with (4.50), this contradicts the assumption (LIN). Hence,
also the second assertion is valid.

PROOF OF COROLLARY 4.2: The matrix

is quadratic and regular [157]. This implies uniqueness and linear-
ity of the solution of Since is a solution of

if and only if it satisfies also the additional constraints
and

existence of this solution is guaranteed if and only if
The corollary follows now since the Karush-Kuhn-Tucker conditions are
necessary and sufficient for optimality for

PROOF OF THEOREM 4.13: The proof is done in two steps: First, using
the assumptions, we derive that the directional derivative is
equal to for all and some active selection function

for the Since it is not obvious that this implies
that the active selection function is also strongly active, we select
a suitable strongly active selection function in the second step. Using
that there are only a finite number of different selection functions we
will finally derive the desired result.

Take as given in the assumptions. Consider
the differentiable selection function which is active at
due to our assumptions. Let the matrices H denote the gradients
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of the Lagrange multiplier functions of problem (4.19) which exist
by [97]. Then, inserting into we
see that these conditions are satisfied. Uniqueness of the optimal
solution of problem then yields

By Corollary 4.1 there exists a strongly active selection function
with Because the number of elements in

the set is finite and because the directional derivative
is continuous with respect to changes of the direction, we can assume
without loss of generality that int Moreover, it

is easy to see that for all

But then and we have

for each This implies

PROOF OF THEOREM 4.14: The main ideas of the following proof date
back to [64]. The differentiability assumptions imply that the objec-
tive function is locally Lipschitz continuous with, say, a Lipschitz

modulus on an open set (MFCQ) also im-
plies pseudo Lipschitz continuity of the feasible set mapping [245]
with a Lipschitz modulus on the set Let with-
out loss of generality Take any points and let

By upper semicontinuity of the solution set mapping
(cf. Theorem 4.3) we can assume that is small enough to guarantee
that where comes from the definition of pseudo

Lipschitz continuity for some and Then there exists
such that By

and this implies

Changeing the places of shows the Theorem.

PROOF OF THEOREM 4.15: First we prove the upper bound on the
upper Dini directional derivative. Let be some optimal
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solution and consider the linearized problem

for a fixed direction which coincides with problem (4.21). By
(MFCQ) the feasible set of this problem is nonempty and compact [105]
(cf. Theorem 4.1). Hence, its dual is also feasible. Let be an optimal
solution of the dual to (4.51):

Let be a direction satisfying the (MFCQ) and consider the direction
Then, for all we have

By the last two relations together with the (MFCQ) and an implicit
function theorem (see e.g. Lemma 2.3 in [106]), for each there
exists a function such that the function

is feasible for sufficiently small

which implies

Moreover, the function is continuously differentiate on an
open neighborhood of zero with Hence,
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The result follows now by and since has been arbi-
trarily chosen.

Now we show the lower bound for the lower Dini directional derivative.
Fix a direction and take any positive sequence converging to
zero such that

By (C) and (MFCQ) the sets are not empty which is also
valid for the solution sets for sufficiently large (cf. Theorem
4.3). Set and take with for all
Again by (C) this sequence has accumulation points by
Theorem 4.3. Let without loss of generality

Let be a direction satisfying (MFCQ) at By persistence
of (MFCQ) in an open neighborhood of there exists a sequence

such that satisfies (MFCQ) at for all and

Let be an optimal solution of (4.52) for the negative direction
and let be a sequence converging to such that

Note that this sequence exists by (MFCQ) and [17]. Take and
consider

Let Again there exists a continuous function

defined on a certain neighborhood
such that

where exists with and we have

Now let

Then, it can be shown that for sufficiently large and,
thus, This implies
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with by the mean value theorem, where

By differentiability,

But then,

Now, letting and using that is an optimal solution to (4.52)
for we get

To show the Theorem we prove that the infimum in

is attained. By Theorem 4.2 the mapping is upper semicontin-
uous. Hence, by continuity of the function the function

is lower semicontinuous [17] and

the infimum is attained.

PROOF OF THEOREM 4.16: By convexity and regularity, if
and only if the saddle point inequality

for each Moreover, is independent of
(see e.g. [30]). Let                   be fixed,              be any sequence con-
verging to zero from above and set for all Let

and
for all which exist by conditions (C) and (MFCQ). Using the sad-
dle point inequalities at the points and

we derive
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where Due to upper semicontinuity of the Lagrange

multiplier set mapping (Theorem 4.2) this implies that we have

for each or

In the same way we derive the second inequality:

which by upper semicontinuity of the global optimal solution set map-
ping (see Theorem 4.3) implies

for each Hence,

Since both and are compact this implies that the direc-
tional derivative of exists as well as the desired result.

s e q u e n c e c o n v e r g i n g to such that exists for all and
Note that by Definition 4.7 the generalized gradient

is equal to the convex hull of all such points Then, by Theorem
4.15, for each direction we have

for some By upper semicontinuity of
and (cf. Theorems 4.2 and 4.3) there exist and

such that

PROOF OF THEOREM 4.17: Let   be such that there exists a
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It is easy to see that for arbitrary sets A,

if and only if conv B. Hence

and

by convexity of the right—hand side.
The set is compact [261]. Hence,

its convex hull is closed and the theorem follows.

PROOF OF COROLLARY 4.5: From Corollary 4.4 we have

This implies

Hence,

Since is a closed and convex set by definition we derive

which together with Theorem 4.17 implies the desired result.

PROOF OF COROLLARY 4.6: First, by Theorem 4.14 the optimal value
function is locally Lipschitz continuous and we have the implication

by Theorem 4.17. Since the image of a convex set via a linear function
is convex, we can drop the convex hull operation in this inclusion. By
Theorem 4.16 the function is directionally differentiable and we have
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for all directions by the definition of the Clarke directional derivative.
By the properties of support functions [124] this implies that

Before proving the next Corollary we need

LEMMA 4.4 ([127]) Consider a convex optimization problem

where the function is jointly convex in both and dif ferentiable
and X is a convex set. Then, for all optimal
solutions

timization problem Let Then, by
convexity of X, the point is also an optimal solution.
This implies

Let Then there is a vector with and

Then, by first-order Taylor’s expansion

and

with tending to zero for a converging to zero. Now, using
(4.53) we derive

PROOF Let be different optimal solutions of the parametric op-
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for sufficiently small Hence,

where convexity is used for the second inequality. But then, the first
inequality contradicts optimality of the points

PROOF OF COROLLARY 4.7: Let and
Then,

and

by the saddle point inequalities for regular convex optimization prob-
lems. This implies that for all
Hence the equation holds for all

and By Lemma 4.4 this implies
that for all
and for all Since

this implies

As in the proof of Corollary 4.6 this implies the desired equation.



Chapter 5

OPTIMALITY CONDITIONS

In this chapter we start with the investigation of the bilevel program-
ming problem in its general formulation. Our first topic will be the
notion of an optimal solution. In general programming, a point is called
a local optimal solution if there is no better feasible point with respect
to the objective function in a certain sufficiently small neighborhood of
this point. As pointed out in Section 3.3, in bilevel programming we
have to distinguish at least between problems with unique lower level
solutions for all parameter values and such problems not having this
property. While in the first case the usual optimality notion can be
used, the second case calls for the definition of an auxiliary problem.
Two such problems will be considered here: one reflecting an optimistic
position of the leader and the other modelling the leader’s task to bound
the damage resulting from an undesirable choice of the follower if the
latter cannot be forced to cooperate with the leader.

After having defined the notion of an optimal solution, we describe
several different necessary and sufficient optimality conditions using
more or less restrictive assumptions. The first set of such conditions
is based in the restrictive conditions guaranteeing that the lower level
problem possesses a locally Lipschitz continuous optimal solution. The
resulting conditions are of a combinatorial nature and use the (non-
convex) contingent cone to the feasible set of the bilevel programming
problem. Dualizing this cone leads to a generalized equation describing
an equivalent necessary optimality condition.

After that we will reformulate the bilevel problem as a one-level one
by the help of the Karush-Kuhn-Tucker conditions applied to the lower
level problem. Note that both problems are equivalent in the case when
the lower level problem is a convex regular problem, but only for the

119
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optimistic case and only if optimistic optimality is defined via a problem
similar to (3.7). The relations between the original bilevel problem and
its reformulations will be discussed. We will start our investigations
with a closer look on possible regularity conditions. It is shown that the
(MFCQ) cannot be valid at any feasible point if a differentiable version
of the KKT reformulation is used but the (LICQ) is a generic assumption
if a nonsmooth version is applied. The resulting optimality conditions
are of the F. John resp. the Karush-Kuhn-Tucker types.

Using a reformulation of the bilevel programming problem via the
optimal value function of the lower level problem, the application of
nonsmooth analysis enables us again to describe KKT type necessary
optimality conditions. They also apply to the optimistic auxiliary prob-
lem.

The last approach via generalized applies to both the
optimistic and the pessimistic auxiliary problems but supposes that all
optimal solutions in the lower level problem are strongly stable.

We will remark an approach to optimality conditions via the use of
Mordukhovich’s generalized gradient investigated e.g. in the papers [227,
295, 296, 301] which is not touched here. We will only consider first
order optimality conditions here. Necessary and sufficient optimality
conditions using second order information can e.g. be found in [94, 188,
249, 297].

This introduction is closed with a remark to a related optimiza-
tion problem with set-valued objective functions. Let be a
nonempty set, K be a convex and pointed cone in and consider the
point-to-set mapping Then, in [32, 132] the set-valued
optimization problem

is considered. For this problem, a point is called optimal, if it is
a minimal point of the set with respect to the cone

K, i.e. if

where for some denotes the
Minkowski sum. Let then this optimality notion coincides with
the optimistic approach to solving a bilevel programming problem with
a mapping

Necessary and sufficient optimality conditions for this problem have been
described in [32, 132] by use of the contingent epiderivative for the map-
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ping For most of these results, the point-to-set mapping needs
to be K-convex, i.e. the epigraph of is convex in the sense

Unfortunately, this is in general not valid for bilevel programming and,
due to the inherent properties of bilevel programming is seems also to
be difficult to find necessary conditions guaranteeing this property.

5.1 OPTIMALITY CONCEPTS
As in Chapter 4 let

denote the solution set mapping of a smooth parametric optimization
problem

This problem is called the lower level problem or the follower’s problem.
Using the bilevel programming problem can be defined as

where is a closed set. This problem is also
called the upper level problem or the leader’s problem. At many places
the set Y is given by explicit inequality constraints:

where We will not use explicit equality constraints
for simplicity of writing (such constraints can easily be added) and we
will not consider problems with coupling upper level constraints. The
reason for the latter can be seen in Section 3.2. Again, the quotation
marks are used to express the uncertainly in the definition of the bilevel
programming problem in the case of nonuniquely determined lower level
optimal solutions. The following two examples are used to illustrate the
difficulties arising in this case.

Example: [186] Consider the following convex parametric optimization
problem

and the bilevel programming problem
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Then,

The mapping is plotted in fig. 5.1. In this figure it can be
seen that the upper level objective function value is unclear unless the
follower has announced his selection to the leader.

Solvability of the resulting problem of the leader depends on this
reaction of the follower: the upper level problem is solvable only in
the case when the follower selects Hence, the infimal
function value 0 of the bilevel programming problem is not attained if
the follower does not take

The notion of an optimal value is also not clear: There are choices
for leading to upper level objective function values sufficiently close
to zero, but it is not clear whether the value zero can be attained. It is
also not possible to overcome this difficulty if the follower is allowed to
have a free choice and the leader only wants to be in a position where
he is able to observe all the selections of the follower. In this case, if the
follower takes then the problem in the above example does
also not have a solution.
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To define different notions of optimal solutions we start with the eas-
iest case when the lower level optimal solution is uniquely determined
for all parameter values. Then, we can adopt the usual notions from
mathematical optimization to bilevel programming:

DEFINITION 5.1 Let consist of at most one point for all values of
Then, a point is called locally optimal for

problem (5.2) if and there exists an open neigh-
borhood with for all satisfying

It is called a global optimal solution if
can be selected.

In this case, the quotation marks in (5.2) can be dropped. Definition 5.1
describes the case when the optimal solution of the follower can be
predicted by the leader. Hence, he has to solve the problem

which is a continuous optimization problem provided that the lower level
optimal solution function is continuous at all points Then we
have the following

THEOREM 5.1 Consider the bilevel programming problem (5.1), (5.2)
and let the assumptions (C) and (MFCQ) at all points
with be satisfied. Moreover, let (5.1) have a unique optimal
solution for each Then, the bilevel programming problem has a
global optimal solution provided it has a feasible solution.

Consider now the case when the lower level optimal solution is not
uniquely determined. In most of the publications in which the unique
solvability of the lower level problem is not assumed, either an optimistic
(cf. e.g. [24, 43, 66, 117]) or a pessimistic position (cf. e.g. [181, 186]) is
applied. Both approaches lead to three–level problems.

If the leader is able to persuade the follower to select that global
optimal solution which is the best one from the leader’s point of view
then he has to solve the problem

where

This motivates the notion of an optimistic solution which is a point
solving the problem (5.3):
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DEFINITION 5.2 A point is called a local optimistic
solution for problem (5.2) if with

and there exists an open neighborhood with

It is called a global optimistic solution if can be selected.

Note that this definition is slightly different from the idea behind prob-
lem (3.7). From the leader’s point of view it seems to be more appro-
priate to use this definition since the leader has only control over We
will come back to this in Theorem 5.15.

As already pointed out in [43] while investigating linear bilevel pro-
gramming problems resulting from certain economic situations, under
suitable assumptions the optimistic position can be realized if e.g. the
follower is participated in the profit of the leader. In the context of
closed-loop Stackelberg games, the problem of finding a decision for the
leader guaranteeing that the follower will agree him to use the optimistic
approach has been considered also in [212].

If the assumptions in Theorem 4.3 are satisfied, then the set

is closed and the intersection of this set with is compact if Y
is closed due to assumption (C). This implies that the minimum in the
problem

is attained. Thus, the global optimal values in (5.3) and (5.5) coincide
[187]. This is in general not true for local optimal solutions. Since the
lower level problem (5.1) is equivalent to its KKT conditions provided
that it is a convex and regular one, this can be seen in Theorem 5.15
and the subsequent example. Nevertheless, equivalence of problems (5.3)
and (5.5) with respect to global optimal solutions implies

THEOREM 5.2 Let the assumptions (C) and (MFCQ) at all points
with be satisfied. Then, a global optimistic

solution of the bilevel programming problem (5.1), (5.3), (5.4) exists
provided there is a feasible solution.

The existence of optimistic optimal solutions has also been investigated
in [117, 301] under somewhat slightly weaker assumptions. We will call
problem (5.1), (5.3), (5.4) the optimistic bilevel problem in what follows.



Optimality conditions 125

The optimistic position seems not to be possible without any trouble
at least in the cases when cooperation is not allowed (e.g. in the mat-
ter of legislation), when cooperation is not possible (e.g. in games of
a human being against nature), or if the follower’s seriousness of keep-
ing the agreement is not granted. Then, when the leader is not able
to influence the follower’s choice, he has the way out of this unpleasant
situation to bound the damage resulting from an undesirable selection
of the follower. This leads to the problem

where

DEFINITION 5.3 A point is called a local pessimistic
solution for problem (5.2) if with

and there exists an open neighborhood with

It is called a global pessimistic solution if can be selected,

Problem (5.1), (5.6), (5.7) is called the pessimistic bilevel problem in
the sequel. The pessimistic approach for solving bilevel programming
problems with non-unique lower level solutions has been intensively in-
vestigated by P. Loridan and J. Morgan and their co-authors. In most
cases, they consider a slightly more general problem than we did in the
sense that also the functions F, G, H describing the problem are
perturbed and convergence to the unperturbed ones is investigated (see
e.g. [179], [180], [181]). In [184] the concept of strict solutions
in the lower level is used to regularize the pessimistic bilevel problem.
A comparison of both the pessimistic and the optimistic approaches is
given in [185].

THEOREM 5.3 Consider the bilevel programming problem (5.1), (5.6)
(5.7). Let the point-to-set mapping be lower semicontinuous at all
points and assume (C) to be satisfied. Then, a global pessimistic
solution exists provided that problem (5.6) has a feasible solution.

A discussion of this result especially with respect to the possibilities to
satisfy the assumptions (which seem to be very restrictive) can be found
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in [250]. It should be noted that a pessimistic solution exists generically
[147] which means that for almost all bounded functions F, the
problem (5.6) has a uniquely determined global optimal solution.

Example: With respect to the last example, the situation is as follows:

Hence, the optimal solution of the upper level problem exists if the
optimistic position is used while it does not exist in the pessimistic one.

Being aware of the difficulties arising when global optimal solutions of
non-convex optimization problems are to be computed, some authors
[131, 182, 250] use optimality definitions which determine whole sets of
optimal solutions. We can define the following set

as a set of optimal solutions of the bilevel programming problem. We will
call the points in this set lower optimal solutions since in the case of the
Stackelberg game a similar set has been called “set of lower Stackelberg
equilibrium points” [182]. Figure 5.2 can be used to illustrate the dif-
ferent notions of optimal solutions in the case of non-unique lower level
solutions. In this figure, the pessimistic solution is denoted by while

is the optimistic solution. The set of optimal solutions is given as
the set of points with and corresponding values for

such that
The optimality definition in the sense has the drawback that the

upper bound for the values of will in general not be attained
unless the function is lower semicontinuous. To overcome this
difficulty we can try to replace this function by its lower envelope

The function is lower semicontinuous on its domain and coincides
with at all points where the second function is lower semicontinu-
ous. The relations between both functions as well as some possibilities
for the computation of at least an approximation of the values of
have been investigated in [250]. Clearly, optimal solutions in the sense

exist whenever optimistic solutions exist.
We will shortly touch another difficulty closely connected with non-

uniqueness of the lower level solution in the case when there are also
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upper level constraints of the kind depending on the lower
level optimal solution. Constraints of this type are some sort of an a-
posteriori feasibility test for the leader’s selection. If the lower level
optimal solution is uniquely determined for all possible choices of the
parameter, then feasibility of that choice can be verified easily by calcu-
lating the values of the left-hand side functions in the upper level con-
straints. But, if the optimal solution in the lower level is not uniquely
determined then, feasibility of the parameter chosen depends on the con-
crete choice of an optimal solution in the lower level. Even if the leader
knows the solution set mapping he is not able to predict feasibility
of his selection before the follower’s selection is known. This is a very
difficult situation which will not be investigated here.

But also in case of a uniquely determined lower level optimal solu-
tion for all parameter values, the appearance of connecting upper level
constraints extremely complicates the problem. The following example
shows that the position of connecting constraints in the two levels of
hierarchy is important.

Example: [76] Consider the problem

where
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Then, the optimal solution of this problem is equal to But,
if the upper level constraint is shifted into the lower level,
we get the optimal solution On the other hand, if
the lower level constraint is shifted into the upper level, then the
lower level problem has no optimal solution at all for arbitrary selection
of i.e. the problem becomes unsolvable.

We will close this section with one further example showing some sur-
prising property of bilevel programming problems: The optimal solution
is in general not independent of inactive constraints (in the lower level
problem).

Example: [189] Consider the following bilevel programming problem

with

Then, this problem is equivalent to

The unique optimal solution of this problem is
with an optimal function value

Now add the simple lower level constraint to the problem.
Then, is feasible for the resulting problem and But, the
optimal solution of the lower level problem is

Inserting this function into the upper level objective function yields

The minimal value of this function is 1 which is attained for

Necessary and sufficient conditions guaranteeing that a global (opti-
mistic) optimal solution of a bilevel programming problem is indepen-
dent of the addition or cancellation of inactive constraints can be found
in [189].
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5.2 OPTIMALITY CONDITIONS BASED ON
STRONG STABILITY

If the lower level problem (5.1) has a unique optimal solution for all
values of the parameter and this solution defines a continuous function

over the feasible set Y  of the upper level problem, then the bilevel
problem (5.2) can be reformulated as

if In what follows we will use an
upper level regularity assumption:

(ULR) Given a feasible solution the upper level regularity as-
sumption is satisfied if the set

Applying this idea the following necessary and sufficient optimality
conditions using the directional derivative can be derived:

THEOREM 5.4 ([67]) Let be a local optimal solution of the
bilevel programming problem (5.1), (5.2) and assume that the lower level
problem (5.1) is a convex parametric optimization problem satisfying the
conditions (MFCQ), (SSOC), and (CRCQ) at Then the follow-
ing optimization problem has a nonnegative optimal objective function
value:

Moreover, if (ULR) is satisfied, problem (5.10) can be replaced by

If the convexity assumption to the lower level problem is dropped the
uniqueness of the global optimal solution of this problem is difficult to
be guaranteed [141]. This can have tremendous implications on optimal-
ity conditions. We will come back to this in Sections 5.5 and 5.7. An
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analogous necessary and sufficient optimality condition for Mathematical
Programs with Equilibrium Constraints can be found in [188]. Theorem
5.10 easily follows from directional differentiability of the lower level
optimal solution (cf. Theorem 4.11) together with the formula for the
directional derivative of composite functions. Hence, no explicit proof
is necessary. Applying theorems on the alternative the first condition
(5.10) can be posed as a kind of a Fritz John condition whereas (5.11) is
equivalent to a Karush-Kuhn-Tucker type condition. But here the used
multipliers depend on the direction as in [67] which is not convenient.
Using the formulae for the computation of the directional derivative of
the lower level solution function (cf. Theorem 4.11) we get a combina-
torial optimization problem to be solved for evaluating the necessary
optimality conditions:

where denotes the optimal objective function value of the
following problem, where the abbreviation is used:

Here again, the right-hand side of the second set of inequalities can be
replaced by zero in the regular case and the family

is allowed to be reduced to
The following simple example shows that the condition (5.12) is not

a sufficient optimality condition for the bilevel problem:

Example: [67]: Consider the problem

where
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Then, at we get which implies

On the other hand, the unique optimal solution of problem (5.14) is
which gives

This function is plotted in Fig. 5.3. Then,

Hence, is stationary but not locally optimal. In this example
even the stronger (LICQ) is satisfied for the lower level problem.

It should be noted that the optimality conditions in [67] are obtained
using the weaker assumption

(A) For each sequence converging to and each index set
for all such that the gradients

are linearly independent, also the gradients in

are linearly independent.

This problem has the optimal solution
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This assumption together with (MFCQ) and (SSOC) guarantees that
the directional derivative of the lower level problem (5.1) can be com-
puted by means of the quadratic optimization problem
(cf. formula (4.20) in Theorem 4.11) for some optimal vertex of
problem (4.21). But in this case the local optimal solution function
is in general not locally Lipschitz continuous and, consequently, its di-
rectional derivative is then not (Lipschitz) continuous with respect to
variations of the direction. This implies that the cone

is in general not closed. Hence, some weaker necessary optimality con-
ditions are obtained. This is illustrated in the following example:

Example: Consider the problem

subject to

where

at Note that on the feasible
set of the upper level. Hence, the objective function of the upper level
problem is equal to

on the feasible set and the point is the unique global optimal
solution. Here, straightforward calculations give

This set denotes some kind of a generalized directional derivative for
point-to-set mappings, the so-called contingent derivative [10] or upper
Dini derivative [79]. Knowing only the sets it is not possible to
detect the true directional derivative. This implies that (5.11) does not
give a true necessary optimality condition for the bilevel programming
problem under assumption (A) even in the regular case.

equals the optimal solution of problem
for some vertex

if
if
if
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For the directional derivative of the lower level optimal solution we get
for each This directional deriva-

tive can be used in this case for a valid necessary optimality condition.
In this example, setting

we have

Note, that the linearized upper level constraint at the point (i.e. the
constraint in problem (5.11)) is

On the other hand, for the lower and the upper directional Dini deriva-
tives [282] of at into direction we get

and

The necessity for the inclusion of the convergence into the defini-
tion of the upper and the lower Dini directional derivatives results from
the missing Lipschitz continuity of the function H (cf. formulae (4.25)
and (4.26)). A closer look at problems (5.10) and (5.11) shows that both
problems use the lower directional Dini derivative. Hence, using (5.11)
under assumption (A) is not possible since it does not detect the global
minimum (even in the regular case). The use of the upper directional
Dini derivative is of course possible but in general too weak for this
problem. In [67] it is shown that the use of problem (5.10) leads to a
valid necessary optimality condition also under assumption (A)

The following more restrictive assumption gives a sufficient optimality
condition of first order:

THEOREM 5.5 ([67]) Let be a feasible solution of the bilevel pro-
gramming problem (5.1), (5.2) with a convex lower level problem. As-
sume that the lower level problem (5.1) satisfies the conditions (MFCQ),
(SSOC), and (CRCQ) at If the optimal function value of the
problem



134 FOUNDATIONS OF BILEVEL PROGRAMMING

is strongly greater than zero then is a strict local optimal
solution of the bilevel problem, i.e. for arbitrary there is
such that

for all satisfying

Also the proof of this theorem is standard and will therefore be omit-
ted (see e.g. [270]). Both Theorems 5.4 and 5.5 give conditions for the
so-called Bouligand stationarity of feasible points involving the
directional derivative (or Bouligand derivative) of the optimal solution
of the lower level problem.

DEFINITION 5.4 Let be a function and If is
directionally differentiable, then is called a Bouligand stationary point
if for all directions If is locally Lipschitz contin-

uous, is a Clarke stationary point, provided that If is
pseudodifferentiable, the point is called pseudostationary if

All three notions of stationary points can similarly also be applied to
constrained optimization problems. A Bouligand stationary point of a
locally Lipschitz continuous and directionally differentiable function is
also Clarke stationary, the opposite implication is in general not true.
Also, a Clarke stationary point of a pseudodifferentiable function is a
pseudostationary point and this is again in general not valid in the op-
posite direction.

Conditions using Clarke’s generalized gradients of the objective func-
tion of the auxiliary problem are weaker ones than that of Theorems 5.4,
5.5 but can also be given by applying the results in Chapter 4:

This result is a straightforward implication of the Clarke necessary op-
timality conditions [61] and Theorems 4.6 and 4.10. It should be noted
that the differentiability assumptions for the functions F, can be
weakened to Lipschitz continuity [61]. Moreover, Theorems 4.12 and
4.13 can be used to give more explicit results. Also, Corollary 4.1 can be
used to derive a necessary optimality condition of first order involving
the pseudodifferential of the lower level optimal solution function.

THEOREM 5.6 Let be a local optimal solution to problem (5.1),
(5.2) and assume that the assumptions (MFCQ), (SSOC), and (CRCQ)
are satisfied for (5.1) at as well as (ULR). Let the lower level
problem be convex. Then, there exist a vector such that
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THEOREM 5.7 Under the same assumptions as in Theorem 5.6 we get
the existence of a vector such that

Optimality conditions of second order based on the implicit function ap-
proach presented in this section can be found in [94]. Optimality condi-
tions of second order for bilevel problems without lower level constraints
can be found in [297].

5.3 THE CONTINGENT CONE TO THE
FEASIBLE SET

As shown in [188, 229] the contingent cone to the feasible set

is a polyhedral cone provided that certain regularity conditions are sat-
isfied. Here, a polyhedral cone is defined as the union of a finite number
of convex polyhedral cones.

The following results originate from [229] where they have been ob-
tained for mathematical programs with equilibrium constraints. For
introducing them we will start here with the restrictive assumption of a
strongly stable lower level solution. This assumption will dropped later
on. If the assumptions (MFCQ), (CRCQ), and (SSOC) are satisfied for
the lower level problem (5.1) and (ULR) for the upper level problem
(5.2) then this contingent cone is given as

Using the formulae for the computation of the directional derivative of
the lower level local solution function given in Theorem 4.11 we
derive that is equal to the projection of the following cone
on

where is the solution set of the following system of equa-
tions and inequalities (setting



136 FOUNDATIONS OF BILEVEL PROGRAMMING

Now, drop the restrictive assumption, that the lower level optimal so-
lution is strongly stable and consider the following problem where the
lower level problem has been replaced by its Karush-Kuhn-Tucker con-
ditions:

Note that this problem is equivalent to the bilevel programming problem
(5.1), (5.2) provided that the optimistic position (5.3) is used and the
lower level problem is a convex parametric one for which a regularity
assumption is satisfied and the optimal solution is uniquely determined
and strongly stable. We will come back to this in Theorem 5.15 and the
subsequent example. Note also that this equivalence relation is strongly
connected with the search for global optimal solutions in both levels. If
a local optimistic optimal solution of problem (5.1), (5.2) is searched for,
this is in general no longer valid (cf. [140]). For now, the definition of a
local optimal solution of an optimization problem is given:

DEFINITION 5.5  Consider an optimization problem

and let satisfying be a feasible solu-
tion of this problem. Then, is called a local optimal solution of
problem (5.19) if there exists an open neighborhood of

such that

Using an active-set strategy, problem (5.18) decomposes into a family of
problems
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where, around some given point the family of all
interesting sets I can be restricted to the union of all the sets for
the vertices if the (CRCQ) is satisfied (cf. the proof
of Theorem 4.10). If the (CRCQ) is dropped, limit Lagrange multipliers
to optimal solutions to perturbed lower level problems are in general no
longer vertices of the set (cf. the Example on page 76). This
implies that the sets I will in general not satisfy the condition (C2) on
page 78 but the restriction to the vertices of is again allowed.
But, nevertheless, the number of different possible sets I is finite. Now, if
we consider the contingent cone to the feasible set of one of the problems
(5.20) we obtain the solution set of the system (5.17) which shows that
formula (5.16) remains valid (with the possible exception of condition
(C2) in case of violation of (CRCQ)).

REMARK 5.1 The solution sets of (5.17) are convex polyhedral cones
and it is easy to see that the projections of these cones onto
are convex, polyhedral cones again. Hence, the sets are poly-
hedral cones.

Using these polyhedral cones, the necessary condition in Theorem 5.4
reads as

And the sufficient optimality condition in Theorem 5.5 is equivalent to

where in both cases the assumptions of the respective theorems are as-
sumed to be satisfied.

DEFINITION 5.6 Let be a cone. The dual cone C* to C is
defined as

For a convex polyhedral cone the dual cone
is
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Now, the necessary condition in Theorem 5.4 is equivalent to each of the
two conditions

and

or: There exist a Lagrange multiplier and a
set (or a set I satisfying condition (C1) if (CRCQ) is violated)
such that the following system has a solution:

where denotes the (partial) Jacobi matrix of the vector valued
function F with respect to only. Note that the condition

implies that is essentially unconstrained for
which is equivalent to non-existence of that condition.

REMARK  5.2 The sufficient optimality condition in Theorem 5.5 reads
as

The main question is it now to describe a way to compute the dual cone

For consider the relaxed problem to (5.18):
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Then, if the (MFCQ) is valid for the lower level problem (5.1), each
point with
is feasible for (5.22) and, by for all

we have

where denotes the contingent cone to the feasible set of prob-
lem (5.22) at which is given by the solution set of the following
system:

Then, using the definition of the dual cone, it is easy to see that

The questions whether formulae (5.23) or (5.24) are satisfied as equa-
tions and, if not, if there are cases where the cone can be
represented “constructively” are investigated in [229].

We borrow the following two examples from [229] to illustrate these
questions in the case of a mathematical program with equilibrium con-
straints (MPEC):

Example: Consider the complementarity problem

at the point Then

but the relaxed problem has the feasible set with
the contingent cone

Here, both cones are different but their duals coincide:
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Example: Consider the complementarity problem

again at the point
reduces to

Then, the feasible set of this problem

and we get for the contingent cone

The relaxed feasible set and its contingent cone are

Considering the dual cones, we derive

In this example both the primal and the dual cones are different.

REMARK 5.3 The distinction in the construction of the two cones
and with the corresponding cones in [229] should

be noticed which results from a different role played by the Lagrange mul-
tipliers in both approaches: While the lower level optimal solution x and
the corresponding multiplier are considered uniformly
in [229], they play different parts in bilevel programming. This implies
that we have to define different neighborhoods of feasible solutions in
both problems. Let i.e. let
satisfy the Karush-Kuhn-Tucker conditions for the lower level problem
(5.1) for Then, considered as an (MPEC), in each sufficiently
small open neighborhood of positive components of re-
main positive. But, considered as bilevel programming problem, only x
is the lower level variable, and in arbitrarily small open neighborhoods
of the corresponding values of the corresponding Lagrange mul-
tipliers can be extremely different.

This can be seen in the following example.

Example: Consider the following parametric optimization problem
which replaces the lower level problem of a bilevel programming problem:
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The Karush-Kuhn-Tucker conditions of this problem are:

Then, for the point is the only optimal solution of
the optimization problem with

Let Considered as an (MPEC) in each sufficiently small
open neighborhood of the point we have But con-
sidered as a bilevel programming problem we have to bear in mind that
for and sufficiently close to the corresponding Lagrange
multiplier can approach with Here this is the case for

Hence, the following two systems are to be used to describe
the cone

and

In distinction, the subsequent two problems can be used in [229]:
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and

The following result shows a simple convexity property of the dual cone

THEOREM 5.8 ([229]) Consider the bilevel programming problem (5.1),
(5.5) and let the assumptions (MFCQ) at the point as well as
(ULR) be satisfied. Then, is a convex polyhedral cone.

This theorem gives us the principal possibility to describe the cone
via a system of linear (in) equalities. The above exam-

ples indicate that this cannot be done without a closer look at the con-
straints defining the primal cone Especially the second ex-
ample above seem to indicate that inequalities which can not be satisfied
strictly play a special role in these investigations. This leads to the fol-
lowing notion of a nondegenerate inequality in the system defining the
cone

DEFINITION 5.7 Let the system of linear (in)equalities
be given. An inequality is nondegenerate if there is a solution

of this system satisfying

Let a feasible point of the bilevel programming problem
be given and consider the convex polyhedral cone Put

inequality is nondegenerate}

and

inequality is nondegenerate}.

Note, that by convexity of the cone inclusion of an index
into one of the sets and can be checked by

solving two systems of linear (in)equalities:
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and

Hence, computing both sets and requires the solution of no more
than linear programs which can be done in polynomial
time [148]. The following Theorem has its roots in [229].

THEOREM 5.9 Consider the optimistic bilevel programming problem
(5.1), (5.5) and let assumptions (MFCQ) and (ULR) be satisfied at
the point Then, equality is satisfied in (5.23) if and only if

Roughly speaking, condition implies that in the lower
level problem (5.1) the (LICQ) together with the strict complementar-
ity slackness condition are satisfied. Having a look at the opposite im-
plication we see that (LICQ) together with the strict complementarity
slackness condition imply that and, thus, that the set

Assume for the interpretation that the condition (SSOC) is
also valid. Then problem (5.1), (5.5) is equivalent to the differentiable
program

[97] and, by (ULR), there exists a vector with

Now we come to the general case where can be non-empty.
Theorem 5.8 gives us the principal possibility to describe the dual cone
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via a finite system of linear equations and inequalities. On
the other hand, Theorem 5.9 says that the inequalities with index in the
set can make the formulation of this system difficult. In the
following we use two more assumptions. To formulate them we apply
the abbreviation

The set is the index set of all inequality constraints in problem (5.22)
which are nondegenerate at the same time with respect to both inequal-
ities. In the following we use the formula to denote a
pair of sets satisfying

(PFC) Condition (PFC) is satisfied if there exists a pair
such that the following conditions are both satisfied:

the gradients in

are linearly independent,

Let

Then, span span

Here, for a finite set of vectors A , span A is the set of all vectors
obtained as linear combination of the vectors in A. The following lemma
is used to illustrate this regularity condition.

LEMMA 5.1 The following three conditions are equivalent:

1. Condition (PFC) is valid for a set

2. The following implication holds:
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implies and

3. The following conditions hold simultaneously:

For all there is a solution of the following system:

and

for all there is a solution of the following system:

The following theorem having its roots in [229] gives a condition for
coincidence of the dual cones to the feasible sets of the original and the
relaxed optimistic bilevel problems.

THEOREM 5.10 Consider the bilevel problem (5.1), (5.5) under as-
sumptions (MFCQ) and (ULR) at the point Let

If also (PFC) is satisfied with respect to a pair of sets
satisfying

then

5.4 REGULARITY
In the Introduction we have seen several possible reformulations of

the bilevel programming problem into ordinary one-level problems. One
uses the Karush-Kuhn-Tucker conditions of the lower level problem to
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replace them:

Note that (5.1), (5.2) and (5.26) are equivalent provided that the lower
level programming problem (5.1) is a convex parametric optimization
problem satisfying (MFCQ) at all feasible points
and we settle upon the computation of global optimistic optimal solu-
tions. Without convexity assumption, problem (5.26) has a larger fea-
sible set including not only global optimal solutions of the lower level
problem but also all local optimal solutions and also all stationary points.
Hence, the optimal function value of (5.26) is never larger than that of
the bilevel programming problem (5.1), (5.2). Moreover, problem (5.26)
is a smooth optimization problem which could be used as an indica-
tion for an easier treatment. But this is not completely correct since at
least the regularity assumptions which are needed for successfully han-
dling smooth optimization problems are never satisfied. To find a better
approach, a nonsmooth equivalent of the bilevel programming problem
(5.1), (5.2) is formulated below. Then, respective regularity assumptions
for nonsmooth optimization problems can be satisfied.

The main difficulty concerning the reformulation (5.26) is the violation
of most of the usual constraint qualifications.

THEOREM 5.11 ([249]) If the Karush-Kuhn-Tucker conditions of prob-
lem (5.1) are part of the constraints of an optimization problem, then
the Mangasarian-Fromowitz constraint qualification is violated at every
feasible point.

The same unpleasant result has been shown in [59] for the Arrow-
Hurwicz-Uzawa constraint qualification [8]. Moreover, even the bilevel
programming problem with a convex quadratic lower level problem is
most likely not Kuhn-Tucker regular [162].

To circumvent the resulting difficulties for the construction of Karush-
Kuhn-Tucker type necessary optimality conditions for the bilevel pro-
gramming problem, in [249] a nonsmooth version of the KKT refor-
mulation of the bilevel programming problem in the optimistic case is
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constructed:

Here, for the formula is understood component
wise.

For problem (5.27) the following generalized variant of the linear in-
dependence constraint qualification [253] can be defined:

(PLICQ) The piece-wise linear independence constraint qualification
is satisfied for problem (5.27) at a point if the gra-
dients of all the vanishing components of the constraint functions

are linearly independent.

Problem (5.27) can be investigated by considering the following patch-
work of nonlinear programs for fixed set I:

Then, the piecewise linear independence constraint qualification is valid
for problem (5.27) at some point if and only if it is satisfied
for each of the problems (5.28) for all sets

REMARK  5.4 Note that in (PLICQ) the gradients are all taken with
respect to all variables Hence, this condition does not imply
strong stability of the solution of the lower level problem for which a
similar assumption with gradients taken with respect to only would
be sufficient [157]. Note the strong relation of (PLICQ) with (FRR) if
the upper level constraints are absent.

Note that this is a more general consideration than that in Theorem
5.11 since the complementarity condition has been replaced here. Our
aim is it now to show that the assumption (PLICQ) can generically be
assumed to hold for problem (5.27). The usual way to do that is to allow
for arbitrarily small perturbations of the constraint functions in problem
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(5.27) and to show that the assumption (PLICQ) can be forced to hold
for perturbed problems. Hence we have to do two things: First define
a distance of functions to determine the notion of small perturbations.
This is done using the so-called Whitney topology. Second, define a
subset of all problems (5.27) for which the (PLICQ) is satisfied at all
feasible points. To reach the desired property it is then shown that this
set is open and dense in the set of all problems (5.27) with respect to
this Whitney topology. For this, Sard’s Lemma is used guaranteeing
that sufficiently smooth systems of equations are locally invertible at all
of its solutions for almost all right-hand sides. To illustrate the bounded
value of this theorem for systems with a large number of equations we
cite a result that such systems have no solution for almost all right-hand
side vectors. Coming back to the initial bilevel programming problem
(5.1), (5.2) we see that (PLICQ) can be assumed to hold for almost all
problems in which the number of active inequalities in the lower level
problem is small.

We start with the definition of a neighborhood of a problem. The
distance of two problems is defined via the distance of the functions
defining the constraints and the objective functions of both problems.
Hence, the distance of two problems of the type (5.27) will be measured
in the Whitney topology. A neighbourhood of a data map (i.e. a set of

functions) consists of all maps which are close to
D together with all derivatives up to order a zero neighborhood in this
topology is indexed by a positive continuous function and
contains all functions with: each component function
together with all its partial derivatives up to order is bounded by the

function Details can be found in [125].
Define the set

: (PLICQ) is satisfied
at each feasible point of (5.27) with

for an arbitrary constant
is the of a vector and The following theorem
says that, if the dimensions and of the variables and are large
enough in comparison with the number of constraints, then for almost
all bilevel programming problems the (PLICQ) is satisfied at all feasible
solutions.

THEOREM 5.12 ([253]) The set is open in the for each
Moreover, for the set is also dense in

the for all
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In the proof of this theorem, which is given in Section 5.8, Sard’s Theo-
rem is used:

DEFINITION  5.8 A point is a regular value of a smooth function
if has full row rank for every with

THEOREM 5.13 (SARD’S THEOREM,[125, 268]) If H : is
with then almost all are regular values of H.

Sard’s Theorem says that for almost all right-hand sides at all solutions
of the system of nonlinear equations the assumptions of an
implicit function theorem are satisfied. Consequently, the solution of
the system is a smooth mapping of the right-hand side in a
sufficiently small open neighborhood of

If there are more equations than variables then the following
result says that almost all are regular values since the system

is not solvable. To formulate the result, define the image of
via the mapping H by with

THEOREM 5.14 ([125]) Let             and consider a continuously differ-
entiable mapping H : Then,   is dense.

Applying this result to the ideas in the proof of Theorem 5.12 we derive
that, if the number of active inequalities of solvable bilevel programming
problems is too large then the projection of the feasible solutions

with onto is of Lebesgue measure zero.

5.5 OPTIMALITY CONDITIONS USING THE
KKT REFORMULATION

Now we come back to the investigation of optimality conditions for
bilevel programming problems.

THEOREM 5.15 Consider the optimistic bilevel programming problem
(5.1), (5.3), (5.4) and assume that the lower level problem is a con-
vex parametric optimization problem for which (MFCQ) is satisfied at
all feasible points with Then, each opti-
mistic local optimal solution of (5.1), (5.3), (5.4) corresponds to a local
optimal solution for (5.27).

The following example shows that the opposite direction in this theorem
is not true in general:

Example: Consider the simple linear bilevel programming problem
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where

at the point Then, this point is a local optimal solu-
tion according to problem (5.27), i.e. there exists an open neighborhood

with such that for all
with and The simple rea-

son for this is that there is no with for
since for But if we consider the definition of a local
optimistic optimal solution in Definition 5.2 then the point (0,0) is not
a local optimistic solution since is not a local minimum of the
function

Clearly, if the point is a global optimal solution of problem
(5.27) then it is also an optimistic optimal solution of the bilevel pro-
gramming problem (5.1), (5.5). It should also be mentioned that, if the
lower level problem is a regular convex one and its optimal solution is
uniquely determined and strongly stable for all parameter values then
the bilevel programming problem (5.1), (5.2) is equivalent to its reformu-
lations (5.18) and (5.27). Without convexity even an optimistic global
optimal solution of (5.1), (5.5) need not to be global optimal for (5.27).
The following example shows even that a local optimum of the bilevel
programming problem (5.1), (5.2) need not be a stationary point of the
problem (5.27):

Example: Consider the problem

where

The objective function of the lower level problem is plotted in Figure
5.4. Then, for all the global lower level optimal solution is situated
at the point but the points are also sta-
tionary. Hence, the bilevel programming problem has the global opti-
mal solution with lower level optimal solution but this point
is not stationary for problem (5.27) since there exist feasible solutions

with strictly negative upper level objective
function value.

The last theorem can now be used as initial point for the formulation of
necessary optimality conditions for the optimistic bilevel programming
problem. Applying the necessary optimality conditions of [249] for an



Optimality conditions 151

(MPEC) to the bilevel program, a necessary optimality condition of Fritz
John type can be derived without additional regularity assumptions:

THEOREM 5.16 If with is a local op-
timal solution of problem (5.27) then there exists a non-vanishing vector

satisfying

where the set and denotes the row
vector of the partial derivatives with respect to only.

To interpret the F. John conditions in Theorem 5.16 consider the F. John
necessary optimality conditions of problem (5.28) for which
clearly are also valid. Then, the conditions (5.29) are weaker ones since
the non-negativity of the multipliers to active inequality constraints is
replaced by the demand that these multipliers have the same sign for
all indices for which strict complementarity slackness is violated. In
distinction to Theorem 5.4 the result in Theorem 5.29 is not of a com-
binatorial nature. Also note that, due to Theorem 5.11, no constraint
qualification can be verified for problem (5.26). Here the situation is sub-
stantially better with respect to the nonsmooth problem (5.27) as shown
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in Theorem 5.12. A weaker regularity condition than the (PLICQ) is
a (strict) Mangasarian-Fromowitz constraint qualification as formulated
below.

Let be a feasible point for problem (5.27). Then,
the following problem gives an approximation of (5.27) locally around

Problem (5.30) models a certain section of the feasible set of problem
(5.27). It is easy to see that the point is feasible for
problem (5.30) and that each feasible point for (5.30) is also feasible for
(5.27). Hence, if is a local optimal solution of problem
(5.27) then it is also a local optimal solution of (5.30). In the following
theorem we need a constraint qualification lying between the (LICQ)
and the (MFCQ):

(MFCQ) The Mangasarian-Fromowitz constraint qualification is ful-
filled for the problem

at the point if there exists a direction satisfying

and the gradients
linearly independent.

are

(SMFCQ) We say that the strict Mangasarian-Fromowitz constraint
qualification (SMFCQ) is satisfied at for problem (5.31) if there exists
a Lagrange multiplier
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as well as a direction satisfying

and the gradients are
linearly independent.

(LICQ) The linear independence constraint qualification is fulfilled for
the problem (5.31) at the point if the gradients

are linearly independent.

If is a local optimal solution, then the Mangasarian-Fromowitz con-
straint qualification implies that the set of Lagrange multipliers is not
empty and compact and the strict Mangasarian-Fromowitz constraint
qualification is equivalent to the existence of a unique Lagrange multi-
plier [165].

In the following theorem, which is an application of the results in [249]
to bilevel programming, we obtain that (MFCQ) for (5.30) implies that

can be taken in (5.29). If the stronger (SMFCQ) is valid for this
problem than we can finally show necessary optimality conditions in a
familiar form.

THEOREM 5.17 Let be a local minimizer of problem
(5.27).

If the (MFCQ) is valid for problem (5.30) at then
there exist multipliers satisfying

where again
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If the (SMFCQ) is fulfilled for the problem (5.30), then there exists
unique multipliers solving

The following example from [229] for the more general mathematical
program with equilibrium constraints (MPEC) shows that the last result
is not valid if the (SMFCQ) is replaced with the (MFCQ):

Example: Consider the problem

Optimal solutions of this problem are Consider the
point Then, the (MFCQ) is satisfied. For this problem,
the system (5.35) reads as

This system has no solution since the first equation together with the
nonnegativity conditions imply contradicting the second
equation.

We will mention that also necessary and sufficient optimality conditions
of second order can be derived using this nonsmooth reformulation of
the bilevel programming problem. This has been done in [249].
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5.6 THE APPROACH VIA THE LOWER
LEVEL OPTIMAL VALUE FUNCTION

In the optimistic case, the bilevel programming problem (5.1), (5.5)
can be transformed into an ordinary one-level optimization problem us-
ing the optimal value function of the lower level problem (5.1).
This leads to the following equivalent problem:

With respect to the relations between the optimistic problem (5.1), (5.5)
and problem (5.36) we can repeat Theorem 5.15 but now we do not
need the convexity assumption: A local optimistic optimal solution of
the bilevel programming problem (5.1), (5.5) is a local optimal solution
of problem (5.36). Again the opposite implication is in general not true.

Under suitable assumptions, the optimal value function is locally Lip-
schitz continuous (cf. e.g. Theorem 4.14). Then, if all functions in prob-
lem (5.36) are continuously differentiable (or at least locally Lipschitz
continuous), necessary optimality conditions can be formulated using
Clarke’s generalized derivative. The difficult point here again is the reg-
ularity condition. The feasible set of this problem cannot have an inner
point since the first inequality is satisfied as equation for all feasible
points. Having a short look at the formulae for the directional deriva-
tive or the generalized gradient of the function (cf. Theorems 4.16
and 4.17) it is easy to see that also generalized variants of the (MFCQ)
or of the (LICQ) cannot be satisfied. Consider the optimization problem

with locally Lipschitz continuous problem functions

(NLICQ) The (nonsmooth) linear independence constraint qualification
holds at a feasible point of the optimization problem (5.37) if each
vectors are
linearly independent.

(NMFCQ) The (nonsmooth) Mangasarian-Fromowitz constraint qual-
ification is said to be satisfied for the problem (5.37) if, for each vectors

the vectors
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in the set are linearly independent and there exists a
vector satisfying

Both definitions can be found in [122]. Also, analogously to the smooth
case, the nonsmooth linear independence constraint qualification implies
the nonsmooth Mangasarian-Fromowitz constraint qualification. Let

denote the Lagrangian of problem
(5.37). The set

is the set of regular multipliers whereas the set

denotes the set of abnormal multipliers. As in the classical case, the non-
smooth Mangasarian-Fromowitz constraint qualification is equivalent to

THEOREM 5.18 ([297]) Let be a feasible point for problem (5.37).
Then, the nonsmooth Mangasarian-Fromowitz constraint qualification
holds at if and only if

Now we come back to the bilevel programming reformulation with the
aid of the optimal value function of the lower level problem (5.36). The
following theorem shows that a nonsmooth variant of a regularity con-
dition can also not be satisfied for the reformulation (5.36) of the bilevel
programming problem.

THEOREM 5.19 ([297]) Consider problem (5.36) at a point
with and let the assumptions (C) and (MFCQ) be satisfied at
each (global) optimal solution of the lower level problem and
assume that equality holds in (4.27) in Chapter 4. Then, there exists a
nontrivial abnormal multiplier for problem (5.36).

This implies that no nonsmooth variant of neither the (MFCQ) nor the
(LICQ) can be satisfied for the problem (5.36). Note that the condition
on equality in equation (4.27) in Chapter 4 is satisfied if (LICQ) is
valid for the lower level problem or if the lower level problem is either
jointly convex or it is convex and has a unique global optimal solution
(cf. Corollaries 4.5 – 4.7). Hence, this assumption is generically satisfied
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provided the problem functions are at least three times continuously
differentiable and the Whitney topology is used [113].

Consider the following perturbed variant of problem (5.36):

Here, is a parameter and both problems (5.36) and (5.40) coincide for

DEFINITION 5.9 Let be an optimal solution of problem (5.36).
Then, this problem is called partially calm at if there exist
and an open neighborhood such that
for each with being feasible for problem
(5.40) for the inequality

holds.

Partial calmness is a property closely related to calmness of a Lipschitz
optimization problem [61]. Sufficient conditions for partial calmness of
problem (5.36) at local optimal solutions are the following [297]:

The lower level problem is a parametric linear programming problem.

The function is locally Lipschitz continuous with respect to
uniformly in and the lower level problem has a uniformly weak

sharp minimum.

Here, problem (5.1) has a uniformly weak sharp minimum if there exists
such that

Now we are prepared to formulate first a necessary optimality of Fritz
John type and then one of Karush-Kuhn-Tucker type.

THEOREM 5.20 ([297]) Let be a local optimal solution of prob-
lem (5.36). Let (MFCQ) and (C) be satisfied for the lower level problem
at all points Then, there exist

as well as



158 FOUNDATIONS OF BILEVEL PROGRAMMING

Using the partial calmness assumption we can guarantee that the leading
multiplier

THEOREM 5.21 ([297]) Let the assumptions of the preceeding theorem
be satisfied and let problem (5.36) be partially calm at a local optimistic
optimal solution of the bilevel programming problem (5.1), (5.2).
Assume that equality holds in (4.27) and that (ULR) is valid for the
upper level problem. Then, the conclusion of Theorem 5.20 holds with

and

Different reformulations of the bilevel programming problem (5.1), (5.2)
can be used as starting points for the construction of exact penalty
function approaches. Some examples for these approaches are given in
Section 6.3. The resulting problems are (nonsmooth) one-level program-
ming problems which clearly can be used to derive necessary and suffi-
cient optimality conditions for the bilevel programming problem. Since
this is more or less standard in optimization we left it for the interested
reader.

5.7 GENERALIZED PC1 FUNCTIONS
In this section an approach for deriving optimality conditions is devel-

oped which can be used for both the optimistic and the pessimistic local
optimal solutions. It is closely related to the implicit function approach
presented in Section 5.2. We used the main ideas of this approach al-
ready in the optimality conditions in Subsection 3.5.2. Recall that, if all
the lower level optimal solutions are strongly stable, then inserting them
into the upper level objective function, a family of continuous functions
arises. Depending on the chosen optimistic respectively pessimistic po-
sition for treating the ambiguity resulting from non-unique lower level
solutions, either the pointwise maximum or the pointwise minimum func-
tion of this family is to be minimized in solving the bilevel problem. If
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this function would be continuous a PC1-function arises but, unfor-
tunately, this is in general not the case. This leads to the following
considerations.

5.7.1 DEFINITION
First we will give a simple example to motivate the following defini-

tion.

Example: Consider the following bilevel problem with a linear para-
metric optimization problem as the lower level. Let and

As the objective function in the upper level we choose

Obviously the solution set of the lower level is in general not single-
valued; so we take (5.5) as a regularization. By simple calculations we
obtain

Here, is a selection of continuously differentiable functions
however, it is not continuous itself as PC1-functions are. This

motivates the following definition.

DEFINITION 5.10 ([77]) A function is called generalized
PC1-function (or shortly GPC1-function) at if the following
conditions are fulfilled:

There exist an open neighborhood of and a finite number of
continuously differentiable functions
with

The interior set of the support set is connected and
is satisfied for

For the contingent cones to the sets the
condition holds,
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There exists such that the following is true for all vectors

with

we haveFor

a is called a GPC1-function on if it is GPC1 at each point

Of course, for the investigation of GPC1-functions and the possible im-
plementation of an algorithm minimizing such a function, we need a spe-
cial kind of a derivative. The classical gradient or directional derivative
is not suited because GPC1-functions do not need to be continuous. It
turns out that the radial-directional derivative introduced by Recht [236]
fits very well with the above definition of a generalized PC1-function.
Therefore before we explain the individual demands in Definition 5.10
we will repeat the definition of the radial-directional derivative in the
sense of Recht which makes the following explanations a little bit clearer.

DEFINITION 5.11 Let be an open set, and
We say that is radial-continuous at in direction
if there exists a real number such that

If the radial limit exists for all is called
radial-continuous at

is radial-directionally dif ferentiable at if there exists a positively
homogeneous function such that

with holds for all and all

Obviously, the vector is uniquely defined and is called the
radial-directional derivative of at

This definition is originally given just for real-valued functions. We will
generalize it for vector-valued functions in the following way:

with
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DEFINITION 5.12 A function is
called radial-continuous if every component function has this prop-
erty. It is radial-directionally differentiable at if all functions

are radial-directionally differentiable at The vector
is said to be the radial-directional deriva-

tive of in direction

Now we will make the something strange demands in definition 5.10
clearer. It should be noted that the number of involved functions
is chosen to be the smallest of all possible such that all the other de-
mands are satisfied. Condition
is essential for radial-directional differentiability while

is needed to make several conclusions from this differ-
entiability possible.

Note that the set of all GPC1-functions does not create an algebraic
structure since the sum of two such functions is not necessarily GPC1.

Example: [77] Consider the following two GPC1-functions:

Then,

In the following we derive some simple properties of GPC1-functions.

THEOREM 5.22 ([77]) Directly from the definition one derives the fol-
lowing properties:

thenandIf

The sets are closed cones.

THEOREM 5.23 ([77]) Generalized PC1-functions are both radial-
continuous and radial-directionally differentiable.
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The following small examples should underline that the properties from
Definition 5.10 are essential for the investigations using the radial-
directional derivative.

Example: [77] Let be defined as

Here, the function values on
do not have any influence on the radial-directional derivative because

the corresponding tangent cone has empty interior. Hence, this function
does not satisfy the third condition of Definition 5.10 at This
means that the function values of this function can be changed arbitrarily
on the set Such functions are not suitable for investigations
relying on the derivative in the sense of Recht. Especially the following
necessary optimality condition is satisfied for this function independent
of its function values on

Example: [77] Consider the function

This function is radial-continuous at zero but has no radial-directional
derivative in the direction at By a slight modification
of the function values we can derive a function which is not radial-
continuous. In this example the 4th property of the Definition 5.10 is
not satisfied.

5.7.2 CRITERIA BASED ON THE
RADIAL-DIRECTIONAL DERIVATIVE

In the sequel we will deal with criteria for optimality. We start with
the following necessary one. Here denotes the set of local minima
of the function

THEOREM 5.24 ([77]) Let be a GPC1-function and
a fixed point. If there exists such that one of the following

two conditions is satisfied then

and
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It should be noticed that Theorem 5.24 is valid for general radial-
continuous and radial-differentiable functions, the restriction to GPC1-
functions is not necessary. Especially the demands on the contingent
cones to the support sets of the selection functions are not needed in
this theorem which is essential for the application to bilevel program-
ming problems.

In the following we will call points satisfying the foregoing necessary
optimality condition of first order stationary. We go on with a sufficient
criterion.

THEOREM 5.25 ([77]) Let be a generalized PC1-function
and a fixed point which satisfies one of the following two conditions.

Then, achieves a local minimum at

The following example shows that the assumptions of this theorem are
necessary.

Example: Let be defined as

and consider the point Then, the first condition of Theorem
5.25 is satisfied for each direction but is not a local minimum. Now
consider the modification of this function given in Example on page 162.
Then, for each direction the condition 2. of Theorem 5.25 is valid but

is again no local optimum.

5.7.3 RADIAL SUBDIFFERENTIAL
We now want to introduce the new notion of a radial subdifferential

which will be used for further investigations in connection with GPC1-
functions.

DEFINITION 5.13 Let and be radial-
directional differentiable at We say is a radial subgradient

of at if

is satisfied for all with
The set of all radial subgradients is called radial subdifferential and

denoted by

and
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The following necessary criterion for the existence of a radial subgradient
is valid:

THEOREM 5.26 ([77]) If there exists such that
then

Arguing by contradiction, the proof is easy done by using positive ho-
mogeneity of the scalar product and the radial-directional derivative.

With this theorem we get the following equivalent definition of a radial
subgradient:

if there is no direction such that the radial limit in this direction is less
than the function value.

We now want to present some ideas for finding radial subgradi-
ents. Consider any index For each we have

which, together with the necessary condition ac-
cording to Theorem 5.26, leads to

Clearly, a vector satisfying this inequality can only belong to the radial
subdifferential if it satisfies the respective inequality also for all other
tangent cones for which the condition
holds for. Let With this definition we
have:

In the following special cases it is easy to compute elements of the radial
subdifferential:

THEOREM 5.27 ([77]) Consider a GPC1-function at a
point

If for all then

If if and only if and
for all for some fixed then

If is continuous on a certain open neighborhood of it is a special
PC1-function and, hence, locally Lipschitz [114]. In this case, the
radial subdifferential coincides with Clarke’s generalized gradient.
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THEOREM 5.28 ([77]) The radial subdifferential of GPC1-functions
has the following properties:

is a closed set.

is convex.

If is continuous at then is bounded.

Let be such that Then,

The proof of this theorem is straightforward. It should be noted that the
statements 5.28, 5.28, 5.28 may in general not be strengthened. Now we
derive optimality criteria in connection with the radial subdifferential.

THEOREM 5.29 ([77]) Let be a GPC1-function. If
then

THEOREM 5.30 ([77]) Let be a GPC1-function. If
then achieves at a local minimum.

It should be noted that this last theorem is valid only for GPC1-
functions. This can easily be seen considering the function in Ex-
ample 5.7.1. For this function

Hence, but is not a local minimum.

5.7.4 APPLICATION TO BILEVEL
PROGRAMMING

In this subsection we will turn back to bilevel programming problems
with the above mentioned regularization according to (5.5) or (5.6).

First consider (mixed-discrete) linear lower level problems with pa-
rameters in the right-hand side and the objective function. For linear
problems the sets of all parameter values for which one optimal solu-
tion respective the corresponding basic matrix remains constant (the
so-called region of stability, cf. Definition 3.3) are polyhedral [220]. This
opens the way for a direct application of the above results e.g. to lin-
ear bilevel programming problems. The resulting properties are given in
Theorems 3.8 to 3.10.
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Now consider a mixed-discrete linear optimization problem

with parameters Then, the region of stability has the struc-
ture

where are polyhedral cones and
is a finite set [15, 16]. These are the main points for validating the
conditions for the (contingent cones to the) support sets in the definition
of generalized PC1-functions.

For a fixed parameter value, the (convex hull of the) set of optimal
solutions of the lower level problem is also a polyhedral set. Since linear
functions have minima at vertices of polyhedra, the optimal solutions of
the problems (5.4) and (5.7) form piecewise affine-linear functions and,
hence, the functions and are itself generalized PC1-functions
in these cases. This makes the place free for a direct application of the
necessary and sufficient optimality conditions for minimizing generalized
PC1-functions. We have seen the corresponding results for linear lower
and upper level problems in Subsection 3.5.2. Linear bilevel problems
with discrete lower level problems will be considered in Section 8.4.

Second we consider bilevel programming problems in which all sta-
tionary solutions in the lower level problem are strongly stable in the
sense of Kojima [157]. If the assumptions in the Theorem 4.4 are satisfied
for all stationary points of (5.1) for all feasible parameter values, then
there exists a finite number of continuous functions
such that

This implies that the functions and are selections of the con-
tinuous (and directionally differentiable by the remarks after Theorem
4.11) functions

and

It has been shown in [141] that continuity of the functions and
can only be guaranteed if the optimal solution of the lower level
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problem (5.1) is uniquely determined. Since this is in general not the
case if both functions are generally not continuous.

Now, add the assumption (CRCQ) to (MFCQ) and (SSOC). Then the
functions (5.43) or (5.44) are finite selections of locally Lipschitz func-
tions. But due to the more difficult structure of the regions of stability
than in the linear case, we will in general not be able to prove that the
functions (5.43) or (5.44) are generalized PC1-functions. Nevertheless,
we can take advantage of the ideas in this Section to derive necessary
and sufficient optimality conditions for the bilevel programming problem
in this case.

The main drawback resulting from the vacancy of the properties of
generalized PC1-functions is the lost of directional differentiability of
the functions and

We start with necessary and sufficient conditions for optimistic opti-
mality.

THEOREM 5.31 Consider the bilevel programming problem (5.1), (5.2).
Let the assumptions (C), (CRCQ), (MFCQ), (SSOC) together with
(ULR) be satisfied at all feasible points with

and denote the lower level globally optimal solutions by
Let

denote the subset of the global lower level optimal solutions which are
feasible for the optimistic bilevel problem.

If is a local optimistic optimal solution then, for
all the following system of inequalities has no solution

Let be feasible for the optimistic problem, i.e. let
If for all the following system of inequalities

has no nontrivial solution
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then is locally optimistic optimal for the bilevel programming
problem.

The following examples should illustrate the optimality conditions.

Example: We consider a lower level problem without constraints:

and the bilevel programming problem

The objective function in the lower level problem is plotted in Figure
5.5. Then, since we are searching for a global minimum in the lower
level problem, and it can be shown that for all

Hence, the optimal solutions of the bilevel programming
problem are (–1,0) and (1,0). Both local solution functions are
differentiable at the point with the common derivative

the directional derivatives of the auxiliary objective functions
at are

and

Hence, the necessary optimality condition in Theorem 5.31 is the fol-
lowing: There does not exist directions satisfying at least one of the
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following systems:

Clearly, this is true. Note that the points (–1,0) and (1, 0) are not local
optimal solutions for the problem (5.26) since local and global lower level
solutions are not distinguished in this problem.

Example: Now, change the lower level problem

Then, since for the local minima are
strongly stable local minima for near zero. Let and denote
the (differentiable) local optimal solution functions of the lower level
problem with It is easy to see that it is

for The directional derivative of the lower level objective
function is now

for both and for all directions. The optimal solutions
of the bilevel programming problem remain unchanged, the necessary
optimality condition in Theorem 5.31 is valid since there is no direction

such that

The stronger sufficient condition is not satisfied.

Example: Consider again the lower level problem

and search for a minimum of the function

subject to A closer look at both local minima shows that the
global minimum of is near the point for and
near the point for and sufficiently close to zero. This
implies that the product for and near zero. Hence,
the points are local optima and
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minimizes the function locally. Considering the upper level
objective function we obtain

The necessary optimality condition in Theorem 5.31 is satisfied at
since there is no direction such that

and

But the system

has nonvanishing solutions. This shows that it is not possible to re-
place the respective strong inequalities in the necessary conditions by
inequalities.

Now we turn over to the pessimistic optimal solution. The main dif-
ference to the previous theorem is that we have to guarantee that the
upper level variable point cannot be reached via a sequence
for which

THEOREM 5.32 Consider the bilevel programming problem (5.1), (5.2).
Let the assumptions (C), (CRCQ), (MFCQ), (SSOC) together with
(ULR) be satisfied at all feasible points with

and denote the lower level globally optimal solutions by
Let

denote the subset of the global lower level optimal solutions which are
feasible for the pessimistic bilevel problem. The point is not a
local pessimistic optimal solution if one of the following conditions is
satisfied:

There exists such that the following system of inequalities has
a solution
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REMARK 5.5 The condition is

clearly satisfied in any one of the following situations:

and there exists an open
neighborhood with for all

As an example illustrating the first condition consider again the Example
on page 168 but now with another upper level objective function.

Example: We consider a lower level problem without constraints:

and the bilevel programming problem

with Then again, there are two
differentiable functions describing local optimal solutions of the
lower level problem in an open neighborhood of At the
point we have with attained by the
lower level optimal solution For the lower level optimal
solution is larger than one, for it is smaller that -1. Hence the
infimum of the function is zero and we have but

Hence, the bilevel problem has no solution. In this example
we have

The following theorem gives a sufficient optimality condition. A proof of
this theorem is not necessary since it is very similar to the second part
of the proof of Theorem 5.31.

THEOREM 5.33 Consider the bilevel programming problem (5.1), (5.2)
and let the assumptions of Theorem 5.32 be satisfied. If the following
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two conditions are satisfied then the point is a local optimal
pessimistic solution:

For all the following system of inequalities has no nontrivial
solution

5.8 PROOFS
PROOF OF THEOREM 5.1: By uniqueness of the optimal solution of the
problem (5.1), problem (5.1), (5.2) is equivalent to

Because of assumptions (C), (MFCQ) in connection with Theorem 4.3,
the objective function of this problem is continuous. Hence, the theorem
follows from the famous Weierstraß’ Theorem.

PROOF OF THEOREM 5.3: Due to lower semicontinuity of the point-to-
set mapping the optimal value function is lower semicontinu-
ous [17]. Hence, this function attains its minimum on the compact set
Y provided this set is non-empty.

PROOF OF THEOREM 5.8: The cone is a polyhedral cone as
finite union of the convex polyhedral cones and formula
(5.16). Then, the result follows from the following facts:

The dual of the convex hull of a polyhedral cone is equal to the dual
of the polyhedral cone itself.

The convex hull of a polyhedral cone is a convex polyhedral cone.

The dual of a convex polyhedral cone is a convex polyhedral cone
again.
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PROOF OF THEOREM 5.9: Assume first that Consider
the cone being the solution set of the following system of
(in) equalities:

Now, since the set can be replaced by and
by Hence, the complementarity slackness conditions are
satisfied in the inequality system describing the cone which
in fact shows that this cone coincides with the one of the cones forming

Hence

by (5.23).
Assume that the set and that Then there exists

a solution of the system defining satisfying both
inequalities

as strong inequalities. This vector cannot belong to any of the cones
comprising the cone

PROOF OF LEMMA 5.1:

Suppose Condition 1. holds. Let the equations (5.25) be satisfied.
Then,



174 FOUNDATIONS OF BILEVEL PROGRAMMING

The vector in the left–hand side belongs to the span of while the
vector in the right–hand side is an element of the span of Hence,
by (PFC), both vectors must be equal to zero. Applying (PFC) again,
we obtain Condition 2.

Equivalence of Conditions 2. and 3. is due to the famous Farkas the-
orem of linear algebra.

Suppose now that the Condition 3. is true. If the first condition
in (PFC) is violated, the vectors are lin-
early dependent and the first system in Condition 3. would be in-
consistent. Now, if the second condition in (PFC) is not valid, sim-
ilarly to the first part of the proof, the existing nonzero vector in
span span can easily be used to show that either one of the
systems in Condition 3. cannot have a solution.

PROOF OF THEOREM 5.10: Since, by the definitions of the cones and
their duals we have only to show the oppo-
site inclusion. Take Since

by (5.16) and

by the definition of the dual cone, we have

for all and all Note that the family of sets
in this formula can be replaced by any larger family and that the

single essential property is that only sets are used. Fix

which is possible by the assumptions. Then, by the definition of the
dual cone there exist such that the following
system is satisfied:
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Considering the dual cone to and taking the definition of the
sets into account, we see that we intend to show that the following
system has a solution

Since each of the indices belongs to either of the sets

or

the inequalities

are to be shown. We show this for the inequality for some
The other condition can be proved similarly.

Let this inequality not be satisfied, i.e. let for some
Let be the vector satisfying the corresponding system in
part 3(a) in Lemma 5.1. Then, we can derive the following sequence of
equations:
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Hence, by we derive

Obviously, the vector for all multipli-
ers and all sets with Since

we must have

which is the desired contradiction.

PROOF OF THEOREM 5.11: Set and let the Karush-
Kuhn-Tucker conditions of (5.1)

be part of the constraints of of an optimization problem. If the
Mangasarian-Fromowitz constraint qualification holds at a feasible point

then the second line in these conditions give:
The gradient of the equation is not vanishing:

and there is a vector satisfying

Now, if then and
by complementarity slackness Analogously, implies

Thus

On the other hand, if then or by (5.62)
Hence, inequality (5.63) holds as a strict inequality which contradicts
(5.60). Consequently, Analogously, implies

which again contradicts (5.60).
Hence, which together with is a contradiction
to (5.59). Thus, the Mangasarian-Fromowitz constraint qualification
cannot hold.
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PROOF OF THEOREM 5.12: We start with showing openness. Since the
is strictly finer than the for we have

to show the theorem only for Fix any index s e t s _
and a point Define

the matrix

with and

is the subvector of G consisting of the functions only.
It is easy to see that the (PLICQ) is satisfied for problem (5.27) at the
point if and only if the matrix is
has full row rank for

Now introduce the continuous function

where Notice that if and only if for every
with either is infeasible or (PLICQ) is

satisfied. Moreover, Now the openness proof follows since
involves only derivatives of the data up to second order.

To verify the denseness part of the theorem, we need Sard’s theorem
together with a corollary.

DEFINITION 5.14 A system of equations and inequalities

is called regular if zero is a regular value of each of the following systems:
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where is a solution of the system (5.64).

Sard’s Theorem can be applied to a system of equations and inequalities
as follows:

COROLLARY 5.1 ([253]) Let be
times continuously dif ferentiable functions with

Then, for almost all the system

is regular.

PROOF OF COROLLARY 5.1: Fix index sets
with Then, by Sard’s Theorem, for

almost all the restriction is a regular value of
the following system:

This implies the result since each feasible solution of (5.65) is feasible
for (5.66) for suitably chosen sets I, J, K and the number of different
selections of I, J, K is finite.

Now we proceed with the proof of the denseness part in Theorem 5.12.
Having a closer look at the Jacobian of a system

it is easy to see that the constraint systems of (5.27) are also regular for
almost all but now the right-hand side of the equations
has not to be perturbed.

Now we outline the proof of the density property of the set For
details omitted by the sake of shortness the reader is referred to [125]
and [139].
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Again we can assume that Let the mapping

be arbitrarily chosen and take a neighborhood V of in
the Choose two countable open coverings and

of with compact closures cl and partitions
respectively of unity subordinate to these coverings.

Here, denotes the support set of a function
Then, there exist smooth functions satisfying

cf. [138]. For shortness call the mapping regular on a set
S if PLICQ is satisfied at every feasible point with

By the above considerations in Corollary 5.1
we can restore regularity of on cl supp without leaving V
by choosing a suitably small and defining the function

Now we define the function

again by use of the above considerations, where is cho-
sen such that is regular, but now on cl supp
cl supp To guarantee regularity of on cl supp
use that regularity on a set 5 is equivalent to the condition that the
function used in the openness part of this proof supplemented by
the characteristic function of 5 is positive. Then, the compactness of
cl supp guarantees that the functions remain regular
for sufficiently small on cl supp We proceed in the
same way to get the sequence of functions

Since a partition of unity is locally finite, the pointwise limit

exists and is in V. Moreover, since the sets form an open
covering of we conclude that Note that
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regularity of the mapping is maintained since, in each
step in the above proof, the mapping remains unchanged
at all the points where it has been regularized in previous steps, i.e. in
each step it is regularized on a new set of points.

PROOF OFTHEOREM 5.15: Let be a local optimistic optimal solution
of problem (5.1), (5.2), i.e. there is an open neighborhood
such that for all with Since the
Karush-Kuhn-Tucker conditions are sufficient and necessary for optimal-
ity in the lower level problem, we have that

for all with and

This implies the existence of an open neighborhood such that

satisfying

and the theorem follows by the definition of together with a
repeated application of the Karush-Kuhn-Tucker Theorem.

PROOF OF THEOREM 5.16: By [60] there exists a non-vanishing vector
satisfying

where denotes the Clarke generalized gradient
of the min-function with respect to and
By the formulae for computing the Clarke generalized gradient
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if i.e.

for some Note that and that at least
one of and does not vanish if Now, if we set

the assertion follows.

PROOF OF THEOREM 5.17:

By Theorem 5.16 every local minimizer of problem (5.27) satisfies
conditions (5.29) for some non-vanishing vector Let

Then,

Let Recall that (MFCQ) holds for (5.30) if
the gradients

and

are linearly independent and there exists a vector satisfying

Note that the other inequalities are inactive for
and we have for these indices. Multiplication of

(5.69) by from left implies
since for and for Then, the (MFCQ)
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Now, it is easy to see that bygives that
(5.70), (5.71)

By the linear independence there exists a vector satis-
fying

are linearly independent and there exists a vector satisfying
(where we use the abbreviation

Then, by linear independence and (5.68), (5.69) this implies that all
multipliers vanish which contradicts Theorem 5.16. Hence,
and can be assumed to be equal to one.

Let be Lagrange multipliers corresponding to a stationary
point of (5.30) and suppose that for some
Let without loss of generality and By (SMFCQ), the
gradients

Recall that
this impliesandSince
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where the abbreviation has been used. Passing to
with sufficiently large if neces-

sary the last set of equations is also satisfied and we can thus assume
that for

By (5.69) we get since again
Hence, by (5.73) we derive

By the first part of this theorem and this implies
Hence, is not a Bouli-

gand stationary point of the problem

Since the (SMFCQ) for problem (5.30) implies that the (MFCQ)
is satisfied for this problem, the point is not a local
minimizer of this problem. This, however contradicts our assumption.

Hence, Analogously, we can also show that for all

PROOF OF THEOREM 5.18: To prove necessity, let the nonsmooth
Mangasarian-Fromowitz constraint qualification be satisfied. Assume
that there exists an abnormal multiplier vector First, let
for some index i with Let the vector satisfy the conditions in
the nonsmooth Mangasarian-Fromowitz constraint qualification. Then,
by the conditions defining for some vectors
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we have

This contradiction proves that But then, is a consequence
of the linear independence of the vectors This shows
the first part of the proof.

Suppose now that Let
be arbitrary vectors in the generalized

gradients of the constraint functions. If would not be
linearly independent there exists a non-vanishing vector in

would have no solution then by the famous Motzkin Theorem of the
alternative there exists a vector with

with Since both cases contradict the assumption, the nonsmooth
Mangasarian-Fromowitz constraint qualification (NMFCQ) holds.

PROOF OF THEOREM 5.19: Since (MFCQ) is satisfied for the lower
level problem, there is a Lagrange multiplier vector
satisfying

Since

by our assumptions and Theorem 4.17 we have

But this means that is a nontrivial abnormal multiplier for prob-
lem (5.36).

Also, if the systemwith
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PROOF OF THEOREM 5.20: Applying the Lagrange multiplier rule for
locally Lipschitz optimization problems [61] we get the existence of

such that

Now the proof follows from Theorem 4.17.

In the following proof Proposition 6.4.4 in [61] is used which says that
the Karush-Kuhn-Tucker conditions are necessary optimality conditions
for a Lipschitz optimization problem provided that the problem is calm
at the local optimal solution under investigation. Consider problem

Then, problem (5.37) is calm at some feasible point provided that
there exist and an open neighborhood such that for
each feasible point for problem (5.79) with the
inequality

holds. It is well known that a problem with differentiable con-
straints and a Lipschitz continuous objective function which satisfies
the Mangasarian-Fromowitz constraint qualification at a local optimal
solution is calm there [61].

PROOF OF THEOREM 5.21: Using Theorem 6.7 there is such
that is an optimal solution of the problem

We show that this problem satisfies the Mangasarian-Fromowitz con-
straint qualification: First the gradients
are linearly independent due to (MFCQ) for the lower level problem at

Let be a vector satisfying

and
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and let satisfy

Let be a vector solving the system of linear equations

which exists due to linear independence. Then, there exists such
that the vector satisfies

Hence, the Karush-Kuhn-Tucker necessary optimality condition [61] for
locally Lipschitz optimization problems applies to this penalty function
problem. Together with Theorem 4.17 this implies the conclusion.

PROOF OF THEOREM 5.22: The deduction of the first two properties is
straightforward and therefore omitted here. We will outline the proof of
the last one.

Let and Because of the
finite number of the tangent cones and properties 1. and 2. it follows that

belongs to int This together with
has the consequence that for any sequences and

with the property

we have for sufficiently large Since is
such a sequence if it follows that
for any sequence This implies the proof.

PROOF OF THEOREM 5.23: Let be a GPC1-function and
a fixed point. According to Definition 5.10 there exist

and continuously differentiable functions defined on such
that

Let be any direction. If for
some we conclude directly from Definition 5.10 that

with some positive Continuity of implies the existence of the
radial limit
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Otherwise, if and it
follows from (5.41) that the same equality holds. This
establishes radial-continuity.

With exactly the same argumentation – remember that – we
get

This completes the proof.

PROOF OF THEOREM 5.24: Let the vector with satisfy the
first condition. That means

which has as a direct consequence the existence of a positive real number
such that

Because of we have for all these
too. This means that is no local minimum.

Now let w.l.o.g. the second condition for with be satisfied.
Hence,

Assuming the existence of a positive sequence with and
we get an immediate contradiction; thus, there

exists with

Continuing as in the first part we get the desired result.

PROOF OF THEOREM 5.25: Arguing by contradiction we assume that
there is a sequence with and
Since a is a selection of only a finite number of there is
an index such that the set contains infinitely many of the
terms In the following we consider the sequence
and denote it by again. Due to the continuity of we derive
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We now define Hence, due to we

have Because of

there is arbitrarily close to with
Now, let be any sequence converging to zero from above and
consider Since we have both

for sufficiently large

(by Theorem 5.22) and

Continuity of leads to

Hence, the first condition in the Theorem cannot be valid. Thus,

Due to

for any there is an open neighborhood such that

On the other hand, owing to the initial assumption and the continuity
of there is another neighborhood with

Set Then, as well
as

Now, take a sequence converging to with Let
be an accumulation point of the sequence defined by

Then, as in the first part we get

for
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since the first condition of the Theorem holds. Now,
for all This leads to

by the initial assumption for sufficiently small Together with
equation (5.82), this implies the existence of an index such that

for all This contradiction to the assumptions of the Theorem
concludes the proof.

PROOF OF THEOREM 5.29: From Theorem 5.24 we conclude both
and

Adding the second equation to the foregoing inequality we get

for all satisfying

This means

PROOF OF THEOREM 5.30: From Theorem 5.26 it follows

for all with

Obviously we have only to investigate with Since the interior
of the radial subdifferential is an open set and we get

with some This means

for all satisfying Thus, if for some the
equation is valid, then follows from (5.83).
Hence, all assumptions of Theorem 5.25 are satisfied and we conclude

PROOF OF THEOREM 5.31: We start with the necessary condition. Let
there be an index with
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and a direction satisfying the conditions (5.45)–(5.47). Then, by the
(ULR), there exists sufficiently close to with

while maintaining all the other inequalities in (5.46) and (5.47) as strong
inequalities. Consider the point for sufficiently small
Then,

implying
for all

for all

for all sufficiently close to by (5.47) and Lipschitz continuity of
This implies Since this is valid

for all we derive that for all
sufficiently small. Considering the objective function value we derive

for sufficiently small by (5.46). Hence, cannot be a local
optimistic optimal solution.

Now assume that the point is not a local optimistic optimal
solution. Then there exists a sequence converging to with

for all Let be a corresponding sequence of
optimal solutions of the problems (5.4). By finiteness of the number
of different optimal solutions in the lower level problem there is one
function out of such that for infinitely many
terms in Let without loss of generality the sequences
and coincide.

The sequence has at least one accumulation
point. Let this sequence without loss of generality converge itself to the
direction Then,
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which implies for all with i.e. condition
(5.48) is satisfied by

By lower semicontinuity of the function [17] and
we have that and by upper

semicontinuity of the set of global optimal solutions in the lower level
problem also Let for all Now,
analogous differential considerations as for the functions lead to:

for by Passing to the limit for
shows that condition (5.50) is satisfied if

Now we come to (5.49). Inserting into the upper level objective
function and using we derive

showing that satisfies also condition (5.49). Hence there exists at
least one of the systems (5.48) - (5.50) having a nontrivial solution which
contradicts our assumptions. Hence, the assertion is valid.

PROOF OF THEOREM 5.32: Since the second part of this proof can be
shown repeating the proof of Theorem 5.31 we show only the first part.
Let

This implies that there exists a direction which does
not belong to the contingent cones for all By the
definition, there are sequences and with for
all and Closedness

of the sets and the definition of the contingent cone implies
that
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for all sufficiently large
Let be given with for all

and suppose without loss of generality that exists.

Then, since (5.84) we have

or, with other words, there exists such that
for all sufficiently large Hence, there exists with

This implies that the point is not a local pessimistic optimal
solution.



Chapter 6

SOLUTION ALGORITHMS

In this Chapter algorithms are given computing Bouligand or Clarke
stationary points of problem (5.1), (5.2) in the case when the lower level
problem (5.1) has a unique optimal solution for all values of the pa-
rameter. Having results of structural parametric optimization in mind
[141, 142], such an assumption is in general only allowed for convex
lower level problems. Whence we will add a convexity assumption to
the lower level problem throughout this Chapter. We will describe dif-
ferent algorithms for bilevel programming problems: Section 6.1 contains
the adaptation of a classical descent algorithm. We show that we need a
certain generalized direction finding problem to achieve convergence to
a Bouligand stationary point. Using the results in the monograph [224]
and the paper [255] a bundle algorithm is given in Section 6.2. Bundle al-
gorithms proved to be very robust and efficient minimization algorithms
in nondifferentiable optimization (see also [150, 151, 225]). Using bundle
algorithms Clarke stationary solutions can be computed. A trust region
method developed in [269] can be used to compute a Bouligand station-
ary method. We will present this method in Section 6.4. After that we
will derive penalty function approaches solving different reformulations
(5.26), (5.27) or (5.36) of the bilevel programming problem. We close
the presentations in this Chapter with smoothing methods.

It should be mentioned again that focus is mainly on the computation
of (local) optimal solutions of the bilevel programming problem in the
sense of Definition 5.1. Since all the approaches in this Chapter start
with reformulations of the bilevel problem the computed solutions are
(Clarke or Bouligand) stationary points of these reformulated problems
only. For the relations between these points and (local) optimal solutions
of the bilevel problem we refer to Theorem 5.15. It turns out that, if

193
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the lower level problem is a convex one having a strongly stable optimal
solution, then (Clarke or Bouligand) stationary points of these reformu-
lated problems have the same property also for the original problems. If
the algorithms in this Chapter are applied to bilevel problems satisfying
all the assumptions but lower level convexity, solutions will be computed
which are in general not feasible for the bilevel problem since the lower
level solution is in general only a local but not a global optimal solution.

Since algorithmic considerations do not belong to the main points in
this book and since convergence proofs for them are often lengthy we
will give the results in this Chapter without proofs.

6.1 A DESCENT ALGORITHM
We consider the bilevel programming problem with explicit upper

level constraints in the form

where is defined by (5.1) and is assumed to have a unique optimal
solution for all values of the parameter . Then, this problem reduces
to the one–level problem

Assume that the lower level problem (5.1) is a convex parametric op-
timization problem and that the assumptions (MFCQ), (CRCQ) and
(SSOC) are satisfied at all points with . Then
the unique optimal solution of this problem is strongly stable (Theorem
4.4), it is a function (Theorem 4.10) and hence locally Lipschitz
continuous (Theorem 4.6). Thus, the objective function of problem (6.2)
is directionally differentiable (Theorem 4.11). This motivates the follow-
ing prototype of a descent algorithm:
Descent algorithm for the bilevel problem:

Input: Bilevel optimization problem (5.1), (6.1).
Output: A Clarke stationary solution.

1. Select satisfying set choose
2 . Compute a d i r e c t i o n s a t i s f y i n g

and
3. Choose a step-size such that

4. Set , compute , set
5. If a stopping criterion is satisfied stop, else goto step 2.
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For computing the direction of descent we can exploit the necessary
optimality condition for bilevel programming problems given in Theorem
5.4 together with the formulae for computing the directional derivative
of the solution function of the lower level problem given in Theorem
4.11. This leads to the following problem to be solved for some index
set and some vertex where

Let be a feasible solution of problem (6.3) with
Then, the verification if the computed direction is such that

is not necessary since problem has a feasible so-
lution if and only if by linear programming duality.
Note that the (necessary and sufficient) optimality conditions of prob-
lem are part of the constraints of problem (6.3) for suit-
ably chosen index set . Theorem 5.4 shows that if problem
(6.3) has a negative optimal value for some index set and
some vertex then the point is not
locally optimal. Note that the inactive inequalities both in the lower
and the upper levels are treated in a way which is sensible only if the
assumptions (ULR) and (FRR) are satisfied. If one of these conditions
is violated a simple degenerate situation can force the objective function
value to be zero without any implication for the bilevel problem. The
use of this formulation of the direction finding problem is motivated by
techniques which avoid zigzagging [31].

In place of a step–size we can use a kind of Armijo step-size rule [31],
i.e. we select the largest number in where ,
such that

Of course, this rule can be replaced by other step–size selection methods
and can also be refined according to the ideas in [31, 123, 124].
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Applying the resulting algorithm to the bilevel programming problem
we get convergence to a Clarke–stationary point:

THEOREM 6.1 ([76]) Consider problem (5,1), (6.1) with a convex para-
metric lower level problem under assumptions (C), (ULR), (FRR),
(MFCQ), (CRCQ), and (SSOC) for all
Then, for the sequence com-
puted by the algorithm, the sequence has zero as the only accu-
mulation point.

It should be mentioned that, to achieve local convergence, the strong
assumptions (MFCQ), (CRCQ), (SSOC), (FRR) are only needed at the
limit point of the computed iterates.

COROLLARY 6.1 Consider the bilevel programming problem (5.1), (6.1)
and let all assumptions of Theorem 6.1 be valid. Then, each accumula-
tion point of the sequence of iterates is Clarke stationary.

The following example shows that the result of the above algorithm is
in general not a Bouligand stationary point.

Example: In this example the following problem is solved:

where

Then,
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Hence,

which is equal to

This function is plotted in Figure 6.1. Now, if the algorithm is started
with small positive and the selected step sizes are not too large, the
algorithm converges to the point One possible sequence of
iterates is given in Table 6.1. At all iteration points, the function
is indeed differentiable and we have . Hence, it can
be seen that converges to zero and the limit point of

is Clarke stationary. But this point is not Bouligand stationary
since is a descent direction for the function at . The
reason for this behavior is that a new strongly active selection function
arises at the point for the function

The above algorithm is not able to “see” this new strongly active se-
lection function if never a “large” step–size is tried. But in higher di-
mensions also the use of larger step–sizes can not prevent the algorithm
from such a behavior. The only way out of this situation is to enlarge
the family of index sets in the lower level beyond.  To

do that, take and let

denote the set of lower level inequalities. The idea of the fol-
lowing complete algorithm is to use the inequalities in the lower
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level to enable the algorithm to foresee that an additional selection func-
tion will get active at an accumulation point of the iterates without
explicitly computing that limit point. Then, if we have also an ap-
proximation of the corresponding Lagrange multiplier at hand, we can
use the approximation of the direction finding problem to compute an
approximation of the descent direction at the limit point. If the limit
point is Clarke but not Bouligand stationary this new descent direction
must give a much larger descent than that at “late” iterates without this
foreseeing possibility. This can be used to pass the accumulation point
without computing it explicitly.

The computation of the approximate Lagrange multiplier can be done
by solving the quadratic optimization problem

for some set such that the gradients

are linearly independent. The optimal solution of this problem is
uniquely determined and converges to the true Lagrange multiplier vec-
tor for if The correct selec-

tion of the set can be left to an oracle. We suggest to use
trial and error to realize such a selection.

Due to the posed assumptions, problem (6.3) has a negative optimal
objective function value if the accumulation point is not Bouli-
gand stationary and the correct values are inserted. Due to

and Theorem 4.3 the optimal value function of this problem
depends continuously on the data, especially on the lower level Lagrange
multipliers. Hence, if is closely enough to the optimal
objective function value of the direction finding problem will be nega-
tive provided the correct set is used. This verifies usefulness of the
following descent algorithm:
Modified descent algorithm for the bilevel problem:

Input: Bilevel optimization problem (5.1), (6.1).
Output: A Bouligand stationary solution.

1. Select solving choose a small , a sufficiently
small a factor a and set
2. Choose with

and

and compute an optimal solution for problem
(6.3).
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If then goto step 3’. If and not all possible samples
are tried then continue with step 2.

If all and all tried to be used then set
If then goto step 2’ else to step 2.
2’. Choose satisfying

and (C2) as well as

Argmin

and compute an optimal solution for the problem
(6.3).
If then goto step 3’. If and not all possible samples

are tried then continue with step 2’. If all tried to
be used then set If then stop.
3’. Select the largest number in , such that

and

If then drop the actual set and continue searching for a
new set in step 2 or 2’.
4. Set Goto Step 2.

The value must be so small that the exit in step 3’ can only be used
if a set is selected in the step 2’ such that the problem (6.3) has a
negative optimal value, but the corresponding direction is a direction
of ascent. This is obviously possible, if is nowhere a set of active
constraints locally around

The choice of seems to be a difficult task. But, on the first hand,
there is a positive such that for each

Moreover, the set should contain
only a few elements (one or two) for sufficiently large for most of the
instances. On the one hand, searching for a direction of descent by use
of the step 2’ of the algorithm can result in a drastic increase of the
numerical effort at least if is too large. Thus, we suggest to use the
step 2’ only in the case when the value of is sufficiently small
and then only for small . On the other hand, if the step 2’ successfully
terminates with a useful direction and with a set , then
the calculated descent in the objective function value can be expected
to be much larger than during the last iterations. Using this algorithm
we can show convergence to a Bouligand stationary point:

THEOREM 6.2 ([76]) Consider the bilevel programming problem (5.1),
(6.1) where the lower level problem is assumed to be a convex para-
metric optimization problem. Let the assumptions (C), (ULR), (FRR),
(MFCQ), (CRCQ), and (SSOC) be satisfied for all points
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. Take a sufficiently small and fixed parameter
Let the sequence be computed
by the modified descent algorithm. If is an accumulation point of

then is a Bouligand stationary point of the bilevel
programming problem.

6.2 A BUNDLE ALGORITHM
Under the assumptions of Theorem 4.10 on the lower level problem,

problem (6.2) is a problem of minimizing a Lipschitz continuous function
on the feasible set . If assumption (FRR) is also
satisfied, then

with

by Theorem 4.12. In the opposite case, if assumption (FRR) is not valid,
formula (6.5) determines the pseudodifferential of the function by
Corollary 4.1. Hence, we can apply the bundle-trust region algorithm
[160, 161, 223, 224]. A detailed description of this method can be found
in [255]. We recall the formulation of this algorithm in the case when the
constraints are absent. The inclusion of linear constraints is

easy applying the ideas in [302] or using of a feasible directions approach
in the direction finding problem (6.19) below. Nonlinear constraints

can be treated using a feasible directions approach as in [150].
Denote a generalized gradient in the sense of Clarke for the function
at a point by . The bundle method has its roots in cutting plane
methods for minimizing convex functions. Let be trial
points and iterates already computed. Then, the cutting plane method
minimizes the function

with respect to where . The model (6.6) is a piecewise
affine linear lower approximate for if this function would be con-
vex. A direction minimizing this model is a descent direction if
is not a stationary point. Unfortunately, cutting plane methods using
the model (6.6) for computing descent directions have a very slow con-
vergence speed. Obviously, especially in nonconvex optimization, the
model substituting the minimized function cannot give many informa-
tion about the function far away from . This was the reason for adding



Solution algorithms 201

the quadratic regularization term in (6.6):

with

for all and positive . Using the model (6.7) as a substitute of
the function a class of much more effective algorithms has been
developed known as bundle algorithms and going back to [170, 293].
The optimal solution of problem (6.7) is a descent direction for
at provided the model approximates the function sufficiently
good in a neighborhood of a nonstationary point . Then a new iteration
point is computed which gives a sufficient descent in
the model function . If, e.g. for nonsmooth ,
the model approximates rather poor in a neighborhood of , the
direction will not lead to a sufficiently good (if any) descent. In this
case, no new iteration point is computed but the new trial point =

is used to improve the model by adding one generalized gradient
from . Schematically this leads to the following algorithm (see
[2241):

Schematic step in the bundle trust region algorithm [224]
Input: Sequences of iterates and trial points , a

regularization parameter
Output: A new sufficiently better iteration point or an

improved model.
1. Compute an optimal solution of (6.7). Set
2. If is sufficiently smaller than then either
a) enlarge and go back to 1. or
b) make a serious step: Set
If is not sufficiently smaller than then either
c) reduce and go back to 1. or
d) make a null step: Set , compute

This variant of the bundle algorithm has been implemented by H.
Schramm and J. Zowe [255] and has shown to be a robust and very effi-
cient solution algorithm for nonsmooth optimization problems in exten-
sive test series including also real life problems and bilevel optimization
problems (see e.g. [224]).

The direction finding problem of minimizing the function (6.7) can
equivalently be written as
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Actually, computational complexity forces us to use only part of the
sequence in the formulation of the direction finding problem
(6.9). This implies that this problem has only some part of the given
constraints. The correct selection of the elements is
done in the outer iterations of the bundle algorithm.

From the optimality conditions of the strongly convex optimization
problem (6.9) with linear constraints we get

LEMMA 6.1 ([255]) Let be the (unique) optimal solution of the

problem (6.9). Then there exist numbers

such that

The subgradient inequality

for convex functions implies that provided that the function
is convex. Adding (6.8) and (6.14) we get

for all and all This implies that the inequality
constraint corresponding to is less bounding the l a r g e r i s . Take

with multiply conditions (6.15) by and sum up. Then

we obtain

which is valid for all . The following Lemma is a direct conse-
quence of (6.16):
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such that

then

Setting and using (6.12) we see that implies optimality of
the point as expected.

In [224, 255] refined rules for making serious vs. null steps are made
which should now be given. Let numbers

be given as well as an upper bound T for , some small
and a stopping parameter . Let be a sequence of iterates
and a sequence of trial points where elements of the generalized
gradient have been computed,

Refined inner iteration in the bundle algorithm
Input: A function to be minimized, an iteration point

and a sequence of trial points
Output: Either a new iteration point or a refined model

(6.9).
1. Put
2. Compute the optimal solution of (6.9). If

then stop: is in the sense of Lemma 6.2. Otherwise
put and compute
3. If SS(i) and SS(ii) hold, then make a serious step:

and stop.
4. If SS(i) holds but not SS(ii) then refine the parameter : Set

and goto 2.
5 . I f NS(i) and NS(ii) hold, make a null step:

and stop.
6.I f NS(i) holds but not NS(ii) make a refinement of the parameter

: Put and goto Step 2.

Set

Here, the conditions SS(i), SS(ii), NS(i), and NS(ii) are the following:

LEMMA 6.2 ([255]) Let . If there exists a vector
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Condition

guarantees a decrease of at least which is at least times the
directional derivative of the model function (6.6).

The second condition for a serious step is the following:

The first condition in SS(ii) checks if a substantial change in the model
(6.9) is made. If this substantial change is not guaranteed and is not
large enough then a larger is tried even if SS(i) is satisfied.

Condition NS(i) is the negation of SS(i):

Then, either the model (6.6) is not adequate or the parameter was
too large. Hence, a smaller can be used.

If the first condition in

is satisfied, a null step leads to a significant change of the model function
(6.6) and can be done. This is due to

with and after performing the null step.
This can be interpreted as being close to and
it makes sense to add the vector to the bundle of all the elements
of the generalized gradients . In this case, inequality NS(i)
guarantees that the new inequality for (6.9) contributes non-redundant
information:

for all The reason why a null step is made also if the first
condition in NS(ii) is not satisfied but the second one is, comes from the
proof of the bundle algorithm in [254, 255].

In [224, 255], the inner iteration of the bundle algorithm is embedded
into the overall bundle trust-region algorithm. The main task in this
outer algorithm besides fixing the initial conditions is it to update the
bundle of subgradients.

NS(ii):

SS(i):

SS(ii):

NS(i):
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Bundle algorithm for minimizing a convex function
Input: A convex function to be minimized.
Output: A Clarke stationary point.

1. Choose a starting point and parameters
and an upper bound

for the maximal number of subgradients in the bundle.
2. Compute and a subgradient . Set
1,
3. Apply the inner iteration algorithm either to compute a new
(trial or iteration) point and a new subgradient or
realize that is
4. If reduce the bundle in Step 5. Else goto Step 6.
5. Choose a subset with and

Introduce some additional index and set

6. Compute for all set . and
goto Step 2.

Some remarks to the algorithm are in order. First, the use of the
subset of subgradients, and hence the use of only a subset of the
constraints in the problem (6.9), is needed due to to storage space limi-
tations. The method for reducing used in the above algorithm corre-
sponds to the aggregate subgradient technique developed in [150]. Usu-
ally, the formula is not correct since there is in general no
point satisfying this equation. In [255] this artificial notation has
been used to keep with the previous notation. Also has no
interpretation as a linearization error as has. But it can easily be
checked that the inequality

remains valid for this setting. And this inequality is used for the sub-
gradients in the convergence proof. Second, the method for reducing

is especially constructed such that all necessary information is main-
tained and information resulting from points which are fare away from
the present iteration point is secured in an aggregated form.

For the bundle algorithm, convergence to optimal solutions of the
problem of minimizing a convex function on the whole space can be
shown provided the set of optimal solutions is not empty:
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THEOREM 6.3 ([224, 255]) Let the function be convex. If the
set of optimal solutions Argmin then the bundle algorithm

converges to some Argmin for tending to infinity, i.e.

If the set Argmin then

Now we consider the nonconvex case. Note that can be
guaranteed only in the case of minimizing a convex function (i.e.
is accurately approximated by (6.7) generally only in the convex case).
Since the function as defined in (6.2) is in general not a convex
function, the functions (6.6) can not be used to describe appropriate
local approximations of . To overcome this difficulty, is replaced
in [255] by

for a small and we get the direction finding problem

in place of (6.7). This change does not affect Lemma 6.1 and we will
again introduce the vector and the number as in (6.17). Then, the
conditions

mean that zero lies up to in the convex hull of generalized gradients
of the function at points which are sufficiently close to . Since
the function is locally Lipschitz continuous this approximates the
Clarke stationarity of the point

Now consider the refined inner iteration in the bundle algorithm. The
first part of condition SS(ii) comes from convexity
and has to be dropped now. This condition is also not needed for the
convergence proof. But we have also to add one condition NS(iii) to the
remaining rules
SS(i):
NS(i):
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NS(ii):
NS(iii):

The introduction of NS(iii) is due to nonconvexity. Assume that NS(i)
is satisfied. For convex functions this implies (6.18) which corre-
sponds to NS(iii). The result of (6.18) was a sufficient change of the func-
tion (6.6) locally modelling the function after a null step. In the
convergence analysis the inequality (6.18) was essentially used. For non-
convex the conditions NS(i) and NS(ii) may hold without NS(iii)
being valid. Hence we have to add this additional condition for a null
step.

It remains to describe the ideas used in [224, 255] in the case when
the conditions NS(i) and NS(ii) but not NS(iii) are satisfied. In this case
a line search method is applied as an emergency exit. Such a line search
for nonconvex functions has been investigated in detail in [123, 124,
169]. In [169] it has been shown that for weakly semismooth functions

a line search can be constructed guaranteeing that, after finitely
many steps, it stops with a step size such that with

either one of the following conditions is
satisfied:

or

According to the previous discussion the first case enables us to make
a serious step whereas the second one implies that all conditions for a
null step are satisfied. Hence, a short serious step is executed if (6.20)
is valid. The new iteration point is then . In the other
case, if (6.21) is true, a null step is done leading to In both
cases one generalized gradient is added to
the bundle.

Summing up this leads to the following inner iteration of the bundle
algorithm. The outer iteration remains unchanged.
Refined inner iteration in the bundle algorithm, nonconvex
case

Input: A locally Lipschitz function to be minimized, an
iteration point and a sequence of trial points

Output: Either a new iteration point or a refined model
(6.9).
1. Put
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2. Compute the optimal solution of (6.9) with replaced
by If

then stop: is “almost stationary”. Otherwise put
and compute
3. If SS(i) hold, then make a serious step: and
stop.
4 . I f NS(i), NS(ii) and NS(iii) hold, make a null step:

and stop.
5. If NS(i), NS(ii) hold, but not NS(iii), then:

a. If the second condition in NS(ii) holds, then make a line search
along the line

b. Otherwise refine and repeat 1.
6. If NS(i) holds but not NS(ii) make a refinement of the parameter

Put and goto Step 2.

To show convergence of the algorithm a new assumption has to be
posed:

This assumption can be satisfied if the process starts sufficiently close
to a local optimum. If a convex function is minimized, this assumption
is automatically satisfied.

THEOREM 6.4 ([254]) If the function is bounded below and the se-
quence computed by the above algorithm remains bounded, then
there exists an accumulation point such that

Repeating the ideas in [254], it is easy to see that, if we are not sure
to compute a generalized gradient of the function in all of the
iteration points but compute elements of the pseudodifferential of
in any case, then , i.e. there is an accumulation point of the
sequence of iterates being pseudostationary.

The following corollary is a simple consequence of the previous theo-
rem and strong stability (cf. Theorem 4.4).

COROLLARY 6.2 If the assumptions (C), (MFCQ), (CRCQ), (SSOC),
and (FRR) are satisfied for the convex lower level problem at all points

the sequence of iteration points remains
bounded, then the bundle algorithm computes a sequence having
at least one accumulation point with . If assumption
(FRR) is not satisfied, then the point is pseudostationary.

is bounded
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6.3 PENALTY METHODS
Penalty methods belong to the first attempts for solving bilevel pro-

gramming problems [2, 3]. Different penalty functions have been used,
some of them will be given below.

DEFINITION 6.1 A penalty function for a set is a continuous
function with

A penalty function (for a set M) is called exact (at a point ) if
for every smooth objective function there exists a real number

such that is a local minimizer of the function provided
that is local optimal solution of the problem min

Penalty functions have widely been used in nonlinear optimization and
can be found in almost all text books on Nonlinear Optimization (see
e.g. [31, 40, 300]). Exact penalty functions have been applied to nonlin-
ear programming problems e.g. in [51, 89, 115, 261, 299]. Many results
on exact penalty functions for Mathematical Problems with Equilibrium
Constraints can be found in the monograph [188] and in the papers
[196, 252]. The various approaches differ in the reformulation of the
bilevel programming problem used as a basis for the penalty function.
In the first result the problem (5.5) is replaced by (5.26). Note that all
these problems are, even in the case of a convex lower level problem,
in general not equivalent to the optimistic bilevel programming problem
(5.1), (5.5). Theorem 5.15 has shown that all local optimistic optimal
solutions of the bilevel programming problem are also local optimal so-
lutions of the reformulation (5.27), a result which similarly is true also
for (5.18) and (5.36).

THEOREM 6.5 ([188]) Let be analytic (vector-valued) func-
tions. Let the lower level problem (5.1) be convex and assume that
the assumption (MFCQ) is satisfied for this problem for all
with . Let the feasible set of the bilevel program-
ming problem be not empty and bounded. Take any such that

. Then, there exist a scalar
and an integer such that for all , any vector
solves (5.5) if and only if for some the tuple solves
the following problem
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where

This Theorem uses a standard exact penalty function applied to problem
(5.26). The difficulty which makes the fractional exponent necessary
results from the complementarity condition in (5.26).

If the bilevel programming problem is replaced by the nonsmooth
one-level programming problem (5.27), the following function serves as
a penalty function:

Here, is understood component wise: for . The
following theorem applies the penalty function (6.23) to bilevel program-
ming problems. It says that a local optimistic optimal solution of the
bilevel programming problem with a convex lower level problem (5.1)
is a Bouligand stationary point of an exact penalty function for (5.27).
This opens the possibility to apply algorithms solving nonsmooth opti-
mization problems to the bilevel programming problem.

THEOREM 6.6 ([249]) A feasible point of (5.27) is Bouligand
stationary for for sufficiently large if and only

for all satisfying

i.e. it is Bouligand stationary for the problem (5.27).

A third reformulation of the bilevel programming problem is given by
(5.36). Here the optimal value function of the lower level problem is
used to replace this problem. Again, the exact penalty function can
be minimized using algorithms for nonsmooth optimization since the
function is locally Lipschitz continuous under the assumptions used
(see Theorem 4.14).

THEOREM 6.7 ([297]) Consider the problem (5.36). Assume that the
assumptions (C) and (MFCQ) are satisfied for the convex lower level
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problem (5.1) for all with Let be a local
optimistic optimal solution of the bilevel problem. Then, problem (5.36)
is partially calm at this point if and only if there exists such that

is also a local minimizer of the problem

In [262] this penalty function has been used to construct an algorithm
computing a global optimistic optimal solution. Using the sufficient con-
ditions for partial calmness in Section 5.6 this result implies the penalty
function approach for linear bilevel programming problems in [7].

6.4 A TRUST REGION METHOD
As in bundle methods, a local model of the objective func-

tion is minimized in each step of a trust region method [252, 269]. To
introduce this local model function, we start with the nonsmooth prob-
lem (5.27). By Theorem 6.6 the task of finding a Bouligand stationary
solution for problem (5.27) can be solved by minimizing the function

Fix some iterate and consider the function which
is obtained from if each .of the functions is
replaced by its linearization at the point in
direction with

Since it is assumed that this model approximates the penalty
function in a certain neighborhood of the current iterate ,
the model is minimized on a an appropriate closed neighborhood
of zero. If the resulting change in the function value is not less than some
fixed percentage of the change predicted by the model function, a new
iterate is computed. In the opposite case, the trust
region radius is updated. The trust region algorithm roughly works as
follows [269]:

for sufficiently large
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Trust region algorithm for the bilevel problem:
Input: An instance of problem (5.27).
Output: A Bouligand stationary point.

0. Choose two fixed parameters a starting point
, an initial symmetric matrix of appropriate di-

mension, a starting trust region radius and a minimal radius

1. Compute a vector with and . If
no such vector exists, terminate the algorithm. Otherwise compute

2. Set

and adjust the trust region radius

Terminate the method if a prescribed rule is satisfied, otherwise set
select a new symmetric matrix and return to Step

1.

In the following convergence theorem we need some assumptions:

(S1) If is an accumulation point of the trust region se-
quence which is not a Bouligand stationary point
of the function then there exists a positive number and
a normalized descent direction of such that: for
all there exists an open neighborhood V of such
that for all with and all the direction
determined in Step 1 of the algorithm satisfies

The essence of this condition is that the search direction is a tradeoff
between the global minimum of the model function and a pure descent
direction of this function at the current iterate. The computation of a
pure descent direction is not sufficient for convergence due to the non-
convexity of the penalty function. This assumption can be satisfied if
the linear independence constraint qualification is satisfied for problem
(5.30) and appropriate Lagrange multipliers are taken [269]. Obviously,
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this assumption is also valid if it would be possible to compute a direction
with

in each iteration of the algorithm. Unfortunately, this problem is
hard.

Next two conditions are given which are conditions on the parameters
of the algorithm and can easily be satisfied.

(S2) For each the assignment generates a strictly
decreasing positive sequence converging to zero and there exists a con-
stant such that Reduce is satisfied. For each

the setting generates a strictly increasing se-
quence and there exist a number and such that
Increase for all and Increase if

(S3) The sequence of the matrices is bounded.

The following theorem says that this algorithm computes a sequence
of iterates each accumulation point of which is a Bouligand stationary
point:

THEOREM 6.8 ([269]) Let be an infinite sequence of
iterates computed with the trust region algorithm and let
be an accumulation point of this sequence. Then, if the assumptions
(S1)–(S3) are satisfied and if the point is Bouli-
gand stationary for the function

Theorem 6.8 implies, that any accumulation point of the sequence
of iterates is a Bouligand stationary point of the penalty function

Theorem 6.6 then helps to verify that this point is a Bouli-
gand stationary point of the problem (5.27) provided that the penalty
parameter is sufficiently large. This implies that we have to find an
update rule for the parameter. In [269] an update rule from [298] has
been applied to reach that goal. This update rule constructs two se-
quences as follows: Let be constants with

If

then else both and remain unchanged.
One more assumption is needed to investigate the convergence properties
of the trust region algorithm with added penalty update rule.
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(S4) If is an accumulation point of the sequence of iterates
computed by the trust region algorithm which is a Bouligand stationary
point then there exists an open neighborhood V of such
that the following is valid: If and if the iteration
is not successful, i.e. if and

then there exists independent of such that

This assumption essentially means that the solution technique used in
the subproblem does not delude us into believing that significantly better
points exist if the iteration point is sufficiently close to the accumulation
point, the point itself remains the same but the trust region radius is
increased. Then we have

THEOREM 6.9 ([269]) Let be the sequence of iter-
ates computed with the trust region algorithm completed with the penalty
parameter update rule and suppose that the assumptions (S1)–(S4) are
satisfied and Then, if every accumulation point of

the sequence is Bouligand stationary of the function
and

If we replace the assumption (S1) with a similar condition using the
function in place of the local model function, then we get
also a result for unbounded sequence

(S1’) If is an accumulation point of the trust region se-
quence which is not a Bouligand stationary point
of the function then there exists positive numbers and
a normalized descent direction of such that: for all

there exists an open neighborhood V of such that
for all with and all the direction

determined in Step 1 of the algorithm satisfies

THEOREM 6.10 ([269]) Let be the sequence of iter-
ates computed with the trust region algorithm completed with the penalty
parameter update rule and suppose that the assumptions (S1’), (S2),
(S3) are satisfied and Then, if every accumula-

tion point of the sequence is Bouligand stationary
of the function
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6.5 SMOOTHING METHODS
In [101] the ideas of the perturbed Fischer-Burmeister function [98,

143] have been used to construct a smooth approximation of the KKT-
transformation of the bilevel programming problem.

DEFINITION 6.2 The Fischer-Burmeister function is de-
fined by

The perturbed Fischer-Burmeister function is given by

The Fischer-Burmeister function has the property

but it is nondifferentiable at a = b = 0. Its perturbed variant satisfies

for . This function is smooth with respect to for . Using
this function, the problem (5.26) can be approximated by

Let

denote the Lagrange function of the problem (6.25).
Then, the usual necessary optimality conditions of first and second

orders can be defined for problem (6.25): The Karush-Kuhn-Tucker con-
ditions state that there exist vectors satisfying
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(cf. [101]).
The Clarke derivative of the function exists and is

contained in the set

Let be solutions of (6.25) and assume that this sequence
has an accumulation point for . It is then easy to see
that, for each i such that any accumulation point of
the sequence

belongs to , hence is of the form

Then, it is said that the sequence is asymptotically
weakly nondegenerate, if in this formula neither nor vanishes for any
accumulation point of . Roughly speaking this means
that both and approach zero in the same order of magnitude
[101].

THEOREM 6.11 ([101]) Let satisfy the necessary opti-
mality conditions of second order for problem (6.25). Suppose that the
sequence converges to some for . If
the (PLICQ) holds at the limit point and the sequence
is asymptotically weakly nondegenerate, then is a Bouligand
stationary solution for problem (5.26).

Similar ideas have been used in [136] for the construction of several op-
timization algorithms for optimization problems with complementarity
constraints which can also be used to compute optimistic optimal solu-
tions for bilevel programming problems.



Chapter 7

NONUNIQUE LOWER LEVEL SOLUTION

If the lower level parametric optimization problem (5.1) can have non–
unique optimal solutions for some values of the parameter the bilevel
programming problem is in general not stable. This is due to the possible
lack of lower semicontinuity of the solution set mapping of the follower’s
problem in this case. This has at least two consequences:

1.

2.

If the leader has computed one solution he cannot be sure that this
solution can be realized. On the first hand this led to the formulation
of the optimistic and the pessimistic bilevel programming problems
(5.3) and (5.6). But both the optimistic and the pessimistic solutions
can in general not be assumed to be good approximations of the
realized solutions in practice.

Small changes in the problem data can result in drastic changes of the
(lower level optimal) solution. Hence, if the leader has not solved the
true problem but only an approximation of it his computed solution
can be far from its practical realization.

To circumvent these difficulties it could be preferable for the leader not
to take the (best possible or computed) solution but a small perturbation
of this solution guaranteeing that the follower has a uniquely determined
solution which is strongly stable. We will give some results guaranteeing
that such a solution can be computed in the first section 7.1. The ques-
tion of approximability of bilevel programming problems is investigated
in Chapter 7.2. Focus in the last section of this chapter is on solution
algorithms for problems with non–unique lower level problems.

217
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7.1 APPROXIMATION OF DESIRED
SOLUTIONS

As indicated at the beginning of this chapter the possibilities for the
leader to get more safety in the realization of his computed solution
(and the corresponding objective function value) by a subsequent per-
turbation of his selection are investigated. Assume that the leader has
selected a feasible solution of the upper level problem (5.2) and that

is one optimal solution of the follower’s problem (5.1) the
leader used in his computations. Then, the leader hopes that the re-
alization of this solution will lead to an upper level objective function
value close to Due to the reasons given above this need not
to be the case.

One way out of this dilemma is to perturb such that the set of
optimal decisions of the follower for the perturbed problem is a small
set in a neighborhood of If this is possible, the set of possible values
for the leader’s objective function is also small and, in the best case, cut
down to a unique value. The idea for applying subsequent perturbations
comes from assertions that many optimization problems have generically
a unique optimal solution.

THEOREM 7.1 ([220]) Consider a linear optimization problem

having a parametric objective function. Then, for almost all this
problem has a unique optimal solution.

THEOREM 7.2 Consider the convex parametric optimization problem
(5.1) and let the assumptions (C) and (MFCQ) be satisfied at some
point with Then, for all positive definite matrices M
and for all sufficiently close to the problem

has a unique optimal solution.

More general genericity results can be found in the papers [62, 128]. A
related result has been obtained in [246]: If problem (5.1) with
is considered then it can be shown that for almost all vectors and
for almost all matrices A, B, C of apropriate dimensions the problem
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belongs to the so-called class of generic optimization problems [113].
The elements of this class have the property that the family of all their
stationary solutions which are not strongly stable in the sense of Kojima
(cf. Theorem 4.4) forms a discrete point set [113]. This implies that for
almost all the optimal solution of problem (7.2) is locally unique and
strongly stable.

In [147], the following genericity result for the pessimistic bilevel pro-
gramming problem (5.6) has been given.

DEFINITION 7.1  Let denote the optimal value
of the pessimistic problem (5.6) and let for simplicity A se-
quence is called minimizing sequence if

Problem (5.6) is called well-posed if every minimizing sequence
converges itself to an optimal solution.

It is easy to see that well–posedness implies that the problem has a
unique optimal solution.

DEFINITION 7.2  Let E be a subset of the set of all continuous functions
Then, the set E is called generically well–posed if

there exists a dense subset (w.r.t. the maximum norm) such that
problem (5.6) is well posed for every

Let denote the solution set mapping of prob-
lem (5.6) with respect to variations of the upper level objective function
F.

THEOREM 7.3  ([147]) Let be the set of all contin-
uous functions mapping Then the following conditions
are equivalent:

1. Problem (5.6) is well–posed.

2. is upper semicontinuous and single–valued at F.

For a proof of this and the next theorem the reader is referred to the
original paper. This result shows that small perturbations of the upper
level objective function can not result in large changes of the optimal
solution if and only if each minimizing sequence of the original problem
converges to a pessimistic optimal solution.

THEOREM 7.4 ([147]) Let be an upper semicontinuous mapping
and let assumption (C) be satisfied. Then E is generically well–posed.

Both results are generalized in [147] also to the case that pairs
of lower and upper variables are considered as (feasible resp. optimal)
solutions.
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Unfortunately, these ideas are not easily applicable to the case treated
here since they are valid only if general perturbations are allowed. But
we can try to implement the following idea:

Method for approximation of a computed solution
Input: A solution of e.g. one of the problems (5.3) or

(5.6).
Output: A perturbed point such that is

small, and is “small”.
1. Compute a direction such that:

we have

2. Choose a step-size sufficiently small and compute a per-
turbed solution

Consider first the case that each optimal solution of the lower level
problem (5.1) is strongly stable in the sense of Kojima [157]. Then, if
assumption (C) is satisfied, for some finite
index Let assumptions (MFCQ), (SSOC), and (CRCQ) be satisfied
at all points with Then, there exist

with for all sufficiently close to
This implies that, for each there exist strongly active
selection functions with

by Corollary 4.1. Assume w.l.o.g. that the leader has computed the
solution and denote

and

THEOREM 7.5 Consider the problem (5.1) and let the assumptions (C),
(MFCQ), (CRCQ), and (SSOC) be satisfied for all global optimal solu-
tions. If conv conv then there exists a direction satisfying
the conditions in Step 1 of the above algorithm.

The proof of this theorem uses a hyperplane separating the sets conv A
and conv B. The computation of the separating hyperplane can be done
by minimizing the distance between the sets conv A and conv B. This
reduces to a quadratic optimization problem. The optimal solution of
this problem can be used to compute the direction desired for the
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implementation of Step 1 of the above algorithm. But it should be
noticed that this is not as easy as it seems since the sets A and B are in
general not known. To compute them we need to compute all globally
optimal solutions of a nonconvex optimization problem.

This approach is not possible if there are global optimal solutions
in the lower level not being strongly stable. Then, if the solution set
mapping of the lower level problem is not lower semicontinuous, the
desired perturbation cannot exist in general. This follows since a lack of
lower semicontinuity implies that the set of reachable points

is in general a proper subset of It can be difficult to compute ele-
ments of the reachable set. The following theorems give approximations
of that set:

THEOREM 7.6 ([256]) Consider problem (5.1) at a point and let
the assumptions (C) and (MFCQ) at all points be satisfied.
Then,

Using the directional differentiability of the optimal value function of
problem (5.1) in the case that the stronger linear independence con-
straint qualification (LICQ) is satisfied for all optimal solutions

(cf. Corollary 4.4) we get an even stronger result not using the
upper Dini derivative:

COROLLARY 7.1 Consider problem (5.1) and let the assumptions (C)
and (LICQ) be satisfied at all points Then,

Define a directional version of the reachable set by

Then, the result of the above corollary reads as
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To find a direction which can be used in Step 2 of the Method for ap-
proximation of a computed solution we can try to determine a direction

such that the right hand side of (7.4) reduces to a singleton. Pro-
vided that we are able to compute all globally optimal solutions of the
nonconvex optimization problem (5.1) for this is an easy task
if assumption (SSOC) is added to the assumptions of the last corollary.
Then, the number of globally optimal solutions is finite and the right–
hand side problem in (7.4) is a linear optimization problem parametrized
in If is to be approximated and is a vertex
of the set

then a direction needed in Step 2 can be computed using results of
parametric linear optimization [178].

THEOREM 7.7 ([256]) Consider the convex parametric optimization
problem (5.1) and let the assumptions (C) and (MFCQ) be satisfied at

Then,

where

The proof of this theorem follows directly from the proof of Theorems
4.16 and 7.6. The following simple example shows that the inclusion in
the last theorem can be strict:

Example: Consider the problem

at The feasible set and the set of free minimizers of the
objective function in this problem are plotted in Figure 7.1. Then,

and the set of Lagrange multipliers re-
duces to a singleton, Thus,
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Thus, Then,

for The corresponding Lagrange multipliers are

Hence,

If we fix a direction then we get a directional version of Theorem 7.7:

Hence, in order to compute an element of we can try to deter-
mine a direction such that reduces to a singleton. Then, since

we have also computed an element of For that
we will use the following equivalent setting of the right-hand side prob-
lem in equation (7.6) which is a simple implication of linear programming
duality together with validity of the saddle point inequality.

THEOREM 7.8 ([30]) Let the assumptions (C) and (MFCQ) be satisfied
for the parametric convex optimization problem (5,1) at a point Take
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Then, is equal to the opti-
mal value (and the elements of are the of the optimal
solutions) of the following optimization problem

In general, problem is a non-convex optimization prob-
lem. It will be convenient for us to use the following assumption which
together with the convexity of guarantees convexity of this prob-
lem:

(CG) The gradients w.r.t. the parameter of the constraint functions
are convex and are affine

for each fixed

If, in addition to the assumptions in Theorem 7.8 these conditions
are also satisfied then problem is a convex optimization
problem.

In the following we will need a tangent cone to which is defined
by

Using assumption (CG) we derive the following sufficient condition for
reducing to a singleton:

THEOREM 7.9 Consider the convex parametric optimization problem
(5.1) and let the assumptions (C), (CG), and (MFCQ) be satisfied at

Let for some Then, if does not
reduce to a singleton, the following system of linear equations and in-
equalities has a nontrivial solution for arbitrary (where

is defined in (4.22)):
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Note that the linear system (7.8) is homogeneous, thus having the trivial
feasible solution in any case. This implies that if the following optimiza-
tion problem has a unique optimal solution then the set reduces
to a singleton:

THEOREM 7.10 Consider the parametric convex problem (5.1) under
(C), (MFCQ) at some point with Let be
fixed and If problem (7.9) with has an optimal
solution, then

The following example continuing the example on page 222 gives some
illustration of Theorem 7.9.

Example: For the problem in the example on page 222 we obtain:
with

and Thus, for
system (7.8) has a nontrivial solution for each For the vertices

and of problem (7.9) has at most one solution.
Hence, the sets as well as reduce to singletons for
certain directions. For one such direction is each with

In the last case, satisfying is a desired direction.
The usefulness of these values can be confirmed considering the general
solution of this problem outlined in the example on page 222.

It should be noticed that, even if the set consists of only one
point it is not guaranteed that also reduces to a singleton
for small positive But, is small and has a small distance
to Hence, the leader can select the unique point in as
(approximate) substitute for the real choice of the follower if he decides
to take as his solution.

The last theorem in this section gives a sufficient condition for the
existence of the desired direction:

THEOREM 7.11 Consider the problem (5.1) at a point
for some Assume that (C) and (MFCQ) as well as

(CG) are satisfied. Let be a vertex of such that
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1.

2. setting the matrix

and,

has full row rank.

Then, there exists a direction such that

For some more results about this approach the reader is referred to [69].

7.2 STABILITY OF BILEVEL PROBLEMS
The lack of lower semicontinuity of the solution set mapping of the

lower level problem (5.1) can result in an unstable behavior of the bilevel
programming problem (5.2) with respect to small perturbations as well
of the parameter (which means an insufficient exactness in the leader’s
choice) as of the data of the lower level problem. This is demonstrated
in the following two examples:

Example: Consider the bilevel problem

where

Then,

Let Then, inserting the optimal solution of the
lower level problem into this function (in the cases, when this solution
is uniquely determined), we get

On the regions where these functions are defined, both take their infima
for tending to zero with Figure 7.2 shows the

graph of the point-to-set mapping This can be used to
confirm that is the (unique) optimistic optimal solution
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of the problem in this example. Now, if the leader is not exactly enough
in choosing his solution, then the real outcome of the problem has an
objective function value above 1 which is far away from the optimistic
optimal value zero.

Example: Consider the bilevel programming problem

where

Since for and the unique optimistic
optimal solution of the bilevel problem is The optimistic
optimal function value is -1.

Now assume that the follower’s problem is perturbed:

for small Then,

Inserting this function into the leader’s objective function gives
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to be minimized on [–0.5, 0.5]. The (unique) optimal solution of this
problem is for all with For the
leader’s objective function value tends to 0 which is not the optimistic
optimal objective function value.

THEOREM 7.12 Consider the bilevel programming problem (5.1), (5.2)
and let the assumptions (C) and (MFCQ) for all with
be satisfied. Let us consider sequences of sufficiently smooth functions

converging pointwise to Let

and consider the sequence of perturbed optimistic bilevel programming
problems

Let be an optimal solution of the problem (7.11) for ....
Then, we have:

1.

2.

The sequences have accumulation points, and for each
accumulation point we have

is a lower optimal solution of (5.2).

It has been shown in the papers [175, 179, 180] that this result holds
even in a much more general setting. This is also true if the optimistic
bilevel problem is replaced by the pessimistic one.

Under stronger assumptions even piecewise smoothness of the solution
of the optimistic bilevel programming problem can be achieved.

THEOREM 7.13 Consider the bilevel programming problem (5.1), (5.2)
with a convex lower level problem. Let this problem depend on an ad-
ditional parameter which means that smooth (at least twice continu-
ously dif ferentiable) functions are given with

Denote by the set of Lagrange
multipliers for the perturbed lower level problem

Let be a local optimistic optimal solution of problem (5.1), (5.2)
and assume:

1. assumptions (C) and (LICQ) are satisfied for the lower level problem
at which is a convex parametric optimization problem for all
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2. for the unique suppose that the (LICQ) and the
(SSOC) are satisfied for each of the following problems at the local
optimal solution

for arbitrary and (cf. problem (5.28))

Then, there exists a function being a local optimal solu-
tion of the problem

with

for all in some open neighborhood

Related stability results for the optimal solution of the KKT reformula-
tion of the bilevel programming problems can be found in [249].

The investigation of unstable optimization problems is difficult both
from a theoretical and from a numerical points of view. To avoid this
difficult property of bilevel programming problems we have also another
possibility: we can enlarge the solution set mapping of the lower level
problem such that a continuous point-to-set mapping
arises. Then, using the results in the monograph [17], the resulting prob-
lem reacts smoothly on smooth perturbations of the problem functions
as well as on changes of the values of the variables. One possibility is
to replace by the set of solutions of (5.1) for The
point-to-set mapping

is locally Lipschitz continuous under presumably weak assumptions
(cf. Theorem 4.3). Then, we have the following relations between the
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original bilevel problem (5.1), (5.2) and the relaxed problem

where

THEOREM 7.14 Consider the optimistic bilevel programming problem
related to problem (7.14):

and let be sequences of continuous functions converging
pointwise to (F, f). Let the assumptions (C) and (MFCQ) be satis-
fied for the lower level problem (5.1) at all feasible points

assume that (ULR) is valid for the upper level prob-
lem. and define

Then,

1.

2.

Comprehensive related results both for the optimistic and pessimistic
bilevel problems even under much weaker presumptions can be found
e.g. in [173, 179, 180, 181, 184]. Stability of Stackelberg problems de-
pending on an additional parameter have been investigated in [174].

7.3 SPECIAL PERTURBATIONS
7.3.1 LINEAR PERTURBATIONS

In [301] the objective function of the lower level problem is linearly
perturbed and it is shown that this leads to an equivalent problem if
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the perturbation is used in the upper level objective function, too. To
formulate this result we need

DEFINITION 7.3 Let A function is said to satisfy
a semi-Lipschitz condition relative to C if there exists a constant
such that

A function satisfying a semi-Lipschitz continuity condition relative to C
need not be Lipschitz continuous on C, although a (globally) Lipschitz
continuous function clearly is also semi-Lipschitz continuous relative to
any set.

Now consider the problem of computing an optimistic optimal solu-
tion of the bilevel programming problem (5.1), (5.2). Let be
arbitrarily chosen and consider the perturbed problem

where

and is a closed set. Then, we have the following result:

THEOREM 7.15 ([301]) Suppose that the point-to-set mapping
is upper Lipschitz continuous at with a constant

and that the upper level objective function satisfies a semi-Lipschitz
condition relative to grph with modulus M. Then, for any
the problems (5.1), (5.2) and (7.20) are equivalent in the following sense:
If is an optimistic optimal solution of (5.1), (5.2), then

solves (7.20) and, if is an optimal solution of (7.20) then
and is a solution of (5.1), (5.2).

7.3.2 TYKHONOV REGULARIZATION
If the convex lower level problem (4.1) has not a unique optimal so-

lution but the upper level objective function is strongly convex
with respect to then the regularized problem

has a uniquely determined optimal solution for each where the
feasible set is not empty. The idea of using such type of a regularization
is due to [277]. Clearly, if the assumptions of Theorem 4.3 are satisfied,
then the solution set mapping
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of the problem (7.21) is upper semicontinuous, i.e. for each sequence
with and

for all each accumulation point of the sequence belongs to
It is even possible to get the following stronger result:

THEOREM 7.16  Consider the convex parametric optimization problem
(4.1) and let the assumptions (C) and (MFCQ) be satisfied at
Let be positive definite at each Then,

1.

2.

3.

the unique optimal solution is strongly stable at each
and directionally dif ferentiable,

for each we have the following two inequalities:

for fixed

If we do not consider globally optimal solutions in the lower level problem
but ones, then following the pattern of [1] we can obtain a
quantitative version of the last theorem. For doing so, we need the
notion of solutions of the lower level problem defined as

where again denotes the feasible set of the lower level problem and

THEOREM 7.17 Let the assumption (C) be satisfied for the lower level
problem (5.1). Let Then there exists a constant such
that

for each with

This can now be used to derive some quantitative bounds for the devia-
tion of the optimal function values of the original and the relaxed bilevel
problems.

THEOREM 7.18 Let the assumption of Theorem 7.17 be satisfied. Then,
for each we have
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This implies

where for each

COROLLARY 7.2 Under the assumptions of Theorem 7.17, if
such that then,

as well as

with from equation (7.19).

Note that in its original version in [1], the last theorems are given with
respect to the regularized lower level problem

In this case, this idea is used to approximate the pessimistic and not the
optimistic approach to bilevel programming with non-unique lower level
solutions. It should be noted that the assertion of Theorem 7.16 cannot
be generalized to the case when both parameters and converge to
0+ and respectively. This can be seen in the following example taken
from [250]:

Example: Consider the bilevel problem

where

Then, for
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The mapping as well as the function for and
are shown in figure 7.3.

Then, if we take and let converge to zero, we get

Nevertheless, the optimal solution of the regularized lower level problem
has better regularity properties than that of the original one. Moreover,
the above theorems can be used as a motivation for using this regular-
ization approach when solving bilevel programming problems. This has
been done by the first time in [213].

In [76] the algorithm described in Section 6.1 has been applied to
the solution of bilevel programming problems with non-unique optimal
solutions in the lower level using the Tykhonov regularization. We will
describe this algorithm next. It solves the sequence of problems

for Assume that the lower level problem is a convex para-
metric optimization problem and that the upper level objective func-
tion is strongly convex with repect to Then, by strong convexity of

on for each fixed problem (7.22) is equivalent to
the following nondifferentiable optimization problem with an implicitly
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defined objective function:

where Using the idea of the
descent algorithm in Section 6.1 this problem can be solved with the
following prototype algorithm:

Prototype descent algorithm
Input: Bilevel programming problem with strongly convex upper

level objective function
Output: A Bouligand stationary point

1: Select solving set
2: Compute a direction satisfying the following in-
equalities for

3: Choose a step-size such that

4: Set
5: If a stopping criterion is satisfied: if is sufficiently small, then
stop; else set and compute Goto step 2.

To inspire life into the algorithm a more detailed description of steps
2 and 3 is necessary. This has already been done in Section 6.1. We will
not repeat this here but only mention the main steps.

As in the descent method in Section 6.1 the necessary optimality
condition from Theorem 5.4 can be used for computing the direction
of descent. Using a smoothing operation to avoid zigzagging we again
come up with the direction finding problem (6.3). In Step 2 we are
searching for a set with such that this
direction finding problem has a negative optimal value.

As in Section 6.1, in Step 3 of the prototype of the descent algorithm
we use a kind of Armijo step-size rule: take the largest number in

where such that

Then, convergence of the algorithm for fixed to a Clarke stationary
point and of the modified algorithm to a Bouligand stationary point
is mentioned in Corollary 6.1 and Theorem 6.2. The main point in
this modification was the introduction of relaxed index sets of active
constraints needed to teach the algorithm to foresee the index set of
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active constraints in the lower level problem at an accumulation point
of the iterates.

Now, in order to get an algorithm for solving the sequence of bilevel
problems (7.22) for we add the update role for the regularity
parameter a from the Prototype algorithm to the Modified descent algo-
rithm for the bilevel problem in Section 6.1. Then we get convergence of
the algorithm to a Bouligand stationary point. Note that the additional
strong sufficient optimality condition of second order at the accumula-
tion point of the iterates guarantees that the lower level optimal solution
of the original problem is strongly stable and directional differentiable
thus making the use of Bouligand stationarity possible.

THEOREM 7.19 ([76]) Consider the optimistic bilevel problem (5.1),
(5.5) and let the assumptions (C), (FRR), (MFCQ), (ULR), and
(CRCQ) be satisfied at all points Take a
sufficiently small and fixed parameter Let the sequence of iterates

be computed by the modified de-
scent algorithm where Thus, if is an accumulation point
of the sequence satisfying (SSOC), then is a Bouli-
gand stationary point of problem (5.1), (5.5).

For a proof the reader is referred to the original paper [76], we will not
include it here.

7.3.3 LEAST-NORM REGULARIZATION
If the function does not have the appropriate properties such

that the problem (7.21) can be used for approximating the lower level
problem, then another kind of regularization can be applied. This has
been done in [183] by applying an idea originally used in [266], namely
the approximation of the lower level solution by the least norm element
in the set

Unfortunately, by use of this approach it is not possible to overcome all
difficulties when computing optimistic respectively pessimistic optimal
solutions, namely the solution set mapping of the such regularized lower
level problem is in general not lower semicontinuous. This can be seen
in the following example:

Example: [183, 186] Consider the problem
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Then

Hence, if we take the function then

where Consequently, the infimum of the function
over [0,1] is equal to -0.5 and there is no such

that

For overcoming this difficulty again the idea of using solutions
in the lower level problem can be used: Consider a parametric lower level
problem (5.1) and let be an optimal solution of the regularized
problem

If problem (5.1) is convex, then is uniquely determined provided
that Moreover, we have the following result:

THEOREM 7.20 ([183]) Consider the convex parametric optimization
problem (5.1) at and let the assumptions (C) and (MFCQ) be
satisfied at all points with Then,

This result is no longer true if the parameter also converges to This
can be seen in the following

Example: [183] We continue the last example on page 236. Then,

and

The upper and lower bounds of the sets as well as three examples
of this set for fixed (left: middle:
right: are depicted in Fig. 7.4. Now, if



238 FOUNDATIONS OF BILEVEL PROGRAMMING

is a sequence converging to 0.5 and for each then
converging to 1 for and

Nevertheless, by (Lipschitz) continuity of the point-to-set mapping
for each (cf. Corollary 4.3) the mapping is

continuous for convex lower level problems satisfying the assumptions
of Theorem 7.20. Hence, an optimal solution of the regularized bilevel
programming problem

exists for each positive

THEOREM 7.21 ([183]) Consider the bilevel problem (5.1), (5.2), let
the lower level problem be a convex parametric one and let the assump-
tions (C) and (MFCQ) be satisfied for all
Take any sequence converging to 0+. Denote by a solution
of the problem (7.27) for Then, any accumulation point of the
sequence is a lower optimal solu-
tion, i.e. it belongs to the set S defined in (5.8).

We will close this Chapter with a second regularization approach which
can be used in the cases when the upper level objective function does not
have the properties making the approach in Subsection 7.3.2 possible.
Then we can replace the lower level problem (5.1) by
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for Let denote the set of optimal solutions for this prob-
lem. Some relations between the regularized and the original bilevel
problems have been investigated in [183]. Then, for fixed              and un-
der presumably not too restrictive assumptions, the optimal solution of
problem (7.28) is uniquely determined by a locally Lipschitz continuous
function with respect to Hence, the regularized problem

is a Lipschitz optimization problem for which again can be solved
by means of nondifferentiable minimization techniques as e.g. the bundle
– trust region algorithm [151, 255]. This will lead to a modified bundle
algorithm which, in general, is only an approximation algorithm to the
bilevel problem.

The following results are obvious implications of upper semicontinuity
(cf. Theorem 4.3).

THEOREM 7.22 Consider the parametric problems (5.1) and (7.28) and
let the assumptions (C) and (MFCQ) be satisfied. Then

1. For each sequences with for all and
converging to resp., and for each sequence satisfying

the sequence has accumulation points and
all these points satisfy

2. For we have

provided that

It should be noted that in general we do not have

without the assumption that reduces to a singleton, even if this
limit exists. This can be seen in

Example: Consider the problem
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Then,

and

for Hence, depending on the limit of the sequence
the sequence can have any limit point in [–1, 1] for

Let (5.1) be a convex parametric optimization problem. For a fixed
value the optimal solution of problem (7.28) is uniquely deter-
mined and the function of optimal solutions for these problems is
continuous. In the paper [74] the bundle algorithm in [151] has been
used to solve problem (7.29) with To do that the bundle
algorithm is applied to a sequence of problems (7.29) with smaller and
smaller values of the regularization parameter This will result in the
application of the bundle algorithm to a sequence of optimization prob-
lems. Clearly, in the application the algorithm is started with the
last point computed in the previous application and using a smaller
value of the regularization parameter The value of can
also be decreased within one application of the bundle algorithm. In [74]
this is done in each serious step. But this cannot guarantee that con-
verges to zero within one application of the bundle algorithm. Then, this
again results in the application of the bundle algorithm to a sequence of
problems with smaller and smaller regularization parameter.

Summing up, a sequence of iterates is computed
where both the sequences within one application of the bundle algorithm
and within the sequence of applications are denoted by this sequence.

We will not include the overall algorithm here but refer the interested
reader to the original papers [74, 151]. The following results, whose
proofs are again not included, can then be shown.

THEOREM 7.23 ([74]) Consider the bilevel programming problem (5.1),
(5.2) and let the assumptions (C), (CRCQ), (FRR), and (MFCQ) be
satisfied for the problems (7.28). Assume that the lower level problem
is a convex one. Let be the sequence computed by
the modified bundle algorithm with being bounded from below
by some Then, every accumulation point of this
sequence satisfies
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If the sequence converges to zero then the strong sufficient op-
timality condition of second order at the accumulation points of the
sequence is necessary in order to guarantee that the
bundle algorithm is able to compute all the data necessary (see Section
6.2 and Theorem 4.12). If this sufficient optimality condition is satisfied
then the above theorem shows that the accumulation points are Clarke
stationary. Hence, we get

COROLLARY 7.3 ([74]) Under the assumptions of Theorem 7.23 let
converge to zero. Let be the limit point of the sequence

and let If the additional assumption (SSOC) is satisfied
at then

In this Corollary, the restrictive assumption (SSOC) has been used.
Together with the assumptions (MFCQ) and (CRCQ) this assumption
guarantees that the solution function of the original lower level prob-
lem (5.1) is locally Lipschitz continuous at (see Theorem 4.10). This
implies also that can theoretically tend to zero since we could mini-
mize the function itself by use of the bundle algorithm. In the other
case, if the function is not locally Lipschitz continuous, numerical
difficulties make the decrease of to zero impossible.

Now we come back to the more practical case that we need a sequence
of applications of the bundle algorithm. To realize the convergence of

to zero during the bundle algorithms one more assumption is needed.
Recall that is an arbitrary optimal solution of the problem
(5.1). Consider the set

In general, the set is neither open nor closed nor connected, but is
locally Lipschitz continuous on The following considerations are only
useful if the set has a suitable structure which is the main assumption
in what follows. Let be a (small) constant and consider a set D
such that Subsequently, we assume that exists.
This is a weaker assumption than supposing (SSOC) throughout

In the following theorem the resulting algorithm is investigated and we
consider two cases: First the case when the bundle algorithm is restarted
finitely many times. Then, the overall algorithm can be considered as
being equal to one run of the bundle algorithm (namely the last one).
Due to (C) and the special calculations in the modified bundle algorithm
the sequence itself converges to some in that case. Hence, also

converges to Second the case

(SSOC) is satisfied at
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when the bundle algorithm is restarted infinitely often. The sequence of
all iteration points computed during the infinite number of applications
of the modified bundle algorithm is then being considered in the second
case. One accumulation point of this sequence is also an accumulation
point of the sequence

Now we are able to state the main convergence theorem for the mod-
ified bundle algorithm:

THEOREM 7.24 Consider the regularized bilevel problem (7.29) and let
the assumptions (C), (MFCQ), (CRCQ) and (FRR) be satisfied for all

Let there exist and such that for all
all stationary points of the functions have

and

where the set D is defined as above stated and bounded. Then we have
the following:

1. if only a finite number of restarts is needed to get convergence of
to zero, then the limit point of the sequence com-

puted by the algorithm satisfies

2. if an infinite number of restarts is necessary then there exist accumu-
lation points of the sequence computed by the algorithm
with satisfying

Moreover, the sequence computed by the algorithm has accumulation
points with

We close this Chapter with a last regularization idea originating from
game theory.

REMARK 7.1 In mathematical game theory, the use of mixed strategies
allows to regularize games in which no equilibrium strategy exists. Here,
a mixed strategy can be considered as a probability measure on the set
of admissible strategies and, in the equilibrium solution for the mixed
problem, the different strategies are taken with the probabilities given by
the measure in the equilibrium strategy. The same idea is applied to
Stackelberg games (which are bilevel programming problems where the
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sets of feasible solutions for each player do not depend on the decisions
of the other one) in [191]. Then, the lower level problem

is replaced by the problem of minimizing the average value of the objective
function

where denotes the set of all Radon probability measures on X.
Using this idea, the bilevel programming problem

is replaced by the mixed problem (which is taken here in the pessimistic
sense)

Again, by use of solutions in the lower level of the mixed prob-
lem

convergence of the optimal value of the regularized problem to
the optimal value of the pessimistic bilevel programming problem can
be shown under suitable assumptions [191].

7.4 PROOFS
PROOF OF THEOREM 7.1: Let and let B be a corresponding
basic matrix. Denote by the reduced cost vector. If,
for all basic matrices, we have for all non-basic variables, then the
optimal solution is unique. If this is not the case then, for some non-basic
variable and some basic matrix B the objective function coefficient

is determined by Since this is an additional linear
constraint on the objective function coefficients, the set of all objective
functions satisfying this additional condition is of measure zero. Due
to the finite number of different basic matrices and of the family of all
index sets of non-basic variables, the assertion of the theorem follows.

PROOF OF THEOREM 7.2: For convex problems, (MFCQ) at one fea-
sible point is equivalent with Slater’s condition and with fulfillment of
(MFCQ) at all feasible points. This implies by Theorem 4.3 that the
solution set mapping is upper semicontinuous at By compact-
ness of the feasible set and continuity of the objective function, problems
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(5.1) and (7.1) have solutions for near Since the objective function
of problem (7.1) is strongly convex, this problem has a unique optimal
solution.

PROOF OF THEOREM 7.5: Since conv A and conv B are convex com-
pact sets, conv conv implies that these sets can be strongly
separated. Hence there exists a direction such that

for all Due to Corollary 4.1 this implies

for all By (MFCQ), (SSOC), (CRCQ) and Theorem 4.3,
for sufficiently small and for

some Let By
this implies that

or by directional differentiability

contradicting (7.30). Hence, the theorem is true.

PROOF OF THEOREM 7.6: Let and where

be such that for all and
Since (MFCQ) is satisfied at by our

assumptions, the feasible set mapping is pseudo Lipschitz con-
tinuous at [244]. This implies that there exists a sequence

such that
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and some Lipschitz constant Moreover, can be se-
lected in such a way that for all and some
vertex Since the vertex set of the compact con-
vex polyhedral set (cf. Theorem 4.1) is finite, we can assume
that for all Then,

by the complementarity conditions and

for all Applying the mean value theorem this implies

where is a point in the interval between and
Using the Lipschitz condition (7.31), dividing both sides by and using

we obtain

for all and some Passing to the limit for
and using Theorem 4.15 we derive the desired result.

PROOF OF THEOREM 7.8: Due to the convexity and regularity assump-
tions we have for all i.e. the set of
Lagrange multipliers does not depend on the optimal solution. This is
a direct consequence of the saddle point inequality and its equivalence
to optimality in convex regular optimization and has been shown e.g. in
[228]. In accordance with Theorem 4.16 we have

Consider the inner problem with in the constraints which is an
equivalent formulation by
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Dualizing this linear optimization problem we get the problem

having the same optimal value. Now, setting we get

Inserting this dual problem into the formula for computing the direc-
tional derivative of the function and taking into consideration

we get the desired result. Remember that the problem
has a solution by assumptions (C) and (MFCQ) and, hence, minimiza-
tion w.r.t. both and the iterated minimization are equivalent [187].

PROOF OF THEOREM 7.9: Let  be optimal solutions
of problem with Then, by convexity of the
solution set of problem we have that the set

is contained in the set of optimal solutions of this problem. Thus, by
means of Taylor’s expansion formulae up to first order we easily derive
that

solves the following system of equations and inequalities (where the ab-
breviations and are used):
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Now, take By independence of

we have also

which, by complementary slackness, implies

since is the dual solution to in the inner problem of (7.6).
Then,

Hence, by we obtain that is also a solution of

Now substituting for (which is possible since
we conclude the desired proof.

PROOF OF THEOREM 7.10: Consider the Karush-Kuhn-Tucker condi-
tions for the problem at an optimal solution there
exist vectors such that the following system is satisfied:
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For conditions (7.34), (7.36)–(7.38) are the necessary
and sufficient optimality conditions for So, they are sat-
isfied by Let problem (7.9) have an optimal solution.
Then, is an optimal solution and by linear programming dual-
ity there exist vectors such that equation (7.35) is satisfied for

and we have

and Hence, condition (7.43) is also valid. Conse-
quently, by relations (7.34)–(7.44) are
satisfied for i.e. the problem in Theorem 7.8 has as an
optimal solution. This implies

PROOF OF THEOREM 7.11: By our assumptions on the tangent cones we
have Hence, by [156],
there exists a vector satisfying

By the presumptions, there exist vectors satisfying the system of
linear (in-)equalities

By linear programming duality and (7.47)–(7.49)
imply Condition (7.46) together with (7.45) is equivalent
to zero being the unique optimal solution of problem (7.9) for
Theorem 7.10 now implies and Theorem 7.9 that

PROOF OF THEOREM 7.12: The first result follows directly from upper
semicontinuity of the solution set mapping of perturbed optimization
problems and is analogous to Theorem 4.3. This implies
By upper semicontinuity of the solution set mapping of the parametric
problem (7.10) this inequality holds true also for all with
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0: for all sequences with and each
accumulation point of this sequence we have By
assumption (C) and the continuity assumptions,

even if no pessimistic optimal solution exists. Suppose now that the
second assertion is not satisfied. Then,

Let Then, there exists such that

By the properties of the infimum there exists a sequence such
that Thus, there exists such that

Fix any Let be a sequence converging to and take
a corresponding sequence of feasible points with

Then, by upper semicontinuity of the
solution set mapping, any accumulation point of belongs to

and, thus, there exists such that

Putting the last three inequalities together we get

for On the other hand, by definition of the se-
quence we have which thus implies

Since this is impossible,

PROOF OF THEOREM 7.13: The assumptions to the lower level problem
guarantee that, for each fixed  in some open neighborhood of
the lower level programming problem can locally be reduced to one of
the following problems:

for all
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for some and By Theorem 5.15, an
optimistic local optimal solution of problem (5.1), (5.2) is also a lo-
cal optimal solution of problem (5.27) and hence for each of the prob-
lems (7.12) for Due to (LICQ) and (SSOC), there exist
functions defined on some open neighborhood

composing optimal solutions for the problem (7.12) for all
Now, the local optimal solution function

of the KKT reformulation of problem (7.13) is obtained as a continu-
ous selection of the continuously differentiable local solution functions

on the open neighborhood We

have to show that is a local optimal solution of the prob-
lem (7.13). First, by convexity, for Second,
to verify our aim, we argue from contradiction, i.e. assume that there
exists a sequence converging to zero and there are sequences

converging to with

and

for all By the assumptions there are Lagrange multipliers

converging to some Lagrange multiplier By shrink-
ing to a subsequence if necessary we can without loss of generality as-
sume that for some Now, since each of the
problems (7.12) with is equivalent to the problem
with the point is feasible and
hence optimal for the corresponding problem (7.12) with Since
(SSOC) is satisfied for problem (7.13) with
too, the optimal solution of this problem is locally unique, which implies

and contradicting our assumption. This
completes the proof.

PROOF OF THEOREM 7.14: The assuptions imply that the lower level
problem is stable, i.e. that for fixed      we have

[17]. Let be a sequence of optimistic optimal solutions of
the relaxed bilevel programming problem (7.17). Then, this sequence
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has accumulation points by (C) and each accumulation point is
feasible for (7.16). This implies the first result.

Now, let be an optimistic optimal solution of the bilevel pro-
gramming problem (5.1), (5.2). Then, by (ULR) there exists a sequence

converging to such that for all Now, by (MFCQ)
we can find a corresponding sequence such that for
all and This implies that for each fixed there is

such that

by for all

sufficiently large This implies

The opposite inclusion follows from

PROOF OF THEOREM 7.15: Let be an optimistic optimal
solution of (5.1), (5.2). Then,

for all For any and
we get:

If then

If then by upper Lipschitz continuity of the mapping
at there exists with

and by semi-Lipschitz continuity of F we derive

This implies that solves (7.20).
Conversely, if solves (7.20) with then

for all where V is some closed set. In
particular,
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If we get by minimizing the left-hand side. Otherwise, if
by the semi-Lipschitz continuity of F and the upper Lipschitz

continuity of we find with such that

by (7.51). Due to this yields and solves (5.1), (5.2).

PROOF OF THEOREM 7.16: The first assertion of the theorem follows
immediately from Theorem 4.4. The second inequality of the second
assertion is due to feasibility which then implies the first inequality to
be satisfied. The last assertion is an obvious implication of the second
one for fixed

PROOF OF THEOREM 7.17: By (C) and the continuity of the function
F, there exist numbers satisfying

This implies

where Let Then,

Thus,

PROOF OF THEOREM 7.18: Let Then,

by Theorem 7.17. Moreover, by definition,
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by feasibility of This implies the first sequence of inequalities. The
second one follows by taking the minimum in each term.

PROOF OF THEOREM 7.20: First, for all
since by our assumptions. Hence, the sequence

is bounded and has accumulation points Let without loss of
generality (take a convergent subsequence if necessary).

Then, and for all which, for
implies Now,

implies due to the uniqueness of the minimal norm element
in the convex set

PROOF OF THEOREM 7.21: Let be an accumulation point of the
sequence which exists by (C). Without loss of general-
ity, let First, due to Theorem 7.20 we obtain

and, hence,

Assume that

Take such that

Then, there is a such that

Since the infimum must be finite due to (C) there exists a sequence
such that Hence, there exists such that

Fix Then we can find a sequence converging to and a
corresponding sequence such that for all Then,
due to Theorem 7.20 each accumulation point of belongs to

Hence, there exists an index such that
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Putting the last three inequalities together we get for

This resulting inequality contradicts the rule for selecting the point
which proves the theorem.



Chapter 8

DISCRETE BILEVEL PROBLEMS

Bilevel programming problems containing integrality conditions have
not yet encountered that attention that they should from the point of
view of potential applications. We will start with some examples explain-
ing the additional difficulties arising from the indivisibility conditions.
After that we will add two ideas for attacking such problems. The first
approach is based on cutting planes applied to the lower level problem.
Cutting plane algorithms have found large attention in solving discrete
optimization problems in the past either as stand-alone algorithms or
in connection with enumeration methods as branch-and-cut algorithms.
We will apply them to attack bilevel programming problems with lower
level problems having a parameter in the objective function only. The
second approach explicitly uses the structure of the solution set map-
ping of the discrete lower level optimization problem. We know now
much about the structure of that mapping [18] but this has not often
been used to solve bilevel programming problems with discreteness con-
ditions. Even in continuous optimization the numerical description of
that mapping is expensive and difficult and this, of course, is also true for
discrete problems. Using the 0-1 knapsack problem in the lower level we
will show that, in special cases, it is possible to find a way to successfully
apply this knowledge to solve discrete bilevel programming problems.

We will not repeat solution algorithms for discrete bilevel program-
ming problems based on enumeration principles. These can be found
e.g. in the monograph [26] and in the papers [28, 87, 86, 215].

8.1 TWO INTRODUCTORY EXAMPLES
Example: This example stems from [279] and shows that the diffi-
culties in investigating the discrete bilevel programming problem are

255
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especially related with the position of the integrality conditions. Let the
lower level problem be

Picture 8.1 shows the feasible set of the corresponding bilevel program-
ming problem with no integrality constraints (part a)), with additional
integrality conditions on both the upper and the lower levels (picture b)),
and with discreteness conditions only on the upper (part c)) respectively
the lower levels (picture d)).

Concerning the existence of optimistic optimal solutions we have the
same situation as for linear bilevel programming problems in the case
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when the upper level problem is a discrete optimization problem but the
lower one is linear continuous: An optimistic optimal solution exists since
the solution set mapping of the lower level problem is upper semicon-
tinuous provided it is bounded. The existence of a pessimistic optimal
solution cannot be guaranteed in general if the lower level problem is
a continuous one. If both the lower and the upper level problems are
discrete optimization problems, the upper level objective is minimized
over a discrete set in both the optimistic and the pessimistic problems
and optimal solutions exist if the feasible set is bounded.

The situation is much more difficult in the case when the lower level
programming problem is discrete and the upper level problem is a contin-
uous one. Then, the feasible set of the discrete linear bilevel program-
ming problem is the union (of a finite number under a boundedness
condition) of sets whose closures are polyhedra [279]. These sets are in
general neither open nor closed. Hence, the solution set mapping is not
closed and we cannot guarantee even the existence of optimal optimistic
solutions. The existence of nonunique lower level solutions for general
discrete optimization problems can result also in the unsolvability of the
pessimistic problem even if the feasible set is bounded.

Another unpleasant property of discrete bilevel programming prob-
lems in which both the upper and the lower level problems are discrete
optimization problems is illustrated in an example in [215]:

Example: Consider the problem

where the lower level problem is

The feasible set of this problem as well as its continuous relaxation are
shown in Figure 8.2. The thick line is the feasible set of the continuous
relaxation problem. The unique global optimal solution of the continu-
ous relaxation problem is the point This point is feasible
for the discrete bilevel programming problem but it is not the global
optimal solution of this problem. The unique global optimal solution of
the discrete bilevel problem is found at The upper level ob-
jective function value of is and that of x* is

The property that optimal solutions of the continuous relaxation of the
discrete bilevel programming problem not necessarily determine an op-
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timal solution of the discrete problem has deep consequences for branch-
and-bound algorithms [2151:

1.

2.

The optimal solution of the continuous relaxation does in general not
provide a valid bound on the solution of the (mixed-) integer bilevel
problem.

Solutions to the relaxed bilevel programming problem which are fea-
sible for the discrete problem, can in general not be fathomed.

In [26, 215] branch-and -bound algorithms for the pure integer as well
as for the mixed-integer bilevel programming problem have been given.
These algorithms combine the Karush-Kuhn-Tucker conditions of the
relaxed lower level problem with the enumeration scheme for forcing
integrality of the variables.

8.2 CUTTING PLANE ALGORITHM
In this book we intend to give two other ideas for attacking linear

bilevel programming problems with integrality constraints. First we ap-
ply a cutting plane algorithm to the discrete lower level problem with
the aim to transform the discrete bilevel problem into a linear bilevel
one. Second we try to illustrate how parametric discrete optimization
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applied to the lower level problem can be used to solve the discrete
bilevel problem.

The first idea for solving discrete bilevel optimization problems us-
ing cutting planes is described for discrete lower level problems with
perturbed objective functions only. It can also be applied to problems
with right-hand side perturbations in the lower level problem. But then,
the parametric analysis used for computing directions of descent for the
linear bilevel programming problems in Step 1 of the algorithm below
is more complicated. Moreover the exclusive use of a cutting plane al-
gorithm to the lower level problem will not be successful in general,
i.e. this algorithm has to be combined with branching steps of a branch-
and-bound algorithm [84].

We consider the special case of the discrete bilevel programming
problem where the upper level problem is a (discrete or continuous)
linear problem and the lower level discrete optimization problem has
parameter-independent constraints:

Let the matrix A and the vector a have only integral entries and denote
by

the feasible set of problem (8.1). The bilevel programming problem is
problem (3.2):

either in its optimistic or pessimistic variant and with or without inte-
grality conditions. For being unique, we consider the optimistic problem
without integrality constraints:

If the upper level problem is also a discrete one, we have to replace the
linear bilevel programming problem solved in the steps of the following
algorithm by an algorithm for discrete optimization problems.

The main idea is that in the lower level problem we can replace the
feasible set equivalently by its convex hull. Then, the discrete bilevel
programming problem is replaced by an equivalent linear bilevel pro-
gramming problem and all the results of Chapter 3 can be applied to
treat this problem. The difficulty is that we do not know the convex
hull of the feasible set in the lower level problem but have to compute
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it during the algorithm. One way to realize this idea is to use a cutting
plane algorithm in the lower level. Cutting plane algorithms have proved
to be a powerful tool for attacking discrete optimization problems, see
e.g. [9, 14, 57, 63]. Here we want to give some ideas of how to apply the
cutting plane idea to bilevel programming. The application of a cutting
plane algorithm to the lower level problem has the advantage that, in
each iteration of the algorithm, we have to solve only one bilevel pro-
gramming problem. Moreover, the solution of this problem should give
some information for the problem (8.1), (8.2) at least in each step in
which an integral solution in the lower level is obtained.

First we recall the main ideas of a cutting plane algorithm for solv-
ing the lower level problem [217]. The inclusion of these ideas in an
algorithm solving the discrete bilevel problem will follow later.

Consider the linear discrete programming problem (8.1) and its linear
relaxation

having as set of optimal solutions. Then, a Chvátal-Gomory cut
is an inequality

where is the largest integer not exceeding the inner product
of some with the i-th column of A and [217]. The
following theorems say that, by the help of an integer point in the region
of stability (cf. Definition 3.3) of an optimal solution for (8.3) we can
construct a Chvátal-Gomory cut cutting away if and only if is not
integer valued. This gives one way for deriving a cutting plane algorithm
for solving the problem (8.1).

DEFINITION 8.1 Let be an optimal solution of problem (8.3) for some
. Then, the set

is the region of stability of the solution

THEOREM 8.1 Let be an optimal solution of the problem (8.3), let
be integer-valued and let be an optimal solution of

the dual problem to (8.3) for being replaced by . Then

1. with , and defines a
Chvatal-Gomory cut which is satisfied by all points

2.
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3. if and only if is not integer-valued.

THEOREM 8.2 Let be an optimal vertex for problem (8.3) which is
not integer-valued. Then, there exists a Chvdtal-Gomory cut
with

Theorems 8.1 and 8.2 suggest that we can left the procedure of comput-
ing one Chvatal-Gomory cut to the following

Oracle: Given problem (8.3) with a non-integer optimal solution
compute a Chvatal-Gomory cut which is not satisfied by

Clearly, this oracle is not yet implementable in general. Moreover, by
polynomial equivalence of optimization and separation [159, 217],
hardness [104] of (8.1) implies of the oracle itself.

The most sensitive part in the oracle is the computation of an integer
vector in the region of stability of the optimal solution This
vector has to be computed such that is not integer-valued where

is a dual solution to with y replaced by in (8.3). In using this
approach to execute the oracle, Theorems 8.1 and 8.2 can be helpful.
This method has the drawback that the computed vectors have often
large components.

Another way to give a more clear formula for executing the oracle
is to compute an approximate solution of the following mathematical
programming problem in which the distance of from the hyperplane

defining the cut is maximized [70]:

THEOREM 8.3  Problem (8.5) has a finite optimal function value which
is positive if and only if is not integer-valued.

The proof of this theorem shows that, in searching for an optimal solu-
tion, we can restrict us to the search on a bounded set. Since
and can take only finitely many values over bounded sets of
solutions problem (8.5) decomposes into a finite number of (linear!)
optimization problems. Unfortunately, a closer look on the feasible set
of these linear optimization problems shows that their feasible set is in
general bounded but not closed since the step function has jumps at in-
teger values. This implies that an optimal solution of the problems (8.5)
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need not to exist. But remember that we introduced this problem only
to give some way to improve the quality of the cutting planes and that
there is no need to solve this problem up to optimality. For attacking it
by means of heuristics, local search [230] in the region of stability
can be used.

By use of the oracle we can define the following cutting plane algo-
rithm for solving the discrete optimization problem (8.1):
Cutting Plane Algorithm for Discrete Linear Programs

Input: An instance of problem (8.1).
Output: An optimal solution.

1: Solve the relaxed problem (8.3). Let be an optimal vertex of
this problem.
2: If is integer-valued, then is an optimal solution of the
problem (8.1).
Else, call the oracle to compute a Chvátal-Gomory cut
add this inequality to the constraints (the resulting system
is again denoted by and goto 1.

Now we come back to the bilevel programming problem. Our intention
is to apply the cutting plane algorithm to this problem. Having a first
look into that direction the possibility of realizing this idea seems not to
be very surprising, since problem (8.1), (8.2) is equivalent to the linear
bilevel programming problem

is nonempty and bounded (cf. Theorem 3.3). Using the ideas forming
the basis of cutting plane approaches and the theory of polyhedra, by
use of sufficiently many calls of the oracle it is principally possible to
compute the set conv P [217]. Then, if this set is obtained, we have to
solve only one linear bilevel programming problem to obtain a (global
or local) optimistic optimal solution for problem (8.1), (8.2). But this
is very time-consuming. Therefore, it is suggested to use an algorithm
which alternately solves a linear bilevel programming problem and calls
the oracle to get a more accurate approximation of the set conv P.

where

This problem has an optimistic optimal solution provided that the set
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Algorithm for Solving the Discrete Bilevel Optimization Prob-
lem:

Input: Instance of problem (8.1), (8.2)
Output: A local optimistic optimal solution.

1: Compute an optimal solution of the linear bilevel pro-
gramming problem

where

2: If then stop.
3: Else call the oracle to get a Chvatal-Gomory cut
add this inequality to the set of inequalities (the resulting
system of inequalities is again denoted by and goto 1.

For the solution of the linear bilevel programming problem in Step 1
the ideas in Chapter 3 can be used. Since changes of the feasible set
of the lower level problem far away from the present iteration point can
imply that global optimal solutions loose their optimality status [189],
the additional effort for computing global optimal solutions of the linear
bilevel problem in Step 1 makes no sense unless conv P is computed by
the cutting plane algorithm.

With respect to convergence of the algorithm we have the following
theorem which can be shown to be valid under the assumption that it
is possible to realize all cut generation steps in the algorithm.

THEOREM 8.4 If the cutting plane algorithm stops after a finite num-
ber of iterations at then this point is a local optimistic optimal
solution of problem (8.1), (8.2).

REMARK 8.1 Theoretically, cutting plane algorithms need only a finite
number of cuts to construct conv P [217]. Since all vertices of conv P
are integer and optimistic optimal solutions can be found at the vertices
of the set the cutting plane
algorithm will need also only a finite number of iterations to come to an
end. By Theorem 8.4 this implies convergence of the algorithm.

The above results are only valid if it is possible to compute a Chvatal-
Gomory cut in each step of the algorithm cutting away a sufficiently
large infeasible part N of By numerical rea-
sons this need not to be true either since the volumes of the sets

tend too quickly to zero or due to
the numerical impossibility to compute the cut itself. In either of these
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cases the algorithm stops after a finite number of iterations with an in-
feasible solution In this case, the usual way out is to start a
branch-and-cut procedure. We will not go into the details for such an
algorithm combining branch-and-bound with the idea of a cutting plane
algorithm to obtain sharper bounds. We will only give some remarks
with respect to the bounding procedure and mention that the branch-
ing process should be done with respect to the upper level variable y as
in algorithms for globally minimizing nonconvex functions. The reason
is that branching with respect to the lower level variables can in most
of the resulting subproblems not produce feasible solutions. For ideas
of how to construct such a branching process, the reader is referred to
[129].

8.3 INNER APPROXIMATION
If the discrete bilevel programming problem (8.1), (8.2) is solved with

a branch-and-cut algorithm, then we also need an idea of how to compute
valid bounds for the optimal function value of the bilevel programming
problem on parts of the set Sometimes, solving a
bilevel programming problem to global optimality is not desirable (or
not possible due to NP-hardness, cf. Theorem 3.12) since this will take
a large amount of time. Hence, the solution of a one-level optimization
problem could be considered as being superior.

In doing that it seems to be necessary not only to approximate the
feasible set of the lower level problem by means of cutting planes but
also to include some kind of an approximation of the objective function.
The following idea realizes this aim. This idea makes sense especially in
all cases when it is easy to compute feasible solutions of the lower level
problem. This is at least true if all coefficients aij are non-negative.

Let

be a subset of the set of feasible solutions for the lower level problem.
This subset can be generated by heuristics or approximation algorithms.
Let

is a Chvátal-Gomory cut generated by oracle}

be a set of cut generating vectors. Then, the optimal value of the follow-
ing problem gives a bound for the optimal value of the discrete bilevel
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programming problem:

Clearly, the last set of inequalities in this problem implies that the
part of an optimal solution has to be not worse than the best point
in the set V with respect to the objective function of the lower level
problem. It is also obvious that the optimal solution of the discrete
bilevel programming problem is feasible to the problem (8.8). Hence,
its optimal value is indeed a bound for the optimal value of the discrete
bilevel programming problem. Moreover, if

and

then problems (8.1), (8.2) and (8.8) coincide. Hence, for increasing the
accuracy of the approximation, new points in P and/or new cuts are to
be computed.

With respect to the effort needed to solve problem 8.8 is is necessary
to mention that this problem is a nonconvex one since the last set of
constraints form nonconvex inequalities. This is not surprising since it
is clearly not possible to transform a NP-hard optimization problem into
a polynomially solvable one by means of a polynomial transformation.

By obvious modifications of (8.9) and (8.10) it is also possible to derive
a rule for the decision if a point generated by the algorithm is
locally optimal for the discrete bilevel programming problem.

Example: Consider the problem

where

Let
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Then, problem (8.8) reads as

The last two inequalities of this problem are equivalently written as

which can then be used to partition its feasible set into two sets:

where

and

The problem of minimizing the upper level objective function over M1

has the optimal solution with and
an objective function value of -10.4.

The second problem of minimizing the same function on MI has two
isolated optimal solutions at and with

both having the same objective function value.
This shows that problem (8.8) is a nonconvex optimization problem.

It can be solved by means of optimization problems having only
one nonconvex constraint. For the computation of globally optimal solu-
tions of such problems ideas of d.c. programming can be used [274]. The
application of the ideas in [274] in parallel to all the optimization
problems seems to be imaginable.

Note that the second solution is fortunately equal to the optimal so-
lution of the discrete bilevel programming problem. The first solution is
infeasible for the discrete bilevel problem.

8.4 KNAPSACK LOWER LEVEL PROBLEMS
In this last section we want to show how parametric discrete optimiza-

tion can efficiently be applied for solving discrete bilevel optimization
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problems. Let denote the solution set mapping of a
right-hand side parametrized 0-1 knapsack problem

where a, c are n-dimensional integral vectors with positive components,
Then, the bilevel programming problem

with knapsack constraints reads as

with We start our investigations

with repeating from the literature some necessary details for an algo-
rithm applied to problem (8.14) to find a description of the point-to-set
mapping over This can be done in pseudopolynomial time
and results in a pseudopolynomial algorithm for the computation of an
optimal solution of (8.14), (8.15) in three senses: Without using refined
cancellation rules for unnecessary solutions we get lower optimal opti-
mal solutions. Using different refined dropping rules, optimistic as well
as pessimistic optimal solutions can be computed. An example which
illustrates the difficulties if a (pessimistic or optimistic) optimal solu-
tion is searched for is also given in Subsection 8.4.2. By combination
of the fully polynomial approximation scheme of [168] with the investi-
gations of [192] on the convergence of optimal solutions of approximate
problems to solutions of the original one it will be possible to construct
a polynomial approximation algorithm. Other than in [192], we prove
that it is not necessary to use ε-optimal solutions in the perturbed lower
level problems to compute optimistic optimal solutions in our problem.
Thus, the bilevel programming problem with knapsack constraints is
one example for the NP-hard bilevel programming problems in which
a lower optimal solution possesses an arbitrary good approximation in
polynomial time.

8.4.1 SOLUTION OF KNAPSACK PROBLEMS
We start with a simple and seemingly obvious result on the com-

putability of solutions of parametric knapsack problems.
Knapsack problems have been intensively investigated, see e.g. [202,

233] for comprehensive treatments of the problem. Parametric knapsack
problems are the topic of at least the papers [50, 45]. The following result
shows that the computation of one optimal solution of the knapsack
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problem for every right-hand side can be done in pseudopolynomial time.
To present them we need the subsequent enumeration algorithm.

We organize an enumeration algorithm in the breadth: Let

where denotes the unit vector. Then, by use of the bijection
if and only if corresponds to the power set of

Clearly, contains all possible solutions of the 0-1 knapsack problem
if no notice is taken to the constraint. Since this set is much too large,
dropping rules can be used. Consider problem (8.14) for a fixed right-
hand side b and the following rules for excluding elements of the sets

A: Exclude from if

B: Let for some . Then, if
exclude from

C: If there exist for some satisfying and
then exclude from

Call Algorithm 1 the algorithm implementing this enumeration idea
and using Rules A and B for ruling out unnecessary points. Analogously,
the procedure using Rules A and C in connection with the above enu-
meration idea is Algorithm 2. The following results are more or less
obvious, we state them without proof.

THEOREM 8.5  ([168]) Algorithm 1 computes an optimal solution for
the problem (8.14) with a fixed right-hand side b with time and space
complexity of where

COROLLARY 8.1 If the above algorithm is applied to problem (8.14) with
n

then for each an optimal solution is computed

with a time and space complexity of

COROLLARY 8.2 Algorithm 2 computes all optimal solutions of problem
(8.14) with fixed right-hand side b.

Note that Algorithm 2 is not of pseudopolynomial complexity.
We start with considering Algorithm 1. The elements of the set

can be ordered with time complex-
ity to such that
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where Then,

COROLLARY  8.3  For  the point if and only
for all

The proof follows directly from the following property of arbitrary two
different elements either

or vice versa.

COROLLARY 8.4  The optimal value function   defined by

again the region of stability of . Clearly, can be empty.

REMARK 8.2  For , the set is a half-open interval.
If For two points
satisfying either or

The following well-known theorem says that by using Algorithm 1 it is
possible to develop a fully polynomial-time approximation scheme:

THEOREM 8.6 ([168]) Let   be arbitrary and set ,
where Then, by solving the

modified problem

a solution is computed satisfying

with time and space complexity of

is piecewise constant and monotonically not decreasing. It can have
jumps only at integer values of the right-hand side

For a feasible solution of (8.14) call the set
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It should be mentioned that a better fully polynomial-time approxima-
tion scheme can be found in [146]. The following corollary is obtained
by combining Corollary 8.3 with Theorem 8.6 since Theorem 8.6 does
not depend on the right-hand side b. Solve problem (8.16) for
with and let with

COROLLARY 8.5 Under the above assumptions and notations, for each
and the inequality

THEOREM 8.7 ([75]) Let Then, global optimistic and pes-

simistic optimal solutions of (8.15) exist if If then either
the (optimistic or pessimistic) global optimal solution is for some

or problem (8.15) has no (optimistic or pessimistic) optimal
solution.

The proof follows from Corollary 8.4 since for fixed x its region of stabil-
ity is an half open interval, the function is piecewise
linear with slope f and the right endpoint of each continuous part does
not belong to this part. Since this right endpoint gives the supremal
function value on this part if and only if the problem can have no
optimal solution if and only if

The following Theorem shows that without using an improved drop-
ping rule in Algorithm 1 it is possible to compute a lower optimal solu-
tion.

THEOREM 8.8 ([75]) Let be the set of all solutions
for problem (8.14) obtained by application of Algorithm 1. Assume that

and let satisfy

holds. The time complexity for computing all solutions and describing
all regions of stability is

8.4.2 EXACT SOLUTION
We start with the following existence result for optimistic and pes-

simistic optimal solutions which is different from the results in the gen-
eral case (cf. Theorems 5.2 and 5.3).
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Then,

REMARK 8.3 The computation of a solution according to Theorem 8.8

has time and space  complexity             the worst case which coin-

cides with the time and space complexity of the knapsack problem.

Clearly, an easy modification of the last theorem can be used in the case

The following example shows that for computing an

optimistic solution, a refined rule has to be applied in the basic enumer-
ation process than Rule B. Similar examples can also be derived for the
computation of a pessimistic solution.

Example: Let

Then, the enumeration algorithms results in

where the solutions have been ordered according to increasing objective
function values. Now, take

Then, gives the best possible function value 1 for
But has

The reason here is that for a new

solution ~x becomes feasible for (8.15).

The refined dropping rule for Algorithm 1 is the following: The idea for
this rule and the following Theorem goes back to [84].
Algorithm 3: This is Algorithm 1 with Rule B replaced by

B': Let for some Then, if and ,
exclude from . If this is not the case, but

and exclude from
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It is obvious that Algorithm 3 again computes an element for
all and it is also a pseudopolynomial algorithm of the time
complexity

THEOREM 8.9 ([75]) Let be the set of all solutions
for problem (8.14) obtained by application of Algorithm 3. Assume that

and let satisfy

Then, is an optimistic optimal solution.

Using Algorithm 3 for the above Example, the solution is
no longer ruled out.

Consider now the case of a pessimistic solution and use another mod-
ification of Rule B in the enumeration algorithm:

B": Let          for some k. Then, if and
exclude from . If this is not the case, but

and exclude from

The algorithm using Rules A and B" within the enumeration idea is
called Algorithm 4. Rule B" again guarantees that if Algorithm 4
computes two different points with then

Both rules B' and B" guarantee that, for each there is
only one point in the set Since all calculations needed
for evaluating the rules can be done in polynomial time the overall
algorithms Algorithm 3 and Algorithm 4 have the same time complexity
as Algorithm 1.

THEOREM 8.10 ([75]) For each Algorithm 4 computes ex-
actly one element x* e Argmin with

X

COROLLARY 8.6 Let be the set of all solutions computed by
Algorithm 4. Then,

is a pessimistic optimal solution for
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If holds, the bilevel programming problem (8.15) has no solution
unless is optimal but a finite supremum. Then, the only thing
we can do is to compute a feasible solution which approximates the
supremum as exactly as necessary. In the following theorem we will
demonstrate how this can be done using as example Algorithm 3.

THEOREM 8.11 ([75]) Let be arbitrarily chosen. Let and
let be the points computed with Algorithm 3. Let

and be not an optimistic
optimal solution. Then with

and

The proof of this theorem follows since Algorithm 3 computes

for all b and since the supremal function value in (8.15) is achieved
for some right endpoint of the regions of stability for one of the points
computed by Algorithm 3.

8.4.3 APPROXIMATE SOLUTION
One of the main problems for knapsack problems is the question of

how to construct approximation algorithms which compute feasible so-
lutions having objective function values arbitrarily close to the optimal
ones in time polynomial in the size of the problem and, if possible also,
in the reciprocal of the error [146, 168]. The same seems to be diffi-
cult in bilevel programming due to the different objective functions in
both levels. In the following we show that it is possible to construct a
polynomial-time approximation algorithm in a somewhat weaker sense:
The computed solution is in general not feasible for the bilevel program-
ming problem but only £-feasible for an arbitrarily small And
we also show that, with decreasing infeasibility, at least a lower optimal
solution can be approximated.

Let us consider the bilevel problem in a more general form than (8.14),
(8.15):

satisfies
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where

with for all It has been shown in [183] that

convergence to an optimal solution of the unperturbed problem can be
achieved if solutions in the follower's problem are used pro-
vided that the constraint set mapping of the follower's problem is a lower
as well as an upper semicontinuous point-to-set mapping. But, since the
constraint set mapping of discrete optimization problems is in general
not lower semicontinuous (and the solution set mapping is consequently
in general neither lower nor upper semicontinuous) this result cannot
be applied directly to our situation. The following theorem shows that
a similar result can be obtained for problem (8.15) by exploiting the
finiteness of the feasible set of the follower but only with respect to the
weaker optimality definition used in [131].

THEOREM 8.12 ([75]) Consider problem (8.18) and let

be a sequence of points satisfying

and for all . Then, any accumulation point of
satisfies

and

REMARK 8.4 The following remarks seem to be in order:

1.

2. To apply Theorem 8.12 the perturbed problems can be solved with
either of the Algorithms 1, 3 or 4-

To get a polynomial time approximation algorithm for the bilevel pro-

gramming problem we use the idea in Theorem 8.6: Let

Then, converges to for Clearly, the common

factor in the objective of the lower level problem can be cancelled.
The resulting algorithm is polynomial in the problem's size and in the
reciprocal of
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The following example shows that the result of Theorem 8.12 is not true
in general for neither the optimistic nor the pessimistic solution:

The unique optimistic solution is is the optimistic
optimal function value. Now consider the following perturbation of the
lower level objective function coefficients:

Then, for all and all Hence, the
sequence of optimal solutions converges to having the function
value And this is not optimistic optimal.

An analogous example can easily be found in the pessimistic solution's
case. We should mention that this effect is not possible if
solutions in the lower level problem are used.

THEOREM 8.13 ([75]) Let and let be not a  pessimistic
optimal solution. Let be given. Then, any accumulation point

of a sequence with

and

REMARK 8.5 In distinction to Theorem 8.12 feasibility of the limit point
can in general not be shown. Under the assumptions of the last

theorem we either have or for sufficiently small

8.5 PROOFS
PROOF OF THEOREM 8.1:

1. By linear programming duality we have Hence,
describes a Chvatal-Gomory cut by definition. Now, for each

by feasibility of and The first part follows now by integrality
of the left-hand side of this inequality.

satisfies
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2. We have to show that the problem

has as an optimal solution. By linear programming duality and
integrality of

for each basic index i and

for all other indices. Hence, u defines a feasible dual variable satisfy-
ing the complementary slackness conditions. This shows the second
part of the proof.

3. By we have Thus,
if and only if is integral.

PROOF OF THEOREM 8.2: The region of stability is a convex
cone with apex at zero and nonempty interior int Moreover,
since all coefficients of the matrix A are integers, there exists an integer-
valued vector Now, by linear programming duality,

if is an optimal solution of the dual problem to (8.3)
for Hence, if is not an integer, then the assertion of the
theorem follows. Let be an integer but for some
Then, by the properties of and there exists an integer
such that where denotes the unit vector.
But then. is not an integer. This shows
that, for the corresponding Chvatal-Gomory cut is not
satisfied by

PROOF OF THEOREM 8.3: By Theorems 8.1 and 8.2 there exist
such that the objective function value of problem (8.5) is positive if
and only if is not integer-valued. Let be given according to
Theorem 8.1 such that the objective function value of problem (8.5) is
positive. Obviously, is rational since A has integer coefficients. Hence,
there exist positive integers with greatest common divisor 1 such
that Now, consider the vector Then,
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where denotes the vector with the components for all This
implies that the optimal function value of problem (8.5) is bounded.

Hence, by

PROOF OF THEOREM 8.4: If the algorithm stops after a finite number
of iterations, the point is integral.

First, if then by conv we have
for all and all for some

This implies that

with Hence, since each point in the right-hand side set in this
inclusion is feasible for the problem in Step 1 of the algorithm and since
the algorithms for solving linear bilevel programming problems compute
local optimistic optimal solutions , the point is also a local op-
timistic optimal solution of the discrete problem.

Second, let Then, it is possible that the left-hand side
in inclusion (8.22) contains points with different but in-
tegral points But nevertheless, the point is a local optimal
optimistic solution of the auxiliary linear bilevel programming problem
in Step 1 of the algorithm. This implies that for
all integer points in By (discrete) paramet-
ric optimization, there is such that for all

This implies that for all
and all Hence, the theorem follows.

PROOF OF THEOREM 8.8: By Corollary 8.3, for all
Hence,

This implies
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Since by the maximum on the left-hand side of this inequality is
equal to the theorem follows.

PROOF OF THEOREM 8.9: Due to Theorem 8.7 an optimal solution in
the optimistic approach exists. Let this solution be Conse-
quently,

If is not optimistic optimal, we have

and has been ruled out in some iteration Hence, there exists a
point such that

or

Consider the point x given by

Then,

i.e. the point is feasible for the lower level problem with If
the first rule is used to delete we get

and Since this is not possible, the second part applies.
We get and
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But implies

contradicting the optimality of Thus, is also an
optimistic optimal solution with
Therefore, the same considerations of ruling out this point in some
iteration with follow. This can only be done for
Finally, we obtain an optimistic optimal solution with

for all and this is a contradiction.

PROOF OF THEOREM 8.10: Let be fixed and assume that
Algorithm 4 does not compute a solution

satisfying (8.17). Let be the only solution with this property and
assume that it has been dropped in iteration of Algorithm 4. Then
there exists a point such that

or

Consider the point given by

Then, using the same argumentation as in the proof of Theorem 8.9 we
can show that Hence, the first case is not possible, the
second part applies and we get

By the last inequality is satisfied as

an equation. But then, which violates the uniqueness
assumption for at the beginning of the proof.
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PROOF OF COROLLARY 8.6: If the Algorithm 4 clearly computes
a pessimistic optimal solution.

Let and let not be a pessimistic optimal solution.
Then, by Theorem 8.7 there exists a pessimistic optimal solution
and we have

due to

with

by Theorem 8.10. Since the existence of two points

is not possible for we have Assume that there is
with Then

Since this contradicts the optimality of we have
for all with Hence, by

Theorem 8.10, has been computed by Algorithm 4. This implies
contradicting the assumption (8.23).

PROOF OF THEOREM 8.12:

1. By and Theorem 8.7, optimal solutions in the pessimistic
sense of problems (8.18) exist. By the
sequence has accumulation points.

2. Take for some fixed and let be any accumulation
point of this sequence. Then,

for all Hence, by convergence of we
get and, thus,
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Now, take any accumulation point of and assume without
loss of generality that itself converges to . Then, by finite-
ness of there exists an index such that

for all According to Theorem 8.7 an optimistic opti-
mal solution of problem (8.18) satisfies for all k.
Hence, the accumulation point with of the sequence

satisfies

4. Assume that does not satisfy the desired inequality (8.20).
Then, by Theorem 8.7 there is with

But then, for with

we derive

PROOF OF THEOREM 8.13:

1. Similarly to the idea of the proof of Theorem 8.11 let be a
given point such that with and

Then, there exist such that

for all k. But since the left-hand side of this inequality is equal to
for sufficiently large and the right-hand side cannot get

smaller than in the limit by part 2 of this proof we
get

which gives the desired contradiction.
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Clearly,

2. Using the same ideas as in the proof of Theorem 8.12 it is easy to see
that any accumulation point of a sequence with

for all satisfies

3. Now, let be a sequence of points satisfying the condi-
tions of the theorem and let be an accumulation point of this
sequence. Without loss of generality, let be the limit point of
this sequence. Then, similarly to the proof of Theorem 8.12,
for sufficiently large and . Fix any sufficiently large

such that for all For each such we get by
(8.21)

for each fixed Passing to the limit for to infinity in this
inequality, the left-hand side converges and the value on the right-
hand side of this inequality, for fixed  cannot increase. Hence

by part 1. Since this is true for all sufficiently close to
it is also satisfied for and we get the assertion of the theorem.
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power set of a set A, i.e. family of all subsets of a set A
Minkowski sum for some
Minkowski sum of A and (–1) · B
dual cone to cone C (see Definition 5.6)
Unit matrix of appropriate dimension
vertex set of

vector of 1’s:
unit vector

image of a set X via a function

set of active constraints at (cf. pages 62, 63)
index set of active selection functions of a (cf. 71)
index set of strongly active selection functions of a
(cf. 73)

contingent cone at to set C (see Definition 4.6)

neighborhood of a point

selection function of the
abbreviation used at many places

Hessian matrix of
matrix of second order mixed derivatives of

solution set mapping of problem 4.1 (cf. page 88)
Euclidean vector space

set of positive numbers
set of nonnegative numbers

A+B
A-B
C*
E

F(X)

conv A
int A

rg A

tangent cone to (cf. page 224)
quadratic problem for computing the directional derivative of
the optimal solution function (cf. (4.20))
linear problem for computing the directional derivative of the
optimal solution function (cf. (4.21))

index set of positive components of (cf. page 66)
a tangent cone to the optimal solution set

radial limit of a generalized (cf. Definition 5.11)
convex hull of a set A
set of inner points of a set A
set of Lagrange multipliers of an optimization problem (cf. page
62)
lower level multiplier vectors
Rank of the matrix A

neighborhood of a point (cf. page 63)

gradient of a function the gradient is a row vector

gradient of with respect to the variables
abbreviation used at many places
solution set mapping of the lower level problem (cf. pages 1, 62)
solution set mapping of a discrete lower level problem (cf. (8.1))
solution set mapping of the linear lower level problem (cf. pages
21, 27, 40)



support set of an active selection function of a
(cf. 71)

unit sphere in
family of all index sets satisfying conditions (C1) and (C2)
(cf. page 78)
reachable part of the set of optimal solutions (c.f. (7.3))
region of stability for a solution of a linear program (cf. page
260)
region of stability for a solution of a linear program (cf. page 40)
radial-directionally derivative of a generalized
(cf. Definition 5.11)
graph of a point-to-set mapping (cf. page 24)

to
norm

norm
Euclidean norm
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space of times continuously differential functions mapping

space of integral vectors
distance of a point from a set A (cf. (4.9))
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Algorithm
bundle algorithm nonconvex case, 207
bundle algorithm, 203–204
cutting plane algorithm, 262
descent algorithm, 194, 198
discrete bilevel problem, 263
method for approximation of a computed

solution, 220
prototype descent algorithm, 235
trust region algorithm, 211

Assumption
(C), 65
(MFCQ), 63
(PLICQ), 147
(SSOC), 66
(CG), 224
(FRR), 83
(LIN), 83
(SCR), 83

Bouligand differentiable, 74
Chemical equilibrium, 11
Chvátal-Gomory cut, 260
Clarke regular, 90
Condition (C1), 78
Condition (C2), 78
Condition (PFC), 144
Constraint qualification

calmness, 185
constant rank constraint qualification

(CRCQ), 77
linear independence constraint

qualification, 83, 153
Mangasarian-Fromowitz constraint

qualification, 63, 152
nonsmooth linear independence constraint

qualification, 155
nonsmooth Mangasarian-Fromowitz

constraint qualification, 155
partial calmness, 157

strict Mangasarian-Fromowitz constraint
qualification, 152

Contingent cone, 71
Derivative

Clarke directional derivative, 90
lower Dini directional derivative, 89, 133
upper Dini directional derivative, 89, 133

Dual cone, 137
Function

exact penalty function, 209
penalty function, 209

159
71

distance function, 64
Fischer-Burmeister function, 215
generalized 159
Lagrangian function, 63
locally Lipschitz continuous, 68
locally upper Lipschitz continuous, 68
lower semicontinuous, 64
optimal value function, 62
perturbed Fischer-Burmeister function,

215
pseudodifferentiable, 74
radial-continuous function, 160
radial-directional differentiable function,

160
semi-Lipschitz continuous function, 231
semismooth function, 73
upper semicontinuous, 64

Generalized gradient, 72
Generalized Jacobian, 73
Lagrange multiplier, 63
Lower optimal solutions, 126
Mapping

feasible set mapping, 63
Lipschitz continuous, 65
lower semicontinuous, 64
point-to-set mapping, 1
polyhedral point-to-set mapping, 24



lower level problem, 1
Mathematical Program with Equilibrium

Constraints, 3
minimax problem, 2
optimistic bilevel problem, 29, 124
pessimistic bilevel problem, 29, 125
principal-agency problem, 9
reachable multiplier computation, 79
strong bilevel problem, 29
weak bilevel problem, 29
well–posed, 219

Pseudodifferential, 75
Radial subdifferential, 164
Radial subgradient, 163
Region of stability linear problem, 40
Region of stability, 260
Regular complementarity system, 178
Regular value, 149
Regularity

generalized Slater’s condition, 39
upper level regularity assumption, 129

Selection function
strongly active, 73

Set of stationary solutions, 63
Set

locally bounded set, 91
polyhedral set, 24

Solution
local optimal solution, 136
optimistic optimal solution, 29
pessimistic optimal solution, 29

Stackelberg game, 8
System of Karush-Kuhn-Tucker conditions,

64
solution set mapping, 88

pseudo Lipschitz continuous point-to-set
mapping, 96

solution set mapping, 62
upper Lipschitz continuous, 65
upper semicontinuous, 64

Minimizing sequence, 219
Nondegenerate inequality, 142
Optimality condition

strong sufficient optimality condition of
second order, 66

Optimality
global optimal solution, 123
global optimistic solution, 124
global pessimistic solution, 125
local optimal solution, 123
local optimistic solution, 40, 124
local pessimistic solution, 125
optimistic solution, 123

Point
Bouligand stationary point, 134
Clarke stationary point, 134
pseudostationary point, 134

Polyhedral cone, 135
Problem

lower level problem, 121
upper level problem, 121
bicriteria optimization problem, 2
bilevel programming problem, 2
Cournot-Nash equilibrium problem, 9
decomposition approach, 2
directional derivative optimal solution, 79
dual optimization problem, 3
follower’s problem, 1, 121
improper optimization problem, 3
leader’s problem, 2, 121
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