
www.sharexxx.net - free books & magazines

800 East 96th Street, Indianapolis, Indiana 46240 USA

Alison Balter

Alison Balter’s

Mastering Microsoft® Office

Access 2007
Development

Alison Balter’s Mastering Microsoft® Office Access 2007 Development
Copyright © 2007 by Sams Publishing
All rights reserved. No part of this book shall be reproduced, stored in a retrieval
system, or transmitted by any means, electronic, mechanical, photocopying, recording,
or otherwise, without written permission from the publisher. No patent liability is
assumed with respect to the use of the information contained herein. Although every
precaution has been taken in the preparation of this book, the publisher and author
assume no responsibility for errors or omissions. Nor is any liability assumed for
damages resulting from the use of the information contained herein.

10-Digit International Standard Book Number: 0-672-32932-8

13-Digit International Standard Book Number: 978-0-672-32932-6

Library of Congress Cataloging-in-Publication Data

Balter, Alison.

[Mastering Microsoft Office Access 2007 development]

Alison Balter’s mastering Microsoft Office Access 2007 development / Alison Balter.

p. cm.

ISBN 0-672-32932-8

1. Microsoft Access. 2. Database management. I. Title. II. Title: Mastering Microsoft
Office Access 2007 developmentment.

QA76.9.D3B3255 2007
005.75’65—dc22

2007009580
Printed in the United States of America
First Printing: May 2007

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks
have been appropriately capitalized. Sams Publishing cannot attest to the accuracy of
this information. Use of a term in this book should not be regarded as affecting the
validity of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as
possible, but no warranty or fitness is implied. The information provided is on an “as
is” basis.

Bulk Sales
Sams Publishing offers excellent discounts on this book when ordered in quantity for
bulk purchases or special sales. For more information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales

international@pearsoned.com

Associate Publisher
Greg Wiegand

Acquisitions Editor
Loretta Yates

Development Editor
Kevin Howard

Managing Editor
Gina Kanouse

Project Editor
George E. Nedeff

Copy Editor
Chuck Hutchinson

Indexer
Lisa Stumpf

Proofreader
Karen A. Gill

Technical Editor
Todd Meister

Publishing
Coordinator
Cindy Teeters

Multimedia Developer
Dan Scherf

Book Designer
Gary Adair

Composition
Nonie Ratcliff and
Bumpy Design

http://www.quepublishing.com/safarienabled

Contents at a Glance

Introduction

Part I The Basics of Access Development

1 Access as a Development Tool. 7

2 What Every Developer Needs to Know About Databases and Tables 75

3 Relationships: Your Key to Data Integrity . 115

4 What Every Developer Needs to Know About Query Basics. 137

5 What Every Developer Needs to Know About Forms. 189

6 What Every Developer Needs to Know About Reports. 269

7 What Are Macros, and When Do You Need Them? . 315

8 VBA: An Introduction . 345

9 Objects, Properties, Methods, and Events Explained . 401

10 Advanced Form Techniques. 431

11 Advanced Report Techniques. 493

12 Advanced Query Techniques . 539

13 Advanced VBA Techniques. 599

14 Exploiting the Power of Class Modules. 637

15 What Are ActiveX Data Objects, and Why Are They Important?. 671

Part II What to Do When Things Don’t Go as Planned

16 Debugging: Your Key to Successful Development . 727

17 Error Handling: Preparing for the Inevitable . 755

18 Optimizing Your Application. 801

Part III Developing Multiuser and Enterprise Applications

19 A Strategy to Developing Access Applications. 835

20 Using External Data . 847

21 Access 2007 and SharePoint . 883

22 Developing Multiuser and Enterprise Applications . 909

Part IV Black Belt Programming

23 Working with and Customizing Ribbons . 935

24 Automation: Communicating with Other Applications . 949

25 Exploiting the Power of the Windows API . 985

26 Creating Your Own Libraries. 1011

27 Using Builders and Wizards . 1027

28 An Introduction to Access and the Internet/Intranet. 1055

Part V Adding Polish to Your Application

29 Documenting Your Application. 1073

30 Maintaining Your Application. 1091

31 Database Security Made Easy . 1103

The following appendixes are available for download
at www.samspublishing.com/title/0672329328.

Part VI Appendixes

A Naming Conventions. PDF:1131

B Table Structures. PDF:1137

Index. 1193

Alison Balter’s Mastering Microsoft®Office Access 2007 Developmentiv

www.samspublishing.com/title/0672329328

Table of Contents

Introduction 1

Part I The Basics of Access Development

1 Access as a Development Tool 7

Why This Chapter Is Important . 7
What Types of Applications Can You Develop in Access?. 7

Access as a Development Platform for Personal Applications 8
Access as a Development Platform for Small Business

Applications. 8
Access as a Development Platform for Departmental

Applications. 8
Access as a Development Platform for Corporationwide

Applications. 9
Access as a Front End for Enterprisewide Client/

Server Applications . 10
Access as a Development Platform for Intranet/

Internet Applications . 11
Access as a Scalable Product . 11
What Exactly Is a Database?. 11
Getting to Know the Database Objects. 12

Tables: A Repository for Your Data. 12
Queries: Stored Questions or Actions You Apply to Your Data 16
Forms: A Means of Displaying, Modifying, and Adding Data 17
Reports: Turning Data into Information . 20
Macros: A Means of Automating Your System . 20
Modules: The Foundation to the Application Development Process 22

Object Naming Conventions. 23
Hardware Requirements . 23

What Hardware Does Microsoft Office Access 2007 Require? 23
How Do I Get Started Developing an Access Application? . 24

Task Analysis . 24
Data Analysis and Design . 24
Prototyping . 27
Testing . 27
Implementation . 28
Maintenance . 28

What’s New in Access 2007? . 28
What’s New in the User Interface?. 28
Getting to Know the Ribbon . 30
Getting to Know the Navigation Pane. 42
Working with Tabbed Documents . 44
Exploring the New Status Bar . 47
Working with the Mini Toolbar . 49
What’s New with Forms? . 51
What’s New with Reports? . 51
The Exciting World of Pivot Tables and Pivot Charts 51

Other New Features Found in Access 2007. 52
What Happened to Replication? . 52
What Happened to ADP Files? . 56

Additional Tips and Tricks . 56
Advanced Navigation Pane Techniques . 56
Creating Multi-valued Fields . 65

Practical Examples: The Application Design for a Computer
Consulting Firm. 72

Summary. 74

2 What Every Developer Needs to Know About Databases and Tables 75

Why This Chapter Is Important. 75
Creating a New Database. 75

Creating a Database Using a Template . 76
Creating a Database from Scratch. 78

Building a New Table . 79
Designing a Table from Scratch. 79

Selecting the Appropriate Field Type for Your Data . 82
Text Fields: The Most Common Field Type . 84
Memo Fields: For Those Long Notes and Comments. 84
Number Fields: For When You Need to Calculate++ . 84
Date/Time Fields: Tracking When Things Happened . 84
Currency Fields: Storing Money . 85
AutoNumber Fields: For Unique Record Identifiers . 85
Yes/No Fields: When One of Two Answers Is Correct 86
OLE Object Fields: The Place to Store Just About Anything. 86
Attachment Fields: Storing Several Files in a Single Field. 86
Hyperlink Fields: Your Link to the Internet . 87

Working with Field Properties . 87
Field Size: Limiting What’s Entered into a Field . 88
Format: Determining How Data Is Displayed. 88

Alison Balter’s Mastering Microsoft®Office Access 2007 Developmentvi

Input Mask: Determining What Data Goes into a Field. 89
Caption: A Great Timesaver . 91
Default Value: Saving Data Entry Time. 91
Validation Rule: Controlling What the User Enters in a Field 92
Validation Text: Providing Error Messages to the User 94
Required: Making the User Enter a Value . 94
Allow Zero Length: Accommodating Situations

with Nonexistent Data . 95
Indexed: Speeding Up Searches . 96
Unicode Compression: Compressing Your Data. 97

Using the All-Important Primary Key. 98
Working with the Lookup Feature. 98
Working with Table Properties . 101
Using Indexes to Improve Performance . 103
Using Access Tables with the Internet . 103

The Hyperlink Field Type . 103
Saving Table Data as HTML . 104
Saving Table Data as XML . 107

Viewing Object Dependencies . 109
Examining Database Specifications and Limitations . 110
Examining Table Specifications and Limitations . 110
Practical Examples: Designing the Tables Needed for a Computer

Consulting Firm’s Time and Billing Application. 111
Summary . 114

3 Relationships: Your Key to Data Integrity 115

Why This Chapter Is Important . 115
Introduction to Relational Database Design . 115

The History of Relational Database Design . 116
Goals of Relational Database Design . 116
Rules of Relational Database Design. 116
Normalization and Normal Forms . 117
Denormalization—Purposely Violating the Rules. 120
Integrity Rules. 121
Database-Specific Rules . 122
Examining the Types of Relationships . 122

Establishing Relationships in Access . 124
Establishing a Relationship Between Two Tables. 125
Looking at Guidelines for Establishing Relationships 126
Modifying an Existing Relationship . 128

Contents vii

Establishing Referential Integrity. 128
Cascade Update Related Fields . 130
Cascade Delete Related Records. 131

Looking at the Benefits of Relationships. 133
Examining Indexes and Relationships . 134
Practical Examples: Establishing the Relationships Between

the Tables Included in the Time and Billing Database . 134
Summary . 136

4 What Every Developer Needs to Know About Query Basics 137

Why This Chapter Is Important . 137
What Is a Query, and When Should You Use One?. 137
Everything You Need to Know About Query Basics. 138

Adding Tables to Your Query . 139
Adding Fields to Your Query. 139
Removing a Field from the Query Design Grid . 142
Inserting a Field After the Query Is Built . 143
Moving a Field to a Different Location on the

Query Design Grid . 143
Saving and Naming Your Query . 144

Ordering Your Query Result . 144
Sorting by More Than One Field . 145

Refining Your Query with Criteria . 146
Working with Dates in Criteria . 149
Understanding How You Can Update Query Results . 150
Building Queries Based on Multiple Tables. 151

Pitfalls of Multitable Queries . 153
Row Fix-Up in Multitable Queries. 155

Creating Calculated Fields. 157
Getting Help from the Expression Builder. 160
Summarizing Data with Totals Queries . 161
Excluding Fields from the Output . 166
Understanding Nulls and Query Results . 166
Refining Your Queries with Field, Field List, and Query Properties 170

Field Properties: Changing the Behavior of a Field. 170
Field List Properties: Changing the Properties of the

Field List . 171
Query Properties: Changing the Behavior of the

Overall Query . 171
Building Parameter Queries When You Don’t Know

the Criteria at Design Time . 172

Alison Balter’s Mastering Microsoft®Office Access 2007 Developmentviii

Adding Smart Tags to Your Queries. 175
Adding a Smart Tag to a Query . 175
Using a Smart Tag. 176

Creating a Pivot Table or Pivot Chart from a Query. 179
Creating the Query to Display in PivotTable

or PivotChart View . 179
Displaying the Query in PivotTable View . 180
Displaying Summarized Data . 181
Filtering Pivot Table Data . 183
Using Drill-Down . 184
Exchanging Axes . 185
Switching to PivotChart View . 185

Understanding Query Specifications and Limitations. 185
Practical Examples: Building Queries Needed by the Time

and Billing Application for a Computer Consulting Firm 186
Summary . 188

5 What Every Developer Needs to Know About Forms 189

Why This Chapter Is Important . 189
Understanding the Uses of Forms. 189
Examining the Anatomy of a Form . 192
Creating a New Form . 193

Creating a Form with the Form Wizard . 193
Creating a Form from Design View . 196

Working with the Form Design Window . 196
Understanding and Working with the Form Design Tools 196
Adding Fields to the Form. 198
Selecting, Moving, Aligning, and Sizing Form Objects. 199
Modifying Object Tab Order . 204

Working in Layout View. 205
Using Stacked and Tabular Layouts . 206
Getting to Know Split Forms . 215
Using Alternating Background Colors for a Form . 216

Selecting the Correct Control for the Job. 218
Labels . 219
Text Boxes . 219
Combo Boxes. 219
List Boxes. 223
Check Boxes . 224
Option and Toggle Buttons . 224
Option Groups. 224

Contents ix

Control Morphing . 227
Morphing a Text Box into a Combo Box. 227
Morphing a Combo Box into a List Box . 228

Conditional Formatting. 228
Determining Which Form Properties Are Available

and Why You Should Use Them . 229
Working with the Property Sheet. 229
Working with the Important Form Properties . 229

Determining Which Control Properties Are Available
and Why You Should Use Them . 236

Format Properties of a Control . 236
Data Properties of a Control . 239
Other Properties of a Control. 240

Understanding Bound, Unbound, and Calculated Controls 242
Using Expressions to Enhance Your Forms . 243
Using the Command Button Wizards: Programming

Without Typing . 244
Building Forms Based on More Than One Table. 246

Creating One-to-Many Forms . 246
Working with Subforms . 249

Basing Forms on Queries: The Why and How. 249
Embedding SQL Statements Versus Stored Queries. 250

Connecting Access Forms and the Internet . 251
Adding a Hyperlink to a Form . 251
Saving a Form as HTML . 253
Saving a Form as XML. 253

Adding Smart Tags to Your Forms. 253
Adding a Smart Tag to a Form. 253
Using a Smart Tag. 255

Creating a Pivot Table or Pivot Chart from a Form . 256
Creating the Form to Display in PivotTable

or PivotChart View . 256
Displaying the Form in PivotTable View . 257
Displaying Summarized Data . 259
Filtering Pivot Table Data . 261
Using Drill-Down . 261
Exchanging Axes . 262
Switching to PivotChart View . 262

Examining Form Specifications and Limitations . 262

Alison Balter’s Mastering Microsoft®Office Access 2007 Developmentx

Practical Examples: Designing Forms for Your Application. 263
Designing the Clients Form . 263
Designing the Projects Form . 266
Adding a Command Button That Links the Clients

and Projects Forms. 268
Summary . 268

6 What Every Developer Needs to Know About Reports 269

Why This Chapter Is Important . 269
Examining Types of Reports Available . 269

Detail Reports . 270
Summary Reports . 270
Cross-Tabulation Reports . 270
Reports with Graphics and Charts . 272
Reports with Forms . 272
Reports with Labels . 273

Understanding the Anatomy of a Report . 274
Creating a New Report . 275

Creating a Report with the Report Wizard. 275
Creating a Report from Design View . 278

Working with the Report Design Window . 278
Understanding the Report Design Tools. 278
Adding Fields to the Report . 278
Selecting, Moving, Aligning, and Sizing Report Objects 279

Selecting the Correct Control for the Job. 282
Labels . 282
Text Boxes . 282
Lines . 282
Rectangles . 283
Bound Object Frames . 283
Unbound Object Frames . 283
Image Controls . 284
Other Controls. 284

What Report Properties Are Available, and Why Should
You Use Them? . 284

Working with the Property Sheet. 285
The Report’s Format Properties. 285
The Report’s Data Properties . 287
The Other Report Properties . 288

Contents xi

What Control Properties Are Available, and Why Should
ou Use Them?. 289

The Control’s Format Properties . 290
The Control’s Data Properties . 292
The Other Control Properties. 292

Inserting Page Breaks . 293
Using Unbound, Bound, and Calculated Controls. 293
Using Expressions to Enhance Your Reports . 293
Building Reports Based on More Than One Table . 293

Creating One-to-Many Reports . 294
Working with Subreports . 300

Working with Sorting and Grouping. 301
Adding Sorting or Grouping . 302
What Are Group Header and Footer Properties,

and Why Should You Use Them? . 303
Improving Performance and Reusability by Basing Reports

on Stored Queries or Embedded SQL Statements. 304
Using Access Reports and the Internet . 305

Adding a Hyperlink to a Report. 306
Saving a Report as HTML . 306
Saving a Report as XML . 306

Understanding Report Specifications and Limitations . 307
Practical Examples: Building Reports Needed for Your Application 307

Designing the rptClientListing Report. 307
Designing the rptTimeSheet Report . 311

Summary . 314

7 What Are Macros, and When Do You Need Them? 315

Why This Chapter Is Important . 315
Learning the Basics of Creating and Running a Macro . 315

Macro Actions. 316
Action Arguments. 318
Macro Names. 321
Macro Conditions. 323

Running an Access Macro . 324
Running a Macro from the Macro Design Window. 325
Running a Macro from the Macros Group

of the Navigation Pane . 326
Triggering a Macro from a Form or Report Event. 326

Modifying an Existing Macro . 329
Inserting New Macro Actions. 329
Deleting Macro Actions . 329

Alison Balter’s Mastering Microsoft®Office Access 2007 Developmentxii

Moving Macro Actions . 330
Copying Macro Actions . 331
Creating an Embedded Macro. 332
What New Features Are Available in Macros?. 334

Documenting Your Macro: Adding Comments . 336
Testing a Macro. 337
Determining When You Should Use Macros and

When You Shouldn’t. 339
Converting a Macro to VBA Code . 339
Creating an AutoExec Macro . 341
Using the DoCmd Object . 342
Practical Examples: Adding an AutoExec Macro

to the Time and Billing Application. 343
Summary . 343

8 VBA: An Introduction 345

Why This Chapter Is Important . 345
VBA Explained. 345
What Are Access Class Modules, Standard Modules,

Form Modules, and Report Modules? . 347
Where Is VBA Code Written? . 348
The Anatomy of a Module . 348
Option Explicit . 349
Creating Event Procedures. 352
Creating Functions and Subroutines . 352
Calling Event and User-Defined Procedures. 354
Scope and Lifetime of Procedures . 355

Working with Variables . 358
Declaring Variables . 358
VBA Data Types. 359
Scope and Lifetime of Variables: Exposing Your

Variablesas Little as Possible . 360
Adding Comments to Your Code . 363
Using the Line Continuation Character. 364
Using the VBA Control Structures . 364

If…Then…Else . 365
The Immediate If (IIf) . 366
The Conditional If: Conditional Compilation . 367
Select Case . 368
Looping . 369
For…Next . 371
With…End With . 372
For Each…Next . 372

Contents xiii

Passing Parameters and Returning Values . 373
Executing Procedures from the Module Window. 374
The DoCmd Object: Performing Macro Actions . 374
Working with Built-In Functions. 376

Built-In Functions. 376
Functions Made Easy with the Object Browser . 379

Working with Constants. 380
Working with Symbolic Constants. 381
Working with Intrinsic Constants. 382

Working with the Visual Basic Editor Tools . 383
List Properties and Methods . 384
List Constants . 385
Quick Info. 385
Parameter Info . 386
Complete Word. 386
Definition . 387
Mysteries of the Coding Environment Solved . 388
The Project Window . 388
The Properties Window . 390
The View Microsoft Access Tool . 390
Find and Replace . 390
Help . 391
Splitting the Code Window . 393
Using Bookmarks to Save Your Place . 394

Customizing the VBE . 394
Coding Options—The Editor Tab. 394
Code Color, Fonts, and Sizes—The Editor Format Tab 395
General Options—The General Tab. 395
Docking Options—The Docking Tab . 396

Practical Examples: Using Event Routines, User-Defined
Functions, and Subroutines . 396

Summary . 399

9 Objects, Properties, Methods, and Events Explained 401

Why This Chapter Is Important . 401
Understanding Objects, Properties, Events, and Methods 401

What Exactly Are Objects? . 402
What Exactly Are Properties? . 402
What Exactly Are Events? . 404
What Exactly Are Methods? . 404

Alison Balter’s Mastering Microsoft®Office Access 2007 Developmentxiv

Using the Object Browser to Learn About Access’s Objects. 405
How to Use the Object Browser. 405
Pasting Code Templates into a Procedure. 406

Referring to Objects . 407
Working with Properties and Methods . 408

Telling the Difference Between Properties and Methods 408
Using a Bang Versus a Period . 409
Default Properties . 410

Declaring and Assigning Object Variables . 410
Object Variables Versus Regular Variables. 410
Generic Versus Specific Object Variables . 411
Cleaning Up After Yourself . 412

Understanding the Differences Between Objects and Collections 412
Manipulating a Single Object. 412
Manipulating a Collection of Objects . 413

Passing Objects to Subroutines and Functions . 413
Determining the Type of a Control. 414
Using Special Properties That Refer to Objects . 415
Understanding Access’s Object Model . 416

The Application Object . 416
The Forms Collection . 418
The Reports Collection . 419
The Modules Collection . 420
The CurrentProject Object. 420
The CurrentData Object . 422
The CodeProject Object . 423
The CodeData Object . 423
The Screen Object . 423
The DoCmd Object. 423

Taking Advantage of Additional Useful Properties . 424
Practical Examples: Working with Objects . 425

Enabling and Disabling Command Buttons. 425
Summary . 429

10 Advanced Form Techniques 431

Why This Chapter Is Important . 431
What Are the Form Events, and When Do You Use Them? 431

Current . 431
BeforeInsert . 432
AfterInsert . 432

Contents xv

BeforeUpdate . 433
AfterUpdate . 434
Dirty. 434
Undo . 434
Delete . 435
BeforeDelConfirm . 435
AfterDelConfirm . 435
Open . 435
Load . 436
Resize . 436
Unload . 437
Close. 438
Activate . 438
Deactivate . 438
GotFocus . 438
LostFocus . 439
Click. 439
DblClick . 439
MouseDown . 439
MouseMove . 439
MouseUp . 439
KeyDown . 439
KeyUp. 440
KeyPress . 440
Error. 440
Filter . 440
ApplyFilter . 440
Timer. 441
Understanding the Sequence of Form Events. 441

What Are the Section and Control Events, and When
Do You Use Them? . 443

BeforeUpdate . 443
AfterUpdate . 443
Updated . 444
Change . 444
NotInList . 444
Enter. 445
Exit . 445
GotFocus . 445
LostFocus . 446
Click. 446
DblClick . 447

Alison Balter’s Mastering Microsoft®Office Access 2007 Developmentxvi

MouseDown . 448
MouseMove . 448
MouseUp . 448
KeyDown . 448
KeyUp. 449
KeyPress . 449
Understanding the Sequence of Control Events . 449

Referring to Me . 450
What Types of Forms Can I Create, and When Are

They Appropriate? . 450
Single Forms: Viewing One Record at a Time. 451
Continuous Forms: Viewing Multiple Records at a Time. 451
Multipage Forms: Finding Solutions When Everything

Doesn’t Fit on One Screen. 453
Tabbed Forms: Conserving Screen Real Estate . 455
Switchboard Forms: Controlling Your Application. 457
Splash Screen Forms: Creating a Professional Opening

to Your Application. 459
Dialog Forms: Gathering Information . 459

Using Built-In Dialog Boxes. 460
Message Boxes. 460
Input Boxes . 462
The FileDialog Object . 463

Taking Advantage of Built-In, Form-Filtering Features . 464
Including Objects from Other Applications: Linking

Versus Embedding . 466
Bound OLE Objects. 466
Unbound OLE Objects. 467

Using OpenArgs . 468
Switching a Form’s RecordSource . 468
Learning Power Combo Box and List Box Techniques. 471

Handling the NotInList Event. 472
Working with a Pop-Up Form . 473
Adding Items to a Combo Box or List Box at Runtime 474
Handling Multiple Selections in a List Box . 475

Learning Power Subform Techniques . 476
Referring to Subform Controls . 476

Using Automatic Error Checking. 477
Viewing Object Dependencies . 479
Using AutoCorrect Options . 480
Propagating Field Properties . 481

Contents xvii

Synchronizing a Form with Its Underlying Recordset. 483
Creating Custom Properties and Methods . 484

Creating Custom Properties . 484
Creating Custom Methods. 489

Practical Examples: Applying Advanced Techniques
to Your Application . 490

Getting Things Going with a Startup Form . 490
Building a Splash Screen . 491

Summary . 491

11 Advanced Report Techniques 493

Why This Chapter Is Important . 493
Events Available for Reports and When to Use Them. 493

The Open Event . 493
The Close Event . 494
The NoData Event . 494
The Page Event . 495
The Error Event . 495

Order of Events for Reports . 496
Events Available for Report Sections and When to Use Them. 496

The Format Event . 496
The Print Event . 498
The Retreat Event. 500
Order of Section Events . 500

Programmatically Manipulating Report Sections . 501
Taking Advantage of Special Report Properties. 501

MoveLayout . 502
NextRecord . 502
PrintSection . 502
Interaction of MoveLayout, NextRecord, and PrintSection 502
FormatCount . 503
PrintCount . 503
HasContinued . 503
WillContinue . 503

Controlling the Printer. 503
The Printer Object. 503
The Printers Collection. 504

Using Automatic Error Checking. 505
Propagating Field Properties . 507

Alison Balter’s Mastering Microsoft®Office Access 2007 Developmentxviii

Incorporating Practical Applications of Report Events
and Properties. 509

Changing a Report’s RecordSource . 509
Working with Report Filters. 513
Working with the Report Sort Order . 515
Using the Same Report to Display Summary, Detail, or Both 516
Numbering Report Items. 518
Printing Multiple Labels. 520
Determining Where a Label Prints . 522
Building a Report from a Crosstab Query . 523
Printing the First and Last Page Entries in the Page Header 530
Creating a Multifact Crosstab Report. 533

Practical Examples: Practicing What You Learned. 536
Summary . 537

12 Advanced Query Techniques 539

Why This Chapter Is Important . 539
Using Action Queries . 539

Update Queries . 539
Delete Queries. 542
Append Queries. 543
Make Table Queries . 545
Using Action Queries Versus Processing Records with Code 547

Viewing Special Query Properties . 548
Unique Values Property. 549
Unique Records Property . 549
Top Values Property . 551

Optimizing Queries . 552
Understanding the Query Compilation Process. 553
Analyzing a Query’s Performance . 553
Steps You Can Take to Improve a Query’s Performance 554
Rushmore Technology . 555

Using Crosstab Queries. 556
Creating a Crosstab Query with the Crosstab Query Wizard. 557
Creating a Crosstab Query Without the Crosstab Query Wizard. . . 559
Creating Fixed Column Headings . 561
Important Notes About Crosstab Queries . 561

Establishing Outer Joins . 562
Establishing Self-Joins . 564

Contents xix

Understanding SQL . 566
What Is SQL, and Where Did It Come From? . 566
What Do You Need to Know About SQL?. 567
SQL Syntax. 567
The SELECT Statement . 567
Applying What You Have Learned . 573

Building Union Queries . 575
The ALL Keyword. 576
Sorting the Query Results. 576
Using the Graphical QBE to Create a Union Query. 576
Important Notes about Union Queries . 577

Using Pass-Through Queries. 578
Examining the Propagation of Nulls and Query Results . 579
Running Subqueries . 581
Using SQL to Update Data . 582

The UPDATE Statement . 582
The DELETE Statement . 582
The INSERT INTO Statement . 583
The SELECT INTO Statement . 583

Using SQL for Data Definition . 584
The CREATE TABLE Statement . 584
The CREATE INDEX Statement . 584
The ALTER TABLE Statement . 585
The DROP INDEX Statement . 585
The DROP TABLE Statement . 586

Using the Result of a Function as the Criteria for a Query 586
Passing Parameter Query Values from a Form . 588
Understanding Jet 4.0 ANSI-92 Extensions. 590

Table Extensions. 590
View and Stored Procedures Extensions . 593
Transaction Extensions . 594

Practical Examples: Applying These Techniques in Your Application 595
Archiving Payments . 595
Showing All Payments . 597
Creating a State Table . 597

Summary . 598

13 Advanced VBA Techniques 599

Why This Chapter Is Important . 599
What Are User-Defined Types, and Why Would You Use Them?. 599

Declaring a User-Defined Type . 600
Creating a Type Variable . 600

Alison Balter’s Mastering Microsoft®Office Access 2007 Developmentxx

Storing Information from a Record in a Form
into a Type Variable . 601

Retrieving Information from the Elements of a Type Variable 601
Working with Constants. 602

Defining Your Own Constants . 602
Working with Intrinsic Constants. 604

Working with Arrays . 605
Declaring and Working with Fixed Arrays . 605
Declaring and Working with Dynamic Arrays . 607
Passing Arrays as Parameters . 609

Understanding Advanced Function Techniques . 610
Passing by Reference Versus Passing by Value . 610
Optional Parameters: Building Flexibility into Functions 613
Named Parameters: Eliminate the Need to Count Commas. 616
Recursive Procedures . 616

Working with Empty and Null . 618
Working with Empty . 618
Working with Null . 619

Creating and Working with Custom Collections . 625
Creating a Custom Collection. 626
Adding Items to a Custom Collection . 626
Accessing an Item in a Custom Collection . 627
Removing Items from a Custom Collection. 627
Iterating Through the Elements of a Custom Collection. 628

Handling Files with Low-Level File Handling . 628
Understanding and Effectively Using Compilation Options 629

Compile on Demand. 629
Importing and Exporting Code Modules . 630
Working with Project Properties. 631
Practical Examples: Putting Advanced Techniques to Use 632

Examples of Null, the DoCmd Object, and Intrinsic Constants 632
An Example of Using a Type Structure. 633

Summary . 635

14 Exploiting the Power of Class Modules 637

Why This Chapter Is Important . 637
Object Orientation—An Introduction . 637
Creating and Using a Class Module . 638

Adding Properties . 639
Adding Methods. 639
Instantiating and Using the Class . 640
Property Let and Get—Adding Properties the Right Way 640

Contents xxi

Setting Values with Property Set . 642
Creating Multiple Class Instances. 642
Adding Code to the Initialize and Terminate Events . 643

Initialize . 643
Terminate . 644

Working with Enumerated Types . 644
Building Hierarchies of Classes . 646
Adding a Parent Property to Classes . 647
Using the Implements Keyword. 648
Working with Custom Collections. 648

Creating a Custom Collection. 649
Adding Items to a Custom Collection . 649
Looping Through the Elements of a Custom Collection 650
Referencing Items in a Custom Collection . 650
Removing Items from a Custom Collection. 650

Adding Your Own Events. 651
Practical Examples: Using Class Modules . 652

The FileInformation Class . 652
The Data Access Class . 656
The SystemInformation Class . 666

Summary . 669

15 What Are ActiveX Data Objects, and Why Are They Important? 671

Why This Chapter Is Important . 671
Examining the ADO Model . 671

The Connection Object . 672
The Recordset Object . 676
The Command Object. 678

Understanding ADO Recordset Types . 680
The CursorType Parameter . 680
The LockType Parameter . 682
The Options Parameter . 684
Consistent Versus Inconsistent Updates. 685
Selecting a Cursor Location . 686
Working with the Supports Method . 687

Working with ADO Recordset Properties and Methods. 688
Examining Record-Movement Methods . 688
Detecting the Limits of a Recordset. 690
Counting the Number of Records in a Recordset . 691
Sorting, Filtering, and Finding Records . 693
Using the AbsolutePosition Property . 699
Using the Bookmark Property . 700

Alison Balter’s Mastering Microsoft®Office Access 2007 Developmentxxii

Running Parameter Queries . 701
Refreshing Recordset Data . 702
Working with Persisting Recordsets. 702

Modifying Table Data Using ADO Code . 704
Changing Record Data One Record at a Time . 704
Performing Batch Updates. 707
Making Bulk Changes. 708
Deleting an Existing Record. 712
Adding a New Record . 714

Creating and Modifying Database Objects Using ADO Code 715
Adding a Table Using Code . 715
Removing a Table Using Code . 717
Establishing Relationships Using Code . 717
Creating a Query Using Code . 718

Practical Examples: Applying These Techniques to Your Application 719
Using Recordset Methods on a Data-Entry Form . 719

Summary . 724

Part II What to Do When Things Don’t Go as Planned

16 Debugging: Your Key to Successful Development 727

Why This Chapter Is Important . 727
Avoiding Bugs. 727

Option Explicit . 728
Strong-Typing . 728
Naming Standards . 728
Variable Scoping. 728
Bugs Happen!. 728

Harnessing the Power of the Immediate Window. 729
Testing Values of Variables and Properties . 730
Setting Values of Variables and Properties . 730
Clearing the Immediate Window. 732
Practicing with the Built-In Functions . 733
Executing Subroutines, Functions, and Methods . 733
Printing to the Immediate Window at Runtime . 734

Invoking the Debugger. 735
Using Breakpoints to Troubleshoot . 736
Stepping Through Code. 738

Using Step Into . 738
Executing Until You Reach the Next Breakpoint. 739
Using Step Over . 741
Using Step Out. 742

Contents xxiii

Setting the Next Statement to Execute . 742
Using the Call Stack Window . 743
Working with the Locals Window . 744
Working with Watch Expressions . 745

Using Auto Data Tips . 745
Using a Quick Watch. 745
Adding a Watch Expression . 746
Editing a Watch Expression . 748
Breaking When an Expression Is True. 748
Breaking When an Expression Changes . 749

Continuing Execution After a Runtime Error. 750
Looking at Gotchas with the Immediate Window . 751
Using Assertions. 752
Debugging Tips . 752
Practical Examples: Debugging Real Applications . 753
Summary . 753

17 Error Handling: Preparing for the Inevitable 755

Why This Chapter Is Important . 755
Implementing Error Handling . 755
Using On Error Statements . 758

The On Error GoTo Statement . 758
The On Error Resume Next Statement . 760

Using Resume Statements . 760
The Resume Statement . 761
The Resume Next Statement . 762
The Resume <LineLabel> Statement. 763

Clearing an Error. 764
Examining the Cascading Error Effect . 765
Using the Err Object. 766
Raising an Error . 767

Generating an Error on Purpose . 767
Creating User-Defined Errors . 768

Using the Errors Collection. 769
Creating a Generic Error Handler . 770

Logging the Error . 774
Determining the Appropriate Response to an Error. 776
Emailing the Error . 780
Creating an Error Form. 782
Printing the Error Form . 785

Preventing Your Own Error Handling from Being Invoked 786
Creating a Call Stack. 786

Alison Balter’s Mastering Microsoft®Office Access 2007 Developmentxxiv

Building a Custom Error Handler Class . 790
Working with Error Events . 796
Creating a List of Error Codes and Descriptions . 797
Practical Examples: Incorporating Error Handling . 798
Summary . 799

18 Optimizing Your Application 801

Why This Chapter Is Important . 801
Introducing Optimization. 801
Modifying Hardware and Software Configurations . 802

Hardware, Hardware, More Hardware, Please! . 802
Change Access’s Software Settings. 806

What Is the Access Database Engine? . 806
Letting the Performance Analyzer Determine Problem Areas 807
Designing Tables to Optimize Performance . 808

Why Be Normal? . 808
I Thought You Just Told Me to Normalize . 808
Index, Index, Index!. 809
Select the Correct Data Type. 809

Designing Database Objects to Improve Performance . 810
Optimizing the Performance of Your Queries. 810
Making Coding Changes to Improve Performance. 811
Designing Forms and Reports to Improve Performance 829

Practical Examples: Improving the Performance of Your
Applications . 831

Summary . 832

Part III Developing Multiuser and Enterprise Applications

19 A Strategy to Developing Access Applications 835

Why This Chapter Is Important . 835
Splitting Databases into Tables and Other Objects. 835
Basing Forms and Reports on Queries or Embedded SQL Statements 837
Preparing an Application for Distribution . 838

Basing Your Application Around Forms . 839
Adding Startup Options to Your Database . 839
Securing Your Application . 839
Building Error Handling into Your Application . 841
Adding Custom Help. 841
Building Custom Ribbons . 841

Contents xxv

Using Access as a Front End . 842
Factors You Need to Worry About When Converting

to Client/Server . 842
Benefits and Costs of Client/Server Technology . 843
Your Options When Using Access as a Front End . 844
What Are the Considerations for Migrating to a

Client/Server Environment? . 845
Practical Examples: Applying the Strategy to the Computer

Consulting Firm Application . 845
Summary . 845

20 Using External Data 847

Why This Chapter Is Important . 847
Importing, Linking, and Opening Files: When and Why . 848

Selecting an Option . 848
Looking at Supported File Formats. 850

Importing External Data . 850
Using the User Interface . 850
Using Code. 852

Creating a Link to External Data . 854
Using the User Interface . 854
Using Code. 859

Opening an External Table. 864
Providing Connection Information. 864
Opening the Table . 864

Understanding Windows Registry Settings . 866
Using the Jet OLEDB:Link Provider String . 866
Working with Passwords. 867
Refreshing and Removing Links . 869

Updating Links That Have Moved . 869
Deleting Links. 871
Making a Local Table from a Linked Table. 871

Looking at Special Considerations . 872
dBASE. 872
Text Data . 873

Troubleshooting . 873
Connection Problems. 873
Temp Space . 874

Looking at Performance Considerations and Links . 874
Working with HTML Documents . 874

Alison Balter’s Mastering Microsoft®Office Access 2007 Developmentxxvi

Practical Examples: Working with External Data from Within
Your Application . 877

Splitting the Database Using the Database Splitter. 877
Refreshing Links . 877

Summary . 881

21 Access 2007 and SharePoint 883

Why This Chapter Is Important?. 883
Exporting Selected Data to a SharePoint Site . 883
Moving an Entire Database to a SharePoint Site . 884
Opening Access Forms and Reports from a SharePoint Site 884
Creating Databases from SharePoint Lists . 884
Taking SharePoint Lists Offline with Access. 884
Summary of Benefits of Working with SharePoint . 884

The Access 2007 (accdb) File Format and SharePoint . 885
Exporting Data to a SharePoint Site . 885

Why Export Data to a SharePoint Site?. 885
How to Export Data to a SharePoint Site. 886

Publishing Data to a SharePoint Site . 891
How the Wizard Moves Data to the SharePoint Site 896

Opening Access Forms and Reports from a SharePoint Site 896
Linking to and Importing from SharePoint Lists . 900
Taking SharePoint Lists Offline with Access . 903

Synchronizing Your Changes with SharePoint . 903
Working Online . 904
Discarding Your Changes . 904

Reestablishing Links When a SharePoint Site Has Been Moved 906
Summary . 907

22 Developing Multiuser and Enterprise Applications 909

Why This Chapter Is Important . 909
Designing Your Application with Multiuser Issues in Mind 909

Multiuser Design Strategies. 910
The Basics of Linking to External Data . 912

Understanding Access’s Locking Mechanisms . 913
Understanding the Client/Server Model . 914
Deciding Whether to Use the Client/Server Model . 914

Dealing with a Large Volume of Data . 916
Dealing with a Large Number of Concurrent Users . 916
Demanding Faster Performance. 917
Handling Increased Network Traffic . 917

Contents xxvii

Implementing Backup and Recovery . 917
Focusing on Security . 918
Sharing Data Among Multiple Front-End Tools . 918
Understanding What It All Means . 918

Understanding the Roles That Access Plays in the
Application Design Model. 919

The Front End and Back End as Access ACCDB Files 919
The Front End as an ACCDB File Using Links

to Communicateto a Back End. 919
The Front End Using SQL Pass-Through to Communicate

to a Back End. 920
The Front End Executing Procedures Stored on a Back End 921
The Front End as a Microsoft Access Data Project

Communicating Directly to a Back End . 921
Learning the Client/Server Buzzwords . 922
Upsizing: What to Worry About. 923

Indexes . 923
AutoNumber Fields . 923
Default Values. 924
Validation Rules . 924
Relationships . 924
Security. 924
Table and Field Names. 924
Reserved Words . 925
Case Sensitivity . 925
Properties . 925
Visual Basic Code . 925

Proactively Preparing for Upsizing. 925
Using Transaction Processing. 926

Understanding the Benefits of Transaction Processing. 927
Modifying the Default Behavior of Transaction Processing. 927
Implementing Explicit Transaction Processing . 929

Practical Examples: Getting Your Application Ready for an Enterprise
Environment . 931

Summary . 931

Part IV Black Belt Programming

23 Working with and Customizing Ribbons 935

Why This Chapter Is Important . 935
Customizing the Ribbon: An Overview . 935
Showing System Tables. 936

Alison Balter’s Mastering Microsoft®Office Access 2007 Developmentxxviii

Enabling the Display of System Errors. 937
Creating the USysRibbons Table . 938
Adding Data to the USysRibbons Table . 939
Applying the Custom Ribbon . 940

Applying a Custom Ribbon to the Entire Database . 940
Applying a Custom Ribbon to a Form or Report. 941

Hiding System Objects . 943
Restoring the Ribbon to Its Default Settings . 943
Adding Additional Groups and Controls . 944
Executing a Macro from the Ribbon . 946
Practical Examples: Securing an Access 2007 Database . 947
Summary . 947

24 Automation: Communicating with Other Applications 949

Why This Chapter Is Important . 949
Defining Some Automation Terms. 950
Declaring an Object Variable to Reference Your Application. 950
Creating an Automation Object . 953

Declaring an Object Variable . 953
Manipulating an Automation Object . 953

Setting and Retrieving Properties . 953
Executing Methods . 954

Using Early Binding Versus Late Binding . 954
CreateObject and GetObject . 955

Controlling Excel from Access . 956
Closing an Excel Automation Object . 960
Creating a Graph from Access. 961
Controlling Word from Access . 966

Using Word to Generate a Mass Mailing . 966
Using Word to Overcome the Limitations of Access

as a Report Writer . 969
Controlling PowerPoint from Access. 970
Automating Outlook from Access. 974
Controlling Access from Other Applications . 976
Practical Examples: Using Automation to Extend the

Functionality of Your Applications . 979
Summary . 984

25 Exploiting the Powerof the Windows API 985

Why This Chapter Is Important . 985
Declaring an External Function to the Compiler. 985

Passing Parameters to DLL Functions . 987
Aliasing a Function . 989

Contents xxix

Working with Constants and Types . 991
Working with Constants . 991
Working with Types . 992

Calling DLL Functions: Important Issues . 993
Using API Functions . 993

Manipulating the Windows Registry . 994
Getting Information About the Operating Environment. 997
Determining Drive Types and Available Drive Space. 1005

Practical Examples: Using Windows API Functions
in Your Applications. 1008

Summary . 1009

26 Creating Your Own Libraries 1011

Why This Chapter Is Important . 1011
Preparing a Database to Be a Library . 1012

Structuring Code Modules for Optimal Performance 1012
Writing Library Code That Runs . 1013
Compiling the Library . 1013

Creating a Reference . 1013
Creating a Library Reference . 1014
Creating a Runtime Reference . 1014
Creating an Explicit Reference. 1017
Creating a Reference Using VBA Code . 1021

Debugging a Library Database. 1022
Practical Examples: Building a Library for Your Application 1023
Summary . 1026

27 Using Buildersand Wizards 1027

Why This Chapter Is Important . 1027
Using Builders . 1027

Looking at Design Guidelines . 1028
Creating a Builder . 1028

Using Wizards . 1039
Looking at Design Guidelines . 1039
Creating a Wizard . 1040
Getting the Wizard Ready to Go. 1044

Using Menu Add-Ins . 1045
Looking at Design Guidelines . 1045
Creating a Menu Add-In . 1046

Practical Examples: Designing Your Own Add-Ins. 1047
Summary . 1053

Alison Balter’s Mastering Microsoft®Office Access 2007 Developmentxxx

28 An Introduction to Access and the Internet/Intranet 1055

Why This Chapter Is Important . 1055
Saving Database Objects as HTML . 1055

Saving Table Data as HTML . 1056
Saving Query Results as HTML . 1059
Saving Forms as HTML. 1059
Saving Reports as HTML. 1060

Linking to HTML Files . 1062
Importing HTML Files . 1065
Saving Database Objects as XML . 1066
Importing XML Files . 1068
Practical Examples . 1069
Summary . 1069

Part V Adding Polish to Your Application

29 Documenting Your Application 1073

Why This Chapter Is Important . 1073
Preparing Your Application to Be Self-Documenting . 1074

Documenting Your Tables. 1074
Documenting Your Queries. 1075
Documenting Your Forms. 1075
Documenting Your Reports. 1078
Documenting Your Macros . 1078
Documenting Your Modules . 1078
Using Database Properties to Document the Overall Database . . . 1079

Using the Database Documenter . 1081
Using the Documenter Options . 1083
Producing Documentation in Other Formats . 1085

Using the Object Dependency Feature . 1086
Writing Code to Create Your Own Documentation. 1088
Practical Examples: Applying What You Learned . 1089
Summary . 1089

30 Maintaining Your Application 1091

Why This Chapter Is Important . 1091
Compacting Your Database. 1091

Using the User Interface. 1093
Using a Shortcut . 1095
Compacting Whenever a Database Closes . 1095
Using the CompactDatabase Method of the JetEngine Object 1096
Using the CompactRepair Method of the Application Object 1098

Contents xxxi

Backing Up Your Database. 1099
Converting an Access Database . 1100
Detecting Broken References. 1102
Practical Examples: Maintaining Your Application. 1102
Summary . 1102

31 Database SecurityMade Easy 1103

Why This Chapter Is Important . 1103
What’s New in Access 2007 Security? . 1103
What Happened to User-Level Security? . 1105
Trusting a Database . 1106

Trusting a Database for the Current Session. 1106
Trusting a Database Permanently . 1106

Using a Database Password to Encrypt an Office Access
2007 Database. 1109

Removing a Password from a Database . 1110
Packaging, Signing, and Distributing an Access Database 1110

Creating a Self-Signed Certificate . 1111
Creating a Signed Package . 1112
Extracting and Using a Signed Package . 1113

Using the Trust Center. 1115
Working with the Message Bar . 1115
Using Privacy Settings. 1116
Working with Access Macros and VBA Code . 1116
Working with Trusted Locations . 1117
Working with Trusted Publishers . 1120

Understanding How Databases Behave When Trusted
and Untrusted. 1123

Working in Sandbox Mode. 1123
Removing User-Level Security . 1125
Enabling or Disabling ActiveX Controls. 1125
Enabling or Disabling Add-Ins . 1126
Adding a Trusted Publisher. 1127
Practical Examples: Securing an Access 2007 Database . 1128
Summary . 1128

Alison Balter’s Mastering Microsoft®Office Access 2007 Developmentxxxii

Contents xxxiii

The following appendixes are available for download
at www.samspublishing.com/title/0672329328.

Part VI Appendixes

A Naming Conventions PDF:1131

B Table Structures PDF:1137

The tblClients Table. PDF:1138
The tblClientAddresses Table . PDF:1143
The tblAddressTypes Table. PDF:1148
The tblClientPhones Table. PDF:1149
The tblPhoneTypes Table . PDF:1151
The tblCorrespondence Table. PDF:1152
The tblCorrespondenceTypes Table . PDF:1156
The tblTerms Table. PDF:1157
The tblContactType Table . PDF:1158
The tblCompanyInfo Table . PDF:1159
The tblEmployees Table . PDF:1164
The tblErrorLog Table . PDF:1168
The tblErrors Table . PDF:1171
The tblExpenseCodes Table. PDF:1172
The tblPaymentMethods Table. PDF:1173
The tblPayments Table . PDF:1174
The tblProjects Table . PDF:1178
The tblTimeCardExpenses Table. PDF:1182
The tblTimeCardHours Table . PDF:1186
The tblTimeCards Table . PDF:1190
The tblWorkCodes Table . PDF:1191

Index 1193

www.samspublishing.com/title/0672329328

About the Author

Alison Balter is the president of InfoTechnology Partners, Inc., a computer consulting
firm based in the rural Santa Rosa Valley Area, close to Camarillo, California. Alison is a
highly experienced independent trainer and consultant specializing in Windows applica-
tions training and development. During her 23 years in the computer industry, she has
trained and consulted with many corporations and government agencies. Since Alison
founded InfoTechnology Partners, Inc. (formerly Marina Consulting Group) in 1990, its
client base has expanded to include major corporations and government agencies such as
Shell Oil, Accenture, Northrop, the U.S. Drug Enforcement Administration, Prudential
Insurance, Transamerica Insurance, Fox Broadcasting, the U.S. Navy, and others.

InfoTechnology Partners, Inc., is a Microsoft Certified Partner, and Alison is a Microsoft
Certified Professional. Alison was one of the first professionals in the computer industry
to become a Microsoft Certified Solutions Developer.

Alison is a partner in the multimedia training company Blast Through Learning, Inc., and
is the author of more than 300 internationally marketed computer training videos and
CD-ROMs, including 18 Access 2000 videos, 35 Access 2002 videos, and 15 Access 2003
videos. These videos and CD-ROMs are available through Alison’s company,
InfoTechnology Partners, Inc. Alison travels throughout North America, giving training
seminars on Microsoft Access, Visual Studio .NET, Microsoft SQL Server, and Visual Basic
for Applications. She is also featured in several live satellite television broadcasts for
National Technological University.

Alison is a regular contributing columnist for Access/Office/VB Advisor as well as other
computer publications. She is also a regular on the Access, Visual Studio .NET, SQL Server,
and Visual Basic national speaker circuits. She was one of four speakers on the Visual
Basic 4.0 and 5.0 World Tours seminar series cosponsored by Application Developers
Training Company and Microsoft.

Alison is also author of 14 books published by Sams Publishing: Alison Balter’s Mastering
Access 95 Development, Alison Balter’s Mastering Access 97 Development, Alison Balter’s
Mastering Access 2000 Development, Alison Balter’s Mastering Access 2002 Desktop
Development, Alison Balter’s Mastering Access 2002 Enterprise Development, Alison Balter’s
Mastering Microsoft Access Office 2003, Teach Yourself Microsoft Office Access 2003 in 24
Hours, Access Office 2003 in a Snap, Alison Balter’s Mastering Access 2007 Development, a
power user book on Microsoft Access 2007, three e-books on Microsoft Access 2007, and
Teach Yourself SQL Express 2005 in 24 Hours. Alison is a coauthor of 3 Access books
published by Sams Publishing: Essential Access 95, Access 95 Unleashed, and Access 97
Unleashed.

An active participant in many user groups and other organizations, Alison is a past presi-
dent of the Independent Computer Consultants Association of Los Angeles and of the Los
Angeles Clipper Users’ Group. She is currently immediate past president of the Ventura
County Professional Women’s Network.

On a personal note, Alison keeps herself busy horseback riding, skiing, ice skating,
running, lifting weights, hiking, traveling, and dancing. She most enjoys spending time
with her husband, Dan, their daughter, Alexis, their son, Brendan, and their golden
retriever, Brandy.

Alison’s firm, InfoTechnology Partners, Inc., is available for consulting work and onsite
training in Microsoft Access, Visual Studio .NET, Visual Basic, and SQL Server, as well
as for Windows Server 2003, Windows 2000, Windows NT, Windows 98, Windows XP,
PC networking, and Microsoft Exchange Server. You can contact Alison by email at
Alison@InfoTech-Partners.com, or visit the InfoTechnology Partners website at
http://www.InfoTech-Partners.com.

About the Author xxxv

http://www.InfoTech-Partners.com

Dedication

I dedicate this book to my husband, Dan, my daughter, Alexis, my
son, Brendan, my parents, Charlotte and Bob, and my real father,
Herman. Dan, you are my partner in life and the wind beneath my

wings. You are a true partner in every sense of the word. I am so
lucky to be traveling the path of life with such a spectacular person.
Alexis, you are the sweet little girl that I always dreamed of. You are

everything that I could have ever wanted and so very much more.
You make every one of my days a happy one! Brendan, you are the
one who keeps me on my toes. There is never a dull moment with

you around. I wish I had just a small portion of your energy. I thank
you for the endless laughter that you bring to our family and

for reminding me about all the important things in life.
Mom and Dad, without all that you do to help out with life’s

chores, the completion of this book could never have been possible.
Words cannot express my gratitude!

Herman, I credit my ability to soar in such a technical field to you.
I hope that I inherited just a small part of your intelligence, wit,

and fortitude. I am sorry that you did not live to see this
accomplishment. I hope that you can see my work and that you are

proud of it. I also hope that in some way you share in the joy
that Dan, Alexis, and Brendan bring to me.

Finally, I want to thank God for giving me the gift of gab, a
wonderful career, an incredible husband, two beautiful children, a
spectacular area to live in, a very special home, and an awesome

life. Through your grace, I am truly blessed.

Acknowledgments

Writing a book is a monumental task. Without the support and understanding of those
close to me, my dreams for this book would have never come to fruition. Special thanks
go to the following special people who helped to make this book possible and, more
importantly, who give my life meaning:

Dan Balter (my incredible husband), for his ongoing support, love, encouragement,
friendship, and, as usual, patience with me while I wrote this book. Dan, words cannot
adequately express the love and appreciation that I feel for all that you are and all that
you do for me. You treat me like a princess! Thank you for being the phenomenal person
you are, and thank you for loving me for who I am and for supporting me during the
difficult times. I enjoy not only sharing our career successes, but even more I enjoy
sharing the life of our beautiful children, Alexis and Brendan. I look forward to continu-
ing to reach highs we never dreamed of. There is no one I’d rather spend forever with
than you.

Alexis Balter (my precious daughter and dynamite dancer, actress, and ice skater), for
giving life a special meaning. Your intelligence, compassion, caring, and perceptiveness
are far beyond your years. Alexis, you make all my hard work worth it. No matter how
bad my day, when I look at you, sunshine fills my life. You are the most special gift that
anyone has ever given me. Finally, thanks for being my walking partner. I love the
conversations that we have as we walk many miles each day.

Brendan Balter (my adorable son and little actor and athlete), for showing me the power
of persistence. Brendan, you are small, but, boy, are you mighty! I have never seen such
tenacity and fortitude in such a little person. Your imagination and creativity are
amazing! Thank you for your sweetness, your sensitivity, and your unconditional love.
Most of all, thank you for reminding me how important it is to have a sense of humor.

Charlotte and Bob Roman (Mom and Dad), for believing in me and sharing in both the
good times and the bad. Mom and Dad, without your special love and support, I never
would have become who I am today. Without all your help, I could never get everything
done. Words can never express how much I appreciate all that you do!

Al Ludington, for helping me to slow down and experience the shades of gray in the
world. You somehow walk the fine line between being there and setting limits, between
comforting me and confronting me. Words cannot express how much your unconditional
love means to me. Thanks for always being there for me and for showing me that a beau-
tiful mind is not such a bad thing after all.

Herb and Maureen Balter (my honorary mom and dad), for being such a wonderful
mother-in-law and father-in-law. Although our paths were rocky at the beginning, I want
you to know how special you are to me. I appreciate your acceptance and your warmth. I
also appreciate all you have done for Dan and me. I am grateful to have you in my life.

Contents xxxvii

Sue Terry, for being the most wonderful best friend anyone could possibly have. You
inspire me with your music, your love, your friendship, and your faith in God. Whenever
I am having a bad day, I picture you singing “Dear God” or “Make Me Whole,” and
suddenly my day gets better. Thank you for the gift of friendship.

Roz, Ron, and Charlie Carriere, for supporting my endeavors and for encouraging me to
pursue my writing. It means a lot to know that you guys are proud of me for what I do. I
enjoy our times together as a family. Charlie, have a great time at Yale.

Steven Chait, for being a special brother. I want you to know how much you mean to me.
When I was a little girl, I was told about your gift for writing. You may not know this, but
my desire to write started as a little girl, wanting to be like her big brother. Now that
we’re adults, I see how many ways we truly are alike.

Sonia Aguilar, for being the best nanny that anyone could ever dream of having. You are
a person far too special to describe in words. Although you are no longer part of our daily
lives, Alexis and Brendan will love you always. I appreciate the beautiful foundation that
you gave them during their key developmental years. You are an amazing model of love,
kindness, and charity.

Greggory Peck from Blast Through Learning, for your contribution to my success in this
industry. I believe that the opportunities you gave me early on have helped me reach a
level in this industry that would have been much more difficult for me to reach on my
own. Most of all, Greggory, thanks for your love and friendship. I love you, bro!

Nicole Phelps, for being a great office manager. Thanks for making my day-to-day work
life easier. Although you are my office manager, you are much more than that. You are a
friend, and you are like a little sister to me. You are a very special person and deserve the
best in life. Don’t ever forget how special you are!

Scott Barker, for helping me to manage my heavy schedule and for being a special friend.
On a work level, I can’t express how much you help me. You treat my clients as I would
and have a work ethic beyond reproach. On a personal level, you, Diana, and your family
are all great friends. My children adore your family, and Dan and I adore you and Diana.
Thanks for being in our lives.

Reverend Molly, for advancing me spiritually in ways that I can’t even describe. You are
an amazing woman and are my mentor. I love you dearly. Thanks also to all of my church
friends: Ed, Robin, Gayle, Gail, Greg, Ivette, Sharon, Heather, Jim, Sheryl, John, Rick,
Janie, Sherri, Mildred, Opal, Sue, Mary, Terri, Susan, Beth, and all of the people I am
forgetting to mention, for all of your love and support.

Diane Dennis, Shell Forman, Ann Sookikian, Bob Hess, Anne Weiderweber, Norbert
Foigelman, Chris Sabihon, and all the other wonderful friends that I have in my life.
Diane, you have been my soul mate in life since we were four! Shell, my special “sister,” I
am lucky to have such a special friend as you. Ann, although I haven’t known you for
very long, you are a very special friend in my life. Bob, you are always there when we
need you, and somehow manage to keep a smile on your face. Anne, you are a wonderful
friend, walking partner, and confidante. Norbert, you are a very special friend to me and

Alison Balter’s Mastering Microsoft®Office Access 2007 Developmentxxxviii

to my family. Chris, you are not only a special friend, but you have had an important
impact on my spiritual path in life!

¡Gaby Ayar gracias por todo! ¡Tú eres una amiga perfecta! Queiro que tengas una vida
perfecta. ¡Te amo mucho!

Ellen McCrea, Chuck Hinkle, Diane Buehre, Dan Buffington, Silas Raymond, Philip
Ochoa, and all the other special clients and work associates that I have in my life.
Although all of you started out as work associates, I feel that our relationship goes much
deeper than that. I am very lucky to have people in my work life like you. Thank you all
for your patience with my schedule as I wrote this book.

Loretta Yates, George Nedeff, Todd Meister, and Kevin Howard, for making my experience
with Sams a positive one. Loretta, I can’t tell you how much I have enjoyed working with
you over the past several years. You are very easy to work with, and I enjoy the personal
relationship that we have developed as well. I look forward to working together for years
to come. George, Todd, and Kevin, I know that you all worked very hard to ensure that
this book came out on time and with the best quality possible. Without you, this book
wouldn’t have happened. I have really enjoyed working with all of you over these past
several months. I appreciate your thoughtfulness and your sensitivity to my schedule and
commitments outside this book. It is nice to work with people who appreciate me as a
person, not just as an author.

Acknowledgments xxxix

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you’d like to see us publish in, and any other words of wisdom you’re willing to
pass our way.

As an associate publisher for Sams Publishing, I welcome your comments. You can email
or write me directly to let me know what you did or didn’t like about this book—as well
as what we can do to make our books better.

Please note that I cannot help you with technical problems related to the topic of this book. We
do have a User Services group, however, where I will forward specific technical questions related to
the book.

When you write, please be sure to include this book’s title and author as well as your
name, email address, and phone number. I will carefully review your comments and share
them with the author and editors who worked on the book.

Email: feedback@quepublishing.com

Mail: Greg Wiegand
Associate Publisher
Sams Publishing
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services
Visit our website and register this book at www.samspublishing.com/register for conven-
ient access to any updates, downloads, or errata that might be available for this book.

www.samspublishing.com/register

Introduction

Many excellent books about Access are available, so why write another one? In talking
to the many students I meet in my travels around the country, I have heard one common
complaint. Instead of the several great books available for the user community or the host
of wonderful books available to expert Access developers, my students yearn for a book
targeted toward the intermediate-to-advanced developer. They yearn for a book that starts
at the beginning, ensures that they have no gaps in their knowledge, and takes them
through some of the most advanced aspects of Access development. Along the way, they
want to acquire volumes of practical code that they can easily port into their own appli-
cations. In addition, developers of all levels need to transition to Access 2007, which is
dramatically different from its predecessors. I wrote Alison Balter’s Mastering Microsoft
Office Access 2007 Development with those requests and objectives in mind.

This book begins by providing you with an introduction to Access development. It alerts
you to the types of applications that you can develop in Access and introduces you to the
components of an Access application. After you understand what an Access application is
and when it is appropriate to develop one, you will explore the steps involved in building
an actual Access application. The book covers several strategies before you build the first
application component. This ensures that you, as the developer of the application, are
aware of the design issues that might affect you in your particular environment.

After you have discovered the overall picture, you will be ready to venture into the specific
details of each object within an Access database. Chapters 2 through 6 cover the basics of
tables, relationships, queries, forms, and reports. The intent of these chapters is to provide
you with an approach to developing these database objects from a developer’s perspective.
Although this text starts at the beginning, it provides many tips, tricks, and caveats not
readily apparent from the documentation or from books targeted toward end users.

When you have a strong foundation of knowing how to build tables, queries, forms, and
reports, you will be ready to plunge full-force into the process of building applications.
Chapter 7 covers the process of using macros as part of the application-building process.
Although macros were not a choice for serious developers in the past, the new embedded
macros, error handling, and the inclusion of variables in macros make them a more viable
solution for at least part of your applications. Chapters 8 and 9 provide you with an
extremely strong grasp of the Visual Basic for Applications (VBA) language. Once again,
starting with the basics, the book takes you gently through some of the most complex
intricacies of the VBA language and Access object model. The text provides you with
many practical examples to ensure that you thoroughly digest each topic.

Chapters 10 through 12 provide you with an advanced discussion of forms, reports, and
queries. By the time you reach this point in the book, you should be familiar with all the
basics of creating database objects. These chapters combine the basics of table, query,

form, and report design with the VBA and object techniques covered in Chapters 8 and 9.
The power techniques covered in Chapters 10 through 12 provide you with the expertise
that you need to design the most complex types of forms, reports, and queries required by
your applications.

After you cover the basics, you will be ready to delve into more advanced techniques.
Chapter 13 covers advanced VBA techniques. It is followed by an in-depth discussion of
class modules in Chapter 14. The chapter includes many practical examples of how and
why to utilize class modules.

Before you ride through the frontier of the many intricacies of the Access development
environment, one basic topic remains. Chapter 15 introduces you to ActiveX Data
Objects. You will see how you can move away from bound objects, manipulating the data
within your database using code.

Unfortunately, things don’t always go as planned. No matter what your level of expertise,
you will often find yourself stumped over a piece of code and looking for answers.
Chapter 16 shows you how to effectively employ the debugger to solve any coding
problem you might run into. Even after your application has been thoroughly debugged,
you still must provide a responsible means of handling errors within your applications.
Chapter 17 shows you everything you must know to implement error handling. Included
in the text and on the sample code CD-ROM is a generic error handler that you can easily
build into any of your own applications.

Even the fanciest of applications will not please its users if it is sluggish. Chapter 18
covers optimization—that is, all the techniques you should incorporate into your
programming code to ensure that your application runs as efficiently as possible.

With the foundation provided by the first 18 chapters, you will be ready to move into the
richer and more complex aspects of the VBA language and the Access development envi-
ronment. Chapters 19 through 22 cover the basics of developing applications for a multi-
user or a client/server environment. You can explore locking strategies, ways to interact
with non-native Access file formats, and the alternatives for designing client/server appli-
cations, including designing them with Microsoft SharePoint.

As an Access developer, you realize your world is not limited to just Access. To be effective
and productive as an Access developer, you must know how to interact with other appli-
cations and how to use ActiveX controls, libraries, menu add-ins, wizards, and builders to
assist you with the application development process. Chapters 23 through 28 cover
ribbons, automation, the Windows API, and library and add-in techniques, and provide
an introduction to Access and the Internet. After reading these chapters, you will under-
stand how to employ the use of external objects and functionality to add richness to your
applications without too much effort on your part.

Having reached the final part of the book, you will be ready to put the final polish on
your application. Chapters 29 through 31 cover security, documentation, and database
maintenance. You will learn how to properly secure your application so that you do not
in any way compromise the investment you have put into the application development

Alison Balter’s Mastering Microsoft Office Access 2007 Development2

process. You will also learn how easy but necessary it is to properly document and main-
tain your application.

The Access development environment is robust and exciting. With the keys to deliver all
that it offers, you can produce applications that provide much satisfaction as well as
many financial rewards. After poring over this hands-on guide and keeping it nearby for
handy reference, you too can become masterful at Access 2007 development. This book is
dedicated to demonstrating how you can fulfill the promise of making Access 2007
perform up to its lofty capabilities. As you will see, you have the ability to really make
Access 2007 shine in the everyday world!

Conventions Used in This Book
The people at Sams Publishing have spent many years developing and publishing
computer books designed for ease of use and containing the most up-to-date information
available. With that experience, we’ve learned what features help you the most. Look for
these features throughout the book to help enhance your learning experience and get the
most out of Access 2007.

. Screen messages, code listings, and command samples appear in monospace type.

. Terms that are defined in the text appear in italics. Italics are sometimes used for
emphasis, too.

. In code lines, placeholders for variables are indicated by using italic monospace
type.

. With VBA, Access 97 and higher, the line continuation character is an underscore.

TIP

Tips give you advice on quick or overlooked procedures, including shortcuts.

NOTE

Notes present useful or interesting information that isn’t necessarily essential to the
current discussion, but might augment your understanding with background material or
advice relating to the topic.

CAUTION

Cautions warn you about potential problems a procedure might cause, unexpected
results, or mistakes that could prove costly.

Introduction 3

This page intentionally left blank

PART I

The Basics of Access
Development

IN THIS PART

CHAPTER 1 Access as a Development Tool 7

CHAPTER 2 What Every Developer Needs to Know
About Databases and Tables 75

CHAPTER 3 Relationships: Your Key to Data
Integrity 115

CHAPTER 4 What Every Developer Needs
to Know About Query Basics 137

CHAPTER 5 What Every Developer Needs
to Know About Forms 189

CHAPTER 6 What Every Developer Needs
to Know About Reports 269

CHAPTER 7 What Are Macros, and When Do
You Need Them? 315

CHAPTER 8 VBA: An Introduction 345

CHAPTER 9 Objects, Properties, Methods,
and Events Explained 401

CHAPTER 10 Advanced Form Techniques 431

CHAPTER 11 Advanced Report Techniques 493

CHAPTER 12 Advanced Query Techniques 539

CHAPTER 13 Advanced VBA Techniques 599

CHAPTER 14 Exploiting the Power of Class
Modules 637

CHAPTER 15 What Are ActiveX Data Objects
and Why Are They Important? 671

This page intentionally left blank

IN THIS CHAPTER

. Why This Chapter Is Important

. What Types of Applications
Can You Develop in Access?

. Access as a Scalable Product

. What Exactly Is a Database?

. Getting to Know the Database
Objects

. Object Naming Conventions

. Hardware Requirements

. How Do I Get Started
Developing an Access
Application?

. What’s New in Access 2007?

. Other New Features Found in
Access 2007

. Additional Tips and Tricks

. Practical Examples: The
Application Design for a
Computer Consulting Firm

CHAPTER 1

Access as a
Development Tool

Why This Chapter Is Important
In talking to users and developers, I find that Access is a
very misunderstood product. Many people think that it is
just a toy for managers or secretaries wanting to play with
data. Others feel that it is a serious developer product
intended for no one but experienced application develop-
ers. This chapter dispels the myths of Access. It helps you
decipher what Access is and what it isn’t. After reading the
chapter, you will know when Access is the tool for you, and
when it makes sense to explore other products.

What Types of Applications Can
You Develop in Access?
I often find myself explaining exactly what types of appli-
cations you can build with Microsoft Access. Access offers a
variety of features for different database needs. You can use
it to develop six general types of applications:

. Personal applications

. Small business applications

. Departmental applications

. Corporationwide applications

. As a front end for enterprisewide client/server
applications

. Intranet/Internet applications

Access as a Development Platform for Personal Applications
At its most basic level, you can use Access to develop simple personal database-
management systems. I caution people against this idea, though. People who buy Access
hoping to automate everything from their wine collections to their home finances are
often disappointed. The problem is that Access is deceptively easy to use. Its wonderful
built-in wizards make Access look like a product that anyone can use. After answering a
series of questions, you have finished application switchboards, data entry screens,
reports, and the underlying tables that support them. In fact, when Microsoft first
released Access, many people asked whether I was concerned that my business as a
computer programmer and trainer would diminish because Access seemed to let
absolutely anyone write a database application. Although it’s true that you can produce
the simplest of Access applications without any thought of design and without writing a
single line of code, most applications require at least some designing and custom code.

As long as you’re satisfied with a wizard-generated personal application with only minor
modifications, no problems should occur. It’s when you want to substantially customize a
personal application that problems can happen.

Access as a Development Platform for Small Business Applications
Access is an excellent platform for developing an application that can run a small busi-
ness. Its wizards let developers quickly and easily build the application’s foundation. The
ability to build code modules enables developers to create code libraries of reusable func-
tions, and the ability to add code behind forms and reports enables them to create power-
ful custom forms and reports.

The main limitation of using Access for developing a custom small business application
is the time and money involved in the development process. Many people use Access
wizards to begin the development process but find they need to customize their applica-
tion in ways they can’t accomplish on their own. Small business owners often experience
this problem on an even greater scale. The demands of a small business application are
usually much higher than those of a personal application. Many doctors, attorneys, and
other professionals have called me in after they reached a dead end in the development
process. They’re always dismayed at how much money it will cost to make their applica-
tion usable.

Access as a Development Platform for Departmental Applications
Access is perfect for developing applications for departments in large corporations. It’s
relatively easy to upgrade departmental users to the appropriate hardware; for example,
it’s much easier to buy additional RAM for 15 users than it is for 4,000! Furthermore,
Access’s performance is adequate for most departmental applications without the need for
client/server technology. Finally, most departments in large corporations have the devel-
opment budgets to produce well-designed applications.

Fortunately, most departments usually have a PC guru who is more than happy to help
design forms and reports. This gives the department a sense of ownership because they

CHAPTER 1 Access as a Development Tool8

have contributed to the development of their application. It also makes my life as a devel-
oper much easier. I can focus on the hard-core development issues, leaving some of the
form and report design tasks to the local talent.

Access as a Development Platform for Corporationwide
Applications
Although Access might be best suited for departmental applications, you can also use it to
produce applications that you distribute throughout the organization. How successful this
endeavor is depends on the corporation. There’s a limit to the number of users that can
concurrently share an Access application while maintaining acceptable performance, and
there’s also a limit to the number of records that each table can contain without a signifi-
cant performance drop. These numbers vary depending on factors such as the following:

. How much traffic already exists on the network?

. How much RAM and how many processors does the server have?

. How is the server already being used? For example, are applications such as
Microsoft Office being loaded from the server or from local workstations?

. What types of tasks are the users of the application performing? Are they querying,
entering data, running reports, and so on?

. Where are Access and your Access application run from, the server or the
workstation?

. What network operating system is in place?

My general rule of thumb for an Access application that’s not client/server-based is that
poor performance generally results with more than 10–15 concurrent users and more
than 100,000 records. Remember, these numbers vary immensely depending on the
factors mentioned, as well as on the definition of acceptable performance by you and
your users. The basics of when to move to a client/server database are covered in Chapter
22, “Developing Multiuser and Enterprise Applications.” I cover additional details about
this topic in a separate book, Alison Balter’s Mastering Access 2002 Client/Server Development,
also published by Sams.

Developers often misunderstand what Access is and what it isn’t when it comes to being a
client/server database platform. People often ask me, “Isn’t Access a ‘client/server’ data-
base?” The answer is that Access is an unusual product because it’s a file server application
out of the box, but it can act as a front end to a client/server database. In case you’re lost,
here’s an explanation: If you buy Access and develop an application that stores the data
on a file server in an Access database, the workstation performs all data processing. This
means that every time the user runs a query or report, the file server returns all the data
to the workstation. The workstation machine then runs the query and displays the results
in a datasheet or on a report. This process generates a significant amount of network
traffic, particularly if multiple users are running reports and queries at the same time on
large Access tables. In fact, such operations can bring the entire network to a crawl.

What Types of Applications Can You Develop in Access? 9

1

Access as a Front End for Enterprisewide Client/Server
Applications
A client/server database, such as Microsoft SQL Server or Oracle, processes queries on the
server machine and returns results to the workstation. The server software itself can’t
display data to the user, so this is where Access comes to the rescue. Acting as a front end,
Access can display the data retrieved from the database server in reports, datasheets, or
forms. If the user updates the data in an Access form, the workstation sends the update to
the back-end database. You can accomplish this process either by linking to these external
databases so that they appear to both you and the user as Access tables, or by using tech-
niques that access client/server data directly.

Because Access 2007 ships with an integrated data store (the SQL Server 2005 Express
Database Engine), you can develop a client/server application on the desktop and then
easily deploy it to an enterprise SQL Server database. Chapter 22 briefly covers the alter-
natives and techniques for developing client/server applications. Alison Balter’s Mastering
Access 2002 Client/Server Development provides details on how to develop Access projects.

When you reduce the volume of network traffic by moving the processing of queries to
the back end, Access becomes a much more powerful development solution. It can handle
huge volumes of data and a large number of concurrent users. The main issues usually
faced by developers who want to deploy such a wide-scale Access application are the
following:

. The variety of operating systems used by each user

. Difficulties with deployment

. The method by which each user is connected to the application and data

. The type of hardware each user has

Although processing of queries in a client/server application is done at the server, which
significantly reduces network traffic, the application itself still must reside in the memory
of each user’s PC. This means that each client machine must be capable of running the
appropriate operating system and the correct version of Access. Even when the correct
operating system and version of Access are in place, your problems are not over. Dynamic
link library (DLL) conflicts often result in difficult-to-diagnose errors and idiosyncrasies in
an Access application. Furthermore, Access is not the best solution for disconnected users
who must access an application and its data over the Internet. Finally, Access 2007 is
hardware hungry! The hardware requirements for an Access application are covered later
in this chapter. The bottom line is that, before you decide to deploy a wide-scale Access
application, you need to know the hardware and software configurations of all your
system’s users. You must also decide whether the desktop support required for the typical
Access application is feasible given the number of people who will use the system that
you are building.

CHAPTER 1 Access as a Development Tool10

Access as a Development Platform for Intranet/Internet
Applications
Using data access pages, you can publish your database objects as static or dynamic HTML
pages. Static pages are standard HTML you can view in any browser. Access 2000 intro-
duced the capability to create XML data and schema documents from Jet or SQL Server
structures and data. You can also import data and data structures into Access from XML
documents. You can accomplish this either using code or via the user interface.

NOTE

This book provides coverage of Internet-related features, such as working with HTML
and XML files.

Access as a Scalable Product
One of Access’s biggest strong points is its scalability. You can scale an application that
begins as a small business application running on a standalone machine to an enter-
prisewide client/server application. If you design your application properly, you can
accomplish the scaling process with little to no rewriting of your application. This feature
makes Access an excellent choice for growing businesses, as well as for applications you
are testing at a departmental level with the idea that you might eventually distribute
them corporationwide.

The great thing about Access is that, even acting as both the front end and back end with
data stored on a file server in Access tables, it provides excellent security and the capabil-
ity to establish database rules previously available only on back-end databases. You can
apply referential integrity rules at the database level, ensuring that, for example, users do
not enter orders for customers who don’t exist. You can enforce data validation rules at
either a field or record level, maintaining the integrity of the data in your database. In
other words, many of the features previously available only on high-end database servers
are now available by using Access’s own proprietary data storage format.

What Exactly Is a Database?
The term database means different things to different people. For many years, in the
world of xBase (dBASE, FoxPro, CA-Clipper), database was used to describe a collection of
fields and records. (Access refers to this type of collection as a table.) In a client/server
environment, database refers to all the data, schema, indexes, rules, triggers, and stored
procedures associated with a system. In Access terms, a database is a collection of all the
tables, queries, forms, data access pages, reports, macros, and modules that compose a
complete system.

What Exactly Is a Database? 11

1

Getting to Know the Database Objects
As mentioned previously, tables, queries, forms, reports, macros, and modules combine to
comprise an Access database. Each of these objects has a special function. An Access appli-
cation also includes several miscellaneous objects, including relationships, database prop-
erties, and import/export specifications. With these objects, you can create a powerful,
user-friendly, integrated application. Figure 1.1 shows the Access application window.
Notice the categories of objects listed in the Navigation Pane. The following sections take
you on a tour of the objects that make up an Access database.

CHAPTER 1 Access as a Development Tool12

FIGURE 1.1 The Navigation Pane displays categories for each type of database object.

Tables: A Repository for Your Data
Tables are the starting point for your application. Whether your data is stored in an
Access database or you are referencing external data by using linked tables, all the other
objects in your database either directly or indirectly reference your tables.

To view all the tables that are contained in the open database, select Tables from the
Navigation Pane drop-down, as shown in Figure 1.2. (Note that you won’t see any hidden
tables unless you have checked the Hidden Objects check box in the Navigation Options
dialog box, as shown in Figure 1.3.) If you want to view the data in a table, double-click
the name of the table you want to view.

FIGURE 1.2 To view all tables, select Tables from the Navigation Pane drop-down.

Getting to Know the Database Objects 13

1

FIGURE 1.3 The Navigation Options dialog box allows you to show hidden tables.

Access displays the table’s data in a datasheet, which includes all the table’s fields and
records (see Figure 1.4). Note that I have collapsed the Navigation Pane so that you get a
better view of the table (described later in this chapter). You can modify many of the
datasheet’s attributes and even search for and filter data from within the datasheet. If the
table is related to another table (such as the Northwind Customers and Orders tables),
you can also expand and collapse the subdatasheet to view data stored in child tables.

This book does not cover these techniques. You can find them in the Access user manual
or any introductory Access book, such as Sams Teach Yourself Microsoft Office Access 2007 in
24 Hours.

CHAPTER 1 Access as a Development Tool14

FIGURE 1.4 The Datasheet view of the Customers table in the Northwind database includes
all the table’s fields and records.

As a developer, you most often want to view the table’s design, which is the blueprint or
template for the table. To view a table’s design, click the View icon on the home page of
the ribbon while the table is open (see Figure 1.5). In Design view, you can view or
modify all the field names, data types, and field and table properties. Access gives you the
power and flexibility you need to customize the design of your tables. Chapter 2, “What
Every Developer Needs to Know About Databases and Tables,” covers these topics.

Relationships: Tying the Tables Together
To properly maintain your data’s integrity and ease the process of working with other
objects in the database, you must define relationships among the tables in your database.
You accomplish this by using the Relationships window. To view the Relationships
window, click to select the Database Tools tab. Then select the Relationships button in the
Show/Hide group. The Relationships window appears, as shown in Figure 1.6.

In this window, you can view and maintain the relationships in the database. If you or a
fellow developer has set up some relationships, but you don’t see any in the Relationships
window, select the All Relationships button in the Relationships group on the Design tab
to unhide any hidden tables and relationships.

FIGURE 1.5 The design of the Customers table is the blueprint or template for the table.

Getting to Know the Database Objects 15

1

FIGURE 1.6 The Relationships window is the place where you view and maintain the relation-
ships in the database.

Notice that many of the relationships in Figure 1.6 have a join line between tables with a
number 1 and an infinity symbol (∞). This indicates a one-to-many relationship between
the tables. If you double-click the join line, the Edit Relationships dialog box opens (see
Figure 1.7). In this dialog box, you can specify the exact nature of the relationship
between tables. The relationship between Customers and Orders, for example, is a one-to-
many relationship with referential integrity enforced. This means that the user cannot
add orders for customers who don’t exist. Notice that the check box to Cascade Update
Related Fields is not checked. This means that the user cannot update the CustomerID of a
customer in the Customers table. Because Cascade Delete Related Records is not checked,
the user cannot delete customers from the Customers table if they have corresponding
orders in the Orders table.

CHAPTER 1 Access as a Development Tool16

FIGURE 1.7 The Edit Relationships dialog box lets you specify the nature of the relationship
between tables.

Chapter 3, “Relationships: Your Key to Data Integrity,” extensively covers the process of
defining and maintaining relationships. It also covers the basics of relational database
design. For now, remember that you should establish relationships both conceptually and
literally as early in the design process as possible. They are integral to successfully design-
ing and implementing your application.

Queries: Stored Questions or Actions You Apply to Your Data
Queries in Access are powerful and multifaceted. Select queries enable you to view,
summarize, and perform calculations on the data in your tables. Action queries let you
add to, update, and delete table data. To run a query, select Queries from the Navigation
drop-down and then double-click the query you want to run, or right-click to select the
query you want to run and then click Open. When you run a select query, a datasheet
appears, containing all the fields specified in the query and all the records meeting the
query’s criteria (see Figure 1.8). When you run an action query, Access runs the specified
action, such as making a new table or appending data to an existing table. In general, you
can update the data in a query result because the result of a query is actually a dynamic
set of records, called a dynaset, based on your tables’ data.

Getting to Know the Database Objects 17

1

FIGURE 1.8 When you run the Inventory on Order query, a datasheet appears, containing
all the fields specified in the query and all the records meeting the query’s criteria.

When you store a query, only its definition, layout or formatting properties, and
datasheet are actually stored in the database. Access offers an intuitive, user-friendly tool
for you to design your queries. Figure 1.9 shows the Query Design window. To open this
window, select Queries from the Navigation pane drop-down, choose the query you want
to modify, and right-click and select Design. The query pictured in the figure selects data
from Purchase Orders, Purchase Orders Status, and Purchase Price Totals tables and
queries. (Note that you can base queries on tables and on other queries.) It displays the
Creation Date, Supplier ID, Shipping Fee, Taxes, and several other fields from the
Purchase Orders table, the Status from the Purchase Order Status table, and the Sub
Total expression from the Purchase Price Totals query. Chapter 4, “What Every
Developer Needs to Know About Query Basics,” and Chapter 12, “Advanced Query
Techniques,” both cover queries. Because queries are the foundation for most forms and
reports, I cover them throughout this book as they apply to other objects in the database.

Forms: A Means of Displaying, Modifying, and Adding Data
Although you can enter and modify data in a table’s Datasheet view, you can’t control the
user’s actions very well; likewise, you can’t do much to facilitate the data entry process.
This is where forms come in. Access forms can take on many traits, and they’re very flexi-
ble and powerful.

FIGURE 1.9 The design of this query displays data from the Purchase Orders and
Purchase Order Status tables and the Purchase Price Totals query.

To view any form, select Forms from the Navigation Pane. Then double-click the form
you want to view, or right-click the form you want to view and click Open. Figure 1.10
illustrates a form in Form view. This form is actually four forms in one: one main form
and three subforms. The main form displays information from the Orders table, and the
subforms display information from the Order Details table and the Orders table. As the
user moves from order to order, the form displays the orders details associated with that
order. When the user clicks to select the Shipping Information and Payment Information
tabs, she can see additional information about that order.

As with tables and queries, you can also view forms in Design view. To view the design of
a form, right-click the Form from within the Navigation Pane and select Design. Figure
1.11 shows the Order Details form in Design view. Notice the three subforms within the
main form. Chapter 5, “What Every Developer Needs to Know About Forms,” and
Chapter 10, “Advanced Form Techniques,” officially cover forms. I also cover forms
throughout this text as they apply to other examples of building an application.

CHAPTER 1 Access as a Development Tool18

FIGURE 1.10 The Order Details form includes customer, order, and order detail
information.

Getting to Know the Database Objects 19

1

FIGURE 1.11 The design of the Order Details form shows three subforms.

Reports: Turning Data into Information
Forms enable you to enter and edit information, but with reports, you can display infor-
mation, usually to a printer. Figure 1.12 shows a report in preview mode. To preview any
report, right-click the report in the Navigation Pane and select Print Preview, or double-
click the report you want to preview. Notice the colors in the report, as well as other
details, such as the shaded area for the column headings. Like forms, reports can be elabo-
rate and exciting, yet can contain valuable information.

CHAPTER 1 Access as a Development Tool20

FIGURE 1.12 This preview of the Quarterly Sales Report displays information in the
report.

If you haven’t guessed yet, you can view reports in Design view, as shown in Figure 1.11.
To view the design of any report, right-click the report in the Navigation Pane and select
Design View. Figure 1.12 illustrates a report with many sections; in the figure you can see
a Report Header, Page Header, Detail section, Page Footer, and Report Footer—just a few of
the many sections available on a report. Just as a form can contain subforms, a report can
contain subreports. Chapter 6, “What Every Developer Needs to Know About Reports,”
and Chapter 11, “Advanced Report Techniques,” cover reports. I also cover them through-
out the book as they apply to other examples.

Macros: A Means of Automating Your System
Macros in Access aren’t like the macros in other Office products. You can’t record them,
as you can in Microsoft Word or Excel, and Access does not save them as Visual Basic for
Applications (VBA) code. With Access macros, you can perform most of the tasks that you

can manually perform from the keyboard, menus, and toolbars. Macros enable you to
build logic into your application flow.

Available in Microsoft Office Access 2007 are embedded macros. Instead of appearing in
the Navigation Pane as a separate object, an embedded macro is part of the object to
which it is associated. When you modify an embedded macro, it does not affect any other
macros or objects in the database. Because you can prevent embedded macros from
performing certain potentially unsafe operations, they are trusted. (Macros, including
embedded macros, are covered in Chapter 7, “What Are Macros, and When Do You Need
Them?”)

To run a macro, select Macros from the Navigation Pane, right-click the macro you want
to run, and then click Run. Access then executes the actions in the macro. To view a
macro’s design, right-click the macro in the Navigation Pane and select Design View. The
macro pictured in Figure 1.13 has four columns. The first column enables you to specify a
condition. The action in the macro’s second column won’t execute unless the condition
for that action evaluates to True. The third column shows you the arguments for that line
of the macro, and the fourth column lets you document the macro. In the bottom half of
the Macro Design window, you specify the arguments that apply to the selected action. In
Figure 1.13, the selected action is OpenForm, which accepts six arguments: Form Name,
View, Filter Name, Where Condition, Data Mode, and WindowMode.

Getting to Know the Database Objects 21

1

FIGURE 1.13 The design of the AutoExec macro contains conditions, actions, arguments,
and comments.

Modules: The Foundation to the Application Development Process
Modules, the foundation of any application, let you create libraries of functions that you
can use throughout your application. You usually include subroutines and functions in
the modules that you build. Functions always return a value; subroutines do not. By using
code modules, you can do the following:

. Perform error handling

. Declare and use variables

. Loop through and manipulate recordsets

. Call Windows API and other library functions

. Create and modify system objects, such as tables and queries

. Perform transaction processing

. Perform many functions not available with macros

. Test and debug complex processes

. Create library databases

These are just a few of the tasks you can accomplish with modules. To view the design of
an existing module, right-click the module you want to modify in the Navigation Pane
and click Design View to open the Module Design window (see Figure 1.14). The global
code module in Figure 1.14 contains a General Declarations section and five functions.
The function that is visible is called CreateInvoice. Chapter 8, “VBA: An Introduction,”
and Chapter 13, “Advanced VBA Techniques,” discuss modules and VBA, respectively. I
also cover modules and VBA extensively throughout this book.

CHAPTER 1 Access as a Development Tool22

FIGURE 1.14 The global code module in Design view shows the General Declarations
section and CreateInvoice function.

Object Naming Conventions
Finding a set of naming conventions—and sticking to it—is one of the keys to successful
development in Access or any other programming language. When you’re choosing a set
of naming conventions, look for three characteristics:

. Ease of use

. Readability

. Acceptance in the developer community

The naming conventions that I use in this book were derived from the Leszynski/Reddick
naming conventions that were prominent in Access versions 1.x and 2.0. These standards
were adopted and used extensively by the development community and can be found in
most good development books and magazine articles written in the past few years. These
conventions give you an easy-to-use, consistent methodology for naming the objects in
all these environments.

Appendix A, “Naming Conventions,” is available for download at
www.samspublishing.com and includes a summarized version of the conventions
for naming objects. I’ll be using them throughout the book and highlighting certain
aspects of them as they apply to each chapter.

Hardware Requirements
One of the downsides of Access is the number of hardware resources it requires. The
requirements for a developer are different from those for an end user, so I have broken
the system requirements into two parts. As you read through these requirements, be sure
to note actual versus recommended requirements.

What Hardware Does Microsoft Office Access 2007 Require?
According to Microsoft documentation, these are the official minimum requirements to
run Microsoft Access 2007:

. 500 megahertz (MHz) processor or higher

. Windows XP with Service Pack 2, Windows 2003 with Service Pack 1, or a later
operating system, such as Windows Vista.

. 256 megabytes (MB) RAM or higher

. 1.5 gigabytes (GB) of hard disk space (some will be freed after the original download
package is removed from the hard drive

. 1024×768 or higher resolution

. CD-ROM or DVD drive

. A pointing device

The bottom line for hardware is the more, the better. You just can’t have enough memory
or hard drive capacity. The more you have, the happier you will be using Access.

Hardware Requirements 23

1

www.samspublishing.com

How Do I Get Started Developing an
Access Application?
Many developers believe that because Access is such a rapid application development
environment, there’s absolutely no need for system analysis or design when creating an
application. I couldn’t disagree more. As mentioned earlier in this chapter, Access applica-
tions are deceptively easy to create, but without proper planning, they can become a
disaster.

Task Analysis
The first step in the development process is task analysis, or considering each and every
process that occurs during the user’s workday—a cumbersome but necessary task. When
I started working for a large corporation as a mainframe programmer, I was required to
carefully follow a task analysis checklist. I had to find out what each user of the system
did to complete her daily tasks, document each procedure, determine the flow of each
task to the next, relate each task of each user to her other tasks as well as to the tasks of
every other user of the system, and tie each task to corporate objectives. In this day and
age of rapid application development and changing technology, task analysis in the devel-
opment process seems to have gone out the window. I maintain that if you don’t take the
required care to complete this process at least at some level, you will have to rewrite large
parts of the application.

Data Analysis and Design
After you have analyzed and documented all the tasks involved in the system, you’re ready
to work on the data analysis and design phase of your application. In this phase, you must
identify each piece of information needed to complete each task. You must assign these
data elements to subjects, and each subject will become a separate table in your database.
For example, a subject might be a client; every data element relating to that client—the
name, address, phone, credit limit, and any other pertinent information—would become
fields within the client table.

You should determine the following for each data element:

. Appropriate data type

. Required size

. Validation rules

You should also determine whether you will allow the user to update each data element
and whether it’s entered or calculated; then you can figure out whether you have properly
normalized your table structures.

Normalization Made Easy
Normalization is a fancy term for the process of testing your table design against a series of
rules that ensure that your application will operate as efficiently as possible. These rules

CHAPTER 1 Access as a Development Tool24

are based on set theory and were originally proposed by Dr. E. F. Codd. Although you
could spend years studying normalization, its main objective is an application that runs
efficiently with as little data manipulation and coding as possible. Chapter 3 covers
normalization and database design in detail. For now, here are six of the basic normaliza-
tion rules:

1. Fields should be atomic—that is, each piece of data should be broken down as much
as possible. For example, instead of creating a field called Name, you would create
two fields: one for the first name and the other for the last name. This method
makes the data much easier to work with. If you need to sort or search by first name
separately from the last name, for example, you can do so without extra effort.

2. Each record should contain a unique identifier so that you have a way of safely
identifying the record. For example, if you’re changing customer information,
you can make sure you’re changing the information associated with the correct
customer. We refer to this unique identifier as a primary key.

3. The primary key is a field or fields that uniquely identify the record. Sometimes you
can assign a natural primary key. For example, the Social Security number in an
employee table should serve to uniquely identify that employee to the system. At
other times, you might need to create a primary key. Because two customers could
have the same name, for example, the customer name might not uniquely identify
the customer to the system. You might need to create a field that would contain a
unique identifier for the customer, such as a customer ID.

4. A primary key should be short, stable, and simple. Short means it should be small
(not a 50-character field). A Long Integer is perfect as a primary key. Stable means
the primary key should be a field whose value rarely, if ever, changes. For example,
although a customer ID would rarely change, a company name is much more likely
to change. Simple means it should be easy for a user to work with.

5. Every field in a table should supply additional information about the record that
the primary key serves to identify. For example, every field in the customer table
describes the customer with a particular customer ID.

6. Information in the table shouldn’t appear in more than one place. For example, a
particular customer name shouldn’t appear in more than one record.

Take a look at an example. The datasheet shown in Figure 1.15 is an example of a table
that hasn’t been normalized. Notice that the CustInfo field is repeated for each order, so
if the customer address changes, it has to be changed in every order assigned to that
customer. In other words, the CustInfo field is not atomic. If you want to sort by city,
you’re out of luck, because the city is in the middle of the CustInfo field. If the name of
an inventory item changes, you need to make the change in every record where that
inventory item was ordered. Probably the worst problem in this example involves items
ordered. With this design, you must create four fields for each item the customer orders:
name, supplier, quantity, and price. This design would make it extremely difficult to build
sales reports and other reports your users need to effectively run the business.

How Do I Get Started Developing an Access Application? 25

1

FIGURE 1.16 The data has been normalized into four separate tables.

FIGURE 1.15 This table hasn’t been normalized.

Figure 1.16 shows the same data normalized. Notice that I’ve broken it out into several
different tables: tblCustomers, tblOrders, tblOrderDetails, and tblSuppliers. The
tblCustomers table contains data that relates only to a specific customer.

CHAPTER 1 Access as a Development Tool26

How Do I Get Started Developing an Access Application? 27

1

I have uniquely identified each record by a contrived CustID field, which I use to relate
the orders table, tblOrders, to tblCustomers. The tblOrders table contains only informa-
tion that applies to the entire order, rather than to a particular item that the customer
ordered. This table contains the CustID of the customer who placed the order and the date
of the order, and I’ve related it to the tblOrderDetails table based on the OrderID. The
tblOrderDetails table holds information about each item ordered for a particular OrderID.

There’s no limit to the potential number of items that the user can place on an order. The
user can add as many items to the order as needed, simply by adding more records to the
tblOrderDetails table. Finally, I placed the supplier information in a separate table,
tblSuppliers, so that if any of the supplier information changes, the user has to change
it in only one place.

Prototyping
Although the task analysis and data analysis phases of application development haven’t
changed much since the days of mainframes, the prototyping phase has changed. In
working with mainframes or DOS-based languages, it was important to develop detailed
specifications for each screen and report. I remember requiring users to sign off on every
screen and report. Even a change such as moving a field on a screen meant a change
order and approval for additional hours. After the user signed off on the screen and report
specifications, the programmers would go off for days and work arduously to develop
each screen and report. They would return to the user after many months only to hear
that everything was wrong. This meant the developer had to go back to the drawing
board and spend many additional hours before the user could once again review the
application.

The process is quite different now. As soon as you have outlined the tasks and the data
analysis is complete, the developer can design the tables and establish relationships
among them. The form and report prototype process can then begin. Rather than the
developer going off for weeks or months before having further interaction with the user,
the developer needs only a few days, using the Access wizards, to quickly develop form
prototypes.

Testing
As far as testing goes, you just can’t do enough. I recommend that, if your application is
going to be run in Windows 2000, Windows 2003, Windows XP, and Windows Vista, you
test in all environments. I also suggest you test your application extensively on the lowest
common denominator piece of hardware; the application might run great on your
machine but show unacceptable performance on your users’ machines.

Testing your application both in pieces and as an integrated application usually helps.
Recruit several people to test your application and make sure they range from the most
savvy of users to the least computer-adept person you can find. These different types of
users will probably find completely different sets of problems. Most importantly, make
sure you’re not the only tester of your application, because you’re the least likely person
to find errors in your own programs.

Implementation
Your application is finally ready to go out into the world, or at least you hope so!
Distribute your application to a subset of your users and make sure they know they’re
performing the test case. Make them feel honored to participate as the first users of the
system, but warn them that problems might occur, and it’s their responsibility to make
you aware of them. If you distribute your application on a wide-scale basis and it doesn’t
operate exactly as it should, regaining the confidence of your users will be difficult. That’s
why it is so important to roll out your application slowly.

Maintenance
Because Access is such a rapid application-development environment, the maintenance
period tends to be much more extended than the one for a mainframe or DOS-based
application. Users are much more demanding; the more you give them, the more they
want. For a consultant, this is great. Just don’t get into a fixed-bid situation. Because of
the scope of the application changing, you could very well end up on the losing end of
that deal.

There are three categories of maintenance activities: bug fixes, specification changes, and
frills. You need to handle bug fixes as quickly as possible. The implications of specifica-
tion changes need to be clearly explained to the user, including the time and cost
involved in making the requested changes. As far as frills go, try to involve the users as
much as possible in adding frills by teaching them how to enhance forms and reports and
by making the application as flexible and user-defined as possible. Of course, the final
objective of any application is a happy group of productive users.

What’s New in Access 2007?
Access 2007 sports a plethora of new features, all worth taking a look at. Although
Microsoft targeted many of the new features to the end user, there are many other useful
enhancements in the product. The following sections provide an overview of the new
features. I cover each feature in more detail in the appropriate chapter of this book.

What’s New in the User Interface?
The user interface in Microsoft Office Access 2007 has been redesigned from the ground
up. Microsoft made this design change to help you find the commands that you need,
when you need them. Many features that previously were buried deep within Access’s
menu structure are now easily accessible. From the moment you launch Microsoft Office
Access 2007 to the time you exit the application, your user experience will be very differ-
ent from that of Access 2003, or any of the previous versions of Microsoft Access.

When you launch Access 2007, the screen appears as shown in Figure 1.17. Here, you can
opt to create a new blank database, open a recently used database, open other existing
databases, or create a new database from a template. If you select Blank Database, Access
prompts you for the name and location of the database, as shown in Figure 1.18. When
you click Create, the screen appears as shown in Figure 1.19.

CHAPTER 1 Access as a Development Tool28

FIGURE 1.17 The Access 2007 desktop looks quite different from that of its predecessors.

What’s New in Access 2007? 29

1

FIGURE 1.18 You must select a name and a location for the database.

FIGURE 1.19 Access 2007 includes a new tabbed interface.

Notice that Microsoft Office Access 2007 provides you with a tabbed interface (see Figure
1.19). When you create a new blank database, Access 2007 provides you with a new
datasheet so that you can create the first table contained in the database. You can use this
technique to create a table, or you can create a table in Design view. Notice that under-
neath the tabs is what looks like a fancy toolbar. Microsoft refers to this toolbar as the
ribbon. The next section (“Getting to Know the Ribbon”) goes into the details of the
ribbon. In the sections that follow, we’ll look at each tab available in Microsoft Office
Access 2007.

Getting to Know the Ribbon
The ribbon is the area at the top of the program window; it replaces menus and toolbars.
Using the ribbon, you can choose the category of commands with which you want to
work. The ribbon contains command tabs and contextual command tabs. The following
sections cover both types of tabs.

Exploring the Command Tabs
When you launch Microsoft Office Access 2007, you are presented with a tabbed inter-
face. The tabs displayed include Home, Create, External Data, Database Tools, and
Datasheet. This section explores the details of each tab.

CHAPTER 1 Access as a Development Tool30

FIGURE 1.20 The Home tab enables you to perform basic formatting and record-oriented
tasks.

The first tab is the Home tab (see Figure 1.20). It enables you to perform the following
types of functions:

. Switch between views (datasheet and design)

. Cut, copy, and paste

. Format text (add bold or underline, change the font, and so on)

. Work with rich text (bulleted lists and numbered lists)

. Work with records (save, total, spell check, and so on)

. Sort and filter data

. Locate data meeting specific criteria

The second tab is the Create tab (see Figure 1.21). It enables you to perform the following
types of functions:

. Create tables, table templates, and SharePoint lists

. Create various types of forms

. Create various types of reports

. Create queries and macros

What’s New in Access 2007? 31

1

FIGURE 1.21 The Create tab enables you to create database objects.

The third tab is the External Data tab (see Figure 1.22). This tab enables you to perform
the following types of tasks:

. Process saved imports and exports

. Interface with other Access databases, as well as with Excel spreadsheets, SharePoint
lists, text files, XML files, and other databases such as Open Database Connectivity
(ODBC) databases

. Create and manage email

The fourth tab is called the Database Tools tab (see Figure 1.23). It enables you to do the
following:

. Launch the Visual Basic editor

. Work with macros

. Work with relationships and object dependencies

. Perform analysis tasks

. Interface with SQL Server

. Work with linked tables

. Manage switchboards

. Encrypt databases

. Work with add-ins

. Compile your database

CHAPTER 1 Access as a Development Tool32

FIGURE 1.22 The External Data tab enables you to interface between Microsoft Office
Access 2007 and other applications, such as Excel and SharePoint.

What’s New in Access 2007? 33

1

FIGURE 1.23 The Database Tools tab enables you to perform miscellaneous database-
related tasks.

Exploring the Contextual Command Tabs
Other tabs are contextual and therefore vary depending on what you are doing. For
example, when you first create a new database, Access assumes that your first task will be
to create a new table. It places you in Datasheet view, and the Datasheet tab appears (see
Figure 1.24). This tab enables you to perform all tasks relating to the process of working
with a datasheet. These tasks include working with fields and columns, modifying the
data type and formatting associated with a column, and working with relationships.
I cover each context-sensitive tab as appropriate within this shortcut.

CHAPTER 1 Access as a Development Tool34

FIGURE 1.24 The Datasheet tab is a contextual tab, available while you are working in
Datasheet view.

Utilizing the Gallery
The gallery is a control that displays a choice visually so that you can see the results you
will get. The idea is to allow you to browse and see what Microsoft Office Access 2007 can
do. Figure 1.25 provides an example. As you can see, when you click the arrow on the
right side of the Gridlines button, a gallery appears showing you how each result will
appear. This feature makes it easy for you to confidently make your selection from the
options available.

Working with the Quick Access Toolbar
The Quick Access toolbar is a single standard toolbar that appears at the top of the ribbon
and provides single-click access to commands such as Save and Undo. Notice the Save,
Print, and Undo buttons in Figure 1.26. These buttons are all on the Quick Access toolbar;
you can easily access them at any time. You can customize the Quick Access toolbar to

include the commands that you use most often. You also can modify the placement and
size of the toolbar. As you can see, the small toolbar appears above the command tabs. To
change the placement of the Quick Access toolbar, simply right-click the toolbar and select
Show Quick Access Toolbar Below the Ribbon. The toolbar appears below the ribbon (see
Figure 1.27).

What’s New in Access 2007? 35

1

FIGURE 1.25 The gallery gives you a preview of the effect that the selected choice will make.

FIGURE 1.26 The Quick Access toolbar enables you to easily access commonly used commands.

FIGURE 1.27 You can place the Quick Access toolbar under the ribbon.

Working with the Microsoft Office Access Button
The Microsoft Office Access button appears in the upper-left corner of the application
window. When you click the Microsoft Office Access button, a menu appears (see Figure
1.28). Using the menu, you can perform the following tasks:

. Create new databases

. Open existing databases

. Save changes to the current object

. Use the Save As menu to save to other Access file formats as well as to a web server
or to a PDF or XPS file

. Print or print preview

. Manage databases by compacting and repairing them, backing them up, and
working with Database properties

. Email your databases to other people

. Close the current database

Ribbon Tips and Tricks
You can use the same keyboard shortcuts with Microsoft Office Access 2007 that you
could with previous versions of Access. This means that you can perform many of the
commonly used features (such as Save) using the keyboard shortcuts that you are familiar
with. When you hover your mouse pointer over the ribbon on a button that is associated
with a keyboard shortcut, the shortcut appears as a ToolTip (see Figure 1.29).

CHAPTER 1 Access as a Development Tool36

FIGURE 1.28 The Microsoft Office Access button provides a menu necessary to perform
commonly used commands.

What’s New in Access 2007? 37

1

FIGURE 1.29 When you hover your mouse pointer over a command associated with a
keyboard shortcut, the shortcut appears as a ToolTip.

Another way in which you can identify keyboard shortcuts is to press your Alt key while
on a particular tab. All the Alt key shortcuts appear as small indicators (see Figure 1.30).
For example, when you press Alt with the Home tab active, you can see that Alt+F will
access the Microsoft Office Access button.

CHAPTER 1 Access as a Development Tool38

FIGURE 1.30 If you press the Alt key on your keyboard, the Alt shortcuts appear as small
indicators.

Sometimes you are going to want extra screen real estate and will want to collapse the
ribbon so that only the active command tab appears. Microsoft Office Access 2007 makes
this quite easy. To collapse the ribbon, double-click the active command tab. Your applica-
tion window appears as in Figure 1.31. To open it again, simply click the tab you want to
activate.

Customizing the Quick Access Toolbar
As mentioned in the section “Working with the Quick Access Toolbar,” you can customize
the Quick Access toolbar. To do so, right-click the toolbar; a context-sensitive menu
appears (see Figure 1.32). Select Customize Quick Access Toolbar. The Access Options
dialog box appears with the Customization page selected (see Figure 1.33). The following
steps show you how to customize the Quick Access toolbar:

1. Use the Choose Commands From drop-down list to select the category of
commands from which you want to choose. For example, in Figure 1.34, the Create
commands are selected.

FIGURE 1.31 Double-click the ribbon to collapse it.

What’s New in Access 2007? 39

1

FIGURE 1.32 When you right-click the Quick Access toolbar, a context-sensitive menu
appears.

FIGURE 1.33 The Customization page of the Access Options dialog box enables you to
customize the Quick Access toolbar.

2. Use the Customize Quick Access Toolbar drop-down list to determine whether your
changes will apply for all documents (databases) or for only the specific document
that you are working with.

3. Select a command from the list box on the left side of the dialog box and click Add
to add it to the list box on the right side of the dialog box. For example, in Figure
1.34, the Blank Form command has been added from the Create Tab options.

4. Use the up and down arrows on the right side of the dialog box to move the
command up or down within the list of existing commands.

5. After you add all the desired commands, click OK to complete the process. The
Quick Access toolbar now appears with the icons associated with the commands
that you added to the toolbar (see Figure 1.35).

TIP

If you want to reset the Quick Access toolbar to its default state, click the Reset
button on the Customization page of the Access Options dialog box.

CHAPTER 1 Access as a Development Tool40

FIGURE 1.34 After you select Add, the command appears in the list box on the right side of
the dialog box.

What’s New in Access 2007? 41

1

FIGURE 1.35 After you add three commands to the Quick Access toolbar, they appear next
to the existing toolbar buttons.

Getting to Know the Navigation Pane
Microsoft has replaced the Database window with the Navigation Pane. The Navigation
Pane contains the names of all the objects in your database, including the forms, reports,
pages, macros, and modules that compose your database. In Figure 1.36, you can see that
the Contacts database is composed of one table, one query, two forms, and two reports.

CHAPTER 1 Access as a Development Tool42

FIGURE 1.36 The Navigation Pane enables you to select and work with the appropriate data-
base object.

Applying a command to a database object is easy; simply right-click the object, and a
context-sensitive menu appears. For example, the context-sensitive menu associated with
the Contacts table enables you to open, design, import, export, delete, and perform other
important functionality necessary when administering a table (see Figure 1.37). Another
example is the context-sensitive menu that appears when you right-click a form. Notice
in Figure 1.38 that the options for a form are quite different from those for a table. They
include the ability to work with the form in various views; to export, rename, and delete
the form; as well as to view form properties.

FIGURE 1.37 After you right-click a table, the context-sensitive menu enables you to perform
functionality associated with a table.

What’s New in Access 2007? 43

1

FIGURE 1.38 After you right-click a form, the context-sensitive menu enables you to perform
functionality associated with a form.

Working with Tabbed Documents
In Microsoft Office Access 2003, all open documents (forms, reports, and so on) appeared
on the taskbar. Microsoft has replaced this paradigm with that of tabbed documents.
When you have open forms, reports, and other objects, they appear as tabs on the ribbon
(see Figure 1.39). You can easily move from object to object by simply clicking each tab.
Notice in Figure 1.39 that three objects are open: Contact List, Contacts Extended, and
Contact Address Book. The Contact List form is currently the active tab.

CHAPTER 1 Access as a Development Tool44

FIGURE 1.39 Each open document appears as a tab on the ribbon.

Showing or Hiding Document Tabs
If you prefer the older style of either viewing only one object at a time or of overlapping
windows that appear on the taskbar, you can change the behavior of Access by using
Access Options. Follow these steps to view only one object at a time:

1. Click the Microsoft Office button.

2. Select Access Options (see Figure 1.40). The Access Options dialog box appears.

3. Click Current Database. Your screen should appear as in Figure 1.41.

4. In the Application Options section, click Display Document Tabs to deselect it.

5. Click OK to close the dialog box. You will receive a message indicating that you
must close and reopen the current database for the specified option to take effect.

FIGURE 1.40 Access Options enables you to modify the behavior of Access and specific
databases.

What’s New in Access 2007? 45

1

FIGURE 1.41 The Current Database options affect the behavior of a specific database.

6. Close and reopen the database to see the changes take effect. Your screen should
now appear as in Figure 1.42. Notice that no tabs appear under the ribbon.

CHAPTER 1 Access as a Development Tool46

FIGURE 1.42 After you close and reopen the database, no tabs appear under the ribbon.

Displaying Overlapping Windows
Another option is to display overlapping windows. Here are the steps involved:

1. Click the Microsoft Office button.

2. Select Access Options. The Access Options dialog box appears.

3. Click Current Database.

4. Click Overlapping Windows to select it.

5. Click OK to close the dialog box.

6. Close and reopen the database to see the changes take effect. Your screen should
now appear as in Figure 1.43. Notice that no tabs appear under the ribbon.

NOTE

The Display Documents Tabs setting is a per-database setting. You must modify this
setting for each database. New databases created using Access 2007 show document
tabs by default. Databases created in earlier versions of Access use overlapping
windows by default.

FIGURE 1.43 After you close and reopen the database, you can see each object as an over-
lapping window.

Exploring the New Status Bar
The status bar in Microsoft Office Access 2007 is similar to that of earlier versions of
Access but sports some new features. In addition to showing status messages, property
hints, progress indicators, and other features familiar to earlier versions of Access, the new
status bar enables you to modify the current view and to zoom. It also provides rich right-
click functionality.

You can quickly and easily modify the view you are working with by simply clicking the
appropriate tool in the lower-right corner of the status bar (see Figure 1.44). For example,
when a form is open, you can switch among Form view, Datasheet view, Layout view, and
Design view. When a table is open, you can switch among Datasheet view, PivotTable
view, PivotChart view, and Design view.

Another feature of the new status bar is the capability to adjust the zoom level to zoom in
or out. You do this by using the slider on the status bar.

Finally, the new status bar provides a host of commands that are available when you
right-click it. Notice in Figure 1.45 that you can perform commands such as changing the
Caps Lock setting, the Num Lock setting, and whether the data is filtered. You simply
click to select or deselect the appropriate setting.

What’s New in Access 2007? 47

1

FIGURE 1.44 You can modify the view that you are working with by clicking the appropriate
tool on the status bar.

CHAPTER 1 Access as a Development Tool48

FIGURE 1.45 When you right-click on the status bar, you can perform many commands.

Showing or Hiding the Status Bar
Microsoft Office Access 2007 gives you the option of hiding or showing the status bar.
The following are the steps you must take to change the visibility of the status bar:

1. Click the Microsoft Office button.

2. Select Access Options. The Access Options dialog box appears.

3. Click Current Database.

4. Click within the Application Options section to deselect Display Status Bar.

5. Click OK to close the dialog box.

6. Close and reopen the database. The status bar should no longer be visible (see
Figure 1.46).

What’s New in Access 2007? 49

1

FIGURE 1.46 After you close and reopen the database, the status bar no longer appears.

Working with the Mini Toolbar
Microsoft Office Access 2007 offers many text formatting features. In earlier versions of
Access, formatting text required using a menu or displaying the formatting toolbar. The
mini toolbar enables you to easily access formatting features without having to use menus
or display a toolbar. Here’s how:

1. Select the text you want to change. (The text must be in a memo field using the rich
text feature.) The mini toolbar appears above the selected text (see Figure 1.47).

FIGURE 1.47 After you select text, the mini toolbar appears above the selected text.

2. Click to select the appropriate formatting options (for example, bold).

3. Move your mouse pointer away from the mini toolbar. The mini toolbar fades away,
and the text appears with the selected formatting (see Figure 1.48).

CHAPTER 1 Access as a Development Tool50

FIGURE 1.48 Notice that the word text in the Notes field is bold and italic.

NOTE

If you don’t want to apply formatting to a selection, simply move your mouse pointer a
few pixels away from the toolbar, and the mini toolbar disappears.

NOTE

You can apply formatting only in specific situations, such as within a Memo field where
the Text Format property is set to Rich Text.

What’s New with Forms?
The number of new features available with forms in Access 2007 is so vast that I will
provide an overview here and then will supply the details in Chapter 5. The features new
to forms include the following:

. The ability to quickly create a form with Quick Create

. A new view called Layout view

. The ability to work with Stacked and Tabular layouts

. Split forms

. Alternating background colors

. New filtering features for form data

What’s New with Reports?
Reports also sport a plethora of new features. Many of the features are similar to those
provided for reports. They include the following:

. The ability to create a report with Quick Create

. A new view called Layout view

. The ability to work with Stacked and Tabular layouts

. New Group, Sort, and Totals features

The Exciting World of Pivot Tables and Pivot Charts
Access 2002, 2003, and 2007 enable the user to view any table, query, or form in
PivotTable or PivotChart view. Pivot tables and pivot charts enable users to easily perform
rather complex data analyses. This means that you can perform many of the data analysis
tasks once left to Microsoft Excel directly within Microsoft Access. Pivot tables and pivot
charts are available in subforms as well, and you can programmatically react to the events
that they raise.

What’s New in Access 2007? 51

1

Other New Features Found in Access 2007
Microsoft Office Access 2007 includes greatly improved importing and exporting features.
For example, you can now export to PDF and XPS fields. You can also save your import-
ing and exporting specifications so that you can reuse them later. I cover these features in
Chapter 20, “Using External Data.”

Microsoft Office Access 2007 is tightly integrated with Microsoft Office Outlook 2007. You
can both collect and update data using Microsoft Office Outlook 2007. When you use the
new Data Collection feature, Microsoft Office Access 2007 can automatically create a
Microsoft Office InfoPath 2007 or HTML form. It can then embed that form in an email
message. You can then send it to selected Outlook contacts or even to contacts stored in
an Access database. When the recipient fills out the form and returns it, you can seam-
lessly store the resulting data in your Microsoft Office Access 2007 database.

In addition, Microsoft has completely revamped security in Microsoft Office Access 2007.
The User Security model has been completely eliminated in Access 2007, unless you keep
your database in the old Access file format (.mdb or .mde) and that database already has
user-level security applied. In other words, if you open a database created in an earlier
version of Access and that database already has security applied, Access 2007 will support
user-level security for that database. If you convert a database created in an earlier version
of Access to the Access 2007 file format, Access 2007 will strip all user-level security
settings from the database, and Access 2007 security will apply. You will learn much more
about security in Chapter 31, “Database Security Made Easy.”

What Happened to Replication?
Replication is not supported in Microsoft Office Access 2007, unless you keep your data-
base in the old Access file format. If you open an existing .mdb file where replication has
already been implemented, the replication will be supported. You can also use Access
2007 to replicate a database created in an earlier version of Access, as long as you do not
convert that database to the new file format.

You will not be able to convert a replicated database to the Access 2007 file format.
However, there is a solution, which involves manually re-creating the database in the
Access 2007 file format. You should do this only if you feel that the benefits afforded by
the Access 2007 file format outweigh the benefit received from replication. If you do
decide to manually re-create the database, you must first make sure that all hidden and
system objects are available. Then do the following:

1. Open the replica that you want to convert using the same version of Access in
which you created it.

2. Select Tools, Options.

3. Click the View tab. The Options dialog box appears, as in Figure 1.49.

4. In the Show section, select Hidden Objects and System Objects.

5. Click OK to apply your settings and close the Options dialog box.

CHAPTER 1 Access as a Development Tool52

FIGURE 1.49 The Options dialog box allows you to view hidden and system objects.

Re-Creating the Database
Next, you must manually re-create the database. Here’s how:

1. Create a blank Access 2007 database and open it.

2. Close the table called Table1 without saving it.

3. Click the External Data tab (see Figure 1.50).

Other New Features Found in Access 2007 53

1

FIGURE 1.50 You use the External Data tab to import and export data.

4. In the Import group, select Access. The Get External Data – Access Database dialog
box appears (see Figure 1.51).

CHAPTER 1 Access as a Development Tool54

FIGURE 1.51 The Get External Data – Access Database dialog box prompts you to locate the
database whose objects you are importing.

5. Browse to locate the replicated database, and then click Open.

6. In the Get External Data – Access Database dialog box, click Import Tables, Queries,
Forms, Reports, Macros, and Modules into the Current Database and then click OK.
The Import Objects dialog box appears (see Figure 1.52).

FIGURE 1.52 The Import Objects dialog box prompts you to select the objects you want to
import.

7. Click to select the objects that you want to import into the new database. If you
want to import all objects, click Select All on each tab. Do not select any tables. You
will handle them separately.

8. Access prompts you to save your import steps. If you want to do so, click the Save
Import Steps check box, enter the required information (see Figure 1.53), and then
click Save Import.

Other New Features Found in Access 2007 55

1

FIGURE 1.53 Select Save Import if you plan to perform the import process again at a later time.

9. Open the replicated database in Access 2007.

10. Make sure that the s_GUID, s_Lineage, and s_Generation fields are visible. To do
this, right-click the top of the Navigation Pane and select Navigation Options. The
Navigation Options dialog box appears (see Figure 1.54).

FIGURE 1.54 Use the Navigation Options dialog box to indicate that you want to display
system objects.

11. Select Show System Objects in the Display Options section. Click OK to close the
dialog box.

12. Create a Make Table query for each table in the database. The Make Table query will
take all the data in the old table and create a table in the new database with the
same data. If the s_GUID is a primary key that acts as a foreign key in other tables,
you must include the s_GUID field in the new table. There is no need to copy the
s_Lineage and s_Generation fields to the new table.

13. Run the Make Table queries. This will create the tables in the new database. It’s
important to note that the new table will not inherit any of the field properties,
and it will not inherit the primary key setting from the original table.

14. In the new database, create the same index and primary key used in the replica’s
tables.

15. Create the necessary relationships for each table in the new database.

16. Save your new database.

What Happened to ADP Files?
Access Data Project (ADP) is also no longer supported in Microsoft Office Access 2007,
again unless you keep your database in the old Access file format. Although supported
with the old Access file format, it is probably best that you do not do any new develop-
ment with ADP files. If you have existing ADP files that are currently meeting your busi-
ness needs, you don’t need to rewrite them at this time. If you decide at some point to
make major changes to those existing applications, that is when you should consider
moving them to the new .accdb or .accde file format and rewriting their functionality as
necessary to take advantage of the new features available in Microsoft Office Access 2007
and eliminating the features specific to ADP files.

Additional Tips and Tricks
There are a few additional tips and tricks that you should be aware of when working with
Microsoft Office Access 2007. They include advanced Navigation Pane techniques and the
process of working with multi-valued fields. The following sections discuss each of these
topics in detail.

Advanced Navigation Pane Techniques
Microsoft Office Access 2007 sports some wonderful Navigation Pane techniques that you
should be aware of. These include the capability to create custom categories and groups,
show or hide the groups or objects in a category, and remove and restore objects in
custom groups. Let’s start with the process of creating custom categories. Here are the
steps involved:

1. Right-click the menu at the top of the Navigation Pane. A cascading menu appears
(see Figure 1.55).

CHAPTER 1 Access as a Development Tool56

FIGURE 1.55 A cascading menu enables you to control the behavior of the Navigation Pane.

2. Select Navigation Options. The Navigation Options dialog box appears (see Figure 1.56).

3. Click Add Item to add a category. Your dialog box appears as in Figure 1.57.

Additional Tips and Tricks 57

1

FIGURE 1.56 The Navigation Options dialog box enables you to manipulate important
features of the Navigation Pane.

FIGURE 1.57 You can easily add a category to the Navigation Pane.

4. Type the name of the new category.

5. Use the up and down arrows to move the category up or down in the list.

6. Click OK to close the dialog box. If you left-click the Navigation Pane menu, you
will see your new category in the list (see Figure 1.58).

CHAPTER 1 Access as a Development Tool58

FIGURE 1.58 After you create a custom category, you will see it in the list of available
categories.

Adding Custom Groups to the Category
After you have created a custom category, you will want to add custom groups to it. Here
are the steps involved:

1. Right-click the menu at the top of the Navigation Pane and select Navigation
Options. The Navigation Options dialog box appears.

2. Click to select the category to which you want to add groups. In Figure 1.59,
Northwind Objects is selected.

Additional Tips and Tricks 59

1

FIGURE 1.59 Select the category to which you want to add groups.

3. Click the Add Group command button. A new group appears.

4. Type the name of the new group.

5. Continue adding new groups to the category. When you are finished, the
Navigation Options dialog box should appear as in Figure 1.60.

FIGURE 1.60 After you add groups, they appear in the dialog box.

6. Click OK to close the dialog box. The groups now appear within the category (see
Figure 1.61).

NOTE

You can create a maximum of 10 custom categories. Of course, you can rename or
delete categories at any time.

CHAPTER 1 Access as a Development Tool60

FIGURE 1.61 After you close the dialog box, the new groups appear within the category.

Adding Objects to Custom Groups
You are now ready to add objects to your custom groups. Here’s how:

1. Click to select the category to which you want to add the new objects.

2. In the Unassigned Objects group, select the objects you want to include in your
custom group and then move them to the group. You can drag the items individu-
ally; hold down the Ctrl key and click and drag multiple items; or right-click one of
the selected items, point to Add to Group, and then click the name of the custom
group. Regardless of the method, Access adds the objects to the designated group.

NOTE

When you add a database object from the Unassigned Objects group to a custom
group, you are creating a shortcut to the object. If you remove the object from the
custom group, you are not removing the object. Instead, you are removing the shortcut
contained in the custom group.

Hiding the Unassigned Objects Group
After you have added all your objects to custom groups, you might want to hide the
Unassigned Objects group. The process is quite simple:

1. Right-click the menu at the top of the Navigation Pane and select Navigation
Options. The Navigation Options dialog box appears.

2. Click to select a category (for example, Northwind Objects).

3. In the Groups for Category pane (see Figure 1.62), click to clear the Unassigned
Objects check box.

4. Click OK to close the dialog box. The Unassigned Objects group no longer appears
(see Figure 1.63).

Additional Tips and Tricks 61

1

FIGURE 1.62 Click to clear the Unassigned Objects check box.

FIGURE 1.63 The Unassigned Objects group no longer appears.

Creating a New Custom Group Containing an Object Found in an Existing Group
Another trick is to create a new custom group containing an object found in an existing
group. To complete this process, you must have a custom category and group containing
at least one item. Here’s the process:

1. Use the Navigation Pane to view the object you want to place in the new group.

2. Right-click the object and select Add to Group, New Group (see Figure 1.64). A new
group appears in the Navigation Pane (see Figure 1.65).

CHAPTER 1 Access as a Development Tool62

FIGURE 1.64 You can right-click an object and immediately add it to a new group.

3. Enter a name for the new group.

4. Notice that the object you selected appears in the new group. Drag additional short-
cuts to the group as desired.

In addition to what you have learned thus far, you can also show or hide the groups and
objects in a category. In fact, you can show or hide some or all of the groups in a custom
category and some or all of the objects in a group. There are some important points to
remember:

. You can hide an object either via the Navigation Pane or via a property of the
object itself.

. You can completely hide objects or groups, or you can simply disable them.

FIGURE 1.65 The new group appears in the Navigation Pane.

Completing the Process
Now that you know the details of showing or hiding groups and objects in a category,
here’s how you finish the process. To hide a group in a category, simply right-click the
title bar of the group that you want to hide and then select Hide from the context-
sensitive menu. To restore a hidden group to a category, follow these steps:

1. Right-click the menu bar at the top of the Navigation Pane and select Navigation
Options.

2. Click to select the category containing the hidden object.

3. In the Groups for Category list, click to select the check box next to the hidden
group.

4. Click OK. The group should now appear in the Navigation Pane.

Hiding an Object in Its Parent Group
At times you will want to hide an object in its parent group. All you need to do is right-
click the specific object that you want to hide and then select Hide. If you want to hide
an object from all categories and groups, follow these steps:

1. Right-click the object that you want to hide and select View Properties. The
Properties dialog box appears (see Figure 1.66).

Additional Tips and Tricks 63

1

FIGURE 1.66 You use the Properties dialog box to hide an object.

2. Click the Hidden check box.

3. Click OK. You will no longer see the object in the Navigation Pane.

Restoring a Hidden Object
You are probably wondering how to restore an object after it is hidden. Here’s how:

1. Right-click the menu at the top of the Navigation Pane and select Navigation
Options from the shortcut menu.

2. Under Display Options, click Show Hidden Objects.

3. Click OK to close the dialog box and return to the Navigation Pane. The Navigation
Pane shows all hidden objects as dimmed (see Figure 1.67).

CHAPTER 1 Access as a Development Tool64

FIGURE 1.67 The Navigation Pane shows all hidden objects as dimmed.

4. If you hid the object from its parent group and category, right-click the object and
select Unhide. If you used the Hidden property to hide the object from all categories
and groups, right-click the object, select View Properties, and then clear the Hidden
check box.

You can easily add, remove, or rename an object in a custom group. If you want to delete
an item from a custom group, simply right-click the object and select Delete. This action
does not remove the object from the database; it simply removes the shortcut from the
custom group. The object will appear in the list of Unassigned Objects. You can then
add that object to another group. First, you must display the Unassigned Objects group.
Then click and drag the object to the appropriate group. Finally, if you want to rename an
object, simply right-click it and select Rename Shortcut. Type the new name for the short-
cut and press Enter.

Creating Multi-valued Fields
Another new feature available in Microsoft Office Access 2007 is the new multi-valued
field. As its name implies, a multi-valued field is a field that holds multiple values. You can
use this to represent a relationship between two tables. For example, an order table can
have a multi-valued field for the employee associated with the order, if that order can be
associated with multiple employees. When you use the drop-down list in the order to
select an employee, the list appears with check boxes. You can select multiple items in the
list and then click OK to close the list (see Figure 1.68).

Additional Tips and Tricks 65

1

FIGURE 1.68 You can easily select multiple items in a multi-valued field.

Multi-valued fields are appropriate for specific situations. One of those situations is when
you are using Microsoft Office Access 2007 to interface with data stored in Microsoft
Windows SharePoint 2007, and that list contains a field that uses one of the multi-valued
field types available in Windows SharePoint Services. Another situation is when you want
to purposely simplify the database design. Although this seems counter to basic database
design principles, it helps to understand that the Microsoft Office 2007 database engine
does not actually store the multiple values in a single field. It uses system tables to build
the relationship and then visually brings the data back together for the user. If you think
about it, you will realize that the relationship between the tables is actually a many-to-
many relationship. In this example, an order can be associated with multiple employees,
and each employee can be associated with multiple orders.

Multi-valued fields allow Microsoft Office Access 2007 and SharePoint 2007 to be tightly
integrated because using multi-valued fields in Access supports the equivalent field type
in SharePoint Services. This means that when you link to a SharePoint list containing a
multi-valued data type, Access creates a multi-valued data type locally. When you export
an Access table to SharePoint, multi-valued fields seamlessly port to SharePoint. In fact,
when you move an entire Access database to SharePoint, all the tables containing multi-
valued fields become field types available in Windows SharePoint Services.

You might still be wondering when it is appropriate to use multi-valued fields. The follow-
ing are some guidelines:

. When you want to link to a SharePoint list

. When you plan to export an Access table to a SharePoint site

. When you plan to move an Access database to a SharePoint site

. When you want to store a multi-valued selection from a small list of choices

CAUTION

Do not use multi-valued fields if you plan to upsize your data to Microsoft SQL Server
because SQL Server does not support multi-valued fields. Therefore, when you upsize
an Access database to SQL Server, the upsizing process will convert the multi-valued
field to an ntext (memo) field containing a delimited list of values.

Now that you know when you will want to create a multi-valued field, take a look at how
you create one:

1. Open the table that will contain the multi-valued field in Datasheet view.

2. Click the Datasheet tab.

3. Select Lookup Column from the Fields & Columns group. The Lookup Wizard
appears (see Figure 1.69).

4. Click to designate whether you want the lookup column to look up the values
in a table or a query, or whether you will type the values that you want. For this
example, opt to look up the values in a table or query and click Next.

CHAPTER 1 Access as a Development Tool66

FIGURE 1.69 The Lookup Wizard assists with the process of creating a multi-value field.

Additional Tips and Tricks 67

1

FIGURE 1.70 Select the table that you will use to populate the list.

5. Select the table that you will use to populate the list (see Figure 1.70). Click Next.

6. Select the field(s) that you want to include in your lookup (see Figure 1.71). To
select each field, you must click it and then click the greater than button (>).
Click Next.

FIGURE 1.71 Select the fields that you want to include in your lookup.

7. Designate the sort order for the items in the list (see Figure 1.72). Click Next.

8. Designate the width of each column (see Figure 1.73). Click Next.

9. In the last step of the wizard, Access prompts whether you want to allow multiple
values in the lookup (see Figure 1.74). Select the Allow Multiple Values check box
and click Finish. The resulting drop-down appears in Figure 1.75.

10. Save the table.

CHAPTER 1 Access as a Development Tool68

FIGURE 1.72 Designate the sort order for the items in the list.

FIGURE 1.73 Designate the width of each column.

FIGURE 1.74 Click to select the Allow Multiple Values check box.

FIGURE 1.75 The completed multi-valued field enables you to select multiple items from
the list.

Exploring the Effect of Multi-valued Fields on Queries
There are a couple of issues that you need to know about multi-valued fields when
working with queries. To illustrate these items, follow these steps:

1. Open a database and click the Create tab.

2. Select Query Design from the Other group. The Show Table dialog box appears.

3. Select the table containing the multi-valued field and click Add.

4. Click Close to close the Show Table dialog box. Your screen should appear as shown
in Figure 1.76.

5. Click and drag the desired fields to the query grid. Make sure you select the multi-
valued field.

6. Click Run in the Results group. The results appear as in Figure 1.77. Notice that the
multi-valued field appears with all the selected items in one column, separated by
commas.

As an alternative, you can see the Employees field expanded so that each Employee
value appears on a separate row. To do this, simply change the field row to read
[Employees:].Value (see Figure 1.78). The Value property causes Access to display the
multi-valued field in expanded form so that each value appears in a separate row (see
Figure 1.79). Notice that for each order, the EmployeeID associated with that order appears
on a different row in the query result.

Additional Tips and Tricks 69

1

FIGURE 1.76 After you close the Show Table dialog box, Access places you in Design view of
the query.

CHAPTER 1 Access as a Development Tool70

FIGURE 1.77 The results appear with all the selected items in one column.

Additional Tips and Tricks 71

1

FIGURE 1.78 Change the field row to read [Employees:].Value.

FIGURE 1.79 Each employee appears in a different row for each order.

Practical Examples: The Application Design for a
Computer Consulting Firm
Consider a hypothetical computer consulting firm that wishes to track its time and billing
with an Access application. First, look at the application from a design perspective.

The system will track client contacts and the projects associated with those clients. It will
enable the users to record all hours billed to, and expenses associated with, each client
and project. It will also let users track pertinent information about each employee or
subcontractor. I have based the tables in the system on the tables produced by the
Database Wizard. I modified them somewhat and changed their names to follow the
Reddick naming conventions. Twenty-one tables will be included in the system. You will
build some of these tables in Chapter 2. You can find all of them in the application data-
bases on the sample code CD-ROM:

. tblClients—This table contains all the pertinent information about each client; it’s
related to tblProjects, the table that will track the information about each project
associated with a client.

. tblClientAddresses—This table contains all addresses for each client; it’s related to
tblClients and tblAddressTypes.

. tblAddressTypes—This table is a lookup table. It contains all valid address types for
a client; it’s related to tblClientAddresses.

. tblClientPhones—This table contains all phone numbers for each client; it’s related
to tblClients and tblPhoneTypes.

. tblPhoneTypes—This table is a lookup table. It contains all valid phone types for a
client; it’s related to tblClientPhones.

. tblTerms—This table is a lookup table. It contains all valid payment terms for a
client; it’s related to tblClients.

. tblContactType—This table is a lookup table. It contains all valid contact types for a
client; it’s related to tblClients.

. tblProjects—This table holds all the pertinent information about each project;
it’s related to several other tables: tblClients, tblPayments, tblEmployees,
tblTimeCardHours, and tblTimeCardExpenses.

. tblTimeCardHours—This table is used to track the hours associated with each project
and employee; it’s related to tblProjects, tblTimeCards, and tblWorkCodes.

. tblPayments—This table is used to track all payments associated with a particular
project; it’s related to tblProjects and tblPaymentMethods.

. tblTimeCardExpenses—This table is used to track the expenses associated with each
project and employee; it’s related to tblProjects, tblTimeCards, and tblExpenseCodes.

. tblEmployees—This table is used to track employee information; it’s related to
tblTimeCards and tblProjects.

CHAPTER 1 Access as a Development Tool72

. tblTimeCards—This table is used to track each employee’s hours; it’s actually a
bridge between the many-to-many relationship between Employees and Time Card
Expenses, as well as between Employees and Time Card Hours. It’s also related to
tblEmployees, tblTimeCardHours, and tblTimeCardExpenses.

. tblExpenseCodes—This table is a lookup table for valid expense codes; it’s related
to tblTimeCardExpenses.

. tblWorkCodes—This table is a lookup table for valid work codes; it’s related to
tblTimeCardHours.

. tblPaymentMethods—This table is a lookup table for valid payment methods; it’s
related to tblPayments.

. tblCorrespondence—This table is used to track the correspondence related to a
project; it’s related to tblProjects and tblCorrespondenceTypes.

. tblCorrespondenceTypes—This table is a lookup table for valid correspondence
types; it’s related to tblCorrespondence.

. tblCompanyInfo—This table is a system table. It is used to store information about the
company. You can find this information on forms and reports throughout the system.

. tblErrorLog—This table is a system table. You use it to store runtime errors that occur.

. tblErrors—This table is a system table. You use it to store valid error codes and
descriptions.

The relationships among the tables are covered in more detail in Chapter 3, but they’re
also shown in Figure 1.80.

Practical Examples 73

1

FIGURE 1.80 Here are the relationships among tables in the time and billing system.

Summary
Before you learn about the practical aspects of Access development, you need to under-
stand what Access is and how it fits into the application development world. Access is an
extremely powerful product with a variety of uses; you can find Access applications on
everything from home PCs to the desks of many corporate PC users going against enter-
prisewide client/server databases.

After you understand what Access is and what it does, you’re ready to learn about its
many objects. Access applications are made up of tables, queries, forms, reports, macros,
modules, ribbons, relationships, and other objects. When designed properly, an Access
application effectively combines these objects to give the user a powerful, robust, and
useful application.

CHAPTER 1 Access as a Development Tool74

IN THIS CHAPTER

. Why This Chapter Is Important

. Creating a New Database

. Building a New Table

. Selecting the Appropriate Field
Type for Your Data

. Working with Field Properties

. Using the All-Important Primary
Key

. Working with the Lookup
Feature

. Working with Table Properties

. Using Indexes to Improve
Performance

. Using Access Tables with the
Internet

. Viewing Object Dependencies

. Examining Database
Specifications and Limitations

. Examining Table Specifications
and Limitations

. Practical Examples: Designing
the Tables Needed for a
Computer Consulting Firm’s
Time and Billing Application

CHAPTER 2

What Every Developer
Needs to Know About
Databases and Tables

Why This Chapter Is Important
You might find it is useful to think of table design as
similar to the process of building a foundation for your
house. Just as a house with a faulty foundation will fall
over, an application with a poor table design will be diffi-
cult to build, maintain, and use. This chapter covers all the
ins and outs of table design in Access 2007. After reading
this chapter, you will be ready to build the other compo-
nents of your application, knowing that the tables you
design provide the application with a strong foundation.

Creating a New Database
In generic terms, a database stores a collection of informa-
tion. Access databases are composed of tables, queries,
forms, reports, data access pages, macros, and modules.
Each table within a database should contain information
about a particular subject. You use queries to extract
specific information from one or more tables. The forms
and reports provide a means of displaying your data.
Finally, macros and modules allow you to build an inte-
grated application.

When you are building an Access application, the first step
you must take is to perform the necessary analysis and
design steps. The section in Chapter 1 titled “How Do I Get
Started Developing an Access Application?” covers these
initial steps. After you have a design document in place,
you are ready to build the Access database. You can

complete this process by basing your database on a template or by building the database
yourself from the ground up. The text that follows covers both of these options.

Creating a Database Using a Template
Getting started working with Microsoft Access is easy using the new database templates.
Each template is a different type of application, complete with the necessary tables, rela-
tionships, queries, forms, reports, and macros. In addition to the predefined templates
that ship with Microsoft Office Access 2007, templates are also available on Microsoft
Office Online. There, you can download the latest revisions to existing templates, as well
as any new templates that Microsoft has created. The following categories of templates are
available (see Figure 2.1):

. Business

. Education

. Personal

. Sample

CHAPTER 2 What Every Developer Needs to Know About Databases and Tables76

FIGURE 2.1 You can select the appropriate template category.

Building a Database Based on a Template
Here are the steps you take to build a new database based on a template:

1. Click the Microsoft Office button and select New. Your screen should appear as in
Figure 2.1.

2. Click to select the category of template that you want to create. For example, in
Figure 2.2, Business is selected. All the appropriate templates appear.

3. Click to select the specific template that you want to use. Sales Pipeline is selected
in Figure 2.3.

Creating a New Database 77

2

FIGURE 2.2 When you select a category of template, the appropriate templates appear.

FIGURE 2.3 The Sales Pipeline template is available under the Business templates.

4. Select the name and location of the new database. Notice that the database will
have the new file format (.accdb).

5. Click Download if the database is available on the Internet or click Create if the
template is available locally.

6. If you click Download, Access will download the template.

7. The new database appears, as shown in Figure 2.4.

8. You can now begin working with the database just as you would work with any
database.

CHAPTER 2 What Every Developer Needs to Know About Databases and Tables78

FIGURE 2.4 The new database appears with the Open Opportunities List open.

Creating a Database from Scratch
When none of the available databases that the templates generate give you what you
need, you will have to create your own database. To create a new database from scratch,
follow these steps:

1. Click the Microsoft Office button and select New.

2. Enter a filename for the new database in the File Name box on the right side of the
screen.

3. Click the Browse icon to select a drive or folder where you will place the database.

4. Click OK to close the browse window.

5. Click the Create button.

Access creates a new blank database.

Database filenames have the following rules:

. Database names can contain up to 255 characters.

. Database names can contain spaces, but you should avoid special characters such as
asterisks, semicolons, commas, and so on.

. Access will assign the extension .accdb to the databases that you create.

Building a New Table
You can add a new table to an Access 2007 database in several ways: by building the table
from a spreadsheet-like format, designing the table from scratch, using a table template,
importing the table from another source, or linking to an external table. This chapter
discusses the process of building a table using a spreadsheet-like format, designing a table
from scratch, and using a table template; importing and linking are covered extensively
throughout this book.

NOTE

Access 2007 natively supports the Access 2000, Access 2002, and Access 2003 file
formats so that you can read and write to Access 2000, Access 2002, and Access
2003 databases without converting the file format. It is important to note that if you
choose one of the earlier file formats, not all functionality will be available to you.

Designing a Table from Scratch
Designing tables from scratch offers flexibility and encourages good design principles.
This approach is almost always the best choice when you are creating a custom business
solution. To design a table from scratch, click to select the Create tab and then select
Table Design. The Table Design view window, pictured in Figure 2.5, appears. Follow these
steps:

1. Define each field in the table by typing its name in the Field Name column.

2. Tab to the Data Type column. Select the default field type, which is Text, or use the
drop-down combo box to select another field type. You can find details on which
field type is appropriate for your data in the “Selecting the Appropriate Field Type
for Your Data” section of this chapter. If you use the Field Builder, it sets a data type
value for you that you can modify.

Building a New Table 79

2

FIGURE 2.5 The Table Design view window enables you to create a table from scratch.

3. Tab to the Description column. What you type in this column appears on the status
bar when the user is entering data into the field. This column is also great for docu-
menting what data is actually stored in the field.

4. Continue entering fields. If you need to insert a field between two existing fields,
click the Insert Rows button on the ribbon. Access inserts the new field above the
field you were on. To delete a field, select it and click the Delete Rows button.

5. To save your work, click the Save tool on the Quick Access toolbar. The Save As
dialog box, shown in Figure 2.6, appears. Enter a table name and click OK. A dialog
box appears, recommending that you establish a primary key. Every table should
have a primary key. The section of this chapter titled “Using the All-Important
Primary Key” discusses the details of primary keys.

CHAPTER 2 What Every Developer Needs to Know About Databases and Tables80

FIGURE 2.6 Use the Save As dialog box to name a table.

The naming conventions for table names are similar to those for field names, except that
the standard for table names is that they should begin with the tag tbl. Chapter 1,
“Access as a Development Tool,” and Appendix A, “Naming Conventions,” (available for
download at www.samspublishing.com) cover the details of naming conventions.

Field names can be up to 64 characters long. For practical reasons, you should try to limit
them to 10–15 characters—enough to describe the field without making the name diffi-
cult to type.

Field names can include any combination of letters, numbers, spaces, and other charac-
ters, excluding periods, exclamation points, accents, and brackets. I recommend that you
stick to letters. Spaces in field names can be inconvenient when you’re building queries,
modules, and other database objects. Don’t be concerned that your users will see the field
names without the spaces. The Caption property of a field, discussed later in this chapter,
allows you to designate the text that Access displays for your users.

Field names cannot begin with leading spaces. As mentioned, field names shouldn’t
contain spaces, so this convention shouldn’t be a problem. Field names also cannot
include ASCII control characters (ASCII values 0 through 31).

Try not to duplicate property names, keywords, function names, or the names of other
Access objects when naming your fields. Although your code might work in some circum-
stances, you’ll get unpredictable results in others.

To make a potential move to the client/server platform as painless as possible, you should
be aware that not all field types are supported by every back-end database. Furthermore,
most back-end databases impose stricter limits than Access does on the length of field
names and the characters that are valid in field names. To reduce the number of problems
you’ll encounter if you migrate your tables to a back-end database server, you should
consider these issues when you’re naming the fields in your Access tables.

Adding descriptions to your table, query, form, report, macro, and module objects goes a
long way toward making your application self-documenting. This information helps you,
or anyone who modifies your application, to perform any required maintenance on the
application’s objects. Chapter 29, “Documenting Your Application,” covers the details of
documenting your application.

TIP

It is important to be aware how the field names you select affect the potential for
upsizing your tables to a client/server database. Database servers often have much
more stringent rules than Access does regarding the naming of fields. For example,
most back ends do not allow spaces in field names. Furthermore, most back ends
limit the length of object names to 30 characters or fewer. If you create Access field
names that cannot be upsized and later need to move your data to a back-end data-
base server, you will increase the amount of work involved in the upsizing process. The
reason is that you must modify any queries, forms, reports, macros, and modules that
use the invalid field names to reference the new field names when you move your
tables to a back-end database server.

Building a New Table 81

2

www.samspublishing.com

Selecting the Appropriate Field Type for Your Data
The data type you select for each field can greatly affect the performance and functional-
ity of your application. Several factors can influence your choice of data type for each
field in your table:

. The type of data that’s stored in the field

. Whether the field’s contents need to be included in calculations

. Whether you need to sort the data in the field

. The way you want to sort the data in the field

. How important storage space is to you

The type of data you need to store in a field has the biggest influence on which data type
you select. For example, if you need to store numbers beginning with leading zeros, you
can’t select a Number field because Access ignores leading zeros entered into a Number field.
This rule affects data such as ZIP codes (some begin with leading zeros) and department
codes.

NOTE

If it is unimportant that leading zeros are stored in a field, and you simply need them
to appear on forms and reports, you can accomplish this by using the Format property
of the field. The “Working with Field Properties” section of this chapter covers the
Format property.

If the contents of a field need to be included in calculations, you must select a Number or
Currency data type. You can’t perform calculations on the contents of fields defined with
the other data types. The only exception to this rule is the Date field, which can be
included in date/time calculations.

You also must consider whether you will sort or index the data in a field. You cannot sort
by OLE, Attachment, and Hyperlink fields, so don’t select these field types if you must
sort or index the data in the field. Furthermore, you must think about the way you want
to sort the data. For example, in a Text field, Access would sort a set of numbers in the
order of their left most character, then the second character from the left, and so on (that
is, 1, 10, 100, 2, 20, 200) because Access sorts data in the Text field in a standard ASCII
sequence. On the other hand, Access would sort the numbers in a Number or Currency
field in ascending value order (that is, 1, 2, 10, 20, 100, 200). You might think you would
never want data sorted in a standard ASCII sequence, but sometimes it makes sense to
sort certain information, such as department codes, in this fashion. Access 2007 enables
you to sort or group based on a Memo field, but it performs the sorting or grouping based
only on the first 255 characters. Finally, you should consider how important disk space is
to you. Each field type takes up a different amount of storage space on your hard disk,
which could be a factor when you’re selecting a data type for a field.

CHAPTER 2 What Every Developer Needs to Know About Databases and Tables82

Ten field types are available in Access: Text, Memo, Number, Date/Time, Currency,
AutoNumber, Yes/No, OLE Object, Attachment, and Hyperlink. Table 2.1 summarizes the
appropriate uses for each field type and the amount of storage space each type needs.

TABLE 2.1 Appropriate Uses and Storage Space for Access Field Types

Field Type Appropriate Uses Storage Space

Text Data containing text, a combination Based on what’s actually stored
of text and numbers, or numbers in the field; ranges from 0 to
that you don’t need to include in 255 bytes.
calculations. Examples are
names, addresses, department
codes, and phone numbers.

Memo Long text and numeric strings. Ranges from 0 to 65,536 bytes.
Examples are notes and descriptions.

Number Data that’s included in calculations 1, 2, 4, or 8 bytes, depending
(excluding money). Examples are ages, on the field size selected (or 16
codes (such as employee ID), or bytes for replication ID).
payment methods.

Date/Time Dates and times. Examples are date 8 bytes.
ordered and birth date.

Currency Currency values. Examples are 8 bytes.
amount due and price.

AutoNumber Unique sequential or random numbers. 4 bytes (16 bytes for
Examples are invoice numbers and replication ID).
project numbers.

Yes/No Fields that contain one of two values 1 bit.
(yes/no, true/false). Sample uses are
indicating bills paid and tenure status.

OLE Object Objects such as Word documents 0 bytes to 1 gigabyte, depending
or Excel. on what’s stored within the field

spreadsheets. Examples are
employee reviews and budgets.

Attachment Images, spreadsheet files, documents, Varies depending on what’s
charts, and other types of supported stored within the field.
files.

Hyperlink Text, or a combination of text and 0 to 2,048 bytes for each of the
numbers, stored as text and used as a three parts that compose the
hyperlink for a web address (URL) or a address (up to 64,000
UNC path. Examples are web pages or characters total).
network files.

Lookup Wizard Used to create a field that allows the 4 bytes generally required;
user to select a value from another it needs the same storage size
table or from a list of values via a as the primary key for the
combo box that the wizard helps to lookup field.
define for you.

Selecting the Appropriate Field Type for Your Data 83

2

NOTE

The Hyperlink field type contains a hyperlink object. The hyperlink object consists of
three parts. The first part is called the display text; it’s the text that appears in the field
or control. The second part is the actual file path (UNC) or page (URL) the field is refer-
ring to. The third part is the subaddress, a location within the file or page.

The most difficult part of selecting a field type is in knowing which type is best in each
situation. The following detailed descriptions of each field type and when you should use
them should help you with this process.

Text Fields: The Most Common Field Type
Most fields are Text fields. Many developers don’t realize that it’s best to use Text fields
for any numbers not used in calculations. Examples are phone numbers, part numbers,
and ZIP codes. Although the default size for a Text field is 50 characters, you can store up
to 255 characters in a Text field. Because Access allocates disk space dynamically, a large
field size doesn’t use hard disk space, but you can improve performance if you allocate the
smallest field size possible. You use the FieldSize property to control the maximum
number of characters allowed in a Text field.

Memo Fields: For Those Long Notes and Comments
Memo fields can store up to 65,536 characters of text, which can hold up to 16 pages of text
for each record. Memo fields are excellent for any types of notes you want to store with
table data. Remember, you can sort by a Memo field under Access 2007.

Number Fields: For When You Need to Calculate++
You use Number fields to store data that you must include in calculations. If you must
include currency amounts in calculations, or if your calculations require the highest degree
of accuracy, you should use a Currency field rather than a Number field. The Number field is
actually several types of fields in one because Access 2007 offers seven sizes of numeric
fields. Byte can store integers from 0–255, Integer can hold whole numbers from –32768
through 32767, and Long Integer can hold whole numbers ranging from less than –2
billion to just over 2 billion. Although all three of these sizes offer excellent performance,
each type requires an increasingly larger amount of storage space. Two of the other
numeric field sizes, Single and Double, offer floating decimal points and, therefore, much
slower performance. Single can hold fractional numbers to seven significant digits; Double
extends the precision to 14 significant digits. Decimal is a numeric data type introduced
with Access 2002. The Decimal data type allows storage of very large numbers and provides
decimal precision up to 28 digits! The final size, Replication ID, supplies a unique identi-
fier required by the data synchronization process (available with the .MDB file format).

Date/Time Fields: Tracking When Things Happened
You use the Date/Time field type to store valid dates and times. Date/Time fields allow you
to perform date calculations and make sure dates and times are always sorted properly.
Access actually stores the date or time internally as an 8-byte floating-point number. It
represents time as a fraction of a day.

CHAPTER 2 What Every Developer Needs to Know About Databases and Tables84

NOTE

Access reflects in your data any date and time settings you establish in the Windows
Control Panel. For example, if you modify the Short Date style in Regional Settings
within the Control Panel, your forms, reports, and datasheets will immediately reflect
those changes.

Currency Fields: Storing Money
The Currency field type is a special type of number field you use when you are storing
currency values in a table. Currency fields prevent rounding off data during calculations.
They hold 15 digits of whole dollars, plus accuracy to the hundredths of a cent. Although
very accurate, this type of field is quite slow to process.

NOTE

Access reflects in your data any changes to the currency format made in the Windows
Control Panel. Of course, Access doesn’t automatically perform any actual conversion
of currency amounts. As with dates, if you modify the currency symbol in Regional
Settings within the Control Panel, your forms, reports, and datasheets will immediately
reflect those changes.

AutoNumber Fields: For Unique Record Identifiers
Access automatically generates AutoNumber field values when the user adds a record. In
earlier versions of Access, counter values had to be sequential. The AutoNumber field type in
Access 2007 can be either sequential or random. The random assignment is useful when
several users are adding records offline because it’s unlikely that Access will assign the same
random value to two records. A special type of AutoNumber field is a Replication ID. This
randomly produced unique number helps with the replication process (available with the
.MDB file format) by generating unique identifiers used to synchronize database replicas.

You should note a few important points about sequential AutoNumber fields. If a user
deletes a record from a table, its unique number is lost forever. Likewise, if a user adds a
record and cancels the action, the unique counter value for that record is lost forever. If
this behavior is unacceptable, you can generate your own counter values.

TIP

As with field names, if you plan to upsize your Access database to a client/server data-
base, you must be cognizant of the field types that you select. For example, Access
exports AutoNumber fields as Long Integers. Because some non-Microsoft database
servers do not support autonumbering, you have to create an insert trigger on the
server that provides the next key value. You also can achieve autonumbering by using
form-level events, but this is not desirable because the database engine will not enforce
the numbering if other applications access the data. If you are upsizing to Microsoft SQL
Server, the Upsizing Wizard for Access 2007 converts all AutoNumber fields to
Identity fields (the SQL Server equivalent of AutoNumber).

Selecting the Appropriate Field Type for Your Data 85

2

Yes/No Fields: When One of Two Answers Is Correct
You should use Yes/No fields to store a logical true or false. What’s actually stored in the field
is -1 for Yes, 0 for No, or Null for no specific choice. The display format for the field deter-
mines what the user actually sees (normally Yes/No, True/False, On/Off, or a third option—
Null—if you set the TripleState property of the associated control on a form to True).
Yes/No fields work efficiently for any data that can have only a true or false value. They
not only limit the user to valid choices, but they also take up only one bit of storage space.

OLE Object Fields: The Place to Store Just About Anything
Microsoft designed OLE Object fields to hold data from any object linking and embed-
ding (OLE) server application registered in Windows, including spreadsheets, word
processing documents, sound, and video. There are many business uses for OLE Object
fields, such as storing resumes, employee reviews, budgets, or videos. However, in many
cases, it is more efficient to use a Hyperlink field to store a link to the document rather
than store the document itself in an OLE Object field.

Attachment Fields: Storing Several Files in a Single Field
Using the attachment field type, you can store multiple attachments in a single field.
Those attachments can even be of various types. For example, you can use an Excel
spreadsheet and a Word document in a single field. Attachment fields are meant to replace
their predecessor, OLE Object fields. With OLE Object fields, Access stored the bitmap of
the object in the Access database. This caused database bloat. Access stores the data in
Attachment fields much more efficiently.

There are additional benefits of Attachment fields. For example, Access renders image files
and displays the program icon associated with other file types. If a field contains a photo,
spreadsheet, and Word document, Access will display the image and will present application
icons for the other objects. Access compresses the objects as it stores them, unless those files
are compressed natively. Finally, you can manipulate attachments programmatically!

There are also some other things about Attachment fields that you should be aware of.
You can attach a maximum of 2GB of data per database, and each attachment must be
less than 256MB in size. You must use the Attachments dialog box (see Figure 2.7) to add,
edit, and manage attachments, unless you manage them programmatically.

CHAPTER 2 What Every Developer Needs to Know About Databases and Tables86

FIGURE 2.7 You use the Attachments dialog box to manage your attachments.

Hyperlink Fields: Your Link to the Internet
You use Hyperlink fields to store uniform resource locator addresses (URLs), which are
links to web pages on the Internet or on an intranet, or Universal Naming Convention
paths (UNCs), which are links to a file location path. Access breaks the Hyperlink field
type into three parts:

. What the user sees

. The URL or UNC

. A subaddress, such as a range name or bookmark

After the user places an entry in a Hyperlink field, the entry serves as a direct link to the
file or page it’s referring to. I cover the Hyperlink field type in more detail later in this
chapter, in the section “Using Access Tables with the Internet.”

Working with Field Properties
After you have added fields to your table, you need to customize their properties. Field
properties let you control how Access stores data as well as what data the user can enter
into the field. The available properties differ depending on which field type you select.
You will find the most comprehensive list of properties under the Text field type (see
Figure 2.8). The following sections describe each field property.

Working with Field Properties 87

2

FIGURE 2.8 Field properties available for a Text field.

Field Size: Limiting What’s Entered into a Field
The first property is Field Size, available for Text and Number fields only. As mentioned
previously, it’s best to set the Field Size property to the smallest value possible. For
Number fields, a small size means lower storage requirements and faster performance.

Build a table with the following fields and types:

CompanyID: AutoNumber

CompanyName: Text

State: Text

PhoneNumber: Text

ContactDate: Date/Time

CreditLimit: Currency

1. To set the Field Size property of the State field to two characters, click anywhere
in the field and then type 2 in the Field Size property.

2. Switch to Datasheet view. Access prompts you to save the table. Name it
tblCustomers. Because you have not assigned a primary key, Access prompts you to
do so. When you try to enter data into the State field, notice that you can enter
only two characters.

NOTE

You can find this example, and all others in this chapter, in the CHAP2TryIt.ACCDB file
included on the book’s sample code CD-ROM. Refer to this file if you want to verify
that your table structures are correct.

Format: Determining How Data Is Displayed
The second property is Format, available for all but OLE Object fields and Attachment
fields. It allows you to specify how Access displays your data. Access lets you select from
predefined formats or create your own custom formats. The available formats differ,
depending on the field’s data type. For example, with Access you can select from a variety
of Date/Time formats, including Short Date (7/7/07); Long Date (Saturday, July 7, 2007);
Short Time (7:17); and Long Time (7:17:11AM). The formats for a Currency field include
Currency ($1,767.25); Fixed (1767.25); and Standard (1,767.25).

Set the Format property of the ContactDate field to Medium Date. Switch to Datasheet
view and enter some dates in different formats, such as 07/04/07 and July 4, 2007. Notice
that, no matter how you enter the dates, as soon as you tab away from the field, they
appear in the format dd-mmm-yyyy as 04-Jul-07.

CHAPTER 2 What Every Developer Needs to Know About Databases and Tables88

NOTE

The behavior of the Short Date and Long Date formats is dictated by the Regional
Options designated in the Control Panel.

TIP

Access 2007 supports Multiple Undo and Multiple Redo actions. You can undo and
redo multiple actions in Design view for Microsoft Database (MDB) tables and queries,
ACCDB forms, reports, data access pages, macros, and modules. This feature allows
you to roll forward or roll back your changes in Design view in a similar fashion to
working with documents under Microsoft Word or Excel.

TIP

The shortcut keys Ctrl+>, Ctrl+. (period), Ctrl+<, and Ctrl+, (comma) allow you to easily
toggle between the various table views. Ctrl+> and Ctrl+. (period) take you to the next
view. Ctrl+< and Ctrl+, (comma) take you to the previous view.

Input Mask: Determining What Data Goes into a Field
Another important property is Input Mask, available for Text, Number, Date/Time, and
Currency fields. The Format property affects how Access displays data, but the Input Mask
property controls what data Access stores in a field. You can use the Input Mask property
to control, on a character-by-character basis, what type of character (numeric, alphanu-
meric, and so on) Access can store and whether Access requires a particular character. The
Input Mask Wizard, shown in Figure 2.9, helps you create commonly used input masks
for Text and Date fields only. To access the Input Mask Wizard, click the button to the
right of the Input Mask field.

Working with Field Properties 89

2

FIGURE 2.9 The Input Mask Wizard helps you enter an input mask.

NOTE

The Input Mask Wizard is available only if you selected the Additional Wizards compo-
nent during setup. If you did not, Access prompts you to install the option on the fly
the first time you use it.

For example, the input mask 000-00-0000;;_ (converted to 000\-00\-0000;;_ as soon as
you tab away from the property) forces the entry of a valid Social Security number.
Everything that precedes the first semicolon designates the actual mask. The zeros force
the entry of the digits 0 through 9. The dashes are literals that appear within the control
as the user enters data. The character you enter between the first and second semicolon
determines whether Access stores the literal characters (the dashes in this case) in the
field. If you enter a 0 in this position, Access stores the literal characters in the field; if
you enter a 1 or leave this position blank, Access does not store the literal characters. The
final position (after the second semicolon) indicates what character Access displays to
indicate the space where the user types the next character (in this case, the underscore).

Here’s a more detailed example: In the mask \(999”) “000\-0000;;_, the first backslash
causes the character that follows it (the open parenthesis) to display as a literal. The three
nines allow the user to enter optional numbers or spaces. Access displays the close paren-
thesis and space within the quotation marks as literals. The first three zeros require values
0 through 9. Access displays the dash that follows the next backslash as a literal. It then
requires that the user enter four additional numbers. The two semicolons have nothing
between them, so Access does not store the literal characters in the field. The second
semicolon is followed by an underscore, so Access displays an underscore to indicate the
space where the user types the next character.

Use the Input Mask Wizard to add a mask for the PhoneNumber field, which you should
have set up as a Text field. The steps are as follows:

1. Click anywhere in the PhoneNumber field and then click the Input Mask property.

2. Click the ellipsis to the right of the Input Mask property.

3. Select Phone Number from the list of available masks and choose not to store the
literal characters in the field when the wizard asks “How do you want to store the
data?”

4. Switch to Datasheet view and enter a phone number. Notice how your cursor skips
over the literal characters. Try leaving the area code blank; Access should allow you
to do this.

5. Now try to enter a letter in any position. Access should prohibit you from doing
this.

6. Try to leave any character from the seven-digit phone number blank. Access
shouldn’t let you do this, either.

CHAPTER 2 What Every Developer Needs to Know About Databases and Tables90

TIP

When you use an input mask, the user is always in Overtype mode. This behavior is a
feature of the product and is not a feature that you can alter.

Caption: A Great Timesaver
The next available property is Caption. The text placed in this property becomes the
caption for fields in Datasheet view. Access also uses the contents of the Caption property
as the caption for the attached label added to data-bound controls when you add them to
forms and reports. The Caption property becomes important whenever you name your
fields without spaces. Whatever is in the Caption property overrides the field name for
use in Datasheet view, on forms, and on reports.

NOTE

The term data-bound control refers to a control that is bound to a field in a table or
query. The term attached label refers to the label attached to a data-bound control.

TIP

It’s important to set the Caption property for fields before you build any forms or
reports that use them. When you produce a form or report, Access looks at the current
caption. If you add or modify the caption at a later time, Access does not modify
captions for that field on existing forms and reports.

Default Value: Saving Data Entry Time
Another important property is the Default Value property, used to specify the default
value that Access will place in the field when the user adds new records to the table.
Default values, which can be either text or expressions, can save the data entry person a
lot of time. However, Access in no way uses them to validate what the user enters into
a field.

TIP

Access automatically carries default values into any queries and forms containing the
field. Unlike what happens with the Caption property, this occurs whether you created
the default value before or after you created the query or form.

TIP

If you plan to upsize your Access database to a client/server database, you must be
aware that default values are not always moved to the server, even if the server
supports them. You can set up default values directly on the server, but these values

Working with Field Properties 91

2

do not automatically appear when the user adds new records to the table unless the
user saves the record without adding data to the field containing the default value. As
in autonumbering, you can implement default values at the form level, with the same
drawbacks. If you use the Upsizing Wizard for Access 2007 to move the data to
Microsoft SQL Server, Access exports default values to your server database if it can
convert them to a constant value or to T-SQL (Transact SQL).

Enter the following default values for the State, ContactDate, and CreditLimit fields:

State: CA

ContactDate: =Date()

CreditLimit: 1000

Switch to Datasheet view and add a new record. Notice that default values appear for the
State, ContactDate, and CreditLimit fields. You can override these defaults, if you want.

NOTE

Date() is a built-in Visual Basic for Applications (VBA) function that returns the current
date. When used as a default value for a field, Access enters the current date into the
field when the user adds a new row to the table.

Validation Rule: Controlling What the User Enters in a Field
The Default Value property suggests a value to the user, but the Validation Rule prop-
erty actually limits what the user can place in the field. The user cannot violate validation
rules; the database engine strictly enforces them. As with the Default Value property, this
property can contain either text or a valid Access expression, but you cannot include user-
defined functions in the Validation Rule property. You also can’t include references to
forms, queries, or tables in the Validation Rule property.

TIP

If you set the Validation Rule property but not the Validation Text property
(covered in the next section), Access automatically displays a standard error message
whenever the user violates the validation rule. To display a custom message, you must
enter your message text in the Validation Text property.

TIP

If you plan to upsize your Access database to a database server, you should be aware
that you cannot always easily export validation rules to the server. You must some-
times re-create them using triggers on the server. No Access-defined error messages
are displayed when a server validation rule is violated. Your application should be
coded to provide the appropriate error messages. You can also perform validation

CHAPTER 2 What Every Developer Needs to Know About Databases and Tables92

rules at the form level, but they are not enforced if the data is accessed by other
means. If you use the Upsizing Wizard for Access 2007 to move the data to Microsoft
SQL Server, the wizard exports the validation rules to the server database.

Add the following validation rules to the fields in your table. (Access will place quotation
marks around the state abbreviations as soon as you tab away from the property.)

State: In (CA, AZ, NY, MA, UT)

ContactDate: <= Date()

CreditLimit: Between 0 And 5000

1. Switch to Datasheet view. If the table already contains data, when you save your
changes, the message shown in Figure 2.10 appears.

NOTE

In this example, the expression <= Date() is used to limit the value entered into the
field to a date that is on or before the current date. Because the Date() expression
always returns the current date, the validation rule applies whether the user is adding
a new row or is modifying an existing row.

Working with Field Properties 93

2

FIGURE 2.10 The message box asking whether you want to validate existing data.

If you select Yes, Access tries to validate all existing data using the new rules. If any
errors are found, you’re notified that errors occurred, but you aren’t informed of the
offending records (see Figure 2.11). You have to build a query to find all the records
violating the new rules.

If you select No, Access doesn’t try to validate your existing data, and you aren’t
warned of any problems.

FIGURE 2.11 A warning that all data did not validate successfully.

2. After you have entered Datasheet view, try to enter an invalid state in the State
field; you should see the message box displayed in Figure 2.12. As you can see, this
isn’t the friendliest message, which is why you should create a custom message by
using the Validation Text property.

CHAPTER 2 What Every Developer Needs to Know About Databases and Tables94

FIGURE 2.12 The message displayed when a validation rule is violated, and no validation
text has been entered.

TIP

Validation rules entered at a table level are automatically applied to forms and queries
built from the table. This occurs whether the rule was entered before or after the query
or form was built. If you create a validation rule for a field, Access won’t allow Null
values to be entered in the field, which means the field can’t be left blank. If you want
to allow the field to be left Null, you must add the Null value to the validation
expression:

In (CA, AZ, NY, MA, UT) or Is Null

Validation Text: Providing Error Messages to the User
Use the Validation Text property to specify the error message users see when they
violate the validation rule. The Validation Text property must contain text; expressions
aren’t valid in this property.

Add the following to the Validation Text properties of the State, ContactDate, and
CreditLimit fields:

State: The State Must Be CA, AZ, NY, MA, or UT

ContactDate: The Contact Date Must Be On or Before Today

CreditLimit: The Credit Limit Must Be Between 0 and 5000

Try entering invalid values for each of the three fields and observe the error messages.

Required: Making the User Enter a Value
The Required property is very important: It determines whether you require that a value
be entered into a field. This property is useful for foreign key fields, when you want to
make sure data is entered into the field. It’s also useful for any field containing informa-
tion that’s needed for business reasons (company name, for example).

NOTE

A foreign key field is a field that is looked up in another table. For example, in the case
of a Customers table and an Orders table, both might contain a CustomerID field. In
the Customers table, the CustomerID is the primary key field. In the Orders table, the
CustomerID is the foreign key field because its value is looked up in the Customers
table.

Set the Required property of the CompanyName and PhoneNumber fields to Yes. Switch to
Datasheet view and try to add a new record, leaving the CompanyName and PhoneNumber

fields blank. Make sure you enter a value for at least one of the other fields in the record.
When you try to move off the record, the error message shown in Figure 2.13 appears.

Working with Field Properties 95

2

FIGURE 2.13 A message appears when you leave blank a field that has the Required
property set to Yes.

Allow Zero Length: Accommodating Situations with
Nonexistent Data
The Allow Zero Length property is similar to the Required property. Use it to determine
whether you allow the user to enter a zero-length string (“”). A zero-length string isn’t the
same as a Null (which represents the absence of an entry); a zero-length string indicates
that the data doesn’t exist for that particular field. For example, a foreign employee might
not have a Social Security number. When you enter a zero-length string, the data entry
person can indicate that the Social Security number doesn’t exist.

Add a new field called ContactName and set its Required property to Yes. Try to add a new
record and enter two quotation marks (“”) in the ContactName field. You should not get
an error message because, in Access 2007, the Allow Zero Length property defaults to
Yes. Your zero-length string will appear blank when you move off the field. Return to the
Design view of the table. Change the setting for the Allow Zero Length property to No.
Go back to Datasheet view and once again enter two quotation marks in the ContactName
field. This time you should not be successful. You should get the error message shown in
Figure 2.14.

FIGURE 2.14 The result of entering “” when the Allow Zero Length property is set to No.

CAUTION

In previous versions of Access, the default setting for the Allow Zero Length prop-
erty was No. Under Access 2002, Access 2003, and Access 2007, Microsoft has
changed this default setting to Yes. Pay close attention to this default behavior, espe-
cially if you’re accustomed to working with prior releases of the product.

TIP

Don’t forget that if you want to cancel changes to the current field, press Esc once. To
abandon all changes to a record, press Esc twice.

TIP

The Required and Allow Zero Length properties interact with each other. If the
Required property is set to Yes and the Allow Zero Length property is set to No,
you’re being as strict as possible with your users. Not only must they enter a value,
but that value can’t be a zero-length string.

If the Required property is set to Yes and the Allow Zero Length property is set to
Yes, you’re requiring users to enter a value, but that value can be a zero-length string.
However, if the Required property is set to No and the Allow Zero Length property
is set to No, you’re allowing users to leave the field Null (blank) but not allowing them
to enter a zero-length string.

Finally, if you set the Required property to No and the Allow Zero Length property
to Yes, you’re being as lenient as possible with your users. In this case, they can leave
the field Null or enter a zero-length string.

Indexed: Speeding Up Searches
You use indexes to improve performance when the user searches a field. Although it’s
generally best to include too many indexes rather than too few, indexes do have down-
sides (see the next Tip). A general rule is to provide indexes for all fields regularly used in
searching and sorting, and as criteria for queries.

Set the Indexed property of the CompanyName, ContactName, and State fields to Yes –
(Duplicates OK). Click the Indexes button in the Show/Hide group on the Design tab of
the ribbon. Your screen should look like the one in Figure 2.15.

To create non-primary-key, multifield indexes, you must use the Indexes window. You
create an index with one name and more than one field. See Figure 2.15, which shows an
index called StateByCredit that’s based on the combination of the CreditLimit and
State fields. Notice that only the first field in the index has an index name. The second
field, State, appears on the line below the first field but doesn’t have an index name.

CHAPTER 2 What Every Developer Needs to Know About Databases and Tables96

Working with Field Properties 97

2

FIGURE 2.15 The Indexes window shows you all the indexes defined for a table.

Indexes speed up searching, sorting, and grouping data. The downside is that they take
up hard disk space and slow down the process of editing, adding, and deleting data.
Although the benefits of indexing outweigh the detriments in most cases, you should not
index every field in each table. Create indexes only for fields, or combinations of fields,
on which the user will search or sort. Do not create indexes for fields that contain highly
repetitive data, such as a field that can contain only two different values. Finally, never
index Yes/No fields. They are only 1 bit in storage size; furthermore, they apply to the
previous rule in that they can take on only one of two values. For these reasons, indexes
offer no benefits with Yes/No fields.

TIP

Indexes are equally important on a database server. When you are upsizing an Access
database to a non-Microsoft server, no indexes are created. You must re-create all
indexes on the back-end database server. If your database server is running Microsoft
SQL Server, you can use the Access Upsizing Wizard for Access 2007 to upsize your
Access database. This tool creates indexes for server tables in the place where the
indexes exist in your Access tables.

Unicode Compression: Compressing Your Data
Another important property is Unicode Compression. The Unicode Compression property
applies to Text and Memo fields only. You use this property to designate whether you want
the data in the field to be compressed using Unicode compression. Prior to Access 2000,
data was stored in the double-byte character set (DBCS) format, which was designed to
store character data for certain languages such as Chinese. With Access 2000 and higher,
all character data is stored in the Unicode 2-byte representation format. Although this
format requires more space for each character (2 bytes, rather than 1 byte), the Unicode
Compression property allows the data to be compressed, if possible. If the character set
being used allows compression and the Unicode Compression property is set to Yes, the
data in the column is stored in a compressed format.

Using the All-Important Primary Key
The most important index in a table is called the Primary Key index; it ensures unique-
ness of the fields that make up the index and also gives the table a default order. You
must set a primary key for the fields on the “one” side of a one-to-many relationship. To
create a Primary Key index, select the fields you want to establish as the primary key and
then click the Primary Key button on the ribbon.

Figure 2.16 shows the tblCustomers table with a Primary Key index based on the
CompanyID field. Notice that the Index Name of the field designated as the primary key of
the table is called PrimaryKey. Note that the Primary and Unique properties for this index
are both set to Yes (True).

CHAPTER 2 What Every Developer Needs to Know About Databases and Tables98

FIGURE 2.16 A Primary Key index based on the CompanyID field.

Working with the Lookup Feature
Using the Lookup Wizard, you can instruct a field to look up its values in another table
or query or from a fixed list of values. You can also display the list of valid values in a
combo or list box. A lookup is generally created from the foreign key (the “many” side) to
the primary key (the “one” side) of a one-to-many relationship.

You can invoke the Lookup Wizard by selecting Lookup Wizard from the list of data types
for the field. The first wizard dialog box asks whether you want to look up the values in a
table or query or whether you want to input the values (see Figure 2.17). I recommend that
you always look up the values in a table or query; this makes your application easier to
maintain. The second wizard dialog box asks you to indicate the table or query used to
look up the values (see Figure 2.18). Select a table or query and click Next to open the
third wizard dialog box. This step of the Lookup Wizard asks you which field in the table
or query will be used for the lookup (see Figure 2.19). The fourth step of the Lookup
Wizard asks you the sort order you want for your list. The fifth step, shown in Figure 2.20,
gives you the opportunity to control the width of the columns in your combo or list box.

TIP

To work through the preceding example, you can use the Chap2.ACCMDB sample data-
base file. All the lookup tables have already been added to the sample database.

Working with the Lookup Feature 99

2

FIGURE 2.17 The first step of the Lookup Wizard asks you for the source of the values.

FIGURE 2.18 In the second step of the Lookup Wizard, you select the table or query whose
data will appear in the drop-down.

FIGURE 2.19 In the third step of the Lookup Wizard, you designate the field that Access will
use for the lookup.

FIGURE 2.20 In the fifth step of the Lookup Wizard, you can adjust the column widths.

NOTE

If you select more than one field for your lookup and one is a key column, such as an
ID, the Hide Key Column check box appears. You should leave this box checked; it
automatically hides the key column in the lookup, even though the result will be bound
to the key field.

Finally, the wizard lets you specify a title for your lookup column. When you click Finish,
Access will prompt you to save the table, and the wizard will fill in all the appropriate
properties; they appear on the Lookup tab of the field (see Figure 2.21). The Display
Control property is set to Combo Box, indicating that the valid values will be displayed in
a combo box. This occurs whether the user is in Datasheet view or in a form. The Row
Source Type indicates that the source for the combo box is a table or query, and the Row
Source shows the actual SQL Select statement used to populate the combo box. Other
properties show the column in the combo box that is bound to data, the number of
columns in the combo box, the width of the combo box, and the width of each column
in the combo box. These properties are covered in more detail in Chapter 5, “What Every
Developer Needs to Know About Forms.” You can modify the SQL statement for the
combo box later, if necessary.

NOTE

In my opinion, the lookup feature is more of a hindrance than a help. After you invoke
the lookup feature, you and your users will no longer have easy access to the under-
lying numeric values stored in the foreign key field. You will see only the lookup value
displayed in the combo box. This makes troubleshooting application problems very
difficult.

The main advantage of the lookup feature is that it facilitates the process of building
forms by automatically adding a combo box to a form whenever a field with a lookup is
placed on a form. Personally, I find it so easy to build a combo box on a form that I do
not find the lookup feature to be much of a timesaver. After evaluating the pros and cons
of this user-related feature, I opted to eliminate it from the applications that I build.

CHAPTER 2 What Every Developer Needs to Know About Databases and Tables100

FIGURE 2.21 The field properties set by the Lookup Wizard.

Working with Table Properties
In addition to field properties, you can specify properties that apply to a table as a whole.
To access the table properties, click the Property Sheet button on the ribbon while in a
table’s Design view. The available table properties are shown in Figure 2.22. The
Description property is used mainly for documentation purposes. The Default View
property designates the view in which the table appears when the user first opens it. The
Validation Rule property specifies validations that must occur at a record level, instead
of a field level. For example, credit limits might differ depending on what state a
customer is in. In that case, what’s entered in one field depends on the value in another
field. When you enter a table-level validation rule, it doesn’t matter in what order the
user enters the data. A table-level validation rule ensures that the proper dependency
between fields is enforced. The validation rule might look something like this:

[State] In (“CA”,”NY”) And [CreditLimit]<=2500 Or _

[State] In (“MA”,”AZ”) And [CreditLimit]<=3500 Or _

[State] Not In (“CA”, “NY”, “MA”, “AZ”)

This validation rule requires a credit limit of $2,500 or less for applicants in California
and New York and a limit of $3,500 or less for applicants in Massachusetts and Arizona,
but it doesn’t specify a credit limit for residents of any other states. Table-level validation
rules can’t be in conflict with field-level validation rules.

Working with Table Properties 101

2

FIGURE 2.22 Viewing the available table properties.

The Validation Text property determines the message that appears when the user
violates the validation rule. If this property is left blank, a default message appears.

You use the Filter property to indicate a subset of records that appear in a datasheet,
form, or query. You use the Order By property to specify a default order for the records.
The Filter and Order By properties aren’t generally applied as properties of a table.

The Subdatasheet Name property identifies the name of a table used as a drill-down. If
this property is set to Auto, the drill-down table is automatically detected based on rela-
tionships established in the database. The Link Child Fields and Link Master Fields

properties are implemented to designate the fields that are used to link the current table
with the table specified in the Subdatasheet Name property. These properties should be
left blank when Auto is selected for the Subdatasheet Name. You use the Subdatasheet
Height property to specify the maximum height of the subdatasheet and the
Subdatasheet Expanded property to designate whether the subdatasheet is automatically
displayed in an expanded state.

The Orientation property determines the layout direction for the table when it is
displayed. The default setting for USA English is obviously Left-to-Right. This property
is language-specific, and the Right-to-Left setting is available only if you are using a
language version of Microsoft Access that supports right-to-left language displays. Arabic
and Hebrew are examples of right-to-left languages. By installing the Microsoft Office
Multilanguage Pack and the Microsoft Office Proofing Tools for a specific language, and
by enabling the specific right-to-left language under the Microsoft Office Language
Settings, you can also turn on right-to-left support.

CHAPTER 2 What Every Developer Needs to Know About Databases and Tables102

Using Indexes to Improve Performance
As previously mentioned, indexes can help you improve your application’s performance.
You should create indexes on any fields you sort, group, join, or set criteria for, unless those
fields contain highly repetitive data. Queries can greatly benefit from indexes, especially
when indexes are created for fields included in your criteria, fields used to order the query,
and fields used to join two tables that are not permanently related but are joined in a query.
In fact, you should always create indexes for fields on both sides of a join. If your users are
using the Find dialog box, indexes can help reduce the search time. Remember, the down-
sides to indexes are the disk space they require and the amount of time it takes to update
them when adding, deleting, and updating records. You should always perform benchmarks
with your own applications, but you will probably find indexes helpful in many situations.

NOTE

When you establish a relationship between two tables, an index for the table on the
“many” side of the relationship (the foreign key field) is automatically created. For
example, if you relate tblOrders to tblCustomers based on the CustomerID field, an
internal index is automatically created for the CustomerID field in the tblOrders table.
You therefore don’t need to explicitly create a foreign key index. Relationships are
covered in Chapter 3, “Relationships: Your Key to Data Integrity.”

Using Access Tables with the Internet
Microsoft has made it easier to develop Internet-aware applications by including the
Hyperlink field type and by allowing users to save table data as HTML. The Hyperlink field
type lets your users easily store UNC or URL addresses within their tables. The ability to
save table data as HTML makes it easy for you or your users to publish table data on an
Internet or intranet site. The sections that follow cover these features.

The Hyperlink Field Type
When you use the Hyperlink field type, your users can store a different UNC or URL address
for each record in the table. Although you can type a different UNC or URL address directly
into a field, it’s much easier to enter the address by using the Insert Hyperlink dialog box (see
Figure 2.23). Here, users can graphically browse hyperlink addresses and subaddresses, and the
address is entered automatically when they exit the dialog box. To invoke the Insert Hyperlink
dialog box, right-click the Hyperlink field and then select Hyperlink, Edit Hyperlink.

The Text to Display text box is used to enter the text the user will see when viewing the
field data in Datasheet view, in a form, or on a report. The hyperlink can be to any of the
following:

. An existing file or web page

. Another object in the current database

. A new data access page

. An email address

Using Access Tables with the Internet 103

2

FIGURE 2.23 With the Insert Hyperlink dialog box, users can select or create a hyperlink
object for the field.

To select an existing file or web page, click the appropriate Link To icon and either type
the file or web page name, or select it from the list of Recent Files, Browsed Pages, or the
Current Folder. The Browse for File button is used to browse for an existing file, and the
Browse the Web button is used to browse for an existing web page.

To link to an object in the current database, click the appropriate Link To icon. Click a
plus (+) sign to expand the list of tables, queries, forms, reports, pages, macros, or
modules. Then click the database object to which you want to link.

To link to a new data access page that you create, click the appropriate Link To icon.
Enter the name of the new page and designate whether you want to edit the new page
now or later.

To designate an email address you want to link to, click the appropriate Link To icon.
Enter the email address and subject, or select from the list of recently used email
addresses.

After all the required information has been entered, the link is established, and the hyper-
link is entered in the field. If a UNC was entered, clicking the hyperlink invokes the appli-
cation associated with the file. The selected file is opened, and the user is placed in the
part of the document designated in the subaddress. If a URL is entered, and the user is
logged on to the Internet or connected to her company’s intranet, she is taken directly to
the designated page. If the user isn’t currently connected to the Internet or an intranet,
the Connect To dialog box appears, allowing her to log on to the appropriate network.

Saving Table Data as HTML
Table data can be easily saved as HTML so that it can be published on an Internet or
intranet site. You can save a file as HTML by using the File, Export menu item. The steps
are as follows:

1. Click within the Navigation Pane to select the table you want to export.

2. Click to select the External Data tab.

CHAPTER 2 What Every Developer Needs to Know About Databases and Tables104

3. Click the More drop-down in the Export group.

4. Select HTML Document from the drop-down menu. The Export – HTML Document
dialog box appears (see Figure 2.24).

Using Access Tables with the Internet 105

2

FIGURE 2.24 The Export – HTML Document dialog box allows you to select the name and
location for the exported file.

5. Click Browse to select a name and location for the .htm file. The File Save dialog box
appears.

6. Provide a filename and location and then click Save. Access returns you to the
Export – HTML Document dialog box.

7. Specify the export options as desired.

8. Click OK. The HTML Output Options dialog box appears. Here, you can select
an HTML template and designate the type of encoding that you want to use for
the file.

9. Click OK. If you opted to open the destination file after the export operation is
complete, the exported document appears in your browser (see Figure 2.25). Figure
2.26 displays the underlying HTML that you can edit using any HTML editor.

10. The final step of the wizard asks if you want to save your export steps. If you do,
click the Save Export Steps check box.

11. Click Close to complete the process.

FIGURE 2.25 Viewing an HTML document in a browser after a table was saved as HTML.

CHAPTER 2 What Every Developer Needs to Know About Databases and Tables106

FIGURE 2.26 Viewing the source HTML for the exported document.

NOTE

Building applications for the Internet is covered extensively in Alison Balter’s Mastering
Access 2002 Enterprise Development.

Saving Table Data as XML
Access 2007 allows you to export your data to XML and to import data from XML. Using
either code or the Access user interface to export XML data, you can generate data (XML),
schema (XSD), and presentation (XSL) files. Although in-depth coverage of Access and
XML is included in Alison Balter’s Mastering Access 2002 Enterprise Development, this section
provides you with basic information about the import and export processes. To export a
table to XML, follow these steps:

1. Select the table you want to export.

2. Click to select the External Data tab.

3. Click the More drop-down in the Export group.

4. Select XML File from the drop-down menu. The Export – XML Document dialog
box appears.

5. Click Browse to select a name and location for the .xml file. The File Save dialog box
appears.

6. Provide a filename and location and then click Save. Access returns you to the
Export – XML Document dialog box.

7. Click OK. The Export XML dialog box appears. Here, you designate whether you
want to export data, schema of the data, and the presentation of your data (see
Figure 2.27).

Using Access Tables with the Internet 107

2

FIGURE 2.27 The Export XML dialog box allows you to specify what XML documents you
want to generate as part of the export process.

8. Click OK. Access generates the appropriate files.

9. The final step of the wizard asks if you want to save your export steps. If you do,
click the Save Export Steps check box.

Figure 2.28 displays the underlying XML that you can edit using any XML editor.

FIGURE 2.28 Viewing the XML generated when you save a table as XML.

Just as you can export data to XML, you can import XML data into Access. To import
XML data into an Access table, follow these steps:

1. Click to select the External Data tab.

2. Click the Import XML file button in the Import group.

3. Click Browse to select the file you want to import and click Import. The File Open
dialog box appears.

4. Select the file you want to import and click Open. Access returns you to the Get
External Data – XML File dialog box.

5. Click OK to perform the import. The Import XML dialog box appears (see Figure 2.29).

CHAPTER 2 What Every Developer Needs to Know About Databases and Tables108

FIGURE 2.29 The Import XML dialog box allows you to designate options used for the import
process.

6. Indicate whether you want to import the structure only, the structure and data, or
append data to existing table(s).

7. Click OK to continue. Access completes the import process.

Viewing Object Dependencies
Sometimes you will need to know what objects depend on a particular table. Here’s how
this process works:

1. Click to open the Navigation Pane drop-down and select Tables and Related Views.
The first time you perform this task for a database, a dialog box appears, prompting
you to update object dependency information for the database (see Figure 2.30).
After you click OK, Access updates the dependency information for the database and
displays each table along with the objects that depend on it (see Figure 2.31).

Viewing Object Dependencies 109

2

FIGURE 2.30 The first time you attempt to display object dependencies within a database,
Access prompts you to update dependency information for that database.

FIGURE 2.31 Access displays each table, along with the objects that depend on it.

2. By default, the Object Dependencies window shows you the objects that depend on
the selected object. You can click the Objects That I Depend On button to view the
objects that the selected object depends on.

3. You can click the node of an item to drill down to additional dependencies. Because
we have not established relationships between the tables, and this database contains
no queries, forms, or reports that are based on the tables in the database, no depen-
dencies yet exist. If you practice this exercise on the Northwind database, you will
find the results to be much more interesting.

4. Close the Object Dependencies window when you are finished viewing and working
with object dependencies.

Examining Database Specifications
and Limitations
Databases have a number of specifications and limitations that you should be aware of.
Fortunately, you will generally not find them too restricting. They are listed in Table 2.2.

TABLE 2.2 Table Specifications and Limitations

Item Limitation

Number of objects in a database 32,768
Number of modules in a database 1,000
(includes all Has Module=Yes)
Number of characters in an object name 64
Number of characters in a password 20
Number of characters in a username or group name 20
Number of concurrent users 255

Examining Table Specifications and Limitations
Tables have a number of specifications and limitations as well. Although you will gener-
ally not find them restricting, you should keep them in mind. They are listed in Table 2.3.

TABLE 2.3 Table Specifications and Limitations

Item Limitation

Number of characters in a table name 64
Number of characters in a field name 64
Number of fields in a table 255
Number of open tables 2048; the actual number is less

because of tables opened internally
by Microsoft Access

CHAPTER 2 What Every Developer Needs to Know About Databases and Tables110

Item Limitation

Table size 2 gigabytes minus the space needed
for system objects

Number of characters in a Text field 255
Number of characters in a Memo field 65,535 when entering data through

the user interface; 1 gigabyte of
character storage when entering data
programmatically

Size of an OLE Object field 1 gigabyte
Number of indexes in a table 32
Number of fields in an index 10
Number of characters in a validation message 255
Number of characters in a validation rule 2,048
Number of characters in a table or field description 255

Number of characters in a record 2,000
(excluding Memo and OLE Object fields)
Number of characters in a field property setting 255

You also can save table data under the XML format.

Practical Examples: Designing the Tables Needed
for a Computer Consulting Firm’s Time and Billing
Application
Create a new database and try designing a few of the tables needed by a computer
consulting firm’s time and billing application. You will build tblClients and tblProjects

tables. The main table for the application, tblClients, will be used to track the key infor-
mation about each client. The second table, tblProjects, will hold all the key informa-
tion users need to store for the projects they’re working on for each client. Table 2.4
shows the field names, data types, and sizes for each field in tblClients. You should
include indexes for all fields except Notes. Table 2.5 shows the properties that need to
be set for these fields. Table 2.6 shows the fields, data types, and sizes for the fields in
tblProjects, and Table 2.7 shows the properties that need to be set for these fields. You
should include indexes for all fields except ProjectDescription.

TABLE 2.4 Field Names, Data Types, and Sizes for the Fields in tblClients

Field Name Data Type Size

ClientID AutoNumber Long Integer (Stored as 4)
CompanyName Text 50
ContactFirstName Text 30

Practical Examples 111

2

TABLE 2.3 Continued

Field Name Data Type Size

ContactLastName Text 50
ContactTitle Text 50
ContactTypeID Number Long Integer (Stored as 4)
ReferredBy Text 30
AssociatedWith Text 30
IntroDate Date/Time Stored as 8
DefaultRate Currency Stored as 8
Notes Memo —
Miles Number Long Integer (Stored as 4)
TermTypeID Number Long Integer (Stored as 4)
HomePage Hyperlink —

TABLE 2.5 Properties That Need to Be Set for the Fields in tblClients

Field Name Property Value

ClientID Caption Client ID
ClientID Set as primary key —
CompanyName Caption Company Name
CompanyName Required Yes
ContactFirstName Caption Contact First Name
ContactLastName Caption Contact Last Name
ContactTitle Caption Contact Title
ContactTypeID Caption Contact Type ID
ReferredBy Caption Referred By
AssociatedWith Caption Associated With
IntroDate Input Mask 99/99/0000
IntroDate Caption Default Value Intro DateIntroDate=Date()

IntroDate Validation Rule <=Date()

IntroDate Validation Text Date Entered Must Be On Or
Before Today

IntroDate Required Yes
DefaultRate Caption Default Rate
DefaultRate Default Value 125
DefaultRate Validation Rule Between 75 and 150
DefaultRate Validation Text Rate Must Be Between 75 and 150
DefaultRate Format Currency
Miles Validation Rule >=0

Miles Validation Text Miles Must Be Greater Than or
Equal to Zero

CHAPTER 2 What Every Developer Needs to Know About Databases and Tables112

TABLE 2.4 Continued

Field Name Property Value

TermTypeID Caption Term Type ID
HomePage Caption Home Page

TABLE 2.6 Field Names, Data Types, and Sizes for the Fields in tblProjects

Field Name Data Type Size

ProjectID AutoNumber Long Integer (Stored as 4)
ProjectName Text 50
ProjectDescription Memo —
ClientID Number Long Integer (Stored as 4)
PurchaseOrderNumber Text 30
ProjectTotalEstimate Currency 8
EmployeeID Number Long Integer (Stored as 4)
ProjectBeginDate Date/Time Stored as 8
ProjectEndDate Date/Time Stored as 8

TABLE 2.7 Properties That Need to Be Set for the Fields in tblProjects

Field Name Property Value

ProjectID Caption Project ID
ProjectID Set as primary key —
ProjectName Caption Project Name
ProjectName Required Yes
ProjectDescription Caption Project Description
ClientID Caption Client ID
ClientID Default Value Remove default value of 0
ClientID Required Yes
PurchaseOrderNumber Caption Purchase Order Number
ProjectTotalEstimate Caption Project Total Estimate
ProjectTotalEstimate Format Currency
EmployeeID Caption Employee ID
ProjectBeginDate Input Mask 99/99/0000
ProjectBeginDate Caption Project Begin
DateProjectEndDate

Input Mask 99/99/0000
ProjectEndDate Caption Project End Date

The rest of the tables needed by the time and billing application are listed in Appendix B,
“Table Structures,” which is downloadable at www.samspublishing.com. The finished
table structures can be found in CHAP2.ACCDB. You can find this file, and all files referred
to in this book, on the book’s sample code CD-ROM.

Practical Examples 113

2

TABLE 2.5 Continued

www.samspublishing.com

Summary
Tables are the foundation for your application. A poorly designed table structure can
render an otherwise well-designed application useless. This chapter began by walking you
through several methods for creating tables. It then discussed theoretical issues, such as
selecting the correct field type and effectively using field properties. Each property, and its
intended use, was discussed in detail. Finally, table properties and indexes were covered.
After reading this chapter, you should be ready to harness the many features that the
Access table designer has to offer.

CHAPTER 2 What Every Developer Needs to Know About Databases and Tables114

IN THIS CHAPTER

. Why This Chapter Is Important

. Introduction to Relational
Database Design

. Establishing Relationships in
Access

. Establishing Referential
Integrity

. Looking at the Benefits of
Relationships

. Examining Indexes and
Relationships

. Practical Examples:
Establishing the Relationships
Between the Tables Included in
the Time and Billing Database

CHAPTER 3

Relationships: Your Key
to Data Integrity

Why This Chapter Is Important
A relationship exists between two tables when one or more
key fields from one table are matched to one or more key
fields in another table. The fields in both tables usually
have the same name, data type, and size. Relationships are
a necessary by-product of the data normalization process.
Data normalization, which was introduced in Chapter 1,
“Access as a Development Tool,” and is covered in addi-
tional detail in this chapter, is the process of eliminating
duplicate information from your system by splitting infor-
mation into several tables, each containing a unique value
(primary key). Although data normalization brings many
benefits, you need to relate your application’s tables to
each other so that your users can view the data in the
system as a single entity. After you define relationships
between tables, you can build queries, forms, and reports
that combine information from multiple tables. In this
way, you can reap all the benefits of data normalization
while ensuring that your system provides users with all the
information they need.

Introduction to Relational
Database Design
Many people believe Access is such a simple product to use
that database design is something they don’t need to worry
about. I couldn’t disagree more! Just as a house without a
foundation will fall over, a database with poorly designed
tables and relationships will fail to meet the needs of its
users.

The History of Relational Database Design
Dr. E. F. Codd first introduced formal relational database design in 1969 while he was at
IBM. Relational theory, which is based on set theory, applies to both databases and data-
base applications. Codd developed 12 rules that determine how well an application and
its data adhere to the relational model. Since Codd first conceived these 12 rules, the
number of rules has expanded into the hundreds. (Don’t worry; you need to learn only a
few of them!)

You should be happy to learn that, although not perfect as an application development
environment, Microsoft Access measures up quite well as a relational database system.

Goals of Relational Database Design
The number one goal of relational database design is to, as closely as possible, develop a
database that models some real-world system. This involves breaking the real-world
system into tables and fields and determining how the tables relate to each other.
Although on the surface this task might appear to be trivial, it can be an extremely
cumbersome process to translate a real-world system into tables and fields.

A properly designed database has many benefits. The processes of adding, editing, delet-
ing, and retrieving table data are greatly facilitated by a properly designed database. In
addition, reports are easier to build. Most importantly, the database becomes easy to
modify and maintain.

Rules of Relational Database Design
To adhere to the relational model, tables must follow certain rules. These rules determine
what is stored in tables and how the tables are related.

The Rules of Tables
Each table in a system must store data about a single entity. An entity usually represents a
real-life object or event. Examples of objects are customers, employees, and inventory
items. Examples of events include orders, appointments, and doctor visits.

The Rules of Uniqueness and Keys
Tables are composed of rows and columns. To adhere to the relational model, each table
must contain a unique identifier. Without a unique identifier, it becomes programmati-
cally impossible to uniquely address a row. You guarantee uniqueness in a table by desig-
nating a primary key, which is a single column or a set of columns that uniquely identifies
a row in a table.

Each column or set of columns in a table that contains unique values is considered a
candidate key. One candidate key becomes the primary key. The remaining candidate keys
become alternate keys. A primary key made up of one column is considered a simple key. A
primary key comprising multiple columns is considered a composite key.

CHAPTER 3 Relationships: Your Key to Data Integrity116

It is generally a good idea to pick a primary key that is

. Minimal (has as few columns as possible)

. Stable (rarely changes)

. Simple (is familiar to the user)

Following these rules greatly improves the performance and maintainability of your data-
base application, particularly if you are dealing with large volumes of data.

Consider the example of an employee table. An employee table is generally composed of
employee-related fields such as Social Security number, first name, last name, hire date,
salary, and so on. The combination of the first name and the last name fields could be
considered a primary key. This choice might work, until the company hires two employ-
ees with the same name. Although the first and last names could be combined with addi-
tional fields to constitute uniqueness (for example, hire date), this would violate the rule
of keeping the primary key minimal. Furthermore, an employee might get married and
change her last name. This violates the rule of keeping a primary key stable.

Using a name as the primary key violates the principle of stability. The Social Security
number might be a valid choice, but a foreign employee might not have a Social Security
number. This is a case in which a derived, rather than a natural, primary key is appropri-
ate. A derived key is an artificial key that you create. A natural key is one that is already part
of the database.

In examples such as this, I suggest adding EmployeeID as an AutoNumber field. Although
the field would violate the rule of simplicity (because an employee number is meaningless
to the user), it is both small and stable. Because it is numeric, it is also efficient to process.
In fact, I use AutoNumber fields (an Identity field in SQL Server) as primary keys for most
of the tables that I build.

The Rules of Foreign Keys and Domains
A foreign key in one table is the field that relates to the primary key in a second table. For
example, the CustomerID is the primary key in the Customers table. It is the foreign key in
the Orders table.

A domain is a pool of values from which columns are drawn. A simple example of a
domain is the specific data range of employee hire dates. In the case of the Orders table,
the domain of the CustomerID column is the range of values for the CustomerID in the
Customers table.

Normalization and Normal Forms
Some of the most difficult decisions that you face as a developer are what tables to create
and what fields to place in each table, as well as how to relate the tables that you create.
Normalization is the process of applying a series of rules to ensure that your database
achieves optimal structure. Normal forms are a progression of these rules. Each successive

Introduction to Relational Database Design 117

3

normal form achieves a better database design than the previous form did. Although
there are several levels of normal forms, it is generally sufficient to apply only the first
three levels of normal forms. The following sections describe the first three levels of
normal forms.

First Normal Form
To achieve first normal form, all columns in a table must be atomic. This means, for
example, that you cannot store first names and last names in the same field. The reason
for this rule is that data becomes very difficult to manipulate and retrieve if multiple
groups are stored in a single field. Using the full name as an example, it would become
impossible to sort by first name or last name independently if both groups were stored in
the same field. Furthermore, you or the user must perform extra work to extract just the
first name or the last name from the field.

Another requirement for first normal form is that the table must not contain repeating
values. An example of repeating values is a scenario in which the Item1, Quantity1,
Item2, Quantity2, Item3, and Quantity3 fields are all found within the Orders table (see
Figure 3.1). This design introduces several problems. What if the user wants to add a
fourth item to the order? Furthermore, finding the total ordered for a product requires
searching several columns. In fact, all numeric and statistical calculations on the table
become extremely cumbersome. The alternative, shown in Figure 3.2, achieves first
normal form. Notice that each item ordered is located in a separate row.

CHAPTER 3 Relationships: Your Key to Data Integrity118

FIGURE 3.1 This table contains repeating groups. Repeating groups make it difficult to
summarize and manipulate table data.

FIGURE 3.2 This table achieves first normal form. Notice that all fields are atomic and that
the table contains no repeating groups.

Second Normal Form
To achieve second normal form, all non-key columns must be fully dependent on the
primary key. In other words, each table must store data about only one subject. Notice the
table shown in Figure 3.2. It includes information about the order (OrderID, CustomerID,
and OrderDate) and information about the items the customer is ordering (Item and
Quantity). To achieve second normal form, you must break this data into two tables: an
order table and an order detail table. The process of breaking the data into two tables is
called decomposition. It is considered to be non-loss decomposition because no data is lost
during the decomposition process. After you separate the data into two tables, you can
easily bring the data back together by joining the two tables in a query. Figure 3.3 shows
the data separated into two tables. These two tables achieve second normal form.

Third Normal Form
To attain third normal form, a table must meet all the requirements for first and second
normal form, and all non-key columns must be mutually independent. This means that
you must eliminate any calculations, and you must break out data into lookup tables.

An example of a calculation stored in a table is the product of price multiplied by quan-
tity. Instead of storing the result of this calculation in the table, you would generate the
calculation in a query, or in the control source of a control on a form or a report.

Introduction to Relational Database Design 119

3

FIGURE 3.3 These tables achieve second normal form. The fields in each table pertain to
the primary key of the table.

The example in Figure 3.3 does not achieve third normal form because the description of
the inventory items is stored in the order details table. If the description changes, all rows
with that inventory item need to be modified. The order detail table, shown in Figure 3.4,
shows the item descriptions broken into an inventory table. This design achieves third
normal form. All fields are mutually independent. You can modify the description of an
inventory item in one place.

Denormalization—Purposely Violating the Rules
Although the developer’s goal is normalization, often it makes sense to deviate from
normal forms. We refer to this process as denormalization. The primary reason for applying
denormalization is to enhance performance.

An example of when denormalization might be the preferred tactic could involve an open
invoices table and a summarized accounting table. It might be impractical to calculate
summarized accounting information for a customer when we need it. Instead, you can
maintain the summary calculations in a summarized accounting table so that you can
easily retrieve them as needed. Although the upside of this scenario is improved perfor-
mance, the downside is that you must update the summary table whenever you make
changes to the open invoices. This imposes a definite trade-off between performance and
maintainability. You must decide whether the trade-off is worthwhile.

CHAPTER 3 Relationships: Your Key to Data Integrity120

Introduction to Relational Database Design 121

3

FIGURE 3.4 The table on the right achieves third normal form. The description of the inven-
tory items has been moved to an inventory table, and the ItemID is stored in the order details
table.

If you decide to denormalize, document your decision. Make sure that you make the neces-
sary application adjustments to ensure that you properly maintain the denormalized fields.
Finally, test to ensure that the denormalization process actually improves performance.

Integrity Rules
Although integrity rules are not part of normal forms, they are definitely part of the data-
base design process. Integrity rules are broken into two categories. They include overall
integrity rules and database-specific integrity rules.

Overall Rules
The two types of overall integrity rules are referential integrity rules and entity integrity rules.
Referential integrity rules dictate that a database does not contain orphan foreign key
values. This means that

. Child rows cannot be added for parent rows that do not exist. In other words, an
order cannot be added for a nonexistent customer.

. A primary key value cannot be modified if the value is used as a foreign key in a
child table. This means that a CustomerID in the customers table cannot be changed
if the orders table contains rows with that CustomerID.

. A parent row cannot be deleted if child rows are found with that foreign key value.
For example, a customer cannot be deleted if the customer has orders in the order
table.

Entity integrity dictates that the primary key value cannot be Null. This rule applies not
only to single-column primary keys, but also to multi-column primary keys. In fact, in a
multi-column primary key, no field in the primary key can be Null. This makes sense
because, if any part of the primary key can be Null, the primary key can no longer act as
a unique identifier for the row. Fortunately, the Access Database Engine (Access 2007’s
new version of the JET database engine, available with the new ACCDB file format) does
not allow a field in a primary key to be Null.

Database-Specific Rules
The other set of rules applied to a database are not applicable to all databases but are,
instead, dictated by business rules that apply to a specific application. Database-specific
rules are as important as overall integrity rules. They ensure that only valid data is entered
into a database. An example of a database-specific integrity rule is that the delivery date
for an order must fall after the order date.

Examining the Types of Relationships
Three types of relationships can exist between tables in a database: one-to-many, one-to-
one, and many-to-many. Setting up the proper type of relationship between two tables in
your database is imperative. The right type of relationship between two tables ensures

. Data integrity

. Optimal performance

. Ease of use in designing system objects

The reasons behind these benefits are covered throughout this chapter. Before you can
understand the benefits of relationships, though, you must understand the types of rela-
tionships available.

One-to-Many
A one-to-many relationship is by far the most common type of relationship. In a one-to-
many relationship, a record in one table can have many related records in another table. A
common example is a relationship set up between a Customers table and an Orders table.
For each customer in the Customers table, you want to have more than one order in the
Orders table. On the other hand, each order in the Orders table can belong to only one
customer. The Customers table is on the one side of the relationship, and the Orders table
is on the many side. For you to implement this relationship, the field joining the two
tables on the one side of the relationship must be unique.

CHAPTER 3 Relationships: Your Key to Data Integrity122

In the Customers and Orders tables example, the CustomerID field that joins the two
tables must be unique within the Customers table. If more than one customer in the
Customers table has the same customer ID, it is not clear which customer belongs to an
order in the Orders table. For this reason, the field that joins the two tables on the one
side of the one-to-many relationship must be a primary key or have a unique index. In
almost all cases, the field relating the two tables is the primary key of the table on the
one side of the relationship. The field relating the two tables on the many side of the rela-
tionship is the foreign key.

One-to-One
In a one-to-one relationship, each record in the table on the one side of the relationship
can have only one matching record in the table on the many side of the relationship.
This relationship is not common and is used only in special circumstances. Usually, if you
have set up a one-to-one relationship, you should have combined the fields from both
tables into one table. The following are the most common reasons why you should create
a one-to-one relationship:

. The number of fields required for a table exceeds the number of fields allowed in an
Access table.

. Several fields in a table are required for only a subset of records in the table.

The maximum number of fields allowed in an Access table is 255. There are very few
reasons why a table should ever have more than 255 fields. In fact, before you even get
close to 255 fields, you should take a close look at the design of your system. On the rare
occasion when having more than 255 fields is appropriate, you can simulate a single table
by moving some of the fields to a second table and creating a one-to-one relationship
between the two tables.

The other situation in which you would want to define one-to-one relationships is when
you will use certain fields in a table for only a relatively small subset of records. An
example is an Employee table and a Vesting table. Certain fields are required only for
employees who are vested. If only a small percentage of a company’s employees are
vested, it is not efficient, in terms of performance or disk space, to place all the fields
containing information about vesting in the Employee table. This is especially true if the
vesting information requires a large volume of fields. By breaking the information into
two tables and creating a one-to-one relationship between them, you can reduce disk-
space requirements and improve performance. This improvement is particularly
pronounced if the Employee table is large.

Many-to-Many
In a many-to-many relationship, records in both tables have matching records in the other
table. You cannot directly define a many-to-many relationship in Access; you must
develop this type of relationship by adding a table called a junction table. You relate the
junction table to each of the two tables in one-to-many relationships. An example is an

Introduction to Relational Database Design 123

3

Orders table and a Products table. Each order probably will contain multiple products,
and each product is found on many different orders. The solution is to create a third table
called OrderDetails. You relate the OrderDetails table to the Orders table in a one-
to-many relationship based on the OrderID field. You relate it to the Products table in
a one-to-many relationship based on the ProductID field.

Establishing Relationships in Access
You use the Relationships window to establish relationships between Access tables, as
shown in Figure 3.5. To open the Relationships window, click to select the Database Tools
tab on the ribbon, and then select the Relationships tool in the Show/Hide group. If you
have not established any relationships, the Show Table dialog box appears. The Show
Table dialog box allows you to add tables to the Relationships window.

Looking at the Relationships window, you can see the types of relationships that exist for
each table. All the one-to-many and one-to-one relationships defined in a database are
represented with a join line. If you enforce referential integrity between the tables
involved in a one-to-many relationship, the join line between the tables appears with the
number 1 on the one side of the relationship and with an infinity symbol (∞) on the
many side of the relationship. One-to-one relationships appear with a 1 on both ends of
the join lines.

CHAPTER 3 Relationships: Your Key to Data Integrity124

FIGURE 3.5 The Relationships window enables you to view, add, modify, and remove relation-
ships between tables.

Establishing a Relationship Between Two Tables
To establish a relationship between two tables, follow these six steps:

1. Open the Relationships window.

2. If you’re opening the Relationships window of a particular database for the first
time, the Show Table dialog box appears (see Figure 3.6). Select each table you want
to relate and click Add.

Establishing Relationships in Access 125

3

FIGURE 3.6 The Show Table dialog box enables you to select the tables you want to relate.

3. If you have already established relationships in the current database, the Relation-
ships window appears. If the tables you want to include in the relationship do not
appear, click the Show Table button in the Relationships group on the ribbon. To
add the desired tables to the Relationships window, select a table and then click
Add. Repeat this process for each table you want to add. To select multiple tables at
once, press Shift while clicking to select contiguous tables or press Ctrl while click-
ing to select noncontiguous tables; then click Add. Click Close when you are
finished.

4. Click and drag the field from one table to the matching field in the other table. The
Edit Relationships dialog box appears, as shown in Figure 3.7.

5. Determine whether you want to establish referential integrity and whether you
want to cascade update related fields or cascade delete related records by enabling
the appropriate check boxes. The section later in this chapter titled “Establishing
Referential Integrity” covers these topics.

6. Click Create.

FIGURE 3.7 The Edit Relationships dialog box enables you to view and modify the relation-
ships between the tables in a database.

Looking at Guidelines for Establishing Relationships
You must remember a few important points when establishing relationships. If you
are not aware of these important gotchas, you could find yourself in some pretty hairy
situations:

. It is important to understand the correlation between the Relationships window and
the actual relationships you have established within the database. The Relationships
window lets you view and modify the existing relationships. When you establish
relationships, Access creates the relationships the moment you click Create. You can
delete the tables from the Relationships window (by selecting them and pressing
Delete), but the relationships still exist. (The “Modifying an Existing Relationship”
section, which appears later in this chapter, covers the process of permanently
removing relationships.) The Relationships window provides a visual blueprint of
the relationships that you have established. If you modify the layout of the window
by moving tables around, or by adding tables to or removing them from the
window, Access prompts you to save the layout after you close the Relationships
window. Access is not asking whether you want to save the relationships you have
established; it is simply asking whether you want to save the visual layout of the
window.

. When you are adding tables to the Relationships window using the Show Tables
dialog box, it is easy to accidentally add the same table to the window many times.
The reason is that the tables you are adding can hide behind the Show Tables dialog
box, or they can appear below the portion of the Relationships window that you are
viewing. If this occurs, you’ll see multiple occurrences of the same table when you
close the Show Tables dialog box. Access gives each occurrence of the table a differ-
ent alias. You must remove the extra occurrences.

. You also can add queries to the Relationships window by using the Show Tables
dialog box. Although rarely used, this approach might be useful if you regularly
include the same queries within other queries and want to permanently establish a
relationship between them.

CHAPTER 3 Relationships: Your Key to Data Integrity126

. If you remove tables from the Relationships window (this does not delete the rela-
tionships) and you want to once again show all relationships that exist in the data-
base, click All Relationships in the Relationships group on the Design tab. These
processes show all existing relationships.

. To delete a relationship, select the join line and click Delete.

Create a new database and add a table called tblCustomers, another called tblOrders,
and a third called tblOrderDetails. The tables should have the following fields:

tblCustomers: CustomerID, CompanyName, Address, City, State, ZipCode

tblOrders: OrderID, CustomerID, OrderDate, ShipVIA

tblOrderDetails: OrderID, LineNumber, ItemID, Quantity, Price

1. In the tblCustomers table, make the CustomerID field a Text field. Designate the
CustomerID field as the primary key. Set the size of the field to 5. Make all other
fields Text fields with their default properties.

2. In the tblOrders table, set OrderID to the AutoNumber field type. Make the OrderID
the primary key field. Make the CustomerID field a Text field with a field size of 5.
Set the field type of the OrderDate field to Date/Time, and the field type of the
ShipVIA field to Number with a size of Long Integer.

3. In the tblOrderDetails table, set the field type of the OrderID field to Number and
make sure that the size is Long Integer. Set the field type of the LineNumber field to
Number with a size of Long Integer. You should base the primary key of the table on
the combination of the OrderID and LineNumber fields. The ItemID and Quantity

fields should be the Number type with a size of Long Integer. The Price field should
be the Currency type.

4. To open the Relationships window, click the Relationships button in the Show/Hide
group of the Database Tools tab. With the tblCustomers table in the Show Table
dialog box selected, hold down your Shift key and click to select the tblOrders
table. Click Add. All three tables should appear in the Relationships window. Click
Close. Click and drag from the CustomerID field in the tblCustomers table to the
CustomerID field in the tblOrders table. After the Edit Relationships dialog box
appears, click Create. Repeat the process, clicking and dragging the OrderID field
from the tblOrders table to the OrderID field in the tblOrderDetails table.

NOTE

You can find this example, and all examples included in this chapter, in the
Chap3TryIt.ACCDB file included with the sample code on the accompanying CD-ROM.

Establishing Relationships in Access 127

3

Modifying an Existing Relationship
Modifying an existing relationship is easy. Access gives you the capability to delete an
existing relationship or to simply modify the nature of the relationship. To permanently
remove a relationship between two tables, follow these three steps:

1. Click to select the Database Tools tab and then click to select the Relationships tool
in the Show/Hide group on the ribbon.

2. Click the line joining the two tables whose relationship you want to delete.

3. Press Delete. Access prompts you to verify your actions. Click Yes.

You often will want to modify the nature of a relationship rather than remove it. To
modify a relationship, follow these four steps:

1. Click to select the Database Tools tab, and then click to select the Relationships tool
in the Show/Hide group on the ribbon.

2. Double-click the line joining the two tables whose relationship you want to modify.

3. Make the required changes.

4. Click OK. All the normal rules regarding the establishment of relationships will
apply.

Establishing Referential Integrity
As you can see, establishing a relationship is quite easy. Establishing the right kind of rela-
tionship is a little more difficult. When you attempt to establish a relationship between
two tables, Access makes some decisions based on a few predefined factors:

. Access establishes a one-to-many relationship if one of the related fields is a primary
key or has a unique index.

. Access establishes a one-to-one relationship if both the related fields are primary
keys or have unique indexes.

. Access creates an indeterminate relationship if neither of the related fields is a
primary key and neither has a unique index. You cannot establish referential
integrity in this case.

As covered earlier in the chapter, referential integrity consists of a series of rules that the
Access Database Engine applies to ensure that it properly maintains the relationships
between tables. At the most basic level, referential integrity rules prevent the creation of
orphan records in the table on the many side of the one-to-many relationship. After a
relationship is established between a Customers table and an Orders table, for example, all
orders in the Orders table must be related to a particular customer in the Customers table.
Before you can establish referential integrity between two tables, the following conditions
must be met:

CHAPTER 3 Relationships: Your Key to Data Integrity128

. The matching field on the one side of the relationship must be a Primary Key field
or must have a unique index.

. The matching fields must have the same data types (for linking purposes,
AutoNumber fields match Long Integer fields). With the exception of Text fields,
they also must have the same size. Number fields on both sides of the relationship
must have the same size (Long Integer, for example).

. Both tables must be part of the same Access database.

. Both tables must be stored in the proprietary Access file (.ACCDB) format. (They
cannot be external tables from other sources.)

. The database containing the two tables must be open.

. Existing data within the two tables cannot violate referential integrity rules. All
orders in the Orders table must relate to existing customers in the Customers table,
for example.

CAUTION

Although Text fields involved in a relationship do not have to be the same size, it is
prudent to make them the same size. Otherwise, you will degrade performance as well
as risk the chance of unpredictable results when creating queries based on the two
tables.

After you establish referential integrity between two tables, the Access Database Engine
applies the following rules:

. You cannot enter a value in the foreign key of the related table that does not exist
in the primary key of the primary table. For example, you cannot enter a value in
the CustomerID field of the Orders table that does not exist in the CustomerID field
of the Customers table.

. You cannot delete a record from the primary table if corresponding records exist in
the related table. For example, you cannot delete a customer from the Customers
table if related records exist in the Orders table (records with the same value in the
CustomerID field).

. You cannot change the value of a primary key on the one side of a relationship if
corresponding records exist in the related table. For example, you cannot change
the value in the CustomerID field of the Customers table if corresponding orders
exist in the Orders table.

If you attempt to violate any of the preceding three rules and you have enforced referen-
tial integrity between the tables, Access displays an appropriate error message, as shown
in Figure 3.8.

Establishing Referential Integrity 129

3

FIGURE 3.8 An error message when attempting to add an order for a customer who doesn’t
exist.

The Access Database Engine’s default behavior is to prohibit the deletion of parent records
that have associated child records and to prohibit the change of a primary key value of a
parent record when that parent has associated child records. You can override these
restrictions by using the three check boxes available in the Edit Relationships dialog box
when you establish or modify a relationship.

The following example enforces referential integrity between the tblCustomers table and
the tblOrders table. It illustrates how this affects the process of adding and deleting
records:

1. To open the Relationships window, click to select the Database Tools tab and then
click the Relationships tool in the Show/Hide group. Double-click the join line
between tblCustomers and tblOrders. Enable the Enforce Referential Integrity
check box. Click OK. Repeat the process for the relationship between tblOrders and
tblOrderDetails.

2. Go into tblCustomers and add a couple of records. Take note of the customer IDs.
Go into tblOrders. Add a couple of records, taking care to assign customer IDs of
customers who exist in the tblCustomers table. Now try to add an order for a
customer whose customer ID does not exist in tblCustomers. You should get an
error message.

3. Attempt to delete a customer from tblCustomers who does not have any orders. You
should get a warning message, but Access should allow you to complete the process.
Now try to delete a customer who does have orders. The Access Database Engine
should prohibit you from deleting the customer. Attempt to change the customer ID
of a customer who has orders. You should not be able to do this.

Cascade Update Related Fields
The Cascade Update Related Fields option is available only if you have established refer-
ential integrity between the tables. With this option selected, the user can change the
primary key value of the record on the one side of the relationship. When the user tries
to modify the field joining the two tables on the one side of the relationship, the Access
Database Engine cascades the change down to the foreign key field on the many side of
the relationship. This technique is useful if the primary key field is modifiable. For
example, a purchase number on a purchase order master record might be updatable.

CHAPTER 3 Relationships: Your Key to Data Integrity130

If the user modifies the purchase order number of the parent record, you would want to
cascade the change to the associated detail records in the purchase order detail table.

NOTE

You do not need to select the Cascade Update Related Fields option when the related
field on the one side of the relationship is an AutoNumber field. You can never modify
an AutoNumber field. The Cascade Update Related Fields option has no effect on
AutoNumber fields.

CAUTION

You can easily introduce a loophole into your system accidentally. If you create a one-
to-many relationship between two tables but forget to set the Required property of the
foreign key field to Yes, you allow the addition of orphan records. Figure 3.9 illustrates
this point. I added an order to tblOrders without entering a customer ID. This record
is an orphan record because no records in tblCustomers have a customer ID of Null.
To eliminate the problem, set the Required property of the foreign key field to Yes.

Establishing Referential Integrity 131

3

FIGURE 3.9 An orphan record with Null in the foreign key field.

Cascade Delete Related Records
The Cascade Delete Related Records option is available only if you have established refer-
ential integrity between the tables. With this option selected, the user can delete a record

on the one side of a one-to-many relationship, even if related records exist in the table on
the many side of the relationship. A user can delete a customer even if the customer has
existing orders, for example. The Access Database Engine maintains referential integrity
between the tables because it automatically deletes all related records in the child table.

If you attempt to delete a record from the table on the one side of a one-to-many rela-
tionship and no related records exist in the table on the many side of the relationship,
you get the usual warning message, as shown in Figure 3.10. On the other hand, if you
attempt to delete a record from the table on the one side of a one-to-many relationship
and related records exist in the child table, Access warns you that you are about to delete
the record from the parent table, as well as any related records in the child table (see
Figure 3.11).

CHAPTER 3 Relationships: Your Key to Data Integrity132

FIGURE 3.10 A message that appears after the user attempts to delete a parent record
without related child records.

FIGURE 3.11 A message that appears after the user attempts to delete a parent record with
related child records.

TIP

The Cascade Delete Related Records option is not always appropriate. It is an excel-
lent feature, but you should use it prudently. Although it is usually appropriate to
cascade delete from a tblOrders table to a tblOrderDetails table, for example,
it generally is not appropriate to cascade delete from a tblCustomers table to a
tblOrders table. The reason is that you generally do not want to delete all your order
history from the tblOrders table if for some reason you want to delete a customer.
Deleting the order history causes important information, such as your profit and loss
history, to change. Therefore, it is appropriate to prohibit this type of deletion and
handle the customer in some other way, such as marking him as inactive or archiving
his data. On the other hand, if you delete an order because the customer canceled it,
you probably want to remove the corresponding order detail information as well. In this

case, the Cascade Delete Related Records option is appropriate. You need to make
the most prudent decision in each situation, based on business needs. The important
point is to carefully consider the implications of each option before making your
decision.

With the Cascade Update feature enabled, you are able to update the primary key value of
a record that has associated child records. With the Cascade Delete feature enabled, you
can delete a parent record that has associated child records. This exercise illustrates the
use of Cascade Update and Cascade Delete:

1. Modify the relationship between tblCustomers and tblOrders. Enable the Cascade
Update Related Fields check box. Modify the relationship between tblOrders and
tblOrderDetails. Enable the Cascade Delete Related Records check box. You do
not need to enable Cascade Update Related Fields because the OrderID field in
tblOrders is an AutoNumber field.

2. Attempt to delete a customer who has orders. The Access Database Engine should
still prohibit you from doing deleting because you did not enable Cascade Delete
Related Records. Change the customer ID in tblCustomers of a customer who has
orders. The Access Database Engine should allow this change. Take a look at the
tblOrders table. The Access Database Engine should have updated the customer ID
of all corresponding records in the table to reflect the change in the parent record.

3. Add some order details to the tblOrderDetails table. Try to delete any order that
has details within the tblOrderDetails table. You should receive a warning, but the
Access Database Engine should allow you to complete the process.

Looking at the Benefits of Relationships
The primary benefit of relationships is the data integrity they provide. Without the estab-
lishment of relationships, users are free to add records to child tables without regard to
entering required parent information. After referential integrity is established, you can
enable Cascade Update Related Fields or Cascade Delete Related Records, as appropriate,
which will save you quite a bit of code in maintaining the integrity of the data in your
system. Most relational database management systems require that you write the code to
delete related records when the user deletes a parent record or to update the foreign key
in related records when the user modifies the primary key of the parent. By enabling the
Cascade Update and Cascade Delete check boxes, you are sheltered from having to write a
single line of code to perform these tasks when they are appropriate.

NOTE

SQL Server 2000 and SQL Server 2005 offer Cascade Update and Cascade Delete
features similar to those found in Microsoft Access. This means that you no longer
need to write your own T-SQL statements when it is appropriate to implement Cascade
Update and Delete functionality.

Looking at the Benefits of Relationships 133

3

Access automatically carries relationships into your queries. This means that each time
you build a new query, Access automatically establishes the relationships between the
tables within the query, based on the relationships you have set up in the Relationships
window. Furthermore, each time you build a form or report, Access uses relationships
between the tables included on the form or report to assist with the design process.
Whether you delete or update data using a datasheet or a form, all referential integrity
rules automatically apply, even if you establish the relationship after you build the form.

Examining Indexes and Relationships
The field that joins two tables on the one side of a one-to-many relationship must be a
primary key field or must have a unique index so that the Access Database Engine can
maintain referential integrity. If the index on the one side of the relationship is not
unique, there is no way to determine to which parent a child record belongs.

In Access 2007, you do not need to create an index for the field on the many side of the
relationship. Access 2007 will create an internal index for you. If you do create an index on
the many side of the relationship, make sure that you set the index to Yes (Duplicates
OK); otherwise, you will have a one-to-one, rather than a one-to-many, relationship.

Practical Examples: Establishing the Relationships
Between the Tables Included in the Time and
Billing Database
In this example, you’ll establish some of the relationships you need to set up for the
tables included in a hypothetical time and billing database. If you would like to build the
relationships yourself, open the database that you created in Chapter 2, “What Every
Developer Needs to Know About Databases and Tables.”

. tblClients to tblProjects—You need to relate tblClients and tblProjects in a
one-to-many relationship based on the ClientID field. You must enforce referential
integrity to ensure that the user cannot add projects for nonexistent clients. There is
no need to set Cascade Update Related Fields because the client ID that relates the
two tables is an AutoNumber field in tblClients. You do not want to enable Cascade
Delete Related Records because you do not want billing information to change if the
user deletes a client. Instead, you want to prohibit the deletion of clients who have
projects by establishing referential integrity between the two tables.

. tblProjects to tblPayments—You need to relate tblProjects and tblPayments in a
one-to-many relationship based on the ProjectID field. You must enforce referential
integrity to ensure that the user cannot add payments for nonexistent projects.
There is no need to set Cascade Update Related Fields because the ProjectID that
relates the two tables is an AutoNumber field in tblProjects. You do not want to
enable Cascade Delete Related Records because you do not want payment informa-
tion to change if the user deletes a client. Prohibit the deletion of clients who have
payments by establishing referential integrity between the two tables.

CHAPTER 3 Relationships: Your Key to Data Integrity134

. tblProjects to tblTimeCardHours—You need to relate tblProjects and
tblTimeCardHours in a one-to-many relationship based on the ProjectID field. You
must enforce referential integrity to ensure that the user cannot add hours for
nonexistent projects. There is no need to set Cascade Update Related Fields because
the ProjectID that relates the two tables is an AutoNumber field in tblProjects.
Enable Cascade Delete Related Records so that the Access Database Engine deletes
the associated hours if the user deletes a project.

. tblProjects to tblTimeCardExpenses—You need to relate tblProjects and
tblTimeCardExpenses in a one-to-many relationship based on the ProjectID field.
You must enforce referential integrity to ensure that the user cannot add expenses
for nonexistent projects. There is no need to set Cascade Update Related Fields
because the ProjectID that relates the two tables is an AutoNumber field in
tblProjects. Enable Cascade Delete Related Records so that the Access Database
Engine deletes expenses if the user deletes a project.

. tblEmployees to tblTimeCards—You need to relate tblEmployees and tblTimeCards

in a one-to-many relationship based on the EmployeeID field. You must enforce
referential integrity to ensure that the user cannot add time cards for nonexistent
employees. There is no need to set Cascade Update Related Fields because the
EmployeeID that relates the two tables is an AutoNumber field in tblEmployees. You
do not want to enable Cascade Delete Related Records because, if the user deletes an
employee, you do not want the Access Database Engine to delete all the employee’s
time cards.

. tblEmployees to tblProjects—You need to relate tblEmployees and tblProjects in
a one-to-many relationship based on the EmployeeID field. You must enforce refer-
ential integrity to ensure that the user cannot assign projects to nonexistent
employees. There is no need to set Cascade Update Related Fields because the
employee ID that relates the two tables is an AutoNumber field in tblEmployees. You
do not want to enable Cascade Delete Related Records because, if the user deletes an
employee, you do not want the Access Database Engine to delete all the employee’s
projects, which is generally not desirable.

. tblTimeCards to tblTimeCardHours—You need to relate tblTimeCards and
tblTimeCardHours in a one-to-many relationship based on the TimeCardID field. You
must enforce referential integrity to ensure that the user cannot add time card hours
for nonexistent time cards. There is no need to set Cascade Update Related Fields
because the time card ID that relates the two tables is an AutoNumber field in
tblTimeCards. You do want to enable Cascade Delete Related Records because, if the
user deletes a time card, you want the Access Database Engine to delete the corre-
sponding hours.

. tblTimeCards to tblTimeCardExpenses—You need to relate tblTimeCards and
tblTimeCardExpenses in a one-to-many relationship based on the TimeCardID field.
You must enforce referential integrity to ensure that the user cannot add time card
expenses for nonexistent time cards. There is no need to set Cascade Update Related

Practical Examples 135

3

Fields because the time card ID that relates the two tables is an AutoNumber field in
tblTimeCards. You do want to enable Cascade Delete Related Records because, if the
user deletes a time card, you want the Access Database Engine to delete the corre-
sponding expenses.

. tblExpenseCodes to tblTimeCardExpenses—You need to relate tblExpenseCodes and
tblTimeCardExpenses in a one-to-many relationship based on the ExpenseCodeID
field. You must enforce referential integrity to ensure that the user cannot add time
card expenses with nonexistent expense codes. There is no need to set Cascade
Update Related Fields because the expense code ID that relates the two tables is an
AutoNumber field in tblExpenseCodes. You do not want to enable Cascade Delete
Related Records because, if the user deletes an expense code, you do not want the
Access Database Engine to delete the corresponding expenses.

. tblWorkCodes to tblTimeCardHours—You need to relate tblWorkCodes and
tblTimeCardHours in a one-to-many relationship based on the WorkCodeID field. You
must enforce referential integrity to ensure that the user cannot add time card hours
with invalid work codes. There is no need to set Cascade Update Related Fields
because the work code ID that relates the two tables is an AutoNumber field in
tblWorkCodes. You do not want to enable Cascade Delete Related Records because, if
the user deletes a work code, you do not want the Access Database Engine to delete
the corresponding hours.

. tblPaymentMethods to tblPayments—You need to relate tblPaymentMethods and
tblPayments in a one-to-many relationship based on the PaymentMethodID field. You
must enforce referential integrity to ensure that the user cannot add payments with
an invalid payment method. There is no need to set Cascade Update Related Fields
because the PaymentMethodID that relates the two tables is an AutoNumber field in
tblPaymentMethods. You do not want to enable Cascade Delete Related Records
because, if the user deletes a payment method, you do not want the Access Database
Engine to delete the corresponding payments.

Summary
Relationships enable you to normalize your database. Using relationships, you can divide
your data into separate tables, once again combining the data at runtime. This chapter
began by explaining relational database design principles. It described the types of rela-
tionships that you can define. It then covered the details of establishing and modifying
relationships between tables and described all the important aspects of establishing
relationships.

The capability to easily establish and maintain referential integrity between tables is an
important strength of Microsoft Access. This chapter described the referential integrity
options and highlighted when each option is appropriate. Finally, this chapter summa-
rized the benefits of relationships.

CHAPTER 3 Relationships: Your Key to Data Integrity136

IN THIS CHAPTER

. Why This Chapter Is Important

. What Is a Query, and When
Should You Use One?

. Everything You Need to Know
About Query Basics

. Ordering Your Query Result

. Refining Your Query with
Criteria

. Working with Dates in Criteria

. Understanding How You Can
Update Query Results

. Building Queries Based on
Multiple Tables

. Creating Calculated Fields

. Getting Help from the
Expression Builder

. Summarizing Data with Totals
Queries

. Excluding Fields from the
Output

. Understanding Nulls and
Query Results

. Refining Your Queries with
Field, Field List, and Query
Properties

. Building Parameter Queries
When You Don’t Know the
Criteria at Design Time

. Adding Smart Tags to Your
Queries Needed by the Time
and Billing Application for a
Computer Consulting Firm

. Creating a Pivot Table or Pivot
Chart from a Query

. Understanding Query
Specifications and Limitations

. Practical Examples: Building
Queries Needed by the Time
and Billing Application for a
Computer Consulting Firm

CHAPTER 4

What Every Developer
Needs to Know About

Query Basics

Why This Chapter Is Important
Although tables act as the ultimate foundation for any
application that you build, queries are very important as
well. Most of the forms and reports that act as the user
interface for your application are based on queries. An
understanding of queries, what they are, and when and
how to use them is imperative for your success as an Access
application developer. This chapter teaches you the basics
of working with queries. After reading this chapter, you will
know how to build queries, add tables and fields to the
queries that you create, sort the query output, and apply
criteria to limit the data that appears in the query output.
You will also be familiar with tips and tricks and important
“gotchas” of working with queries.

What Is a Query, and When
Should You Use One?
Microsoft Access offers several different types of queries.
This chapter focuses on the most basic type of query, the
Select query. A Select query is a stored question about
the data stored in your database’s tables. Select queries are
the foundation of much of what you do in Access. They
underlie most of your forms and reports, allowing you to
view the data you want, when you want. You use a simple
Select query to define the tables and fields whose data you
want to view and also to specify the criteria to limit the
data that the query’s output displays. A Select query is a

query of a table or tables that just displays data; it doesn’t modify data in any way. You
use more advanced Select queries to summarize data, supply the results of calculations,
or cross-tabulate your data. You can use Action queries to add, edit, or delete data from
your tables, based on selected criteria, but this chapter covers Select queries. Chapter 12,
“Advanced Query Techniques,” covers other types of queries.

Everything You Need to Know About Query Basics
Creating a basic query is easy because Microsoft has provided a user-friendly, drag-and-
drop interface. There are two ways to start a new query in Access 2007. The first way is to
select the Create tab and then click to select the Query Wizard button in the Other group.
The New Query dialog box appears (see Figure 4.1). The Simple Query Wizard walks you
through the steps for creating a basic query. The other wizards help you create three
specific types of queries: Crosstab, Find Duplicates, or Find Unmatched. The second
method is to click to select the Create tab and then click to select the Query Design
button in the Other group. The Show Table dialog box appears (see Figure 4.2). This
dialog box lets you select which tables and queries you want to include in the query.

CHAPTER 4 What Every Developer Needs to Know About Query Basics138

FIGURE 4.1 Use the New Query dialog box to select a wizard for the query you want to
create.

FIGURE 4.2 When you click to select the Query Design icon in the Other group of the Create
tab, the Show Table dialog box appears.

Adding Tables to Your Query
As mentioned previously, if you select Query Design rather than one of the wizards, the
Show Table dialog box appears (see Figure 4.2). In this dialog box, you can select the
tables or queries that supply data to your query. Access doesn’t care whether you select
tables or queries as the foundation for your queries. You can select them by double-
clicking on the name of the table or query you want to add or by clicking on the table or
query and then clicking Add. You can select multiple tables or queries by using the Shift
key to select a contiguous range of tables or queries, or the Ctrl key to select noncontigu-
ous tables or queries. When you have selected the tables or queries you want, click Add
and then click Close. This brings you to the Query Design window shown in Figure 4.3.

Everything You Need to Know About Query Basics 139

4

FIGURE 4.3 The Query Design window presents an easy-to-use (and learn) query design grid.

Adding Fields to Your Query
You’re now ready to select the fields you want to include in the query. The query shown
in Figure 4.3 is based on the tblClients table and the tblProjects table included in the
CHAP4.ACCDB database on the sample code CD-ROM. Notice that the query window is
divided into two sections. The top half of the window shows the tables or queries that
underlie the query you’re designing; the bottom half shows any fields that will be
included in the query output. You can add a field to the query design grid on the bottom
half of the query window in several ways:

. Double-click the name of the field you want to add.

. Click and drag a single field from the table in the top half of the query window to
the query design grid below.

. Select multiple fields at the same time by using your Shift key (for a contiguous
range of fields) or your Ctrl key (for a noncontiguous range). You can double-click
the title bar of the field list to select all fields and then click and drag any one of the
selected fields to the query design grid.

TIP

You can double-click the asterisk to include all fields within the table in the query
result. Although this “trick” is handy, in that changes to the table structure magically
affect the query’s output, I believe that it is dangerous. When the asterisk is selected,
all table fields are included in the query result, regardless of whether they are needed.
Including all these fields can cause major performance problems in a LAN, WAN, or
client/server application.

Create a database based on the Northwind 2007 template database that comes with
Access (see Figure 4.4). If you want to prevent the Startup form from appearing, hold
down your Shift key as you click the Create button and until the database opens. Click to
select the Create tab. Select Query Design from the Other group. The Show Table dialog
box appears. Add the Customers table to the query and close the Show Table dialog.

CHAPTER 4 What Every Developer Needs to Know About Query Basics140

FIGURE 4.4 Create a database based on the Northwind 2007 template database that
comes with Access.

Follow these steps to select eight fields from the Customers table:

1. Click the ID field.

2. Hold down your Shift key and click the Job Title field. This should select the ID,
Company, First Name, Last Name, E-mail Address, and Job Title fields.

3. Scroll down the list of fields, using the vertical scrollbar, until the Country/Region
field is visible.

4. Hold down your Ctrl key and click the Home Phone field.

5. With the Ctrl key still held down, click the Country/Region field. All eight fields
should now be selected.

Click and drag any of the selected fields from the table on the top half of the query
window to the query design grid on the bottom. All eight fields should appear in the
query design grid (see Figure 4.5). You might need to use the horizontal scrollbar to view
some of the fields on the right.

Everything You Need to Know About Query Basics 141

4

FIGURE 4.5 After you add fields to the query, they appear on the query design grid.

TIP

The easiest way to run a query is to click the Run button on the ribbon (which looks
like an exclamation point). You can click the View button to run a query, but this
method works only for Select queries, not for Action queries. The View button has a
special meaning for Action queries (explained in Chapter 12). Clicking Run is prefer-
able because you don’t have to worry about what type of query you’re running. After

running a Select query, you should see what looks like a datasheet, with only the
fields you selected. To return to the query’s design, click the View button.

TIP

Introduced with Access 2002 are shortcut keys that allow you to easily toggle between
the various query views: Ctrl+>, Ctrl+.(period), Ctrl+<, and Ctrl,(comma). Ctrl+> and
Ctrl+.(period) take you to the next view; Ctrl+< and Ctrl,(comma) take you to the
previous view.

Removing a Field from the Query Design Grid
To remove a field from the query design grid, follow these steps:

1. Find the field you want to remove.

2. Click the small horizontal gray button (column selector) immediately above the
name of the field. The entire column of the query design grid should become black
(see Figure 4.6).

3. Press the Delete key or click Delete Columns in the Query Setup group of the
Design tab.

CHAPTER 4 What Every Developer Needs to Know About Query Basics142

FIGURE 4.6 Removing a field from the query design grid.

Assume that you have decided to remove the Region field from the query design grid. Use
the horizontal scrollbar to see the Country/Region field on the query design grid, and
then do the following:

1. Click the column selector immediately above the Country/Region field. The entire
column of the query design grid should become black, and the cursor turns into a
downward-pointing arrow.

2. Press the Delete key to remove the Country/Region field from the query design grid.

Inserting a Field After the Query Is Built
The process for inserting a field after a query is built differs, depending on where you
want to insert the new field. If you want to insert it after the existing fields, the easiest
method is to double-click the name of the field you want to add. If you prefer to insert
the new field between two existing fields, the best approach is to click and drag the field
you want to add, dropping it onto the field you want to appear to the right of the
inserted field.

To insert the Business Phone field between the Job Title and Home Phone fields, click
and drag the Business Phone field from the table until it’s on top of the Home Phone field.
This technique inserts the field in the correct place. To run the query, click Run on the
ribbon.

Moving a Field to a Different Location on the Query Design Grid
Although the user can move a column while in a query’s Datasheet view, sometimes you
want to permanently alter the position of a field in the query output. You can do this as a
convenience to the user or, more importantly, because you will use the query as a founda-
tion for forms and reports. The order of the fields in the query becomes the default order
of the fields on any forms and reports you build using any of the wizards. You can save
yourself quite a bit of time by ordering your queries effectively.

To move a single column, follow these steps:

1. Select a column while in the query’s Design view by clicking its column selector (the
button immediately above the field name).

2. Click the selected column a second time and then drag it to a new location on the
query design grid.

Follow these steps to move more than one column at a time:

1. Drag across the column selectors of the columns you want to move.

2. Click any of the selected columns a second time and then drag them to a new loca-
tion on the query design grid.

Everything You Need to Know About Query Basics 143

4

Move the First Name and Last Name fields so that they appear before the Company field.
Do this by clicking and dragging from the column selector for First Name to the column
selector for Last Name. Both columns should be selected. Click again on the column selec-
tor for either column and then click and drag until the thick black line jumps to the left
of the Company field.

NOTE

Moving a column in the Datasheet view doesn’t modify the query’s underlying design. If
you move a column in Datasheet view, subsequent reordering in the Design view isn’t
reflected in the Datasheet view. In other words, Design view and Datasheet view are
no longer synchronized, and you must reorder both by hand. This actually serves as an
advantage in most cases. As you will learn later, if you want to sort by the Country/
Region field and then by the Company field, the Country/Region field must appear to
the left of the Company field in the design of the query. If you want the Company field
to appear to the left of the Country/Region field in the query’s result, you must make
that change in Datasheet view. The fact that Access maintains the order of the
columns separately in both views allows you to easily accomplish both objectives.

Saving and Naming Your Query
To save your query at any time, click the Save button on the Quick Access toolbar. If the
query is a new one, Access prompts you to name your query. Query names should begin
with the tag qry so that you can easily recognize and identify them as queries. It’s impor-
tant to understand that, when you save a query, you’re saving only the query’s definition,
not the actual query result.

Return to the design of the query. To save your work, click Save on the Quick Access
toolbar that appears to the right of the Microsoft Access button. When prompted for a
name, call the query qryCustomers.

Ordering Your Query Result
When you run a new query, notice that the query output appears in no particular order,
but generally, you want to order it. You can do this by using the Sort row of the query
design grid.

To order your query result, follow these steps:

1. In Design view, click within the query design grid in the Sort cell of the column you
want to sort (see Figure 4.7).

2. Use the drop-down combo box to select an ascending or descending sort.

CHAPTER 4 What Every Developer Needs to Know About Query Basics144

FIGURE 4.7 Changing the order of the query result.

To sort in ascending order by the Company field, follow these steps:

1. In Design view, click in the Sort row of the query design grid for the Company field.

2. Open the Sort drop-down combo box.

3. Select Ascending.

4. Run your query and view the results. Your records should now be ordered by the
Company field.

5. If you want to return to the query’s design, click View on the toolbar.

Sorting by More Than One Field
Quite often, you want to sort your query output by more than one field. The columns
you want to sort must be placed in order from left to right on the query design grid, with
the column you want to act as the primary sort on the far left and the secondary, tertiary,
and any additional sorts following to the right. If you want the columns to appear in a
different order in the query output, you must move them manually in Datasheet view
after you run the query.

Sort the query output by the Country/Region field and, within individual country group-
ings, by the Last Name and First Name fields. Because sorting always occurs from left to
right, you must place the Country/Region field before the LastName and FirstName fields.
Therefore, you must move the Country/Region field. Follow these steps:

Ordering Your Query Result 145

4

1. Select the Country/Region field from the query design grid by clicking the thin gray
button above the Country/Region column.

2. After you have selected the Country/Region field, move your mouse back to the thin
gray button and click and drag to the left of the First Name and Last Name fields. A
thick gray line should appear to the left of the First Name field.

3. Release the mouse button.

4. Select the Last Name field from the query design grid by clicking the thin gray
button above the Last Name column.

5. After you have selected the Last Name field, move your mouse back to the thin gray
button and click and drag to the left of the First Name field. A thick gray line
should appear to the left of the First Name field.

6. Release the mouse button.

7. Change the sort of the Country/Region field to Ascending.

8. Change the sort of the Last Name field to Ascending.

9. Change the sort of the First Name field to Ascending.

10. Run the query. The records should be ordered by country/region and, within the
country grouping, by last name and first name.

Refining Your Query with Criteria
So far, you have learned how to select the fields you want and how to indicate the sort
order for your query output. One of the important features of queries is the capability to
limit your output by selection criteria. Access allows you to combine criteria by using any
of several operators to limit the criteria for one or more fields. The operators and their
meanings are covered in Table 4.1.

TABLE 4.1 Access Operators and Their Meanings

Operator Meaning Example Result

= Equal to =”Sales” Finds only those records with
“Sales” as the field value

< Less than <100 Finds all records with values less
than 100 in that field

<= Less than <=100 Finds all records with values
or equal to less than or equal to 100 in

that field
> Greater than >100 Finds all records with values

greater than 100 in that field
>= Greater than >=100 Finds all records with values

or equal to greater than or equal to 100 in
that field

CHAPTER 4 What Every Developer Needs to Know About Query Basics146

Operator Meaning Example Result

<> Not equal to <>”Sales” Finds all records with values other
than Sales in the field

And Both conditions Created by adding Finds all records where the
must be true criteria on the same conditions in both fields are true

line of the query
design grid to more
than one field

Or Either condition “CA” or “NY” Finds all records with the value
can be true or “UT” of “CA”, “NY”, or “UT” in the field

Like Compares a Like Finds all records with the value of
string expression “Sales*” “Sales” at the beginning of the
to a pattern field

Between Finds a range of Between Finds all records with the values of
values 5 and 10 5–10 (inclusive) in the field

In Determines if the In(“CA”, Finds all records with the value of
value is in the “NY”,”UT”) “CA”, “NY”, or “UT” in the field
string

Not Same as Not “Sales” Finds all records with values other
not equal to than Sales in the field

Is Null Finds Nulls Is Null Finds all records where no data
has been entered in the field

Is Not Finds all records Is Not Finds all records where data has
Null not Null Null been entered in the field

NOTE

The asterisk (*) is a wildcard. Used in the example “Like Sales*”, it will return all
records that begin with Sales and are followed by any remaining characters.

Criteria entered for two fields on a single line of the query design grid are considered an
And, which means that both conditions need to be true for the record to appear in the
query output. Entries made on separate lines of the query design grid are considered an
Or, which means that either condition can be true for the record to be included in the
query output. Take a look at the example in Figure 4.8; this query would output all
records in which the Job Title field begins with either Marketing or Owner, regardless of
the last name. It outputs the records in which the Job Title field begins with Sales only
for the customers whose last names begin with the letters M through R inclusive.

Design a query to find all the sales agents in Brazil or France. The criteria you build
should look like those in Figure 4.9.

Refining Your Query with Criteria 147

4

TABLE 4.1 Continued

FIGURE 4.8 Adding And and Or conditions to a query.

CHAPTER 4 What Every Developer Needs to Know About Query Basics148

FIGURE 4.9 The criteria to select sales agents whose country is either Brazil or France.

1. Notice that the criterion for the Country/Region field is “Brazil” Or “France”
because you want both Brazil and France to appear in the query output. The crite-
rion for the Job Title field is “Sales Agent”. Because the criteria for both the
Country/Region and Job Title fields are entered on the same line of the query design
grid, both must be true for the record to appear in the query output. In other words,
the customer must be in either Brazil or France and must also be a sales agent.

2. Modify the query so that you can output all the customers for whom the job title
begins with Sales. Try changing the criteria for the Job Title field to Sales. Notice
that no records appear in the query output because no contact titles are just Sales.
You must enter “Like Sales*” for the criteria. Now you get the Sales Agents, Sales
Associates, Sales Managers, and so on. You still don’t see the Assistant Sales

Agents because their titles don’t begin with Sales. Try changing the criteria to
“Like *Sales*”. Now all the Assistant Sales Agents appear.

Working with Dates in Criteria
Access gives you significant power for adding date functions and expressions to your
query criteria. Using these criteria, you can find all records in a certain month, on a
specific weekday, or between two dates. Table 4.2 lists several examples.

TABLE 4.2 Sample Date Criteria

Expression Meaning Example Result

Date() Current date Date() Records with the current
date within a field

Day(Date) The day Day Records with the order date
of a date ([OrderDate])=1 on the first day of the

month
Month(Date) The month Month Records with the order

of a date ([OrderDate])=1 date in January
Year(Date) The year Year Records with the order

of a date ([OrderDate])=2007 date in 2007

Weekday(Date) The weekday Weekday Records with the order date
of a date ([OrderDate])=2 on a Monday

Between Date A range of Between All records in 2007
And Date dates #1/1/2007#

and #12/31/2007#

DatePart A specific DatePart All records in the second
(Interval, part of a date (“q”, quarter
Date) [OrderDate])=2

The Weekday(Date, [FirstDayOfWeek]) function works based on your locale and how
your system defines the first day of the week. Weekday() used without the optional

Working with Dates in Criteria 149

4

FirstDayOfWeek argument defaults to vbSunday as the first day. A value of 0 defaults the
FirstDayOfWeek to the system definition. Other values can be set also.

Figure 4.10 illustrates the use of a date function. Notice that DatePart(“q”,[Order
Date]) is entered as the expression, and the value of 2 is entered for the criteria.
Year([Order Date)] is entered as another expression, with the number 2007 as the crite-
ria. Therefore, this query outputs all records in which the order date is in the second
quarter of 2007.

CHAPTER 4 What Every Developer Needs to Know About Query Basics150

FIGURE 4.10 Using the DatePart() and Year() functions in a query.

Understanding How You Can Update Query Results
If you haven’t realized it yet, you can usually update the results of your query. This means
that if you modify the data in the query output, the data in the tables underlying the
query is permanently modified.

Build a query based on the Customers table. Add the ID, Company, Address, City, and
Country/Region fields to the query design grid; then run the query. Change the address of
a particular customer and make a note of the customer ID of the customer whose address
you changed. Make sure you move off the record so that Access writes the change to disk.
Close the query, open the actual table in Datasheet view, and find the record whose
address you modified. Notice that the change you made was written to the original table;
the reason is that a query result is a dynamic set of records that maintains a link back to

the original data. You get this result whether you’re on a standalone machine or on a
network.

CAUTION

Understanding how Access updates query results is essential; otherwise, you might
mistakenly update table data without even realizing you did so. Updating multitable
queries is covered later in this chapter in the sections “Pitfalls of Multitable Queries”
and “Row Fix-Up in Multitable Queries.”

Building Queries Based on Multiple Tables
If you have properly normalized your table data, you probably want to bring the data
from your tables back together by using queries. Fortunately, you can do this quite easily
with Access queries.

The query in Figure 4.11 joins the Customers, Orders, and Order Details tables, pulling
fields from each. Notice that the ID and Company fields are selected from the Customers
table, the Order ID and Order Date from the Orders table, and the Unit Price and
Quantity from the Order Details table. After running this query, you should see the
results shown in Figure 4.12. By creating a multitable query, you can look at data from
related tables, along with the data from the Order Details table.

Building Queries Based on Multiple Tables 151

4

FIGURE 4.11 A query joining the Customers, Orders, and Order Details tables.

FIGURE 4.12 The results of querying multiple tables.

Build a query that combines information from the Customers, Orders, and Order Details
tables. To do this, build a new query by following these steps:

1. Click to select the Create tab.

2. Click Query Design in the Other group. The Show Table dialog box appears.

3. From the Show Table dialog box, select Customers, Orders, and Order Details by
holding down the Ctrl key and clicking on each table name. Then select Add.

4. Click Close.

5. Some of the tables included in the query might be hiding below. If so, scroll down
using the vertical scrollbar to view any tables that aren’t visible. Notice the join
lines between the tables; they’re based on the relationships set up in the
Relationships window.

6. Select the following fields from each table:

Customers: Country/Region, City

Orders: Order Date

Order Details: Unit Price, Quantity

7. Sort by Country/Region and then City in ascending order. Your finished query
design should look like the one in Figure 4.13.

8. Run the query. Data from all three tables should be included in the query output.

CHAPTER 4 What Every Developer Needs to Know About Query Basics152

FIGURE 4.13 The query design from the example.

NOTE

To remove a table from a query, click anywhere on the table in the top half of the query
design grid and press the Delete key. You can add tables to the query at any time by
clicking the Show Table button on the ribbon. If you prefer, you can select the
Navigation Pane and then click and drag tables directly from the Navigation Pane to
the top half of the query design grid.

Pitfalls of Multitable Queries
You should be aware of some pitfalls of multitable queries; they involve updating as well
as which records you see in the query output.

Remember that you can’t update certain fields in a multitable query. These are the join
fields on the “one” side of a one-to-many relationship (unless the Cascade Update
Referential Integrity feature has been activated). You also can’t update the join field on
the “many” side of a relationship after you’ve updated data on the “one” side. More
importantly, which fields can be updated, and the consequences of updating them, might
surprise you. If you update the fields on the “one” side of a one-to-many relationship,
you must be aware of that change’s impact. You’re actually updating that record in the
original table on the “one” side of the relationship; several records on the “many” side of
the relationship will be affected.

Building Queries Based on Multiple Tables 153

4

NOTE

For more information about referential integrity, refer to Chapter 3, “Relationships: Your
Key to Data Integrity.”

For example, Figure 4.14 shows the result of a query based on the Customers, Orders, and
Order Details tables. I have changed “Company AA” to “Business AA” on a specific
record of my query output. You might expect this change to affect only that specific order
detail item. Pressing the down-arrow key to move off the record shows that all records
associated with Company AA have been changed (see Figure 4.15). This happened because
all the orders for Company AA were actually getting their information from one record in
the Customers table—the record for ID 27. This is the record I modified while viewing the
query result.

CHAPTER 4 What Every Developer Needs to Know About Query Basics154

FIGURE 4.14 Changing a record on the “one” side of a one-to-many relationship.

To get this experience firsthand, try changing the data in the City field for one of the
records in the query result. Notice that the record (as well as several other records) is modi-
fied. This happens because the City field actually represents data from the “one” side of
the one-to-many relationship. In other words, when you’re viewing the Country/Region
and City fields for several records in the query output, the data for the fields might origi-
nate from one record. The same goes for the Order Date field because it’s also on the “one”
side of a one-to-many relationship. The only field in the query output that can’t be modi-
fied is TotalPrice, a calculated field. Practice modifying the data in the query result and
then returning to the original table and noticing which data has changed.

FIGURE 4.15 The result of changing a record on the “one” side of a one-to-many relation-
ship. Notice that the Company Name field has been updated for all records with 27 as the ID.

The second pitfall of multitable queries is figuring out which records result from such a
query. So far, you have learned how to build only inner joins. Join types are covered in
detail in Chapter 12, but for now, it’s important to understand that the query output
contains all customers, regardless if they have orders, and all orders, regardless if they
have order detail. This means that not all customers and all orders are listed. In Chapter
12, you’ll learn how to build queries in which you can list only customers who have
orders. You’ll also learn how to list only the customers without orders.

Row Fix-Up in Multitable Queries
The Row Fix-Up feature is automatically available to you in Access. As you fill in key
values on the “many” side of a one-to-many relationship in a multitable query, the
nonkey values are automatically looked up in the parent table. Most database developers
refer to this as enforced referential integrity. A foreign key must first exist on the “one” side
of the query to be entered successfully on the “many” side. As you can imagine, you
don’t want to be able to add an order to your database for a nonexistent customer.

For example, the query in Figure 4.16 is based on the Customers and Orders tables. The
fields included in the query are Customer ID from the Orders table; Company, Address, and
City from the Customers table; and Order ID from the Orders table. If the Customer ID
associated with an order is changed, the Company, Address, and City are looked up from
the Customers table and immediately displayed in the query result. Notice in Figure 4.17
how the information for Business AA is displayed in the query result. Figure 4.18 shows
that the Company, Address, and City change automatically when the Customer ID is

Building Queries Based on Multiple Tables 155

4

FIGURE 4.17 The query result before selecting another customer ID.

changed to Company AA. Don’t be confused by the combo box used to select the customer
ID. The presence of the combo box within the query is a result of Access’s auto-lookup
feature, covered in Chapter 2, “What Every Developer Needs to Know About Databases and
Tables.” The customer ID associated with a particular order is actually being modified in
the query. If the user adds a new record to the query, Access fills in the customer informa-
tion as soon as the user selects the customer ID associated with the order.

CHAPTER 4 What Every Developer Needs to Know About Query Basics156

FIGURE 4.16 This query illustrates the use of Row Fix-Up in a query with multiple tables.

Creating Calculated Fields 157

4

FIGURE 4.18 The result of an auto-lookup after the customer ID is changed. The information
on the “one” side of the relationship is “fixed up” to display information for the appropriate
customer.

Creating Calculated Fields
One of the rules of data normalization is that the results of calculations shouldn’t be
included in your database. You can output the results of calculations by building those
calculations into your queries, and you can display the results of the calculations on
forms and reports by making the query the foundation for a form or report. You can also
add controls to your forms and reports containing the calculations you want. In certain
cases, this can improve performance. (This topic is covered in more depth in Chapter 16,
“Debugging: Your Key to Successful Development.”)

The columns of your query result can hold the result of any valid expression, including
the result of a user-defined function. This makes your queries extremely powerful. For
example, you can enter the following expression:

Left([First Name],1) & “.” & Left([Last Name],1) & “.”

This expression would give you the first character of the first name followed by a period,
the first character of the last name, and another period. An even simpler expression
would be this one:

[Unit Price]*[Quantity]

This calculation would simply take the Unit Price field and multiply it by the Quantity
field. In both cases, Access would automatically name the resulting expression. For
example, the calculation that results from concatenating the first and last initials is
shown in Figure 4.19. Notice that in the figure, the expression has been given a name
(often referred to as an alias). To give the expression a name, such as Initials, you must
enter it as follows:

Initials:Left([First Name],1) & “.” & Left([Last Name],1) & “.”

The text preceding the colon is the name of the expression—in this case, Initials. If you
don’t explicitly give your expression a name, it defaults to Expr1.

CHAPTER 4 What Every Developer Needs to Know About Query Basics158

FIGURE 4.19 The result of the expression Initials:Left([FirstName],1) & “.” &
Left([LastName],1) & “.” in the query.

Follow these steps to add a calculation that shows the unit price multiplied by the
quantity:

1. Scroll to the right on the query design grid until you can see a blank column.

2. Click in the Field row for the new column.

3. Type Total Price:[Unit Price]*Quantity. (These fields come from the Order
Details table.) If you want to see more easily what you’re typing, press Shift+F2
(Zoom). The dialog box shown in Figure 4.20 appears. (Access will supply the space
after the colon and the square brackets around the field names if you omit them.)

FIGURE 4.20 Expanding the field with the Zoom function (Shift+F2).

4. Click OK to close the Zoom window.

5. Run the query. The total price should appear in the far-right column of the query
output. The query output should look like the one in Figure 4.21.

NOTE

You can enter any valid expression in the Field row of your query design grid. Notice
that field names included in an expression are automatically surrounded by square
brackets, unless your field name has spaces. If a field name includes any spaces, you
must enclose the field name in brackets; otherwise, your query won’t run properly. This
is just one of the many reasons why field and table names shouldn’t contain spaces.

Creating Calculated Fields 159

4

FIGURE 4.21 The result of the total price calculation.

Getting Help from the Expression Builder
The Expression Builder is a helpful tool for building expressions in your queries, as well as
in many other situations in Access. To invoke the Expression Builder, click in the Field
cell of your query design grid and then click Builder on the Ribbon (see Figure 4.22).
Notice that the Expression Builder is divided into three columns. The first column shows
the objects in the database. After selecting an element in the left column, select the
elements you want to paste from the middle and right columns.

CHAPTER 4 What Every Developer Needs to Know About Query Basics160

FIGURE 4.22 The Expression Builder makes it easier for you to create expressions in
your query.

The example in Figure 4.23 shows Functions selected in the left column. Within Functions,
both user-defined and built-in functions are listed; here, the Functions object is expanded
with Built-In Functions selected. In the center column, Date/Time is selected. After you
select Date/Time, all the built-in date and time functions appear in the right column. If you
double-click a particular function—in this case, the DatePart function—the function and its
parameters are placed in the text box at the top of the Expression Builder window. Notice
that the DatePart function has four parameters: interval, date, firstweekday, and
firstweek. If you know what needs to go into each of these parameters, you can simply
replace the parameter placemarkers with your own values. If you need more information,
you can invoke help on the selected function and learn more about the required parame-
ters. In Figure 4.24, two parameters are filled in: the interval and the name of the field being
evaluated. After you click OK, the expression is placed in the Field cell of the query.

FIGURE 4.23 The Expression Builder with the DatePart function selected and pasted in the
expression box.

Summarizing Data with Totals Queries 161

4

FIGURE 4.24 A function pasted by Expression Builder with the parameters updated with
appropriate values.

Summarizing Data with Totals Queries
By using Totals queries, you can easily summarize numeric data. You can use Totals
queries to calculate the Sum, Average, Count, Minimum, Maximum, and other types of
summary calculations for the data in your query result. These queries let you calculate
one value for all the records in your query result or group the calculations as desired.
For example, you could determine the total sales for every record in the query result, as
shown in Figure 4.25, or you could output the total sales by country and city (see Figure
4.26). You could also calculate the total, average, minimum, and maximum sales amounts
for all customers in the United States. The possibilities are endless.

FIGURE 4.25 Total sales for every record in the query result.

CHAPTER 4 What Every Developer Needs to Know About Query Basics162

FIGURE 4.26 Total sales by country and city.

To create a Totals query, follow these steps:

1. Add to the query design grid the fields or expressions you want to summarize. It’s
important that you add the fields in the order in which you want them grouped.
For example, Figure 4.27 shows a query grouped by country and then city.

2. Click Totals on the ribbon to add a Total row to the query. By default, each field in
the query has Group By in the Total row.

3. Click in the Total row on the query design grid.

4. Open the combo box and choose the calculation you want (see Figure 4.27).

5. Leave Group By in the Total cell of any fields you want to group by, as shown in
Figure 4.27. Remember to place the fields in the order in which you want them
grouped. For example, if you want the records grouped by country and then by sales
representative, you must place the Country/Region field to the left of the Employee
ID field on the query design grid. On the other hand, if you want records grouped
by Employee ID and then by country, you must place the Employee ID field to the
left of the Country field on the query design grid.

6. Add the criteria you want to the query.

Summarizing Data with Totals Queries 163

4

FIGURE 4.27 Selecting the type of calculation for the Total row from a drop-down list.

Figure 4.28 shows the design of a query that finds the total, average, maximum, and
number of sales by country and city; Figure 4.29 shows the results of running the query.
As you can see, Totals queries can give you valuable information.

FIGURE 4.28 A query that finds the total, average, maximum, and number of sales by
country and city.

CHAPTER 4 What Every Developer Needs to Know About Query Basics164

FIGURE 4.29 The results of running a query with many aggregate functions.

If you save this query and reopen it, you’ll see that Access has made some changes to its
design. The Total cell for the Sum is changed to Expression, and the Field cell is changed
to the following:

TotalSales: Sum([Unit Price]*[Quantity])

If you look at the Total cell for the Avg, it’s also changed to Expression. The Field cell is
changed to the following:

AverageSales: Avg([Unit Price]*[Quantity])

Access modifies the query in this way when it determines that you’re using an aggregate
function on an expression having more than one field. You can enter the expression
either way. Access stores and resolves the expression as noted.

Modify the query to show the total sales by country, city, and order date. Before you
continue, save your query as qryCustomerOrderInfo and then close it. With the list of
queries visible, click qryCustomerOrderInfo. Right-click the query and select Copy from
the context-sensitive menu. Right-click the query again and select Paste. Access should
prompt you for the name of the new query. Type qryCustomerOrderSummary and click OK.
Right-click qryCustomerOrderSummary and select Design from the context-sensitive menu.
Delete both the Unit Price and Quantity fields from the query output. To turn your
query into a Totals query, follow these steps:

1. Click Totals on the Design tab of the ribbon. Notice that an extra line, called the
Total line, is added to the query design grid; this line says Group By for all fields.

2. Group by country, city, and order date but total by the total price (the calculated
field). Click the Total row for the Total Price field and use the drop-down list to
select Sum (refer to Figure 4.27).

3. Run the query. Your result should be grouped and sorted by country, city, and order
date, with a total for each unique combination of the three fields.

4. Return to the query’s design and remove the order date from the query design grid.

5. Rerun the query. Notice that now you’re summarizing the query by country and
city.

6. Change the Total row to Avg. Now you’re seeing the average price times quantity for
each combination of country and city. Change it back to Sum and save the query.

As you can see, Totals queries are both powerful and flexible. You can’t edit their output,
but you can use them to view the sum, minimum, maximum, average, and count of
the total price, all at the same time. You can easily modify how you’re viewing this
information—by country, country and city, and so on—all at the click of your mouse.

Summarizing Data with Totals Queries 165

4

Excluding Fields from the Output
At times, you need to include a column in your query that you don’t want displayed in
the query output; this is often the case with columns used solely for criteria. Figure 4.30
shows an example. If you run this query, you get the total, average, count, and maximum
sales grouped by both country and order date. However, you want to group only by
country and use the order date only as criteria. Therefore, you need to set the Total row of
the query to Where, as shown in Figure 4.31. The column used in Where has been excluded
from the query result. You can easily determine this by noting that the check box in the
Show row of the Order Date column is unchecked.

CHAPTER 4 What Every Developer Needs to Know About Query Basics166

FIGURE 4.30 A query with criteria for the order date, before excluding fields from the query
output.

Understanding Nulls and Query Results
Null values in your table’s fields can noticeably affect query results. A Null value is differ-
ent from a zero or a zero-length string, which indicates that the data doesn’t exist for a
particular field; a field contains a Null value when no value has yet been stored in the
field. (As discussed in Chapter 2, you enter a zero-length string in a field by typing two
quotation marks.)

FIGURE 4.31 The Total row of the Order Date field is set to Where, excluding the field from
the query result.

Null values can affect the results of multitable queries, queries including aggregate func-
tions (Totals queries), and queries with calculations. Null values can also affect the result
of aggregate queries. For example, if you perform a count on a field containing Null
values, the Access Database Engine includes in the count only records having non-Null
values in that field. If you want to get an accurate count, it’s best to perform the count on
a primary key field or some other field that can’t have Null values.

Probably the most insidious problem with Nulls happens when you include them in
calculations. Including a Null value in a calculation containing a numeric operator (+, -,
/, *, and so on) results in a Null value. In Figure 4.32, for example, notice that the query
includes a calculation that adds the values in the Parts and Labor fields. These fields have
been set to have no default value and, therefore, contain Nulls unless something has been
explicitly entered into them. Running the query gives you the results shown in Figure
4.33. Notice that all the records having Nulls in either the Parts or Labor fields contain a
Null in the result.

The solution to this problem is constructing an expression that converts the Null values
to zero. The expression looks like this:

TotalCost: NZ([Parts])+NZ([Labor])

Understanding Nulls and Query Results 167

4

FIGURE 4.32 The Design view of a query that propagates Nulls in the query result.

CHAPTER 4 What Every Developer Needs to Know About Query Basics168

FIGURE 4.33 The result of running a query illustrating Nulls.

The NZ() function determines whether the Parts field contains a Null value. If the Parts
field contains a Null value, the expression converts it to a zero and includes it in the
calculation; otherwise, the expression uses the field’s value in the calculation. The same
expression is used to evaluate the Labor field. The result of the modified query is shown
in Figure 4.34.

CAUTION

Nulls really cause trouble when the results of one query containing Nulls are used
in another query; a snowball effect occurs. You can easily miss the problem and
output reports with inaccurate results. Using the NZ() function eliminates this kind of
problem. You can use the NZ() function to replace the Null values with zeros or zero-
length strings. Be careful when doing this, though, because this function might affect
other parts of your query that use this value for another calculation. Also, be sure to
use any function in a query on the top level of the query tree only because functions
at lower levels might hinder query performance. A query tree refers to the fact that a
query can be based on other queries. Placing the criteria at the top of the query tree
means that, if queries are based on other queries, the criteria should be placed in the
highest-level queries.

Understanding Nulls and Query Results 169

4

FIGURE 4.34 The query with an expression to convert Nulls to zero.

Refining Your Queries with Field, Field List, and
Query Properties
You can use field and query properties to refine and control the behavior and appearance
of the columns in your query and of the query itself. Here’s how:

1. Click in a field to select the field, click in a field list to select the field list, or click in
the Query Design window anywhere outside a field or the field list to select the
query.

2. Click Property Sheet on the Design tab of the ribbon.

3. Modify the desired property.

NOTE

If you click a field within the query design grid that has its Show check box cleared,
only the query properties will display when you bring up the property sheet for that
field, not the field properties. If you mark the Show check box with the property sheet
open, the field properties will then display.

Field Properties: Changing the Behavior of a Field
The properties of a field in your query include the Description, Format, Input Mask, and
Caption of the column. The Description property documents the use of the field and
controls what appears on the status bar when the user is in that column in the query
result. The Format property is the same as the Format property in a table’s field; it controls
the display of the field in the query result. The Input Mask property, like its table counter-
part, actually controls how the user enters and modifies data in the query result. The
Caption property in the query does the same thing as a Caption property of a field: It sets
the caption for the column in Datasheet view and the default label for forms and reports.

You might be wondering how the properties of the fields in a query interact with the
same properties of a table. For example, how does the Caption property of a table’s field
interact with the Caption property of the same field in a query? All properties of a table’s
field are automatically inherited in your queries. Properties explicitly modified in the
query override those same properties of a table’s fields. Any objects based on the query
inherit the properties of the query, not those of the original table.

NOTE

In the case of the Input Mask property, it is important that the Input Mask of the
query not be in conflict with the Input Mask of the table. You can use the Input
Mask of the query to further restrict the Input Mask of the table, but not to override it.
If the query’s Input Mask conflicts with the table’s Input Mask, the user will not be
able to enter data into the table.

CHAPTER 4 What Every Developer Needs to Know About Query Basics170

Field List Properties: Changing the Properties of the Field List
Field List properties specify attributes of each table participating in the query. The two
Field List properties are Alias and Source. The Alias property is used most often when
the same table is used more than once in the same query. This is done in self-joins,
covered in Chapter 12. The Source property specifies a connection string or database
name when you’re dealing with external tables that aren’t linked to the current database.

Query Properties: Changing the Behavior of the Overall Query
Microsoft offers many properties, shown in Figure 4.35, that allow you to affect the
behavior of the overall query. Some of the properties are discussed here; the rest are
covered as applicable throughout this book.

Refining Your Queries with Field, Field List, and Query Properties 171

4

FIGURE 4.35 Query properties that affect the behavior of a given query.

The Description property documents what the query does. The Default View property
was introduced with Access 2002. This property determines which view will display by
default whenever the query is run. Datasheet is the default setting; PivotTable or
PivotChart are the other two Default View settings that are available. Output All
Fields shows all the fields in the query results, regardless of the contents of the Show
check box in each field. Top Values lets you specify the top x number or x percent of
values in the query result. The Unique Values and Unique Records properties are used to
determine whether only unique values or unique records are displayed in the query’s
output. (These properties are also covered in detail in Chapter 12.)

Several other more advanced properties exist. The Run Permissions property has to do
with user-level security and is covered in Mastering Microsoft Office Access 2003. Source
Database, Source Connect String, ODBC Timeout, and Max Records all have to do with
client/server issues and are covered in Alison Balter’s Mastering Access 2002 Enterprise
Development. The Record Locks property concerns multiuser issues and is also covered in
Alison Balter’s Mastering Access 2002 Enterprise Development. The Recordset Type property
determines whether updates can be made to the query output. By default, this is set to
the Dynaset type, allowing updates to the underlying data. Filter displays a subset that
you determine, rather than the full result of the query. Order By determines the sort
order of the query. The Orientation property determines whether the visual layout of the
fields is left-to-right or right-to-left. The Subdatasheet Name property allows you to specify
the name of the table or query that will appear as a subdatasheet within the current
query. After you set the Subdatasheet Name property, the Link Child Fields and Link

Master Fields properties designate the fields from the child and parent tables or queries
that are used to link the current query to its subdatasheet. Finally, the Subdatasheet

Height property sets the maximum height for a subdatasheet, and the Subdatasheet
Expanded property determines whether the subdatasheet automatically appears in an
expanded state.

Building Parameter Queries When You Don’t Know
the Criteria at Design Time
You, or your application’s users, might not always know the parameters for query output
when designing the query. Parameter queries let you specify different criteria at runtime
so that you don’t have to modify the query each time you want to change the criteria.

For example, say you have a query, like the one shown in Figure 4.36, for which you want
users to specify the date range of the data they want to view each time they run the
query. The following clause has been entered as the criterion for the Order Date field:

Between [Enter Starting Date] And [Enter Ending Date]

This criterion causes two dialog boxes to appear when the user runs the query. The first
one, shown in Figure 4.37, prompts the user with the criterion text in the first set of
brackets (refer to Figure 4.36). The text the user types is substituted for the bracketed text.
A second dialog box appears, prompting the user for whatever is in the second set of
brackets. The user’s response is used as the criterion for that query.

Add a parameter to the query qryCustomerOrderSummary so that you can view only Total
Price summaries within a specific range. Go to the criteria for Total Price and type
Between [Please Enter Starting Value] and [Please Enter Ending Value]. This
allows you to view all the records in which the total price is within a specific range. The
bracketed text is replaced by actual values when the user runs the query. Click OK and
run the query. You’re then prompted to enter both a starting and an ending value.

CHAPTER 4 What Every Developer Needs to Know About Query Basics172

FIGURE 4.36 This parameter query prompts for a starting date and an ending date.

Building Parameter Queries When You Don’t Know the Criteria at Design Time 173

4

FIGURE 4.37 This dialog box appears when the parameter query is run.

To make sure Access understands what type of data should be placed in these parameters,
you must define the parameters. Do this by selecting Parameters from the Query menu to
open the Query Parameters window. Another way to display the Query Parameters
window is to right-click a gray area in the top half of the query design grid; then select
Parameters from the ribbon while on the Design tab.

The text that appears within the brackets for each parameter must be entered in the
Parameter field of the Query Parameters dialog box. The type of data in the brackets must
be defined in the Data Type column. Figure 4.38 shows an example of a completed Query
Parameters dialog box.

You can easily create parameters for as many fields as you want, and you add parameters
just as you would add more criteria. For example, the query shown in Figure 4.39 has
parameters for the Job Title, City, and Country/Region fields in the Employees table
from the Northwind database. Notice that all the criteria are on one line of the query
design grid, which means that all the parameters entered must be satisfied for the records

to appear in the output. The criterion for the title is [Please Enter a Job Title]. This
means that the records in the result must match the title entered when the query is run.
The criterion for the City field is [Please Enter a City]. Only records with a city
matching the city entered will appear in the result when the query is run. Finally, the
criterion for the Country/Region field is [Please Enter a Country or Region]. This
means that only records with the country or region entered when the query is run will
appear in the output.

The criteria for a query can also be the result of a function; this technique is covered in
Chapter 12.

CHAPTER 4 What Every Developer Needs to Know About Query Basics174

FIGURE 4.38 This completed Query Parameters dialog box declares two date parameters.

FIGURE 4.39 The Query Design window showing a query with parameters for three fields.

NOTE

Parameter queries offer significant flexibility; they allow the user to enter specific crite-
ria at runtime. What’s typed in the Query Parameters dialog box must exactly match
what’s typed within the brackets; otherwise, Access prompts the user with additional
dialog boxes.

TIP

You can add as many parameters as you like to a query, but the user might become
bothered if too many dialog boxes appear. Instead, build a custom form that feeds
the Parameter query. This technique is covered in Chapter 11, “Advanced Report
Techniques.”

Adding Smart Tags to Your Queries
You use smart tags to perform tasks that you would usually open other applications to
perform. For example, you can use smart tags to schedule an appointment, email a letter,
or add an Outlook contact, all based on data stored in an Access table or found in an
Access query result. Taking things a step further, you can even determine the weather or
get the latest news on each city that appears in the result of an Access query!

Adding a Smart Tag to a Query
Adding a smart tag to an Access query is extremely simple. Here are the steps involved:

1. Create a new query or open an existing query in Design view.

2. Select the field on which you want to base the smart tag. For example, if you want
to use the smart tag to schedule an appointment, you would probably want to select
the contact name field.

3. Show the Field properties for the field and click within the Smart Tags property (see
Figure 4.40).

4. Click the Build button (the ellipsis). The Smart Tags dialog box appears (see Figure
4.41).

5. Click to select the smart tag you want to add. For example, to send mail, schedule a
meeting, open an existing contact, and add new contacts, select Person Name.

6. Click OK. A smart tag appears in the Smart Tags property (see Figure 4.42).

Adding Smart Tags to Your Queries 175

4

FIGURE 4.40 The Field Properties window with the Smart Tags property selected.

CHAPTER 4 What Every Developer Needs to Know About Query Basics176

FIGURE 4.41 The Smart Tags dialog box allows you to select the smart tag you want to add.

Using a Smart Tag
After you have added a smart tag to a query, you will notice smart tag action buttons
when you run the query (see Figure 4.43). Click the action button for a particular cell in
the query result to see the actions available for that smart tag. In Figure 4.44, you can see
that the Person Name smart tag has the Schedule a Meeting and Show my Calendar menu
items associated with it. Figure 4.45 shows the result of selecting the Schedule a Meeting
menu item.

FIGURE 4.42 After you click OK, a smart tag appears in the Smart Tags property.

Adding Smart Tags to Your Queries 177

4

FIGURE 4.43 After you add a smart tag, smart tag action buttons appear when you run
the query.

FIGURE 4.44 Click the action button for a particular cell in the query result to see the
actions available for that smart tag.

CHAPTER 4 What Every Developer Needs to Know About Query Basics178

FIGURE 4.45 After you select the Schedule a Meeting menu item, a new appointment
appears.

Creating a Pivot Table or Pivot Chart from a Query
Pivot tables and pivot charts provide great ways for you to summarize detailed data stored
in your Access Database Engine and SQL Server databases. Pivot tables present your data
in a spreadsheet-like format, whereas pivot charts automatically render pivot table views
as line, bar, or area charts. Access 2002 introduced two views for queries: PivotTable and
PivotChart.

Creating the Query to Display in PivotTable or PivotChart View
You must build a query that is appropriate to display in PivotTable or PivotChart view.
Queries that lend themselves to be displayed in PivotTable or PivotChart view provide
many ways for the user to manipulate his data. An example of such a query is one that
contains information about country, city, salesperson, sales, and date of sale. You could
determine sales by city and salesperson for each month, or you could determine sales in
each country for each salesperson during the year 2006. As you can see, the idea of pivot
tables is to let you slice and dice the data in any way you need to at a given moment
in time.

For this example, create the following query within the Northwind database:

1. Create a new query in Design view.

2. Add the Customers, Orders, Products, Order Details, and Employees tables to the
query.

3. Add the Country/Region and City fields from the Customers table.

4. Add an expression: SalesPerson:Employees![Last Name] & “, “ &
Employees![First Name].

5. Add the Order Date from the Orders table.

6. Add the Product Name from the Products table.

7. Add an expression: Total:[Order Details]!UnitPrice * [Order
Details]!Quantity.

You now have a query on which you can base your pivot table.

NOTE

When you are adding tables to the query, some may be joined with outer joins. You
must change these joins to inner joins for the query to run properly. Chapter 12 covers
the process of converting the outer joins to inner joins.

Creating a Pivot Table or Pivot Chart from a Query 179

4

Displaying the Query in PivotTable View
To switch to PivotTable view, click to select the Design tab and then open the View drop-
down on the ribbon. Select PivotTable View from the drop-down. The empty PivotTable
view appears, and the Access ribbon changes to include the PivotTable tab (see Figure 4.46).

CHAPTER 4 What Every Developer Needs to Know About Query Basics180

FIGURE 4.46 When you switch to PivotTable view, the empty PivotTable view appears and the
Access toolbar changes to the PivotTable toolbar.

The PivotTable Field List window also appears. You will add four types of fields to your
pivot table. They include the following:

. Column fields—Often hold date fields; generally hold information with the fewest
number of data items.

. Row fields—One or more fields that display data by attributes.

. Totals or Detail fields—The crosstab data itself. These are the numeric values that
make up the meat of the pivot table.

. Filter fields—One or more optional fields that restrict that data appearing in the
columns, rows, or both.

To display your initial pivot table, take the following steps:

1. Drag the Country/Region field so that it appears as a Row field.

2. Drag the City field so that it appears as a second Row field to the right of the
Country field.

3. Drag and drop the Order Date By Month field so that it appears as a Column field.

4. Drag and drop the Total field so that it appears as a Detail field. The resulting
pivot table appears as shown in Figure 4.47.

Creating a Pivot Table or Pivot Chart from a Query 181

4

FIGURE 4.47 The pivot table that appears after dragging and dropping the Total so that it
appears as a Detail field.

Displaying Summarized Data
Including all the detail data may be much more information than you need. You can alter
the query design to show only summary information. Here’s how it works:

1. Switch to Design view.

2. Click the Totals button on the Design tab of the ribbon.

3. Group by all fields except the data field and any fields that you are using for a filter.

4. Change the Total cell for any fields you are filtering by to Where.

5. Change the Total cell for the data field to Sum. The resulting query appears as
shown in Figure 4.48.

6. Run the query to verify the design (see Figure 4.49).

7. Return to PivotTable view.

FIGURE 4.48 The query that appears after changing the Total cell for the data field to Sum.

CHAPTER 4 What Every Developer Needs to Know About Query Basics182

FIGURE 4.49 The underlying query after modifying it to summarize the data.

8. To add grand totals, click any one of the Total buttons to select all three columns
and then click the AutoCalc button on the Design tab of the ribbon.

9. Select the desired calculation from the drop-down.

10. With the columns still selected, right-click and select Hide Details.

11. Observe the summarized data (see Figure 4.50).

Creating a Pivot Table or Pivot Chart from a Query 183

4

FIGURE 4.50 The PivotTable view after modifying the underlying query to summarize the
data.

Filtering Pivot Table Data
By default, Access includes all data in the pivot table. You can filter the pivot table to
display only selected values for a row or column. For example, you can filter to display
data for only sales in specific countries. Here’s how it works:

1. Make sure that you have expanded the pivot table display to include the detail for
the data on which you want to filter (see the next section, “Using Drill-Down”).

2. Click the arrow of the field button to filter. The list contains an item for each field
value (see Figure 4.51).

3. Click the (All) check box to deselect all fields.

4. Click to select the field values that you want to include in the output.

5. Click OK to close the list and apply the filter.

FIGURE 4.51 The list contains an item for each field value.

Using Drill-Down
Generally, the initial pivot table contains an excessive amount of detail. Here’s how you
can modify the amount of detail to show summary information only:

1. Switch to Design view.

2. Click the Totals button on the Design tab of the ribbon to eliminate the data
grouping.

3. Return to PivotTable view. The Total or Details Fields drop zone is empty because
you changed the structure of the query.

4. Click the Field List button to display the PivotTable Field List.

5. Expand the Totals item.

6. Right-click the Sum of Total item and select Delete, which clears the data from
the cells.

7. Drag the Years button outside the window to remove the columns for the years,
leaving an empty No Totals column.

8. Click Show Details and then drag the No Totals column outside the window. At this
point, the Column Fields and Totals or Detail Fields drop zones are empty.

9. Drag the Total column to the Columns drop zone.

10. Click the Show Details button and then the Hide Details button. You will see the
data expand and collapse.

CHAPTER 4 What Every Developer Needs to Know About Query Basics184

Exchanging Axes
If you are viewing Year across the top and Country down the side, and you decide to
view Year across the side and Country across the top, simply drag and drop their name
buttons to switch the positions in which they appear. You can also easily drag new items
to the pivot table from the PivotTable list at any time or remove them from the pivot
table entirely.

Switching to PivotChart View
When you define a PivotTable view, you automatically generate a PivotChart view. You
will see how evident this is by using the View tool to switch to PivotChart view. The
results appear as shown in Figure 4.52. You can use Ribbon buttons to add legends and
to modify the chart type.

Understanding Query Specifications and Limitations 185

4

FIGURE 4.52 The PivotChart view shows the pivot table as a chart.

Understanding Query Specifications
and Limitations
Queries have a number of specifications and limitations that you should be aware of.
Fortunately, you will generally not find them too restricting. They are listed in Table 4.3.

TABLE 4.3 Query Specifications and Limitations

Item Limitation

Number of enforced relationships 32 per table minus the number of indexes that
are on the table for fields or combinations of
fields that are not involved in relationships

Number of tables in a query 32
Number of fields in a recordset 255
Recordset size 1GB
Sort limit 255 characters in one or more fields
Number of levels of nested queries 50
Number of characters in a cell of 1024
the query design grid
Number of characters for a parameter 255
in a parameter query
Number of Ands in a WHERE or HAVING 99
clause
Number of characters in an SQL Approximately 64,000
statement

Practical Examples: Building Queries Needed by
the Time and Billing Application for a Computer
Consulting Firm
Build a query based on tblTimeCardHours. This query gives you the total billing amount
by project for a specific date range. The query’s design is shown in Figure 4.53. Notice
that this is a Totals query that groups by project and totals by using the following
expression:

BillAmount: Sum([BillableHours]*[BillingRate])

The DateWorked field is used as the Where clause for the query with this criteria:

Between [Enter Start Date] And [Enter End Date]

The two parameters of the criteria are declared in the Query Parameters dialog box (see
Figure 4.54). Save this query as qryBillAmountByProject.

The second query is based on tblClients, tblProjects, and tblTimeCardHours. This
query gives you the total billing amount by client for a specific date range. The query’s
design is shown in Figure 4.54. This query is a Totals query that groups by the company
name from the tblClients table and totals by using the following expression:

BillAmount: Sum([BillableHours]*[BillingRate])

CHAPTER 4 What Every Developer Needs to Know About Query Basics186

FIGURE 4.53 The design of the qryBillAmountByProject query.

Practical Examples 187

4

FIGURE 4.54 The Query Parameters window for qryBillAmountByProject.

As with the first query, the DateWorked field is used as the Where clause for the query,
and the parameters are defined in the Query Parameters dialog box. Save this query as
qryBillAmountByClient.

These queries are included on the sample CD-ROM in a database called CHAP4.ACCDB. Of
course, if this were a completed application, you would build many other queries.

FIGURE 4.55 The design of the qryBillAmountByClient query.

Summary
This chapter covered the foundations of perhaps the most important function of a data-
base: getting data from the database and into a usable form. You learned about the Select
query used to retrieve data from a table, how to retrieve data from multiple tables, and
how to use functions in your queries to make them more powerful by synthesizing data.
In later chapters, you will extend your abilities with Action queries and queries based on
other queries (also known as nested queries).

CHAPTER 4 What Every Developer Needs to Know About Query Basics188

IN THIS CHAPTER

. Why This Chapter Is Important

. Understanding the Uses
of Forms

. Examining the Anatomy of a
Form

. Creating a New Form

. Working with the Form Design
Window

. Working in Layout View

. Selecting the Correct Control
for the Job

. Control Morphing

. Conditional Formatting

. Determining Which Form
Properties Are Available and
Why You Should Use Them

. Determining Which Control
Properties Are Available and
Why You Should Use Them

. Understanding Bound,
Unbound, and Calculated
Controls

. Using Expressions to Enhance
Your Forms

. Using the Command Button
Wizards: Programming Without
Typing

. Building Forms Based on More
Than One Table

. Basing Forms on Queries: The
Why and How

. Connecting Access Forms and
the Internet

. Adding Smart Tags to Your
Forms

. Creating a Pivot Table or Pivot
Chart from a Form

. Examining Form Specifications
and Limitations

. Practical Examples: Designing
Forms for Your Application

CHAPTER 5

What Every Developer
Needs to Know

About Forms

Why This Chapter Is Important
Most Access applications are centered on forms. Forms are
used to collect and display information, navigate about the
application, and more. This chapter covers all the basics of
creating and working with forms. We’ll begin by looking at
the various uses of forms. Then we’ll delve into the wealth
of form and control properties. You’ll learn the differences
between bound, unbound, and calculated controls and
when it is appropriate to use each. You’ll also learn impor-
tant form techniques, such as how to create forms based on
data from more than one table and when you should popu-
late forms with a query result rather than a table or embed-
ded Structured Query Language (SQL) statement.

Understanding the Uses of Forms
Developers often think that forms exist solely for the
purpose of data entry. To the contrary, forms serve many
different purposes in Access 2007:

. Data entry—Displaying and editing data

. Application flow—Navigating through your
application

. Custom dialog boxes—Providing messages to
your users

. Printing information—Providing hard copies of data
entry information

Probably the most common use of an Access form is as a vehicle for displaying and
editing existing data or for adding new data. Fortunately, Access offers many features that
allow you to build forms that ease data entry for your users. Access also makes it easy for
you to design forms that let your users view and modify data, view data but not modify
it, or add new records only.

Although not everyone immediately thinks of an Access form as a means of navigating
through an application, forms are quite strong in this area. Figure 5.1 shows a form
created with the Switchboard Manager in Access 2007; Figure 5.2 shows a form contain-
ing links that allow you to navigate about your application. Although the Switchboard
Manager makes designing a switchboard form simple, you will find any type of switch-
board easy to develop. You can be creative with switchboard forms by designing forms
that are both useful and exciting. Switchboard forms are covered in detail in Chapter 10,
“Advanced Form Techniques.”

You can also use Access to create custom dialog boxes used to display information or
retrieve information from your users. The custom dialog box shown in Figure 5.3 gets the
information needed to run a report. The user must fill in the required information before
he can proceed.

Another strength of Access is its capability to produce professional-looking printed forms.
With many other products, print a data entry form is difficult; sometimes you need to re-
create the entire form as a report. In Access, printing a form is simply a matter of clicking
a button that has a little code written behind it. You have the option of creating a report
that displays the information your user is entering or of printing the form itself.

CHAPTER 5 What Every Developer Needs to Know About Forms190

FIGURE 5.1 A form created with the Switchboard Manager.

FIGURE 5.2 A form containing links to database objects.

Understanding the Uses of Forms 191

5

FIGURE 5.3 A custom dialog box that lets the user specify criteria for a report.

Access offers many styles of forms. You can display the data in a form one record at a
time, or you can let the user view several records at once. You can display forms modally,
meaning that the user must respond to and close the form before continuing, or you can
display them so that the user can move through the open forms at will. The important
point to remember is that there are many uses and styles of forms. You will learn about
them throughout this chapter, in Chapter 10, and throughout the book. As you read this
chapter, remember that your forms are limited only by your imagination.

FIGURE 5.4 Record navigation using a combo box placed in the form header.

Examining the Anatomy of a Form
Access forms are composed of a few different sections; each one has its own function and
behavior. The three main sections of an Access form are

. Header

. Detail

. Footer

The Detail section of a form is the main section; it’s the one used to display the data of
the table or query underlying the form. As you will see, the Detail section can take on
many different looks. It’s quite flexible and robust.

The Header and Footer sections of the form are used to display information that doesn’t
change from record to record. You will often place command buttons that control the
form—such as one used to let users view all the projects associated with a particular
client—in a form’s header or footer. Controls can also be used to help the user navigate
around the records associated with the form. In the example shown in Figure 5.4, the user
can select from a valid list of clients. After the user selects a client from the combo box,
the user is moved to the appropriate record.

CHAPTER 5 What Every Developer Needs to Know About Forms192

Creating a New Form 193

5

Creating a New Form
You can create a new form in several ways. The most common way is to first use the
Navigation Pane to select the table or query on which you want to base the form and
then select the Form button in the Forms group on the Create tab. Access creates a form
based on the table or query and places you in Layout view of that form. (See the section
of this chapter “Working in Layout View.”) There are several other methods that you can
use to create a form (see Figure 5.5). These methods include creating a split form, a multi-
ple item form, a pivot chart, a blank form, a form using a Form Wizard, a datasheet, a
modal dialog box, and a pivot table. Before we look at the other methods of creating a
form, let’s look at creating a form using the Form Wizard. Even the most experienced
developers use the Form Wizard to perform certain tasks.

Creating a Form with the Form Wizard
To create a form with the Form Wizard, click to expand the More Forms drop-down in the
Forms group on the Create tab (see Figure 5.5). First, the Form Wizard prompts you for
the name of the table or query you want to use as the form’s foundation. Whether you’re
creating a form with the Form Wizard or from Design view, it’s generally better to base a
form on a query or on an embedded SQL statement (a query stored as part of a form).
Doing so offers better performance (unless your form requires all fields and all records),
allows for more flexibility, and lets you create a form based on data from several tables.

FIGURE 5.5 You can use several different methods to create a form.

Figure 5.6 shows the Tables/Queries drop-down list. You can see that all the tables are
listed, and if you scroll down, you can see that the tables are followed by all the queries.
After you select a particular table or query, Access displays its fields in the list box on the
left (see Figure 5.7). To select the fields you want to include on the form, double-click the
name of the field or click on the field and then click the > button. In the example shown
in Figure 5.7, several fields have been selected from the qryClients query.

CHAPTER 5 What Every Developer Needs to Know About Forms194

FIGURE 5.6 A list of tables and queries available for use in the Form Wizard.

FIGURE 5.7 Selected fields from qryClients.

After you’ve selected the fields you want, click Next. The second step of the Form Wizard
allows you to specify the layout for the form you’re designing. You can select from
Columnar, Tabular, Datasheet, or Justified; the most common choice is Columnar. Click
Next after selecting a form layout.

In the third step of the Form Wizard, you can select a style for your form from several
predefined styles (see Figure 5.8). Although you can modify all the properties set by the
wizard in Design view after the form has been created, to save time, it’s best to select the
appropriate style now. Click Next after selecting a style.

Creating a New Form 195

5

FIGURE 5.8 Selecting a form style.

In the final step of the Form Wizard, supply a title for your form. (If you just accept the
default, the form will have the same name as the underlying table or query, which could
be confusing.) Unfortunately, the form’s title becomes the name of the form as well. For
this reason, type the text you want to use as the name of the form. If you want to follow
standard naming conventions, you should begin the name of the form with the tag frm.
You can worry about changing the title in Design view of the form. This last step of the
Form Wizard also lets you specify whether you want to view the results of your work or
open the form in Design view. It’s usually best to view the results and then modify the
form’s design after you have taken a peek at what the Form Wizard has done.

TIP

Appendix A, “Naming Conventions,” (available for download at
www.samspublishing.com) has a complete list of standard naming conventions that
you can refer to when you have questions about the proper names to give an object.

TIP

Another way to start the Form Wizard is to use the Navigation Pane to first select the
table or query on which you want to base the form. You then click the Create tab and
select Form Wizard from the More Forms drop-down. You won’t have to use the
Tables/Queries drop-down list to select a table or query. The table or query you
selected before invoking the wizard is automatically selected for you.

www.samspublishing.com

Creating a Form from Design View
Although the Form Wizards are both powerful and useful, in many cases you’ll prefer
building a form from scratch, especially if you’re building a form that’s not bound to data.
To create a form without using a wizard, click to select the Create tab. Then click the Form
Design button in the Forms group. The Form Design window appears (see Figure 5.9).

CHAPTER 5 What Every Developer Needs to Know About Forms196

FIGURE 5.9 Use the Form Design window to build and customize a form.

Working with the Form Design Window
You can use the Form Design window to build and customize a form. Using this window,
you can add objects to a form and customize them by using the property sheet. You can
also build and customize a form using Layout View. The section of this chapter titled
“Working in Layout View” covers this process in detail. Microsoft has supplied many form
and control properties. After gaining a command of these properties, you can customize
the look and feel of your forms.

Understanding and Working with the Form Design Tools
Even the best developer needs the right tools for the job. Fortunately, Microsoft has given
you tools to help you build exciting and useful forms. The Form Design window includes
the Ribbon and the actual form you’re designing. Other tools are available to help you
with the design process, including the Field List window and property sheet.

Two additional tabs appear when you’re in a form’s Design view: the Design tab and the
Arrange tab. The Design tab has buttons you use to switch views, add controls, add fields,
and work with control and form properties. As its name implies, the Arrange tab contains
tools that allow you to control the layout of controls on the form. It contains tools used
for control alignment, control layering, control sizing, and more.

Toggling the Tools to Get What You Want
A few windows are available to help you with the design process when you’re in a form’s
Design view. If you don’t have a high-resolution monitor, you’ll probably find it annoy-
ing to have all the windows open at once. In fact, with all the windows open at once on a
low-resolution monitor, the form is likely to get buried underneath all the windows. This
is why Microsoft has made each window open and close in a toggle-switch–like fashion.
The Design tab has buttons for the Field List window and property sheet, and each of
these toolbar buttons is a toggle. Clicking once on the button opens the appropriate
window; clicking a second time closes it. Furthermore, you can show or hide the
Navigation Pane.

Figure 5.10 shows a form with the Field List window, Navigation Pane, and property sheet
open. Although you can size each of these windows however you like, the design environ-
ment in this low-resolution display is rather cluttered with all these windows open. One
of the tricks in working with Access is in knowing when it’s appropriate to have each set
of tools available. The goal is to have the right windows open at the right time as often
as possible.

Working with the Form Design Window 197

5

FIGURE 5.10 Design view with the Navigation Pane and Field List visible.

NOTE

You can close the Field List window and property sheet by using the toolbar buttons. In
addition, you can close them by using the Close button on each window. You can hide
the Navigation Page using the collapse button.

TIP

Access 2007 offers some handy shortcut keystrokes for working with forms and form
properties. In Design view, the F4 key displays the property sheet. When you are
working with a property sheet in Design view, pressing Shift+F7 will shift the focus to
the Form Design window while maintaining the focus on the selected control. You can
toggle among all available views for a form (Design, Datasheet, Form, Layout,
PivotTable, PivotChart) by pressing Ctrl+> or Ctrl+. (period). You can toggle among the
different views in the reverse order using Ctrl+< or Ctrl+, (comma). These shortcut
keys are also supported for changing between available views of tables, queries,
reports, pages, views, and stored procedures.

Adding Fields to the Form
You can easily add fields to a form by using the Field List window, which contains all the
fields that are part of the form’s record source. The record source for the form is the table,
query, or embedded SQL statement that underlies the form. For example, in Figure 5.10,
the form’s record source is qryClients. The fields listed in the Field List pane are the
fields that are part of the query. To add fields to a form, use these two steps:

1. Make sure the Field List window is visible. If it isn’t, click the Add Existing Fields
button on the ribbon.

2. Locate the field you want to add to the form; then click and drag the field from the
field list to the place on the form where you want it to appear. The location you
select becomes the upper-left corner of the text box, and the attached label appears
to the left of where you dropped the control.

NOTE

A control is an object that you add to a form or report. Types of controls include text
boxes, combo boxes, list boxes, and check boxes.

NOTE

To add multiple fields to a form at the same time, select several qryClients fields
from the field list. Use the Ctrl key to select noncontiguous fields or the Shift key to
select contiguous fields. For example, hold down your Ctrl key and click on three
noncontiguous fields. Each field will be selected. Next, click a field, hold down your
Shift key, and click another field. All fields between the two fields will be selected. If

CHAPTER 5 What Every Developer Needs to Know About Forms198

you want to select all fields, double-click the field list title bar. Click and drag any one
of the selected fields to the form, and all of them will be added to the form at once.

Selecting, Moving, Aligning, and Sizing Form Objects
You must know several important tricks of the trade when selecting, moving, aligning,
and sizing form objects. These tips will save you hours of frustration and wasted time.

Selecting Form Objects
The easiest way to select a single object on a form is to click it. After you have selected
the object, you can move it, size it, or change any of its properties. Selecting multiple
objects is a bit trickier, but you can do it in several ways. Different methods are more effi-
cient in different situations. To select multiple objects, you can hold down the Shift key
and click each object you want to select. Each selected object is surrounded by selection
handles, indicating that it has been selected.

Figure 5.11 shows a form with four selected objects; it’s important to understand which
objects are actually selected. The ClientID text box, Company Name label and text box,
and Contact First Name label are all selected; however, the Client ID label,
ContactFirstName, and Contract Last Name label and associated text box aren’t selected.
If you look closely at the figure, you can see that the selected objects are completely
surrounded by selection handles. The Client ID label and ContactFirstName text box
each has just a single selection handle because each is attached to objects that are
selected. If you change any properties of the selected objects, the Client ID label and
ContactFirstName text box will be unaffected.

Working with the Form Design Window 199

5

FIGURE 5.11 Selecting objects on a form.

You can also select objects by lassoing them. Objects to be lassoed must be located adja-
cent to one another on the form. Place your mouse pointer on a blank area of the form
(not over any objects) and then click and drag your mouse pointer. You can see a thin
line around the objects your mouse pointer is encircling. When you let go, any objects
that were within the lasso, including those only partially surrounded, are selected. If you
want to deselect any of these objects to exclude them, hold down your Shift key and click
the object(s) you want to deselect.

One of my favorite ways to select multiple objects is to use the horizontal and vertical
rulers that appear at the edges of the Form Design window. Click and drag within the
ruler. Notice that as you click and drag on the vertical ruler, two horizontal lines appear,
indicating which objects are selected. As you click and drag across the horizontal ruler,
two vertical lines appear, indicating the selection area. When you let go of your mouse,
any objects within the lines are selected. As with the process of lassoing, to remove any
objects from the selection, hold down your Shift key and click on the object(s) you want
to deselect.

Moving Things Around
To move a single control with its attached label, you don’t need to select it first. Place
your mouse over the object and click and drag. An outline appears, indicating the object’s
new location. When the object reaches the position you want, release the mouse button.
The attached label automatically moves with its corresponding control.

To move more than one object at a time, you must first select the objects you want to
move. Select the objects using one of the methods outlined in the preceding section.
Place your mouse pointer over any of the selected objects and click and drag. An outline
appears, indicating the proposed new position for the objects. Release the mouse button
when you have reached the position you want for the objects.

Sometimes you want to move a control independent of its attached label, which requires
a special technique. If you click to select a control, such as a text box, and then you click
and drag, both the control and the attached label move as a unit, and the relationship
between them is maintained. If you place your mouse pointer over the larger handle in
the upper-left corner of the object and click and drag here, the control moves indepen-
dently of its attached label, and the relationship between the objects changes.

Aligning Objects to One Another
Access makes it easy to align objects. Figure 5.12 shows several objects that aren’t aligned.
Notice that the attached labels of three of the objects are selected. If you align the
attached labels, the controls (in this case, text boxes) remain in their original positions.
If you select the text boxes as well, they will try to align with the attached labels. Because
Access doesn’t allow the objects to overlap, the text boxes end up immediately next to
their attached labels. To left-align any objects (even objects of different types), select the
objects you want to align and then click to select the Arrange tab. Click Align Left in the
Control Alignment group. The selected objects are then aligned (see Figure 5.13). You can
align the left, right, top, or bottom edges of any objects on a form.

CHAPTER 5 What Every Developer Needs to Know About Forms200

FIGURE 5.12 The form before aligning objects.

Working with the Form Design Window 201

5

FIGURE 5.13 The form after aligning objects.

NOTE

Don’t confuse the Control Alignment feature with the Align tools (Align Left, Center,
Align Right) on the Home tab. The Control Alignment feature aligns objects one to the
other, but the Align tools on the Home tab provide justification for the text inside an
object.

Snap to Grid
The Snap to Grid feature determines whether objects snap to the gridlines on the form as
you move and size them. This feature is found on the Arrange tab. If you turn off this
feature (it’s a toggle), objects can be moved and sized without regard for the gridlines.

TIP

I prefer to leave the Snap to Grid feature on at all times. I use a special trick to
temporarily deactivate the feature when needed: I hold down my Ctrl key as I click and
drag to move objects. The Snap to Grid setting is then ignored.

Power Sizing Techniques
Just as there are several ways to move objects, you have several options for sizing objects.
When you select an object, you can use each handle, except for the handle in the upper-
left corner of the object, to size the object. The handles at the top and bottom of the
object allow you to change the object’s height, and the handles at the left and right of
the object let you change the object’s width. You can use the handles in the upper-right,
lower-right, and lower-left corners of the object to change the width and height of the
object simultaneously. To size an object, place your mouse pointer over a sizing handle,
click, and drag. You can select several objects and size them all at once. Each of the
selected objects increases or decreases in size by the same amount; their relative sizes stay
intact.

Access offers several powerful methods of sizing multiple objects, found on the Arrange
tab:

. To Fit—Sizes the selected objects to fit the text within them

. To Grid—Sizes the selected objects to the nearest gridlines

. To Tallest—Sizes the selected objects to the height of the tallest object in the
selection

. To Shortest—Sizes the selected objects to the height of the shortest object in
the selection

. To Widest—Sizes the selected objects to the width of the widest object in the
selection

. To Narrowest—Sizes the selected objects to the width of the narrowest object in
the selection

CHAPTER 5 What Every Developer Needs to Know About Forms202

Probably the most confusing of the options is To Fit. This option is somewhat deceiving
because it doesn’t perfectly size text boxes to the text within them. In today’s world of
proportional fonts, you can’t perfectly size a text box to the largest possible entry it
contains. Generally, however, you can visually size text boxes to a sensible height and
width. Use the field’s Size property to limit what’s typed in the text box. If the entry is
too large to fit in the allocated space, the user can scroll to view the additional text. As
the following Tip indicates, the To Fit option is much more appropriate for labels than it
is for text boxes.

TIP

To quickly size a label to fit the text within it, select the label and then double-click any
of its sizing handles, except the sizing handle in the upper-left corner of the label.

Controlling Object Spacing
Access gives you excellent tools for spacing the objects on your form an equal
distance from one another. Notice in Figure 5.14 that the ClientID, CompanyName,
ContactFirstName, and ContactLastName text boxes aren’t equally spaced vertically from
one another. To make the vertical distance between selected objects equal, choose the
Make Vertical Spacing Equal tool in the Position group of the Arrange tab. In Figure 5.15,
you can see the result of using this command on the selected objects in Figure 5.14.

Working with the Form Design Window 203

5

FIGURE 5.14 The form before modifying vertical spacing.

FIGURE 5.15 The form after modifying vertical spacing.

You can make the horizontal distance between objects equal by using the Make
Horizontal Spacing Equal tool in the Position group of the Arrange tab. Other related
commands that are useful are Increase Vertical Spacing, Increase Horizontal Spacing,
Decrease Vertical Spacing, and Decrease Horizontal Spacing, all available in the Position
group on the Arrange tab. These commands maintain the relationship between objects
while proportionally increasing or decreasing the distance between them.

Modifying Object Tab Order
The tab order for the objects on a form is determined by the order in which you add the
objects to the form. However, this order isn’t necessarily appropriate for the user. You
might need to modify the tab order of the objects on the form. To do so, select Tab Order
from the Control Layout group of the Arrange tab. This opens the Tab Order dialog box,
shown in Figure 5.16. This dialog box offers two options. Use the Auto Order button to
tell Access to set the tab order based on each object’s location in a section on the form.
However, if you want to customize the order of the objects, click and drag the gray
buttons to the left of the object names listed under the Custom Order heading to specify
the objects’ tab order.

NOTE

You must set the tab order for the objects in each section of the form (that is, Header,
Detail, or Footer) separately. To do this, select the appropriate section from the Tab
Order dialog box and then set the order of the objects in the section. If your selected
form doesn’t have a header or footer, the Form Header and Form Footer sections are
unavailable.

CHAPTER 5 What Every Developer Needs to Know About Forms204

FIGURE 5.16 Use the Tab Order dialog box to select the tab order of the objects in each
section of a form.

Working in Layout View
After you use Quick Create to create a form, Access leaves you in Layout view for that form
(see Figure 5.17). Using Layout view, you can work with a form and immediately see the
results of your efforts. In other words, instead of having to switch back and forth between
Design view and Form view, you can remain in Layout view and look at your live data as you
are modifying the design of the form. Most design changes are supported in Layout view.

NOTE

When you use Quick Create to create a form based on a query, Access automatically
names the form with the same name as the query and creates a header containing a
label with the query name. You should rename the form to begin with frm and change
the caption of the label to a more appropriate caption.

The following are some examples of design changes:

. Dragging a field from the new Field List window onto the new form

. Using the property sheet to change most properties

. Working with grouped controls

. Removing fields from the form

. Adding formatting to the form objects

NOTE

You can easily switch between views using the View drop-down in the Views group of
the Design tab.

Working in Layout View 205

5

FIGURE 5.17 In Layout view, you can work with a form and immediately see the results of
your efforts.

Layout view is even supported with the new stacked and tabular layouts. If you prefer to
work in Design view, it is still available to you.

Using Stacked and Tabular Layouts
Forms and reports often contain tabular information, such as a row that contains all the
fields for a customer. Using Access 2007, you can group these controls so that you can
easily manipulate them as a unit. You can even create a layout with objects from different
sections of the form! Using a layout, you can

. Move or resize the layout

. Apply formatting to the layout

. Move controls within the layout

. Add columns to the layout

. Remove columns from the layout

There are two types of layouts: tabular and stacked. With a tabular layout, the controls are
arranged like a spreadsheet in rows and columns (see Figure 5.18). The labels appear at
the top of the layout. Tabular layouts always span two sections because the labels are in
one section and the controls are in another.

CHAPTER 5 What Every Developer Needs to Know About Forms206

Working in Layout View 207

5

FIGURE 5.18 A tabular layout is arranged like a spreadsheet.

With a stacked layout, the controls are arranged vertically, as you would see them on a
paper form (see Figure 5.19). A label appears to the left of each control. Stacked layouts
are always contained within a single section of the form.

FIGURE 5.19 A stacked layout is similar to a paper form.

You can have multiple layouts on one form, and you can have both a tabular and a
stacked layout on the same form. Layouts are saved with the form so that you can use
them each time you are working in Layout view or Design view. The following sections go
into the details of how to create and work with a layout.

Creating a Layout
Access automatically creates a stacked control layout if you use Quick Create to create the
form or if you create a blank form and then drag a field from the Field List window onto
the form. Creating your own layout is easy. Here’s how:

1. Use the Shift key to select the controls that you want to include in the layout.

2. Click the Arrange tab (see Figure 5.20). Notice in the figure that on the active form
the controls are arranged with the labels immediately above the field controls.

CHAPTER 5 What Every Developer Needs to Know About Forms208

FIGURE 5.20 Before you create the layout, the active form has controls arranged with the
labels immediately above the field controls.

3. Select Tabular or Stacked in the Control Layout group. Access creates the layout. If
you select Tabular, the result appears as shown in Figure 5.21. Note that the labels
now appear in a form header. If you select Stacked, the result appears as shown in
Figure 5.22. In this case, there is no form header.

FIGURE 5.21 The tabular form appears with the labels contained in the form header.

Working in Layout View 209

5

FIGURE 5.22 The stacked form appears with the controls stacked one above the other.

Moving and Resizing a Form Layout
After you have created a layout, you can easily move and resize it. Whether you are in
Layout view or Design view, an orange selector appears in the upper-left corner of the
layout. To move a layout, simply click to select the layout and then click and drag it to the
appropriate place on the form. Notice in Figure 5.23 that the layout appears in two places.
The first version of the layout designates the original position, and the second version of
the layout shows the new position of the layout if you stop dragging it with the mouse. To
size a layout, you must also click to select it. Use any sizing handle to click and drag to
resize the layout. An outline appears designating the new size of the layout (see Figure
5.24). When you release the mouse button, the resizing process will be complete.

CHAPTER 5 What Every Developer Needs to Know About Forms210

FIGURE 5.23 You can see the proposed new position for the layout.

Formatting a Form Layout
Whenever you want to apply formatting to all the controls in a layout, simply select
the layout and then apply the necessary formatting. All controls within the layout are
affected by the change. For example, if you select a layout and modify the font, the font
will change for all controls within the layout.

Moving Controls Within a Form Layout
After you have created a layout, you might want to move a column within it. This simple
process takes four steps:

1. Select the appropriate control within the layout (the control that you want to
move).

2. Hover your mouse pointer over the control. Be sure the mouse pointer does not
appear as a sizing handle.

FIGURE 5.24 You can see the proposed new size for the layout.

Working in Layout View 211

5

FIGURE 5.25 The horizontal bar indicates the new location for the layout.

3. Click and drag the control to its new location. Notice that a horizontal or vertical
bar appears as you drag the control, indicating its new location (see Figure 5.25).

4. Release the mouse button. The control appears in its new location.

Adding Columns to a Form Layout
Sometimes you will want to add a field from the Field List window to the layout. The
process is quite simple: Select the field in the Field List window and drag it over the
layout. A horizontal or vertical bar appears, indicating where the field will be placed
when you release the mouse button.

In another situation, you might want to add existing controls on the form to your layout.
This process differs depending on whether you are in Design view or Layout view. If the
form is open in Design view, follow these steps:

1. Click to select the first control that you want to add to the control layout.

2. Hold down the Shift key and click to select any additional controls that you want to
include in the layout. These fields can even be in other layouts.

3. If the form is open in Design view, simply drag the selected fields to the layout. A
horizontal or vertical bar appears, indicating where the fields will be placed when
you release the mouse button.

If the form is open in Layout view, here are the steps involved:

1. Click to select the first control that you want to add to the control layout.

2. Hold down the Shift key and click to select any additional controls that you want to
include in the layout. These fields can even be in other layouts.

3. Click to select the Arrange tab (see Figure 5.26).

CHAPTER 5 What Every Developer Needs to Know About Forms212

FIGURE 5.26 The Arrange tab provides features applicable to a layout.

4. Select the type of layout to which you are adding the controls (Tabular or Stacked).
Access creates a new layout and adds the selected controls to it.

5. Drag the new layout to the existing layout. A horizontal or vertical bar indicates
where the fields will be placed when you release the mouse button. The layout with
the added fields appears as shown in Figure 5.27.

Working in Layout View 213

5

FIGURE 5.27 The layout now contains three additional fields.

Removing Columns from a Form Layout
Removing columns from a layout requires these steps:

1. Click to select the columns that you want to remove from the layout.

2. Right-click one of the controls that you want to remove and select Layout, Remove
(see Figure 5.28). Access removes the field from the layout but does not remove it
from the form. The control can now be moved, formatted, and in other ways
manipulated independent of the controls in the layout.

Switching Between a Stacked and a Tabular Layout
Access 2007 makes it easy to switch been a stacked and a tabular layout. Here are the
steps involved:

1. Select the control layout by clicking the orange layout selector at the top-left corner
of the layout. This action selects all the objects in the layout.

FIGURE 5.28 Removing a field from the layout does not remove it from the form.

2. On the Arrange tab, select the appropriate layout from the Control Layout group.
As an alternative, you can right-click the control layout, select Layout, and then
click to select the layout that you want. In either case, Access rearranges the
controls into the selected layout type.

Splitting One Control Layout into Two Form Layouts
Sometimes you may want to split a single control layout into two layouts. Here’s how this
procedure works:

1. Use the Shift key to select the controls that you want to move to the new layout.

2. On the Arrange tab, select the appropriate layout for the selected controls (Tabular
or Stacked). As an alternative, you can right-click the selected controls and then
select Layout. You are given the option of selecting the layout that you want.

Removing a Form Layout
If you no longer want to work with controls as a layout, you can remove the layout
entirely. This technique does not remove any of the controls but instead treats each
control entirely as a separate object. To remove a layout, follow these steps:

1. Use the orange layout selector to select the entire layout.

CHAPTER 5 What Every Developer Needs to Know About Forms214

FIGURE 5.29 When you remove the layout, the layout selector is no longer available.

Getting to Know Split Forms
Access 2007 provides a new type of form called the split form. A split form allows you to
view your data in both Form view and Datasheet view simultaneously. Without your
having to write a single line of code, a split form automatically ties both views to the
same data source. Access keeps the two views synchronized at all times. In fact, when you
select a field on one part of the form, Access automatically selects the same field on the
other part of the form. Figure 5.30 provides an example of a split form. Notice that the
company information appears in Datasheet view at the top of the form and in Form view
on the bottom of the form. Creating a split form requires just three steps:

1. Open the table or query on which you want to base the form in Datasheet view, or
click to select the appropriate table or query in the Navigation Pane.

2. Click the Create tab.

3. Select the Split Form tool from the Forms group. Access creates the form and
displays it in Layout view.

Working in Layout View 215

5

2. Right-click and select Layout, Remove (see Figure 5.29). As an alternative, you can
simply click the Remove button within the Control Layout group on the Layout tab.
In either case, Access removes the layout, and the orange layout selector is no
longer available.

FIGURE 5.30 A split form enables you to view your data in Datasheet and Form view at the
same time.

You should be aware of some properties when working with split forms. They all appear
on the property sheet of the form (see Figure 5.31). They are listed here, along with their
functionality:

. Split Form Orientation—Use this property to determine whether the datasheet will
be on the top, bottom, left, or right side of the Form view section of the form.

. Split Form Splitter Bar—When this property is set to Yes, Access displays a splitter
bar between the two sections of the form.

. Save Splitter Bar Position—This property determines whether Access saves the
position of the splitter bar.

. Split Form Size—Use this property to designate the size of the form portion of the
split form.

. Split Form Printing—Use this property to determine whether the Datasheet or
Form view will print when you send the form to the printer.

Using Alternating Background Colors for a Form
Access 2007 enables you to alternate the background color on datasheets, continuous
forms, and reports. You can select any color that you’d like for the shading. The process
requires the following steps:

1. Switch to Design view of the form.

2. Right-click the Detail section of the form and select Fill/Back Color (see Figure 5.32).

CHAPTER 5 What Every Developer Needs to Know About Forms216

FIGURE 5.31 Several form properties pertain specifically to a split form.

Working in Layout View 217

5

FIGURE 5.32 You must designate the Fill/Back Color and Alternate Fill/Back Color for the
Detail section of the form.

3. Select the appropriate color for the back color.

4. Right-click the Detail section again and select Alternate Fill/Back Color.

5. Select the appropriate color for the alternate back color.

6. Switch to Form view. Your form should appear as shown in Figure 5.33.

CHAPTER 5 What Every Developer Needs to Know About Forms218

FIGURE 5.33 Your completed form should appear with alternating background colors.

NOTE

The controls on the form must have a back color of transparent; otherwise, you will be
unable to see the alternating background colors.

Selecting the Correct Control for the Job
Windows programming in general, and Access programming in particular, isn’t limited to
just writing code. Your ability to design a user-friendly interface can make or break the
success of your application. Access and the Windows programming environment offer a
variety of controls, and each one is appropriate in different situations. The following
sections discuss each type of control, outlining when and how it should be used.

Labels
You generally use labels to display information to your users. Attached labels are automat-
ically added to your form when you add other controls, such as text boxes, combo boxes,
and so on, and they can be deleted or modified as necessary. Their default captions are
based on the Caption property of the field that underlies the control they’re attached to.
If nothing has been entered into a field’s Caption property, the field name is used for the
label’s caption.

The Label tool, found on the Design tab of the ribbon, can be used to add any text to the
form. Click the Label tool and then click and drag the label to place it on the form. Labels
are often used to provide a description of the form or to supply instructions to users.
Labels can be customized by modifying their font, size, color, and so on. Although devel-
opers can use Visual Basic for Applications (VBA) code to modify label properties at
runtime, users don’t have this ability.

TIP

Sometimes attached labels become detached from their associated text boxes. This
means that the label will no longer move, size, and become selected with the text box
that it applies to. To reassociate the label with the text box, press Ctrl+X to cut the
label, click to select the text box, and then press Ctrl+V to paste.

If you purposely want to disassociate a label from its attached control, simply cut the
label and then paste it back on the form without selecting the control that it was
attached to. This technique allows you to perform tasks such as hiding the control
without hiding the label.

Text Boxes
Text boxes are used to get information from the user. Bound text boxes display and
retrieve field information stored in a table; unbound text boxes gather information from
the user that’s not related to a specific field in a specific record. For example, a text box
can be used to gather information about report criteria from a user.

Text boxes are automatically added to a form when you click and drag a field from the
field list to the form. The Display control for the field must be set to Text Box. (The
Display control is the default control type for an object; this default is set in the design of
the underlying table.) Another way to add a text box is to select the Text Box tool from
the Design tab of the ribbon and then click and drag to place the text box on the form.
This process adds an unbound text box to the form. If you want to bind the text box to
data, you must set its Control Source property.

Combo Boxes
Combo boxes allow a user to select from a list of appropriate choices. Access offers several
easy ways to add a combo box to a form. If a field’s Display Control property has been
set to Combo Box, a combo box is automatically added to a form when the field is added.
The combo box automatically knows the source of its data as well as all its other impor-
tant properties.

Selecting the Correct Control for the Job 219

5

If a field’s Display Control property hasn’t been set to Combo Box, the easiest way to add
a combo box to a form is to use the Control Wizard. When selected, the Use Control
Wizards tool helps you add combo boxes, list boxes, option groups, and subforms to your
forms. Although all the properties set by the Combo Box Wizard can be set manually,
using the wizard saves both time and energy. If you want the Combo Box Wizard to be
launched when you add a combo box to the form, make sure the Control Wizards tool in
the Controls group on the Design tab of the ribbon has been clicked (switched on) before
you add the combo box.

Select the Combo Box tool on the Design tab of the ribbon and then click and drag to
place the combo box on the form. This launches the Combo Box Wizard; its first step is
shown in Figure 5.34. You’re offered three sources for the combo box’s data. Use the first
option if your combo box will select the data that’s stored in a field, such as the state
associated with a particular client. I rarely, if ever, use the second option, which requires
that you type the values for the combo box. Populating a combo box this way makes it
difficult to maintain. Every time you want to add an entry to the combo box, your appli-
cation must be modified. The third, and final, option is appropriate when you want the
combo box to be used as a tool to search for a specific record. For example, a combo box
can be placed in the form’s header to display a list of valid customers. After selecting a
customer, the user is then moved to the appropriate record. This option is available only
when the form is bound to a record source.

CHAPTER 5 What Every Developer Needs to Know About Forms220

FIGURE 5.34 The first step of the Combo Box Wizard: selecting the source of the data.

In the second step of the Combo Box Wizard, you select a table or query to populate the
combo box. For optimal performance, you should select a query. In the third step, you
select the fields that appear in your combo box (see Figure 5.35). The combo box being
built in the example will be used to select the contact type associated with a particular
client. Although the ContactType field will be the only field visible in the combo box,
ContactTypeID and ContactType should both be selected because ContactTypeID is a
necessary element of the combo box. After a contact type has been selected from the
combo box, the ContactTypeID associated with the Contact Type will be stored in the
ContactTypeID field of the tblClients table.

221

5FIGURE 5.35 The third step of the Combo Box Wizard: selecting fields.

FIGURE 5.36 The fourth step of the Combo Box Wizard: setting the sort order.

FIGURE 5.37 The fifth step of the Combo Box Wizard: setting column widths.

The fourth step allows you to select a sort order for your list (see Figure 5.36). The fifth
step lets you specify the width of each field in the combo box. Notice in Figure 5.37 that
Access recommends that the key column, ContactTypeID, be hidden. The idea is that the
user will see the meaningful English description while Access worries about storing the
appropriate key value in the record.

Selecting the Correct Control for the Job

In the wizard’s sixth step, you are asked to designate a field in the combo box that
uniquely identifies the row (see Figure 5.38). Select a field and click Next. In the wizard’s
seventh step, specify whether you want Access to simply remember the selected value or
store it in a particular field in a table. In the example shown in Figure 5.39, the selected
combo box value will be stored in the ContactTypeID field of the tblClients table.

CHAPTER 5 What Every Developer Needs to Know About Forms222

FIGURE 5.38 The sixth step of the Combo Box Wizard: indicating the field in the combo box
that uniquely identifies each row.

FIGURE 5.39 The seventh step of the Combo Box Wizard: indicating where the selected
value will be stored.

The eighth and final step of the Combo Box Wizard prompts for the text that will become
the attached label for the combo box. Clicking the Finish button completes the process,
building the combo box and filling in all its properties with the appropriate values.

Although the Combo Box Wizard is a helpful tool, you need to understand the properties
it sets. Figure 5.40 shows the property sheet for a combo box. Many of the combo box
properties are covered in other chapters, but take a moment to go over the properties set
by the Combo Box Wizard in this example.

FIGURE 5.40 Properties of a combo box, showing that the ContactTypeID field has been
selected as the control source for the Combo7 combo box.

The Control Source property indicates the field in which the selected entry is stored. In
Figure 5.40, the selected entry will be stored in the ContactTypeID field of the tblClients
table. The Row Source Type property specifies whether the source used to populate the
combo box is a table/query, value list, or field list. In the example, the Row Source Type
is Table/Query. The Row Source is the name of the actual table or query used to populate
the combo box. In the example, the Row Source is tblContactType. The Column Count
property, found on the Format tab, designates how many columns are in the combo box,
and the Column Widths property (also found on the Format tab) indicates the width of
each column. In the example, the width of the first column is 1. Finally, the Bound
Column property is used to specify which column in the combo box is being used to store
data in the Control Source. In the example, this is column 1.

Combo boxes are powerful controls, but you need to know many of their other features
to leverage their power. Chapter 10 covers the advanced aspects of combo boxes.

List Boxes
List boxes are similar to combo boxes but differ from them in three major ways:

. They consume more screen space.

. They allow you to select only from the list that’s displayed. This means you can’t
type new values into a list box (as you can with a combo box).

. They can be configured to let you select multiple items.

Selecting the Correct Control for the Job 223

5

As with a combo box, the Display Control property of a field can be set to List Box,
and a list box will be added to the form when the field is clicked and dragged from the
field list to the form.

The List Box Wizard is almost identical to the Combo Box Wizard. After you run the List
Box Wizard, the list box properties affected by the wizard are the same as the combo box
properties. Advanced list box techniques are covered in Chapter 10.

Check Boxes
Check boxes enable you to limit your user to entering one of two values, such as Yes/No,
True/False, or On/Off. You can add a check box to a form in several ways:

. Set the Display Control property of the underlying field to Check Box; then click
and drag the field from the field list to the form.

. Click the Check Box tool on the Design tab of the ribbon; then click and drag a
field from the field list to the form. This method adds a check box to the form even
if the Display Control property of the underlying field isn’t a check box.

. Click the Check Box tool in the Design tab of the ribbon; then click and drag to add
a check box to the form. The check box you have added will be unbound. To bind
the check box to data, you must set the control’s Control Source property.

TIP

Use the Triple state property of a check box to add a third value, Null, to the possi-
ble choices for the check box value.

Option and Toggle Buttons
You can use option buttons and toggle buttons alone or as part of an option group. You
can use an option button or toggle button alone to display a True/False value, but this
isn’t a standard use of an option or toggle button. (Check boxes are standard for this
purpose.) As part of an option group, option buttons and toggle buttons force the user to
select from a mutually exclusive set of options, such as choosing from American Express,
MasterCard, Visa, or Discover for a payment type. This use of option buttons and toggle
buttons is covered in the next section, “Option Groups.”

The difference between option buttons and toggle buttons is in their appearance.
Personally, I find toggle buttons confusing to users. I find that option buttons provide a
much more intuitive interface.

Option Groups
Option groups allow the user to select from a mutually exclusive set of options. They can
include check boxes, toggle buttons, or option buttons, but the most common implemen-
tation of an option group is option buttons.

CHAPTER 5 What Every Developer Needs to Know About Forms224

The easiest way to add an option group to a form is to use the Option Group Wizard.
Make sure the Control Wizards button on the Design tab of the ribbon is selected, click
Option Group on the Design tab of the ribbon, and then click and drag to add the option
group to the form. This launches the Option Group Wizard.

The first step of the Option Group Wizard, shown in Figure 5.41, allows you to type the
text associated with each item in the option group. The second step gives you the option
of selecting a default choice for the option group. This choice comes into effect when the
user adds a new record to the table underlying the form. The third step of the wizard lets
you select values associated with each option button (see Figure 5.42). The text displayed
with the option button isn’t stored in the record; instead, the underlying numeric value is
stored in the record. In Figure 5.42, the number 1 is stored in the field if Client is selected.

Selecting the Correct Control for the Job 225

5

FIGURE 5.41 The first step of the Option Group Wizard: adding text to options.

FIGURE 5.42 The third step of the Option Group Wizard: selecting values for options.

The fourth step of the Option Group Wizard asks whether you want to remember the
option group value for later use or store the value in a field. In Figure 5.43, the option
group value is stored in the ContactTypeID field. In the fifth step, you can select from a
variety of styles for the option group buttons, including option buttons, check boxes, and
toggle buttons. You can also select from etched, flat, raised, shadowed, or sunken effects

for your buttons. The wizard lets you preview each option. The sixth and final step of the
wizard allows you to add an appropriate caption to the option group. The completed
group of option buttons is shown in Figure 5.44.

CHAPTER 5 What Every Developer Needs to Know About Forms226

FIGURE 5.43 The fourth step of the Option Group Wizard: tying the group to data.

FIGURE 5.44 The results of running the Option Group Wizard.

You need to understand that the Option Group Wizard sets properties of the frame, the
option buttons within the frame, and the labels attached to the option buttons. The prop-
erties of the frame are shown in Figure 5.45. The control source of the frame and the
default value of the option group are set by the Option Group Wizard. Each option
button is assigned a value, and the caption of the attached labels associated with each
button is set.

FIGURE 5.45 An option group frame, showing the properties of the selected button.

Control Morphing
When you build a form, you might not always choose the best type of control to display
each field on the form, or you might make what you think is the best choice for the
control, only to find out later that it wasn’t exactly what your user had in mind. In
Access, you can easily morph, or convert, the type of control into another type. For
example, you can morph a list box into a combo box, a text box into a combo box,
or a combo box into a text box.

Morphing a Text Box into a Combo Box
One of the most common types of conversions is from a text box into a combo box. To
morph a text box into a combo box, right-click on the text box. Choose Change To and
then select Combo Box. The types of controls available depend on the type of control
you’re morphing. For example, a text box can be converted into a label, list box, or
combo box (see Figure 5.46).

After morphing a text box into a combo box, you modify the appropriate control proper-
ties. The Row Source, Bound Column, Column Count, and Column Widths properties need to
be filled in. For the row source, you must select the appropriate table or query. If you
select a table and then click the ellipsis, you are prompted to create a query based on the
table. After selecting Yes, you can build a query containing only the fields you want to
include in the combo box. You’re then ready to select the bound column, which is used

Control Morphing 227

5

to store data in the underlying table. For example, the user might select the name of a
project that a payment is being applied to, but the ProjectID will be stored in the
Payments table. Set the column count to the number of columns selected in the under-
lying query; the column widths can be set so that the key column is hidden.

CHAPTER 5 What Every Developer Needs to Know About Forms228

FIGURE 5.46 Morphing a text box.

Morphing a Combo Box into a List Box
Morphing a combo box into a list box is a much simpler process than morphing a text
box into a combo box or a list box because combo boxes and list boxes share so many
properties. To morph a combo box into a list box, simply right-click on the combo box
and choose Change To, List Box.

Conditional Formatting
Conditional formatting displays data meeting specified criteria differently than it displays
data meeting other criteria. For example, you can display sales higher than a certain
amount in one color and sales less than that amount in another color. To conditionally
format data displayed within a control, follow these steps:

1. While in Layout view, select the control you want to conditionally format.

2. On the Format tab, open up the Font drop-down and select Conditional. The
Conditional Formatting dialog box appears.

3. Select Field Value Is, Expression Is, or Field Has Focus from the first combo box.

4. Select the appropriate operator from the second combo box.

5. Enter the values you are testing for in the text boxes that appear on the right.

6. Select the special formatting (bold, italic, background color, and so on) that you
want to apply when the conditional criteria are met.

7. Click Add to add additional formats.

8. Click OK to apply the conditional formatting.

Determining Which Form Properties Are Available
and Why You Should Use Them
Forms have many properties that can be used to affect their look and behavior. The prop-
erties are broken down into categories: Format, Data, Event, and Other.

To view a form’s properties, you must select the form. To do this, click the Form Selector
(the small gray button at the intersection of the horizontal and vertical rulers).

Working with the Property Sheet
After you have selected a form, click the Properties button on the toolbar to view its prop-
erties. The property sheet, shown in Figure 5.47, consists of five tabs: Format, Data, Event,
Other, and All. Many developers prefer to view all properties at once on the All tab, but a
form can have a total of 119 properties! Instead of viewing all 119 properties at once, try
viewing the properties by category. The Format category includes all the physical attrib-
utes of the form—in other words, the ones that affect the form’s appearance (such as
background color, for example). The Data category includes all the properties of the data
that the form is bound to, such as the form’s underlying record source. The Event cate-
gory contains all the Windows events to which a form can respond. For example, you can
write code that executes in response to the form being loaded, becoming active, display-
ing a different record, and so on. The Other category holds a few properties that don’t fit
into the other three categories.

Working with the Important Form Properties
As mentioned, forms have 67 properties and 52 events associated with them. Event prop-
erties are covered in Chapter 10. The following sections cover the Format, Data, and
Other properties of forms.

Format Properties of a Form
The Format properties of a form affect its physical appearance. Forms have 39 Format
properties. Many of them are described here.

. Caption—Sets the text that appears on the form’s title bar. This property can be
customized at runtime. For example, you could include the name of the current user
or specify the name of the client for whom an invoice is being generated.

Determining Which Form Properties Are Available and Why You Should Use Them 229

5

FIGURE 5.47 Viewing the Format properties of a form.

. Default View—Allows you to select from 5 available options:

. Single Form—Allows you to view only one record at a time.

. Continuous Forms—Displays as many records as will fit within the form
window at one time, each presented as the detail section of a single form.

. Datasheet—Displays the records in a spreadsheet-like format, with the rows
representing records and the columns representing fields.

. Split Form — Displays the records in both a Single form and Datasheet view
at the same time. You can easily move from record to record in the datasheet
portion of the form. As you move from record to record in the datasheet, the
detail of the record appears in the Single form section of the form.

. PivotTable—Displays the records in a Microsoft Excel–type pivot table format.

. PivotChart—Displays the records in a Microsoft Excel–type pivot chart
format.

The selected option becomes the default view for the form.

. Allow Form View—Prior to Access 2002, Access forms had a property called Views
Allowed. The Views Allowed property determined whether the user was allowed to
switch from Form view to Datasheet view, or vice versa. The Default View property
determined the initial default display mode for the form, but Views Allowed deter-
mined whether the user was permitted to switch out of the default view.

CHAPTER 5 What Every Developer Needs to Know About Forms230

In Access 2002, Microsoft separated out each type of view as an additional property
for the form. Allow Form View specifies whether the user is permitted to switch to
the Form view of a form.

. Allow Datasheet View—Determines whether the user is permitted to switch to the
Datasheet view of a form.

. Allow PivotTable View—Determines whether the user is allowed to switch to the
PivotTable view of a form.

. Allow PivotChart View—Determines whether the user is allowed to switch to the
PivotChart view of a form.

. Allow Layout View—Determines whether the user is allowed to switch to the
Layout view of a form.

. Picture, Picture Type, Picture Size Mode, Picture Alignment, and Picture
Tiling—The Picture properties let you select and customize the attributes of a
bitmap used as the background for a form.

. Width—Used to specify the form’s width. This option is most often set graphically
by clicking and dragging to select an appropriate size for the form. You might
want to set this property manually when you want more than one form to be the
same size.

. Auto Center—Specifies whether you want the form to automatically be centered
within the Application window whenever it’s opened.

. Auto Resize—Determines whether the form is automatically sized to display a
complete record.

. Fit to Screen—Determines whether Access reduces the width of the form to the
width of the screen.

. Border Style—The Border Style property is far more powerful than its name
implies. The options for the Border Style property are None, Thin, Sizable, and
Dialog. The border style is often set to None for splash screens, which means the
form has no border. A Thin border is not resizable; the Size command isn’t available
in the Control menu. This setting is a good choice for pop-up forms, which remain
on top even when other forms are given the focus. A Sizable border is standard for
most forms. It includes all the standard options in the Control menu. A Dialog
border looks like a Thin border. A form with a border style of Dialog can’t be maxi-
mized, minimized, or resized. After the border style of a form is set to Dialog, the
Maximize, Minimize, and Resize options aren’t available in the form’s Control
menu. The Dialog border is often used along with the Pop Up and Modal properties
to create custom dialog boxes.

. Record Selectors—Determines whether the record selectors appear. A record
selector is the gray bar to the left of a record in Form view, or the gray box to the
left of each record in Datasheet view. It’s used to select a record to be copied or
deleted. If you give the user a custom menu, you can opt to remove the record

Determining Which Form Properties Are Available and Why You Should Use Them 231

5

selector to make sure the user copies or deletes records using only the features
specifically built in to your application.

. Navigation Buttons—Determines whether the navigation buttons are visible.
Navigation buttons are the controls that appear at the bottom of a form; they allow
the user to move from record to record within the form. You should set this prop-
erty to No for any dialog forms. You might want to set it to No for data entry forms,
too, and add your own ribbon that enhances or limits the standard buttons’ func-
tionality. For example, in a client/server environment, you might not want to give
users the capability to move to the first or last record because that type of record
movement can be inefficient in a client/server architecture.

. Navigation Caption—Allows you to specify a custom navigation caption.

. Dividing Lines—Indicates whether you want a line to appear between records
when the default view of the form is set to Continuous Forms. It also determines
whether dividing lines are placed between the form’s sections (header, detail, and
footer).

. Scroll Bars—Determines whether scrollbars appear if the controls on the form
don’t fit within the form’s display area. You can select from vertical and horizontal
scrollbars, neither vertical nor horizontal, just vertical, or just horizontal.

. Control Box—Determines whether a form has a Control menu. You should use this
option sparingly. One of your responsibilities as an Access programmer is to make
your applications comply with Windows standards. If you look at the Windows
programs you use, you’ll find very few forms without Control menu boxes. This
should tell you something about how to design your own applications.

. Close Button—Determines whether the user can close the form by using the
Control menu or double-clicking the Control icon. If you set the value of this prop-
erty to No, you must give your user another way to close the form; otherwise, the
user might have to reboot her computer to close your application.

. Min Max Buttons—Indicates whether the form has minimize and maximize buttons.
The available options are None, Min Enabled, Max Enabled, and Both Enabled. If
you remove one or both buttons, the appropriate options also become unavailable
in the Control menu. The Min Max property is ignored for forms with a border style
of None or Dialog. As with the Control Box property, I rarely use this property. To
make my applications comply with Windows standards, I set the Border Style
property and then inherit the standard attributes for each border style.

. Moveable—Determines whether the user can move the form window around the
screen by clicking and dragging the form by its title bar.

. Split Form Size—Indicates the size of the form part of the Split Form.

. Split Form Orientation—Determines whether the Split view is oriented horizon-
tally or vertically.

. Split Form Splitter Bar—Indicates whether the Splitter bar appears.

CHAPTER 5 What Every Developer Needs to Know About Forms232

. Split Form Datasheet—Determines whether the datasheet portion of the Split
form is read-only or is editable.

. Split Form Printing—Indicates whether the form or the datasheet will print.

. Save Splitter Bar Position—Determines whether Access saves the Splitter bar
position from session to session.

. Subdatasheet Expanded—Allows you to designate whether a subdatasheet is
initially displayed in an expanded format. When this property is set to False, the
subdatasheet appears collapsed. When it is set to True, the subdatasheet appears in
an expanded format.

. Subdatasheet Height—Indicates the maximum height of the subdatasheet.

. Grid X, Grid Y—Allow you to modify the spacing of the horizontal and vertical
lines that appear in the form when in Design view. By setting these properties, you
can affect how precisely you place objects on the form when the Snap to Grid
option is active.

. Layout for Print—Specifies whether screen or printer fonts are used on the form.
If you want to optimize the form for printing rather than display, set this property
to Yes.

. Orientation—Allows you to take advantage of language-specific versions of
Microsoft Access, such as Arabic. This property can be set to support right-to-left
display features for language-specific editions of Access.

. Palette Source—Determines the source for selecting colors for a form.

Data Properties of a Form
The 13 Data properties of a form are used to control the source for the form’s data, the
actions the user can take on the data in the form, and the way the data in the form is
locked in a multiuser environment.

. Record Source—Indicates the Table, Stored Query, or SQL statement on which the
form’s records are based. After you have selected a record source for a form, the
controls on the form can be bound to the fields in the record source.

NOTE

The Field List window is unavailable until the record source of the form has been set.

TIP

The record source of a form can be changed at runtime. Because of this aspect of the
Record Source property, you can create generic, reusable forms for many situations.

Determining Which Form Properties Are Available and Why You Should Use Them 233

5

. Recordset Type—Gives you three options: Dynaset, Dynaset (Inconsistent
Updates), and Snapshot. Each offers different performance and updating capability.
The Dynaset option creates a fully updateable recordset. The only exceptions to this
rule involve records or fields that can’t be updated for some other reason. An
example is a form based on a query involving a one-to-many relationship. The join
field on the one side of the relationship can be updated only if the Cascade Update
Related Records feature has been enabled. The Dynaset (Inconsistent Updates)
option allows all tables and bound data to be edited. This might result in inconsis-
tent updating of data in the tables involved in the query. The Snapshot option
doesn’t allow updating.

. Fetch Defaults—Allows you to specify whether defaults for bound fields under-
lying the form are retrieved when new records are added. When this property, intro-
duced in Access 2002, is set to No, default values are not retrieved. When it is set to
Yes, default values are retrieved.

. Filter—Allows you to automatically load a stored filter along with the form. I
prefer to base a form on a query that limits the data displayed on the form. The
query can be passed parameters at runtime to customize exactly what data is
displayed.

. Filter On Load—Determines whether Access applies the filter when the form loads.

. Order By—Specifies in what order the records on a form appear. This property can
be modified at runtime.

. Order By on Load—Determines whether Access applies the Order By when the form
loads.

. Data Entry—Determines whether users can only add records within a form. Set this
property to Yes if you don’t want your users to view or modify existing records but
want them to be able to add new records.

. Allow Edits, Allow Deletions, Allow Additions—Let you specify whether the user
can edit data, delete records, or add records from within the form.

. Allow Filters—Controls whether records can be filtered at runtime. When this
option is set to No, all filtering options become disabled to the user.

. Record Locks—Specifies the locking mechanism to be used for the data underlying
the form’s recordset. Three options are available. The No Locks option—the least
restrictive locking mechanism—provides optimistic locking; that is, Access doesn’t try
to lock the record until the user moves off it. This option can lead to potential
conflicts when two users simultaneously make changes to the same record. The All
Records option locks all records underlying the form the entire time the form is
open. This is the most restrictive option and should be used only when it’s neces-
sary for the form’s user to make sure other users can view, but not modify, the
form’s underlying recordset. The Edited Record option locks a 4KB page of records
as soon as a user starts editing the data in the form. This option provides pessimistic

CHAPTER 5 What Every Developer Needs to Know About Forms234

locking. Although it averts conflicts by prohibiting two users from modifying a
record at the same time, it can lead to potential locking conflicts. These three
locking options are covered in detail in Alison Balter’s Mastering Access 2002
Enterprise Development.

Other Properties of a Form
Additional properties of a form, although quite powerful, do not fit neatly into any of the
other property categories. Microsoft places these properties under the Other properties of
the form. They are listed here:

. Pop Up—Indicates whether the form always remains on top of other windows. This
property is often set to Yes, along with the Modal property, for custom dialog boxes.

. Modal—Indicates whether focus can be removed from a form while it’s open. When
the Modal property is set to Yes, the form must be closed before the user can
continue working with the application. As mentioned, this property is used with
the Pop Up property to create custom dialog boxes.

. Display on SharePoint Site—Determines whether the form will be displayed on
the SharePoint site.

. Cycle—Controls the behavior of the Tab key in the form. The options are All
Records, Current Record, and Current Page. When the Cycle property is set to All
Records, the user moves to the next record on a form when she presses Tab from
the last control on the previous record. With Current Record, the user is moved
from the last control on a form to the first control on the same record. The Current
Page option refers only to multipage forms; when the Cycle property is set to
Current Page, the user tabs from the last control on the page to the first control on
the same page. All three options are affected by the tab order of the objects on the
form.

. Ribbon Name—Specifies the ribbon to apply when the form opens. Chapter 23,
“Working with and Customizing Ribbons,” covers ribbons.

. Shortcut Menu, Shortcut Menu Bar—The Shortcut Menu property indicates whether
a shortcut menu is displayed when the user clicks with the right mouse button over
an object on the form. The Shortcut Menu Bar property lets you associate a custom
menu with a control on the form or with the form itself. As with a standard menu
bar, a shortcut menu bar is created by choosing Toolbars from the View menu and
then selecting Customize. Shortcut menus are covered in Chapter 10.

. Help File, Help Context id—Enable you to associate a specific Help file and topic
with a form.

. Has Module—Determines whether the form has a class module. If no code is associ-
ated with your form, setting this property to No can noticeably decrease load time
and improve your form’s performance while decreasing the database’s size.

Determining Which Form Properties Are Available and Why You Should Use Them 235

5

. Fast Laser Printing—Determines whether lines and rectangles print along with
the form. When this property is set to Yes, you’ll notice a definite improvement
when printing the form to a laser printer.

. Tag—The Tag property is an extra property used to store miscellaneous information
about the form. This property is often set and monitored at runtime to store neces-
sary information about the form. You could use the Tag property to add a tag to
each of several forms that should be unloaded as a group.

. Use Default Paper Size—The Use Default Paper Size property is used to determine if
when printed, the form prints using the default paper size setting.

Determining Which Control Properties Are
Available and Why You Should Use Them
Available control properties vary quite a bit, depending on the type of control that’s been
selected. The more common properties are covered in the following sections; individual
properties are covered throughout the book as they apply to a specific topic.

Format Properties of a Control
The Format properties of a control affect the appearance of the control. They include the
following:

. Format—Determines how the data in the control is displayed. A control’s format is
automatically inherited from its underlying data source. This property is used in
three situations:

. When the Format property is not set for the underlying field

. When you want to override the existing Format setting for the field

. When you want to apply a format to an unbound control

You can select from a multitude of predefined values for a control’s format, or you
can create a custom format. I often modify this property at runtime to vary the
format of a control depending on a certain condition. For example, the format for a
Visa card number is different from the format for an ATM card number.

. Decimal Places—Specifies how many decimal places you want to appear in the
control. This property is used with the Format property to determine the control’s
appearance.

. Visible—Indicates whether a control is visible. This property can be toggled at
runtime, depending on specific circumstances. For example, a question on the form
might apply only to records in which the gender is set to Female; if the gender is set
to Male, the question shouldn’t be visible.

. Show Date Picker—Determines whether Access displays the Date Picker for
date fields.

CHAPTER 5 What Every Developer Needs to Know About Forms236

. Left, Top, Width, Height—Enable you to set the control’s position and size.

. Back Style, Back Color—You can set the Back Style property to Normal or
Transparent, as well as to numerous other settings. When it is set to Transparent,
the form’s background color shows through the control. This is often the preferred
setting for an option group. The control’s Back Color property specifies the back-
ground color (as opposed to text color) for the control.

CAUTION

If the Back Style property of a control is set to Transparent, the control’s back color
is ignored.

. Border Style, Border Color, Border Width—Affect the look, color, and thickness of
a control’s border. The border style options are Transparent, Solid, Dashes, Short
Dashes, Dots, Sparse Dots, Dash Dot, and Dash Dot Dot. The Border Color prop-
erty specifies the color of the border; you can select from a variety of colors. The
Border Width property can be set to one of several point sizes.

CAUTION

If the Border Style of a control is set to Transparent, the control’s border color and
border width are ignored.

. Special Effect—Adds 3D effects to a control. The options for this property are
Flat, Raised, Sunken, Etched, Shadowed, and Chiseled. Each of these effects gives
the control a different look.

. Scroll Bars—Determines whether scrollbars appear when the data in the control
doesn’t fit within the control’s size. The options are None and Vertical. I often set
the Scroll Bars property to Vertical when the control is used to display data from
a Memo field. The scrollbar makes it easier for the user to work with a potentially
large volume of data in the Memo field.

. Fore Color, Font Name, Font Size, Font Weight, Font Italic, Font Underline—
Control the appearance of the text in a control. As their names imply, these proper-
ties let you select the color, font, size, and thickness of the text and determine
whether the text is italicized or underlined. These properties can be modified in
response to a runtime event, such as modifying a control’s text color if the value in
that control exceeds a certain amount. The Font Weight selections generally exceed
what is actually available for a particular font and printer; normally, you have a
choice of only Regular and Bold in whatever value you select for this property.

. Text Align—Affects how the data is aligned within a control. The Text Align prop-
erty is often confused with the capability to align controls.

Determining Which Control Properties Are Available and Why You Should Use 237

5

. Line Spacing—Enables you to determine the spacing between lines of text in a
multiline control. This property is most commonly used with a text box based on
a memo field.

. Is Hyperlink—Formats the data in the control as a hyperlink, when set to Yes. If
the data in the control is a relevant link (that is, http:\\microsoft.com), the data
will function as a hyperlink.

. Display as Hyperlink—Allows you to control when Access displays the control
text as a hyperlink.

. Caption—Allows you to specify information helpful to the user. This property is
available for labels, command buttons, and toggle buttons.

. Hyperlink Address—Contains a string used to specify the UNC (path to a file) or
URL (web page address) associated with the control. The Hyperlink Address prop-
erty is available only for command buttons, images, and unattached labels. When
the form is active and the cursor is placed over the control, clicking the control
displays the specified object or web page.

. Hyperlink SubAddress—Contains a string used to represent a location in the docu-
ment specified in the Hyperlink Address property. Like the Hyperlink Address
property, the Hyperlink SubAddress property is available only for command
buttons, images, and unattached labels.

. Display When—Allows you to send certain controls on the form only to the screen
or only to the printer. The three options are Always, Print Only, or Screen Only.
An example of the use of the Display When property is a label containing instruc-
tions. You might want the instructions to appear on the screen but not on the
printout.

. Can Grow, Can Shrink—Apply only to the form’s printed version. The Can Grow
property, when set to Yes, expands the control when printing so that all the data in
the control fits on the printout. When you set the Can Shrink property to Yes and
no data has been entered, the control shrinks so that blank lines won’t be printed.

. Gridline Style Top, Bottom, Left, and Right—Determines the style of the
control’s gridlines.

. Gridline Color—Determines the color of the control’s gridlines.

. Gridline Width Top, Bottom, Left, and Right—Determines the width of the
control’s gridlines.

. Left Margin, Top Margin, Right Margin, Bottom Margin—Determine how far the
text appears from the left, top, right, and bottom of the control. They are particu-
larly useful with controls such as text boxes based on memo fields, which are gener-
ally large controls.

. Top, Bottom, Left, and Right Padding—Determines the amount of space
between the gridline and the text.

CHAPTER 5 What Every Developer Needs to Know About Forms238

http:\\microsoft.com

. Horizontal and Vertical Anchor—Determines how the control is anchored (left,
right, top, bottom) when the form grows horizontally or vertically.

. Can Grow/Can Shrink—Indicates whether the control can grow or shrink vertically,
based on the volume of text, when the form prints.

. Reading Order—Allows you to specify the reading order for text in a control. The
Reading Order property was introduced with Access 2002. This feature is available
only if you are using a version of Microsoft Office that supports right-to-left features.

. Scroll Bar Align—Allows you to place the vertical scrollbars in the appropriate
left-to-right or right-to-left position. If you select the System option, the position of
the scrollbar is based on the selected user interface language. The scrollbar is placed
on the right for left-to-right languages and on the left for right-to-left languages. If
you select Left or Right, the scrollbar is placed on the left or right side of the
control, respectively. The Scroll Bar Align property is another language-related
property introduced with Access 2002.

. Numerical Shapes—Allows you to designate whether numeric shapes are displayed
in the Arabic or Hindi style. The available choices for this property are System,
Arabic, National, and Context. System bases the Numerical Shapes on the operat-
ing system. Arabic and National use the Arabic and Hindi styles, respectively.
Context bases the numerical style on the text adjacent to the control. The
Numerical Shapes property was introduced with Access 2002.

. Keyboard Language—Allows you to override the keyboard language currently in use.
This means that when a specific control receives the focus, the language specified in
this property becomes the keyboard language in effect while typing data into the
control. The Keyboard Language property was introduced with Access 2002.

Data Properties of a Control
The Data properties of a control all have to do with the data underlying the control. They
include the following:

. Control Source—Specifies the field from the record source that’s associated with a
particular control. A control source can also be any valid Access expression.

. Text Format—Allows you to apply rich formatting to the text in the control if set to
HTML. If set to Plain text, Access stores only text within the control and you cannot
apply formatting to the text.

. Input Mask—Affects what data can be entered into the control, whereas the Format
and Decimal Places properties affect the appearance of a control. The input mask
of the field underlying the control is automatically inherited into the control. If no
input mask is entered as a field property, the input mask can be entered directly in
the form. If the input mask of the field is entered, the input mask of the associated
control on a form can be used to further restrict what is entered into that field via
the form.

Determining Which Control Properties Are Available and Why You Should Use 239

5

NOTE

If a control’s Format property and Input Mask property are different, the Format prop-
erty affects the display of the data in the control until the control gets focus. After the
control gets focus, the Input Mask property prevails.

. Default Value—Determines the value assigned to new records entered in the form.
You can set this property within the field properties. A default value set at the field
level is automatically inherited into the form. The default value set for the control
overrides the default value set at the field level.

. Validation Rule, Validation Text—Perform the same functions for a control as
they do for a field.

CAUTION

Because the validation rule is enforced at the database engine level, the validation
rule set for a control can’t be in conflict with the validation rule set for the field to
which the control is bound. If the two rules conflict, the user can’t enter data into the
control.

. Filter Lookup—Indicates whether you want the values associated with a bound
text box to appear in the Filter By Form window.

. Enabled—Determines whether you allow a control to get focus. If this property is set
to No, the control appears dimmed.

. Locked—Determines whether the user can modify the data in the control. When the
Locked property is set to Yes, the control can get focus but can’t be edited. The
Enabled and Locked properties of a control interact with one another. Table 5.1
summarizes their interactions.

TABLE 5.1 How the Enabled and Locked Properties Interact

Enabled Locked Effect

Yes Yes The control can get focus; its data can be copied but not modified.
Yes No The control can get focus, and its data can be edited.
No Yes The control can’t get focus.
No No The control can’t get focus; its data appears dimmed.

Other Properties of a Control
The Other properties of a control are properties that do not fit neatly into any other cate-
gory. They include the following:

. Name—Allows you to name the control. This name is used when you refer to the
control in code and is also displayed in various drop-down lists that show all the

CHAPTER 5 What Every Developer Needs to Know About Forms240

controls on a form. Naming your controls is important because named controls
improve your code’s readability and make working with Access forms and other
objects easier. The naming conventions for controls are shown in Appendix A.

. Datasheet Caption—Determines the caption that Access uses for the column header
when the form displays in datasheet view.

. Enter Key Behavior—Determines whether the Enter key causes the cursor to move
to the next control or adds a new line in the current control. This setting is often
changed for text boxes used to display the contents of Memo fields.

. ControlTip Text—Specifies the ToolTip associated with a control. The ToolTip auto-
matically appears when the user places the mouse pointer over the control and
leaves it there for a moment.

. Tab Index—Sets the tab order for the control. I generally set the Tab Index property
by using View, Tab Order rather than by setting the value directly in the control’s
Tab Index property.

. Tab Stop—Determines whether the Tab key can be used to enter a control. It’s
appropriate to set this property to No for controls whose values rarely get modified.
The user can always opt to click in the control when necessary.

. Status Bar Text—Specifies the text that appears in the status bar when the control
gets focus. This property setting overrides the Description property that can be set
in a table’s design.

. Shortcut Menu Bar—Attaches a specific menu to a control. The menu bar appears
when the user right-clicks the control.

. Help Context Id—Designates the Help topic associated with a particular control.

. Auto Tab—Automatically advances the cursor to the next control when the last
character of an input mask has been entered, when this property is set to Yes. Some
users like this option, and others find it annoying, especially if they must tab out of
some fields but not others.

. Vertical—Enables you to control whether the text in the control is displayed hori-
zontally or vertically. The default is No, or horizontal. When Yes (vertical display) is
selected, the text within the control is rotated 90 degrees.

. Allow AutoCorrect—Specifies whether the AutoCorrect feature is available in the
control. The AutoCorrect feature automatically corrects common spelling errors
and typos.

. Default—Applies to a command button or ActiveX control and specifies whether
the control is the default button on a form.

. Cancel—Applies to a command button or ActiveX control. It indicates that you
want the control’s code to execute when the Esc key is pressed while the form
is active.

Determining Which Control Properties Are Available and Why You Should Use 241

5

. Auto Repeat—Specifies whether you want an event procedure or macro to execute
repeatedly while its command button is being pressed.

. IME Hold, IME Mode, IME Sentence Mode—Allows you to designate the settings in
effect when an Input Method Editor (IME) is used. The IME properties were intro-
duced with Access 2002. IME is a program that converts keystrokes into East Asian
character sets.

. Tag—An extra property you can use to store information about a control. Your
imagination determines how you use this property. The Tag property can be read
and modified at runtime.

Understanding Bound, Unbound, and
Calculated Controls
There are important differences between bound and unbound controls. Unbound controls
display information to the user or gather information from the user that’s not going to be
stored in your database. Here are some examples of unbound controls:

. A label providing instructions to the user

. A logo placed on a form

. A combo or text box placed on a form so that the user can enter report criteria

. A rectangle placed on the form to logically group several controls

Bound controls are used to display and modify information stored in a database table. A
bound control automatically appears in the form specified in its Display Control prop-
erty; the control automatically inherits many of the attributes assigned to the field that
the control is bound to.

NOTE

The Display Control property is set in the design of the underlying table. Located on
the Lookup tab of the Table Design window, it determines the default control type that
is used when a control is added to a form or report.

A calculated control is a special type of control that displays the results of an expression.
The data in a calculated control can’t be modified by the user. The control’s value auto-
matically changes as the values in its expression are changed. For example, the Sales Total
changes as the Price or Quantity is changed.

CHAPTER 5 What Every Developer Needs to Know About Forms242

Using Expressions to Enhance Your Forms
As mentioned previously, a control can contain any valid expression as its control source.
When you enter an expression as a control source, you must precede the expression with
an equal sign. You can manually type the control source, or you can use the Expression
Builder to make the process easier.

To add an expression to a control source, start by adding an unbound control to the form.
To use the Expression Builder, click the control’s Control Source property and then click
the ellipsis. The Expression Builder appears (see Figure 5.48). In the list box on the left,
select the type of object you want to include in the expression. The middle and right list
boxes let you select the specific element you want to paste into your expression. The
Expression Builder is useful when you’re not familiar with the specific syntax required for
the expression. You can also enter an expression directly into the text box for the Control
Source property. To view the expression more easily, you can use the Zoom feature
(Shift+F2). The Zoom dialog box for the control source is pictured in Figure 5.49; the
expression shown in the figure evaluates the PaymentAmt. If the PaymentAmt is greater than
or equal to 1,000, the message Big Hitter is displayed; otherwise, nothing is displayed.

Using Expressions to Enhance Your Forms 243

5

FIGURE 5.48 The Expression Builder helps you add an expression as a control’s control
source.

FIGURE 5.49 The Zoom dialog box for a control source.

Using the Command Button Wizards:
Programming Without Typing
With the Command Button Wizard, you can quickly and easily add functionality to your
forms. It writes the code to perform more than 28 commonly required tasks. The tasks are
separated into record navigation, record operations, form operations, report operations, appli-
cation operations, and other miscellaneous tasks. The Command Button Wizard is automati-
cally invoked when you add a command button with the Control Wizards tool selected. The
first step of the Command Button Wizard is shown in Figure 5.50; here, you specify the cate-
gory of activity and specific action you want the command button to perform. The subse-
quent wizard steps vary, depending on the category and action you select.

CHAPTER 5 What Every Developer Needs to Know About Forms244

FIGURE 5.50 The first step of the Command Button Wizard.

Figure 5.51 shows the second step of the Command Button Wizard when the Form
Operations category and Open Form action are selected in the first step. This step asks
which form you want to open. After selecting a form and clicking Next, you’re asked
whether you want Access to open the form and find specific data to display, or whether
you want the form to be opened and all records displayed. If you indicate that you want
only specific records displayed, the dialog box shown in Figure 5.52 appears. This dialog
box asks you to select fields relating the two forms. In the next step of the wizard, select
text or a picture for the button. The final step of the wizard asks you to name the button.

FIGURE 5.51 The Command Button Wizard requesting the name of a form to open.

Using the Command Button Wizards: Programming Without Typing 245

5

FIGURE 5.52 The Command Button Wizard asking for the fields that relate to each form.

What’s surprising about the Command Button Wizard is how much it varies depending
on the features you select. It allows you to add somewhat sophisticated functionality to
your application without writing a single line of code. The Command Button Wizard
generates a macro similar to that shown in Figure 5.53; it will make a lot more sense after
you read Chapter 7, “What Are Macros, and When Do You Need Them?” The advantage
to the macro generated by the Command Button Wizard is that you can fully modify it
after it’s written; this means that you can have Access do some of the dirty work for you
and then customize the work to your liking.

FIGURE 5.53 The macro generated from the Command Button Wizard.

Building Forms Based on More Than One Table
Many forms are based on data from more than one table. A form, for example, that shows
a customer at the top and the orders associated with that customer at the bottom is
considered a one-to-many form. Forms can also be based on a query that joins more than
one table. Instead of seeing a one-to-many relationship in such a form, you see the two
tables displayed as one, with each record on the “many” side of the relationship appear-
ing with its parent’s data.

Creating One-to-Many Forms
There are several ways to create one-to-many forms. As with many other types of forms,
you can use a wizard to help you or build the form from scratch. Because all the methods
for creating a form are helpful to users and developers alike, the available options are
covered in the following sections.

Building a One-to-Many Form by Using the Form Wizard
Building a one-to-many form by using the Form Wizard is a 10-step process:

1. Use the More Forms drop-down on the Create tab to select Form Wizard.

2. Use the Tables/Queries drop-down list to select the table or query that will appear
on the “one” side of the relationship.

3. Select the fields you want to include from the “one” side of the relationship.

4. Use the Tables/Queries drop-down list to select the table or query that will appear
on the “many” side of the relationship.

5. Select the fields you want to include from the “many” side of the relationship.

6. Click Next.

7. Select whether you want the parent form to appear with subforms or the child
forms to appear as linked forms (see Figure 5.54). Click Next.

CHAPTER 5 What Every Developer Needs to Know About Forms246

FIGURE 5.54 The Form Wizard creating a one-to-many form.

8. If you select the Subform option, indicate whether you want the subform to appear
in a tabular format, as a datasheet, as a pivot table, or as a pivot chart. (This option
is not available if you selected Linked Forms in step 7.) Click Next.

9. Select a style for the form; then click Next.

10. Name both the form and the subform and click Finish.

The result is a main form that contains a subform. An example is shown in Figure 5.55.

Building Forms Based on More Than One Table 247

5

FIGURE 5.55 The result of creating a one-to-many form with the Form Wizard.

Building a One-to-Many Form with the SubForm/SubReport Wizard
You can also create a one-to-many form by building the parent form and then adding a
SubForm/SubReport control, which is found in the Controls group on the Design tab of
the Ribbon. If you want to use the SubForm/SubReport Wizard, make sure that the
Control Wizards tool is selected before you add the SubForm/SubReport control to the
main form. Then follow these steps:

1. Click to select the SubForm/SubReport control.

2. Click and drag to place the SubForm/SubReport control on the main form; this
invokes the SubForm/SubReport Wizard.

3. Indicate whether you want to use an existing form as the subform or build a new
subform from an existing table or query.

4. If you select Use Existing Tables and Queries, the next step of the SubForm/
SubReport Wizard prompts you to select a table or query and which fields you want
to include from it (see Figure 5.56). Select the fields; then click Next.

5. The next step of the SubForm/SubReport Wizard allows you to define which fields
in the main form link to which fields in the subform. You can select from the
suggested relationships or define your own (see Figure 5.57). Select the appropriate
relationship and click Next.

6. Name the subform and click Finish.

CHAPTER 5 What Every Developer Needs to Know About Forms248

FIGURE 5.56 Selecting fields to include in the subform.

FIGURE 5.57 Defining the relationship between the main form and the subform.

The resulting form should look similar to the form created with the Form Wizard.
Creating a one-to-many form this way is simply an alternative to using the Form Wizard.

TIP

Another way to add a subform to a main form is to click and drag a form from the
Database window onto the main form. Access then tries to identify the relationship
between the two forms.

Working with Subforms
After you have added a subform, you need to understand how to work with it. To begin,
familiarize yourself with a few properties of a Subform control:

. Source Object—The name of the form that’s being displayed in the control

. Link Child Fields—The fields from the child form that link the child form to the
master form

. Link Master Fields—The fields from the master form that link the child form to
the master form

You should also understand how to make changes to the subform. One option is to open
the subform in a separate window (as you would open any other form). After you close
and save the form, all the changes automatically appear in the parent form. The other
choice is to modify the subform from within the main form. With the main form open,
the subform is visible. Any changes made to the design of the subform from within the
main form are permanent.

The default view of the subform is Datasheet or Continuous Forms, depending on how
you added the subform and what options you selected. If you want to modify the default
view, simply change the subform’s Default View property.

NOTE

When the subform is displayed in Datasheet view, the order of the fields in the
subform has no bearing on the datasheet that appears in the main form. The order of
the columns in the datasheet depends on the tab order of the fields in the subform.
You must therefore modify the tab order of the fields in the subform to change the
order of the fields in the resulting datasheet.

TIP

Access 2003 made it easier to work with subforms and subreports in Design view.
Scrolling was improved so that it’s easier to design subforms and subreports. In addi-
tion, you can open subforms in their own separate Design view window by right-clicking
the subform and selecting Subform in New Window. Alternatively, instead of right-
clicking the subform, you can select the subform and then click to select Subform in
New Window from the Tools group on the Design tab of the ribbon.

Basing Forms on Queries: The Why and How
One strategy when building forms is to base them on queries; by doing this, you generally
get optimal performance and flexibility. Instead of bringing all fields and all records over
the network, you bring only the fields and records you need. The benefits are even more
pronounced in a client/server environment where the query is run on the server. Even in

Basing Forms on Queries: The Why and How 249

5

an environment where data is stored in the proprietary Access file format (.accdb) on a
file server, a form based on a stored query can take better advantage of Access’s indexing
and paging features. By basing a form on a query, you also have more control over which
records are included in the form and in what order they appear. Finally, you can base a
form on a query containing a one-to-many join, viewing parent and child information as
if it were one record. Notice in Figure 5.58 that the client and project information appear
on one form as if they were one record.

CHAPTER 5 What Every Developer Needs to Know About Forms250

FIGURE 5.58 A form based on a one-to-many query.

Embedding SQL Statements Versus Stored Queries
In earlier versions of Access, stored queries offered better performance than embedded
SQL statements. The reason is that, when a query is saved, Access compiles the query and
creates a query plan, which has information on the best way to execute the query based
on available indexes and the volume of data. In earlier versions of Access, if a form was
based on an embedded SQL statement, the SQL statement was compiled and optimized
each time the form was opened. With Access 2000 and higher, embedded SQL statements
are compiled just like stored queries. You might ask whether, with Access 2007, it is better
to base a query on a stored query or on a SQL statement. My personal preference is as
follows: If I plan to use the same or a similar query with multiple forms and reports, I
build a query and base multiple forms and reports on that query. This keeps me from
having to duplicate my efforts in building the query. If I have a query that is unique to
the form, I build it as an embedded SQL statement. This eliminates the extra “clutter” of
the query in the database container.

NOTE

A query plan can sometimes be inaccurate because it optimizes the query based on
the amount of data in the underlying tables. If the amount of data in the tables under-
lying a form changes significantly, you need to rebuild the query plan. You can do this
by opening, running, and saving the query or by compacting the database. Chapter 30,
“Maintaining Your Application,” covers the process of compacting your databases.

Connecting Access Forms and the Internet
Microsoft has made it easier to develop Internet-aware applications by adding hyperlinks
to forms and allowing you to save an Access form as HTML or XML. These features are
covered in the following sections.

Adding a Hyperlink to a Form
Hyperlinks can be added to unattached labels (labels not attached to a text box or other
object), command buttons, and image controls. Once added, they let the user jump to a
document (UNC) or web page (URL) simply by clicking the control containing the hyper-
link. To add a hyperlink to a label, command button, or image control, follow these steps:

1. Click to select the control.

2. View the control’s properties.

3. Select the Format tab of the property sheet.

4. Click in the Hyperlink Address property.

5. Click the build button (the ellipsis) to open the Insert Hyperlink dialog box (see
Figure 5.59).

Connecting Access Forms and the Internet 251

5

FIGURE 5.59 Establishing a link to a file or URL by using the Insert Hyperlink dialog box.

6. With Existing File or Web Page selected as the Link To option, you can enter a file
path or URL in the text box or click Current Folder to locate a file or web page in
the current folder. You can also click to insert hyperlinks to browsed pages or recent
files. With Object in This Database selected as the Link To option, you can link to
an object in the current database (see Figure 5.60). Select E-Mail Address to link to
an email address.

7. Click OK to finish the process. The contents of the Link to File or URL combo box
become the Hyperlink Address, and the object name becomes the Hyperlink
SubAddress (see Figure 5.61).

CHAPTER 5 What Every Developer Needs to Know About Forms252

FIGURE 5.60 Setting the location within an Access database for your hyperlink.

FIGURE 5.61 Hyperlink address and subaddress defined for a label control.

TIP

Using a hyperlink address to open an object in an Access database, instead of using
the Click event of the command button and VBA code, allows you to remove the class
module associated with the form (if that is the only procedure you need for the form),
thereby optimizing the form’s performance.

Saving a Form as HTML
You can save forms as HTML documents in one of two ways. The first method is to save a
form as HTML by selecting the form in the Navigation Pane and then selecting HTML
Document from the More drop-down in the Export group on the External Data tab. (You
can also right-click the form in the database Navigation Pane and select Export, HTML
Document.) The Export – HTML Document dialog appears. Click Browse to designate the
location for the exported document. If you want the system’s default browser to load after
the HTML document is saved, click Open the Destination File After the Export Operation
Is Complete. Click OK. The HTML Output Options dialog box appears. If desired, click
Browse to locate an HTML template file. Click OK to close the dialog box. Only the
datasheet associated with the form is saved as HTML; the format of the form itself isn’t
saved.

Saving a Form as XML
You can also save forms as XML by selecting the form within the Navigation Pane (or by
having the form open and in focus) and clicking XML File from the More drop-down
from the Export group on the External Data tab. Browse to select a name and location for
the exported document. Click OK to continue. Access can generate three files:
filename.xml, filename.xsd, and filename.xsl. The .xml file contains the actual data.
The .xsd file contains the schema, or structure, of the data. The .xsl file is the stylesheet
for displaying the XML data.

Adding Smart Tags to Your Forms
You use smart tags to perform tasks such as scheduling appointments, emailing letters,
and adding Outlook contacts, all based on data displayed on an Access form. You can
even determine the weather or get the latest news on each city that appears on an
Access form!

Adding a Smart Tag to a Form
Adding a smart tag to an Access form involves these steps:

1. Create a new form or open an existing form in Design view.

2. Select the control on which you want to base the smart tag. For example, if you
want to use the smart tag to schedule an appointment, you would probably want to
select a control bound to the Contact Name field.

Adding Smart Tags to Your Forms 253

5

3. Show the Data properties for the control and click within the Smart Tags property
(see Figure 5.62).

4. Click the Build button (the ellipsis). The Smart Tags dialog box appears (see
Figure 5.63).

5. Click to select the smart tag you want to add. For example, to send mail, schedule a
meeting, open an existing contact, and add new contacts, select Person Name.

6. Click OK. A smart tag appears in the Smart Tags property (see Figure 5.64).

CHAPTER 5 What Every Developer Needs to Know About Forms254

FIGURE 5.62 The Data tab of the property sheet with the Smart Tags property selected.

FIGURE 5.63 The Smart Tags dialog box allows you to select the smart tag you want to add.

Adding Smart Tags to Your Forms 255

5FIGURE 5.64 After you click OK, a smart tag appears in the Smart Tags property.

Using a Smart Tag
After you have added a smart tag to a control, you will notice smart tag action buttons
when you view the form in Form view (see Figure 5.65). Click the action button for a
particular record to see the actions available for that smart tag. In Figure 5.66, you can see
that the Person Name smart tag has the Send Mail, Schedule a Meeting, Open Contact,
and Add to Contacts menu items all associated with it. If, for example, you select the
Schedule a Meeting menu item, Microsoft Outlook launches and a new meeting appears.

FIGURE 5.65 After you add a smart tag, smart tag action buttons appear when you display
the form in Form view.

FIGURE 5.66 Click the Action button for a particular control on the form to see the actions
available for that smart tag.

Creating a Pivot Table or Pivot Chart from a Form
Pivot tables and pivot charts provide great ways for you to summarize detailed data stored
in your Access Database Engine and SQL Server databases. Pivot tables present your data
in a spreadsheet-like format, whereas pivot charts automatically render pivot table views
as line, bar, or area charts. Access 2002 and Access 2003 provided two new views for
forms: PivotTable and PivotChart.

Creating the Form to Display in PivotTable or PivotChart View
You first must build a form that is appropriate to display in PivotTable or PivotChart view.
Forms that lend themselves to be displayed in PivotTable or PivotChart view provide many
ways for users to manipulate their data. An example of such a form is one that contains
information about country, city, salesperson, sales, and date of sale. You could determine
sales by city and salesperson for each month, or you could determine sales in each country
for each salesperson during the year 2006. As you can see, the idea of pivot tables is to let
you slice and dice the data in any way you need to at a given moment in time.

For this example, create the following query within the Northwind database. Then use
the Autoform feature to base a form on the query:

1. Create a new query in Design view.

2. Add the Customers, Orders, Products, Order Details, and Employees tables to the
query.

3. Add the Country/Region and City fields from the Customers table.

CHAPTER 5 What Every Developer Needs to Know About Forms256

4. Add an expression: SalesPerson:Employees!LastName & “, “ &
Employees!FirstName.

5. Add the Order Date from the Orders table.

6. Add the Product Name from the Products table.

7. Add an expression: Total:[Order Details]![Unit Price] * [Order
Details]!Quantity.

8. Double-click the join line between the Customers and Orders tables and select
option 1. Click OK to close the dialog. This changes the type of join between the
tables to an inner join. Chapter 10 covers join types in detail.

9. Double-click the join line between the Orders and Order Details tables and select
option 1. Click OK to close the dialog.

10. Close and save the query as qryPivotTable.

11. Select the query in the Navigation Pane.

12. Select PivotTable from the More Forms drop-down on the Create tab.

You now have the foundation for your pivot table (see Figure 5.67).

Displaying the Form in PivotTable View
Once you are in PivotTable view, notice that the empty PivotTable view appears and the
ribbon contains a Design tab with the tools appropriate for working with a pivot table
(see Figure 5.67).

Creating a Pivot Table or Pivot Chart from a Form 257

5

FIGURE 5.67 The Design tab contains tools necessary to work with a pivot table.

Included on the Design tab is the Field List button. There are four types of fields that you
will add to your pivot table. They include the following:

. Column fields—Often hold date fields; generally hold information with the fewest
number of data items.

. Row fields—One or more fields that display data by attributes.

. Totals or Detail fields—The crosstab data itself. These are the numeric values that
make up the meat of the pivot table.

. Filter fields—One or more optional fields that restrict that data appearing in the
columns, rows, or both.

To display the initial pivot table, take the following steps:

1. Click Field List on the Design tab to display the PivotTable Field List.

2. Drag the Country/Region field so that it appears as a Row field.

3. Drag the City field so that it appears as a second Row field to the right of the
Country/Region field.

4. Drag and drop the Order Date By Month field so that it appears as a Column field.

5. Drag and drop the Total field so that it appears as a Detail field. The resulting
pivot table appears as shown in Figure 5.68.

CHAPTER 5 What Every Developer Needs to Know About Forms258

FIGURE 5.68 The pivot table that appears after dragging and dropping the Total field so
that it appears as a Detail field.

Displaying Summarized Data
Including all the detail data might be much more detail than you need. You can alter the
query design to show only summary information. Here’s how this procedure works:

1. Switch to Design view.

2. Select the Data tab of the property sheet.

3. Click the Build button for the Record Source property. This places you in Design
view of the query underlying the form.

4. Click the Totals tool on the ribbon.

5. Group by all fields except the data field and any fields that you are using for a filter.

6. Change the Total cell for any fields you are filtering by to Where.

7. Change the Total cell for the data field to sum. The resulting query appears as
shown in Figure 5.69.

Creating a Pivot Table or Pivot Chart from a Form 259

5

FIGURE 5.69 The query that appears after changing the Total cell for the data field to sum.

8. Run the query to verify the design (see Figure 5.70).

9. Return to PivotTable view.

10. To add grand totals, click the Total button to select it, select the AutoCalc drop-
down from the Tools group, and then select Sum.

11. With the columns still selected, right-click and select Hide Details.

12. Observe the summarized data (see Figure 5.71).

CHAPTER 5 What Every Developer Needs to Know About Forms260

FIGURE 5.70 The underlying query after modifying it to summarize the data.

FIGURE 5.71 PivotTable view after modifying the underlying query to summarize the data.

Filtering Pivot Table Data
By default, Access includes all data in the pivot table. You can filter the pivot table to
display only selected values for a row or column. For example, you can filter to display
data for only sales in specific countries. Here’s how this procedure works:

1. Make sure that you have expanded the PivotTable display to include the detail for
the data on which you want to filter. (See the following section on using drill-down.)

2. Click the arrow of the field button to filter. The list contains an item for each field
value (see Figure 5.72).

Creating a Pivot Table or Pivot Chart from a Form 261

5

FIGURE 5.72 The list contains an item for each field value.

3. Click the (All) check box to deselect all fields.

4. Click to select the field values that you want to include in the output.

5. Click OK to close the list and apply the filter.

Using Drill-Down
Generally, the initial pivot table contains an excessive amount of detail. Here’s how you
can modify the amount of detail to show summary information only:

1. Switch to Design view.

2. Click the Totals button in the Show/Hide group to eliminate the data grouping.

3. Return to PivotTable view. The Total or Details Fields drop zone is empty because
you changed the structure of the query.

4. Click the Field List button to display the PivotTable Field List.

5. Expand the Total item.

6. Right-click the Sum of Total item and select Remove, which clears the data from
the cells.

7. Drag the Years button outside the window to remove the columns for the years,
leaving an empty No Totals column.

8. Click Show Details in the Show/Hide group and then drag the No Totals column
outside the window. At this point, the Column Fields and Totals or Detail Fields
drop zones are empty.

9. Drag the Total column to the Columns drop zone.

10. Click the Show Details button and then the Hide Details button. You will see the
data expand and collapse.

Exchanging Axes
If you are viewing Year across the top and Country down the side, and you decide to view
Year across the side and Country across the top, simply drag and drop their name buttons to
switch the positions in which they appear. You can also easily drag new items to the pivot
table from the PivotTable list at any time or remove them from the pivot table entirely.

Switching to PivotChart View
When you define a PivotTable view, you automatically generate a PivotChart view. You
will see how evident this is by using the View tool to switch to PivotChart view. You can
use ribbon buttons to add legends and modify the chart type.

Examining Form Specifications and Limitations
Forms have a number of specifications and limitations that you should be aware of.
Fortunately, you will generally not find them too restricting. They are listed in Table 5.2.

TABLE 5.2 Form Specifications and Limitations

Item Limitation

Number of characters in a label 2,028
Number of characters in a text box 65,535
Form width 22 in.
Section height 22 in.
Height of all sections plus section headers 200 in.
Number of nested forms 7
Number of controls and sections you can add 754
Number of characters in the SQL 32,750
statement that serves as the RowSource

CHAPTER 5 What Every Developer Needs to Know About Forms262

Practical Examples: Designing Forms for
Your Application
Several forms are required by the hypothetical time and billing application. I recommend
that you build them yourself. They are somewhat complex. If you prefer, you can review
the completed forms in CHAP5.ACCDB, rather than build them yourself. They are called
frmClients and frmProjects.

Designing the Clients Form
Here are the steps involved in creating the Clients form:

1. Click to select the Create tab and then click Form Design.

2. Activate the Data tab of the property sheet. Select the Record Source property and
select tblClients as the Record Source. Although you will modify this form later
in the book to be based on a query, for now it is based directly on the tblClients
table.

3. Click to select the Add Existing Fields tool in the Tools group on the Design tab.

4. Select the CompanyName, ContactFirstName, ContactLastName, ContactTitle,
ReferredBy, AssociatedWith, DefaultRate, Miles, and HomePage fields from
the field list. Drag and drop them to the form so that they appear as shown in
Figure 5.73.

Practical Examples: Designing Forms for Your Application 263

5

FIGURE 5.73 The frmClients form allows you to select and work with a particular client.

The next step is to add a combo box that allows the user to select the appropriate contact
type for the client. The easiest way to accomplish the task is to use the Control Wizards:

1. Make sure that the Control Wizards tool is selected.

2. Click to select a combo box from the Controls group. Then click and drag to add
the combo box to the appropriate location in the detail section of the form. The
Combo Box Wizard launches.

3. Select I Want the Combo Box to Look Up the Values in a Table or Query. Click Next.

4. Select the tblContactType table from the list of available tables and click Next.

5. Select both the ContactTypeID and the ContactType fields and click Next.

6. Indicate that you want to sort by ContactType. Click Next.

7. Leave the Key column hidden, and size the ContactType column, if desired. Click
Next.

8. Select Store That Value in This Field. Select ContactTypeID from the combo box and
click Next.

9. Enter Contact Type as the text to appear within the label and click Finish.

You can add another combo box to the form, allowing the user to designate the terms for
the client, with the following steps:

1. Make sure that the Control Wizards tool is selected.

2. Click to select a combo box from the Controls group on the Design tab of the
ribbon; then click and drag to add it to the appropriate location in the detail section
of the form. The Combo Box Wizard launches.

3. Select I Want the Combo Box to Look Up the Values in a Table or Query. Click Next.

4. Select the tblTerms table from the list of available tables and click Next.

5. Select both the TermTypeID and the TermType fields and click Next.

8. Indicate that you want to sort the records by TermType and click Next.

9. Hide the key column and click Next.

10. Store the value in the TermTypeID field and click Next.

11. Enter Term Type as the text to appear within the label and click Finish.

Take the following steps to refine the look and feel of the form:

1. Use the appropriate tools to size and align the objects to appear as shown in
Figure 5.74.

2. Rename the objects per the naming conventions found in Appendix A (txt for text
boxes, cbo for combo boxes, and so on).

CHAPTER 5 What Every Developer Needs to Know About Forms264

FIGURE 5.74 The objects should appear as shown here.

3. Set the Dividing Line, Navigation Buttons, and Record Selector properties of the
form to No. Set the Auto Center property to Yes.

4. Select Tab Order from the Controls Layout group on the Arrange tab and set the tab
order of the controls as appropriate.

5. Set the Caption property of the form to Client Data Entry.

6. Because the txtClientID is bound to an AutoNumber field, it is best to set its Locked
property to Yes, its Tab Stop property to No, and its Back Color property to the
same color as the background of the form.

You have now built the foundation for the form.

The next step is to add a combo box to the form that allows the user to select the client
whose data she wants to view:

1. Select Form Header/Footer from the Show/Hide group on the Arrange tab.

2. Expand the header to make it large enough to hold the combo box and a command
button that navigates to the frmProjects form.

3. Make sure that the Control Wizards tool is selected.

4. Click to select a combo box from the Controls group on the Design tab; then click
and drag to add it to the header section of the form. The Combo Box Wizard
launches.

Practical Examples: Designing Forms for Your Application 265

5

5. Select Find a Record on My Form Based on a Value I Selected in My Combo Box.
Click Next.

6. Select the ClientID, CompanyName, ContactFirstName, and ContactLastName fields as
the Selected fields and click Next.

7. Size the columns as appropriate (keeping the Key column hidden) and click Next.

8. Type Select a Company as the text for the label and click Finish.

9. Click the Data tab of the property sheet. Select the Row Source property and click
the ellipsis to launch the Query Builder.

10. Change the Sort Order to sort the combo box entries by CompanyName,
ContactFirstName, and ContactLastName.

11. Close the Query Builder window and choose Yes, you want to save changes made to
the SQL statement and update the property.

12. Run the form and make sure that the combo box functions properly.

Designing the Projects Form
The next step is to design the Projects form, which is pictured in Figure 5.75. The form is
easily created with the Form Wizard and then customized.

CHAPTER 5 What Every Developer Needs to Know About Forms266

FIGURE 5.75 The frmClients form allows you to select and work with projects associated
with a particular client.

Here are the steps involved in designing the Projects form:

1. Select the Create tab.

2. Select Form Wizard from the More Forms drop-down.

3. Select tblProjects from the Tables/Queries drop-down. This record source is modi-
fied in Chapter 10.

4. Click to select all fields and click Next.

5. Select Columnar from the list of layouts and click Next.

6. Select a style of your choice and click Next.

7. Title the form frmProjects and click Finish.

8. Switch to the Form Design view. Delete the ProjectID and EmployeeID text boxes
and the ClientID combo box. Move and size the form objects so that the form
appears as shown in Figure 5.75.

A combo box must be added for the EmployeeID:

1. Make sure that the Control Wizards tool is selected.

2. Click to select a combo box from the Controls tab of the Design tab on the ribbon;
then click and drag to add it to the appropriate location in the detail section of the
form. The Combo Box Wizard launches.

3. Select I Want the Combo Box to Look Up the Values in a Table or Query. Click Next.

4. Select the tblEmployees table from the list of available tables and click Next.

5. Select the EmployeeID, LastName, and FirstName fields and click Next.

6. Indicate that you want the data sorted by Last Name and then First Name and click
Next.

7. Leave the Key column hidden, and size the LastName and FirstName columns, if
desired. Click Next.

8. Select Store That Value in This Field. Select EmployeeID from the combo box and
click Next.

9. Enter Employee as the text to appear within the label and click Finish.

Take the following steps to refine the look and feel of the form:

1. Rename the objects per the naming conventions found in Appendix A (txt for text
boxes, cbo for combo boxes, and so on). Appendix A is available for download at
www.samspublishing.com.

2. Set the Dividing Line and Record Selector properties of the form to No.

3. Select Tab Order from the Controls Layout group on the Arrange tab of the ribbon
and set the tab order of the controls as appropriate.

4. Set the Caption property of the form to Project Information.

Practical Examples: Designing Forms for Your Application 267

5

www.samspublishing.com

Adding a Command Button That Links the Clients and
Projects Forms
The final step is to tie the Clients form to the Projects form. The Command Wizard will
help to accomplish the task:

1. Return to the frmClients form in Design view.

2. Make sure the Control Wizards toolbar button is active.

3. Click to select a command button and then click and drag to place it within the
Header section of the frmClients form. The Command Button Wizard launches.

4. Click Form Operations within the list of categories.

5. Click Open Form within the list of Actions and click Next.

6. Select frmProjects as the name of the form you would like the command button to
open. Click Next.

7. Click Open Form and Find Specific Data to Display. Click Next.

8. Click to select the ClientID field from the frmClients form and the ClientID field
from the frmProjects form. Click the <-> button to designate that the fields are
joined. Click Next to continue.

9. Select a picture or enter text for the caption of the command button.

10. Enter the name for the command button. Don’t forget to use proper naming
conventions (for example, cmdShowProjects). Click Finish.

11. Switch from Design view to Form view and test the command button. The
frmProjects form should load, displaying projects for the currently selected client.

Summary
Microsoft Access gives you rich, powerful tools you can use to build even the most sophis-
ticated form. This chapter featured an overview of what Access forms are capable of and
explained the many options you have for creating a new form.

Regardless of how a form has been created, you need to know how to modify all the
attributes of a form and its controls. This chapter showed you how to work with form
objects, modifying both their appearance and how they’re tied to data. Control types and
their properties were discussed in detail, and all the properties of the form itself were
covered. Using the techniques in this chapter, you can control both the appearance and
functionality of a form and its objects.

CHAPTER 5 What Every Developer Needs to Know About Forms268

IN THIS CHAPTER

. Why This Chapter Is Important

. Examining Types of Reports
Available

. Understanding the Anatomy of
a Report

. Creating a New Report

. Working with the Report
Design Window

. Selecting the Correct Control
for the Job

. What Report Properties Are
Available, and Why Should You
Use Them?

. What Control Properties Are
Available, and Why Should You
Use Them?

. Inserting Page Breaks

. Using Unbound, Bound, and
Calculated Controls

. Using Expressions to Enhance
Your Reports

. Building Reports Based on
More Than One Table

. Working with Sorting and
Grouping

. Improving Performance and
Reusability by Basing Reports
on Stored Queries or
Embedded SQL Statements

. Using Access Reports and the
Internet

. Understanding Report
Specifications and Limitations

. Practical Examples: Building
Reports Needed for Your
Application

CHAPTER 6

What Every Developer
Needs to Know
About Reports

Why This Chapter Is Important
Although forms provide an excellent means for data entry,
reports are the primary output device in Access. You can
preview reports on the screen, output them to a printer,
display them in a browser, and more! Reports are relatively
easy to create and are extremely powerful. This chapter
covers the basics of creating and working with reports. After
reading this chapter, you’ll be familiar with the types of
reports available. You’ll learn how to build reports with and
without a wizard and how to manipulate the reports that
you build. You will understand the report and control prop-
erties available and when it is appropriate to use each. You’ll
also be familiar with many important report techniques.

Examining Types of Reports
Available
The reporting engine of Microsoft Access is very powerful,
with a wealth of features. Many types of reports are avail-
able in Access 2007:

. Detail reports

. Summary reports

. Cross-tabulation reports

. Reports containing graphics and charts

. Reports containing forms

. Reports containing labels

. Reports including any combination of the preceding

Detail Reports
A Detail report supplies an entry for each record included in the report. As you can see in
Figure 6.1, there’s an entry for each order in the Customers table. The report’s detail is
grouped by the first character of the customer’s last name.

CHAPTER 6 What Every Developer Needs to Know About Reports270

FIGURE 6.1 An example of a Detail report.

Summary Reports
A Summary report gives you summary data for all the records included in the report. In
Figure 6.2, only total sales by product for the month of June are displayed in the report.
The underlying detail records that compose the summary data aren’t displayed in the
report. The report itself contains only programmatically calculated controls in its Detail
section. The remainder of the controls are placed in report Group Headers and Footers
that are grouped on the month and year of the order. Because only programmatically
calculated controls are found in the report’s Detail section, Access prints summary infor-
mation only.

Cross-Tabulation Reports
Cross-tabulation reports display summarized data grouped by one set of information on
the left side of the report and another set across the top. The report shown in Figure 6.3
shows total sales by product name and employee. The report is based on a crosstab query
and is generated using a fair amount of Visual Basic for Applications (VBA) code. This code
is required because each time the report is run, a different number of employees might

FIGURE 6.2 An example of a Summary report.

Examining Types of Reports Available 271

6

need to be displayed in the report’s columns. In other words, the number of columns
needed might be different each time the user runs the report. This report and the tech-
niques needed to produce it are covered in Chapter 11, “Advanced Report Techniques.”

FIGURE 6.3 An example of a cross-tabulation report.

NOTE

You can find this report in the Chap11EX.accdb sample databases, covered in
Chapter 11.

Reports with Graphics and Charts
Although the statement “A picture paints a thousand words” is a cliché, it’s also quite
true; research proves that you retain data much better when it’s displayed as pictures
rather than numbers. Fortunately, Access makes including graphics and charts in your
reports quite easy. As you can see in Figure 6.4, you can design a report that contains one
or more charts. The report in Figure 6.4 shows the sales by product for the month. The
main report is grouped by order date and product category. The chart totals product sales
by product category, displaying the information graphically.

CHAPTER 6 What Every Developer Needs to Know About Reports272

FIGURE 6.4 An example of a report with a chart.

Reports with Forms
Users often need a report that looks like a printed form. The Access Report Builder, with
its many graphical tools, allows you to quickly produce reports that emulate the most
elegant data entry form. The report shown in Figure 6.5 produces an invoice for a
customer. The report is based on a query that draws information from the Customers,
Orders, Order Details, Products, Employees Extended, and Shippers tables. The report’s
Filter property is filled in, limiting the data that appears on the report to a particular
order in the Orders table. Using graphics, color, fonts, shading, and other special effects
gives the report a professional look.

FIGURE 6.5 An example of a report containing a form.

Examining Types of Reports Available 273

6

Reports with Labels
Creating mailing labels in Access 2007 is easy using the Label Wizard. Mailing labels are
simply a special type of report with a page setup indicating the number of labels across
the page and the size of each label. An example of a mailing label report created by using
the Label Wizard is shown in Figure 6.6. This report is based on the Customers table but
could have just as easily been based on a query that limits the mailing labels produced.

FIGURE 6.6 An example of a report containing mailing labels.

Understanding the Anatomy of a Report
Reports can have many parts. These parts are referred to as sections of the report. A new
report is automatically made up of the following three sections, shown in Figure 6.7:

. Page Header section

. Detail section

. Page Footer section

CHAPTER 6 What Every Developer Needs to Know About Reports274

FIGURE 6.7 Sections of a report.

The Detail section is the main section of the report; it’s used to display the detailed data
of the table or query underlying the report. Certain reports, such as Summary reports,
have nothing in the Detail section. Instead, Summary reports contain data in Group
Headers and Footers (discussed at the end of this section).

The Page Header is the portion that automatically prints at the top of every page of the
report. It often includes information such as the report’s title. The Page Footer automati-
cally prints at the bottom of every page of the report and usually contains information
such as the page number and date. Each report can have only one Page Header and one
Page Footer.

In addition to the three sections automatically added to every report, a report can have
the following sections:

. Report Header

. Report Footer

. Group Headers

. Group Footers

A Report Header is a section that prints once, at the beginning of the report; the Report
Footer prints once, at the end of the report. Each Access report can have only one Report
Header and one Report Footer. You will often use the Report Header to create a cover
sheet for the report. It can include graphics or other fancy effects, adding a professional
look to a report. The most common use of the Report Footer is for grand totals, but it can
also include any other summary information for the report.

In addition to Report and Page Headers and Footers, an Access report can have up to 10
Group Headers and Footers. Report groupings separate data logically and physically. The
Group Header prints before the detail for the group, and the Group Footer prints after
the detail for the group. For example, you can group customer sales by country and city,
printing the name of the country or city for each related group of records. If you total the
sales for each country and city, you can place the country and city names in the country
and city Group Headers and the totals in the country and city Group Footers.

Creating a New Report
You can create a new report in several ways; the most common is to select the Create tab
and then click Report Wizard from the Reports group. You can create reports from scratch
by using Design view; you can also create them with Quick Create. Access also sports a
Label Wizard, which helps quite a bit when you need to print labels. The Report Wizards
are so powerful that I use one of them to build the initial foundation for almost every
report I create.

Creating a Report with the Report Wizard
To create a report with the Report Wizard, click to select the Create tab. Next, select
Report Wizard from the Reports group. This launches the Report Wizard. The first step is
to select the table or query that will supply data to the report. I prefer to base my reports
on queries or on embedded Structured Query Language (SQL) statements (a query stored
as part of a report). This approach generally improves performance because it returns as
small a dataset as possible. In a client/server environment, this is particularly pronounced
because the query is usually run on the server, and only the results are sent over the
network wire. Basing reports on queries also enhances your ability to produce reports
based on varying criteria.

After you have selected a table or query, you can select the fields you want to include in
the report. The fields included in the selected table or query are displayed in the list box
on the left. To add fields to the report, double-click the name of the field you want to add
or click the field name and click the > button. In the example in Figure 6.8, five fields
have been selected from the tblClients table.

Creating a New Report 275

6

FIGURE 6.8 The first step of the Report Wizard: table/field selection.

After you have selected a table or query and the fields you want to include on the report,
click Next. The wizard prompts you to add group levels, which add report groupings, to
the report. Add group levels if you need to visually separate groups of data or include
summary calculations (subtotals) in your report. Report groupings are covered later in this
chapter. If your report doesn’t require groupings, click Next.

In the third step of the Report Wizard, you choose sorting levels for your report. Because
the order of a query underlying a report is overridden by any sort order designated in the
report, it’s a good idea to designate a sort order for the report. You can add up to four
sorting levels with the wizard. In the example shown in Figure 6.9, the report is sorted by
the ClientID field. After you select the fields you want to sort on and whether you wish
to sort in ascending or descending order, click Next.

CHAPTER 6 What Every Developer Needs to Know About Reports276

FIGURE 6.9 The third step of the Report Wizard: sorting report data.

In the fourth step of the Report Wizard, you decide on the report’s layout and orienta-
tion. The layout options vary depending on what selections you made in the wizard’s
previous steps. The orientation can be Portrait or Landscape. This step of the Report
Wizard also allows you to specify whether you want Access to adjust the width of each
field so that all the fields fit on each page. After you supply Access with this information,
click Next.

You choose a style for your report in the Report Wizard’s fifth step. There are quite a few
choices available. You can preview each look before you make a decision. Any of the style
attributes applied by the Report Wizard, as well as other report attributes defined by the
wizard, can be modified in Report Design view any time after the wizard has produced
the report. After you have selected a style, click Next.

The final step of the Report Wizard prompts you for the report’s title. Access uses this title
as both the name and the caption for the report. I supply a standard Access report name
and modify the caption after the Report Wizard has finished its process. You’re then given
the opportunity to preview the report or modify the report’s design. If you opt to modify
the report’s design, you’re placed in Design view (see Figure 6.10). You can then preview the
report at any time. You can optionally mark the check box Display Help on Working with
the Report to have Access display the help window and list the associated report topics.

Creating a New Report 277

6

FIGURE 6.10 Design view of a completed report.

Creating a Report from Design View
Although you usually start most of your reports by using a Report Wizard, you should
understand how to create a new report from Design view. To create a report without using
a wizard, click the Report Design button in the Reports group of the Create tab. The
Report Design window appears. You must then set the Record Source of the report to the
table or query upon which you want the report to be based.

Working with the Report Design Window
You use the Report Design window to build and modify a report. Using this window, you
can add objects to a report and modify their properties. Microsoft provides numerous
Report, Report Grouping, and Control properties. By modifying these properties, you can
create reports with diverse looks and functionality.

Understanding the Report Design Tools
To help you design reports, several report design tools are available, including the Ribbon,
Property Sheet, Field List, and Sorting and Grouping windows. Three tabs are also avail-
able to make developing and customizing your reports easier: Design, Arrange, and Page
Setup. The Design tab contains tools that allow you to group and total your report, add
controls to your report, add existing fields to the report, and view and modify the prop-
erty sheet associated with the report. The Arrange tab is specifically designed to help you
customize the look of your report. It includes tools for applying an AutoFormat to a
report, aligning and positioning control on the report, and sizing report objects.

The Properties, Toolbox, Field List, and Sorting and Grouping windows are all designed as
toggles. This means that buttons on the Report Design toolbar alternately hide and show
these valuable windows. If you have a high-resolution monitor (or multiple monitors), you
might want to leave the windows open at all times. If you have a low-resolution monitor,
you need to get a feel for when it’s most effective for each window to be opened or closed.

Adding Fields to the Report
You can most easily add fields to a report by using the Field List window. With the Field
List window open (see Figure 6.11), click and drag a field from the field list onto the
appropriate section of the report. You can add several fields at one time, just as you can
do with forms. Use the Ctrl key to select noncontiguous fields, use the Shift key to select
contiguous fields, or double-click the field list’s title bar to select all the fields; then click
and drag them to the report as a unit.

CAUTION

One problem with adding fields to a report is that both the fields and the attached
labels are placed in the same section of the report. This means that, if you click and
drag fields from the Field List window to the Detail section of the report, both the
fields and the attached labels appear in the Detail section. If you’re creating a tabular
report, this isn’t acceptable, so you must cut the attached labels and paste them into
the report’s Page Header section.

CHAPTER 6 What Every Developer Needs to Know About Reports278

FIGURE 6.11 Design view of a completed report.

Selecting, Moving, Aligning, and Sizing Report Objects
Microsoft Access offers several techniques to help you select, move, align, and size report
objects. Different techniques are effective in different situations. Experience will tell you
which technique you should use and when. The steps for selecting, moving, aligning, and
sizing report objects are quite similar to performing the same tasks with form objects. The
techniques are covered briefly in this chapter; for a more detailed explanation of each
technique, refer to Chapter 5, “What Every Developer Needs to Know About Forms.”

Selecting Report Objects
To select a single report object, click it; selection handles appear around the selected
object. After you select the object, you can modify any of its attributes (properties), or you
can size, move, or align it.

To select multiple objects so that you can manipulate them as a unit, use one of the
following techniques:

. Hold down the Shift key as you click multiple objects. Each object you click is then
added to the selection.

. Place your mouse pointer in a blank area of the report. Click and drag to lasso the
objects you want to select. When you let go of the mouse, any object even partially
within the lasso is selected.

Working with the Report Design Window 279

6

. Click and drag within the horizontal or vertical ruler. As you click and drag, lines
appear indicating the potential selection area. When you release the mouse, all
objects within the lines are selected.

Make sure you understand which objects are actually selected; attached labels can cause
some confusion. Figure 6.12 shows a report with four objects selected: the Client ID and
Intro Date labels and the CompanyName and DefaultRate text boxes. The Company
Name and Default Rate labels and the ClientID and IntroDate text boxes are not selected.
If you were to modify the properties of the selected objects, those controls would be
unaffected.

CHAPTER 6 What Every Developer Needs to Know About Reports280

FIGURE 6.12 Selecting objects in an Access report.

Moving Objects Around
If you want to move a single control along with its attached label, click the object and
drag it to a new location. The object and the attached label move as a unit. To move
multiple objects, use one of the methods explained in the preceding section to select the
objects you want to move. After you select the objects, click and drag any of them; the
selected objects and their attached labels move as a unit.

Moving an object without its attached label is a trickier process. When placed over the
center or border of a selected object (not on a sizing handle), the mouse pointer looks like
a hand with all five fingers pointing upward. This indicates that the selected object and

its attached label move as a unit, maintaining their relationship to one another. However,
if you place your mouse pointer directly over the selection handle in the object’s upper-
left corner, the mouse pointer looks like a cross-bar. This indicates that the object and the
attached label move independently of one another so that you can alter the distance
between them.

Aligning Objects with One Another
To align objects with one another, you must select them first. Click the Arrange tab. Then
select the appropriate button in the Control Alignment group. The selected objects will
align in relation to each other.

CAUTION

Watch out for a few “gotchas” when you’re aligning report objects: If you select several
text boxes and their attached labels and align them, Access tries to align the left sides
of the text boxes with the left sides of the labels. To avoid this problem, you have to
align the text boxes separately from their attached labels.

During the alignment process, Access never overlaps objects. For this reason, if the
objects you’re aligning don’t fit, Access can’t align them. For example, if you try to
align the bottom of several objects horizontally and they don’t fit across the report,
Access aligns only the objects that fit on the line.

Using Snap to Grid
The Snap to Grid feature is a toggle found on the Arrange tab. When you select Snap to
Grid, all objects that you’re moving or sizing snap to the report’s gridlines. To temporarily
disable the Snap to Grid feature, hold down your Ctrl key while sizing or moving an
object.

Using Power-Sizing Techniques
Access offers many techniques to help you size report objects. A selected object has eight
sizing handles, and you can use all of them, except for the upper-left handle, to size the
object. Using the upper-left handle moves the object independently of an object it is
attached to (that is, it moves an attached label independently of the text box it is
attached to). Simply click and drag one of the sizing handles. If you select multiple
objects, Access sizes them by the same amount.

The tools found in the Size group on the Arrange tab can also help you size objects. The
Size group has six options: To Fit, To Grid, To Tallest, To Shortest, To Widest, and To
Narrowest. These options are discussed in detail in Chapter 5.

TIP

Access offers a great trick that can help size labels to fit. Simply double-click any
sizing handle, and the object is automatically sized to fit the text within it.

Working with the Report Design Window 281

6

Controlling Object Spacing
Access also makes it easy for you to control object spacing. You can make both the hori-
zontal and vertical distances between selected objects equal. Select the objects, click to
select the Arrange tab, and then use the appropriate tool in the Position group to achieve
the desired effect. You can also maintain the relative relationship between selected objects
while increasing or decreasing the space between them. Once again, to do this, use the
appropriate tool in the Position group.

Selecting the Correct Control for the Job
Reports usually contain labels, text boxes, lines, rectangles, image controls, and bound
and unbound object frames. You use the other controls for reports that emulate data
entry forms. The different controls you can place on a report, as well as their uses, are
discussed briefly in the following sections.

Labels
You use labels to display information to your users. They’re commonly used as report
headings, column headings, or group headings for your report. Although you can modify
the text they display at runtime by using VBA code, you can’t directly bind them to data.

To add a label to a report, select the Label tool on the ribbon; then click and drag to place
the label on the report.

Text Boxes
You use text boxes to display field information or the result of an expression. Text boxes
are used throughout a report’s different sections. For example, in a Page Header, a text
box might contain an expression showing the date range that’s the criterion for the
report. In a Group Header, a text box might be used to display a heading for the group.
The possibilities are endless because a text box can hold any valid expression.

To add a text box to a report, select the Text Box tool from the ribbon. Click and drag the
text box to place it on the report. You can also add a text box to a report by dragging a
field from the field list to a report. This works as long as the field’s Display control prop-
erty is a text box.

Lines
You can use lines to visually separate objects on your report. For example, you can place a
line at the bottom of a section or underneath a subtotal. To add a line to a report, click
the Line tool to select it; then click and drag to place the line on your report. When
added, the line has several properties that you can modify to customize its look.

TIP

To make sure that the line you draw is perfectly straight, hold down the Shift key while
you click and drag to draw the line.

CHAPTER 6 What Every Developer Needs to Know About Reports282

Rectangles
You can use rectangles to visually group items that logically belong together on the
report. You can also use them to make certain controls on your report stand out. I often
draw rectangles around important subtotal or grand total information that I want to
make sure that the report’s reader notices.

To add a rectangle to a report, select the Rectangle tool from the ribbon; then click and
drag to place the rectangle on the report.

CAUTION

The rectangle might obscure objects that have already been added to the report. To
rectify this problem, you can set the rectangle’s Back Style property to Transparent.
This setting is fine unless you want the rectangle to have a background color. If so,
choose Send to Back on the Arrange tab to layer the objects so that the rectangle lies
behind the other objects on the report.

Bound Object Frames
Bound object frames let you display the data in object linking and embedding (OLE)
fields, which contain objects from other applications, such as pictures, spreadsheets, and
word processing documents.

To add a bound object frame to a report, click the Bound Object Frame tool in the
Ribbon; then click and drag the frame onto the report. Set the Control Source property
of the frame to the appropriate field. You can also add a bound object frame to a report
by dragging and dropping an OLE field from the field list onto the report.

Unbound Object Frames
You can use unbound object frames to add logos and other pictures to a report. Unlike
bound object frames, however, they aren’t tied to underlying data.

To add an unbound object frame to a report, click the Unbound Object Frame tool in the
Controls group on the Design tab of the ribbon. Click and drag the object frame to place
it on the report. This opens the Insert Object dialog box, shown in Figure 6.13, which you
use to create a new OLE object or insert an existing OLE object from a file on disk. If you
click Create from File, the Insert Object dialog box changes to look like Figure 6.14. Click
Browse and locate the file you want to include in the report. The Insert Object dialog box
gives you the option of linking to or embedding an OLE object. If you select Link, a refer-
ence is created to the OLE object. Only the bitmap of the object is stored in the report,
and the report continues to refer to the original file on disk. If you don’t select Link, the
object you select is copied and embedded in the report and becomes part of the Access
ACCDB file; no link to the original object is maintained.

Using an image control rather than an unbound object frame is usually preferable for
static information like a logo because the image control requires fewer resources than an
unbound object frame does. Image controls are covered in the next section.

Selecting the Correct Control for the Job 283

6

FIGURE 6.13 Use the Insert Object dialog box to insert a new or existing object into an
unbound object frame.

CHAPTER 6 What Every Developer Needs to Know About Reports284

FIGURE 6.14 The Insert Object dialog box with Create from File selected.

Image Controls
Image controls are your best option for displaying static images, such as logos, on a report
(see Figure 6.15). You can modify an unbound object after it is placed on a report, but
you can’t open the object application and modify an image when it’s placed on a report.
This limitation, however, means far fewer resources are needed, so performance improves
noticeably.

Other Controls
As mentioned in a previous section, it’s standard to include mostly labels and text boxes
on your reports, but you can add other controls when appropriate. To add any other type
of control, click to select the control; then click and drag to place it on the report.

What Report Properties Are Available, and Why
Should You Use Them?
Reports have many different properties that you can modify to change how the report
looks and performs. Like Form properties, Report properties are divided into categories:
Format, Data, Event, and Other. To view a report’s properties, first select the report, rather
than a section of the report, in one of two ways:

FIGURE 6.15 A report with an image control.

. Click the Report Selector, which is the small gray button at the intersection of the
horizontal and vertical rulers.

. Select Report from the drop-down in the property sheet.

After you have selected a report, you can view and modify its properties.

Working with the Property Sheet
When you select the report, the property sheet shows all the properties associated with
the report. To select the report and open the property sheet at the same time, double-click
the Report Selector. A report has numerous properties available on the property sheet
(additional properties are available only from code) broken down into the appropriate
categories in the property sheet. Forty of the properties relate to the report’s format, data,
and other special properties; the remaining properties relate to the events that occur
when a report is run. The format, data, and other properties are covered here, and the
event properties are covered in Chapter 11.

The Report’s Format Properties
A report has the following Format properties for changing the report’s physical
appearance:

. Caption—The Caption property of the report is the text that appears in the Report
window’s title bar when the user is previewing the report. You can modify it at
runtime to customize it for a particular situation.

What Report Properties Are Available, and Why Should You Use Them? 285

6

. Default View—The Default View property of the report determines whether a
report automatically opens in Report view or Print Preview.

. Allow Report View—The Allow Report View property of the report determines
whether a user can switch to Report view. The Allow Layout View property of the
report determines whether a user can switch to Layout view.

. Auto Resize—The Auto Resize property was introduced with Access 2002. This
setting determines whether a report is resized automatically to display all the data
on the report.

. Auto Center—The Auto Center property was introduced with Access 2002. You use
the Auto Center property to designate whether you want the Report window to
automatically be centered on the screen.

. Fit to Page—The Fit to Page property of the report determines whether the
report will expand to fit a page.

. Page Header, Page Footer—The Page Header and Page Footer properties deter-
mine on what pages these sections appear. The options are All Pages, Not with
Rpt Hdr, Not with Rpt Ftr, and Not with Rpt Hdr/Ftr. Because you might not
want the Page Header or Page Footer to print on the Report Header or Report Footer
pages, these properties give you control over where those sections print.

. Grp Keep Together—In Access, you can keep a group of data together on the same
page by using the Grp Keep Together property. The Per Page option forces the
group of data to remain on the same page, and the Per Column option forces the
group of data to remain within a column. A group of data refers to all the data
within a report grouping (for example, all the customers in a city).

. Border Style—The Border Style property was introduced with Access 2002
reports. Like its form counterpart, it is far more powerful than its name implies.
The options for the Border Style property are None, Thin, Sizable, and Dialog. A
border style set to None means the report has no border. A Thin border is not resiz-
able; the Size command isn’t available in the Control menu. This setting is a good
choice for pop-up reports, which remain on top even when other forms or reports
are given the focus. A Sizable border is standard for most reports. It includes all the
standard options in the Control menu. A Dialog border looks like a Thin border. A
report with a border style of Dialog can’t be maximized, minimized, or resized. After
the border style of a report is set to Dialog, the Maximize, Minimize, and Resize
options aren’t available in the report’s Control menu.

. Control Box—The Control Box property was introduced with Access 2002 as well.
This property lets you specify whether the Report window under print preview has
the Control menu available. The Control menu, which you activate by clicking the
icon in the upper-left corner of a window, displays options for manipulating the
window—Restore, Move, Size, Minimize, Maximize, and Close.

. Min Max Buttons—The Min Max Buttons property was also introduced with Access
2002. This property lets you specify whether the Minimize and/or Maximize options

CHAPTER 6 What Every Developer Needs to Know About Reports286

should be available from the Control menu for the Report window in Print Preview
mode. You can select from None, Min Enabled, Max Enabled, or Both Enabled.

. Close Button—The Close Button property was also introduced with Access 2002.
This setting specifies whether to enable or disable the Close button on the Print
Preview window.

. Width—The Width property specifies the width of the report sections.

. Picture, Picture Type, Picture Size Mode, Picture Alignment, Picture Tiling,
and Picture Pages—The background of a report can be a picture. The Picture
properties determine what picture is used as a background for the report and what
attributes are applied to it.

. Show Page Margins—The Show Page Margins property determines whether the
margins appear in Report view.

. Grid X/Grid Y—The Grid X and Grid Y properties determine the density of the
gridlines in the Report Design window. The number shown is the number of sub-
divisions per unit of measure.

. Layout for Print—The Layout for Print property specifies whether screen or
printer fonts are used in the report. If you want to optimize reports for preview,
select No; if you want to optimize reports for the printer, select Yes. This option is
not as important if you select TrueType fonts because TrueType fonts usually print
equally well to the screen and printer.

. Palette Source—The Palette Source property determines the source for the
report’s selectable color.

. Orientation—The Orientation property enables you to take advantage of language-
specific versions of Microsoft Access, such as Arabic. You can set this property to
support right-to-left display features for these language-specific editions of Access.

. Moveable—The Moveable property determines whether the user can move the Report
window around the screen by clicking and dragging the report by its title bar.

The Report’s Data Properties
A report has the following six Data properties used to supply information about the data
underlying the report:

. Record Source—Specifies the table or query whose data underlies the report. You
can modify the record source of a report at runtime. This aspect of the Record
Source property makes it easy for you to create generic reports that use different
record sources in different situations.

. Filter—Allows you to open the report with a specific filter set. I usually prefer to
base a report on a query rather than apply a filter to it. At other times, it’s more
appropriate to base the report on a query but then apply and remove a filter as
required, based on the report’s runtime conditions.

What Report Properties Are Available, and Why Should You Use Them? 287

6

. Filter On Load—Determines whether a report filter is applied. If the value of this
property is set to No, the Filter property of the report is ignored.

. Order By—Determines how the records in a report are sorted when the report is
opened.

. Allow Filters—Determines whether the user will be able to filter report data.

. Order By On Load—Determines whether the sort is applied when the report first
loads.

The Other Report Properties
A report has 16 Other properties; these miscellaneous properties, explained here, allow
you to control other important aspects of the report:

. Record Locks—Determines whether the tables used in producing the report are
locked while the report is being run. The two values for this property are No Locks
and All Records. No Locks is the default value; it means that no records in the
tables underlying the report are locked while the report is being run. Users can
modify the underlying data as the report is run, which can be disastrous when
running sophisticated reports. Users can change the data in the report as the report
is being run, which would make figures for totals and percent of totals invalid.
Although the All Records option for this property locks all records in all tables
included in the report (thereby preventing data entry while the report is being run),
it might be a necessary evil for producing an accurate report.

. Display on SharePoint Site—Determines whether the report will appear on the
SharePoint site.

. Date Grouping—Determines how grouping of dates occurs in your report. The US
Defaults option means that Access uses United States’ defaults for report groupings;
therefore, Sunday is the first day of the week, the first week begins January 1, and so
on. The Use System Settings option means that date groupings are based on the
locale set in the Control Panel’s Regional and Language Options rather than on U.S.
defaults.

. Pop Up—Determines whether the report’s print preview window opens as a pop-up
window. Within Microsoft Access, pop-up windows always remain on top of other
open windows.

. Modal—Instructs Access to open the Report window in a modal or modeless state.
The default is No, meaning that the window will not be opened as modal. A modal
window retains the application program’s focus until the window receives the
appropriate user input that it requires.

. Menu Bar—Allows you to associate a custom menu bar with the report that’s visible
when the user is previewing the report. Adding a custom menu to your report lets
you control what the user can do while the report is active.

CHAPTER 6 What Every Developer Needs to Know About Reports288

. Toolbar—Lets you associate a custom toolbar with the report that’s visible when the
user is previewing the report.

. Shortcut Menu Bar—Determines what shortcut menu is associated with the report
while the report is being previewed. The shortcut menu bar appears when the user
clicks the right mouse button over the Preview window.

. Ribbon Name—Designates the ribbon that appears when the report is the active
object.

. Fast Laser Printing—Determines whether lines and rectangles are replaced with
text character lines when you print a report with a laser printer. If fast printing is
your objective and you’re using a laser printer, you should set this property to Yes.

. Use Default Paper Size—Determines whether the report follows the default paper
size.

. Cycle—Determines how the Tab key cycles. This feature is more applicable to forms
than it is to reports.

. Help File, Help Context Id—Let you associate a help file and help topic with the
report.

. Tag—Stores information defined by the user at either design time or runtime. The
Tag property is Microsoft Access’s way of giving you an extra property. Access makes
no use of this property; if you don’t take advantage of it, it will never be used.

. Has Module—Determines whether the report contains an associated class module.
If no code will be included in the report, eliminating the class module can both
improve performance and reduce the size of the application database. A report
without a class module is considered a “lightweight object,” which loads and
displays faster than an object with an associated class module.

CAUTION

A couple of the Has Module property’s behaviors deserve special attention. When a
report is created, the default value for the Has Module property is No. Access automat-
ically sets the Has Module property to Yes as soon as you try to view a report’s module.
If you set the Has Module property of an existing report to No, Access asks if you want
to proceed. If you confirm the change, Access deletes the object’s class module and all
the code it contains!

What Control Properties Are Available, and Why
Should You Use Them?
Just as reports have properties, so do controls. You can change most control properties at
design time or at runtime, allowing you to easily build flexibility into your reports. For
example, certain controls are visible only when specific conditions are true.

What Report Properties Are Available, and Why Should You Use Them? 289

6

The Control’s Format Properties
You can modify several formatting properties of the selected objects using the ribbon. If
you prefer, you can set all the properties in the property sheet. The following are most of
the Format properties of a report control:

. Format—Determines how the data in the control is displayed. This property is auto-
matically inherited from the underlying field. If you want the control’s format on
the report to differ from the underlying field’s format, you must set the Format
property of the control.

. Caption—Specifies the text displayed for labels and command buttons. A caption is
a string containing up to 2,048 characters.

. Hyperlink Address—Is a string representing the path to a UNC (network path) or
URL (web page). The Hyperlink control, command buttons, image controls, and
labels all contain the Hyperlink Address property.

. Hyperlink SubAddress—Is a string representing a location within the document
specified in the Hyperlink Address property. The Hyperlink control, command
buttons, image controls, and labels all contain the Hyperlink SubAddress property.

. Decimal Places—Defines the number of decimal places displayed for numeric
values.

. Visible—Determines whether a control is visible. In many cases, you will want to
toggle the visibility of a control in response to different situations.

. Hide Duplicates—Hides duplicate data values in a report’s Detail section. Duplicate
data values occur when one or more consecutive records in a report contain the
same value in one or more fields.

. Can Grow, Can Shrink—Allows a control to expand vertically to accommodate all
the data in it when the Can Grow property is set to Yes. The Can Shrink property
eliminates blank lines when no data exists in a field for a particular record. For
example, if you have a second address line on a mailing label, but there’s no data
in the Address2 field, you don’t want a blank line to appear on the mailing label.

. Left, Top, Width, Height—Set the size and position of the controls on a report.

. Back Style, Back Color—Enables you to set the Back Style property to Normal
or Transparent. When this property is set to Transparent, the color of the report
shows through to the control. When it is set to Normal, the control’s Back Color
property determines the object’s color.

. Special Effect—Adds 3D effects to a control.

. Border Style, Border Color, Border Width—Set the physical attributes of a
control’s border.

. Fore Color—Sets the color of the text within the control.

CHAPTER 6 What Every Developer Needs to Know About Reports290

. Font Color, Font Name, Font Size, Font Weight, Font Italic, Font Underline—
Affect the appearance of the text within the control, unlike the border properties,
which affect the control’s border.

. Text Align—Sets the alignment of the text within the control. It can be set to Left,
Center, Right, or Distribute. When set to Distribute, text is justified.

. Reading Order—Determines the visual order in which characters, words, and groups
of words are displayed. This property is often used with language-specific editions of
Microsoft Access, where the reading order needs to be changed. The default setting
is Context; Left-to-Right and Right-to-Left are the other available settings.

. Scroll Bar Align—Specifies the visual placement of the control’s vertical scrollbars
and buttons. This property also works in conjunction with language-specific
versions of Access to determine scrollbar placement in either the right-to-left or left-
to-right direction. The default setting is System, which lets the operating system
determine the scrollbar alignment.

. Numeral Shapes—Determines the format for displaying numeric characters. This
property also works in conjunction with language-specific versions of Access to
determine the type of numeric character to display. The default setting is System,
which lets the operating system determine the numeric character display format.
The other settings include Arabic, National, and Context.

. Left Margin, Top Margin, Right Margin, Bottom Margin—Determine how far the
text within the control prints from the left, top, right, and bottom of the control.
These properties are particularly useful for large controls containing a lot of text,
such as a memo or an invoice.

. Line Spacing—Controls the spacing between lines of text within a control. The
Line Spacing property is designated in inches.

. Gridline Styles, Color, and Width—Determine the style of the top, bottom, left,
and right gridline, as well as the gridline color and width.

. Top, Bottom, Left, and Right Padding—Determine the amount of space between the
gridline and the text within the control.

. Is Hyperlink—Determines whether the text within the control is displayed as a
hyperlink. If the Is Hyperlink property is set to Yes, and the text within the
control is a relevant link, the text will serve as a hyperlink. (This property is useful
only if you save the report in HTML format.)

. Display as Hyperlink—Determines whether the data in a text box displays on
the screen only, always (regardless of whether it is a hyperlink), or only if it is a
hyperlink.

What Control Properties Are Available, and Why Should You Use Them? 291

6

The Control’s Data Properties
The Data properties of a control specify information about the data underlying a particu-
lar report control.

. Control Source—Specifies the field in the report’s record source that’s used to popu-
late the control. A control source can also be a valid expression.

. Input Mask—Assigns specific formatting to any data that is entered into a particular
control. For example, you could use Input Mask !(999) 000-0000 to format the
data entered as a phone number.

. Text Format—Determines whether Access stores your text as plain text or as rich
text.

. Running Sum—Calculates a record-by-record or group-by-group total. The Running
Sum property, which is unique to reports, is quite powerful. It can be set to No, Over
Group, or Over All. When it is set to Over Group, the value of the text box accumu-
lates from record to record within the group but is reset each time the group value
changes. An example is a report that shows deposit amounts for each state with a
running sum for the amount deposited within the state. Each time the state
changes, the amount deposited is set to zero. When it is set to Over All, the sum
continues to accumulate over the entire report.

The Other Control Properties
The Other properties of a control designate properties that don’t fit into any other cate-
gory, such as the following:

. Name—The Name property gives you an easy and self-documenting way to refer to
the control in VBA code and in many other situations. You should name all your
controls. Naming conventions for report controls are the same as those for form
controls. Refer to Appendix A, “Naming Conventions,” which is available for down-
load at www.samspublishing.com, for more detailed information.

. Vertical—The Vertical property is used to determine whether the text within the
control is displayed vertically. The default value for this property is No.

. Tag—Like the Tag property of a form, the Tag property of a control gives you a
user-defined slot for the control. You can place any extra information in the Tag
property.

CAUTION

A common mistake many developers make is giving controls names that conflict with
Access names. This type of error is very difficult to track down. Make sure you use
distinctive names for both fields and controls. Furthermore, don’t give a control the
same name as the name of a field within its expression. For example, the expression
=ClientName & Title shouldn’t have the name ClientName; that would cause an
#error# message when the report is run. Finally, don’t give a control the same name

CHAPTER 6 What Every Developer Needs to Know About Reports292

www.samspublishing.com

as its control source. Access gives bound controls the same name as their fields, so
you need to change them to avoid problems. Following these simple warnings will
spare you a lot of grief!

Inserting Page Breaks
Page breaks can be set to occur before, within, or at the end of a section. The way you set
each type of page break is quite different. To set a page break within a section, you must
use the Insert or Remove Page Break tool on the Design tab of the ribbon. After you click
this tool, click the report where you want the page break to occur. To set a page break
before or after a section, set the Force New Page property of the section to Before
Section, After Section, or Before & After. The Force New Page property applies to
Group Headers, Group Footers, and the report’s Detail section.

CAUTION

Be careful not to place a page break within a control on the report. The page break will
occur in the middle of the control’s data.

Using Unbound, Bound, and Calculated Controls
You can place three types of controls on a report: Unbound, Bound, and Calculated.
Unbound controls, such as logos placed on reports, aren’t tied to data. Bound controls are
tied to data within a field of the table or query underlying the report. Calculated controls
contain valid expressions; they can hold anything from a page number to a sophisticated
financial calculation. Most complex reports have a rich combination of Unbound, Bound,
and Calculated controls.

Using Expressions to Enhance Your Reports
Calculated controls use expressions as their control sources. To create a Calculated
control, you must first add an Unbound control to the report. You must precede expres-
sions with an equal sign (=); an example of a report expression is =Sum([BillableHours]).
This expression, if placed in the Report Footer, totals the contents of the BillableHours
control for all detail records in the report. You can build an expression by typing it
directly into the control source or by using the Expression Builder, covered in Chapter 5.

Building Reports Based on More Than One Table
The majority of reports you create will probably be based on data from more than one
table. The reason is that a properly normalized database usually requires that you bring
table data back together to give your users valuable information. For example, a report
that combines data from a Customers table, an Orders table, an Order Details table, and
a Product table can supply the following information:

Building Reports Based on More Than One Table 293

6

. Customer information—Company name and address

. Order information—Order date and shipping method

. Order detail information—Quantity ordered and price

. Product table—Product description

You can base a multitable report directly on the tables whose data it displays or on a
query that has already joined the tables, providing a flat table structure.

Creating One-to-Many Reports
You can create one-to-many reports by using a Report Wizard, or you can build reports
from scratch. Different situations require different techniques, some of which are covered
in the following sections.

Building a One-to-Many Report with the Report Wizard
Building a one-to-many report with the Report Wizard is quite easy; just follow these
steps:

1. Click to select the Create tab and then select the Report Wizard tool in the Reports
group. The Report Wizard launches.

2. Use the Tables/Queries drop-down list to select the first table or query whose data
will appear on the report.

3. Select the fields you want to include from that table.

4. Select each additional table or query you want to include on the report, selecting
the fields you need from each. Click Next.

5. Step 2 of the Report Wizard offers a suggested layout for your data (see Figure 6.16).
You can accept Access’s suggestion, or you can choose from any of the available
layout options. After you choose a layout, click Next.

CHAPTER 6 What Every Developer Needs to Know About Reports294

FIGURE 6.16 Step 2 of the Report Wizard: selecting a layout.

6. Step 3 of the Report Wizard asks whether you want to add any grouping levels.
Grouping levels can be used to visually separate data and to provide subtotals. In
the example in Figure 6.17, the report is grouped by ContactType. After you select
grouping levels, click Next.

Building Reports Based on More Than One Table 295

6

FIGURE 6.17 Step 3 of the Report Wizard: selecting groupings.

7. Step 4 of the Report Wizard lets you select how you want the records in the report’s
Detail section to be sorted (see Figure 6.18). This step of the wizard also allows you
to specify any summary calculations you want to perform on the data (see Figure
6.19). Click the Summary Options button to specify the summary calculations.
Using the button, you can even opt to include the percent of total calculations.
Make your selection and click OK to close the Summary Options dialog.

FIGURE 6.18 Step 4 of the Report Wizard: selecting a sort order.

FIGURE 6.19 Adding summary calculations.

8. In step 5 of the Report Wizard, you select the layout and orientation of your report.
Layout options include Stepped, Blocked, Outline 1, Outline 2, Align Left 1, and
Align Left 2. Click Next to continue.

9. Step 6 of the Report Wizard lets you select from predefined styles for your report.
You can preview each style to see what it looks like. Click Next to continue.

10. In step 7 of the Report Wizard, you select a title for your report. The title also
becomes the name for the report. I like to select an appropriate name and change
the title after the wizard is finished. The final step also allows you to determine
whether you want to immediately preview the report or to see the report’s design
first. Click Finish after making your selection.

The report created in the preceding example is shown in Figure 6.20. Notice that the
report is sorted and grouped by ContactType and CompanyName. The report’s data is in
order by ProjectName within a CompanyName grouping.

This method of creating a one-to-many report is by far the easiest. In fact, the “back-
ground join” technology that the wizards use when they allow you to pick fields from
multiple tables—figuring out how to build the complex queries needed for the report or
form—is one of Access’s strong points. It’s a huge timesaver and helps hide unnecessary
complexity from you as you build a report. Although you should take advantage of this
feature, it’s important that, as a developer, you know what’s happening under the covers.
The following two sections give you this necessary knowledge.

Building a Report Based on a One-to-Many Query
Another popular method of building a one-to-many report is to use a one-to-many query.
A one-to-many report built in this way is constructed as though it were based on the
data within a single table. First, you build the query that will underlie the report (see
Figure 6.21).

CHAPTER 6 What Every Developer Needs to Know About Reports296

FIGURE 6.20 A completed one-to-many report.

Building Reports Based on More Than One Table 297

6

FIGURE 6.21 An example of a query underlying a one-to-many report.

After you have finished the query, you can select it rather than select each individual
table (as done in the preceding section). After you select the query, you use the same
process to create the report as you used for the previous report.

Building a One-to-Many Report with the Subreport Wizard
You can also create a one-to-many report by building the parent report and then adding
a SubForm/SubReport control. This is often the method used to create reports such as
invoices that show the report’s data in a one-to-many relationship rather than in a denor-
malized format (as shown in Figure 6.20). If you want to use the SubForm/SubReport
Wizard, you must make sure that you select the Control Wizards tool before you add the
SubForm/SubReport control to the main report. Here is the process:

1. Click to select the SubForm/SubReport control tool.

2. Click and drag to place the SubForm/SubReport control on the main report. You will
usually place the SubForm/SubReport control in the report’s Detail section. After
you place the SubForm/SubReport control on the report, the SubForm/SubReport
Wizard is invoked.

3. Indicate whether you want the subreport to be based on an existing report or form
or you want to build a new subreport based on a query or table (see Figure 6.22).
Click Next.

CHAPTER 6 What Every Developer Needs to Know About Reports298

FIGURE 6.22 The SubForm/SubReport Wizard: indicating whether you want to base the
subreport on an existing report or on a query or table.

4. If you select a table or query, you have to select the table or query on which the
subreport will be based. You can then select the fields you want to include on the
subreport (see Figure 6.23). You can even select fields from more than one table or
query. When you’re finished, click Next.

Building Reports Based on More Than One Table 299

6

FIGURE 6.23 The SubForm/SubReport Wizard: indicating the fields that you want to include
in the subreport.

FIGURE 6.24 The SubForm/SubReport Wizard: identifying the relationship.

5. The next step of the SubForm/SubReport Wizard suggests a relationship between the
main report and the subreport (see Figure 6.24). You can accept the selected rela-
tionship, or you can define your own. When you’re finished, click Next.

6. The final step of the SubReport Wizard asks you to name the subreport. To follow
standards, the name should begin with the prefix rsub. Click Finish when you’re
finished.

As you can see in Figure 6.25, the one-to-many relationship between two tables is clearly
highlighted by this type of report. In the example, each customer is listed. All the detail
records reflecting the projects for each customer are listed immediately following each
customer’s data.

FIGURE 6.25 A completed one-to-many report created with the SubForm/SubReport Wizard.

Working with Subreports
When a subreport has been added to a report, it’s important to understand what proper-
ties have been set by the SubReport Wizard so that you can modify the SubReport control,
if needed. You should become familiar with a few properties of a subreport:

. Source Object—Enables you to indicate the name of the report or other object
that’s being displayed within the control.

. Link Child Fields—Enables you to indicate the fields from the child report that
link the child report to the master report.

. Link Master Fields—Enables you to indicate the fields from the master report that
link the master report to the child report.

. Can Grow—Determines whether the control can expand vertically to accommodate
data in the subreport.

. Can Shrink—Determines whether the control can shrink to eliminate blank lines
when no data is found in the subreport.

You should not only know how to work with the properties of a SubReport object but
also be able to easily modify the subreport from within the main report. You can always
modify the subreport by selecting it within the list of reports in the Navigation Pane. To
do this, click the report you want to modify; then click Design. You can also modify a
subreport by selecting its objects directly within the parent report.

CHAPTER 6 What Every Developer Needs to Know About Reports300

TIP

Access 2007 makes it easy to work with subforms and subreports in Design view.
Scrolling has been improved so that it’s easier to design subforms and subreports. In
addition, you can open a subreport in its own separate Design view window by right-
clicking the subreport and selecting Subreport in New Window. Alternatively, instead of
right-clicking the subreport, you can select the subreport and then click Subreport in
New Window on the Design tab of the ribbon.

Working with Sorting and Grouping
As opposed to sorting within forms, sorting the data within a report isn’t determined by
the underlying query. In fact, the underlying query affects the report’s sort order only
when no sort order has been specified for the report. Any sort order specified in the query
is completely overwritten by the report’s sort order, which is determined by the report’s
Sorting and Grouping window (see Figure 6.26). The sorting and grouping of the report
is affected by what options you select when you run a Report Wizard. You can use the
Sorting and Grouping window to add, remove, or modify sorting and grouping options
for the report. Sorting simply affects the order of the records on the report. Grouping
adds Group Headers and Footers to the report.

Working with Sorting and Grouping 301

6

FIGURE 6.26 The Sorting and Grouping window, showing grouping by contact type
and ClientID.

Adding Sorting or Grouping
Often, you want to add sorting or grouping to a report. To do so, follow these four steps:

1. Click the Group and Sort tool, found in the Grouping & Totals group on the Design
tab. The Group, Sort, and Total window appears.

2. Click the Add a Group tool within the Group, Sort, and Total window. All the fields
found on the report appear in a list box (see Figure 6.27).

CHAPTER 6 What Every Developer Needs to Know About Reports302

FIGURE 6.27 Inserting a grouping level.

3. Select a field in the list.

4. Click the More button to view additional grouping options (see Figure 6.28). They
include whether you want to sort from smallest to largest or largest to smallest;
whether you want to group by the entire value or by a portion of it; whether you
want totals for the grouping level; whether you want a header section, a footer
section, or both; and finally how you want the data grouped on a page.

NOTE

To remove a sorting or grouping that you have added, click to select the Group on or
Sort by expression that you want to delete. Click the X found to the right of the selec-
tion band. Access warns you that any controls in the Group Header or Footer will be
deleted (see Figure 6.29). Click Yes if you want to complete the process.

FIGURE 6.28 When you click More, you can determine the specifics of the grouping.

Working with Sorting and Grouping 303

6

FIGURE 6.29 When you delete a group, Access deletes the Group Header and Footer associ-
ated with that group.

NOTE

To sort the report data within a group, click the Add a Sort button. As with the Add a
Group button, Access displays a list of available fields. After you make your selection,
Access adds that sort to the report.

What Are Group Header and Footer Properties, and Why Should
You Use Them?
Each Group Header and Footer has its own properties that determine the behavior of the
Group Header or Footer:

. Force New Page—The Force New Page property can be set to None, Before Section,
After Section, or Before & After. When it is set to None, no page break occurs

either before or after the report section. If it is set to Before Section, a page break
occurs before the report section prints; if it is set to After Section, a page break
occurs after the report section prints. When this property is set to Before & After,
a page break occurs before the report section prints as well as after it prints.

. New Row or Col—The New Row or Col property determines whether a column
break occurs whenever the report section prints. This property applies only to multi-
column reports. The choices are None, Before Section, After Section, and Before
& After. Like the Force New Page property, this property determines whether the
column break occurs before the report section prints, after it prints, or before and
after, or whether it’s affected by the report section break at all.

. Keep Together—The Keep Together property specifies whether you want Access to
try to keep an entire report section together on one page. If this property is set to
Yes, Access starts printing the section at the top of the next page if it can’t print the
entire section on the current page. When this property is set to No, Access prints as
much of the section as possible on the current page, inserting each page break as
necessary. If a section exceeds the page length, Access starts printing the section on
a new page and continues printing it on the following page.

. Visible—The Visible property indicates whether the section is visible. It’s
common to hide the visibility of a particular report section at runtime in response
to different situations. You can easily do this by changing the value of the report
section’s Visible property with VBA code, usually on the Format event.

. Can Grow, Can Shrink—The Can Grow property determines whether the section
stretches vertically to accommodate the data in it. The Can Shrink property speci-
fies whether you want the section to shrink vertically, eliminating blank lines.

. Repeat Section—The Repeat Section property is a valuable property because it lets
you specify whether the group header is repeated on subsequent pages if a report
section needs more than one page to print.

Improving Performance and Reusability by Basing
Reports on Stored Queries or Embedded SQL
Statements
Basing your Access reports on stored queries offers you two major benefits:

. The query underlying the report can be used by other forms and reports.

. Sophisticated calculations need to be built only once; they don’t need to be re-
created for each report (or form).

With earlier versions of Access, reports based on stored queries opened faster than reports
based on embedded SQL statements. The reason is that, when you build and save a query,
Access compiles and creates a query plan. This query plan is a plan of execution that’s

CHAPTER 6 What Every Developer Needs to Know About Reports304

based on the amount of data in the query’s tables as well as all the indexes available in
each table. In earlier versions of Access, if you ran a report based on an embedded SQL
statement, the query was compiled, and the query plan was built at runtime, slowing the
query’s execution. With Access 2002, Access 2003, and Access 2007, query plans are built
for embedded SQL statements when the form or report is saved. Query plans are stored
with the associated form or report.

So what are the benefits of basing a report on a stored query instead of an embedded SQL
statement? Often, you want to build several reports and forms all based on the same
information. An embedded SQL statement can’t be shared by multiple database objects.
At the very least, you must copy the embedded SQL statement for each form and report
you build. Basing reports and forms on stored queries eliminates this problem. You build
the query once and modify it once if changes need to be made to it. Many forms and
reports can all use the same query (including its criteria, expressions, and so on).

Reports often contain complex expressions. If a particular expression is used in only one
report, nothing is lost by building the expression into the embedded SQL statement. On
the other hand, many complex expressions are used in multiple reports and forms. By
building these expressions into queries on which the reports and forms are based, you
have to create the expression only one time.

TIP

You can easily save an embedded SQL statement as a query. This allows you to use
the Report Wizard to build a report using several tables; you can then save the result-
ing SQL statement as a query. With the report open in Design view, bring up the prop-
erty sheet. Click the Data tab, click on the Record Source property, and then click the
ellipsis. The embedded SQL statement appears as a query. Click Save As on the
Design tab of the ribbon, enter a name for the query, and click OK. Close the Query
window, indicating that you want to update the Record Source property. Your query is
now based on a stored query instead of an embedded SQL statement.

Although you can see that basing reports on stored queries offers several benefits, it has
its downside as well. If your database contains numerous reports, the database container
becomes cluttered with a large number of queries that underlie those reports. Further-
more, queries and the expressions within them are often very specific to a particular
report. If that is the case, you should opt for embedded SQL statements rather than
stored queries.

Using Access Reports and the Internet
Microsoft makes it easy to develop Internet-aware applications by adding hyperlinks to
reports and by allowing you to save an Access report as an HTML document. These
features are covered in the following sections.

Using Access Reports and the Internet 305

6

Adding a Hyperlink to a Report
You can add hyperlinks to reports in the form of labels. When added, they serve as a
direct link to a UNC or URL. To add a hyperlink to a report, follow these steps:

1. With the report open in Design view, add a label to the report.

2. Set the Hyperlink Address property to the UNC or URL you want to link to. The
easiest way to do this is to click in the Hyperlink Address property; then click the
ellipsis to open the Insert Hyperlink dialog box.

3. With Existing File or Web Page selected as the Link To, you can enter a file path or
URL in the text box or click Current Folder to locate a file or web page in the
current folder. You can also click to insert hyperlinks to Browsed Pages or Recent
Files. With Object in This Database selected as the Link To, you can link to an object
in the current database.

4. If you want to enter a Hyperlink SubAddress, click Bookmark. The Hyperlink
SubAddress can be a range name, bookmark, slide number, or any other recognized
location in the document specified in the Link to File or URL combo box.

5. Click OK. The Hyperlink Address and Hyperlink SubAddress properties are filled
in with the information supplied in the Insert Hyperlink dialog box.

The Hyperlink Address and Hyperlink SubAddress properties apply when the report is
in Report view (not Print Preview). They also come into play only when a report is saved
as HTML and viewed in a web browser, such as Internet Explorer 7.0. Saving a report as
an HTML document is covered in the following section.

NOTE

Attached labels (those associated with a text box) do not have HyperLink Address or
HyperLink SubAddress properties.

Saving a Report as HTML
To save a report as HTML, right-click the report in the Navigation Pane and select
HTML Document from the More drop-down on the External Data tab of the ribbon. The
Export – HTML Document dialog box appears. Pick a location and name for the file and
whether you want to open the destination file after the export completes. Then click OK.
Designate the HTML Output Options. Click OK when you are finished. The document is
saved as HTML and assigned the name and location you specified.

Saving a Report as XML
To save a report as XML, right-click the report in the Navigation Pane and select XML
File. The Export – XML File dialog box appears. Pick a location and name for the file.
Then click OK. Designate the Export XML Options. Click OK when you are finished. The

CHAPTER 6 What Every Developer Needs to Know About Reports306

document is saved as XML and assigned the name and location you specified. Saving
reports as XML is covered in detail in Alison Balter’s Mastering Access 2002 Enterprise
Development.

Understanding Report Specifications
and Limitations
Reports have a number of specifications and limitations that you should be aware of, and
Table 6.1 lists them. Fortunately, you will generally not find them too restricting.

TABLE 6.1 Report Specifications and Limitations

Item Limitation

Number of characters in a label 2,028
Number of characters in a text box 65,535
Report width 22 in.
Section height 22 in.
Height of all sections plus section 200 in.
headers
Number of nested reports 7
Number of fields or expressions you can 10
sort or group on
Number of headers and footers 1 report header/footer; 1 page

header/footer; 10 group headers/footers
Number of printed pages 65,536
Number of controls and sections you can add 754
Number of characters in the SQL 32,750
statement that serves as the RowSource

Practical Examples: Building Reports Needed for
Your Application
The sample application requires several reports. A couple of the simpler ones are built here.

Designing the rptClientListing Report
The rptClientListing report lists all the clients in the tblClients table. The report
includes the company name, contact name, intro date, default rate, and term type of each
customer. The report is grouped by contact type and sorted by company name. It provides
the average default rate by contact type and overall.

The rptClientListing report is based on a query called qryClientListing, which is
shown in Figure 6.30. The query includes the CompanyName, IntroDate, and DefaultRate
fields from the tblClients table. It joins the tblClients table to the tblContactType table

Practical Examples: Building Reports Needed for Your Application 307

6

CHAPTER 6 What Every Developer Needs to Know About Reports308

to obtain the ContactType field from tblContactType and joins the tblClients table to
the tblTerms table to obtain the TermType field from the tblTerms table. It also includes
an expression called ContactName that concatenates the ContactFirstName and
ContactLastName fields. The expression looks like this:

ContactName: [ContactFirstName] & “ “ & [ContactLastName]

FIGURE 6.30 The qryClientListing query—a foundation for the rptClientListing
report.

To build the report, follow these steps:

1. Click the Report Wizard tool in the Reports group on the Create tab.

2. Use the drop-down list to select the qryClientListing query (see Figure 6.31).

3. Click the >> button to designate that you want to include all the fields in the query
within the report. Click Next.

4. Indicate that you want to view your data by tblContactType. Click Next.

5. Do not add any grouping to the report. Click Next.

6. Use the drop-down list to select CompanyName as the sort field (see Figure 6.32).

7. Click Summary Options and click the Avg check box to add the average default rate
to the report. Click OK to close the Summary Options dialog box and click Next to
proceed to the next step of the wizard.

FIGURE 6.31 Selecting the qryClientListing query.

Practical Examples: Building Reports Needed for Your Application 309

6

FIGURE 6.32 Selecting CompanyName as the sort field.

8. Select Landscape for the Orientation and click Next.

9. Select a style for the report and click Next.

10. Give the report the title rptClientListing; then click Finish.

11. The completed report should look like Figure 6.33. Click Design to open the
report in Design view. Notice that both the name and title of the report are
rptClientListing (see Figure 6.34). Modify the title of the report so that it
reads Client Listing by Contact Type and Company Name.

FIGURE 6.33 A preview of the completed report.

CHAPTER 6 What Every Developer Needs to Know About Reports310

FIGURE 6.34 Changing the report title.

Designing the rptTimeSheet Report
The rptTimeSheet report is much more complex than the rptClientListing report. It
includes two subreports: rsubTimeSheet and rsubTimeSheetExpenses.

The rptTimeSheet report is shown in Figure 6.35. It’s based on a query called qryTimeSheet
(see Figure 6.36). It contains fields from both tblTimeCards and tblEmployees.

Practical Examples: Building Reports Needed for Your Application 311

6

FIGURE 6.35 The rptTimeSheet report in Design view.

FIGURE 6.36 The qryTimeSheet query in Design view.

The rptTimeSheet report has a Page Header that includes the title of the report, but
nothing else is found within the Page Header. The TimeCardID header contains the
EmployeeName and DateEntered from the qryTimeSheet query. The report’s Detail section
contains the two subreports rsubTimeSheet and rsubTimeSheetExpenses. The TimeCardID
footer has a text box that contains the grand total of hours and expenses. The expression
within the text box is

=[rsubTimeSheet].[Report]![txtTotalHourlyBillings]+[rsubTimeSheetExpenses]._

[Report]![txtTotalExpenseAmount]

The easiest way to build the expression is to use the Expression Builder.

The Page Footer holds two expressions, one for the date and another for the page number.
They look like this:

=Now()

=”Page “ & [Page] & “ of “ & [Pages]

The rsubTimeSheet report is based on qrySubTimeSheet; this query contains the following
fields from the tblProjects and tblTimeCardHours tables:

tblProjects: ProjectName

tblTimeCardsHours: TimeCardID, TimeCardDetailID, DateWorked, WorkDescription,_

BillableHours, BillingRate, and the expression HourlyBillings:_

[tblTimeCardHours].[BillingRate]*[BillableHours]

The design of rsubTimeSheet is shown in Figure 6.37. This subreport can easily be
built from a wizard. Select all fields except TimeCardID and TimeCardDetailID from
qrySubTimeSheets. View the data by tblTimeCardHours. Don’t add any groupings and
don’t sort the report. When you’re finished with the wizard, modify the design of the
report. Remove the caption from the Report Header and move everything from the Page
Header to the Report Header. Collapse the Page Header, remove everything from the
Page Footer, and add a Report Footer with the expression =Sum([HourlyBillings]).

Change the format of the HourlyBillings and the TotalHourlyBillings controls to Currency.
Use the Sorting and Grouping window to sort by TimeCardID and TimeCardDetailID.

The rsubTimeSheetExpenses report is based on qrySubTimeSheetExpense, which contains
the following fields from the tblProjects, tblExpenseCodes, and tblTimeCardExpenses
tables:

tblProjects: ProjectName

tblTimeCardsExpenses: TimeCardID, TimeCardExpenseID, ExpenseDate,

ExpenseDescription, and ExpenseAmount

tblExpenseCodes: ExpenseCode

The design of rsubTimeSheetExpenses is shown in Figure 6.38. This subreport can easily
be built from a wizard. Select all fields except TimeCardID and TimeCardExpenseID from
qrySubTimeSheetExpense. View the data by tblTimeCardExpenses. Don’t add any group-
ings and don’t sort the report. When you’re finished with the wizard, modify the design of

CHAPTER 6 What Every Developer Needs to Know About Reports312

Practical Examples: Building Reports Needed for Your Application 313

6

the report. Remove the caption from the Report Header and move everything from the
Page Header to the Report Header. Collapse the Page Header, remove everything from the
Page Footer, and add a Report Footer with the expression =Sum(ExpenseAmount).

Change the format of the ExpenseAmount and the TotalExpenseAmount controls to
Currency and use the Sorting and Grouping window to sort by TimeCardID and
TimeCardExpenseID.

FIGURE 6.37 The rsubTimeSheet report in Design view.

FIGURE 6.38 The rsubTimeSheetExpenses report in Design view.

Summary
Reports give you valuable information about the data stored in your database. Many types
of reports can be built in Access 2007, including Detail reports, Summary reports, reports
that look like printed forms, and reports containing graphs and other objects. Access
offers many properties for customizing the look and behavior of each report to fit your
users’ needs. Understanding how to work with each property is integral to the success of
your application-development projects. For more information about reports and their use,
refer to Chapter 11.

CHAPTER 6 What Every Developer Needs to Know About Reports314

IN THIS CHAPTER

. Why This Chapter Is Important

. Learning the Basics of
Creating and Running a Macro

. Running an Access Macro

. Modifying an Existing Macro

. Documenting Your Macro:
Adding Comments

. Testing a Macro

. Determining When You Should
Use Macros and When You
Shouldn’t

. Converting a Macro to
VBA Code

. Creating an AutoExec Macro

. Using the DoCmd Object

. Practical Examples: Adding an
AutoExec Macro to the Time
and Billing Application

CHAPTER 7

What Are Macros, and
When Do You

Need Them?

Why This Chapter Is Important
Although you may not prefer to use macros to develop the
routines that control your applications, macros in Access
2007 play a major role in the development process.
Available in Microsoft Office Access 2007 are embedded
macros. Rather than appearing in the Navigation Pane as a
separate object, an embedded macro is part of the object to
which it is associated. When you modify an embedded
macro, it does not affect any other macros or objects in the
database. Because you can prevent embedded macros from
performing certain potentially unsafe operations, they are
trusted. In addition to their other benefits, using Access
2007 macros can often help you get started with develop-
ing applications—because these macros can be converted to
VBA code. This means you can develop part of your appli-
cation using macros, convert the macros to VBA code, and
then continue developing your application. Although I
don’t recommend this approach for serious developers,
it offers a great jump-start for those new to Access or
Windows development in general.

Learning the Basics of Creating
and Running a Macro
To create a macro, click to select the Create tab. Then select
Macro from the Other group. The Macro Design window
shown in Figure 7.1 appears. In this window, you can build
a program by adding macro actions, arguments, names,
and conditions to the macro.

FIGURE 7.1 The Macro Design window, showing the macro Action, Arguments, and Comment
columns.

Macro actions are like programming commands or functions. They instruct Access to take
a specific action, for example, to open a form. Macro arguments are like parameters to a
command or function; they give Access specifics on the selected action. For example, if
the macro action instructs Access to open a form, the arguments for that action tell
Access which form should be opened and how it should be opened (Form, Design, or
Datasheet view or Print Preview). Macro names are like subroutines, and several subrou-
tines can be included in one Access macro. Each of these routines is identified by its
macro name. Macro conditions allow you to determine when a specific macro action will
execute. For example, you might want one form to open in one situation and a second
form to open in another situation.

Macro Actions
As mentioned, macro actions instruct Access to perform a task. You can add a macro
action to the Macro Design window in several ways. One method is to click in a cell in
the Macro Action column and then click to open the drop-down list. A list of all the
macro actions appears, as in Figure 7.2. Select the one you want from the list, and it’s
instantly added to the macro. Use this method of selecting a macro action if you aren’t
sure of the macro action’s name and want to browse the available actions.

CHAPTER 7 What Are Macros, and When Do You Need Them?316

FIGURE 7.2 The Macro Action drop-down list, showing all the available macro actions.

After you have been working with macros for a while, you will know which actions you
want to select. Rather than open the drop-down list and scroll through the entire list of
actions, you can click a cell in the Action column and then start typing the name of the
macro action you want to add. Access will find the first macro action beginning with the
character(s) you type.

The OpenTable, OpenQuery, OpenForm, OpenReport, and OpenModule actions are used to
open a table, query, form, report, or module, respectively. You can fill in all these actions
and associated arguments quite easily with a drag-and-drop technique:

1. Scroll through the Navigation Pane until you see the object that you want to add to
the macro.

2. Click and drag the object you want to open over to the Macro Design window. The
appropriate action and arguments are automatically filled in. Figure 7.3 shows the
effects of dragging and dropping the frmClients form onto the Macro Design
window.

Dragging and dropping a table, query, form, report, or module onto the Macro Design
window saves you time because all the macro action arguments are automatically filled in
for you. Notice in Figure 7.3 that six action arguments are associated with the OpenForm
action: Form Name, View, Filter Name, Where Condition, Data Mode, and Window Mode.

Learning the Basics of Creating and Running a Macro 317

7

Three of the arguments for the OpenForm action have been filled in: the name of the form
(frmClients), the view (Form), and the window mode (Normal). Macro action arguments
are covered more thoroughly in the next section.

CHAPTER 7 What Are Macros, and When Do You Need Them?318

FIGURE 7.3 The Macro Design window after the frmClients form was dragged and dropped
on it.

Action Arguments
As mentioned, macro action arguments are like command or function parameters; they
give Access specific instructions on how to execute the selected macro action. The avail-
able arguments differ depending on what macro action has been selected. Some macro
action arguments force you to select from a drop-down list of appropriate choices; others
allow you to enter a valid Access expression. Macro action arguments are automatically
filled in when you click and drag a Table, Query, Form, Report, or Module object to the
Macro Design window. In all other situations, you must supply Access with the arguments
required to properly execute a macro action. To specify a macro action argument, follow
these five steps:

1. Select a macro action.

2. Press the F6 function key to jump down to the first macro action argument for the
selected macro action.

3. If the macro action argument requires selecting from a list of valid choices, click to
open the drop-down list of available choices for the first macro action argument
associated with the selected macro action. Figure 7.4 shows all the available choices
for the Form Name argument associated with the OpenForm action. Because the
selected argument is Form Name, the names of all the forms included in the database
are displayed in the drop-down list.

Learning the Basics of Creating and Running a Macro 319

7

FIGURE 7.4 Available choices for Form Name argument.

4. If the macro action argument requires entering a valid expression, you can type the
argument into the appropriate text box or get help from the Expression Builder.
Take a look at the Where Condition argument of the OpenForm action, for example.
After you click in the Where Condition text box, an ellipsis appears. If you click on
the ellipsis, the Expression Builder dialog box is invoked, as shown in Figure 7.5.

5. To build an appropriate expression, select a database object from the list box on the
left; then select a specific element from the center and right list boxes. Click Paste to
paste the element into the text box. In Figure 7.5, the currently selected database
object is Built-in Functions, and the currently selected elements are Date/Time and
Date. Click OK to close the Expression Builder. The completed expression appears as
shown in Figure 7.6.

CHAPTER 7 What Are Macros, and When Do You Need Them?320

FIGURE 7.5 The Expression Builder dialog box allows you to easily add complex expressions
to your macros.

FIGURE 7.6 The completed expression for the Where argument of the OpenForm action.

Remember that each macro action has different macro action arguments. Some of the
arguments associated with a particular macro action are required, and others are optional.
If you need help on a particular macro action argument, click in the argument and Access
gives you a short description of that argument. If you need more help, press F1 to see
Help for the macro action and all its arguments, as shown in Figure 7.7.

FIGURE 7.7 Help on the OpenForm action.

Macro Names
Macro names are like subroutines; they allow you to place more than one routine in a
macro. This means you can create many macro routines without having to create several
separate macros. You should include macros that perform related functions within one
particular macro. For example, you might build a macro that contains all the routines
required for form handling and another that has all the routines needed for report
handling.

Only two steps are needed to add macro names to a macro:

1. Click the Macro Names in the Show/Hide group on the Design tab. The Macro
Name column appears, as in Figure 7.8.

2. Add macro names to each macro subroutine. Figure 7.9 shows a macro with
three subroutines: OpenFrmClients, OpenFrmTimeCards, and CloseAnyForm. The
OpenFrmClients subroutine opens the frmClients form, showing all the clients
added in the past 30 days. The OpenFrmTimeCards subroutine opens the
frmTimeCards form, and the CloseAnyForm subroutine displays a message to
the user and then closes the active form.

NOTE

The Macro Name column is a toggle. You can hide it and show it at will, without losing
the information in the column.

Learning the Basics of Creating and Running a Macro 321

7

FIGURE 7.8 The Macro Name column allows you to create subroutines within a macro.

CHAPTER 7 What Are Macros, and When Do You Need Them?322

FIGURE 7.9 A macro with three subroutines.

Macro Conditions
At times, you want a macro action to execute only when a certain condition is true.
Fortunately, Access allows you to specify the conditions under which a macro action
executes:

1. Click the Conditions tool in the Show/Hide group of the Design tab. The Condition
column appears, as in Figure 7.10.

2. Add the conditions you want to each macro action.

Learning the Basics of Creating and Running a Macro 323

7

FIGURE 7.10 You can designate the condition under which a macro action executes in the
Condition column of a macro.

The macro pictured in Figure 7.11 evaluates information entered on a form. The
CheckBirthDate subroutine evaluates the date entered in the txtBirthDate text box.
Here’s the expression entered in the first condition:

DateDiff(“yyyy”,[Forms]![frmPersonalInfo]![txtBirthDate],Date()) Between 25 And 49

This expression uses the DateDiff function to determine the difference between the date
entered in the txtBirthDate text box and the current date. If the difference between the
two dates is between 25 and 49 years, a message box is displayed indicating that the
person is over a quarter century old.

FIGURE 7.11 An example of a macro containing conditions.

The ellipsis on the second line of the CheckBirthDate subroutine indicates to Access that
the macro action should be executed only if the condition entered on the previous line is
true. In this case, if the condition is true, the macro is terminated.

If the first condition isn’t satisfied, the macro continues evaluating each condition in the
subroutine. The CheckBirthDate subroutine displays an age-specific message for each
person 25 years of age and older. If the person is younger than 25, none of the conditions
is met, and no message is displayed.

The CheckGender subroutine works a little bit differently. It evaluates the value of the
optGender option group. One of the first two lines of the subroutine execute, depending
on whether the first or second option button is selected. The third line of the subroutine
executes regardless of the Option Group value because no ellipsis is entered in the macro
action’s Condition column. If no ellipsis is found on any line of the subroutine, the
macro action executes unconditionally. If an ellipsis were placed before the line, the
macro action would execute only if the value of OptGender was 2.

Running an Access Macro
You have learned quite a bit about macros but haven’t yet learned how to execute them.
This process varies depending on what you’re trying to do. You can run a macro from
the Macro Design window or by double-clicking the macro in the Macros Group of the

CHAPTER 7 What Are Macros, and When Do You Need Them?324

Navigation Pane, triggered from a Form or Report event, or invoked by selecting a custom
ribbon button. The first three methods are covered in the following sections, but invoking
a macro from a custom ribbon is covered in Chapter 23, “Working with and Customizing
Ribbons.”

Running a Macro from the Macro Design Window
A macro can be executed easily from the Macro Design window. Running a macro
without subroutines is simple: Just click Run in the Tools group of the Design tab. Each
line of the macro is executed unless conditions have been placed on specific macro
actions. After you click the Run button of mcrOpenClients (shown in Figure 7.12), the
frmClients form is opened.

Running an Access Macro 325

7

FIGURE 7.12 Running a macro from the Macro Design window.

From Macro Design view, you can run only the first subroutine in a macro. To run a
macro with subroutines, click Run from the Tools group on the Design page to execute
the first subroutine in the macro. As soon as the second macro name is encountered, the
macro execution terminates. The section “Triggering a Macro from a Form or Report
Event,” later in this chapter, explains how to execute subroutines other than the first one
in a macro.

Running a Macro from the Macros Group of the Navigation Pane
To run a macro from the Macros group of the Navigation Pane, follow these two steps:

1. Scroll down to the Macros group in the Navigation Pane. If the Macros group does
not appear in the Navigation Pane, you will need to select All Access Objects from
the Navigation Pane drop-down and then expand the Macros group.

2. Double-click on the name of the macro you want to execute, or right-click the
macro and select Run.

NOTE

If the macro you execute contains macro names, only the macro actions with the first
subroutine are executed.

Triggering a Macro from a Form or Report Event
Chapter 9, “Objects, Properties, Methods, and Events Explained,” introduces the concept
of executing code in response to an event. Here, you learn how to associate a macro with
a command button.

The form in Figure 7.13 illustrates how to associate a macro with the Click event of a
form’s command button. Four steps are needed to associate a macro with a Form or
Report event:

1. Select the object you want to associate the event with. In the example, the
cmdCheckGender command button is selected.

2. Open the property sheet and click the Event tab.

3. Click the event you want the macro to execute in response to. In the example, the
Click event of the command button is selected.

4. Use the drop-down list to select the name of the macro you want to execute. If the
macro has macro names, make sure you select the correct macro name subroutine.
In the example, the macro mcrPersonalInfo and the macro name CheckGender have
been selected. Notice the period between the name of the macro and the name of
the macro name subroutine. The period is used to differentiate the macro group
(mcrPersonalInfo, in this case) from the macro name (CheckGender, in this
example).

CHAPTER 7 What Are Macros, and When Do You Need Them?326

Running an Access Macro 327

7

FIGURE 7.13 Associating a macro with a Form or Report event.

Try It: Building a Macro

To practice the techniques you have learned, build the macro shown in Figure 7.11.

1. Click the Create tab and then select Macro from the Macro drop-down in the
Other group.

2. Click New.

3. Click the Macro Names and Conditions buttons on the Macro Design toolbar to
show both the Macro Name and Condition columns of the Macro Design window.

4. Enter all the macro names, actions, arguments, and conditions shown in Table 7.1.

5. Save and name the macro mcrPersonalInfo.

6. Build a form.

7. Add an option group with two option buttons. Set one of their Text properties to
Male and the other to Female; then set one of their values to 1 and the other to
2. Name the option group optGender.

8. Add a text box for the birth date. Set the Format and Input Mask properties to
Short Date. Name the text box txtBirthDate.

9. Add two command buttons to the form. Name the first button cmdCheckGender
and set its Text property to Check Gender, and name the second button
cmdCheckBirthDate and set its Text property to Check Birth Date. Set the
Click event of the first command button to mcrPersonalInfo.CheckGender
and the second command button to mcrPersonalInfo.CheckBirthDate.

10. Save the form as frmPersonalInfo.

11. Test the macros by clicking each of the command buttons after selecting a
gender and entering a birth date.

TABLE 7.1 The mcrPersonalInfo Macro

Macro Name Macro Condition Macro Action Argument Value
CheckBirthDate DateDiff(“yyyy”, MsgBox Message You Are Over

[Forms]! a Quarter
[frmPersonalInfo]! Century Old
[txtBirthDate],
Date()) Between 25
And 49

Type Information
... StopMacro

DateDiff(“yyyy”, MsgBox Message You Are Over
[Forms]! a Half
[frmPersonalInfo]! Century Old
[txtBirthDate],Date())
Between 50 And 74

Type Information
... StopMacro

DateDiff(“yyyy”, MsgBox Message You Are Over
[Forms]! Three
[frmPersonalInfo]! Quarters of
[txtBirthDate],Date()) a Century Old
Between 75 And 99

Type Warning
... StopMacro

DateDiff(“yyyy”, MsgBox Message You Are Over
[Forms]! a Century
[frmPersonalInfo]! Old!!
[txtBirthDate],
Date())>100

Type Warning
... StopMacro

CheckGender [Forms]! MsgBox Message You Are Male
[frmPersonalInfo]!
[optGender]=1

Type Information
[Forms]! MsgBox Message You Are
[frmPersonalInfo]! Female
[optGender]=2

Type Information
MsgBox Message Thank You

for the
Information

CHAPTER 7 What Are Macros, and When Do You Need Them?328

Modifying an Existing Macro
You have learned how to create a macro, add macro actions and their associated argu-
ments, create macro subroutines by adding macro names, and conditionally execute the
actions in the macro by adding macro conditions. However, after you have created a
macro, you might want to modify it. First, you must enter Design view for the macro:

1. Select the Macros group on the Navigation Pane.

2. Select the macro you want to modify.

3. Right-click and select Design View.

When the design of the macro appears, you’re then ready to insert new lines, delete exist-
ing lines, move the macro actions around, or copy macro actions to the macro you’re
modifying or to another macro.

Inserting New Macro Actions
To insert a macro action, follow these steps:

1. Click on the line above where you want the macro action to be inserted.

2. Press your Insert key or click Insert Rows in the Rows group on the Design tab.
A new line is inserted in the macro at the cursor.

To insert multiple macro actions, follow these steps:

1. Place your cursor on the line above where you want the new macro action lines to
be inserted.

2. Click and drag on the Macro Action Selector (the gray box to the left of the macro’s
Action column) to select the same number of Macro Action Selectors as the number
of macro actions you want to insert.

3. Press the Insert key or click Insert Rows in the Rows group on the Design tab. All
the new macro lines are inserted above the macro actions that were selected.

Deleting Macro Actions
Follow these steps to delete a macro action:

1. Click on the Macro Action Selector of the macro action you want to delete.

2. Press the Delete key or click Delete Rows in the Rows group on the Design tab.

Follow these steps to delete multiple macro actions:

1. Click and drag to select the Macro Action Selectors of all the macro actions you
want to delete. All the macro actions should be surrounded by a box, as in
Figure 7.14.

2. Press the Delete key or click Delete Rows in the Rows group on the Design tab.

Modifying an Existing Macro 329

7

CHAPTER 7 What Are Macros, and When Do You Need Them?330

FIGURE 7.14 Selecting and deleting macro actions.

Moving Macro Actions
You can move macro actions in a few ways, including dragging and dropping and cutting
and pasting. To move macro actions by dragging and dropping, follow these steps:

1. Click and drag to select the macro action(s) you want to move.

2. Release the mouse button.

3. Place your mouse cursor over the Macro Action Selector of any of the selected macro
actions.

4. Click and drag. A line appears, indicating where the selected macro actions will
be moved.

5. Release the mouse button.

TIP

If you accidentally drag and drop the selected macro actions to an incorrect place, use
the Undo button on the Quick Access toolbar to reverse your action.

To move macro actions by cutting and pasting, follow these steps:

1. Click and drag to select the Macro Action Selectors of the macro actions you want
to move.

2. Click Cut in the Clipboard group on the Home tab or press Ctrl+X.

3. Click in the line above where you want the cut macro actions to be inserted. Don’t
click the Macro Action Selector.

4. Click Paste in the Clipboard group on the Design tab. The macro actions you cut are
inserted at the cursor.

CAUTION

Don’t click the Macro Action Selector of the row where you want to insert the cut
macro actions unless you want to overwrite the macro action you have selected. If you
don’t click to select the Macro Action Selectors, the cut lines are inserted into the
macro without overwriting any other macro actions; if you click to select Macro Action
Selectors, existing macro actions are overwritten.

Copying Macro Actions
Macro actions can be copied within a macro or to another macro. Follow these steps to
copy macro actions within a macro:

1. Click and drag to select the Macro Action Selectors of the macro actions you want
to copy.

2. Click Copy in the Clipboard group on the Home tab or press Ctrl+C.

3. Click in the line above where you want the copied macro actions to be inserted.
Don’t click on any Macro Action Selectors unless you want to overwrite existing
macro actions. (See the Caution preceding this section.)

4. Click Paste in the Clipboard group on the Home tab. The macro actions you copied
are inserted at the cursor.

Follow these steps to copy macro actions to another macro:

1. Click and drag to select the Macro Action Selectors of the macro actions you want
to copy.

2. Click Copy in the Clipboard group on the Home tab or press Ctrl+C.

3. Open the macro that will include the copied actions.

4. Click in the line above where you want the copied macro actions to be inserted.

5. Click Paste. The macro actions you copied are inserted at the cursor.

Modifying an Existing Macro 331

7

Creating an Embedded Macro
Creating an embedded macro is similar to creating a standard macro. The main difference
is that the macro is embedded in the object with which it is associated and does not
appear in the list of macros in the Navigation Pane. Here’s how to create an embedded
macro:

1. In Design view, click to select the object to which you want to associate the macro
(for example, a command button).

2. Open the property sheet, as shown in Figure 7.15.

CHAPTER 7 What Are Macros, and When Do You Need Them?332

FIGURE 7.15 Use the property sheet to associate a macro with the event of an object.

3. Click the Event tab of the property sheet.

4. Click within the event to which you want to associate the embedded macro. In
Figure 7.15, the On Click event is selected.

5. Click the build button (the ellipse). The Choose Builder dialog box appears (see
Figure 7.16).

6. Select Macro Builder and click OK. A Macro Design window appears, as in Figure
7.17. Notice in Figure 7.17 that the Macro tab is labeled btnHello: On Click, indi-
cating that the macro is associated with the On Click event of btnHello.

Modifying an Existing Macro 333

7

FIGURE 7.16 The Choose Builder dialog box enables you to specify that you want to build a
macro.

FIGURE 7.17 The macro that you create is associated with the appropriate event of the
designated object.

7. Enter the macro commands as you would for any macro, as shown in Figure 7.18.

8. Close the Macro Design window. Access prompts you to save changes to the macro
and update the property, as in Figure 7.19.

9. Click Yes to save your changes and close the dialog box. You have now created the
embedded macro.

FIGURE 7.18 Your macro commands appear just like macros in earlier versions of Access.

CHAPTER 7 What Are Macros, and When Do You Need Them?334

FIGURE 7.19 If you save your changes, Access embeds the macro in the object.

What New Features Are Available in Macros?
There are two main major improvements to Access 2007 macros. The first is the introduc-
tion of error handling, and the second is the introduction of variables. Notice the OnError
macro action in Figure 7.20. The example branches to a macro named ErrorHandler in
the case of an error. Unlike previous versions of Access, where error handling in macros
was virtually nonexistent, the new OnError macro action provides similar error handling
to that of VBA code.

Another exciting addition to Access 2007 macros is the introduction of variables. The new
SetTempVar macro action enables you to create a variable and assign it a value. Figure 7.21
provides an example. Notice in the figure that the macro uses the SetTempVar action to
create a variable called CurrentDate and assign it the value returned from the built-in
Date() function.

Modifying an Existing Macro 335

7

FIGURE 7.20 The OnError macro action provides similar error handling to that of VBA code.

FIGURE 7.21 You use the SetTempVar action to create a temporary variable in a Microsoft
Office Access 2007 macro.

Documenting Your Macro: Adding Comments
Just as it’s useful to document any program, it’s also useful to document what you’re
trying to do in your macro. These comments can be used when you or others are trying
to modify your macro later. They can also be used as documentation because they print
when you print the macro.

To add a comment to a macro, click in the Comment column of the macro and begin to
type. Figure 7.22 shows a macro with comments. As you can see in Figure 7.23, these
comments appear in the printed macro.

CHAPTER 7 What Are Macros, and When Do You Need Them?336

FIGURE 7.22 Adding comments to a macro.

FIGURE 7.23 Comments included in the printed macro.

Testing a Macro
Although Access doesn’t offer very sophisticated tools for testing and debugging your
macros, it does give you a method for stepping through each line of a macro:

1. Open the macro in Design view.

2. Click Single Step in the Tools group of the Design tab.

3. To execute the macro, click Run. The first line of the macro is executed, and the
Macro Single Step dialog box appears, showing you the Macro Name, Condition,
Action Name, and Arguments, as in Figure 7.24. In the figure, the Macro Name is
mcrPersonalInfo, the Condition evaluates to False, and the Action Name is MsgBox.
The MsgBox arguments are You Are Over a Quarter Century Old, Yes, and
Information.

4. To continue stepping through the macro, click the Step button on the Macro Single
Step dialog box. If you want to halt the execution of the macro without proceeding,
click the Stop All Macros button. To continue normal execution of the macro
without stepping, click the Continue button.

Testing a Macro 337

7

CHAPTER 7 What Are Macros, and When Do You Need Them?338

FIGURE 7.24 In the Macro Single Step dialog box, you can view the macro name, condition,
action name, and arguments for the current step of the macro.

Try It: Stepping Through a Macro

Learning about stepping through a macro is easiest when you experience it firsthand.
To begin, open the mcrPersonalInfo macro that you created in the previous Try It
example in Design view. Click the Single Step button in the Tools group of the Design
tab. Run the frmPersonalInfo form, also created in the previous example. Select a
gender and type in a birth date. Click the Check Gender command button; this should
invoke the Macro Single Step dialog box. Step through the macro one step at a time.
View the Macro Name, Condition, Action Name, and Arguments for each step. Change
the gender and run the macro again. Carefully observe how this affects the macro’s
execution.

Now click the Check Birth Date command button. Step through the macro one step at
a time, viewing whether the condition evaluates to True or False. After the macro
ends, try entering a different value for the birth date. Step through the macro again
and carefully observe whether the condition evaluates to True or False for each step.

As you can see, although Microsoft supplies some tools to help you debug your macro,
you will probably agree that they are limited compared to the tools available with the VBA
debugger. (See Chapter 16, “Debugging: Your Key to Successful Development.”) That’s one
reason why many developers prefer to develop applications by using VBA code.

NOTE

The Single Step button in the Tools group of the Design tab is a toggle. After you acti-
vate Step Mode, it’s activated for all macros in the current database and all other
databases until you either turn off the toggle or exit Access. This behavior can be quite
surprising if you don’t expect it. You might have invoked Step Mode in another data-
base quite a bit earlier in the day, only to remember that you forgot to click the toggle
button when some other macro unexpectedly goes into Step Mode.

Determining When You Should Use Macros and
When You Shouldn’t
Macros aren’t always the best tools for creating code that controls industrial-strength
applications because they’re limited in some functionality. Access macros are limited in
the following ways:

. You can’t create user-defined functions by using macros.

. Access macros don’t allow you to pass parameters.

. Access macros provide no method of processing table records one at a time.

. When using Access macros, you can’t use object linking and embedding automation
to communicate with other applications.

. Debugging Access macros is more difficult than debugging VBA code.

. Transaction processing can’t be done with Access macros.

. You can’t call Windows API functions by using Access macros.

. Access macros don’t allow you to create database objects at runtime.

Converting a Macro to VBA Code
Sometimes you will create a macro, later to discover that you want to convert it to VBA
code. Fortunately, Access 2007 comes to the rescue. You can easily convert an Access
macro to VBA code; after the macro has been converted to VBA code, the code can be
modified just like any VBA module. Follow these six steps to convert an Access macro to
VBA code:

1. Open the macro you want to convert in Design view.

2. Click the Microsoft Office Access button and select Save As, Save Object As.

3. Click the As drop-down and select Module, as shown in Figure 7.25.

4. Click OK; this opens the Convert Macro dialog box, as shown in Figure 7.26.

5. Indicate whether you want to add error handling and comments to the generated
code; then click Convert.

6. After you get an indication that the conversion is finished, click OK. Access places
you in the Visual Basic Editor (VBE).

7. The converted macro appears under the list of modules with Converted Macro:
followed by the name of the macro. Click Design to view the results of the
conversion.

Converting a Macro to VBA Code 339

7

CHAPTER 7 What Are Macros, and When Do You Need Them?340

FIGURE 7.25 The macro Save As dialog box allows you to save a macro as a Visual Basic
module.

FIGURE 7.26 Use the Convert Macro dialog box to indicate whether error handling and
comments will be added to the Visual Basic module.

Figure 7.27 shows a macro that’s been converted into distinct subroutines, one for each
macro name. The macro is complete with logic, comments, and error handling. All macro
conditions are converted into If...Else...End If statements, and all the macro
comments are converted into VBA comments. Basic error-handling routines are automati-
cally added to the code.

CAUTION

When you convert a macro to a Visual Basic module, the original macro remains
untouched. Furthermore, all the objects in your application will still call the macro. To
effectively use the macro conversion options, you must find all the places where the
macro was called and replace the macro references with calls to the VBA function.

Creating an AutoExec Macro 341

7

FIGURE 7.27 A converted macro as a module.

Creating an AutoExec Macro
With Access 2007, you can use either an AutoExec macro or Startup options to determine
what occurs when a database is opened. Using an AutoExec macro to launch the process-
ing of your application is certainly a viable option.

Creating an AutoExec macro is quite simple; it’s just a normal macro saved with the name
AutoExec. An AutoExec macro usually performs tasks such as hiding or minimizing the
Navigation Pane and opening a Startup form or switchboard. The macro shown in Figure
7.28 hides the Navigation Pane, displays a welcome message, and opens the frmClients
form.

TIP

When you’re opening your own database to make changes or additions to the applica-
tion, you probably won’t want the AutoExec macro to execute. To prevent it from
executing, hold down your Shift key as you open the database.

CHAPTER 7 What Are Macros, and When Do You Need Them?342

FIGURE 7.28 An example of an AutoExec macro.

Using the DoCmd Object
Most macro commands can be performed in VBA code by using the DoCmd object. The
macro action becomes a method of the DoCmd object, and the arguments associated with
each macro action become the arguments of the method. For example, the following
method of the DoCmd object is used to open a form:

DoCmd.OpenForm “frmClients”, acNormal, “”, “[tblClients]![IntroDate]>Date()-30”, _

acEdit, acNormal

The OpenForm method of the DoCmd object that opens the form appears as the first argu-
ment to the method. The second argument indicates the view in which the form is
opened. The third and fourth arguments specify a filter and Where condition, respectively.
The fifth argument of the OpenForm method specifies the Data mode for the form (Add,
Edit, or Read Only). The sixth argument indicates the Window mode (Normal, Hidden,
Minimized, or Dialog).

Notice the intrinsic constants used for the OpenForm arguments; they help make the code
more readable. You can find them in the Help for each DoCmd method.

Practical Examples: Adding an AutoExec Macro
to the Time and Billing Application
In Chapter 10, “Advanced Form Techniques,” you will learn how to add a switchboard to
your application. For now, you’ll build an AutoExec macro that acts as the launching
point for your application. The macro will start the application by hiding the Navigation
Pane, displaying a message to the user, and opening the frmClients form.

Build the macro shown in Figure 7.28. Start by opening a new macro in Design view. Set
the first action of the macro to RunCommand and then set the DatabaseCommand argument
to WindowHide. This will hide the Navigation Pane when it’s run. Set the second action
of the macro to MsgBox and set the message to Welcome to the Client Billing
Application. Set Beep to No, the Type to Information, and the Title to Welcome. The final
action of the macro opens the frmClients form. Set the action to OpenForm and set the
FormName to frmClients. Leave the rest of the arguments at their default values.

Close and reopen the database. The AutoExec macro should automatically execute when
the database is opened. Close the database and open it again, holding down the Shift key
to prevent the macro from executing.

Summary
Many end users try to develop entire applications by using macros. Although this is possi-
ble, you will generally want to use a combination of macros and modules to build your
applications.

New to Microsoft Office Access 2007 are embedded macros. You associate these macros
with a specific event. Also new to Microsoft Office Access 2007 are the capability to add
error handling to a macro and the capability to include variables in a macro. These three
new features make macros a much more viable choice for application development.

Summary 343

7

This page intentionally left blank

IN THIS CHAPTER

. Why This Chapter Is Important

. VBA Explained

. What Are Access Class
Modules, Standard Modules,
Form Modules, and Report
Modules?

. Working with Variables

. Adding Comments to Your
Code

. Using the Line Continuation
Character

. Using the VBA Control
Structures

. Passing Parameters and
Returning Values

. Executing Procedures from the
Module Window

. The DoCmd Object: Performing
Macro Actions

. Working with Built-In Functions

. Working with Constants

. Working with the Visual Basic
Editor Tools

. Customizing the VBE

. Practical Examples: Using
Event Routines, User-Defined
Functions, and Subroutines

CHAPTER 8

VBA: An Introduction

Why This Chapter Is Important
The Visual Basic for Applications (VBA) language is at the
heart of every application that you write. It is your key to
taking Access beyond the world of wizards into a world
where anything is possible. This chapter introduces you to
the VBA language. It serves as a foundation for the remain-
der of the book. After reading this chapter, you will be
familiar with the development environment. You will know
how to declare variables, use control structures, pass and
return parameters, work with built-in functions, and more.

VBA Explained
VBA is the development language for Microsoft Access
2007. It offers a consistent language for application devel-
opment in the Microsoft Office suite. The core language, its
constructs, and the environment are the same in Microsoft
Access 2007, Microsoft Visual Basic 6.0 and earlier,
Microsoft Excel, Microsoft Word, Microsoft Outlook (for
application-wide programming), and Microsoft Project.
What differs among these environments are the built-in
objects specific to each application. For example, Access
has a CurrentProject object, but Excel has a Workbook
object. Each application’s objects have appropriate proper-
ties (attributes) and methods (actions)—and, in some cases,
events—associated with them. This chapter gives you an
overview of the VBA language and its constructs.

Unlike macros in Word or Excel, Access macros are not
subprocedures in modules; instead, they are a different type
of database object, with their own interface. Because of
this, you can’t use Access macros to learn to program in
VBA, as you can by recording a Word or Excel macro and

then examining its VBA code. You can write some Access 2007 applications by using
macros. Although macros are okay for relatively basic application development, you will
do most serious Access development by using the VBA language. Unlike macros, VBA
enables you to do the following:

. Work with complex logic structures (case statements, loops, and so on)

. Take advantage of functions and actions not available in macros

. Loop through and perform actions on recordsets

. Perform transaction processing

. Create database objects programmatically and work with them

. Create libraries of user-defined functions

. Call Windows API functions

. Perform complex object linking and embedding (OLE) automation commands

The VBA language enables you to use complex logic structures. Macros let you perform
only simple If…Then…Else logic, but the VBA language offers a wealth of logic and
looping constructs, which are covered later in this chapter.

If you try to develop an application using only macros, you can’t take advantage of many
of the rich features available in the VBA language. In addition, many of the actions avail-
able in both macros and modules can be performed much more efficiently with VBA code.

Complex Access applications often require you to loop through a recordset, performing
some action on each member of the set. There’s no way to do this using Access macros.
However, with the VBA language and ActiveX Data Objects (ADO), you can add, delete,
update, and manipulate data. Chapter 15, “What Are ActiveX Data Objects, and Why Are
They Important?” covers the details of ADO.

When manipulating sets of records, you want to ensure that all processing finishes
successfully before the Access Database Engine permanently updates your data. Macros
don’t enable you to protect your data with transaction processing. Using the BeginTrans,
CommitTrans, and Rollback methods, you can make sure that the Access Database Engine
updates your data only if all parts of a transaction finish successfully. Transaction process-
ing, if done properly, can substantially improve your application’s performance because
no data is written to disk until the process is finished. Transaction processing and its
benefits are covered in Alison Balter’s Mastering Access 2002 Enterprise Development.

With Access macros, you can’t create or modify database objects at runtime. Using VBA,
you can create databases, tables, queries, and other database objects; you can also modify
existing objects. There are many practical applications of this capability to create or
modify database objects (discussed in more detail in Chapter 15). When users are able to
build queries on the fly, for example, you might want to give them the capability to
design a query by using a front-end form that you provide. You can also enable users to
store the query so that they can run it again later.

CHAPTER 8 VBA: An Introduction346

VBA also makes it easier for you to write code libraries of reusable functions, design and
debug complex processes, and even write your own add-ins. If you’re developing even
moderately complex applications, you want to be able to create generic function libraries
that can be used with all your Access applications. Doing this using macros is extremely
difficult, if not impossible.

Many powerful functions not available within the VBA language are available as part of
Windows itself. The Windows API (Application Programming Interface) refers to the
nearly 1,000 Windows functions that Microsoft exposes for use by Access programmers.
You can’t take advantage of these functions from an Access macro. However, by using
VBA code, you can declare and call these functions, improving both the performance and
functionality of your applications. Chapter 25, “Exploiting the Power of the Windows
API,” covers the Windows API.

Both DDE and Automation technology enable you to communicate between your
Access applications and other applications. Although DDE is an older technology than
Automation, it’s still used to communicate with a few applications that don’t support
Automation. Automation is used to control Automation server applications, such as Excel
and Project, and their objects (all Microsoft Office applications are Automation servers).
Automation is covered in Chapter 24, “Automation: Communicating with Other
Applications.”

Although macros in Microsoft Office Access 2007 are significantly more powerful than
macros in previous versions of Access (see Chapter 7, “What Are Macros, and When Do
You Need Them?”), it is best to use a combination of both macros and VBA for developing
complex solutions. If you would ever like to convert a macro to VBA code, a Save As
menu option is available when saving an existing macro.

What Are Access Class Modules, Standard
Modules, Form Modules, and Report Modules?
VBA code is written in units called subroutines and functions that are stored in modules.
Microsoft Access modules are either Standard modules or Class modules. Standard modules
are created by clicking to select the Database Tools tab and then selecting the Visual Basic
button from the Macro group. Access takes you to the Access Visual Basic Editor (VBE).
Finally, select Insert, Module from the VBE menu. Class modules can be standalone objects
or can be associated with a form or report. To create a standalone Class module, you
choose the Class Module command from the VBE Insert menu. In addition, whenever
you add code behind a form or report, Microsoft Access creates a Class module associated
with that form or report that contains the code you create.

Modules specific to a form or report are generally called Form and Report Class modules,
and their code is often referred to as Code Behind Forms (CBF). CBF is created and stored in
that form or report and triggered from events occurring within it.

A subroutine (or subprocedure) is a routine that responds to an event or performs some
action. An event procedure is a special type of subroutine that automatically executes in

What Are Access Class Modules, Standard Modules, Form Modules, and Report Modules? 347

8

response to an event such as a mouse click on a command button or the loading of a
form. A function is a special type of routine because it can return a value; a subroutine
can’t return a value. Like a subroutine, a function can be triggered from an event.

Where Is VBA Code Written?
You write all VBA code in the Visual Basic Editor, also known as the VBE. Access places
you in the VBE anytime you select Visual Basic from the Macro group on the Database
Tools tab or press Alt+F11. Figure 8.1 shows the Visual Basic Editor. The VBE environment
in Microsoft Access is consistent with the editor interfaces in other Microsoft Office prod-
ucts. The VBE is a separate window from that of Microsoft Access and comprises a menu
bar, toolbar, Project window, Properties window, Immediate window, Locals window,
Watch window, Object Browser, and Code windows. The various components of the VBE
are discussed as appropriate in this chapter and throughout the book.

CHAPTER 8 VBA: An Introduction348

FIGURE 8.1 The Visual Basic Editor (VBE).

The Anatomy of a Module
Whether you’re dealing with a Standard module or a Class module, all modules contain a
General Declarations section (see Figure 8.2). As the name implies, this is the place you
can declare variables and constants that you want to be visible to all the functions and
subroutines in the module. You can also set options in this section. These variables are
referred to as module-level or private variables. You can also declare public variables in the
General Declarations section of a module. Public variables can be seen and modified by
any function or procedure in any module in the database.

FIGURE 8.2 The General Declarations section of a module is used to declare private and
public variables.

A module is also made up of user-defined subroutines and functions. Figure 8.3 shows a
subroutine called SayHello. Notice the drop-down list in the upper-left portion of the
window titled Chap8Ex—basHello (Code). This is referred to as the Object drop-down list.
Subroutines and functions are sometimes associated with a specific object, such as a form
or a control within a form. This is the place where such an association is noted. In this
case, the subroutine named SayHello is not associated with any object, so the Object
drop-down list contains (General).

Option Explicit
Option Explicit is a statement that you can include in the General Declarations section
of any module, including the Class module of a form, or report. When you use Option
Explicit, you must declare all variables in that module before you use them; otherwise,
an error saying that a variable is undefined will occur when you compile the module. If
Access encounters an undeclared variable when it compiles a module without Option
Explicit, VBA will simply treat it as a new variable and continue without warning. At
first glance, you might think that, because Option Explicit can cause compiler errors
that would otherwise not occur, it might be better to avoid the use of this option.
However, just the opposite is true. You should use Option Explicit in every module,
without exception. For example, look at the following code:

intAmount = 2

intTotal = intAmont * 2

What Are Access Class Modules, Standard Modules, Form Modules, and Report Modules? 349

8

FIGURE 8.3 An example of a user-defined subroutine called SayHello.

Clearly, the intent of this code is to multiply the value contained in the variable
intAmount, in this case 2, by 2. Notice, however, that the variable name is misspelled on
the second line. If you have not set Option Explicit, VBA views intAmont as a new vari-
able and simply continues its processing. The variable intTotal will be set to 0 instead of
4, and no error indication will be given at all. You can totally avoid this kind of result by
using Option Explicit.

TIP

In earlier versions of Access, you had the option of globally instructing Access to insert
the Option Explicit statement in all new modules. In Access 2007, the default
setting is to insert the Option Explicit statement in all new modules. To review this
setting in Access 2007, with the VBE active, choose Tools, Options. Under the Editor
tab, click Require Variable Declaration (see Figure 8.4). It’s important that you place
the Option Explicit statement in all your modules, so make sure this option is set
to True. Option Explicit will save you hours of debugging and prevent your cell
phone from ringing after you distribute your application to your users.

In addition to a General Declarations section and user-defined procedures, forms, and
reports, Class modules also contain event procedures that are associated with a particular
object on a form. Notice in Figure 8.5 that the Object drop-down list says cmdHello. This
is the name of the object whose event routines you are viewing. The drop-down list on

CHAPTER 8 VBA: An Introduction350

the right shows all the events that you can code for a command button; each of these
events creates a separate event routine. You will have the opportunity to write many
event routines as you read through this book.

What Are Access Class Modules, Standard Modules, Form Modules, and Report Modules? 351

8

FIGURE 8.4 Use the Options dialog box in the VBE to indicate that you want VBA to require
variable declaration.

FIGURE 8.5 An event procedure for the Click event of the cmdHello command button.

Creating Event Procedures
Access automatically creates event procedures when you write event code for an object.
For example, Access automatically creates the routine Private Sub cmdHello_Click when
you place code in the Click event of the cmdHello command button, shown in Figure 8.5.
To get to the event code of an object, follow these steps:

1. Click on the object in Design view and click the Property Sheet button on the
toolbar, or right-click on the object and choose Properties from the context-sensitive
menu.

2. Click on the Event properties tab.

3. Select the event for which you want to write code (for example, the On Click
event).

4. Select [Event Procedure] from the drop-down list.

5. Click on the ellipsis button, which places you in the VBE within the event code for
that object.

You are now ready to write code that will execute when that event occurs for the selected
object.

NOTE

As discussed at the beginning of this chapter, the VBE opens in a separate window. It
provides a programming environment consistent with that of all the other Microsoft
Office applications. Modules added in the VBE will not appear in the database
container until you save them within the VBE.

Creating Functions and Subroutines
You can also create your own procedures that aren’t tied to a particular object or event.
Depending on how and where you declare them, you can call them from anywhere in
your application or from a particular Code module, Form module, or Report module.

Creating a User-Defined Routine in a Code Module
Whereas event routines are tied to a specific event that occurs for an object, user-defined
routines are not associated with a particular event or a particular object. Here are the steps
that you can take to create a user-defined routine:

1. Click to select the Create tab.

2. Open the Macro drop-down in the Other group and select Module (see Figure 8.6).
The VBE appears, and Access places you in a new module.

3. Select Procedure from the Insert menu. The Add Procedure dialog box shown in
Figure 8.7 appears.

CHAPTER 8 VBA: An Introduction352

FIGURE 8.7 In the Add Procedure dialog box, you specify the name, type, and scope of the
procedure you’re creating.

4. Type the name of the procedure.

5. Select Sub, Function, or Property as the Type of procedure.

6. To make the procedure available to your entire application, select Public as the
Scope (Scope is covered later in this chapter in the section “Scope and Lifetime of
Procedures”); to make the procedure private to this module, select Private.

7. Finally, indicate whether you want all the variables in the procedure to be static.
(Static variables are discussed in this chapter under “Scope and Lifetime of Variables:
Exposing Your Variables as Little as Possible.”) Then click OK.

What Are Access Class Modules, Standard Modules, Form Modules, and Report Modules? 353

8

FIGURE 8.6 You use the Macro drop-down in the Other group to insert a new module.

Access creates a user-defined routine. Your cursor is placed within the routine, and you
can now write the code that encompasses the body of the routine.

Creating a User-Defined Routine in a Form or Report Class Module
Just as you can create a user-defined routine in a Code module, you can also create a user-
defined routine in a Form or Report Class module. Here’s the process:

1. While in Design view of a form or report, click to select the Design tab. Select the
View Code button in the Tools group. Access places you in the VBE.

2. Choose Procedure from the Insert menu to open the Insert Procedure dialog box.

3. Type the name of the procedure.

4. Select Sub, Function, or Property as the Type of procedure.

5. To make the procedure available to your entire application, select Public as the
Scope; to make the procedure private to this module, select Private.

6. Finally, indicate whether you want all the variables in the procedure to be static.
When you’re finished, click OK.

Access places a user-defined procedure within your Form or Report Class module. You are
now ready to write the code that executes when another procedure calls the user-defined
procedure.

TIP

Whether you’re creating a procedure in a Standard module or a Class module, you’re
now ready to enter the code for your procedure. A great shortcut for creating a proce-
dure is to type directly in the Code window the name of the new procedure, preceded
by its designation as either a Sub or a Function. Example: Sub Whatever or
Function Whatever. This creates a new subroutine or function as soon as you
press Enter.

Calling Event and User-Defined Procedures
Event procedures are automatically called when an event occurs for an object. For
example, when a user clicks a command button, the Click event code for that command
button executes.

The standard method for calling user-defined procedures is to use the Call keyword—
Call SayHello, for example. You can also call the same procedure without using the Call
keyword: SayHello.

NOTE

The Call keyword works only with subroutines, not with functions.

CHAPTER 8 VBA: An Introduction354

Although not required, using the Call keyword makes the statement self-documenting
and easier to read. You can call a user-defined procedure from an event routine or from
another user-defined procedure or function.

Scope and Lifetime of Procedures
You can declare the scope of a procedure as public or private. A procedure’s scope deter-
mines how widely you can call it from other procedures. In addition to a procedure’s
scope, the placement of a procedure can noticeably affect your application’s functionality
and performance.

Another attribute of a procedure has to do with the lifetime of any variables that you
declare within the procedure. By default, the variables you declare within a procedure
have a lifetime; that is, they have value and meaning only while the procedure is execut-
ing. When the procedure completes execution, the variables that it declared are
destroyed. You can alter this default lifetime by using the Static keyword.

Public Procedures
You can call a public procedure placed in a code module from anywhere in the applica-
tion. Procedures declared in a module are automatically public. This means that, unless
you specify otherwise, you can call procedures that you place in any code module from
anywhere within your application.

You might think that two public procedures can’t have the same name. Although this was
true in earlier versions of Access, it isn’t true in Access 2000 and later. If two public proce-
dures share a name, the procedure that calls them must explicitly state which of the two
routines it’s calling. This is illustrated by the following code snippet found in frmHello’s
Class module in the sample database, CHAP8EX.ACCDB:

Private Sub cmdSayGoodBye_Click()

Call basUtils.SayGoodBye

End Sub

NOTE

Unless noted otherwise, this code, and all the sample code in this chapter, is found in
CHAP8EX.ACCDB on the sample code CD-ROM.

You can find the SayGoodBye routine in two Access code modules; however, the prefix
basUtils indicates that the routine you want to execute is in the Standard module named
basUtils.

Procedures declared in Form or Report Class modules are also automatically public, so you
can call them from anywhere within the application. The procedure called cbfIAmPublic,
shown in Figure 8.8, is found in the form called frmHello. The only requirement for this
procedure to be called from outside the form is that the form containing the procedure
must be open in Form view. You can call the cbfIAmPublic procedure from anywhere

What Are Access Class Modules, Standard Modules, Form Modules, and Report Modules? 355

8

CHAPTER 8 VBA: An Introduction356

within the application by using the following syntax (found in the Standard module
basHello):

Sub CallPublicFormProc()

Call Forms.frmHello.cbfIAmPublic

End Sub

TIP

Although all procedures (except event procedures) are by default public, you should
use the Public keyword to show that the procedure is visible to any subroutine or
function in the database.

FIGURE 8.8 A public form procedure is visible to any subroutine or function in the database.

Private Procedures
As mentioned, all user-defined procedures are automatically public. If you want a proce-
dure declared in a module to have the scope of that module only, meaning that you can
call it only from another routine within the module, you must explicitly declare it as
private (see Figure 8.9).

The procedure shown in Figure 8.9, called IAmPrivate, is private. You can call it only
from other procedures in the Standard basUtils module.

FIGURE 8.9 A private procedure is visible only to subroutines and functions in the basUtils
module.

Scope Precedence
Private procedures always take precedence over public procedures. If a private procedure
in one module has the same name as a public procedure declared in another module, the
private procedure’s code is executed if it’s called by any routine in the module where it
was declared. Naming conflicts don’t occur between public and private procedures (unless
you declare a public and private variable with the same name in the same module).

TIP

Developers often wonder where to place code: in Form or Report Class modules, or in
Standard modules? There are pros and cons to each method. Placing code in
Standard modules means that you can easily call the code from anywhere in your
application, without loading a specific form or report. Public routines placed in
Standard modules can also be called from other databases. For this reason, Standard
modules are a great place to put generic routines that you want readily available as
part of a library.

Access 2000, Access 2002, Access 2003, and Access 2007 load modules on a
demand-only basis, which means that procedures no longer take up memory unless
they’re being used. This is especially true if you plan your modules carefully (see
Chapter 18, “Optimizing Your Application”). Regardless of when Access loads the code,
an advantage of placing code behind forms and reports (rather than within modules) is
that the form or report is self-contained and, therefore, portable. You can import the

What Are Access Class Modules, Standard Modules, Form Modules, and Report Modules? 357

8

form or report into any other database, and it still operates as expected. This object-
oriented approach means that the form requires nothing from the outside world.

As you can see, there are pluses and minuses to each method. As a general rule, if
a routine is specific to a particular form or report, place that routine in the form or
report; if it’s widely used, place it in a module.

Static Procedures
If a procedure is declared as static, all the variables declared in the procedure maintain
their values between calls to the procedure. This is an alternative to explicitly declaring
each variable in the procedure as static. Here’s an example of a static procedure, found in
basVariables:

Static Sub IncrementThem()

Dim intCounter1 As Integer

Dim intCounter2 As Integer

Dim intCounter3 As Integer

intCounter1 = intCounter1 + 1

intCounter2 = intCounter2 + 1

intCounter3 = intCounter3 + 1

MsgBox intCounter1 & “ - “ & intCounter2 & “ - “ & intCounter3

End Sub

Ordinarily, each variable in this procedure would be reinitialized to zero each time the
procedure is run. This means that all 1s would appear in the message box each time you
run the procedure. Because the procedure is declared as static, the variables in it retain
their values from call to call. That means that each time you run the procedure, the
values in the message box increase. This behavior should become much clearer after the
discussion of variables later in this chapter.

Working with Variables
You must consider many issues when creating VBA variables. The way that you declare a
variable determines its scope, its lifetime, and more. The following topics will help you
better understand declaring variables in VBA.

Declaring Variables
There are several ways to declare variables in VBA. For example, you could simply declare
x=10. With this method of variable declaration, you really aren’t declaring your variables
at all; you’re essentially declaring them as you use them. This method is quite dangerous.
It lends itself to typos and other problems. If you follow the practice recommended
previously—of always using the Option Explicit statement—Access will not allow you
to declare variables in this manner.

CHAPTER 8 VBA: An Introduction358

You could also type Dim intCounter; the Dim statement declares the variable. The only
problem with this method is that you haven’t declared the type of the variable to the
compiler, so it’s declared as a variant variable.

Another common mistake is declaring multiple variables on the same line, as in this
example:

Dim intCounter, intAge, intWeight As Integer

In this line, only the last variable is explicitly declared as an integer variable. The other
variables are implicitly declared as variants. If you’re going to declare multiple variables
on one line, make sure each variable is specifically declared, as in the following example:

Dim intCounter As Integer, intAge As Integer, intWeight As Integer

The most efficient and bug-proof way to declare your variables is to strong-type them to
the compiler and declare only one variable per line of code, as in this example:

Dim intCounter As Integer

Dim strName As String

As you can see, strong-typing declares the name of the variable as well as the type of data
it can contain. This type of declaration enables the compiler to catch errors, such as
storing a string in an integer variable, before your program runs. If implemented properly,
this method can also reduce the resources needed to run your programs by selecting the
smallest practical data type for each variable.

NOTE

You should try to avoid using variants whenever possible. Besides requiring a signifi-
cant amount of storage space, variants are also slow because they must be resolved
by the compiler at runtime. However, certain situations warrant using a variant. One
example is when you want the variable to contain different types of data at different
times. Another case occurs when you want to be able to differentiate between an
empty variable (one that hasn’t been initialized) and a variable that has a zero or a
zero-length string. Also, variant variables are the only type of variable that can hold the
special value of Null. Empty and Null values are covered in Chapter 13, “Advanced
VBA Techniques.”

VBA Data Types
VBA offers several data types for variables. Table 8.1 shows a list of the available data
types, the standard for naming them, the amount of storage space they require, the data
they can store, and their default values.

Working with Variables 359

8

TABLE 8.1 Data Types and Naming Conventions

Naming Conv Storage Default
Data Type Example of Data Range Value

Byte bytValue 1 byte 0 to 255 0
Boolean boolAnswer 2 bytes True or False False

Integer intCounter 2 bytes –32768 to 32767 0
Long lngAmount 4 bytes –2,147,483,648 to 0
Integer 2,147,483,647
Single sngAmount 4 bytes –3.402823E38 to 0

–1.401298E-45 for negative
values; from 1.401298E-45
to 3.402823E38 for positive
values

Double dblValue 8 bytes –1.79769313486231E308 0
to –4.94065645841247E-324
for negative values; from
4.94065645841247E-324 to
1.79769313486232E308 for
positive values

Currency curSalary 8 bytes –922,337,203,685,477.5808 0
to 922,337,203,685,477.5807

Date dtmStartDate 8 bytes 1/1/100 to 12/31/9999 12/30/1899
Object objExcel 4 bytes Any object N/A
Reference

strName varies Up to 65,526 characters “”
String
Variant varData varies Can contain any of the other Empty

data types except Fixed String
User- typEmp varies Based on Elements N/A
Defined
Data Type

Scope and Lifetime of Variables: Exposing Your Variables
as Little as Possible
You have read about the different types of variables available in VBA. Like procedures,
variables also have a scope. A variable can be declared as local, private (Module), or public
in scope. You should try to use local variables in your code because they’re shielded from
being accidentally modified by other routines.

Variables also have an attribute referred to as their lifetime. The lifetime of a variable
reflects the time during which the variable actually exists and, therefore, the time during
which its value is retained. In the following sections, we take a closer look at how to set
the scope and lifetime of variables.

CHAPTER 8 VBA: An Introduction360

Local Variables
Local variables are available only in the procedure where they are declared. Consider this
example (not included in Chap8ex):

Private Sub cmdOkay_Click

Dim strAnimal As String

strAnimal = “Dog”

Call ChangeAnimal

Debug.Print strAnimal ‘Still Dog

End Sub

Private Sub ChangeAnimal

strAnimal = “Cat”

End Sub

This code can behave in one of three ways. If Option Explicit is in effect, meaning that
all variables must be declared before they’re used, this code generates a compiler error. If
the Option Explicit statement isn’t used, strAnimal is changed to Cat only within the
context of the subroutine ChangeAnimal. If the Dim strAnimal As String statement is
moved to the General Declarations section of the module, the variable’s value is changed
to “Cat”.

NOTE

Notice the Debug.Print statement in the cmdOkay_Click event routine shown previ-
ously. The expression that follows the Debug.Print statement is printed in the
Immediate window. The Immediate window is a tool that helps you to troubleshoot your
applications. You can invoke the Immediate window from almost anywhere within your
application. The easiest way to activate the Immediate window is with the Ctrl+G
keystroke combination. You are placed in the VBE within the Immediate window. You
can then view the expressions that were printed to the Immediate window. The
Immediate window is discussed in detail in Chapter 16, “Debugging: Your Key to
Successful Development.”

Static Variables: A Special Type of Local Variable
The following examples illustrate the difference between local and static variables. Local
variables are reinitialized each time the code is called. You can run the following proce-
dure by opening the form named frmScopeAndLifeTime and clicking the Local Age
button. Notice that each time you run the procedure, the numeral 1 is displayed in the
txtNewAge text box.

Private Sub cmdLocalAge_Click()

Dim intAge As Integer

intAge = intAge + 1

Me.txtNewAge.Value = intAge

End Sub

Working with Variables 361

8

Each time this code runs, the Dim statement reinitializes intAge to zero. This is quite
different from the following code, which illustrates the use of a static variable:

Private Sub cmdStaticAge_Click()

Static sintAge As Integer

sintAge = sintAge + 1

Me.txtNewAge.Value = sintAge

End Sub

Each time this code executes, the variable called sintAge is incremented, and its value is
retained. You can test this by opening on the accompanying CD-ROM the form named
frmScopeAndLifeTime and clicking the Static Age button.

Private Variables
So far, this discussion has been limited to variables that have scope within a single proce-
dure. Private (module-level) variables can be seen by any routine in the module they were
declared in, but not from other modules. Thus, they are private to the module. You
declare private variables by placing a Private statement, such as the following, in the
General Declarations section of a form, report, or Access module:

[General Declarations]

Option Explicit

Private mintAge As Integer

You can change the value of a variable declared as private from any subroutine or func-
tion within that module. For example, the following subroutine increments the value of
the private variable mintAge by 1. You can run this code by opening the form named
frmScopeAndLifeTime on the accompanying CD-ROM and clicking the Module Age
button.

Private Sub cmdModuleAge_Click()

mintAge = mintAge + 1

Me.txtNewAge.Value = mintAge

End Sub

Notice the naming convention of using the letter m to prefix the name of the variable,
which denotes the variable as a private module-level variable. You should use private
declarations only for variables that need to be seen by multiple procedures in the same
module. Aim for making most of your variables local to make your code modular and
more bulletproof.

Public Variables
You can access public variables from any VBA code in your application. They’re usually
limited to things such as login IDs, environment settings, and other variables that must
be seen by your entire application. You can place declarations of public variables in the
General Declarations section of a module. The declaration of a public variable looks
like this:

CHAPTER 8 VBA: An Introduction362

Using the Line Continuation Character 363

8

Option Explicit

Public gintAge As Integer

Notice the prefix g (a relic of the old Global variables), the proper prefix for a public
variable declared in a Standard module. This standard is used because public variables
declared in a Standard module are visible not only to the module they were declared
in, but also to other modules. The following code, placed in the Click event of the
cmdPublic command button, increments the public variable gintAge by 1. You can run
this code by opening the form frmScopeAndLifeTime and clicking the Public Age button.

Private Sub cmdPublicAge_Click()

gintAge = gintAge + 1

Me.txtNewAge.Value = gintAge

End Sub

Adding Comments to Your Code
You add comments, which have been color-coded since the release of Access 97 (prior to
Access 97 they were the same color as the programming code), to modules by using an
apostrophe (‘). You can also use the keyword Rem, but the apostrophe is generally
preferred. You can place the apostrophe at the beginning of the line of code or anywhere
within it. Anything following the apostrophe is considered a comment. Figure 8.10 shows
code containing comments.

FIGURE 8.10 Code containing comments that clarify what the subroutine is doing.

CHAPTER 8 VBA: An Introduction364

TIP

Many people ask if it is possible to comment several lines of code at once. Although
not easily discoverable, the process is quite simple. Within the VBE, right-click any
toolbar or menu bar and display the Edit toolbar. Click the Comment Block tool on the
Edit toolbar. To uncomment the block of code, click the Uncomment Block tool.

Using the Line Continuation Character
Access Basic code, used in Access 2.0, didn’t have a line continuation character. Therefore,
you had to scroll a lot, as well as pull out a bag of tricks to simulate continuing a line of
code. With VBA, Access 97 and higher solve this problem: The line continuation character
is an underscore. Figure 8.11 illustrates the use of this character.

FIGURE 8.11 The line continuation character is used to improve the readability of a long line
of code.

Using the VBA Control Structures
VBA gives the developer several different constructs for looping and decision processing.
The most commonly used ones are covered in the following sections and are found in the
form called frmControlStructures.

If…Then…Else
The If…Then…Else construct evaluates whether a condition is True. In the following
example, anything between If and Else will occur if the statement evaluates to True, and
any code between Else and End If will be executed if the statement evaluates to False.
The Else is optional.

Private Sub cmdIfThenElse_Click()

If IsNull(Me.txtName.Value) or IsNull(Me.txtAge.Value) Then

MsgBox “Name or Age is Blank”

Else

MsgBox “Your Name Is “ & Me.txtName.Value _

& “ And Your Age Is “ & Me.txtAge.Value

End If

End Sub

This code tests whether the text box called txtName or the text box txtAge contains a
Null. A different message is displayed depending on whether one of the text boxes
contains a Null value.

One-line If statements are also permitted; they look like this:

If IsNull(Me.txtvalue.Value) Then MsgBox “You must enter a value”

However, this format for an If statement isn’t recommended because it reduces
readability.

Another useful form of an If statement is ElseIf, which enables you to evaluate an
unlimited number of conditions in one If statement. The following code gives you an
example: (This example is not included in CHAP8EX.)

Sub MultipleIfs(intNumber As Integer)

If intNumber = 1 Then

MsgBox “You entered a one”

ElseIf intNumber = 2 Then

MsgBox “You entered a two”

ElseIf intNumber >= 3 And intNumber <= 10 Then

MsgBox “You entered a number between 3 and 10”

Else

MsgBox “You entered some other number”

End If

End Sub

The conditions in an If statement are evaluated in the order in which they appear. For
this reason, it’s best to place the most common conditions first. After a condition is met,
execution continues immediately after End If. If no conditions are met, and there’s no
Else statement, execution will also continue immediately after End If.

Using the VBA Control Structures 365

8

NOTE

If multiple conditions exist, using a Select Case statement, described later in this
chapter, is almost always preferable to using an If statement. Case statements gener-
ally make your code easier to read and maintain.

The Immediate If (IIf)
An Immediate If (IIf) is a variation of an If statement. It’s actually a built-in function
that returns one of two values, depending on whether the condition being tested is true
or false. Here’s an example: (This code is not included in CHAP8EX.)

Function EvalSales(curSales As Currency) As String

EvalSales = IIf(curSales >= 100000, “Great Job”, “Keep Plugging”)

End Function

This function evaluates the curSales parameter to see whether its value is greater than or
equal to $100,000. If it is, the function returns the string “Great Job”; otherwise, the
function returns the string “Keep Plugging”.

CAUTION

Both the True and False portions of the IIf are evaluated, so if there’s a problem
with either part of the expression (for example, a divide-by-zero condition), an error
occurs.

The IIf function is most often used in a calculated control on a form or report, or to
create a new field in a query. Probably the most common example is an IIf expression
that determines whether the value of a control is IsNull. If the value is IsNull, you can
have the expression return a zero or an empty string; otherwise, you can have the expres-
sion return the value in the control. The following expression, for example, evaluates the
value of a control on a form:

=IIf(IsNull(Forms!frmOrders.txtFreight.Value),0,_

Forms!frmOrders.txtFreight.Value)

This expression displays either a zero or the value for freight in the control called
txtFreight.

NOTE

Although the IIf function can be used to handle Nulls, the built-in NZ function is a
more efficient solution to this problem and avoids the inherent pitfalls of IIf.

CAUTION

The IIf function is rather slow. It is best to avoid using it whenever possible by replac-
ing it with a properly formed If…Then…Else block.

CHAPTER 8 VBA: An Introduction366

The Conditional If: Conditional Compilation
Conditional compilation enables you to selectively execute blocks of code. This feature is
useful in several situations:

. When you want certain blocks of code to execute in the demo version of your
product and other blocks to execute in your product’s retail version

. When you’re distributing your application in different countries and want certain
blocks of code to apply to some countries but not to others

. When you want certain blocks of code to execute only during the testing of your
application

Conditional compilation is done by using the #If…Then…#Else directive, as shown
here and found under the Conditional Compilation command button on the
frmControlStructures form:

Sub cmdConditionalCompilation_Click()

#If Language = “Spanish” Then

MsgBox “Hola, Que Tal?”

#Else

MsgBox “Hello, How Are You?”

#End If

End Sub

NOTE

The difference between conditional compilation and standard If..Then..Else logic is that
conditional compilation is performed at compile time. Only the appropriate line(s) of
code is placed in the compiled code. This improves performance if similar logic is
needed throughout the application.

You can declare the compiler constant, in this case, Language, in one of two places: in a
module’s General Declarations section or in the Project Properties dialog box. A compiler
constant declared in the General Declarations section of a module looks like this:

#Const Language = “Spanish”

The disadvantage of this constant is that you can’t declare it as public. It isn’t possible
to create public compiler constants by using the #Const directive. This means that any
compiler constants declared in a module’s Declarations section can be used only within
that module. The major advantage of declaring this type of compiler constant is that it
can contain a string. For example, the compiler constant Language, defined in the preced-
ing paragraph, is given the value “Spanish”.

Public compiler constants can be declared by modifying the Project Properties. Because
they are public in scope, compiler constants declared in the Project Properties can be

Using the VBA Control Structures 367

8

referred to from anywhere in your application. The major limitation on compiler direc-
tives set up in Project Properties is that they can contain only integers. For example, you
would have to enter Language = 1.

To define compiler constants using the Project Properties dialog box, right-click within
the Project window and select projectx Properties, where projectx is the name of the project
you are working with. You can now enter the values you need into the text box labeled
Conditional Compilation Arguments. You can enter several arguments by separating them
with a colon, such as Language = 1 : Version = 2.

With the compiler directive Language=1, the code would look like this:

Sub ConditionalIf()

#If Language = 1 Then

MsgBox “Hola, Que Tal?”

#Else

MsgBox “Hello, How Are You?”

#End If

End Sub

NOTE

For this code to execute properly, you must remove the constant declaration from the
previous example.

Notice that ConditionalIf now evaluates the constant Language against the integer of 1.

It’s important to understand that using conditional constants isn’t the same as using
regular constants or variables with the standard If…Then…Else construct. Regular
constants or variables are evaluated at runtime, which requires processing time each occa-
sion the application is run. Conditional constants and conditional If…Then…Else state-
ments control which sections of code are actually compiled. All resolution is completed
at compile time; this eliminates the need for unnecessary processing at runtime.

Select Case
Rather than using multiple If…Then…Else statements, using a Select Case statement is
often much clearer, as shown here. This Select Case statement is found under the Select
Case command button of the frmControlStructures form.

Private Sub cmdCase_Click()

Dim intAge As Integer

intAge = Nz(Me.txtAge.Value, 0) Select Case intAge

Case 0

MsgBox “You Must Enter a Number”

Case 1 To 18

MsgBox “You Are Just a Kid”

Case 19, 20, 21

CHAPTER 8 VBA: An Introduction368

MsgBox “You are Almost an Adult”

Case 22 to 40

MsgBox “Good Deal”

Case Is > 40

MsgBox “Getting Up There!”

Case Else

MsgBox “You Entered an Invalid Number”

End Select

End Sub

This subroutine first uses the Nz function to convert a Null or empty value in the txtAge
control to 0; otherwise, the value in txtAge is stored in intAge. The Select Case state-
ment then evaluates intAge. If the value is 0, the code displays a message box with You
Must Enter a Number. If the value is between 1 and 18 inclusive, the code displays a
message box saying You Are Just a Kid. If the user enters 19, 20, or 21, the code
displays the message You are Almost an Adult. If the user enters a value between 22 and
40 inclusive, the code displays the message Good Deal. If the user enters a value greater
than 40, the code displays the message Getting Up There!; otherwise, the user gets a
message indicating that she entered an invalid number.

Looping
Several looping structures are available in VBA; most are discussed in this section. Take a
look at the following example of a looping structure (found under the Do While…Loop
command button of the frmControlStructures form):

Sub cmdDoWhileLoop_Click()

Do While Nz(Me.txtAge.Value)< 35

Me.txtAge.Value = Nz(Me.txtAge.Value) + 1

Loop

End Sub

In this structure, if the value in the txtAge text box is greater than or equal to 35, the
code in the loop is not executed. If you want the code to execute unconditionally at least
one time, you need to use the following construct (found under the Do…Loop While
command button of the frmControlStructures form):

Sub cmdDoLoopWhile_Click()

Do

Me.txtAge = Nz(Me.txtAge.Value) + 1

Loop While Nz(Me.txtAge.Value) < 35

End Sub

Using the VBA Control Structures 369

8

This code will execute one time, even if the value in the txtAge text box is set to 35.
The Do While…Loop in the previous example evaluates before the code is executed, so it
doesn’t ensure code execution. The Do…Loop While is evaluated at the end of the loop
and therefore guarantees execution.

Alternatives to the Do While…Loop and the Do…Loop While are Do Until…Loop and Do…Loop

Until. Do Until…Loop (found under the Do Until…Loop command button of the
frmControlStructures form) works like this:

Sub cmdDoUntil_Click()

Do Until Nz(Me.txtAge.Value) = 35

Me.txtAge.Value = Nz(Me.txtAge.Value) + 1

Loop

End Sub

This loop continues to execute until the value in the txtAge text box becomes equal to
35. The Do…Loop Until construct (found under the Do…Loop Until command button of
the frmControlStructures form) is another variation:

Sub cmdLoopUntil_Click()

Do

Me.txtAge.Value = Nz(Me.txtAge.Value) + 1

Loop Until Nz(Me.txtAge.Value) = 35

End Sub

As with the Do…Loop While construct, the Do…Loop Until construct doesn’t evaluate the
condition until the end of the loop, so the code in the loop is guaranteed to execute at
least once.

TIP

As covered in Chapter 18, it is not a good idea to reference a control over and over
again in a loop. Notice that, in the looping examples, the txtAge control is referenced
each time through the loop. This was done to keep the examples simple. To eliminate
the performance problem associated with this technique, use the code that follows
(found under the cmdEfficient command button on the frmControlStructures form):

Private Sub cmdEfficient_Click()

Dim intCounter As Integer

intCounter = Nz(Me.txtAge.Value)

Do While intCounter < 35

intCounter = intCounter + 1

Loop

Me.txtAge.Value = intCounter
End Sub

CHAPTER 8 VBA: An Introduction370

CAUTION

With any of the looping constructs, it’s easy to unintentionally cause a loop to execute
endlessly, as is shown in this example and can also be illustrated with the code
samples shown previously. (This code is not included in CHAP8EX.)

Sub EndlessLoop()

Dim intCounter As Integer

intCounter = 5

Do

Debug.Print intCounter

intCounter = intCounter + 1

Loop Until intCounter = 5

End Sub

This code snippet sets intCounter equal to 5. The code in the loop increments
intCounter and then tests to see whether intCounter equals 5. If it doesn’t, the
code in the loop executes another time. Because intCounter will never become equal
to 5 (it starts at 6 within the Do loop), the loop executes endlessly. You need to use
Ctrl+Break to exit the loop; however, Ctrl+Break doesn’t work in Access’s runtime
version.

For…Next
The For...Next construct is used when you have an exact number of iterations you want
to perform. It looks like this and is found under the For…Next command button of the
frmControlStructures form:

Sub cmdForNext_Click()

Dim intCounter As Integer

For intCounter = 1 To 5

Me.txtAge.Value = Nz(Me.txtAge.Value) + 1

Next intCounter

End Sub

Note that intCounter is self-incrementing. The start value and the stop value can both be
variables. A For…Next construct can also be given a step value, as shown in the following.
(The counter is incremented by the value of Step each time the loop is processed.)

Sub ForNextStep()

‘ Note that this code is not in database Chap8ex.mdb

Dim intCounter As Integer

For intCounter = 1 To 5 Step 2

Me.txtAge.Value = Nz(Me.txtAge.Value) + 1

Next intCounter

End Sub

Using the VBA Control Structures 371

8

With…End With
The With…End With statement executes a series of statements on a single object or user-
defined type. Here’s an example (found under the With…End With command button of the
frmControlStructures form:

Private Sub cmdWithEndWith_Click()

With Me.txtAge

.BackColor = 16777088

.ForeColor = 16711680

.Value = “Hello World”

.FontName = “Arial”

End With

End Sub

This code performs four operations on the txtAge text box, found on the form it’s run
on. The code modifies the BackColor, ForeColor, Value, and FontName properties of the
txtAge text box.

TIP

The With…End With statement offers two main benefits. The first is simply less
typing: You don’t need to repeat the object name for each action you want to perform
on the object. The more important benefit involves performance. Because the object is
referred to once rather than multiple times, this code runs much more efficiently. The
benefits are even more pronounced when the With…End With construct is found in
a loop.

For Each…Next
The For Each…Next statement executes a group of statements on each member of an array
or collection. The following example (found under the For Each…Next command button
of the frmControlStructures form) illustrates the use of this powerful construct:

Private Sub cmdForEachNext_Click()

Dim ctl As Control

For Each ctl In Controls

ctl.FontSize = 8

Next ctl

End Sub

This code loops through each control on the form, modifying the FontSize property of
each control.

As in the following example, the With…End With construct is often used along with the
For Each…Next construct:

CHAPTER 8 VBA: An Introduction372

Private Sub cmdForEachWith_Click()

Dim ctl As Control

For Each ctl In Controls

With ctl

.ForeColor = 16711680

.FontName = “Arial”

.FontSize = 14

End With

Next ctl

End Sub

This code loops through each control on a form; the ForeColor, FontName, and FontSize
properties of each control on the form are modified.

CAUTION

Before you put all this good information to use, remember that no error handling has
been implemented in the code yet. If one of the controls on the form in the example
doesn’t have a ForeColor, FontName, or FontSize property, the code would cause an
error. In Chapter 9, “Objects, Properties, Methods, and Events Explained,” you will
learn how to determine the type of an object before you perform a command on it.
Knowing the type of an object before you try to modify its properties can help you
prevent errors.

Passing Parameters and Returning Values
Both subroutines and functions can receive arguments (parameters), but subroutines can
return values only when you use the ByRef keyword. The following subroutine (found
under the Pass Parameters command button of the frmParametersAndReturnValues form)
receives two parameters: txtFirst and txtLast. It then displays a message box with the
first character of each of the parameters that was passed.

Private Sub cmdPassParameters_Click()

Call Initials(Nz(Me.txtFirstName.Value), Nz(Me.txtLastName.Value))

End Sub

Sub Initials(strFirst As String, strLast As String)

‘ This procedure can be found by selecting General in

‘ the Object drop-down list in the VBE window

MsgBox “Your Initials Are: “ & Left$(strFirst, 1) _

& Left$(strLast, 1)

End Sub

Passing Parameters and Returning Values 373

8

Notice that the values in the controls txtFirstName and txtLastName from the current
form (represented by the Me keyword) are passed to the subroutine called Initials. The
parameters are received as strFirst and strLast. The code displays the first left character
of each parameter in the message box.

The preceding code simply passes values and then operates on those values. This
next example (found under the Return Values command button of the
frmParametersAndReturnValues form) uses a function to return a value:

Private Sub cmdReturnValues_Click()

Dim strInitials As String

strInitials = ReturnInit(Nz(Me.txtFirstName.Value), _

Nz(Me.txtLastName.Value))

MsgBox “Your initials are: “ & strInitials

End Sub

Function ReturnInit(strFName As String, strLName As String) As String

‘ This procedure can be found by selecting General in

‘ the Object drop-down list in the VBE window

ReturnInit = Left$(strFName, 1) & Left(strLName, 1)

End Function

Notice that this example calls the function ReturnInit, sending values contained in the
two text boxes as parameters. The function sets ReturnInit (the name of the function)
equal to the first two characters of the strings. This returns the value to the calling
routine (cmdReturnValues _Click) and sets strInitials equal to the return value.

NOTE

Notice that the function ReturnInit is set to receive two string parameters. You know
this because of the As String keywords that follow each parameter. The function is
also set to return a string. You know this because the keyword As String follows the
list of the parameters, outside the parentheses. If you don’t explicitly state that the
function should return a particular type of data, it returns a variant.

Executing Procedures from the Module Window
You can easily test procedures from the Module window in Access 2007. Simply click
anywhere inside the procedure you want to execute, and then press the F5 key or click
the Run Sub/UserForm button on the toolbar. The procedure you’re in will execute as
though you had called it from code or from the Immediate pane of the Debug window.

The DoCmd Object: Performing Macro Actions
The Access environment is rich with objects that have built-in properties and methods.
By using VBA code, you can modify the properties and execute the methods. One of the

CHAPTER 8 VBA: An Introduction374

objects available in Access is the DoCmd object, used to execute macro actions in Visual
Basic procedures. The macro actions are executed as methods of the DoCmd object. The
syntax looks like this:

DoCmd.ActionName [arguments]

Here’s a practical example:

DoCmd.OpenReport strReportName, acViewPreview

The OpenReport method is a method of the DoCmd object; it runs a report. The first two
parameters that the OpenReport method receives are the name of the report you want to
run and the view in which you want the report to appear (Preview, Normal, or Design).
The name of the report and the view are both arguments of the OpenReport method.

Most macro actions have corresponding DoCmd methods that you can find in Help,
but some don’t. They are AddMenu, MsgBox, RunApp, RunCode, SendKeys, SetValue,
StopAllMacros, and StopMacro. The SendKeys method is the only one that has any signifi-
cance to you as a VBA programmer. The remaining macro actions either have no applica-
tion to VBA code, or you can perform them more efficiently by using VBA functions and
commands. The VBA language includes a MsgBox function, for example, that’s far more
robust than its macro action counterpart.

Many of the DoCmd methods have optional parameters. If you don’t supply an argument,
its default value is assumed. You can use commas as place markers to designate the posi-
tion of missing arguments, as shown here:

DoCmd.OpenForm “frmOrders”, , ,”[OrderAmount] > 1000”

The OpenForm method of the DoCmd object receives seven parameters; the last six parame-
ters are optional. In the example, two parameters are explicitly specified. The first is the
name of the form (“FrmOrders”), a required parameter. The second and third parameters
have been omitted, meaning that you’re accepting their default values. The commas, used
as place markers for the second and third parameters, are necessary because one of the
parameters following them is explicitly designated. The fourth parameter is the Where
condition for the form, which has been designated as the record in which the
OrderAmount is greater than 1,000. The remaining parameters haven’t been referred to,
so default values are used for them.

If you prefer, you can use named parameters to designate the parameters that you are
passing. Named parameters, covered later in this chapter, can greatly simplify the preced-
ing syntax. With named parameters, you don’t need to place the arguments in a particu-
lar order, and you don’t need to worry about counting commas. The preceding syntax can
be changed to the following:

DoCmd.OpenForm FormName:=”frmOrders”, WhereCondition:=

“[OrderAmount] > 1000”

The DoCmd Object: Performing Macro Actions 375

8

Working with Built-In Functions
VBA has a rich and comprehensive function library as well as tools to assist in their use.

Built-In Functions
Some of the more commonly used VBA functions and examples are listed in the following
sections. On some rainy day, go through the online Help to become familiar with the rest.

NOTE

The following examples are located in basBuiltIn in the CHAP8EX database.

Format

The Format function formats expressions in the style specified. The first parameter is the
expression you want to format; the second is the type of format you want to apply. Here’s
an example of using the Format function:

Sub FormatData()

Debug.Print Format$(50, “Currency”)

‘Prints $50.00

Debug.Print Format$(Now, “Short Date”)

‘Prints the current date

Debug.Print Format$(Now, “DDDD”)

‘Displays the word for the day

Debug.Print Format$(Now, “DDD”)

‘Displays 3 - CHAR Day

Debug.Print Format$(Now, “YYYY”)

‘Displays 4 - digit Year

Debug.Print Format$(Now, “WW”)

‘Displays the Week Number

End Sub

Instr

The Instr function returns the position where one string begins within another string:

Sub InstrExample()

Debug.Print InStr(“Alison Balter”, “Balter”) ‘Returns 8

Debug.Print InStr(“Hello”, “l”) ‘Returns 3

Debug.Print InStr(“c:\my documents\my file.txt”, “\”) ‘Returns 3

End Sub

InStrRev

InStrRev begins searching at the end of a string and returns the position where one string
is found within another string:

CHAPTER 8 VBA: An Introduction376

Sub InstrRevExample()

Debug.Print InStrRev(“c:\my documents\my file.txt”, “\”) ‘Returns 16

End Sub

Notice that the InStr function returns 3 as the starting position for the backslash charac-
ter within “c:\my documents\my file.txt”, whereas the InStrRev function returns 16 as
the starting position for the backslash character in the same string. The reason is that
InStr starts searching at the beginning of the string, continuing until it finds a match,
whereas InStrRev begins searching at the end of the string, continuing until it finds a
match.

Left

Left returns the leftmost number of characters in a string:

Sub LeftExample()

Debug.Print Left$(“Hello World”, 7) ‘Prints Hello W

End Sub

Right

Right returns the rightmost number of characters in a string:

Sub RightExample()

Debug.Print Right$(“Hello World”, 7) ‘Prints o World

End Sub

Mid

Mid returns a substring of a specified number of characters in a string. This example starts
at the fourth character and returns five characters:

Sub MidExample()

Debug.Print Mid$(“Hello World”, 4, 5) ‘’Prints lo Wo

End Sub

UCase

UCase returns a string that is all uppercase:

Sub UCaseExample()

Debug.Print UCase$(“Hello World”) ‘Prints HELLO WORLD

End Sub

DatePart

DatePart returns the specified part of a date:

Sub DatePartExample()

Debug.Print DatePart(“YYYY”, Now)

‘Prints the Year

Debug.Print DatePart(“M”, Now)

Working with Built-In Functions 377

8

‘Prints the Month Number

Debug.Print DatePart(“Q”, Now)

‘Prints the Quarter Number
Debug.Print DatePart(“Y”, Now)
‘Prints the Day of the Year
Debug.Print DatePart(“WW”, Now)
‘Prints the Week of the Year

End Sub

DateDiff
DateDiff returns the interval of time between two dates:

Sub DateDiffExample()
Debug.Print DateDiff(“d”, Now, “12/31/2010”)
‘’Days until 12/31/2010
Debug.Print DateDiff(“m”, Now, “12/31/2010”)
‘’Months until 12/31/2010
Debug.Print DateDiff(“yyyy”, Now, “12/31/2010”)
‘’Years until 12/31/2010
Debug.Print DateDiff(“q”, Now, “12/31/2010”)
‘’Quarters until 12/31/2010

End Sub

DateAdd
DateAdd returns the result of adding or subtracting a specified period of time to a date:

Sub DateAddExample()
Debug.Print DateAdd(“d”, 3, Now)
‘Today plus 3 days
Debug.Print DateAdd(“m”, 3, Now)
‘Today plus 3 months
Debug.Print DateAdd(“yyyy”, 3, Now)
‘Today plus 3 years
Debug.Print DateAdd(“q”, 3, Now)
‘Today plus 3 quarters
Debug.Print DateAdd(“ww”, 3, Now)
‘Today plus 3 weeks
Debug.Print DateAdd(“ww”, -3, Now)
‘Today minus 3 weeks

End Sub

Replace
Replace replaces one string with another:

Sub ReplaceExample()
Debug.Print Replace(“Say Hello if you want to”, “hello”, “bye”)
‘Returns Say bye if you want to

CHAPTER 8 VBA: An Introduction378

Debug.Print Replace(“This gets rid of all of the spaces”, “ “, “”)
‘Returns Thisgetsridofallofthespaces

End Sub

StrRev

StrRev reverses the order of text in a string:

Sub StrReverseExample()

Debug.Print StrReverse(“This string looks very funny when reversed!”)

‘Returns !desrever nehw ynnuf yrev skool gnirts sihT

End Sub

MonthName

MonthName returns the text string associated with a month number:

Sub MonthNameExample()

Debug.Print MonthName(7)

‘Returns July

Debug.Print MonthName(11)

‘Returns November

End Sub

Functions Made Easy with the Object Browser
With the Object Browser, you can view members of an ActiveX component’s type library.
In plain English, the Object Browser enables you to easily browse through a component’s
methods, properties, and constants. You can also copy information and add it to your
code. It even adds a method’s parameters for you. The following steps let you browse
among the available methods, copy the method you want, and paste it into your code:

1. With the VBE active, select View, Object Browser from the menu (note that the
menu line also shows an icon that you can use from the toolbar), or press F2 to
open the Object Browser window (see Figure 8.12).

Working with Built-In Functions 379

8

FIGURE 8.12 The Object Browser showing all the classes in the CHAP8EX database and all
the members in the basUtils module.

CHAPTER 8 VBA: An Introduction380

2. The Object Browser window is divided into two parts: the upper part of the window
and the lower part. The drop-down list at the upper left of the window is used to
filter the items to be displayed in the lower part of the window. Use this drop-down
list to select the project or library whose classes and members you want to view in
the lower part of the window.

3. In the lower portion of the window, select the class from the left list box, which lists
Class modules, templates for new objects, standard modules, and modules contain-
ing subroutines and functions.

4. Select a related property, method, event, constant, function, or statement from the
Members Of list box. In Figure 8.12, the basUtils module is selected from the list
box on the left. Notice that the subroutines and functions included in basUtils
appear in the list box on the right.

5. Click the Copy to Clipboard button (third from the right in the upper toolbar
within the Object Browser window) to copy the function name and its parameters
to the Clipboard so that you can easily paste it into your code.

The example in Figure 8.12 shows choosing a user-defined function selected from a
module in a database, but you can also select any built-in function. Figure 8.13 shows an
example in which the DatePart function is selected from the VBA library. The Object
Browser exposes all libraries referred to by the database and is covered in more detail in
Chapters 9 and 24.

FIGURE 8.13 The Object Browser with the VBA library selected.

Working with Constants
A constant is a meaningful name given to a meaningless number or string. Constants can
be used only for values that don’t change at runtime. A tax rate or commission rate, for
example, might be constant throughout your application. There are three types of
constants in Access:

. Symbolic

. Intrinsic

. System defined

Working with Constants 381

8

Symbolic constants, created by using the Const keyword, are used to improve the readabil-
ity of your code and make code maintenance easier. Instead of referring to the number
.0875 every time you want to refer to the tax rate, you can refer to the constant
mccurTaxRate. If the tax rate changes, and you need to modify the value in your code,
you’ll make the change in only one place. Furthermore, unlike the number .0875, the
name mccurTaxRate is self-documenting.

Intrinsic constants are built into Microsoft Access; they are part of the language itself. As an
Access programmer, you can use constants supplied by Microsoft Access, Visual Basic,
Data Access Objects (DAO), and ADO. You can also use constants provided by any object
libraries you’re using in your application.

There are only three system-defined constants—True, False, and Null—and they are
available to all applications on your computer.

Working with Symbolic Constants
As mentioned, you declare a symbolic constant by using the Const keyword. You can
declare a constant in a subroutine or function, or in the General section of a Form or
Report module. You can strong-type constants in Access 2000 and later. The declaration
and use of a private constant looks like this:

Private Const TAXRATE As Currency = .0875

This code, when placed in a module’s Declarations section, creates a private constant
called TAXRATE and sets it equal to .0875. Here’s how you use the constant in code:

Function TotalAmount(curSaleAmount As Currency)

TotalAmount = curSaleAmount * TAXRATE

End Function

This routine multiplies the curSaleAmount, received as a parameter, by the constant
TAXRATE. It returns the result of the calculation by setting the function name equal to the
product of the two values. The advantage of the constant in this example is that the code
is more readable than TotalAmount = curSaleAmount * .0875 would be.

Scoping Symbolic Constants
Just as regular variables have scope, user-defined constants have scope. In the preceding
example, you created a private constant. The following statement, when placed in a
module’s General Declarations section, creates a public constant:

Public Const TAXRATE As Currency = .0875

Because this constant is declared as public, you can access it from any subroutine or func-
tion (including event routines) in your entire application. To better understand the bene-
fits of a public constant, consider a case in which you have many functions and
subroutines all making reference to the constant TAXRATE. Imagine what would happen if
the tax rate were to change. If you hadn’t used a constant, you would need to search your
entire application, replacing the old tax rate with the new tax rate. However, because your

public constant is declared in one place, you can easily go in and modify the one line of
code where this constant is declared.

By definition, the values of constants cannot be modified at runtime. If you try to modify
the value of a constant, you get this VBA compiler error:

Assignment to constant not permitted

Figure 8.14 illustrates this message box. You can see that an attempt is made to modify
the value of the constant TAXRATE, which results in a compile error.

CHAPTER 8 VBA: An Introduction382

FIGURE 8.14 Trying to modify the value of a constant.

If you need to change the value at runtime, you should consider storing the value in a
table instead of declaring it as a constant. You can read the value into a variable when the
application loads and then modify the variable if needed. If you choose, you can write
the new value back to the table.

Working with Intrinsic Constants
Microsoft Access declares a number of intrinsic constants that you can use in Code, Form,
and Report modules. Because they’re reserved by Microsoft Access, you can’t modify their
values or reuse their names; however, you can use them at any time without declaring
them.

You should use intrinsic constants whenever possible in your code. Besides making your
code more readable, they make your code more portable to future releases of Microsoft
Access. Microsoft might change the value associated with a constant, but Microsoft isn’t
likely to change the constant’s name. All intrinsic constants appear in the Object Browser;
to activate it, simply click the Object Browser tool on the Visual Basic toolbar. To view the
constants that are part of the Access library, select Access from the Object Browser’s
Project/Library drop-down list. Click Constants in the Classes list box, and a list of those
constants is displayed in the Members Of ‘Constants’ list box (see Figure 8.15).

In the list shown in Figure 8.15, all VBA constants are prefixed with vb, all Data Access
Object constants are prefixed with db, and all constants that are part of the Access
language are prefixed with ac. To view the Visual Basic language constants, select VBA
from the Project/Library drop-down list and Constants from the Classes list box. If the
project you are working with has a reference to the ADO library, you can view these
constants by selecting ADODB from the Project/Library drop-down list. Click <globals>.
A list of the ADODB constants appears. (These constants have the prefix ad.)

Working with the Visual Basic Editor Tools 383

8

FIGURE 8.15 Using the Object Browser to view intrinsic constants.

Another way to view constants is within the context of the parameter you’re working
with in the Code window. Right-click the name of a parameter and select List Constants
to display the constants associated with the parameter.

Working with the Visual Basic Editor Tools
Effectively using the tips and tricks of the trade, many of which are highlighted in this
chapter, can save you hours of time. These tricks help you to navigate around the coding
environment, as well as to modify your code quickly and easily. They include the capabil-
ity to easily zoom to a user-defined procedure, search and replace within modules, get
help on VBA functions and commands, and split the Code window so that two proce-
dures can be viewed simultaneously.

Access 2007 offers a very rich development environment. It includes several features that
make coding easier and more pleasant for you. These features include the capability to do
the following:

. List properties and methods

. List constants

. Get quick information on a command or function

. Get parameter information

. Enable Access to finish a word for you

. Get a definition of a function

All these features that help you with coding are available with a right-click when you
place your cursor within the Module window.

List Properties and Methods
With the List Properties and Methods feature, you can view all the objects, properties, and
methods available for the current object. To invoke this feature, right-click after the name
of the object and select List Properties, Methods. (You can also press Ctrl+J.) The applica-
ble objects, properties, and methods appear in a list box (see Figure 8.16). To find the
appropriate object, property, or method in the list, use one of these methods:

. Begin typing the name of the object, property, or method.

. Use the up- and down-arrow keys to move through the list.

. Scroll through the list and select your choice.

Use one of these methods to insert your selection:

. Double-click the entry.

. Click to select the entry. Then press Tab to insert, or Enter to insert and move to the
next line.

CHAPTER 8 VBA: An Introduction384

FIGURE 8.16 A list of properties and methods for the TextBox object.

TIP

The Auto List Members option, available on the Editor tab of the Options dialog box,
causes the List Properties and Methods feature, as well as the List Constants feature,
to be invoked automatically each time you type the name of an object or property.

List Constants
The List Constants feature, which is part of IntelliSense, opens a drop-down list display-
ing valid constants for a property you have typed and for functions with arguments that
are constants. It works in a similar manner to the List Properties and Methods feature. To
invoke it, right-click after the name of the property or argument (in cases in which multi-
ple arguments are available, the previous argument must be delimited with a comma) and
select List Constants (or press Ctrl+Shift+J). A list of valid constants appears (see Figure
8.17). You can use any of the methods listed in the preceding section to select the
constant you want.

Working with the Visual Basic Editor Tools 385

8

FIGURE 8.17 A list of constants for the vbMsgBoxStyle parameter.

Quick Info
The Quick Info feature gives you the full syntax for a function, statement, procedure,
method, or variable. To use this feature, right-click after the name of the function, state-
ment, procedure, method, or variable, and then select Quick Info (or press Ctrl+I). A tip
appears, showing the valid syntax for the item (see Figure 8.18). As you type each parame-
ter in the item, it’s displayed in boldface type until you type the comma that delineates it
from the next parameter.

TIP

The Auto Quick Info option, available in the Options dialog box, causes the Quick
Info feature to be invoked automatically each time you type the name of an object or
property.

CHAPTER 8 VBA: An Introduction386

FIGURE 8.18 The syntax for the MsgBox function.

Parameter Info
The Parameter Info feature gives you information about the parameters of a function,
statement, or method. To use this feature, after the delimiter that denotes the end of the
function, statement, or method name, right-click and select Parameter Info (or press
Ctrl+Shift+I). A pop-up list appears with information about the parameters of the func-
tion or statement. This list doesn’t close until you enter all the required parameters, you
complete the function without any optional parameters, or you press the Esc key.

NOTE

The Parameter Info feature supplies information about the initial function only. If para-
meters of a function are themselves functions, you must use Quick Info to find
information about the embedded functions.

Complete Word
The Complete Word feature completes a word you’re typing. To use this feature, you must
first type enough characters for Visual Basic to recognize the word you want. Next, right-
click and select Complete Word (or press Ctrl+Spacebar). Visual Basic then finishes the
word you’re typing.

Working with the Visual Basic Editor Tools 387

8

Definition
The Definition feature shows the place in the Code window where the selected variable or
procedure is defined. To get a definition of a variable or procedure, right-click in the
name of the variable or procedure of interest, and select Definition (or press Shift+F2).
Your cursor is moved to the module and location where the variable or procedure was
defined.

As you become more proficient with VBA, you can create libraries of VBA functions and
subroutines. When you’re viewing a call to a particular subroutine or function, you often
want to view the code behind that function. Fortunately, VBA gives you a quick and easy
way to navigate from procedure to procedure. Assume that the following code appears in
your application:

Private Sub cmdOkay_Click()

Dim intAgeInTen As Integer

If IsNull(Me.txtNameValue) Or IsNull(Me.txtAge.Value) Then

MsgBox “You must fill in name and age”

Exit Sub

Else

MsgBox “Your Name Is: “ & Me.txtName.Value & “ _

and Your Age Is: “ & Nz(Me.txtAge.Value)

Call EvaluateAge(Nz(Me.txtAge.Value))

intAgeInTen = AgePlus10(Fix(Val(Me.txtAge.Value)))

MsgBox “In 10 Years You Will Be “ & intAgeInTen

End If

End Sub

If you want to quickly jump to the procedure called EvaluateAge, all you need to do is
place your cursor anywhere within the name, EvaluateAge, and then press Shift+F2. This
procedure immediately moves you to the EvaluateAge procedure. Ctrl+Shift+F2 takes you
back to the routine you came from (in this case, cmdOkay_Click). This procedure works
for both functions and subroutines.

TIP

If you prefer, you can right-click the name of the routine you want to jump to and select
Definition. To return to the original procedure, right-click again and select Last Position.

NOTE

If the definition is in a referenced library, the Object Browser is invoked, and the defini-
tion is displayed.

Mysteries of the Coding Environment Solved
If you’re a developer who’s new to VBA, you might be confused by the VBE. We will begin
by talking about the Code window. The Code window has two combo boxes, shown in
Figure 8.19. The combo box on the left lists objects. For a form or report, the list includes
all its objects; for a standard module, which has no objects, only (General) appears.

CHAPTER 8 VBA: An Introduction388

FIGURE 8.19 The Code window with the Object combo box open.

The combo box on the right lists all the event procedures associated with a particular
object. Figure 8.20 shows all the event procedures associated with a command button.
Notice that the Click event is the only one that appears in bold because it’s the only
event procedure that has been coded.

The Project Window
The Project window, shown in Figure 8.21, enables you to easily maneuver between the
modules behind the objects within your database. The elements of your project are
displayed hierarchically in a tree view within the Project window. All elements of the
project are divided into Microsoft Access Classes and Modules. All Form, Report, and Class
modules are found within the Microsoft Access Classes. All Standard modules are found
within Modules. To view the code behind an object, simply double-click the object within
the Project window. To view the object, such as a form, single-click the name of the form
in the Project window and then click the View Object tool (the second icon from the left
on the Project window toolbar). You are returned to Microsoft Access with the selected
object active.

Working with the Visual Basic Editor Tools 389

8

FIGURE 8.20 The Code window with the Procedure combo box open.

FIGURE 8.21 The Project window showing all the classes and modules contained within the
Chap8Ex project.

NOTE

You can also right-click the object and then select View Code (the left icon on the
Project window toolbar) to view the code or View Object to view the object. The context-
sensitive menu also enables you to insert modules and Class modules, to import and
export files, to print the selected object, and to view the database properties. These
features are covered in Chapter 13.

The Properties Window
The Properties window, pictured in Figure 8.22, enables you to view and modify object
properties from within the VBE. At the top of the Properties window is a combo box that
allows you to select the object whose properties you want to modify. The objects listed in
the combo box include the parent object selected in the Project window (for example,
the form) and the objects contained within the parent object (for example, the controls).
After an object is selected, its properties can be modified within the list of properties.
The properties can be viewed either alphabetically or categorically. In the example, the
command button cmdOK is selected. The properties of the command button are shown
by category.

CHAPTER 8 VBA: An Introduction390

FIGURE 8.22 The Properties window showing the properties of a command button displayed
categorically.

The View Microsoft Access Tool
If at any time you want to return to the Access application environment, simply click the
View Microsoft Access icon (the left icon) on the toolbar. You can then return to the VBE
by using the taskbar or using one of the methods covered earlier in this chapter.

Find and Replace
Often, you name a variable only to decide later that you want to change the name. VBA
comes with an excellent find-and-replace feature to help you with this change. You can
simply search for data, or you can search for a value and replace it with some other value.
To invoke the Find dialog box, shown in Figure 8.23, choose Edit, Find or press Ctrl+F.

Working with the Visual Basic Editor Tools 391

8

FIGURE 8.23 The Find dialog box is set up to search for strMessage in the current module.

Type the text you want to find in the Find What text box. Notice that you can search in
the Current Procedure, Current Module, Current Project, or Selected Text. The option
Find Whole Word Only doesn’t find the text if it’s part of another piece of text. For
example, if you check Find Whole Word Only and then search for Count, VBA doesn’t
find Counter. Other options include toggles for case sensitivity and pattern matching.

You can also use the Replace dialog box to search for text and replace it with another
piece of text (see Figure 8.24). You can invoke this dialog box by selecting Edit, Replace
from the menu or by pressing Ctrl+H (or Alt+E, E). It offers all the features of the Find
dialog box but also enables you to enter Replace With text. In addition, you can select
Replace or Replace All. Replace asks for confirmation before each replacement, but
Replace All replaces text without this prompt. I recommend that you take the time to
confirm each replacement because it’s all too easy to miscalculate the pervasive effects of
a global find-and-replace.

FIGURE 8.24 The Replace dialog box is set to find strMessage and replace it with
strNewMessage in the current project.

Help
A very useful but underutilized feature of VBA is the ability to get context-sensitive help
while coding. With your cursor placed anywhere in a VBA command or function, press
the F1 key to get context-sensitive help on that command or function. Most of the help
topics let you view practical examples of the function or command within code.
Figure 8.25 shows help on the With…End With construct. Notice that the Help window
includes the syntax for the command, a detailed description of each parameter included
in the command, and remarks about using the command. If you scroll down, examples of
the construct appear that you can copy and place into a module (see Figure 8.26). This
feature is a great way to learn about the various parts of the VBA language.

FIGURE 8.26 An example of With…End With.

CHAPTER 8 VBA: An Introduction392

FIGURE 8.25 Help on With…End With.

Working with the Visual Basic Editor Tools 393

8

Splitting the Code Window
You can split the VBA Code window so that you can look at two routines in the same
module at the same time. This option is useful if you’re trying to solve a problem involv-
ing two procedures or event routines in a large module. To split your Code window, as
shown in Figure 8.27, choose Window, Split.

Notice the splitter. Place your mouse cursor on the gray splitter button just above the
Code window’s vertical scrollbar. By clicking and dragging, you can size each half of the
window. The window can be split into only two parts. After you have split it, you can use
the Object and Procedure drop-down lists to navigate to the procedure of your choice.
The drop-down lists will work for either of the two panes of the split window, depending
on which pane was last selected.

NOTE

You can only view routines in the same module in a particular Code window, but
several Code windows can be open at the same time. Each time you open an Access,
Form, or Report module, Access places you in a different window. You can then size,
move, and split each module.

FIGURE 8.27 A split Code window lets you view two routines.

CHAPTER 8 VBA: An Introduction394

Using Bookmarks to Save Your Place
The Access 2007 coding environment enables you to create place markers called book-
marks so that you can easily return to key locations in your modules. To add a bookmark,
right-click on the line of code where you will place the bookmark and choose Toggle,
Bookmark, or choose Bookmarks, Toggle Bookmark from the Edit menu. You can add as
many bookmarks as you like.

To navigate between bookmarks, choose Edit, Bookmarks, Next Bookmark, or Edit,
Bookmarks, Previous Bookmark. A bookmark is a toggle. To remove one, you simply
choose Toggle, Bookmark from the shortcut menu or Bookmarks, Toggle Bookmark from
the Edit menu. If you want to clear all bookmarks, choose Edit, Bookmarks, Clear All
Bookmarks. Bookmarks are not saved when you close the database.

NOTE

Do not confuse the bookmarks discussed in this section with recordset bookmarks.
Recordset bookmarks are covered in Chapter 15.

Customizing the VBE
Access 2007 provides Access programmers with significant opportunity to customize the
look and behavior of the VBE. To view and customize the environment options, choose
Tools, Options with the VBE active. Figure 8.28 shows the Options dialog box; its dif-
ferent aspects are discussed in detail in the following sections.

FIGURE 8.28 The Options dialog box.

Coding Options—The Editor Tab
The coding options available to you are found under the Editor tab of the Options dialog
box. They include Auto Indent, Tab Width, Auto Syntax Check, Require Variable Declar-
ation, Auto List Members, Auto Quick Info, and Auto Data Tips.

The Auto Indent feature invokes the automatic indenting of successive lines of code. This
means that when you indent one line, all other lines are indented to the same position
until you specify otherwise. I recommend that you use this feature.

The Tab Width feature determines the number of characters that Access indents each line.
It’s important that you do not change this number in the middle of a project; otherwise,
different parts of the program will be indented differently.

The Auto Syntax Check feature determines whether Access performs a syntax check each
time you press Enter after typing a single line of code. Many developers find this option
annoying. It’s not uncommon to type a line of code and notice a typo in a previous line
of code. You want to rectify the error before you forget, so you move off the incomplete
line of code you’re typing, only to get an error message that your syntax is incorrect. I
recommend that you turn off this feature.

The Require Variable Declaration option is a must. If this option is turned on, all variables
must be declared before they are used. This important feature, when set, places the Option
Explicit line in the Declarations section of every module you create. You’re then forced
to declare all variables before they’re used. The compiler identifies many innocent typos
at compile time, rather than by your users at runtime. I strongly recommend that you use
this feature.

The Auto List Members option determines whether the List Properties/Methods and List
Constants features are automatically invoked as you type code in the Code window. They
help you in your coding endeavors by presenting a valid list of properties, methods, and
constants. I recommend that you use these features. For more about these features, see
Chapter 9.

The Auto Quick Info feature determines whether the syntax of a procedure or method is
automatically displayed. If this option is selected, the syntax information is displayed as
soon as you type a procedure or method name followed by a space, period, or opening
parenthesis. I recommend that you use this feature.

The Auto Data Tips feature is used when you’re debugging. It displays the current value of
a selected value when you place your mouse pointer over the variable in Break mode. I
recommend that you use this feature. This feature is discussed in Chapter 16.

Code Color, Fonts, and Sizes—The Editor Format Tab
In Access 2007, you can customize code colors, fonts, and sizes within the coding envi-
ronment. You can also specify the foreground and background colors for the Code
window text, selection text, syntax error text, comment text, keyword text, and more.
You can select from any of the Windows fonts and sizes for the text in the Code window.
For a more readable Code window, select the FixedSys font.

General Options—The General Tab
The General tab contains miscellaneous options that affect the behavior of the develop-
ment environment. For example, the Show Grid option determines whether a form grid is
displayed, and the Grid Units are used to designate the granularity of the gridlines. The
other options on this tab are discussed in Chapter 13.

Customizing the VBE 395

8

CHAPTER 8 VBA: An Introduction396

Docking Options—The Docking Tab
The Docking tab enables you to specify whether the windows within the VBE are dock-
able. A window is said to be dockable if you can lock it alongside and dock it to another
window. It is not dockable when you can move it anywhere and leave it there. The
windows you can dock include the Immediate, Locals, Watch, Project, Properties, and
Object Browser windows.

CAUTION

All the customization options that have been discussed apply to the entire Access
environment. This means that, when set, they affect all your databases.

Practical Examples: Using Event Routines,
User-Defined Functions, and Subroutines
The CHAP8.ACCDB database includes two forms: frmClients and frmProjects. The
frmClients form contains two command buttons. The first command button is used
to save changes to the underlying record source (the tblClients table). The code looks
like this:

Private Sub cmdSave_Click()

‘Save changes to the client record

DoCmd.RunCommand acCmdSaveRecord

End Sub

The code, placed under the cmdSave command button on the frmClients form, executes
the RunCommand method of the DoCmd object. The acCmdSaveRecord intrinsic constant,
when used as a parameter to the RunCommand method, causes changes made to the form to
be saved to the underlying data source.

The second command button is used to undo changes made to the current record. The
code looks like this:

Private Sub cmdUndo_Click()

‘Undo changes

DoCmd.RunCommand acCmdUndo

End Sub

This code is found under the cmdUndo button on the frmClients form. It executes the
RunCommand method of the DoCmd object. The acCmdUndo intrinsic constant, when used as a
parameter to the RunCommand method, undoes changes made to the form.

The code originally located under the cmdViewProjects was generated by the command
button wizard (as covered in Chapter 5, “What Every Developer Needs to Know About
Forms”). It looked like this:

Private Sub cmd_Click()

On Error GoTo Err_cmd_Click

Dim stDocName As String

Dim stLinkCriteria As String

stDocName = “frmProjects”

stLinkCriteria = “[ClientID]=” & Me![txtClientID]

DoCmd.OpenForm stDocName, , , stLinkCriteria

Exit_cmd_Click:

Exit Sub

Err_cmd_Click:

MsgBox Err.Description

Resume Exit_cmd_Click

End Sub

The code first declared two variables: one for the name of the form to be opened and the
other to hold the criteria used to open the form. It then assigned a value to the stDocName
variable as well as to the stLinkCriteria variable. Finally, it used the OpenForm method of
the DoCmd object to open the frmProjects form, passing the value in stLinkCriteria as
the WHERE clause for the OpenForm method. This wizard-generated code is inefficient. It
uses variables that are not necessary. More importantly, it is difficult to read. To eliminate
both problems, the code is changed as follows:

Private Sub cmdViewProjects_Click()

On Error GoTo Err_cmdViewProjects_Click

DoCmd.OpenForm FormName:=”frmProjects”, _

WhereCondition:=”[ClientID]=” & Me![txtClientID]

Exit_cmdViewProjects_Click:

Exit Sub

Err_cmdViewProjects_Click:

MsgBox Err.Description

Resume Exit_cmdViewProjects_Click

End Sub

Although the RecordSource appears to be the entire tblProjects table, this is not the
case. The key to the solution is found in the frmProjects form. The code in the Open
event of the frmProjects form looks like this:

Practical Examples: Using Event Routines, User-Defined Functions, and Subroutines 397

8

Private Sub Form_Open(Cancel As Integer)

If Not IsLoaded(“frmClients”) Then

MsgBox “You must load this form from the Projects form”, _

vbCritical, “Warning”

Cancel = True

End If

End Sub

This code first uses a user-defined function called IsLoaded to determine whether the
frmClients form is loaded. (The mechanics of the IsLoaded function are discussed in the
following text.) The function returns True if the frmClients form is loaded, and False if
it is not. If the frmClients form is not loaded, a message is displayed to the user, and the
loading of the frmProjects form is canceled. If the frmClients form is loaded, the
RecordSource property of the frmProjects form is determined by the WHERE clause passed
as part of the OpenForm method. Even in a client/server environment, Access sends only
the appropriate project records over the network wire.

The IsLoaded function looks like this:

Public Function IsLoaded(strFormName As String) As Boolean

Const FORMOPEN = -1

Const FORMCLOSED = 0

If SysCmd(acSysCmdGetObjectState, acForm, strFormName) <> FORMCLOSED Then

IsLoaded = True

Else

IsLoaded = False

End If

‘IsLoaded = SysCmd(acSysCmdGetObjectState, acForm, strFormName)

End Function

The function declares two user-defined constants. These constants are intended to
make the function more readable. The built-in SysCmd function is used to determine
whether the form whose name is received as a parameter is loaded. The SysCmd function,
when passed the intrinsic constant acSysCmdGetObjectState as the first argument and
acForm as the second argument, attempts to determine the state of the form whose name
is passed as the third argument. The IsLoaded function returns True to its caller if the
form is loaded, and False if it is not. An alternative to this function is the following:

Public Function IsLoaded(strFormName As String) As Boolean

IsLoaded = SysCmd(acSysCmdGetObjectState, acForm, strFormName)

End Function

This function is much shorter and more efficient but is less readable. It simply places the
return value from the SysCmd directly into the return value for the function.

CHAPTER 8 VBA: An Introduction398

In addition to the save and undo that are included in the frmClients form, this version
of the frmProjects form contains one other routine. The BeforeUpdate event of the form,
covered in Chapter 10, “Advanced Form Techniques,” executes before the data underlying
the form is updated. The code in the BeforeUpdate event of the frmProjects form looks
like this:

Private Sub Form_BeforeUpdate(Cancel As Integer)

If Me.txtProjectBeginDate.Value > _

Me.txtProjectEndDate.Value Then

MsgBox “Project Start Date Must Precede “ & _

“Project End Date”

Cancel = True

End If

End Sub

This code tests to see whether the project begin date falls after the project end date. If so,
a message is displayed to the user, and the update is canceled.

Summary
A strong knowledge of the VBA language is imperative for the Access developer. This
chapter has covered all the basics of the VBA language. You have learned the differences
between Code, Form, and Report modules and how to effectively use each. You have also
learned the difference between event procedures and user-defined subroutines and func-
tions. To get the most mileage out of your subroutines and functions, you have learned
how to pass parameters to, and receive return values from, procedures.

Variables are used throughout your application code. Declaring each variable with the
proper scope and lifetime helps make your application bulletproof and easy to maintain.
Furthermore, selecting an appropriate variable type ensures that the minimal amount of
memory is consumed and that your application code protects itself. Effectively using
control structures and built-in functions gives you the power, flexibility, and functionality
required by even the most complex of applications. Finally, a strong command of the VBE
is imperative to a successful development experience!

Summary 399

8

This page intentionally left blank

IN THIS CHAPTER

. Why This Chapter Is Important

. Understanding Objects,
Properties, Events, and
Methods

. Using the Object Browser to
Learn About Access’s Objects

. Referring to Objects

. Working with Properties and
Methods

. Declaring and Assigning Object
Variables

. Understanding the Differences
Between Objects and
Collections

. Passing Objects to
Subroutines and Functions

. Determining the Type of a
Control

. Using Special Properties That
Refer to Objects

. Understanding Access’s Object
Model

. Taking Advantage of Additional
Useful Properties

. Practical Examples: Working
with Objects

CHAPTER 9

Objects, Properties,
Methods, and Events

Explained

Why This Chapter Is Important
Objects, properties, methods, and events are at the heart of
all programming that you do within Microsoft Access.
Without a strong foundation in objects, properties,
methods, and events and how you should use them, your
efforts at Access and Visual Basic for Applications (VBA)
programming will fail. This chapter introduces you to
Access’s object model. You will not only become familiar
with Access’s objects, properties, methods, and events and
how to manipulate them, but you will also learn concepts
that will carry throughout the book and throughout your
Access and VBA programming career.

NOTE

Most of the examples in this chapter are included in
the Chap9Ex database located on the sample code
CD-ROM.

Understanding Objects,
Properties, Events, and Methods
Many people, especially those accustomed to a procedural
language, don’t understand the concept of objects, proper-
ties, methods, and events. As mentioned earlier, you need a
thorough knowledge of Access’s objects, their properties,
the methods associated with them, and the events that
each object can respond to if you want to be a productive
and successful Access programmer.

What Exactly Are Objects?
Objects are all the things that make up your database. They include tables, queries, forms,
reports, macros, and modules, as well as the components of those objects. For example, a
Table object contains Field and Index objects. A Form object contains various controls
(text boxes, combo boxes, list boxes, and so on). Each object in the database has specific
properties that determine its appearance or behavior. Each object also has specific
methods, which are actions that it can take.

What Exactly Are Properties?
A property is an attribute of an object, and each object has many properties. Often, differ-
ent types of objects share the same properties; at other times, an object’s properties are
specific to that particular object. Forms, combo boxes, and text boxes all have Width prop-
erties, for example, but a form has a RecordSource property that the combo box and text
box don’t have.

You can set most properties at design time and modify them at runtime; however, you
can’t modify some properties at runtime, and you can’t access others at design time. (You
can only modify them at runtime.) Access’s built-in Help for each property tells you one
of the following:

. You can set this property in the object’s property sheet, a macro, or Visual Basic.

. You can set this property only in Design view.

. You can access this property by using Visual Basic or a macro.

Each of these descriptions indicates when you can modify the property.

As a developer, you set the values of many objects’ properties at design time; the ones you
set at design time are the starting values at runtime. Much of the VBA code you write
modifies the values of these properties at runtime in response to different situations. For
example, suppose that a text box has a Visible property. Let’s take a look at an example.
If a client is paying for something by cash, you might not want the text box for the credit
card number to be visible. If he’s paying by credit card, you might want to set the
Visible property of the text box with the credit card number to True. This is just one of
the many things you can do to modify the value of an object’s property at runtime in
response to an event or action that has occurred.

You might wonder how you can determine all the properties associated with a particular
object (both those that can be modified at design time and those that can be modified at
runtime). Of course, to view the properties that can be set at design time, you can select
the object and then view its property sheet. Viewing all the properties available in Access
2007 is actually quite easy to do; just invoke Help by clicking the Help button (?). Click
Macros and programmability in the Table of Contents, and then click Properties. Your
screen will appear as in Figure 9.1. Scroll down and notice that one of the available prop-
erties is the OnNotInList property. If you click the link, help appears on the OnNotInList

CHAPTER 9 Objects, Properties, Methods, and Events Explained402

property (see Figure 9.2). You can also use the Object Browser to quickly and easily view
all properties associated with an object.

Understanding Objects, Properties, Events, and Methods 403

9

FIGURE 9.1 Viewing properties in the Table of Contents.

FIGURE 9.2 Help on the OnNotInList property.

What Exactly Are Events?
Windows is an event-driven operating system; in other words, the operating system
responds to many events that are triggered by actions that the user takes and by the oper-
ating system itself. Access exposes many of these events through its Object Model. An
event in an Access application is something your application can respond to. Events
include mouse movements, changes to data, a form opening, a record being added, and
much more. Users initiate events, as does your application code. It’s up to you to deter-
mine what happens in response to the events that are occurring. You respond to events
by using macros or VBA code. Each Access object responds to different events. If you want
to find out all the events associated with a particular object, take the following steps:

1. Select the object (for example, a text box).

2. Open the property sheet.

3. Click the Event tab, as shown in Figure 9.3.

4. Scroll through the available list of events.

CHAPTER 9 Objects, Properties, Methods, and Events Explained404

FIGURE 9.3 The list of events associated with a text box.

What Exactly Are Methods?
Methods are actions that an object takes on itself. As with properties and events, different
objects have different methods associated with them. A method is like a function or
subroutine, except that it’s specific to the object it applies to. For example, a form has a
GoToPage method that doesn’t apply to a text box or most other objects.

Using the Object Browser to Learn About
Access’s Objects
The Object Browser is a powerful tool that can help you learn about and work with the
objects that are part of both Access 2007 and the Microsoft Windows environment. The
Object Browser displays information about Microsoft Access and other objects and can
help you with coding by showing you all the properties and methods associated with a
particular object.

Access objects are complex; they have many properties and methods. The Object Browser
helps you to understand and use objects, properties, and methods by doing the following:

. Displaying the types of objects available

. Allowing you to quickly navigate between application procedures

. Displaying the properties and methods associated with a particular object

. Finding and pasting code into your application

How to Use the Object Browser
The Object Browser can easily be invoked from the Visual Basic Editor. You can click the
Object Browser button on the toolbar, press F2, or choose View, Object Browser. The
window shown in Figure 9.4 appears.

Using the Object Browser to Learn About Access’s Objects 405

9

FIGURE 9.4 The Object Browser window with the database object selected.

The Object Browser displays two levels of information about the selected library or data-
base. With the Chap9Ex database open, select Chap9Ex.accdb from the Project/Library
drop-down (the top drop-down), and your screen will look similar to Figure 9.4. The
Classes list box displays all modules, including Form and Report modules, in the database.
The Members Of list box displays any procedures that have been defined in the selected
module. Notice the basUtils module, which is part of the Chap9Ex.accdb database.
Looking at the list box on the right, you can see the procedures (subroutines and func-
tions) included in the basUtils module. You can click to select each Form and Report
module in the list box on the left and view the associated methods and properties in the
list box on the right.

You can use the Project/Library drop-down list to select a different object library
(provided you have set a reference to it). The Classes list box displays the types of objects
available in the selected library or database. Just as with the Access object library, the
Members Of list box displays the methods, properties, and data elements defined for the
selected object (see Figure 9.5). You can even add other libraries to the Library drop-down
list by referring to other type libraries. This method is covered in Chapter 24,
“Automation: Communicating with Other Applications.”

CHAPTER 9 Objects, Properties, Methods, and Events Explained406

FIGURE 9.5 The Object Browser window with the application object selected.

Pasting Code Templates into a Procedure
After you have located the method or property you’re interested in, you have the option
of pasting it into your application. With the method or property selected, simply click the

Copy to Clipboard button in the Object Browser; then paste it in the appropriate module.
If you want to get more information about a particular method or property, click the Help
button in the Object Browser or press F1.

Referring to Objects
Access objects are categorized into collections, which are groupings of objects of the same
type. The Forms collection, for example, is a grouping of all the open forms in a database.
Each form has a Controls collection that includes all the controls on that form. Each
control is an object, and you must refer to an object through the collection to which it
belongs. For example, you refer to a form through the Forms collection. VBA offers three
ways to refer to an object; if you want to refer to the frmProjects form, for example, you
can choose from the following options:

. Forms.frmProjects (or Forms!frmProjects)

. Forms(“frmProjects”)

. Forms(0)

Referring to the form as Forms(0) assumes that frmProjects was the first form opened.
However, you need to understand that although Access assigns an element number as it
loads each form, this element number changes as Access loads and unloads forms at
runtime. For example, the third form that’s loaded can initially be referred to as element
two, but if the second form is unloaded, that third form becomes element one. In other
words, you can’t rely on the element number assigned to a form; that number is a
moving target.

You must refer to a control on a form first through the Forms collection and then through
the specific form. The reference looks like this:

Forms.frmProjects.txtClientID

In this example, Forms is the name of the collection, frmProjects is the name of the
specific form, and txtClientID is the name of a control on the frmProjects form. If this
code is found in the Code module of frmProjects, it could be rewritten like this:

Me.txtClientID

Me refers to the current form or report. It’s generic because the code could be copied to
any form having a txtClientID control, and it would still run properly. Referring to a
control on a report is similar to referring to a control on a form. Here’s an example:

Reports.rptTimeSheet.txtHoursBilled

This example refers to the txtHoursBilled text box on the rptTimeSheet report, part of
the Reports collection. After you know how to refer to an object, you’re ready to write
code that modifies its properties and executes its methods.

Referring to Objects 407

9

Working with Properties and Methods
To modify an object’s properties and execute its methods, you must refer to the object
and then supply an appropriate property or method, as shown in this example:

Forms.frmHello.cmdHello.Visible = False

This line of code refers to the Visible property of cmdHello, found in the frmHello form,
which is in the Forms collection. Notice that you must identify the object name frmHello
as being associated with the Forms collection. If you want to change the Caption property
of frmHello to say “Hello World”, you would use the following code:

Forms.frmHello.Caption = “Hello World”

Telling the Difference Between Properties and Methods
You might be confused about whether you’re looking at an object’s property or method,
but there are a couple of quick ways to tell. You will always use a property in some type of
an expression. For example, you might be setting a property equal to some value:

Forms.frmClients.txtAddress.Visible = False

Here, you’re changing the Visible property of the txtAddress text box on the
frmClients form from True to False. You also might retrieve the value of a property and
place it in a variable:

strFirstName = Forms.frmClients.txtFirstName.Value

You also might use the value of a property in an expression, as in the following example:

MsgBox Forms.frmClients.txtFirstName.Value

The pattern here is that you will always use a property somewhere in an expression. You
can set it equal to something, or something can be set equal to its value, or it’s otherwise
used in an expression.

A method, however, is an action that an object takes on itself. The syntax for a method is
Object.Method. A method isn’t set equal to something; however, you frequently create an
object variable and then set it by invoking a method. A method looks like this:

Forms.frmHello.txtHelloWorld.SetFocus

In this example, the text box called txtHelloWorld executes its SetFocus method.

A method that returns an object variable looks like this:

Dim cbr As CommandBar

Set cbr = CommandBars.Add(“MyNewCommandBar”)

CHAPTER 9 Objects, Properties, Methods, and Events Explained408

In this example, the CommandBars collection’s Add method is used to set the value of the
CommandBar object variable named cbr. For more information, see the section “Declaring
and Assigning Object Variables,” later in this chapter.

Using a Bang Versus a Period
Many people are confused about when to use a bang (!) and when to use a period. You
can use a bang whenever you’re separating an object from its collection, as shown in
these two examples:

Forms!frmClients

Forms!frmClients!txtClientID

In the first example, frmClients is part of the Forms collection. In the second example,
txtClientID is part of the Controls collection of the frmClients form.

In most cases, you can also use a period to separate an object from its collection. The
reason is that the expression Me!txtClientID is actually a shortcut to the complete refer-
ence Me.Controls!txtClientID. Because Controls is the default collection for a form,
you can omit Controls from the statement. You can abbreviate the expression to
Me.txtClientID. The advantage of using the period over the bang is that the period
provides you with IntelliSense. To test this, create a form and add a control called
txtFirstName. Go to the code behind the form, and try typing Me!. Notice that
IntelliSense is not invoked. Next, type Me. and watch as IntelliSense is invoked.
IntelliSense facilitates the development process by providing a list box containing valid
properties, methods, constants, and so on, as appropriate.

NOTE

IntelliSense is a tool that helps you when writing programming code. It provides you
with auto-completion when writing your programming code.

In addition to separating an object from its collection, the period is also used to separate
an object from a property or method. The code looks like this:

Forms.frmClients.RecordSource = “tblClients”

Forms.frmClients.txtClientID.Visible = False

The first example sets the RecordSource property of frmClients to tblClients, and the
second example sets the Visible property of the txtClientID on the frmClients form to
False.

Working with Properties and Methods 409

9

Default Properties
Each object has a default property, and if you’re working with an object’s default property,
you don’t have to explicitly refer to it in code. Take a look at the following two code
samples:

Forms.frmHello.txtHello.Value = “Hello World”

Forms.frmHello.txtHello = “Hello World”

The Value property is the default property of a text box, so you don’t need to explicitly
refer to it in code. However, I prefer to explicitly state the property; it is a practice that
contributes to the code’s readability and keeps novice Access programmers who work with
my code from having to guess which property I’m changing.

Declaring and Assigning Object Variables
Object variables are variables that reference an object of a specific type, such as databases,
recordsets, forms, controls, and even objects created in other applications. They allow you
to create shortcut references to objects and pass objects to subroutines and functions. You
can use them to streamline code by using short names to refer to objects with long names
and to optimize code by supplying a direct pointer to a particular object.

First, you must declare an object variable; then you assign—or point—the object variable
to a particular object, as shown in the following code:

Private Sub cmdChangeCaption_Click()

‘Declare a CommandButton object

Dim cmdAny As CommandButton

‘Point the CommandButton object at the cmdHello Command button

Set cmdAny = Me.cmdHello

‘Change the Caption of the control referenced by the cmdAny variable

cmdAny.Caption = “Hello”

End Sub

This code creates an object variable called cmdAny of the type CommandButton. You then
use the Set statement to point your CommandButton object variable toward the cmdHello
object on the current form, using the Me keyword. Finally, you modify the caption of the
cmdAny object variable. Because an object variable is a reference to the original object,
you’re actually changing the caption of the cmdHello command button.

Object Variables Versus Regular Variables
The difference between object variables and regular variables is illustrated by the follow-
ing code:

Dim intVar1 As Integer

Dim intVar2 As Integer

CHAPTER 9 Objects, Properties, Methods, and Events Explained410

intVar1 = 5

intVar2 = intVar1

intVar1 = 10

Debug.Print intVar1 ‘Prints 10

Debug.Print intVar2 ‘Prints 5

This code uses ordinary variables. When you dimension these variables, each one is
assigned a separate memory location. Although intVar2 is initially assigned the value of
intVar1, changing the value of intVar1 has no effect on intVar2. This differs from the
following code, which uses an object variable:

Private Sub Command5_Click()

Dim ctlText As TextBox

Set ctlText = Forms.frmSales.txtProductID

ctlText.Text = “New Text”

Debug.Print Forms.frmSales.txtProductID.Text ‘Prints New Text

End Sub

This routine creates an object variable called ctlText of type TextBox. It then associates
the object variable with Forms.frmSales.txtProductID. Next, it modifies the Text prop-
erty of the object variable. Because the object variable is actually pointing to the text box
on the form, the Debug.Print statement prints the new text value.

Generic Versus Specific Object Variables
Access supports the use of generic object variables, including Application, Control, Form,
and Report. Generic object variables can be used to refer to any object of that generic
type:

Private Sub ChangeVisible_Click()

Dim ctlAny As Control

Set ctlAny = Me.txtCustomerID

ctlAny.Visible = False

End Sub

In this example, ctlAny can be used to point to any control. Compare that to the follow-
ing code:

Private Sub cmdChangeVisible_Click()

Dim txtAny As TextBox

Set txtAny = Me.txtCustomerID

txtAny.Visible = False

End Sub

Here, your object variable can be used only to point to a text box.

Declaring and Assigning Object Variables 411

9

Cleaning Up After Yourself
When you’re finished working with an object variable, you should set its value to
Nothing. As used in the following example, this statement frees up all memory and
system resources associated with the object:

Set frmNew = Nothing

Understanding the Differences Between Objects
and Collections
Many people get confused about the differences between an object and a collection.
Think of an object as a member of a collection. For example, frmHello is a form that’s a
member of the Forms collection; cmdHello, a command button on frmHello, is a member
of the Controls collection of frmHello. Sometimes you want to manipulate a specific
object, but other times you want to manipulate a collection of objects.

Manipulating a Single Object
You have already learned quite a bit about manipulating a single object, such as setting
the Enabled property of a text box:

Me.txtCustomerID.Enabled = False

This line of code affects only one text box and only one of its properties. However, when
you’re manipulating a single object, you might want to affect several properties at the
same time. In that case, it’s most efficient to use the With...End With construct,
explained in the following section.

One method you can use to modify several properties of an object is to modify the value
of each property, one at a time:

Me.txtCustomerID.Enabled = False

Me.txtCustomerID.SpecialEffect = 1

Me.txtCustomerID.FontSize = 16

Me.txtCustomerID.FontWeight = 700

Contrast this with the following code:

With Me.txtCustomerID

.Enabled = False

.SpecialEffect = 1

.FontSize = 16

.FontWeight = 700

End With

This code uses the With...End With statement to assign multiple properties to an object.
In addition to improving the readability of your code, the With...End With construct
results in a slight increase in performance.

CHAPTER 9 Objects, Properties, Methods, and Events Explained412

Manipulating a Collection of Objects
A collection is like an array of objects. What makes the array special is that it’s defined and
maintained by Access. Every collection in Microsoft Access is an object, each with its own
properties and methods. The VBA language makes it easy for you to manipulate Access’s
collections of objects; you simply use the For Each…Next construct, which performs the
same command on multiple objects.

In the “Determining the Type of a Control” section later in this chapter, you learn how to
loop through the collection of controls on a form, performing actions on all the com-
mand buttons. This illustrates a practical use of a collection. In the following example,
you loop through all the open forms, changing the caption of each form:

Sub FormCaptions()

Dim frm As Form

For Each frm In Forms

frm.Caption = frm.Caption & “ - “ & CurrentUser

Next frm

End Sub

This routine uses the For Each…Next construct to loop through each form in the Forms
collection, setting the caption of each form to the form’s caption concatenated with the
current username. As you travel through the loop, the code frm.Caption refers to each
member of the Forms collection.

Passing Objects to Subroutines and Functions
Just as you can pass a string or a number to a subroutine or function, you can also pass an
object to a subroutine or function. The code, found in the basExamples module in the
Chap9Ex database, looks like this:

Sub ChangeCaption(frmAny as Form)

‘Change the caption property of the form received

‘to what was already in the caption property,

‘concatenated with a colon and the name of the current user

frmAny.Caption = frmAny.Caption & “: “ & CurrentUser

End Sub

The ChangeCaption routine receives a reference to a form as a parameter. The caption of
the form referenced by the procedure is modified to include the name of the current
user. The ChangeCaption routine is called like this:

Private Sub cmdChangeCaption_Click()

‘Call the ChangeCaption routine, passing a reference to the current form

Call ChangeCaption(Me)

End Sub

Passing Objects to Subroutines and Functions 413

9

In this example, the click event of the cmdChangeCaption command button calls the
ChangeCaption routine, sending a reference to the form that the command button is
contained within. You will find this code in the frmChangeCaption form.

Determining the Type of a Control
When writing generic code, you might need to determine the type of a control. For
example, you might want to loop through all the controls on a form and flip the Enabled
property of all the command buttons. To do this, use the ControlType property of a
control. Here’s an example of how it’s used. (You can find this in Chap9Ex.accdb in the
module called basExamples.)

Sub FlipEnabled(frmAny As Form, ctlAny As Control)

‘Declare a control object variable

Dim ctl As Control

‘Loop through the Controls collection using the For..Each Construct

ctlAny.Enabled = True

ctlAny.SetFocus

For Each ctl In frmAny.Controls

‘Evaluate the type of the control

If ctl.ControlType = acCommandButton Then

‘Make sure that we don’t try to disable the command button _

that invoked this routine

If ctl.Name <> ctlAny.Name Then

ctl.Enabled = Not ctl.Enabled

End If

End If

Next ctl

End Sub

The FlipEnabled procedure is called from the frmTypeOf form. Each command button on
the form (Add, Edit, Delete, and so on) sends the form and the name of a control to the
FlipEnabled routine. The control that it sends is the one that you want to receive the
focus after the routine executes. In the example that follows, the code sends the cmdSave
command button to the FlipEnabled routine. The FlipEnabled routine sets focus to the
Save button:

Private Sub cmdAdd_Click()

‘Call the FlipEnabled routine, passing references to the current form,

‘and to the cmdSave command button on the current form

Call FlipEnabled(Me, Me.cmdSave)

End Sub

The FlipEnabled routine receives the form and control as parameters. It begins by
enabling the command button that was passed to it and setting focus to it. The
FlipEnabled routine then uses the VBA construct For...Each to loop through all the

CHAPTER 9 Objects, Properties, Methods, and Events Explained414

controls on a form. The For...Each construct repeats a group of statements for each
object in an array or collection—in this case, the Controls collection. The code evaluates
each control on the form to determine whether it’s a command button. If it is, and it
isn’t the command button that was passed to the routine, the routine flips the control’s
Enabled property. The following VBA intrinsic controls are used when evaluating the
ControlType property of a control:

Intrinsic Constant Type of Control

acLabel Label

acRectangle Rectangle

acLine Line

acImage Image

acCommandButton Command button

acOptionButton Option button

acCheckBox Check box

acOptionGroup Option group

acBoundObjectFrame Bound object frame

acTextBox Text box

acListBox List box

acComboBox Combo box

acSubform Subform/subreport

acObjectFrame Unbound object frame or chart

acPageBreak Page break

acPage Page

acCustomControl ActiveX (custom) control

acToggleButton Toggle button

acTabCtl Tab

Using Special Properties That Refer to Objects
VBA offers the convenience of performing actions on the active control, the active form,
and other specially recognized objects. The following is a list of special properties that
refer to objects in the Access Object Model:

. The ActiveControl property refers to the control that has focus on a screen object,
form, or report.

. The ActiveForm property refers to the form that has focus.

. The ActiveReport property refers to the report that has focus.

Using Special Properties That Refer to Objects 415

9

. The Form property refers to the form that a subform is contained in or to the
form itself.

. Me refers to the form or report where code is currently executing.

. Module refers to the module of a form or report.

. The Parent property refers to the form, report, or control that contains a control.

. PreviousControl refers to the control that had focus immediately before the
ActiveControl.

. RecordsetClone refers to a clone of the form’s underlying recordset.

. The Report property refers to the report that a subform is contained in or to the
report itself.

. The Section property refers to the section in a form or report where a particular
control is located.

The following example using the Screen.ActiveForm property shows how a subroutine
can change the caption of the active form:

Sub ChangeCaption()

Screen.ActiveForm.Caption = Screen.ActiveForm.Caption & _

“ - “ & CurrentUser()

End Sub

This subroutine modifies the caption of the active form, appending the value of the
CurrentUser property onto the end of the existing caption.

Understanding Access’s Object Model
Now that I’ve discussed the concept of objects, properties, methods, and events in a
general sense, I’m going to switch the discussion to the objects that are natively part of
Microsoft Access. Databases are composed of objects, such as the tables, queries, forms,
reports, macros, and modules that appear in the Navigation Pane. They also include the
controls (text boxes, list boxes, and so on) on a form or report. The key to successful
programming lies in your ability to manipulate the database objects using VBA code at
runtime. It’s also very useful to be able to add, modify, and remove application objects at
runtime.

The Application Object
At the top of the Access Object Model, you will find the Application object, which refers
to the active Access application. It contains all of Access’s other objects and collections,
including the Forms collection, the Reports collection, the DataAccessPages collection,
the Modules collection, the CurrentData object, the CurrentProject object, the
CodeProject object, the CodeData object, the Screen object, and the DoCmd object. You

CHAPTER 9 Objects, Properties, Methods, and Events Explained416

can use the Application object to modify the properties of, or execute commands on, the
Access application itself, such as specifying whether Access’s built-in toolbars are available
while the application is running.

Application Object Properties
The Application object has a rich list of properties. An important property introduced
with Access 2002 is the BrokenReference property. You use this property to determine
whether any broken references exist within the current project. The property is equal to
True if broken references exist, and False if no broken references are identified. The prop-
erty eliminates the need to iterate through each reference, determining whether any refer-
ences are broken. The following code returns the value of the BrokenReference property:

Public Function IdentifyBrokenReference() As Boolean

‘Return whether or not broken references are identified

‘within the current project

IdentifyBrokenReference = Application.BrokenReference

End Function

Application Object Methods
Just as the Application object has a rich list of properties, it also has a rich list of
methods. Another important method introduced with Access 2002 is the CompactRepair
method, which allows you to programmatically compact and repair a database, without
declaring ActiveX Data Objects (ADO) objects. The code looks like this:

Sub CompactRepairDB()

Dim strFilePath As String

‘Store path of current database in a variable

strFilePath = CurrentProject.Path

‘If destination database exists, delete it

If Len(Dir(strFilePath & “\Chap8Small.mdb”)) Then

Kill strFilePath & “\Chap8Small.mdb”

End If

‘Use the CompactRepair method of the Application object

‘to compact and repair the database

Application.CompactRepair strFilePath & “\Chap9Big.accdb”, _

strFilePath & “\Chap9Small.accdb”, True

End Sub

This code uses the Path property of the CurrentProject object to extract the path of
the current project and place it into a string variable. Covered later in this chapter, the
CurrentProject object returns a reference to the current database project. The code uses

Understanding Access’s Object Model 417

9

the Dir function to evaluate whether the database called Chap9Small.accdb exists. If it
does, the code uses the Kill command to delete the file. Finally, the code uses the
CompactRepair method to compact the Chap9Big.accdb file into Chap9Small.accdb.

Another important method introduced with Access 2002 is the ConvertAccessProject
method. This method allows you to programmatically convert an Access database from
one version of Access to another. Here’s an example:

Sub ConvertAccessDatabase()

Dim strFilePath As String

‘Store current file path into variable

strFilePath = CurrentProject.Path

‘Delete destination database if it exists

If Len(Dir(strFilePath & “\Chap9V2007.accdb”)) Then

Kill strFilePath & “\Chap9V2007.accdb”

End If

‘Convert source database to Access 2007 file format

Application.ConvertAccessProject strFilePath & “\Chap9Ex.mdb”, _

strFilePath & “\Chap9V2007.accdb”, _

DestinationFileFormat:=acFileFormatAccess2007

End Sub

This code first places the path associated with the current project into a variable called
strFilePath. Next, it determines whether a file called Chap9V2007.mdb exists. If such a file
does exist, it deletes the file. Finally, the code uses the ConvertAccessProject method of
the Application object to convert an Access 2003 database called Chap9Ex.mdb to the
Access 2007 file format. The destination file is called Chap9V2007.accdb. Different
constants are used for the DestinationFileFormat parameter to designate conversion of
the source file to different versions of Access.

The Forms Collection
The Forms collection contains all the currently open forms in the database. Using the
Forms collection, you can perform an action, such as changing the color, on each open
form.

NOTE

The Forms collection isn’t the same as the list of all forms in the database; that list is
part of the CurrentProject object discussed later in this chapter.

The code that follows iterates through the Forms collection, printing the name of each
form. It is found in the basApplicationObject module within the Chap9Ex database.
It begins by establishing a form object variable. It then uses the For Each…Next construct

CHAPTER 9 Objects, Properties, Methods, and Events Explained418

to loop through each form in the Forms collection (the collection of open forms), printing
its name. Before running the code, open a few forms. Run the code and then take a look
in the Immediate window. Close a couple of the forms and rerun the code. The list of
forms displayed in the Immediate window should change.

Sub IterateOpenForms()
‘Declare a form object variable
Dim frm As Form
‘Use the form object variable to point at each form in the Forms collection
For Each frm In Forms

‘Print the name of the referenced form to the Immediate window
Debug.Print frm.Name

Next frm
End Sub

NOTE

The Immediate window and its uses are covered in Chapter 16, “Debugging: Your Key
to Successful Development.” You can easily invoke it using the Ctrl+G keystroke
combination.

NOTE

Notice that you do not need to refer to Application.Forms. The reason is that the
Application object is always assumed when writing VBA code within Access.

The Reports Collection
Just as the Forms collection contains all the currently open forms, the Reports collection
contains all the currently open reports. Using the Reports collection, you can perform an
action on each open report.

The code that follows iterates through the Reports collection, printing the name of each
open report. It is found in basApplicationObject. It begins by establishing a report object
variable. It then uses the For Each…Next construct to loop through each report in the
Reports collection (the collection of reports open in print preview), printing its name.

Sub IterateOpenReports()
‘Declare a report object variable
Dim rpt As Report
‘Use the report object variable to point at each report in the Reports

collection
For Each rpt In Reports

‘Print the name of the referenced report to the Immediate window
Debug.Print rpt.Name

Next rpt
End Sub

Understanding Access’s Object Model 419

9

The Modules Collection
The Modules collection contains all the standard and class modules that are open. All
open modules are included in the Modules collection, regardless of whether they’re
compiled and whether they contain code that’s currently running.

The CurrentProject Object
The CurrentProject object returns a reference to the current project. The CurrentProject
object contains properties such as Name, Path, and Connection. It contains the following
collections: AllDataAccessPages, AllForms, AllMacros, AllModules, and AllReports.
You can use these collections to iterate through all the data access pages, forms, macros,
modules, and reports stored in the database. These collections differ from the
DataAccessPages, Forms, Macros, Modules, and Reports collections in that they refer
to all objects stored in the current project, rather than to just the open objects.

The following code retrieves the Name and Path properties of the current project. It uses
the With...End With construct to retrieve the properties of the CurrentProject object:

Sub CurrentProjectObject()

With CurrentProject

Debug.Print .Name

Debug.Print .Path

End With

End Sub

The AllForms Collection
As previously mentioned, the CurrentProject object contains collections that refer to the
various objects in your database. The following code iterates through the AllForms collec-
tion of the CurrentProject, printing the name of each form:

Sub IterateAllForms()

Dim vnt As Variant

‘Loop through each form in the current project,

‘printing the name of each form to the Immediate window

With CurrentProject

For Each vnt In .AllForms

Debug.Print vnt.Name

Next vnt

End With

End Sub

NOTE

You might easily confuse the AllForms collection of the CurrentProject object with
the Forms collection. The AllForms collection of the CurrentProject object
comprises all the saved forms that are part of the database; the Forms collection

CHAPTER 9 Objects, Properties, Methods, and Events Explained420

comprises only the forms currently running in memory. If you want to see a list of all
the forms that make up a database, you must use the AllForms collection of the
CurrentProject object. However, if you want to change the caption of all the open
forms, you must use the Forms collection.

The AllReports Collection
The AllReports collection allows you to loop through all reports in the current project.
The example that follows prints the name of each report stored in the database referenced
by the CurrentProject object:

Sub IterateAllReports()

‘Declare iteration variable

Dim vnt As Variant

‘Loop through each report in the current project,

‘printing the name of each report to the Immediate window

With CurrentProject

For Each vnt In .AllReports

Debug.Print vnt.Name

Next vnt

End With

End Sub

The AllMacros Collection
The AllMacros collection allows you to iterate through all macros stored in the current
project. The example that follows prints the name of each macro stored in the database
referenced by the CurrentProject object:

Sub IterateAllMacros()

‘Declare iteration variable

Dim vnt As Variant

‘Loop through each macro in the current project,

‘printing the name of each macro to the Immediate window

With CurrentProject

For Each vnt In .AllMacros

Debug.Print vnt.Name

Next vnt

End With

End Sub

The AllModules Collection
The AllModules collection is another collection associated with the CurrentProject
object. The code that follows iterates through all modules located in the database refer-
enced by the CurrentProject object. The name of each module is printed to the
Immediate window.

Understanding Access’s Object Model 421

9

Sub IterateAllModules()

‘Declare iteration variable

Dim vnt As Variant

‘Loop through each module in the current project,

‘printing the name of each module to the Immediate window

With CurrentProject

For Each vnt In .AllModules

Debug.Print vnt.Name

Next vnt

End With

End Sub

The CurrentData Object
Whereas you use the CurrentProject object to access and manipulate the application
components of your database, you use the CurrentData object to reference the
data elements of the database. The CurrentData object contains six collections:
AllDatabaseDiagrams, AllQueries, AllStoredProcedures, AllTables, AllViews, and
AllFunctions. You use these collections to iterate through and manipulate all the data-
base diagrams, queries, stored procedures, views, and functions stored in the database.
The sections that follow cover the AllTables and AllQueries collections. The
AllDatabaseDiagrams, AllStoredProcedures, AllViews, and AllFunctions collections
are available only in Access Data Projects and are discussed in detail in Alison Balter’s
Mastering Access 2002 Enterprise Development.

The AllTables Collection
The AllTables collection is used to iterate through all tables in the database referenced by
the CurrentData object, as shown in the following code. It prints the name of each table
in the database.

Sub IterateAllTables()

‘Declare looping variable

Dim vnt As Variant

‘Loop through each table in the database

‘referenced by the CurrentData object

With CurrentData

For Each vnt In .AllTables

‘Print the name of the table

Debug.Print vnt.Name

Next vnt

End With

End Sub

CHAPTER 9 Objects, Properties, Methods, and Events Explained422

The AllQueries Collection
You use the AllQueries collection to iterate through all queries located in the database
referenced by the CurrentData object. The following example loops through all queries in
the database referenced by the CurrentData object. The name of each query is printed to
the Immediate window.

Sub IterateAllQueries()

‘Declare looping variable

Dim vnt As Variant

‘Loop through each query in the database

‘referenced by the CurrentData object

With CurrentData

For Each vnt In .AllQueries

‘Print the name of the table

Debug.Print vnt.Name

Next vnt

End With

End Sub

The CodeProject Object
You use the CodeProject object when your database implements code libraries. It is
similar to the CurrentProject object but is used to reference the properties and collec-
tions stored within the library database. Chapter 26, “Creating Your Own Libraries,”
covers library databases.

The CodeData Object
Just as the CodeProject object is used to reference the application objects stored within a
library database, the CodeData object is used to reference the data elements of a code
library. These elements include the database diagrams, queries, stored procedures, tables,
views, and functions stored within the library.

The Screen Object
You can use the Screen object to refer to the form, datasheet, report, data access page, or
control that has the focus. The Screen object contains properties that refer to the active
form, active report, active control, and previous control. Using these properties, you can
manipulate the currently active form, report, or control, as well as the control that was
active just before the current control. If you try to refer to the Screen object when no
form or report is active, a runtime error occurs.

The DoCmd Object
The DoCmd object is used to perform macro commands or Access actions from VBA code;
it’s followed by a period and the name of an action. Most of the DoCmd actions—the

Understanding Access’s Object Model 423

9

OpenQuery action, for example—also require arguments. The OpenQuery action is used to
execute an Access query. It receives the following arguments:

. Query Name—The name of the query you want to execute

. View—Datasheet, Design, or Print preview

. Data Mode—Add, edit, or read-only

Here’s an example of the OpenQuery action of the DoCmd object:

DoCmd.OpenQuery “qryCustomers”, acViewNormal, acReadOnly

The OpenQuery action is performed by the DoCmd object. The first argument, the query
name, is “qryCustomers”. This is the name of the query that’s opened in Datasheet view
(rather than Design view or Print preview). It’s opened in read-only mode, meaning the
resulting data can’t be modified.

Taking Advantage of Additional Useful Properties
In addition to the properties already discussed, two other properties are worth mention-
ing. They are the DateCreated and DateModified properties. They are available for all
Access objects. Here’s an example that shows the use of these properties with the
AllTables collection:

Public Sub GetDates()

‘Declare looping variable

Dim vnt As Variant

‘Loop through each table in the database

‘referenced by the CurrentData object

With CurrentData

For Each vnt In .AllTables

‘Print the name, date created, and the date

‘the table was last modified

Debug.Print vnt.Name & “, “ & _

vnt.DateCreated & “, “ & _

vnt.DateModified

Next vnt

End With

End Sub

This code loops through each table stored in the database referenced by the CurrentData
object. The name, creation date, and last modification data are all printed to the Immediate
window.

CHAPTER 9 Objects, Properties, Methods, and Events Explained424

Practical Examples: Working with Objects
Most applications use objects throughout. The example that follows applies the technique
you learned to enable and disable command buttons in response to the user making
changes to the data on the frmClients form, located in Chap9Ex.mdb on the sample
code CD-ROM.

Enabling and Disabling Command Buttons
When a user is in the middle of modifying form data, there’s really no need for her to use
other parts of the application. It makes sense to disable other features until the user has
opted to save the changes to the Client data. The clean form begins with the View
Projects command button enabled and the Save and Cancel buttons disabled. The
KeyPreview property of the form is set to Yes so that the form previews all keystrokes
before the individual controls process them. In the example, the KeyDown event of the
form is used to respond to the user “dirtying” the form. It executes whenever the user
types ANSI characters while the form has the focus. The KeyDown event of the form
(discussed in detail in Chapter 10, “Advanced Form Techniques”) looks like this:

Private Sub Form_KeyDown(KeyCode As Integer, Shift As Integer)

‘If the Save command button is not already enabled

If Not cmdSave.Enabled Then

‘If a relevant key was pressed

If ImportantKey(KeyCode, Shift) Then

‘Flip the command buttons on the form,

‘setting focus to the active control

Call FlipEnabled(Me, Screen.ActiveControl)

‘Disable the cboSelectClient combo box

Me.cboSelectClient.Enabled = False

End If

‘If the Save button is already enabled (form is dirty)

‘ignore the PageUp and PageDown keys

Else

If KeyCode = vbKeyPageDown Or _

KeyCode = vbKeyPageUp Then

KeyCode = 0

End If

End If

End Sub

Practical Examples: Working with Objects 425

9

The KeyDown event automatically receives the code of the key that was pressed, whether
Shift, Alt, or Ctrl was pressed along with that key. The event routine checks to determine
whether the Save button is already enabled. If it is, there’s no reason to continue; the
Enabled property of the command buttons has already been flipped. If Save isn’t already
enabled, the ImportantKey function (discussed in detail later) is called. It receives the key
that was pressed, despite whether Shift, Alt, or Ctrl was used.

The ImportantKey evaluates the key that was pressed to determine whether a keystroke
is modifying the data. If it is, the function returns True. Otherwise, it returns False. If
ImportantKey returns True, the FlipEnabled routine is executed. FlipEnabled flips the
enabled property of the command buttons on the form so that Save and Cancel are
enabled, and View Projects is disabled.

If the value returned from the ImportantKey function is True, the enabled property
cboSelectClient combo is set to False. If you fail to prevent movement to other records
while the form is dirty, Access automatically saves the user’s changes when the user navi-
gates to another record. Furthermore, the enabled state of the command buttons still
reflects a dirty state of the form.

Finally, if Save is already enabled, you know that the form is in a dirty state. If that is the
case, it is not appropriate for the user to be able to move to another record using the
PageUp and PageDown keys. If the cmdSave command button is enabled, and the key
pressed is PageUp or PageDown, the keystroke is ignored.

Now that you understand the role of the KeyDown event of the form, take a look at the
functions that underlie its functionality. The ImportantKey function looks like this:

Function ImportantKey(KeyCode, Shift)
‘Set return value to false
ImportantKey = False

‘If Alt key was pressed, exit function
If Shift = acAltMask Then

Exit Function
End If

‘If Delete, Backspace, or a typeable character was pressed
If KeyCode = vbKeyDelete Or KeyCode = vbKeyBack Or (KeyCode > 31 _

And KeyCode < 256) Then
‘If the typeable character was NOT a right, left, up,
‘or down arrow, page up, or page down, return True
If KeyCode = vbKeyRight Or KeyCode = vbKeyLeft Or _

KeyCode = vbKeyUp Or KeyCode = vbKeyDown Or _
KeyCode = vbKeyPageUp Or KeyCode = vbKeyPageDown Then

Else
ImportantKey = True

End If
End If

End Function

CHAPTER 9 Objects, Properties, Methods, and Events Explained426

This generic function, found in basUtils, sets its default return value to False. It tests to
see whether the user pressed the Alt key. If so, the user was accessing a menu or accelera-
tor key, which means that there’s no reason to flip the command buttons. The function is
exited. If the user didn’t press the Alt key, the key that was pressed is evaluated. If the
Delete key, Backspace key, or any key with an ANSI value between 31 and 256 was pressed
(excluding the left-, right-, up-, and down-arrow keys, and PageUp or PageDown), True is
returned from this function. The KeyDown event of the form then calls the FlipEnabled
routine. It looks like this:

Sub FlipEnabled(frmAny As Form, ctlAny As Control)

‘Declare a control object variable

Dim ctl As Control

‘If the type of control received as a parameter

‘is a command button, enable it and set focus to it

ctlAny.Enabled = True

ctlAny.SetFocus

‘Loop through each control in the controls collection

‘of the form that was received as a parameter

For Each ctl In frmAny.Controls

‘If the type of the control is a command button

‘and the name of the control does not match the

‘name of the control received as a parameter

‘flip the enabled property of the control

If ctl.ControlType = acCommandButton Then

If ctl.Name <> ctlAny.Name Then

ctl.Enabled = Not ctl.Enabled

End If

End If

Next ctl

End Sub

This generic routine, also found in basUtils, flips the Enabled property of every command
button in the form, except the one that was passed to the routine as the second parameter.
The FlipEnabled routine receives a form and a control as parameters. It begins by creating
a control object variable; then it enables the control that was passed as a parameter and
sets focus to it. The routine then loops through every control on the form that was passed
to it. It tests to see whether each control is a command button. If it finds a command
button, and the name of the command button isn’t the same as the name of the control
that was passed to it, it flips the Enabled property of the command button. The idea is this:
When the user clicks Save, you can’t immediately disable the Save button because it still
has focus. You must first enable a selected control (the one that was passed to the routine)
and set focus to the enabled control. After the control is enabled, you don’t want to disable
it again, so you need to eliminate it from the processing loop.

Practical Examples: Working with Objects 427

9

Remember that as long as the cmdSave command button is enabled, the PageUp and
PageDown keys are ignored. This is an important step because it is imperative that the
user not be able to move from record to record while editing the form data.

You need a way to flip the command buttons back the other way when editing is
complete. The Click event of the Save button contains the following code:

Private Sub cmdSave_Click()

‘Save changes to the client record

DoCmd.RunCommand acCmdSaveRecord

‘Enable client selection combo

Me.cboSelectClient.Enabled = True

‘Call routine to disable save and cancel and

‘enable view projects

Call FlipEnabled(Me, Me.cboSelectClient)

End Sub

This code saves the current record and enables the cboSelectClient control. It then calls
the FlipEnabled routine, passing a reference to the cboSelectClient control as a parame-
ter. The FlipEnabled routine flips the command buttons back to their original state.

The form contains a cancel command button with a similar routine. It looks like this:

Private Sub cmdUndo_Click()

‘Undo changes

DoCmd.RunCommand acCmdUndo

‘Enable client selection combo

Me.cboSelectClient.Enabled = True

‘Call routine to disable save and cancel and

‘enable view projects

Call FlipEnabled(Me, Me.cboSelectClient)

End Sub

This code undoes changes to the current record. It enables the cboSelectClient control
and calls the FlipEnabled routine to once again disable Save and Cancel and enable View
Projects.

CHAPTER 9 Objects, Properties, Methods, and Events Explained428

Summary
The ability to successfully work with objects and understand their properties, methods,
and events is fundamental to your success as an Access programmer. In this chapter, you
learned about various objects, properties, methods, and events. You learned how to set
properties at design time and change their values in response to events that occur at
runtime. You also learned how to pass forms and other objects to subroutines and func-
tions to make the VBA language extremely robust and flexible.

Summary 429

9

This page intentionally left blank

IN THIS CHAPTER

. Why This Chapter Is Important

. What Are the Form Events, and
When Do You Use Them?

. What Are the Section and
Control Events, and When Do
You Use Them?

. Referring to Me

. What Types of Forms Can I
Create, and When Are They
Appropriate?

. Using Built-In Dialog Boxes

. Taking Advantage of Built-In,
Form-Filtering Features

. Including Objects from Other
Applications: Linking Versus
Embedding

. Using OpenArgs

. Switching a Form’s
RecordSource

. Learning Power Combo Box
and List Box Techniques

. Learning Power Subform
Techniques

. Using Automatic Error
Checking

. Viewing Object Dependencies

. Using AutoCorrect Options

. Propagating Field Properties

. Synchronizing a Form with Its
Underlying Recordset

. Creating Custom Properties
and Methods

. Practical Examples: Applying
Advanced Techniques to Your
Application

CHAPTER 10

Advanced Form
Techniques

Why This Chapter Is Important
Given Access’s graphical environment, your development
efforts are often centered on forms. Therefore, you must
understand all the Form and Control events and know
which event you should code to perform each task. You
should also know what types of forms are available and
how you can get the look and behavior you want in them.

Often, you won’t need to design your own form because
you can make use of one of the built-in dialog boxes that
are part of the Visual Basic for Applications (VBA) language.
Whatever types of forms you create, you should take
advantage of all the tricks and tips of the trade covered
throughout this chapter.

What Are the Form Events, and
When Do You Use Them?
Microsoft Access traps (responds to) for over 30 Form
events (excluding those specifically related to pivot tables),
each of which has a distinct purpose. Access also traps
events for Form sections and controls. The following
sections cover the Form events and when you should use
them.

Current
A form’s Current event is one of the more commonly
coded events. It happens each time focus moves from one
record to another. The Current event is a great place to put
code that you want to execute whenever the user displays a
record. For example, you might want the cursor to move to

the contact first name control if the user moves to a new client. The following code is
placed in the Current event of the frmClients form that’s part of the hypothetical time
and billing application that you’ve been building in the previous chapters:

Private Sub Form_Current()

‘If user is on a new record,

‘move the focus to the Contact First Name control

If Me.NewRecord Then

Me.txtContactFirstName.SetFocus

End If

End Sub

This code moves focus to the txtContactFirstName control if the txtClientID control
of the record that the user is moving to happens to be Null; this happens if the user is
adding a new record.

BeforeInsert
The BeforeInsert event occurs when the first character is typed in a new record but
before the new record is actually created. If the user is typing in a text or combo box, the
BeforeInsert event occurs even before the Change event of the text or combo box. The
frmProjects form of the time and billing application has an example of a practical use of
the BeforeInsert event:

Private Sub Form_BeforeInsert(Cancel As Integer)

On Error GoTo Err_Form_BeforeInsert

‘Set the ClientID to the ClientID on the Clients form

Me.ClientID = Forms.frmClients.txtClientID

Exit_Form_BeforeInsert:

Exit Sub

Err_Form_BeforeInsert:

MsgBox Err.Description

Resume Exit_Form_BeforeInsert

End Sub

The frmProjects form is always called from the frmClients form. The BeforeInsert
event of frmProjects sets the value of the txtClientID text box equal to the value of the
txtClientID text box on frmClients.

AfterInsert
The AfterInsert event occurs after the record has actually been inserted. You can use it
to requery a recordset after a new record is added.

CHAPTER 10 Advanced Form Techniques432

NOTE

Here’s the order of form events when a user begins to type data into a new record:

BeforeInsert->BeforeUpdate->AfterUpdate->AfterInsert

The BeforeInsert event occurs when the user types the first character, the
BeforeUpdate event happens when the user updates the record, the AfterUpdate
event takes place when the record is updated, and the AfterInsert event occurs
when the record that’s being updated is a new record.

BeforeUpdate
The BeforeUpdate event runs before a record is updated. It occurs when the user tries to
move to a different record (even a record on a subform) or when the Records, Save Record
command is executed. You can use the BeforeUpdate event to cancel the update process
when you want to perform complex validations. When a user adds a record, the
BeforeUpdate event occurs after the BeforeInsert event. The frmClients form in the
CHAP10EX sample database provides an example of using a BeforeUpdate event:

Private Sub Form_BeforeUpdate(Cancel As Integer)

‘If the Contact FirstName, LastName, Company, or

‘Phone Number is left blank, display a message

‘and cancel the update

If IsNull(Me.txtContactFirstName) Or _

IsNull(Me.txtContactLastName) Or _

IsNull(Me.txtCompanyName) Or _

IsNull(Me.txtPhoneNumber) Then

MsgBox “The Contact First Name, “ & vbCrLf & _

“Contact Last Name, “ & vbCrLf & _

“Company Name, “ & vbCrLf & _

“And Contact Phone Must All Be Entered”, _

vbCritical, _

“Canceling Update”

Me.txtContactFirstName.SetFocus

Cancel = True

End If

End Sub

This code determines whether the first name, last name, company name, or phone
number contains Null. If any of these fields contains Null, the code displays a message,
and the Cancel parameter is set to True, canceling the update process. As a convenience
to the user, focus is placed in the txtFirstName control.

What Are the Form Events, and When Do You Use Them? 433

1
0

AfterUpdate
The AfterUpdate event occurs after the changed data in a record is updated. You might
use this event to requery combo boxes on related forms or perhaps to log record changes.
Here’s an example:

Private Sub Form_AfterUpdate()

Me.cboSelectProduct.Requery

End Sub

This code requeries the cboSelectProduct combo box after the user updates the current
record.

Dirty
The Dirty event occurs when the contents of the form, or of the text portion of a combo
box, change. It also occurs when you programmatically change the Text property of a
control. Here’s an example:

Private Sub Form_Dirty(Cancel As Integer)

‘Flip the Enabled properties of the appropriate

‘command buttons

Call FlipEnabled(Me, ActiveControl)

‘Hide the form navigation buttons

Me.NavigationButtons = False

End Sub

This code, located in the frmClients form of the time and billing application, calls
FlipEnabled to flip the command buttons on the form. This has the effect of enabling
the Save and Cancel command buttons and disabling the other command buttons on the
form. The code also removes the navigation buttons, prohibiting the user from moving to
other records while the data is in a “dirty” state.

Undo
The Undo event executes before changes to a row are undone. The Undo event initiates
when the user clicks the Undo button on the Quick Access toolbar, presses the Esc key, or
executes code that attempts to undo changes to the row. If you cancel the Undo event, the
changes to the row are not undone. Here’s an example:

Private Sub Form_Undo(Cancel As Integer)

‘Ask user if he meant to undo changes

If MsgBox(“You Have Attempted to Undo Changes “ & _

“to the Current Row. Would You Like to Proceed “ & _

“with the Undo Process?”, _

vbYesNo) = vbYes Then

CHAPTER 10 Advanced Form Techniques434

‘If he responds yes, proceed with the undo

Cancel = False

Else

‘If he responds no, cancel the undo

Cancel = True

End If

End Sub

This code, located in the frmProjects form of the time and billing application, displays a
message to the user, asking him if he really wants to undo his changes. If he responds Yes,
the Undo process proceeds. If he responds No, the Undo process is canceled.

Delete
The Delete event occurs when a user tries to delete a record but before the record is
removed from the table. This is a great way to place code that allows deleting a record
only under certain circumstances. If the Delete event is canceled, the BeforeDelConfirm
and AfterDelConfirm events (covered next) never execute, and the record is never
deleted.

TIP

When the user deletes multiple records, the Delete event happens after each record
is deleted. This allows you to evaluate a condition for each record and decide whether
to delete each record.

BeforeDelConfirm
The BeforeDelConfirm event takes place after the Delete event but before the Delete
Confirm dialog box is displayed. If you cancel the BeforeDelConfirm event, the record
being deleted is restored from the delete buffer, and the Delete Confirm dialog box is
never displayed.

AfterDelConfirm
The AfterDelConfirm event occurs after the record is deleted or when the deletion is
canceled. If the code does not cancel the BeforeDelConfirm event, the AfterDelConfirm
event takes place after Access displays the Confirmation dialog box.

Open
The Open event occurs when a form is opened but before the first record is displayed.
With this event, you can control exactly what happens when the form first opens. The
Open event of the time and billing application’s frmProjects form looks like this:

What Are the Form Events, and When Do You Use Them? 435

1
0

Private Sub Form_Open(Cancel As Integer)

‘If the Clients form is not loaded,

‘display a message to the user and

‘do not load the form

If Not IsLoaded(“frmClients”) Then

MsgBox “Open the Projects form using the Projects “ & _

“button on the Clients form.”

Cancel = True

End If

End Sub

This code checks to make sure the frmClients form is loaded. If it isn’t, it displays a
message box and sets the Cancel parameter to True, which prohibits the form from
loading.

Load
The Load event happens when a form opens, and the first record is displayed; it occurs
after the Open event. A form’s Open event can cancel the loading of a form, but the Load
event can’t. The following routine is placed in the Load event of the time and billing
application’s frmExpenseCodes form:

Private Sub Form_Load()

‘If the form is opened in Data Entry mode

‘and the OpenArgs property is not null,

‘set the txtExpenseCode text box equal to

‘the value of the opening arguments

If Me.DataEntry _

And Not (IsNull(Me.OpenArgs)) Then

Me.txtExpenseCode = Me.OpenArgs

End If

End Sub

This routine looks at the string that’s passed as an opening argument to the form. If
the OpenArgs string is not Null, and the form is opened in Data Entry mode, the
txtExpenseCode text box is set equal to the opening argument. In essence, this code
allows the form to be used for two purposes. If the user opens the form from the database
container, no special processing occurs. On the other hand, if the user opens the form
from the fsubTimeCardsExpenses subform, the form is opened in Data Entry mode, and
the expense code that the user specified is placed in the txtExpenseCode text box.

Resize
The Resize event takes place when a form is opened or whenever the form’s size changes.

CHAPTER 10 Advanced Form Techniques436

Unload
The Unload event happens when a form is closed but before Access removes the form
from the screen. It’s triggered when the user closes the form, quits the application by
choosing End Task from the task list or quits Windows, or when your code closes the
form. You can place code that makes sure it’s okay to unload the form in the Unload
event, and you can also use the Unload event to place any code you want executed when-
ever the form is unloaded. Here’s an example:

Private Sub Form_Unload(Cancel As Integer)

‘Determine if the form is dirty

If Me.cmdSave.Enabled Then

‘If form is dirty, ask user if he wants to save

Select Case MsgBox(“Do You Want To Save?”, _

vbYesNoCancel + vbCritical, _

“Please Respond”)

‘If user responds yes, save record and allow unload

Case vbYes

DoCmd.RunCommand Command:=acCmdSaveRecord

Cancel = False

‘If user responds no, undo changes to record and

‘allow unload

Case vbNo

On Error Resume Next

DoCmd.RunCommand Command:=acCmdUndo

Cancel = False

‘If user clicks Cancel, cancel unloading of form

Case vbCancel

Cancel = True

End Select

End If

End Sub

This code is in the Unload event of the frmClients form from the time and billing appli-
cation. It checks whether the Save button is enabled. If it is, the form is in a dirty state.
The user is prompted as to whether she wants to save changes to the record. If she
responds yes, the code saves the data, and the form is unloaded. If she responds no, the
code cancels changes to the record, and the form is unloaded. Finally, if she opts to
cancel, the value of the Cancel parameter is set to False, and the form is not unloaded.

What Are the Form Events, and When Do You Use Them? 437

1
0

Close
The Close event occurs after the Unload event, when a form is closed and removed from
the screen. Remember, you can cancel the Unload event but not the Close event.

The following code is located in the Close event of the frmClients form that’s part of the
time and billing database:

Private Sub Form_Close()

‘If the frmProjects form is loaded,

‘unload it

If IsLoaded(“frmProjects”) Then

DoCmd.Close acForm, “frmProjects”

End If

End Sub

When the frmClients form is closed, the code tests whether the frmProjects form is
open. If it is, the code closes it.

Activate
The Activate event takes place when the form gets focus and becomes the active window.
It’s triggered when the form opens, when a user clicks on the form or one of its controls,
and when the SetFocus method is applied by using VBA code. The following code, found
in the Activate event of the time and billing application’s frmClients form, requeries the
fsubClients subform whenever the frmClients main form activates:

Private Sub Form_Activate()

‘Requery form when it becomes active

‘This ensures that changes made in the Projects form

‘are immediately reflected in the Clients form

Me.fsubClients.Requery

End Sub

Deactivate
The Deactivate event occurs when the form loses focus, which happens when a table,
query, form, report, macro, module, or the Navigation Pane becomes active. However, the
Deactivate event isn’t triggered when a dialog box, pop-up form, or another application
becomes active.

GotFocus
The GotFocus event happens when a form gets focus, but only if there are no visible,
enabled controls on the form. This event is rarely used for a form.

CHAPTER 10 Advanced Form Techniques438

LostFocus
The LostFocus event occurs when a form loses focus, but only if there are no visible,
enabled controls on the form. This event, too, is rarely used for a form.

Click
The Click event takes place when the user clicks on a blank area of the form, on a
disabled control on the form, or on the form’s record selector.

DblClick
The DblClick event happens when the user double-clicks on a blank area of the form,
on a disabled control on the form, or on the form’s record selector.

MouseDown
The MouseDown event occurs when the user clicks on a blank area of the form, on a
disabled control on the form, or on the form’s record selector. However, it happens before
the Click event fires. You can use it to determine which mouse button was pressed.

MouseMove
The MouseMove event takes place when the user moves the mouse over a blank area of the
form, over a disabled control on the form, or over the form’s record selector. It’s generated
continuously as the mouse pointer moves over the form. The MouseMove event occurs
before the Click event fires.

MouseUp
The MouseUp event occurs when the user releases the mouse button. Like the MouseDown
event, it happens before the Click event fires. You can use the MouseUp event to deter-
mine which mouse button was pressed.

KeyDown
The KeyDown event happens if there are no controls on the form or if the form’s
KeyPreview property is set to Yes. If the latter condition is true, all keyboard events are
previewed by the form and occur for the control that has focus. If the user presses and
holds down a key, the KeyDown event occurs repeatedly until the user releases the key.
Here’s an example:

Private Sub Form_KeyDown(KeyCode As Integer, Shift As Integer)

‘If the form is dirty and the user presses page up or

‘page down, ignore the keystroke

If Me.Dirty Then

If KeyCode = vbKeyPageDown Or _

What Are the Form Events, and When Do You Use Them? 439

1
0

KeyCode = vbKeyPageUp Then

KeyCode = 0

End If

End If

End Sub

This code, found in the frmClients form that is part of the time and billing application,
tests to see if the form is in a dirty state. If it is, and the user presses the Page Down or
Page Up key, Access ignores the keystroke. This prevents the user from moving to other
records without first clicking the Save or Cancel command buttons.

KeyUp
Like the KeyDown event, the KeyUp event occurs if there are no controls on the form, or
if the form’s KeyPreview property is set to Yes. The KeyUp event takes place only once,
though, regardless of how long the user presses the key. You can cancel the keystroke by
setting KeyCode to 0.

KeyPress
The KeyPress event occurs when the user presses and releases a key or key combination
that corresponds to an ANSI code. It takes place if there are no controls on the form, or
if the form’s KeyPreview property is set to Yes. You can cancel the keystroke by setting
KeyCode to 0.

Error
The Error event triggers whenever an error happens while the user is in the form. Access
Database Engine errors are trapped, but Visual Basic errors aren’t. You can use this event
to suppress the standard error messages. You must handle Visual Basic errors using stan-
dard On Error techniques. Both the Error event and handling Visual Basic errors are
covered in Chapter 17, “Error Handling: Preparing for the Inevitable.”

Filter
The Filter event takes place whenever the user selects the Filter By Form or Advanced
Filter/Sort options. You can use this event to remove the previous filter, enter default
settings for the filter, invoke your own custom filter window, or prevent certain controls
from being available in the Filter By Form window. The later section “Taking Advantage of
Built-In, Form-Filtering Features” covers filters in detail.

ApplyFilter
The ApplyFilter event occurs when the user selects the Apply Filter/Sort, Filter By
Selection, or Remove Filter/Sort options. It also takes place when the user closes the
Advanced Filter/Sort window or the Filter By Form window. You can use this event to
make sure that the applied filter is correct, to change the form’s display before the filter is

CHAPTER 10 Advanced Form Techniques440

applied, or to undo any changes you made when the Filter event occurred. The later
section “Taking Advantage of Built-In, Form-Filtering Features” covers filters in detail.

Timer
The Timer event and a form’s TimerInterval property work hand in hand. You can set
the TimerInterval property to any value between 0 and 2,147,483,647. The value used
determines the frequency, expressed in milliseconds, at which the Timer event will occur.
For example, if the TimerInterval property is set to 0, the Timer event will not occur at
all; if set to 5000 (5000 milliseconds), the Timer event will occur every five seconds. The
following example uses the Timer event to alternate the visibility of a label on the form.
This produces a flashing effect. The TimerInterval property can be initially set to any
valid value other than 0 but will be reduced by 50 milliseconds each time the code
executes. This has the effect of making the control flash faster and faster. The Timer
events continue to occur until the TimerInterval property is finally reduced to 0.

Private Sub Form_Timer()

‘If Label1 is visible, hide it; otherwise, show it

If Me.Label2.Visible = True Then

Me.Label2.Visible = False

Else

Me.Label2.Visible = True

End If

‘Decrement the timer interval, causing the

‘label to flash more quickly

Me.TimerInterval = Me.TimerInterval - 50

‘Once the timer interval becomes zero,

‘make the label visible

If Me.TimerInterval = 0 Then

Me.Label2.Visible = True

End If

End Sub

Understanding the Sequence of Form Events
One of the mysteries of events is the order in which they occur. One of the best ways
to figure this out is to place Debug.Print statements in the events you want to learn
about. This technique is covered in Chapter 16, “Debugging: Your Key to Successful
Development.” Keep in mind that event order isn’t an exact science; it’s nearly impossible
to guess when events will happen in all situations. It’s helpful, though, to understand the
basic order in which certain events do take place.

What Happens When a Form Is Opened?
When a user opens a form, the following events occur:

Open->Load->Resize->Activate->Current

What Are the Form Events, and When Do You Use Them? 441

1
0

After these Form events take place, the Enter and GotFocus events of the first control
occur. Remember that the Open event provides the only opportunity to cancel opening
the form.

What Happens When a Form Is Closed?
When a user closes a form, the following events take place:

Unload->Deactivate->Close

Before these events occur, the Exit and LostFocus events of the active control trigger.

What Happens When a Form Is Sized?
When a user resizes a form, what happens depends on whether the form is minimized,
restored, or maximized. When the form minimizes, here’s what happens:

Resize->Deactivate

When a user restores a minimized form, these events take place:

Activate->Resize

When a user maximizes a form or restores a maximized form, just the Resize event
occurs.

What Happens When Focus Shifts from One Form to Another?
When a user moves from one form to another, the Deactivate event occurs for the
first form; then the Activate event occurs for the second form. Remember that the
Deactivate event doesn’t take place if focus moves to a dialog box, a pop-up form, or
another application.

What Happens When Keys Are Pressed?
When a user types a character, and the form’s KeyPreview property is set to True, the
following events occur:

KeyDown->KeyPress->Dirty->KeyUp

If you trap the KeyDown event and set the KeyCode to 0, the remaining events never
happen. The KeyPress event captures only ANSI keystrokes. This event is the easiest to
deal with. However, you must handle the KeyDown and KeyUp events when you need to
trap for non-ANSI characters, such as Shift, Alt, and Ctrl.

What Happens When Mouse Actions Take Place?
When a user clicks the mouse button, the following events occur:

MouseDown->MouseUp->Click

CHAPTER 10 Advanced Form Techniques442

What Are the Section and Control Events, and
When Do You Use Them?
Sections have only five events: Click, DblClick, MouseDown, MouseMove, and MouseUp.
These events rarely play significant roles in your application.

Each control type has its own set of events to which it responds. Many events are
common to most controls, but others are specific to certain controls. Furthermore, some
controls respond to very few events. The following sections cover most of the Control
events and the controls they apply to.

BeforeUpdate
The BeforeUpdate event applies to text boxes, option groups, combo boxes, list
boxes, and bound object frames. It occurs before changed data in the control
updates. You can find the following code example in the BeforeUpdate event of the
txtProjectTotalBillingEstimate control on the frmProjects form in the sample
database:

Private Sub txtProjectTotalBillingEstimate_BeforeUpdate(Cancel As Integer)

‘If project total billings are less than or equal to zero

‘display a message to the user and cancel the update

If Me.txtProjectTotalBillingEstimate <= 0 Then

MsgBox “Project Total Billings Must Be Greater Than “ & _

“or Equal to Zero”, vbCritical, “Canceling Update”

Cancel = True

End If

End Sub

This code tests whether the value of the CustomerID control is less than or equal to zero.
If it is, the code displays a message box, and the Update event is canceled.

AfterUpdate
The AfterUpdate event applies to text boxes, option groups, combo boxes, list boxes, and
bound object frames. It occurs after changed data in the control updates. The following
code example is from the AfterUpdate event of the txtBeginDate control on the
frmPrintInvoice form found in the time and billing database:

Private Sub txtBeginDate_AfterUpdate()

‘Requery the subforms when the begin

‘date changes

Me.fsubPrintInvoiceTime.Requery

Me.fsubPrintInvoiceExpenses.Requery

End Sub

What Are the Section and Control Events, and When Do You Use Them? 443

1
0

This code requeries both the fsubPrintInvoiceTime subform and the
fsubPrintInvoiceExpenses subform when the txtBeginDate control updates. This
ensures that the subforms display the time and expenses appropriate for the selected
date range.

Updated
The Updated event applies to a bound object frame only. It occurs when the object linking
and embedding (OLE) object’s data is modified.

Change
The Change event applies to text and combo boxes and takes place when data in the
control changes. For a text box, this event occurs when the user types a character; for a
combo box, it happens when a user types a character or selects a value from the list.
You use this event when you want to trap for something happening on a character-by-
character basis.

NotInList
The NotInList event applies only to a combo box and happens when a user enters a
value in the text box portion of the combo box that’s not in the combo box list. By using
this event, you can allow the user to add a new value to the combo box list. For this
event to be triggered, the LimitToList property must be set to Yes. Here’s an example
from the time and billing application’s frmPayments form:

Private Sub cboPaymentMethodID_NotInList _

‘If payment method is not in the list,

‘ask user if he wants to add it

If MsgBox(“Payment Method Not Found, Add?”, _

vbYesNo + vbQuestion, _

“Please Respond”) = vbYes Then

‘If he responds yes, open the frmPaymentMethods form

‘in Add mode, passing in the new payment method

DoCmd.OpenForm “frmPaymentMethods”, _

Datamode:=acFormAdd, _

WindowMode:=acDialog, _

OpenArgs:=NewData

‘If form is still loaded, unload it

If IsLoaded(“frmPaymentMethods”) Then

Response = acDataErrAdded

DoCmd.Close acForm, “frmPaymentMethods”

‘If the user cancels the add, redisplay the existing options

Else

CHAPTER 10 Advanced Form Techniques444

Response = acDataErrContinue

End If

Else

‘If the user responds no, redisplay the existing options

Response = acDataErrContinue

End If

End Sub

This code executes when a user enters a payment method that’s not in the
cboPaymentMethodID combo box. It asks the user if he wants to add the entry. If he
responds yes, the frmPaymentMethods form displays. Otherwise, the user must select
another entry from the combo box. The NotInList event is covered in more detail
later in the “Handling the NotInList Event” section.

Enter
The Enter event applies to text boxes, option groups, combo boxes, list boxes, command
buttons, object frames, and subforms. It occurs before a control gets focus from another
control on the same form and before the GotFocus event. Here’s an example from the time
and billing application’s frmTimeCards form:

Private Sub fsubTimeCards_Enter()

‘If the user clicks to enter time cards, and the EmployeeID

‘is Null, display a message and set focus back to the

‘cboEmployeeID combo box

If IsNull(Me.EmployeeID) Then

MsgBox “Enter employee before entering time or expenses.”

Me.cboEmployeeID.SetFocus

End If

End Sub

When the user moves into the fsubTimeCards subform control, its Enter event tests
whether the EmployeeID has been entered on the main form. If it hasn’t, a message box
displays, and focus is moved to the cboEmployeeID control on the main form.

Exit
The Exit event applies to text boxes, option groups, combo boxes, list boxes, command
buttons, object frames, and subforms. It occurs just before the LostFocus event.

GotFocus
The GotFocus event applies to text boxes, toggle buttons, option buttons, check boxes,
combo boxes, list boxes, and command buttons. It takes place when focus moves to a
control in response to a user action or when the SetFocus, SelectObject, GoToRecord,
GoToControl, or GoToPage method is issued in code. Controls can get focus only if they’re
visible and enabled.

What Are the Section and Control Events, and When Do You Use Them? 445

1
0

LostFocus
The LostFocus event applies to text boxes, toggle buttons, option buttons, check boxes,
combo boxes, list boxes, and command buttons. It occurs when focus moves away from a
control in response to a user action or when your code issues the SetFocus, SelectObject,
GoToRecord, GoToControl, or GoToPage methods.

NOTE

The difference between GotFocus/LostFocus and Enter/Exit lies in when they occur.
If focus is lost (moved to another form) or returned to the current form, the control’s
GotFocus and LostFocus events are triggered. The Enter and Exit events don’t take
place when the form loses or regains focus. Finally, it is important to note that none of
these events take place when the user makes menu selections or clicks ribbon buttons.

Click
The Click event applies to labels, text boxes, option groups, combo boxes, list boxes,
command buttons, and object frames. It occurs when a user presses and then releases a
mouse button over a control. Here’s an example from the time and billing application’s
frmProjects form:

Private Sub cmdToggleView_Click()

‘If the caption of the control is View Expenses,

‘hide the Projects subform and show the Project Expenses subform

‘Change caption of command button to View Hours

If Me.cmdToggleView.Caption = “&View Expenses” Then

Me.fsubProjects.Visible = False

Me.fsubProjectExpenses.Visible = True

Me.cmdToggleView.Caption = “&View Hours”

‘If the caption of the control is View Hours,

‘hide the Project Expenses subform and show the Project subform

‘Change caption of command button to View Expenses

Else

Me.fsubProjectExpenses.Visible = False

Me.fsubProjects.Visible = True

Me.cmdToggleView.Caption = “&View Expenses”

End If

End Sub

This code checks the caption of the cmdToggleView command button. If the caption reads
“&View Expenses” (with the ampersand indicating a hotkey), the fsubProjects subform
is hidden, the fsubProjectExpenses subform is made visible, and the caption of the
cmdToggleView command button is modified to read “&View Hours”. Otherwise, the
fsubProjectExpenses subform is hidden, the fsubProjects subform is made visible,
and the caption of the cmdToggleView command button is modified to read “&View
Expenses”.

CHAPTER 10 Advanced Form Techniques446

NOTE

The Click event is triggered when the user clicks the mouse over an object, as well
as in the following situations:

. When the user presses the spacebar while a command button has focus

. When the user presses the Enter key and a command button’s Default property
is set to Yes

. When the user presses the Escape key and a command button’s Cancel
property is set to Yes

. When an accelerator key for a command button is used

DblClick
The DblClick event applies to labels, text boxes, option groups, combo boxes, list boxes,
command buttons, and object frames. It occurs when a user presses and then releases the
left mouse button twice over a control. Here’s an example from the time and billing appli-
cation’s fsubTimeCards form:

Private Sub cboWorkCodeID_DblClick(Cancel As Integer)

Dim strWorkCode As String

On Error GoTo Err_cboWorkCodeID_DblClick

‘If the cboWorkCodeID is Null, set the

‘strWorkCode variable to a zero-length string

‘otherwise set it to the text in the combo box

If IsNull(Me.cboWorkCodeID.Text) Then

strWorkCode = “”

Else

strWorkCode = Me.cboWorkCodeID.Text

End If

‘If the cboWorkCodeID is Null, set the

‘Text property to a zero-length string

If IsNull(Me.cboWorkCodeID) Then

Me.cboWorkCodeID.Text = “”

Else

‘Otherwise, set the cboWorkCodeID

‘combo box to Null

Me.cboWorkCodeID = Null

End If

‘Open the frmWorkCodes form modally

DoCmd.OpenForm “frmWorkCodes”, _

What Are the Section and Control Events, and When Do You Use Them? 447

1
0

DataMode:=acFormAdd, _

WindowMode:=acDialog, _

OpenArgs:=strWorkCode

‘After the form is closed, requery the combo box

Me.cboWorkCodeID.Requery

‘Set the text of the combo box to the value added

Me.cboWorkCodeID.Text = strWorkCode

Exit_cboWorkCodeID_DblClick:

Exit Sub

Err_cboWorkCodeID_DblClick:

MsgBox Err.Description

Resume Exit_cboWorkCodeID_DblClick

End Sub

In this example, the code evaluates the cboWorkCodeID combo box control to see whether
it’s Null. If it is, the text of the combo box is set to a zero-length string. Otherwise, a long
integer variable is set equal to the combo box value, and the combo box value is set to
Null. The frmWorkCodes form is opened modally. When it’s closed, the cboWorkCodeID
combo box is requeried. If the long integer variable doesn’t contain a zero, the combo
box value is set equal to the long integer value.

MouseDown
The MouseDown event applies to labels, text boxes, option groups, combo boxes, list boxes,
command buttons, and object frames. It takes place when a user presses the mouse
button over a control, before the Click event fires.

MouseMove
The MouseMove event applies to labels, text boxes, option groups, combo boxes, list boxes,
command buttons, and object frames. It occurs as a user moves the mouse over a control.

MouseUp
The MouseUp event applies to labels, text boxes, option groups, combo boxes, list boxes,
command buttons, and object frames. It occurs when a user releases the mouse over a
control, before the Click event fires.

KeyDown
The KeyDown event applies to text boxes, toggle buttons, option buttons, check boxes,
combo boxes, list boxes, and bound object frames. It happens when a user presses a key

CHAPTER 10 Advanced Form Techniques448

while within a control; the event occurs repeatedly until the user releases the key. You can
cancel it by setting KeyCode equal to 0.

KeyUp
The KeyUp event applies to text boxes, toggle buttons, option buttons, check boxes,
combo boxes, list boxes, and bound object frames. It occurs when a user releases a key
within a control. It occurs only once, no matter how long the user presses a key.

KeyPress
The KeyPress event applies to text boxes, toggle buttons, option buttons, check boxes,
combo boxes, list boxes, and bound object frames. It occurs when a user presses and
releases an ANSI key while the control has focus. You can cancel it by setting KeyCode
equal to 0.

Understanding the Sequence of Control Events
Just as Form events take place in a certain sequence when the form is opened, activated,
and so on, Control events occur in a specific sequence. You need to understand this
sequence to write the event code for a control.

What Happens When Focus Is Moved to or from a Control?
When focus is moved to a control, the following events occur:

Enter->GotFocus

If focus is moving to a control as the form is opened, the Form and Control events take
place in the following sequence:

Open(form)->Activate(form)->Current(form)->Enter(control)_

GotFocus(control)

When focus leaves a control, the following events occur:

Exit->LostFocus

When focus leaves the control because the form is closing, the following events happen:

Exit(control)->LostFocus(control)->Unload(form)->Deactivate(form)_

Close(form)

What Happens When the Data in a Control Is Updated?
When you change data in a control and then move focus to another control, the follow-
ing events occur:

BeforeUpdate->AfterUpdate->Exit->LostFocus

What Are the Section and Control Events, and When Do You Use Them? 449

1
0

After every character that’s typed in a text or combo box, the following events take place
before focus is moved to another control:

KeyDown->KeyPress->Change->KeyUp

For a combo box, if the NotInList event is triggered, it occurs after the KeyUp event.

Referring to Me
The Me keyword is like an implicitly declared variable; it’s available to every procedure in a
Form or Report module. Using Me is a great way to write generic code in a form or report.
You can change the name of the form or report, and the code will be unaffected. Here’s
an example:

Me.RecordSource = “qryProjects”

This code changes the RecordSource property of the current form or report to
qryProjects.

It’s also useful to pass Me (the current form or report) to a generic procedure in a module,
as shown in the following example:

Call ChangeCaption(Me)

The ChangeCaption procedure looks like this:

Sub ChangeCaption(frmAny As Form)

If IsNull(frmAny.Caption) Then

frmAny.Caption = “Form For - “ & CurrentUser

Else

frmAny.Caption = frmAny.Caption & “ - “ & CurrentUser

End If

End Sub

The ChangeCaption procedure in a Code module receives any form as a parameter. It eval-
uates the caption of the form that was passed to it. If the caption is Null, ChangeCaption
sets the caption to “Form For -”, concatenated with the user’s name. Otherwise, it takes
the existing caption of the form passed to it and appends the user’s name.

What Types of Forms Can I Create, and When
Are They Appropriate?
You can design a variety of forms with Microsoft Access. By working with the properties
available in Access’s form designer, you can create forms with many different looks and

CHAPTER 10 Advanced Form Techniques450

types of functionality. This chapter covers all the major categories of forms, but remember
that you can create your own forms. Of course, don’t forget to maintain consistency with
the standards for Windows applications.

Single Forms: Viewing One Record at a Time
One of the most common types of forms, the Single form, allows you to view one record
at a time. The Single form shown in Figure 10.1, for example, lets the user view one
customer record and then move to other records as needed.

What Types of Forms Can I Create, and When Are They Appropriate? 451

1
0

FIGURE 10.1 A Single form.

Creating a Single form is easy: Simply set the form’s Default View property to Single
Form (see Figure 10.2).

Continuous Forms: Viewing Multiple Records at a Time
Often, the user wants to be able to view multiple records at a time, which requires creat-
ing a Continuous form, like the one shown in Figure 10.3. To do this, just set the Default
View property to Continuous Forms.

FIGURE 10.2 Setting the form’s Default View property.

CHAPTER 10 Advanced Form Techniques452

FIGURE 10.3 A Continuous form.

A subform is a common use for a Continuous form; generally, you should show multiple
records in a subform. The records displayed in the subform are all the records that relate
to the record displayed in the main form. Figure 10.4 shows a subform, with its Default
View property set to Continuous Forms. The subform shows all the products relating to a
specific supplier.

What Types of Forms Can I Create, and When Are They Appropriate? 453

1
0

FIGURE 10.4 A form containing a Continuous subform.

Multipage Forms: Finding Solutions When Everything
Doesn’t Fit on One Screen
Scarcity of screen real estate is a never-ending problem, but a multipage form can be a
good solution. Figures 10.5 and 10.6 show the two pages of a multipage Employees form.
When looking at the form in Design view, you can see a Page Break control placed just at
the 31⁄2-inch mark on the form (see Figure 10.7). To insert a Page Break control, select it
from the Controls group of the Design tab and then click and drag to place it on the
form.

CHAPTER 10 Advanced Form Techniques454

FIGURE 10.5 The first page of a multipage form.

FIGURE 10.6 The second page of a multipage form.

FIGURE 10.7 A multipage form in Design view, showing a Page Break control just before the
31⁄2 -inch mark on the form.

When creating a multipage form, remember a few important steps:

. Set the Default View property of the form to Single Form.

. Set the Scrollbars property of the form to Neither or Horizontal Only.

. Set the Auto Resize property of the form to No.

. Place the Page Break control exactly halfway down the form’s Detail section if you
want the form to have two pages. If you want more pages, divide the total height of
the Detail section by the number of pages and place Page Break controls at the
appropriate positions on the form.

. Size the Form window to fit exactly one page of the form.

Tabbed Forms: Conserving Screen Real Estate
A tabbed form is an alternative to a multipage form. Access 2007 includes a built-in Tab
control that allows you to easily group sets of controls. A tabbed form could, for example,
show customers on one tab, orders for a selected customer on another tab, and order
detail items for the selected order on a third tab.

The form shown in Figure 10.8 uses a Tab control. This form, called Employee Details, is
included in the Northwind database. It shows an employee’s general information on one
tab and his orders on the second tab. No code is needed to build the example.

What Types of Forms Can I Create, and When Are They Appropriate? 455

1
0

CHAPTER 10 Advanced Form Techniques456

FIGURE 10.8 A tabbed form.

Adding a Tab Control and Manipulating Its Pages
To add a Tab control to a form, simply select it from the Controls group on the Design
tab and drag and drop it onto the form. By default, two tab pages appear. To add more
tabs, right-click the control and select Insert Page. To remove tabs, right-click the page
you want to remove and select Delete Page. To change the order of pages, right-click any
page and select Page Order.

Adding Controls to the Pages of a Tab Control
You can add controls to each tab just as you would add them directly to the form.
Remember to select a tab by clicking it before you add the controls. If you don’t select a
specific tab, the controls you add will appear on every tab.

Modifying the Tab Order of Controls
The controls on each page have their own tab order. To modify their tab order, right-click
the page and select Tab Order. You can then reorder the controls in whatever way you
want.

Changing the Properties of the Tab Control
To change the properties of the Tab control, click to select it rather than a specific page.
You can tell whether you’ve selected the Tab control because the words Tab Control
appear in the upper-left corner of the title bar of the property sheet. A Tab control’s prop-
erties include its name, whether it is visible, the text font on the tabs, and more (see
Figure 10.9).

FIGURE 10.9 Viewing properties of a Tab control.

Changing the Properties of Each Page
To change the properties of each page, select a specific page of the Tab control. You can
tell whether you’ve selected a specific page because the word Page is displayed in the
upper-left corner of the title bar of the property page. Here, you can select a name for the
page, the page’s caption, a picture for the page’s background, and more (see Figure 10.10).

Switchboard Forms: Controlling Your Application
Using a Switchboard form is a great way to control your application. A Switchboard form
is simply a form with command buttons that allow you to navigate to other Switchboard
forms or to the forms and reports that make up your system.

Figure 10.11 shows a Switchboard form. It lets a user work with different components of
the database. What differentiates a Switchboard form from other forms is that its purpose
is limited to navigating through the application. It usually has a border style of Dialog,
and it has no scrollbars, record selectors, or navigation buttons. Other than these charac-
teristics, a Switchboard form is a normal form. There are many styles of Navigation forms;
which one you use depends on your users’ needs.

What Types of Forms Can I Create, and When Are They Appropriate? 457

1
0

FIGURE 10.10 Viewing properties of a Tab page.

CHAPTER 10 Advanced Form Techniques458

FIGURE 10.11 An example of a Switchboard form.

Splash Screen Forms: Creating a Professional Opening
to Your Application
Splash screens add professional polish to your applications and give your users something
to look at while your programming code is setting up the application. Just follow these
steps to create a Splash Screen form:

1. Create a new form.

2. Set the Scrollbars property to Neither, the Record Selectors property to No, the
Navigation Buttons property to No, the Auto Resize property to Yes, the Auto
Center property to Yes, and the Border Style to None.

3. Make the form pop-up and modal by setting the Pop Up and Modal properties of
the form to Yes.

4. Add a picture to the form and set the picture’s properties.

5. Add any text you want on the form.

6. Set the form’s timer interval property to the number of seconds you want the splash
screen to be displayed.

7. Code the form’s Timer event for DoCmd.Close.

8. Code the form’s Unload event to open your main Switchboard form.

Because the Timer event of the Splash Screen form closes the form after the amount
of time specified in the timer interval, the Splash Screen form unloads itself. While
it’s unloading, it loads a Switchboard form. The Splash Screen form included in
CHAP10EX.ACCDB is called frmSplash. When it unloads, it opens the frmSwitchboard form.

You can implement a Splash Screen form in many other ways. For example, you can call a
Splash Screen form from a Startup form; its Open event simply needs to open the Splash
Screen form. The problem with this method is that if your application loads and unloads
the Switchboard while the application is running, the Splash Screen is displayed again.

TIP

You can also display a splash screen by including a bitmap file with the same name as
your database (ACCDB) in the same directory as the database file. When the applica-
tion is loaded, the splash screen is displayed for a couple of seconds. The only disad-
vantage to this method is that you have less control over when, and how long, the
splash screen is displayed.

Dialog Forms: Gathering Information
Dialog forms are typically used to gather information from the user. What makes them
Dialog forms is that they’re modal, meaning that the user can’t go ahead with the applica-
tion until the form is handled. You generally use Dialog forms when you must get specific

What Types of Forms Can I Create, and When Are They Appropriate? 459

1
0

information from your user before your application can continue processing. A custom
Dialog form is simply a regular form that has a Dialog border style and has its Modal
property set to Yes. Remember to give users a way to close the form; otherwise, they
might close your modal form with the famous “Three-Finger Salute” (Ctrl+Alt+Del) or,
even worse, by using the PC’s Reset button. The frmArchivePayments form in
CHAP10EX.ACCDB is a custom Dialog form.

TIP

Although opening a form with its BorderStyle property set to Dialog and its Modal
property set to Yes will prevent the user from clicking outside the form (thereby contin-
uing the application), it does not halt the execution of the code that opened the form.
Suppose the intent is to open a Dialog form to gather parameters for a report and
then open a report based on those parameters. In this case, the OpenForm method
used to open the form must include the acDialog option in its Windowmode argument.
Otherwise, the code will continue after the OpenForm method and open the report
before the parameters are collected from the user.

Using Built-In Dialog Boxes
Access comes with two built-in dialog boxes: the standard Windows message box and the
input box. The FileDialog object introduced with Access 2002 gives you access to other
commonly used dialog boxes.

Message Boxes
A message box is a predefined dialog box that you can incorporate into your applications;
however, you can customize it by using parameters. The VBA language has a MsgBox state-
ment, which just displays a message, and a MsgBox function, which can display a message
and return a value based on the user’s response.

The message box in the VBA language is the same message box that is standard in most
Windows applications, so most Windows users are already familiar with it. Rather than
create your own dialog boxes to get standard responses from your users, you can use an
existing, standard interface.

The MsgBox Function
The MsgBox function receives five parameters. The first parameter is the message that you
want to display. The second is a numeric value indicating which buttons and icons you
want to display. Tables 10.1 and 10.2 list the values that you can numerically add to
create the second parameter. You can substitute the intrinsic constants in the table for the
numeric values, if you want.

CHAPTER 10 Advanced Form Techniques460

TABLE 10.1 Values Indicating the Buttons That a Message Box Can Display

Buttons Value Intrinsic Constant

OK button only 0 vbOKOnly

OK and Cancel 1 vbOKCancel

Abort, Retry, and Ignore 2 vbAbortRetryIgnore

Yes, No, and Cancel 3 vbYesNoCancel

Yes and No 4 vbYesNo

Retry and Cancel 5 vbRetryCancel

You must numerically add the values in Table 10.1 to one of the values in Table 10.2 if
you want to include an icon other than the dialog box’s default icon.

TABLE 10.2 Values Indicating the Icons That a Message Box Can Display

Icon Value Intrinsic Constant

Critical (Stop Sign) 16 vbCritical

Warning Query (Question) 32 vbQuestion

Warning Exclamation (!) 48 vbExclamation

Information (I) 64 vbInformation

MsgBox’s third parameter is the message box’s title. Its fourth and fifth parameters are the
Help file and context ID that you want available if the user selects Help while the dialog
box is displayed. The MsgBox function syntax looks like this:

MsgBox “This is a Message”, vbInformation, “This is a Title”

This example displays the message “This is a Message” and the information icon. The
title for the message box is “This is a Title”. The message box also has an OK button
that’s used to close the dialog box.

The MsgBox function is normally used to display just an OK button, but it can also be
used to allow a user to select from a variety of standard button combinations. When used
in this way, it returns a value indicating which button the user selected.

In the following example, the message box displays Yes, No, and Cancel buttons:

Sub MessageBoxFunction()

Dim intAnswer As Integer

intAnswer = MsgBox(“Are You Sure?”, vbYesNoCancel + vbQuestion, _

“Please Respond”)

End Sub

This message box also displays the Question icon (see Figure 10.12). The Function call
returns a value stored in the Integer variable intAnswer.

Using Built-In Dialog Boxes 461

1
0

FIGURE 10.12 The dialog box displayed by the MsgBox function.

After you have placed the return value into a variable, you can easily introduce logic into
your program to respond to the user’s selection, as shown in this example:

Sub MessageBoxAnswer()

Dim intAnswer As Integer

intAnswer = MsgBox(“Are You Sure?”, vbYesNoCancel + vbQuestion, _

“Please Respond”)

Select Case intAnswer

Case vbYes

MsgBox “I’m Glad You are Sure!!”

Case vbNo

MsgBox “Why Aren’t You Sure??”

Case vbCancel

MsgBox “You Coward! You Bailed Out!!”

End Select

End Sub

This code evaluates the user’s response and displays a message based on her answer. Of
course, in a real-life situation, the code in the Case statements would be more practical.
Table 10.3 lists the values returned from the MsgBox function, depending on which button
the user selected.

TABLE 10.3 Values Returned from the MsgBox Function

Response Value Intrinsic Constant

OK 1 vbOK

Cancel 2 vbCancel

Abort 3 vbAbort

Retry 4 vbRetry

Ignore 5 vbIgnore

Yes 6 vbYes

No 7 vbNo

Input Boxes
The InputBox function displays a dialog box containing a simple text box. It returns the
text that the user typed in the text box and looks like this:

CHAPTER 10 Advanced Form Techniques462

Sub InputBoxExample()

Dim strName As String

strName = InputBox(“What is Your Name?”, _

“This is the Title”, “This is the Default”)

MsgBox “You Entered “ & strName

End Sub

This subroutine displays the input box shown in Figure 10.13. Notice that the first para-
meter is the message, the second is the title, and the third is the default value. The second
and third parameters are optional.

Using Built-In Dialog Boxes 463

1
0

FIGURE 10.13 An example of using the InputBox function to gather information.

The FileDialog Object
The FileDialog object was introduced with Access 2002. This object allows you to easily
display the common dialog boxes previously available only by using the Common Dialog
ActiveX control. Here’s an example of how FileDialog works:

Sub SaveDialog()

‘Declare a FileDialog object
Dim dlgSaveAs As FileDialog

‘Instantiate the FileDialog object
‘indicating that it will act as a File SaveAs dialog
Set dlgSaveAs = Application.FileDialog(_

DialogType:=msoFileDialogSaveAs)

‘Display the dialog
dlgSaveAs.Show

‘Display the specified filename in a message box
MsgBox dlgSaveAs.SelectedItems(1)

End Sub

The code in the example declares a FileDialog object. It instantiates the object, setting
its type to a File Save As dialog box. It shows the dialog box and then displays the first
selected file in a message box. Here’s another example:

Sub OpenDialog()

‘Declare a FileDialog object

Dim dlgOpen As FileDialog

‘Instantiate the FileDialog object, setting its

‘type to a File Open dialog

Set dlgOpen = Application.FileDialog(_

DialogType:=msoFileDialogOpen)

With dlgOpen

‘Allow multiple selections in the dialog

.AllowMultiSelect = True

‘Display the dialog

.Show

End With

‘Display the first file selected in the dialog

MsgBox dlgOpen.SelectedItems(1)

End Sub

This code once again declares a FileDialog object. When the code instantiates the object,
it designates the dialog box type as a File Open dialog box. It sets the AllowMultiSelect
property of the dialog box to allow multiple selections in the dialog box. It displays the
dialog box and then displays the first selected file in a message box.

Taking Advantage of Built-In, Form-Filtering
Features
Access has several form-filtering features that are part of the user interface. You can opt to
include these features in your application, omit them from your application entirely, or
control their behavior. For your application to control their behavior, it needs to respond
to the Filter event, which it does by detecting when a filter is placed on the data in the
form. When it has detected a filter, the code in the Filter event executes.

Sometimes you might want to alter the standard behavior of a filter command. You might
want to display a special message to a user, for example, or take a specific action in your
code. You might also want your application to respond to a Filter event because you want
to alter the form’s display before the filter is applied. For example, if a certain filter is in
place, you might want to hide or disable certain fields. When the filter is removed, you
could then return the form’s appearance to normal.

CHAPTER 10 Advanced Form Techniques464

Fortunately, Access not only lets you know that the Filter event occurred, but it also lets
you know how the filter was invoked. Armed with this information, you can intercept
and change the filtering behavior as needed.

When a user chooses Filter By Form or Advanced Filter/Sort, the FilterType parameter
is filled with a value that indicates how the filter was invoked. If the user invokes the
filter by selecting Filter By Form, the FilterType parameter equals the constant
acFilterByForm; however, if she selects Advanced Filter/Sort, the FilterType parameter
equals the constant acFilterAdvanced. The following code demonstrates how to use these
constants:

Private Sub Form_Filter(Cancel As Integer, FilterType As Integer)

Select Case FilterType

Case acFilterByForm

MsgBox “You Just Selected Filter By Form”

Case acFilterAdvanced

MsgBox “You Are Not Allowed to Select Advanced Filter/Sort”

Cancel = True

End Select

End Sub

This code, placed in the form’s Filter event, evaluates the filter type. If the user selected
Filter By Form, the code displays a message box, and the filtering proceeds as usual.
However, if the user selected Advanced Filter/Sort, she’s told she can’t do this, and the
filter process is canceled.

You can not only check how the filter was invoked, but you can also intercept the process
when the filter is applied. You do this by placing code in the form’s ApplyFilter event, as
shown in this example:

Private Sub Form_ApplyFilter(Cancel As Integer, ApplyType As Integer)

Dim intAnswer As Integer

If ApplyType = acApplyFilter Then

intAnswer = MsgBox(“You just selected the criteria: “ & _

Chr(13) & Chr(10) & Me.Filter & _

Chr(13) & Chr(10) & “Are You Sure You Wish “ & __

to Proceed?”, vbYesNo + vbQuestion)

If intAnswer = vbNo Then

Cancel = True

End If

End If

End Sub

This code evaluates the value of the ApplyType parameter. If it’s equal to the constant
acApplyFilter, a message box is displayed, verifying that the user wants to apply the
filter. If the user responds Yes, the filter is applied; otherwise, the filter is canceled.

Taking Advantage of Built-In, Form-Filtering Features 465

1
0

Including Objects from Other Applications:
Linking Versus Embedding
Microsoft Access is an ActiveX client application, meaning that it can contain objects
from other applications. All versions of Access subsequent to Access 97 are also ActiveX
server applications. Using Access as an ActiveX server is covered in Chapter 24,
“Automation: Communicating with Other Applications.” Access’s capability to control
other applications with programming code is also covered in Chapter 24. In the following
sections, you learn how to link to and embed objects in your Access forms.

Bound OLE Objects
Bound OLE objects are tied to the data in an OLE field within a table in your database. An
example is the Picture field that’s part of the Categories table in the Northwind data-
base. The field type of the Categories table that supports multimedia data is of the OLE
Object field type. This means that each record in the table can contain a unique OLE
object. The Categories form contains a bound OLE control, whose control source is the
Picture field from the Categories table.

If you double-click the picture associated with a category, you can edit the OLE object in-
place. The picture associated with the category is actually embedded in the Categories
table. This means that the data associated with the OLE object is stored as part of the
Access database (ACCDB) file, within the Categories table. Embedded objects, if they
support the OLE 2.0 standard, can be modified in-place. This Microsoft feature is called
In-Place activation.

To insert a new object, take the following steps:

1. Move to the record that will contain the OLE object.

2. Right-click the OLE Object control and select Insert Object to open the Insert Object
dialog box.

3. Select an object type. Select Create New if you want to create an embedded object or
select Create from File if you want to link to or embed an existing file.

4. If you select Create from File, the Insert Object dialog box changes to look like the
one shown in Figure 10.14.

CHAPTER 10 Advanced Form Techniques466

FIGURE 10.14 The Insert Object dialog box as it appears when you select Create from File.

5. Select Link if you want to link to the existing file. Don’t check Link if you want to
embed the existing file. If you link to the file, the Access table will have a reference
to the file as well as to the presentation data (a bitmap) for the object. If you embed
the file, Access copies the original file, placing the copy in the Access table.

6. Click Browse and select the file you want to link to or embed.

7. Click OK.

Access returns you to the record that you were working with, and you can continue
working with that record or move to another record.

If you double-click a linked object, you launch its source application; you don’t get In-
Place activation (see Figure 10.15).

Including Objects from Other Applications: Linking Versus Embedding 467

1
0

FIGURE 10.15 Editing a linked object.

Unbound OLE Objects
Unbound OLE objects aren’t stored in your database. Instead, they are part of the form
they were created in. Like bound OLE objects, unbound OLE objects can be linked or
embedded. You create an unbound OLE object by adding an unbound object frame to
the form.

Using OpenArgs
The OpenArgs property gives you a way to pass information to a form as it’s being opened.
The OpenArgs argument of the OpenForm method is used to populate a form’s OpenArgs
property at runtime. It works like this:

DoCmd.OpenForm “frmPaymentMethods”, _

Datamode:=acFormAdd, _

WindowMode:=acDialog, _

OpenArgs:=NewData

This code is found in the time and billing application’s frmPayments form. It opens
the frmPaymentMethods form when a new method of payment is added to the
cboPaymentMethodID combo box. It sends the frmPaymentMethods form an OpenArg of
whatever data is added to the combo box. The Load event of the frmPaymentMethods
form looks like this:

Private Sub Form_Load()

If Not IsNull(Me.OpenArgs) Then

Me.txtPaymentMethod.Value = Me.OpenArgs

End If

End Sub

This code sets the txtPaymentMethod text box value to the value passed as the opening
argument. This occurs only when the frmPaymentMethods form is opened from the
frmPayments form.

Switching a Form’s RecordSource
Many developers don’t realize how easy it is to switch a form’s RecordSource property at
runtime. This is a great way to use the same form to display data from more than one
table or query containing the same fields. It’s also a great way to limit the data that’s
displayed in a form at a particular moment. Using the technique of altering a form’s
RecordSource property at runtime, as shown in Listing 10.1, you can dramatically
improve performance, especially for a client/server application. This example is found
in the frmShowSales form of the CHAP10EX database (see Figure 10.16).

CHAPTER 10 Advanced Form Techniques468

FIGURE 10.16 Changing the RecordSource property of a form at runtime.

LISTING 10.1 Altering a Form’s RecordSource at Runtime

Private Sub cmdShowSales_Click()

‘Check to see that Ending Date is later than Beginning Date.

If Me.txtEndingDate < Me.txtBeginningDate Then

MsgBox “The Ending Date must be later than the Beginning Date.”

txtBeginningDate.SetFocus

Exit Sub

End If

‘Create an SQL statement using search criteria entered by user and

‘set RecordSource property of ShowSalesSubform.

Dim strSQL As String

Dim strRestrict As String

Dim lngX As Long

lngX = Me.optSales.Value

strRestrict = ShowSalesValue(lngX)

Switching a Form’s RecordSource 469

1
0

‘Create SELECT statement.

strSQL = “SELECT DISTINCTROW tblCustomers.CompanyName,_” &)

“qryOrderSubtotals.OrderID, “

strSQL = strSQL & “qryOrderSubtotals.Subtotal ,” & _

“tblOrders.ShippedDate “

strSQL = strSQL & “FROM tblCustomers INNER JOIN “ & __

“(qryOrderSubtotals INNER JOIN tblOrders ON “

strSQL = strSQL & “qryOrderSubtotals.OrderID = “ & _

“tblOrders.OrderID) ON “

strSQL = strSQL & “tblCustomers.CustomerID = tblOrders.CustomerID “

strSQL = strSQL & “WHERE (tblOrders.ShippedDate _” & _

“Between Forms!frmShowSales!txtBeginningDate “

strSQL = strSQL & “And Forms!frmShowSales!txtEndingDate) “

strSQL = strSQL & “And “ & strRestrict

strSQL = strSQL & “ ORDER BY qryOrderSubtotals.Subtotal DESC;”

‘Set RecordSource property of ShowSalesSubform.

Me.fsubShowSales.Form.RecordSource = strSQL

‘If no records match criteria, reset subform’s

‘RecordSource property,

‘display message, and move focus to BeginningDate text box.

If Me.fsubShowSales.Form.RecordsetClone.RecordCount = 0 Then

Me.fsubShowSales.Form.RecordSource = _

“SELECT CompanyName FROM tblCustomers WHERE False;”

MsgBox “No records match the criteria you entered.”, _

vbExclamation, “No Records Found”

Me.txtBeginningDate.SetFocus

Else

‘Enable control in Detail section.

EnableControls Me, acDetail, True

‘Move insertion point to ShowSalesSubform.

Me.fsubShowSales!txtCompanyName.SetFocus

End If

End Sub

Private Function ShowSalesValue(lngOptionGroupValue As Long) As String

‘Return value selected in Sales option group.

‘Define constants for option group values.

Const conSalesUnder1000 = 1

CHAPTER 10 Advanced Form Techniques470

LISTING 10.1 Continued

Const conSalesOver1000 = 2

Const conAllSales = 3

‘Create restriction based on value of option group.

Select Case lngOptionGroupValue

Case conSalesUnder1000:

ShowSalesValue = “qryOrderSubtotals.Subtotal < 1000”

Case conSalesOver1000:

ShowSalesValue = “qryOrderSubtotals.Subtotal >= 1000”

Case Else

ShowSalesValue = “qryOrderSubtotals.Subtotal = True”

End Select

End Function

Listing 10.1 begins by storing the value of the optSales option group on the
frmShowSales main form into a Long Integer variable. It calls the ShowSalesValue func-
tion, which declares three constants; then it evaluates the parameter that was passed to it
(the Long Integer variable containing the option group value). Based on this value, it
builds a selection string for the subtotal value. This selection string becomes part of the
SQL statement used for the subform’s record source and limits the range of sales values
displayed on the subform.

The ShowSales routine builds a string containing a SQL statement, which selects all
required fields from the tblCustomers table and qryOrderSubtotals query. It builds a
WHERE clause that includes the txtBeginningDate and txtEndingDate from the main form
as well as the string returned from the ShowSalesValue function.

After the SQL statement has been built, the RecordSource property of the fsubShowSales
subform control is set equal to the SQL statement. The RecordCount property of the
RecordsetClone (the form’s underlying recordset) is evaluated to determine whether any
records meet the criteria specified in the RecordSource. If the record count is zero, no
records are displayed in the subform, and the user is warned that no records met the crite-
ria. However, if records are found, the form’s Detail section is enabled, and focus is moved
to the subform.

Learning Power Combo Box and List
Box Techniques
Combo and list boxes are very powerful. Being able to properly respond to a combo box’s
NotInList event, to populate a combo box by using code, and to select multiple entries in
a list box are essential skills of an experienced Access programmer. They’re covered in
detail in the following sections.

471

1
0

LISTING 10.1 Continued

Learning Power Combo Box and List Box Techniques

Handling the NotInList Event
As previously discussed, the NotInList event occurs when a user types a value in the text
box portion of a combo box that’s not found in the combo box list. This event takes place
only if the LimitToList property of the combo box is set to True. It’s up to you whether
you respond to this event.

You might want to respond with something other than the default error message when
the LimitToList property is set to True and the user tries to add an entry. For example, if
a user is entering an order and she enters the name of a new customer, you could react by
displaying a message box asking whether she really wants to add the new customer. If the
user responds affirmatively, you can display a customer form.

After you have set the LimitToList property to True, any code you place in the NotInList
event is executed whenever the user tries to type an entry that’s not found in the combo
box. The following is an example:

Private Sub cboPaymentMethodID_NotInList(NewData As String, _

Response As Integer)

‘If payment method is not in the list,

‘ask user if he wants to add it

If MsgBox(“Payment Method Not Found, Add?”, _

vbYesNo + vbQuestion, _

“Please Respond”) = vbYes Then

‘If he responds yes, open the frmPaymentMethods form

‘in add mode, passing in the new payment method

DoCmd.OpenForm “frmPaymentMethods”, _

DataMode:=acFormAdd, _

WindowMode:=acDialog, _

OpenArgs:=NewData

‘If form is still loaded, unload it

If IsLoaded(“frmPaymentMethods”) Then

Response = acDataErrAdded

DoCmd.Close acForm, “frmPaymentMethods”

‘If the user responds no,

Else

Response = acDataErrContinue

End If

Else

Response = acDataErrContinue

End If

End Sub

CHAPTER 10 Advanced Form Techniques472

When you place this code in the NotInList event procedure of your combo box, it
displays a message asking the user whether she wants to add the payment method. If the
user responds No, she is returned to the form without the standard error message being
displayed, but she still must enter a valid value in the combo box. If the user responds
Yes, she is placed in the frmPaymentMethods form, ready to add the payment method
whose name she typed.

The NotInList event procedure accepts a response argument, which is where you can tell
VBA what to do after your code executes. Any one of the following three constants can be
placed in the response argument:

. acDataErrAdded—This constant is used if your code adds the new value into the
record source for the combo box. This code requeries the combo box, adding the
new value to the list.

. acDataErrDisplay—This constant is used if you want VBA to display the default
error message.

. acDataErrContinue—This constant is used if you want to suppress VBA’s error
message, using your own instead. Access still requires that a valid entry be placed in
the combo box.

Working with a Pop-Up Form
The NotInList technique just described employs the pop-up form. When the user opts to
add the new payment method, the frmPaymentMethods form displays modally. This halts
execution of the code in the form that loads the frmPaymentMethods form (in this case,
the frmPayments form). The frmPaymentMethods form is considered a pop-up form because
the form is modal, it uses information from the frmPayments form, and the frmPayments
form reacts according to whether the OK or Cancel button is selected. The code in the
Load event of the frmPaymentMethods form in the time and billing database appears as
follows:

Private Sub Form_Load()

Me.txtPaymentMethod.Value = Me.OpenArgs

End Sub

This code uses the information received as an opening argument to populate the
txtPaymentMethod text box. No further code executes until the user clicks either the OK
or the Cancel command button. If the user clicks the OK button, the following code
executes:

Private Sub cmdOK_Click()

Me.Visible = False

End Sub

Learning Power Combo Box and List Box Techniques 473

1
0

Notice that the preceding code hides, rather than closes, the frmPaymentMethods form.
If the user clicks the Cancel button, this code executes:

Private Sub cmdCancel_Click()

DoCmd.RunCommand acCmdUndo

DoCmd.Close

End Sub

The code under the Cancel button first undoes the changes that the user made. It
then closes the frmPaymentMethods form. Once back in the NotInList event of the
cboPaymentMethod combo box on the frmPayments form, the following code executes:

If IsLoaded(“frmPaymentMethods”) Then

Response = acDataErrAdded

DoCmd.Close acForm, “frmPaymentMethods”

Else

Response = acDataErrContinue

End If

The code evaluates whether the frmPaymentMethods form is still loaded. If it is, the user
must have clicked OK. The Response parameter is set to acDataErrAdded, designating that
the new entry has been added to the combo box and to the underlying data source. The
code then closes the frmPaymentMethods form.

If the frmPaymentMethods form is not loaded, the user must have clicked Cancel. The
user is returned to the combo box where he must select another combo box entry. In
summary, the steps are as follows:

1. Open the pop-up form modally (with the WindowMode parameter equal to acDialog).

2. Pass an OpenArgs parameter, if desired.

3. When control returns to the original form, check to see whether the pop-up form is
still loaded.

4. If the pop-up form is still open, use its information and then close it.

Adding Items to a Combo Box or List Box at Runtime
Prior to Access 2002, it was very difficult to add and remove items from list boxes and
combo boxes at runtime. Access 2002, Access 2003, and Access 2007 list boxes and combo
boxes support two powerful methods that make it easier to programmatically manipulate
these boxes at runtime. The AddItem method allows you to easily add items to a list box
or a combo box. The RemoveItem method allows you to remove items from a combo box
or a list box. Here’s an example:

CHAPTER 10 Advanced Form Techniques474

Private Sub Form_Load()

Dim obj As AccessObject

‘Loop through all tables in the current database

‘adding the name of each table to the list box

For Each obj In CurrentData.AllTables

Me.lstTables.AddItem obj.Name

Next obj

‘Loop through all queries in the current database

‘adding the name of each query to the list box

For Each obj In CurrentData.AllQueries

Me.lstTables.AddItem obj.Name

Next obj

End Sub

This code is found in the frmSendToExcel form that’s part of the CHAP10EX database. It
loops through all tables in the database, adding the name of each table to the lstTables
list box. It then loops through each query in the database, once again adding each to the
list box.

Handling Multiple Selections in a List Box
List boxes have a Multiselect property. When set to True, this property lets the user select
multiple elements from the list box. Your code can then evaluate which elements are
selected and perform some action based on the selected elements. The frmReportSelection
form, found in the CHAP10EX database, illustrates the use of a multiselect list box. The code
under the Click event of the Run Reports button looks like that shown in Listing 10.2.

LISTING 10.2 Evaluating Which Items Are Selected in the Multiselect List Box

Private Sub cmdRunReports_Click()

Dim varItem As Variant

Dim lst As ListBox

Set lst = Me.lstReports

‘Single select is 0, Simple multiselect is 1,

‘and extended multiselect is 2.

If lst.MultiSelect > 0 Then

‘Loop through all the elements

‘of the ItemsSelected collection, and use

‘the Column array to retrieve the

‘associated value.

If lst.ItemsSelected.Count > 0 Then

For Each varItem In lst.ItemsSelected

Learning Power Combo Box and List Box Techniques 475

1
0

DoCmd.OpenReport lst.ItemData(varItem), acViewPreview

Next varItem

End If

End If

End Sub

This code first checks to ensure that the list box is a multiselect list box. If it is, and at
least one report is selected, the code loops through all the selected items in the list box.
It prints each report that is selected.

Learning Power Subform Techniques
Many new Access developers don’t know the ins and outs of creating and modifying a
subform and referring to subform controls, so here are some important points you should
know when working with subforms:

. The easiest way to add a subform to a main form is to open the main form and then
drag and drop the subform onto the main form.

. The subform control’s LinkChildFields and LinkMasterFields properties determine
which fields in the main form link to which fields in the subform. A single field
name, or a list of fields separated by semicolons, can be entered into these proper-
ties. When they are properly set, these properties make sure all records in the child
form relate to the currently displayed record in the parent form.

Referring to Subform Controls
Many developers don’t know how to properly refer to subform controls. You must refer to
any objects on the subform through the subform control on the main form, as shown in
this example:

Forms.frmCustomer.fsubOrders

This example refers to the fsubOrders control on the frmCustomer form. If you want to
refer to a specific control on the fsubOrders subform, you can then point at its controls
collection. Here’s an example:

Forms.frmCustomer.fsubOrders!txtOrderID

You can also refer to the control on the subform implicitly, as shown in this example:

Forms!frmCustomer!subOrders!txtOrderID

CHAPTER 10 Advanced Form Techniques476

LISTING 10.2 Continued

Both of these methods refer to the txtOrderID control on the form in the fsubOrder
control on the frmCustomer form. To change a property of this control, you would extend
the syntax to look like this:

Forms.frmCustomer.fsubOrders!txtOrderID.Enabled = False

This code sets the Enabled property of the txtOrderID control on the form in the
fsubOrders control to False.

Using Automatic Error Checking
In Access 2007, you can enable automatic error checking of forms. Error checking not
only points out errors in a form but also provides suggestions for correcting them.

To activate error checking, click to select the Microsoft Access button and then click
Access Options. Click to select the Object Designers tab (see Figure 10.17). Click the
Enable Error Checking check box within the Error checking group of options to enable
error checking. After you enable error checking, indicators appear on your form, letting
you know that something is wrong (see Figure 10.18). You then click the indicator, and
an explanation and suggestions appear for correcting the error (see Figure 10.19).

Using Automatic Error Checking 477

1
0

FIGURE 10.17 You can activate error checking from the Object Designers tab of the Access
Options dialog box.

FIGURE 10.18 Indicators appear on your form, letting you know that something is wrong.

CHAPTER 10 Advanced Form Techniques478

FIGURE 10.19 A menu appears, providing you with an explanation and suggestions for
correcting the error.

The error checker will identify several categories of errors. They are shown in Table 10.4.

TABLE 10.4 Categories of Errors Identified by the Error Checker

Category Description

Unassociated label and control You select a label and a control (for example, a label
and a text box) that are not associated with one
another.

New unassociated labels You add a label that is not associated with another
control.

Keyboard shortcut errors You select a control with an invalid shortcut key associ-
ated with it (that is, duplicate shortcut key or space as
a shortcut key).

Invalid control properties The string in the control source is not valid. The reason
for this error might be that it is not a valid field name
or that the control source refers to itself. It can also be
that the expression does not begin with an equal sign or
that the option value in an option group is not unique.

If Access identifies several errors for the same control, the error indicator remains until all
errors are corrected. If you choose to ignore an error, simply select the Ignore Error option
on the Error Checking Options menu. This will clear the error indicator until you close
and open the form again. Remember that via the Access Options, you can turn off error
checking entirely (although I find this feature to be extremely valuable).

Viewing Object Dependencies
Microsoft added a wonderful feature to Access 2003. It enables you to view information
about object dependencies. Here’s how it works:

1. To invoke the Object Dependency feature, select Tables and Related Views from the
Navigation Pane drop-down. The first time you perform this task for a database, a
dialog box appears, prompting you to update object dependency information for
the database (see Figure 10.20). After you click OK, Access updates the dependency
information for the database and displays the object dependencies within the
Navigation Pane (see Figure 10.21). In Figure 10.21, you can see all the objects that
depend on the Categories table.

Viewing Object Dependencies 479

1
0

FIGURE 10.20 The first time you attempt to display object dependencies within a database,
Access prompts you to update dependency information for that database.

CHAPTER 10 Advanced Form Techniques480

FIGURE 10.21 The Navigation Pane shows you the objects that depend on the selected
object.

Using AutoCorrect Options
The AutoCorrect feature minimizes the problems that occur when you rename tables,
fields, queries, forms, reports, text boxes, or other controls. You enable AutoCorrect on
the Current Database tab of the Access Options dialog box (see Figure 10.22).

You can enable AutoCorrect at one of three levels:

. Track Name AutoCorrect Info—Access simply keeps track of the name changes. It
does not fix errors caused by renaming.

. Perform Name AutoCorrect—Access keeps track of changes and fixes all changes as
they are made.

. Log Name Autocorrect Changes—In addition to tracking changes and fixing errors,
this option provides you with a table that logs all changes made to the names of
objects.

Propagating Field Properties 481

1
0

FIGURE 10.22 You enable AutoCorrect on the Current Database tab of the Access Options
dialog box.

Propagating Field Properties
When you make a change to an inherited property in a table’s Design view, you can opt
to propagate that change to the controls on your forms that are bound to that field.
Here’s how it works:

1. Open the table whose design you want to modify in Design view.

2. Click in the field whose property you want to change.

3. Click in the property whose value you want to change.

4. Change the property and press Enter. If the property that you changed is inherita-
ble, the Property Update Options button appears (see Figure 10.23).

CHAPTER 10 Advanced Form Techniques482

FIGURE 10.23 The Property Update Options button appears for inheritable properties.

5. Open the menu and select Update (see Figure 10.24). The Update Properties dialog
box appears (see Figure 10.25). Select the forms and reports that contain the
controls that you want to update. Click Yes to complete the process.

Figure 10.24 Open the menu and select Update.

FIGURE 10.25 The Update Properties dialog box allows you to select the forms and reports
that you want to update.

Synchronizing a Form with Its Underlying
Recordset
You use a form’s RecordsetClone property to refer to its underlying recordset. You can
manipulate this recordset independently of what’s currently being displayed on the form.
Here’s an example:

Private Sub cboCompany_AfterUpdate()

‘Create a recordset based on the recordset underlying the form

Dim rst As DAO.Recordset

Set rst = Me.RecordsetClone

‘Search for the client selected in the combo box

rst.FindFirst “ClientID = “ & cboCompany.Value

‘If the client is not found, display an error message

‘If the client is found, move the bookmark of the form

‘to the bookmark in the underlying recordset

If rst.NoMatch Then

MsgBox “Client Not Found”

Else

Me.Bookmark = rst.Bookmark

End If

This code creates an object variable that points at the form’s RecordsetClone. The record-
set object variable can then be substituted for Me.RecordsetClone because it references
the form’s underlying recordset. The example then uses the object variable to execute the
FindFirst method. It searches for a record in the form’s underlying recordset whose
ClientID is equal to the current combo box value. If a match is found, the form’s book-
mark is synchronized with the bookmark of the form’s underlying recordset.

The RecordsetClone property allows you to navigate or operate on a form’s records inde-
pendently of the form. This capability is often useful when you want to manipulate the
data behind the form without affecting the appearance of the form. On the other hand,
when you use the Recordset property of the form, the act of changing which record is

Synchronizing a Form with Its Underlying Recordset 483

1
0

current in the recordset returned by the form’s Recordset property also sets the current
record of the form. Here’s an example:

Private Sub cboSelectEmployee_AfterUpdate()

‘Find the employee selected in the combo box

Me.Recordset.FindFirst “EmployeeID = “ _

& Me.cboSelectEmployee

‘If employee not found, display a message

If Me.Recordset.EOF Then

MsgBox “Employee Not Found”

End If

End Sub

Notice that you do not need to set the Bookmark property of the form equal to the
Bookmark property of the recordset. They are one and the same.

Creating Custom Properties and Methods
Forms and reports are Class modules, which means they act as templates for objects you
create instances of at runtime. Public procedures of a form and report become Custom
properties and methods of the form object at runtime. Using VBA code, you can set the
values of a form’s Custom properties and execute its methods.

Creating Custom Properties
You can create Custom properties of a form or report in one of two ways:

. Create Public variables in the form or report.

. Create PropertyLet and PropertyGet routines.

Creating and Using a Public Variable as a Form Property
The following steps are used to create and access a Custom form or report property
based on a Public variable. The example is included in CHAP10EX.ACCDB in the forms
frmPublicProperties and frmChangePublicProperty.

1. Begin by creating the form that will contain the Custom property (Public variable).

2. Place a Public variable in the General Declarations section of the form or report (see
Figure 10.26).

3. Place code in the form or report that accesses the Public variable. The code in
Figure 10.26 creates a Public variable called CustomCaption. The code behind
the Click event of the cmdChangeCaption command button sets the form’s
(frmPublicProperties) Caption property equal to the value of the Public variable.

CHAPTER 10 Advanced Form Techniques484

Creating Custom Properties and Methods 485

1
0

FIGURE 10.26 Creating a Public variable in the General Declarations section of a Class
module.

4. Create a form, report, or module that modifies the value of the Custom property.
Figure 10.27 shows a form called frmChangePublicProperty.

5. Add the code that modifies the value of the Custom property. The code behind the
ChangeCaption button, as shown in Figure 10.26, modifies the value of the Custom
property called CustomCaption that’s found on the frmPublicProperties form.

To test the Custom property created in the preceding example, run the frmPublicProperties
form, which is in the CHAP10EX.MDB database on the sample code CD-ROM. Click the
Change Form Caption command button. Nothing happens because the value of the
Custom property hasn’t been set. Open the frmChangePublicProperty form and click the
Change Form Property command button. Return to frmPublicProperties and again click
the Change Form Caption command button. The form’s caption should now change.

Close the frmPublicProperties form and try clicking the Change Form Property
command button. A runtime error occurs, indicating that the form you’re referring to is
not open. You can eliminate the error by placing the following code in the Click event of
cmdPublicFormProperty:

Private Sub cmdPublicFormProperty_Click()
Form_frmPublicProperties.CustomCaption = _

“This is a Custom Caption”
Forms_frmPublicProperties.Visible = True

End Sub

This code modifies the value of the Public property by using the syntax
Form_FormName.Property. If the form isn’t loaded, this syntax loads the form but
leaves it hidden. The next command sets the form’s Visible property to True.

CHAPTER 10 Advanced Form Techniques486

FIGURE 10.27 Viewing the frmChangePublicProperty form.

Creating and Using Custom Properties with PropertyLet and PropertyGet Routines
A PropertyLet routine is a special type of subroutine that automatically executes when-
ever the property’s value is changed. A PropertyGet routine is another special subroutine
that automatically executes whenever the value of the Custom property is retrieved.
Instead of using a Public variable to create a property, you insert two special routines:
PropertyLet and PropertyGet. This example is found in CHAP10EX.ACCDB in the
frmPropertyGetLet and frmChangeWithLet forms. To insert the PropertyLet and
PropertyGet routines, follow these steps:

1. Choose Insert, Procedure. The dialog box shown in Figure 10.28 appears.

2. Type the name of the procedure in the Name text box.

3. Select Property from the Type option buttons.

4. Select Public as the Scope so that the property is visible outside the form.

5. Click OK. The PropertyGet and PropertyLet subroutines are inserted in the module
(see Figure 10.29).

FIGURE 10.28 Starting a new procedure with the Add Procedure dialog box.

Creating Custom Properties and Methods 487

1
0

FIGURE 10.29 The PropertyGet and PropertyLet subroutines inserted in the module.

Notice that the Click event code for the cmdChangeCaption command button hasn’t
changed. The PropertyLet routine, which automatically executes whenever the value of
the CustomCaption property is changed, takes the uppercase value of what it’s being sent
and places it in a Private variable called mstrCustomCaption. The PropertyGet routine
takes the value of the Private variable and returns it to whoever asked for the value of
the property. The following code is placed in the form called frmChangeWithLet:

Private Sub cmdPublicFormProperty_Click()

Form_frmPropertyGetLet.CustomCaption = “This is a Custom Caption”

Forms!frmPropertyGetLet.Visible = True

End Sub

This routine tries to set the value of the Custom property called CustomCaption to the
value “This is a Custom Caption”. Because the property’s value is being changed, the
PropertyLet routine in frmPropertyGetLet is automatically executed. It looks like this:

Public Property Let CustomCaption(ByVal CustomCaption As String)

mstrCustomCaption = UCase$(CustomCaption)

End Property

The PropertyLet routine receives the value “This is a Custom Caption” as a parameter. It
uses the UCase function to manipulate the value it was passed and convert it to uppercase.
It then places the manipulated value into a Private variable called mstrCustomCaption. The
PropertyGet routine isn’t executed until the user clicks the cmdChangeCaption button in
the frmPropertyGetLet form. The Click event of cmdChangeCaption looks like this:

Private Sub cmdChangeCaption_Click()

Me.Caption = CustomCaption

End Sub

Because this routine needs to retrieve the value of the Custom property CustomCaption, the
PropertyGet routine automatically executes:

Public Property Get CustomCaption() As String

CustomCaption = mstrCustomCaption

End Property

The PropertyGet routine takes the value of the Private variable, set by the PropertyLet
routine, and returns it as the value of the property.

You might wonder why this method is preferable to declaring a Public variable. Using the
UCase function within PropertyLet should illustrate why. Whenever you expose a Public
variable, you can’t do much to validate or manipulate the value you receive. The
PropertyLet routine gives you the opportunity to validate and manipulate the value to
which the property is being set. By placing the manipulated value in a Private variable
and then retrieving the Private variable’s value when the property is returned, you gain
full control over what happens internally to the property.

NOTE

This section provides an introduction to custom properties and methods. You can find
a comprehensive discussion of custom classes, properties, and methods in Chapter
14, “Exploiting the Power of Class Modules.”

CHAPTER 10 Advanced Form Techniques488

Creating Custom Methods
Custom methods are simply Public functions and subroutines placed in a Form module
or a Report module. As you will see, they can be called by using the Object.Method
syntax. Here are the steps involved in creating a Custom method; they are found in
CHAP10EX.ACCDB in the forms frmMethods and frmExecuteMethod:

1. Open the form or report that will contain the Custom method.

2. Create a Public function or subroutine (see Figure 10.30).

Creating Custom Properties and Methods 489

1
0

FIGURE 10.30 Using the custom method ChangeCaption.

3. Open the Form module, Report module, or Code module that executes the Custom
method.

4. Use the Object.Method syntax to invoke the Custom method (see Figure 10.31).

Figure 10.30 shows the Custom method ChangeCaption found in the frmMethods form.
The method changes the form’s caption. Figure 10.31 shows the Click event of
cmdExecuteMethod found in the frmExecuteMethod form. It issues the ChangeCaption
method of the frmMethods form and then sets the form’s Visible property to True.

CHAPTER 10 Advanced Form Techniques490

FIGURE 10.31 The Click event code behind the Execute Method button.

Practical Examples: Applying Advanced
Techniques to Your Application
You can use many examples in this chapter in all the applications that you build. To
polish your application, build a startup form that displays a splash screen and then
performs some setup functions. The CHAP10EX.ACCDB file contains these examples.

Getting Things Going with a Startup Form
The frmSwitchboard form is responsible both for displaying the splash screen and for
performing the necessary setup code. The code in the Load event of the frmSwitchboard
form looks like this:

Private Sub Form_Load()

DoCmd.Hourglass True

DoCmd.OpenForm “frmSplash”

Call GetCompanyInfo

DoCmd.Hourglass False

End Sub

The Form_Load event first invokes an hourglass. It then opens the frmSplash form.
Next, it calls the GetCompanyInfo routine to fill in the CompanyInfo type structure that is
eventually used throughout the application. (Type structures are covered in Chapter 13,
“Advanced VBA Techniques.”) Finally, Form_Load turns off the hourglass.

Building a Splash Screen
The splash screen, shown in Figure 10.32, is called frmSplash. Its timer interval is set to
3,000 milliseconds (3 seconds), and its Timer event looks like this:

Private Sub Form_Timer()

DoCmd.Close acForm, Me.Name

End Sub

Summary 491

1
0

FIGURE 10.32 Using an existing form as a splash screen.

The Timer event unloads the form. The frmSplash Pop-up property is set to Yes, and its
border is set to None. Record selectors and navigation buttons have been removed.

Summary
Forms are the centerpiece of most Access applications, so it’s vital that you are able to
fully harness their power and flexibility. This chapter showed you how to work with Form
and Control events. You saw many examples illustrating when and how to leverage the
event routines associated with forms and specific controls. You also learned about the
types of forms available, their uses in your applications, and how you can build them.
Finally, you learned several power techniques that will help you develop complex forms.

This page intentionally left blank

IN THIS CHAPTER

. Why This Chapter Is Important

. Events Available for Reports
and When to Use Them

. Order of Events for Reports

. Events Available for Report
Sections and When to Use
Them

. Programmatically Manipulating
Report Sections

. Taking Advantage of Special
Report Properties

. Controlling the Printer

. Using Automatic Error
Checking

. Propagating Field Properties

. Incorporating Practical
Applications of Report Events
and Properties

. Practical Examples: Practicing
What You Learned

CHAPTER 11

Advanced Report
Techniques

Why This Chapter Is Important
Chapter 6, “What Every Developer Needs to Know About
Reports,” covers all the basics of report design. Reports are
an integral part of almost every application, so fortunately
for you, the Access 2007 report design tool is very power-
ful. Although it’s easy to create most reports, as you mature
as an Access developer, you’ll probably want to learn the
intricacies of Access report design. This chapter covers
report events, advanced techniques, and tips and tricks of
the trade.

Events Available for Reports and
When to Use Them
Although report events aren’t as plentiful as form events,
the report events you can trap for allow you to control
what happens as your report runs. The following sections
discuss report events, and the section “Events Available for
Report Sections and When to Use Them” covers events
specific to report sections.

The Open Event
The Open event is the first event that occurs in a report,
before the report begins printing or displaying. In fact, it
happens even before the query underlying the report is
run. Listing 11.1 provides an example of using the Open
event.

LISTING 11.1 The Open Event

Private Sub Report_Open(Cancel As Integer)

‘Ignore an error if it occurs

On Error Resume Next

‘Open the report criteria form

DoCmd.OpenForm “frmReportDateRange”, _

WindowMode:=acDialog, _

OpenArgs:=”rptProjectBillingsbyWorkCode”

‘If the criteria form is not loaded, display an error

‘message and cancel the printing of the report

‘(the form will not be loaded if the user clicks Cancel)

If Not IsLoaded(“frmReportDateRange”) Then

MsgBox “Criteria Form Not Successfully Loaded, “ & _

“Canceling Report”

Cancel = True

End If

End Sub

You can find this code in rptProjectBillingsByWorkCode in CHAP11.ACCDB on the sample
code CD-ROM. It tries to open the frmReportDateRange form, the criteria form that
supplies the parameters for the query underlying the report. The code cancels the report
if it is unable to load the form.

The Close Event
The Close event occurs as the report is closing, before the Deactivate event occurs.
Listing 11.2 illustrates the use of the Close event.

LISTING 11.2 The Close Event

Private Sub Report_Close()

‘Close criteria form as report is closing

DoCmd.Close acForm, “frmReportDateRange”

End Sub

You can find this code in the rptProjectBillingsByWorkCode report in CHAP11.ACCDB on
the sample code CD-ROM. It closes the criteria form frmReportDateRange when the report
is closing, in case the form is still open.

The NoData Event
If no records meet the criteria of the recordset underlying a report’s RecordSource, the
report prints without data and displays #Error in the report’s Detail section. To eliminate
this problem, you can code the NoData event of the report, which executes when no
records meet the criteria specified in the report’s RecordSource (see Listing 11.3).

CHAPTER 11 Advanced Report Techniques494

LISTING 11.3 The NoData Event

Private Sub Report_NoData(Cancel As Integer)

‘Display a message and cancel processing

MsgBox “There is no data for this report. Canceling report...”

Cancel = True

End Sub

You can find this code in the NoData event of rptProjectBillingsByWorkCode in
CHAP11.ACCDB on the sample code CD-ROM. In case no data is returned by the report’s
underlying recordset, a message is displayed to the user, and Cancel is set equal to True.
This exits the report without running it.

The Page Event
The Page event gives you the opportunity to do something immediately before the
formatted page is sent to the printer. For example, the Page event can be used to place a
border around a page, as shown in Listing 11.4.

LISTING 11.4 The Page Event

Private Sub Report_Page()

‘Draw a red line starting in the upper-left corner

‘and going to the lower-right corner

Me.Line (0, 0)-(Me.ScaleWidth - 30, Me.ScaleHeight - 30), _

RGB(255, 0, 0), B

End Sub

You will find this code in the rptTimeSheet report, in CHAP11.ACCDB. It draws a red line
on the report, starting in the upper-left corner and going to the lower-right corner. It uses
the ScaleWidth and ScaleHeight properties to determine where the lower-right corner of
the report’s printable area is. The B in the third parameter creates a rectangle by using the
coordinates as opposite corners of the rectangle.

The Error Event
If an Access Database Engine error occurs when the report is formatting or printing, the
Error event is triggered. This error usually occurs if there’s no RecordSource for the report
or if someone else has exclusive use over the report’s RecordSource. Listing 11.5 provides
an example.

LISTING 11.5 The Error Event

Private Sub Report_Error(DataErr As Integer, Response As Integer)

‘If Data Source Not Found error occurs, display message

‘To test this, rename qryTimeSheet

If DataErr = 2580 Then

Events Available for Reports and When to Use Them 495

1
1

MsgBox “Record Source Not Available for this Report”

Response = acDataErrContinue

End If

End Sub

NOTE

If you have Name Autocorrect turned on, the process of renaming the query will not
cause the desired error to occur.

This code responds to a DataErr of 2580, which means that the report’s RecordSource
isn’t available. A custom message is displayed to the user, and the Access error is
suppressed.

Order of Events for Reports
Understanding the order of events for reports is important. When the user opens a report,
previews it, and then closes it, the following sequence of events occurs:

Open->Activate->Close->Deactivate

When the user switches to another report or to a form, the following sequence occurs:

Deactivate(Current Report)->Activate(Form or Report)

NOTE

The Deactivate event doesn’t occur when the user switches to a dialog box, to a
form whose PopUp property is set to Yes, or to a window of another application.

Events Available for Report Sections and When to
Use Them
Just as the report itself has events, so does each section of the report. The three section
events are the Format event, Print event, and Retreat event, covered in the following
sections.

The Format Event
The Format event happens after Access has selected the data to be included in a report
section but before it formats or prints the data. With the Format event, you can affect the
layout of the section or calculate the results of data in the section, before the section actu-
ally prints. Listing 11.6 shows an example.

CHAPTER 11 Advanced Report Techniques496

LISTING 11.5 Continued

LISTING 11.6 Using the Format Event to Affect the Report Layout

Private Sub DetailSection_Format(Cancel As Integer, FormatCount As Integer)

‘Determine whether to print detail record or “Continued on Next Page...”

‘Show Continued text box if at maximum number of

‘detail records for page.

If (Me.txtRow = Me.txtOrderPage * (Me.txtRowsPerPage - 1) + 1) _

And Me.txtRow <> Me.txtRowCount Then

Me.txtContinued.Visible = True

End If

‘Show page break and hide controls in detail record.

With Me

If .txtContinued.Visible Then

.txtDetailPageBreak.Visible = True

.txtProductID.Visible = False

.txtProductName.Visible = False

.txtQuantity.Visible = False

.txtUnitPrice.Visible = False

.txtDiscount.Visible = False

.txtExtendedPrice.Visible = False

‘Increase value in Order Page.

.NextRecord = False

.txtOrderPage = Me.txtOrderPage + 1

Else

‘Increase row count if detail record is printed.

.txtRow = Me.txtRow + 1

End If

End With

End Sub

This code is found in the rptInvoice report included in the CHAP11EX.ACCDB database
found on your sample code CD-ROM. The report has controls that track how many rows
of detail records should be printed on each page. If the maximum number of rows has
been reached, a control with the text Continued on Next Page... is visible. If the control
is visible, the page break control is also made visible, and all the controls that display the
detail for the report are hidden. The report is kept from advancing to the next record.

Another example of the Format event is found in the Page Header of the rptEmployeeSales
report, found in the CHAP11EX.ACCDB database. Because the report is an unbound report
whose controls are populated by using Visual Basic for Applications (VBA) code at
runtime, the report needs to determine what’s placed in the report header. This varies

Events Available for Report Sections and When to Use Them 497

1
1

depending on the result of the crosstab query on which the report is based. The code is
shown in Listing 11.7.

LISTING 11.7 Using the Format Event to Populate Unbound Controls at Runtime

Private Sub PageHeader0_Format(Cancel As Integer, FormatCount As Integer)

Dim intX As Integer

‘Put column headings into text boxes in page header.

For intX = 1 To mintColumnCount

Me(“Head” + Format(intX)) = mrstReport(intX - 1).Name

Next intX

‘Make next available text box Totals heading.

Me(“Head” + Format(mintColumnCount + 1)) = “Totals”

‘Hide unused text boxes in page header.

For intX = (mintColumnCount + 2) To conTotalColumns

Me(“Head” + Format(intX)).Visible = False

Next intX

End Sub

The code loops through each column of the recordset that results from executing the
crosstab query (in the Open event of the report). The code populates the controls in the
report’s Page Header with the name of each column in the query result. The final column
header is set equal to Totals. Finally, any remaining (extra) text boxes are hidden. This is
one of several examples in the chapter that covers the Format event.

NOTE

The example in Listing 11.7 and several other examples in this chapter use an ActiveX
Data Objects (ADO) recordset. ADO is covered in Chapter 15, “What Are ActiveX Data
Objects, and Why Are They Important?” If you are unfamiliar with ADO, you might want
to review Chapter 15 before reviewing the examples.

TIP

By placing logic in the Format event of a report’s Detail section, you can control what
happens as each line of the Detail section is printed.

The Print Event
The code in the Print event executes when the data formats to print in the section but
before it’s actually printed. The Print event occurs at the following times for different
sections of the report:

CHAPTER 11 Advanced Report Techniques498

. Detail Section—Just before the data is printed.

. Group Headers—Just before the Group Header is printed; the Group Header’s Print
event has access to both the Group Header and the first row of data in the group.

. Group Footers—Just before the Group Footer is printed; the Print event of the
Group Footer has access to both the Group Footer and the last row of data in the
group.

Listing 11.8 is in the Print event of the rptEmployeeSales report’s Detail section;
this report is included in the CHAP11EX.ACCDB database and is called from
frmEmployeeSalesDialogBox.

LISTING 11.8 Using the Print Event to Calculate Column and Row Totals

Private Sub Detail1_Print(Cancel As Integer, PrintCount As Integer)

Dim intX As Integer

Dim lngRowTotal As Long

‘If PrintCount is 1, initialize rowTotal variable.

‘Add to column totals.

If Me.PrintCount = 1 Then

lngRowTotal = 0

For intX = 2 To mintColumnCount

‘Starting at column 2 (first text box with crosstab value),

‘compute total for current row in Detail section.

lngRowTotal = lngRowTotal + Me(“Col” + Format(intX))

‘Add crosstab value to total for current column.

mlngRgColumnTotal(intX) = mlngRgColumnTotal(intX) + _

Me(“Col” + Format(intX))

Next intX

‘Place row total in text box in Detail section.

Me(“Col” + Format(mintColumnCount + 1)) = lngRowTotal

‘Add row total for current row to grand total.

mlngReportTotal = mlngReportTotal + lngRowTotal

End If

End Sub

The code begins by evaluating the PrintCount property. If it’s equal to 1, meaning this is
the first time the Print event has occurred for the Detail section, the row total is set equal
to 0. The code then loops through each control in the section, accumulating totals for
each column of the report and a total for the row. After the loop has been exited, the
routine places the row total in the appropriate control and adds the row total to the
report’s grand total. The report’s Detail section is now ready to be printed.

Events Available for Report Sections and When to Use Them 499

1
1

NOTE

Many people are confused about when to place code in the Format event and when to
place code in the Print event. If you’re doing something that doesn’t affect the page
layout, you should use the Print event. However, if you’re doing something that affects
the report’s physical appearance (the layout), use the Format event.

The Retreat Event
Sometimes Access needs to move back to a previous section when printing, such as when
a group’s Keep Together property is set to With First Detail or Whole in the Property
Sheet. Access needs to format the Group Header and the first detail record or, in the case
of Whole, the entire group. It then determines whether it can fit the section on the
current page. It retreats from the two sections and then formats and prints them; a
Retreat event occurs for each section. Here’s an example of the Retreat event for a
report’s Detail section:

Private Sub Detail1_Retreat()

‘Always back up to previous record when detail section retreats.

mrstReport.MovePrevious

End Sub

This code is placed in the Retreat event of the rptEmployeeSales report that’s part of
CHAP11EX.ACCDB. Because the report is unbound, it needs to return to the previous record
in the recordset whenever the Retreat event occurs.

CAUTION

Whenever you’re working with an unbound report, you need to be careful that the
record pointer remains synchronized with the report. For example, if the record pointer
has been advanced and the Retreat event occurs, the record pointer must be moved
back to the previous record.

Order of Section Events
Just as report events have an order, report sections also have an order of events. All the
Format and Print events for each section happen after the report’s Open and Activate

events, but before the report’s Close and Deactivate events. The sequence looks like this:

Open(Report)->Activate(Report)->Format(Report Section)->

Print(Report Section)->Close(Report)->Deactivate(Report)

CHAPTER 11 Advanced Report Techniques500

Programmatically Manipulating Report Sections
You create and manipulate report sections not only at design time, but also at runtime.
You must first open the report in Design view. You use the DoCmd object to add a report
header and footer or a page header and footer. The code is shown in Listing 11.9.

LISTING 11.9 Using the DoCmd Object to Programmatically Add Sections to Reports at
Runtime

Private Sub cmdAddHeadersFooters_Click()

‘Open rptAny in Design view

DoCmd.OpenReport “rptAny”, acViewDesign

‘Add a report header and footer

DoCmd.RunCommand acCmdReportHdrFtr

‘Add a page header and footer

DoCmd.RunCommand acCmdPageHdrFtr

End Sub

You can also add section headers and footers. The code in Listing 11.10 illustrates the
process. It is found in frmReportSections on the sample code CD-ROM.

LISTING 11.10 Adding Sections to Reports at Runtime

Private Sub cmdAddSections_Click()

Dim boolSuccess As Boolean

‘Use the CreateGroupLevel function to create a grouping

‘based on the City field in the report rptAny

boolSuccess = CreateGroupLevel(“rptAny”, “City”, True, True)

End Sub

Note that the CreateGroupLevel function receives four parameters. The first is the name
of the report you want to affect. The second is an expression designating the expression
on which the grouping is based. The third parameter allows you to specify whether you
want the group to have a group header, and the final parameter lets you designate
whether you want to include a group footer.

Taking Advantage of Special Report Properties
Several report properties are available only at runtime. They let you refine your report’s
processing significantly. These properties are covered in the sections that follow. The later
section “Incorporating Practical Applications of Report Events and Properties” provides
examples of these properties.

Taking Advantage of Special Report Properties 501

1
1

MoveLayout
The MoveLayout property indicates to Access whether it should move to the next printing
location on the page. When you set the property to False, the printing position is not
advanced.

NextRecord
The NextRecord property specifies whether a section should advance to the next record.
By setting this property to False, you suppress advancing to the next record.

PrintSection
The PrintSection property indicates whether the section is printed. By setting this prop-
erty to False, you can suppress printing the section.

Interaction of MoveLayout, NextRecord, and PrintSection
By using the MoveLayout, NextRecord, and PrintSection properties in combination,
you can determine exactly where, how, and whether data is printed. Table 11.1 illustrates
this point.

TABLE 11.1 Interaction of MoveLayout, NextRecord, and PrintSection

MoveLayout NextRecord PrintSection Effect

True True True Move to the next position, get the next
record, and print the data.

True False True Move to the next position, remain on the
same record, and print the data.

True True False Move to the next position, get the next
record, and don’t print the data. This has the
effect of skipping a record and leaving a
blank space.

True False False Move to the next position, remain on the
same record, and don’t print. This causes a
blank space to appear without moving to the
next record.

False True True Remain in the same position, get the next
record, and print the data. This has the
effect of overlaying one record on another.

False False True Not allowed.
False True False Remain in the same position, get the next

record, and refrain from printing. This has
the effect of skipping a record without
leaving a blank space.

False False False Not allowed.

CHAPTER 11 Advanced Report Techniques502

FormatCount
The FormatCount property evaluates the number of times the Format event has occurred
for the report’s current section. The Format event happens more than once whenever the
Retreat event occurs. By checking the FormatCount property, you can make sure that
complex code placed in the Format event is executed only once.

PrintCount
The PrintCount property identifies the number of times the Print event has occurred
for the report’s current section. The Print event happens more than once whenever the
Retreat event occurs. By checking the value of the PrintCount property, you can make
sure that logic in the Print event is executed only once.

HasContinued
The HasContinued property determines whether part of the current section is printed on
a previous page. You can use this property to hide or show certain report controls (for
example, Continued From...), depending on whether the section is continued.

WillContinue
The WillContinue property determines whether the current section continues on another
page. You can use this property as you do the HasContinued property to hide or display
certain controls when a section continues on another page.

Controlling the Printer
Prior to Access 2002, there was no easy way to programmatically control the printer in
the applications that you built. Unlike other aspects of Access in which Microsoft pro-
vided you with objects, properties, methods, and events that you could easily manipulate,
programmatically controlling the printer in versions prior to Access 2002 involved rolling
up your sleeves and talking at a low level to operating system objects.

Fortunately, Access 2002 introduced a new Printer object and a Printers collection. The
Printer object greatly facilitates the process of programmatically manipulating a printer.
The Printers collection allows you to loop through all the Printer objects and perform
a task.

The Printer Object
The Printers collection consists of individual Printer objects. You use a Printer object
to control each printer in the Printers collection. Listing 11.11 provides an example of
the Printer object.

Controlling the Printer 503

1
1

LISTING 11.11 The Printer Object

Private Sub cmdPrinterObject_Click()

‘Declare a Printer object

Dim prt As Printer

‘Point the Printer object at the first printer in

‘the Printers collection

Set prt = Printers(0)

‘Display properties of the printer

MsgBox “Device Name: “ & prt.DeviceName & vbCrLf & _

“Port: “ & prt.Port & vbCrLf & _

“Color Mode: “ & prt.ColorMode & vbCrLf & _

“Copies: “ & prt.Copies

End Sub

Listing 11.11 begins by instantiating a Printer object. It points the Printer object at the
first printer in the Printers collection. It then retrieves the DeviceName, Port, ColorMode,
and Copies properties of the printer. These are four of the many properties included for
the Printer object. Other properties include LeftMargin, RightMargin, TopMargin,
BottomMargin, Orientation, and PrintQuality. Most properties of the Printer object
are read/write. This means that you can programmatically manipulate the properties at
runtime, easily controlling the behavior of the printer.

The Printers Collection
Using the Printers collection, you can loop through all the printers available for a user,
programmatically manipulating each one. Listing 11.12 provides an example. It is found
in frmPrinterObjectAndPrintersCollection on the sample code CD-ROM.

LISTING 11.12 The Printers Collection

Private Sub cmdPrintersCollection_Click()

‘Declare a Printer object

Dim prt As Printer

Dim strPrinterInfo As String

‘Loop through each printer in the user’s

‘Printers collection

For Each prt In Printers

‘Retrieve properties of the printer

strPrinterInfo = strPrinterInfo & vbCrLf & _

“Device Name: “ & prt.DeviceName & “; “ & _

CHAPTER 11 Advanced Report Techniques504

“Port: “ & prt.Port & “; “

Next prt

‘Display the properties of all printers in a

‘message box

MsgBox strPrinterInfo

End Sub

Using Automatic Error Checking
In Access 2007, you can enable automatic error checking of reports. Error checking not
only points out errors in a report but also provides suggestions for correcting them.

To activate error checking, click the Microsoft Office Access button and then select Access
Options. Click to select the Object Designers tab (see Figure 11.1). Click the Enable Error
Checking check box to enable error checking. After you enable error checking, indicators
appear on your report, letting you know that something is wrong (see Figure 11.2). You
then click the indicator, and an explanation along with suggestions for correcting the
error appear (see Figure 11.3).

Using Automatic Error Checking 505

1
1

LISTING 11.12 Continued

FIGURE 11.1 You can activate error checking from the Object Designers tab of the Access
Options dialog box.

FIGURE 11.2 Indicators appear on your report, letting you know that something is wrong.

CHAPTER 11 Advanced Report Techniques506

FIGURE 11.3 A menu appears, providing you with an explanation and suggestions for
correcting the error.

The error checker will identify several categories of errors, which are described in Table 11.2.

TABLE 11.2 Categories of Errors Identified by the Error Checker

Category Description

Unassociated label and control You select a label and a control (for example, a label
and a text box) that are not associated with one
another.

New unassociated labels You add a label that is not associated with another
control.

Invalid control properties The string in the control source is not valid. The
problem could be that it is not a valid field name or that
the control source refers to itself. It can also be that
the expression does not begin with an equal sign or
that the option value in an option group is not unique.

Other common errors The report has an invalid sorting or grouping definition
or is wider than the selected paper size.

If Access identifies several errors for the same control, the error indicator remains until all
errors are corrected. If you choose to ignore an error, simply select the Ignore Error option
on the Error Checking Options menu. This will clear the error indicator until you close
and open the report again. Remember that you can turn off error checking entirely via
Access Options (although I find this feature to be extremely valuable).

Propagating Field Properties
When you make a change to an inherited property in a table’s Design view, you can opt
to propagate that change to the controls on your reports that are bound to that field.
Here’s how it works:

1. Open the table whose design you want to modify in Design view.

2. Click in the field whose property you want to change.

3. Click in the property whose value you want to change.

4. Change the property and press Enter. If the property that you changed is inherita-
ble, the Property Update Options button appears (see Figure 11.4).

5. Open the menu and select Update (see Figure 11.5). The Update Properties dialog
box appears (see Figure 11.6). Select the forms and reports that contain the controls
that you want to update. Click Yes to complete the process.

Propagating Field Properties 507

1
1

FIGURE 11.4 The Property Update Options button appears for inheritable properties.

CHAPTER 11 Advanced Report Techniques508

FIGURE 11.5 Open the menu and select Update.

FIGURE 11.6 The Update Properties dialog box allows you to select the forms and reports
that you want to update.

Incorporating Practical Applications of Report
Events and Properties
When developing reports, you should make sure that you can use the report in as many
situations as possible—that you build as much flexibility into the report as you can.
Instead of managing several similar reports, making changes to each one whenever some-
thing changes, you can manage one report that handles different situations. Using the
events and properties covered in this chapter will help you do just that. This might
involve changing the report’s RecordSource at runtime; using the same report to print
summary data, detail data, or both; changing the print position; or even running a report
based on a crosstab query with unbound controls. All these aspects of report design are
covered in the following sections.

Changing a Report’s RecordSource
Often you might want to change a report’s RecordSource at runtime. By doing this, you
can allow your users to alter the conditions for your report and transparently modify
the query on which the report is based. The rptClientListing report in CHAP11.ACCDB
contains the code in Listing 11.13 in its Open event.

LISTING 11.13 An Example of Using the Report Open Event to Modify a Report’s
RecordSource

Private Sub Report_Open(Cancel As Integer)

On Error Resume Next

‘Open the report criteria form

DoCmd.OpenForm “frmClientListingCriteria”, WindowMode:=acDialog

‘Ensure that the form is loaded

If Not IsLoaded(“frmClientListingCriteria”) Then

MsgBox “Criteria form not successfully loaded, “ & _

“Canceling Report”

Cancel = True

Else

‘Evaluate which option button was selected

Incorporating Practical Applications of Report Events and Properties 509

1
1

‘Set the RecordSource property as appropriate

Select Case Forms!frmClientListingCriteria.optCriteria.Value

Case 1

Me.RecordSource = “qryClientListingCity”

Case 2

Me.RecordSource = “qryClientListingStateProv”

Case 3

Me.RecordSource = “qryClientListing”

End Select

End If

End Sub

This code begins by opening the frmClientListingCriteria form, if it isn’t already
loaded. It loads the form modally and waits for the user to select the report criteria (see
Figure 11.7). After the user clicks to preview the report, the form sets its own Visible
property to False. This causes execution to continue in the report but leaves the form in
memory so that its controls can be accessed with VBA code. The code evaluates the value
of the form’s optCriteria option button. Depending on which option button is selected,
the report’s RecordSource property is set to the appropriate query. The following code is
placed in the Close event of the report:

Private Sub Report_Close()

DoCmd.Close acForm, “frmClientListingCriteria”

End Sub

CHAPTER 11 Advanced Report Techniques510

LISTING 11.13 Continued

FIGURE 11.7 The criteria selection used to determine the RecordSource.

This code closes the criteria form as the report is closing. The frmClientListingCriteria
form has some code that’s important to the processing of the report. It’s found in the
AfterUpdate event of the optCriteria option group (see Listing 11.14).

LISTING 11.14 The AfterUpdate Event of the optCriteria Option Group

Private Sub optCriteria_AfterUpdate()

‘Evaluate which option button is selected

‘Hide and show combo boxes as appropriate

Select Case optCriteria.Value

Case 1

Me.cboCity.Visible = True

Me.cboStateProv.Visible = False

Case 2

Me.cboStateProv.Visible = True

Me.cboCity.Visible = False

Case 3

Me.cboCity.Visible = False

Me.cboStateProv.Visible = False

End Select

End Sub

This code evaluates the value of the option group. It hides and shows the visibility of the
cboCity and cboStateProv combo boxes, depending on which option button the user
selects. The cboCity and cboStateProv combo boxes are then used as appropriate criteria
for the queries that underlie the rptClientListing report.

The example shown in Listing 11.13 uses three stored queries to accomplish the task of
switching the report’s record source. An alternative to this technique is to programmati-
cally set the RecordSource property of the report to the appropriate SQL statement. This
technique is illustrated in Listing 11.15 and is found in rptClientListingAlternate on
the sample code CD-ROM.

LISTING 11.15 Using the Report Open Event to Modify a Report’s RecordSource to the
Appropriate SQL Statement

On Error Resume Next

‘Open the report criteria form
DoCmd.OpenForm “frmClientListingCriteria”, WindowMode:=acDialog

‘Ensure that the form is loaded
If Not IsLoaded(“frmClientListingCriteria”) Then

MsgBox “Criteria form not successfully loaded, “ & _
“Canceling Report”
Cancel = True

Incorporating Practical Applications of Report Events and Properties 511

1
1

Else

‘Evaluate which option button was selected
‘Set the RecordSource property as appropriate
Select Case Forms!frmClientListingCriteria.optCriteria.Value

Case 1
Me.RecordSource = “SELECT DISTINCTROW “ & _
“tblClients.CompanyName, “ & _
“ContactFirstName & ‘ ‘ & ContactLastName AS ContactName, “ & _
“tblClients.City, tblClients.StateProvince, “ & _
“tblClients.OfficePhone, tblClients.Fax “ & _
“FROM tblClients “ & _
“WHERE tblClients.City = ‘“ & _
Forms!frmClientListingCriteria.cboCity.Value & _
“‘ ORDER BY tblClients.CompanyName;”

Case 2
Me.RecordSource = “SELECT DISTINCTROW “ & _
“tblClients.CompanyName, “ & _
“ContactFirstName & ‘ ‘ & ContactLastName AS ContactName, “ & _
“tblClients.City, tblClients.StateProvince, “ & _
“tblClients.OfficePhone, tblClients.Fax “ & _
“FROM tblClients “ & _
“WHERE tblClients.StateProvince = ‘“ & _
Forms!frmClientListingCriteria.cboStateProv.Value & _
“‘ ORDER BY tblClients.CompanyName;”

Case 3
Me.RecordSource = “SELECT DISTINCTROW “ & _
“tblClients.CompanyName, “ & _
“ContactFirstName & ‘ ‘ & ContactLastName AS ContactName, “ & _
“tblClients.City, tblClients.StateProvince, “ & _
“tblClients.OfficePhone, tblClients.Fax “ & _
“FROM tblClients “ & _
“ORDER BY tblClients.CompanyName;”

End Select
End If

This example programmatically builds a SQL statement based on the option selected on
the criteria form. It uses the cboCity and cboStateProv combo boxes to build the WHERE
clause in the appropriate SQL strings.

Listing 11.16 shows my favorite alternative. It is somewhat of a compromise between the
first two alternatives. You will find the code in frmClientListingCriteriaAlternate.
Unlike in the previous two examples, the criteria form drives this entire example. In other
words, you will not find any code behind the report. Listing 11.16 looks like this.

CHAPTER 11 Advanced Report Techniques512

LISTING 11.15 Continued

Incorporating Practical Applications of Report Events and Properties 513

1
1

LISTING 11.16 The Code Behind the frmClientListingCriteriaAlternate Form

Private Sub cmdPreview_Click()

Dim strWhere As String

Select Case Me.optPrint

Case 1

strWhere = “City=’” & Me.cboCity & “‘“

DoCmd.OpenReport _

“rptClientListingAlternate2”, acViewPreview, _

WhereCondition:=strWhere

Case 2

strWhere = “StateProvince=’” & Me.cboStateProv & “‘“

DoCmd.OpenReport _

“rptClientListingAlternate2”, acViewPreview, _

WhereCondition:=strWhere

Case 3

DoCmd.OpenReport _

“rptClientListingAlternate2”, acViewPreview

End Select

End Sub

The code begins by determining which option button the user selected. Based on
which option button the user selected, the code enters the appropriate branch of the
Case statement to build the necessary Where clause. The code uses the Where clause as
the WhereCondition parameter of the OpenReport method of the DoCmd object. The
RecordSource of the report is always the same. It is the WhereCondition parameter that
differentiates the data that appears in the report.

Working with Report Filters
The Filter and FilterOn properties allow you to set a report filter and to turn it on and
off. Three possible scenarios can apply:

. No filter is in effect.

. The Filter property is set but is not in effect because the FilterOn property is set
to False.

. The filter is in effect. This requires that the Filter property is set, and the FilterOn
property is set to True.

You can set filtering properties either at design time or at runtime. This solution provides
another alternative to the example provided in Listing 11.13. With this alternative, the
RecordSource of the report is fixed. The Filter and FilterOn properties are used to
display the appropriate data. Listing 11.17 provides an example. You can find the code in
rptClientListingFiltered on the sample code CD-ROM.

LISTING 11.17 Using the Filter and FilterOn Properties

Private Sub Report_Open(Cancel As Integer)

On Error Resume Next

‘Open the report criteria form

DoCmd.OpenForm “frmClientListingCriteria”, WindowMode:=acDialog

‘Ensure that the form is loaded

If Not IsLoaded(“frmClientListingCriteria”) Then

MsgBox “Criteria form not successfully loaded, “ & _

“Canceling Report”

Cancel = True

Else

‘Evaluate which option button was selected

‘Set the Filter and FilterOn properties as appropriate

Select Case Forms!frmClientListingCriteria.optCriteria.Value

Case 1

Me.Filter = “City = ‘“ & _

Forms!frmClientListingCriteria.cboCity & “‘“

Me.FilterOn = True

Case 2

Me.Filter = “StateProvince = ‘“ & _

Forms!frmClientListingCriteria.cboStateProv & “‘“

Me.FilterOn = True

Case 3

Me.FilterOn = False

End Select

End If

End Sub

In this example, the RecordSource property of the report is the qryClients query. The
query returns clients in all cities and all states. The example uses the Open event of the
report to filter the data to the appropriate city or state.

CAUTION

Listings 11.13, 11.15, and 11.16 are much more efficient than the code in Listing
11.17. In a client/server environment, such as Microsoft SQL Server, with the code in
Listings 11.13, 11.15, and 11.16, only the requested data comes over the network
wire. For example, only data for the requested city comes over the wire. On the other
hand, the Filter property is applied after the data comes over the wire. This means
that, in the example, all clients come over the wire, and the filter for the requested
City or State is applied at the workstation.

CHAPTER 11 Advanced Report Techniques514

Working with the Report Sort Order
The OrderBy and OrderByOn properties are similar to the Filter and FilterOn properties.
They allow you to apply a sort order to the report. As with filters, three scenarios apply:

. No sort is in effect.

. The OrderBy property is set but is not in effect because the OrderByOn property is
set to False.

. The order is in effect. This requires that the OrderBy property is set, and the
OrderByOn property is set to True.

You can set ordering properties either at design time or at runtime. The OrderBy and
OrderByOn properties are used to determine the sort order of the report and whether
the sort is in effect. Listing 11.18 provides an example. You can find the code in
rptClientListingSorted on the sample code CD-ROM.

LISTING 11.18 Using the Report Open Event to Modify the Sort Order of a Report

Private Sub Report_Open(Cancel As Integer)

On Error Resume Next

‘Open the report sort order form

DoCmd.OpenForm “frmClientListingSortOrder”, WindowMode:=acDialog

‘Ensure that the form is loaded

If Not IsLoaded(“frmClientListingSortOrder”) Then

MsgBox “Criteria form not successfully loaded, “ & _

“Canceling Report”

Cancel = True

Else

‘Evaluate which option button was selected

‘Set the OrderBy and OrderByOn properties as appropriate

Select Case Forms!frmClientListingSortOrder.optCriteria.Value

Case 1

Me.OrderBy = “City, CompanyName”

Me.OrderByOn = True

Case 2

Me.OrderBy = “StateProvince, CompanyName”

Me.OrderByOn = True

Case 3

Me.OrderBy = “CompanyName”

Me.OrderByOn = True

End Select

End If

End Sub

Incorporating Practical Applications of Report Events and Properties 515

1
1

The code appears in the Open event of the report. It evaluates which option button the
user selected on the frmClientListingSortOrder form. It then sets the OrderBy property
as appropriate and sets the OrderByOn property to True so that the OrderBy property
takes effect.

CAUTION

The OrderBy property augments, rather than replaces, the existing sort order of the
report. If the OrderBy property is in conflict with the sort order of the report, the
OrderBy property is ignored. For example, if the sort order in the Sorting and Grouping
window is set to CompanyName and the OrderBy property is set to City combined with
CompanyName, the OrderBy property is ignored.

Using the Same Report to Display Summary, Detail, or Both
Many programmers create three reports for their users: one that displays summary only,
one that displays detail only, and another that displays both. Creating all these reports is
unnecessary. Because you can hide and display report sections as necessary at runtime,
you can create one report that meets all three needs. The rptClientBillingsByProject
report included in the CHAP11.ACCDB database illustrates this point. Place the code shown
in Listing 11.19 in the report’s Open event.

LISTING 11.19 Using the Report Open Event to Hide and Show Report Sections as
Appropriate

Private Sub Report_Open(Cancel As Integer)

‘Load the report criteria form

DoCmd.OpenForm “frmReportDateRange”, _

WindowMode:=acDialog, _

OpenArgs:=”rptClientBillingsbyProject”

‘Ensure that the form is loaded

If Not IsLoaded(“frmReportDateRange”) Then

Cancel = True

Else

‘Evaluate which option button is selected

Select Case Forms!frmReportDateRange!optDetailLevel.Value

‘Modify caption and hide and show detail section and summary

‘section as appropriate

Case 1

Me.Caption = Me.Caption & “ - Summary Only”

Me.lblTitle.Caption = Me.lblTitle.Caption & “ - Summary Only”

Me.Detail.Visible = False

Case 2

Me.Caption = Me.Caption & “ - Detail Only”

CHAPTER 11 Advanced Report Techniques516

Me.lblTitle.Caption = Me.lblTitle.Caption & “ - Detail Only”

Me.GroupHeader0.Visible = False

Me.GroupFooter1.Visible = False

Me.txtCompanyNameDet.Visible = True

Case 3

Me.Caption = Me.Caption & “ - Summary and Detail”

Me.lblTitle.Caption = Me.lblTitle.Caption & “ - Summary and Detail”

Me.txtCompanyNameDet.Visible = False

End Select

End If

End Sub

The code begins by opening frmReportDateRange included in CHAP11.ACCDB (see Figure
11.8). The form has an option group asking users whether they want a Summary report,
Detail report, or a report that contains both Summary and Detail. If the user selects
Summary, the caption of the Report window and the lblTitle label are modified, and the
Visible property of the Detail section is set to False. If the user selects Detail Only, the
captions of the Report window and the lblTitle label are modified, and the Visible
property of the Group Header and Footer sections is set to False. A control in the Detail
section containing the company name is made visible. The CompanyName control is visible
in the Detail section when the Detail Only report is printed, but it’s invisible when the
Summary and Detail report is printed. When Both is selected as the level of detail, no
sections are hidden. The captions of the Report window and the lblTitle label are modi-
fied, and the CompanyName control is hidden.

Incorporating Practical Applications of Report Events and Properties 517

1
1

LISTING 11.19 Continued

FIGURE 11.8 The criteria selection used to determine detail level.

The code behind the form’s Preview button looks like that shown in Listing 11.20.

LISTING 11.20 Code That Validates the Date Range Entered by the User

Private Sub cmdPreview_Click()
‘Ensure that both the begin date and end date are populated
‘If not, display a message and set focus to the begin date
If IsNull(Me.txtBeginDate) Or IsNull(Me.txtEndDate) Then

MsgBox “You must enter both beginning and ending dates.”
Me.txtBeginDate.SetFocus

‘If begin date and end date are populated, ensure that
‘begin date is before end date
Else

If Me.txtBeginDate > Me.txtEndDate Then
MsgBox “Ending date must be greater than Beginning date.”
Me.txtBeginDate.SetFocus

‘If all validations succeed, hide form, allowing report to print
Else

Me.Visible = False
End If

End If
End Sub

This code makes sure that both the beginning date and the ending date are filled in and
that the beginning date comes before the ending date. If both of these rules are fulfilled,
the code sets the Visible property of the form to False. Otherwise, the code displays an
appropriate error message.

Numbering Report Items
Many people are unaware how simple it is to number the items on a report. Figure 11.9
provides an example of a numbered report. This report is called rptClientListingNumbered
and is located on the sample code CD-ROM. The process of creating such a report is
extremely simple. Figure 11.10 shows the Data properties of the txtNumbering text box.
The Control Source property allows you to set the starting number for a report. The
Running Sum property allows you to determine when the numbering is reset to the start-
ing value. The Control Source property of the text box is set to =1, and the Running Sum
property is set to Over All. The combination of these two properties causes the report to
begin numbering with the number 1 and to continue the numbering throughout the
report. Setting the Running Sum property to Over Group causes the numbering to reset
itself at the beginning of each report grouping.

CHAPTER 11 Advanced Report Techniques518

FIGURE 11.9 You can add numbering to items on a report easily.

Incorporating Practical Applications of Report Events and Properties 519

1
1

FIGURE 11.10 The Control Source property and the Running Sum property.

Printing Multiple Labels
Many times, users want to print multiple copies of the same label. The report’s
MoveLayout, NextRecord, PrintSection, and PrintCount properties help us to accomplish
the task. The form shown in Figure 11.11 is called frmClientLabelCriteria and is found
in CHAP11.ACCDB. It asks users to select a company and the number of labels they want to
print for that company. The code for the Print Labels command button looks like that
shown in Listing 11.21.

CHAPTER 11 Advanced Report Techniques520

FIGURE 11.11 The criteria selection used to specify the company name and number of
labels to print.

LISTING 11.21 Code That Prints the lblClientMailingLabels Report for the Selected
Company

Sub cmdPrintLabels_Click()

On Error GoTo Err_cmdPrintLabels_Click

‘Run the mailing labels, showing only those

‘rows where the company name matches

‘the company selected in the combo box

DoCmd.OpenReport “lblClientMailingLabels”, _

View:=acPreview, _

WhereCondition:=”CompanyName = ‘“ & _

Me.cboCompanyName.Value & “‘“

Exit_cmdPrintLabels_Click:

Exit Sub

Err_cmdPrintLabels_Click:

MsgBox Err.Description

Resume Exit_cmdPrintLabels_Click

End Sub

Notice that the routine uses the company name selected from the combo box as a
criterion to run the lblClientMailingLabels report. The Open event of
lblClientMailingLabels is shown in Listing 11.22.

LISTING 11.22 The Open Event of lblClientMailingLabels

Private Sub Report_Open(Cancel As Integer)

‘Ensure that the criteria form is loaded

‘If not, display message and cancel report

If Not IsLoaded(“frmClientLabelCriteria”) Then

MsgBox “You Must Run This Report From Label Criteria Form”

Cancel = True

End If

End Sub

This code tests to make sure the frmClientLabelCriteria form is open. If it’s not, the
code displays a message and cancels the report. The Detail section’s Print event, which
compares the requested number of labels with the number of labels printed, is the key to
the whole process (see Listing 11.23).

LISTING 11.23 The Code in the Print Event

Private Sub Detail_Print(Cancel As Integer, PrintCount As Integer)

‘If the number of times the detail section has been printed is

‘less than the number of labels that has been printed,

‘cancel movement to the next row

If PrintCount < _

Forms!frmClientLabelCriteria!txtNumberOfLabels Then

Me.NextRecord = False

End If

End Sub

This code compares the PrintCount property to the number of labels the user wants to
print. As long as the PrintCount is less than the number of labels requested, the record
pointer is not advanced. This causes multiple labels to be printed for the same record.

Incorporating Practical Applications of Report Events and Properties 521

1
1

LISTING 11.21 Continued

Determining Where a Label Prints
Users often want to print several copies of the same label, but they might also want to
print mailing labels in a specific position on the page. Users generally do this so that they
can begin the print process on the first unused label. The frmClientLabelPosition form
from CHAP11.ACCDB lets the user specify the first label location on which to print by desig-
nating the number of labels that the user wants to skip (see Figure 11.12). The Open event
of lblClientMailLabelsSkip is shown in Listing 11.24.

LISTING 11.24 The Code in the Open Event of lblClientMailLabelsSkip

Private Sub Report_Open(Cancel As Integer)

‘Ensure that the criteria form is loaded

‘If not, display message and cancel printing

If Not IsLoaded(“frmClientLabelPosition”) Then

MsgBox “You Must Run This Report From Label Criteria Form”

Cancel = True

Else

mboolFirstLabel = True

End If

End Sub

CHAPTER 11 Advanced Report Techniques522

FIGURE 11.12 The criteria selection used to indicate the number of labels to skip.

The code tests to make sure that the frmClientLabelPosition form is loaded. It also sets a
private variable, mboolFirstLabel, equal to True. The Detail section’s Print event, which
suppresses printing until the correct number of labels is skipped, is shown in Listing 11.25.

LISTING 11.25 The Detail Print Event

Private Sub Detail_Print(Cancel As Integer, PrintCount As Integer)

‘Check to see if the number of times the detail section was

‘visited is less than the number of labels to skip AND

‘that the mboolFirstLabel flag is true

If PrintCount <= _

Forms!frmClientLabelPosition.txtLabelsToSkip _

And mboolFirstLabel = True Then

‘Do not move to the next record and do not print anything

Me.NextRecord = False

Me.PrintSection = False

Else

‘Allow printing and turn mboolFirstLabel flag to false

mboolFirstLabel = False

End If

End Sub

This routine checks to see whether the PrintCount property of the report is less than
or equal to the number of the labels to skip. It also checks to make sure that the
mboolFirstLabel variable is equal to True. If both conditions are True, the report doesn’t
move to the next record and doesn’t print anything. The print position is advanced. When
the PrintCount becomes greater than the number of labels to skip, the mboolFirstLabel
variable is set to False and printing proceeds as usual. If mboolFirstLabel is not set to
False, the designated number of labels is skipped between each record. One additional
event makes all this work—the Format event of the Report Header:

Private Sub ReportHeader_Format(Cancel As Integer, FormatCount As Integer)

‘Set the mboolFirstLabel flag to True when the header

‘formats for the first time

mboolFirstLabel = True

End Sub

The ReportHeader Format event sets mboolFirstLabel back to True. You must include
this step in case the user previews and then prints the labels. If the mboolFirstLabel vari-
able is not reset to True, the selected number of labels isn’t skipped on the printout
because the condition that skips the labels is never met.

Building a Report from a Crosstab Query
Basing a report on the results of a crosstab query is difficult because its number of columns
usually varies. Look at the example shown in Figure 11.13. Notice that the employee names
appear across the top of the report as column headings, and the products are listed down
the side of the report. This report is based on the crosstab query called qxtabEmployeeSales,
part of the CHAP11.ACCDB database found on the sample code CD-ROM (see Figure 11.14).
The problem is that the number of employees—and, therefore, column headings—can vary.
This report is coded to handle such an eventuality.

Incorporating Practical Applications of Report Events and Properties 523

1
1

FIGURE 11.13 A report based on a crosstab query.

CHAPTER 11 Advanced Report Techniques524

FIGURE 11.14 A crosstab query underlying a report.

When the rptEmployeeSales (located in CHAP11EX.ACCDB) report runs, its Open event
executes (see Listing 11.26).

LISTING 11.26 Code That Obtains Criteria Information for the Report and Then Builds a
Recordset That Underlies the Report

Private Sub Report_Open(Cancel As Integer)

‘frmEmployeeSalesDialogBox form.

Dim intX As Integer

Dim db As DAO.Database

Dim qdf As DAO.QueryDef

Dim frm As Form

Set db = CurrentDb

‘Cancel printing if frmEmployeeSalesDialogBox form isn’t loaded.

If Not (IsLoaded(“frmEmployeeSalesDialogBox”)) Then

Cancel = True

MsgBox “To preview or print this report, you must open “ _

& “EmployeeSalesDialogBox in Form view.”, vbExclamation, _

“Must Open Dialog Box”

Exit Sub

End If

Set frm = Forms!frmEmployeeSalesDialogBox

‘Point at the qxtabEmployeeSales query.

Set qdf = db.QueryDefs(“qxtabEmployeeSales”)

‘Set parameters for query based on values entered

‘in EmployeeSalesDialogBox form.

qdf.Parameters(“Forms!frmEmployeeSalesDialogBox!txtBeginningDate”) _

= frm!txtBeginningDate

qdf.Parameters(“Forms!frmEmployeeSalesDialogBox!txtEndingDate”) _

= frm!txtEndingDate

‘Open Recordset object.

Set mrstReport = qdf.OpenRecordset

‘Set a variable to hold number of columns in Crosstab query.

mintColumnCount = mrstReport.Fields.Count

End Sub

Incorporating Practical Applications of Report Events and Properties 525

1
1

The Open event points a database object variable to the current database. It then checks to
make sure the criteria form, frmEmployeeSalesDialogBox, is open. This form supplies the
criteria for the qxtabEmployeeSales query that underlies the report. It opens the
qxtabEmployeeSales query definition and passes it the parameters from the
frmEmployeeSalesDialogBox criteria form. Next, it opens a recordset based on the query
definition, using the criteria found on the frmEmployeeSalesDialogBox form. The number
of columns returned from the crosstab query is very important. The code stores this
number in a Private variable called mintColumnCount and uses it throughout the remain-
ing functions to determine how many columns to fill with data.

NOTE

This book focuses on the use of ADO (ActiveX Data Objects) rather than DAO (Data
Access Objects). You might wonder why this example uses DAO rather than ADO. The
query that underlies this example is a crosstab query. The ADO command object does
not recognize crosstab queries. It was therefore necessary to use DAO in this
example. If you need more information about DAO, see Alison Balter’s Mastering Access
2003 Desktop Development.

Next, the Report Header Format event occurs. It moves to the first record in the record-
set created during the Open event (see Listing 11.27). It also calls the InitVars routine
shown in Listing 11.28.

LISTING 11.27 The Report Header Format Routine

Private Sub ReportHeader3_Format(Cancel As Integer, _

FormatCount As Integer)

‘Move to first record in recordset at beginning of report

‘or when report is restarted. (A report is restarted when

‘you print a report from Print Preview window, or when you return

‘to a previous page while previewing.)

mrstReport.MoveFirst

‘Initialize variables.

Call InitVars

End Sub

The InitVars routine initializes some variables used in the report.

LISTING 11.28 The InitVars Routine

Private Sub InitVars()

Dim intX As Integer

CHAPTER 11 Advanced Report Techniques526

‘Initialize lngReportTotal variable.

mlngReportTotal = 0

‘Initialize array that stores column totals.

For intX = 1 To conTotalColumns

mlngRgColumnTotal(intX) = 0

Next intX

End Sub

The mlngReportTotal variable is used for the report grand total (all products, all salespeo-
ple), and the mlngRgColumnTotal array contains the total for each salesperson. After the
Report Header Format event occurs, the Page Header Format event takes place (see
Listing 11.29.)

LISTING 11.29 The Code in the Page Header Format Event That Inserts the Appropriate
Column Headings and Hides the Appropriate Controls

Private Sub PageHeader0_Format(Cancel As Integer, FormatCount As Integer)

Dim intX As Integer

‘Put column headings into text boxes in page header.

For intX = 1 To mintColumnCount

Me(“Head” + Format$(intX)) = mrstReport(intX - 1).Name

Next intX

‘Make next available text box Totals heading.

Me(“Head” + Format$(mintColumnCount + 1)) = “Totals”

‘Hide unused text boxes in page header.

For intX = (mintColumnCount + 2) To conTotalColumns

Me(“Head” + Format$(intX)).Visible = False

Next intX

End Sub

The PageHeader Format event uses the names of the fields in the query results as column
headings for the report. This essential routine is “smart” because, after it fills in all the
column headings, it hides all the extra controls on the report.

Next, the Detail Section Format event, shown is Listing 11.30, occurs.

Incorporating Practical Applications of Report Events and Properties 527

1
1

LISTING 11.28 Continued

LISTING 11.30 The Code in the Detail Section Format Event That Inserts Data from the
Current Row into the Report and Hides the Appropriate Controls

Private Sub DetailSection1_Format(Cancel As Integer, FormatCount As Integer)

‘Place values in text boxes and hide unused text boxes.

Dim intX As Integer

‘Verify that not at end of recordset.

If Not mrstReport.EOF Then

‘If FormatCount is 1, place values from recordset into text boxes

‘in Detail section.

If Me.FormatCount = 1 Then

For intX = 1 To mintColumnCount

‘Convert Null values to 0.

Me(“Col” + Format(intX)) = xtabCnulls(mrstReport(intX - 1))

Next intX

‘Hide unused text boxes in Detail section.

For intX = mintColumnCount + 2 To conTotalColumns

Me(“Col” + Format(intX)).Visible = False

Next intX

‘Move to next record in recordset.

mrstReport.MoveNext

End If

End If

End Sub

The Detail Section Format event checks the recordset’s EOF property to determine
whether the last record in the query has already been read. If not, the section’s
FormatCount property is tested to see whether it’s equal to 1. If so, each column in the
current record of the recordset is read. The code fills each control in the Detail section
with data from a column in the recordset, and any unused text boxes in the report’s
Detail section are hidden. Finally, the code moves to the next record in the recordset,
readying the report to print the next line of detail. The xtabCnulls function, which
converts Null values into zeros, is called each time the recordset underlying the report
is read:

Private Function xtabCnulls(varX As Variant)

‘Test if a value is null.

xtabCnulls = Nz(varX,0)

End Function

CHAPTER 11 Advanced Report Techniques528

The xtabCnulls function evaluates each value sent to it to check whether the value is
Null. If so, it returns zero from the function; otherwise, it returns the value passed to the
function.

After the code executes the Detail Section Format event, it executes the Detail
Section Print event (shown in Listing 11.31).

LISTING 11.31 The Code in the Detail Section Print Event That Accumulates Column
Totals and Prints Row Totals

Private Sub Detail1_Print(Cancel As Integer, PrintCount As Integer)

Dim intX As Integer

Dim lngRowTotal As Long

‘If PrintCount is 1, initialize rowTotal variable.

‘Add to column totals.

If Me.PrintCount = 1 Then

lngRowTotal = 0

For intX = 2 To mintColumnCount

‘Starting at column 2 (first text box with crosstab value),

‘compute total for current row in Detail section.

lngRowTotal = lngRowTotal + Me(“Col” + Format(intX))

‘Add crosstab value to total for current column.

mlngRgColumnTotal(intX) = mlngRgColumnTotal(intX) + _

Me(“Col” + Format(intX))

Next intX

‘Place row total in text box in Detail section.

Me(“Col” + Format(mintColumnCount + 1)) = lngRowTotal

‘Add row total for current row to grand total.

mlngReportTotal = mlngReportTotal + lngRowTotal

End If

End Sub

The Detail Section Print event generates the row total value, placing it in the last
column of the report, accumulating column totals, and accumulating the mlngReportTotal
value, which is the grand total for all columns and rows. It does this by making sure the
PrintCount of the section is 1. If so, it resets the lngRowTotal variable to 0. Starting at
column 2 (column 1 contains the product name), it begins accumulating a row total by
looking at each control in the row, adding its value to lngRowTotal. As it traverses each
column in the row, it also adds the value in each column to the appropriate element of the
mlngRgColumnTotal private array, which maintains all the column totals for the report. It
prints the row total and adds the row total to the report’s grand total.

Incorporating Practical Applications of Report Events and Properties 529

1
1

When the Retreat event occurs, the following code executes:

Private Sub Detail1_Retreat()

‘Always back up to previous record when Detail section retreats.

mrstReport.MovePrevious

End Sub

This code forces the record pointer to move back to the previous record in the recordset.
Finally, the report footer prints, which causes the Report Footer Print event to execute.
In turn, this event prints the grand totals and hides the appropriate controls (see Listing
11.32).

LISTING 11.32 The Code in the Report Footer Print Event

Private Sub ReportFooter4_Print(Cancel As Integer, PrintCount As Integer)

Dim intX As Integer

‘Place column totals in text boxes in report footer.

‘Start at column 2 (first text box with crosstab value).

For intX = 2 To mintColumnCount

Me(“Tot” + Format(intX)) = mlngRgColumnTotal(intX)

Next intX

‘Place grand total in text box in report footer.

Me(“Tot” + Format(mintColumnCount + 1)) = mlngReportTotal

‘Hide unused text boxes in report footer.

For intX = mintColumnCount + 2 To conTotalColumns

Me(“Tot” + Format(intX)).Visible = False

Next intX

End Sub

The Report Footer Print event loops through each control in the footer, populating
each control with the appropriate element of the mlngRgColumnTotal array. This gives you
the column totals for the report. Finally, the grand total is printed in the next available
column. Any extra text boxes are hidden from display.

Printing the First and Last Page Entries in the Page Header
Another useful technique is printing the first and last entries from a page in the report’s
header. The rptCustomerPhoneList report, found in the CHAP11EX.ACCDB database located
on the sample code CD-ROM, illustrates this (see Figure 11.15). The code for this report
relies on Access making two passes through the report. During the first pass, a variable
called gboolLastPage is equal to False. The gboolLastPage variable becomes True only

CHAPTER 11 Advanced Report Techniques530

when the Report Footer Format event is executed at the end of the first pass through
the report. Keep this in mind as you review the code behind the report.

NOTE

To view the desired results, make sure that you click Options and enable code to run;
also make sure you view this report in Print Preview mode.

Incorporating Practical Applications of Report Events and Properties 531

1
1

FIGURE 11.15 The first and last entry printed in the report header.

The first routine that affects the report processing is the Page Header Format event
routine shown in Listing 11.33.

LISTING 11.33 The Code in the Page Header Format Event That Updates the Appropriate
Text Boxes with the First and Last Entries on the Page

Private Sub PageHeader0_Format(Cancel As Integer, FormatCount As Integer)

‘During second pass, fill in FirstEntry and LastEntry text boxes.

If gboolLastPage = True Then

Reports!rptCustomerPhoneList.txtFirstEntry = _

Reports!rptCustomerPhoneList.txtCompanyName

Reports!rptCustomerPhoneList.txtLastEntry = _

gstrLast(Reports!rptCustomerPhoneList.Page)

End If

End Sub

The Page Header Format routine tests to see whether the gboolLastPage variable is equal
to True. During the first pass through the report, the gboolLastPage variable is equal to
False. During the second pass, the txtFirstEntry and txtLastEntry text boxes (both of
which appear in the report’s header) are populated with data. The txtFirstEntry text box
is filled with the value in the txtCompanyName control of the current record (the first record
on the page), and the txtLastEntry text box is populated with the appropriate element
number from the CustomerPhoneList array. Each element of the CustomerPhoneList array
is populated by the Format event of the Page Footer for that page during the first pass
through the report.

Next, the Page Footer Format event, which populates the array with the last entry on a
page, is executed (see Listing 11.34).

LISTING 11.34 The Code in the Page Footer Format Event

Private Sub PageFooter2_Format(Cancel As Integer, FormatCount As Integer)

‘During first pass, increase size of array and enter last record on

‘page into array.

If Not gboolLastPage Then

ReDim Preserve gstrLast(Reports!rptCustomerPhoneList.Page + 1)

gstrLast(Reports!rptCustomerPhoneList.Page) = _

Reports!rptCustomerPhoneList.txtCompanyName

End If

End Sub

The Page Footer Format event determines whether the gboolLastPage variable is equal
to False. If so (which it is during the first pass through the report), the code redimen-
sions the gstrLast array to add an element. The value from the txtCompanyName control
of the last record on the page is stored in the new element of the gstrLast array. This
value eventually appears in the Page Header of that page as the last company name that
appears on the page. Finally, the Report Footer Format event executes, as shown in
Listing 11.35. This event inserts data from the last row in the recordset into the last
element of the array.

LISTING 11.35 The Code in the Report Footer Format Event

Private Sub ReportFooter4_Format(Cancel As Integer, _

FormatCount As Integer)

Dim rst As ADODB.Recordset

Set rst = New ADODB.Recordset

‘Set flag after first pass has been completed.

gboolLastPage = True

CHAPTER 11 Advanced Report Techniques532

‘Open recordset for report.

rst.Open “tblCustomers”, CurrentProject.Connection, adOpenStatic

‘Move to last record in recordset.

rst.MoveLast

‘Enter last record into array.

ReDim Preserve gstrLast(Reports!rptCustomerPhoneList.Page + 1)

gstrLast(Reports!rptCustomerPhoneList.Page) = rst!CompanyName

End Sub

The Report Footer routine sets the gboolLastPage variable equal to True and opens a
recordset based on the Customers table. This is the recordset on which the report is based.
It moves to the last record in the recordset and adds the CompanyName value from the
recordset’s last record in an additional element of the array.

Now the first pass of the report has finished. As the user moves to each page of the report
during a print preview, or as each page is printed to the printer, the Format event executes
for the Page Header. The company name from the first record on the page is placed in the
txtFirstEntry control, and the appropriate element from the gstrLast array is placed in
the txtLastEntry control.

Creating a Multifact Crosstab Report
By nature, crosstab queries are limited because they don’t allow you to place multiple
rows of data in the result. For example, you can’t display months as column headings and
then show the minimum, average, and maximum sales for each employee as row head-
ings. The rptSalesAverages report, found in the CHAP11EX database and shown in Figure
11.16, solves this problem.

NOTE

Run this report for the year of 2006 to get results similar to those in the figure.

Each time the Format event of the Page Header executes, the variable mboolPrintWhat is
reset to False:

Private Sub PageHeader1_Format(Cancel As Integer, FormatCount As Integer)

‘At top of page, initialize mboolPrintWhat variable to False

mboolPrintWhat = False

End Sub

Incorporating Practical Applications of Report Events and Properties 533

1
1

LISTING 11.35 Continued

FIGURE 11.16 An example of a multifact crosstab report.

After the Page Header Format event executes, the Group Header Format event launches,
as shown in Listing 11.36.

LISTING 11.36 The Code in the Group Header Format Event Used to Hide and Show the
Appropriate Controls

Private Sub GroupHeader2_Format(Cancel As Integer, _

FormatCount As Integer)

‘Print SalespersonLastName and FirstName text boxes,

‘hide Minimum, Average, and Maximum labels,

‘set mboolPrintWhat variable to True, and don’t advance to next record.

With Me

If mboolPrintWhat = False Then

.txtSalespersonLastName.Visible = True

.txtFirstName.Visible = True

.lblMinimum.Visible = False

.lblAverage.Visible = False

.lblMaximum.Visible = False

mboolPrintWhat = True

.NextRecord = False

‘Hide SalespersonLastName and FirstName text boxes,

CHAPTER 11 Advanced Report Techniques534

‘print Minimum, Average, and Maximum labels,

‘and set mboolPrintWhat variable to False

Else

.txtSalespersonLastName.Visible = False

.txtFirstName.Visible = False

.lblMinimum.Visible = True

.lblAverage.Visible = True

.lblMaximum.Visible = True

mboolPrintWhat = False

End If

End With

End Sub

The first time the Format event for the LastName Group Header (GroupHeader2) executes,
the value of the mboolPrintWhat variable is equal to False. The txtSalesPersonLastName
and the txtFirstName controls are made visible, and the lblMinimum, lblAverage, and
lblMaximum controls are hidden. The mboolPrintWhat variable is set to True, and move-
ment to the next record is suppressed by setting the value of the NextRecord property to
False.

The second time the Format event for the LastName Group Header executes, the code
hides the txtSalespersonLastName and txtFirstName controls. The code makes the
lblMinimum, lblAverage, and lblMaximum controls visible and sets the value of the
mboolPrintWhat variable to False.

The only other code for the report, shown in Listing 11.37, is in the Format event of the
Shipped Date Header (GroupHeader3).

LISTING 11.37 The Code in the Group Header Format Event Used to Determine When
Printing Occurs

Private Sub GroupHeader3_Format(Cancel As Integer, _

FormatCount As Integer)

‘Print data in correct column.

‘Don’t advance to next record or print next section.

If Me.Left < Me.txtLeftMargin + _

(Month(Me.txtShippedDate) + 1) _

* Me.txtColumnWidth Then

Me.NextRecord = False

Me.PrintSection = False

End If

End Sub

Incorporating Practical Applications of Report Events and Properties 535

1
1

LISTING 11.36 Continued

This code compares the report’s Left property to the result of an expression. The Left
property is the amount that the current section is offset from the page’s left edge. This
number is compared to the value in the txtLeftMargin control added to the current
month plus one, and then it’s multiplied by the value in the txtColumnWidth control. If
this expression evaluates to True, the code sets the NextRecord and PrintSection proper-
ties of the report to False. This causes the printer to move to the next printing position
but to remain on the same record and not print anything, which forces a blank space in
the report. You might wonder what the complicated expression is all about. Simply put,
it’s an algorithm that makes sure printing occurs and that Access moves to the next
record only when the data is ready to print.

Practical Examples: Practicing What You Learned
I use the techniques covered in this section in many of the applications that I distribute
to my users. The report that you’ll build here could be included in the hypothetical time
and billing application. It covers generic techniques that you can use in any application
that you build.

One report not covered in the chapter is the rptEmployeeBillingsByProject report. This
report has the following code in its NoData event:

Private Sub Report_NoData(Cancel As Integer)

‘If there is no data in the RecordSource underlying the report,

‘display a message and cancel printing

MsgBox “There is no data for this report. Canceling report...”

Cancel = True

End Sub

If there’s no data in the report’s RecordSource, a message box is displayed, and the report
is canceled. The Open event of the report looks like this:

Private Sub Report_Open(Cancel As Integer)

‘Open the criteria form

DoCmd.OpenForm “frmReportDateRange”, _

WindowMode:=acDialog, _

OpenArgs:=”Employee Billings by Project”

‘If the criteria form is not loaded, cancel printing

If Not IsLoaded(“frmReportDateRange”) Then

Cancel = True

End If

End Sub

The report’s Open event opens a form called frmReportDateRange (see Figure 11.17). This
form is required because it supplies criteria to the query underlying the report. If the form
isn’t loaded successfully, the report is canceled.

CHAPTER 11 Advanced Report Techniques536

FIGURE 11.17 A criteria selection form.

NOTE

You must open this form by running the rptEmployeeBillingsbyProject report. The report
will open the form and then will apply the designated criteria. Also, don’t forget to click
Options and enable code to run.

Finally, the report’s Close event looks like this:

Private Sub Report_Close()

‘Close the criteria form when the report closes

DoCmd.Close acForm, “frmReportDateRange”

End Sub

The report cleans up after itself by closing the criteria form.

Summary
To take full advantage of what the Access reporting tool has to offer, you must
understand—and be able to work with—report and section events. This chapter described
the report and section events, giving you detailed examples of when to use each event.

In addition to the report events, several special properties are available to you only at
runtime. By manipulating these properties, you can have more control over your reports’
behavior. After covering the report and section events, this chapter covered the properties
you can manipulate only at runtime. Examples highlighted the appropriate use of each
property.

There are many tips and tricks of the trade that help you do things you might otherwise
think are impossible to accomplish. This chapter gave you several practical examples of
these tips and tricks, making it easy for you to use them in your own application
development.

Summary 537

1
1

This page intentionally left blank

IN THIS CHAPTER

. Why This Chapter Is Important

. Using Action Queries

. Viewing Special Query
Properties

. Optimizing Queries

. Using Crosstab Queries

. Establishing Outer Joins

. Establishing Self-Joins

. Understanding SQL

. Building Union Queries

. Using Pass-Through Queries

. Examining the Propagation of
Nulls and Query Results

. Running Subqueries

. Using SQL to Update Data

. Using SQL for Data Definition

. Using the Result of a Function
as the Criteria for a Query

. Passing Parameter Query
Values from a Form

. Understanding Jet 4.0 ANSI-92
Extensions

. Practical Examples: Applying
These Techniques in Your
Application

CHAPTER 12

Advanced Query
Techniques

Why This Chapter Is Important
You learned the basics of query design in Chapter 4, “What
Every Developer Needs to Know About Query Basics,” but
Access has a wealth of query capabilities. In addition to the
relatively simple Select queries covered in Chapter 4, you
can create crosstab queries, union queries, self-join queries,
and many other complex selection queries. You can also
easily build Access queries that modify information, rather
than retrieve it. This chapter covers these topics and the
more advanced aspects of query design.

Using Action Queries
With action queries, you can easily modify data without
writing code. In fact, using action queries is often a more
efficient method than using code. Four types of action
queries are available: update, delete, append, and make
table. You use update queries to modify data in a table,
delete queries to remove records from a table, append
queries to add records to an existing table, and make table
queries to create an entirely new table. Each type of query
and its appropriate uses are explained in the following
sections.

Update Queries
You use update queries to modify all records or any records
meeting specific criteria. You can use an update query to
modify the data in one field or several fields (or even
tables) at one time (for example, a query that increases the
salary of everyone in California by 10%). As mentioned,

using update queries is usually more efficient than performing the same task with Visual
Basic for Applications (VBA) code, so update queries are considered a respectable way to
modify table data.

To build an update query, follow these steps:

1. Click the Query Design tool in the Other group on the Create tab. The Show Table
dialog box appears.

2. In the Show Table dialog box, select the tables or queries that will participate in the
update query and click Add. Click Close when you’re ready to continue.

3. Click Update in the Query Type group on the Design tab.

4. Add fields to the query that will either be used for criteria or be updated as a result
of the query. In Figure 12.1, StateProvince has been added to the query grid
because it will be used as a criterion for the update. DefaultRate has been included
because it’s the field that’s being updated.

CHAPTER 12 Advanced Query Techniques540

FIGURE 12.1 An update query that increases the DefaultRate for all clients in California.

5. Add any further criteria, if you want. In Figure 12.1, the criterion for StateProvince
has been set to CA.

6. Add the appropriate Update expression. In Figure 12.1, the DefaultRate is being
increased by 10%.

7. Click Run on the ribbon. The message box shown in Figure 12.2 appears. Click Yes
to continue. The Access Database Engine updates all records meeting the selected
criteria.

FIGURE 12.2 The confirmation message you see when running an update query.

You should name Access update queries with the prefix qupd. To adhere to standard
naming conventions, you should give each type of action query a prefix indicating what
type of query it is. Table 12.1 lists all the proper prefixes for action queries.

TABLE 12.1 Naming Prefixes for Action Queries

Type of Query Prefix Example

Update qupd qupdDefaultRate

Delete qdel qdelOldTimeCards
Append qapp qappArchiveTimeCards

Make Table qmak qmakTempSales

NOTE

Access displays each type of action query in the Database window with a distinctive icon.

All Access queries are stored as Structured Query Language (SQL) statements. (Access SQL
is discussed later in this chapter in the “Understanding SQL” section.) You can display the
SQL for a query by selecting SQL view from the View drop-down on the Design tab. The
SQL behind an Access update query looks like this:

UPDATE tblClients SET tblClients.

DefaultRate = [DefaultRate]*1.1

WHERE (((tblClients.StateProvince)=”CA”));

CAUTION

The actions taken by an update query, as well as by all action queries, can’t be
reversed. You must exercise extreme caution when running any action query.

CAUTION

Remember that if you have turned on the Cascade Update Related Fields Referential
Integrity setting and the update query modifies a primary key field, the Access
Database Engine updates the foreign key of all corresponding records in related
tables. If you have not turned on the Cascade Update Related Fields option and refer-
ential integrity is being enforced, the update query doesn’t allow the offending records
to be modified.

Using Action Queries 541

1
2

Delete Queries
Rather than simply modify table data, delete queries permanently remove from a table
any records meeting specific criteria; they’re often used to remove old records. You might
want to delete all orders from the previous year, for example.

To build a delete query, follow these steps:

1. While in a query’s Design view, select Delete from the Query Type group on the
Design tab.

2. Add the criteria you want to the query grid. The query shown in Figure 12.3 deletes
all time cards more than 365 days old.

3. Click Run on the ribbon. The message box shown in Figure 12.4 appears.

4. Click Yes to permanently remove the records from the table.

CHAPTER 12 Advanced Query Techniques542

FIGURE 12.3 A delete query used to delete all time cards entered more than a year ago.

FIGURE 12.4 The delete query confirmation message box.

The SQL behind a delete query looks like this:

DELETE tblTimeCards.DateEntered

FROM tblTimeCards

WHERE (((tblTimeCards.DateEntered)<Date()-365));

NOTE

Viewing the results of an action query is often useful before you actually change the
records included in the criteria. To view the records affected by the action query, click
the Datasheet View button on the ribbon before you select Run. All records that will be
affected by the action query appear in Datasheet view. If necessary, you can temporar-
ily add key fields to the query to get more information about these records.

CAUTION

Remember that if you have turned on the Cascade Delete Related Records Referential
Integrity setting, the Access Database Engine deletes all corresponding records in
related tables. If you have not turned on the Cascade Delete Related Records option
and you are enforcing referential integrity, the delete query doesn’t allow the offending
records to be deleted. If you want to delete the records on the one side of the relation-
ship, you must first delete all the related records on the many side.

Append Queries
With append queries, you can add records to an existing table. This is often done during
an archive process. First, you append the records to be archived to the history table by
using an append query. Next, you remove them from the master table by using a delete
query.

To build an append query, follow these steps:

1. While in Design view of a query, select Append from the Query Type group on the
Design tab. The dialog box shown in Figure 12.5 appears.

Using Action Queries 543

1
2

FIGURE 12.5 Identifying the table to which data will be appended and the database contain-
ing that table.

2. Select the table to which you want the data appended.

3. Drag all the fields whose data you want included in the second table to the query
grid. If the field names in the two tables match, Access automatically matches the
field names in the source table to the corresponding field names in the destination
table (see Figure 12.6). If the field names in the two tables don’t match, you need to
explicitly designate which fields in the source table match which fields in the desti-
nation table.

CHAPTER 12 Advanced Query Techniques544

FIGURE 12.6 An append query that appends the EmployeeID and DateEntered of all
employees entered in the year 2007 to another table.

4. Enter any criteria in the query grid. Notice in Figure 12.6 that all records with a
DateEntered in 2007 are appended to the destination table.

5. To run the query, click Run on the ribbon. The message box shown in Figure 12.7
appears.

6. Click Yes to finish the process.

FIGURE 12.7 The append query confirmation message box.

The SQL behind an append query looks like this:

INSERT INTO tblTimeCardsArchive (TimeCardID, EmployeeID, DateEntered)

SELECT tblTimeCards.TimeCardID, tblTimeCards.EmployeeID,

tblTimeCards.DateEntered

FROM tblTimeCards

WHERE (((tblTimeCards.DateEntered) Between #1/1/2007# And #12/31/2007#));

Append queries don’t allow you to introduce any primary key violations. If you’re
appending any records that duplicate a primary key value, the message box shown in
Figure 12.8 appears. If you go ahead with the append process, only those records without
primary key violations are appended to the destination table.

Using Action Queries 545

1
2

FIGURE 12.8 The warning message you see when an append query and conversion, primary
key, lock, or validation rule violation occurs.

Make Table Queries
An append query adds records to an existing table, but a make table query creates a new
table, which is often a temporary table used for intermediary processing. You will often
create a temporary table to freeze data while a user runs a report. By building temporary
tables and running the report from those tables, you make sure users can’t modify the
data underlying the report during the reporting process. Another common use of a make
table query is to supply a subset of fields or records to a user.

To build a make table query, follow these steps:

1. While in the query’s Design view, select Make Table from the Query Type group on
the Design tab. The dialog box shown in Figure 12.9 appears.

FIGURE 12.9 Enter a name for the new table and select which database to place it in.

2. Enter the name of the new table and click OK.

3. Move all the fields you want included in the new table to the query grid. The result
of an expression is often included in the new table (see Figure 12.10).

4. Add the criteria you want to the query grid.

5. Click Run on the ribbon to run the query. The message shown in Figure 12.11
appears.

6. Click Yes to finish the process.

CHAPTER 12 Advanced Query Techniques546

FIGURE 12.10 Add an expression to a make table query.

FIGURE 12.11 The make table query confirmation message box.

If you try to run the same make table query more than one time, the table with the same
name as the table you’re creating is permanently deleted (see the warning message in
Figure 12.12).

FIGURE 12.12 The make table query warning message displayed when a table already
exists with the same name as the table to be created.

The SQL for a make table query looks like this:

SELECT tblTimeCards.TimeCardID, tblTimeCards.EmployeeID,

tblTimeCards.DateEntered

INTO tblOldTimeCards

FROM tblTimeCards

WHERE (((tblTimeCards.DateEntered) Between #1/1/2007# And #12/31/2007#));

Using Action Queries Versus Processing Records with Code
As mentioned previously, action queries can be far more efficient than VBA code. Look at
this example:

Sub ModifyRate()

Dim rst As ADODB.Recordset

Set rst = New ADODB.Recordset

With rst

.CursorType = adOpenKeyset

.LockType = adLockOptimistic

.Open “tblEmployees”, CurrentProject.Connection

Do Until .EOF

!BillingRate = !BillingRate + 1

.Update

.MoveNext

Loop

End With

End Sub

This subroutine uses ActiveX Data Objects (ADO) code to loop through tblEmployees. It
increases the billing rate by 1. Compare the ModifyRate subroutine to the following code:

Sub RunActionQuery()

DoCmd.OpenQuery “qupdBillingRate”

End Sub

Using Action Queries 547

1
2

As you can see, the RunActionQuery subroutine is much easier to code. The
qupdBillingRate query, shown in Figure 12.13, performs the same tasks as the
ModifyRate subroutine. In most cases, the action query runs more efficiently.

CHAPTER 12 Advanced Query Techniques548

FIGURE 12.13 The qupdBillingRate query increments the BillingRate by 1.

NOTE

An alternative to the two techniques shown previously is to use ADO code (rather than
the DoCmd object) to execute an action query. This technique is covered in detail in
Chapter 15, “What Are ActiveX Data Objects, and Why Are They Important?”

Viewing Special Query Properties
Access 2007 queries have several properties that can dramatically change their behavior.
To look up a query’s properties, right-click on a blank area in the top half of the Query
window and select Properties to open the Property Sheet (see Figure 12.14). Chapter 4
discusses many of these properties. The following sections cover the Unique Values,
Unique Records, and Top Values properties.

FIGURE 12.14 Viewing the general properties for a query.

Unique Values Property
When set to Yes, the Unique Values property causes the query output to contain no
duplicates for the combination of fields you include in it. Figure 12.15, for example,
shows a query that includes the Country and City fields from tblClients. The Unique
Values property in this example is set to No, its default value. Notice that many combina-
tions of countries and cities appear more than once. This happens whenever more than
one client is found in a particular country and city. Compare this with Figure 12.16, in
which the Unique Values property is set to Yes. Each combination of country and city
appears only once.

Unique Records Property
In Access 2000 and later, the default value for the Unique Records property is No. Setting
it to Yes causes the DISTINCTROW statement to be included in the SQL statement under-
lying the query. When set to Yes, the Unique Records property denotes that the Access
Database Engine includes only unique rows in the recordset underlying the query in the
query result—and not just unique rows based on the fields in the query result. The Unique
Records property applies only to multitable queries; the Access Database Engine ignores it
for queries that include only one table.

Viewing Special Query Properties 549

1
2

FIGURE 12.15 A query with the Unique Values property set to No.

CHAPTER 12 Advanced Query Techniques550

FIGURE 12.16 A query with the Unique Values property set to Yes.

Top Values Property
The Top Values property enables you to specify a certain percentage or a specific number
of records that the user wants to view in the query result. For example, you can build a
query that outputs the country/city combinations with the top 10 sales amounts. You can
also build a query that shows the country/city combinations whose sales rank in the top
50%. You can specify the Top Values property in a few different ways. Here are two
examples:

. Click the Top Values combo box on the ribbon and choose from the predefined list
of choices (this combo box is not available for certain field types).

. Type a number or a number with a percent sign directly into the Top Values prop-
erty in the Query Properties window, or select one of the predefined entries from
the drop-down list for the property.

Figure 12.17 illustrates the design of a query showing the companies with the top 25% of
sales. This Total query summarizes the result of the BillableHours multiplied by the
BillingRate for each company. Notice that the Top Values property is set to 25%. The
output of the query is sorted in descending order by the result of the BillableAmount
calculation (see Figure 12.18). If the SaleAmount field were sorted in ascending order, the
bottom 10% of the sales amount would be displayed in the query result. Remember that
the field(s) you want to use to determine the top values must appear as the left-most
field(s) in the query’s sort order.

Viewing Special Query Properties 551

1
2

FIGURE 12.17 A Total query that retrieves the top 25% of the billable amounts.

FIGURE 12.18 The result of a Total query showing the top 25% of the billable amounts.

NOTE

You might be surprised to discover that the Top Values property doesn’t always seem
to accurately display the correct number of records in the query result. The Access
Database Engine returns all records with values that match the value in the last record
as part of the query result. In a table with 100 records, for example, the query asks for
the top 10 values. Twelve records will appear in the query result if the 10th, 11th, and
12th records all have the same value in the field being used to determine the top value.

Optimizing Queries
The Access Database Engine includes an Optimizer that looks at how long it takes to
perform each task needed to produce the required query results. It then produces a plan
for the shortest path to get the results that you want. This plan is based on several
statistics:

. The amount of data in each table included in the query

. How many data pages are in each table

. The location of each table included in the query

. What indexes are available in each table

. Which indexes are unique

CHAPTER 12 Advanced Query Techniques552

Understanding the Query Compilation Process
The statistics just listed are updated whenever the query is compiled. For a query to be
compiled, it must be flagged as needing to be compiled. The flag can be any of the follow-
ing occurrences:

. Changes are saved to the query.

. Changes are saved to any tables underlying a query.

. The database is compacted.

After the Access Database Engine flags a query as needing to be compiled, it isn’t
compiled until the next time the query is run. During compiling, which takes 1–4
seconds, all statistics are updated, and a new optimization or Query Plan is produced.

NOTE

Because a Query Plan is based on the number of records in each table included in the
query, you should open and save your queries each time the volume of data in a table
changes significantly. This is especially true when you’re moving your query from a test
environment to a production environment. If you test your application with a few
records in each table and the table’s production data soon grows to thousands of
records, your query will be optimized for only a few records and won’t run efficiently. I
handle this problem by compacting the production database on a regular basis.

Analyzing a Query’s Performance
When you’re analyzing the time it takes for a particular query to run, it’s important to
time two tasks:

. How long it takes for the first screen of data to display

. How long it takes to get the last record in the query result

The first measurement is fairly obvious; it measures the amount of time it takes from the
moment the Run button is clicked on the ribbon until the first screen of data is displayed.
The second measurement is a little less obvious; it involves waiting until the N value in
Record 1 of N displays at the bottom of the query result. The two measurements might
be the same, if the query returns only a small number of records. The Access Database
Engine decides whether it’s more efficient to run the query and then display the query
results, or to display partial query results while the query continues to run in the
background.

TIP

The Performance Analyzer can analyze your queries to determine whether additional
indexes will improve query performance. It’s important to run the Performance Analyzer
with the same volume of data that will be present in the production version of your

Optimizing Queries 553

1
2

tables. The Performance Analyzer is covered in Chapter 18, “Optimizing Your
Application.”

Steps You Can Take to Improve a Query’s Performance
You can take many steps to improve a query’s performance. They include, but aren’t
limited to, the following techniques:

. Index fields on both sides of a join. If you establish a permanent relationship
between two tables, the foreign key index is automatically created for you.

. Add to the query grid only the fields you actually need in the query results. If a field
is required for criteria, but it doesn’t need to appear in the query result, clear the
Show check box on the query grid.

. Add indexes for any fields that you are using in the sort order of the query result.

. Always index on fields used in the criteria of the query.

. Compact the database often. During compacting, Access tries to reorganize a table’s
records so that they reside in adjacent database pages, ordered by the table’s primary
key. The Access Database Engine rebuilds the query plans, based on the current
amount of data. These side effects of the compacting process improve performance
when the Access Database Engine is scanning the table during a query.

. When running a multitable query, test to see whether the query runs faster with the
criteria placed on the “one” side or the “many” side of the join.

. Avoid adding criteria to calculated or nonindexed fields.

. Select the smallest field types possible for each field. For example, create a Long
Integer CustID field instead of specifying the CompanyName field as the primary key
for the table.

. Avoid calculated fields in nested queries. It’s always preferable to add calculations to
the higher-level queries.

. Instead of including all expressions in the query, consider placing some expressions
in the control source of form and report controls. If you do this, the expression will
need to be repeated and maintained on each form and report.

. Use make table queries to build tables out of query results based on tables that
rarely change. In a State table, for example, instead of displaying a unique list of
states based on all the states currently included in the Customer table, build a sepa-
rate State table and use that in your queries.

. When using Like in the query criteria, try to place the asterisk at the end of the
character string rather than at the beginning. When you place the asterisk at the
end of a string, as in Like Th*, an index can be used to improve query performance.
If you place the asterisk at the beginning of a string, as in Like *Sr, the Access
Database Engine cannot use any indexes.

CHAPTER 12 Advanced Query Techniques554

. Use Count(*) rather than Count([fieldname]) when counting how many records
meet a particular set of criteria. Count(*) simply tallies up the total number of
records, but Count([fieldname]) actually checks to see whether the value is Null,
which would exclude the record from the total computation. Furthermore, as
mentioned in the next section on Rushmore technology, the Count(*) function is
highly optimized by Rushmore.

. Use Group By as little as possible. When possible, use First instead. For example,
if you’re totaling sales information by order date and order number, you can use
First for the order date and group by order number. The reason is that all records
for a given order number automatically occur on the same order date.

. Use Rushmore technology to speed query performance whenever possible.
Rushmore technology—a data-access technology “borrowed” from Microsoft’s
FoxPro PC database engine—improves the performance of certain queries. The
following section discusses Rushmore technology.

One of the most important lessons to learn about the tips listed here is that you shouldn’t
follow them blindly. Query optimization is an art, not a science. What helps in some situ-
ations might actually do harm in others, so it’s important to perform benchmarks with
your actual system and data.

Rushmore Technology
Rushmore is a data-access technology that can help improve processing queries. You can
use Rushmore technology only when you include certain types of expressions in the
query criteria. It won’t automatically speed up all your queries. You must construct a
query in a certain way for the query to benefit from Rushmore.

Rushmore can optimize a query with an expression and a comparison operator as the
criteria for an Indexed field. The comparison operator must be <, >, =, <=, >=, <>, Between,
Like, or In.

The expression can be any valid expression, including constants, functions, and fields
from other tables. Here are some examples of expressions that Rushmore can optimize:

[Age] > 50

[OrderDate] Between #1/1/2007# And #12/31/2007#

[State] = “CA”

Rushmore can also optimize queries that include complex expressions combining the And
and Or operators. If Rushmore can optimize both expressions, the query will be fully opti-
mized. However, if Rushmore can optimize only one expression and you combine the
expressions with an And, the query will be partially optimized. If Rushmore can fully opti-
mize only one expression and you combine the expressions with an Or, the query won’t
be optimized.

Optimizing Queries 555

1
2

Important Notes About Rushmore
You should remember a few important concepts about Rushmore:

. Queries containing the Not operator can’t be optimized.

. The Count(*) function is highly optimized by Rushmore.

. Descending indexes cannot be used by Rushmore unless the expression is =.

. Queries on Open Database Connectivity (ODBC) data sources can’t use Rushmore.

. Rushmore can use multi-field indexes only when the criteria are in the order of the
index. For example, if an index exists for the LastName field in combination with
the FirstName field, the index can be used to search on LastName or on a combina-
tion of LastName and FirstName, but it can’t be used in an expression based on the
FirstName field.

Using Crosstab Queries
A crosstab query summarizes query results by displaying one field in a table down the
left side of the datasheet and additional facts across the top of the datasheet. A crosstab
query can, for example, summarize the dollars sold by a salesperson to each company.
You can place the name of each company in the query output’s left-most column, and
you can display each salesperson across the top. The dollars sold appear in the appropri-
ate cell of the query output (see Figure 12.19).

CHAPTER 12 Advanced Query Techniques556

FIGURE 12.19 An example of a crosstab query that shows the dollars sold to each
company by salesperson.

Crosstab queries are probably one of the most complex and difficult queries to create. For
this reason, Microsoft offers a Crosstab Query Wizard. The following sections explain the
methods for creating a crosstab query with and without the Crosstab Query Wizard.

Creating a Crosstab Query with the Crosstab Query Wizard
Follow these steps to design a crosstab query with the Crosstab Query Wizard:

1. Select Query Wizard from the Other group on the Create tab.

2. Select Crosstab Query Wizard and click OK.

3. Select the table or query that will act as a foundation for the query (see Figure
12-20). If you want to include fields from more than one table in the query, you’ll
need to base the crosstab query on another query that has the tables and fields you
want. Click Next.

Using Crosstab Queries 557

1
2

FIGURE 12.20 The first step of the wizard asks you to select a table or query on which you
want to base the crosstab query.

4. Select the fields whose values you want to use as the row headings for the query
output. In Figure 12.21, the CompanyName field is selected as the row heading.
Click Next.

5. Select the field whose values you want to use as the column headings for the
query output. In Figure 12.22, the Employee field is selected as the column heading.
Click Next.

6. The Crosstab Query Wizard asks you to specify what field stores the number you
want to use to calculate the value for each column and row intersection. In Figure
12.23, the Total field is totaled for each company and employee. Click Next.

7. Specify a name for your query. When you’re done, click Finish.

CHAPTER 12 Advanced Query Techniques558

FIGURE 12.21 Specifying the rows of a crosstab query.

FIGURE 12.22 Specifying the columns of a crosstab query.

FIGURE 12.23 Specifying the field you want the crosstab query to use for calculating.

Figure 12.24 shows a completed crosstab query in Design view; take a look at several
important attributes. Notice the Crosstab row of the query grid. The CompanyName field is
specified as the row heading and is used as Group By columns for the query. The Employee
field is included as a column heading; it is also used as a Group By for the query.

The Total is specified as a value. The Total cell for the column indicates that this field
will be summed (as opposed to being counted, averaged, and so on).

Using Crosstab Queries 559

1
2

FIGURE 12.24 A completed crosstab query in Design view.

Notice the column labeled Total of Total. This column displays the total of all the
columns in the query. It’s identical to the column containing the value except for the
alias in the field name and the fact that the Crosstab cell is set to Row Heading rather
than Value.

Creating a Crosstab Query Without the Crosstab Query Wizard
Although you can create many of your crosstab queries by using the Crosstab Query
Wizard, you should know how to build one without the wizard. This knowledge lets you
modify existing crosstab queries and gain ultimate control over creating new queries.

To build a crosstab query without using the Crosstab Query Wizard, follow these steps:

1. Click Query Design in the Other group on the Create tab.

2. Select the table or query that will be included in the query grid. Click Add to add
the table or query. Click Close.

3. Select Crosstab from the Query Type group on the Design tab.

4. Add to the query grid the fields you want to include in the query output.

5. Click the Crosstab row of each field you want to include as a row heading. Select
Row Heading from the drop-down list.

6. Click the Crosstab row of the field you want to include as a column heading. Select
Column Heading from the drop-down list.

7. Click the Crosstab row of the field whose values you want to cross-tabulate. Select
Value from the Crosstab drop-down list.

8. Select the appropriate aggregate function from the Total drop-down list.

9. Add any date intervals or other expressions you want to include.

10. Specify any criteria for the query.

11. Change the sort order of any of the columns, if you like.

12. Run the query when you’re ready.

Figure 12.25 shows a query in which the column heading is set to the month of the
ProjectBeginDate field; the row heading is set to the EmployeeName field. The sum of the
ProjectTotalEstimate field is the value for the query. The ProjectBeginDate is also
included in the query grid as a WHERE clause for the query. Figure 12.26 shows the results
of running the query.

CHAPTER 12 Advanced Query Techniques560

FIGURE 12.25 A crosstab query, designed without a wizard, showing the project total esti-
mate by employee and month.

FIGURE 12.26 The result of running the crosstab query shown in Figure 12.25.

Creating Fixed Column Headings
If you don’t use fixed column headings, all the columns are included in the query output
in alphabetical order. For example, if you include month names in the query result, they
appear as Apr, Aug, Dec, Feb, and so on. By using fixed column headings, you tell Access
the order in which each column appears in the query result. You can specify column
headings by setting the query’s Column Headings property (see Figure 12.27).

NOTE

All fixed column headings must match the underlying data exactly; otherwise, informa-
tion will be omitted inadvertently from the query result. For example, if the column
heading for the month of June was accidentally entered as June and the data output
by the format statement included data for the month of Jun, all June data would be
omitted from the query output.

Important Notes About Crosstab Queries
Regardless of how crosstab queries are created, you should be aware of some special
caveats when working with them:

. You can select only one value and one column heading for a crosstab query, but you
can select multiple row headings.

. The results of a crosstab query can’t be updated.

Using Crosstab Queries 561

1
2

FIGURE 12.27 A query’s Column Headings property.

. You can’t define criteria on the Value field. If you do, you get the error message You
can’t specify criteria on the same field for which you enter a Value in

the Crosstab row. If you must specify criteria for the Value field, you must first
build another query that includes your selection criteria and base the crosstab query
on the first query.

. All parameters used in a crosstab query must be explicitly declared in the Query
Parameters dialog box.

TIP

Pivot tables, introduced with Access 2002, have all the functionality of crosstab
queries and then some! Consider replacing crosstab queries with Select queries
stored in PivotTable view.

Establishing Outer Joins
You use outer joins when you want the records on the one side of a one-to-many relation-
ship to be included in the query result, regardless of whether there are matching records
in the table on the many side. With a Customers table and an Orders table, for example,
users often want to include only customers with orders in the query output. An inner join
(the default join type) does this. In other situations, users want all customers to be

CHAPTER 12 Advanced Query Techniques562

included in the query result, whether or not they have orders. This is when an outer join
is necessary.

NOTE

In Access, there are two types of outer joins: left outer joins and right outer joins. A
left outer join occurs when all records on the “one” side of a one-to-many relationship
are included in the query result, regardless of whether any records exist on the “many”
side. A right outer join means all records on the “many” side of a one-to-many relation-
ship are included in the query result, regardless of whether there are any records on
the “one” side. A right outer join should never occur if you are enforcing referential
integrity.

To establish an outer join, you must modify the join between the tables included in
the query:

1. Double-click the line joining the tables in the query grid.

2. The Join Properties window appears (see Figure 12.28). Select the type of join you
want to create. To create a left outer join between the tables, select Option 2
(Option 3 if you want to create a right outer join). Notice in Figure 12.28 that the
description is Include ALL Records from tblClients and Only Those Records from
tblProjects Where the Joined Fields Are Equal.

Establishing Outer Joins 563

1
2

FIGURE 12.28 Establishing a left outer join.

3. Click OK to accept the join. An outer join should be established between the tables.
Notice that the line joining the two tables now has an arrow pointing to the many
side of the join.

The SQL statement produced when a left outer join is established looks like this:

SELECT DISTINCTROW tblClients.ClientID, tblClients.CompanyName

FROM tblClients

LEFT JOIN tblProjects ON tblClients.ClientID = tblProjects.ClientID;

A left outer join can also be used to identify all the records on the “one” side of a join
that don’t have corresponding records on the “many” side. To do this, simply enter Is
Null as the criterion for any required field on the “many” side of the join. A common
solution is to place the criterion on the foreign key field. In the query shown in Figure
12.29, only clients without projects are displayed in the query result.

CHAPTER 12 Advanced Query Techniques564

FIGURE 12.29 A query showing clients without projects.

Establishing Self-Joins
A self-join enables you to join a table to itself. This is often done so that information
in a single table can appear to exist in two separate tables. A classic example is seen with
employees and supervisors. Two fields are included in the Employees table: One field
includes the EmployeeID of the employee being described in the record, and the other
field specifies the EmployeeID of the employee’s supervisor. If you want to see a list of
employee names and the names of their supervisors, you’ll need to use a self-join.

To build a self-join query, follow these steps:

1. Click the Query Design button in the Other group on the Create tab.

2. From the Show Tables dialog box, add the table to be used in the self-join to the
query grid two times. Click Close. Notice that the second instance of the table
appears with an underscore and the number 1.

3. To change the alias of the second table, right-click on top of the table in the query
grid and select Properties. Change the Alias property as desired. In Figure 12.30, the
alias has been changed to Supervisors.

Establishing Self-Joins 565

1
2

FIGURE 12.30 Building a self-join.

4. To establish a join between the table and its alias, click and drag from the field in
one table that corresponds to the field in the aliased table. In Figure 12.31, the
SupervisorID field of the tblEmployees table has been joined with the EmployeeID
field from the aliased table.

5. Drag the appropriate fields to the query grid. In Figure 12.31, the FirstName and
LastName fields are included from the tblEmployees table. The SupervisorName
expression (a concatenation of the supervisor’s first and last names) is supplied from
the copy of the table with the Supervisors alias.

TIP

You can permanently define self-relationships in the Relationships window. You will
often do this so that you can establish referential integrity between two fields in the
same table. In the example of employees and supervisors, you can establish a perma-
nent relationship with referential integrity to make sure supervisor ID numbers aren’t
entered with employee ID numbers that don’t exist.

FIGURE 12.31 Establishing a self-join between the table and its alias.

NOTE

To learn more about referential integrity, see Chapter 3, “Relationships: Your Key to
Data Integrity.”

Understanding SQL
Access SQL is the language that underlies Access queries, so you need to understand a
little bit about it, where it came from, and how it works. Access SQL enables you to
construct queries without using the Access Query By Example (QBE) grid. This is neces-
sary, for example, if you must build a SQL statement on the fly in response to user inter-
action with your application. Furthermore, certain operations supported by Access SQL
aren’t supported by the graphical QBE grid. You must build these SQL statements in the
Query Builder’s SQL view. In addition, many times you will want to build the record
source for a form or report on the fly. In those situations, you must have command of the
SQL language. Finally, you will want to use SQL statements in your ADO code. For all
these reasons, learning SQL is a valuable skill.

What Is SQL, and Where Did It Come From?
SQL is a standard from which many different dialects have emerged. It was developed at
an IBM research laboratory in the early 1970s and first formally described in a research

CHAPTER 12 Advanced Query Techniques566

paper released in 1974 at an Association for Computing Machinery meeting. Jet 4.0, the
version of the Jet Engine provided with Access 2000 and above, has two modes: One
supports Access SQL, and the other supports SQL-92. The Access Database Engine,
included with Access 2007, also supports the SQL-92 extensions. The SQL-92 extensions
are not available from the user interface. They can only be accessed using ADO. They are
covered in a later section of this chapter, “Understanding Jet 4.0 ANSI-92 Extensions.”

What Do You Need to Know About SQL?
At the very least, you need to understand SQL’s basic constructs, which enable you to
select, update, delete, and append data by using SQL commands and syntax. Access SQL is
made up of very few verbs. The sections that follow cover the most commonly used verbs.

SQL Syntax
SQL is easy to learn. When retrieving data, you simply build a SELECT statement. SELECT
statements are composed of clauses that determine the specifics of how the data is
selected. When they’re executed, SELECT statements select rows of data and return them
as a recordset.

NOTE

In the examples that follow, keywords appear in uppercase. Values that you supply
appear italicized. Optional parts of the statement appear in square brackets. Curly
braces, combined with vertical bars, indicate a choice. Finally, ellipses are used to indi-
cate a repeating sequence.

The SELECT Statement
The SELECT statement is at the heart of the SQL language. It is used to retrieve data from
one or more tables. Its basic syntax is

SELECT column-list FROM table-list WHERE where-clause ORDER BY order-by-clause

The SELECT Clause
The SELECT clause specifies what columns you want to retrieve from the table whose data
is being returned to the recordset. The basic syntax for a SELECT clause is

SELECT column-list

The simplest SELECT clause looks like this:

SELECT *

This SELECT clause retrieves all columns from a table. Here’s another example that
retrieves only the ClientID and CompanyName columns from a table:

SELECT ClientID, CompanyName

Understanding SQL 567

1
2

You not only can include columns that exist in your table, but also can include expres-
sions in a SELECT clause. Here’s an example:

SELECT ClientID, City & “, “ & State & “ “ & PostalCode AS Address

This SELECT clause retrieves the ClientID column as well as an alias called Address, which
includes an expression that concatenates the City, State, and PostalCode columns.

The FROM Clause
The FROM clause specifies the tables or queries from which the records should be selected.
It can include an alias you use to refer to the table. The FROM clause looks like this:

FROM table-list [AS alias]

Here’s an example of a basic FROM clause:

FROM tblClients AS Clients

In this case, the name of the table is tblClients, and the alias is Clients. If you combine
the SELECT clause with the FROM clause, the SQL statement looks like this:

SELECT ClientID, CompanyName FROM tblClients

This SELECT statement retrieves the ClientID and CompanyName columns from the
tblClients table.

Just as you can alias the fields included in a SELECT clause, you can also alias the tables
included in the FROM clause. The alias is used to shorten the name, to simplify a cryptic
name, and to perform a variety of other functions. Here’s an example:

SELECT ClientID, CompanyName FROM tblClients AS Customers

This SQL statement selects the ClientID and CompanyName fields from the tblClients
table, aliasing the tblClients table as Customers.

The WHERE Clause
The WHERE clause limits the records retrieved by the SELECT statement. You must follow
several rules when building a WHERE clause. The text strings that you are searching for
must be enclosed in quotation marks. Dates must be surrounded by pound (#) signs.
Finally, you must include the keyword LIKE when using wildcard characters. A WHERE
clause can include up to 40 columns combined by the keywords AND and OR. The syntax
for a WHERE clause looks like this:

WHERE expression1 [{AND|OR} expression2 [...]]

A simple WHERE clause looks like this:

WHERE Country = “USA”

CHAPTER 12 Advanced Query Techniques568

Using an AND to further limit the criteria, the WHERE clause looks like this:

WHERE Country = “USA” AND ContactTitle Like “Sales*”

This WHERE clause limits the records returned to those in which the country is equal to USA
and the ContactTitle begins with Sales. Using an OR, the SELECT statement looks like
this:

WHERE Country = “USA” OR Country = “Canada”

This WHERE clause returns all records in which the country is equal to either USA or Canada.
Compare that with the following example:

WHERE Country = “USA” OR ContactTitle Like “Sales*”

This WHERE clause returns all records in which the Country is equal to USA or the
ContactTitle begins with Sales. For example, if the ContactTitle for the salespeople in
China begins with Sales, the names of those salespeople will be returned from this WHERE
clause. The WHERE clause combined with the SELECT and FROM clauses looks like this:

SELECT ClientID, CompanyName FROM tblClients

WHERE Country = “USA” OR Country = “Canada”

NOTE

Although Access SQL uses quotation marks to surround text values you’re searching
for, the ANSI-92 standard dictates that apostrophes (single quotation marks) must be
used to delimit text values.

The ORDER BY Clause
The ORDER BY clause determines the order in which the returned rows are sorted. It’s an
optional clause, and it looks like this:

ORDER BY column1 [{ASC|DESC}], column2 [{ASC|DESC}] [,...]]

Here’s an example:

ORDER BY ClientID

The ORDER BY clause can include more than one field:

ORDER BY Country, ClientID

When more than one field is specified, the leftmost field is used as the primary level of
sort. Any additional fields are the lower sort levels. Combined with the rest of the SELECT
statement, the ORDER BY clause looks like this:

Understanding SQL 569

1
2

SELECT ClientID, CompanyName FROM tblClients

WHERE Country = “USA” OR Country = “Canada”

ORDER BY ClientID

The ORDER BY clause allows you to determine whether the sorted output appears in
ascending or descending order. By default, output appears in ascending order. To switch
to descending order, use the optional keyword DESC. Here’s an example:

SELECT ClientID, CompanyName FROM tblClients ORDER BY ClientID DESC

This example selects the ClientID and CompanyName fields from the tblClients table,
ordering the output in descending order by the ClientID field.

The JOIN Clause
Often you’ll need to build SELECT statements that retrieve data from more than one table.
When building a SELECT statement based on more than one table, you must join the
tables with a JOIN clause. The JOIN clause differs depending on whether you join the
tables with an INNER JOIN, a LEFT OUTER JOIN, or a RIGHT OUTER JOIN.

The SQL-89 and SQL-92 syntax for joins differs. The basic SQL-89 syntax is

SELECT column-list FROM table1, table2 WHERE table1.column1 = table2.column2

The SQL-92 syntax is preferred because it separates the join from the WHERE clause. It is

SELECT column-list FROM table1 {INNER|LEFT [OUTER]|RIGHT [OUTER]} JOIN table2

ON table1.column1 = table2.column2

Note that the keyword OUTER is optional.

Here’s an example of a simple INNER JOIN:

SELECT DISTINCTROW tblClients.ClientID,

tblClients.CompanyName, tblProjects.ProjectName,

tblProjects.ProjectDescription

FROM tblClients

INNER JOIN tblProjects ON tblClients.ClientID = tblProjects.ClientID

Notice that four columns are returned in the query result. Two columns are from
tblClients and two are from tblProjects. The SELECT statement uses an INNER JOIN
from tblClients to tblProjects based on the ClientID field. This means that only
clients who have projects are displayed in the query result. Compare this with the follow-
ing SELECT statement:

SELECT DISTINCTROW tblClients.ClientID,

tblClients.CompanyName, tblProjects.ProjectName,

tblProjects.ProjectDescription

FROM tblClients

LEFT JOIN tblProjects ON tblClients.ClientID = tblProjects.ClientID

CHAPTER 12 Advanced Query Techniques570

This SELECT statement joins the two tables using a LEFT JOIN from tblClients to
tblProjects based on the ClientID field. All clients are included in the resulting records,
whether or not they have projects.

NOTE

The word OUTER is assumed in the LEFT JOIN clause used when building a left outer
join.

Sometimes you will need to join more than two tables in a SQL statement. When you
need to do this, the ANSI-92 syntax is

FROM table1 JOIN table2 ON condition1 JOIN table3 ON condition2

The following example joins the tblClients, tblProjects, and tblPayments tables:

SELECT tblClients.ClientID, tblClients.CompanyName,

tblProjects.ProjectName, tblPayments.PaymentAmount

FROM (tblClients

INNER JOIN tblProjects

ON tblClients.ClientID = tblProjects.ClientID)

INNER JOIN tblPayments

ON tblProjects.ProjectID = tblPayments.ProjectID

In the example, the order of the joins is unimportant. The exception to this is when inner
and outer joins are combined. When combining inner and outer joins, the Access
Database Engine applies two specific rules. First, the nonpreserved table in an outer join
cannot participate in an inner join. The nonpreserved table is the one whose rows might
not appear. In the case of a left outer join from tblClients to tblProjects, the
tblProjects table is considered the nonpreserved table. It therefore cannot participate in
an inner join with tblPayments. The second rule is that the nonpreserved table in an
outer join cannot participate with another nonpreserved table in another outer join.

Self-Joins
Self-joins were covered earlier in this chapter. The SQL syntax required to create them is
similar to a standard join and is covered here:

SELECT tblEmployees![FirstName] & “ “ & tblEmployees![LastName] AS EmployeeName,

tblSupervisors![FirstName] & “ “ & tblSupervisors![LastName] AS SupervisorName

FROM tblEmployees

INNER JOIN tblEmployees

AS tblSupervisors

ON tblEmployees.SupervisorID = tblSupervisors.EmployeeID

Notice that the tblEmployees table is joined to an alias of the tblEmployees table that is
referred to as tblSupervisors. The SupervisorID from the tblEmployees table is joined

Understanding SQL 571

1
2

with the EmployeeID field from the tblSupervisors alias. The fields included in the
output are the FirstName and LastName from the tblEmployees table and the FirstName
and LastName from the alias of the tblEmployees table.

Non-Equi Joins
So far, all the joins that we have covered involve situations in which the value of a field
in one table is equal to the value of the field in the other table. You can create non-equi
joins in which the >, >=, <, <=, <>, or Between operator is used to join two tables. Here’s an
example:

SELECT tblClients.CompanyName, tblProjects.ProjectName

FROM tblClients

INNER JOIN tblProjects

ON tblClients.ClientID = tblProjects.ClientID

AND tblProjects.ProjectBeginDate >= tblClients.IntroDate

This example returns only the rows from tblProjects where the ProjectBeginDate is on
or after the IntroDate stored in the tblClients table.

ALL, DISTINCTROW, and DISTINCT Clauses
The ALL clause of a SELECT statement means that all rows meeting the WHERE clause are
included in the query result. When the DISTINCT keyword is used, Access eliminates
duplicate rows, based on the fields included in the query result. This is the same as setting
the Unique Values property to Yes in the graphical QBE grid. When the DISTINCTROW
keyword is used, Access eliminates any duplicate rows based on all columns of all tables
included in the query (whether they appear in the query result or not). This is the same
as setting the Unique Records property to Yes in the graphical QBE grid. These keywords
in the SELECT clause look like this:

SELECT [{ALL|DISTINCT|DISTINCT ROW}] column-list

The TOP Predicate
The Top Values property, available via the user interface, is covered in the “Viewing
Special Query Properties” section, earlier in this chapter. The keyword TOP is used to
implement this feature in SQL. The syntax looks like this:

SELECT [{ALL|DISTINCT|DISTINCTROW}] [TOP n [PERCENT]] column-list

The example that follows extracts the five clients whose IntroDate field is most recent:

SELECT TOP 5 tblClients.ClientID, tblClients.CompanyName, tblClients.IntroDate

FROM tblClients

ORDER BY tblClients.IntroDate DESC

CHAPTER 12 Advanced Query Techniques572

The GROUP BY Clause
The GROUP BY clause is used to calculate summary statistics; it’s created when you build a
Totals query by using the graphical QBE grid. The syntax of the GROUP BY clause is

GROUP BY group-by-expression1 [,group-by-expression2 [,...]]

The GROUP BY clause is used to dictate the fields on which the query result is grouped.
When multiple fields are included in a GROUP BY clause, they are grouped from left to
right. The output is automatically ordered by the fields designated in the GROUP BY clause.
In the following example, the SELECT statement returns the country, city, and total freight
for each country/city combination. The results are displayed in order by country and city:

SELECT DISTINCTROW tblCustomers.Country, tblCustomers.City,

Sum(tblOrders.Freight) AS SumOfFreight

FROM tblCustomers

INNER JOIN tblOrders ON tblCustomers.CustomerID = tblOrders.CustomerID

GROUP BY tblCustomers.Country, tblCustomers.City

The GROUP BY clause indicates that detail for the selected records isn’t displayed. Instead,
the fields indicated in the GROUP BY clause are displayed uniquely. One of the fields in the
SELECT statement must include an aggregate function. This result of the aggregate func-
tion is displayed along with the fields specified in the GROUP BY clause.

The HAVING Clause
A HAVING clause is similar to a WHERE clause, but it differs in one major respect: It’s applied
after the data is summarized rather than before. In other words, the WHERE clause is used
to determine which rows are grouped. The HAVING clause determines which groups are
included in the output. A HAVING clause looks like this:

HAVING expression1 [{AND|OR} expression2[...]]

In the following example, the criterion > 1000 will be applied after the aggregate function
SUM is applied to the grouping:

SELECT DISTINCTROW tblCustomers.Country, tblCustomers.City,

Sum(tblOrders.Freight) AS SumOfFreight

FROM tblCustomers

INNER JOIN tblOrders ON tblCustomers.CustomerID = tblOrders.CustomerID

GROUP BY tblCustomers.Country, tblCustomers.City

HAVING (((Sum(tblOrders.Freight))>1000))

Applying What You Have Learned
You can practice entering and working with SQL statements in two places:

. In a query’s SQL View window

. In VBA code

Understanding SQL 573

1
2

In the following sections, you look at both of these techniques.

Using the Graphical QBE Grid as a Two-Way Tool
A great place to practice writing SQL statements is in the SQL View window of a query. It
works like this:

1. Start by building a new query.

2. Add a couple of fields and maybe even some criteria.

3. Use the View drop-down list in the Results group of the Design tab to select
SQL view.

4. Try changing the SQL statement, using what you have learned in this chapter.

5. Use the View drop-down list in the Results group of the Design tab to select Design
view. As long as you haven’t violated any Access SQL syntax rules, you can easily
switch to the query’s Design view and see the graphical result of your changes. If
you’ve introduced any syntax errors into the SQL statement, an error occurs when
you try to return to the query’s Design view.

Including SQL Statements in VBA Code
You can also execute SQL statements directly from VBA code. You can run a SQL state-
ment from VBA code in two ways:

. You can build a temporary query and execute it.

. You can open a recordset with the SQL statement as the foundation for the
recordset.

The VBA language enables you to build a query on the fly, execute it, and never store it.
The code looks like this:

Sub CreateTempQuery()

Dim cmd As ADODB.Command

Dim rst As ADODB.Recordset

Set cmd = New ADODB.Command

With cmd

.ActiveConnection = CurrentProject.Connection

.CommandText = “Select ProjectID, ProjectName from “ & _

“tblProjects Where ProjectTotalEstimate > 30000”

.CommandType = adCmdText

.Prepared = True

Set rst = .Execute

End With

Do Until rst.EOF

CHAPTER 12 Advanced Query Techniques574

Debug.Print rst!ProjectID, rst!ProjectName

rst.MoveNext

Loop

End Sub

Working with recordsets is covered extensively in Chapter 15. For now, you need to
understand that this code creates a temporary query definition using a SQL statement. In
this example, the query definition is never added to the database. Instead, the SQL state-
ment is executed but never stored.

A SQL statement can also be provided as part of the recordset’s Open method. The code
looks like this:

Sub OpenRWithSQL()

Dim rst As ADODB.Recordset

Set rst = New ADODB.Recordset

rst.Open “Select ProjectId, ProjectName from “ & _

“tblProjects Where ProjectTotalEstimate > 30000”, _

CurrentProject.Connection

Do Until rst.EOF

Debug.Print rst!ProjectID, rst!ProjectName

rst.MoveNext

Loop

End Sub

Again, this code is discussed more thoroughly in Chapter 15. Notice that the Open
method of the recordset object receives two parameters: The first is a SELECT statement,
and the second is the Connection object.

Building Union Queries
A union query enables you to combine data from two tables with similar structures; data
from each table is included in the output. For example, suppose you have a tblTimeCards
table containing active time cards and a tblTimeCardsArchive table containing archived
time cards. The problem occurs when you want to build a report that combines data from
both tables. To do this, you must build a union query as the record source for the report.
The syntax for a union query is

Select-statement1 UNION [ALL]

Select-statement2 [UNION [ALL]

SelectStatement3] [...]

Building Union Queries 575

1
2

Here’s an example:

SELECT FirstName, LastName, Department, Salary

FROM tblEmployees

UNION ALL SELECT FirstName, LastName, Department, Salary

FROM tblSummerEmployees

This example combines data from the tblEmployees table with data from the
tblSummerEmployees table, preserving duplicate rows, if there are any.

The ALL Keyword
Notice the keyword ALL in the previous SQL statement. By default, Access eliminates all
duplicate records from the query result. This means that if an employee is found in both
the tblEmployees and tblSummerEmployees tables, he appears only once in the query
result. Including the keyword ALL causes any duplicate rows to display.

Sorting the Query Results
When sorting the results of a union query, you must include the ORDER BY clause at the
end of the SQL statement. Here’s an example:

SELECT FirstName, LastName, Department, Salary

FROM tblEmployees

UNION ALL SELECT FirstName, LastName, Department, Salary

FROM tblSummerEmployees

ORDER BY Salary

This example combines data from the tblEmployees table with data from the
tblSummerEmployees table, preserving duplicate rows, if there are any. It orders the results
by the Salary field (combining the data from both tables).

If the column names that you are sorting by differ in the tables included in the union
query, you must use the column name from the first table.

Using the Graphical QBE to Create a Union Query
You can use the graphical QBE to create a union query. The process is as follows:

1. Click Query Design in the Other group on the Create tab.

2. Click Close from the Show Tables dialog box without selecting a table.

3. Choose Union Query in the Query Type group on the Design tab. A SQL window
appears.

4. Type in the SQL UNION clause. Notice that you can’t switch back to the query’s
Design view (see Figure 12.32).

CHAPTER 12 Advanced Query Techniques576

FIGURE 12.32 An example of a union query that combines tblTimeCards with
tblTimeCardsArchive.

5. Click the Run button on the ribbon to execute the query.

CAUTION

If you build a query and then designate the query as an SQL Specific query, you
lose everything that you did prior to the switch. There is no warning, and Undo is not
available!

Important Notes about Union Queries
It is important to note that the result of a union query is not updateable. Furthermore,
the fields in each SELECT statement are matched only by position. This means that you
can get strange results by accidentally listing the FirstName field followed by the
LastName field in the first SELECT statement, and the LastName field followed by the
FirstName field in the second SELECT statement. Each SELECT statement included in a
union query must contain the same number of columns. Finally, each column in the first
SELECT statement much have the same data type as the corresponding column in the
second SELECT statement.

Building Union Queries 577

1
2

Using Pass-Through Queries
Pass-Through queries enable you to send uninterpreted SQL statements to your back-end
database when you’re using something other than the Access Database Engine. These
uninterpreted statements are in the SQL that’s specific to your particular back end.
Although the Access Database Engine sees these SQL statements, it makes no attempt to
parse or modify them. Pass-Through queries are used in several situations:

. The action you want to take is supported by your back-end database server but not
by Access SQL or ODBC SQL.

. Access or the ODBC driver is doing a poor job parsing the SQL statement and
sending it in an optimized form to the back-end database.

. You want to execute a stored procedure on the back-end database server.

. You want to make sure the SQL statement is executed on the server.

. You want to join data from more than one table residing on the database server. If
you execute the join without a Pass-Through query, the join is done in the memory
of the user’s PC after all the required data has been sent over the network.

Although Pass-Through queries offer many advantages, they aren’t a panacea. They do
have a few disadvantages:

. Because you’re sending SQL statements specific to your particular database server,
you must write the statement in the “dialect” of SQL used by the database server.
For example, in writing a Pass-Through query to access SQL Server data, you must
write the SQL statement in T-SQL. When writing a Pass-Through query to access
Oracle data, you must write the SQL statement in PL-SQL. This means that you’ll
need to rewrite all the SQL statements if you switch to another back end.

. The results returned from a Pass-Through query can’t be updated.

. The Access Database Engine does no syntax checking of the query before passing it
on to the back end.

Now that you know all the advantages and disadvantages of Pass-Through queries, you
can learn how to build one:

1. Click Query Design in the Other group on the Create tab.

2. Click Close from the Show Tables dialog box without selecting a table.

3. Choose Pass-Through Query in the Query Type group on the Design tab to open the
SQL Design window.

4. Type in the SQL statement in the dialect of your back-end database server.

CHAPTER 12 Advanced Query Techniques578

Examining the Propagation of Nulls and Query Results 579

1
2

FIGURE 12.33 A SQL Pass-Through query that selects specific fields from the Sales table,
which resides in the PublisherInfo data source.

Examining the Propagation of Nulls and
Query Results
Null values can wreak havoc with your query results because they propagate. Look at the
query in Figure 12.34. Notice that when parts and labor are added, and either the Parts
field or the Labor field contains a Null, the result of adding the two fields is Null. In
Figure 12.35, the problem is rectified. Figure 12.36 shows the design of the query that
eliminates the propagation of the Nulls. Notice the expression that adds the two values:

TotalPrice: Nz([Parts]) + Nz([Labor])

This expression uses the Nz function to convert the Null values to 0 before the two field
values are added together.

5. View the Query Properties window and enter an ODBC connect string (see Figure
12.33).

6. Click the Run button on the ribbon to run the query.

FIGURE 12.35 An example that shows Nulls eliminated from the query result.

CHAPTER 12 Advanced Query Techniques580

FIGURE 12.34 An example that shows the propagation of Nulls in a query result.

Running Subqueries 581

1
2

FIGURE 12.36 A solution to eliminate propagation of Nulls.

Running Subqueries
Subqueries allow you to embed one SELECT statement within another. By placing a
subquery in a query’s criteria, you can base one query on the result of another. Figure
12.37 shows an example. The query pictured finds all the clients without projects.

FIGURE 12.37 A query containing a subquery.

The SQL statement looks like this:

SELECT DISTINCTROW tblClients.ClientID,

tblClients.CompanyName FROM tblClients

WHERE tblClients.ClientID Not In (Select ClientID from tblProjects)

This query first runs the SELECT statement SELECT ClientID from tblProjects. It uses
the result as criteria for the first query.

Using SQL to Update Data
SQL can be used not only to retrieve data, but to update it as well. This concept was intro-
duced in the section “Using Action Queries,” which focused on the SQL statements
behind the action queries.

The UPDATE Statement
The UPDATE statement is used to modify the data in one or more columns of a table. The
syntax for the UPDATE statement is

UPDATE table/query

SET column1=expression1 [,column2=expression2] [,...]

[WHERE criteria]

The WHERE clause in the UPDATE statement is used to limit the rows that are updated. The
following is an example of an UPDATE statement:

UPDATE tblClients

SET tblClients.DefaultRate = [DefaultRate]*1.1

WHERE tblClients.DefaultRate<=125

This statement updates the DefaultRate column of the tblClients table, increasing it by
10% for any clients that have a default rate less than or equal to 125.

The DELETE Statement
Whereas the UPDATE statement is used to update all rows that meet specific criteria, the
DELETE statement deletes all rows that meet the specified criteria. The syntax for the
DELETE statement is

DELETE FROM table [WHERE criteria]

As with the UPDATE statement, the WHERE clause is used to limit the rows that are deleted.
The following is an example of the use of a DELETE statement:

DELETE tblClients.*, tblClients.DefaultRate

FROM tblClients

WHERE tblClients.DefaultRate<=125

CHAPTER 12 Advanced Query Techniques582

This statement deletes all clients from the tblClients table whose DefaultRate field is
less than or equal to 125.

The INSERT INTO Statement
The INSERT INTO statement is used to copy rows from one table to another. The syntax
for the INSERT INTO statement is

INSERT INTO target-table select-statement [WHERE criteria]

Once again, the optional WHERE clause is used to limit the rows that are copied. Here’s an
example:

INSERT INTO tblCheapClients
(ClientID, CompanyName, ContactFirstName,
ContactLastName, ContactTitle, DefaultRate)
SELECT tblClients.ClientID, tblClients.CompanyName,
tblClients.ContactFirstName,
tblClients.ContactLastName, tblClients.ContactTitle, tblClients.DefaultRate
FROM tblClients
WHERE tblClients.DefaultRate<=125

This statement inserts the ClientID, CompanyName, ContactFirstName, ContactLastName,
ContactTitle, and DefaultRate fields into the corresponding fields in the
tblCheapClients table for any clients whose DefaultRate field is less than or equal to 125.

The SELECT INTO Statement
Whereas the INSERT INTO statement inserts data into an existing table, the SELECT INTO
statement inserts data into a new table. The syntax looks like this:

SELECT column1 [,column2 [,...]] INTO new-table
FROM table-list
[WHERE where-clause]
[ORDER BY orderby-clause]

The WHERE clause is used to determine which rows in the source table are inserted into the
destination table. The ORDER BY clause is used to designate the order of the rows in the
destination table. Here’s an example:

SELECT tblClients.ClientID, tblClients.CompanyName,
tblClients.ContactFirstName, tblClients.ContactLastName,
tblClients.ContactTitle, tblClients.DefaultRate
INTO tblCheapClients
FROM tblClients
WHERE tblClients.DefaultRate<=125

This statement inserts data from the selected fields in the tblClients table into a new
table called tblCheapClients. Only the clients whose DefaultRate field is less than or
equal to 125 are inserted.

Using SQL to Update Data 583

1
2

Using SQL for Data Definition
Access 2007 offers two methods of programmatically defining and modifying objects. You
can use either ActiveX Data Object Extensions for DDL and Security (ADOX) or Data
Definition Language (DDL). DDL is covered in this chapter. ADOX is introduced in
Chapter 15.

The CREATE TABLE Statement
As its name implies, the CREATE TABLE statement is used to create a new table. The
syntax is

CREATE TABLE table-name

(column1 type1 [(size1)] [CONSTRAINT column-constraint1]

[,column2 type2 [(size2)] [CONSTRAINT column-constraint2]

[,...]]

[CONSTRAINT table-constraint1 [,table-constraint2 [,]]])

You must designate the type of data for each column included in the table. When defin-
ing a text field, you can also specify the size parameter. Notice that constraints are avail-
able at the table level and at the field level. Here’s an example of a CREATE TABLE
statement:

CREATE TABLE tblCustomers

(CustomerID LONG, CompanyName TEXT (50), IntroDate DATETIME)

This example creates a table named tblCustomers. The table will contain three fields:
CustomerID (Long), CompanyName (Text), and IntroDate (DateTime).

The CONSTRAINT clause allows you to create primary and foreign keys. It looks like this:

CONSTRAINT name {PRIMARY KEY|UNIQUE|REFERENCES foreign-table [foreign-column]}

Here’s an example:

CREATE TABLE tblCustomers

(CustomerID LONG CONSTRAINT CustomerID PRIMARY KEY,

CompanyName TEXT (50), IntroDate DATETIME)

The example creates a primary key index based on the CustomerID field.

The CREATE INDEX Statement
The CREATE INDEX statement is used to add an index to an existing table. It is supported
in Access but is not part of the ANSI standard. It looks like this:

CREATE [UNIQUE] INDEX index-name

ON table-name (column1 [,column2 [,...]])

[WITH {PRIMARY|DISALLOW NULL|IGNORE NULL}]

CHAPTER 12 Advanced Query Techniques584

Here’s an example:

CREATE INDEX CompanyName

ON tblCustomers (CompanyName)

The example creates an index called CompanyName, based on the CompanyName field.

The ALTER TABLE Statement
The ALTER TABLE statement is used to modify the structure of an existing table. The
syntax has four forms. The first form looks like this:

ALTER TABLE table-name ADD [COLUMN] column-name datatype [(size)]

[CONSTRAINT column-constraint]

This form of the ALTER TABLE statement adds a column to an existing table. Here’s an
example:

ALTER TABLE tblCustomers ADD ContactName Text 50

The second form uses the following syntax to delete a column from an existing table:

ALTER TABLE table-name DROP [COLUMN] column-name

Here’s an example:

ALTER TABLE tblCustomers DROP COLUMN ContactName

The third form uses the ALTER TABLE statement to add a constraint to an existing column.
The syntax is

ALTER TABLE table-name ADD CONSTRAINT constraint

Here’s an example:

ALTER TABLE tblCustomers ADD CONSTRAINT CompanyName UNIQUE (CompanyName)

Finally, the fourth form drops a constraint from an existing column:

ALTER TABLE table-name DROP CONSTRAINT index

Here’s an example:

ALTER TABLE tblCustomers DROP CONSTRAINT CompanyName

The DROP INDEX Statement
The DROP INDEX statement is used to remove an index from a table. The syntax is as
follows:

DROP INDEX index ON table-name

Using SQL for Data Definition 585

1
2

Here’s an example:

DROP INDEX CompanyName ON tblCustomers

The DROP TABLE Statement
The DROP TABLE statement is used to remove a table from the database. The syntax is

DROP TABLE table-name

Here’s an example:

DROP TABLE tblCustomers

Using the Result of a Function as the Criteria
for a Query
Many people are unaware that the result of a function can serve as an expression in a
query or as a parameter to a query. The query shown in Figure 12.38 evaluates the result
of a function called Initials. The return value from the function is evaluated with crite-
ria to determine whether the employee is included in the query result. The Initials
function shown here (it’s also in the basUtils module of CHAP12EX.ACCDB, found on the
sample code CD-ROM) receives two strings and returns the first character of each string
followed by a period:

Function Initials(strFirstName As String, _

strLastName As String) As String

Initials = Left(strFirstName, 1) & “.” & _

Left(strLastName, 1) & “.”

End Function

The return value from a function can also be used as the criteria for a query (see Figure
12.39). The query in the figure uses a function called HighlyPaid to determine which
records appear in the query result. Here’s what the HighlyPaid function looks like. (It’s
also in the basUtils module of CHAP12EX.ACCDB, found on the sample code CD-ROM.)

Function HighlyPaid(strTitle) As Currency

Dim curHighRate As Currency

Select Case strTitle

Case “Sr. Programmer”

curHighRate = 60

Case “Systems Analyst”

curHighRate = 80

Case “Project Manager”

curHighRate = 100

Case Else

curHighRate = 50

End Select

CHAPTER 12 Advanced Query Techniques586

HighlyPaid = curHighRate

End Function

The function receives the employee’s title as a parameter. It then evaluates the title and
returns a threshold value to the query that’s used as the criterion for the query’s Billing
Rate column.

Using the Result of a Function as the Criteria for a Query 587

1
2

FIGURE 12.38 A query that uses the result of a function as an expression.

FIGURE 12.39 A query that uses the result of a function as criteria.

Passing Parameter Query Values from a Form
The biggest frustration with Parameter queries occurs when multiple parameters are
required to run a query. The user is confronted with multiple dialog boxes, one for each
parameter in the query. The following steps explain how to build a Parameter query that
receives its parameter values from a form:

1. Create a new unbound form.

2. Add text boxes or other controls to accept the criteria for each parameter added to
your query.

3. Name each control so that you can readily identify the data it contains.

4. Add a command button to the form and instruct it to call the Parameter query (see
Figure 12.40).

CHAPTER 12 Advanced Query Techniques588

FIGURE 12.40 The Click event code of the command button that calls the Parameter
query.

5. Save the form.

6. Create the query and add the parameters to it. Each parameter should refer to a
control on the form (see Figure 12.41).

7. Right-click the top half of the Query Design grid and select Parameters. Define a
data type for each parameter in the Query Parameters dialog box (see Figure 12.42).

FIGURE 12.41 Parameters that refer to controls on a form.

Passing Parameter Query Values from a Form 589

1
2

FIGURE 12.42 The Query Parameters dialog box lets you select the data type for each
parameter in the query.

8. Save and close the query.

9. Fill in the values on the criteria form and click the command button to execute the
query. It should execute successfully.

Understanding Jet 4.0 ANSI-92 Extensions
Jet 4.0, the version of Jet that ships with Access 2000 and later, includes expanded support
for the ANSI-92 standard. The Access Database Engine, included with Access 2007, supports
these same features. Although these extensions are not available via the Access user inter-
face, you can tap into them using ADO code. The following sections cover the extensions
and the functionality they afford you. Because I have not yet covered ADO, you might
want to refer to Chapter 15 to better understand the examples. For now, you need to
understand that the code examples in the following sections use the ADO Command object
to execute SQL statements that create and manipulate database objects.

Table Extensions
Six table extensions are included with the Access Database Engine. These extensions
enable you to

. Create defaults

. Create check constraints

. Set up cascading referential integrity

. Control fast foreign keys

. Implement Unicode string compression

. Better control autonumber fields

Creating Defaults
The DEFAULT keyword can be used with the CREATE TABLE statement. The syntax is

DEFAULT (value)

Here’s an example:

Sub CreateDefault()

Dim cmd As ADODB.Command

Set cmd = New ADODB.Command

cmd.ActiveConnection = CurrentProject.Connection

cmd.CommandText = “CREATE TABLE tblCustomers “ & _

“(CustomerID LONG CONSTRAINT CustomerID PRIMARY KEY, “ & _

“CompanyName TEXT (50), IntroDate DATETIME, “ & _

“CreditLimit CURRENCY DEFAULT 5000)”

cmd.Execute

End Sub

Notice first that ADO is used to execute the SQL statement. The reason is that the DEFAULT
keyword is not accessible via the use interface. The CreditLimit field includes a DEFAULT
clause that sets the default value of the field to 5000.

CHAPTER 12 Advanced Query Techniques590

Creating Check Constraints
The CHECK keyword can be used with the CREATE TABLE statement. It allows you to add
business rules for a table. Unlike field- and table-level validation rules that are available via
the user interface, check constraints can span tables. The syntax for a check constraint is

[CONSTRAINT [name]] CHECK (search_condition)

Here’s an example:

Sub CreateCheckConstraint()

Dim cmd As ADODB.Command

Set cmd = New ADODB.Command

cmd.ActiveConnection = CurrentProject.Connection

cmd.CommandText = “CREATE TABLE tblCustomers “ & _

“(CustomerID LONG CONSTRAINT CustomerID PRIMARY KEY, “ & _

“CompanyName TEXT (50), IntroDate DATETIME, “ & _

“CONSTRAINT IntroDateCheck CHECK (IntroDate <= Date()), “ & _

“CreditLimit CURRENCY DEFAULT 5000)”

cmd.Execute

End Sub

This example creates a check constraint on the IntroDate field that limits the value
entered in the field to a date on or before today’s date.

Implementing Cascading Referential Integrity
The ANSI-92 extensions can also be used to establish cascading referential integrity. The
syntax is

CONSTRAINT name FOREIGN KEY (column1 [,column2 [,...]])

REFERENCES foreign-table [(foreign-column1 [, foreign-column2 [,...]])]

[ON UPDATE {NO ACTION|CASCADE}]

[ON DELETE {NO ACTION|CASCADE}]

Without the CASCADE options, the primary key field cannot be updated if the row has
child records, and the row on the “one” side of the one-to-many relationship cannot be
deleted if it has children.

Controlling Fast Foreign Keys
Whenever you join two tables in a one-to-many relationship, Access automatically creates
an index on the foreign key field (the “many” side of the relationship). This is generally a
good thing. It is bad only if the foreign key contains a lot of Nulls. In that case, the index
serves only to degrade performance rather than improve it. Fortunately, using the Jet 4.0
or the Access Database Engine ANSI-92 extensions and the NO INDEX keywords, you can
create the foreign key without the index. Here’s the syntax:

CONSTRAINT name FOREIGN KEY NO INDEX (column1 [,column2 [,...]])

REFERENCES foreign-table [(foreign-column1 [, foreign-column2 [,...]])]

Understanding Jet 4.0 ANSI-92 Extensions 591

1
2

[ON UPDATE {NO ACTION|CASCADE}]

[ON DELETE {NO ACTION|CASCADE}]

Implementing Unicode String Compression
Just as you can implement Unicode string compression using the user interface, you can
also implement it in code. The syntax is

Column string-data-type [(length)] WITH COMPRESSION

Controlling Autonumber Fields
Using the Jet 4.0 or the Microsoft Access Database ANSI-92 extensions, you can change
both the autonumber seed and increment. The syntax is

Column AUTOINCREMENT (seed, increment)

Here’s an example:

Sub CreateAutonumber()

Dim cmd As ADODB.Command

Set cmd = New ADODB.Command

cmd.ActiveConnection = CurrentProject.Connection

cmd.CommandText = “CREATE TABLE tblCustomers “ & _

“(CustomerID AUTOINCREMENT (100000,1), “ & _

“CompanyName TEXT (50), IntroDate DATETIME, “ & _

“CreditLimit CURRENCY DEFAULT 5000)”

cmd.Execute

End Sub

The code creates an auto-increment field called CustomerID. The starting value is 100000.
The field increments by 1. In addition to the added support for seed value and increment
value, the Jet 4.0 or Access Database Engine ANSI-92 extensions allow you to retrieve the
last-assigned autonumber value. Here’s how it works:

Sub LastAutonumber()

Dim cmd As ADODB.Command

Dim rst As ADODB.Recordset

Set cmd = New ADODB.Command

Set rst = New ADODB.Recordset

cmd.ActiveConnection = CurrentProject.Connection

cmd.CommandText = “INSERT INTO tblCustomers “ & _

“(CompanyName, IntroDate, CreditLimit) “ & _

“VALUES (‘Test Company’, #1/1/2007#, 100) “

cmd.Execute

CHAPTER 12 Advanced Query Techniques592

rst.ActiveConnection = CurrentProject.Connection

rst.Open (“SELECT @@Identity as LastCustomer FROM tblCustomers”)

MsgBox rst(“LastCustomer”)

End Sub

The code first inserts a row into the tblCustomers table. It then opens a recordset and
retrieves the @@Identity value. As with SQL Server, this @@Identity variable contains the
value of the last assigned autonumber.

View and Stored Procedures Extensions
The Jet 4.0 or Access Database Engine ANSI-92 extensions allow you to create views and
stored procedures similar to those found in SQL Server. Essentially, these views and stored
procedures are Access queries that are repackaged to behave like their SQL Server counter-
parts. Although stored as queries, the views and stored procedures that you create are not
visible via the user interface. You can execute them just like saved queries. The syntax to
create a view looks like this:

CREATE VIEW view-name [(field1 [(,field2 [,...]])] AS select-statement

Here’s an example:

Sub CreateView()

Dim cmd As ADODB.Command

Set cmd = New ADODB.Command

cmd.ActiveConnection = CurrentProject.Connection

cmd.CommandText = “CREATE VIEW vwClients “ & _

“AS SELECT ClientID, CompanyName “ & _

“FROM tblClients”

cmd.Execute

End Sub

As covered in Chapter 15, use the following code to execute the view:

Sub ExecuteView()

Dim rst As ADODB.Recordset

Set rst = New ADODB.Recordset

rst.ActiveConnection = CurrentProject.Connection

rst.CursorType = adOpenStatic

rst.Open “vwClients”

MsgBox rst.RecordCount

End Sub

Understanding Jet 4.0 ANSI-92 Extensions 593

1
2

The syntax to create a stored procedure is

CREATE PROC[EDURE] procedure [(param1 datatype1 [,param2 datatype2 [,...]])]_

AS sql-statement

Here’s an example:

Sub CreateStoredProc()

Dim cmd As ADODB.Command

Set cmd = New ADODB.Command

cmd.ActiveConnection = CurrentProject.Connection

cmd.CommandText = “CREATE PROCEDURE procClientGet “ & _

“(ClientID long) “ & _

“AS SELECT ClientID, CompanyName “ & _

“FROM tblClients “ & _

“WHERE ClientID = ClientID”

cmd.Execute

End Sub

Use the EXECUTE statement, as shown in the following code, to execute the stored procedure:

Sub ExecuteStoredProc()

Dim rst As ADODB.Recordset

Dim cmd As Command

Set cmd = New ADODB.Command

cmd.ActiveConnection = CurrentProject.Connection

cmd.CommandText = “EXECUTE procClientGet 1”

Set rst = cmd.Execute

MsgBox rst(“CompanyName”)

End Sub

Transaction Extensions
Using Jet 4.0 or Access Database Engine ANSI-92 security extensions, you can create trans-
actions that span an ADO connection. These extensions are intended to augment, rather
than replace, ADO transactions. You use BEGIN TRANSACTION to start a transaction, COMMIT
TRANSACTION to commit a transaction, and ROLLBACK [TRANSACTION] to cancel a transac-
tion. Transactions are covered in detail in Alison Balter’s Mastering Access 2002 Enterprise
Development.

CHAPTER 12 Advanced Query Techniques594

Practical Examples: Applying These Techniques in
Your Application
The following sections provide several practical applications of the advanced techniques
learned in this chapter.

NOTE

The examples shown in the following sections are included in the CHAP12EX.ACCDB
database on the sample code CD-ROM.

Archiving Payments
After a while, you might need to archive some of the data in the tblPayment table. Two
queries archive the payment data. The first, called qappAppendToPaymentArchive, is an
append query that sends all data in a specified date range to an archive table called
tblPaymentsArchive (see Figure 12.43). The second query, called qdelRemoveFromPayments,
is a delete query that deletes all the data archived from the tblPayments table (see Figure
12.44). The archiving is run from a form called frmArchivePayments, where the date range
can be specified by the user at runtime (see Figure 12.45).

Practical Examples: Applying These Techniques in Your Application 595

1
2

FIGURE 12.43 The append query qappAppendToPaymentArchive.

CHAPTER 12 Advanced Query Techniques596

FIGURE 12.44 The delete query qdelRemoveFromPayments.

FIGURE 12.45 The form that supplies criteria for the archive process.

Summary 597

1
2

Showing All Payments
At times, you might want to combine data from both tables. To do this, you’ll need to
create a union query that joins tblPayments to tblPaymentsArchive. The query’s design is
shown in Figure 12.46.

FIGURE 12.46 Using a union query to join tblPayments to tblPaymentsArchive.

Creating a State Table
Because you’ll regularly be looking up the states and provinces, you need to build a
unique list of all the states and provinces in which your clients are currently located. The
query needed to do this is shown in Figure 12.47. The query uses the tblClients table to
come up with all the unique values for the StateProvince field. Here, you use a make
table query that takes the unique list of values and outputs it to a tblStateProvince
table.

FIGURE 12.47 A make table query that creates a tblStateProvince table.

Summary
As you can see, Microsoft gives you a sophisticated query builder for constructing
complex and powerful queries. Action queries let you modify table data without writing
code; you can use these queries to add, edit, or delete table data. The Unique Values and
Top Values properties of a query offer you flexibility in determining exactly what data is
returned in your query result.

You can do many things to improve your queries’ efficiency. A little attention to the
details covered in this chapter can give you dramatic improvements in your application’s
performance.

Other special types of queries covered in this chapter include crosstab queries, outer joins,
and self-joins. Whatever you can’t do by using the graphical QBE grid, you can accom-
plish by typing the required SQL statement directly into the SQL View window. In this
window, you can type Access SQL statements or use SQL Pass-Through to type SQL state-
ments in the SQL dialect that’s specific to your back-end database. After you harness the
power of the SQL language, you can perform powerful tasks such as modifying the record
source of a form or report at runtime.

CHAPTER 12 Advanced Query Techniques598

IN THIS CHAPTER

. Why This Chapter Is Important

. What Are User-Defined Types,
and Why Would You Use
Them?

. Working with Constants

. Working with Arrays

. Understanding Advanced
Function Techniques

. Working with Empty and Null

. Creating and Working with
Custom Collections

. Handling Files with Low-Level
File Handling

. Understanding and Effectively
Using Compilation Options

. Importing and Exporting Code
Modules

. Working with Project Properties

. Practical Examples: Putting
Advanced Techniques to Use

CHAPTER 13

Advanced VBA
Techniques

Why This Chapter Is Important
The Visual Basic for Applications (VBA) language is
extremely rich and comprehensive. I cover VBA throughout
this book as it applies to different topics, but this chapter
focuses on some advanced application development tech-
niques. These topics include user-defined types, arrays,
advanced function techniques, and VBA compilation
options. Mastering these topics will help to ensure your
success as a VBA programmer.

What Are User-Defined Types,
and Why Would You Use Them?
A user-defined type, known as a struct or record, allows you
to create a variable containing several pieces of informa-
tion. You will often use user-defined types to hold informa-
tion from one or more records in memory. You can also use
them to hold related information that you would otherwise
store in several unrelated variables. Because you can
instruct each element of a user-defined type to hold a
particular type of data, you can define each element in the
type to correspond to the type of data stored in a specific
field of a table. A user-defined type might look like this:

Public Type TimeCardInfo

TimeCardDetailID As Long

TimeCardID As Long

DateWorked As Date

ProjectID As Long

WorkDescription As String * 255

BillableHours As Double

BillingRate As Currency

WorkCodeID As Long

End Type

This user-defined type stores time-card information for an employee. Notice that the code
explicitly declares the type of data stored in each element. The code declares the element
containing the string WorkDescription with a length of 255. User-defined types make
code cleaner by storing related data as a unit. A user-defined type exists only in memory
and is, therefore, temporary. It’s excellent for information that needs to be temporarily
tracked at runtime. Because it’s in memory, it can be quickly and efficiently read from and
written to.

NOTE

The code snippets shown in the previous example are located in the
basDataHandling module on the sample code CD-ROM that accompanies this book.
They are in the database called CHAP13EX.ACCDB.

Declaring a User-Defined Type
You declare a user-defined type by using a Type statement that must be placed in the
module’s Declarations section. You can declare types as Public or Private within a stan-
dard module. You can use types in Form and Report modules, but you cannot declare
them there.

Creating a Type Variable
A Type variable is an instance of the type in memory; you must declare it before you can
use the type. To declare a Type variable, create a Local, Private, Module-Level, or Public
variable based on the type. Depending on where you place this declaration and how you
declare it (using keywords Dim, Private, or Public), you determine its scope. The same
rules for any other kind of variable apply to Type variables. The Dim statement in the code
that follows creates a variable called mtypTimeCardData. If you place this Dim statement in
the module’s General section, it’s visible to all routines in that module (notice the m, indi-
cating that it is declared at the module level). If you place it in a subroutine or function,
it’s local to that particular routine:

Dim mtypTimeCardData As TimeCardInfo

NOTE

For more information on the scoping and visibility of variables, see Chapter 8, “VBA:
An Introduction.”

CHAPTER 13 Advanced VBA Techniques600

Storing Information from a Record in a Form into a Type Variable
After you have declared a Type variable, you can store data in each of its elements. The
following code in the frmTimeCardHours form stores information from the form into a
Type variable called mtypTimeCardData. The code declares the Type variable as a Private
variable in the General Declarations section of the form. The code declares the Type struc-
ture in basDataHandling:

Private Sub cmdWriteToType_Click()

‘Retrieve control values and place them in the type structure

mtypTimeCardData.TimeCardDetailID = Me.txtTimeCardDetailID

mtypTimeCardData.TimeCardID = Me.txtTimeCardID

mtypTimeCardData.DateWorked = Me.txtDateWorked

mtypTimeCardData.ProjectID = Me.cboProjectID

mtypTimeCardData.WorkDescription = Me.txtWorkDescription

mtypTimeCardData.BillableHours = Me.txtBillableHours

mtypTimeCardData.BillingRate = Me.txtBillingRate

mtypTimeCardData.WorkCodeID = Me.cboWorkCodeID

End Sub

NOTE

You can find the code for this chapter in the CHAP13EX.ACCDB database on the book’s
sample code CD-ROM.

The advantage of this code is that, rather than creating eight variables to store these eight
pieces of related information, it creates one variable with eight elements. This method
keeps things nice and neat.

Retrieving Information from the Elements of a Type Variable
To retrieve information from your Type variable, simply refer to its name, followed by a
period, and then the name of the element. The following code displays a message box
containing all the time card hour information:

Private Sub cmdDisplayFromType_Click()

‘Retrieve information from the type structure

MsgBox “Timecard Detail ID Is “ & _

mtypTimeCardData.TimeCardDetailID & _

Chr(13) & _

“Timecard ID Is “ & mtypTimeCardData.TimeCardID & Chr(13) & _

“Date Worked Is “ & mtypTimeCardData.DateWorked & Chr(13) & _

“Project ID Is “ & mtypTimeCardData.ProjectID & Chr(13) & _

“Work Description Is “ & _

Trim(mtypTimeCardData.WorkDescription) & _

Chr(13) & _

What Are User-Defined Types, and Why Would You Use Them? 601

1
3

“Billable Hours Is “ & mtypTimeCardData.BillableHours & Chr(13) & _

“Billing Rate Is “ & mtypTimeCardData.BillingRate & Chr(13) & _

“Workcode ID Is “ & mtypTimeCardData.WorkCodeID

End Sub

NOTE

In Chapter 17, “Error Handling: Preparing for the Inevitable,” an exercise shows a user-
defined type used to hold pertinent error information. The example replaces the user-
defined type with properties of a custom error class. Although user-defined types are
still useful and are, in fact, necessary for many Windows API function calls, custom
class modules have replaced much of their functionality.

Working with Constants
A constant is a meaningful name given to a number or string. You can use constants only
for values that don’t change at runtime. A tax rate or commission rate, for example,
might be constant throughout your application. There are three types of constants in
Access:

. Symbolic

. Intrinsic

. System-defined

Symbolic constants, created by using the Const keyword, improve the readability of your
code and make code maintenance easier. Instead of referring to the number .0875 every
time you want to refer to the tax rate, for instance, you can refer to the constant
MTAXRATE (M indicating that it is a module-level constant). If the tax rate changes and you
need to modify the value in your code, you’ll make the change in only one place.
Furthermore, unlike the number .0875, the name MTAXRATE is self-documenting.

Intrinsic constants are built into Microsoft Access; they are part of the language itself. As
an Access programmer, you can use constants supplied by Microsoft Access, Visual Basic,
and ActiveX Data Objects (ADO). You can also use constants provided by any object
libraries you’re using in your application.

Only three system-defined constants are available to all applications on your computer:
True, False, and Null.

Defining Your Own Constants
As mentioned previously, you declare a symbolic constant by using the Const keyword.
You can declare a constant in a subroutine or function, or in the General section of a
Form, Report, or Class module. You can strong-type constants, meaning that you can
declare them with a data type. There are several naming conventions for constants. One

CHAPTER 13 Advanced VBA Techniques602

of them is to use a suitable scoping prefix, the letter c to indicate that you’re working
with a constant rather than a variable, and then the appropriate tag for the data type. The
declaration and use of a Private constant in the previous tax-rate example would look
like this:

Private Const mccurTaxRate As Currency = .0877

I prefer using a scoping prefix and typing the name of the constant in all uppercase.
Following this convention, the example given previously is changed to appear as follows:

Private Const MTAXRATE as Currency = .0877

This code, when placed in a module’s Declarations section, creates a Private constant
called MTAXRATE and sets it equal to .0875. Here’s how the constant is used in code:

Function TotalAmount(curSaleAmount As Currency)

TotalAmount = curSaleAmount * MTAXRATE

End Function

This routine multiplies the curSaleAmount, received as a parameter, by the constant
MTAXRATE. It returns the result of the calculation by setting the function name equal to
the product of the two values. The advantage of the constant in this example is that the
code is more readable than TotalAmount = curSaleAmount * .0877 would be.

Scoping Symbolic Constants
Just as regular variables have scope, user-defined constants have scope. In the preceding
example, you created a Private constant. The following statement, when placed in a
module’s Declarations section, creates a Public constant:

Public Const GTAXRATE As Currency = 0.0877

Because this constant is declared as Public, it can be accessed from any subroutine or
function (including event routines) in your entire application. To better understand the
benefits of a Public constant, suppose that you have many functions and subroutines, all
referencing the constant GTAXRATE. Imagine what would happen if the tax rate were to
change. If you hadn’t used a constant, you would need to search your entire application,
replacing the old tax rate with the new tax rate. However, because you declared your
Public constant in one place, you can easily go in and modify the one line of code where
you declared this constant.

By definition, you cannot modify the values of constants at runtime. If you try to modify
the value of a constant, you get this VBA compiler error:

Compile error: Assignment to constant not permitted

Figure 13.1 illustrates this message box. You can see that an attempt was made to modify
the value of the constant called GTAXRATE, which resulted in a compile error.

Working with Constants 603

1
3

FIGURE 13.1 An error message resulting from trying to modify the value of a constant.

If you must change the value at runtime, you should consider storing the value in a table
rather than declaring it as a constant. You can read the value into a variable when the
application loads and then modify the variable if needed. If you choose, you can write
the new value back to the table.

Working with Intrinsic Constants
Microsoft Access declares a number of intrinsic constants that you can use in Code, Form,
and Report modules. Because they’re reserved by Microsoft Access, you can’t modify their
values or reuse their names; however, you can use them at any time without declaring
them.

You should use intrinsic constants whenever possible in your code. Besides making your
code more readable, they make your code more portable to future releases of Microsoft
Access. Microsoft might change the value associated with a constant, but it isn’t likely to
change the constant’s name. All intrinsic constants appear in the Object Browser; to acti-
vate it, simply click the Object Browser tool on the Visual Basic toolbar while in the
Visual Basic Editor (VBE). To view the constants that are part of the VBA language, select
VBA from the Object Browser’s Project/Library drop-down list. Click Constants in the
Classes list box, and a list of those constants is displayed in the Members of ‘Constants’
list box (see Figure 13.2).

All VBA constants are prefixed with vb; all ActiveX Data Object constants, with ad; all
Data Access Object (DAO) constants, with db; and all constants that are part of the Access
language, with ac. In Figure 13.2, all the constant names begin with vb. To view the
Access language constants, select Access from the Project/Library drop-down list and
Constants from the Classes list box. To view the ActiveX Data Object constants, select
ADODB from the Project/Library drop-down list. The constants are categorized by their
function into various classes (for example, LockTypeEnum and ExecuteOptionEnum). Select
the appropriate class from the Classes list box, and its members appear in the Members
Of list box.

Another way to view constants is within the context of the parameter you’re working
with in the Code window. Right-click after the name of a parameter and select List
Constants to display the constants associated with the parameter. This feature is covered
in detail in Chapter 8 in the section titled “VBA: An Introduction.”

CHAPTER 13 Advanced VBA Techniques604

FIGURE 13.2 Using the Object Browser to view intrinsic constants.

Working with Arrays
An array is a series of variables referred to by the same name. You differentiate each
element of the array by using a unique index number, but all the elements must be of the
same data type. Arrays help make coding more efficient. It’s easy to loop through each
element of an array, performing some process on each element. Arrays have a lower
bound, which is zero by default, and an upper bound, and array elements must be
contiguous.

The scope of an array can be Public, Module, or Local. As with other variables, the scope
depends on where the array is declared and whether the Public, Private, or Dim keyword
is used.

Declaring and Working with Fixed Arrays
When declaring a fixed array, you give VBA the upper bound and the type of data that it
will contain. The following code creates an array that holds six string variables:

Dim astrNames(5) As String

Fixed means that you cannot alter this array’s size at runtime. The following code gives an
example of how you can loop through the array:

Working with Arrays 605

1
3

Sub FixedArray()

‘Declare an array of six elements

Dim astrNames(5) As String

Dim intCounter As Integer

‘Populate the first four elements of the array

astrNames(0) = “Dan”

astrNames(1) = “Alexis”

astrNames(2) = “Brendan”

astrNames(3) = “Zachary”

‘Use a For...Next loop to loop through the

‘elements of the array

For intCounter = 0 To UBound(astrNames)

Debug.Print astrNames(intCounter)

Next intCounter

End Sub

This code starts by storing values into the first four elements of a six-element array. It
then loops through each element of the array, printing the contents. Notice that the
For...Next loop starts at zero and goes until the upper bound of the array, which is (5).
Because the array is made up of strings, the last two elements of the array contain zero-
length strings. If the array were composed of integers, the last two elements would
contain zeros.

Another way to traverse the array is to use the For Each...Next construct. Your code
would look like this:

Sub ArrayWith()

‘Declare an array of six elements

Dim astrNames(5) As String

Dim intCounter As Integer

Dim vntAny As Variant

‘Populate the first four elements of the array

astrNames(0) = “Dan”

astrNames(1) = “Alexis”

astrNames(2) = “Brendan”

astrNames(3) = “Zachary”

‘Use a For...Each loop to loop through the

‘elements of the array

For Each vntAny In astrNames

Debug.Print vntAny

Next vntAny

End Sub

CHAPTER 13 Advanced VBA Techniques606

This code declares a Variant variable called vntAny. Instead of using a loop with Ubound
as the upper delimiter to traverse the array, the example uses the For Each...Next
construct.

NOTE

Many people do not like the fact that, by default, the elements of an array are zero-
based. Fortunately, the VBA language allows you to declare both the lower bound and
the upper bound of any array. The syntax looks like this:

Dir astrNames(1 to 6)

Declaring and Working with Dynamic Arrays
Often, you don’t know how many elements your array needs to contain. In this case, you
should consider declaring a dynamic array, which you can resize at runtime. Using this
type of array can make your code more efficient because VBA preallocates memory for all
elements of a fixed array, regardless of whether you store data in each of the elements.
However, if you aren’t sure how many elements your array will contain, preallocating a
huge amount of memory can be quite inefficient.

To create a dynamic array, you declare it without assigning an upper bound. You do this
by omitting the number between the parentheses when declaring the array, as shown in
this example:

Sub DynamicArray()

‘Declare a dynamic array

Dim astrNames() As String

Dim intCounter As Integer

Dim vntAny As Variant

‘Resize the array to hold two elements

ReDim astrNames(1)

‘Populate the two elements

astrNames(0) = “Dan”

astrNames(1) = “Alexis”

‘Use a For...Each loop to loop through the

‘elements of the array

For Each vntAny In astrNames

Debug.Print vntAny

Next vntAny

End Sub

Working with Arrays 607

1
3

However, there’s a potential problem when you try to resize the array:

Sub ResizeDynamic()

‘Declare a dynamic array

Dim astrNames() As String

Dim intCounter As Integer

Dim vntAny As Variant

‘Resize the array to hold two elements

ReDim astrNames(1)

‘Populate the two elements

astrNames(0) = “Dan”

astrNames(1) = “Alexis”

‘Resize the array to hold four elements

ReDim astrNames(3)

‘Populate the last two elements

astrNames(2) = “Brendan”

astrNames(3) = “Zachary”

‘Use a For..Each loop to loop through the

‘elements of the array

For Each vntAny In astrNames

Debug.Print vntAny

Next vntAny

End Sub

You might expect that all four elements will contain data. Instead, the ReDim statement
reinitializes all the elements, and only elements 2 and 3 contain values. You can
avoid this problem by using the Preserve keyword. The following code behaves quite
differently:

Sub ResizePreserve()

‘Declare a dynamic array

Dim astrNames() As String

Dim intCounter As Integer

Dim vntAny As Variant

‘Resize the array to hold two elements

ReDim astrNames(1)

‘Populate the two elements

astrNames(0) = “Dan”

astrNames(1) = “Alexis”

CHAPTER 13 Advanced VBA Techniques608

‘Resize the array to hold four elements

ReDim Preserve astrNames(3)

‘Populate the last two elements

astrNames(2) = “Brendan”

astrNames(3) = “Zachary”

‘Use a For...Each loop to loop through the

‘elements of the array

For Each vntAny In astrNames

Debug.Print vntAny

Next vntAny

End Sub

In this example, all values already stored in the array are preserved. The Preserve
keyword brings its own difficulties, though. It can temporarily require huge volumes of
memory because, during the ReDim process, VBA creates a copy of the original array. All
the values from the original array are copied to a new array. The original array is removed
from memory when the process is complete. The Preserve keyword can cause problems if
you’re dealing with very large arrays in a limited memory situation.

TIP

Each type of array complements the other’s drawbacks. As a VBA developer, you have
the flexibility of choosing the right type of array for each situation. Fixed arrays are the
way to go when the number of elements doesn’t vary widely. Dynamic arrays should be
used when the number varies widely, and you’re sure you have enough memory to
resize even the largest possible arrays.

Passing Arrays as Parameters
Many people are unaware that you can pass an array as a parameter to a function or
subroutine. The following code provides an example:

Sub PassArray()

‘Declare a six-element array

Dim astrNames(5) As String

Dim intCounter As Integer

‘Call the FillNames function, passing a reference

‘to the array

Call FillNames(astrNames)

‘Use a For...Next loop to loop through the

‘elements of the array

Working with Arrays 609

1
3

For intCounter = 0 To UBound(astrNames)

Debug.Print astrNames(intCounter)

Next intCounter

End Sub

The code begins by declaring a fixed array called astrNames. The code calls the FillNames
routine. It receives the array as a parameter and then populates all its elements. The
PassArray routine is then able to loop through all the elements of the array that was
passed, displaying information from each element. The FillNames routine looks like this:

Sub FillNames(varNameList As Variant)

‘Populate the elements of the array

varNameList(0) = “Alison”

varNameList(1) = “Dan”

varNameList(2) = “Alexis”

varNameList(3) = “Brendan”

varNameList(4) = “Zachary”

varNameList(5) = “Sonia”

End Sub

Notice that the routine receives the array as a variant variable. It then populates each
element of the array.

Understanding Advanced Function Techniques
The advanced function techniques covered in the following sections allow you to get the
most out of the procedures you build. First, you learn the difference between passing your
parameters by reference and passing them by value, and see that the default method of
passing parameters isn’t always the most prudent method.

Next, you learn how to work with optional parameters, which help you build flexibility
into your functions. Whereas optional parameters allow you to omit parameters, named
parameters help you to add readability to your code. Named parameters also shelter you
from having to worry about the order in which the parameters must appear. After reading
these sections, you will be able to build much more robust and easy-to-use functions.

Passing by Reference Versus Passing by Value
By default, parameters in Access are passed by reference. This means that a memory refer-
ence to the variable being passed is received by the function. This process is best illus-
trated by an example:

Sub PassByRef()

‘Declare string variables

Dim strFirstName As String

Dim strLastName As String

CHAPTER 13 Advanced VBA Techniques610

‘Assign values to the string variables

strFirstName = “Alison”

strLastName = “Balter”

‘Call a subroutine that receives the two variables as

‘parameters by reference

Call FuncByRef(strFirstName, strLastName)

‘Print the changed values of the variables

Debug.Print strFirstName

Debug.Print strLastName

End Sub

Sub FuncByRef(strFirstParm As String, strSecondParm As String)

‘Modify the values of the parameters

strFirstParm = “Bill”

strSecondParm = “Gates”

End Sub

You might be surprised that the Debug.Print statements found in the subroutine
PassByRef print “Bill” and “Gates”. The reason is that strFirstParm is actually a refer-
ence to the same location in memory as strFirstName, and strSecondParm is a reference
to the same location in memory as strLastName. This code violates the concepts of black-
box processing, in which a variable can’t be changed by any routine other than the one it
was declared in. The following code eliminates this problem:

Sub PassByVal()

‘Declare the string variables

Dim strFirstName As String

Dim strLastName As String

‘Assign values to the string variables

strFirstName = “Alison”

strLastName = “Balter”

‘Call a subroutine that receives the two variables as

‘parameters by value

Call FuncByVal(strFirstName, strLastName)

‘Print the unchanged values of the variables

Debug.Print strFirstName

Debug.Print strLastName

End Sub

Understanding Advanced Function Techniques 611

1
3

Sub FuncByVal(ByVal strFirstParm As String, _

ByVal strSecondParm As String)

‘Change the values of the parameters

‘Since they are received by value,

‘the original variables are unchanged

strFirstParm = “Bill”

strSecondParm = “Gates”

End Sub

This FuncByVal subroutine receives the parameters by value. This means that the code
passes only the values in strFirstName and strLastName to the FuncByVal routine. The
strFirstName and strLastName variables, therefore, can’t be modified by the FuncByVal
subroutine. The Debug.Print statements print “Alison” and “Balter”.

The following example illustrates a great reason why you might want to pass a parameter
by reference:

Sub GoodPassByRef()

‘Declare variables

Dim blnSuccess As Boolean

Dim strName As String

‘Set the value of the string variable

strName = “Microsoft”

‘Set the boolean variable equal to the value

‘returned from the GoodFunc function

blnSuccess = GoodFunc(strName)

‘Print the value of the boolean variable

Debug.Print blnSuccess

End Sub

Function GoodFunc(strName As String)

‘Evaluate the length of the value received

‘as a parameter

‘Convert to uppercase and return true if not zero-length

‘Return false if zero-length

If Len(strName) Then

strName = UCase$(strName)

GoodFunc = True

Else

GoodFunc = False

End If

End Function

CHAPTER 13 Advanced VBA Techniques612

In essence, the GoodFunc function needs to return two values. Not only does the function
need to return the uppercase version of the string passed to it, but it also needs to return
a success code. Because a function can return only one value, you need to be able to
modify the value of strName within the function. As long as you’re aware of what you’re
doing and why you’re doing it, there’s no problem with passing a parameter by reference.

TIP

I use a special technique to help readers of my code see whether I’m passing parame-
ters by reference or by value. When passing parameters by reference, I refer to the
parameters by the same name in both the calling routine and the actual procedure that
I’m calling. On the other hand, when passing parameters by value, I refer to the parame-
ters by different names in the calling routine and in the procedure that’s being called.

After reading this section, you might ask yourself whether it is better to pass parameters
by reference or by value. Although in terms of black-box processing it is better to pass by
value, code that involves parameters passed by reference actually executes more quickly
than those passed by value. As long as you and the programmers that you work with are
aware of the potential problems with passing parameters by reference, in general, in VBA,
I feel that it is better to pass parameters by reference.

Optional Parameters: Building Flexibility into Functions
The VBA language allows you to use optional parameters. In other words, you don’t need
to know how many parameters will be passed. The ReturnInit function in the following
code receives the last two parameters as optional; it then evaluates whether the parame-
ters are missing and responds accordingly:

Function ReturnInit(ByVal strFName As String, _

Optional ByVal strMI, Optional ByVal strLName)

‘If strMI parameter is not received, prompt user for value

If IsMissing(strMI) Then

strMI = InputBox(“Enter Middle Initial”)

End If

‘If strLName parameter is not received, prompt user for value

If IsMissing(strLName) Then

strLName = InputBox(“Enter Last Name”)

End If

‘Return concatenation of last name, first name,

‘and middle initial

ReturnInit = strLName & “,” & strFName & “ “ & strMI

End Function

Understanding Advanced Function Techniques 613

1
3

This function could be called as follows:

strName = ReturnInit(“Bill”,,”Gates”)

As you can see, the second parameter is missing. Instead of causing a compiler error, this
code compiles and runs successfully. The IsMissing function, built into Access, deter-
mines whether a parameter has been passed. After identifying missing parameters, you
must decide how to handle the situation in code. In the example, the function prompts
for the missing information, but here are some other possible choices:

. Insert default values when parameters are missing.

. Accommodate for the missing parameters in your code.

Listing 13.1 and Listing 13.2 illustrate how to carry out these two alternatives.

LISTING 13.1 Inserting Default Values When Parameters Are Missing

Function ReturnInit2(ByVal strFName As String, _

Optional ByVal strMI, Optional ByVal strLName)

‘If middle initial is not received, set it to “A”

If IsMissing(strMI) Then

strMI = “A”

End If

‘If last name is not received, set it to “Roman”

If IsMissing(strLName) Then

strLName = “Roman”

End If

‘Return concatenation of last name, first name,

‘and middle initial

ReturnInit2 = strLName & “,” & strFName & “ “ & strMI

End Function

This example uses a default value of “A” for the middle initial and a default last name of
“Roman”. Now look at Listing 13.2, which illustrates another method of handling missing
parameters.

LISTING 13.2 Accommodating for Missing Parameters in Your Code

Function ReturnInit3(ByVal strFName As String, _

Optional ByVal strMI, Optional ByVal strLName)

Dim strResult As String

‘If middle initial and last name are missing,

‘return first name

If IsMissing(strMI) And IsMissing(strLName) Then

CHAPTER 13 Advanced VBA Techniques614

ReturnInit3 = strFName

‘If only the middle initial is missing

‘return last name and first name

ElseIf IsMissing(strMI) Then

ReturnInit3 = strLName & “, “ & strFName

‘If only the last name is missing

‘return first name and middle initial

ElseIf IsMissing(strLName) Then

ReturnInit3 = strFName & “ “ & strMI

‘Otherwise (If nothing is missing),

‘return last name, first name, and middle initial

Else

ReturnInit3 = strLName & “,” & strFName & “ “ & strMI

End If

End Function

This example manipulates the return value, depending on which parameters it receives. If
neither optional parameter is passed, just the first name displays. If the first name and
middle initial are passed, the return value contains the first name followed by the middle
initial. If the first name and last name are passed, the return value contains the last name,
a comma, and the first name. If all three parameters are passed, the function returns the
last name, a comma, a space, and the first name.

You can easily modify the declaration of the ReturnInit3 function shown in Listing 13.2
to provide default values for each optional parameter. The following declaration illustrates
this:

Function ReturnInit4(Optional ByVal strFName As String = “Alison”, _

Optional ByVal strMI As String = “J”, _

Optional ByVal strLName As String = “Balter”)

ReturnInit4 has three optional parameters. The declaration assigns a default value to
each parameter. The function uses the default value if the calling routine does not supply
the parameter.

NOTE

The IsMissing function works only with parameters that have a data type of Variant.
The reason is that the IsMissing function returns True only if the value of the para-
meter is empty. If the parameter is numeric (for example, an integer), you will need to
test for zero. If the parameter is a string, you will need to test for a zero-length string
(“”) or against the VBA constant vbNullString.

615

1
3

LISTING 13.2 Continued

Understanding Advanced Function Techniques

Named Parameters: Eliminate the Need to Count Commas
In all the examples you’ve seen so far, the parameters of a procedure have been supplied
positionally. Named parameters allow you to supply parameters without regard for their
position, which is particularly useful in procedures that receive optional parameters. Take
a look at this example:

strName = ReturnInit3(“Bill”,,”Gates”)

Because the second parameter isn’t supplied, and the parameters are passed positionally, a
comma must be used as a placemarker for the optional parameter. This requirement can
become unwieldy when you’re dealing with several optional parameters. The following
example greatly simplifies the process of passing the parameters and also better docu-
ments what’s happening:

strName = ReturnInit3(strFName:= “Bill”,strLName:= “Gates”)

As shown in the following example, when you pass parameters by name, the order that
the parameters appear doesn’t even matter:

strName = ReturnInit3(strLName:= “Gates”,strFName:=”Bill”)

This call to the ReturnInit3 function yields the same results as the call to the function in
the previous example.

NOTE

When you use named parameters, each parameter name must be exactly the same as
the name of the parameter in the function being called. Besides requiring intimate
knowledge of the function being called, this method of specifying parameters has one
important disadvantage: If the author of the function modifies a parameter’s name, all
routines that use the named parameter will fail when calling the function.

Recursive Procedures
A recursive procedure is one that calls itself. If a procedure calls itself over and over again, it
will eventually render an error because it runs out of stack space. Here’s an example:

Function Recursive(lngSomeVal)

‘Return value based on another call to the function

Recursive = Recursive(lngSomeVal)

End Function

There are practical reasons why you might want to call a function recursively. Here’s an
example:

CHAPTER 13 Advanced VBA Techniques616

Function GetFactorial(intValue as Integer) as Double

‘If value passed is less than or equal to one, we’re done

If intValue <= 1 Then

GetFactorial = 1

‘If value passed is greater than one,

‘call function again with decremented value

‘and multiply by value

Else

GetFactorial = GetFactorial(intValue - 1) * intValue

End If

End Function

The code receives an input parameter (for example, 5). The value is evaluated to see
whether it is less than or equal to 1. If it is, the function is exited. If the value is greater
than 1, the function is called again but is passed the previous input parameter minus 1
(for example, 4). The return value from the function is multiplied by the original parame-
ter value (for example, 4*5). The function calls itself over and over again until the value
that it passes to itself is 2 minus 1 (1), and the function is exited. In the example where 5
is passed to the function, it multiplies 5*4*3*2*1, resulting in 120, the factorial of 5.

Using Parameter Arrays
Using a parameter array, you can easily pass a variable number of arguments to a proce-
dure. Here’s an example:

Sub GetAverageSalary(strDepartment As String, _

ParamArray currSalaries() As Variant)

Dim sngTotalSalary As Single

Dim sngAverageSalary As Single

Dim intCounter As Integer

‘Loop through the elements of the array,

‘adding up all of the salaries

For intCounter = 0 To UBound(currSalaries())

sngTotalSalary = sngTotalSalary + currSalaries(intCounter)

Next intCounter

‘Divide the total salary by the number of salaries in the array

sngAverageSalary = sngTotalSalary / (UBound(currSalaries()) + 1)

‘Display the department and the average salary in a message box

MsgBox strDepartment & “ has an average salary of “ & _

sngAverageSalary

End Sub

Understanding Advanced Function Techniques 617

1
3

The routine is called like this:

Call GetAverageSalary(“Accounting”, 60000, 20000, 30000, 25000, 80000)

The beauty of the ParamArray keyword is that you can pass a variable number of parame-
ters to the procedure. In the example, a department name and a variable number of
salaries are passed to the GetAverageSalary procedure. The procedure loops through all
the salaries that it receives in the parameter array, adding them together. It then divides
the total by the number of salaries contained in the array.

Working with Empty and Null
Empty and Null are values that can exist only for Variant variables. They’re different from
one another and different from zero or a zero-length string. At times, you need to know
whether the value stored in a variable is zero, a zero-length string, Empty, or Null. You can
make this differentiation only with Variant variables.

Working with Empty
Variant variables are initialized to the value of Empty. Often, you need to know whether a
value has been stored in a Variant variable. If a Variant has never been assigned a value,
its value is Empty. As mentioned, the Empty value is not the same as zero, Null, or a zero-
length string.

Your ability to test for Empty in a runtime environment is important. You can do this by
using the IsEmpty function, which determines whether a variable has the Empty value.
The following example tests a String variable for the Empty value:

Sub StringVar()

Dim strName As String

Debug.Print IsEmpty(strName) ‘Prints False

Debug.Print strName = “” ‘Prints True

End Sub

The Debug.Print statement prints False. This variable is equal to a zero-length string
because the variable is initialized as a String variable. All String variables are initialized
to a zero-length string. The next example tests a Variant variable to see whether it has
the Empty value:

Sub EmptyVar()

Dim vntName As Variant

Debug.Print IsEmpty(vntName) ‘Prints True

vntName = “”

Debug.Print IsEmpty(vntName) ‘Prints False

vntName = Empty

Debug.Print IsEmpty(vntName) ‘Prints True

End Sub

CHAPTER 13 Advanced VBA Techniques618

A Variant variable loses its Empty value when any value has been stored in it, including
zero, Null, or a zero-length string. It can become Empty again only by storing the keyword
Empty in the variable.

Working with Null
Null is a special value that indicates unknown or missing data. Null is not the same as
Empty; in addition, one Null value is not equal to another one. Variant variables can
contain the special value called Null.

Often, you need to know whether specific fields or controls have never been initialized.
Uninitialized fields and controls have a default value of Null. By testing for Null, you can
make sure fields and controls contain values.

If you want to make sure that all fields and controls in your application have data, you
need to test for Nulls. You can do this by using the IsNull function:

Sub NullVar()

Dim vntName As Variant

Debug.Print IsEmpty(vntName) ‘Prints True

Debug.Print IsNull(vntName) ‘Prints False

vntName = Null

Debug.Print IsNull(vntName) ‘Prints True

End Sub

Notice that vntName is equal to Null only after you explicitly store the value of Null in it.
It’s important to know not only how variables and Null values interact, but also how to
test for Null within a field in your database. A field contains a Null if data hasn’t yet been
entered in the field, and the field has no default value. In queries, you can test for the
criteria “Is Null” to find all the records in which a particular field contains a Null value.
When dealing with recordsets (covered in Chapter 15, “What Are ActiveX Data Objects,
and Why Are They Important?”), you can also use the IsNull function to test for a Null
value in a field. Here’s an example:

Sub LoopProjects()

Dim rst As ADODB.Recordset

Set rst = New ADODB.Recordset

‘Open a recordset based on the Projects table

rst.Open “tblProjects”, CurrentProject.Connection

‘Loop through all of the records in the recordset

Do Until rst.EOF

‘Print the ProjectID and the ProjectName

Debug.Print rst!ProjectID, rst!ProjectName

Working with Empty and Null 619

1
3

‘If the ProjectBeginDate field is null,

‘display a message to the user

If IsNull(rst!ProjectBeginDate) Then

Debug.Print “Project Begin Date Contains No Value!!”

End If

‘Move to the next row in the recordset

rst.MoveNext

Loop

End Sub

Alternatively, you could use the more compact Nz function to detect Nulls and print a
special message:

Sub LoopProjects2()

Dim rst As ADODB.Recordset

Set rst = New ADODB.Recordset

‘Open a recordset based on the Projects table

rst.Open “tblProjects”, CurrentProject.Connection

‘Loop through all of the rows in the recordset

Do Until rst.EOF

‘Print the ProjectID and the ProjectName

Debug.Print rst!ProjectID, rst!ProjectName

‘Print the ProjectBeginDate, or a message if

‘the ProjectBeginDate is null

Debug.Print Nz(rst!ProjectBeginDate, _

“Project Begin Date Contains No Value!!”)

rst.MoveNext

Loop

End Sub

Chapter 15 covers all the concepts of recordset handling. For now, you need to under-
stand only that this code loops through each record in tblProjects. It uses the IsNull
function to evaluate whether the ProjectBeginDate field contains a Null value. If the
field does contain a Null, the code prints a warning message to the Immediate window.
Here is another example:

Private Sub Form_Current()

Dim ctl as Control

CHAPTER 13 Advanced VBA Techniques620

‘Loop through each control in the form’s

‘Controls collection

For Each ctl In Controls

‘If the control is a TextBox

If TypeOf ctl Is TextBox Then

‘If the value in the control is null,

‘change the BackColor property to cyan

If IsNull(ctl.Value) Then

ctl.BackColor = vbCyan

‘If the value in the control is not null

‘change the BackColor property to white

Else

ctl.BackColor = vbWhite

End If

End If

Next ctl

End Sub

The code in this example (found in the frmProjects form in CHAP13EX.ACCDB) loops
through every control on the current form. If the control is a text box, the routine checks
to see whether the value in the text box is Null. If it is, the BackColor property of the text
box is set to Cyan; otherwise, it’s set to White. If the control is not a text box, the code
ignores it and moves to the next control.

You should know about some idiosyncrasies of Null:

. Expressions involving Null always result in Null. (See the next example.)

. A function that’s passed a Null usually returns a Null.

. Null values propagate through built-in functions that return variants.

The following example shows how Null values are propagated:

Sub PropNulls()

Dim rst As ADODB.Recordset

Set rst = New ADODB.Recordset

‘Open a recordset based on the Projects table

rst.Open “tblProjects”, CurrentProject.Connection

‘Loop through the recordset

Do Until rst.EOF

Working with Empty and Null 621

1
3

‘Print the ProjectID and the value of the

‘ProjectBeginDate plus one

Debug.Print rst!ProjectID, rst!ProjectBeginDate + 1

‘Move to the next row

rst.MoveNext

Loop

End Sub

Figure 13.3 illustrates the effects of running this routine on a table in which the first and
third records contain Null values. Notice that the result of the calculation is Null for
those records because the Null propagated within those records.

CHAPTER 13 Advanced VBA Techniques622

FIGURE 13.3 The result of running the PropNulls routine.

Notice the difference from the previous example if the value in the field is Empty:

Sub EmptyVersusNull()

Dim rst As ADODB.Recordset

Set rst = New ADODB.Recordset

‘Open a recordset based on the Projects table

rst.Open “tblProjects”, CurrentProject.Connection

‘Loop through the recordset

Do Until rst.EOF

‘Print the ProjectID and the PurchaseOrderNumber

‘combined with the word “Hello”

Debug.Print rst!ProjectID, rst!PurchaseOrderNumber + “Hello”

‘Move to the next row

rst.MoveNext

Loop

End Sub

In this example, the tblProjects table has many records. The PurchaseOrderNumber for
the first record contains a Null; for the third record, it contains an Empty. Notice the
different effects of the two values, as shown in Figure 13.4.

Working with Empty and Null 623

1
3

FIGURE 13.4 The result of running the EmptyVersusNull routine shows the propagation of
the Null value.

Looking at Figure 13.4, you can see that Null printed for the first record, and Hello
printed for the third record.

The EmptyVersusNull routine uses a numeric operator (+). As discussed, the effect of Null
used in a calculation is a resulting Null. In text strings, you can use an ampersand (&)

instead of a plus (+) to eliminate this problem. Figure 13.5 illustrates the same code with
an ampersand to concatenate rather than add. You can see that no Null values result from
the concatenation.

CHAPTER 13 Advanced VBA Techniques624

FIGURE 13.5 The result of changing plus (+) in the EmptyVersusNull routine to an
ampersand (&).

It’s common to create a generic routine that receives any value, tests to see whether it’s
Null, and returns a non-Null value. An example is the CvNulls function:

Function CvNulls(vntVar1 As Variant, vntVar2 As Variant) _

As Variant

‘If first variable is null, return the second variable

‘otherwise, return the first variable

CvNulls = IIf(IsNull(vntVar1), vntVar2, vntVar1)

End Function

You would call this routine as follows:

Sub TestForNull(vntSalary As Variant, vntCommission As Variant)

‘Add the result of calling the CVNulls function,

‘passing the salary and zero to the

‘result of calling the CVNulls function

‘passing the commission and zero

curTotal = CvNulls(vntSalary, 0) + CvNulls(vntCommission, 0)

‘Display the total of salary plus commission

MsgBox curTotal

End Sub

The TestForNull routine receives two parameters: salary and commission. It adds the two
values to determine the total of salaries plus commissions. Ordinarily, if the value of
either parameter is Null, the expression results in Null. The code eliminates the problem
with the CvNulls function, which also receives two parameters. The first parameter is the
variable being tested for Null; the second is the value you want the function to return if
the first parameter is determined to be Null. The routine combines the Immediate If
(IIf) function and the IsNull function to evaluate the first parameter and return the
appropriate value.

NOTE

If you simply want to substitute a value for a Null, you can use the built-in function NZ
instead of a user-defined function. The user-defined function offers more functionality,
when necessary.

Creating and Working with Custom Collections
Earlier in this chapter, I discussed the problems associated with arrays. If you are unsure
of the number of elements that the array will contain, fixed arrays can take up large
amounts of memory unnecessarily. On the other hand, the resizing of dynamic arrays is
rather inefficient. Finally, all the elements of an array must be contiguous, and the arbi-
trary identifier for the array element is meaningless. The answer—custom collections.
Custom collections can contain values and objects. You can easily add items to, and
remove items from, a collection. VBA identifies each element in the collection by a mean-
ingful unique key.

In summary, custom collections are similar to arrays, but they offer several advantages:

. Collections are dynamically allocated. They take up memory based only on what’s
in them at a given time. This is different from arrays, whose size you must either
predefine or redimension at runtime. When you redimension an array, Access actu-
ally makes a copy of the array in memory, taking up substantial resources. By using
custom collections, you can avoid this consumption of extra resources.

. A collection always knows how many elements it has, and you can easily add and
remove elements.

. Each element of a collection can contain a different type of data.

. You can add elements into any element of a collection.

Creating and Working with Custom Collections 625

1
3

NOTE

You can find the code examples in this section in the basCollections module of the
CHAP13EX.ACCDB database.

Creating a Custom Collection
You create a collection using a Collection object. After you declare the Collection
object, you can add items to the collection. The code necessary to create a custom collec-
tion looks like this:

Dim colNames as Collection

Adding Items to a Custom Collection
You use the Add method of the Collection object to add items to a custom collection.
The Add method receives a value or object reference as its first parameter and a unique
key to that element of the collection as its second parameter. The Add method appears as
follows:

colNames.Add “Alexis”, “Alexis”

The code shown previously adds the name Alexis to a collection called colNames. The
key to the item in the collection is the name Alexis. In the following code example, the
collection colNames is first declared and instantiated. The code then adds several names to
the custom collection colNames:

Sub AddToCollection()

‘Declare a Collection object

Dim colNames As Collection

‘Instantiate the Collection object

Set colNames = New Collection

‘Add items to the collection

colNames.Add “Alison”, “Alison”

colNames.Add “Dan”, “Dan”

colNames.Add “Alexis”, “Alexis”

colNames.Add “Brendan”, “Brendan”

colNames.Add “Sonia”, “Sonia”

colNames.Add “Sue”, “Sue”

End Sub

CHAPTER 13 Advanced VBA Techniques626

CAUTION

Unlike almost every other array or collection in VBA, custom collections are one-based
rather than zero-based. This means that the element numbers begin with one rather
than zero. This is a big change if you’re used to thinking of arrays and collections as
always zero-based.

Accessing an Item in a Custom Collection
After you have added items to a collection, you use the Item method to access them via
either their ordinal position or the key designated when you added them. Accessing an
item in a collection using the ordinal position looks like this:

Debug.Print colNames.Item(1)

Because the Item method is the default method of the Collection object, you can shorten
the code to this:

Debug.Print colNames(1)

I usually prefer to refer to an item in a collection using its unique key. The code appears
as follows:

Debug.Print colNames(“Alexis”)

Removing Items from a Custom Collection
You use the Remove method of the Collection object to remove items from a collection.
The syntax looks like this:

colNames.Remove 2

The preceding syntax would remove the second element of the collection. Using the key,
you can change the code to this:

colNames.Remove “Sonia”

You can easily remove all the elements of a collection in two ways:

Set colNames = New Collection

or

Set colNames = Nothing

Creating and Working with Custom Collections 627

1
3

Iterating Through the Elements of a Custom Collection
You use the For...Each loop to iterate through the items in a collection. The code looks
like this:

Sub IterateCollection()

‘Declare a Collection object

Dim colNames As Collection

‘Declare a variant variable for looping

‘through the collection

Dim varItem As Variant

‘Instantiate the Collection object

Set colNames = New Collection

colNames.Add “Alison”, “Alison”

colNames.Add “Dan”, “Dan”

colNames.Add “Alexis”, “Alexis”

colNames.Add “Brendan”, “Brendan”

colNames.Add “Sonia”, “Sonia”

colNames.Add “Sue”, “Sue”

‘Use the variant variable and a For..Each

‘loop to loop through each element in

‘the collection, printing its value

For Each varItem In colNames

Debug.Print colNames(varItem)

Next varItem

End Sub

Notice that in addition to the declaration of the Collection variable, the code declares a
Variant variable. The code uses the Variant variable in the For...Each loop to loop
through each item in the collection. The Variant variable is the subscript within the
For...Each loop for accessing a particular item within the collection.

Handling Files with Low-Level File Handling
On occasion, you need to write data to or read data from a text file. This is often referred
to as low-level file handling. Three types of file access exist: sequential, random, and binary.
This text covers only sequential access. You use sequential access to read and write to a
text file, such as an error log. You use the Open keyword to open a text file. You use the
Input # keyword to read data. Likewise, you use the Write # keyword to write data.
Finally, you use the Close keyword to close the file. The subroutine LogErrorText
provides a practical example of why you may need to use this technique. It writes error
information to a text file. Here’s how it works:

CHAPTER 13 Advanced VBA Techniques628

Sub LogErrorText()

Dim intFile As Integer

‘Store a free file handle into a variable

intFile = FreeFile

‘Open a file named ErrorLog.txt in the current directory

‘using the file handle obtained above

Open CurDir & “\ErrorLog.Txt” For Append Shared As intFile

‘Write the error information to the file

Write #intFile, “LogErrorDemo”, Now, Err, Error, CurrentUser()

‘Close the file

Close intFile

End Sub

The code uses the FreeFile function to locate a free file handle. The Open keyword opens
a file with the name ErrorLog.txt located in the current directory. The code opens the
file in shared mode and for append, using the file handle returned by the FreeFile func-
tion. The code then uses the Write # keyword to write error information to the text file.
Finally, the Close keyword closes the text file.

NOTE

This example is taken from Chapter 15. The sample code is located in the
CHAP15EX.ACCDB database.

Understanding and Effectively Using Compilation
Options
Microsoft Access gives you a few alternatives for compilation. Understanding them can
help you to decide whether compilation speed or trapping compilation errors is more
important to you.

Compile on Demand
By default, VBA compiles your code only when the code in the module changes or when
a procedure in one module is called by another module. Although this default setting can
dramatically speed the compilation process, it can leave you wondering whether you have
a hidden time bomb lurking somewhere in your application.

Here’s a typical scenario: You open a form, make some simple changes, save the changes,
and close the form. You repeat this process for a few additional forms. You also open a
couple of modules to make some equally simple changes. During the testing process, you

Understanding and Effectively Using Compilation Options 629

1
3

forget to test one or more of the forms and one or more of the modules. With the
Compile On Demand option set to True (its default value), you won’t identify the errors
until your users access the offending code!

To disable the Compile On Demand feature, choose Tools, Options from the VBE. Click
the General tab and remove the check from Compile On Demand. You might notice some
degradation in performance each time your code compiles, but this is time well spent.

Importing and Exporting Code Modules
The Access 2007 VBE allows you to import code or form modules into and export code
modules from a database. To export a form or code module, take the following steps:

1. Activate the VBE.

2. Within the Project Explorer window, right-click the object you want to export.

3. Select Export File. The Export File dialog box appears (see Figure 13.6).

CHAPTER 13 Advanced VBA Techniques630

FIGURE 13.6 The Export File dialog box allows you to export a VBA module.

4. Select a location and name for the exported file and then click Save.

When you export a module, it is exported as an ASCII text file. You can import the text
file into another Microsoft Access database, into any other Microsoft Office product (for
example, Microsoft Excel), or into a Visual Basic project.

NOTE

If you export a Form module from the VBE, Access exports only the Class module
behind the form. It does not export any visual aspects of the form.

Just as you can export a text file, you can import a text file. Consequently, you can add
an existing module or form to a project. Access copies the file and imports it into the

database. It does not affect the original file. To import a file into your Access database,
follow these steps:

1. Activate the VBE.

2. Within the Project Explorer window, right-click and select Import File. The Import
File dialog box appears (see Figure 13.7).

Working with Project Properties 631

1
3

FIGURE 13.7 The Import File dialog box allows you to import a text file into your database.

3. Locate and select the file you want to import and then click Open.

Working with Project Properties
Every database project has user-definable properties. They include the following:

. The project name

. A description of the project

. The name of the help file associated with the project

. The help context ID associated with the project

. Conditional compilation arguments

. A password associated with the project

To view or modify project properties, follow these steps:

1. Activate the VBE.

2. Select Tools, <project name> Properties. The Project Properties dialog box appears (see
Figure 13.8).

FIGURE 13.8 The Project Properties dialog box.

3. Click the General tab, where you can designate or change any of the general project
properties.

4. Click the Protection tab, where you can specify a password for the VBA project.

5. Click OK to close the dialog box, accepting the options you have set. You must close
the database and reopen it for any security options to take effect.

The Protection option deserves special attention. If you click to select Lock Project for
Viewing, the VBA project cannot be viewed or edited by someone who does not have the
correct password. If you do not select Lock Project for Viewing, anyone can view the VBA
project, but only someone with the correct password can change the project properties.

Practical Examples: Putting Advanced
Techniques to Use
The examples in the following sections put into practice all that you have learned
throughout this chapter. Concepts covered include the use of Null, intrinsic constants,
and type structures.

Examples of Null, the DoCmd Object, and Intrinsic Constants
The following event routine illustrates how you could view all the projects associated
with the selected client. It illustrates the importance of the ability to work with Null
values and intrinsic constants:

Private Sub cmdViewProjects_Click()

On Error GoTo Err_cmdViewProjects_Click

CHAPTER 13 Advanced VBA Techniques632

‘Evaluate the ClientID text box to determine if it is null

‘If it is null, display a message to the user

‘Otherwise, save the current record and open the

‘projects form (which is set up to only show projects

‘related to the selected client)

If IsNull(Me.txtClientID.Value) Then

MsgBox “You Must Enter Client Information Before “ & _

“Viewing the Projects Form”

Else

DoCmd.RunCommand acCmdSaveRecord

DoCmd.OpenForm FormName:=”frmProjects”

End If

Exit_cmdViewProjects_Click:

Exit Sub

Err_cmdViewProjects_Click:

MsgBox Err.Description

Resume Exit_cmdViewProjects_Click

End Sub

The routine first invokes error handling (discussed in Chapter 17) and then uses the
IsNull function to test whether the user has entered a ClientID. The IsNull function
returns True if the value in the txtClientID control is Null. If it is, the code displays an
error message. If the txtClientID control contains a non-Null value, the code performs
two methods on the DoCmd object.

The first method performed on the DoCmd object is the RunCommand method. This method
receives the constant associated with the name of the menu command you want to
execute. The use of intrinsic constants makes this code more readable, and the
RunCommand method makes it much easier to call menu commands from code. The second
method performed on the DoCmd object is OpenForm, which opens the frmProjects form.
The code programmatically sets the RecordSource property of the frmProjects form to a
query that displays only projects associated with the currently selected customer.

An Example of Using a Type Structure
If many parts of an application require the same information that is stored in a specific
table, reading the data from this table each time the application needs it would be ineffi-
cient. A much more efficient approach would be to read this data once, when the applica-
tion loads, and store it in a type structure. Because it remains in memory at all times, you
can efficiently retrieve it whenever needed. The type structure is defined, and a Public
Type variable based on the type structure is declared in a module’s Declarations section. It
looks like this:

Practical Examples: Putting Advanced Techniques to Use 633

1
3

Type CompanyInfo
SetUpID As Long
CompanyName As String * 50
Address As String * 255
City As String * 50
StateProvince As String * 20
PostalCode As String * 20
Country As String * 50
PhoneNumber As String * 30
FaxNumber As String * 30
DefaultPaymentTerms As String * 255
DefaultInvoiceDescription As String

End Type
Public typCompanyInfo As CompanyInfo

You must build a subroutine that is invoked when your startup form is first loaded. This
routine populates all the elements of the type structure. The routine looks like this:

Sub GetCompanyInfo()

Dim strSubName As String
Dim rst As ADODB.Recordset

‘Instantiate and open a recordset
‘based on the tblCompanyInfo table
Set rst = New ADODB.Recordset
rst.ActiveConnection = CurrentProject.Connection
rst.Open “Select * from tblCompanyInfo”, Options:=adCmdText

‘Populate the elements of the type structure
‘with data from the table
With typCompanyInfo

.SetUpID = rst!SetUpID

.CompanyName = rst!CompanyName

.Address = rst!Address

.City = rst!City

.StateProvince = rst!StateOrProvince

.PostalCode = rst!PostalCode

.Country = rst!Country

.PhoneNumber = rst!PhoneNumber

.FaxNumber = rst!PhoneNumber
End With

‘Close the recordset and destroy the object
rst.Close
Set rst = Nothing

End Sub

CHAPTER 13 Advanced VBA Techniques634

Don’t be concerned with the recordset handling included in this routine. Instead, notice
that the code loads the value from each field in the first (and only) record of the
tblCompanyInfo table into the elements of the Global Type variable. Here’s an example
of how the code uses the Type variable:

Sub PopulateControls()

‘Populate the text boxes on the report

‘with data from the type structure

txtCompanyName.Value = Trim(typCompanyInfo.CompanyName)

txtAddress.Value = Trim(typCompanyInfo.Address)

txtCityStateZip.Value = Trim(typCompanyInfo.City) & “, “ & _

Trim(typCompanyInfo.StateProvince) & _

“ “ & Format(Trim(typCompanyInfo.PostalCode), “!&&&&&-&&&&”)

txtPhoneFax.Value = “PHONE: “ & _

Format(Trim(typCompanyInfo.PhoneNumber), “(&&&)&&&-&&&&”) & _

“ FAX: “ & _

Format(Trim(typCompanyInfo.FaxNumber), “(&&&)&&&-&&&&”)

End Sub

This routine populates four different controls on a form with the company information
retrieved from the elements of the Global Type variable.

Summary
As an Access developer, you spend much of your time writing VBA code. Knowing the
tricks and tips of the trade and understanding the more advanced aspects of the language
will save you much time and help you streamline your application code.

This chapter showed you tricks and tips you can use to effectively navigate the VBA envi-
ronment. It delved into more advanced aspects of the VBA language, such as user-defined
types, constants, and arrays. You have seen the important difference between passing
parameters by reference and passing them by value, and learned about other advanced
function techniques, such as optional and named parameters. Other important topics
covered in this chapter included collections, Empty versus Null, and compilation options.
Understanding these valuable aspects of the VBA language will help you get the most out
of the code you write.

Summary 635

1
3

This page intentionally left blank

IN THIS CHAPTER

. Why This Chapter Is Important

. Object Orientation—An
Introduction

. Creating and Using a Class
Module

. Setting Values with Property
Set

. Creating Multiple Class
Instances

. Adding Code to the
Initialize and
Terminate Events

. Working with Enumerated
Types

. Building Hierarchies of Classes

. Adding a Parent Property to
Classes

. Using the Implements Keyword

. Working with Custom
Collections

. Adding Your Own Events

. Practical Examples: Using
Class Modules

CHAPTER 14

Exploiting the Power of
Class Modules

Why This Chapter Is Important
Access 2007 offers two types of modules: Standard modules
and Class modules. A Class module is similar to a Code
module. The subroutines and functions in the Class
module become the methods of the class. The Property Let
and Property Get routines become the properties of the
class, and the Class module’s name becomes the name of
the custom object. A Class module is a great way to encap-
sulate related functions into a portable, self-contained
object. Class modules can help you simplify the process of
performing the following tasks:

. Manipulating databases and recordsets

. Calling Windows API functions

. Performing low-level, file-handling tasks

. Accessing and modifying the Registry

If you regularly open databases and recordsets and traverse
those recordsets by using code, you might decide that you
want to simplify these tasks. By building Class modules,
you can more easily access table data.

Object Orientation—An
Introduction
The world of object orientation is exciting, but it requires a
new way of thinking about things. Access Office 2007 is
object-based rather than object-oriented. So, what exactly
is the difference? The definitions of the following terms
should help you differentiate between these two concepts:

. Class—A template for an object

. Object—An instance of a class

. Instantiation—The process of creating an object based on a class

. Polymorphism—The state of being multifaced; using the same method and
property names with different objects, the properties and methods of which are
implemented differently for different objects

. Subclassing—Building one class based on another

. Inheritance—In object-oriented programming, the ability of newly created
subclasses to take on the behavior of their parent classes

Visual Basic for Applications (VBA), and therefore Access, supports the creation of custom
classes and the instantiation of objects based on those classes. Polymorphism can also be
simulated by using the same property and method names within different classes. VBA
does not fully support subclassing and inheritance. With the exception of a keyword
called Implements, classes cannot be based on other classes and, therefore, cannot elicit
the behavior of other classes. True polymorphism can exist only when child classes
inherit the properties and methods of their parents. The Implements keyword gets you
close but does not fully exhibit the behavior of polymorphism.

To make sure that you understand the terms, let’s use an analogy. Imagine that you are
going to bake some cookies. The cookie cutter is the class, the template for a cookie
object. When you use the cookie cutter to create an actual cookie, you instantiate the
cookie class to create a cookie object. The cookie has some properties, such as a powdered
sugar property, and some methods, such as the bake method. A ham class is a template
for a ham object. The ham class also has a bake method. The “code” behind the bake
method of the cookie object and the bake method of the ham object is different. This is
polymorphism (being multifaced) in action. If VBA were fully object-oriented, the cookie
class and the ham class would have been derived from the same parent. When you would
change the code of the parent, the changes would automatically be seen in the children.
Now that you are familiar with some object-oriented terms and concepts, take a look at
how custom classes work in VBA.

Creating and Using a Class Module
You can insert a Class module in one of three ways:

. Click to select the Create tab of the Ribbon. Open up the Macro drop-down in the
Other group and select Class Module.

. With the Visual Basic Editor active, select Insert, Class Module.

. With the Visual Basic Editor active, right-click the project within the Project
Explorer window and select Insert, Class Module from the pop-up menu.

CHAPTER 14 Exploiting the Power of Class Modules638

After being inserted, a Class module looks like a Standard Code module (see Figure 14.1).
The differences lie in how the variables and procedures in the Class module are accessed,
as well as in the behavior of the Class module.

Creating and Using a Class Module 639

1
4

FIGURE 14.1 A new Class module.

Adding Properties
The most basic way to add a property to a Class module is to use a Public variable. For
example, the following code shows the declaration of two Public variables: FirstName
and LastName. After you add them to a class, VBA considers them properties of the class.

Public FirstName as String

Public LastName as String

Adding Methods
A function or subroutine placed within a Class module is considered a method of the
class. The Speak subroutine that follows acts as a method of the PublicPerson class. It
accesses the FirstName and LastName properties of the class, displaying them in a message
box.

Public Function Speak()

Speak = FirstName & “ “ & LastName

End Function

Instantiating and Using the Class
To utilize the code within a class, you must instantiate an object based on that class. To
do that, you first declare an object based on the class. You then instantiate the object by
using a Set statement. You can then access the properties and methods of the object. The
code looks like this:

Sub SingleInstance()

‘Declare and instantiate a Person object

Dim oPerson As Person

Set oPerson = New Person

‘Set the first name and last name

‘properties of the Person object

oPerson.FirstName = “Alison”

oPerson.LastName = “Balter”

‘Display the return value from the Speak

‘method in a message box

MsgBox oPerson.Speak

End Sub

The code begins by declaring a Person object. The code uses a Set statement to create an
instance of the Person object. The code then sets the FirstName and LastName properties of
the instance to Alison and Balter, respectively. The code then executes the Speak method
of the object. It returns the concatenated name, which is displayed in a message box.

Property Let and Get—Adding Properties the Right Way
Public variables, when used as properties, have the following major disadvantages:

. Using Public variables, you cannot create properties that are read-only or
write-only.

. You cannot validate what goes into Public variables.

. You cannot manipulate the value as the Public variable is set.

. You cannot track changes to Public variables.

For these reasons, it is prudent to use property procedures rather than Public variables.
With property procedures, you can create custom runtime properties of user-defined
objects. After you have defined custom properties, you can use Property Let and Get to
assign values to and retrieve values from custom properties. Custom properties give you
more flexibility in creating your applications; you can create reusable objects that expose
properties to other objects.

CHAPTER 14 Exploiting the Power of Class Modules640

Custom properties are Public by default and are placed in Class, Form, or Report
modules, making them visible to other modules in the current database. They aren’t
visible to other databases.

The Property Let routine defines a property procedure that assigns a value to a user-
defined object’s property. Using Property Let is similar to assigning a value to a Public
variable, but a Public variable can be written to from anywhere in the database, with
little or no control over what’s written to it. With a Property Let routine, you can
control exactly what happens when a value is assigned to the property. Here’s an
example:

Public Property Let FirstName(ByVal strNewValue As String)

mstrFirstName = UCase(strNewValue)

End Property

You might be thinking this code looks just like a subroutine, and you’re somewhat
correct. It’s a special type of subroutine that executes automatically in response to the
change in a custom property’s value. The example receives the value that the property is
changed to as strNewValue. The code stores the uppercase version of the value in the
Private variable mstrFirstName. The following line of code causes the code in the
Property Let to execute:

FirstName = “Alison”

Property Let sets the value of a custom property, but Property Get defines a property
procedure that retrieves a value from a user-defined object’s property. This example illus-
trates how Property Get is used:

Public Property Get FirstName() As String

FirstName = mstrFirstName

End Property

The Property Get routine automatically executes whenever the code tries to retrieve the
value of the property. The value stored in the Private variable mstrFirstName is returned
from the Property Get procedure. This routine can be executed by retrieving the property
from anywhere in the database. The following line of code causes the code in the
Property Get to execute:

MsgBox FirstName

The code that follows shows the declaration of the two Private variables mstrFirstName
and mstrLastName. The Property Let for FirstName and the Property Let for LastName
store values into these two Private variables. The Property Get for FirstName and the
Property Get for LastName retrieve the values stored in the Private variables.

Private mstrFirstName As String

Private mstrLastName As String

Creating and Using a Class Module 641

1
4

Public Property Get FirstName() As String

FirstName = mstrFirstName

End Property

Public Property Let FirstName(ByVal strNewValue As String)

mstrFirstName = UCase(strNewValue)

End Property

Public Property Get LastName() As String

LastName = mstrLastName

End Property

Public Property Let LastName(ByVal strNewValue As String)

mstrLastName = UCase(strNewValue)

End Property

Unlike with Public variables, you have significant control over a property created with
Property Let and Property Get routines. To create a read-only property, include only a
Property Get. To create a write-only property, include only a Property Let. If you want a
read/write property, include both the Property Get and Property Let routines.

Setting Values with Property Set
Whereas a Property Let stores a value in a property, a Property Set stores a reference to
an object in a property. It looks like this:

Private mobjCustomer as Customer

Public Property Set GoodCustomer(objCustomer as Customer)

Set mobjCustomer = objCustomer

End Property

Property Set and its uses are covered in more detail in the later section “Building
Hierarchies of Classes.”

Creating Multiple Class Instances
One of the advantages of Class modules is that you can create multiple instances of the
class. Each instance maintains its own variables and executes its own code. This is illus-
trated in the following code:

Sub MultipleInstance()

‘Declare both class objects

Dim oPerson1 As Person

Dim oPerson2 As Person

CHAPTER 14 Exploiting the Power of Class Modules642

‘Instantiate both class objects
Set oPerson1 = New Person
Set oPerson2 = New Person

‘Set the first name and last name
‘properties of the oPerson1 object
oPerson1.FirstName = “Alison”
oPerson1.LastName = “Balter”

‘Display the return value from the Speak
‘method of the first instance in a message box
MsgBox oPerson1.Speak

‘Set the first name and last name
‘properties of the oPerson2 object
oPerson2.FirstName = “Dan”
oPerson2.LastName = “Balter”

‘Display the return value from the Speak
‘method of the second instance in a message box
MsgBox oPerson2.Speak

End Sub

The code creates two instances of the Person class. The first is referred to as oPerson1 and
the second as oPerson2. The code sets the FirstName property of oPerson1 to Alison and
the LastName property of oPerson1 to Balter. The code sets the FirstName property of
oPerson2 to Dan and the LastName property of oPerson2 to Balter. The Speak method
returns the name of the correct person, which the code displays in a message box.

Adding Code to the Initialize and
Terminate Events
The Initialize and Terminate events are the two built-in events that execute for a class
object. The Initialize event executes as the class is instantiated, and the Terminate
event executes as the class is destroyed.

Initialize
You generally use the Initialize event to perform tasks such as establishing a connec-
tion to a database and initializing variables. The following is an example of the use of the
Initialize event:

Private Sub Class_Initialize()

FirstName = “Alison”

LastName = “Balter”

End Sub

Adding Code to the Initialize and Terminate Events 643

1
4

In this example, the code sets the default values of the FirstName and LastName properties
of the class to Alison and Balter, respectively.

Terminate
You generally use the Terminate event to perform the class’s cleanup tasks. An example
is closing a recordset used by the class. The following is an example of the use of the
Terminate event:

Private Sub Class_Terminate()

rstCustomer.Close

Set rstCustomer = Nothing

End Sub

This code closes the recordset and destroys the recordset object variable. It provides an
example of cleanup code that you would place in your own application.

Working with Enumerated Types
By now, you should be quite familiar with IntelliSense and its benefits. One benefit is that
when you type the name of a property or a method whose value should be set to one of a
set of constants, the list of appropriate constants automatically appears. For example,
when you use the OpenForm method of the DoCmd object, a list of six intrinsic constants
appears for the View parameter. Using enumerated types, you can benefit from this behav-
ior with your own custom properties and methods.

Here’s how enumerated types work: For the custom PersonType property, imagine that
only four values are appropriate: Client, PersonalContact, Vendor, and Other. Using an
enumerated type, you can easily set it up so that the four appropriate types appear in a
list whenever you set the PersonType property of the class. Use the Enum keyword to
define an enumerated type:

‘Enumeration for PersonType

Public Enum PersonTypeList

Client

PersonalContact

Vendor

Other

End Enum

To use the enumerated type with the property, you must include it in the definition of
the Property Get and Property Let routines:

Public Property Get PersonType() As PersonTypeList

‘Retrieve the PersonType property

PersonType = mlngPersonType

End Property

CHAPTER 14 Exploiting the Power of Class Modules644

Public Property Let PersonType(ByVal lngPersonType As PersonTypeList)

‘Set the PersonType property

mlngPersonType = lngPersonType

End Property

Whenever you attempt to set the value of the PersonType property of the class, the list of
valid types automatically appears (see Figure 14.2).

Working with Enumerated Types 645

1
4

FIGURE 14.2 The list of types appears after you define an enumerated type for the
PersonType property of the class.

Notice that the code uses a long integer to store the person type. The reason is that VBA
limits all enumerated type constants to long integer values. Furthermore, you might
wonder what values are stored in the variable when you use each constant. Unless
directed otherwise, VBA assigns the first item in the list the value 0 (zero). It assigns each
subsequent item in the list the next value (1, 2, 3, and so on). In this example, VBA
assigns 0 to the Client, 1 to the PersonalContact, 2 to the Vendor, and 3 to Other. If you
wish to control the long integer value assigned to each item in the list, simply set the
constant equal to a value:

Public Enum PersonTypeList2
Client = 10
PersonalContact = 5
Vendor = 2
Other = 999

End Enum

One additional aspect of enumerated types is worth noting. The process of defining an
enumerated type does not ensure that only valid values are used for the property or
method. Although IntelliSense provides a list of the constants included in the enumerated
type, any value can be entered.

Building Hierarchies of Classes
You commonly emulate real-life relationships between objects in the classes that you
build. This necessitates the building of a class hierarchy. The relationships that you build
between classes make up an object model. For example, you might have a Client class
that has multiple Order objects associated with it. Each Order object can then have
multiple Order Detail objects associated with it.

To relate one class to another, place a declaration of the child class in the General
Declarations section of the parent. For example, the Order class contains the following
declaration:

Public OrderDetail as OrderDetail

The Initialize event of the Order class contains the code that instantiates the
OrderDetail class:

Private Sub Class_Initialize()

Set OrderDetail = New OrderDetail

End Sub

When you instantiate the Order class (the parent class), the code automatically instanti-
ates the child class. You can then set the properties and execute the methods of the child
class. Here’s an example:

Sub CreateOrder()

‘Declare and instantiate the Order object

Dim objOrder As Order

Set objOrder = New Order

‘Set properties of the child class (OrderDetail)

With objOrder.OrderDetail

.ItemNumber = 5

.OrderNumber = 1

.Quantity = 3

End With

End Sub

Notice that the code declares and instantiates an Order object. It then uses a With state-
ment to point at the OrderDetail object instantiated in the Initialize event of the
Order class. It sets the ItemNumber, OrderNumber, and Quantity properties of the
OrderDetail object.

CHAPTER 14 Exploiting the Power of Class Modules646

This example shows how to have one child associated with a parent. The section titled
“Using a Collection to Manipulate Multiple Instances of the FileInformation Class”
shows how to use a Custom collection to emulate a one-to-many relationship with classes.

Adding a Parent Property to Classes
Many Microsoft-generated objects have a Parent property. This property generally
provides a reference back to the parent of an object in a hierarchy. You can emulate this
behavior in your own classes. Place this code in the child class:

Private mobjParent As Order

Public Property Get Parent() As Order

‘Return the pointer stored in mobjParent

Set Parent = mobjParent

End Property

Public Property Set Parent(ByVal objParent As Order)

If mobjParent Is Nothing Then

Set mobjParent = objParent

End If

End Property

Code in the Initialize event of the parent class sets the Parent property of the child
class. The code looks like this:

Private Sub Class_Initialize()

Set OrderDetail = New OrderDetail

Set OrderDetail.Parent = Me

End Sub

After the Initialize event of the Order class sets the Parent property of the OrderDetail
class, the Property Set for the Parent property of the OrderDetail class executes. If the
mobjParent variable is Nothing, a Set statement points the mobjParent variable at the
reference to the parent class (Set OrderDetail.Parent = Me). Notice that the Set state-
ment executes only if mobjParent is Nothing. This renders the property as write-once. The
following code illustrates how the Parent property is used:

Sub FindParentsName()

‘Declare and instantiate the Order object

Dim objOrder As Order

Set objOrder = New Order

‘Retrieve Name property of the parent

MsgBox objOrder.OrderDetail.Parent.Name

End Sub

Adding a Parent Property to Classes 647

1
4

This code declares and instantiates the Order object. The Initialize event of the Order
object instantiates the OrderDetail object and sends it a reference to the Order object. The
code retrieves the Name property of the Parent object and displays it in a message box.

Using the Implements Keyword
Using the Implements keyword, you can share interfaces between classes. This means
that one class can inherit the properties and methods of one or more other classes.
The process is quite simple. All you need to do is place the following in the General
Declarations section of the class that derives from another class:

Implements Person

After you place this code in the General Declarations section of the BabyPerson class, it
allows you to select the Person class from the Objects drop-down. The property and
method names of the Person class will then appear in the Procedure drop-down. You
must write code for each property and method. In other words, the interface of the
Person class is inherited, but its code is not. You can add properties and methods to the
derived class (BabyPerson), just as you would in any class.

Working with Custom Collections
In addition to the collections built into the Access and other object libraries, you can
create custom collections. Custom collections are similar to arrays, but they offer several
advantages:

. Collections are dynamically allocated. They take up memory based only on what’s
in them at a given time. This is different from arrays, whose size must be either
predefined or redimensioned at runtime. When you redimension an array, Access
actually makes a copy of the array in memory, taking up substantial resources. By
using custom collections, you can avoid that.

. A collection always knows how many elements it has, and elements can easily be
added and removed.

. Each element of a collection can contain a different type of data.

. Elements can be added into any element of a collection.

Although collections are very powerful and provide several advantages, it is important
that you be aware of their disadvantages, which are as follows:

. Every item in a collection is stored as a variant.

. Although the capability to store a different type of data in each element of a collec-
tion can be an advantage, it can also be a disadvantage. If you attempt to treat each
item in the collection the same (for example, by accessing the same property in
each element of the collection), your code might render an error.

CHAPTER 14 Exploiting the Power of Class Modules648

You might wonder why collections are covered in this section. A common use of collec-
tions is to house instances of custom objects. An example of such a use is covered in the
section of this chapter titled “Using a Collection to Manipulate Multiple Instances of the
FileInformation Class.”

Creating a Custom Collection
Defining a custom collection is easy: Simply use the Dim keyword to create an object of
the type Collection, as shown here:

Dim colSports As New Collection

The Dim statement tells the compiler you want to declare a variable, and the As New
keywords indicate that you’re creating a new instance of something. Specifically, you’re
creating a new instance of a Collection object. In the following sections, look at how
you can add items to and remove items from a custom collection.

Adding Items to a Custom Collection
The Add method adds a new item to a custom collection. It looks like this:

colSports.Add “Basketball”

This line of code adds the text “Basketball” to the colSports collection. The Add method
has three optional arguments: Key, Before, and After. Key is a string name you can use to
uniquely identify an element; the Before and After arguments enable you to specify
where in the collection the new item will be placed. Here’s an example:

Sub NewCollection()

Dim colSports As New Collection

colSports.Add “Basketball”

colSports.Add “Skiing”

colSports.Add “Skating”, Before:=1

colSports.Add “Hockey”, After:=2

End Sub

This code creates a new collection called colSports and adds two consecutive elements to
the collection: Basketball and Skiing. It then adds Skating before Basketball. Skating
becomes Element 1 and Basketball becomes Element 2. Finally, it adds Hockey after
Element 2 (Basketball).

CAUTION

Unlike almost every other array or collection in VBA, custom collections are one-based
rather than zero-based. This means that the first element is numbered one (rather
than zero), the second element is numbered two, and so on. This is a big change if
you’re accustomed to thinking of arrays and collections as being only zero-based.

Working with Custom Collections 649

1
4

Looping Through the Elements of a Custom Collection
Just as you can loop through built-in collections, you can also loop through a custom
collection. The code looks like this:

Sub LoopThroughCollection()

Dim colSports As New Collection

Dim varSport As Variant

colSports.Add “Basketball”

colSports.Add “Skiing”

colSports.Add “Skating”, Before:=1

colSports.Add “Hockey”, After:=2

For Each varSport In colSports

Debug.Print varSport

Next varSport

End Sub

This code uses a For Each...Next loop to loop through each element of colSports.
Notice that the routine declares a variant variable as the type of object in the collection.
This is done so that different types of values can be stored in each object in the collection.

Referencing Items in a Custom Collection
When you add an item to a collection, you can specify a custom key for the object. This
way, you can easily return to the item in the collection whenever necessary. The follow-
ing code illustrates how to specify a custom key:

Sub CustomKey()

Dim colSports As New Collection

colSports.Add “Basketball”, “B”

colSports.Add “Skiing”, “S1”

colSports.Add “Skating”, “S2”

colSports.Add “Hockey”, “H”

Debug.Print colSports.Item(“S1”)

End Sub

This code adds several items to the colSports collection. As the code adds each item, it
assigns the item a unique key. You can easily access each item in the collection by using
its unique key. You will often use the Item method when adding several instances of a
form, such as a Customer form to a collection. The customer ID of each customer is
added as the unique key for each form in the collection. This unique identifier enables
you to readily return to a specific instance of the Customer form.

Removing Items from a Custom Collection
Removing items from a custom collection is just as easy as adding them. You use the
Remove method, which looks like this:

CHAPTER 14 Exploiting the Power of Class Modules650

Sub RemoveElements()

Dim colSports As New Collection

colSports.Add “Basketball”

colSports.Add “Skiing”

colSports.Add “Skating”

colSports.Add “Hockey”

colSports.Remove 2

End Sub

This routine removes Element 2 (Skiing) from the collection.

Adding Your Own Events
Just as you can add custom properties and methods to the classes that you build, you can
also add custom events. You will often use custom events to return information back to
the application code that uses them. For example, if an error occurs in the Class module,
it is prudent to raise an event to the user of the class, notifying it that the error occurred.
Error handling is one of the many uses of a custom event. To declare a custom event,
place a Public Event statement in the General Declarations section of the Class module:

Public Event Speaking(strNameSaid As String)

This statement declares a Speaking event that passes a string up to its caller. After you
have declared an event, you must then raise it in the appropriate place in the class code.
You raise an event with the RaiseEvent command. Realize that custom events mean
nothing to Access or to the operating system. In other words, they are not triggered by
something that the operating system responds to. Instead, you generate them with the
code that you write, in the places in your application where you deem appropriate.
Although you can declare an event only once, you can raise it as many times as you like.
The following is an example of raising the Speaking event from the Speak method of
the class:

Public Function Speak()

Dim strNameSaid As String

Speak = mstrFirstName & “ “ & mstrLastName

strNameSaid = mstrLastName & “, “ & mstrFirstName

RaiseEvent Speaking(strNameSaid)

End Function

In this example, the Speak method raises the Speaking event. It passes the concatenation
of the last name and first name spoken back to the caller.

After you have raised an event, you need to respond to it in some other part of your
application. You can only respond to events in Class modules (form, report, or stand-
alone). You must first create an object variable that is responsible for reporting the events
of the class to your application:

Private WithEvents mobjPerson As Person2

Adding Your Own Events 651

1
4

You can then select the class from the Objects drop-down and the event from the
Procedures drop-down. The code that follows responds to the Speaking event, displaying
what was said in a message box:

Private Sub mobjPerson_Speaking(strNameSaid As String)

MsgBox strNameSaid

End Sub

Practical Examples: Using Class Modules
If you want to best understand how to benefit from the use of Class modules, it is benefi-
cial to see them in action. This chapter covers three examples. The first shows the use of a
file information class. Each instance of the class is used to house information about a
particular file. The second illustrates how the use of a customer class facilitates the process
of dealing with customer data. The third is a system information class. It retrieves and
then provides information about the computer system. An additional example of the use
of Class modules is found in Chapter 17, “Error Handling: Preparing for the Inevitable.” It
shows how a custom error class facilitates the process of implementing error handling
within your application.

The FileInformation Class
A common application requirement is to be able to extract the drive, path, or short file-
name from a complete filename. Although you can obtain these pieces of information
using a Standard Code module and functions, placing the functions in a Class module
makes them easier to work with. The FileInformation class contained in the Chap14Ex
sample database contains four properties: FullFileName, Drive, Path, and Name. The user
of the class sets the FullFileName property. It contains the complete filename and path of
the file whose parts the user wants to extract. The Drive, Path, and Name properties of the
class contain the drive, path, and name of the file specified in the FullFileName property.
Listing 14.1 shows the Property Let and Property Get procedures, as well as the Private
variables associated with these properties.

LISTING 14.1 The Property Declarations for the FileInformation Class

Private mstrFullFileName As String

Private mstrDrive As String

Private mstrPath As String

Private mstrName As String

Public Property Get FullFileName() As String

FullFileName = mstrFullFileName

End Property

Public Property Let FullFileName(ByVal strFileName As String)

Call GetDrive(strFileName)

CHAPTER 14 Exploiting the Power of Class Modules652

Call GetPath(strFileName)

Call GetName(strFileName)

End Property

Public Property Get Drive() As String

Drive = mstrDrive

End Property

Public Property Get Path() As String

Path = mstrPath

End Property

Public Property Get Name() As String

Name = mstrName

End Property

Notice that the Drive, Path, and Name properties have no associated Property Let
routines. The reason is that these properties are read-only properties from outside the
class. When the code sets the FullFileName property, it executes the GetDrive, GetPath,
and GetName routines. Each of these routines populates the appropriate Private variables
so that they can be retrieved in the Property Get routines. Listing 14.2 shows the
GetDrive, GetPath, and GetName routines.

LISTING 14.2 The GetDrive, GetPath, and GetName Routines

Private Sub GetDrive(ByVal strFile As String)

‘Everything before the : is the drive

mstrDrive = Left(strFile, _

InStr(strFile, “:”))

End Sub

Private Sub GetPath(ByVal strFile As String)

‘Everything up until the last backslash

‘is the path

mstrPath = _

Mid(strFile, 1, InStrRev(strFile, “\”))

End Sub

Private Sub GetName(strFile)

‘Everything after the last backslash

‘is the name

mstrName = _

Mid(strFile, InStrRev(strFile, “\”) + 1)

End Sub

653

1
4

LISTING 14.1 Continued

Practical Examples: Using Class Modules

The GetDrive routine extracts the characters to the left of the colon, including the colon,
thereby extracting the drive. The GetPath routine locates the last backslash in the file-
name. The string to the left of the last backslash contains the pathname. Finally, the
GetName routine extracts everything to the right of the last backslash.

Note that the GetDrive, GetPath, and GetName routines are private to the Class module.
This means that their code cannot be executed from outside the Class module. The code
shown in Listing 14.3 illustrates how the code within the Class module is used.

LISTING 14.3 Using the FileInformation Class

Private Sub cmdGetFileInfo_Click()

‘Declare a FileInformation object

Dim objFile As FileInformation

‘If the txtFullFileName text box is null,

‘display a message and bail out

If IsNull(Me.txtFullFileName.Value) Then

MsgBox “File Name Must Be Entered”

‘If the filename is entered, instantiate the

‘FileInformation class

Else

Set objFile = New FileInformation

With objFile

‘Set the FullFileName property of the class

‘this causes the Drive, Path, and Name properties

‘to be populated

.FullFileName = Me.txtFullFileName

‘Extract the values of the Drive, Path, and Name

‘properties and display them in text boxes

Me.txtDrive = .Drive

Me.txtPath = .Path

Me.txtName = .Name

End With

End If

End Sub

This code, found in the frmFileInformation form in CHAP14EX, declares a
FileInformation variable. As long as the user has entered a filename, the code instanti-
ates an instance of the FileInformation class. It sets the FullFileName property equal to
the value contained in the txtFullFileName text box. This causes the GetDrive, GetPath,

CHAPTER 14 Exploiting the Power of Class Modules654

and GetName routines to execute, thereby populating the Private variables contained
within the class. The code then retrieves the Drive, Path, and Name property values and
places them in text boxes on the form.

Using a Collection to Manipulate Multiple Instances of the FileInformation Class
The idea of using a collection to manipulate multiple instances of a class was discussed
in the “Working with Custom Collections” section of this chapter. It is illustrated in
Listing 14.4.

LISTING 14.4 Using a Collection to Manipulate Multiple Instances of the FileInformation
Class

Sub FileInfoCollection(strDirName As String)

‘Declare a Collection object

Dim colFiles As Collection

‘Declare a FileInformation object

Dim objFileInfo As FileInformation

Dim strFile As String

Dim vntFile As Variant

‘Instantiate the Collection object

Set colFiles = New Collection

‘Return the first file that meets the file spec

strFile = Dir(strDirName)

‘Loop as long as files meet the file spec

Do Until Len(strFile) = 0

‘Instantiate a FileInformation object

Set objFileInfo = New FileInformation

‘Set its FullFileName property

objFileInfo.FullFileName = strDirName & strFile

‘Add that instance of the FileInformation class

‘to the Collection object

colFiles.Add objFileInfo

‘Find the next file that meets the criteria

strFile = Dir()

Loop

Practical Examples: Using Class Modules 655

1
4

‘Loop through the collection, extracting the Drive,

‘Path, and Name properties

For Each vntFile In colFiles

Debug.Print vntFile.Drive, vntFile.Path, vntFile.Name

Next vntFile

End Sub

The code receives a directory path (including a trailing backslash) as a parameter. It
creates and instantiates a Collection object. It then executes the Dir function, which
retrieves the name of the first file in the specified directory. As long as it finds at least one
file, it executes the code within the Do Until loop. The code creates an instance of the
FileInformation class. The FullFileName property of the instance is then set equal to
the directory name concatenated with the filename. The most important line of code in
the routine is then executed, adding the instance of the FileInformation class to the
collection. This enables the instance to persist. The code calls the Dir function to retrieve
the name of the next file in the specified directory, and the process is repeated until no
additional filenames are located.

After the code adds all the instances of the FileInformation class to the collection, it uses
the For...Each loop to iterate through all items in the collection. It retrieves the Drive,
Path, and Name properties of each item in the collection and prints them to the Debug
window. Notice that the code uses a variant variable to iterate through the elements of
the Collection object.

NOTE

Although this example requires the use of a variant variable, you should use variant
variables only when absolutely necessary (as in this example). This is because variant
variables take up more memory and process more slowly than other variable types
such as String, Int, or Double.

The Data Access Class
Building a data access class greatly facilitates the process of dealing with data, particularly
when the data within a table is accessed from numerous forms or numerous databases. By
encapsulating the data access activities into a Class module, you can better ensure that all
the forms and applications treat the data consistently. Each field within the table becomes
a property of the class. This is illustrated by the private declarations and Property Let
and Property Get routines shown in Listing 14.5.

CHAPTER 14 Exploiting the Power of Class Modules656

LISTING 14.4 Continued

LISTING 14.5 The Private Variables and Property Let and Property Get Routines Used
by the Data Access Class

Private mlngClientID As Long

Private mstrCompanyName As String

Private mstrAddress As String

Private mstrCity As String

Private mconn As ADODB.Connection

Private mrst As ADODB.Recordset

Private mboolAddFlag As Boolean

Public Property Get ClientID() As Long

ClientID = mlngClientID

End Property

Public Property Get CompanyName() As String

CompanyName = mstrCompanyName

End Property

Public Property Let CompanyName(ByVal strCompanyName As String)

mstrCompanyName = strCompanyName

End Property

Public Property Get Address() As String

Address = mstrAddress

End Property

Public Property Let Address(ByVal strAddress As String)

mstrAddress = strAddress

End Property

Public Property Get City() As String

City = mstrCity

End Property

Public Property Let City(ByVal strCity As String)

mstrCity = strCity

End Property

Public Property Get AddFlag() As Boolean

AddFlag = mboolAddFlag

End Property

Public Property Let AddFlag(ByVal boolAddFlag As Boolean)

mboolAddFlag = boolAddFlag

End Property

Practical Examples: Using Class Modules 657

1
4

The Initialize event of the class, shown in Listing 14.6, is responsible for establishing a
connection with the database and opening a recordset based on the data in the tblClients
table. This example uses the ActiveX Data Object (ADO) object library. ADO is covered in
detail in Chapter 15, “What Are ActiveX Data Objects, and Why Are They Important?” For
now, it’s only important to understand the basics. The example sets the LockType of the
recordset to adLockOptimistic and the CursorType of the recordset to adOpenDynamic. The
combination of these two property settings renders the recordset’s data updateable.

LISTING 14.6 The Initialize Event of the Client Class

Private Sub Class_Initialize()
‘Instantiate the Recordset object
Set mrst = New ADODB.Recordset

‘Set the LockType and CursorType of the
‘recordset to render it updateable
mrst.LockType = adLockOptimistic
mrst.CursorType = adOpenDynamic

‘Open a recordset based on the tblClients table,
‘utilizing the connection associated with the current project
mrst.Open “tblClients”, _

CurrentProject.Connection, _
Options:=adCmdTable

‘Call the Scatter routine to populate the controls on the form
‘with the first row from the recordset
Call Scatter

End Sub

After the code opens the recordset, the contents of the first record in the recordset must
be available as properties of the class. This is necessary so that the contents of the first
record can be displayed in the frmClients form. The Scatter method, shown in Listing
14.7, accomplishes this task.

LISTING 14.7 The Scatter Method of the Client Class

Public Sub Scatter()
‘Take the field values from the current row
‘and place them into private variables
With mrst

mlngClientID = !ClientID
mstrCompanyName = !CompanyName
mstrAddress = !Address
mstrCity = !City

End With
End Sub

CHAPTER 14 Exploiting the Power of Class Modules658

The Scatter method simply takes the contents of the fields in the current record (in
this case, the first record) and stores them in Private variables that are accessed by the
Property Get and Property Let routines within the class. The variables are then used
by the Form_Load event of the frmClients form, shown in Listing 14.8.

LISTING 14.8 The Form_Load Routine of the frmClients Form

Private Sub Form_Load()
‘Instantiate the Client Class
Set mobjClients = New Client

‘Grab the values out of the class
‘properties to populate the text boxes
With mobjClients

Me.txtClientID = .ClientID
Me.txtCompanyName = .CompanyName
Me.txtAddress = .Address
Me.txtCity = .City

End With
End Sub

The Form_Load event instantiates the Client class, causing the Initialize event of the
class to execute. The Scatter method of the class executes, and then the code populates
the text boxes on the form with the contents of the ClientID, CompanyName, Address, and
City properties of the class. The frmClient form, populated with data from the first
record in the tblClients table, is shown in Figure 14.3.

After the code displays the first record, the user can opt to move to the next record in
the recordset. Listing 14.9 shows the Click event of the cmdNext command button on
the frmClients form, which calls the MoveNext method of the class and then displays the
contents of the class’s properties.

Listing 14.9 The Click Event of the cmdNext Command Button

Private Sub cmdNext_Click()
With mobjClients

‘Execute the MoveNext method of the class
.MoveNext

‘Populate the text boxes with the
‘property values of the class
Me.txtClientID = .ClientID
Me.txtCompanyName = .CompanyName
Me.txtAddress = .Address
Me.txtCity = .City

End With
End Sub

Practical Examples: Using Class Modules 659

1
4

CHAPTER 14 Exploiting the Power of Class Modules660

FIGURE 14.3 The frmClients form is used to display and manipulate data in the
tblClients table.

The cmdNext Click event calls the MoveNext method of the class. The MoveNext method is
responsible for moving forward from record to record within the class. It uses the module-
level recordset object set in the Initialize event of the class. This method is shown in
Listing 14.10.

LISTING 14.10 The MoveNext Method of the Client Class

Public Sub MoveNext()

With mrst

‘Determine if at end of file

If Not .EOF Then

‘If not at EOF, move next

.MoveNext

‘Evaluate to see if movement

‘caused us to be at EOF

‘If so, move back to the last row

If .EOF Then

.MoveLast

End If

End If

‘Once on the correct row,

‘call Scatter routine to populate the properties

Call Scatter

End With

End Sub

The MoveNext method first tests to see whether the end of the recordset has been reached.
If not, the MoveNext method is used to move to the next record in the recordset. If the
end of the recordset is encountered, the code moves back to the last record. The Scatter
method is called to update the values of the module-level variables. The cmdNext Click

event then retrieves these values via the Property Get routines, to update the data
displayed on the form.

The cmdPrevious Click event of the frmClients form is similar to the cmdNext Click

event. In Listing 14.11, it calls the MovePrevious method of the class and then displays
the contents of the class’s properties.

LISTING 14.11 The Click Event of the cmdPrevious Command Button

Private Sub cmdPrevious_Click()

With mobjClients

‘Execute the MovePrevious method of the class

.MovePrevious

‘Populate the text boxes with the

‘property values of the class

Me.txtClientID = .ClientID

Me.txtCompanyName = .CompanyName

Me.txtAddress = .Address

Me.txtCity = .City

End With

End Sub

The Click event of the cmdPrevious command button first calls the MovePrevious
method of the class. The MovePrevious method of the class is similar to the MoveNext
method. In Listing 14.12, it moves to and displays the previous record in the recordset.

LISTING 14.12 The MovePrevious Method

Public Sub MovePrevious()

With mrst

‘Determine if at Beginning of file

If Not .BOF Then

661

1
4

LISTING 14.10 Continued

Practical Examples: Using Class Modules

‘If not at BOF, move next

.MovePrevious

‘Evaluate to see if movement

‘caused us to be at BOF

‘If so, move back to the first row

If .BOF Then

.MoveFirst

End If

End If

‘Once on the correct row,

‘call Scatter routine to populate the properties

Call Scatter

End With

End Sub

The MovePrevious method first tests to see whether the record pointer is before the first
record in the recordset. If not, the MovePrevious method moves to the previous record in
the recordset. If it encounters the beginning of the recordset, the code moves forward to
the first record. The code calls the Scatter method to update the values of the module-
level variables. These variables are then retrieved by the Property Get routines initiated
by the Click event of the cmdPrevious command button.

The Client class enables the user to edit the data in the underlying recordset. The user
simply enters data into the form’s unbound text boxes. After entering the data, the user
clicks Save. The Click event of the cmdSave command button saves the form’s data to the
underlying recordset, as shown in Listing 14.13.

LISTING 14.13 The Click Event of the cmdSave Command Button

Private Sub cmdSave_Click()

‘Ensure that the txtCompany text box is populated

If IsNull(Me.txtCompanyName.Value) Or _

Len(Me.txtCompanyName.Value) = 0 Then

MsgBox “Company Name Must be Filled In Before Proceeding”

Else

‘If txtCompany text box is populated,

‘populate the properties of the class

‘with values in the text boxes

With mobjClients

.CompanyName = Me.txtCompanyName

CHAPTER 14 Exploiting the Power of Class Modules662

LISTING 14.12 Continued

.Address = Me.txtAddress

.City = Me.txtCity

‘Execute the Save method of the class to write

‘the record to disk

.Save

‘Reset the Add Flag

.AddFlag = False

‘Populate the txtClientId text box with the

‘ClientID assigned by the Add method

Me.txtClientID = .ClientID

End With

End If

End Sub

The code in the Click event of the cmdSave command button first sets all the properties
of the class to the corresponding text box values. It then executes the Save method of the
class (see Listing 14.15).

Before you look at the Save method, it is important to explore the code under the Click
event of the cmdNew command button (see Listing 14.14). It’s very simple: It clears the text
boxes on the form, readying them for the entry of the new data. It then sets the value of
the AddFlag to True.

LISTING 14.14 The Click Event of the cmdNew Command Button

Private Sub cmdNew_Click()

‘Clear the text box values

Me.txtClientID = “”

Me.txtCompanyName = “”

Me.txtAddress = “”

Me.txtCity = “”

‘Set the Add flag

mobjClients.AddFlag = True

End Sub

In the case of either an edit or an add, the code in the Save method of the class actually
writes the data from the new record to disk. This code is shown in Listing 14.15.

663

1
4

LISTING 14.13 Continued

Practical Examples: Using Class Modules

LISTING 14.15 The Save Method of the Class

Public Sub Save()

‘If add flag is true, call AddNew routine

‘otherwise, call Edit routine

If mboolAddFlag Then

Call AddNew

Else

Call Edit

End If

End Sub

The Save method of the class first determines whether the user is adding or editing data.
This is determined by evaluating the mboolAddFlag. The code sets the mboolAddFlag to
True when the user clicks the Add button. When the user is editing, the value of the vari-
able is False. If the user is adding the record, the code executes the private routine called
AddNew, which appears in Listing 14.16.

LISTING 14.16 The AddNew Method of the Class

Private Sub AddNew()

With mrst

‘Add a new row to the recordset,

‘populating it with values from the

‘class properties

.AddNew

!CompanyName = mstrCompanyName

!Address = mstrAddress

!City = mstrCity

.Update

‘Set the ClientID property equal

‘to the ClientID of the inserted row

mlngClientID = !ClientID

End Sub

The AddNew method of the class uses the AddNew method of an ADO recordset to populate
a new record with the values contained in the Private variables. The Update method of
the recordset object writes the new data to disk. When the Update method executes, the
value of the AutoNumber field is assigned and stored in the variable called mlngClientID.
This variable is retrieved in the Click event of cmdSave so that the txtClientID text box
contains the appropriate value.

Whereas the AddNew method of the class adds the record in the recordset, the Edit
method of the class updates the data in an existing record. This method is shown in
Listing 14.17.

CHAPTER 14 Exploiting the Power of Class Modules664

LISTING 14.17 The Edit Method of the Class

Private Sub Edit()

‘Edit the current row, setting the field

‘values equal to the values in the

‘class properties

With mrst

!CompanyName = mstrCompanyName

!Address = mstrAddress

!City = mstrCity

.Update

End With

End Sub

The Edit method uses the Update method of the ADO recordset to take the values in the
module-level variables and write them to disk.

The last data task associated with the cmdClients form provides the user with the capabil-
ity to delete a record from the recordset. The code behind the Click event of the
cmdDelete command button appears in Listing 14.18.

LISTING 14.18 The Click Event of the cmdDelete Command Button

Private Sub cmdDelete_Click()

With mobjClients

‘Execute the Delete method of the class

.Delete

‘Populate the controls on the form with

‘the property values of the class

Me.txtClientID = .ClientID

Me.txtCompanyName = .CompanyName

Me.txtAddress = .Address

Me.txtCity = .City

End With

End Sub

This code executes the Delete method of the class, shown in Listing 14.19. It uses the
Delete method of an ADO recordset to delete the current record from the recordset. After
the deletion, the record pointer is sitting on the deleted record. The MoveNext method of
the class moves the record pointer to the next valid record. The Click event of the
cmdDelete command button then populates the text boxes on the form with the values
of the record that the MoveNext method moved to.

Practical Examples: Using Class Modules 665

1
4

LISTING 14.19 The Delete Method of the Class

Public Sub Delete()

With mrst

‘Delete the current row

.Delete

‘Move off the deleted row

Call MoveNext

End With

End Sub

The SystemInformation Class
The process of obtaining system information, such as the amount of free drive space, is
usually a somewhat tedious and difficult process. This information is generally available
only through the Windows API, covered in Chapter 25, “Exploiting the Power of the
Windows API.” The execution of Windows API functions is best left to more advanced
developers. So how can a junior developer access this important information? If the
senior developer encapsulates the complex functionality of the Windows API calls in a
Class module, the junior developer can obtain the system information as properties of
the class.

The class called SystemInformation is responsible for obtaining information about the
hardware, operating system, and system resources. To obtain this information, the
Declare statements, type structure declarations, and constant declarations are included
in the General Declarations section of the Class module (see Listing 14.20).

LISTING 14.20 The Private Variables and Type Structures Required by the
SystemInformation Class

Private Declare Sub GlobalMemoryStatus _

Lib “Kernel32” (lpBuffer As MEMORYSTATUS)

Private mlngTotalMemory As Long

Private mlngAvailableMemory As Long

Private mstrOSVersion As String

Private msngOSBuild As Single

Private mstrOSPlatform As String

Private mlngProcessor As Long

Private Type MEMORYSTATUS

dwLength As Long

dwMemoryLoad As Long

dwTotalPhys As Long

dwAvailPhys As Long

dwTotalPageFile As Long

dwAvailPageFile As Long

CHAPTER 14 Exploiting the Power of Class Modules666

dwTotalVirtual As Long

dwAvailVirtual As Long

End Type

Private Declare Function GetVersionEx Lib “Kernel32” _

Alias “GetVersionExA” (lpOSInfo As OSVERSIONINFO) As Boolean

Private Type OSVERSIONINFO

dwOSVersionInfoSize As Long

dwMajorVersion As Long

dwMinorVersion As Long

dwBuildNumber As Long

dwPlatformId As Long

strReserved As String * 128

End Type

Private Declare Sub GetSystemInfo Lib “Kernel32” _

(lpSystemInfo As SYSTEM_INFO)

Private Type SYSTEM_INFO

dwOemID As Long

dwPageSize As Long

lpMinimumApplicationAddress As Long

lpMaximumApplicationAddress As Long

dwActiveProcessorMask As Long

dwNumberOrProcessors As Long

dwProcessorType As Long

dwAllocationGranularity As Long

dwReserved As Long

End Type

The SystemInformation class contains six read-only properties: TotalMemory,
AvailableMemory, OSVersion, OSBuild, OSPlatform, and Processor. These properties are
set within the class and cannot be modified from outside the class. The Property Get
functions for the six properties are shown in Listing 14.21.

LISTING 14.21 The Property Get Routines Required by the SystemInformation Class

Public Property Get TotalMemory() As Long

TotalMemory = mlngTotalMemory

End Property

Public Property Get AvailableMemory() As Long

AvailableMemory = mlngAvailableMemory

667

1
4

LISTING 14.20 Continued

Practical Examples: Using Class Modules

End Property

Public Property Get OSVersion() As String

OSVersion = mstrOSVersion

End Property

Public Property Get OSBuild() As Single

OSBuild = msngOSBuild

End Property

Public Property Get OSPlatform() As String

OSPlatform = mstrOSPlatform

End Property

Public Property Get Processor() As Long

Processor = mlngProcessor

End Property

All the work is done in the Initialize event of the class. When the class is instantiated,
the Initialize event executes all the Windows API functions necessary to obtain the
required system information. The Initialize event of the class is shown in Listing 14.22.

LISTING 14.22 The Initialize Event of the SystemInformation Class

Private Sub Class_Initialize()

‘Get Free Memory

Dim MS As MEMORYSTATUS

MS.dwLength = Len(MS)

GlobalMemoryStatus MS

mlngTotalMemory = Format(MS.dwTotalPhys, “Standard”)

mlngAvailableMemory = Format(MS.dwAvailPhys, “Standard”)

‘Get Version Information

Dim OSInfo As OSVERSIONINFO

OSInfo.dwOSVersionInfoSize = Len(OSInfo)

If GetVersionEx(OSInfo) Then

mstrOSVersion = OSInfo.dwMajorVersion & “.” & _

OSInfo.dwMinorVersion

msngOSBuild = OSInfo.dwBuildNumber And &HFFFF&

End If

CHAPTER 14 Exploiting the Power of Class Modules668

LISTING 14.21 Continued

‘Get System Information

Dim SI As SYSTEM_INFO

GetSystemInfo SI

mlngProcessor = SI.dwProcessorType

End Sub

The GlobalMemoryStatus Windows API function populates the TotalMemory and
AvailableMemory properties. The GetVersionEX function is used to set the OSVersion,
OSBuild, and OSPlatform properties. Finally, the GetSystemInfo function populates the
Processor property.

Summary
In this chapter, you learned how to implement your application’s subroutines and func-
tions as methods of Class modules. In doing so, you discovered how complex activities
can be encapsulated into Class modules, greatly simplifying the implementation of their
functionality. After exploring the basics of object orientation and Class modules, you saw
several practical examples of classes in action. They included a file information class, a
data access class, and a system information class. The possible practical application of
classes within the business environment is limited only by your imagination!

669

1
4

LISTING 14.22 Continued

Summary

This page intentionally left blank

IN THIS CHAPTER

. Why This Chapter Is Important

. Examining the ADO Model

. Understanding ADO Recordset
Types

. Working with ADO Recordset
Properties and Methods

. Modifying Table Data Using
ADO Code

. Creating and Modifying
Database Objects Using ADO
Code

. Practical Examples: Applying
These Techniques to Your
Application

CHAPTER 15

What Are ActiveX Data
Objects, and Why Are

They Important?

Why This Chapter Is Important
ActiveX Data Objects (ADO) are used to create, modify, and
remove Jet Engine, Access Database Engine, SQL Server, or
other open database connectivity (ODBC) objects via code.
They give you the flexibility to move beyond the user
interface to manipulate data stored in the Jet Engine,
Access Database Engine, and other formats. Some of the
many tasks that you can perform with ADO include the
following:

. Analyzing the structure of an existing database

. Adding or modifying tables and queries

. Creating new databases

. Changing the underlying definitions for queries by
modifying the SQL on which the query is based

. Traversing through sets of records

. Administrating security

. Modifying table data

Examining the ADO Model
Figure 15.1 shows an overview of the Microsoft ADO
model. Unlike the DAO model, the ADO object model is
not hierarchical.

FIGURE 15.1 The ADO object model.

The Connection Object
The Connection object defines a session for a user for a data source. Although the ADO
object model is not considered to be hierarchical, the Connection object is considered the
highest-level ADO object. After you have established a Connection object, you can use it
with multiple recordsets. This improves performance and greatly simplifies your program-
ming code.

You must declare a Connection object before you use it. The declaration looks like this:

Dim cnn as ADODB.Connection

NOTE

Notice that the declaration specifies ADODB.Connection rather than just Connection.
This process is called disambiguation. The process of disambiguating a reference
ensures that you create the correct type of object. For example, both the ADO and DAO
object libraries have Recordset objects. By disambiguating the reference, you explicitly
designate the type of Recordset object you want to create. If you do not disambiguate
the reference, the object library with priority in Tools, References is assumed.

NOTE

Listing 15.1 and most of the code in this chapter is located in the Chap15Ex.accdb
file included with this book’s CD-ROM.

CHAPTER 15 What Are ActiveX Data Objects, and Why Are They Important?672

After you have declared the Connection object, you must instantiate a new Connection
object. The code looks like this:

Set cnn = New ADODB.Connection

The Connection must then be opened. The Open method of the Connection object receives
a connection string, and optionally a user ID, password, and options as a parameter. The
following is an example of the simplest use of the Open method:

cnn.Open “Provider=Microsoft.ACE.OLEDB.12.0;” & _

“Persist Security Info=False;” & _

“User ID=Admin;” & _

“Data Source=” & CurrentProject.Path & _

“\Chap15Ex.accddb;”

The connection string contains three pieces of information:

. The OLEDB provider that you want to use (in this case, the Access Database Engine)

. Standard ADO connection properties (for example, User ID)

. Provider-specific connection properties

If you want to programmatically manipulate an MDB file (Access 2003 and earlier), you use
the Jet Engine. Your connection string will look like this:

cnn.Open “Provider=Microsoft.Jet.OLEDB.4.0;” & _

“Persist Security Info=False;” & _

“User ID=Admin;” & _

“Data Source=” & CurrentProject.Path & _

“\Chap15Ex.mdb;”

Notice that the example uses the Jet provider and provides a connection string for an
MDB file.

Table 15.1 lists the most commonly used connection string properties used by the Jet and
Access Database Engine OLEDB providers.

TABLE 15.1 Connection String Properties Used by the Jet and Access Database Engine
OLEDB Provider

Property Name Description

ACE.OLEDB:Database Locking Mode Can be set to 0 for page-locking and 1 for row-
locking

ACE.OLEDB:Database Password Used to designate the password for a password-
protected database (database security rather than
user-level security)

ACE.OLEDB:System Database Used to designate the full path and filename to the
system database (when user-level security is used)

Examining the ADO Model 673

1
5

Property Name Description

ACE.OLEDB:Lock Delay Used to indicate the number of milliseconds to wait
before attempting to acquire a lock after the previ-
ous attempt has failed

ACE.OLEDB:Lock Retry Used to designate how many times an attempt to
access a locked page is repeated

The complete routine required to establish a connection appears in Listing 15.1.

LISTING 15.1 Creating a Connection Object

Sub CreateConnection()

‘Declare and instantiate the connection

Dim cnn As ADODB.Connection

Set cnn = New ADODB.Connection

‘Open the connection

cnn.Open “Provider=Microsoft.ACE.OLEDB.12.0;” & _

“Persist Security Info=False;” & _

“User ID=Admin;” & _

“Data Source=” & CurrentProject.Path & _

“\Chap15Ex2.accdb;”

‘Close the connection

cnn.Close

‘Destroy the Connection object

Set cnn = Nothing

End Sub

TIP

All the examples in this chapter first declare a variable using the keyword Dim and
then instantiate it using the keyword Set. You can remove the Set statement by speci-
fying the New keyword in the Dim statement. For example, you could use

Dim rst as New ADODB.Recordset

Although this approach works, it is not considered desirable. The reason is that you
have little control over when the object is placed in memory. For example, if the vari-
able is public, Access places it in memory the moment anything in the module is refer-
enced. Separating the Dim and Set statements allows you to declare the variable
wherever you like and place it in memory when you need to.

CHAPTER 15 What Are ActiveX Data Objects, and Why Are They Important?674

TABLE 15.1 Continued

Creating a connection in a client/server environment is similar to creating a connection
with an Access database. The code appears in Listing 15.2.

LISTING 15.2 Creating a SQL Server Connection Object with SQL Server Security

Sub CreateConnection()

‘Declare and instantiate the connection

Dim cnn As ADODB.Connection

Set cnn = New ADODB.Connection

‘Open the connection

cnn.Open “Provider=SQLOLEDB.1;” & _

“Data Source=(local); Initial Catalog=NorthWind;” & _

“User ID=sa;PWD=”

‘Close the connection

cnn.Close

‘Destroy the connection object

Set cnn = Nothing

End Sub

As you can see, the difference lies in the connection string. This example used SQL Server
security to connect to the database. The example in Listing 15.3 uses NT Integrated Security.

LISTING 15.3 Creating a SQL Server Connection Object with Integrated Security

Sub CreateConnectionIntegrated()

‘Declare and instantiate the connection

Dim cnn As ADODB.Connection

Set cnn = New ADODB.Connection

‘Open the connection

cnn.Open “Provider=SQLOLEDB.1;” & _

“Data Source=(local); Initial Catalog=NorthWind;” & _

“Integrated Security=SSPI”

‘Close the connection

cnn.Close

‘Destroy the connection object

Set cnn = Nothing

End Sub

Notice that this example sets integrated security equal to SSPI. This causes the Access
Database Engine to use NT Integrated Security to connect to the SQL Server database.

Examining the ADO Model 675

1
5

The Recordset Object
A Recordset object is used to look at records as a group. A Recordset object refers to
the set of rows returned from a request for data. As with a Connection object, to use a
Recordset object, you must first declare it. The code looks like this:

Dim rst as ADODB.Recordset

After you have declared the Recordset object, you must instantiate it. The code looks
like this:

Set rst = New ADODB.Recordset

As with a Connection object, you use the Open method to point the Recordset object to a
set of records. The code looks like this:

rst.Open “Select * From tblClients”, CurrentProject.Connection

The first parameter of the Open method is the source of the data. The source can be a table
name, a SQL statement, a stored procedure name, a Command object variable name, or the
filename of a persisted recordset. In the example, the source is a SQL Select statement.

The second parameter of the Open method must be either a valid connection string or
the name of a Connection object. In the example, the Connection property of the
CurrentProject object returns a reference to a copy of the connection associated with
the current project. The reference supplies the connection for the Recordset object. The
completed code appears in Listing 15.4.

LISTING 15.4 Creating a Recordset Using a Connection String

Sub CreateRecordset1()

‘Declare and instantiate the recordset

Dim rst As ADODB.Recordset

Set rst = New ADODB.Recordset

‘Open the recordset

rst.Open “Select * From tblClients”, CurrentProject.Connection

‘Print its contents

Debug.Print rst.GetString

‘Close and destroy the recordset

rst.Close

Set rst = Nothing

End Sub

Notice that after you open the recordset, the code prints the result of the GetString
method of the Recordset object to the Immediate window. The GetString method of the

CHAPTER 15 What Are ActiveX Data Objects, and Why Are They Important?676

Recordset object builds a string based on the data contained in the recordset. For now, this
is a simple way of verifying that your code works as expected. Also note that the code uses
the Close method of the Recordset object to close the recordset. The Close method, when
applied to either a Connection object or to a Recordset object, has the effect of freeing the
associated system resources. The Close method does not eliminate the object from memory.
Setting the Recordset object equal to Nothing eliminates the object from memory.

Although this syntax works quite well, I prefer to set the parameters of the Open method
as properties of the Recordset object, before the Open method is issued. You will see that
this makes your code much more readable as you add parameters to the Open method.
The code appears in Listing 15.5.

LISTING 15.5 Creating a Recordset Using the ActiveConnection Property

Sub CreateRecordset2()

‘Declare and instantiate the recordset

Dim rst As ADODB.Recordset

Set rst = New ADODB.Recordset

‘Set the connection of the recordset to the connection

‘associated with the current project

rst.ActiveConnection = CurrentProject.Connection

‘Open the recordset and print its contents

rst.Open “Select * From tblClients”

Debug.Print rst.GetString

‘Close and destroy the recordset object

rst.Close

Set rst = Nothing

End Sub

Finally, you can use a Connection object, rather than a copy of the Connection object
associated with the CurrentProject object, to provide a connection for the recordset. In
fact, you can use the same Connection object for multiple recordsets. The code appears in
Listing 15.6.

LISTING 15.6 Creating a Recordset Using a Connection Object

Sub CreateRecordset3()

‘Declare and instantiate one Connection object

‘and two Recordset objects

Dim cnn As ADODB.Connection

Dim rst1 As ADODB.Recordset

Dim rst2 As ADODB.Recordset

Examining the ADO Model 677

1
5

Set cnn = New ADODB.Connection

Set rst1 = New ADODB.Recordset

Set rst2 = New ADODB.Recordset

‘Point the Connection object

‘to the connection associated with the CurrentProject object

Set cnn = CurrentProject.Connection

‘Utilize the connection just opened as the connection for

‘two different recordsets

rst1.ActiveConnection = cnn

rst1.Open “Select * From tblClients”

rst2.ActiveConnection = cnn

rst2.Open “Select * From tblPayments”

‘Retrieve data out of the recordsets

Debug.Print rst1.GetString

Debug.Print rst2.GetString

‘Close the recordsets and the connection and destroy the objects

rst1.Close

rst2.Close

cnn.Close

Set rst1 = Nothing

Set rst2 = Nothing

Set cnn = Nothing

End Sub

Notice that both rst1 and rst2 use the same Connection object.

The Command Object
The ADO Command object represents a query, SQL statement, or stored procedure that is
executed against a data source. Although not always necessary, a Command object is particu-
larly useful when executing parameterized queries and stored procedures. Just as with the
Connection object and the Recordset object, you must declare a Command object before
you use it:

Dim cmd as ADODB.Command

Next, you must instantiate the Command object:

Set cmd = New ADODB.Command

CHAPTER 15 What Are ActiveX Data Objects, and Why Are They Important?678

LISTING 15.6 Continued

After you instantiate the Command object, you must set its ActiveConnection property and
its CommandText property. As with a Recordset object, the ActiveConnection property can
be either a connection string or a reference to a Connection object. The CommandText
property is the SQL statement or stored procedure used by the Command object. The
ActiveConnection and the CommandText properties look like this:

cmd.ActiveConnection = CurrentProject.Connection

cmd.CommandText = “tblClients”

The completed code appears in Listing 15.7.

LISTING 15.7 Using a Command Object

Sub CommandObject()

‘Declare a Recordset and a Command object

Dim rst As ADODB.Recordset

Dim cmd As ADODB.Command

‘Instantiate the Command object

Set cmd = New ADODB.Command

‘Designate where the data comes from

cmd.CommandText = “Select * from tblClients”

‘Establish the connection information

cmd.ActiveConnection = CurrentProject.Connection

‘Use the Execute method to return a result set

‘into the recordset object

Set rst = cmd.Execute

‘Display the resulting data

Debug.Print rst.GetString

‘Close the recordset and destroy the objects

rst.Close

Set cmd = Nothing

End Sub

This example instantiates the Command object. It sets the CommandText property to a SQL
Select statement and points the ActiveConnection property to the connection associated
with the current database. It uses the Execute method of the Command object to return the
results of the SQL statement into the Recordset object.

Examining the ADO Model 679

1
5

Understanding ADO Recordset Types
Three parameters of the Open method of a Recordset object affect the type of recordset
that is created. They are the CursorType, the LockType, and the Options parameters. These
parameters combine to determine the types of movements that you can execute within a
recordset, when changes that other users make to data underlying the recordset will be
seen, and whether the recordset’s data can be updated.

The CursorType Parameter
By default, when you open a recordset, the CursorType parameter is set to
adOpenForwardOnly. This means that you can only move forward through the records
in the recordset. You will not see additions, edits, or deletions that other users make.
Furthermore, many properties and methods, such as the RecordCount property and the
MovePrevious method, are unavailable. Listing 15.8 illustrates this.

LISTING 15.8 The RecordCount Property Is Not Supported with a Forward-Only Recordset

Sub ForwardOnlyRecordset()

‘Declare and instantiate a Recordset object

Dim rst As ADODB.Recordset

Set rst = New ADODB.Recordset

‘Establish a connection and open a forward-only recordset

rst.ActiveConnection = CurrentProject.Connection

rst.Open “Select * from tblClients”

‘Attempt to retrieve the record count

Debug.Print rst.RecordCount

‘Close and destroy the recordset*

rst.Close

Set rst = Nothing

End Sub

The value -1 displays in the Immediate window because the forward-only recordset does
not support the RecordCount property. Because you did not explicitly designate the cursor
type, a forward-only recordset was created.

Three other values are available for the CursorType. They are adOpenStatic,
adOpenKeyset, and adOpenDynamic. The adOpenStatic option allows forward and back-
ward movement through the records in the recordset, but changes that other users make
to the underlying data are not seen by the recordset. The adOpenKeyset option offers
everything from the adOpenStatic option, but in addition, edits that other users make are

CHAPTER 15 What Are ActiveX Data Objects, and Why Are They Important?680

seen by the recordset. Finally, with the adOpenDynamic option, additions, edits, and dele-
tions made by other users are seen by the recordset. Table 15.2 illustrates each of these
options in further detail.

TABLE 15.2 Valid Choices for the CursorType Parameter

Value Description

adOpenForwardOnly Copies a set of records as the recordset is created. Therefore, it
doesn’t show changes made by other users. This is the fastest type
of cursor but allows only forward movement through the recordset.

adOpenStatic Copies a set of records as the recordset is created. Supports book-
marks and allows forward and backward movement through the
recordset. Doesn’t show changes made by other users. This is the
only type of recordset allowed when using client-side cursors.

adOpenKeyset Provides a set of pointers back to the original data. Supports book-
marks. Shows changes made by other users. Does not show new
records and provides no access to deleted rows.

adOpenDynamic Provides access to a set of records. Shows all changes, including
additions and deletions, made by other users.

You can set the CursorType property of the recordset in one of two ways. You can set it as
a parameter of the Open method or as a property of the Recordset object. Listing 15.9
illustrates the first method.

LISTING 15.9 Supplying the CursorType as a Parameter of the Open Method

Sub StaticRecordset1()

‘Declare and instantiate a Recordset object

Dim rst As ADODB.Recordset

Set rst = New ADODB.Recordset

‘Establish a connection and open a static recordset

rst.ActiveConnection = CurrentProject.Connection

rst.Open “Select * from tblClients”, _

CursorType:=adOpenStatic

‘Retrieve the record count

Debug.Print rst.RecordCount

rst.Close

Set rst = Nothing

End Sub

Notice that, in Listing 15.9, the CursorType appears as a parameter of the Open method.
Contrast Listing 15.9 with Listing 15.10.

Understanding ADO Recordset Types 681

1
5

LISTING 15.10 Supplying the CursorType as a Property of the Recordset Object

Sub StaticRecordset2()

‘Declare and instantiate a Recordset object

Dim rst As ADODB.Recordset

Set rst = New ADODB.Recordset

‘Set the ActiveConnection and CursorType properties

‘of the recordset

rst.ActiveConnection = CurrentProject.Connection

rst.CursorType = adOpenStatic

‘Open the recordset

rst.Open “Select * from tblClients”

‘Retrieve the record count

Debug.Print rst.RecordCount

rst.Close

Set rst = Nothing

End Sub

In Listing 15.10, the CursorType is set as a property of the Recordset object, prior to the
execution of the Open method. Separating the properties from the Open method improves
the readability of the code.

The LockType Parameter
Although the CursorType property of a Recordset object determines how movements can
occur within the recordset and whether other users’ changes are seen, the CursorType in
no way affects the updateability of the recordset’s data. In fact, when you open a record-
set, you open it as read-only by default. It is only by changing the LockType property that
you can make the recordset updateable.

The options for lock type are adLockReadOnly, adLockPessimistic, adLockOptimistic,
and adLockBatchOptimistic. The default, adLockReadOnly, does not allow changes to the
recordset. The other options all provide updateability for the recordset’s data. The differ-
ence is when the records are locked. With the adLockPessimistic option, locking occurs as
soon as the editing process begins. With the adLockOptimistic option, the record is locked
when you issue the Update method. Finally, with the adLockBatchOptimistic option, you
can postpone locking until you update a batch of records. All these options are discussed
in extensive detail in Alison Balter’s Mastering Access 2002 Enterprise Development.

As with the CursorType property, you can set the LockType property as a parameter of the
Open method or as a property of the Recordset object. Listing 15.11 shows the configura-
tion of the lock type as a property of the Recordset object.

CHAPTER 15 What Are ActiveX Data Objects, and Why Are They Important?682

LISTING 15.11 Configuration of LockType as a Property of the Recordset Object

Sub OptimisticRecordset()

‘Declare and instantiate a Recordset object

Dim rst As ADODB.Recordset

Set rst = New ADODB.Recordset

‘Set the ActiveConnection, CursorType, and

‘LockType properties of the recordset

rst.ActiveConnection = CurrentProject.Connection

rst.CursorType = adOpenStatic

rst.LockType = adLockOptimistic

‘Open the recordset

rst.Open “Select * from tblClients”

‘Modify the contents of the city field

rst(“City”) = “Westlake Village”

rst.Update

Debug.Print rst(“City”)

rst.Close

Set rst = Nothing

End Sub

In Listing 15.11, the LockType property is set to adLockOptimistic. The record is locked
when the Update method of the Recordset object is issued.

NOTE

Listing 15.11 references the field name in the format rst(“City”). You can use any
one of four syntactical constructs to reference a member of a collection. They include
the following:

Collection(“Name”)

Collection(VariableName)

Collection!Name

Collection(Ordinal)

You might wonder which is best. Although all are valid, I most prefer the
Collection(“Name”) and Collection(VariableName) methods. I like the fact that
the syntax is the same whether you are supplying a string or a variable. Furthermore,
the same syntax works with Active Server Pages (ASP). The bang (!) does not work with
ADO .NET, and you cannot rely on the ordinal position because it changes based on the
order of the fields in a select, for other reasons as well. One of the only instances when
you must use a bang is when you are supplying a parameter for a query. Besides that, I
use the Collection(“Name”) syntax in the ADO code that I write.

Understanding ADO Recordset Types 683

1
5

The Options Parameter
The Options parameter determines how the provider should evaluate the source argu-
ment. The valid choices are illustrated in Table 15.3.

TABLE 15.3 Valid Choices for the Options Parameter

Value Description

adCmdText The provider evaluates the source as a command.
adCmdTable A SQL query is generated to return all rows from the table

named in the source.
adCmdTableDirect The provider returns all rows in the table named in the

source.
adCmdStoredProc The provider evaluates the source as a stored procedure.
adCmdUnknown The type of command in the source is unknown.
adCmdFile The source is evaluated as a persisted recordset.
adAsyncExecute The source is executed asynchronously.
adAsyncFetch The initial quantity specified in the Initial Fetch Size

property is fetched.
adAsyncFetchNonBlocking The main thread never blocks when fetching.

The default for the Options parameter is adCmdUnknown. If you do not explicitly specify
the Options parameter, the provider attempts to evaluate it while the code is running,
which degrades performance. It is therefore important to specify the parameter. Listing
15.12 illustrates the use of the Options parameter of the Open method.

LISTING 15.12 The Options Parameter of the Open Method

Sub OptionsParameter()

‘Declare and instantiate a Recordset object

Dim rst As ADODB.Recordset

Set rst = New ADODB.Recordset

‘Set the ActiveConnection, CursorType, and

‘LockType properties of the recordset

rst.ActiveConnection = CurrentProject.Connection

rst.CursorType = adOpenStatic

rst.LockType = adLockOptimistic

‘Open the recordset, designating that the source

‘is a command

rst.Open “Select * from tblClients”, _

Options:=adCmdText

‘Modify the contents of the city field

rst(“City”) = “Westlake Village”

CHAPTER 15 What Are ActiveX Data Objects, and Why Are They Important?684

rst.Update

Debug.Print rst(“City”)

rst.Close

Set rst = Nothing

End Sub

In Listing 15.12, the Options parameter is set to adCmdText. This causes the source to be
evaluated as a SQL command.

Consistent Versus Inconsistent Updates
When a recordset is based on data from more than one table, the Access Database Engine
automatically allows you to make changes to the foreign key field. For example, if a
recordset is based on data from the Customers table and the Orders table, you are able to
make changes to the CustomerID in the Orders table. This is referred to as a consistent
update. At times, you might want to make changes to the primary key field. This could
result in a violation of referential integrity and is therefore referred to as an inconsistent
update.

If you’ve established referential integrity and have designated that you want to cascade
updates, consistent and inconsistent updates yield the same results. On the other hand,
without cascade updates activated, a change to the primary key field causes referential
integrity to be violated.

Listing 15.13 shows you how to open a recordset with inconsistent updates.

LISTING 15.13 Opening a Recordset with Inconsistent Updates

Sub InconsistentUpdates()

‘Declare and instantiate a Recordset object

Dim rst As ADODB.Recordset

Set rst = New ADODB.Recordset

‘Set the ActiveConnection, CursorType, and

‘LockType properties of the recordset

rst.ActiveConnection = CurrentProject.Connection

rst.CursorType = adOpenStatic

rst.LockType = adLockOptimistic

‘Open the recordset, designating that the source

‘is a SQL statement based on more than one table

rst.Properties(“Jet OLEDB:Inconsistent”) = True

Understanding ADO Recordset Types 685

1
5

LISTING 15.12 Continued

rst.Open Source:=”Select * from tblClients “ & _

“INNER JOIN tblProjects “ & _

“ON tblClients.ClientID = tblProjects.ClientID”, _

Options:=adCmdText

‘Modify the contents of the foreign key field

rst(“tblProjects.ClientID”) = 1

rst.Update

Debug.Print rst(“tblProjects.ClientID”)

rst.Close

Set rst = Nothing

End Sub

Notice that this code sets the Jet OLEDB:Inconsistent property prior to the Open method
of the recordset. This causes the recordset to be opened so that you can use inconsistent
updates if you want.

NOTE

Very few providers support inconsistent updates. In fact, the Jet Provider and Access
Database Engine Provider are two of the few providers that support this feature.

Selecting a Cursor Location
A cursor refers to the set of rows or row pointers that are returned when you open a
recordset. With DAO, the location of the cursor was not an issue. On the other hand,
ADO supports two cursor locations. As its name implies, the client manages a client-side
cursor. The server manages a server-side cursor.

If you are using the Jet Engine or the Access Database Engine, the client machine always
manages the cursor because the Jet Engine and the Access Database Engine run only on
the client machine. You might think this means that you should always designate a
client-side cursor when working with the Jet Engine and the Access Database Engine.
Actually, the opposite is true. If you designate a client-side cursor when working with the
Jet Engine or the Access Database Engine, the data is cached twice on the client machine.
When a client-side cursor is specified, the Microsoft Cursor Service for OLEDB requests all
the data from the OLEDB provider and then caches it and presents it to the application as
a static recordset. For this reason, when working with the Jet Engine or the Access
Database Engine, you should designate a client-side cursor only when you want to take
advantage of functionality provided only by a client-side cursor.

Listing 15.14 illustrates how to designate the cursor location.

CHAPTER 15 What Are ActiveX Data Objects, and Why Are They Important?686

LISTING 15.13 Continued

LISTING 15.14 Designating the Cursor Location

Sub CursorLocation()

‘Declare and instantiate a Recordset object

Dim rst As ADODB.Recordset

Set rst = New ADODB.Recordset

‘Set the ActiveConnection, CursorType,

‘LockType, and CursorLocation properties of the recordset

rst.ActiveConnection = CurrentProject.Connection

rst.CursorType = adOpenStatic

rst.LockType = adLockOptimistic

rst.CursorLocation = adUseServer

‘Open the recordset, designating that the source

‘is a SQL statement

rst.Open Source:=”Select * from tblClients “, _

Options:=adCmdText

‘Modify the contents of the city field

rst(“City”) = “New City”

rst.Update

Debug.Print rst(“City”)

rst.Close

Set rst = Nothing

End Sub

This example designates a server-side cursor.

Working with the Supports Method
Depending on which CursorType, LockType, CursorLocation, and Provider are used to
open a recordset, the functionality of the recordset varies. The Supports method of a
recordset determines which features a particular recordset supports. It returns a Boolean
value designating whether the selected feature is supported. Listing 15.15 provides an
example.

LISTING 15.15 The Supports Method of the Recordset Object

Sub SupportsMethod()

‘Declare and instantiate a Recordset object

Dim rst As ADODB.Recordset

Set rst = New ADODB.Recordset

Understanding ADO Recordset Types 687

1
5

‘Set the ActiveConnection, CursorType,

‘LockType, and CursorLocation properties of the recordset

rst.ActiveConnection = CurrentProject.Connection

rst.CursorType = adOpenStatic

rst.LockType = adLockOptimistic

rst.CursorLocation = adUseServer

‘Open the recordset, designating that the source

‘is a SQL statement

rst.Open Source:=”Select * from tblClients “, _

Options:=adCmdText

‘Determine whether the recordset supports certain features

Debug.Print “Bookmark “ & rst.Supports(adBookmark)

Debug.Print “Update Batch “ & rst.Supports(adUpdateBatch)

Debug.Print “Move Previous “ & rst.Supports(adMovePrevious)

Debug.Print “Seek “ & rst.Supports(adSeek)

rst.Close

Set rst = Nothing

End Sub

Working with ADO Recordset Properties
and Methods
The ADO Recordset object is rich with properties and methods. These properties and
methods allow you to move through a recordset; sort, filter, and find data; as well as
update data contained with the recordset. The sections that follow cover the most
commonly used properties and methods.

Examining Record-Movement Methods
When you have a Recordset object variable set, you probably want to manipulate the
data in the recordset. Table 15.4 shows several methods you can use to traverse through
the records in a recordset.

TABLE 15.4 Methods for Moving Through the Records in a Recordset

Method Moves

MoveFirst To the first record in a recordset
MoveLast To the last record in a recordset
MovePrevious To the previous record in a recordset
MoveNext To the next record in a recordset

CHAPTER 15 What Are ActiveX Data Objects, and Why Are They Important?688

LISTING 15.15 Continued

Listing 15.16 shows an example of using the record-movement methods on a Recordset
object.

LISTING 15.16 Using the RecordsetMovements() Methods on a Recordset Object

Sub RecordsetMovements()

Dim rst As ADODB.Recordset

Set rst = New ADODB.Recordset

‘Establish the connection and cursor type and open

‘the recordset

rst.ActiveConnection = CurrentProject.Connection

rst.CursorType = adOpenStatic

rst.Open “Select * from tblProjects”

‘Print the ProjectID of the first row

Debug.Print rst(“ProjectID”)

‘Move to the next row and print the ProjectID

rst.MoveNext

Debug.Print rst(“ProjectID”)

‘Move to the last row and print the ProjectID

rst.MoveLast

Debug.Print rst(“ProjectID”)

‘Move to the previous row and print the ProjectID

rst.MovePrevious

Debug.Print rst(“ProjectID”)

‘Move to the first row and print the ProjectID

rst.MoveFirst

Debug.Print rst(“ProjectID”)

rst.Close

Set rst = Nothing

End Sub

This code opens a recordset based on the tblProjects table. When the recordset is open,
the ProjectID of the first record is printed to the Immediate window. The MoveNext
method of the Recordset object is used to move to the next record in the recordset. The
ProjectID of the record is printed. The MoveLast method of the Recordset object is used
to move to the last record in the recordset. Once again, the ProjectID is printed. The
MovePrevious method moves the record pointer back one record, and the ProjectID is

Working with ADO Recordset Properties and Methods 689

1
5

printed again. Finally, the MoveFirst method moves the record pointer to the first record,
and the ProjectID is printed. The code closes the recordset and destroys the Recordset
object.

Detecting the Limits of a Recordset
Before you begin to traverse through recordsets, you must understand two recordset prop-
erties: BOF and EOF. The names of these properties are outdated acronyms that stand for
beginning of file and end of file, respectively. They determine whether you have reached the
limits of your recordset. The BOF property is True when the record pointer is before the
first record, and the EOF property is True when the record pointer is after the last record.

You commonly will use the EOF property when moving forward through your recordset
with the MoveNext method. This property becomes True when your most recent MoveNext
has moved you beyond the bounds of the recordset. Similarly, BOF is most useful when
using the MovePrevious method.

You must keep in mind some important characteristics of the BOF and EOF properties:

. If a recordset contains no records, both the BOF and EOF properties evaluate to True.

. When you open a recordset containing at least one record, the BOF and EOF proper-
ties are set to False.

. If the record pointer is on the first record in the recordset and you issue the
MovePrevious method, the BOF property is set to True. If you attempt to use
MovePrevious again, a runtime error occurs.

. If the record pointer is on the last record in the recordset and you issue the
MoveNext method, the EOF property is set to True. If you attempt to use MoveNext
again, a runtime error occurs.

. When the BOF and EOF properties are set to True, they remain True until you move
to a valid record.

. When the only record in a recordset is deleted, the BOF and EOF properties remain
False until you attempt to move to another record.

Listing 15.17 shows an example of using the EOF property to determine the bounds of a
recordset.

LISTING 15.17 Using the EOF Property to Determine the Bounds of a Recordset

Sub DetermineLimits()

‘Declare and instantiate a Recordset object

Dim rst As ADODB.Recordset

Set rst = New ADODB.Recordset

‘Establish the connection and cursor type and open

‘the recordset

CHAPTER 15 What Are ActiveX Data Objects, and Why Are They Important?690

rst.ActiveConnection = CurrentProject.Connection

rst.CursorType = adOpenStatic

rst.Open “Select * from tblProjects”

‘Loop through the recordset, printing the

‘ClientID of each row

Do Until rst.EOF

Debug.Print rst(“ClientID”)

rst.MoveNext

Loop

rst.Close

End Sub

In Listing 15.17, a recordset is opened based on tblProjects. The EOF property is evalu-
ated. As long as the EOF property equals False, the code prints the contents of the
ClientID field and advances the record pointer to the next record in the recordset.

Counting the Number of Records in a Recordset
The RecordCount property returns the number of rows in the recordset. Not all types of
recordsets and providers support the RecordCount property. If the RecordCount property is
not supported, no error occurs. Instead, the RecordCount is -1. Listing 15.18 provides an
example.

LISTING 15.18 A Recordset That Does Not Support the RecordCount Property

Sub CountRecordsBad()

‘Declare and instantiate a recordset

Dim rst As ADODB.Recordset

Set rst = New ADODB.Recordset

‘Establish the connection and open a

‘forward-only cursor

rst.ActiveConnection = CurrentProject.Connection

rst.Open “Select * from tblProjects”

‘Print the RecordCount property

Debug.Print rst.RecordCount ‘Prints -1

rst.Close

Set rst = Nothing

End Sub

Working with ADO Recordset Properties and Methods 691

1
5

LISTING 15.17 Continued

Because the default CursorType is adOpenForwardOnly, and a forward-only cursor does not
support the RecordCount property, -1 prints to the Immediate window. Listing 15.19 recti-
fies this problem.

LISTING 15.19 A Recordset That Supports the RecordCount Property

Sub CountRecordsGood()
‘Declare and instantiate a recordset
Dim rst As ADODB.Recordset
Set rst = New ADODB.Recordset

‘Establish the connection and cursor type and open
‘the recordset
rst.ActiveConnection = CurrentProject.Connection
rst.CursorType = adOpenStatic
rst.Open “Select * from tblProjects”

‘Print the RecordCount property
Debug.Print rst.RecordCount ‘Prints Record count

rst.Close
Set rst = Nothing

End Sub

Notice that the CursorType is set to adOpenStatic. Because the RecordCount property is
supported with static cursors, the correct number of records is printed to the Immediate
window.

NOTE

If you are accustomed to the DAO RecordCount property, you might be surprised by
the ADO RecordCount property. The DAO RecordCount returns only the number of
visited records in the recordset. This means that, in using DAO, you must move to the
last record in the recordset to obtain an accurate record count. Although this step is
unnecessary when using ADO, it is important to note that attempting to retrieve the
RecordCount property might result in severe performance degradation. Whether
obtaining the RecordCount degrades performance depends on the particular database
provider.

One of the important uses of the RecordCount property is to determine whether a record-
set contains any rows. Listing 15.20 illustrates this important use of the RecordCount
property.

LISTING 15.20 Checking to See Whether Records Are Returned in a Recordset

Sub CheckARecordset()

‘Declare and instantiate the recordset

Dim rst As ADODB.Recordset

CHAPTER 15 What Are ActiveX Data Objects, and Why Are They Important?692

Set rst = New ADODB.Recordset

‘Establish the connection and cursor type and open

‘the recordset

rst.ActiveConnection = CurrentProject.Connection

rst.CursorType = adOpenStatic

rst.Open “Select * from tblEmpty”

‘Call a routine to determine if the recordset contains

‘any records

If Not AreThereRecords(rst) Then

MsgBox “Recordset Empty...Unable to Proceed”

End If

rst.Close

Set rst = Nothing

End Sub

Function AreThereRecords(rstAny As ADODB.Recordset) As Boolean

‘Return whether or not there are any rows

AreThereRecords = rstAny.RecordCount

End Function

The CheckARecordset routine opens a recordset based on a table called tblEmpty, which
contains no data. The CheckARecordset routine calls the AreThereRecords function,
passing a reference to the recordset. The AreThereRecords function evaluates the
RecordCount property of the recordset that it is passed. It returns False if the RecordCount
is zero and True if the RecordCount is nonzero.

Sorting, Filtering, and Finding Records
Sometimes you need to sort, filter, or find data within an existing recordset. The Sort
property, Filter property, and Find method of the Recordset object allow you to accom-
plish these tasks. The sections that follow cover these properties and this method.

Sorting a Recordset
The Sort property of the Recordset object allows you to sort data in an existing recordset.
Listing 15.21 illustrates its use.

LISTING 15.21 The Sort Property of the Recordset Object

Sub SortRecordset()

Dim intCounter As Integer

‘Declare and instantiate a recordset

Working with ADO Recordset Properties and Methods 693

1
5

LISTING 15.20 Continued

Dim rst As ADODB.Recordset

Set rst = New ADODB.Recordset

‘Establish the connection and cursor location and open

‘the recordset

rst.ActiveConnection = CurrentProject.Connection

rst.CursorLocation = adUseClient

rst.Open “Select * from tblTimeCardHours”

‘Loop through the recordset, printing

‘the contents of the DateWorked field

Debug.Print “NOT Sorted!!!”

Do Until rst.EOF

Debug.Print rst(“DateWorked”)

rst.MoveNext

Loop

‘Sort the recordset and then loop through

‘it, printing the contents of the DateWorked field

Debug.Print “Now Sorted!!!”

rst.Sort = “[DateWorked]”

Do Until rst.EOF

Debug.Print rst(“DateWorked”)

rst.MoveNext

Loop

rst.Close

Set rst = Nothing

End Sub

This code begins by opening a recordset based on the tblTimeCardHours table. The code
prints the records in the recordset in their “natural” order. Next, the Sort property of the
Recordset object sorts the data by the DateWorked field. Notice that the Sort property is
set equal to a field. If you want to sort by more than one field, you must separate the field
names with commas. When the records are once again printed, they appear in order by
the DateWorked field.

NOTE

If you want to sort in descending order, the field name must be followed by a space
and then the keyword DESC.

CHAPTER 15 What Are ActiveX Data Objects, and Why Are They Important?694

LISTING 15.21 Continued

Filtering a Recordset
Sometimes you might want to select a subset of the data returned in a recordset. The
Filter property helps you to accomplish this task. Its use is illustrated in Listing 15.22.

LISTING 15.22 The Filter Property of the Recordset Object

Sub FilterRecordset()

‘Declare and instantiate a recordset

Dim rst As ADODB.Recordset

Set rst = New ADODB.Recordset

‘Establish the connection, cursor type,

‘and lock type, and open the recordset

rst.ActiveConnection = CurrentProject.Connection

rst.CursorType = adOpenKeyset

rst.LockType = adLockOptimistic

rst.Open “Select * from tblTimeCardHours”

‘Loop through the recordset, printing the contents of

‘the DateWorked field

Debug.Print “Without Filter”

Do Until rst.EOF

Debug.Print rst(“DateWorked”)

rst.MoveNext

Loop

‘Filter the recordset and then loop through it, printing the

‘contents of the DateWorked field

rst.Filter = “DateWorked >= #1/1/2007# and DateWorked <= #1/5/2007#”

Debug.Print “With Filter”

Do Until rst.EOF

Debug.Print rst(“DateWorked”)

rst.MoveNext

Loop

rst.Close

Set rst = Nothing

End Sub

This example opens a recordset based on tblTimeCardHours. The code prints the records
without a filter applied. The Filter property is then set to limit the data to only those
records with a DateWorked value between 1/1/2007 and 1/5/2007. The code prints the
records in the recordset again.

Working with ADO Recordset Properties and Methods 695

1
5

NOTE

It is inefficient to build a large recordset and to then filter only those records that you
need. If you know that you need only records meeting specific criteria, you should build
a recordset using those criteria. The difference in performance can be profound, partic-
ularly when dealing with client/server data. In summary, you should use the Filter
property only when you are initially dealing with a larger set of records and then need
to perform an operation on a subset of the records.

TIP

To return to the complete recordset after a filter has been applied, set the Filter
property to a zero-length string (“”) or to the vbNullString constant.

Finding a Specific Record in a Recordset
The Find method allows you to locate a particular record in the recordset. It is different
from the Filter property in that all records in the recordset remain available. Listing
15.23 illustrates the use of the Find method.

LISTING 15.23 The Find Method of a Recordset Object

Sub FindProject(lngValue As Long)

Dim strSQL As String

‘Declare and instantiate a recordset

Dim rst As ADODB.Recordset

Set rst = New ADODB.Recordset

‘Establish the connection and cursor type,

‘and open the recordset

rst.ActiveConnection = CurrentProject.Connection

rst.CursorType = adOpenStatic

rst.Open “Select * from tblProjects”

‘Attempt to find a specific project

strSQL = “[ProjectID] = “ & lngValue

rst.Find strSQL

‘Determine if the specified project was found

If rst.EOF Then

MsgBox lngValue & “ Not Found”

Else

MsgBox lngValue & “ Found”

End If

CHAPTER 15 What Are ActiveX Data Objects, and Why Are They Important?696

rst.Close

Set rst = Nothing

End Sub

TIP

Because the FindProject routine is found in more than one module, the routine must
be executed as follows:

Call basADORecordsets.FindProject(1)

Preceding the name of the routine with the name of the module removes the ambiguity
as to which FindProject routine to execute.

Listing 15.23 opens a recordset based on all the records in the tblProjects table. The
Find method is used to locate the first record where the ProjectID is equal to a specific
value. If the record is not found, the EOF property of the Recordset object is True.

NOTE

Unlike its DAO counterpart, ADO does not support the FindFirst, FindNext,
FindPrevious, and FindLast methods. The default use of the Find method locates
the next record that meets the specified criteria. This means that, if the record pointer
is not at the top of the recordset, records meeting the specified criteria might not be
located. The SkipRows, SearchDirection, and Start parameters of the Find method
modify this default behavior. The SkipRows parameter allows you to specify the offset
from the current row where the search begins. The SearchDirection parameter
allows you to designate whether you want the search to proceed forward or backward
from the current row. Finally, the Start parameter determines the starting position for
the search.

Working with Variables in Strings
When using the Find method or when building a SQL statement in code, you must be
cognizant of the delimiters to use. No delimiters are necessary when working with
numeric values. For example:

Select * FROM tblClients WHERE ClientID = 1

You must use a pound symbol (#) when delimiting dates for Microsoft Access, like this:

Select * FROM tblClients WHERE IntroDate = #12/31/2007#

CAUTION

If your back-end database is Microsoft SQL Server, you must use an apostrophe to
delimit dates.

Working with ADO Recordset Properties and Methods 697

1
5

LISTING 15.23 Continued

The process of delimiting strings is somewhat more difficult than it initially seems. The
basic process is to surround the string with apostrophes:

Select * FROM tblClients WHERE City = ‘Oak Park’

This approach works unless there is an apostrophe in the string. Listing 15.24 provides
the solution.

LISTING 15.24 Handling Apostrophes Within Strings

Sub DelimitString()

Dim strCompanyName As String

‘Declare and instantiate a Recordset object

Dim rst As ADODB.Recordset

Set rst = New ADODB.Recordset

‘Ask for the company to locate

strCompanyName = InputBox(“Please Enter a Company”)

‘Set the ActiveConnection, CursorType,

‘LockType, and CursorLocation properties of the recordset

rst.ActiveConnection = CurrentProject.Connection

rst.CursorType = adOpenStatic

rst.LockType = adLockOptimistic

rst.CursorLocation = adUseServer

‘Open the recordset, designating that the source

‘is a SQL statement

rst.Open Source:=”Select * from tblClients “ & _

“WHERE CompanyName = “ & ReplaceApostrophe(strCompanyName), _

Options:=adCmdText

‘Display a message as to whether the selected company

‘was found

If rst.EOF Then

MsgBox strCompanyName & “ NOT Found!”

Else

MsgBox rst(“ClientID”)

End If

rst.Close

Set rst = Nothing

End Sub

Public Function ReplaceApostrophe(strCompanyName As String) As String

CHAPTER 15 What Are ActiveX Data Objects, and Why Are They Important?698

‘Surround text with apostrophes and replace any

‘apostrophes in the string with two apostrophes

ReplaceApostrophe = “‘“ & _

Replace(strCompanyName, “‘“, “‘’”) & “‘“

End Function

This code passes the string to a user-defined function called ReplaceApostrophe, which
surrounds the string with apostrophes. If any apostrophes are found within the string,
they are replaced with two apostrophes.

Using the AbsolutePosition Property
The AbsolutePosition property of the Recordset object sets or returns the ordinal posi-
tion of the current row in the recordset. Its use is illustrated in Listing 15.25.

LISTING 15.25 The AbsolutePosition Property of a Recordset Object

Sub FindPosition(lngValue As Long)

Dim strSQL As String

‘Declare and instantiate a recordset

Dim rst As ADODB.Recordset

Set rst = New ADODB.Recordset

‘Establish the connection and cursor type,

‘and open the recordset

rst.ActiveConnection = CurrentProject.Connection

rst.CursorType = adOpenStatic

rst.Open “Select * from tblProjects”

‘Attempt to find a specific project

strSQL = “[ProjectID] = “ & lngValue

rst.Find strSQL

‘If record is found, print its position

If rst.EOF Then

MsgBox lngValue & “ Not Found”

Else

Debug.Print rst.AbsolutePosition

End If

rst.Close

Set rst = Nothing

End Sub

Working with ADO Recordset Properties and Methods 699

1
5

LISTING 15.24 Continued

In this example, the Find method is used to locate a project with a specific ProjectID. If
the project is found, the ordinal position of the record that is located is printed to the
Immediate window.

Using the Bookmark Property
The Bookmark property of a Recordset object returns a variant variable that acts as a
unique identifier for that particular record in the recordset. You can use the Bookmark
property to save the current position and then quickly and easily return to it at any time.
Listing 15.26 illustrates the use of a bookmark.

LISTING 15.26 The Bookmark Property of a Recordset Object

Sub UseBookmark()
Dim strSQL As String
Dim vntPosition As Variant

‘Instantiate and declare a recordset
Dim rst As ADODB.Recordset
Set rst = New ADODB.Recordset

‘Establish the connection and cursor type,
‘and open the recordset
rst.ActiveConnection = CurrentProject.Connection
rst.CursorType = adOpenStatic
rst.Open “Select * from tblProjects”

‘Store bookmark in a variant variable
vntPosition = rst.Bookmark

‘Perform some operation
‘on the records in the recordset
Do Until rst.EOF

Debug.Print rst(“ProjectID”)
rst.MoveNext

Loop

‘Return to the bookmarked record by setting
‘the Bookmark property of the recordset to the
‘value stored in the variant variable
rst.Bookmark = vntPosition
Debug.Print rst(“ProjectID”)

rst.Close
Set rst = Nothing

End Sub

CHAPTER 15 What Are ActiveX Data Objects, and Why Are They Important?700

In this example, a unique identifier to the current record is stored in a variant variable.
The code then loops through the remainder of the records in the recordset. When it is
done, it sets the Bookmark property of the Recordset object equal to the unique identifier
stored in the variant variable.

CAUTION

Not all recordsets support bookmarks. Whether a recordset supports bookmarks
depends on the provider as well as the type of recordset created.

Running Parameter Queries
You will not always know the criteria for a recordset at design time. Fortunately, ADO
allows you to supply parameters to the CommandText property of the Command object.
Listing 15.27 provides an example.

LISTING 15.27 Running a Parameter Query

Sub RunParameterQuery(datStart As Date, datEnd As Date)

‘Declare Command and Recordset objects

Dim cmd As ADODB.Command

Dim rst As ADODB.Recordset

‘Instantiate the Command object

Set cmd = New ADODB.Command

‘Establish the connection, command text,

‘and command type of the Command object

cmd.ActiveConnection = CurrentProject.Connection

cmd.CommandText = “Select * from tblTimeCardHours “ & _

“Where DateWorked Between ? and ?”

cmd.CommandType = adCmdText

‘Use the Execute method of the Command object to

‘return results into the recordset object; notice that

‘an array is passed to the Parameters parameter of

‘the Command object

Set rst = cmd.Execute(Parameters:=Array(datStart, datEnd))

‘Loop through the resulting recordset, printing the

‘contents of the TimeCardID and DateWorked fields

Do Until rst.EOF

Debug.Print rst(“TimeCardID”), rst(“DateWorked”)

rst.MoveNext

Loop

Working with ADO Recordset Properties and Methods 701

1
5

rst.Close

Set rst = Nothing

Set cmd = Nothing

End Sub

Notice that in this example, the CommandText property contains two question marks. Each
of these is considered a parameter. The parameters are supplied when the Execute method
of the Command object is used. Notice that the Parameters argument of the Execute
method receives an array containing the parameter values. Note that unless you specify
basADORecordsets.RunParameterQuery, you get an “ambiguous name detected” error.

Refreshing Recordset Data
You can use two methods to refresh the data in a recordset: Requery and Resync. The
Requery method is roughly equivalent to once again opening the recordset. The Requery
method forces the OLEDB provider to perform all the steps it performed when first creat-
ing the recordset. New rows are added to the recordset, changes to data made by other
users are reflected in the recordset, and deleted rows are removed from the recordset. The
Requery method requires significant resources to execute. The Resync method is much
more efficient. It updates the recordset to reflect changes made by other users. It does not
show added rows or remove deleted rows from the recordset.

Working with Persisting Recordsets
Using ADO, recordsets can not only exist in memory, but they can also be written to disk.
A recordset written to disk is referred to as a persisted recordset. Listing 15.28 illustrates
how to persist a recordset to disk.

LISTING 15.28 Persisting a Recordset

Sub PersistRecordset()

Dim strFileName As String

‘Prompt user for filename and path

strFileName = InputBox(“Please Enter Filename and Path”)

‘Declare and instantiate a Recordset object

Dim rst As ADODB.Recordset

Set rst = New ADODB.Recordset

‘Set the ActiveConnection, CursorType,

‘and LockType properties of the recordset

rst.ActiveConnection = CurrentProject.Connection

CHAPTER 15 What Are ActiveX Data Objects, and Why Are They Important?702

LISTING 15.27 Continued

rst.CursorType = adOpenStatic

rst.LockType = adLockOptimistic

‘Open the recordset, designating that the source

‘is a SQL statement

rst.Open Source:=”Select * from tblClients “, _

Options:=adCmdText

‘Destroy existing file with that name

On Error Resume Next

Kill strFileName

‘Save the recordset

rst.Save strFileName, adPersistADTG

rst.Close

Set rst = Nothing

End Sub

Notice that the Save method of the Recordset object is used to persist the recordset to
disk. The Format parameter of the Save method allows you to designate whether you
want to save the recordset in the Microsoft proprietary Advanced Data Tablegram (ADTG)
format or whether you want to save the recordset as XML. Listing 15.29 shows you how
to read a persisted recordset.

LISTING 15.29 Reading a Persisted Recordset

Sub ReadPersistedRecordset()

Dim strFileName As String

‘Prompt user for filename and path to read

strFileName = InputBox(“Please Enter Filename and Path”)

‘Ensure that the selected file exists

If Len(Dir(strFileName)) = 0 Then

MsgBox “File Not Found”

Exit Sub

End If

‘Declare and instantiate a Recordset object

Dim rst As ADODB.Recordset

Set rst = New ADODB.Recordset

Working with ADO Recordset Properties and Methods 703

1
5

LISTING 15.27 Continued

‘Set the ActiveConnection, CursorType,

‘and LockType properties of the recordset

rst.ActiveConnection = CurrentProject.Connection

rst.CursorType = adOpenStatic

rst.LockType = adLockOptimistic

‘Open the recordset, designating that the source

‘is a SQL statement

rst.Open Source:=strFileName, _

Options:=adCmdFile

‘Loop through the recordset, printing ClientIDs

Do Until rst.EOF

Debug.Print rst(“ClientID”)

rst.MoveNext

Loop

rst.Close

Set rst = Nothing

End Sub

After prompting the user for a filename, the code ensures that the designated file is
found. It then opens a recordset, using the file as the source argument. The adCmdFile
constant is used for the Options parameter of the Open method. The adCmdFile value
notifies ADO that the source is a persisted recordset.

Modifying Table Data Using ADO Code
So far, this chapter has covered only the process of retrieving data from a recordset. It is
common that you might need to update the data in a recordset. The sections that follow
show you how to change data one record at a time, update a batch of records, delete
records, and add records.

Changing Record Data One Record at a Time
You can loop through a recordset, modifying all the records in the recordset. Listing 15.30
shows this technique.

LISTING 15.30 Modifying One Record at a Time

Sub IncreaseEstimate()

Dim rst As ADODB.Recordset

Set rst = New ADODB.Recordset

CHAPTER 15 What Are ActiveX Data Objects, and Why Are They Important?704

LISTING 15.29 Continued

Dim strSQL As String

Dim lngUpdated As Long

‘Establish the connection, cursor type,

‘and lock type, and open the recordset

rst.ActiveConnection = CurrentProject.Connection

rst.CursorType = adOpenDynamic

rst.LockType = adLockOptimistic

rst.Open (“Select * from tblProjectsChange”)

strSQL = “ProjectTotalEstimate < 30000”

lngUpdated = 0

‘Find the first row meeting the designated criteria

rst.Find strSQL

‘Loop through the recordset, locating all rows meeting

‘the designated criteria, increasing the ProjecTotalEstimate

‘field by 10%

Do Until rst.EOF

lngUpdated = lngUpdated + 1

rst(“ProjectTotalEstimate”) = rst(“ProjectTotalEstimate”) * 1.1

rst.Update

rst.Find strSQL, 1, adSearchForward

Loop

‘Print how many rows are updated

Debug.Print lngUpdated & “ Records Updated”

rst.Close

Set rst = Nothing

End Sub

The code in Listing 15.30 opens a recordset based on all the records in the
tblProjectsChange table. It locates the first record where the ProjectTotalEstimate is
less than 30,000. The ProjectTotalEstimate is increased by 10%, and the record is
updated. The code locates the next record that meets the specified criteria. The code
repeats the process until it locates all records meeting the specified criteria.

This code is very inefficient from several standpoints. The first problem is that it opens a
recordset based on all the records in the tblProjectsChange table, when only those with
a ProjectTotalEstimate less than 30,000 needed to be updated. A more efficient

Modifying Table Data Using ADO Code 705

1
5

LISTING 15.30 Continued

approach is to open a recordset containing only those records that you need to update.
Listing 15.31 illustrates this technique.

LISTING 15.31 Improving the Process of Modifying One Record at a Time

Sub IncreaseEstimateImproved()

‘Declare and instantiate a recordset
Dim rst As ADODB.Recordset
Set rst = New ADODB.Recordset

Dim lngUpdated As Long

‘Establish the connection, cursor type,
‘and lock type, and open the recordset
rst.ActiveConnection = CurrentProject.Connection
rst.CursorType = adOpenDynamic
rst.LockType = adLockOptimistic
rst.Open (“Select * from tblProjectsChange “ & _

“WHERE ProjectTotalEstimate < 30000”)

‘Loop through the recordset, locating all rows meeting
‘the designated criteria, increasing the ProjecTotalEstimate
‘field by 10%
Do Until rst.EOF

lngUpdated = lngUpdated + 1
rst(“ProjectTotalEstimate”) = rst(“ProjectTotalEstimate”) * 1.1
rst.Update
rst.MoveNext

Loop

‘Print how many rows are updated
Debug.Print lngUpdated & “ Records Updated”

rst.Close
Set rst = Nothing

End Sub

Furthermore, it would be more efficient to simply execute an action query that performs
the update. This technique is covered in the section that follows.

CAUTION

If you’re accustomed to DAO, you might be quite surprised by the behavior of ADO.
Whereas DAO requires that the Edit method be used before field values are assigned,
no Edit method is used with ADO. Furthermore, if you forget to issue the Update
method on a DAO recordset, the record is not updated. On the other hand, with ADO,
the Update method is implied. The update occurs automatically as soon as the record
pointer is moved. These behavior differences can lead to big surprises!

CHAPTER 15 What Are ActiveX Data Objects, and Why Are They Important?706

Performing Batch Updates
If you use a client-side cursor, along with a static or keyset cursor, you can take advantage
of batch updates. Using batch updates, all changes you make to a recordset are sent to the
underlying OLEDB provider as a batch. The process is illustrated in Listing 15.32.

LISTING 15.32 Performing Batch Updates

Sub BatchUpdates()
‘Declare and instantiate a recordset
Dim rst As ADODB.Recordset
Set rst = New ADODB.Recordset

Dim strSQL As String
Dim lngUpdated As Long

‘Establish the connection, cursor type, cursor
‘location, and lock type, and open the recordset
rst.ActiveConnection = CurrentProject.Connection
rst.CursorType = adOpenKeyset
rst.CursorLocation = adUseClient
rst.LockType = adLockBatchOptimistic
rst.Open (“Select * from tblProjectsChange”)

strSQL = “ProjectTotalEstimate < 30000”
lngUpdated = 0

‘Find the first row meeting the designated criteria
rst.Find strSQL

‘Loop through the recordset, locating all rows meeting
‘the designated criteria, increasing the ProjecTotalEstimate
‘field by 10%
Do Until rst.EOF

lngUpdated = lngUpdated + 1
rst(“ProjectTotalEstimate”) = rst(“ProjectTotalEstimate”) * 1.1
rst.Find strSQL, 1, adSearchForward

Loop

‘Send all changes to the provider
rst.UpdateBatch

‘Print how many rows are updated
Debug.Print lngUpdated & “ Records Updated”

rst.Close
Set rst = Nothing

End Sub

Modifying Table Data Using ADO Code 707

1
5

In this example, the CursorLocation property of the recordset is set to adUseClient, the
CursorType is set to adOpenKeyset, and the LockType is set to adLockBatchOptimistic.
Notice that the Update method is not included in the Do Until loop. Instead, the
UpdateBatch method is used to send all the changes to the server at once.

Making Bulk Changes
As mentioned in the preceding section, it is inefficient to open a recordset and then
update each record individually. A much more efficient approach is to execute an action
query. Listing 15.33 illustrates this process.

LISTING 15.33 Making Bulk Changes to the Records in a Recordset

Sub RunUpdateQuery()

‘Declare and instantiate a Connection object

Dim cnn As ADODB.Connection

Set cnn = New ADODB.Connection

‘Establish the connection and execute an action query

Set cnn = CurrentProject.Connection

cnn.Execute “qryIncreaseTotalEstimate”

cnn.Close

End Sub

In Listing 15.33, the Execute method of the Connection object executes a stored query
called qryIncreaseTotalEstimate. Any criteria contained within the query are applied.

You might be wondering how you can update data stored in a SQL Server database. One
method is to call a stored procedure located in the SQL Server database. The code in
Listing 15.34 illustrates an example.

NOTE

The three listings that follow all require SQL Server 2000 or SQL Server 2005. You
must build the stored procedures used by Listing 15.34 and Listing 15.36. Finally, you
must have the copy of Northwind that ships with SQL Server 2000 to run the exam-
ples. (Otherwise the field names will be inaccurate.) Of course, you could modify the
field names that the code references to update any table in any database.

LISTING 15.34 Using a Stored Procedure to Make Bulk Changes to Data in a SQL Server
Database

Sub RunUpdateQuery()

‘Declare and instantiate a Connection object

Dim cnn As ADODB.Connection

Set cnn = New ADODB.Connection

CHAPTER 15 What Are ActiveX Data Objects, and Why Are They Important?708

‘Establish the connection and execute a stored procedure

cnn.Open “Provider=SQLOLEDB.1;” & _

“Data Source=(local); Initial Catalog=NorthWind;” & _

“Integrated Security=SSPI”

cnn.Execute “procIncreaseTotalEstimate”

cnn.Close

End Sub

The example in Listing 15.34 executes a SQL Server procedure called
procIncreaseTotalEstimate. Notice that the example does not receive parameters. The
example in Listing 15.35 uses a Command object to execute a SQL statement containing
parameters.

LISTING 15.35 Executing a SQL Statement Containing Parameters

Public Sub UpdateWithSQL()

‘Declare necessary variables

Dim cmd As New ADODB.Command

Dim conn As ADODB.Connection

Dim prm As ADODB.Parameter

Dim strConn As String

Dim strSQL As String

‘Build a connection string

strConn = “Provider=SQLOLEDB.1;” & _

“Data Source=(local); Initial Catalog=NorthWind;” & _

“Integrated Security=SSPI”

‘Open the connection

Set conn = New ADODB.Connection

conn.Open strConn

‘Instantiate the SqlCommand object

Set cmd = New ADODB.Command

‘Set the CommandText property

cmd.CommandText = “UPDATE Orders “ & _

“SET OrderDate = OrderDate, “ & _

“ShipVia = ShipVia, “ & _

“Freight = Freight “ & _

“WHERE OrderID = OrderID”

Modifying Table Data Using ADO Code 709

1
5

LISTING 15.34 Continued

‘Designate the CommandType

cmd.CommandType = adCmdText

‘Set the Connection property of the SqlCommand

cmd.ActiveConnection = conn

‘Add parameters and set their values

‘NOTE THAT THE ORDER DOESN’T MATTER!

Set prm = cmd.CreateParameter(“OrderID”, adInteger, adParamInput)

cmd.Parameters.Append prm

cmd.Parameters(“OrderID”).Value = 1

Set prm = cmd.CreateParameter(“OrderDate”, adDate, adParamInput)

cmd.Parameters.Append prm

cmd.Parameters(“OrderDate”).Value = “1/1/2007”

Set prm = cmd.CreateParameter(“ShipVia”, adInteger, adParamInput)

cmd.Parameters.Append prm

cmd.Parameters(“ShipVia”).Value = 2

Set prm = cmd.CreateParameter(“Freight”, adCurrency, adParamInput)

cmd.Parameters.Append prm

cmd.Parameters(“Freight”).Value = “10.5”

‘Execute the Update statement

cmd.Execute

‘Close the connection

conn.Close

End Sub

The example begins by building a connection string. It then instantiates and opens a
connection. It instantiates a Command object and sets its CommandText property to an
UPDATE statement. Next it sets the CommandType and ActiveConnection properties of the
command object. It appends four parameters to the Command object, and finally uses
the Execute method of the Command object to update data in the Orders table. Although
the example sets the parameter values to fixed values, it could instead take the values
from variables or from text boxes on a form. In addition, the example could execute a
stored procedure stored in the SQL Server database. This alternative code appears in
Listing 15.36.

CHAPTER 15 What Are ActiveX Data Objects, and Why Are They Important?710

LISTING 15.35 Continued

LISTING 15.36 Executing a Stored Procedure Containing Parameters

Public Sub UpdateWithStoredProcedure()

‘Declare necessary variables

Dim cmd As New ADODB.Command

Dim conn As ADODB.Connection

Dim prm As ADODB.Parameter

Dim strConn As String

Dim strSQL As String

‘Build a connection string

strConn = “Provider=SQLOLEDB.1;” & _

“Data Source=(local); Initial Catalog=NorthWind;” & _

“Integrated Security=SSPI”

‘Open the connection

Set conn = New ADODB.Connection

conn.Open strConn

‘Instantiate the SqlCommand object

Set cmd = New ADODB.Command

‘Set the CommandText property

cmd.CommandText = “procOrderUpdate”

‘Designate the CommandType

cmd.CommandType = adCmdStoredProc

‘Set the Connection property of the SqlCommand

cmd.ActiveConnection = conn

‘Add parameters and set their values

‘NOTE THAT THE ORDER DOESN’T MATTER!

Set prm = cmd.CreateParameter(“OrderID”, adInteger, adParamInput)

cmd.Parameters.Append prm

cmd.Parameters(“OrderID”).Value = 1

Set prm = cmd.CreateParameter(“OrderDate”, adDate, adParamInput)

cmd.Parameters.Append prm

cmd.Parameters(“OrderDate”).Value = “1/1/2007”

Set prm = cmd.CreateParameter(“ShipVia”, adInteger, adParamInput)

cmd.Parameters.Append prm

cmd.Parameters(“ShipVia”).Value = 2

Modifying Table Data Using ADO Code 711

1
5

Set prm = cmd.CreateParameter(“Freight”, adCurrency, adParamInput)

cmd.Parameters.Append prm

cmd.Parameters(“Freight”).Value = “10.5”

‘Execute the Stored Procedure

cmd.Execute

‘Close the connection

conn.Close

End Sub

This example is quite similar to the example in Listing 15.35. There are two main differ-
ences between the two examples. The first difference is the value of the CommandType
property designated in each example. Whereas Listing 15.35 sets the CommandType prop-
erty of the Command object to acCmdText, Listing 15.36 sets it to acCmdStoredProc, indicat-
ing that the text in the CommandText property is the name of a stored procedure. The
second difference is that the text in the CommandText property is a SQL statement in
Listing 15.35, but it is the name of a stored procedure in Listing 15.36. The stored proce-
dure looks like this:

CREATE PROCEDURE [dbo].[ProcOrderUpdate] @OrderID int,

@OrderDate DateTime, @ShipVia int, @Freight money

AS

UPDATE Orders

SET OrderDate = @OrderDate,

ShipVia = @ShipVia,

Freight = @Freight

WHERE OrderID = @OrderID

Notice that it declares four parameters and then uses the parameter values passed to it to
update the OrderDate, ShipVisa, and Freight fields.

Deleting an Existing Record
You can use ADO code to delete a record in a recordset. The code appears in Listing 15.37.
Note that it must be called using basADORecordset.DeleteCusts.

LISTING 15.37 Deleting an Existing Record

Sub DeleteCusts(lngProjEst As Long)

Dim intCounter as Integer

‘Declare and instantiate a recordset

Dim rst As ADODB.Recordset

CHAPTER 15 What Are ActiveX Data Objects, and Why Are They Important?712

LISTING 15.36 Continued

Set rst = New ADODB.Recordset

‘Establish the connection, cursor type,

‘and lock type, and open the recordset

rst.ActiveConnection = CurrentProject.Connection

rst.CursorType = adOpenDynamic

rst.LockType = adLockOptimistic

rst.Open “Select * from tblProjectsChange”

intCounter = 0

‘Loop through the recordset, deleting all projects

‘with an estimate lower than the specified amount

Do Until rst.EOF

If rst(“ProjectTotalEstimate”) < lngProjEst Then

rst.Delete

intCounter = intCounter + 1

End If

If Not rst.EOF Then

rst.MoveNext

End If

Loop

‘Designate how many customers were deleted

Debug.Print intCounter & “ Customers Deleted”

rst.Close

Set rst = Nothing

End Sub

In Listing 15.37, a recordset is opened, based on all the records in the tblProjectsChange
table. The code loops through all the records in the recordset. If the
ProjectTotalEstimate is less than the value passed as a parameter to the routine, the
Delete method of the Recordset object removes the record from the recordset.

As previously discussed, this example is very inefficient. You should either build a record-
set containing only the records you want to delete or use an action query to accomplish
the task.

TIP

If you are using a provider that supports stored procedures, it is most efficient to add,
edit, and delete data using a stored procedure. Stored procedures execute on the
server, sending no data over the network wire.

Modifying Table Data Using ADO Code 713

1
5

LISTING 15.37 Continued

Adding a New Record
You can not only edit and delete data using ADO, but also add records as well. Listing
15.38 illustrates this process.

LISTING 15.38 Adding a New Record to a Recordset

Private Sub cmdAddADO_Click()

Dim rst As ADODB.Recordset

‘Ensure that the project name and ClientID are entered

If IsNull(Me.txtProjectName) Or _

IsNull(Me.cboClientID) Then

MsgBox “The Project Name and Client Must be Filled In”

Else

‘Instantiate a recordset

Set rst = New ADODB.Recordset

‘Set the connection, cursor type, and lock type,

‘and open the recordset

With rst

.ActiveConnection = CurrentProject.Connection

.CursorType = adOpenKeyset

.LockType = adLockOptimistic

.Open “Select * from tblProjectsChange Where ProjectID = 0”

‘Add a new row to the recordset, populating its values with

‘the controls on the form

.AddNew

!ProjectName = Me.txtProjectName

!ProjectDescription = Me.txtProjectDescription

!ClientID = Me.cboClientID

.Update

‘Populate the txtProjectID text box with the

‘autonumber value assigned to the new row

Me.txtProjectID = !ProjectID

End With

End If

End Sub

CHAPTER 15 What Are ActiveX Data Objects, and Why Are They Important?714

This code, an event procedure for a command button on frmUnbound, begins by setting
the CursorType property of the recordset to adOpenKeyset and the LockType property
to adLockOptimistic. The AddNew method creates a buffer for a new record. All the
field values are assigned, based on values in the text boxes on the form. The Update
method writes the data to disk. Because the ProjectID field is an Autonumber field, the
txtProjectID text box must be updated to reflect the Autonumber value that was assigned.

CAUTION

With the DAO example, included on the sample code CD-ROM, you are not placed on
the new record after it is added. With ADO, you are moved to the new record when you
issue the Update method.

Creating and Modifying Database Objects Using
ADO Code
Although most of the time you will design your database structure before you deploy your
application, sometimes you will need to design or modify database objects at runtime.
Fortunately, you can accomplish these tasks using ADO code. The following sections
cover adding and removing tables, modifying relationships, and building queries, all
using ADO code. These are only a few of the tasks that you can accomplish.

Adding a Table Using Code
Adding a table using ADO code is relatively easy. Listing 15.39 provides an example.

LISTING 15.39 Adding a Table

Sub CreateTable()

Dim tdf As ADOX.Table

Dim idx As ADOX.Index

‘Declare and instantiate a Catalog object

Dim cat As ADOX.Catalog

Set cat = New ADOX.Catalog

‘Establish a connection

cat.ActiveConnection = CurrentProject.Connection

‘ Instantiate a Table object

Set tdf = New ADOX.Table

‘ Name the table and add fields to it

With tdf

.Name = “tblFoods”

Creating and Modifying Database Objects Using ADO Code 715

1
5

Set .ParentCatalog = cat

.Columns.Append “FoodID”, adInteger

.Columns(“FoodID”).Properties(“AutoIncrement”) = True

.Columns.Append “Description”, adWChar

.Columns.Append “Calories”, adInteger

End With

‘Append the table to the Tables collection

cat.Tables.Append tdf

‘Instantiate an Index object

Set idx = New ADOX.Index

‘Set properties of the index

With idx

.Name = “PrimaryKey”

.Columns.Append “FoodID”

.PrimaryKey = True

.Unique = True

End With

‘Add the index to the Indexes collection

‘of the table

tdf.Indexes.Append idx

Set idx = Nothing

Set cat = Nothing

End Sub

Listing 15.39 begins by instantiating an ADOX table object. It sets the Name and
ParentCatalog properties of the Table object. Then it uses the Append method of the
Columns collection of the table to append each field to the table. After all the columns are
appended, it uses the Append method of the Tables collection of the Catalog object to
append the Table object to the database.

After the table is appended to the Catalog, you can add indexes to the table. An Index
object is instantiated. The Name property of the index is set. Next, the Append method of
the Columns object of the Index adds a column to the Index. The PrimaryKey and Unique

properties of the index are both set to True. Finally, the Index object is appended to the
Indexes collection of the Table object.

CHAPTER 15 What Are ActiveX Data Objects, and Why Are They Important?716

LISTING 15.39 Continued

CAUTION

When you are running code that appends an object, an error occurs if the object
already exists. You must either include error handling in your routine to handle this
eventuality or delete the existing instance of the object before appending the new
object.

Removing a Table Using Code
Sometimes you need to remove a table from a database. Fortunately, this task is easily
accomplished using ADO code. Listing 15.40 illustrates the process.

LISTING 15.40 Removing a Table

Sub DeleteTable()

‘Ignore error if it occurs

On Error Resume Next

‘Declare and instantiate a Catalog object

Dim cat As ADOX.Catalog

Set cat = New ADOX.Catalog

‘Establish the connection for the Catalog object

cat.ActiveConnection = CurrentProject.Connection

‘Delete a table from the Tables collection

cat.Tables.Delete “tblFoods”

End Sub

First, this code declares and instantiates a Catalog object. Then it uses the Delete method
of the Tables collection of the Catalog object to remove the table from the database.

Establishing Relationships Using Code
If your application adds new tables to a database, you might need to establish relation-
ships between those tables, as demonstrated in Listing 15.41.

LISTING 15.41 Establishing a Relationship

Sub CreateRelation()

Dim tbl As ADOX.Table

Dim fk As ADOX.Key

‘Declare and instantiate a Catalog object

Dim cat As ADOX.Catalog

Creating and Modifying Database Objects Using ADO Code 717

1
5

Set cat = New ADOX.Catalog

‘Establish a connection

cat.ActiveConnection = CurrentProject.Connection

‘Point the Table object at the tblPeople table

Set tbl = cat.Tables(“tblPeople”)

‘Instantiate a Key object

Set fk = New ADOX.Key

‘Set properties of the Key object to relate the

‘tblPeople table to the tblFoods table

With fk

.Name = “PeopleFood”

.Type = adKeyForeign

.RelatedTable = “tblFoods”

.Columns.Append “FoodID”

.Columns(“FoodID”).RelatedColumn = “FoodID”

End With

‘Append the Key object to the Keys collection of

‘the tblPeople table

tbl.Keys.Append fk

Set cat = Nothing

Set tbl = Nothing

Set fk = Nothing

End Sub

This code begins by pointing a Table object at the foreign key table in the relationship.
The code instantiates a Key object. It sets the Name property of the Key object. Next, it
establishes the Type property of the Key object. It sets the RelatedTable property equal to
the name of the primary key table involved in the relationship. The Append method of
the Columns collection of the Key object appends the foreign key field to the Key object.
Then the RelatedColumn property of the column is set equal to the name of the primary
key field. Finally, the code appends the Key object to the Keys collection of the Table
object.

Creating a Query Using Code
At times, you will want to build a query on the fly and permanently store it in the data-
base. Listing 15.42 illustrates this process.

CHAPTER 15 What Are ActiveX Data Objects, and Why Are They Important?718

LISTING 15.41 Continued

LISTING 15.42 Creating a Query

Sub CreateQuery()
Dim cmd As ADODB.Command
Dim strSQL As String

‘Declare and instantiate a Catalog object
Dim cat As ADOX.Catalog
Set cat = New ADOX.Catalog

‘Establish a connection
cat.ActiveConnection = CurrentProject.Connection

‘Instantiate a Command object and set its
‘CommandText property
Set cmd = New ADODB.Command
cmd.CommandText = “Select * From tblClients Where State=’CA’”

‘Append the Command object to the Views collection
‘of the Catalog object
cat.Views.Append “qryCAClients”, cmd
cat.Views.Refresh

Set cat = Nothing
Set cmd = Nothing

End Sub

This code begins by creating and instantiating a Catalog object and a Command object. It
sets the CommandText property of the Command object equal to the SQL statement that
underlies the query. The Append method of the Views collection of the Catalog object
appends the Command object to a query with the specified name. Finally, the code refreshes
the Views collection of the Catalog object.

Practical Examples: Applying These Techniques to
Your Application
The potential applications for the methodologies learned in this chapter are endless. The
sections that follow explore just a few of the ways you can apply these techniques. The
examples here are located in Chap15Ex.accdb.

Using Recordset Methods on a Data-Entry Form
At times, you might want to disable the default record movement and add, edit, or delete
functionality from a form and code all the functionality yourself. You might want to
perform these actions if you are going against client/server data and want to execute addi-
tional control over the data-entry environment. You also might want to use these tech-
niques when you are developing applications for both the Access and Visual Basic

Practical Examples: Applying These Techniques to Your Application 719

1
5

environments and are striving for maximum code compatibility. Regardless of your
reasons for using the following techniques, it is a good idea to know how to assign a
Recordset object to a form and then use the form’s underlying recordset to display and
modify data.

Figure 15.2 shows a form in which the navigation buttons and record selectors have been
removed. The form contains six command buttons: Move Previous (<), Move Next (>),
Add, Delete, Find, and Exit. All the buttons use the recordset underlying the form to
move from record to record in the form and modify the data contained within the form.

CHAPTER 15 What Are ActiveX Data Objects, and Why Are They Important?720

FIGURE 15.2 The frmRecordsets form.

The RecordSource property of the form is not set. The Load event of the form is responsi-
ble for assigning a Recordset object to the form. Listing 15.43 shows the Load event of
the form.

LISTING 15.43 The Load Event Assigning a Recordset Object to the Form

Private Sub Form_Load()
‘Declare and instantiate a recordset
Dim rst As ADODB.Recordset
Set rst = New ADODB.Recordset

‘Establish the Connection, Cursor Type, Cursor
‘Location, and Lock Type and open the recordset
rst.ActiveConnection = CurrentProject.Connection
rst.CursorType = adOpenKeyset
rst.CursorLocation = adUseClient
rst.LockType = adLockOptimistic
rst.Open “Select * from tblClients”, Options:=adCmdText

‘Set the form’s recordset to the recordset just created
Set Me.Recordset = rst

End Sub

The code begins by declaring and instantiating an ADODB Recordset object. It then sets
four properties of the Recordset object: the ActiveConnection, the CursorType, the
Cursor Location, and the LockType. The Open method is used to open a recordset, based
on the tblClients table. Finally, a Set statement is used to assign the recordset to the
recordset underlying the form.

NOTE

When an ADO recordset is assigned to a form, and the form is based on Jet Engine or
Access Database Engine data, the form is rendered read-only. If an ADO recordset is
assigned to a form based on SQL data, the form is rendered read/write. If you want to
render a form based on Access Database Engine data as read/write, you must set the
CursorLocation property of the Recordset object to adUseClient.

Listing 15.44 shows the code for the Move Previous button.

LISTING 15.44 Code for the Move Previous Button

Private Sub cmdPrevious_Click()
‘Move to the previous record in the recordset
Me.Recordset.MovePrevious

‘If at BOF, move to the next record
If Me.Recordset.BOF Then

Me.Recordset.MoveNext
MsgBox “Already at First Record!!”

End If

‘Set the bookmark of the form to the bookmark
‘of the recordset underlying the form
Me.Bookmark = Me.Recordset.Bookmark

End Sub

This routine performs the MovePrevious method on the Recordset property of the form.
If the BOF property becomes True, indicating that the record pointer is before the first
valid record, the MoveNext method is performed on the Recordset property of the form to
return the record pointer to the first record in the recordset. Finally, the bookmark of the
form is synchronized with the bookmark of the Recordset property. Listing 15.45 shows
the code for the Move Next button.

LISTING 15.45 Code for the Move Next Button

Private Sub cmdNext_Click()

‘Move to the next record in the recordset

Me.Recordset.MoveNext

‘If at EOF, move to the previous record

Practical Examples: Applying These Techniques to Your Application 721

1
5

If Me.Recordset.EOF Then

Me.Recordset.MovePrevious

MsgBox “Already at Last Record!!”

End If

‘Set the bookmark of the form to the bookmark

‘of the recordset underlying the form

Me.Bookmark = Me.Recordset.Bookmark

End Sub

The code for the Add button is a little tricky, as Listing 15.46 shows.

LISTING 15.46 Code for the Add Button

Private Sub cmdAdd_Click()

‘Add a new row to the recordset

Me.Recordset.AddNew

Me.Recordset(“CompanyName”) = “New Company”

Me.Recordset.Update

‘Move to the row that was added

Me.Bookmark = Me.Recordset.Bookmark

End Sub

The AddNew method is performed on the Recordset property of the form. This method
creates a buffer in memory that is ready to accept the new data. When the Update
method is issued, the record pointer is moved to the new record. Because the CompanyName
field is a required field, you must populate it with data before issuing the Update method
on the Recordset property.

By setting the bookmark of the form to the Bookmark property of the recordset, you
synchronize the form with the new record. In a production environment, you would
want to clear out all the text boxes and force the user to save or cancel before the AddNew
or Update methods are issued.

The process of deleting a record is quite simple, as Listing 15.47 shows.

LISTING 15.47 Deleting a Record

Private Sub cmdDelete_Click()

‘Ask user if he really wants to delete the row

intAnswer = MsgBox(“Are You Sure???”, _

vbYesNo + vbQuestion, _

“Delete Current Record?”)

CHAPTER 15 What Are ActiveX Data Objects, and Why Are They Important?722

LISTING 15.45 Continued

‘If he responds yes, delete the row and

‘move to the next row

If intAnswer = vbYes Then

Me.Recordset.Delete

Call cmdNext_Click

Me.Refresh

End If

End Sub

CAUTION

Because the tblClients table is linked to the tblProjects table, the process of
deleting a client will render an error if that client has associated projects. This must
be handled using standard error handling techniques.

This code verifies that the user actually wants to delete the record and then issues the
Delete method on the Recordset property of the form. Because the current record no
longer is valid, the code calls the Click event of the cmdNext button.

The last piece of code involved in the form is the code for the Find button, as shown in
Listing 15.48.

LISTING 15.48 Code for the Find Button

Private Sub cmdFind_Click()

Dim strClientID As String

Dim varBookmark As Variant

‘Store the bookmark of the current record

varBookmark = Me.Recordset.Bookmark

‘Attempt to locate another client

strClientID = InputBox(“Enter Client ID of Client You Want to Locate”)

Me.Recordset.Find “ClientID = “ & strClientID, Start:=1

‘If client not found, display a message and return to

‘the original record

If Me.Recordset.EOF Then

MsgBox “Client ID “ & strClientID & “ Not Found!!”

Me.Recordset.Bookmark = varBookmark

‘If client found, synchronize the form with the

‘underlying recordset

Practical Examples: Applying These Techniques to Your Application 723

1
5

LISTING 15.47 Continued

Else

Me.Bookmark = Me.Recordset.Bookmark

End If

End Sub

This routine begins by storing the bookmark of the current record to a Variant variable.
Users are prompted for the client ID they want to locate, and then the Find method is
issued on the Recordset property of the form. If the EOF property is True, the user is
warned, and the bookmark of the recordset is set to the value within the Variant variable,
returning the record pointer to the position it was in prior to the search. If the client ID is
found, the bookmark of the form is synchronized with the bookmark of the Recordset
property.

Summary
In this chapter, you learned how to manipulate recordsets via code. The chapter began by
contrasting ActiveX Data Objects with Data Access Objects. It continued by introducing
you to the ADO model. It explored the different types of ADO recordsets available, high-
lighting why you would want to use each type.

Next, you learned how to manipulate recordsets using code. The capability to manipulate
recordsets behind the scenes is an important aspect of the VBA language. It frees you
from the user interface and enables you to control what is going on programmatically.
Finally, you learned how to create and modify database objects using code. This is impor-
tant if the application you are creating requires you to create or modify tables, queries, or
other objects at runtime.

CHAPTER 15 What Are ActiveX Data Objects, and Why Are They Important?724

PART II

What to Do When
Things Don’t Go
as Planned

IN THIS PART

CHAPTER 16 Debugging: Your Key to Successful
Development 727

CHAPTER 17 Error Handling: Preparing for the
Inevitable 755

CHAPTER 18 Optimizing Your Application 801

This page intentionally left blank

IN THIS CHAPTER

. Why This Chapter Is Important

. Avoiding Bugs

. Harnessing the Power of the
Immediate Window

. Invoking the Debugger

. Using Breakpoints to
Troubleshoot

. Stepping Through Code

. Setting the Next Statement to
Execute

. Using the Call Stack Window

. Working with the Locals
Window

. Working with Watch
Expressions

. Continuing Execution After a
Runtime Error

. Looking at Gotchas with the
Immediate Window

. Using Assertions

. Debugging Tips

. Practical Examples: Debugging
Real Applications

CHAPTER 16

Debugging: Your Key to
Successful Development

Why This Chapter Is Important
A good programmer is not necessarily one who can get
things right the first time. To be fully effective as a Visual
Basic for Applications (VBA) programmer, you need to
master the art of debugging—the process of troubleshooting
your application. Debugging involves locating and identify-
ing problem areas within your code and is a mandatory
step in the application-development process. Fortunately,
the Access 2007 Visual Basic Editor (VBE) provides excellent
tools to help you with the debugging process. Using the
Access 2007 debugging tools, you can step through your
code, setting watchpoints and breakpoints as needed.

Using the VBA debugging tools is significantly more effi-
cient than taking random stabs at fixes to your application.
A strong command of the Access 2007 debugging tools can
save you hours of trial and error. In fact, it can be the
difference between a successfully completed application-
development process and one that continues indefinitely
with problems left unsolved.

Avoiding Bugs
The best way to deal with bugs is to avoid them in the first
place. Proper coding techniques can really aid you in this
process. Using the Option Explicit statement, strong-
typing, naming standards, and tight scoping can help you
eliminate bugs in your code.

Option Explicit
Option Explicit requires that you declare all your variables before you use them.
Including Option Explicit in each Form, Code, and Report module helps the VBA
compiler find typos in the names of variables.

As discussed in detail in Chapter 8, “VBA: An Introduction,” the Option Explicit state-
ment is a command that you can manually insert into the General Declarations section
of any Code, Form, or Report module. If you prefer, you can have Access automatically
insert the Option Explicit statement. To accomplish this, select Require Variable
Declaration from the Editor tab after choosing Tools, Options from within the Visual
Basic Editor. After you select that setting, Access inserts an Option Explicit statement in
the General Declarations section of all new modules. This setting does not affect existing
modules.

Strong-Typing
Chapter 8 covers the process of strong-typing your variables. Strong-typing a variable
means indicating at declaration time the type of data you will store in a variable. For
example, Dim intCounter As Integer initializes a variable that contains integers. If else-
where in your code you assign a character string to intCounter, the compiler will catch
the error.

Naming Standards
Naming standards can also go a long way toward helping you eliminate errors. The
careful naming of variables makes your code easier to read and makes the intended use of
the variable more obvious. Problem code tends to stand out when you have judiciously
followed naming conventions. Chapter 1, “Access as a Development Tool,” covers naming
standards. Appendix A, “Naming Conventions,” which is available for download at
www.samspublishing.com, covers the details of naming standards.

Variable Scoping
Finally, giving your variables the narrowest scope possible reduces the chances of one
piece of code accidentally overwriting a variable within another piece of code. You should
use local variables whenever possible. Use module-level and global variables only when it
is necessary to see the value of a variable from multiple subroutines or multiple modules.
For more information about the issues surrounding variable scoping, see Chapter 8.

Bugs Happen!
Unfortunately, no matter what you do to prevent problems and errors, they still creep
into your code. Probably the most insidious type of error is a logic error. A logic error is
sneaky because it escapes the compiler; your code compiles but simply does not execute
as planned. This type of error might become apparent when you receive a runtime error
or when you don’t get the results you expected. In these cases, the debugger comes to
the rescue.

CHAPTER 16 Debugging: Your Key to Successful Development728

www.samspublishing.com

Harnessing the Power of the Immediate Window
The Immediate window serves several purposes. It provides you with a great way to test
VBA and user-defined functions, it enables you to inquire about and change the values
of variables while your code is running, and it enables you to view the results of
Debug.Print statements. To open the Immediate window while in the Visual Basic Editor,
do one of three things:

. Click the Immediate window tool on the Debug toolbar.

. Choose View, Immediate window.

. Press Ctrl+G.

NOTE

An advantage of pressing Ctrl+G is that this keystroke combination invokes the
Immediate window without a Code window being active. You can click the Immediate
window toolbar button or choose View, Immediate window only from within the VBE.

Figure 16.1 shows the Immediate window.

Harnessing the Power of the Immediate Window 729

1
6

FIGURE 16.1 The Immediate window enables you to test functions and to inquire about and
change the values of variables.

NOTE

The Debug tools are available on a separate toolbar. To show the Debug toolbar, right-
click any toolbar or menu bar and select Debug from the list of available toolbars.

Testing Values of Variables and Properties
The Immediate window enables you to test the values of variables and properties as your
code executes. This feature can be quite enlightening as to what is actually happening
within your code.

To practice with the Immediate window, you do not even need to be executing code. To
invoke the Immediate window while in a form, report, or module, press Ctrl+G. To see
how this works, follow these steps:

1. Run the frmClients form from the CHAP16EX.ACCDB database on the accompanying
CD-ROM.

2. Press Ctrl+G to open and activate the Immediate window. Access places you in the
VBE within the Immediate window.

3. Type ?Forms!frmClients.txtClientID.Value and press Enter. The client ID of the
current client appears on the next line.

4. Type ?Forms!frmClients.txtCompanyName.Visible and press Enter. The word True
appears on the next line, indicating that the control is visible.

5. Type ?Forms!frmClients.txtContactTitle.BackColor and press Enter. The number
associated with the BackColor of the Contact Title text box appears on the next line.

Your screen should look like the one shown in Figure 16.2. You can continue to request
the values of properties or variables within your VBA code.

Setting Values of Variables and Properties
You can not only display things in the Immediate window, but you also can use the
Immediate window to modify the values of variables and controls as your code executes.
This feature becomes even more valuable when you realize that you can re-execute code
within a procedure after changing the value of a variable. Here’s how this process works:

1. Invoke the Immediate window, if necessary. Remember that you can do this by
pressing Ctrl+G.

2. Type Forms!frmClients.txtContactTitle.Value = “Hello” in the Immediate
window. Press Enter. The contact title of the current record changes to Hello.

3. Type Forms!frmClients.txtIntroDate.Visible = False. Press Enter. Access hides
the txtIntroDate control on the frmClients form.

CHAPTER 16 Debugging: Your Key to Successful Development730

Harnessing the Power of the Immediate Window 731

1
6

FIGURE 16.3 Set the values of properties using the Immediate window.

FIGURE 16.2 Use the Immediate window to test the values of properties.

4. Type Forms!frmClients.txtClientID.BackColor = 123456. Press Enter. The back-
ground color of the txtClientID control on the frmClients form turns green. The
Immediate window and your form now look like those shown in Figures 16.3 and
16.4, respectively.

CHAPTER 16 Debugging: Your Key to Successful Development732

FIGURE 16.4 The results of using the Immediate window to set the values of properties are
shown here.

The Immediate window is an extremely valuable testing and debugging tool. The exam-
ples here barely begin to illustrate its power and flexibility.

CAUTION

Changes you make to data while working in the Immediate window are permanent. On
the other hand, Access does not save changes you make to the properties of controls
or the values of variables with the form or report.

Some people think that data changes made in the Immediate window are not perma-
nent. In other words, if you modify the last name of a customer, they believe that the
change will not be permanent (but, of course, it is). Other people think that if they
change the BackColor property of a control, the change will persist in the design envi-
ronment (but, of course, it won’t).

Clearing the Immediate Window
The Immediate window displays the last 200 lines of output. As you add additional lines
of code to the Immediate window, older lines disappear. When you exit completely from
Access, it clears the Immediate window. If you want to clear the Immediate window at
any other time, follow these three steps:

1. With the Immediate window active, press Ctrl+Home to go to the top of the
Immediate window.

2. Hold down your Shift key and press Ctrl+End to go to the last statement in the
Immediate window.

3. Press Delete.

Practicing with the Built-In Functions
In addition to being able to test and set the values of properties and variables using the
Immediate window, you can test any VBA function. To do so, type the function and its
arguments in the Immediate window, preceded by a question mark. This code returns the
month of the current date, for example:

?datepart(“m”,date)

This code tells you the date one month after today’s date:

?dateadd(“m”,1,date)

This code tells you how many days exist between the current date and the end of the
millennium:

?datediff(“d”,date(),#12/31/2999#)

Executing Subroutines, Functions, and Methods
In addition to enabling you to test any VBA function, the Immediate window lets you test
any user-defined subroutine, function, or method. This is a great way to debug your user-
defined procedures. To see how this works, follow these steps:

1. Open the basExamples module found in the CHAP16EX.ACCDB database on the
accompanying CD-ROM.

2. Invoke the Immediate window if it is not already visible.

3. Type ?ReturnInitsFunc(“Bill”,”Gates”). This calls the user-defined function
ReturnInitsFunc, sending “Bill” as the first parameter and “Gates” as the second
parameter. The value B.G. appears in the Immediate window. This is the return
value from the function.

4. Type Call ReturnInitsSub(“Bill”,”Gates”). This calls the user-defined subroutine
ReturnInitsSub, sending “Bill” as the first parameter and “Gates” as the second
parameter. The value B.G. appears in a message box.

Notice the difference between how you call a function and how you call a subroutine.
Because the function returns a value, you must call it using a question mark. On the
other hand, when calling a subroutine, you use the Call keyword.

Harnessing the Power of the Immediate Window 733

1
6

NOTE

You also can call a subroutine from the Immediate window by using this syntax:

RoutineName Parameter1, Parameter2,

Notice that, when you omit the Call keyword, you do not need to enclose the parame-
ters in parentheses.

Printing to the Immediate Window at Runtime
The capability to print to the Immediate window is useful because you can test what is
happening as your code executes without having to suspend code execution. It also is
valuable to be able to print something to a window when you are testing, without inter-
fering with the user-interface aspect of your code. You can test a form without being
interrupted and then go back and view the values of variables and so on. Here’s how the
process works:

1. Type Call LoopThroughCollection in the Immediate window. This calls the user-
defined subroutine LoopThroughCollection. The values Skating, Basketball,
Hockey, and Skiing appear. The routine prints these values to the Immediate
window.

2. Open the frmDebugPrint form in Form view.

3. Press Tab to move from the First Name field to the Last Name field.

4. Press Tab to move back to the First Name field.

5. Type your first name.

6. Open the Immediate window. Notice that the routine sent all the statements to the
Immediate window (see Figure 16.5). I coded these Debug.Print statements in all
the appropriate form and control events.

NOTE

Although it is good practice to remove Debug.Print statements after you have
completed the debugging process, you can safely deploy your applications without
removing them. Your users will never know that the statements are in your code
unless they view the Immediate window. The Debug.Print statements result in only a
minor degradation in performance.

CHAPTER 16 Debugging: Your Key to Successful Development734

FIGURE 16.5 Use Debug.Print statements to print values to the Immediate window.

Invoking the Debugger
You can invoke the Access debugger in several ways:

. Place a breakpoint in your code.

. Place a watch in your code.

. Press Ctrl+Break while the code is running.

. Insert a Stop statement in your code.

A breakpoint is an unconditional point at which you want to suspend code execution. It is
temporary because it is in effect only while the database is open. In other words, Access
does not save breakpoints with the database.

A watch is a condition under which you want to suspend code execution. You might want
to suspend code execution when a counter variable reaches a specific value, for example.
A watch also is temporary; Access removes it after you close the database.

A Stop statement is permanent. In fact, if you forget to remove Stop statements from
your code, your application stops execution while the user is running it.

Invoking the Debugger 735

1
6

Using Breakpoints to Troubleshoot
As mentioned, a breakpoint is a point at which Access will unconditionally halt the
execution of code. You can set multiple breakpoints in your code. You can add and
remove breakpoints as your code executes.

A breakpoint enables you to halt your code execution at a suspicious area of code. This
way, you can examine everything that is going on at that point in your code execution.
By strategically placing breakpoints in your code, you quickly can execute sections of
code that you already debugged, stopping only at problem areas.

To set a breakpoint, follow these steps:

1. Place your cursor on the line of code where you want to invoke the debugger.

2. You can insert a breakpoint in one of four ways:

. Press your F9 function key.

. Click in the gray margin area to the left of the line of the code that will
contain the breakpoint.

. Click the Toggle Breakpoint button on the Debug toolbar.

. Choose Debug, Toggle Breakpoint.

The line of code containing the breakpoint appears in a different color, and a dot
appears, indicating the breakpoint.

3. Run the form, report, or module containing the breakpoint. VBA suspends execu-
tion just before executing the line of code where you placed the breakpoint. The
statement that is about to execute appears in a contrasting color. (The default is
yellow.)

Now that you have suspended your code, you can step through it one line at a time,
change the value of variables, and view your call stack, among other things.

Keep in mind that a breakpoint is actually a toggle. If you want to remove a breakpoint,
click in the gray margin area, press F9, or click Toggle Breakpoint on the Debug toolbar.
Access removes breakpoints when you close the database, when you open another data-
base, or when you exit Access.

The easiest way to get to know the debugger is to actually use it. The following example
gives you hands-on experience in setting and stopping code execution at a breakpoint.
The example is developed further later in the chapter.

Start by creating a form called frmDebug that contains a command button called
cmdDebug. Give the button the caption Start Debug Process. Place the following code
in the Click event of the command button:

CHAPTER 16 Debugging: Your Key to Successful Development736

Sub cmdDebug_Click ()

Call Func1

End Sub

Create a module called basFuncs. Enter three functions into the module:

Sub Func1 ()

Dim intTemp As Integer

intTemp = 10

Debug.Print “We Are Now In Func1()”

Debug.Print intTemp

Call Func2

End Sub

Sub Func2 ()

Dim strName As String

strName = “Bill Gates”

Debug.Print “We Are Now In Func2()”

Debug.Print strName

Call Func3

End Sub

Sub Func3 ()

Debug.Print “We Are Now In Func3()”

MsgBox “Hi There From The Func3() Sub Procedure”

End Sub

Now you should debug. Start by placing a breakpoint within the Click event of cmdDebug
on the line called Call Func1. Here are the steps:

1. Click anywhere on the line of code that says Call Func1.

2. Click in the gray margin area, press the F9 function key, click the Toggle Breakpoint
button on the Debug toolbar, or choose Debug, Toggle Breakpoint. The line with the
breakpoint turns a different color (red by default).

3. Go into Form view and click the Start Debug Process button. Access suspends execu-
tion just before executing the line where you placed the breakpoint. VBA displays
the line that reads Call Func1 in a different color (by default, yellow), indicating
that it is about to execute that line (see Figure 16.6).

Using Breakpoints to Troubleshoot 737

1
6

CHAPTER 16 Debugging: Your Key to Successful Development738

FIGURE 16.6 Code execution is halted at a breakpoint.

Stepping Through Code
Access 2007 gives you three main options for stepping through your code. Each one is
slightly different. The Step Into option enables you to step through each line of code
within a subroutine or function, whereas the Step Over option executes a procedure
without stepping through each line of code within it. The Step Out option runs all code
in nested procedures and then returns you to the procedure that called the line of code
you are on. Knowing the right option to use to solve a particular problem is an acquired
skill that comes with continued development experience.

Using Step Into
When you reach a breakpoint, you can continue executing your code one line at a time
or continue execution until you reach another breakpoint. To step through your code one
line at a time, click Step Into on the Debug toolbar, press F8, or choose Debug, Step Into.

The following example illustrates the process of stepping through your code, printing the
values of variables to the Immediate window, and modifying the values of variables using
the Immediate window.

You can continue the debug process from the breakpoint you set in the previous example.
Step two times (press F8). You should find yourself within Func1, about to execute the line
of code intTemp = 10 (see Figure 16.7). Notice that VBA did not stop on the line Dim
intTemp As Integer. The debugger does not stop on variable declarations.

Stepping Through Code 739

1
6

FIGURE 16.7 The Immediate window is halted within Func1.

The code is about to print the Debug statements to the Immediate window. Take a look
by opening the Immediate window. None of your code has printed anything to the
Immediate window yet. Press F8 (step) three more times until you have executed the line
Debug.Print intTemp. Your screen should look like Figure 16.8. Notice the results of the
Debug.Print statements.

Now that you have seen how you can display variables and the results of expressions to
the Immediate window, take a look at how you can use the Immediate window to modify
values of variables and controls. Start by changing the value of intTemp. Click the
Immediate window and type intTemp = 50. When you press Enter, you actually modify
the value of intTemp. Type ?intTemp, and you’ll see that Access echoes back the value of
50. You also can see the value of intTemp in the Locals window. Notice in Figure 16.9 that
the intTemp variable appears along with its value and type.

Executing Until You Reach the Next Breakpoint
Suppose that you have reached a breakpoint, but you realize that your problem is farther
down in the code execution. In fact, the problem is actually in a different function. You
might not want to continue to move one step at a time down to the offending function.
Use the Procedure drop-down menu to locate the questionable function, and then set a
breakpoint on the line where you want to continue stepping. You now are ready to con-
tinue code execution until Access reaches this line. To do this, click Continue on the Debug
toolbar, press F5, or choose Run, Continue. Your code continues to execute, stopping at the
next breakpoint. To see how this works, continue the Debug process with the next example.

FIGURE 16.8 The Immediate window shows entries generated by Debug.Print statements.

CHAPTER 16 Debugging: Your Key to Successful Development740

FIGURE 16.9 Here are the Immediate and Locals windows after modifying the value of
intTemp.

NOTE

You also can opt to resume code execution to the point at which your cursor is
located. To do this, select Run to Cursor from the Debug menu, or press Ctrl+F8.

Suppose that you realize your problem might be in Func3. You do not want to continue
to move one step at a time down to Func3. No problem. Use the Procedure drop-down
menu to view Func3, as shown in Figure 16.10. Set a breakpoint on the line that reads
Debug.Print “We Are Now In Func3()”. You are ready to continue code execution until
Access reaches this line. Click Continue on the Debug toolbar, press F5, or choose Run,
Continue. Your code continues to execute, stopping on the breakpoint you just set. Press
F5 again. The code finishes executing. Return to the Form View window.

Stepping Through Code 741

1
6

FIGURE 16.10 Use the Procedure drop-down menu to view another function.

Using Step Over
Sometimes you already have a subroutine fully tested and debugged. You want to
continue stepping through the routine that you are in, but you don’t want to watch the
execution of subroutines. In this case, you use Step Over. To step over a subroutine or
function, click Step Over on the Debug toolbar, press Shift+F8, or choose Debug, Step
Over. The code within the subroutine or function you are stepping over executes, but you
do not step through it. To experiment with the Step Over feature, follow the next
example.

Click the open form and click the Start Debug Process button one more time. Because you
did not remove the existing breakpoints, Access places you on the line of code that reads
Call Func1. Select Clear All Breakpoints from the Debug menu or use the Ctrl+Shift+F9
keystroke combination to remove all breakpoints. Step (press F8) five times until you are
about to execute the line Call Func2. Suppose that you have tested Func2 and Func3 and
know that they are not the cause of the problems in your code. With Func2 highlighted
as the next line Access will execute, click Step Over on the toolbar. Notice that Access
executes Func2 and Func3, but that you now are ready to continue stepping in Func1. In
this case, Access places you on the End Sub line immediately following the call to Func2.

Using Step Out
You use the Step Out feature to step out of the procedure you are in and to return to the
procedure that called the line of code you are on. You use this feature when you have
accidentally stepped into a procedure that you realize you have fully tested. You want to
execute all the code called by the procedure you are in and then step out to the calling
procedure so that you can continue with the debugging process. To test how this works,
follow this example.

1. Place a breakpoint on the call to Func2.

2. Click the Reset button on the toolbar to halt code execution.

3. Activate the frmDebug form and click the Start Debug Process command button.

4. Step once to place yourself in the first line of Func2.

5. Suppose that you realize you just stepped one step too far. You really intended to
step over Func2 and all the procedures it calls. No problem! Click the Step Out
button to step out of Func2 and return to the line following the line of code that
called Func2. In this case, you should find yourself on the End Sub statement of
Func1.

Setting the Next Statement to Execute
After you have stepped through your code, watched the logical flow, and modified some
variables, you might want to re-execute the code beginning at a prior statement. The
easiest way to do this is to click and drag the yellow arrow in the margin to the statement
on which you want to continue execution. If you prefer, you can click anywhere in the
line of code where you want to commence execution and then choose Debug, Set Next
Statement. Regardless of the method you chose, notice that the contrasting color (usually
yellow)—indicating the next line of code that Access will execute—is now placed over
that statement. You then can step through the code by pressing F8, or you can continue
normal code execution by pressing F5. Access enables you to set the next line it will
execute within a procedure only. You can use this feature to re-execute lines of code or to
skip over a problematic line of code.

CHAPTER 16 Debugging: Your Key to Successful Development742

The following example walks you through the process of changing the value of a variable
and then re-executing code after you have changed the value.

The preceding example left you at the last line of code (the End Sub statement) within
Func1. Now you want to change the value of intTemp and re-execute everything:

1. Go to the Immediate window and type intTemp = 100.

2. You need to set the next statement to print on the line that reads Debug.Print “We
Are Now in Func1()”. To do this, click and drag the yellow arrow from the End Sub
statement to the Debug.Print “We Are Now In Func1()” line. Notice the contrast-
ing color (yellow), indicating that that is the next statement of code Access will
execute.

3. Press F8 (step) two times. The code now executes with intTemp set to 100. Observe
the Immediate window again. Notice how the results have changed.

Using the Call Stack Window
You have learned how to set breakpoints, step through and over code, use the Immediate
window, set the next line to be executed, and continue to run until you reach the next
breakpoint. When you reach a breakpoint, it often is important to see which functions
the code called to bring you to this point. In this case, the Calls feature can help.

To bring up the Call Stack window, click the Call Stack button on the toolbar or choose
View, Call Stack. The window in Figure 16.11 appears. If you want to see the line of code
that called a particular function or subroutine, double-click that particular function or
click the function and then click Show. Although Access does not move your execution
point to the calling function or subroutine, you are able to view the code within the
procedure. If you want to continue your code execution, press F8. You move back to the
procedure through which you were stepping, and the next line of code executes. If you
press F5, your code executes until it reaches another breakpoint or watch. If you want to
return to where you were without executing additional lines of code, choose Debug, Show
Next Statement.

Using the Call Stack Window 743

1
6

Figure 16.11 You can view the stack with the Call Stack window.

To test this process, perform the next example:

1. Click the Reset button to stop your code execution if you are still in Break mode.

2. Remove the breakpoint on the call to Func2.

3. Move to the procedure called Func3 in basFuncs. Set a breakpoint on the line
Debug.Print “We Are Now in Func3()”.

4. Run the frmDebug form and click the command button. Access places you in Func3
on the line where you set the breakpoint.

5. Bring up the Call Stack window by clicking the Call Stack button on the toolbar. If
you want to see the line of code that called Func2 from Func1, double-click Func1.
Although Access does not move your execution point to Func1, you are able to view
the code within the procedure. To return to the next line of code to execute, choose
Debug, Show Next Statement.

6. Press F5, and the rest of your code executes.

Working with the Locals Window
The Locals window enables you to see all the variables on the current stack frame and to
view and modify their values. To access the Locals pane, click Locals Window on the
toolbar, or select Locals Window from the View menu. Three columns appear: Expression,
Value, and Type. The Expression column shows you the variables, user-defined types,
arrays, and other objects visible within the current procedure. The Value column displays
the current value of a variable or expression. The Type column tells you what type of data
a variable contains. The Locals windows displays variables that contain hierarchical
information—arrays, for example—with an Expand/Collapse button.

The information contained within the Locals window is dynamic. Access automatically
updates it as it executes your code and as you move from routine to routine. Figure 16.12
illustrates how you can use the Locals window to view the variables available with the
Func2 subroutine. To try this example yourself, remove all existing breakpoints. Place a
breakpoint in Func2 on the line of code that reads Debug.Print strName. Click Reset if
you are still executing code, and click the Start Debug Process command button to
execute code until the breakpoint. Click the Locals Window button on the Debug toolbar.
Click the plus sign to view the contents of the public variable gintCounter.

NOTE

You can change the value of a variable in the Locals window, but you cannot change its
name or type.

CHAPTER 16 Debugging: Your Key to Successful Development744

Working with Watch Expressions 745

1
6

FIGURE 16.12 You can use the Locals window to view the variables available within
a subroutine.

Working with Watch Expressions
Sometimes it is not enough to use the Immediate window to test the value of an expres-
sion or variable. You might want to keep a constant eye on the expression’s value. To do
so, you can set a watch expression. After you add a watch expression, it appears in the
Watch window. As you’ll see, you can create several types of watches.

Using Auto Data Tips
The quickest and easiest way to view the value contained within a variable is to use Auto
Data Tips, which is an option for working with modules. This feature is available only
when your code is in Break mode. While in Break mode, simply move your mouse pointer
over the variable or expression whose value you want to check. A tip appears with the
current value. To set the Auto Data Tips option from the VBE, choose Tools, Options, click
the Editor tab, and check the option for Auto Data Tips, which is under the Code Settings
options.

Using a Quick Watch
A quick watch is the most basic type of watch. To add a quick watch, highlight the name
of the variable or expression you want to watch and click the Quick Watch button on the
toolbar. The Quick Watch dialog box, shown in Figure 16.13, appears. You can click Add

to add the expression as a permanent watch or choose Cancel to view the current value
without adding it as a watch. If you click Add, the Watches window appears, like the one
in Figure 16.14. The next section discusses this window in more detail.

CHAPTER 16 Debugging: Your Key to Successful Development746

FIGURE 16.13 The Quick Watch dialog box enables you to quickly view the value of a vari-
able or add an expression as a permanent watch.

FIGURE 16.14 You can add a watch expression in the Watches window.

Adding a Watch Expression
As you saw, you can add a watch expression using a quick watch. Adding a watch this
way does not give you full control over the nature of the watch, however. If you need
more control over the watch, you must choose Debug, Add Watch. The Add Watch dialog
box appears, as shown in Figure 16.15.

TIP

If you add a quick watch or add a watch by choosing Debug, Add Watch, you easily can
customize the specifics of the watch by clicking with the right mouse button over the
watch in the Watches window. Then select Edit Watch.

A quick way to add a watch to the Watches window is to click and drag a variable or
expression from a Code module into the Watches window. Access adds the watch with
default settings.

Working with Watch Expressions 747

1
6

FIGURE 16.15 The Add Watch dialog box enables you to easily designate all the specifics of
a watch expression.

In the Expression text box, enter a variable, property, function call, or any other valid
expression. It is important to select the procedure and module in which you want to
watch the expression. Next, indicate whether you want to simply watch the value of the
expression in the Immediate window, break when the expression becomes True, or break
whenever the value of the expression changes. The sections that follow cover the two
latter options.

The next example walks you through the process of adding a watch and viewing the
watch variable as you step through your code. It illustrates how a variable goes in and out
of scope and changes value during code execution.

1. To begin, stop code execution if your code is running and remove any breakpoints
you have set.

2. Click within the strName variable in Func2.

3. Right-click and choose Add Watch.

4. Click OK to accept the Func2 procedure as the context for the variable and basFuncs
as the module for the variable.

5. Set a breakpoint on the line strName = “Bill Gates”.

6. Run the frmDebug form and click the command button. View the Watches window
and notice that strName has the value of a zero-length string.

7. Step one time and notice that strName is equal to Bill Gates.

8. Step three more times. Notice that, although you are in the Func3 routine, strName
still has the value Bill Gates. The reason is that the variable is still in memory in
the context of basFuncs.Func2.

9. Step four more times until you are back on the End Sub statement of Func2. The
strName variable is still in context.

10. Step one more time. The strName variable is finally out of context because you have
completed the execution of Func2.

Editing a Watch Expression
After you add a watch, you might want to edit the nature of the watch or remove it
entirely. You use the Edit Watch dialog box to edit or delete a watch expression. Follow
these steps:

1. Activate the Watches window.

2. Select the expression you want to edit.

3. Choose Debug, Edit Watch, or right-click and choose Edit Watch. The dialog box in
Figure 16.16 appears.

4. Make changes to the watch or click Delete to remove it.

CHAPTER 16 Debugging: Your Key to Successful Development748

FIGURE 16.16 You can use the Edit Watch dialog box to modify the specifics of a watch
after you add it.

Breaking When an Expression Is True
A powerful aspect of a watch expression is that you can break whenever an expression
becomes True. You can break whenever a Public variable reaches a specific value, for
example. You might want to do this when a Public or Private variable somehow is being
changed, and you want to find out where. Consider the following code, located in the
basFuncs module of CHAP16EX.ACCDB:

Sub ChangeGlobal1()

gintCounter = 50

Call ChangeGlobal2

End Sub

Sub ChangeGlobal2()

gintCounter = gintCounter + 10

Call ChangeGlobal3

End Sub

Sub ChangeGlobal3()

Dim intCounter As Integer

For intCounter = 1 To 10

gintCounter = gintCounter + intCounter

Next intCounter

End Sub

You might find that gintCounter somehow is reaching a number greater than 100, and
you are not sure how. To solve the problem, add the watch shown in Figure 16.17. Notice
that the expression you are testing for is gintCounter > 100. You have set the breakpoint
to break the code whenever the expression becomes True. To test the code, type
ChangeGlobal1 in the Immediate window and press Enter. The code should break in the
ChangeGlobal3 routine, indicating that this routine is the culprit.

Working with Watch Expressions 749

1
6

FIGURE 16.17 This watch will cause the code execution to break whenever the expression
is True.

Breaking When an Expression Changes
Instead of breaking when an expression becomes True, you might want to break when-
ever the value of the expression changes. This is a great way to identify the place where
something is mysteriously modifying the value of a variable. Like Break When Value Is
True, the Break When Value Changes option is great for tracking down problems with

Public and Private variables. Notice the watch being set in Figure 16.18. It is in the
context of all procedures within all modules. It is set to break whenever the value of
gintCounter changes. If you execute the ChangeGlobal1 routine, you’ll find that the code
halts execution within ChangeGlobal1 immediately after the code sets the value of
gintCounter to 50. If you press F5 to continue execution, the code halts within
ChangeGlobal2 immediately after it increments the value of gintCounter by 10. In other
words, every time the code modifies the value of gintCounter, the code execution breaks.

CHAPTER 16 Debugging: Your Key to Successful Development750

FIGURE 16.18 This watch will cause code execution to break whenever the value of an
expression changes.

Continuing Execution After a Runtime Error
As you are testing, you often discover runtime errors that are quite easy to fix. When a
runtime error occurs, a dialog box similar to the one shown in Figure 16.19 appears.

FIGURE 16.19 You can fix runtime errors from the Runtime Error dialog box.

If you click Debug, Access places you in the Code window on the line that generated the
error. After rectifying the problem, click the Continue button on the toolbar, or choose
Run, Continue.

Figure 16.20 shows a divide-by-zero error, for example, after the user clicked Debug from
the Runtime Error dialog box. The Locals window in the figure shows that the program-
mer set the value of int2 to 20. Code execution now can continue without error.

FIGURE 16.20 Here is the Debug mode after a divide-by-zero error.

Often, after an error occurs, VBA displays a message giving you the option of resetting
your code. If you opt to reset your code, all variables (including Publics and Statics)
lose their values. You also can click Reset on the toolbar. You must decide whether it is
better to proceed with your variables already set or to reset the variables and then
proceed.

NOTE

The General tab of the Options dialog box allows you to configure how VBA error
handling and the debugger interact. Chapter 17, “Error Handling: Preparing for the
Inevitable,” covers the options available to you.

Looking at Gotchas with the Immediate Window
Although the Access debugger is excellent, the debugging process itself is wrought with an
array of potential problems, as follows:

. The debugging process can interrupt code execution, especially when forms are
involved. When this occurs, the best bet is to place Debug.Print statements in your
code and examine what happens after the code executes.

. Along the lines of the preceding problem, it is difficult to debug code where you
have coded the GotFocus and LostFocus events. Moving to the VBE triggers the

Looking at Gotchas with the Immediate Window 751

1
6

LostFocus event of the control. Returning to the form causes Access to trigger the
GotFocus event of the control. Once again, a great solution is Debug.Print. You also
might consider writing information to an error log for perusal after the code
executes.

. Code that uses Screen.ActiveForm and Screen.ActiveControl wreaks havoc on the
debugging process. When the VBE is active, there is no active form and no active
control. Avoiding these lines in your code wherever possible alleviates this problem.

. Finally, be aware that resetting code can cause problems. If you are modifying envi-
ronmental settings, you are left with whatever environmental settings your applica-
tion code changed. If you continue execution after the error without resetting, all
sorts of other problems can occur. It is a good idea to code a special utility routine
that resets your environment.

Using Assertions
You use assertions to ensure that, if the user encounters a certain state, your code invokes
the debugger. The following code, found in basExamples, is an example:

Sub Assertion()

Dim intAge As Integer

intAge = InputBox(“Please Enter Your Age”)

Debug.Assert (intAge >= 0)

MsgBox “You are “ & intAge

End Sub

This example sets the value of a variable called intAge equal to the value entered into an
Input Box. The Debug.Assert statement “asserts” that the value entered is greater than or
equal to zero. If it is, code execution proceeds as expected. If the assertion is incorrect, the
code invokes the debugger.

It is a good idea to include a comment as to why an assertion might fail. By doing this,
you will facilitate the process of responding to the situation when it occurs. Also, it is
important to realize that, if you deploy your application with Debug.Assert statements
intact, you will receive a technical support call when an assertion fails, and your code
places the user in the debugger without warning!

Debugging Tips
The following tips will make your life much easier when debugging:

. Before starting to debug, be clear about what the problem is. Make sure that you
get all the necessary information from the user as to what he did to generate the
problem. Without this vital information, you can spend countless hours trying to
reproduce the problem rather than solve it.

CHAPTER 16 Debugging: Your Key to Successful Development752

. Make changes one line of code at a time. I have seen many hot-shot developers
attempt to change multiple lines of code simultaneously. Instead of correcting the
problem they initially set out to solve, they generate a multitude of additional
problems.

. Talk out the problem with other developers. Sometimes the process of simply
verbalizing the problem can be enough to help you to figure it out. If verbalizing
the problem doesn’t provide you with the answer, the person that you are verbaliz-
ing to might know the answer.

. When all else fails, take a break. Many times I have stayed up into the wee hours of
the night, attempting to solve a problem. After finally giving up, I surrender and go
to bed. It’s amazing how many times I solve the “unsolvable” problem from the
night before while in the shower the next morning!

Practical Examples: Debugging Real Applications
As you develop your own applications, use the techniques you learned to help solve any
problems you encounter. For now, use the debugger to step through and learn more about
the debugging process with one of the routines found in the sample database.

Summary
If programming were a perfect science, there would be no reason to use a debugger. Given
the reality of the challenges of programming, a thorough understanding of the use of the
debugger is imperative. Fortunately, the Access 2007 VBE provides an excellent tool to
assist in the debugging process.

This chapter began by showing you how you can reduce the chance of bugs within your
application in the first place. It then taught you how to use the Immediate window to
test and change the values of variables and properties. You learned how to use watches
and breakpoints, as well as how to view the call stack. All these techniques help make the
process of testing and debugging your application a pleasant experience.

Summary 753

1
6

This page intentionally left blank

IN THIS CHAPTER

. Why This Chapter Is Important

. Implementing Error Handling

. Using On Error Statements

. Using Resume Statements

. Clearing an Error

. Examining the Cascading Error
Effect

. Using the Err Object

. Raising an Error

. Using the Errors Collection

. Creating a Generic Error
Handler

. Preventing Your Own Error
Handling from Being Invoked

. Creating a Call Stack

. Building a Custom Error
Handler Class

. Working with Error Events

. Creating a List of Error Codes
and Descriptions

. Practical Examples:
Incorporating Error Handling

CHAPTER 17

Error Handling:
Preparing for the

Inevitable

Why This Chapter Is Important
Errors happen, even in the absence of programmer error.
You need to protect your programs and your data from the
adverse effects of errors by practicing error handling.

Error handling (also known as error trapping) is the process of
intercepting the Access Database Engine’s or Visual Basic
for Applications’ (VBA’s) response to an error. It enables the
developer to determine the severity of an error and to take
the appropriate action in response. This chapter shows you
the techniques required to successfully implement error
handling within your applications.

Implementing Error Handling
Without error handling, the user of your application is
forced to exit abruptly from your application code.
Consider the example in Listing 17.1.

The Click event behind the command button calls the
routine TestError1, passing it the values from two text
boxes. TestError1 accepts those parameters and attempts
to divide the first parameter by the second parameter. If the
second parameter is equal to 0, a runtime error occurs.
Because no error handling is in effect, the program
terminates.

LISTING 17.1 An Example of Code Without Error Handling

Private Sub cmdNoErrorHandler_Click()

‘Call TestError1, passing the values in the txtValue1

‘and txtValue2 text boxes

Call TestError1(Me.txtValue1.Value, Me.txtValue2.Value)

End Sub

Sub TestError1(Numerator As Integer, Denominator As Integer)

‘Divide the value received as the first parameter

‘by the value received as the second parameter

Debug.Print Numerator / Denominator

‘If successful, display a message to the user

MsgBox “I am in Test Error”

End Sub

Figure 17.1 shows the error message that the user receives. As you can see, the choices are
Continue, End, Debug, and Help. If users click Debug, the module window appears, and
they are placed in Debug mode on the line of code causing the error. Clicking Continue
(this button is not always available) tells Access to ignore the error and continue with the
execution of the program. End terminates execution of the programming code. If the
application is running with the runtime version of Access, it shuts down, and users are
returned to Windows. If users click Help, VBA Help attempts to give them some informa-
tion about the error that occurred. With error handling in effect, you can attempt to
handle the error in a more appropriate way whenever possible.

CHAPTER 17 Error Handling: Preparing for the Inevitable756

FIGURE 17.1 The default error handling message.

You can add error-handling code to the error event procedure of a form or report. You can
also add it to any VBA subroutine, function, or event routine. You can easily modify the
code in Listing 17.1 to handle the error gracefully. The code in Listing 17.2 shows a
simple error-handling routine.

LISTING 17.2 A Simple Error-Handling Routine

Sub TestError2(Numerator As Integer, Denominator As Integer)

On Error GoTo TestError2_Err

‘Divide the value received as the first parameter

‘by the value received as the second parameter

Debug.Print Numerator / Denominator

‘If successful, display a message to the user

MsgBox “I am in Test Error”

Exit Sub

TestError2_Err:

‘If a divide by zero (error 11) occurs, display an

‘appropriate message to the user

If Err = 11 Then

MsgBox “Variable 2 Cannot Be a Zero”, , “Custom Error Handler”

End If

Exit Sub

End Sub

The routine now invokes error handling. If a divide-by-zero error occurs, a message box
alerts the user to the problem, as Figure 17.2 shows.

NOTE

This code is located in the basError module, which is in the CHAP17EX.ACCDB data-
base on the accompanying CD-ROM.

Implementing Error Handling 757

1
7

FIGURE 17.2 A custom error handler message.

Using On Error Statements
On Error statements activate error handling. Each routine must contain its own On Error
statement if you want that routine to do its own error handling. Otherwise, the VBA
compiler cascades error handling up the call stack (the series of routines that executed to
get you to this point in code). If the VBA compiler does not find any On Error statements
in the call stack, it invokes its own error handling.

Suppose that Func1 calls Func2, and Func2 calls Func3. Only Func1 contains error
handling. An error occurs in Func3. Func3 passes control up to Func2. Func2 has no error
handling, so it passes control up to Func1. Func1 handles the error. Needless to say, the
error handler found in Func1 is not necessarily appropriate to handle the error that
occurred in Func3.

Using an On Error statement, you can cause the application to branch to error-handling
code, resume code execution on the line immediately following the error, or attempt to
re-execute the problematic line of code.

The On Error GoTo Statement
The statement On Error GoTo <label> tells VBA that, from this point forward in the
subroutine or function, if an error occurs, it should jump to the label specified in the
statement. This is the most common form of error handling.

The label specified in the On Error statement must be located in the current procedure.
Listing 17.3 shows a simple example of error handling.

LISTING 17.3 An Example of Error Handling Using the On Error GoTo Statement

Sub SimpleErrorHandler(iVar1 As Integer, iVar2 As Integer)
‘Invoke error handling
On Error GoTo SimpleErrorHandler_Err

‘Declare a variable to hold the result
Dim sngResult As Single
‘Divide the first parameter received by the
‘second parameter received
sngResult = iVar1 / iVar2

‘Exit the subroutine if all went as planned
Exit Sub

SimpleErrorHandler_Err:
‘If an error occurs, display a message and exit
‘the subroutine
MsgBox “Oops!”
Exit Sub

End Sub

CHAPTER 17 Error Handling: Preparing for the Inevitable758

NOTE

The example in Listing 17.3 differs from the code on the CD-ROM and will be modified
in the next section.

You can learn some important points from this simple routine. The routine receives two
integer values. It then invokes the error handler. When an error occurs, execution contin-
ues at the label. Notice that this routine contains two Exit Sub statements. If you remove
the first Exit Sub statement, the code falls through to the label regardless of whether an
error occurred. The Exit Sub statement at the bottom gracefully exits the procedure,
setting the error code back to 0.

Including the Error Number and Description in the Error Handler
The error-handling code in Listing 17.3 did not give a very descriptive message to users.
The Description and Number properties of the Err object give users more meaningful
error messages. The Err object is covered in detail later in this chapter in the section
“Using the Err Object.” For now, take a look at the Description and Number properties to
see how you can use them to enhance an error-handling routine. To display the error
number and description, you must modify the error-handling code to look like this:

SimpleErrorHandler_Err:

‘If an error occurs, display a message and exit

‘the subroutine

MsgBox “Error #” & Err.Number & “: “ & Err.Description

Exit Sub

This time, instead of hard-coding the error message, you display the error number and
VBA’s internal error string. Figure 17.3 shows the resulting error message. You can find the
SimpleErrorHandler routine and all the following examples in the basError module of
the CHAP17EX.ACCDB database.

Using On Error Statements 759

1
7

FIGURE 17.3 An error message with an error number and error string.

Using On Error GoTo 0

You use On Error GoTo 0 for two purposes:

. When you want Access to return to its default error handler

. When you have other error handling in a routine but want Access to return to the
calling routine when a specific condition occurs

Generally, you don’t want Access to return to its default error handler. You might do this
only if you are unable to handle the error, or if you are in the testing phase and not yet
ready to implement your own error handler.

The reason you want Access to return the error to a higher-level routine is much clearer.
You do this if you want to centralize the error handling, meaning that one routine may
call several others. Instead of placing error-handling code in each routine that is called,
placing the error handling in the calling routine is appropriate in certain situations.

The On Error Resume Next Statement
On Error Resume Next continues program execution on the line immediately following
the error. This construct is generally used when it is acceptable to ignore an error and
continue code execution. Listing 17.4 shows an example of such a situation.

LISTING 17.4 Ignoring an Error and Continuing Execution

Sub TestResumeNext()

‘Instruct VBA to continue on the next line if an error

‘occurs

On Error Resume Next

‘Attempt to delete a file

Kill “AnyFile”

‘If no error occurred, do nothing. Otherwise, display

‘a message with the description of the error that occurred

If Err.Number = 0 Then

Else

MsgBox “We Didn’t Die, But the Error Was: “ & Err.Description

End If

End Sub

You use the Kill statement to delete a file from disk. If the specified file is not found, an
error results. You delete the file only if it exists, so you are not concerned about an error.
On Error Resume Next is appropriate in this situation because resuming execution after
the offending line of code does no harm. The example illustrates that, although code
execution proceeds, the properties of the error object are still set.

Using Resume Statements
While you are in your error-handling code, you can use the Resume, Resume Next, and
Resume <LineLabel> statements to specify how you want VBA to respond to the error.
Resume attempts to re-execute the offending line of code, Resume Next resumes execution
after the offending line of code, and Resume <LineLabel> continues execution at a speci-
fied line label. The following sections cover these statements in detail.

CHAPTER 17 Error Handling: Preparing for the Inevitable760

The Resume Statement
The Resume statement resumes code execution on the line of code that caused the error.
You must use this statement with extreme care because it can throw the code into an
unrecoverable endless loop. Listing 17.5 shows an example of an inappropriate use of the
Resume statement.

LISTING 17.5 Using Resume Inappropriately

Function BadResume(strFileName As String)

‘Invoke error handling

On Error GoTo BadResume_Err

Dim strFile As String

‘Perform the Dir function to determine if

‘the file passed as a parameter exists

strFile = Dir(strFileName)

‘If the file doesn’t exist, return False

‘Otherwise, return True

If strFile = “” Then

BadResume = False

Else

BadResume = True

End If

‘Exit the function if all goes well

Exit Function

BadResume_Err:

‘Display an error message with the

‘description of the error that occurred

MsgBox Error.Description

‘Attempt to re-execute the offending line of code

Resume

End Function

This function is passed a filename. The Dir function searches for a file with that name
and returns True or False, depending on whether the specified file is found. The problem
occurs when the drive requested is not available or does not exist. This code throws the
computer into an endless loop. To remedy the problem, you should modify your code to
look like the code in Listing 17.6.

Using Resume Statements 761

1
7

Listing 17.6 Using Resume Conditionally Based on User Feedback

Function GoodResume(strFileName As String)

‘Invoke error handling

On Error GoTo GoodResume_Err

Dim strFile As String

‘Perform the Dir function to determine if

‘the file passed as a parameter exists

strFile = Dir(strFileName)

‘If the file doesn’t exist, return False

‘Otherwise, return True

If strFile = “” Then

GoodResume = False

Else

GoodResume = True

End If

‘Exit the function if all goes well

Exit Function

GoodResume_Err:

Dim intAnswer As Integer

‘Ask user if they want to try again

intAnswer = MsgBox(Error & “, Would You Like to Try Again?”, vbYesNo)

‘If they respond yes, attempt to re-execute the offending line

‘of code. Otherwise, exit the function

If intAnswer = vbYes Then

Resume

Else

Exit Function

End If

End Function

In this example, the error handler enables the user to decide whether to try again. The
Resume occurs only if the user’s response is affirmative.

The Resume Next Statement
Just as you can invoke error handling using an On Error Resume Next statement, you can
place a Resume Next statement in your error handler, as Listing 17.7 shows.

CHAPTER 17 Error Handling: Preparing for the Inevitable762

LISTING 17.7 Placing a Resume Next Statement in Your Error Handler

Sub TestResumeNextInError()

‘Invoke error handling

On Error GoTo TestResumeNextInError_Err

‘Attempt to delete a file

Kill “AnyFile”

‘If no error occurred, do nothing. Otherwise, display

‘a message with the description of the error that occurred

If Err.Number = 0 Then

Else

MsgBox “We Didn’t Die, But the Error Was: “ & Err.Description

End If

Exit Sub

TestResumeNextInError_Err:

‘Reset error information and resume execution on the

‘line of code following the line on which the error cocured

Resume Next

End Sub

In this example, the code is instructed to go to the label called
TestResumeNextInError_Err when an error occurs. The TestResumeNextInError_Err label
issues a Resume Next statement. This statement clears the error and causes execution to
continue on the line after the line on which the error occurred. The message box there-
fore never displays.

NOTE

Note the difference between On Error Resume Next and Resume Next. You place On
Error Resume Next in the body of the routine. It causes code execution to continue
on the line of code following the line that caused the error. It does not reset error
information.

You place Resume Next within the error handler. It also causes code execution to
continue on the line of code following the line that caused the error. It does reset the
error information.

The Resume <LineLabel> Statement
The Resume <LineLabel> statement enables you to specify a line of code where you want
code execution to continue after an error occurs. Using this statement is a great way to

Using Resume Statements 763

1
7

eliminate the two Exit Sub or Exit Function statements required by the error-handling
routines you have looked at so far. Listing 17.8 shows an example.

LISTING 17.8 Using the Resume <LineLabel> Statement to Specify Where Execution
Continues After an Error Occurs

Sub TestResumeLineLabel(intVar1 As Integer, intVar2 As Integer)

‘Invoke error handling

On Error GoTo TestResumeLineLabel_Err

Dim sngResult As Single

‘Divide the value received as the first parameter

‘by the value received as the second parameter

sngResult = intVar1 / intVar2

TestResumeLineLabel_Exit:

‘Exit subroutine

Exit Sub

TestResumeLineLabel_Err:

‘If an error occurs, display message with the error

‘number and description

MsgBox “Error #” & Err.Number & “: “ & Err.Description

‘Resume execution at the TestResumeLineLabel_Exit label

Resume TestResumeLineLabel_Exit

End Sub

Notice that this routine contains only one Exit Sub statement. If no error occurs, Access
drops through the TestResumeLineLabel_Exit label to the Exit Sub statement. If an error
does occur, the code in the TestResumeLineLabel_Err label executes. Notice that the last
line of the error label resumes execution at the TestResumeLineLabel_Exit label.

This method of resolving an error is useful because any code required to execute as the
routine is exited can be written in one place. Object variables might need to be set equal
to Nothing as the routine is exited, for example. You can place these lines of code in the
exit routine.

Clearing an Error
When an error occurs, the Err object remains set with the error information until one of
the following clears the error:

. Resume, Resume Next, or Resume <LineLabel>

. Exit Sub, Exit Function, or Exit Property

CHAPTER 17 Error Handling: Preparing for the Inevitable764

. End Sub, End Function, or End Property

. Any Goto statement

. Explicitly using the Clear method on the Err object

Until the error is somehow cleared, all the information remains set in the Err object.
After the error is cleared, no information is found in the Err object.

Examining the Cascading Error Effect
As mentioned earlier in the section “Using On Error Statements,” if Access does not find
error handling in a particular subroutine or function, it looks up the call stack for a previ-
ous error handler. Listing 17.9 shows an example of this process.

LISTING 17.9 Looking Up the Call Stack for a Previous Error Handler

Sub Func1()

‘Invoke error handling

On Error GoTo Func1_Err

‘Print to the Immediate window

Debug.Print “I am in Function 1”

‘Execute the Func2 routine

Call Func2

‘Print to the Immediate window

Debug.Print “I am back in Function 1”

‘Exit the subroutine

Exit Sub

Func1_Err:

‘Display a message to the user,

‘indicating that an error occurred

MsgBox “Error in Func1”

‘Resume execution

Resume Next

End Sub

Sub Func2()

‘No error handling in this routine!

‘Print to the Immediate window

Debug.Print “I am in Func2”

Examining the Cascading Error Effect 765

1
7

‘Execute Func3

Call Func3

‘Print to the Immediate window

Debug.Print “I am still in Func2”

End Sub

Sub Func3()

‘No error in this routine either!

Dim sngAnswer As Single

‘Print to the Immediate window

Debug.Print “I am in Func3”

‘Oops, an error occurred

sngAnswer = 5 / 0

‘This line of code will never execute

Debug.Print “I am still in Func3”

End Sub

In this situation, the error occurs in Func3. Because Func3 does not have its own error
handling, it refers back to Func2. Func2 does not have error handling either, so Func2
relinquishes control to Func1. VBA executes the error code in Func1. The real problem
occurs because of the Resume Next statement. The application continues executing within
Func1 on the Debug.Print “I am back in Function 1” statement. This type of error
handling is dangerous and confusing. Therefore, it is best to develop a generic error-
handling routine that is accessed throughout your application. The creation of a generic
error handler is discussed in the section “Creating a Generic Error Handler.”

Using the Err Object
The Err object contains information about the most recent error that occurred. As with
all Access objects, it has its own built-in properties and methods. Table 17.1 lists the prop-
erties of the Err object.

TABLE 17.1 Properties of the Err Object

Property Description

Description Description of the error that occurred
HelpContext Context ID for the Help file
HelpFile Path and filename of the Help file
LastDllError Last error that occurred in a 32-bit dynamic link library (DLL)

CHAPTER 17 Error Handling: Preparing for the Inevitable766

LISTING 17.9 Continued

Property Description

Number Number of the error that was set
Source System in which the error occurred (which is extremely useful when

you are using object linking and embedding [OLE] automation to
control another application, such as Excel)

The Err object has only two methods: Clear and Raise. The Clear method enables you to
clear an error condition explicitly. This method is used primarily when you write code
that uses the On Error Resume Next statement. This statement does not clear the error
condition. Remember that there is no reason to issue the Clear method explicitly with
any type of Resume, Exit Sub, Exit Function, Exit Property, On Error GoTo, or End Sub
statement. The Clear method is implicitly issued when these constructs are used. The
Raise method of the Err object is covered in the next section.

Raising an Error
You use the Raise method of the error object in these situations:

. When you want to generate an error on purpose (for example, in testing)

. When you want to generate a user-defined error

. When no code in the error routine handles the current error, and you want to allow
other parts of the call stack to attempt to handle the error

. When you want to nest an error handler

Using the Raise method to generate an error on purpose and creating a user-defined error
are both complicated and important enough that they require special attention. They are
covered in the following sections.

Generating an Error on Purpose
Many times during testing, you want to generate an error so that you can check your own
error handling. Instead of figuring out how to cause the error condition, you can use the
Raise method of the Err object to accomplish this task, as Listing 17.10 shows.

LISTING 17.10 Raising an Error

Sub TestRaiseError()

‘Invoke error handling

On Error GoTo TestRaiseError_Err

Dim sngResult As String

‘Raise a divide-by-zero error

Raising an Error 767

1
7

TABLE 17.1 Continued

Err.Raise 11

‘Exit the subroutine

Exit Sub

TestRaiseError_Err:

‘Display a message with the error number and description

MsgBox “Error #” & Err.Number & “: “ & Err.Description

‘Exit the subroutine

Exit Sub

End Sub

This code invokes an error 11 (divide-by-zero error).

Creating User-Defined Errors
Another important use of the Raise method of the Err object is the generation of a
custom error condition. This method is useful when you want to force an error in
response to something that the user did. For example, assume that the user must enter
five characters into an unbound text box. Entering only two characters would not gener-
ate an Access error. Instead of handling this user-generated error in some other manner,
you can raise the error and have your standard error handler respond to the error condi-
tion. Because the Raise method enables you to set all the properties of the Err object,
you can create a user-defined error complete with a number, description, source, and so
on, as shown in Listing 17.11.

LISTING 17.11 Creating a User-Defined Error

Sub TestCustomError()

‘Invoke error handling

On Error GoTo TestCustomError_Err

Dim strName As String

‘Prompt the user to enter their name

strName = InputBox(“Please Enter Your Name”)

‘If the length of the name is less than five

‘characters, raise an error number 11111

If Len(strName) < 5 Then

Err.Raise Number:=11111, _

Description:=”Length of Name is Too Short”

Else

MsgBox “You Entered “ & strName

CHAPTER 17 Error Handling: Preparing for the Inevitable768

LISTING 17.10 Continued

End If

Exit Sub

TestCustomError_Err:

‘Display a message with the error number

‘and description

MsgBox “Error # “ & Err.Number & _

“ - “ & Err.Description

Exit Sub

End Sub

Although this example is simple, Listing 17.11 illustrates an important use of generating
user-defined errors. The code tests to see whether the value entered has fewer than five
characters. If it does, the code generates a user-defined error message (number 11111). The
routine drops into the normal error-handling routine. The section “Creating a Generic
Error Handler,” later in this chapter, explores how to put together a generic error handler.
When you pass user-defined errors through your generic error handler, all errors—user-
defined or not—are handled in the same way.

Using the Errors Collection
The Errors collection is part of Access’s Database Engine. It stores the most recent set of
DAO errors that have occurred. This capability is important when you are dealing with
DAO (Data Access Objects) and ODBC (Open Database Connectivity), in which one oper-
ation can result in multiple errors. If you are concerned with each error generated by one
operation, you need to look at the Errors collection. Each error object in the Errors
collection contains information about an error that occurred. If you want to view the
errors stored in the Errors collection, you must loop through it, viewing the properties of
each Err object. Listing 17.12 shows the code you can use to accomplish this task.

LISTING 17.12 Viewing the Errors Stored in the Errors Collection

Sub TestErrorsCollection()

‘Invoke error handling

On Error GoTo TestErrorsCollection_Err

‘Declare a DAO database object

Dim db As DAO.Database

‘Point the database object at the database

‘referenced by the CurrentDB object

Set db = CurrentDb

Using the Errors Collection 769

1
7

LISTING 17.11 Continued

‘Attempt to execute a query that doesn’t exist

db.Execute (“qryNonExistent”)

Exit Sub

TestErrorsCollection_Err:

Dim ErrorDescrip As DAO.Error

‘Loop through the Errors collection,

‘sending the error number and description to

‘the Immediate window

For Each ErrorDescrip In Errors

Debug.Print ErrorDescrip.Number

Debug.Print ErrorDescrip.Description

Next ErrorDescrip

Exit Sub

End Sub

This routine loops through each Error object in the Errors collection, printing the
description of each error contained in the collection.

Creating a Generic Error Handler
A generic error handler can be called from every procedure in your application to respond
to any type of error.

A generic error handler prevents you from having to write specific error handling in each
of your subroutines and functions. Using such an error handler enables you to invoke
error handling throughout your application in the most efficient manner possible.

You can take many approaches to create a generic error handler. It should give users infor-
mation about the error, enable users to print this information, and log the information to
a file. You might even want to email this information to yourself or to someone else in
charge of maintaining the database.

The On Error routine (in this case, the label AnySub_Err) of every procedure that
performs error handling should look like the error-handling routine contained in the
subroutine in Listing 17.13.

LISTING 17.13 A Generic Error Handler for All Your Functions and Subroutines

Sub AnySub()

‘Declare constant with the name of the routine

Const SUBNAME As String = “AnySub”

CHAPTER 17 Error Handling: Preparing for the Inevitable770

LISTING 17.12 Continued

‘Invoke error handling

On Error GoTo AnySub_Err

‘Beginning of any routine

MsgBox “This is the rest of your code....”

‘Oops! Something causes an error!

Err.Raise 11

‘Code after the error

MsgBox “We are Past the Error!!”

AnySub_Exit:

‘Generic exit point for routine

Exit Sub

AnySub_Err:

Dim intAction As Integer

‘Call generic error handler, passing it the error

‘number and description, as well as the module name

‘and subroutine name

intAction = ErrorHandler(lngErrorNum:=Err.Number, _

strErrorDescription:=Err.Description, _

strModuleName:=MODULENAME, _

strRoutineName:=SUBNAME)

‘Evaluate return value to determine what action to take

Select Case intAction

Case ERR_CONTINUE

Resume Next

Case ERR_RETRY

Resume

Case ERR_EXIT

Resume AnySub_Exit

Case ERR_QUIT

Quit

End Select

End Sub

This error-handling routine in AnySub creates an Integer variable that holds the return
value from the error system. The intAction variable holds an appropriate response to
the error that occurred. The error routine calls the generic error-handling function

Creating a Generic Error Handler 771

1
7

LISTING 17.13 Continued

ErrorHandler, passing it the error number (Err.Number), a description of the error
(Err.Description), the name of the module containing the error, and the name of the
subroutine or function containing the error. The name of the module is stored in a
Private constant called MODULENAME. The Private constant is declared in the General
section of the module and needs to be created for every module you make. The name
of the subroutine or function is stored in a local constant called SUBNAME. With this
approach, you create a local constant and assign it the name of the sub at the beginning
of each procedure. This approach requires upkeep because procedure names can change,
and you need to remember to change your string. Unfortunately, because the VBA envi-
ronment does not expose the subroutine and module names to you when an error occurs,
this sort of brute force is necessary if you want your error handler to track the subroutine
and module. When the code returns from the ErrorHandler function, a return value is
placed in the intAction variable. This return value is used to determine the fate of the
routine.

Now that you have seen how to implement error handling in your procedures, look at the
function that’s called when an error occurs, as shown in Listing 17.14.

LISTING 17.14 A Type Structure Declaration to Be Used for Generic Error Handling

‘Type structure used to hold error information

Type typErrors

lngErrorNum As Long

strMessage As String

strModule As String

strRoutine As String

strUserName As String

datDateTime As Variant

End Type

‘Declaration of public type structure variable

Public gtypError As typErrors

‘Constants used by global error handler

Public Const ERR_CONTINUE = 0 ‘Resume Next

Public Const ERR_RETRY = 1 ‘Resume

Public Const ERR_QUIT = 2 ‘End

Public Const ERR_EXIT = 3 ‘Exit Sub or Func

This code is placed in the General section of basHandleErrors. The type structure
declared holds all the pertinent information about the error. A type structure is a special
kind of variable made up of various parts, each of which stores a different piece of infor-
mation. (Type structures are covered in Chapter 13, “Advanced VBA Techniques.”)

In Listing 17.14, the public variable gtypError holds all the information from the type
structure. The constants are used to help determine the fate of the application after an
error occurs. Listing 17.15 shows the ErrorHandler function.

CHAPTER 17 Error Handling: Preparing for the Inevitable772

LISTING 17.15 Using the ErrorHandler Function

Function ErrorHandler(lngErrorNum As Long, _

strErrorDescription As String, _

strModuleName As String, _

strRoutineName As String) As Integer

Dim strUserInfo As String

Dim strErrorInfo As String

‘Populate elements of the type structure variable

‘with information about the error that occurred

gtypError.lngErrorNum = lngErrorNum

gtypError.strMessage = strErrorDescription

gtypError.strModule = strModuleName

gtypError.strRoutine = strRoutineName

gtypError.strUserName = CurrentUser()

gtypError.datDateTime = Now

‘Log the error

Call LogError

‘E-mail the error

strUserInfo = gtypError.strUserName & _

“ Date: “ & gtypError.datDateTime

strErrorInfo = “Module: “ & gtypError.strModule & vbCrLf & _

“Routine: “ & gtypError.strRoutine & vbCrLf & _

“Error Number: “ & gtypError.lngErrorNum & vbCrLf & _

“Error Message: “ & gtypError.strMessage

Call MailError(strUserInfo, strErrorInfo)

‘Locate the error number in tblErrors to

‘determine how you should respond to the error

Dim rst As adodb.Recordset

Set rst = New adodb.Recordset

rst.Open “Select Response from tblErrors Where ErrorNum = “ & lngErrorNum, _

CurrentProject.Connection, adOpenStatic

‘If the error number that occurred is not found

‘in tblErrors, display the error form and return

‘ERR_QUIT to the problem routine

If rst.EOF Then

DoCmd.OpenForm “frmError”, WindowMode:=acDialog, _

OpenArgs:=”ErrorHandler”

ErrorHandler = ERR_QUIT

Creating a Generic Error Handler 773

1
7

‘If the error is in tblErrors, evaluate the contents of

‘the Response field. Respond appropriately, displaying the appropriate

‘form and returning the appropriate value to the offending routine

Else

Select Case rst!Response

Case ERR_QUIT

DoCmd.OpenForm “frmError”, WindowMode:=acDialog, _

OpenArgs:=”Critical Error: Application will Terminate”

ErrorHandler = ERR_QUIT

Case ERR_RETRY

ErrorHandler = ERR_RETRY

Case ERR_EXIT

DoCmd.OpenForm “frmError”, WindowMode:=acDialog, _

OpenArgs:=”Severe Error: Processing Did Not Complete”

ErrorHandler = ERR_EXIT

Case ERR_CONTINUE

ErrorHandler = ERR_CONTINUE

End Select

End If

End Function

The ErrorHandler function receives the error number, error description, module name,
and subroutine or function name as parameters. It then fills in the gtypError type struc-
ture with the information that it was passed, as well as the current user and date. Next, it
calls a routine that logs the error into an Access table. The routine looks up the severity of
the error code in an Access table called tblErrors to decide the most appropriate way to
handle the error. If it does not find the error code in the error table, the code displays an
error form, and it sends a return value to the calling function, indicating that application
execution is to be terminated. If it finds the error code in the tblErrors table and deter-
mines it to be critical or severe, the code displays an error form before it returns control
to the calling routine. In any case, the code returns a severity code for the error to the
calling function. The following section discusses the details involved in each step of the
process.

Logging the Error
The LogError routine is responsible for logging all the error information into an Access
table. Because users often decide not to print the error form or provide you with inaccu-
rate information about what was happening when the error occurred (or neglect to tell
you about the error), it is important that you log each error so that you can review the
error log at any time. You can log errors to a text file or to a data table. This section shows
you both methods of logging your errors. Start with logging your errors to a table, as
shown in Listing 17.16 with the LogError routine.

CHAPTER 17 Error Handling: Preparing for the Inevitable774

LISTING 17.15 Continued

LISTING 17.16 Using the LogError Routine

Sub LogError()

‘Declare a Connection object

Dim cnn As adodb.Connection

Dim strSQL As String

‘Point the Connection object at the connection

‘associated with the current project

Set cnn = CurrentProject.Connection

‘Build a SQL statement that inserts error information

‘into the tblErrorLog table

strSQL = “INSERT INTO tblErrorLog (ErrorDate, ErrorTime, “ & _

UserName, ErrorNum, ErrorString, ModuleName, RoutineName) “

strSQL = strSQL & “Select #” & gtypError.datDateTime & “#, #” _

& gtypError.datDateTime & “#, ‘“ _

& gtypError.strUserName & “‘, “ _

& gtypError.lngErrorNum & “, ‘“ _

& gtypError.strMessage & “‘, ‘“ _

& gtypError.strModule & “‘, ‘“ _

& gtypError.strRoutine & “‘“

‘Execute the SQL statement

cnn.Execute strSQL, , adExecuteNoRecords

End Sub

This routine uses the Execute method of the ADO Connection object to add a record to
your error table. The record contains all the information from the structure called
gtypError. The code logs the information to a table called tblErrorLog. Figure 17.4
shows the structure of this table.

The alternative error-logging method is to write the information to a textual error log file,
as shown in Listing 17.17.

LISTING 17.17 Writing Information to a Textual Error Log File

Sub LogErrorText()

Dim intFile As Integer

‘Store a free file handle into a variable

intFile = FreeFile

‘Open a file named ErrorLog.txt in the current directory

‘using the file handle obtained above

Creating a Generic Error Handler 775

1
7

Open CurDir & “\ErrorLog.Txt” For Append Shared As intFile

‘Write the error information to the file

Write #intFile, “LogErrorDemo”, Now, Err, Error, CurrentUser()

‘Close the file

Close intFile

End Sub

CHAPTER 17 Error Handling: Preparing for the Inevitable776

LISTING 17.17 Continued

FIGURE 17.4 The structure of the tblErrorLog table.

This code uses low-level file functions to open and write to an ASCII text file. The code
writes all the pertinent information about the error to this text file. The routine then uses
the Close command to close the text file. The potential advantage of this routine is that,
if the problem is with the database (for example, the network is down), the error-logging
process still succeeds.

Determining the Appropriate Response to an Error
After the code logs the error, you are ready to determine the best way to respond to the
error. By making your error system data-driven, you can handle each error a little differ-
ently. Figure 17.5 shows the structure of the tblErrors table. This table should contain
a list of all the error numbers you want to trap. It contains three fields: ErrorNum,

ErrorDescription, and Response. When an error occurs, the ErrorHandler function
searches for a record with a value in the ErrorNum field that matches the number of the
error that occurred.

Creating a Generic Error Handler 777

1
7

FIGURE 17.5 The structure of the tblErrors table.

The ErrorHandler function, as shown in Listing 17.15, uses the code in Listing 17.18 to
locate the error code in the tblErrors table.

LISTING 17.18 Locating the Error Code in the tblErrors Table

‘Locate the error number in tblErrors to

‘determine how you should respond to the error

Dim rst As adodb.Recordset

Set rst = New adodb.Recordset

rst.Open “Select Response from tblErrors Where ErrorNum = “ & lngErrorNum, _

CurrentProject.Connection, adOpenStatic

‘If the error number that occurred is not found

‘in tblErrors, display the error form and return

‘ERR_QUIT to the problem routine

If rst.EOF Then

DoCmd.OpenForm “frmError”, WindowMode:=acDialog, _

OpenArgs:=”ErrorHandler”

ErrorHandler = ERR_QUIT

‘If the error is in tblErrors, evaluate the contents of

‘the Response field. Respond appropriately, displaying the appropriate

‘form and returning the appropriate value to the offending routine

Else

Select Case rst!Response

Case ERR_QUIT

DoCmd.OpenForm “frmError”, WindowMode:=acDialog, _

OpenArgs:=”Critical Error: Application will Terminate”

ErrorHandler = ERR_QUIT

Case ERR_RETRY

ErrorHandler = ERR_RETRY

Case ERR_EXIT

DoCmd.OpenForm “frmError”, WindowMode:=acDialog, _

OpenArgs:=”Severe Error: Processing Did Not Complete”

ErrorHandler = ERR_EXIT

Case ERR_CONTINUE

ErrorHandler = ERR_CONTINUE

End Select

End If

The part of the ErrorHandler function shown in Listing 17.18 creates an ADO Recordset
object variable. It opens a recordset using a Select statement, which in turn searches a
table called tblErrors. If a match is found, the code uses the Response column to deter-
mine the response to the error. Notice in Listing 17.18 that, if the error number is not
found in tblErrors, default error handling occurs, which means that the code handles all
other errors as a group. (This is my default error handling, not Access’s.) If the error
number is found, the code evaluates the Response field and takes the appropriate action
(via the Case statement). If it is not found, the code opens the frmError form, and the
ERR_QUIT constant value is returned from the ErrorHandler function. When using this
method, you need to add to the table only specific errors that you want to trap.

If the error number is found in tblErrors, the code evaluates the Response field from the
recordset. If the Response field contains the constant value ERR_QUIT or ERR_EXIT, the
frmError form appears before the code returns the constant value to the offending func-
tion or subroutine. If the Response field contains the constant value for ERR_RETRY or
ERR_CONTINUE, the code returns the constant value without displaying the frmError form.

NOTE

The tblErrors table is included in CHAP17EX.ACCDB on the sample code CD-ROM. To
take full advantage of this table, you must add all the errors you want to trap, along
with the actions you want the error handler to take when a particular error occurs.

CHAPTER 17 Error Handling: Preparing for the Inevitable778

LISTING 17.18 Continued

Listing 17.19 shows how the code uses the return value from the ErrorHandler function.

LISTING 17.19 Using the Return Value from the ErrorHandler Function

Sub AnySub()
‘Declare constant with the name of the routine
Const SUBNAME As String = “AnySub”

‘Invoke error handling
On Error GoTo AnySub_Err

‘Beginning of any routine
MsgBox “This is the rest of your code....”

‘Oops! Something causes an error!
Err.Raise 11

‘Code after the error
MsgBox “We are Past the Error!!”

AnySub_Exit:
‘Generic exit point for routine
Exit Sub

AnySub_Err:
Dim intAction As Integer

‘Call generic error handler, passing it the error
‘number and description, as well as the module name
‘and subroutine name
intAction = ErrorHandler(lngErrorNum:=Err.Number, _

strErrorDescription:=Err.Description, _
strModuleName:=MODULENAME, _
strRoutineName:=SUBNAME)

‘Evaluate return value to determine what action to take
Select Case intAction

Case ERR_CONTINUE
Resume Next

Case ERR_RETRY
Resume

Case ERR_EXIT
Resume AnySub_Exit

Case ERR_QUIT
Quit

End Select
End Sub

Creating a Generic Error Handler 779

1
7

In Listing 17.19, the AnySub routine generates an error 11 (divide-by-zero error). Because
tblErrors contains the number 3 in the Response column and the ERR_CONTINUE
constant is equal to 3, the error form displays, and the AnySub routine exits with an Exit
Sub statement.

NOTE

To test what happens when the error code is not found in the tblErrors table, run the
SubWithUnknownError routine found in basError. To test what happens when the
code returns the ERR_CONTINUE code, execute the SubWithContinue routine.

Emailing the Error
Whereas the LogError routine is responsible for logging the error to a database, the
MailError routine, shown in Listing 17.20, is responsible for mailing the error informa-
tion to a key system administrator.

LISTING 17.20 The MailError Routine

Sub MailError(strUserInfo As String, _

strErrorInfo As String)

‘Declare necessary variables

Dim objCurrentMessage As Outlook.MailItem

Dim objNamespace As Outlook.NameSpace

Dim objMessage As Outlook.MAPIFolder

‘Get reference to a namespace variable

Set objNamespace = GetOutlook()

‘Use GetDefaultFolder method of the NameSpace object

‘to get a reference to a MAPIFolder object

Set objMessage = objNamespace.GetDefaultFolder(olFolderOutbox)

‘Use the Add method of the Items collection

‘of the MAPIFolder object to add a mail item

With objMessage.Items.Add(olMailItem)

‘Set properties of the mail item

.To = “guru@somecompany.com”

.Subject = strUserInfo

.Body = strErrorInfo

‘Save the mail item as a draft

.Save

End With

End Sub

CHAPTER 17 Error Handling: Preparing for the Inevitable780

The MailError routine receives user and error information from the calling routine. It
instantiates Outlook MailItem, NameSpace, and MAPIFolder objects. It then points the
NameSpace object at the namespace returned from the GetOutlook function. The
GetOutlook function appears in Listing 17.21.

LISTING 17.21 The GetOutlook Function

Function GetOutlook() As Outlook.NameSpace

Dim objOutlook As New Outlook.Application

Dim objNamespace As Outlook.NameSpace

Dim strProfile As String

Dim strPassword As String

strProfile = “alison”

strPassword = “mypassword”

‘Use the GetNamespace method of the Outlook

‘Application object to get a pointer to a

‘MAPI namespace

Set objNamespace = objOutlook.GetNamespace(“MAPI”)

‘Use the Logon method of the NameSpace object

‘to Logon to the namespace

Call objNamespace.Logon(strProfile, _

strPassword, False, True)

‘Return a reference to the namespace

Set GetOutlook = objNamespace

End Function

The GetOutlook function declares an Outlook NameSpace object and an Outlook
Application object. It uses the GetNamespace method of the Outlook Application object
to obtain a reference to a MAPI namespace. It then uses the Logon method of the name-
space to log on to the namespace, using a given profile name and password. You will need
to change the values of strProfile and strPassword to a valid profile name and pass-
word for this code to run properly on your machine. Finally, this code returns a reference
to the namespace that it created.

After the MailError routine has a reference to a MAPI namespace, it can use that refer-
ence to point to the Outbox. The code uses the Add method of the Items collection of the
Outbox to add a mail item to the Outbox. The code then sets the appropriate properties
(such as To, Subject, and so on) to the appropriate pieces of the error information.
Finally, the code can either save the message as a draft or else send it so that it’s immedi-
ately sent to the administrator and appears in the Sent Items folder of the sender.

Creating a Generic Error Handler 781

1
7

NOTE

Listing 17.21 requires that you know the username and profile of the user sending the
email. You could provide a dialog box where the user can enter this information each
time an error occurs, or this could be part of the initial logon to the system. I generally
recommend that this be integrated as part of the initial logon so that the user does
not have to take extra steps each time an error occurs.

Creating an Error Form
The code in the error form’s Load event calls two subroutines: GetSystemInfo and
GetErrorInfo, as shown here:

Private Sub Form_Load()

Dim objSys as SystemInformation

Set objSys = New SystemInformation

‘Call routine to obtain system information

Call GetSysInfo(Me)

‘Call routine to obtain error information

Call GetErrorInfo(Me)

‘If FormCaption property contains a value, use the

‘value as the caption for the form

If Not IsNull(Me.OpenArgs) Then

Me.lblAction.Caption = Me.OpenArgs

End If

End Sub

The first subroutine is called GetSysInfo. It performs several Windows Application
Programming Interface (API) calls to fill in the system information on your form. This
code is shown in Listing 17.22 and is discussed in Chapter 25, “Exploiting the Power of
the Windows API.”

LISTING 17.22 Getting System Information Through Code

Sub GetSysInfo(frmAny As Form)

‘Get Free Memory

Dim MS As MEMORYSTATUS

MS.dwLength = Len(MS)

GlobalMemoryStatus MS

frmAny.lblMemoryTotal.Caption = Format(MS.dwTotalPhys, “Standard”)

frmAny.lblMemoryAvail.Caption = Format(MS.dwAvailPhys, “Standard”)

CHAPTER 17 Error Handling: Preparing for the Inevitable782

‘Get version information

Dim OSInfo As OSVERSIONINFO

OSInfo.dwOSVersionInfoSize = Len(OSInfo)

If GetVersionEx(OSInfo) Then

frmAny.lblOSVersion.Caption = & _

OSInfo.dwMajorVersion & “.” & OSInfo.& _

dwMinorVersion

frmAny.lblBuild.Caption = OSInfo.dwBuildNumber And &HFFFF&

End If

‘Get system information

Dim SI As SYSTEM_INFO

GetSystemInfo SI

frmAny.lblProcessor.Caption = SI.dwProcessorType

End Sub

These API calls require the Declare statements and constants shown in Listing 17.23. You
will find them in a module called basAPI.

LISTING 17.23 Declaring Windows API Calls

‘Declarations required by WinAPI Calls

Option Compare Database

Option Explicit

Private Declare Sub GlobalMemoryStatus Lib “Kernel32” _

(lpBuffer As MEMORYSTATUS)

Private Type MEMORYSTATUS

dwLength As Long

dwMemoryLoad As Long

dwTotalPhys As Long

dwAvailPhys As Long

dwTotalPageFile As Long

dwAvailPageFile As Long

dwTotalVirtual As Long

dwAvailVirtual As Long

End Type

Private Declare Function GetVersionEx Lib “Kernel32” _

Alias “GetVersionExA” (lpOSInfo As OSVERSIONINFO) As Boolean

Creating a Generic Error Handler 783

1
7

LISTING 17.22 Continued

Type OSVERSIONINFO

dwOSVersionInfoSize As Long

dwMajorVersion As Long

dwMinorVersion As Long

dwBuildNumber As Long

dwPlatformId As Long

strReserved As String * 128

End Type

Private Declare Sub GetSystemInfo Lib “Kernel32” _

(lpSystemInfo As SYSTEM_INFO)

Private Type SYSTEM_INFO

dwOemID As Long

dwPageSize As Long

lpMinimumApplicationAddress As Long

lpMaximumApplicationAddress As Long

dwActiveProcessorMask As Long

dwNumberOfProcessors As Long

dwProcessorType As Long

dwAllocationGranularity As Long

dwReserved As Long

End Type

The second subroutine, GetErrorInfo, fills in the labels on the error form with all the
information from your structure, as shown in Listing 17.24.

LISTING 17.24 Using the GetErrorInfo Subroutine

Sub GetErrorInfo(frmAny As Form)

‘Populate form controls with error information

‘contained in the type variable

frmAny.lblErrorNumber.Caption = gtypError.lngErrorNum

frmAny.lblErrorString.Caption = gtypError.strMessage

frmAny.lblUserName.Caption = gtypError.strUserName

frmAny.lblDateTime.Caption = Format(gtypError.datDateTime, “c”)

frmAny.lblModuleName.Caption = gtypError.strModule

frmAny.lblRoutineName.Caption = gtypError.strRoutine

End Sub

Finally, the disposition of the error, sent as an OpenArg from the ErrorHandler function, is
displayed in a label on the form. Figure 17.6 shows the error form.

CHAPTER 17 Error Handling: Preparing for the Inevitable784

LISTING 17.23 Continued

FIGURE 17.6 The frmErrors form displays important information about the error that
occurred.

Printing the Error Form
Users often are not very accurate in describing an error and the corresponding error
message. It’s therefore important to give them the capability to print their error message.
The code in Listing 17.25 prints your error form. You will find it behind the Click event
of the Print button on the error form.

LISTING 17.25 Printing an Error Form

Sub cmdPrint_Click()

On Error GoTo Err_cmdPrint_Click

‘Use the PrintOut method to print the form

DoCmd.PrintOut

Exit_cmdPrint_Click:

Exit Sub

Err_cmdPrint_Click:

MsgBox Err.Description

Resume Exit_cmdPrint_Click

End Sub

Creating a Generic Error Handler 785

1
7

Preventing Your Own Error Handling from
Being Invoked
When you are testing your application, you do not want to trigger your own error
handling. Instead, you want to activate VBA’s own error handling. The trick is in the
Options dialog box of the Visual Basic Editor (VBE). Choose Tools, Options and click the
General tab. Enable the option Break on All Errors located in the Error Trapping section.
As long as this option is set, your error handling is ignored, and Access’s default error
handling is invoked. Using this setting, you can turn error handling on and off from one
central location.

Other settings for error trapping are Break in Class Module and Break on Unhandled
Errors (the default). With the latter setting, handled errors do not cause the application to
enter Break mode. Unhandled errors do cause the project to enter Break mode and place
you, or the user, on the line of code that invoked the error handler. The Break in Class
Module option causes only unhandled errors in a Class module to invoke Break mode.

Creating a Call Stack
While in the debugger, you can easily view the call stack. Unfortunately, the call stack
information cannot be accessed programmatically when an error occurs. If you want to
keep track of the sequence of procedures that brought you to the error condition, you
must do it yourself. The code in Listing 17.26 shows three routines. Func1 calls Func2, and
then Func2 calls Func3. Func3 renders an error.

LISTING 17.26 Routines That Call One Another

Sub Func1()

‘Invoke error handling

On Error GoTo Func1_Err

‘Put routine in call stack

ERH_PushStack_TSB (“Func1”)

‘Print to the Immediate window

Debug.Print “I am in Function 1”

‘Execute the Func2 routine

Call Func2

‘Print to the Immediate window

Debug.Print “I am back in Function 1”

Func1_Exit:

CHAPTER 17 Error Handling: Preparing for the Inevitable786

‘Pop error stack
ERH_PopStack_TSB

‘Exit the subroutine
Exit Sub

Func1_Err:
‘Display a message to the user,
‘indicating that an error occurred
MsgBox “Error in Func1”

‘Resume execution
Resume Func1_Exit

End Sub

Sub Func2()
‘Put routine in call stack
ERH_PushStack_TSB (“Func2”)

On Error GoTo Func2_Err

Debug.Print “I am in Func2”

‘Execute Func3
Call Func3

‘Print to the Immediate window
Debug.Print “I am still in Func2”

Func2_Exit:

‘Pop error stack
ERH_PopStack_TSB

‘Exit the subroutine
Exit Sub

Func2_Err:
‘Display a message to the user,
‘indicating that an error occurred
MsgBox “Error in Func1”

‘Resume execution
Resume Func2_Exit

End Sub

Creating a Call Stack 787

1
7

LISTING 17.26 Continued

Sub Func3()

Dim sngAnswer As Single

‘Put routine in call stack

ERH_PushStack_TSB (“Func3”)

On Error GoTo Func3_Err

‘Print to the Immediate window

Debug.Print “I am in Func3”

‘Oops, an error occurred

sngAnswer = 5 / 0

‘This line of code will never execute

Debug.Print “I am still in Func3”

Func3_Exit:

‘Pop error stack

ERH_PopStack_TSB

‘Exit the subroutine

Exit Sub

Func3_Err:

Dim intCounter As Integer

Dim strCallStack As String

For intCounter = LBound(gaERH_Stack_TSB) To UBound(gaERH_Stack_TSB)

If Len(gaERH_Stack_TSB(intCounter)) Then

strCallStack = strCallStack & _

gaERH_Stack_TSB(intCounter) & vbCrLf

End If

Next intCounter

MsgBox Err.Number & “: “ & Err.Description & _

vbCrLf & strCallStack

Resume Func3_Exit

End Sub

CHAPTER 17 Error Handling: Preparing for the Inevitable788

LISTING 17.26 Continued

Notice that at the beginning of each routine, the ERH_PushStack_TSB subroutine is called,
pushing the error into the stack, as shown in Listing 17.27.

LISTING 17.27 The ERH_PushStack_TSB Function

Sub ERH_PushStack_TSB(strProc As String)

‘ Comments : Pushes the supplied procedure name onto the error handling stack

‘ Parameters: strProc - name of the currently executing procedure

‘ Returns : Nothing

‘

gintERH_Pointer_TSB = gintERH_Pointer_TSB + 1

If gintERH_Pointer_TSB <= ERH_MAXITEMS_TSB Then

gaERH_Stack_TSB(gintERH_Pointer_TSB) = strProc

Else

gaERH_Stack_TSB(gintERH_Pointer_TSB + 2) = strProc

End If

End Sub

The code adds the name of the procedure to the gaERH Stack_TSB array. The
ERH_PopStack_TSB subroutine, shown in Listing 17.28, is executed in the exit code
for each procedure and removes the error from the stack.

LISTING 17.28 The ERH_PopStack_TSB Function

Sub ERH_PopStack_TSB()

‘ Comments : Pops the current procedure name off the error handling stack

‘ Parameters: None

‘ Returns : Nothing

‘

If gintERH_Pointer_TSB <= ERH_MAXITEMS_TSB Then

gaERH_Stack_TSB(gintERH_Pointer_TSB) = “”

End If

gintERH_Pointer_TSB = gintERH_Pointer_TSB - 1

If gintERH_Pointer_TSB < 0 Then

gintERH_Pointer_TSB = 0

End If

End Sub

The ERH_PopStack_TSB subroutine removes the text in the largest array element.

Creating a Call Stack 789

1
7

As the code goes in and out of routines, it adds entries to and removes entries from the
array. Because the array is Public, you can review its contents at any time. Notice in Func3
in Listing 17.26 that the error handler iterates through the array, pulling out the error
information.

Building a Custom Error Handler Class
Implementing error handling within an application can be tedious, especially if you
attempt to place specific error-handling logic in each routine you write. Although imple-
menting a generic error handler does not mandate the use of a Class module, using a
Class module greatly facilitates the process of implementing error handling within your
applications. Listing 17.29 illustrates this point.

LISTING 17.29 An Example of an Access Subroutine

Sub AnySub2()

‘Declare constant with the name of the routine

Const SUBNAME As String = “AnySub”

‘Invoke error handling

On Error GoTo AnySub2_Err

‘Beginning of any routine

MsgBox “This is the rest of your code....”

‘Oops! Something causes an error!

Err.Raise 11

‘Code after the error

MsgBox “We are Past the Error!!”

AnySub2_Exit:

‘Generic exit point for routine

Exit Sub

AnySub2_Err:

Dim intAction As Integer

‘Instantiate the error handler class

Set gobjErrorHandler = New ErrorHandler

‘Execute the ErrorProcess method,

‘passing the error information

intAction = gobjErrorHandler.ErrorProcess(ModuleName, _

SUBNAME, Err.Number, Err.Description)

CHAPTER 17 Error Handling: Preparing for the Inevitable790

‘Evaluate return value to determine what action to take

Select Case intAction

Case ERR_CONTINUE

Resume Next

Case ERR_RETRY

Resume

Case ERR_EXIT

Resume AnySub2_Exit

Case ERR_QUIT

Quit

End Select

End Sub

When an error occurs, your code instantiates the ErrorHandler class. The Initialize
event of the class executes, as shown in Listing 17.30.

LISTING 17.30 The Initialize Event of the ErrorHandler Class

Private Sub Class_Initialize()

‘Place username into private variable

mstrUsername = CurrentUser

‘Place current date and time into private variable

mdatDateTime = Now

End Sub

The Initialize event of the class sets the module-level variables mstrUserName and
mdatDateTime equal to the CurrentUser and the current date and time, respectively. The
Username and DateTime properties of the class use these variables.

The code then executes the ErrorProcess method of the ErrorHandler class, which
logs the error and then takes appropriate action in response to the error. It appears in
Listing 17.31.

LISTING 17.31 The ErrorProcess Method of the ErrorHandler Class

Public Function ErrorProcess(strRoutine As String, _

strModule As String, _

lngErrorNumber As Long, _

strErrorMessage As String) As Integer

‘Store error information into module-level variables

mstrRoutine = strRoutine

mstrModule = strModule

Building a Custom Error Handler Class 791

1
7

LISTING 17.29 Continued

mlngErrorNumber = lngErrorNumber

mstrErrorMessage = strErrorMessage

‘Log error

Call LogError

‘Locate the error number in tblErrors to

‘determine how you should respond to the error

Dim rst As ADODB.Recordset

Set rst = New ADODB.Recordset

rst.Open “Select Response from tblErrors “ & _

Where ErrorNum = “ & lngErrorNumber, _

CurrentProject.Connection, adOpenStatic

‘If the error number that occurred is not found

‘in tblErrors, display the error form and return

‘ERR_QUIT to the problem routine

If rst.EOF Then

DoCmd.OpenForm “frmError2”, WindowMode:=acDialog, _

OpenArgs:=”ErrorHandler”

ErrorProcess = ERR_QUIT

‘If the error is in tblErrors, evaluate the contents of

‘the Response field. Respond appropriately, displaying the appropriate

‘form and returning the appropriate value to the offending routine

Else

Select Case rst!Response

Case ERR_QUIT

DoCmd.OpenForm “frmError2”, WindowMode:=acDialog, _

OpenArgs:=”Critical Error: Application will Terminate”

ErrorProcess = ERR_QUIT

Case ERR_RETRY

ErrorProcess = ERR_RETRY

Case ERR_EXIT

DoCmd.OpenForm “frmError2”, WindowMode:=acDialog, _

OpenArgs:=”Severe Error: Processing Did Not Complete”

ErrorProcess = ERR_EXIT

Case ERR_CONTINUE

ErrorProcess = ERR_CONTINUE

End Select

End If

End Function

CHAPTER 17 Error Handling: Preparing for the Inevitable792

LISTING 17.31 Continued

The routine first sets the ModuleName, Routine, ErrorMessage, and ErrorNumber variables
within the class to the values of the parameters passed to the ErrorProcess method. The
Property Get routines for the ModuleName, Routine, ErrorMessage, and ErrorNumber
properties, which are responsible for manipulating error information, appear in Listing
17.32. Because you want the properties to be set via only the ErrorProcess method, no
Property Let routines exist.

LISTING 17.32 The Property Get Routines of the Class

Public Property Get ModuleName() As String

ModuleName = mstrModule

End Property

Public Property Get Routine() As String

Routine = mstrRoutine

End Property

Public Property Get ErrorMessage() As String

ErrorMessage = mstrErrorMessage

End Property

Public Property Get ErrorNumber() As Integer

ErrorNumber = mlngErrorNumber

End Property

Public Property Get UserName() As String

UserName = mstrUsername

End Property

Public Property Get DateTime() As Date

DateTime = mdatDateTime

End Property

As you can see, the Property Get routines retrieve the values from their associated
module-level variables.

Next, the function calls a routine that logs the error that occurred. This LogError routine
is shown in Listing 17.33. The LogError routine uses ADO code to add a record to the
tblErrorLog table. The record contains all the information about the error that occurred.
Notice that the error information is retrieved from the module-level variables populated
by the ErrorHandler class’s ErrorProcess method.

Building a Custom Error Handler Class 793

1
7

LISTING 17.33 The LogError Subroutine

Sub LogError()

‘Declare a Connection object

Dim cnn As ADODB.Connection

Dim strSQL As String

‘Point the Connection object at the connection

‘associated with the current project

Set cnn = CurrentProject.Connection

‘Build a SQL statement that inserts error information

‘into the tblErrorLog table

strSQL = “INSERT INTO tblErrorLog (ErrorDate, ErrorTime, UserName, _

ErrorNum, ErrorString, ModuleName, RoutineName) “

strSQL = strSQL & “Select #” & Me.DateTime & “#, #” _

& Me.DateTime & “#, ‘“ _

& Me.UserName & “‘, “ _

& Me.ErrorNumber & “, ‘“ _

& Me.ErrorMessage & “‘, ‘“ _

& Me.ModuleName & “‘, ‘“ _

& Me.Routine & “‘“

‘Execute the SQL statement

cnn.Execute strSQL, , adExecuteNoRecords

End Sub

After the error is logged, the number of the error that occurred is looked up in the
tblErrors table. If it is not found in the tblErrors table, a form is displayed, containing
all the critical information about the error that occurred. The value contained in the
constant ERR_QUIT is returned from the ErrorHandler function. If the error number is
found in the tblErrors table, the value contained in the Response field is evaluated. If
it is the value contained in the constant ERR_QUIT, the frmError form is displayed, and
the value in the constant ERR_QUIT is returned from the ErrorHandler method. If the
Response field contains the value of the ERR_RETRY constant, that value is returned from
the method, without the frmError form being displayed. If the Response field contains
the value associated with the ERR_EXIT constant, the frmError form is displayed, and the
ERR_EXIT value is returned from the ErrorHandler method. Finally, if the value in the
Response field is the value associated with the ERR_CONTINUE constant, no error informa-
tion is displayed, and the ERR_CONTINUE value is returned from the ErrorHandler method.

All the code contained in the ErrorHandler class is similar to that contained in the
basErrorHandler module. The code has been modified so that it is implemented using
properties and methods of a Class object.

CHAPTER 17 Error Handling: Preparing for the Inevitable794

The other code that is changed to use classes is the code behind the error form.
Listing 17.34 shows the Load event of the error form, modified to call methods of the
appropriate classes.

LISTING 17.34 The Form_Load Event of the Error Form

Private Sub Form_Load()

Dim objSys As SystemInformation

Set objSys = New SystemInformation

‘Call routine to obtain system information

Call objSys.GetSysInfo(Me)

‘Call routine to obtain error information

Call gobjErrorHandler.GetErrorInfo(Me)

‘If FormCaption property contains a value, use the

‘value as the caption for the form

If Not IsNull(Me.OpenArgs) Then

Me.lblAction.Caption = Me.OpenArgs

End If

End Sub

Notice that instead of calling the GetSysInfo and GetErrorInfo functions, the Load event
executes the GetSysInfo method of the SystemInformation object and the GetErrorInfo
method of the ErrorHandler object.

The GetSystemInfo function and associated declarations were moved to a
SystemInformation class. No other changes were made to the code.

The GetErrorInfo function was moved to the ErrorHandler class and modified to retrieve
properties of the class, as shown in Listing 17.35.

LISTING 17.35 The GetErrorInfo Method of the ErrorHandler Class Retrieving Properties
of the Class

Sub GetErrorInfo(frmAny As Form)

‘Populate form controls with error information

‘contained in the type variable

frmAny.lblErrorNumber.Caption = Me.ErrorNumber

frmAny.lblErrorString.Caption = Me.ErrorMessage

frmAny.lblUserName.Caption = Me.UserName

frmAny.lblDateTime.Caption = Format(Me.DateTime, “c”)

frmAny.lblModuleName.Caption = Me.ModuleName

frmAny.lblRoutineName.Caption = Me.Routine

End Sub

Building a Custom Error Handler Class 795

1
7

Notice that instead of using a type structure, the code references its own properties. The
Private variables associated with these properties were set by the ErrorProcess method
of the class.

Working with Error Events
Every form and report contains an error event procedure. This event is triggered by any
interface or Access Database Engine error. It is not triggered by a programming error made
by the Access developer.

Errors often occur in the interface of a form or report, as well as in the Access Database
Engine. A user might try to enter an order for a customer who doesn’t exist, for example.
Instead of displaying Access’s default error message, you might want to intercept and
handle the error in a particular way.

After an error occurs within a form, its error event is triggered. In Listing 17.36, you can
see Sub Form_Error. It contains two parameters. The first parameter is the number of the
error. The second is the way you want to respond to the error. The error number is an
Access-generated number.

This code, which is located in the frmOrders form in the CHAP17EX.ACCDB database, tests
to see whether a referential integrity error has occurred. If it has, a message box asks
whether the user wants to add the customer. If the user answers Yes, the customer form
is displayed.

LISTING 17.36 Viewing Sub Form_Error from the Form frmOrders

Private Sub Form_Error(DataErr As Integer, Response As Integer)

Dim intAnswer As Integer

If DataErr = 3201 Then ‘Referential Integrity Error

intAnswer = MsgBox(“Customer Does Not Exist...” & _ _

“Would You Like to Add Them Now?”, vbYesNo)

If intAnswer = vbYes Then

DoCmd.OpenForm “frmCustomer”, , , , acAdd, acDialog

End If

End If

Response = acDataErrContinue

End Sub

CAUTION

Be aware that the code in Listing 17.36 only traps referential integrity errors. It does
not handle any other error.

The Response = acDataErrContinue line is very important. It instructs Access to continue
the code execution without displaying the standard error message. The other option for
Response is AcDataErrDisplay. It tells Access to display the default error message.

CHAPTER 17 Error Handling: Preparing for the Inevitable796

Creating a List of Error Codes and Descriptions
Many people ask me how to create a list of error numbers and descriptions. The code in
Listing 17.37 creates a table of all the errors that can occur in your VBA code, with a
description of what each error number means. You can copy this code into any module
and run it.

LISTING 17.37 Code That Creates a Table of Errors and Descriptions

Sub CreateErrorsTable()

Dim cnn As ADODB.Connection

Dim rst As New ADODB.Recordset

Dim lngCode As Long

Const conAppObjectError = “Application-defined or object-defined error”

Set cnn = CurrentProject.Connection

‘ Open recordset on Errors table.

rst.Open “tblErrorMessages”, cnn, adOpenStatic, adLockOptimistic

‘ Loop through first 10000 Visual Basic error codes.

For lngCode = 1 To 10000

On Error Resume Next

‘ Raise each error.

Err.Raise lngCode

DoCmd.Hourglass True

‘ Skip error codes that generate application or object-defined errors.

If Err.Description <> conAppObjectError Then

‘ Add each error code and string to Errors table.

rst.AddNew

rst!ErrorCode = Err.Number

rst!ErrorString = Err.Description

rst.Update

End If

‘ Clear Err object.

Err.Clear

Next lngCode

‘ Close recordset.

rst.Close

DoCmd.Hourglass False

MsgBox “Errors table created.”

End Sub

The code opens a recordset based on the tblErrorMessages table. It loops through from 1
to 10000, raising an error with each number. Each time through the loop, it appends the
error number and the associated error description to the tblErrorMessages table.

Creating a List of Error Codes and Descriptions 797

1
7

Practical Examples: Incorporating Error Handling
Error-handling code should be added throughout the applications that you build. The
following example shows you how to incorporate a generic error handler into your
applications.

Assume that your application contains a routine called GetCompanyInfo. This routine
reads all the company information from the tblCompanyInfo table. The information is
read from the public class instance as needed, while the application is running. This
routine, like any routine, has the potential for error. The original routine has been modi-
fied to incorporate the generic error handler, as shown in Listing 17.38.

LISTING 17.38 Incorporating the Generic Error Handler into Your Code

Sub GetCompanyInfo()

Dim strSubName As String

Dim rst As ADODB.Recordset

‘Declare constant with the name of the routine

Const SUBNAME As String = “GetCompanyInfo”

‘Invoke error handling

On Error GoTo GetCompanyInfo_Err

‘Instantiate the CompanyInformation class

Set gobjCompanyInfo = New CompanyInformation

Set rst = New ADODB.Recordset

‘Open a recordset based on the tblCompanyInfo table

rst.Open “tblCompanyInfo”, CurrentProject.Connection

‘Populate the properties of the public class instance

‘with values from the tblCompanyInfo table

With gobjCompanyInfo

.SetupID = rst!SetupID

.CompanyName = rst!CompanyName

.Address = rst!Address

.City = rst!City

.StateProvince = rst!StateProvince

.PostalCode = rst!PostalCode

.Country = rst!Country

.PhoneNumber = rst!PhoneNumber

.FaxNumber = rst!PhoneNumber

End With

rst.Close

CHAPTER 17 Error Handling: Preparing for the Inevitable798

GetCompanyInfo_Exit:

‘Generic exit point for routine

Exit Sub

GetCompanyInfo_Err:

Dim intAction As Integer

‘Instantiate the error handler class

Set gobjErrorHandler = New ErrorHandler

‘Execute the ErrorProcess method,

‘passing the error information

intAction = gobjErrorHandler.ErrorProcess(ModuleName, _

SUBNAME, Err.Number, Err.Description)

‘Evaluate return value to determine what action to take

Select Case intAction

Case ERR_CONTINUE

Resume Next

Case ERR_RETRY

Resume

Case ERR_EXIT

Resume GetCompanyInfo_Exit

Case ERR_QUIT

Quit

End Select

End Sub

Notice the On Error GoTo statement at the beginning of the routine, and that the local
constant SUBNAME is declared and set equal to GetCompanyInfo. The generic error handler
uses the value in the constant to display the routine within which the error occurred. The
error handler GetCompanyInfo_Err instantiates the ErrorHandler class. It executes the
ErrorProcess method of the class and then evaluates its return value.

Summary
In this chapter, you learned the alternatives for handling errors in your Access applica-
tions. This chapter covered how you can use the error event to trap for application and
Access Database Engine errors in forms and reports. You also learned how to use the On
Error statement. Finally, you learned how to build a generic error system. Regardless of
the amount of testing done on an application, errors will occur. It is important that you
properly trap for those errors.

Summary 799

1
7

LISTING 17.38 Continued

This page intentionally left blank

IN THIS CHAPTER

. Why This Chapter Is Important

. Introducing Optimization

. Modifying Hardware and
Software Configurations

. What Is the Access Database
Engine?

. Letting the Performance
Analyzer Determine Problem
Areas

. Designing Tables to Optimize
Performance

. Designing Database Objects to
Improve Performance

. Practical Examples: Improving
the Performance of Your
Applications

CHAPTER 18

Optimizing Your
Application

Why This Chapter Is Important
In a world where it can be difficult for hardware to keep up
with software, it is important to do everything you can to
improve the performance of your application. This chapter
helps you optimize your application’s speed and reduce its
memory and hard disk space requirements.

Introducing Optimization
Optimization is the process of reviewing your operating
environment, Visual Basic for Applications (VBA) code,
application objects, and data structures to ensure that they
are providing optimum performance. In a nutshell, opti-
mization is the process of making your application leaner
and meaner.

Users become frustrated when an application runs slowly.
In fact, if a user is not warned about a slow process, he will
often reboot or shut down the power on the machine while
a process is running. This can have dire results on the
integrity of the data.

TIP

If you want to help reduce the chance of users reboot-
ing the computer during a lengthy process, it’s gener-
ally a good idea to provide them with some sort of
indication that a process will take awhile. You can do
this by using a message box that appears before
processing begins or by providing a status bar or
progress meter that shows the progress of the task
being completed.

You can take many steps to optimize an application’s performance, ranging from using
a front-end tool such as the Performance Analyzer, to fastidiously adhering to certain
coding techniques. This chapter highlights the major steps you can take to optimize the
performance of your applications.

Modifying Hardware and Software Configurations
The Access environment refers to the combination of hardware and software configurations
under which Microsoft Access runs. These environmental settings can greatly affect the
performance of an Access application.

The easiest way to improve an application’s performance is to upgrade its hardware and
software configuration. This form of optimization requires no direct intervention from
the developer. Plus, a side benefit of most of the environmental changes you can make
is that any improvements made to the environment are beneficial to users in all their
Windows applications.

Improving the environment involves more than just adding some RAM. It also can mean
optimally configuring the operating system and the Access application.

Hardware, Hardware, More Hardware, Please!
The bottom line is that Windows XP, Windows Server 2003, Windows Vista, and Access
2007 all crave hardware—the more, the better. The faster your users’ machines are, and
the more memory they have, the better your applications will run. Obtaining additional
hardware might not be the least expensive solution, but it certainly is the quickest and
easiest thing you can do to improve the performance of your application. You can make a
number of changes to your system’s hardware to improve your application’s performance,
as the next sections illustrate.

RAM, RAM—That’s All I Need!
Memory is what Access craves most, whether you are running under the full version of
Microsoft Access or using the runtime version of the product. Microsoft Access requires
256MB of RAM just to run, and Microsoft recommends additional RAM if possible.
Microsoft considers these minimums to be the standard operating environment for
Access. Microsoft recommends additional RAM for each application that your users are
running simultaneously with Access 2007. Put in a straightforward way, the more RAM
you and the users of your application have, the better. A great environment for Access
2007 is 2GB or more of RAM. In fact, if every one of your users has at least 2GB of RAM,
you can stop reading this chapter, because everything else covered here is going to
provide you with minor benefits compared to adding more RAM. If you are like most of
us, though (meaning that not every one of your users has a machine running at 1GHz
with 2GB of RAM or more), read on.

CHAPTER 18 Optimizing Your Application802

NOTE

Developers should have a bare minimum of 1GB of RAM installed on their machines.
Remember that this is a minimum! Most developers agree that 2GB of RAM or more
is ideal if you intend to do any serious development work, especially if you plan to
develop client/server or Internet/intranet applications.

Defragment Your User’s Hard Disk
As your computer writes information to disk, it attempts to find contiguous space on
which to place data files. As the hard disk fills up, the computer places files in fragmented
pieces on the hard disk. Each time your application attempts to read data and programs,
it must locate the information scattered over the disk. This is a time-consuming process.
Therefore, it’s helpful to defragment the hard disk on which the application and data
tables are stored using a utility such as the Disk Defragmenter that ships with Windows
XP, Windows 2003, and Windows Vista.

Compact Your Database
Just as the operating system fragments your files over time, Access itself introduces its
own form of fragmentation. Each time you add and modify data, your database grows.
When you delete data or objects within your database, it does not shrink. Instead, Access
leaves empty pages available in which it will place new data. The problem is that these
empty pages are not necessarily filled with data. You can free the empty space using the
Compact utility, which is included in the Microsoft Access software. The Compact utility
frees this excess space and attempts to make all data pages contiguous. You should
compact your database frequently, especially if records or database objects (for example,
forms and reports) are regularly added and deleted. You can access the Compact utility
by clicking the Microsoft Access button and selecting Manage, Compact and Repair
Database.

Tune Virtual Memory: Tweak the Paging File
Although Windows XP, Windows Server 2003, and Windows Vista attempt to manage
virtual memory on their own, you might find it useful to provide them with some addi-
tional advice. To modify the physical location of the paging file, right-click My Computer,
and choose Properties. The System Properties dialog box appears. Click the Advanced tab
(see Figure 18.1). Then click Settings under the Performance options. The Performance
Options dialog box appears. Click the Advanced tab (see Figure 18.2). Click the Change
button under Virtual Memory. The Virtual Memory dialog box appears (see Figure 18.3).
In this dialog box, you can modify all the settings for the paging file. It might be useful to
move the paging file to a faster disk drive or to a drive connected to a separate controller
card. Any changes you make might adversely affect performance. It is important that you
evaluate whether any changes you make will help the situation—or perhaps make things
worse! In general, it is advisable to let Windows dynamically manage the size of the
paging file unless the system is running very low on disk space.

Modifying Hardware and Software Configurations 803

1
8

FIGURE 18.1 The Advanced tab of the System Properties dialog box.

TIP

If Access 2007 or Windows is running on a compressed drive, you can improve perfor-
mance by moving the paging file to an uncompressed drive. If possible, the paging file
should be located on a drive or partition solely dedicated to the paging file, or on a
drive or partition that is accessed rarely by other applications. This helps to ensure
that the entire paging file remains in a contiguous location on a disk.

Run Access and Your Application Locally
In Chapter 22, “Developing Multiuser and Enterprise Applications,” you will learn that it is
best to install both the Access software and your application objects on each user’s local
machine. You should store only the data tables on a network file server. Otherwise, you
will be sending dynamic link libraries (DLLs), object linking and embedding (OLE) objects,
help files, type libraries, executables, and database objects all over the network wire.

TIP

One viable option is to run Access 2007 using Windows 2003 Terminal Services. In
this scenario, Access is installed on a powerful server machine running Windows 2003
Terminal Services. Workstations connect to the terminal server using the Terminal
Services Client utility. No data travels over the network wire. Each user becomes a
session running on the server machine. All processing is done on the server machine.
Keystrokes and mouse movements are sent from the client machine to the server,
which processes them and sends a screen image back to the client.

CHAPTER 18 Optimizing Your Application804

FIGURE 18.2 The Advanced tab of the Performance Options dialog box.

Modifying Hardware and Software Configurations 805

1
8

FIGURE 18.3 The Virtual Memory dialog box allows you to change paging file settings.

Do Everything You Can to Make Windows Itself Faster
I am always amused that the users with the slowest machines and the least memory have
the most accessories running. These accessories include multimedia, fancy wallpapers, and
other nifty utilities. If performance is a problem, you might try to see whether eliminat-
ing some of the frivolous niceties improves the performance of your application. If it
does, encourage the user to eliminate the frills, get more memory, or accept your applica-
tion’s performance. Furthermore, if you are finished using other applications, such as
Microsoft Excel, close them. This frees up system memory for Access.

If you have Windows XP, a tip to make it run faster is to shut down and restart on a
regular basis. Memory tends to become fragmented, making applications run more slowly.
Although I can go weeks or months in Windows 2003 Server without rebooting, I find it
beneficial to reboot my Windows XP machine once a week.

Change Access’s Software Settings
In addition to the more obvious measures just outlined, some minor software tweaking
can go a long way toward improving performance. Adjusting several settings in the
Windows Registry can dramatically improve performance. All these changes involve the
Registry’s ISAM section. The properties you might want to change include MaxBufferSize
and ReadAheadPages. Both of these settings determine how the Jet Engine uses memory.

MaxBufferSize controls the maximum size of the Jet Engine’s internal cache. By default,
it is set to optimize performance on most machines. It does this by reading data in 2KB
pages, placing the data in a memory cache. The data in the cache is readily available to
forms, reports, tables, and queries. Lowering the value for MaxBufferSize frees memory
for other tasks. Lowering the value might be helpful on a machine with a minimum
memory configuration.

ReadAheadPages controls the number of 4KB data pages that the Jet Engine reads ahead
when performing sequential page reads. This number can range from 0 to 31, with the
default at 16. The higher this number is, the more efficient Access is at reading ahead so
that data is available when you need it. The lower this number is, the more memory is
freed up for other tasks.

As you configure any of these settings, remember that what is good for one machine is
not necessarily good for the next. The settings for each machine must be optimized with
its unique hardware configuration in mind.

What Is the Access Database Engine?
Introduced with Access 2007 is the Access Database Engine. This is the new name for Jet. It
includes functionality required for the new Access 2007 feature set. This engine provides
the functionality necessary for the integration with Microsoft Windows SharePoint
Servers 3.0. It also allows for integration with Microsoft Office Outlook 2007. Finally,
this new database engine allows you to create multivalued lookup fields.

CHAPTER 18 Optimizing Your Application806

Letting the Performance Analyzer Determine
Problem Areas
You can make many changes to improve the performance of an application. Most of them
require significant attention and expertise on your part. The Performance Analyzer is a tool
that does some of that work for you. This tool analyzes the design of an Access application
to suggest techniques you can use to improve the application’s performance. Many of the
techniques that the Performance Analyzer suggests can be implemented automatically.

To use the Performance Analyzer, click to select the Database Tools tab. Then select the
Analyze Performance tool found in the Analyze group. The dialog box in Figure 18.4
appears.

Letting the Performance Analyzer Determine Problem Areas 807

1
8

FIGURE 18.4 The Performance Analyzer dialog box.

Select the individual tables, queries, forms, reports, macros, modules, and relationships
that you want the Performance Analyzer to scrutinize. If you want Access to analyze the
relationships, you must click the Current Database tab and then select Relationships.
Make all your selections and click OK. When the Performance Analyzer completes the
analysis process, the second part of the Performance Analyzer dialog box appears, as
shown in Figure 18.5. This window provides you with a list of suggested improvements
to the selected objects. The results are broken down into Recommendations, Suggestions,
Ideas, and Fixed (meaning items that were automatically fixed). Suggested improvements
will include enhancements such as the addition of an index or the conversion of an OLE
object. After analyzing the CHAP18EX database included on the sample CD-ROM, for
example, the Performance Analyzer suggested that Option Explicit be added to the
basBenchMarks module.

FIGURE 18.5 The second part of the Performance Analyzer dialog box.

Designing Tables to Optimize Performance
Now that you have seen the changes you can make to your environment to improve
performance, take a look at the changes you can make to your data structures to optimize
performance. Such changes include eliminating redundant data, using indexes, selecting
appropriate field data types, and using various query techniques.

Tweaking the data structure is imperative for good performance. No matter what else you
do, poor data design can dramatically degrade the performance of your application. All
other optimization attempts are futile without proper attention to this area.

You can spend days and days optimizing your data. You must carefully think through and
analyze these data changes. You will often make data changes over time as you or your
users identify problems. Such changes can include those in the following sections.

Why Be Normal?
In essence, “be normal” means normalize your tables—that is, consolidate common data
in related tables. Processing the same data that appears in multiple places can signifi-
cantly slow down your application. This slowdown is the result of both the volume of
data that is generated, as well as the need to update all copies of the data whenever the
data changes. Suppose a company address appears in both the Customers table and the
Orders table. If the company address changes, it must be changed in both the Customers
table and in the Orders table. This information should be included only in the Customers
table. Queries should be used to combine the address and order data when needed.

I Thought You Just Told Me to Normalize
When it comes to performance, unfortunately, there are no hard-and-fast rules. Although
most of the time you gain performance by normalizing your data structure, denormaliz-
ing your structure can help at times. This generally is the case when you find yourself

CHAPTER 18 Optimizing Your Application808

creating a particular join over and over again. Another example is an accounting applica-
tion in which you need to be able to readily see the total amount that a customer owes.
Instead of evaluating all the open invoices each time you move to a customer record, you
can store the total amount that the customer owes on the customer record. Of course,
this requires that you update the summarized figure whenever the customer is billed or
makes a payment. In summary, you can try denormalizing the data to see whether
dramatic performance improvements result. Remember that denormalization has definite
downsides regarding data integrity and maintenance.

Index, Index, Index!
It is amazing how far an index can go toward improving performance. You should include
any fields or combination of fields on which you search in an index. You should create
indexes for all columns used in query joins, searches, and sorts. You should create
primary key indexes rather than unique indexes, and unique indexes rather than
nonunique indexes. It is not necessary to create an index for the foreign key field in a
one-to-many relationship. Access automatically creates the index when you establish the
relationship. Furthermore, there is no benefit to creating an index on a field containing
highly repetitive data. An example is a state field in a customer table where all the
customers are located in one of two states. Although you can overuse indexes, when you
use them properly, the performance improvements rendered by indexes are profound.

CAUTION

Although indexes can dramatically improve performance, you should not create an
index for every field in a table. Indexes do have their downside. Besides taking up disk
space, they also slow down the process of adding, editing, and deleting data.

TIP

In a multiple-field index, index on as few fields as possible. Searching through multiple-
field indexes can dramatically degrade performance.

NOTE

Client/server optimization strategies are covered in detail in Alison Balter’s Mastering
Access 2002 Enterprise Development.

Select the Correct Data Type
When defining a field, select the shortest data type available for the storage of the data. If
you will be storing a code between 1 and 10 within the field, for example, there is no
reason to select Double for a numeric field. Although Double would work, it would
require unnecessary storage space as well as unnecessary processing time. On the other

Designing Tables to Optimize Performance 809

1
8

hand, make sure that you always leave room for growth of your data. For example, many
people often select Integer, not realizing that they should have selected Long Integer.

Designing Database Objects to Improve
Performance
There are many things that you can do to make queries, modules, forms, and reports run
more efficiently. The sections that follow cover each of these objects in detail.

Optimizing the Performance of Your Queries
Optimizing your queries requires a great deal of practice and experimentation. Some
queries involving a one-to-many relationship run more efficiently if you place the criteria
on the “one” side of the relationship, for example. Others run more efficiently if you
place the criteria on the “many” side. Understanding some basics can go a long way
toward improving the performance of your queries and your application as a whole, as
listed in the following:

. Include as few columns in the resultset as possible. This limits the data returned to
the client if you ever convert your application to a client/server environment.

. Try to reduce the number of complex expressions contained in the query. Although
including a complex expression in a query eliminates the need to build the expres-
sion into each form and report, the performance benefits gained sometimes are
worth the trouble.

. Use the Between operator rather than greater than (>) and less than (<) operators.
The Access Database Engine is able to process Between more efficiently.

. Group Totals queries by the field that is in the same table you are totaling. In other
words, if you are totaling cost multiplied by price for each order in the Order
Detail table, group by the order ID within the Order Detail table, not by the order
ID within the Orders table. This reduces the number of rows that the Access
Database Engine must process when running the query.

Now that you have seen what you can do with the design of your queries to improve
performance, take a look at a couple of simple techniques you can use to improve the
performance of your queries.

A simple but often neglected method of optimizing queries is to deliver your queries
compiled. A query compiles when you open it in Datasheet view and then simply close it.
If you modify a query and then save it, it is not compiled until the query runs. The Access
Database Engine compiles all queries when you compact a database. Delivering precom-
piled queries ensures that they run as quickly as possible. It is therefore a good idea to
compact a database before you distribute it to your users.

Finally, it is important that you compile your queries using the same amount of data that
your application will contain. The reason is that the Access Database Engine’s Query

CHAPTER 18 Optimizing Your Application810

Optimizer optimizes the query differently, depending on the amount of data it finds. If
you build a query using 100 records that will run on a live table containing 100,000
records, the query will not be optimized properly. You must rerun and resave your query
using the correct quantity of data if you want the query to be optimized properly, or you
must compact the database after the live data has been entered.

Making Coding Changes to Improve Performance
No matter what you do to optimize the operating system environment and improve your
data design, poor code can continue to bog you down. A properly optimized application
is optimized in terms of the environment, data design, and code. Just as poor table design
can degrade performance, poor coding techniques also can have a dramatic negative
effect on performance. Changes to your code include eliminating variants and dead code,
using built-in collections, and using specific object types. An important code-related opti-
mization is to deliver your modules precompiled.

The following changes and techniques can aid in the improvement of performance. It is
important to recognize that any one change won’t make much of a difference. However,
an accumulation of all the changes, especially where code is being re-executed in a loop,
can make a significant impact on your application’s performance.

Eliminate Variants and Use the Smallest Data Type Possible
Variant variables are the slowest for the operating system to process; they carry a lot of
overhead because the compiler resolves them at runtime. Remember that this statement
declares a variant type of variable:

Dim intCounter

To strong-type this variable as an integer, for example, you must modify your code to
look like this:

Dim intCounter As Integer

Not only should you strong-type your variables, but you also should use the smallest data
type possible. Remember that data types such as Boolean, Byte, Integer, and Long are the
smallest and therefore the fastest to resolve. They are followed by Single, Double,
Currency, and (finally) Variant. Of course, if you must store very large numbers with
decimal points in a variable, you cannot pick Single. Just keep in mind that it is wise to
select the smallest data type appropriate for the use of the variable. Listing 18.1 provides
code that illustrates the difference between using a variant and a long integer.

LISTING 18.1 Data Type Benchmark Illustrating the Effect of Data Type on Performance

Private Sub cmdVariantBenchMark_Click()

Dim vntAny

Dim intCounter As Long

Dim dblStartTime As Double

Dim dblTime1 As Double

Designing Database Objects to Improve Performance 811

1
8

Dim dblTime2 As Double

‘Execute loop with variant
dblStartTime = Timer

Do Until vntAny = 500000
vntAny = vntAny + 1

Loop

dblTime1 = Timer - dblStartTime

‘Execute loop with integer
dblStartTime = Timer

Do Until intCounter = 500000
intCounter = intCounter + 1

Loop

dblTime2 = Timer - dblStartTime

‘Display time and percent differences
Me.txtSlow = dblTime1
Me.txtOptimized = dblTime2
Me.txtPercent = (1 - (dblTime1 / dblTime2)) * 100

End Sub

The code, found in the form frmBenchmark in the CHAP18EX.ACCDB sample database, loops
using a variant and then a long integer. The example displays the amount of time required
to execute each loop, along with the percent difference between the two techniques.

Use Specific Object Types
Just as using the General variant data type is inefficient, using generic object variables
also is inefficient. The reason is that the compiler needs to evaluate their type at runtime.
The MakeItBold subroutine uses a generic object variable, as shown in Listing 18.2.

LISTING 18.2 The MakeItBold Subroutine

Private Sub cmdMakeBold_Click()
Call MakeItBold(Screen.PreviousControl)

End Sub

Sub MakeItBold(ctlAny As Control)
ctlAny.FontBold = True

End Sub

CHAPTER 18 Optimizing Your Application812

LISTING 18.1 Continued

NOTE

The code in Listing 18.2 is overly simplified. It contains no error handling. The control
passed as Screen.PreviousControl could be any type of control. The type of control
received by the MakeItBold routine might not have a FontBold property, in which case
an error occurs. It is therefore important for either one or both of these routines to
contain proper error handling.

On the other hand, the SpecificBold subroutine uses a specific object variable, as Listing
18.3 shows.

LISTING 18.3 The SpecificBold Subroutine

Private Sub cmdSpecificBold_Click()

Call SpecificBold(Screen.PreviousControl)

End Sub

Sub SpecificBold(txtAny As TextBox)

txtAny.FontBold = True

End Sub

The difference is that the SpecificBold routine expects to receive only text boxes. It does
not need to resolve the type of object it receives and therefore is more efficient.

This code is contained in the CHAP18EX.ACCDB database on the accompanying CD-ROM.
You can find the example in the form called frmObjVar.

The best way to truly compare using a specific control versus a generic control is to
benchmark the techniques, as shown in Listing 18.4.

LISTING 18.4 Object Type Benchmark Compares Using a Specific Control and a Generic
Control

Private Sub cmdObjectTypes_Click()

Dim intCounter As Long

Dim dblStartTime As Double

Dim dblTime1 As Double

Dim dblTime2 As Double

‘Execute loop with generic control

dblStartTime = Timer

For intCounter = 1 To 5000

Call MakeItBold(Me.txtOptimized)

Next intCounter

dblTime1 = Timer - dblStartTime

Designing Database Objects to Improve Performance 813

1
8

‘Execute loop with specific control

dblStartTime = Timer

For intCounter = 1 To 5000

Call SpecificBold(Me.txtOptimized)

Next intCounter

dblTime2 = Timer - dblStartTime

‘Display time and percent differences

Me.txtSlow = dblTime1

Me.txtOptimized = dblTime2

Me.txtPercent = (1 - (dblTime1 / dblTime2)) * 100

End Sub

The code, found in the form called frmBenchmark, passes a text box to two different
routines. The first routine receives any control as a parameter. The second routine receives
only text boxes as a parameter. The benchmarks prove that routines that use specific
object types take less time and are therefore more efficient.

Use Inline Code
There is a tendency to call out to procedures for everything. These calls are good from a
maintenance standpoint, but not from an efficiency standpoint. Each time VBA calls out
to a procedure, it takes additional time to locate and execute the procedure. This is partic-
ularly evident when the procedure is called numerous times. The alternative is to use
inline code. Executing inline code is more efficient than calling out to procedures because
Access does not need to locate the code. The downside of inline code is that it is more
difficult to maintain. You must decide how important maintainability is compared to
speed.

Listing 18.5 shows the same code called as a routine and executed inline. The benchmark
shows that the inline code executes much more quickly.

LISTING 18.5 Inline Code Benchmark

Private Sub cmdInLine_Click()

Dim dblAny As Double

Dim intCounter As Long

Dim dblStartTime As Double

Dim dblTime1 As Double

Dim dblTime2 As Double

CHAPTER 18 Optimizing Your Application814

LISTING 18.4 Continued

‘Execute loop calling out to procedure

dblStartTime = Timer

For intCounter = 1 To 500000

Call SmallRoutine

Next intCounter

dblTime1 = Timer - dblStartTime

‘Execute loop with inline code

dblStartTime = Timer

For intCounter = 1 To 500000

dblAny = 5 / 3

Next intCounter

dblTime2 = Timer - dblStartTime

‘Display time and percent differences

Me.txtSlow = dblTime1

Me.txtOptimized = dblTime2

Me.txtPercent = (1 - (dblTime1 / dblTime2)) * 100

End Sub

Private Sub SmallRoutine()

Dim dblAny As Double

dblAny = 5 / 3

End Sub

Toggle Booleans Using Not
This code is very inefficient:

If bFlag = True Then

bFlag = False

Else

bFlag = True

End If

You should modify it to look like this:

bFlag = Not bFlag

Besides requiring fewer lines of code, this expression evaluates much more quickly at
runtime. Listing 18.6 proves that toggling the Boolean variable is a much more efficient

Designing Database Objects to Improve Performance 815

1
8

LISTING 18.5 Continued

approach to the problem than having to test each condition separately. You can find this
code in the form called frmBenchmark on the CD-ROM accompanying this book.

LISTING 18.6 Toggling Boolean Benchmark

Private Sub cmdBooleans_Click()

Dim boolAny As Boolean

Dim intCounter As Long

Dim dblStartTime As Double

Dim dblTime1 As Double

Dim dblTime2 As Double

‘Execute loop with If statement

dblStartTime = Timer

For intCounter = 1 To 1000000

If boolAny = True Then

boolAny = False

Else

boolAny = True

End If

Next intCounter

dblTime1 = Timer - dblStartTime

‘Execute loop toggling Boolean

dblStartTime = Timer

For intCounter = 1 To 1000000

boolAny = Not boolAny

Next intCounter

dblTime2 = Timer - dblStartTime

‘Display time and percent differences

Me.txtSlow = dblTime1

Me.txtOptimized = dblTime2

Me.txtPercent = (1 - (dblTime1 / dblTime2)) * 100

End Sub

Use the Built-In Collections
The built-in collections are available whether or not you use them. By using For
Each...Next and a collection of objects, you can write efficient code, as shown in
Listing 18.7.

CHAPTER 18 Optimizing Your Application816

LISTING 18.7 Using For Each...Next

Sub FormCaption()

Dim frm As Form

For Each frm In Forms

frm.Caption = frm.Caption & “ - “ & CurrentUser()

Next

End Sub

In this example, you use the Forms collection to quickly and efficiently loop through each
form, changing the caption on its title bar. The code shown in Listing 18.8 illustrates
the use of the Forms collection, as well as an alternative method of accomplishing the
same task.

LISTING 18.8 For Each...Next Benchmark

Private Sub cmdCollections_Click()

Dim frm As Form

Dim intNumForms As Integer

Dim intLoop As Integer

Dim intCounter As Long

Dim dblStartTime As Double

Dim dblTime1 As Double

Dim dblTime2 As Double

‘Execute loop with For Next

dblStartTime = Timer

For intCounter = 1 To 500

intNumForms = Forms.Count - 1

For intLoop = 0 To intNumForms

Forms(intLoop).Caption = “Hello”

Next intLoop

Next intCounter

dblTime1 = Timer - dblStartTime

‘Execute loop with For Each

dblStartTime = Timer

For intCounter = 1 To 500

For Each frm In Forms

frm.Caption = “Hello”

Next frm

Next intCounter

Designing Database Objects to Improve Performance 817

1
8

dblTime2 = Timer - dblStartTime

‘Display time and percent differences

Me.txtSlow = dblTime1

Me.txtOptimized = dblTime2

Me.txtPercent = (1 - (dblTime1 / dblTime2)) * 100

End Sub

Without the For Each..Next loop, you must use a variable to loop through the forms.
Notice that the code sets intNumForms equal to the number of forms in the Forms collec-
tion minus one. The loop goes from zero to the value stored in intNumForms, changing
the caption of the specified form. Although the performance gains realized by using the
Forms collection are not dramatic, the Forms collection technique is much simpler to
implement.

Use the Len Function
Using the Len function (as shown in Listing 18.9) is more efficient than testing for a zero-
length string (as shown in Listing 18.10).

LISTING 18.9 Using the Len Function

Sub SayNameLen(strName As String)

If Len(strName) Then

MsgBox strName

End If

End Sub

LISTING 18.10 Testing for a Zero-Length String

Sub SayNameZero(strName As String)

If strName <> “” Then

MsgBox strName

End If

End Sub

Listing 18.9 is easier for VBA to evaluate and therefore runs more quickly and efficiently.
This point is emphasized by the code shown in Listing 18.11 (located in the form
frmBenchmark). The code shows two loops. One uses the Len function, and the other does
not. The benchmark proves that the routine that uses the Len function executes more
quickly.

CHAPTER 18 Optimizing Your Application818

LISTING 18.8 Continued

LISTING 18.11 Len Benchmark

Private Sub cmdLen_Click()

Dim dblStartTime As Double

Dim dblTime1 As Double

Dim dblTime2 As Double

Dim strTextBoxValue As String

strTextBoxValue = Me.txtOptimized

‘Execute loop with zero-length string

dblStartTime = Timer

For intCounter = 1 To 500000

If strTextBoxValue <> “” Then

End If

Next intCounter

dblTime1 = Timer - dblStartTime

‘Execute loop with Len

dblStartTime = Timer

For intCounter = 1 To 500000

If Len(strTextBoxValue) Then

End If

Next intCounter

dblTime2 = Timer - dblStartTime

‘Display time and percent differences

Me.txtSlow = dblTime1

Me.txtOptimized = dblTime2

Me.txtPercent = (1 - (dblTime1 / dblTime2)) * 100

End Sub

Use True and False Instead of 0
This example is similar to the preceding one. It is better to evaluate for True and False (as
shown in Listing 18.12) instead of 0 (as shown in Listing 18.13).

Designing Database Objects to Improve Performance 819

1
8

LISTING 18.12 Evaluating for True and False

Sub SaySalaryTrue(lngSalary As Long)

If lngSalary Then

MsgBox “Salary is “ & lngSalary

End If

End Sub

LISTING 18.13 Evaluating for 0

Sub SaySalaryZero(lngSalary As Long)

If lngSalary <> 0 Then

MsgBox “Salary is “ & lngSalary

End If

End Sub

The code in Listing 18.12 runs more efficiently. The benchmark shown in Listing 18.14
provides an example. The lngSalary variable is evaluated against zero in the top loop.
The bottom loop tests lngSalary against True. The second loop runs more quickly.

LISTING 18.14 True/False Benchmark

Private Sub cmdTrueFalse_Click()

On Error Resume Next

Dim intCounter As Long

Dim lngSalary As Long

Dim dblStartTime As Double

Dim dblTime1 As Double

Dim dblTime2 As Double

‘Execute loop with zero

dblStartTime = Timer

For intCounter = 1 To 500000

If lngSalary <> 0 Then

End If

Next intCounter

dblTime1 = Timer - dblStartTime

‘Execute loop with True/False

dblStartTime = Timer

CHAPTER 18 Optimizing Your Application820

For intCounter = 1 To 500000

If lngSalary Then

End If

Next intCounter

dblTime2 = Timer - dblStartTime

‘Display time and percent differences

Me.txtSlow = dblTime1

Me.txtOptimized = dblTime2

Me.txtPercent = (1 - (dblTime1 / dblTime2)) * 100

End Sub

Eliminate Unused Dim and Declare Statements
As you modify your subroutines and functions, you often declare a variable and then
never use it. Each Dim statement takes up memory, whether or not you are using it.
Furthermore, Declare statements, which you use to call external library functions,
also take up memory and resources. You should remove these statements if you are not
using them.

Eliminate Unused Code
Most programmers experiment with various alternatives for accomplishing a task. These
experiments often involve creating numerous test subroutines and functions. The
problem is that most people do not remove this code when they are done with it. This
dead code is loaded with your application and therefore takes up memory and resources.
Several third-party tools are available that can help you find both dead code and variable
declarations.

Use Variables to Refer to Properties, Controls, and Data Access Objects
If you are going to repeatedly refer to an object, you should declare an object and refer to
the object variable rather than the actual control, as shown in Listing 18.15.

LISTING 18.15 Declaring an Object and Referring to the Object Variable

Forms!frmAny.txtHello.FontBold = True

Forms!frmAny.txtHello.Enabled = True

Forms!frmAny.txtHello.Left = 1

Forms!frmAny.txtHello.Top = 1

This is a scaled-down example, but if numerous properties are being changed, or if this
code is being called recursively, an object variable can make the code more efficient, as
Listing 18.16 shows.

Designing Database Objects to Improve Performance 821

1
8

LISTING 18.14 Continued

LISTING 18.16 Using an Object Variable to Make Your Code More Efficient

Private Sub cmdChangeObject_Click()

Dim txt As TextBox

Set txt = Forms!frmHello.txtHello1

txt.FontBold = True

txt.Enabled = True

txt.Left = 100

txt.Top = 100

End Sub

The benchmark shown in Listing 18.17 contains two loops. The first loop sets four prop-
erties of the same control, explicitly referencing the control as each property is set. The
second loop uses an object variable to accomplish the same task. The difference in perfor-
mance between the two loops is somewhat dramatic.

LISTING 18.17 Object Variable Benchmark

Private Sub cmdObjectVariable_Click()

Dim intCounter As Long

Dim dblStartTime As Double

Dim dblTime1 As Double

Dim dblTime2 As Double

‘Execute loop without object variable

dblStartTime = Timer

For intCounter = 1 To 1000

Forms.frmBenchMark.txtOptimized.FontBold = True

Forms.frmBenchMark.txtOptimized.Enabled = True

Forms.frmBenchMark.txtOptimized.Locked = False

Forms.frmBenchMark.txtOptimized.BackStyle = vbNormal

Next intCounter

dblTime1 = Timer - dblStartTime

‘Execute loop with object variable

dblStartTime = Timer

For intCounter = 1 To 1000

Dim txt As TextBox

Set txt = Forms.frmBenchMark.txtOptimized

txt.FontBold = True

txt.Enabled = True

txt.Locked = False

CHAPTER 18 Optimizing Your Application822

txt.BackStyle = vbNormal

Next intCounter

dblTime2 = Timer - dblStartTime

‘Display time and percent differences

Me.txtSlow = dblTime1

Me.txtOptimized = dblTime2

Me.txtPercent = (1 - (dblTime1 / dblTime2)) * 100

End Sub

Use With...End With
Another way to optimize the code in the preceding example is to use a With...End With
construct, as shown in Listing 18.18.

LISTING 18.18 Using With...End With

Private Sub cmdChangeObjectWith_Click()

With Forms!frmHello.txtHello2

.FontBold = True

.Enabled = True

.Left = 100

.Top = 100

End With

End Sub

The code in Listing 18.19 shows two different loops. The first loop explicitly references
the text box four different times to set four different properties. The second loop uses a
With statement to reference the same control and set the four properties. The code in the
second loop executes much more efficiently.

LISTING 18.19 Object Variable Resolution Benchmark

Private Sub cmdWith_Click()

Dim intCounter As Long

Dim dblStartTime As Double

Dim dblTime1 As Double

Dim dblTime2 As Double

‘Execute loop without With statement

dblStartTime = Timer

Designing Database Objects to Improve Performance 823

1
8

LISTING 18.17 Continued

For intCounter = 1 To 1000

Forms.frmBenchMark.txtOptimized.FontBold = True

Forms.frmBenchMark.txtOptimized.Enabled = True

Forms.frmBenchMark.txtOptimized.Locked = False

Forms.frmBenchMark.txtOptimized.BackStyle = vbNormal

Next intCounter

dblTime1 = Timer - dblStartTime

‘Execute loop with With statement

dblStartTime = Timer

For intCounter = 1 To 1000

With Forms.frmBenchMark.txtOptimized

.FontBold = True

.Enabled = True

.Locked = False

.BackStyle = vbNormal

End With

Next intCounter

dblTime2 = Timer - dblStartTime

‘Display time and percent differences

Me.txtSlow = dblTime1

Me.txtOptimized = dblTime2

Me.txtPercent = (1 - (dblTime1 / dblTime2)) * 100

End Sub

Resolve Variables Outside a Loop
Although both the object variable reference and the With statement significantly improve
performance, Listings 18.17 and 18.19 can be further improved by resolving the object
variable outside the loop whenever possible. Listing 18.20 provides an example.

LISTING 18.20 Resolving the Object Variable Outside the Loop

Private Sub cmdVariable_Click()

Dim txtAny As TextBox

Dim intCounter As Long

Dim dblStartTime As Double

Dim dblTime1 As Double

Dim dblTime2 As Double

CHAPTER 18 Optimizing Your Application824

LISTING 18.19 Continued

‘Execute loop without object resolution

dblStartTime = Timer

For intCounter = 1 To 1000

Forms.frmBenchmark.txtOptimized.FontBold = True

Forms.frmBenchmark.txtOptimized.Enabled = True

Forms.frmBenchmark.txtOptimized.Locked = False

Forms.frmBenchmark.txtOptimized.BackStyle = vbNormal

Next intCounter

dblTime1 = Timer - dblStartTime

‘Execute loop with object resolution

dblStartTime = Timer

Set txtAny = Forms.frmBenchmark.txtOptimized

For intCounter = 1 To 1000

With txtAny

.FontBold = True

.Enabled = True

.Locked = False

.BackStyle = vbNormal

End With

Next intCounter

dblTime2 = Timer - dblStartTime

‘Display time and percent differences

Me.txtSlow = dblTime1

Me.txtOptimized = dblTime2

Me.txtPercent = (1 - (dblTime1 / dblTime2)) * 100

End Sub

Notice that the object variable is resolved outside the loop. This loop executes signifi-
cantly faster than the loops in Listings 18.17 and 18.19.

Use the Me Keyword
The preceding example uses Forms!frmHello.txtHello to refer to a control on the current
form. It is more efficient to refer to the control as Me.txtHello because VBA searches only
in the local name space. Although this makes your code more efficient, the downside is
that the Me keyword works only within form, report, and class modules. It won’t work
within standard code modules. This means that you cannot include the Me keyword in
generic functions that are accessed by all your forms.

Designing Database Objects to Improve Performance 825

1
8

LISTING 18.20 Continued

Use Dynamic Arrays
Array elements take up memory, whether or not you use them. It’s therefore sometimes
preferable to use dynamic arrays. You can increase the size of a dynamic array as neces-
sary. If you want to reclaim the space used by all the elements of the array, you can use
the Erase keyword, as in this example:

Erase aNames

If you want to reclaim some of the space being used by the array without destroying data
in the elements you want to retain, use Redim Preserve:

Redim Preserve aNames(5)

This statement sizes the array to six elements (it’s zero-based). Data within those six
elements is retained.

CAUTION

You must be careful when using dynamic arrays with Redim Preserve. When you
resize an array using Redim Preserve, the entire array is copied in memory. If you are
running in a low-memory environment, this can mean that virtual disk space is used,
which slows performance—or worse than that, the application can fail if both physical
and virtual memory are exhausted.

Use Constants When They Are Available
Constants improve both readability and performance. A constant’s value is resolved after
compilation. The value that the constant represents is written to code. A normal variable
has to be resolved as the code is running because VBA needs to obtain the current value
of the variable.

Use Bookmarks
A bookmark provides you with the most rapid access to a record. If you are planning to
return to a record, set a variable equal to that record’s bookmark, making it easy to return
to that record at any time. Listing 18.21 shows an example that uses a bookmark.

LISTING 18.21 Using a Bookmark

Sub BookMarkIt()

Dim rst As ADODB.Recordset

Set rst = New ADODB.Recordset

Dim varBM As Variant

rst.Open “tblProjects”, CurrentProject.Connection, adOpenStatic

varBM = rst.Bookmark

Do Until rst.EOF

CHAPTER 18 Optimizing Your Application826

Debug.Print rst!ProjectID

rst.MoveNext

Loop

rst.Bookmark = varBM

Debug.Print rst!ProjectID

End Sub

You can find this code in basOptimize of CHAP18EX.ACCDB. The code stores the bookmark
in a variable until the Do...Until loop executes. Then the code sets the recordset’s book-
mark equal to the value contained within the variable.

Set Object Variables Equal to Nothing
Object variables take up memory and associated resources. Their value should be set to
Nothing when you are finished using them. For example:

Set oObj = Nothing

Setting variables this way conserves memory and resources.

Use Action Queries Instead of Looping Through Recordsets
Besides being easier to code, executing a stored query is much more efficient than looping
through a recordset, performing some action on each record. Listing 18.22 shows an
example that loops through a recordset.

LISTING 18.22 Looping Through a Recordset

Sub LoopThrough()

Dim rst As ADODB.Recordset

Set rst = New ADODB.Recordset

rst.Open “tblProjects”, CurrentProject.Connection, adOpenDynamic, _

adLockOptimistic

Do Until rst.EOF

rst!ProjectTotalEstimate = rst!ProjectTotalEstimate + 1

rst.UPDATE

rst.MoveNext

Loop

End Sub

This code, which is located in basOptimize of CHAP18EX.ACCDB, loops through a recordset,
adding 1 to each project’s total estimate. Contrast this with the code in Listing 18.23.

Designing Database Objects to Improve Performance 827

1
8

LISTING 18.21 Continued

LISTING 18.23 Executing a Stored Query

Sub ExecuteQuery()

Dim adoCat As ADOX.Catalog

Dim cmd As ADODB.Command

Set adoCat = New ADOX.Catalog

Set cmd = New ADODB.Command

Set adoCat.ActiveConnection = CurrentProject.Connection

Set cmd = adoCat.Procedures(“qupdLowerEstimate”).Command

cmd.Execute

End Sub

This code uses a command object to execute a stored query called qupdLowerEstimate.
The query runs much more efficiently than the Do...Until loop shown in Listing 18.22.

NOTE

The most efficient method to update records is to use a stored procedure. You can
use stored procedures with a client/server database engine such as Microsoft SQL
Server. This issue is covered in detail in Alison Balter’s Mastering Access 2002
Enterprise Development.

Deliver Your Application with the Modules Compiled
Applications run slower when they are not compiled. Forms and reports load slower,
and the application requires more memory. If you deliver your application with all the
modules compiled, they do not need to be compiled on the user’s machine before
they run.

To easily recompile all modules, choose Debug, Compile with the Visual Basic Editor
(VBE) active. This command opens and compiles all code in the application, including
the code behind forms and reports. It then saves the modules in the compiled state,
preserving the compiled state of the application.

Retain the Compiled State
Don’t bother choosing the Debug, Compile command if you plan to make additional
changes to the application. An application becomes decompiled whenever you modify
the application’s controls, forms, reports, or modules. Even something as simple as chang-
ing a single line of code causes the application to lose its compiled state. It’s therefore
important to choose the Debug, Compile command immediately before you distribute
the application.

CHAPTER 18 Optimizing Your Application828

CAUTION

Renaming a database file causes the code contained in the database to decompile.
It’s therefore important to always choose the Compile command after renaming a
database.

Distribute Your Application as an ACCDE
The process of creating an ACCDE file compiles all modules, removes editable source
code, and compacts the destination database. All Visual Basic code will run but cannot
be viewed or edited. This improves performance, reduces the size of the database, and
protects your intellectual property. Memory use also is improved.

Organize Your Modules
VBA code theoretically can be placed in any module within your application. The
problem is that the compiler does not load a module until you call a function within it.
After you call a single procedure in a module, the compiler loads the entire module into
memory. Furthermore, if a single variable within a module is used, the compiler loads the
entire module into memory. As you might imagine, if you design your application
without much thought, every module in your application will be loaded.

If you place similar routines in one module, that module will be loaded, and others will
not. This means that if people are using only part of the functionality of your application,
they will never be loading other code modules. This conserves memory and therefore
optimizes your application.

Designing Forms and Reports to Improve Performance
You can do several things to forms and reports to improve your application’s performance.
They include techniques to quickly load the forms and reports, tips and tricks regarding
OLE objects, and special coding techniques that apply only to forms and reports.

Designing Forms
Because forms are your main interface to your user, making them as efficient as possible
can go a long way toward improving the user’s perception of your application’s perfor-
mance. Additionally, many of the form techniques are extremely easy to implement.

Form-optimization techniques can be categorized in two ways: those that make the forms
load more quickly and those that enable you to more efficiently manipulate objects
within the form.

The larger a form and the more controls and objects you have placed on it, the less
efficient that form is. Make sure that controls on the form do not overlap. It also is
extremely beneficial to group form data onto logical pages. Grouping is especially impor-
tant if your users have insufficient video RAM. Objects on subsequent pages should not
be populated until the user moves to that page.

Designing Database Objects to Improve Performance 829

1
8

Forms and their controls should be based on saved queries or embedded SQL statements.
Include only fields required by the form in the form’s underlying query. Avoid using
Select * queries; because Access is so efficient at internally optimizing the manipulation
of query results, this improves the performance of your forms. To further take advantage
of the power of queries, reduce the number of records that the query returns, loading
only the records you need at a particular time.

If you will use a form solely to add new records, set the DataEntry property of the form to
Yes so that it opens to a blank record. This step is necessary because, otherwise, Access
must read all records to display the blank record at the end of the recordset.

Avoid bitmaps and other graphics objects if possible. If you must display an image, it is
important to remember that OLE objects take far more resources than images. If an OLE
bitmapped object does not need to be changed, convert it to an image. To accomplish
this, right-click the object and choose Change To, Image.

Avoid the use of subforms whenever possible. Access treats a subform as a separate form.
It therefore takes up significant memory. Make sure that all fields in a subform that are
either linked to the main form or used for criteria are indexed. Make sure that only neces-
sary fields are included in the record source of the subform. If the data in the subform
does not need to be edited, set its AllowEdits, AllowAdditions, and AllowDeletions
properties to No or set its RecordsetType property to Snapshot.

Make sure that the RowSource for a combo box includes only the columns needed for the
combo box. Index on the first field that appears in the combo box. This technique has a
dramatic effect on the speed at which a user can move to an element of the combo box.
Also, whenever possible, make the first visible field of a combo box a text field. Access
converts numeric fields to text as it searches through the combo box to find a matching
value. Finally, don’t base list boxes or combo boxes on linked data if that data rarely, if
ever, changes. Instead, make the static table local, updating it whenever necessary.

As a general rule regarding the performance of forms, place all database objects, except
data, on each user’s machine. This way, you eliminate the need for Access to constantly
pull object definitions over the network.

Close forms that no longer are being used. This action is necessary because open forms
take up memory and resources, degrading performance.

Another tip that can help you dramatically improve the performance of your forms is to
use the default formatting and properties for as many controls as possible. By doing this,
you significantly improve performance because only the form and control properties that
differ from the default properties are saved with the form.

CHAPTER 18 Optimizing Your Application830

TIP

If most controls have a set of properties that are different from those of the default
control for the form, you should change the default control and then add controls
based on the default. Access saves only the properties of the default control and does
not need to store the properties for each control placed on the form. Taking this step
can result in dramatic performance improvements. Changing the default control is
covered in Chapter 10, “Advanced Form Techniques.”

Finally, eliminate the code module from forms that don’t need it. A form without a code
module loads more quickly and occupies less disk space. You can still call function proce-
dures from an event property using an expression, or you can navigate about your appli-
cation from the form using hyperlinks. You can remove the module associated with a
form by setting the HasModule property to No.

Designing Reports
Many of the report-optimization techniques are the same as the form-optimization tech-
niques. Reducing the number of controls, avoiding overlapping controls, basing reports
on queries, avoiding OLE objects, and converting unbound object frames that display
graphics to image controls are all techniques that improve the performance of reports as
well as forms.

You can use a few additional techniques to specifically improve the performance of
reports. Eliminate any unnecessary sorting and grouping expressions, and index all fields
on which you sort or group. Base subreports on queries rather than on tables, and include
only necessary fields in the queries. Make sure that the queries underlying the report are
optimized and that you index all fields in the subreport that are linked to the main
report.

A special technique that you can use to improve the performance of reports involves the
No Data event and the HasData property. The No Data event is fired when a report is
opened, and no data is returned by the record source of the report. The HasData property
is used to determine whether a report is bound to an empty recordset. If the HasData prop-
erty of a subreport is False, you can hide the subreport, thereby improving performance.

Practical Examples: Improving the Performance of
Your Applications
To ensure that your applications are optimized, you can take several steps:

. Make sure that the database is compacted.

. Use the Performance Analyzer to analyze the application and make recommenda-
tions for improvement.

. Choose Debug, Compile from the VBE before distributing the application.

Practical Examples: Improving the Performance of Your Applications 831

1
8

Summary
The most attractive application can be extremely frustrating to use if its performance is
less than acceptable. Because Access itself requires significant resources, you must take the
responsibility of making your code as lean and efficient as possible.

This chapter focused on several techniques for improving performance. Probably one of
the easiest ways to improve performance is to modify the hardware and software environ-
ment within which Access operates. You learned about adding RAM, defragmenting a
hard disk, and tuning virtual memory and other settings to dramatically improve the
performance of your applications. You also looked at using the Performance Analyzer to
quickly and easily identify problem areas in your application. Finally, the chapter focused
on data-design fundamentals, coding techniques, and techniques to optimize forms and
reports.

By following the guidelines covered in this chapter, you can help ensure that you are not
inadvertently introducing bottlenecks into your application. Although any one of the
suggestions included in this chapter might not make a difference by itself, the combined
effects of these performance enhancements can be quite dramatic.

CHAPTER 18 Optimizing Your Application832

PART III

Developing Multiuser
and Enterprise
Applications

IN THIS PART

CHAPTER 19 A Strategy to Developing Access
Applications 835

CHAPTER 20 Using External Data 847

CHAPTER 21 Access 2007 and SharePoint 883

CHAPTER 22 Developing Multiuser and
Enterprise Applications 909

This page intentionally left blank

IN THIS CHAPTER

. Why This Chapter Is Important

. Splitting Databases into Tables
and Other Objects

. Basing Forms and Reports on
Queries or Embedded SQL
Statements

. Preparing an Application for
Distribution

. Using Access as a Front End

. Practical Examples: Applying
the Strategy to the Computer
Consulting Firm Application

CHAPTER 19

A Strategy to
Developing Access

Applications

Why This Chapter Is Important
You should know about several tricks of the trade that can
save you a lot of time in the development process and help
ensure that your applications are as optimized as possible
for performance. This chapter addresses these strategies.
You should keep all the topics covered in this chapter in
mind when developing your Access applications. When
reading this chapter, think of the general strategy outlined
rather than the details of each topic. I cover each topic in
depth in other chapters of the book.

Splitting Databases into Tables
and Other Objects
When earlier versions of Access ran in a multiuser environ-
ment, it was imperative that you placed the system’s tables
in one database and the rest of the system objects in
another database. With the advent of replication, you
could either split the tables from the other objects or use
replication to deploy design changes without compromis-
ing live data. Access 2000, Access 2002, and Access 2003
took this a step further with the Access Data Project (ADP),
in which Access stores tables, views, stored procedures, and
data diagrams in a SQL Server database or the SQL Server
2000 Desktop Engine (formerly the Microsoft Database
Engine, or MSDE). Access stored forms, reports, macros,
and modules in the ADP file.

Access 2007 creates an entirely new scenario. The new Access file format (.accdb) does
not support replication. The ADP file is supported for backward compatibility only.
Therefore, splitting tables from other system objects is a viable solution. For simplicity, I’ll
refer to the database containing the tables as the Table database and the database with the
other objects as the Application database. Linking from the Application database to the
Table database connects the two databases. This strategy enhances

. Maintainability

. Performance

. Scalability

Assume for a moment that you distribute your application as one ACCDB file. Your users
work with your application for a week or two, writing down all problems and changes.
It’s time for you to make modifications to your application. Meanwhile, the users have
entered live data into the application for two weeks. You make a copy of the database
(which includes the live data) and make all the fixes and changes. This process takes a
week. You’re ready to install your copy of the database on the network. Now what? The
users of the application have been adding, editing, and deleting records all week. You are
left with the task of integrating your application changes with the users’ data.

The simplest solution is to split the database objects so that the tables containing your
data are in one ACCDB file, and the rest of your database objects (your application) are in
a second ACCDB file. When you’re ready to install the changes, all you need to do is copy
the Application database to the file server. You can then install the new Application data-
base on each client machine from the file server. In this way, users can run new copies
of the application from their machines. The database containing your data tables will
remain intact and be unaffected by the process. (Of course, this is possible only if you
finalize your table structure before splitting the database.)

The second benefit of splitting the database objects is performance. Your Table database
obviously needs to reside on the network file server so that the users can share the data;
however, there’s no good reason why the users need to share the other database compo-
nents. Access gives you optimal performance if you store the Application database on
each local machine. This method also significantly reduces network traffic, and it
decreases the chance of database corruption. If you store the Application database on the
file server, Access will need to send the application objects and code over the network
each time the user opens an object in the database. If you store the Application database
on each local machine, Access needs to send only the data over the network. The only
complication to this scenario is that each time you update the Application database, you
will need to redistribute it to the users. Even on an already overtaxed network, this is a
small inconvenience compared to the performance benefits your users will gain from this
structural split.

The third benefit of splitting tables from the other database objects is scalability. Because
you have already linked the tables, you can easily change from a link to a table stored in
Access’s own proprietary format to any database that supports ODBC (such as Microsoft

CHAPTER 19 A Strategy to Developing Access Applications836

SQL Server). This capability gives you quick-and-dirty access to client/server databases. If
you have already thought through your system’s design with linked tables in mind, the
transition will be that much easier. Don’t be fooled, though, by how easy this process
sounds. Many issues associated with using Access as a front end to client/server data
go far beyond simply linking to the external tables. This chapter and Chapter 22,
“Developing Multiuser and Enterprise Applications,” cover some of these issues. Alison
Balter’s Mastering Access 2002 Enterprise Development covers client/server development tech-
niques in extensive detail.

TIP

You should store a few special types of tables in the Application database rather than
the Table database. You should store tables that rarely change in the Application data-
base on each user’s local machine. For example, a State table rarely, if ever, changes,
but your application continually accesses it to populate combo boxes, participate in
queries, and so on. Placing the State table on each local machine therefore improves
performance and reduces network traffic. You should place lookup tables containing
localized information, such as department codes, in the Application database.

You should also place temporary tables on each local machine; this is more a neces-
sity than an option. If two users are running the same process at the same time and
that process uses temporary tables, a conflict occurs when one user overwrites the
other’s temporary tables. Placing temporary tables on each local machine improves
performance and eliminates the chance of potentially disastrous conflicts.

NOTE

I split all the applications I build into two databases. However, you might notice when
looking at the sample databases in this book that, until you reach Chapter 20, “Using
External Data,” none of the chapters show databases split in the manner I recommend.
The reason is that, until you learn all you need to know about splitting database
objects, I don’t think it’s helpful to be working with a split sample database. From
Chapter 20 on, however, each chapter offers some sample databases split according to
the strategy recommended here.

Basing Forms and Reports on Queries or
Embedded SQL Statements
You can base the record source for a form or report on a table object, a query object, or a
SQL statement. By basing forms and reports on stored queries or embedded SQL state-
ments, you can improve the performance and flexibility of your applications. In most
cases, you don’t need to display all fields and all records on a form or report. By basing a
form or report on a query or embedded SQL statement, you can better limit the data
transferred over the network. These benefits are most pronounced in a client/server envi-
ronment. When you base a form or report on a table object, Access sends a SQL statement
that retrieves all fields and all records from the database server. On the other hand, if the

Basing Forms and Reports on Queries or Embedded SQL Statements 837

1
9

record source for the form or report is a query or embedded SQL statement, the server
returns to the workstation just the fields and records specified within the query.

An Access 2007 form or report based on a stored query or SQL statement is very efficient.
This is the case because when you save a query (or in the case of an embedded SQL state-
ment, the form or report), the Access Database Engine creates a Query Plan. This plan
contains information on the most efficient method of executing the query. When you
save a query or form or report based on an embedded SQL statement, the Access Database
Engine looks at the volume of data and the available indexes, determines the optimal
method of executing the query, and stores the method as the Query Plan. The Microsoft
Database Engine uses this plan whenever it executes a query underlying a form or report.
It is up to you whether you use a stored query or an embedded SQL statement as the
foundation for your forms and reports. There are advantages and disadvantages to each
method. With a stored query, the upside is that multiple forms and reports can use the
same query. The downside is that you have another object to manage in the Navigation
Pane. With an embedded SQL statement, the advantage is that the SQL is stored neatly
with the form or report that it is associated with. The downside is that if multiple forms
and reports share the same SQL statement, you will need to maintain each separately. My
rule is that, when I feel that the query will be reused by other forms and reports, I create a
query. When I feel that the query is unique to the form or report I am creating, I create
an embedded SQL statement.

When you base a form on table data, you can’t control the order of the records in the
form, nor can you base the form on more than one table. You can’t limit the records that
the form displays until the user opens the form. If you base a form on a query or an
embedded SQL statement, you can control the criteria for the form as well as the default
order in which the form displays the records.

Everything just mentioned applies to reports as well, except the order of the records,
which you determine by how the report itself is sorted and grouped.

TIP

Many other techniques are available to you when displaying a form based on a large
recordset. My favorite involves basing the form on only a single record at a time and
changing the form’s RecordSource property each time the user wants to view a differ-
ent record. Another technique that I use is to base the form’s RecordSource property
on the value the user selects in a combo box in the Header section of the form. I use
the After_Update event of the combo box to requery the form. Because the form’s
RecordSource uses the combo box value for criteria, the form displays the desired
record. I cover these techniques, and others, in detail in Alison Balter’s Mastering
Access 2002 Enterprise Development.

Preparing an Application for Distribution
You must take some special steps to prepare your application for distribution. Most are
steps you’ll probably want to take so that your application seems professional to the user.
The following are preparations that you should take before distributing your application:

CHAPTER 19 A Strategy to Developing Access Applications838

. Base your application around forms.

. Add startup options to your database.

. Secure your application.

. Build error handling into your application.

. Add some level of custom help.

. Build custom ribbons to be associated with your application’s forms and reports.

Basing Your Application Around Forms
You should base your application around forms. It should generally begin with a main
switchboard that lets the user get to the other components of your application. Or, it can
start with a core data entry form around which you base the rest of the application. If you
opt to go with an application switchboard, the main switchboard can direct the user to
additional switchboards, such as a data entry switchboard, a report switchboard, or a
maintenance switchboard. You can build switchboards with a tool called the Switchboard
Manager. Alternatively, you can design them as custom dialog boxes. Chapter 10,
“Advanced Form Techniques,” covers building custom dialog boxes. The primary advan-
tage of custom switchboards is the flexibility and freedom they offer.

An alternative to the switchboard approach is to build the application around a core data
entry form, such as a contact management application based around a contacts form. The
user accesses all other forms and reports that make up the application via a custom
ribbon on the contacts form.

Adding Startup Options to Your Database
Regardless of the approach that you take, you designate a form as the starting point for
your application by modifying the database’s startup options. Here’s how:

1. Click the Microsoft Office button and then select Access Options (see Figure 19.1).
The Access Options dialog box appears.

2. Click to select Current Database (see Figure 19.2). In this dialog box, you can set
options, such as a startup form, an application title, and an icon that appears when
the user minimizes your application.

Securing Your Application
As you will learn in the next section, a database isn’t secure just because you’re running it
from a runtime version of Access. If your application doesn’t have security, anyone with a
full copy of Access can modify it, so securing your database objects is an important step
in preparing your application for distribution. Chapter 31, “Database Security Made Easy,”
covers security.

Access 2000, Access 2002, Access 2003, and Access 2007 also offer you the capability to
remove the source code from your applications. This capability protects your intellectual
property and improves the performance of your application. Microsoft calls the resulting
database an ACCDE.

Preparing an Application for Distribution 839

1
9

FIGURE 19.1 Click the Microsoft Office button and then select Access Options.

CHAPTER 19 A Strategy to Developing Access Applications840

FIGURE 19.2 The Current Database page of the Access Options dialog box lets you control
many aspects of your application environment.

Building Error Handling into Your Application
If you don’t build error handling into your application and an error occurs while your
user runs your application from Access’s runtime version, Access will rudely exit the user
out of the program. She won’t get an appropriate error message and will be left wonder-
ing what happened. Hence, it’s essential that you add error handling to your application’s
procedures. Chapter 17, “Error Handling: Preparing for the Inevitable,” covers error
handling techniques.

Adding Custom Help
In most cases, you want your users to have at least some level of custom help specific
to your application. You can use the ControlTip Text property of controls and the
Description property of fields to add the most basic level of help to your application.
The ControlTip Text property provides a description of a control when a user hovers his
mouse pointer over the control. The Description property of a field appears on the status
bar when a control based on that field has the focus. If you are more ambitious, and if
the scope and budget for the application warrant it, you can build a custom help file for
your application. To add custom help to your application, you must build a help file; then
you can attach parts of it to the application’s forms and controls.

Building Custom Ribbons
You should build your own ribbons that you associate with specific forms and reports.
Custom ribbons add both polish and functionality to your application.

After you complete these steps, you’ll be ready for the final phase of preparing your appli-
cation for distribution:

. Test your application by using the /Runtime switch.

. Install your application on a machine that has never run a copy of either the stan-
dard or runtime version of Access.

. Test your application on the machine; make sure it runs as expected.

Begin by testing your application with the /Runtime switch. This switch simulates the
runtime environment, allowing you to mimic user actions under the runtime version of
Access. Taking this step saves you a lot of time and energy. It will find most, if not all, of
the problems associated with the runtime version.

After you test your application with the /Runtime switch, you must test your application
by running the install on a machine that has never contained a copy of either the stan-
dard or runtime version of Access. The whole idea is to test your application on a
machine containing no Access-related files. This action ensures that you have included
all the required files on your setup disks.

Preparing an Application for Distribution 841

1
9

I suggest that that you use a “ghosting” utility such as Symantec Ghost to create a
complete image of your operating system and application drives. Install and fully test
your application; make sure you experiment with every feature. After you have completed
the testing process, restore the original machine from the Ghost image so that you can
use it to test your next installation.

TIP

Symantec Backup Exec System Recovery allows you to restore individual files, selected
directories, or entire hard drives as needed. When you create a backup image file,
Symantec Backup Exec System Recovery compresses it by up to 70%, greatly reducing
transfer times and storage requirements. Among its many other uses, Symantec
Backup Exec System Recovery greatly facilitates the testing process by allowing you to
easily restore a test machine to its pretesting state.

Using Access as a Front End
If you’re planning to use Access as a front end to other databases, you need to consider a
few issues. In fact, the whole design methodology of your system will differ depending on
whether you plan to store your data in an Access database or on a back-end database
server.

In a system where you store your data solely in Access tables, the Access Database Engine
supplies all data retrieval and management functions and handles security, data valida-
tion, and enforcement of referential integrity.

In a system where Access acts as a front end to client/server data, the server handles the
data management functions. It’s responsible for retrieving, protecting, and updating data
on the back-end database server. In this scenario, the local copy of Access is responsible
only for sending requests and getting either data or pointers to data back from the data-
base server. If you’re creating an application in which Access acts as a front end, capitaliz-
ing on the strengths of both Access and the server can be a challenging endeavor.

Factors You Need to Worry About When Converting to
Client/Server
The transition to client/server technology isn’t always a smooth one. You need to
consider the following factors if you’re developing a client/server application or planning
to eventually move your application from an Access database to a back-end structured
query language (SQL) database server:

. Not every back-end database supports all field types that Access supports.

. The upsizing process will not convert any security you set up in Access to your
back-end database.

CHAPTER 19 A Strategy to Developing Access Applications842

. You will have to re-establish many of the validation rules you set up in Access on
the back end.

. Not all back ends support referential integrity. Depending on the database that you
are upsizing to, the upsizing process might not automatically set up the referential
integrity that you established in Access.

. Queries involving joins that could be updated in Access can’t always be updated on
the back-end server.

This list is just an overview of what you need to think about when moving an application
from an Access database with linked tables to a back-end server or when developing an
application specifically for a back end. Many of these issues have far-reaching implica-
tions. For example, if you set up validation rules and validation text in your application,
you will often need to rewrite the rules as triggers on the back end. If the user violates a
validation rule that you set up on the back end, you will get a returnable error code. You
have to respond to this code by using error handling in your application, displaying the
appropriate message to your user. You can’t use the Validation Text property with your
client/server databases.

TIP

The Access 2000, Access 2002, Access 2003, and Access 2007 Upsizing Wizards
address most of the transitioning issues covered in this chapter. These tools, included
as part of Access 2000, Access 2002, Access 2003, and Access 2007, respectively,
automate the migration of data from the native Access data format to Microsoft SQL
Server. Alison Balter’s Mastering Access 2002 Enterprise Development covers the
Upsizing Wizard.

Benefits and Costs of Client/Server Technology
With all the issues discussed in the previous section, you might ask, “Why bother with
client/server?” In each case, you need to evaluate whether the benefits of client/server
technology outweigh its costs. The major benefits include the following:

. Greater control over data integrity

. Increased control over data security

. Increased fault tolerance

. Reduced network traffic

. Improved performance

. Centralized control and management of data

Using Access as a Front End 843

1
9

These are some of the major expenses:

. Increased development costs

. Hardware costs for the server machine

. Setup costs for the server database

. The cost of employing a full- or part-time database administrator (DBA)

These and other issues are covered in more detail in Chapter 22.

Your Options When Using Access as a Front End
Client/server applications are not an all-or-none proposition; there is more than one way
to implement them through Access. One option is to use Access as a true front end,
which means that you store all data on the server and process all queries on the server.
You do this by using pass-through queries and stored procedures, rather than stored
Access queries. With pass-through queries, you pass a back-end–specific SQL statement to
the back end instead of allowing Access to process it. When you use stored procedures,
you store SQL statements on the back end and then execute them using Data Access
Objects (DAO) or ActiveX Data Objects (ADO) code. (I cover this scenario briefly in
Chapter 22 and in detail in Alison Balter’s Mastering Access 2002 Enterprise Development.)

To make Access a true front end, you must also disable its natural ability to bind data to
forms and reports. Doing so, however, eliminates all the features that make Access a
strong product in the first place. Unfortunately, you haven’t eliminated all the overhead
associated with the functionality you removed. If you want to use unbound forms for
most or all of your application, you’re better off developing the entire application in a
lower-overhead environment, such as Visual Studio .NET.

Another approach is a hybrid method in which you use a combination of linked tables,
SQL pass-through queries, stored procedures, unbound forms, and local Access tables. The
idea is that you take advantage of Access’s features and strong points whenever possible.
You use pass-through queries and stored procedures to perform functions that you can
accomplish more efficiently by communicating directly to the back end or that aren’t
available at all with Access SQL. To further improve performance, you can perform many
tasks locally and then communicate them to the server as one transaction, after you have
completed any initial validation. In addition to the solutions just discussed, you can also
download data to Access in bulk so that you can perform additional processing locally.
Many possibilities exist, and each is appropriate in different situations. Experience and
experimentation are needed to determine the combination of methods that will optimize
performance in a given situation.

CHAPTER 19 A Strategy to Developing Access Applications844

What Are the Considerations for Migrating to a
Client/Server Environment?
The preceding sections have given you an overview of the issues you need to consider
when building a client/server application or considering moving to a client/server envi-
ronment in the future. Chapter 22 provides more detailed information. If you’re using
Access as a front end, make sure that, as you read through this book, particularly the
more advanced chapters, you take special note of any cautions about developing
client/server applications. If you want in-depth coverage of client/server development
techniques, refer to Alison Balter’s Mastering Access 2002 Enterprise Development.

Practical Examples: Applying the Strategy to the
Computer Consulting Firm Application
The time and billing application for the computer consulting firm introduced in Chapter
1, “Access as a Development Tool,” could be composed of two databases: one containing
the majority of the tables and the other with the remainder of the database objects,
including static and temporary tables. To design the application properly and to make the
transition to client/server as smooth as possible, you would develop the application with
the idea that you might eventually move the data to a back-end server. You would base
the forms and reports that make up the application on stored queries or embedded SQL
statements to maximize their flexibility and efficiency. Finally, you would design the
application so that it can easily run from Access’s runtime version, and you would secure
it so that unauthorized users could not access its data and other objects.

Summary
Having a strategy before you begin the application development process is important.
This chapter introduced many strategic issues, such as splitting a database into tables and
other objects, and using Access as a front end. It also covered converting to a client/server
environment, explored the benefits and costs involved in such a conversion, and
discussed the different options available to you. The chapter tied these concepts together
with an explanation of what you can do to prepare your applications for future growth.
The chapter also explained what you need to be concerned about when preparing
an application for distribution, including the importance of properly securing your
databases.

Summary 845

1
9

This page intentionally left blank

IN THIS CHAPTER

. Why This Chapter Is Important

. Importing, Linking, and
Opening Files: When and Why

. Importing External Data

. Creating a Link to External
Data

. Opening an External Table

. Understanding Windows
Registry Settings

. Using the Jet OLEDB:Link
Provider String

. Working with Passwords

. Refreshing and Removing
Links

. Looking at Special
Considerations

. Troubleshooting

. Looking at Performance
Considerations and Links

. Working with HTML Documents

. Practical Examples: Working
with External Data from Within
Your Application

CHAPTER 20

Using External Data

Why This Chapter Is Important
Microsoft Access is capable of interfacing with data from
other sources. It can use data from any OLE DB or ODBC
data source, as well as data from FoxPro, dBASE, Paradox,
Lotus, Excel, and many other sources. In this chapter, you
learn how to interface with external data sources, with the
user interface, and by using code.

External data is data stored outside the current database. It
can refer to data stored in another Microsoft Access data-
base, as well as data stored in a multitude of other file
formats—including ISAM, spreadsheet, ASCII, and more.
This chapter focuses on accessing data sources other than
ODBC and OLE DB. ODBC and OLE DB data sources are
discussed briefly in Chapter 22, “Developing Multiuser and
Enterprise Applications.” They are covered in extensive
detail in Alison Balter’s Mastering Access 2002 Enterprise
Development.

Access is an excellent front-end product, which means that
it provides a powerful and effective means of presenting
data—even data from external sources. Data is stored in
places other than Access for many reasons. Large databases,
for example, can be managed more effectively on a back-
end database server such as Microsoft SQL Server. Data is
often stored in a FoxPro, dBASE, or Paradox file format
because the data is being used by a legacy application
written in one of those environments. Text data is often
downloaded from a mainframe. Regardless of the reason
data is stored in another format, you must understand how
to manipulate this external data in your VBA modules.
With the capability to access data from other sources, you
can create queries, forms, and reports.

When accessing external data, you have three choices: You can import the data into an
Access database, access the data by linking to it from your Access database, or open a data
source directly. Importing the data is the optimum route (except with ODBC data sources)
but isn’t always possible. If you can’t import external data, you should link to external
files because Microsoft Access maintains a lot of information about these linked files. This
optimizes performance when manipulating the external files. Sometimes a particular situ-
ation warrants accessing the data directly. You therefore should know how to work with
linked files, as well as how to open and manipulate files directly.

Importing, Linking, and Opening Files:
When and Why
When you import data into an Access table, Access makes a copy of the data and places it
in the Access table. After importing the data, Access treats it like any other native Access
table. In fact, neither you nor Access has any way of knowing from where the data came.
As a result, imported data offers the same performance and flexibility as any other Access
table.

Linking to external data is quite different from importing data. Linked data remains in its
native format. By establishing a link to the external data, you can build queries, forms,
and reports that present the data. After you create a link to external data, the link remains
permanently established unless you explicitly remove it. The linked table appears in the
database window just like any other Access table, except that its icon is different. In fact,
if the data source permits multiuser access, the users of your application can modify the
data, as can the users of the applications written in the data source’s native database
format (such as FoxPro, dBASE, or Paradox). The main difference between a linked and a
native table is that you cannot modify the linked table’s structure from within Access.

Opening an external table is similar to linking to the table, except that a permanent rela-
tionship is not created. When you link to an external table, Access maintains connection
information from session to session. When you open a table, you create a recordset from
the table, and Access does not establish a permanent link to the data.

Selecting an Option
It is important that you understand when to import external data, when to link to exter-
nal data, and when to open an external table directly. You should import external data in
either of these circumstances:

. You are migrating an existing system into Access.

. You want to use external data to run a large volume of queries and reports, and you
will not update the data. You want the added performance that native Access data
provides.

When you are migrating an existing system to Access and you are ready to permanently
migrate test or production data into your application, you import the tables into Access.
You might also want to import external data if the data is downloaded from a mainframe

CHAPTER 20 Using External Data848

into ASCII format on a regular basis, and you want to use the data for reports. Instead of
attempting to link to the data and suffering the performance hits associated with such a
link, you can import the data each time it is downloaded from the mainframe.

You should link to external data in any of the following circumstances:

. The data is used by a legacy application requiring the native file format.

. The data resides on an ODBC-compliant database server.

. You will access the data on a regular basis (making it prohibitive to keep the data up
to date if it is not linked).

Often, you won’t have the time or resources to rewrite an application written in FoxPro,
Paradox, or some other language. You might be developing additional applications that
will share data with the legacy application, or you might want to use the strong querying
and reporting capabilities of Access instead of developing queries and reports in the
native environment.

By linking to the external data, users of existing applications can continue to work with
the applications and their data. Your Access applications can retrieve and modify data
without concern of corrupting, or in any other way harming, the data.

If the data resides in an ODBC database such as Microsoft SQL Server, you want to reap
the data-retrieval benefits provided by a database server. By linking to the ODBC data
source, you can take advantage of Access’s ease of use as a front-end tool, while taking
advantage of client/server technology.

Finally, if you intend to access data on a regular basis, linking to the external table instead
of temporarily opening the table directly provides you with ease of use and performance
benefits. After you create the link, in most cases, Access treats the table just like any other
Access table.

You should open an external table directly in either of these circumstances:

. You rarely need to establish a connection to the external data source.

. You have determined that performance actually improves by opening the data
source directly.

If you rarely need to access the external data, opening that data directly might be appro-
priate. Links increase the size of your .ACCDB file. This size increase is not necessary if you
rarely will access the data. Furthermore, in certain situations, when accessing Indexed
Sequential Access Method (ISAM) data, you might find that opening the table directly
provides better performance than linking to it.

Although this chapter covers the process of importing external data, this is essentially a
one-time process and doesn’t require a lot of discussion. It is important to note, however,
that after you import data into an Access table, it no longer is accessed by the application
in its native format. The majority of this chapter focuses on linking to or directly opening
external data tables.

Importing, Linking, and Opening Files: When and Why 849

2
0

Looking at Supported File Formats
Microsoft Access enables you to import, link to, and open files in these formats:

. Microsoft Access databases (including previous versions of Jet)

. ODBC databases

. SharePoint Lists

. HTML documents

. XML documents (import and open only)

. Microsoft Exchange/Outlook

. dBASE III, dBASE IV, and dBASE 5.0

. Paradox 3.x, 4.x, and 5.x

. Microsoft Excel spreadsheets

. Lotus WKS, WK1, WK3, and WK4 spreadsheets (import and open only)

. ASCII text files stored in a tabular format

Importing External Data
The process of importing external data is quite simple. You can import external data by
using the user interface or by using VBA code. If you are planning to import the data only
once or twice, you should use the user interface. If you are importing data on a regular
basis (for example, from a downloaded mainframe file), you should write code that
accomplishes the task transparently to the user.

Using the User Interface
To import an external data file using the user interface, follow these steps:

1. Click to select the External Data tab.

2. Select the appropriate import type by clicking the appropriate icon in the Import
group. (Note that you can also click Saved Imports to perform an import that you
have previously saved.) The dialog box that appears varies depending on the type of
data you are importing. Figure 20.1 provides an example.

3. Notice in Figure 20.1 that you can opt to import the source data into a new table in
the current database, append a copy of the records to the table, or link to the data
source by creating a linked table. For this example, select the first option, Import
the Source Data into a New Table in the Current Database.

4. Click Browse to locate the file that you want to import. The File Open dialog box
appears.

5. Navigate to the file that you want to import and then click Open. Access returns
you to the Get External Data – Excel Spreadsheet dialog box.

CHAPTER 20 Using External Data850

6. Click OK. Depending on the type of file you select, the import process finishes, or
you see additional dialog boxes. If you select Excel Spreadsheet, for example, the
Import Spreadsheet Wizard appears, as shown in Figure 20.2. This wizard walks you
through the process of importing spreadsheet data.

Importing External Data 851

2
0

FIGURE 20.1 The import dialog box varies depending on the type of import you are
performing.

FIGURE 20.2 The Import Spreadsheet Wizard.

CAUTION

If you find that you can’t bring a large (4–5MB) text file directly into an Access data-
base, change the text file into an Excel spreadsheet first and then import that file.

Using Code
The DoCmd object has three methods that assist you with importing external data:
TransferDatabase, TransferText, and TransferSpreadsheet, each of which I cover in the
following sections.

Importing Database Data Using Code
You use the TransferDatabase method of the DoCmd object to import data from a database
such as FoxPro, dBASE, Paradox, or another Access database. Listing 20.1, included in
basImport, shows an example that uses the TransferDatabase method.

LISTING 20.1 Using the TransferDatabase Method

Sub ImportDatabase()

DoCmd.TransferDatabase _

TransferType:=acImport, _

DatabaseType:=”dBASE III”, _

DatabaseName:= CurrentProject.Path, _

ObjectType:=acTable, _

Source:=”Customer”, _

Destination:=”tblCustomers”, _

StructureOnly:=False

End Sub

NOTE

All the code in this chapter is located in the CHAP20EX.ACCDB file on the sample code
CD-ROM.

Table 20.1 lists the arguments for the TransferDatabase method.

TABLE 20.1 TransferDatabase Arguments

Argument Specifies

TransferType Type of transfer being performed.
DatabaseType Type of database being imported.
DatabaseName Name of the database. If the table is a separate file (as is

the case with dBASE, Paradox, and earlier versions of
FoxPro), the database name is the name of the directory
that contains the table file. Do not include a backslash
after the name of the directory.

CHAPTER 20 Using External Data852

Argument Specifies

ObjectType Type of object you want to import. This argument is ignored
for all but Access objects.

Source Name of the object you are importing. Do not include the
file extension.

Destination Name of the imported object.
StructureOnly Whether you want the structure of the table only or the

structure and data.
StoreLogin Whether you want to save the login ID and password for an

ODBC database in the connection string for linked tables.

Importing Text Data Using Code
You use the TransferText method of the DoCmd object to import text from a text file.
Listing 20.2 shows an example of this method.

LISTING 20.2 Using the TransferText Method

Sub ImportText()

DoCmd.TransferText _

TransferType:=acImportDelim, _

TableName:=”tblCustomerText”, _

FileName:=CurrentProject.Path & “\Customer.Txt”

End Sub

Table 20.2 lists the arguments for the TransferText method.

TABLE 20.2 TransferText Arguments

Argument Specifies

TransferType Type of transfer you want to make
SpecificationName Name for the set of options that determines how the file is

imported
TableName Name of the Access table that will receive the imported data
FileName Name of the text file to import from
HTMTableName Name of the table or list in the HTML file that you want to import

or link to
CodePage A long integer used to indicate the character set of the code page
HasFieldHeadings Whether the first row of the text file contains field headings

Importing Spreadsheet Data Using Code
You use the TransferSpreadsheet method of the DoCmd object to import data from a
spreadsheet file. Listing 20.3 shows an example that uses the TransferSpreadsheet
method.

Importing External Data 853

2
0

TABLE 20.1 Continued

LISTING 20.3 Using the TransferSpreadsheet Method

Sub ImportSpreadsheet()

DoCmd.TransferSpreadsheet _

TransferType:=acImport, _

SpreadsheetType:=acSpreadsheetTypeExcel12, _

TableName:=”tblCustomerSpread”, _

FileName:=CurrentProject.Path & “\Customer.Xls”, _

HasFieldNames:=True

End Sub

Table 20.3 lists the arguments for the TransferSpreadsheet method.

TABLE 20.3 TransferSpreadsheet Arguments

Argument Specifies

TransferType Type of transfer you want to make
SpreadsheetType Type of spreadsheet to import from
TableName Name of the Access table that will receive the imported data
FileName Name of the spreadsheet file to import from
HasFieldNames Whether the first row of the spreadsheet contains field headings
Range Range of cells to import

Creating a Link to External Data
If you need to keep the data in its original format but want to treat the data just like any
other Access table, linking is the best solution. All the information required to establish
and maintain the connection to the remote data source is stored within the linked table
definition. You can create links through the user interface and by using code. The follow-
ing sections cover both alternatives.

One of the most common types of links is a link to another Access table. You create this
type of link so that you can place the application objects (queries, forms, reports, macros,
and modules) in a local database and so that you can store the tables in another database
on a file server. Numerous benefits are associated with such a configuration. Chapter 22
discusses these benefits in more detail.

Using the User Interface
Creating a link using the user interface is very common. If you know what links you want to
establish at design time, this is probably the easiest way to establish links to external data.
You can establish links using the Database Splitter, or you can establish them manually.

Creating Links Using the Database Splitter
The Database Splitter was designed to split databases that already have been built with all
the tables and other database objects in one physical .ACCDB database file. It automates
the process of moving the data tables to another database.

CHAPTER 20 Using External Data854

To use the Database Splitter Wizard, follow these steps:

1. Switch to the Database Tools tab.

2. Click the Access Database button in the Move Data group on the ribbon. The
Database Splitter Wizard appears (see Figure 20.3).

3. Click Split Database. The Create Back-End Database dialog box appears (see Figure
20.4). Here, you select a name and location for the database that will contain the
table data.

Creating a Link to External Data 855

2
0

FIGURE 20.3 The Database Splitter Wizard facilitates the process of splitting data into an
application and database and a data database.

FIGURE 20.4 You use the Create Back-End Database dialog box to indicate the name and
location of the database containing the data tables.

4. Make your selection and click Split. You should receive a message that the database
successfully split.

5. Click OK to complete the process. If you look in the Navigation Pane, all the tables
appear with an arrow, indicating that they are linked (see Figure 20.5).

CHAPTER 20 Using External Data856

FIGURE 20.5 After you split the database, all tables appear with an arrow, indicating that
they are linked.

Creating Links to Access Tables Manually
To create a link to an Access table, follow these steps:

1. Click to select the External Data tab.

2. Click to select the Import Access Database button in the Import group. The Get
External Data – Access Database dialog box appears, as shown in Figure 20.6.

3. Browse to locate the database containing the tables that you want to link to. The
File Open dialog box appears.

4. Select the database containing the data tables and click Open.

5. Select Link to the Data Source by Creating a Linked Table.

6. Click OK. The Link Tables dialog box appears (see Figure 20.7).

7. Select the tables to which you want to establish a link.

Creating a Link to External Data 857

2
0

FIGURE 20.6 The Get External Data – Access Database dialog box allows you to designate
whether you want to import or link to the Access tables.

FIGURE 20.7 The Link Tables dialog box allows you to select the tables that you want to
link to.

8. Click OK. The link process finishes. The Save Import Steps portion of the Get
External Data Wizard appears.

9. Click Close to complete the process.

Creating Links to Other Types of Tables Manually
The process of creating links to other types of database files is a little different. It works
like this:

1. Click to select the External Data tab.

2. Click the appropriate button in the Import group (for example, Excel). The Get
External Data – Excel Spreadsheet dialog box appears.

3. Browse to locate the file that you want to link to. The File Open dialog box appears.

4. Select the file that you want to link to and click Open. Access returns you to the Get
External Data – Excel Spreadsheet dialog box.

5. Select Link to the Data Source by Creating a Linked Table.

6. Click OK. If you selected Excel Spreadsheet, for example, the Link Spreadsheet
Wizard appears.

7. Follow the steps of the wizard. (These steps vary quite a bit depending on the type
of file you selected.)

8. Click Finish to complete the process. A dialog box appears, indicating that the
process completed successfully. You will see the appropriate icon in the Navigation
Pane, indicating the type of file you have linked to (see Figure 20.8).

CHAPTER 20 Using External Data858

FIGURE 20.8 Notice that the Excel icon appears, indicating that the linked file is an Excel
spreadsheet.

Using Code
Creating a link to an external table using code is a six-step process. Here are the steps
involved in establishing the link:

1. Create a reference to the Microsoft ADO Extension 2.8 for DDL and Security
(ADOX) library.

2. Create a Catalog object.

3. Set the Connection property of the Catalog object to the database that will contain
the linked table.

4. Create a new Table object.

5. Set properties of the Table object.

6. Append the Table object to the Catalog.

Listing 20.4 shows the code for linking to an external table, which, in this case, exists in
another Microsoft Access database.

LISTING 20.4 Linking to an External Table

Sub LinkToAccessTableProps()

Dim cat As ADOX.Catalog

Dim tbl As ADOX.Table

‘Instantiate a Catalog object

Set cat = New ADOX.Catalog

‘Set the connection of the Catalog object

‘to the connection associated with the current

‘project

cat.ActiveConnection = CurrentProject.Connection

‘Instantiate a Table object

Set tbl = New ADOX.Table

‘Establish the name of the new Table object

tbl.Name = “tblLinkedTable”

‘Point the catalog of the new table at the

‘catalog object established above

Set tbl.ParentCatalog = cat

‘Set necessary properties of the new Table object

tbl.Properties(“Jet OLEDB:Create Link”) = True

tbl.Properties(“Jet OLEDB:Link Datasource”) = _

Creating a Link to External Data 859

2
0

CurrentProject.Path & “\Chap20Data.accdb”

tbl.Properties(“Jet OLEDB:Link Provider String”) = “;pwd=password”

tbl.Properties(“Jet OLEDB:Remote Table Name”) = “tblClients”

‘Append the new Table object to the tables collection

‘of the Catalog object

cat.Tables.Append tbl

End Sub

In Listing 20.4, a Catalog object is created. The ActiveConnection property of the
Catalog object is pointed at the connection associated with the current database.
Next, a Table object is created. The Name property of the Table object is set equal to
tblLinkedTable. The ParentCatalog property of the Table object is set to point at the
Catalog object. Four properties in the properties collection of the Table object are set to
the appropriate values, and the Table object is appended to the Catalog object. This
process is discussed in further detail in the following sections.

Providing Connection Information
When you link to an external table, you must provide information about the type, name,
and location of the external database. You accomplish this by setting the following prop-
erties in the Properties collection of the Table object:

. Jet OLEDB:Link Provider String

. Jet OLEDB:Remote Table Name

. Jet OLEDB:Link Datasource

The following three lines of code illustrate the process of setting the provider string,
name, and location of the source table:

tbl.Properties(“Jet OLEDB:Link Provider String”) = “;pwd=password”

tbl.Properties(“Jet OLEDB:Remote Table Name”) = “tblClients”

tbl.Properties(“Jet OLEDB:Link Datasource”) = _

CurrentProject.Path & “\Chap20Data.accdb”

The Jet OLEDB:Link Provider is the ISAM format that will be used for the link. Each
source database type is a different folder in the Windows Registry. The folders are located
in the HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Jet\4.0\ISAM Formats section of the
Registry. Valid source database types are as follows:

dBASE dBASE III, dBASE IV, and dBASE 5.0

Excel Excel 12.0 and below

HTML HTML Export and HTML Import

Jet Jet 2.x, Jet 3.x, Jet 4.x

CHAPTER 20 Using External Data860

LISTING 20.4 Continued

Lotus Lotus WK1, Lotus WK3, Lotus WK4, Lotus WJ2, and
Lotus WJ3

Exchange Exchange 4.0

Outlook Outlook 9.0 through Outlook 12.0

Paradox Paradox 3.x, Paradox 4.x, Paradox 5.x, and Paradox 7.x

SharePoint Team Services 2.0

Text N/A

Windows SharePoint Services N/A

The Jet OLEDB:Link Datasource must include a fully qualified path to the file. You can
specify the path with a drive letter and directory path or by using universal naming conven-
tions (UNCs). For a local database, you must specify the path like this:

tbl.Properties(“Jet OLEDB:Link Datasource”) = “c:\Databases\Chap20Data”

For a file server, you can specify the UNC path or the drive letter path. The UNC path
looks like this:

tbl.Properties(“Jet OLEDB:Link Datasource”) = _

“\\FILESERVERNAME\Databases\Chap20Data”

In this case, the database called Chap20Data is stored on the database’s share of a particu-
lar file server.

Creating the Link
Listing 20.5 shows how you put all the connection information together to establish a
link to an external table.

LISTING 20.5 Establishing a Link to an External Table

Sub LinkToDBase(strDirName As String, strTableName As String, _

strAccessTable)

Dim cat As ADOX.Catalog

Dim tbl As ADOX.Table

‘Instantiate a Catalog object

Set cat = New ADOX.Catalog

cat.ActiveConnection = CurrentProject.Connection

‘Instantiate a Table object

Set tbl = New ADOX.Table

tbl.Name = strAccessTable

Set tbl.ParentCatalog = cat

‘Set necessary properties of the new Table object

Creating a Link to External Data 861

2
0

tbl.Properties(“Jet OLEDB:Create Link”) = True

tbl.Properties(“Jet OLEDB:Link Datasource”) = strDirName

tbl.Properties(“Jet OLEDB:Link Provider String”) = “dBASE III;HDR=NO;IMEX=2;”

tbl.Properties(“Jet OLEDB:Remote Table Name”) = strTableName

‘Append the new Table object to the tables collection

‘of the Catalog object

cat.Tables.Append tbl

End Sub

Here is an example of how you call this subroutine:

Call LinkToDBase(“c:\customer\data”,”customer”,”tblCustomers”)

The LinkToDBase subroutine receives three parameters:

. The name of the directory in which the dBASE file is stored

. The name of the file (the name of the table, without the .DBF extension) to which
you want to connect

. The name of the Access table that you are creating

The subroutine creates two object variables: a Catalog object variable and a Table object
variable. It points the ActiveConnection property of the Catalog object variable at the
connection associated with the current database. Next, it establishes properties of the
Table object. The Link Datasource is the name of the directory within which the dBASE
file is stored. The Link Provider String specifies that the type of table you are linking to
is a dBASE III file. The Remote Table Name is the name of the dBASE file that you are
linking to. After setting these properties, you are ready to append the table definition to
the database.

You have seen how you can link to a dBASE table. Listing 20.6 puts together everything
you have learned thus far in this chapter by creating a link to an Access table stored in
another database.

LISTING 20.6 Creating a Link to an Access Table Stored in Another Database

Sub LinkToAccess(strDBName As String, strTableName As String, _

strAccessTable)

Dim cat As ADOX.Catalog

Dim tbl As ADOX.Table

‘Instantiate a Catalog object

Set cat = New ADOX.Catalog

CHAPTER 20 Using External Data862

LISTING 20.5 Continued

‘Set the ActiveConnection property of the Catalog object

‘to the connection associated with the current project

cat.ActiveConnection = CurrentProject.Connection

‘Instantiate a Table object

Set tbl = New ADOX.Table

‘Set the Name property of the Table object to the name

‘you wish to give to the linked table

tbl.Name = strAccessTable

‘Set the ParentCatalog property of the Table object

‘to the Catalog object

Set tbl.ParentCatalog = cat

‘Set all necessary properties of the Table object

tbl.Properties(“Jet OLEDB:Create Link”) = True

tbl.Properties(“Jet OLEDB:Link Datasource”) = strDBName

tbl.Properties(“Jet OLEDB:Link Provider String”) = “;pwd=password”

tbl.Properties(“Jet OLEDB:Remote Table Name”) = strTableName

‘Append the Table object to the Tables collection

‘associated with the Catalog object

cat.Tables.Append tbl

End Sub

Notice that the Jet OLEDB Link Provider string no longer specifies the type of database
to which you are connecting. Everything else in this routine is the same as the routine
that connected to dBASE. Also, notice the parameters passed to this routine:

Call LinkToAccess(“C:\databases\northwind 2007.accdb”,”Customers”,”tblCustomers”)

The database passed to the routine is an actual Access database (as opposed to a direc-
tory), and the table name is the name of the Access table in the other database (instead of
the .DBF filename).

NOTE

Whether you link to an external database using the user interface or code, you should
always use the UNC path, rather than a drive letter. This ensures that all users with
access to the network share are able to see the data, regardless of their drive letter
mappings.

Creating a Link to External Data 863

2
0

LISTING 20.6 Continued

Opening an External Table
Sometimes you will want to open, rather than link to, an external table. Linking provides
ease of use when you are dealing with external tables. After you link to a table, you treat
it just like any other Access table. The disadvantage of linking is that it uses ODBC. ODBC
is not the most efficient means of interacting with a database for which you have a native
OLE DB provider. Therefore, you might want to programmatically open an external table
without creating a link to it. Opening an external table is a two-step process:

1. Establish a connection to the external data source.

2. Point a Recordset object at the result of executing a SQL statement against the
Connection object.

Providing Connection Information
The connection information you provide when you open an external table is similar to
the information you provide when you link to the table. The connection information is
provided as the ConnectionString argument of the Open method of the Connection
object. Here’s an example:

cnn.Open “Provider=sqlodedb;” & _

“Data Source=(local);” & _

“Initial Catalog=Pubs;” & _

“User ID=sa;Password=;”

Here, the connection string is to the SQL Server database called Pubs on the local
machine.

Opening the Table
You point the Recordset object at the result of executing a Select statement against the
Connection object:

Set rst = cnn.execute(“Select * from Authors”)

Listing 20.7 shows what the entire process looks like in code.

LISTING 20.7 Using the OpenDatabase Method

Sub OpenExternalSQL(strDBName As String, strTableName As String)

Dim cnn As ADODB.Connection

Dim rst As ADODB.Recordset

‘Instantiate Connection and Recordset objects

Set cnn = New ADODB.Connection

Set rst = New ADODB.Recordset

CHAPTER 20 Using External Data864

‘Use the Open method of the Connection object to establish

‘a connection to the SQL Server database

cnn.Open “Provider=sqloledb;” & _

“Data Source=(local);” & _

“Initial Catalog=” & strDBName & “;” & _

“User Id=sa;Password=; “

‘Use the Execute method of the Connection object to execute

‘a Select statement and return the result as a Recordset

Set rst = cnn.Execute(“Select * from “ & strTableName)

‘Loop through the resulting recordset,

‘printing the value of the first field

Do Until rst.EOF

Debug.Print rst.Fields(0).Value

rst.MoveNext

Loop

‘Close the connection

cnn.Close

End Sub

Listing 20.7 is called with this code:

Call OpenExternalSQL(“Pubs”,”authors”)

Notice that you are not appending a table definition here. Instead, you are creating a
temporary recordset that refers to the external data. After you open the external table as
a recordset, the code traverses through each record of the table, printing the value of the
first field. Of course, after you open the recordset, you can manipulate it in any way
you want. The table does not show up as a linked table in the Database window. In fact,
when the routine completes and the local variable goes out of scope, the recordset no
longer exists.

Now that you have seen how you can link to external tables as well as open them, you
are ready to look at how you can refine both of these processes. Refining them involves
learning the Windows Registry settings that affect the linking process, learning more
about the parameters that are available to you when specifying connection information,
learning how to specify passwords, learning how to refresh and remove links, and learn-
ing how to create an external table using VBA code.

Opening an External Table 865

2
0

LISTING 20.7 Continued

Understanding Windows Registry Settings
Each ISAM driver has a separate key in the Windows Registry. These keys are located in
the appropriate ISAM driver in the HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Jet\
4.0\ISAM Formats section of the Registry. These keys are used to configure the driver after
initialization. As you can see in Figure 20.9, the setup program has created keys for several
data sources. If you look at a specific data source (in this case, dBASE III), you can see all
the settings that exist for the dBASE driver. The IndexFilter is set to dBASE Index(*.ndx),
for example. At times, you will need to modify one of the Registry settings to customize
the behavior of the ISAM driver; this is covered later in this chapter in the section
“Looking at Special Considerations.”

CHAPTER 20 Using External Data866

FIGURE 20.9 The Windows Registry with keys for ISAM drivers.

Using the Jet OLEDB:Link Provider String
You use the Jet OLEDB:Link Provider string when linking to external tables. It includes
the source database type, user ID, and password. You must use a semicolon to separate
each part of the connection string.

Each source database type has a valid name. This is the name that must be used when
accessing that type of data. These database types are found in the Windows Registry
under HKEY_LOCAL_MACHINE\Software\Microsoft\Jet\4.0\ISAM Formats. You must accu-
rately specify the source database type; otherwise, you cannot access the external data.

The user ID is used whenever a username must be specified to successfully log on to the
data source. This is most common when dealing with back-end databases such as Oracle,
Sybase, or Microsoft SQL Server. This part of the provider string can be required to log on
the user to the system where the source data resides. The UID keyword refers to the user ID.

As with the user ID, the password most often is included when dealing with back-end
data. It can also be used on other database types that support passwords, such as Paradox,
or when linking to an external Access table. The PWD keyword is used when specifying the
password.

Finally, the dataset name refers to a defined ODBC data source. The DSN keyword refers to
the dataset name in the connection string. The following is an example of a Jet OLEDB
Link Provider string:

tbl.Properties(“Jet OLEDB:Link Provider String”) = “ODBC” & _

“;DATABASE=Pubs” & _

“;UID=Alison” & _

“;PWD=MyPass” & _

“;DSN=PublisherData”

In the example, the SQL Server database being accessed is Pubs, the user ID is Alison, the
Password is MyPass, and the data source name is PublisherData.

Working with Passwords
When working with passwords, you probably won’t want to hard-code a password into
your application because that defeats the purpose of placing a password on your database.
In Listing 20.8, the database’s password is included in the code, allowing the link to be
made to the secured table without password validation.

LISTING 20.8 Embedding a Database Password in Code

Sub LinkToSecured()

Dim cat As ADOX.Catalog

Dim tbl As ADOX.Table

‘Instantiate a Catalog object

Set cat = New ADOX.Catalog

‘Set the ActiveConnection property of the Catalog

‘object to the connection associated with the

‘current project

cat.ActiveConnection = CurrentProject.Connection

‘Instantiate a Table object

Set tbl = New ADOX.Table

Working with Passwords 867

2
0

‘Set the Name property of the Table object

tbl.Name = “tblLinkedTable”

‘Associate the ParentCatalog of the Table object

‘with the Catalog object

Set tbl.ParentCatalog = cat

‘Set properties of the Table object

tbl.Properties(“Jet OLEDB:Create Link”) = True

tbl.Properties(“Jet OLEDB:Link Provider String”) = “ODBC” & _

“;DATABASE=Pubs” & _

“;UID=SA” & _

“;PWD=” & _

“;DSN=PublisherData”

tbl.Properties(“Jet OLEDB:Remote Table Name”) = “Authors”

‘Append the Table object to the Tables collection

‘associated with the Catalog object

cat.Tables.Append tbl

End Sub

An invalid password results in a message appearing, requiring the user to log on. Unless
you are using integrated security to log on to your database server, it is best to require the
user to supply the password at runtime. In Listing 20.9, the code prompts the user for a
password. The password entered by the user is used as part of the connection string.

LISTING 20.9 Requiring Password Validation

Sub ReallySecure()

Dim cat As ADOX.Catalog

Dim tbl As ADOX.Table

Dim strPassword As String

‘Instantiate a Catalog object

Set cat = New ADOX.Catalog

‘Set the ActiveConnection property of the Catalog

‘object to the connection associated with the

‘current project

cat.ActiveConnection = CurrentProject.Connection

Set tbl = New ADOX.Table

‘Set the Name property of the Table object

tbl.Name = “tblLinkedTable”

CHAPTER 20 Using External Data868

LISTING 20.8 Continued

‘Associate the ParentCatalog of the Table object

‘with the Catalog object

Set tbl.ParentCatalog = cat

‘Prompt the user for the password

strPassword = InputBox(“Please Enter Your Password”, “Database Security!!!”)

‘Set properties of the Table object

tbl.Properties(“Jet OLEDB:Create Link”) = True

tbl.Properties(“Jet OLEDB:Link Provider String”) = “ODBC” & _

“;DATABASE=Pubs” & _

“;UID=SA” & _

“;PWD=” & strPassword & _

“;DSN=PublisherData”

tbl.Properties(“Jet OLEDB:Remote Table Name”) = “Authors”

‘Append the Table object to the Tables collection

‘associated with the Catalog object

cat.Tables.Append tbl

End Sub

Notice that the code retrieves the password from the user and stores it in a variable called
strPassword. This strPassword variable is included in the connection string at runtime.

Refreshing and Removing Links
Refreshing links refers to updating the link to an external table. It is done when the loca-
tion of an external table has changed. Removing links refers to permanently removing a
link to an external table.

Access cannot find external tables if their locations have moved. You need to adjust for
this in your VBA code. Furthermore, sometimes you might want to remove a link to
external data—when you no longer need to use the data or when you have permanently
imported the data into Access.

Updating Links That Have Moved
To refresh a link using VBA code, simply redefine the Jet OLEDB:Link Datasource.
Listing 20.10 shows the code to refresh a link.

LISTING 20.10 Refreshing a Link

Sub RefreshLink()

Dim cat As ADOX.Catalog

Dim tdf As ADOX.Table

Refreshing and Removing Links 869

2
0

LISTING 20.9 Continued

Set cat = New ADOX.Catalog

Set cat.ActiveConnection = CurrentProject.Connection

tdf.Properties(“Jet OLEDB:Link Datasource”) = _

strNewLocation

End Sub

You can modify this routine to prompt the user for the directory containing the data
tables, as Listing 20.11 shows.

LISTING 20.11 Prompting the User for the Database Path and Name

Sub RefreshLink()
‘Initiate error handling
On Error GoTo RefreshLink_Err
Dim cat As ADOX.Catalog
Dim tdf As ADOX.Table
Dim strNewLocation As String
Dim strTemp As String

‘Instantiate a Catalog object
Set cat = New ADOX.Catalog

‘Set the ActiveConnection property of the Catalog
‘object to the connection associated with the
‘current project
Set cat.ActiveConnection = CurrentProject.Connection

‘Point the TableDef object at the tblClients table
Set tdf = cat.Tables(“tblClients”)

‘Attempt to retrieve the Name property of the table
strTemp = tdf.Columns(0).Name

‘Exit the routine if all goes well
Exit Sub

RefreshLink_Err:

‘If an error occurs, prompt the user for the new name
‘and location
strNewLocation = InputBox(“Please Enter Database Path and Name”)

‘Set the properties of the TableDef object to the
‘information provided by the user
tdf.Properties(“Jet OLEDB:Link Datasource”) = _

strNewLocation
Set cat.ActiveConnection = CurrentProject.Connection

CHAPTER 20 Using External Data870

LISTING 20.10 Continued

Set tdf = cat.Tables(“tblClients”)

‘Try to grab the name property again
Resume

End Sub

This routine points a Table object to the tblClients table. It then attempts to access
the name of the first column in the table. If an error occurs, an input box prompts the
user for the new location of the database. The routine modifies the Jet OLEDB:Link
Datasource property for the database to incorporate the new location. It then resumes
on the offending line of code. You should modify this routine to give the user a way out.
Resume throws the user into an endless loop if the database is not available. An enhanced
routine (see Listing 20.13) is presented later in the “Practical Examples” section of this
chapter.

Deleting Links
To remove a link using VBA code, simply execute a Delete method of the Tables collec-
tion of a Catalog object connected to the database, as shown in Listing 20.12.

LISTING 20.12 Removing a Link

Sub RemoveLink()
Dim cat As Catalog

Set cat = New ADOX.Catalog
cat.ActiveConnection = CurrentProject.Connection

cat.Tables.Delete (“tblClients”)

End Sub

Making a Local Table from a Linked Table
Access 2007 gives you the capability to convert a linked table to a local table. The process
works like this:

1. Use the Navigation Pane to select the table you want to convert.

2. Click to select the linked table that you want to convert to a local table.

3. Click the Copy button in the Clipboard group on the Home tab.

4. Click the Paste button in the Clipboard group on the Home tab. The Paste Table As
dialog box appears (see Figure 20.10).

5. Type a name for the new table.

Refreshing and Removing Links 871

2
0

LISTING 20.11 Continued

FIGURE 20.10 You use the Paste Table As dialog box to make a local table from a linked
table.

6. Select Structure and Data (Local Table) to copy both the structure of the linked table
and its data, or select Structure Only (Local Table) to copy only the structure of the
linked table.

7. Click OK.

The linked table now appears as a local table within the current database.

Looking at Special Considerations
When you are dealing with different types of external files, various problems and issues
arise. If you understand these stumbling blocks before they affect you, you will get a great
head start in dealing with them.

dBASE
The major concerns you will have when dealing with dBASE files are deleted records,
indexes, data types, and memo fields. When you delete a record from a dBASE table,
Access does not remove it from the table. Instead, Access marks it for deletion. You must
pack the database (a process in a dBASE table that removes deleted rows) for the records
to actually be removed from the table. If records are deleted from a dBASE table using an
Access application, the records are not removed. Because you cannot pack a dBASE data-
base from within an Access application, the records still remain in the table. In fact, they
are not automatically filtered from the Access table. To filter deleted records so that they
cannot be seen within the Access application, you must set the Deleted value in the
\HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Jet\4.0\Engines\Xbase section of the
Registry to 01 (True).

Access can use the dBASE indexes to improve performance. After you link to a dBASE
table and select an index, an .INF file is created. This file has the same name as your
dBASE database with an .INF extension. It contains information about all the indexes
being used. Here’s an example of an .INF file:

[dBASE III]

NDX1=CUSTID.NDX

UNDX1=CUSTID.NDX

CHAPTER 20 Using External Data872

dBASE III is the database type identifier. NDX1 is an index number for the first index. The
UNDX1 entry specifies a unique index.

The data types available in dBASE files are different from those available in Access files. It
is important to understand how the field types are mapped. Table 20.4 shows how each
dBASE data type is mapped to a Jet data type.

TABLE 20.4 Mapping of dBASE Data Types

dBASE Data Type Jet Data Type

Character Text
Numeric, Float Double
Logical Boolean
Date Date/Time
Memo Memo
OLE OLE Object

Finally, make sure that you store the dBASE memo files in the same directory as the table.
Otherwise, Access is unable to read the data in the memo file.

Text Data
When you are linking to an ASCII text file, Jet can determine the format of the file
directly, or it can use a schema information file, which resides in the same directory as
the text file. It always is named SCHEMA.INI, and it contains information about the format
of the file, the column names, and the data types. The schema information file is optional
for delimited files, but it is required for fixed length files. It is important to understand
that ASCII files can never be opened for shared use.

Troubleshooting
Unfortunately, working with external data is not always a smooth process. Many things
can go wrong, including connection problems and a lack of temporary disk space.

Connection Problems
Difficulties with accessing external data can be caused by any of the following
circumstances:

. The server on which the external data is stored is down.

. The user does not have rights to the directory in which the external data is stored.

. The user does not have rights to the external data source.

. The external data source was moved.

. The UNC path or network share name was modified.

. The connection string is incorrect.

. The installable ISAM driver has not been installed.

Troubleshooting 873

2
0

Temp Space
Access requires a significant amount of disk space to run complex queries on large tables.
This disk space is required whether the tables are linked tables stored remotely in another
format, or they reside on the local machine. The application behaves unpredictably if not
enough disk space is available to run the query. It is therefore necessary to make sure that
all users have enough disk space to meet the requirements of the queries that are run.

Looking at Performance Considerations and Links
Because your application has to go through an extra translation layer (the installable
ISAM), performance is not nearly as good with ISAM files as it is with native Jet data.
(The exception to this is using ODBC to connect to SQL Server data.) It’s always best to
import ISAM data whenever possible. If it’s not possible to import the data, you need to
accept the performance that linking offers or consider linking the best solution to an
otherwise unsolvable problem.

Working with HTML Documents
Access 2007 enables you to import, export, and link to HTML documents. Although
working with HTML documents is similar to working with other files types, HTML docu-
ments deserve special mention. To import an HTML document, follow these steps:

1. Click to select the External Data tab.

2. Use the More option in the Import group to select HTML Document.

3. Browse to select the document you want to import and click Open. Access returns
you to the Get External Data – HTML Document dialog box.

4. Click Import the Source Data into a New Table in the Current Database.

5. Click OK to continue. The Import HTML Wizard appears (see Figure 20.11).

6. The first step of the wizard attempts to parse the HTML document into fields. You
can accept what the wizard has done or click Advanced. When you click Advanced,
the Import Specification dialog box that appears enables you to designate field
names, data types, and indexes for each field and to select any fields you want to
eliminate from the imported file (see Figure 20.12). This dialog box also enables you
to modify the date order, date delimiter, and more.

7. After you make any required changes to the import specifications, click OK to return
to the Import HTML Wizard.

8. If appropriate, click First Row Contains Column headings. Then click Next.

9. Designate a field name, data type, and index for each field, as shown in Figure
20.13. Make any desired changes here and click Next.

CHAPTER 20 Using External Data874

Working with HTML Documents 875

2
0

FIGURE 20.12 The Clients Import Specification dialog box enables you to designate the
specifics of the import.

FIGURE 20.11 The Import HTML Wizard allows you to specify the details of the import
process.

CHAPTER 20 Using External Data876

FIGURE 20.13 Customizing the properties of each imported field.

10. The next step of the wizard enables you to indicate that you want Access to add a
primary key to the table, that you want to select your own primary key, or that you
don’t want the imported table to have a primary key (see Figure 20.14). Make your
selection and click Next.

11. The final step of the wizard enables you to assign a name to the table. You even can
have the wizard analyze the table after importing it. Click Finish after you make
your selection.

FIGURE 20.14 In this step of the wizard, you can add a primary key to the table.

You can not only import an HTML document, but also link to one. To link to an HTML
document, follow these steps:

1. Click to select the External Data tab.

2. Use the More option in the Import group to select HTML Document.

3. Browse to select the document you want to link to and click Open. Access returns
you to the Get External Data – HTML Document dialog box.

4. Indicate that you want to link to the data source by creating a linked table.

5. Click OK to continue. The Link HTML Wizard appears.

6. Click the Advanced button to modify any link specifications and return to the first
step of the wizard. Click Next to move to the second step of the wizard.

7. Specify information about each field you are linking to. Make any required changes
and click Next.

8. Supply a name for the linked table and click Finish.

Although an imported HTML document acts like any other Access table, you can’t modify
the data in a linked HTML document from within Access. You can use the linked docu-
ment to create queries, reports, and forms.

Practical Examples: Working with External Data
from Within Your Application
It’s time to split the data tables from the remainder of the application objects. You can
easily accomplish this using the Database Splitter. After you split the tables from the rest
of the database objects, you need to write code to refresh links. Both of these topics are
covered in the following sections.

Splitting the Database Using the Database Splitter
Begin by using the Database Splitter to separate the tables from the rest of the database
objects. You can find the CHAP20EX.ACCDB and CHAP20DATA.ACCDB files included on the
sample code CD-ROM. The CHAP20DATA.ACCDB file contains all the tables, and
CHAP20EX.ACCDB contains the rest of the database objects.

Refreshing Links
If you distribute your application and all users do not have the same path to the
CHAP20DATA.ACCDB file, the application will not load successfully. The LinkTables routine,
located in the Switchboard startup form, ensures that the tables are successfully linked, as
Listing 20.13 shows.

Practical Examples: Working with External Data from Within Your Application 877

2
0

LISTING 20.13 Loading the Application and Checking Table Attachments

Sub LinkTables()

Dim objFileDialog As FileDialog

On Error GoTo LinkTables_Err:

DoCmd.Hourglass True

‘Determine if links are ok

If Not VerifyLink Then

‘If not ok, attempt to relink with expected filename

If Not ReLink(CurrentProject.FullName, True) Then

‘If still not ok, ask user to locate file

Set objFileDialog = FileDialog(msoFileDialogOpen)

With objFileDialog

.AllowMultiSelect = False

.Show

End With

‘Attempt to link to file that user selected

If Not ReLink(objFileDialog.SelectedItems(1), False) Then

‘If not successful, display a message and quit app

MsgBox “You Cannot Run This App Without “ & _

“Locating Data Tables”

DoCmd.Close acForm, “frmSplash”

DoCmd.Quit

End If

End If

End If

DoCmd.Hourglass False

Exit Sub

LinkTables_Err:

DoCmd.Hourglass False

MsgBox “Error # “ & Err.Number & “: “ & Err.Description

Exit Sub

End Sub

Notice that the VerifyLink routine is called from the LinkTables routine. The VerifyLink
routine, which tests to see whether any table links are broken, appears in Listing 20.14.

CHAPTER 20 Using External Data878

LISTING 20.14 The VerifyLink Routine

Function VerifyLink() As Boolean

‘Verify connection information in linked tables.

‘Declare required variables

Dim cat As ADOX.Catalog

Dim tdf As ADOX.Table

Dim strTemp As String

‘Point Database object variable at the current database

Set cat = New ADOX.Catalog

With cat

Set .ActiveConnection = CurrentProject.Connection

‘Continue if links are broken.

On Error Resume Next

‘Open one linked table to see if connection

‘information is correct.

For Each tdf In .Tables

If tdf.Type = “LINK” Then

strTemp = tdf.Columns(0).Name

If Err.Number Then

Exit For

End If

End If

Next tdf

End With

VerifyLink = (Err.Number = 0)

End Function

The routine begins by pointing the ActiveConnection property of the Catalog object to
the connection associated with the current database. It then loops through each table in
the Tables collection of the Catalog object. If the table is a linked table, it attempts to
access the name of the first column in the table. If any of the links are broken, an error
occurs, and the For…Each loop is exited. If no error occurs, the function returns True;
otherwise, the function returns False.

If the VerifyLink routine returns False, the ReLink routine, which attempts to reestablish
the broken links, is called. Listing 20.15 shows the ReLink routine.

Practical Examples: Working with External Data from Within Your Application 879

2
0

LISTING 20.15 The ReLink Routine

Function ReLink(strDir As String, DefaultData As Boolean) _

As Boolean

‘ Relink a broken linked Access table.

Dim cat As ADOX.Catalog

Dim tdfRelink As ADOX.Table

Dim oDBInfo As DBInfo

Dim strPath As String

Dim strName As String

Dim intCounter As Integer

Dim vntStatus As Variant

‘Prepare status bar

vntStatus = SysCmd(acSysCmdSetStatus, “Updating Links”)

Set cat = New ADOX.Catalog

‘Instantiate database information class

Set oDBInfo = New DBInfo

With cat

.ActiveConnection = CurrentProject.Connection

‘Extract the name and path from the passed database

oDBInfo.FullName = strDir

strPath = oDBInfo.FilePathOnly

strName = Left(oDBInfo.FileName, InStr(oDBInfo.FileName, “.”) - 1)

On Error Resume Next

‘Update progress meter

Call SysCmd(acSysCmdInitMeter, “Linking Data Tables”, .Tables.Count)

‘Loop through each table, attempting to update the link

For Each tdfRelink In .Tables

intCounter = intCounter + 1

Call SysCmd(acSysCmdUpdateMeter, intCounter)

If .Tables(tdfRelink.Name).Type = “LINK” And _

Left(tdfRelink.Name, 3) = “tbl” Then

tdfRelink.Properties(“Jet OLEDB:Link Datasource”) = _

strPath & strName & IIf(DefaultData, “Data.Accdb”, “.accdb”)

End If

If Err.Number Then

Exit For

CHAPTER 20 Using External Data880

End If

Next tdfRelink

End With

‘Reset the progress meter

Call SysCmd(acSysCmdRemoveMeter)

vntStatus = SysCmd(acSysCmdClearStatus)

ReLink = (Err = 0)

End Function

The ReLink function receives two parameters. The first parameter is the name of the data-
base the function will attempt to link to. The second parameter is a Boolean variable that
designates whether the database is considered the default database.

The function begins by modifying the status bar. It then creates a Catalog object and an
instance of a custom class called DBInfo. Class modules are covered in Chapter 14,
“Exploiting the Power of Class Modules.” The ActiveConnection property of the Catalog
object is set equal to the Connection property of the current project. Next, the FullName
property of the DBInfo class is set equal to the name of the file that is passed as a parame-
ter to the function. The DBInfo class extracts the path and the filename from the full file-
name. Just as with the VerifyLink function, the ReLink function uses a For…Next loop to
loop through all the tables in the database. As it loops through each table, it attempts to
establish a link to a database with the name passed as a parameter to the ReLink function.

This ReLink function is called twice from the LinkTables routine, shown in Listing 20.13.
The first time it’s passed, the FullName property of the CurrentProject object and the
Boolean are True, indicating that it will try to locate the table in a database with the same
location as the application database. If that attempt is not successful, the LinkTables
routine uses the FileDialog object to display the File Open dialog box, allowing the user
to attempt to locate the database. The ReLink function is called again, searching for the
table in the database selected by the user. If it is still unsuccessful, the routine quits the
application.

Summary
The capability to link to external data is one of Access 2007’s strongest attributes. It is
important that you understand how to link to external data via the user interface and by
using VBA code. This chapter taught you how to link to external tables, open external
data sources directly, refresh and remove links, and create external tables using VBA code.
Many of the techniques covered in this chapter are covered extensively in Alison Balter’s
Mastering Access 2002 Enterprise Development.

Summary 881

2
0

LISTING 20.15 Continued

This page intentionally left blank

IN THIS CHAPTER

. Why This Chapter Is Important

. The Access 2007 (accdb) File
Format and SharePoint

. Exporting Data to a
SharePoint Site

. Publishing Data to a
SharePoint Site

. Opening Access Forms and
Reports from a SharePoint Site

. Linking to and Importing from
SharePoint Lists

. Taking SharePoint Lists Offline
with Access

. Reestablishing Links When a
SharePoint Site Has Been
Moved

CHAPTER 21

Access 2007 and
SharePoint

Why This Chapter Is Important?
SharePoint Server 2007 offers several benefits in managing
data. These benefits include the ability to track versions of
data, subscribe to alerts so that you know when another
user makes changes to the data, and manage permissions
for the site. By integrating SharePoint 2007 and Access
2007, you benefit from these rich collaboration features
while utilizing Access’s powerful data entry and analysis
features.

You can use several different techniques when integrating
Access 2007 and SharePoint 2007, including the following:

. Exporting selected data to a SharePoint site

. Moving an entire database to a SharePoint site

. Opening Access forms and reports from a
SharePoint site

. Creating databases from SharePoint lists

. Taking SharePoint lists offline with Access

Although this chapter covers each of these techniques in
detail, the sections that follow provide an overview of
each topic.

Exporting Selected Data to a
SharePoint Site
When you export a table to SharePoint, you make a copy
of that table and place it on the SharePoint site as a
SharePoint list. Changes made to the Access table do not
affect the SharePoint list, and changes made to the
SharePoint list do not affect the Access table.

Moving an Entire Database to a SharePoint Site
You can use the Move to SharePoint Site Wizard to move your Access 2007 data to a
SharePoint site. During this process, Access removes the tables from the Access database,
places them on the SharePoint site, and creates links to the data from within Access.
After the tables are on the SharePoint site, people can either work with the tables on
the SharePoint site or use the linked tables within Microsoft Access. Because the data is
in SharePoint, you can take advantage of the data tracking and permissions benefits of
SharePoint.

Opening Access Forms and Reports from a SharePoint Site
After you publish data to a SharePoint site, users can open your Access forms, reports, and
datasheets directly from the SharePoint site. The objects appear on the site along with the
SharePoint views. When a user selects a given form, report, or datasheet from within
SharePoint, Access starts and opens the appropriate object. The user does not have to first
open Access to work with the form or report.

Creating Databases from SharePoint Lists
Just as you can create SharePoint lists from Access tables, you can also create Access data-
bases from SharePoint lists. After you create the Access database, you can build forms and
reports that you will use to view and update the SharePoint data.

When you import a SharePoint list, you are copying the SharePoint data and creating a
new Access table based on the copy. If you make changes to the SharePoint data, those
changes do not affect the Access data; and if you make changes to the Access data, the
changes do not affect the SharePoint data. When you link to a SharePoint list, the data
resides only in SharePoint. Your Access database points at the SharePoint database and
reads its data. All changes that you make to the data from within Access are saved to the
SharePoint list, and all changes that you make to the data from within SharePoint are
reflected in Access. After you have linked to SharePoint lists, you will want to use forms
and reports to view and update their data.

Taking SharePoint Lists Offline with Access
Sometimes you will want to work with your SharePoint data when you are disconnected
from the network. With one click in Access, you can take your SharePoint lists offline and
then synchronize them with the server when you reconnect to the network.

Summary of Benefits of Working with SharePoint
The techniques just covered provide numerous benefits to Access developers and end
users. The first has to do with security. Using SharePoint lists and Access databases on
SharePoint sites, you can apply security settings to groups of users who will access your
data. For example, you can assign the appropriate rights to groups so that they can access
only the data appropriate for their use. This means that whereas one group has read-only
rights to limited items within a list, another group has full editing rights to all items in
the list.

CHAPTER 21 Access 2007 and SharePoint884

Another benefit of storing the data in SharePoint is its capability to track and manage
versions of data. Using SharePoint as your data store, you can easily determine who modi-
fied data and when.

Finally, users can easily view or restore deleted rows. This functionality is available
because deleted rows are not actually removed but are instead placed in the Recycle Bin.

The Access 2007 (accdb) File Format
and SharePoint
It is important to understand that if you want to integrate with SharePoint data from
within Access, you not only must use Access 2007 but also must have your database stored
in the Access 2007 (accdb) file format. There are a few reasons for this. The first is multi-
valued lookup fields, new to Access 2007 and the accdb file format. Multivalued lookup
fields enable you to store multiple values in a single field, creating, in effect, a many-to-
many relationship within the field. An example is a SoldBy field. You can place the names
of all the salespeople in a single field and use that field as a lookup for what salesperson is
associated with a particular order. Because SharePoint supports multivalued fields, it makes
sense for Access to support multivalued fields so that the two can share data.

Another Access 2007 feature important to SharePoint is memo field history tracking.
Using memo field history tracking, you can ensure that users can only append to memos,
not edit existing memo data. You can then view all those changes. Because SharePoint
also enables you to track changes with its versioning feature, adding this feature to Access
ensures that you can track changes when linked to data in a SharePoint list.

Exporting Data to a SharePoint Site
If your department or workgroup uses SharePoint to manage its lists, at some time you
might need to export some of your Access tables to the SharePoint site. When you export
an Access table to SharePoint, you are making a copy of the data. In other words, if you
make changes to the data in Access, those changes will not appear in SharePoint; and if
you make changes to the data in SharePoint, you will not see the data in Access.

Why Export Data to a SharePoint Site?
There are a few reasons why you might choose to export data to a SharePoint site.
Probably the most common reason is that you plan to work with the data in SharePoint,
but it currently resides in Access. You can export the data to a SharePoint list and then
link to the list from within Access. Linking is covered in the section “Linking to and
Importing from SharePoint Lists.”

A second reason you might want to export data to a SharePoint site is that you are just
getting started with SharePoint and you believe that it might be simpler for your users to
work with some of your data if it is stored both in Access and as SharePoint lists. This is
due to the ease of use when viewing or editing SharePoint lists within a browser.

Exporting Data to a SharePoint Site 885

2
1

Finally, you can use queries to export important results to SharePoint. Users of the
SharePoint site can then browse those results from within SharePoint without having
to load Access.

How to Export Data to a SharePoint Site
Microsoft Office Access 2007 makes the process of exporting to a SharePoint site quite
easy. Here are the steps involved:

1. Open the database containing the table or query that you want to export to
SharePoint.

2. Right-click the object that you want to export and select Export, SharePoint List
(see Figure 21.1).

Or

Select the object that you want to export, click to select the External Data tab, and
then select SharePoint List in the Export group (see Figure 21.2).

In either case, the Export Data to SharePoint List Wizard appears (see Figure 21.3).
Note that you can export only tables and query results. The fields and records of the
tables and queries in Access become the columns and rows of the SharePoint list.

CHAPTER 21 Access 2007 and SharePoint886

FIGURE 21.1 You can right-click an object to export it to SharePoint.

Exporting Data to a SharePoint Site 887

2
1

FIGURE 21.2 You can use the External data tab to export an object to SharePoint.

FIGURE 21.3 The Export Data to SharePoint List Wizard takes you through the process of
exporting table or query data to SharePoint.

3. Enter the name of the SharePoint site on which you want to place the list. The site
address must appear like this:

http://sharepoint/accounting

In this example, sharepoint is the name of the server, and accounting is the name
of the specific site on the server where you want to place the list.

4. Ensure that you have appropriate rights to the server. Also, ensure that the name of
the list is unique. Access will not allow you to overwrite a list with a list that already
exists with that name. Instead, it makes a second copy of the object and adds a
suffix to the name (for example, Customers_1). Click OK to export the data to
SharePoint. The export process places you on the SharePoint Team Site, in the
specific site that you designated during the export process. Notice in Figure 21.4
that the copy of the Orders table appears on the SharePoint site and is viewed
within a browser. You can now manipulate the data in SharePoint.

CHAPTER 21 Access 2007 and SharePoint888

FIGURE 21.4 The Orders table appears on the SharePoint site and is viewed within a
browser.

http://sharepoint/accounting

Conversion Issues
You should be aware of some conversion issues when exporting your Access tables to
SharePoint:

. All fields in the table or query, including hidden fields, are exported to SharePoint.

. Filter settings are ignored during the export process (use query criteria instead).

. Because SharePoint lists support only one attachment column, you must remove all
but one attachment column before you export the data to SharePoint. The work-
around to this problem is to copy additional attachment columns to other Access
objects and then export them to SharePoint lists.

. Access exports display values in single-valued lookup fields as drop-down menu
choices in the SharePoint list.

. If the source column supports multiple values, the wizard creates a Choice field that
allows multiple selections in the SharePoint list.

. A Choice field in SharePoint can consist of only a single column. If the source
lookup field is based on multiple columns, the values of all the columns are
combined into a single column.

. Only the results of a calculated field in a query are copied to the SharePoint list (not
the underlying formula).

. When you export a calculated field, the data type selected in the export is depen-
dent on the data type of the formula result.

. Access ignores OLE object fields when performing the export.

It is also important to understand how the Windows SharePoint Services data types map
to Access data types. Access help provides you with this mapping information. For
example, a Text field is converted to a single line of text. The column name, description,
required setting, maximum number of characters, and default value mirror their Access
counterparts. A Memo field is converted to multiple lines of text. The column name,
description, and required properties mirror their Access counterparts. The number of
lines to display is set to 5.

After the wizard runs, Access prompts you as to whether you want to save your export
steps (see Figure 21.5). If you click Save Export Steps, the wizard prompts you for all the
necessary information about the export process (see Figure 21.6). Enter the Save As loca-
tion, the description, and whether you want to generate an Outlook task that will remind
you to complete the operation. Click Save Export to complete the process.

Exporting Data to a SharePoint Site 889

2
1

FIGURE 21.5 After you run the wizard, Access prompts you as to whether you want to save
the export steps.

CHAPTER 21 Access 2007 and SharePoint890

FIGURE 21.6 If you opt to save the export steps, Access prompts you for the appropriate
information.

Publishing Data to a SharePoint Site
When you publish data to a SharePoint site, you first copy it to the site and then create
links to it from within Access. You can then run your queries, forms, and reports from
within Access. The Move to SharePoint Site Wizard assists you with the process of creating
the lists in SharePoint, maintaining the relationships between them, and creating links to
them within Access. Here’s how the wizard works:

1. Click to select the External Data tab.

2. Click the Move to SharePoint button within the SharePoint Lists group. The Move
to SharePoint Site Wizard appears (see Figure 21.7).

Publishing Data to a SharePoint Site 891

2
1

FIGURE 21.7 The Move to SharePoint Site Wizard walks you through the process of moving
Access tables to SharePoint lists.

3. Designate the SharePoint site that you want to use (for example,
http://sharepoint/test).

4. If you plan to run your forms and reports from within Access (rather than from
within SharePoint), click Next. It is important to note that you either need to
specify a document library (the default) or clear the Save a Copy check box.
Otherwise, the Next button will not be available. The process of creating the lists in
SharePoint is quite involved and will probably take some time, especially if you
have a large number of tables. You can click Stop at any time to abort the process.

5. When the process completes, the wizard should appear as in Figure 21.8. If there are
warnings or errors, you should click Show Details. Your screen will then appear as in
Figure 21.9. Notice that the details show you the lists the wizard created, where the
backup copy of your database is located, and what table contains a log of issues
encountered by the wizard.

CHAPTER 21 Access 2007 and SharePoint892

FIGURE 21.8 The wizard provides you with information upon completion.

FIGURE 21.9 You can opt to view the details of everything that occurred during the process
of creating SharePoint lists.

6. Click Finish to complete the process. Notice that the Access tables appear with links
to the SharePoint lists (see Figure 21.10).

It is important that you review the Move to SharePoint Site Issues table. This table lists all
issues encountered during the upsizing process. The Move to SharePoint Site Issues table
appears in Figure 21.11.

FIGURE 21.10 When you close the wizard, you will see that the database links to all the
SharePoint lists.

Publishing Data to a SharePoint Site 893

2
1

FIGURE 21.11 It is important that you review the Move to SharePoint Site Issues table to
determine everything that happened during the upsizing process.

Now that the SharePoint lists are created, you can view and edit list data from within Micro-
soft Access (see Figure 21.12). You can also run forms and reports based on that data (see
Figures 21.13 and 21.14). You can also edit data directly from the SharePoint site (see Figure
21.15). Because the lists are linked, all changes are reflected both in Access and in SharePoint.

CHAPTER 21 Access 2007 and SharePoint894

FIGURE 21.12 You can view and edit list data while in Datasheet view.

FIGURE 21.13 You can view and edit data using an Access form.

Publishing Data to a SharePoint Site 895

2
1

FIGURE 21.14 You can view list data using an Access report.

FIGURE 21.15 You can modify list data via the SharePoint site.

Now that the data is in SharePoint lists, you can fully manage it from the SharePoint site.
This means that you can apply various levels of security, manage versions of the data, and
retrieve deleted data from the Recycle Bin on the SharePoint site. You can even create
alerts so that certain people know when someone has changed the data.

How the Wizard Moves Data to the SharePoint Site
When the wizard runs, it attempts to match each Access table to a template available on
the SharePoint site. If it finds a template, it creates the SharePoint list based on that
template. If it can’t find an appropriate template, it creates a custom list on the
SharePoint site. During the process, it creates a backup of your original database and then
creates links to the lists on the SharePoint site.

Opening Access Forms and Reports from a
SharePoint Site
In the preceding sections, you published data to a SharePoint site. When you ran the
wizard, you did not opt to save a copy of the database to the SharePoint site and create
shortcuts to Access forms and reports. Instead, you ran all the queries, forms, and reports
from within Microsoft Access. In this section, you tell the wizard to save a copy of the
database to the SharePoint site and create shortcuts to its forms and reports (see Figure
21.16). To do this, you must select Browse and indicate the location of the document
library where you want to save your database (see Figure 21.17). After you have saved
your database to the document library, you can easily launch your forms and reports from
the SharePoint site. Here are the steps involved:

CHAPTER 21 Access 2007 and SharePoint896

FIGURE 21.16 When you publish data to a SharePoint site, you can opt to create shortcuts
to Access forms and reports.

FIGURE 21.17 You must designate the SharePoint library within which you want to save the
database.

1. Navigate to the appropriate SharePoint site.

2. Click to expand the lists available on that site (see Figure 21.18).

Opening Access Forms and Reports from a SharePoint Site 897

2
1

FIGURE 21.18 You must click to expand the lists available on the site.

3. Click the link to open the list that you want to view. The screen appears as in
Figure 21.19.

CHAPTER 21 Access 2007 and SharePoint898

FIGURE 21.19 Click the link to open the list you want to view.

4. Click to open the View drop-down. All the forms and reports associated with that
list appear in the drop-down (see Figure 21.20).

5. Click to select the form or report that you want to run. Access launches and displays
the form or report (see Figure 21.21).

FIGURE 21.20 The View drop-down displays all the forms and reports associated with a list.

Opening Access Forms and Reports from a SharePoint Site 899

2
1

FIGURE 21.21 Access launches and displays the selected form or report.

Linking to and Importing from SharePoint Lists
You can easily create an Access database from existing SharePoint lists. The process is
quite simple:

1. Open the database within which you want to place the new tables.

2. Click to select the External Data tab.

3. Select SharePoint List from the Import group. The Get External Data dialog box
appears (see Figure 21.22).

CHAPTER 21 Access 2007 and SharePoint900

FIGURE 21.22 In the Get External Data dialog box, you can designate whether you want to
import or link to the SharePoint data.

4. Designate whether you want to actually import the SharePoint data into the Access
database or whether you prefer to create links in the Access database to the
SharePoint lists. Realize that if you select the first option, you are simply copying
the SharePoint data and are placing the copy of the data within the Access database.

5. Click Next. The Import data from list step of the wizard appears (see Figure 21.23).

6. Click to select the tables that you want to import or link to.

7. Click OK to complete the process.

Linking to and Importing from SharePoint Lists 901

2
1

FIGURE 21.23 Select the tables that you want to import or link to.

FIGURE 21.24 Access prompts you to save the import steps.

8. Access prompts you to save the import steps (see Figure 21.24). If you opt to save
the import steps, the dialog box in Figure 21.25 appears.

FIGURE 21.25 Access prompts you for information about the import process.

9. Fill in the name for the task, add a description of the task, and designate whether
you want to generate an Outlook task that will automatically run at designated
times.

10. Click Save Import to complete the process. The resulting database appears as in
Figure 21.26. Notice the four tables with links to the SharePoint database.

CHAPTER 21 Access 2007 and SharePoint902

FIGURE 21.26 The linked tables appear in the Access database.

Taking SharePoint Lists Offline with Access
At times, you will want to take your SharePoint lists offline and work with them while
you are disconnected from the network. Fortunately, Access 2007 makes this process quite
easy. It is important to note that this scenario applies only to Access databases containing
links to SharePoint lists, not to imported lists. Here’s how you can work with your
SharePoint lists offline:

1. Open the database that you want to take offline.

2. Click to select the External Data tab.

3. Click to select Work Offline from the SharePoint Lists group. The icons associated
with the linked tables change to appear as in Figure 21.27.

Taking SharePoint Lists Offline with Access 903

2
1

FIGURE 21.27 The icons change to indicate that you are working offline.

Synchronizing Your Changes with SharePoint
Because you are now working on a local copy of the data, changes that you make to the
data are not immediately reflected in SharePoint, and changes made in SharePoint are not
reflected in the Access database. At some point, you might want to have your changes
reflected in SharePoint. You will also want to view the current SharePoint data. This
process does not require taking your database back online. Here’s how it works:

1. Click to select the External Data tab.

2. Select Synchronize in the SharePoint Lists group. Access will indicate to you that the
synchronization process is occurring.

3. If any conflicts occur between the offline database and the SharePoint data, the
Resolve Conflicts dialog box appears (see Figure 21.28).

CHAPTER 21 Access 2007 and SharePoint904

FIGURE 21.28 The Resolve Conflicts dialog box allows you to resolve conflicts between
Access and SharePoint data.

4. Resolve any conflicts by opting to either discard your changes or retry your changes.

5. The synchronization process completes, and all changes appear in both the Access
copy and the SharePoint copy.

Working Online
At some point, you will be ready to once again work online. Notice that when you are
working offline, the ribbon button reads Work Online and is available in the SharePoint
Lists group. To work online, just click the Work Online button. The synchronization
process completes; and if there are any conflicts, the Resolve Conflicts dialog box appears.
When the process completes and all conflicts have been resolved, the link icons return to
normal (see Figure 21.29).

Discarding Your Changes
You might decide that you want to discard all the changes that you have made to the data
in the Access database. This feature, of course, is appropriate only when you have taken the
database offline. Selecting this option in essence rolls back all the changes that you have
made to the database since you took it offline. Notice in Figure 21.30 that you can choose
either Discard All Changes or Discard All Changes and Refresh. If you opt to discard all
changes, your changes are eliminated, but you will not see the current data in SharePoint.
If you opt to discard all changes and refresh, you eliminate your changes and you will see
all changes made to the SharePoint database since you took the database offline.

Taking SharePoint Lists Offline with Access 905

2
1

FIGURE 21.29 After you take the database back online, the icons appear in their default
state.

FIGURE 21.30 Access gives you two choices when discarding your changes.

Reestablishing Links When a SharePoint Site Has
Been Moved
You or someone else might at some time need to move a SharePoint site to a different
location. When this happens, the link from Access to the SharePoint data will be lost.
Fortunately, Microsoft Office Access 2007 has a built-in feature that enables you to rectify
the link. Here’s how it works:

1. Click to select the External Data tab within Microsoft Access 2007.

2. After clicking the Work Online button on the ribbon to take the database back
online, click the Relink Lists option in the SharePoint Lists group. The Relink Lists
to New Site dialog box appears (see Figure 21.31).

CHAPTER 21 Access 2007 and SharePoint906

FIGURE 21.31 The Relink Lists to New Site dialog box allows you to designate the new site
where the lists reside.

3. Type in the name of the new site that contains the designated lists.

4. Click Get Lists to view the lists available on the designated site. The lists appear in
the New Lists column, and Access attempts to map the old list names to the new list
names (see Figure 21.32).

5. Click OK to complete the process.

FIGURE 21.32 Access attempts to map the old list names to the new list names.

Summary
Both Access and SharePoint are powerful tools. Used together, they offer the developer or
end user several benefits. They accomplish this by allowing you to take advantage of the
slick user interface provided by Microsoft Office Access 2007, while taking advantage of
the data management provided by SharePoint.

Summary 907

2
1

This page intentionally left blank

IN THIS CHAPTER

. Why This Chapter Is Important

. Designing Your Application with
Multiuser Issues in Mind

. Understanding Access’s
Locking Mechanisms

. Understanding the
Client/Server Model

. Deciding Whether to Use the
Client/Server Model

. Understanding the Roles That
Access Plays in the Application
Design Model

. Learning the Client/Server
Buzzwords

. Upsizing: What to Worry About

. Proactively Preparing for
Upsizing

. Using Transaction Processing

. Practical Examples: Getting
Your Application Ready for an
Enterprise Environment

CHAPTER 22

Developing Multiuser
and Enterprise

Applications

Why This Chapter Is Important
Many people forge right into the application development
process with little worry about the scalability of the appli-
cation. Even a simple application that begins as a single-
user application can develop into a multiuser or
enterprise-wide application. Unfortunately, the techniques
you can get away with in the single-user application can
wreak havoc in a network or client/server environment. It
is therefore necessary to think about the future when you
design any application. Although the initial development
process might be more complex, if written properly, the
application will survive any growth that it experiences.
This chapter focuses on writing applications that transition
easily from the single-user environment through the enter-
prise client/server environment.

Designing Your Application with
Multiuser Issues in Mind
When you develop applications that multiple users will
access over the network, you must make sure they effec-
tively handle sharing data and other application objects.
Many options are available for developers when they
design multiuser applications, and this chapter covers the
pros and cons of these options.

Multiuser issues revolve around locking data; they include
deciding where to store database objects, when to lock
data, and how much data to lock. In a multiuser environ-
ment, having several users simultaneously trying to modify

the same data can cause conflicts. As a developer, you need to handle these conflicts.
Otherwise, your users will experience unexplainable errors.

Multiuser Design Strategies
There are many methods for handling concurrent access to data and other application
objects by multiple users; each one offers both solutions and limitations. It’s important to
select the best solution for your particular environment.

Strategies for Installing Access
There are two strategies for installing Access:

. Run Access from a file server across a network.

. Run a separate copy of Access on each workstation.

The advantages of running Access from a file server are that it

. Allows for central administration of the Access software

. Potentially reduces the licensing requirements

. Allows Access applications to be installed on diskless workstations

. Reduces hard disk requirements

File server installations also have serious drawbacks, including the following:

. Every time the user launches an Access application, the Access EXE, DLLs, and any
other files required to run Access are all sent over the network wire to the local
machine. Obviously, this generates a significant volume of network traffic.

. Performance is generally degraded to unacceptable levels.

Because the disadvantages of running Access from a file server are so pronounced, I
strongly recommend that you install Access, or at least the runtime engine, on each user’s
machine.

Strategies for Installing Your Application
Just as there are different strategies for installing Access, there are also various strategies
for installing your application, such as the following:

. Install both the application and data on a file server.

. Install the data on the file server and the application on each workstation.

. Install the application and the data on a machine running Windows 2003 Terminal
Services.

In other words, after you have created an application, you can place the entire applica-
tion on the network, which means that all the tables, queries, forms, reports, macros, and

CHAPTER 22 Developing Multiuser and Enterprise Applications910

modules that make up the system reside on the file server. Although this method of
shared access keeps everything in the same place, you will see many advantages to
placing only the database’s data tables on the file server. The remaining objects are placed
in a database on each user’s machine, and each local application database is linked to the
tables on the network. In this way, users share data but not the rest of the application
objects.

The advantages of doing this are as follows:

. Because each user has a copy of the local database objects, load time and network
traffic are both reduced.

. You can easily back up data without having to back up the rest of the application
objects.

. When redistributing new versions of the application, you don’t need to worry about
overwriting the application’s data.

. You can design multiple applications to use the same centrally located data.

. Users can add their own objects (such as their own queries) to their local copies of
the database.

In addition to storing the queries, forms, reports, macros, and modules that make up the
application in a local database, I also recommend that you store the following objects in
each local database:

. Temporary tables

. Static tables

. Semistatic tables

Temporary tables should be stored in the database that’s on each workstation because, if
two users are performing operations that build the same temporary tables, you don’t want
one user’s process to interfere with the other user’s process. You can eliminate the poten-
tial conflict of one user’s temporary tables overwriting the other’s by storing all temporary
tables in each user’s local copy of the database.

You should also place static lookup tables, such as state tables, on each workstation.
Because the data doesn’t change, maintenance isn’t an issue. The benefit is that Access
doesn’t need to pull that data over the network each time the application needs it.

Semistatic tables—tables that are rarely updated—can also be placed on the local
machine. As with static tables, having these tables in a local database means reduced
network traffic and better performance, not only for the user needing the data, but also
for anyone sharing the same network wire.

The configuration described throughout this section is illustrated in Figure 22.1.

Designing Your Application with Multiuser Issues in Mind 911

2
2

FIGURE 22.1 An example of a configuration with database objects split, storing temporary
and static tables locally and shared tables remotely (on the file server).

Terminal Services has emerged as a viable alternative for deployment of an Access applica-
tion. It addresses both bandwidth and centralization issues. With this option, a Windows
2003 machine runs the Windows 2003 Terminal Services. Client machines then access
the server machine using the Terminal Server Client Utility. In this scenario, Access, your
application, and the data that it accesses are all installed on the Windows 2003 Server
machine. All other machines access the application via user sessions created on the
server machine. Keystrokes and mouse events are sent from the client machines to
the server machine. The resulting screen image is returned to the client machine. This
configuration addresses many of the problems inherent in the two other solutions.

The Basics of Linking to External Data
Chapter 20, “Using External Data,” covers linking to external data, including data not
stored in another Access database. Two options are available to you:

. Design the databases separately from the start.

. Include all objects in one database and then split them manually when you’re ready
to distribute your application.

Chapter 20 covers these two options in detail.

CHAPTER 22 Developing Multiuser and Enterprise Applications912

Workstation 1

Forms

Reports

Macros

Modules

Queries

Static Tables

Temp Tables

Workstation 2

Forms

Reports

Macros

Modules

Queries

Static Tables

Temp Tables

Server

Shared Tables

System.mdt

Understanding Access’s Locking Mechanisms 913

2
2

CAUTION

Be aware that when you’re distributing an application using linked tables, you must
write code to make sure the data tables can be located from each application data-
base on the network. The reason is that Access hard-codes the location of linked
tables into the application database. If each user has the same path to the file server,
this isn’t a problem. However, if the path to the file server varies, you need to write a
routine that makes sure the tables can be successfully relinked. If they can’t, the
routine prompts the user for the data’s location. Chapter 20 covers this routine.

Understanding Access’s Locking Mechanisms
Although the preceding tips for designing network applications reduce network traffic,
they in no way reduce locking conflicts. To protect shared data, Access locks either a
record or a page of data as the user edits a record. In this way, multiple users can read the
data, but only one user can make changes to it. Data can be locked through a form or
through a recordset that isn’t bound to a form.

Here are the methods of locking for an Access application:

. Record locking

. Page locking

. Table and Recordset locking

. Opening an entire database with Exclusive Access

With Record locking, the Access Database Engine locks only the record that the user is
editing. With Page locking, the Access Database Engine locks the 4K page with the record
being edited. On the other hand, in Table and Recordset locking, the Access Database
Engine locks the entire table or recordset with the record being edited. With Database
locking, the Access Database Engine locks the entire database, unless the user opening the
database has opened it for read-only access. In that case, other users can also open the
database for read-only access.

It’s important to note that the locking scheme you adhere to depends on the source
providing the data. If you’re using client/server data, you inherit the locking scheme of
the particular back end you’re using. If you’re manipulating Indexed Sequential Access
Method (ISAM) data over a network, you get the type of data locking that the particular
ISAM database supports. For example, if you’re working with a FoxPro database, you can
use Record locking or any other locking scheme that FoxPro supports.

NOTE

Multiuser development and multiuser issues are covered in extensive detail in Alison
Balter’s Mastering Access 2002 Enterprise Development.

Understanding the Client/Server Model
Now that you understand the basics of using Access in a multiuser environment, I am
going to take things a step further by discussing client/server applications. One of the hot
computing terms of the 21st century, client/server refers to distributed processing of infor-
mation. A client/server model involves the storage of data on database servers dedicated
to the tasks of processing data and storing it.

The client/server model introduces a separation of functionalities. The client, or front end,
is responsible for presenting the data and doing some processing. The server, or back end,
is responsible for storing, protecting, and performing the bulk of the data processing.

With its tools that assist in the rapid development of queries, forms, and reports, Access
provides an excellent front end for the presentation of back-end data.

For years, most information professionals have worked with traditional programming
languages to process and maintain data integrity in the application. This means that data
validation rules must be embedded in the programming code. Furthermore, these types of
applications are record-oriented; that is, all records are read into memory and processed.
This scenario has several drawbacks:

. If the underlying data structure changes, every application that uses the data struc-
ture must be changed.

. Data validation rules must be placed in every application that accesses a data table.

. Presentation, processing, and storage are handled by one program.

. Record-oriented processing results in an extraordinary amount of unnecessary
network traffic.

Deciding Whether to Use the Client/Server Model
Client/server technology was not as necessary when there was a clear delineation between
mainframe applications and personal computer applications. Today, the line of demarca-
tion has blurred. Personal computer applications are taking over many applications that
had been relegated to mainframe computers in the past. The problem is that users are still
very limited by the bandwidth of network communications. This is one place where
client/server technology can really help.

However, many developers are confused about what client/server architecture really is.
Some mistakenly believe that an Access ACCDB database file stored on a file server acts as
a database server. This is not the case. (In fact, I have participated in many debates in
which other developers have insisted that Access itself is a database server application.
Well, it’s not.) Access is a front-end application that can process data stored on a back
end. In this scenario, the Access application runs on the client machine accessing data
stored on a database server running software such as Microsoft SQL Server. Access does an
excellent job acting as the client-side, front-end software in this scenario. The confusion
lies in Access’s capability to act as a database server.

CHAPTER 22 Developing Multiuser and Enterprise Applications914

The difference lies in the way that data is retrieved when Access is acting as the front end
to a database server versus when the data is stored in an Access ACCDB file. Suppose that
you have a table with 500,000 records. A user runs a query based on the 500,000-record
table stored in an Access database on a file server. Suppose that the user wants to see a list
of all the Californians who make more than $75,000 per year. With the data stored on the
file server in the Access ACCDB file format, all records would be sent over the network to
the workstation, and the query would be performed on the workstation (see Figure 22.2).
This results in significant network traffic.

On the other hand, assume that these 500,000 records were stored on a database server
such as Microsoft SQL Server. If the user runs the same query, only the names of the
Californians who make more than $75,000 per year would be sent over the network. In
this scenario, only the specific fields requested would be retrieved (see Figure 22.3).

What does this mean to you? When should you become concerned with client/server
technology and what it can offer you? The following sections present some guidelines as
to why you might want to upsize from an Access back end to a SQL Server back end.

Deciding Whether to Use the Client/Server Model 915

2
2

Processing

Processing

Processing

Processing

Query Query

Query Query

Data Data

Data Data

FIGURE 22.2 Access as a front end using data stored in an Access database.

FIGURE 22.3 Access as a front end using a true back end.

Dealing with a Large Volume of Data
As the volume of data in your Access database increases, you will probably notice degra-
dation in performance. Many people say that 100MB is the magical number for the
maximum size of an Access database, but many back-end database servers can handle
databases containing multiple gigabytes of data. Although a maximum size of 100MB for
an Access database is a good general guideline, it is not a hard-and-fast rule. You might
find that the need to upsize occurs when your database is significantly larger or smaller
than 100MB. The magic number for you depends on all the factors discussed in the
following sections, as well as on how many tables are included in the database. Generally,
Access performs better with large volumes of data stored in a single table rather than in
multiple tables.

Dealing with a Large Number of Concurrent Users
Just as a large volume of data can be a problem, so can a large number of concurrent users.
In fact, more than 10 users concurrently accessing an Access database can degrade perfor-
mance. As with the amount of data, this is not a magical number. I have seen applications
with fewer than 10 users where performance is awful, and I have seen applications with

CHAPTER 22 Developing Multiuser and Enterprise Applications916

Query Query

Query Query

Result Result

Processing

Result Result

significantly more than 10 users where performance is acceptable. Performance often
depends on how the application is designed, as well as what tasks the users are performing.

Demanding Faster Performance
Certain applications demand better performance than other applications. An Online
Transaction Processing (OLTP) system generally requires significantly better performance
than a Decision Support System (DSS), for example. Suppose that 100 users are simultane-
ously taking phone orders. It would not be appropriate for the users of the system to ask
their customers to wait 15 seconds between entering each item that is ordered. On the
other hand, asking users to wait 60 seconds to process a management report that users run
once each month is not a lot to ask (although many will still complain about the wait).

Most back-end database servers can use multithreaded operating systems with multiple
processors to handle large volumes of user demand; Access cannot.

Handling Increased Network Traffic
As a file server in an organization experiences increasing demands, the Access application
simply might exacerbate an already growing problem. If the application data is moved to
a database server, the overall reduced demands on the network might provide all users on
the network with better performance, regardless of whether they are using the Access
application.

Probably one of the most exaggerated situations I have seen is one in which all the work-
stations were diskless. Windows and all application software were installed on a file server.
All the users were concurrently loading Microsoft Word, Microsoft Excel, and Microsoft
PowerPoint over the network. In addition, they had large Access applications with many
database objects and large volumes of data. This was all stored on the file server as well.
Needless to say, performance was abysmal. You can’t expect an already overloaded file
server to handle sending large volumes of data over a small bandwidth. The benefits
offered by client/server technology can help alleviate this problem.

Implementing Backup and Recovery
The backup and recovery options offered with an Access ACCDB database stored on a file
server simply do not rival the options for backup and recovery on a database server. Any
database server worth its salt sports very powerful uninterruptible power supplies (UPSs).
Many have hot-swappable disk drives with disk mirroring, disk duplexing, or disk striping
with parity (RAID Level 5). With disk mirroring and duplexing, data can be written to
multiple drives at one time, providing instantaneous backups. Furthermore, some data-
base server tape backup software enables backups to be completed while users are access-
ing the system. Many offer automatic transaction logging. All these options mean less
chance of data loss or downtime. With certain applications, this type of backup and
recovery is overkill. With other applications, it is imperative. Although some of what back
ends have to offer in backup and recovery can be mimicked by using code and replica-
tion, it is nearly impossible to get the same level of protection from an Access database
stored on a file server that you can get from a database stored on a database server.

Deciding Whether to Use the Client/Server Model 917

2
2

Focusing on Security
Access offers what can be considered the best security for a desktop database. However, it
cannot compare with the security provided by most database servers. Database server
security often works in conjunction with the network operating system. This is the case,
for example, with Microsoft SQL Server 2005 and Windows Server 2003 Enterprise. The
user is given no direct rights to the physical database file; it can be accessed only via an
Open Database Connectivity (ODBC) data source or an ActiveX Data Objects (ADO)
connection. Remember that no matter how much security you place on an Access data-
base, a user can still see or even delete the entire ACCDB file from the network disk.

Offering protection from this potential problem, and others, on a database server is easy.
Furthermore, many back-end application database server products offer field-level security
not offered within an Access ACCDB file. Finally, many back ends offer integrated security
with one logon for both the network and the database.

Sharing Data Among Multiple Front-End Tools
The Access ACCDB file format is proprietary. Very few other products can read data stored
in the Access database format. With a back-end database server that supports ODBC,
front-end applications can be written in a variety of front-end application software, all
concurrently using the same back-end data.

Understanding What It All Means
You must evaluate the specific environment in which your application will run:

. How many users are there?

. How much data exists?

. What is the network traffic already like?

. What type of performance is required?

. How disastrous is downtime?

. How sensitive is the data?

. What other applications will use the data?

After you answer these and other questions, you can begin to decide whether the benefits
of the client/server architecture outweigh the costs involved.

The good news is that it is not an all-or-none decision. Various options are available for
client/server applications using Access as a front end. Furthermore, if you design your
application with upsizing in mind, moving to client/server technology will not require
you to throw out what you have done and start again. In fact, Microsoft provides an
upsizing wizard that makes upsizing to a SQL Server database a relatively painless process.
How painless depends on numerous factors, including how complex your queries are,
whether your queries include Visual Basic for Applications (VBA) functions, and other
factors that are covered later in this chapter, and in detail in Alison Balter’s Mastering
Access 2002 Enterprise Development.

CHAPTER 22 Developing Multiuser and Enterprise Applications918

Understanding the Roles That Access Plays in the
Application Design Model
This section takes a look at the many different roles that Access can take in an application
design.

The Front End and Back End as Access ACCDB Files
Earlier in this book, you learned about using Access as both the front end and the back
end. The Access database is not acting as a true back end because it is not doing process-
ing. Figure 22.4 shows the architecture in this scenario. The Access application resides on
the workstation. Access uses the Access Database Engine to communicate with data stored
in an Access ACCDB database file stored on the file server.

Understanding the Roles That Access Plays in the Application Design Model 919

2
2

Access

Jet

Access Database

FIGURE 22.4 Access as a front end using an ACCDB file for data storage.

The Front End as an ACCDB File Using Links to Communicate
to a Back End
In the second scenario, you can link the back-end tables to the front-end application
database (.ACCDB). The process of linking to back-end tables is almost identical to that of
linking to tables in other Access databases or to external tables stored in FoxPro, or other
database formats. You can also treat the linked tables like any other linked tables. Access
uses ODBC to communicate with the back-end tables (see Figure 22.5). Your application
sends an Access SQL statement to the Access Database Engine, which translates the state-
ment into ODBC SQL. The Access Database Engine sends this ODBC SQL statement to the
ODBC Manager, which locates the correct ODBC driver and passes it the ODBC SQL state-
ment. Supplied by the back-end vendor, the driver translates the statement into the back
end’s specific dialect. The ODBC Manager sends this now back-end–specific query to the
SQL server and to the appropriate database. Although this may seem cumbersome, a prop-
erly designed Access front end accessing data stored in a SQL Server database is quite effi-
cient. I have proven this over and over again with enterprise-wide applications written in
Microsoft Access.

FIGURE 22.5 Access as a front end using links to back-end tables.

The Front End Using SQL Pass-Through to Communicate
to a Back End
If a particular query is running inefficiently, you may want to bypass ODBC and go
directly against SQL server. Here are a few reasons why a SQL pass-through query may be
the best option available in specific situations:

. Access SQL might not support some operation that the native query language of the
back end supports.

. Either the Access Database Engine or the ODBC driver produces a SQL statement
that is not optimized for the back end.

. You want a process performed in its entirety on the back end.

As an alternative, you can execute a pass-through query written in the syntax specific to
the back-end database server. Although the query does pass through the Access Database
Engine, the Access Database Engine does not perform any translation on the query.
Neither does ODBC. The ODBC Manager sends the query to the ODBC driver, which
passes the query to the back end without performing any translation. In other words,
exactly what was sent from Access is what is received by the SQL database. Figure 22.6
illustrates this scenario. Notice that the Access Database Engine, the ODBC Manager, and
the ODBC driver are not eliminated entirely. They are still there, but they have much less
impact on the process than they do with attached tables.

CHAPTER 22 Developing Multiuser and Enterprise Applications920

Access

Jet

ODBC Manager

ODBC Driver

SQL Server

SQL Database

FIGURE 22.6 Access sending a pass-through query to a back-end database.

Pass-through queries are not a panacea, although they are very useful. The results of a
pass-through query are not updateable, for example. Furthermore, because pass-through
queries are written in the back end’s specific SQL dialect, you must rewrite them if you
swap out your back end. For these reasons and others, you will generally use pass-through
with other solutions.

The Front End Executing Procedures Stored on a Back End
A stored procedure is compiled SQL code stored on a back end. You will generally execute it
using ADO or Data Access Objects (DAO) code. You can also execute a stored procedure
using a pass-through query. Regardless of what you call it, the code within the stored
procedure is written in the SQL native to the back end on which it is stored, and the
stored procedure is executed in its entirety on the back end. Stored procedures can return
results or can simply execute on the back end without returning data.

The Front End as a Microsoft Access Data Project Communicating
Directly to a Back End
ADP files were introduced in earlier versions of Access. Although for a while they were
considered the technology to use, it turned out that ADP files were the database technol-
ogy du jour. In fact, there is no upgrade path for an ADP file in Access 2007; therefore,
using ADP files, you cannot take advantage of the features added to Access 2007.

Understanding the Roles That Access Plays in the Application Design Model 921

2
2

Access

Jet

ODBC Manager

ODBC Driver

SQL Server

SQL Database

Learning the Client/Server Buzzwords
People who talk about client/server technology use many terms that are unfamiliar to the
average database developer. To get a full appreciation of client/server technology and
what it offers, you must have at least a general understanding of the terminology. Table
22.1 lists the most commonly used terms.

TABLE 22.1 Client/Server Terms

Term Definition

Column A field.
DDL A data definition language used to define and describe the

database structure.
Foreign key A value in one table that must be looked up in another table

for validation.
Access Database Engine The native database engine used by Microsoft Access.
ODBC (Open Database A standard proposed by Microsoft that provides access to
Connectivity) a variety of back-end databases through a common interface.

In essence, ODBC is a translator.
OLEDB A standard for connecting to relational and nonrelational data

sources.
DAO (Data Access A method of manipulating data. It has been replaced by ADO
Objects) in many databases because it was optimized for accessing

Jet databases.
ADO (ActiveX Data A COM-based object model that allows you to easily
Objects) manipulate OLE DB data sources. It is the data access

methodology that replaces DAO.
Primary key A set of fields that uniquely identify a row.
Row A record.
Schema A blueprint of the entire database. It includes table defini-

tions, relationships, security, and other important information
about the database.

SQL (Structured A type of data manipulation language commonly used to
Query Language) talk to tables residing on a server.
Stored procedures Compiled SQL statements, such as queries, stored on the

database server. They can be called by an application.
Transaction A set of actions that must be performed on a database. If any

one action fails, all the actions are discarded.
Triggers Pieces of code that execute in response to an action occur-

ring on a table (insert, edit, or delete).

Many books are devoted solely to client/server technology; Alison Balter’s Mastering Access
2002 Enterprise Development focuses entirely on client/server and Web development using
Access 2002. Most magazines targeted at developers contain numerous articles on client/
server technology. Access/VB/SQL Advisor always offers excellent articles on client/server
development. Many of the articles are specifically about client/server connectivity using
Access as a front end. Visual Studio Magazine often contains useful articles as well. Another

CHAPTER 22 Developing Multiuser and Enterprise Applications922

excellent source of information is the Microsoft Developer Network CD. Offered by
Microsoft as a subscription, it includes numerous articles and white papers on
client/server technology, ODBC, and use of Access as a front end to a database server.

Upsizing: What to Worry About
Suppose that your database is using Microsoft Access as both the front end and back end.
Although an Access database on a file server might have been sufficient for a while, the
need for better performance, enhanced security, or one of the other benefits that a back-
end database provides compels your company (or your client’s company) to upsize to a
client/server architecture. The Access tables already have been created and even contain
volumes of data. In this scenario, it might make sense to upsize.

Because all the tables have been designed as Access tables, you must upsize them to the
back-end database server. Upsizing involves moving tables from a local Access database
(or from any PC database) to a back-end database server that usually runs on UNIX,
Windows 2000, and Windows 2003 Server.

Another reason why you might decide to upsize tables from Access to a back-end server
is that many developers prefer to design their tables from within the Access environment.
Access offers a more user-friendly environment for table creation than most server
applications.

Because of the many caveats involved when moving tables from Access to a back end,
many people opt to design the tables directly on the back end. If you do design your
tables in Access, you can export them to the back end and then link them to your local
database, or you can use the Upsizing Wizard to greatly facilitate this process. Regardless
of the method that you choose, as you export your tables to the database server, you need
to be aware of the issues covered in the following sections.

NOTE

If you are updating to a SQL Server database, most of the concerns regarding upsizing
are handled by the Upsizing Wizards included as part of Microsoft Access 2000 and
above.

Indexes
When you are exporting a table to a server, no indexes are created. All indexes need to be
re-created on the back-end database server. If your database server is running Microsoft
SQL Server, you can use the Access 2007 Upsizing Wizard. This wizard will create indexes
for server tables in the place where the indexes exist in your Access tables.

AutoNumber Fields
AutoNumber fields are exported as Long integers. Because some database servers do not
support autonumbering, you have to create an insert trigger on the server that provides
the next key value. You also can achieve autonumbering by using form-level events, but

Upsizing: What to Worry About 923

2
2

this approach is not desirable. The numbering will not be enforced if other applications
access the data. If you are upsizing to Microsoft SQL Server, the Upsizing Wizard for
Access 2007 converts all AutoNumber fields to Identity fields.

Default Values
Default values are not automatically moved to the server, even if the server supports
them. You can set up default values directly on the server, but these values do not auto-
matically appear when new records are added to the table unless the record is saved
without data being added to the field containing the default value. As with autonumber-
ing, you can implement default values at the form level, with the same drawbacks. If you
use the Upsizing Wizard for Access 2007 to move the data to Microsoft SQL Server, the
wizard exports default values to your server database.

Validation Rules
Validation rules are not exported to the server. They must be re-created using triggers on
the server. No Access-defined error messages are displayed when a server validation rule is
violated. Your application should be coded to provide the appropriate error messages. You
also can perform validation rules at the form level, but they are not enforced if the data is
accessed by other means. If you use the Upsizing Wizard for Access 2007 to move the data
to Microsoft SQL Server, validation rules are exported to the server database where possible.

Relationships
Relationships need to be enforced using server-based triggers. Access’s default error
messages do not appear when referential integrity is violated. You need to respond to, and
code for, these error messages in your application. You can enforce relationships at the
form level, but as with other form-level validations, this method of validation does not
adequately protect your data. If you use the Upsizing Wizard for Access 2007 to move the
data to Microsoft SQL Server, the wizard sets up all relationships and referential integrity
that you have set up in your Access database within the server database.

Security
Security features that you have set up in Access do not carry forward to the server. You
need to reestablish table security on the server. After you set up security on the server,
Access is unaware that the security exists until the Access application attempts to violate
the server’s security. Then the server returns error codes to the application. You must
handle these errors by using code and displaying the appropriate error message to users.

Table and Field Names
Servers often have much more stringent rules than Access does regarding the naming of
fields. When you export a table, all characters that are not alphanumeric are converted to
underscores. Most back ends do not allow spaces in field names. Furthermore, some back

CHAPTER 22 Developing Multiuser and Enterprise Applications924

ends limit the length of object names to 30 characters or fewer. If you already have
created queries, forms, reports, macros, and modules that use spaces and very long field
and table names, these database objects might become unusable when you move your
tables to a back-end database server.

Reserved Words
Most back ends have many reserved words. Reserved words are words used by the back
end in its own operations. It is important to be aware of the reserved words of your
specific back end. It is quite shocking when you upsize a table and find that field names
you have been using are reserved words on your database server. If this is the case, you
need to rename all the fields in which a conflict occurs. Once again, this means modify-
ing all the queries, forms, reports, macros, and modules that reference the original field
names.

Case Sensitivity
Many back-end databases are case sensitive. If this is the case with your back end, you
might find that your queries and application code don’t process as expected. Queries or
code that refer to the field or table name by using the wrong case are not recognized by
the back-end database and do not process correctly.

Properties
Most properties cannot be modified on remote tables. Any properties that can be modi-
fied are lost upon export, so you need to set them up again when you export the table.

Visual Basic Code
Certain properties and methods that work on Access tables might not work on remote
tables. You therefore might need to make some coding changes after you export your
tables.

Proactively Preparing for Upsizing
If you set up your tables and code modules with upsizing in mind, you can eliminate
many of the pitfalls discussed previously. Despite any of the problems that upsizing can
bring, the scalability of Access is one of its stronger points. Sometimes resources are not
available to implement client/server technology in the early stages of an application. If
you think through the design of the project with the possibility of upsizing in mind, you
will be pleased at how relatively easy it is to move to client/server technology when the
time is right. With the Access 2007 Upsizing Wizard, which is designed to take an Access
application and upsize it to Microsoft SQL Server 2000 or Microsoft SQL Server 2005, the
process is relatively simple. The upsizing tools for Access 2007 perform a lot of the work
involved in upsizing a database, with just the click of a few buttons.

Proactively Preparing for Upsizing 925

2
2

NOTE

Client/server development and client/server issues are covered in extensive detail in
Alison Balter’s Mastering Access 2002 Enterprise Development.

NOTE

The upsizing wizards available for Access 2000, Access 2002, and Access 2003 are
almost identical to the Access 2007 Upsizing Wizard. They therefore afford you the
same ease when upsizing from Access to SQL Server.

CAUTION

Although the upsizing tools for Access are excellent, they do have their drawbacks. For
example, they do not always map the Access field type to the desired SQL Server field
type. For this reason, you can opt not to use the wizards. If, despite their shortcom-
ings, you decide to use the upsizing wizards, make sure that you carefully review both
the upsizing report and the structure of each table after the wizard upsizes it.

Using Transaction Processing
Transaction processing refers to the grouping of a series of changes into a single batch.
The entire batch of changes is either accepted or rejected as a group. One of the most
common implementations of transaction processing is a bank automated teller machine
(ATM) transaction. Imagine that you go to the ATM to deposit your paycheck. In the
middle of processing, a power outage occurs. Unfortunately, the bank recorded the
incoming funds prior to the outage, but the funds had not yet been credited to your
account when the power outage occurred. You would not be very pleased with the
outcome of this situation. Transaction processing would prevent this scenario from occur-
ring. With transaction processing, the whole process succeeds or fails as a unit.

A group of operations is considered a transaction if it meets the following criteria:

. It is atomic—The group of operations should finish as a unit or not at all.

. It is consistent— The group of operations, when completed as a unit, retains the
consistency of the application.

. It is isolated—The group of operations is independent of anything else going on in
the system.

. It is durable—After the group of operations is committed, the changes persist, even
if the system crashes.

If your application contains a group of operations that are atomic and isolated, and if, to
maintain the consistency of your application, all changes must persist even if the system
crashes, you should place the group of operations in a transaction loop. With Access
2007, the primary benefit of transaction processing is data integrity.

CHAPTER 22 Developing Multiuser and Enterprise Applications926

Understanding the Benefits of Transaction Processing

NOTE

This code, and all the code in this chapter, is located in the CHAP22EX.ACCDB database
in the basTransactions module on the sample code CD-ROM.

NOTE

Any discussion of Access 2007 covered in this section also applies to Access 2000,
Access 2002, and Access 2003.

Access 2007 does its own behind-the-scenes transaction processing. The Access Database
Engine does this implicit transaction processing solely to improve the performance of
your application. As a processing loop executes, Access buffers and then periodically
writes the data to disk. In a multiuser environment, the Access Database Engine (implic-
itly) commits transactions every 50 milliseconds by default. This period of time is opti-
mized for concurrency rather than performance. If you feel that it is necessary to sacrifice
concurrency for performance, you can modify a few Windows Registry settings to achieve
the specific outcome you want. The next section covers these settings.

Although implicit transaction processing, along with the modifiable Windows Registry
settings, generally gives you better performance than explicit transaction processing, it is
not a cut-and-dried situation. Many factors affect the performance benefits gained by
both implicit and explicit transaction processing:

. Amount of free memory

. Number of columns and rows being updated

. Size of the rows being updated

. Network traffic

If you plan to implement explicit transaction processing solely to improve performance,
you should make sure that you benchmark performance using both implicit and explicit
transactions. It is critical that your application-testing environment be as similar as possi-
ble to the production environment in which the application will run.

Modifying the Default Behavior of Transaction Processing
Before you learn how to implement transaction processing, take a look at what you can
do to modify the default behavior of the transaction processing built in to Access 2007.
Three Registry settings affect implicit transactions in Access 2007: ImplicitCommitSync,
ExclusiveAsyncDelay, and SharedAsyncDelay. These keys are located in the \HKEY_LOCAL_
MACHINE\SOFTWARE\Microsoft\Jet\4.0\Engines\Jet 4.0 Registry folder.

Using Transaction Processing 927

2
2

TIP

You can access the Windows Registry using the RegEdit utility. To use RegEdit, select
the Run option from the Start menu and then type RegEdit. In Windows Vista, you
must locate the RegEdit utility and then double-click it to run the utility.

The ImplicitCommitSync setting determines whether the system waits for a commit to
finish before proceeding with application processing. The default is No. This means that
the system will proceed without waiting for the commit to finish. You generally won’t
want to change this setting; using No dramatically improves performance. The danger of
accepting the value of No is that you will increase the amount of time during which the
data is vulnerable. Before the data is flushed to disk, the user might turn off the machine,
compromising the integrity of the data.

The ExclusiveAsyncDelay setting specifies the maximum number of milliseconds that
elapse before the Access Database Engine commits an implicit transaction when a data-
base is opened for exclusive use. The default value for this setting is 2000 milliseconds.
This setting does not in any way affect databases that are open for shared use.

The SharedAsyncDelay setting is similar to the ExclusiveAsyncDelay setting. It deter-
mines the maximum number of milliseconds that elapse before the Access Database
Engine commits an implicit transaction when a database is opened for shared use. The
default value for this setting is 50. The higher this value, the greater the performance
benefits reaped from implicit transactions, but also the higher the chances that concur-
rency problems will result. These concurrency issues are discussed in detail in Alison
Balter’s Mastering Access 2002 Enterprise Development.

In addition to the settings that affect implicit transaction processing in Access 2007, an
additional Registry setting affects explicit transaction processing. The UserCommitSync
setting controls whether explicit transactions are completed synchronously or asynchro-
nously. With the default setting of Yes, control doesn’t return from a CommitTrans
statement until the transactions are actually written to disk, resulting in synchronous
transactions. When this value is changed to No, a series of changes is queued, and control
returns before the changes are complete.

You can modify the values of these Registry settings and other Access Database Engine
settings by using Regedit.exe (the Registry Editor) for Windows Vista, and Windows
2003. Changes to this section of the Registry affect all applications that use the Access
Database Engine. If you want to affect only your application, you can export the
Microsoft Jet portion of the Registry tree and import it into your application’s Registry
tree. You then can customize the Registry settings for your application. To force your
application to load the appropriate Registry tree, you must set the INIPath property of
the DBEngine object.

A much simpler approach is to set properties of the ADO Connection object; you can
specify new settings at runtime for all the previously mentioned Registry entries as well
as for additional entries. A further advantage of this approach is that it will modify
(temporarily) Registry entries for any machine under which your application runs. Any

CHAPTER 22 Developing Multiuser and Enterprise Applications928

values you change at runtime temporarily override the Registry values that are set,
enabling you to easily control and maintain specific settings for each application. This
code illustrates how you modify the ExclusiveAsyncDelay and SharedAsyncDelay settings
using properties of the Connection object:

Sub ChangeOptions()

Dim cnn As ADODB.Connection

Set cnn = CurrentProject.Connection

cnn.Properties(“JET OLEDB:Exclusive Async Delay”) = 1000

cnn.Properties(“JET OLEDB:Shared Async Delay”) = 50

End Sub

Implementing Explicit Transaction Processing
Now that you are aware of the settings that affect transaction processing, you are ready to
learn how to implement transaction processing. Three methods of the Connection object
(covered in Chapter 15, “What Are ActiveX Data Objects, and Why Are They
Important?”) control transaction processing:

. BeginTrans

. CommitTrans

. RollbackTrans

The BeginTrans method of the Connection object begins the transaction loop. The
moment BeginTrans is encountered, Access begins writing all changes to a log file in
memory. Unless you issue the CommitTrans method of the Connection object, the Access
Database Engine never actually writes the changes to the database file. After the
CommitTrans method is issued, the Access Database Engine permanently writes the
updates to the database object. If a RollbackTrans method of the Connection object is
encountered, the log-in memory is released. Listing 22.2 shows an example of how trans-
action processing works under Access 2007. Compare this to Listing 22.1.

LISTING 22.2 Transaction Processing in Access 2007 Using BeginTrans, Logging,
CommitTrans, and RollbackTrans

Sub IncreaseQuantityTrans()

On Error GoTo IncreaseQuantityTrans_Err

Dim cnn As ADODB.Connection

Dim rst As ADODB.Recordset

Dim boolInTrans As Boolean

boolInTrans = False

Set rst = New ADODB.Recordset

Set cnn = CurrentProject.Connection

Using Transaction Processing 929

2
2

rst.ActiveConnection = cnn

rst.CursorType = adOpenKeyset

rst.LockType = adLockOptimistic

rst.Open “Select OrderId, Quantity From tblOrderDetails”

‘Begin the Transaction Loop

cnn.BeginTrans

boolInTrans = True

‘Loop through recordset increasing Quantity field by 1

Do Until rst.EOF

rst!Quantity = rst!Quantity + 1

rst.UPDATE

rst.MoveNext

Loop

‘Commit the Transaction; Everything went as Planned

cnn.CommitTrans

boolInTrans = False

IncreaseQuantityTrans_Exit:

Set cnn = Nothing

Set rst = Nothing

Exit Sub

IncreaseQuantityTrans_Err:

MsgBox “Error # “ & Err.Number & “: “ & Err.Description

‘Rollback the Transaction; An Error Occurred

If boolInTrans Then

cnn.RollbackTrans

End If

Resume IncreaseQuantityTrans_Exit

End Sub

This code uses a transaction loop to ensure that everything completes as planned or not at
all. Notice that the loop that moves through the recordset, increasing the Quantity field in
each record by 1, is placed in a transaction loop. If all processing in the loop completes
successfully, the CommitTrans method executes. If the error-handling code is encountered,
the RollbackTrans method executes, ensuring that none of the changes are written to disk.
The boolInTrans variable is used to determine whether the code is within the transaction
loop. This ensures that the error handler performs the rollback only if an error occurs
within the transaction loop. If the CommitTrans method or the RollbackTrans method is
issued without an open transaction, an error occurs.

CHAPTER 22 Developing Multiuser and Enterprise Applications930

LISTING 22.2 Continued

931

2
2

Practical Examples: Getting Your Application
Ready for an Enterprise Environment
Splitting the application code and data is the first step toward making your application
enterprise ready. Consider placing the application data on the network and the applica-
tion code on each workstation. If you think that the number of users, required security, or
volume of data stored in the application warrants client/server technology, consider using
one or more of the client/server techniques covered in this chapter. Finally, think about
whether any application processes warrant transaction processing. If you feel that
client/server technology or transaction processing is a necessary ingredient to your appli-
cation, learn more about these techniques from a source such as Alison Balter’s Mastering
Access 2002 Enterprise Development.

Summary
Many people think that the transition of a simple Access application to a multiuser or
client/server environment is a simple one. I strongly disagree. There are several things to
think about when moving an application from a single-user environment to a multiuser
environment, and even more things to think about when moving to a client/server envi-
ronment. The more you think about these potential evolutions when you first design and
build your application, the fewer problems you’ll have if your application data has to be
upsized.

This chapter exposed you to multiuser techniques. It explained client/server technology
and when you need it. It also described the various roles that Access plays in the applica-
tion design model. Finally, you learned about a technique that is important within an
enterprise application: transaction processing.

The chapter is intended to be an introduction to these important topics. All the topics
in this chapter are covered in detail in Alison Balter’s Mastering Access 2002 Enterprise
Development (which applies to Access 2007 as well).

Summary

This page intentionally left blank

PART IV

Black Belt Programming

IN THIS PART

CHAPTER 23 Working with and Customizing
Ribbons 935

CHAPTER 24 Automation: Communicating with
Other Applications 949

CHAPTER 25 Exploiting the Power of the
Windows API 985

CHAPTER 26 Creating Your Own Libraries 1011

CHAPTER 27 Using Builders, Wizards,
and Menu Add-Ins 1027

CHAPTER 28 An Introduction to Access and
the Internet/Intranet 1055

This page intentionally left blank

IN THIS CHAPTER

. Why This Chapter Is Important

. Customizing the Ribbon: An
Overview

. Showing System Tables

. Enabling the Display of System
Errors

. Creating the USysRibbons
System Table

. Adding Data to the
USysRibbons Table

. Applying the Custom Ribbon

. Hiding System Objects

. Restoring the Ribbon to Its
Default Settings

. Adding Additional Groups and
Controls

. Executing a Macro from the
Ribbon

. Practical Examples: Securing
an Access 2007 Database

CHAPTER 23

Working with and
Customizing Ribbons

Why This Chapter Is Important
New to Access 2007, the ribbon is the strip across the top
of the application window that contains groups of
commands. The ribbon in Microsoft Office Access 2007
replaces both menus and toolbars found in earlier versions
of Access. As a developer, you might not want the default
ribbon to appear in your applications. You may want to
hide existing functionality or to add new functionality. You
need to understand how to customize the ribbon to be able
to accomplish these tasks. Unfortunately, there is no user
interface to modify the ribbon. You have to pull up your
sleeves and use Extensible Markup Language (XML) to
customize the ribbon. This chapter shows you all the tips
and tricks that you need to know to add custom ribbons to
your overall application and to your forms and reports.

Customizing the Ribbon:
An Overview
Using ribbon customization techniques, you can hide exist-
ing tabs, add new tabs, add new command groups, and add
new commands to a command group. You accomplish all
these tasks by using XML. Although there are several places
that you can store the XML used to customize the ribbon,
the easiest method is to store the XML in a system table in
the current database. The steps are as follows:

1. Create a system table named USysRibbons.

2. Add your XML to the table.

3. Specify whether you want the ribbon to display for
the entire application or for a specific form or report.

Several steps are involved in creating and applying a custom ribbon. The following is an
overview of the steps involved:

1. Show system tables.

2. Enable the display of system errors.

3. Create the USysRibbons table.

4. Add data to the USysRibbons table.

5. Apply the custom ribbon.

6. Hide system objects.

7. Restore the ribbon to its default settings.

8. Add additional groups and controls.

9. Execute a macro from the ribbon.

The sections that follow cover each of these steps in detail.

Showing System Tables
The first step that you should take when creating a new ribbon or modifying the existing
ribbon is to show system tables in your database. You accomplish this task by using the
Navigation Options. Here’s how:

1. Right-click the Navigation Bar at the top of the Navigation Pane and select
Navigation Options. The Navigation Options dialog box appears (see Figure 23.1).

2. Click to select the Show System Objects check box found under the Display
Options.

CHAPTER 23 Working with and Customizing Ribbons936

FIGURE 23.1 Using the Navigation Options dialog box, you can opt to show system tables.

FIGURE 23.2 After you opt to show system tables, they appear in the Navigation Pane.

Enabling the Display of System Errors
The second step when customizing the ribbon is to enable the display of add-in user
interface error messages. Here’s the process:

1. Click the Microsoft Office button and select Access Options. The Access Options
dialog box appears.

2. Click Advanced.

3. Scroll down until you see the General group of commands. Your screen should
appear as shown in Figure 23.3.

4. Click the Show Add-In User Interface Errors check box and click OK to complete the
process.

Enabling the Display of System Errors 937

2
3

3. Click OK to complete the process. The system tables now appear in the Navigation
Pane (see Figure 23.2).

FIGURE 23.3 Select Show Add-In User Interface Errors from the General group.

Creating the USysRibbons Table
The next step is to create the USysRibbons system table. Here are the steps involved:

1. Select Table Design from the Tables group on the Create tab.

2. Add an AutoNumber field called ID that has a field size of Long Integer.

3. Add a Text field called RibbonName that has a field size of 255.

4. Add a Memo field called RibbonXml. The table design appears in Figure 23.4.

5. You can add additional fields, but the designated fields must have the exact name,
type, and size as designated in steps 2–4.

6. Designate the ID field as the Primary Key.

7. Click Save on the Quick Access toolbar, and name the table USysRibbons.

CHAPTER 23 Working with and Customizing Ribbons938

FIGURE 23.4 It is important that you design the custom table exactly the same as in the
example.

Adding Data to the USysRibbons Table
You are now ready to add data to the USysRibbons table. Here are the steps involved:

1. Open the USysRibbons table in Datasheet view.

2. Add the XML shown in Listing 23.1.

3. Close the USysRibbons table.

4. Close and reopen the database.

LISTING 23.1 Writing the XML Necessary to Customize the Ribbon

<customUI xmlns=”http://schemas.microsoft.com/office/2006/01/customui”>

<ribbon startFromScratch=”false”>

<tabs>

<tab idMso=”TabCreate” visible=”false” />

<tab id=”dbCustomTab” label=”My New Tab” visible=”true”>

<group id=”dbCustomGroup” label=”My New Group”>

<control idMso=”Paste” label=”Built-in Paste” enabled=”true”/>

</group>

</tab>

Adding Data to the USysRibbons Table 939

2
3

</tabs>

</ribbon>

</customUI>

The XML first tells Access to display the default tabs. It then designates that the Create
tab will be hidden. Next, the XML creates a ribbon tab named My New Tab. It then adds a
command group called My Custom Group to the tab. Finally, it adds the Copy command
to the group.

Applying the Custom Ribbon
Now that you have created the ribbon code, you are ready to apply the ribbon. You can
apply the ribbon to the entire database or to a specific form or report. The sections that
follow explain each process in detail.

Applying a Custom Ribbon to the Entire Database
To apply the ribbon to the entire database, follow these steps:

1. Click the Microsoft Office button and then select Access Options. The Access
Options dialog box appears.

2. Click Current Database.

3. Scroll down until you see Ribbon and Toolbar Options (see Figure 23.5).

CHAPTER 23 Working with and Customizing Ribbons940

LISTING 23.1 Continued

FIGURE 23.5 You must use the Ribbon and Toolbar Options to select your ribbon.

4. Click to open the Ribbon Name drop-down and select your new menu from the list.

5. Click OK to complete the process. A dialog box appears, indicating that you must
close and reopen the database for the change to take effect (see Figure 23.6).

Applying the Custom Ribbon 941

2
3

FIGURE 23.6 You must close and reopen the database for the change to take effect.

6. Click OK to continue and then close and reopen the database. The Create tab
should be hidden, and there should be a tab called My New Tab.

7. Click the My New Tab tab. It should appear as shown in Figure 23.7.

FIGURE 23.7 The ribbon appears with all the custom features that you designated.

Applying a Custom Ribbon to a Form or Report
In the preceding example, you assigned a custom ribbon to a database. Now look at how
to assign a custom ribbon to a form or report. Here are the steps involved:

1. In the Navigation Pane, right-click the form or report to which you want to apply
a custom ribbon. Select Design View. Access displays the form or report that you
selected in Design View.

2. Display the property sheet. (If it is not visible, either press F4 or select the Property
Sheet icon on the Design tab.)

3. Make sure that you designate Form or Report in the Property Sheet drop-down.

4. Click the Other tab to select it.

5. Click within the Ribbon Name property and open the drop-down to display the
available ribbons (see Figure 23.8).

CHAPTER 23 Working with and Customizing Ribbons942

FIGURE 23.8 You must select the ribbon that you want to associate with the form.

6. Select the desired ribbon from the drop-down.

7. Click Save to save your changes and then switch to Form view. Notice that the
custom ribbon is associated with the form. After clicking to select the My New Tab
tab, your screen should appear as in Figure 23.9.

FIGURE 23.9 The custom ribbon is associated with the designated form.

Hiding System Objects
After you have determined that your custom ribbons are working properly, you can once
again hide the system objects. To do this, follow these steps:

1. Right-click the Navigation Bar at the top of the Navigation Pane and select
Navigation Options. The Navigation Options dialog box appears.

2. Within the Display Options group, click to deselect Show System Objects.

3. Click OK to complete the process.

Restoring the Ribbon to Its Default Settings
Sometimes you will want to restore the ribbon back to its default settings. The process
differs depending on whether you have assigned the ribbon to the entire database or
to a form or report. Let’s start with how to restore a ribbon customized for the entire
application:

1. Click the Microsoft Office button and then select Access Options. The Access
Options dialog box appears.

Restoring the Ribbon to Its Default Settings 943

2
3

2. Click Current Database.

3. Scroll down until you see Ribbon and Toolbar Options.

4. Delete the contents of the Ribbon Name drop-down.

5. Click OK to complete the process. A dialog box appears, indicating that you must
close and reopen the database for the change to take effect.

You will sometimes need to return the ribbon associated with a form or report back to the
default ribbon. Here’s how:

1. In the Navigation Pane, right-click the form or report to which you want to apply
the standard ribbon. Select Design View. Access displays the form or report that you
selected in Design view.

2. Display the property sheet. (If it is not visible, either press F4 or select the Property
Sheet icon on the Design tab.)

3. Make sure that you designate Form or Report in the Property Sheet drop-down.

4. Click the Other tab to select it.

5. Delete the contents of the Ribbon Name property.

6. Save, close, and reopen the form or report. The default ribbon should display.

Adding Additional Groups and Controls
Figure 23.10 shows the new tab further customized. Notice that it now contains two
groups, and the first group contains two commands. Listing 23.2 shows in bold the XML
modifications necessary to make these changes.

LISTING 23.2 Adding Groups and Commands to the Ribbon

<customUI xmlns=”http://schemas.microsoft.com/office/2006/01/customui”>

<ribbon startFromScratch=”false”>

<tabs>

<tab idMso=”TabCreate” visible=”false” />

<tab id=”dbCustomTab” label=”My New Tab” visible=”true”>

<group id=”dbCustomGroup” label=”My New Group”>

<control idMso=”Copy” label=”Built-in Copy” enabled=”true”/>

<control idMso=”Paste” label=”Built-in Paste” enabled=”true”/>

</group>

<group id=”dbCustomGroup2” label=”My Second Group”>

<control idMso=”ExportExcel” label=”Export to Excel” enabled=”true”/>

</group>

CHAPTER 23 Working with and Customizing Ribbons944

</tab>

</tabs>

</ribbon>

</customUI>

Notice that the example creates an additional control on the My New Group tab. It also
adds a new group containing one control. Figure 23.10 illustrates the result of the changes.

Adding Additional Groups and Controls 945

2
3

LISTING 23.2 Continued

FIGURE 23.10 The new ribbon contains an additional group and control.

You might be wondering where you can find the idMso value associated with a command.
The idMso value determines which command Access associates with the button. Here are
the steps involved:

1. Click the Microsoft Office button and select Access Options.

2. Click Customize. Your screen will appear as shown in Figure 23.11.

3. Hover your mouse pointer over the item whose idMso value you want to know. The
idMso value appears as a ToolTip.

FIGURE 23.11 Adding a ribbon to your Access 2007 application.

Executing a Macro from the Ribbon
You may want to run a macro that you created directly from the ribbon. Listing 23.3 illus-
trates this simple process.

LISTING 23.3 Executing a Macro from the Ribbon

<customUI xmlns=”http://schemas.microsoft.com/office/2006/01/customui”>

<ribbon startFromScratch=”false”>

<tabs>

<tab idMso=”TabCreate” visible=”false” />

<tab id=”dbCustomTab” label=”My New Tab” visible=”true”>

<group id=”dbCustomGroup” label=”My New Group”>

<control idMso=”Copy” label=”Built-in Copy” enabled=”true”/>

<control idMso=”Paste” label=”Built-in Paste” enabled=”true”/>

</group>

<group id=”dbCustomGroup2” label=”My Second Group”>

<control idMso=”ExportExcel” label=”Export to Excel” enabled=”true”/>

<button id=”RunCustomMacro” label=”Say Hello” onAction=”SayHello”/>

</group>

</tab>

</tabs>

</ribbon>

</customUI>

CHAPTER 23 Working with and Customizing Ribbons946

The code in the example executes the macro named SayHello. The button is named
RunCustomMacro, and its label is Say Hello.

Practical Examples: Securing an Access
2007 Database
Practice adding a custom ribbon to one of your databases. Apply the ribbon to the entire
database. Then create a second custom ribbon and apply that ribbon to a particular form
or report. Finally, add a macro to the ribbon.

Summary
Because ribbons didn’t exist in earlier versions of Access, the process of creating them is
different from any process in those earlier versions. In this chapter, you learned how to
create a system table that contains the XML necessary to create or modify a ribbon. You
also learned how to determine when the custom ribbon displays. You learned how to
restore the ribbon to its default settings, and finally how to execute macros from the
ribbon. All of these techniques are necessary when creating new ribbons or modifying
existing ones.

Summary 947

2
3

This page intentionally left blank

IN THIS CHAPTER

. Why This Chapter Is Important

. Defining Some Automation
Terms

. Declaring an Object Variable to
Reference Your Application

. Creating an Automation Object

. Manipulating an Automation
Object

. Using Early Binding Versus
Late Binding

. Controlling Excel from Access

. Closing an Excel Automation
Object

. Creating a Graph from Access

. Controlling Word from Access

. Controlling PowerPoint from
Access

. Automating Outlook from
Access

. Controlling Access from Other
Applications

. Practical Examples: Using
Automation to Extend the
Functionality of Your
Applications

CHAPTER 24

Automation:
Communicating with

Other Applications

Why This Chapter Is Important
Windows users have come to expect seamless integration
between products. They are not concerned with what
product you use to develop their application; they just
want to accomplish their tasks. Often, Microsoft Word,
Microsoft Excel, or some other product is best suited for a
particular task that your application must complete. It is
your responsibility to pick the best tool for the job. This
means that you must know how to communicate from
your application directly with that tool.

All this means is that you can no longer learn only about
the product and language that you select as your develop-
ment tool. Instead, you must learn about all the other
available applications. Furthermore, you must learn how to
communicate with these applications—a challenging but
exciting feat.

ActiveX automation is the capability of one application to
control another application’s objects. This means that your
Access application can launch Excel, create or modify a
spreadsheet, and print it—all without the user having to
directly interact with the Excel application. Many people
confuse automation with the process of linking and
embedding. OLE 1.0 gave you the capability to create
compound documents, meaning that you can embed an
Excel spreadsheet in a Word document or link to the Excel
spreadsheet from within a Word document. This capability
was exciting at the time, and is still quite useful in many
situations, but OLE 2.0 (in addition to everything that OLE
1.0 provides) introduced the capability for one application

to actually control another application’s objects. With Office 97, Microsoft changed the
way users refer to OLE. It became known as automation and is an industry standard and a
feature of the Component Object Model (COM).

Just as you can control other applications using automation, you can control the Access
application with other applications, such as Excel or a Visual Basic .NET. This means that
you can take advantage of Access’s marvelous report writer from your Visual Basic .NET
applications. In fact, you can list all the Access reports, allow your user to select one, and
then run the report—all from within a Visual Basic .NET Winform.

Defining Some Automation Terms
Before you learn how automation works, you need to understand a few automation
terms. Automation requires an automation client and an automation server. The automa-
tion client application is the one doing the talking. It is the application that is controlling
the server application. Because this book is about Access, most of the examples in this
chapter show Access as an automation client, meaning that the Access application is
controlling the other application (Excel, Word, and so on). The automation server
application is the application being controlled. It contains the objects being manipulated.
Excel is acting as an automation server when Access launches Excel, makes it visible,
creates a new worksheet, sends the results of a query to the worksheet, and graphs the
spreadsheet data. It is Excel’s objects that are being controlled, Excel’s properties that are
being changed, and Excel’s methods that are being executed.

Another important component of automation is a type library, which is a dictionary that
lists the objects, properties, methods, and events exposed by an automation server appli-
cation. Type libraries allow the server application’s objects, properties, and methods to be
syntax checked by the Access compiler. You can also use a type library to get help on
another application’s objects, properties, and methods from within Access.

An object model of an automation server application contains the set of objects that are
exposed to automation client applications. The objects within the object model are called
object types. When you write automation code, you create and manipulate instances of an
object type. These instances are called objects.

CAUTION

Automation craves RAM—the more, the better! I recommend 1GB of RAM or more for
applications that use automation. It’s also important to recognize that automation is
not lightning fast, even on the slickest of machines.

Declaring an Object Variable to Reference
Your Application
Automation requires that you create object variables that reference application objects.
After you create an object variable, you can query and change the object’s properties as
well as execute its methods.

CHAPTER 24 Automation: Communicating with Other Applications950

You can learn about an object’s properties and methods using its object libraries. An object
library contains a listing of all the properties and methods that an object exposes. To be
able to view foreign objects from within Access, you must first establish a reference to
that application. After a reference is established, you can view that object’s properties and
methods using the Object Browser. You can also view any modules and classes that the
parent object exposes.

If you want to register an object, the Visual Basic Editor (VBE) must be active. With the
Code window active, choose Tools, References. The References dialog box appears, as
shown in Figure 24.1.

Declaring an Object Variable to Reference Your Application 951

2
4

FIGURE 24.1 The References dialog box.

CAUTION

If the Common Dialog control is not installed on your machine or the user’s machine,
much of the code in this chapter will not run. If that is the case, you must register the
common dialog ActiveX control found on the sample code CD-ROM.

Each time you install a program, the Windows Registry is updated. The References dialog
box shows you all the objects registered in Windows (see Figure 24.2). If you want to link
to one of the available objects from within Access, you must enable the check box to the
left of the object name. Then click OK. You can browse that object’s properties and
methods in the Object Browser, as shown in Figure 24.3. As covered in Chapter 9,
“Objects, Properties, Methods, and Events Explained,” to access the Object Browser, you
can choose View, Object Browser, press F2, or click the Object Browser tool while in the
Module window. Notice that in Figure 24.3, the Object Browser displays all the classes

FIGURE 24.2 Registered automation server objects.

CHAPTER 24 Automation: Communicating with Other Applications952

FIGURE 24.3 The Object Browser.

that belong to the Excel 12.0 object library. The Range class is selected, and all the
members of the Range class are displayed in the list box at the right.

Creating an Automation Object
Before you can talk to an application, you need to know the objects contained within it.
You can then use Dim, Private, or Public statements to point to and control various
application objects. Each product comes with documentation indicating which objects it
supports. You can also view the objects that a product supports by using the Object
Browser. After you create an object variable, you can manipulate the object without user
intervention.

Declaring an Object Variable
To create an instance of an object, you must first create an object variable that holds a
reference to the object. You can do this by using a Dim statement:

Dim objExcel As New Excel.Application

This code creates an object variable pointing to the Excel application object. It then
creates a new instance of the Excel application object. This Excel object is part of the
Excel application. Visual Basic for Applications (VBA) can control it using the object vari-
able. Unless instructed otherwise, the instance of Excel is invisible. You can make it
visible by using this statement:

objExcel.Visible = True

Alternatively, you can use two statements to declare and instantiate an object. The code
looks like this:

Dim objExcel as Excel.Application

Set objExcel = New Excel.Application

The Dim statement declares an object variable that is ready to be associated with a running
instance of Excel. The Set statement launches Excel and points the object variable at the
new instance of Excel. The advantage of this method is that you can better control when
the instance of Excel is actually created. If, for example, the declaration is in the General
Declarations section of a form, you can place the Set statement under a command button
that is used to launch Excel.

Manipulating an Automation Object
After you create an instance of an object, you are ready to set its properties and execute
its methods. You can talk to the object through the object variable you created. Using this
object variable, you can get and set properties and execute methods.

Setting and Retrieving Properties
All the objects you will be talking to through automation have properties. Properties are
the attributes of the object—the adjectives you use to describe the objects. You can use
VBA to inquire about the properties of objects and set the values of these properties. Here
are some examples:

Manipulating an Automation Object 953

2
4

objExcel.Visible = True

objExcel.Caption = “Hello World”

objExcel.Cells(1, 1).Value = “Here I Am”

Each of these examples sets properties of the Excel application object. The first example
sets the Visible property of the object to True. The second example sets the Caption of
the object to “Hello World”. The final example sets the Value property of the Cells
object, contained within the Excel object, to the value “Here I Am”.

Executing Methods
Properties refer to the attributes of an object, and methods refer to the actions you take
on the object. Methods are the verbs that apply to a particular object type. Here’s an
example:

objExcel.Workbooks.Add

This code uses the Add method to add a workbook to the Excel object.

Using Early Binding Versus Late Binding
Binding is another important automation concept. Two types of binding are available
with automation components: early binding and late binding. With early binding, you
create a reference to a component’s type library. This notifies Access of all the library’s
objects, properties, methods, and events. With late binding, you instantiate objects at
runtime without referencing them at design time. VBA doesn’t know anything about the
objects that you are creating until runtime.

Most objects that you automate support early binding. You should use early binding
whenever possible. Early binding has several benefits. Because each object’s properties and
methods are resolved at compile time, early binding is faster and more efficient. Furthe-
rmore, after you create a reference to a type library, all the library’s objects and their prop-
erties and methods are available via IntelliSense. Finally, online help is available for any
type libraries that you have referenced. This means, for example, if you have referenced
Excel’s library from Access, the process of placing your cursor on an object, property, or
method and pressing F1 displays help for the selected item.

Listing 24.1 provides an example of early binding. This code requires that a reference first
be made to the Excel object library.

LISTING 24.1 An Example of Early Binding

Sub EarlyBinding()

‘Declare and instantiate an Excel application object

Dim objExcel As Excel.Application

Set objExcel = New Excel.Application

CHAPTER 24 Automation: Communicating with Other Applications954

‘Set properties and execute methods of the object

With objExcel

.Visible = True

.Workbooks.Add

.Range(“A1”) = “Hello World”

End With

End Sub

CreateObject and GetObject
CreateObject and GetObject are required when you use late binding. Because, with late
binding, Access is not aware of the server application and its objects, properties, methods,
and events, you cannot use a Dim statement and a Set statement to declare and instanti-
ate the server application object. Instead, you must use Dim to declare a generic object
variable. You then use a Set statement along with the CreateObject or GetObject func-
tion to work with the server object. The CreateObject function launches a new instance
of the server object. The GetObject function is similar to CreateObject, but it attempts
to reference a running instance of the requested application. Furthermore, unlike the
CreateObject function that receives only one argument as a parameter, the GetObject
function receives an optional parameter with the name of the document you want to
work with.

Listing 24.2 provides an example of CreateObject and late binding.

LISTING 24.2 Using the CreateObject Function to Create a Late-Bound Instance of Excel

Sub LateBinding()

‘Declare a generic object variable

Dim objExcel As Object

‘Point the object variable at an Excel application object

Set objExcel = CreateObject(“Excel.Application”)

‘Set properties and execute methods of the object

With objExcel

.Visible = True

.Workbooks.Add

.Range(“A1”) = “Hello World”

End With

End Sub

Using Early Binding Versus Late Binding 955

2
4

LISTING 24.1 Continued

NOTE

Calling GetObject doesn’t determine whether the object is late- or early-bound. You
can declare Dim objExcel as Excel.Application using GetObject, and the object
will be early-bound.

Controlling Excel from Access
Before you attempt to talk to Excel, you must understand its object model. Excel gives
you an excellent overview of the Excel object model. You can find this model by search-
ing for “object model” in Excel Help. Each object in the model has hypertext links that
enable you to obtain specific help on the object, its properties, and its methods.

When using automation, Excel launches as a hidden window with a Visible property of
False. Destroying the Excel object variable does not cause Excel to terminate. To make
things even more complicated, each time you use the New keyword within the Dim or Set
statement, a new instance of Excel is launched. This means that it is possible for numer-
ous hidden copies of Excel to be running on a user’s machine, which can lead to serious
resource problems. If you want to use a running instance of Excel, you can omit the New
keyword. This action has its disadvantages as well. Say, for example, that the user of your
application has created a large spreadsheet and has not saved it recently. Your application
uses an existing instance of Excel, creates a new workbook, prints, and then exits without
saving. You might find that your user is very angry about the loss of his important work.
For this reason, I have found it preferable to suffer the potential resource costs and create
my own instance of Excel. If you want to launch Excel invisibly, do your work, and get
out, make sure that you terminate Excel upon completion of your code.

Before you execute code that relies on a running copy of Excel, it is important to ascer-
tain that Excel launched successfully. The function shown in Listing 24.3 attempts to
launch Excel. If the launch is successful, True is returned from the function. Otherwise,
False is returned from the function.

LISTING 24.3 The CreateExcelObj Subroutine

Function CreateExcelObj() As Boolean

‘Invoke error handling

On Error GoTo CreateExcelObj_Err

‘Assume a False return value

CreateExcelObj = False

‘Attempt to launch Excel

Set gobjExcel = New Excel.Application

‘If Excel launches successfully, return True

CreateExcelObj = True

CHAPTER 24 Automation: Communicating with Other Applications956

CreateExcelObj_Exit:

Exit Function

CreateExcelObj_Err:

‘If an error occurs, display a message and return False

MsgBox “Couldn’t Launch Excel!!”, vbCritical, “Warning!!”

CreateExcelObj = False

Resume CreateExcelObj_Exit

End Function

The routine begins by invoking error handling. It initializes the return value for the func-
tion to False. The routine then attempts to launch Excel. If it is successful, the public
variable gobjExcel references the running instance of Excel, and the function returns
True. If an error occurs, the routine executes the code within the error handler. The code
displays a message and sets the return value for the function to False.

NOTE

You can find this code and most other examples used in this chapter in the
CHAP24EX.ACCDB database located on your sample code CD-ROM. This routine
is located in basUtils.

CAUTION

To take advantage of the exciting world of automation, you must install all automation
server applications on the user’s machine, and the user must possess a full license to
the server applications. In fact, you will be unable to compile and run the examples
contained in the sample database for this chapter unless you have the server applica-
tions loaded on your development machine.

The CreatExcelObj function is called from the Click event of the cmdFillExcel
command button on the frmSimpleExcel form. The application attempts to talk to the
Excel object only if the return value of the function is True, indicating that Excel was
loaded successfully.

Private Sub cmdFillExcel_Click()

‘If Excel is launched successfully,

‘execute the FillCells routine

If CreateExcelObj() Then

Call FillCells

End If

End Sub

Controlling Excel from Access 957

2
4

LISTING 24.3 Continued

If Excel launches successfully, the FillCells subroutine executes, as shown in Listing 24.4.

LISTING 24.4 The FillCells Subroutine

Sub FillCells()

‘Declare an Excel Worksheet object

Dim objWS As Excel.Worksheet

‘Invoke error handling

On Error GoTo FillCells_Err

With gobjExcel

‘Add a workbook to the Workbooks collection

.Workbooks.Add

‘Point the Worksheet object at the active sheet

Set objWS = gobjExcel.ActiveSheet

‘Set the value of various cells in the sheet

With objWS

.Cells(1, 1).Value = “Schedule”

.Cells(2, 1).Value = “Day”

.Cells(2, 2).Value = “Tasks”

.Cells(3, 1).Value = 1

.Cells(4, 1).Value = 2

End With

‘Select A3 through A4

.Range(“A3:A4”).Select

‘Use the AutoFill method to fill the range of A3

‘through A33 with numeric values

.Selection.AutoFill gobjExcel.Range(“A3:A33”)

‘Select cell A1

.Range(“A1”).Select

‘Make Excel visible

.Visible = True

End With

FillCells_Exit:

Exit Sub

FillCells_Err:

‘If the Excel object is still set, quit Excel and destroy

CHAPTER 24 Automation: Communicating with Other Applications958

‘the object variable

If Not gobjExcel Is Nothing Then

gobjExcel.Quit

Set gobjExcel = Nothing

End If

Resume FillCells_Exit

End Sub

You can find this relatively simple routine in the frmSimpleExcel form, which is part of
the CHAP24EX.ACCDB database file (see Figure 24.4). It begins by using the Add method on
the Workbooks collection of the Excel object to add a new workbook to the instance of
Excel. It then uses Set objWS = gobjExcel.ActiveSheet to provide a shortcut for talking
to the active sheet in the new Excel workbook. Using the objWS object reference, it modi-
fies the values of several cells. It then uses the AutoFill method to quickly fill a range of
cells with data. It returns the cursor to cell A1, and the Excel object is made visible. You
might wonder what the AutoFill method is; it automates the process of filling a range of
cells with a pattern of data. Figure 24.5 shows the results. I mention this method here not
just to tell you what it is, but also to illustrate an important point: You must know the
product you are automating and its capabilities. If you are not familiar with the product
from a user’s perspective, you will find it extremely difficult to work with the product
using automation.

Controlling Excel from Access 959

2
4

LISTING 24.4 Continued

FIGURE 24.4 The form used to launch, communicate with, and close Excel.

FIGURE 24.5 Using the AutoFill method to populate a range of cells.

NOTE

You must click Options on the Message Bar and select Enable this content for this
code to run.

Closing an Excel Automation Object
After the user clicks the Close Excel command button, the CloseExcel subroutine is
called, as shown in Listing 24.5. The subroutine first checks to see whether the gobjExcel
object variable is still set. If it is, Excel is still running. The DisplayAlerts property of the
Excel application object is set to False. This setting ensures that, when the Quit method
is executed, Excel will not warn about any unsaved worksheets. This methodology is
acceptable because all work was accomplished using a new instance of the Excel applica-
tion object. If you want to save your work, you should execute the required code before
the Quit method is executed.

LISTING 24.5 The CloseExcel Subroutine

Sub CloseExcel()

‘Invoke error handling
On Error GoTo CloseExcel_Err

‘If the Excel object variable is still set,
‘turn off alerts and quit Excel

CHAPTER 24 Automation: Communicating with Other Applications960

If Not gobjExcel Is Nothing Then
gobjExcel.DisplayAlerts = False
gobjExcel.Quit

End If

CloseExcel_Exit:
‘Destroy the Excel object variable
Set gobjExcel = Nothing
Exit Sub

CloseExcel_Err:
‘Display error message and resume at Exit routine
MsgBox “Error # “ & Err.Number & “: “ & Err.Description
Resume CloseExcel_Exit

End Sub

Creating a Graph from Access
Now that you have learned how to talk to Excel, you are ready to learn how to do some-
thing a bit more practical. Figure 24.6 shows a form called frmCreateExcelGraph. The
form shows the result of a query that groups the result of price multiplied by quantity for
each country. The Create Excel Graph command button sends the result of the query to
Excel and produces the graph shown in Figure 24.7. (Listing 24.6 shows the code that
produces this graph.)

Creating a Graph from Access 961

2
4

LISTING 24.5 Continued

FIGURE 24.6 The form used to create an Excel graph.

FIGURE 24.7 The result of a query graphed in Excel.

LISTING 24.6 Creating a Graph from Access

Private Sub cmdCreateGraph_Click()

On Error GoTo cmdCreateGraph_Err

Dim rstData As ADODB.Recordset

Dim rstCount As ADODB.Recordset

Dim fld As ADODB.Field

Dim rng As Excel.Range

Dim objWS As Excel.Worksheet

Dim intRowCount As Integer

Dim intColCount As Integer

‘Display Hourglass

DoCmd.Hourglass True

‘Instantiate an ADO recordset and set its connection

Set rstData = New ADODB.Recordset

rstData.ActiveConnection = CurrentProject.Connection

‘Instantiate a second ADO recordset and set its connection

Set rstCount = New ADODB.Recordset

rstCount.ActiveConnection = CurrentProject.Connection

‘Attempt to create Recordset based

CHAPTER 24 Automation: Communicating with Other Applications962

‘on the result of qrySalesByCountry

If CreateRecordset(rstData, rstCount, “qrySalesByCountry”) Then

‘If the recordset is created successfully, attempt to launch Excel

If CreateExcelObj() Then

‘If Excel is launched successfully, add a workbook

gobjExcel.Workbooks.Add

‘Create a pointer to the Active sheet

Set objWS = gobjExcel.ActiveSheet

intRowCount = 1

intColCount = 1

‘Loop through the Fields collection of the recordset,

‘using field names as column headings

For Each fld In rstData.Fields

If fld.Type <> adLongVarBinary Then

objWS.Cells(1, intColCount).Value = fld.Name

intColCount = intColCount + 1

End If

Next fld

‘Send recordset to Excel

objWS.Range(“A2”).CopyFromRecordset rstData, 500

‘Format Data

With gobjExcel

.Columns(“A:B”).Select

.Columns(“A:B”).EntireColumn.AutoFit

.Range(“A1”).Select

.ActiveCell.CurrentRegion.Select

Set rng = .Selection

.Selection.NumberFormat = “$#,##0.00”

‘Add a Chart object

.ActiveSheet.ChartObjects.Add(135.75, 14.25, 607.75, 301).Select

‘Run the Chart Wizard

.ActiveChart.ChartWizard Source:=Range(rng.Address), _

Gallery:=xlColumn, _

Format:=6, PlotBy:=xlColumns, CategoryLabels:=1, SeriesLabels _

:=1, HasLegend:=1, Title:=”Sales By Country”, CategoryTitle _

:=””, ValueTitle:=””, ExtraTitle:=””

Creating a Graph from Access 963

2
4

LISTING 24.6 Continued

‘Make Excel Visible

.Visible = True

End With

Else

‘If Excel not launched successfully, display an error message

MsgBox “Excel Not Successfully Launched”

End If

Else

‘If more than 500 records are in result set, display a message

MsgBox “Too Many Records to Send to Excel”

End If

cmdCreateGraph_Exit:

gobjExcel.Visible = True

Set rstData = Nothing

Set rstCount = Nothing

Set fld = Nothing

Set rng = Nothing

Set objWS = Nothing

‘Turn hourglass off

DoCmd.Hourglass False

Exit Sub

cmdCreateGraph_Err:

‘If an error occurs, display a message and return to

‘common exit routine

MsgBox “Error # “ & Err.Number & “: “ & Err.Description

Resume cmdCreateGraph_Exit

End Sub

This routine begins by creating several object variables. It then creates two recordsets and
sets the ActiveConnection property of each recordset to the connection associated with
the current project. It calls a user-defined function called CreateRecordset, located in the
basUtils module. The CreateRecordset function receives three parameters: the two
recordset object variables and the name of a query. Listing 24.7 shows the
CreateRecordset function.

LISTING 24.7 The CreateRecordset Function

Function CreateRecordset(rstData As ADODB.Recordset, _

rstCount As ADODB.Recordset, _

strTableName As String)

On Error GoTo CreateRecordset_Err

CHAPTER 24 Automation: Communicating with Other Applications964

LISTING 24.6 Continued

‘Create recordset that contains count of records in query result

rstCount.Open “Select Count(*) As NumRecords from “ & strTableName

‘If more than 500 records in query result, return false

‘Otherwise, create recordset from query

If rstCount!NumRecords > 500 Then

CreateRecordset = False

Else

rstData.Open strTableName

CreateRecordset = True

End If

CreateRecordset_Exit:

‘Common exit point; destroy the rstCount recordset

Set rstCount = Nothing

Exit Function

CreateRecordset_Err:

‘Display error message and resume at common exit point

MsgBox “Error # “ & Err.Number & “: “ & Err.Description

Resume CreateRecordset_Exit

End Function

The CreateRecordset function begins by counting how many records are returned by the
query name that is passed. If the number of records exceeds 500, the function returns
False; otherwise, the function opens a recordset based on the query name that is passed
and returns True. This function ensures that only a reasonable number of records are sent
to Excel and that a recordset can be opened successfully.

If the CreateRecordset function returns True, the remainder of the code in the Click
event of the cmdCreateGraph command button executes. The routine uses the
CreateExcelObj function to launch Excel. If Excel is opened successfully, the code creates
a new workbook. The routine then loops through each field in the Fields collection of
the recordset (the result of the query). The values of the cells in the first row of the work-
sheet are set equal to the names of the fields in the recordset. Next, the routine uses the
CopyFromRecordset method of the Excel Range object to copy the contents of the record-
set rstData to cell A2 in the active worksheet. The data from each row is placed in a
different row within the spreadsheet. The data from each column in a particular row is
placed in the various columns of the worksheet. OLE object fields (adLongVarBinary) are
excluded from the process.

After all the data in the recordset is sent to Excel, the routine is ready to create a chart. It
moves the cursor to cell A1 and then selects the entire contiguous range of data. It adds a
chart object to the worksheet and then uses the Chart Wizard to create a chart. Finally,
Excel is made visible so that users can see the fruits of their efforts.

Creating a Graph from Access 965

2
4

LISTING 24.7 Continued

Controlling Word from Access
As you discovered in the preceding section, Excel exposes many objects. You can manipu-
late each of these objects separately, using Excel’s own properties and methods. Prior to
Office 97, this was not true for Word, because Word exposed only one object, called
Word.Basic. Microsoft Word 97, and versions subsequent to it, all sport the Visual Basic
for Applications language. These newer versions of Word expose many objects, just as
Excel and other Microsoft products do.

Just as with Excel, you can use the Dim statement or Dim as New statement to launch
Word. Like Excel, Word launches as a hidden object. The Word application object has a
Visible property, which makes the Word object visible. If you create a Word object using
automation, Word will not automatically terminate, even if the object variable is
destroyed.

Using Word to Generate a Mass Mailing
Figure 24.8 shows the form called frmMergeToWord, which shows the results of running a
query called qryMailMerge. After the user clicks the Merge to Word command button, all
the records displayed are sent to a Word mail merge and printed. Figure 24.9 shows an
example of the resulting document, and Listing 24.8 shows the code that generated this
document.

CHAPTER 24 Automation: Communicating with Other Applications966

FIGURE 24.8 The data that will be merged to Word.

FIGURE 24.9 The result of the mail merge.

LISTING 24.8 Generating a Word Mail Merge Document

Private Sub cmdMergeToWord_Click()
On Error GoTo cmdMergeToWord_Err

‘Turn Hourglass on
DoCmd.Hourglass True

‘Attempt to create a Word object
If CreateWordObj() Then

‘If Word object created
With gobjWord

‘Make Word visible
.Visible = True

‘Open a document called CustomerLetter in the
‘current folder
.Documents.Open CurrentProject.Path & _

“\customerletter.doc”

‘Give the document time to open
DoEvents

Controlling Word from Access 967

2
4

‘Use the MailMerge method of the document
‘to perform a mail merge
With gobjWord.ActiveDocument.MailMerge

.Destination = wdSendToNewDocument

.SuppressBlankLines = True
‘For this code to run, you will need to create a
‘data source and then modify the name of the
‘data source below to point at the ODC file.
.DataSource Name:=”c:\documents and settings\” & _
“alisonj\my documents\my data sources\” _ &
“Northwind Customers.odc”
.Execute

End With

‘Send the result of the merge to the print preview
‘window
.ActiveDocument.PrintPreview ‘Preview

‘Make Word visible
.Visible = True

End With
End If

cmdMergeToWord_Exit:
‘Turn hourglass off
DoCmd.Hourglass False
Exit Sub

cmdMergeToWord_Err:
‘Display error message, destroy Word object, and go
‘to common exit routine
MsgBox “Error # “ & Err.Number & “: “ & Err.Description
Set gobjWord = Nothing
Resume cmdMergeToWord_Exit

End Sub

NOTE

The directory names shown in the listing above do not apply to Windows Vista. If you
are using Windows Vista, you must modify the paths.

The code begins by presenting an hourglass mouse pointer to the user. This helps to
ensure that, if the process takes a while, the user knows that something is happening. It
then calls the CreateWordObj routine to create a Word object. The CreateWordObj routine
is similar to the CreateExcel routine shown earlier in the chapter. The code executes the
Open method on the Documents collection of the Word object. It opens a document called

CHAPTER 24 Automation: Communicating with Other Applications968

LISTING 24.8 Continued

customerletter in the current folder. The customerletter document already has been set
up to do a mail merge. You will need to create an .odc file (from within Word) pointing
at the Customers table. The subroutine sets the Destination property of the MailMerge
object to a new document. It sets the SuppressBlankLines property to True. Next, it
uses the OpenDataSource method to open the datasource indicated in the .odc file. It then
executes the mail merge with the Execute method. This merges the contents of the
Customers table with the document and creates a new document with the mail-merged
letters. The PrintPreview method is executed on the ActiveDocument object so that the
merged document is printed. Finally, the Visible property of the Word object is set to
True, making Word visible, and the hourglass vanishes.

Using Word to Overcome the Limitations of Access as a
Report Writer
Although in most ways Access is a phenomenal report writer, it does have its limitations.
For example, you cannot bold or italicize an individual word or phrase within a text box.
This is quite limiting if you need to emphasize something such as a past due amount in a
dunning letter. When the document I need to produce appears more like a letter than a
report, I often think of Microsoft Word. The document pictured in Figure 24.10 produces
a letter that provides information to the recipient of an order. The code shown in Listing
24.9 produces the letter based on the information supplied in frmSendConfirmation.

Controlling Word from Access 969

2
4

FIGURE 24.10 Order confirmation letter produced in Microsoft Word.

LISTING 24.9 Working with Word Bookmarks

Private Sub cmdSendConfirmation_Click()

Dim objDocument As Word.Document

‘Launch Word

If CreateWordObj() Then

‘Make Word visible

gobjWord.Visible = True

‘Point the Document object at a new document

‘based on the Order.dot template

Set objDocument = gobjWord.Documents.Add _

(CurrentProject.Path & “\Order.dot”)

‘Populate all of the bookmarks with the order information

With objDocument.Bookmarks

.Item(“CompanyNameAddress”).Range.Text = Nz(Me.txtShipName)

.Item(“Address”).Range.Text = Nz(Me.txtShipAddress)

.Item(“City”).Range.Text = Nz(Me.txtShipCity)

.Item(“Region”).Range.Text = Nz(Me.txtShipRegion)

.Item(“PostalCode”).Range.Text = Nz(Me.txtShipPostalCode)

.Item(“CompanyName”).Range.Text = Nz(Me.txtShipName)

.Item(“Shipper”).Range.Text = Nz(Me.txtShipName)

.Item(“ShippedDate”).Range.Text = Nz(Me.txtShippedDate)

.Item(“FreightAmount”).Range.Text = Nz(Me.txtFreight)

End With

End If

End Sub

The example first launches Word. It then gets a reference to a new document based on
the Order.dot template. After that, it populates bookmarks in the document with values
from the currently displayed order.

Controlling PowerPoint from Access
Believe it or not, you can even control PowerPoint using automation. You can create a
presentation, print a presentation, or even run a slide show directly from Access.

PowerPoint launches as a hidden window. To make PowerPoint visible, you must set the
Visible property of AppWindow to True. Destroying the PowerPoint object variable does
not terminate the PowerPoint application.

CHAPTER 24 Automation: Communicating with Other Applications970

NOTE

You can find details of the PowerPoint object model in Microsoft PowerPoint Visual
Basic Reference in PowerPoint Help. You should review this object model before
attempting to communicate with PowerPoint.

The code shown in Listing 24.10 is located under the Click event of the cmdChangePicture
command button on the frmOLEToPowerPoint form, which is shown in Figure 24.11.
Figure 24.12 shows the resulting PowerPoint slide.

Controlling PowerPoint from Access 971

2
4

FIGURE 24.11 The form used to create a PowerPoint slide.

LISTING 24.10 Using Select Picture

Private Sub cmdChangePicture_Click()

‘Display Open common dialog

dlgCommon.ShowOpen

‘If the user selected a file, set the SourceDoc

‘property of the OLE control to the selected document

If Len(dlgCommon.FileName) Then

imgPicture.Picture = dlgCommon.FileName

imgPicture.PictureType = 0

End If

End Sub

FIGURE 24.12 A PowerPoint slide created using automation.

The code in the Click event of cmdChangePicture invokes the File Open common dialog
box so that the user can select a picture to be added to the slide. The Filename property
returned from this dialog box is used as the SourceDoc property for the automation
object. The new picture is then linked to the automation object.

Listing 24.11 shows the routine that creates the PowerPoint slide.

LISTING 24.11 Creating the PowerPoint Slide

Private Sub cmdMakePPTSlide_Click()

Dim objPresentation As PowerPoint.Presentation

Dim objSlide As PowerPoint.Slide

Dim strFileName As String

‘Ensure that both the title and the picture are selected

If IsNull(Me.txtTitle) Or Me.imgPicture.Name = “” Then

MsgBox “A Title Must Be Entered, and a Picture Selected Before Proceeding”

Else

‘Create instance of PowerPoint application

Set mobjPPT = New PowerPoint.Application

CHAPTER 24 Automation: Communicating with Other Applications972

‘Make instance visible to user

mobjPPT.Visible = True

‘Add a presentation

Set objPresentation = mobjPPT.Presentations.Add

‘Add a slide

Set objSlide = objPresentation.Slides.Add(1, ppLayoutTitleOnly)

‘Change the slide background

objSlide.Background.Fill.ForeColor.RGB = RGB(255, 100, 100)

‘Modify the slide title

With objSlide.Shapes.Title.TextFrame.TextRange

.Text = Me.txtTitle

.Font.Color.RGB = RGB(0, 0, 255)

.Font.Italic = True

End With

‘Add the picture to the slide

strFileName = imgPicture.Picture

objSlide.Shapes.AddPicture FileName:=strFileName, _

Left:=100, Top:=100, _

LinkToFile:=msoFalse, SaveWithDocument:=msoTrue

End If

cmdMakePPTSlide_Exit:

Set objPresentation = Nothing

Set objSlide = Nothing

Exit Sub

cmdMakePPTSlide_Err:

MsgBox “Error # “ & Err.Number & “: “ & Err.Description

Resume cmdMakePPTSlide_Exit

End Sub

The routine begins by creating an instance of PowerPoint. The code makes the instance
visible. It adds a presentation to the PowerPoint object and then adds a slide to the
presentation. The code modifies the background fill of the slide. It then customizes the
text, color, and italic properties of the title object. Finally, it uses the SourceDoc property
of the olePicture object to create an automation object, which it adds to the slide.

Controlling PowerPoint from Access 973

2
4

LISTING 24.11 Continued

Automating Outlook from Access
Microsoft Outlook is a powerful email client. It is also an excellent tool for both task and
contact management. As an application developer, I find many opportunities to automate
Outlook from the Access applications that I build. For example, suppose one of my clients
sends mass email mailings to selected groups of her customers. I use an Access front end
to manipulate customers stored in a SQL Server back end. Included in the front end is a
feature that enables the users to generate an email message and then enter the criteria
that designates which clients receive the email message. This is one of many examples of
how you can integrate the rich features of Access and Outlook.

The form pictured in Figure 24.13 allows the user to select an email template used for a
mass mailing. The mailing is sent to all users who meet the criteria entered in a query
called qryBulkMail. A more sophisticated example would allow the users to build the
query on the fly, using a custom query-by-form. The code that allows the user to select
an Outlook email template appears in Listing 24.12.

CHAPTER 24 Automation: Communicating with Other Applications974

FIGURE 24.13 This form allows the user to select the email template used for a mass
mailing.

LISTING 24.12 Selecting the Outlook Template

Private Sub cmdBrowse_Click()

‘Filter the Open dialog to Outlook template files
dlgCommon.Filter = “*.oft”

‘Display the Open dialog
dlgCommon.ShowOpen

‘Populate txtTemplate with the selected file
Me.txtTemplate = dlgCommon.FileName

End Sub

The code first sets the filter of the Common Dialog control to show only files with the
.oft extension. It then displays the Open dialog box. After the user selects a file, the
name and path of the file are placed in the txtTemplate text box. The code required to
send the mailing is shown in Listing 24.13.

LISTING 24.13 Sending the Outlook Message to the Recipients in the qryBulkMail
Resultset

Sub CreateMail()
‘ Customize a message for each contact and then send or save the message
Dim intMessageCount As Integer

‘Declare and instantiate a recordset object
Dim rst As ADODB.Recordset
Set rst = New ADODB.Recordset

‘Open a recordset based on the result of qryBulkMail
rst.Open “qryBulkMail”, CurrentProject.Connection
intMessageCount = 0

Set mobjOutlook = CreateObject(“Outlook.Application”)

‘ Loop through the contacts in the open folder
Do Until rst.EOF

‘ Check that the contact has an email address.
If rst(“EmailAddress”) <> “” Then

‘Create a mail item based on the selected template
Set mobjCurrentMessage = _
mobjOutlook.CreateItemFromTemplate _

(Me.txtTemplate)

‘Add the email address as the recipient for the message
mobjCurrentMessage.Recipients.Add rst(“EmailAddress”)

‘Send the message or save it to the Inbox
If Me.optSend = 1 Then

mobjCurrentMessage.Save
Else

mobjCurrentMessage.Send
End If
intMessageCount = intMessageCount + 1

End If
rst.MoveNext

Automating Outlook from Access 975

2
4

LISTING 24.12 Continued

Loop

‘Write the number of messages created to the worksheet
MsgBox intMessageCount & “ Messages Sent”

End Sub

First, the code creates a recordset based on qryBulkMail. It then loops through the record-
set. As it visits each row in the resultset, it creates an Outlook message based on the desig-
nated template. It adds the email address of the current row as a recipient of the email
message. It then either saves the message as a draft or immediately sends it to the desig-
nated recipient.

Controlling Access from Other Applications
Many times, you will want to control Access from another application. You might want to
run an Access report from a Visual Basic or Excel application, for example. Just as you can
tap into many of the rich features of other products (such as Excel) from within Access,
you can use some of Access’s features from within another program. Fortunately, it is
extremely easy to control Access from within other applications.

You can find an overview of the Access object model in Access Help. Unless you are very
familiar with the Access object model, you should look at this graphical representation of
Access’s object model before you attempt to use automation to control Access. Access
launches with its Visible property set to False. You can change the Visible property of
the application object to True to make Access visible.

The form shown in Figure 24.14 is a UserForm associated with an Excel spreadsheet. It is
called frmReportSelect and is part of the Excel spreadsheet called RunAccessReports.xls,
included on the sample code CD-ROM. The form enables you to select any Access data-
base. It displays a list of all reports in the selected database; you can use this list to
preview an Access report or print multiple Access reports.

CHAPTER 24 Automation: Communicating with Other Applications976

LISTING 24.13 Continued

FIGURE 24.14 The UserForm that enables you to print Access reports.

Listing 24.14 shows how this UserForm form accomplishes its work.

LISTING 24.14 Creating a Visual Basic Form to Print Reports

Private Sub cmdSelectDatabase_Click()
‘Set the filter property of the Common Dialog control
dlgCommon.Filter = “*.accdb”

‘Display the open common dialog
dlgCommon.ShowOpen

‘Ensure that a file was selected
If dlgCommon.FileName = “” Then

MsgBox “You Must Select a File to Continue”
Else

‘Set the text property of the text box to the
‘file selected in the Open dialog
Me.txtSelectedDB = _
dlgCommon.FileName

‘Call the ListReports routine
Call ListReports

End If
End Sub

Private Sub ListReports()
On Error GoTo ListReports_Err
Dim vntReport As Variant

‘If the Access object is not set, instantiate Access
If mobjAccess Is Nothing Then

Set mobjAccess = New Access.Application
End If

‘Open the database selected in the text box
mobjAccess.OpenCurrentDatabase (Me.txtSelectedDB)

‘Clear the list box
lstReports.Clear

‘Loop through each report in the AllReports collection
‘of the selected database
For Each vntReport In mobjAccess.CurrentProject.AllReports

lstReports.AddItem vntReport.Name
Next vntReport

ListReports_Exit:
Exit Sub

Controlling Access from Other Applications 977

2
4

ListReports_Err:
MsgBox “Error #” & Err.Number & _
“: “ & Err.Description
Resume ListReports_Exit

End Sub

The cmdSelectDatabase_Click event routine sets the Filter property of the Common
Dialog control to Access database files. The ShowOpen method of the common dialog
control is used to display the File Open dialog box to the user. The ListReports routine
executes after the user selects a file from the dialog box.

The ListReports subprocedure begins by creating an instance of the Access application. It
uses the OpenCurrentDatabase method of the Access object to open the Access database
selected by the user in the File Open common dialog box. It then loops through the
AllReports collection of the CurrentProject object that is associated with the selected
database. It adds the name of each report to the list box.

The routine in Listing 24.15 prints the selected reports.

LISTING 24.15 Creating a New Instance of the Access Application Object

Private Sub cmdPrint_Click()

On Error GoTo cmdPreview_Err

Dim intCounter As Integer

Dim intPrintOption As Integer

‘Evaluate whether Print or Preview was selected

If optPreview.Value = True Then

intPrintOption = acViewPreview

ElseIf optPrint.Value = True Then

intPrintOption = acViewNormal

End If

‘Make Access visible

mobjAccess.Visible = True

‘Loop through the list box, printing the

‘selected reports

For intCounter = 0 To _

lstReports.ListCount - 1

If lstReports.Selected(intCounter) Then

mobjAccess.DoCmd.OpenReport _

ReportName:=Me.lstReports.List(intCounter), _

View:=intPrintOption

End If

CHAPTER 24 Automation: Communicating with Other Applications978

LISTING 24.14 Continued

Next intCounter

cmdPreview_Exit:

Exit Sub

cmdPreview_Err:

MsgBox “Error #” & Err.Number & _

“: “ & Err.Description

If Not mobjAccess Is Nothing Then

mobjAccess.Quit

End If

Set mobjAccess = Nothing

Resume cmdPreview_Exit

End Sub

The cmdPrint_Click event routine begins by evaluating whether the user selected the
print or preview option button. It makes the Access application object visible. The code
then loops through the lstReports list box, printing or previewing each selected report.
The OpenReport method is used along with the constant acViewPreview or the constant
acViewNormal to accomplish this task.

Practical Examples: Using Automation to Extend
the Functionality of Your Applications
Many potential applications of automation exist for your applications. One of them is
discussed in this section.

The form in Figure 24.15 enables users to select a table or query to send to Excel. The
form is called frmSendToExcel.

The Load event of the form is used to add all the table and query names to the list box.
The Load event is shown in Listing 24.16. Notice that the function uses the AllTables
and AllQueries collections of the current database to populate the list box, excluding all
the system tables.

LISTING 24.16 Adding Table and Query Names to the List Box

Private Sub Form_Load()

Dim vntObject As Variant

‘Loop through each table, adding its name

‘to the list box

For Each vntObject In CurrentData.AllTables

Practical Examples 979

2
4

LISTING 24.16 Continued

If Left(vntObject.Name, 4) <> “MSys” Then

Me.lstTables.AddItem vntObject.Name

End If

Next vntObject

‘Loop through each query, adding its name to

‘the list box

For Each vntObject In CurrentData.AllQueries

Me.lstTables.AddItem vntObject.Name

Next vntObject

End Sub

CHAPTER 24 Automation: Communicating with Other Applications980

LISTING 24.16 Continued

FIGURE 24.15 Exporting a table or query to send to Excel.

The Click event of the cmdSendToExcel command button sends the selected table or
query to Excel. Listing 24.17 shows this code.

LISTING 24.17 Sending a Table or Query to Excel

Private Sub cmdSendToExcel_Click()
On Error GoTo cmdSendToExcel_Err
Dim objWS As Excel.Worksheet
Dim rstData As ADODB.Recordset
Dim rstCount As ADODB.Recordset

Dim fld As ADODB.Field
Dim intColCount As Integer
Dim intRowCount As Integer

Set rstData = New ADODB.Recordset
rstData.ActiveConnection = CurrentProject.Connection
Set rstCount = New ADODB.Recordset
rstCount.ActiveConnection = CurrentProject.Connection

‘Invoke hourglass
DoCmd.Hourglass True

‘Try to create recordset and create Excel Object
If CreateRecordset(rstData, rstCount, lstTables.Value) Then

If CreateExcelObj() Then

‘Add a workbook
gobjExcel.Workbooks.Add

‘Create a reference to the Active sheet
Set objWS = gobjExcel.ActiveSheet
intRowCount = 1
intColCount = 1

‘Loop through the Fields collection
‘Make each field name a column heading in Excel
For Each fld In rstData.Fields

If fld.Type <> adLongVarBinary Then
objWS.Cells(1, intColCount).Value = fld.Name
intColCount = intColCount + 1

End If
Next fld

‘Send recordset to Excel
objWS.Range(“A2”).CopyFromRecordset rstData, 500
gobjExcel.Range(“A1”).Select

‘Set up AutoFilter
gobjExcel.Selection.AutoFilter
gobjExcel.Visible = True

Else
MsgBox “Excel Not Successfully Launched”

End If
Else

MsgBox “Too Many Records to Send to Excel”
End If

Practical Examples 981

2
4

LISTING 24.17 Continued

cmdSendToExcel_Exit:
DoCmd.Hourglass False
Set objWS = Nothing
Set rstCount = Nothing
Set rstData = Nothing
Set fld = Nothing
Exit Sub

cmdSendToExcel_Err:
MsgBox “Error # “ & Err.Number & “: “ & Err.Description
Resume cmdSendToExcel_Exit

End Sub

The routine begins by creating a recordset object using the CreateRecordSet function
shown in Listing 24.18. It then attempts to launch Excel. If it is successful, it loops
through the Fields collection of the recordset resulting from the selected table or query. It
lists all the field names as column headings in Excel. Next, it uses the CopyFromRecordset
method of the range object to copy all the field values to the rows in the Excel worksheet.
Finally, it issues the AutoFilter method so that the user easily can manipulate the data in
Excel, filtering it as necessary (see Figure 24.16).

CHAPTER 24 Automation: Communicating with Other Applications982

LISTING 24.17 Continued

FIGURE 24.16 Using AutoFilter to analyze data sent to Excel.

CAUTION

Although extremely easy to use, the CopyFromRecordset method of the range object
has one major limitation. If the table or query used to populate the recordset being
sent to Excel contains an OLE object field, the method will fail. There are two solutions
to this problem. The simplest solution is to always base the recordset sent to Excel on
a query. Do not include any OLE object fields in the query. A second solution is to use
a less elegant alternative to the CopyFromRecordset method. Simply loop through the
recordset one record at a time. As each record is visited, send it to the appropriate
row and column. Because the first method is easier to code and is more optimized,
you should use it wherever possible.

LISTING 24.18 Checking Recordset Size

Function CreateRecordset(rstData As ADODB.Recordset, _

rstCount As ADODB.Recordset, _

strTableName As String)

On Error GoTo CreateRecordset_Err

‘Create recordset that contains count of records in query result

rstCount.Open “Select Count(*) As NumRecords from “ & strTableName

‘If more than 500 records in query result, return false

‘Otherwise, create recordset from query

If rstCount!NumRecords > 500 Then

CreateRecordset = False

Else

rstData.Open strTableName

CreateRecordset = True

End If

CreateRecordset_Exit:

‘Common exit point; destroy the rstCount recordset

Set rstCount = Nothing

Exit Function

CreateRecordset_Err:

‘Display error message and resume at common exit point

MsgBox “Error # “ & Err.Number & “: “ & Err.Description

Resume CreateRecordset_Exit

End Function

This routine, found in basUtils, ensures that the recordset is not too large to send to
Excel. If the size of the recordset is acceptable, it creates the recordset and returns True.

Practical Examples 983

2
4

Summary
Automation enables you to control other applications from your Access application, and
it enables other programs to control your Access application. This chapter began by
providing an overview of automation and why you might want to use it. It discussed
creating an object variable to reference the application you are automating. After the ins
and outs of the object variable were explained, you saw numerous examples of manipu-
lating automation objects. You looked at detailed code showing automation involving
Excel, Word, Outlook, and PowerPoint. Finally, you learned about controlling Access from
other applications.

The capability to communicate with other applications has become a prerequisite for
successful software development. It is extremely important to be aware of the wealth of
tools available. The capability to call on other applications’ features is helping to make
the world document-centric, rather than application-centric. This means that users can
focus on their tasks and not on how they are accomplishing those tasks. Although
automation requires significant hardware and also is rather slow, the benefits it provides
are often well worth the price.

CHAPTER 24 Automation: Communicating with Other Applications984

IN THIS CHAPTER

. Why This Chapter Is Important

. Declaring an External Function
to the Compiler

. Working with Constants and
Types

. Calling DLL Functions:
Important Issues

. Using API Functions

. Practical Examples: Using
Windows API Functions in Your
Applications

CHAPTER 25

Exploiting the Power
of the Windows API

Why This Chapter Is Important
One of the richest libraries of programming code functions
is supplied by Windows itself. This function library
commonly is referred to as the Windows API (Application
Programming Interface). Fortunately, as a Visual Basic for
Applications (VBA) programmer, you can tap into the
Windows function library by using these built-in Windows
functions in your own VBA modules.

Furthermore, you might discover other dynamic link libraries
(DLLs) that contain functions that would be useful in your
applications. These DLLs also are available to you as long as
you are properly licensed to use and distribute them.

A DLL is a library of procedures that applications can
link to and use at runtime. Functions contained in the
Windows API and other DLLs can provide your applica-
tions with significant, added functionality. It is often much
more efficient to use an external DLL to accomplish a task
than to attempt to write a VBA function to accomplish the
same task.

Declaring an External Function to
the Compiler
To use a DLL function, you must perform the following
steps in order:

1. Declare the function to the VBA compiler.

2. Call the function.

3. Use the return value.

The VBA language is not intrinsically aware of the functions available in external libraries.
Declaring a DLL function means making the VBA compiler aware of the name of the
function, the library it is located in, the parameters it expects to receive, and the values it
expects to return.

If you do not properly declare the library function to the VBA compiler, you receive an
error message stating Sub or Function Not Defined. You declare user-defined functions
and subroutines written in VBA using Sub or Function keywords. These keywords define
the procedures so that VBA can locate the routines when you call them. You declare func-
tions in a DLL in the same way. After you declare a DLL function to the compiler, Access
knows where to locate it, and you can use it throughout your application.

You declare an external function to VBA using a Declare statement. You can place
Declare statements in the Declarations section of a standard module, a standalone class
module, or the class module behind a form or report. A Declare statement placed in a
standard module is immediately available to your entire application. If you explicitly
declare the Declare statement as private, it is available only to the module in which you
declared it. A Declare statement that you place in the General Declarations section of a
standalone class module or the class module behind a form or report is available only
after you load the form or report or after you instantiate the class. Furthermore, a Declare
statement placed in the General Declarations section of a standalone class module or the
module behind a form or report can have only private scope.

You can use a Declare statement to declare both subroutines and functions. If the proce-
dure returns a value, you must declare it as a function. If it does not return a value, you
must declare it as a subroutine.

A sample Declare statement looks like this:

Private Declare Function GetKeyboardType Lib “user32” _

(ByVal nTypeFlag As Long) As Long

This statement declares a function called GetKeyboardType, which is located in the
Windows System folder in a DLL file called user32. It receives a long integer parameter
by value and returns a long integer. Notice that this function was declared as private.

NOTE

Remember that both the function name and library name are case sensitive. Unless
you explicitly include the path as part of the Declare statement, the default system
path, the Windows folder, and the Windows System folder are all searched for in the
library. Most Windows API functions are contained within the library files user32.dll,
gdi32.dll, and kernel32.dll.

CHAPTER 25 Exploiting the Power of the Windows API986

CAUTION

Do not include unnecessary Declare statements in your applications. Each Declare
statement consumes memory, whether or not you use the declaration. A large number
of unused Declare statements can dramatically increase the amount of memory and
resources required by your application.

Passing Parameters to DLL Functions
You pass parameters to a DLL function in the same way you pass them to a VBA routine.
The only difference is that it is very important that you pass the parameters by reference
or by value, as appropriate, and that you always pass the correct data type for each argu-
ment. Sending the correct data type means that, if the function expects a long integer
value, you shouldn’t send a double. Doing so can make your application unstable. The
next section covers passing by reference versus passing by value.

Passing by Reference Versus Passing by Value
When you pass a parameter by reference, the memory address of the argument is passed to
the function. When you pass a parameter by value, the actual value of the argument is
passed to the function. Unless explicitly told otherwise, VBA passes all parameters by
reference. Many library functions expect to receive parameters by value. If such a function
is passed a reference to a memory location, it cannot function properly. If you want to
pass an argument by value, you must place the ByVal keyword in front of the argument
in the Declare statement. When calling library functions, you must know the types of
arguments a function expects to receive and whether the function expects to receive the
parameters by reference or by value. Passing an argument by reference rather than by
value or passing the incorrect data type for an argument can cause your system to become
unstable or can result in the function not working as expected.

Passing String Parameters
String parameters require special handling when being passed to DLL functions. Windows
has two ways of storing strings: the BSTR and LPSTR formats. Unless you are dealing with
an API call specifically involving object linking and embedding (OLE), the string you are
passing to the function is stored in the LPSTR format. DLL functions that receive strings
in the LPSTR format cannot change the size of the string they are passed. This means
that, if a DLL function is passed a small string that it must fill in with a large value, the
function simply overwrites another area of memory with the extra characters. This
usually results in a GPF or illegal operation. The following code demonstrates this point
and handles the error that is generated:

Sub WinSysDir()

Dim strBuffer As String

Dim intLength As Integer

Dim strDirectory As String

Declaring an External Function to the Compiler 987

2
5

strBuffer = Space$(160)

intLength = abGetSystemDirectory(strBuffer, Len(strBuffer))

strDirectory = Left(strBuffer, intLength)

MsgBox strDirectory

End Sub

NOTE

The code here and most of the code in this chapter is located in CHAP25EX.ACCDB on
your sample code CD-ROM.

Notice that the example uses the Space$ function to store 160 spaces in the string
variable strBuffer. Actually, the Space$ function returns 160 spaces, followed by a Null
character in the strBuffer variable.

The abGetSystemDirectory Windows API function receives two parameters:

. The buffer that it will fill with the name of the Windows System folder—in this
case, strBuffer.

. The length of the buffer that will be filled—in this case, Len(strBuffer). The key
here is that the example assumes that the length of the buffer that is passed to the
GetSystemDirectoryA function is more than sufficient to hold the path of the
Windows System folder.

The GetSystemDirectoryA function fills the buffer and returns the length of the string
that it finds. By looking at the left intLength number of characters in the strBuffer vari-
able, you can determine the actual location of the Windows System folder.

NOTE

The abGetSystemDirectory function name is an alias for the real function name,
which is GetSystemDirectoryA. To learn more about aliases, refer to the section of
this chapter titled “Aliasing a Function.”

The Declare statement for the GetSystemDirectoryA function looks like this:

Declare Function abGetSystemDirectory _

Lib “kernel32” _

Alias “GetSystemDirectoryA”

(ByVal lpBuffer As String, ByVal nSize As Long) _

As Long

Notice the ByVal keyword that precedes the lpBuffer parameter. Because the ByVal
keyword is used, Visual Basic converts the string from BSTR to LPSTR format by adding
a Null terminator to the end of the string before passing it to the DLL function. If the

CHAPTER 25 Exploiting the Power of the Windows API988

ByVal keyword is omitted, Visual Basic passes a pointer to the function where the string is
located in memory. This can cause serious problems, such as database corruption.

CAUTION

Windows API calls are fraught with potential danger. To reduce the chances of data
loss or database corruption, always save your work before testing a procedure contain-
ing an external function call. If the Access application terminates, at least you won’t
lose your work. In addition, always make sure that you back up your database. If the
Access application terminates and you do not close your database properly, you risk
damaging the database. Regularly backing up ensures that if the database becomes
corrupted during testing, you can retrieve the last good version from a backup. Fortu-
nately, Access 2007 comes complete with a backup feature that makes it easier than
ever to back up your databases.

Aliasing a Function
When you declare a function to VBA, you are given the option to alias it, as in the
preceding function. To alias means to refer to a function by a substitute name. You
might want to alias a Windows API function for several reasons:

. A DLL procedure has a name that includes an invalid character.

. A DLL procedure name is the same as a VBA keyword.

. You want to omit the A required by ANSI versions of the API call.

. You want to ensure that you have a unique procedure name in an Access library or
application.

. You want to call a DLL procedure referenced by an ordinal number.

. You want to give your API functions a distinctive prefix to prevent conflicts with
API declarations in other modules or add-ins.

The sections that follow further discuss the reasons for aliasing an API function.

Function Calls and Invalid Characters
It is not uncommon for a DLL procedure name to contain a character that is not allowed
in VBA code—for example, a DLL procedure that begins with an underscore (_). VBA does
not allow a procedure name to begin with an underscore. To use the DLL function, you
must alias it, as this example shows:

Declare Function LOpen _

Lib “kernel32” _

Alias “_lopen” _

(ByVal lpPathName As String, ByVal ReadWrite As Long) _

As Long

Declaring an External Function to the Compiler 989

2
5

Notice that the Windows API function _lopen begins with an underscore. You can alias
the function as LOpen for use in the Access application.

DLL Functions with Duplicate Names
The DLL procedure name you want to use might share the same name as a VBA keyword.
You can resolve this conflict only by aliasing the DLL function. The following code aliases
a DLL function:

Declare Function GetObjectAPI _

Lib “gdi32” _

Alias “GetObject” _

(ByVal hObject As Long, _

ByVal nCount As Long, _

lpObject As Any) As Long

The GetObject function is part of the Windows API and is also a VBA function. When
you alias the function, there is no confusion as to whether you want to call the API or the
VBA GetObject function.

Eliminating the A Suffix Required by ANSI
Many API function calls have both ANSI and Unicode versions. The ANSI versions of the
functions end with an A. You might want to call the ANSI version of a function but prefer
to use the name of the function without the A. You can accomplish this by using an alias,
as this code shows:

Declare Function FindWindow _

Lib “user32” Alias “FindWindowA” _

(ByVal lpClassName As Any, ByVal lpWindowName As String) As Long

This Declare statement creates an alias of FindWindow for the ANSI function FindWindowA.

NOTE

Unicode is a standard developed by the International Standards Organization (ISO). It
was developed to overcome the 256-character limit imposed by the ANSI character
standard. The ANSI standard uses only one byte to represent a character, limiting the
number of characters to 256. This standard uses two bytes to represent a character,
allowing up to 65,536 characters to be represented. Access uses Unicode for string
manipulation, which can lead to conversion problems with DLL calls. To overcome this
limitation, you always should call the ANSI version of the API function (the version of
the function that ends with an A).

Unique Procedure Names in an Access Library or Module
Sometimes you simply want to ensure that a procedure name in a library you are creating
is unique, or you might want to ensure that the code you are writing will not conflict
with any libraries you are using. Unless you use the Private keyword to declare each

CHAPTER 25 Exploiting the Power of the Windows API990

procedure, external function declarations are global throughout Access’s memory space.
This can lead to potential conflicts because Access does not allow multiple declarations of
the same external routine. For this reason, you might want to place a unique identifier,
such as your initials, at the beginning or end of the function declaration, as in this
example:

Declare Function ABGetWindowsDirectory Lib “kernel32” _

Alias “GetWindowsDirectoryA” _

(ByVal lpBuffer As String, ByVal nSize As Long) As Long

This statement declares the Windows API function GetWindowsDirectoryA in the library
kernel32. The function is aliased as ABGetWindowsDirectory. This function was aliased to
differentiate it from other calls to the GetWindowsDirectoryA function that might share
this procedure’s scope.

Calling Functions Referenced with Ordinal Numbers
Every DLL procedure can be referenced by an ordinal number in addition to its name. In
fact, some DLLs use only ordinal numbers and do not use procedure names at all, requir-
ing you to use ordinal numbers when declaring the procedures. When you declare a func-
tion referenced by an ordinal number, you should declare the function with the Alias
keyword, as in this example:

Declare Function GetAppSettings _

Lib “Utilities” _

Alias “#47” () As Long

This code declares a function with an ordinal number 47 in the library called Utilities.
You can now refer to it as GetAppSettings whenever you call it in VBA code.

Working with Constants and Types
Some DLLs require the use of constants or user-defined types, otherwise known as struc-
tures or parameters. You must place them in the General Declarations section of your
module, along with the Declare statements you have defined.

Working with Constants
Constants are used by many of the API functions. They provide you with an English-like
way of sending required values to an API function. You use the constant as an alias for a
specific value. Here’s an example:

Global Const SM_CXSCREEN = 0

Global Const SM_CYSCREEN = 1

You place the constant declarations and function declarations in the General Declarations
section of a module. When the GetSystemMetrics function is called in the following
example, the SM_CXSCREEN and SM_CYSCREEN constants are passed as arguments to the
function:

Working with Constants and Types 991

2
5

Sub GetScreenInfo()

MsgBox “Screen Resolution is : “ & _

GetSystemMetrics(SM_CXSCREEN) & _

“ By “ & _

GetSystemMetrics(SM_CYSCREEN)

End Sub

When the code in the example passes the SM_CXSCREEN constant to the GetSystemMetrics
function, the function returns the horizontal screen resolution; when the code passes the
SM_CYSCREEN constant to the function, the code returns the vertical screen resolution.

Working with Types
When working with types, you first must declare the type in the General Declarations
section of a module. You then can pass elements of a user-defined type, or you can pass
the entire type as a single argument to the API function. The following code shows an
example of a Type declaration:

Type OSVERSIONINFO

dwOSVersionInfoSize As Long

dwMajorVersion As Long

dwMinorVersion As Long

dwBuildNumber As Long

dwPlatformId As Long

strReserved As String * 128

End Type

You declare the Type structure OSVERSIONINFO in the General Declarations section of the
module, as shown in Listing 25.1.

LISTING 25.1 Declaring the Type Structure OSVERSIONINFO in the General Declarations
Section of the Module

Function GetOSInfo()

Dim OSInfo As OSVERSIONINFO

Dim strMajorVersion As String

Dim strMinorVersion As String

Dim strBuildNumber As String

Dim strPlatformId As String

‘ Set the length member before you call GetVersionEx

OSInfo.dwOSVersionInfoSize = Len(OSInfo)

If GetVersionEx(OSInfo) Then

strMajorVersion = OSInfo.dwMajorVersion

strMinorVersion = OSInfo.dwMinorVersion

CHAPTER 25 Exploiting the Power of the Windows API992

strBuildNumber = OSInfo.dwBuildNumber And &HFFFF&

strPlatformId = OSInfo.dwPlatformId

MsgBox “The Major Version Is: “ & _

strMajorVersion & vbCrLf & _

“The Minor Version Is: “ & strMinorVersion & vbCrLf & _

“The Build Number Is: “ & strBuildNumber & vbCrLf & _

”The Platform ID Is: “

End If

End Function

In this listing, the statement Dim OSInfo As OSVERSIONIFO creates a Type variable. The
entire structure is passed to the GetVersionEx function (declared in basAPICalls), which
fills in the elements of the structure with information about the operating system. The
code retrieves and stores this information into variables that it displays in a message box.

Calling DLL Functions: Important Issues
After you declare a procedure, you can call it just like any VBA function. The main issue is
that you must ensure that you are passing correct values to the DLL. Otherwise, the bad
call can cause your application to shut down without warning. In fact, external library
calls are very tricky. You therefore should always save your work before you test the calls.

Most DLLs expect to receive standard C strings. These strings are terminated with a Null
character. If a DLL expects a Null-terminated string, you must pass the string by value.
The ByVal keyword tells VBA to pass the string as Null terminated.

Although you must pass strings by value, they actually are received by reference. The
ByVal keyword simply means that the string is Null terminated. The DLL procedure actu-
ally can modify the value of the string, which can cause problems. As discussed in the
“Passing String Parameters” section earlier in this chapter, if you do not preallocate space
for the procedure to use, it overwrites any memory it can find, including memory
currently being used by your application, another application, or even the operating
system. You can avoid this problem by making the string argument long enough to accept
the longest entry that you think will be placed into the parameter.

Using API Functions
The potential uses for API functions are endless. You can use API functions to modify the
System menu, obtain system information, or even switch between running applications.
In fact, you can accomplish so many things using API functions that entire books are
devoted to the topic. The remainder of this chapter covers several of the common uses of
API functions.

Using API Functions 993

2
5

LISTING 25.1 Continued

Manipulating the Windows Registry
Four built-in VBA functions help you manipulate the Windows Registry. They include
GetAllSettings, GetSetting, SaveSetting, and DeleteSetting. These four functions
allow you to manipulate and work only with a specific branch of the Registry,
HKEY_CURRENT_USER\Software\VB, and VBA program Settings. Sometimes you need to read
from or write to other parts of the Registry. This is one situation in which the Windows
API can really help you out. Using the Windows RegQueryValueEx function, you can
extract information from Registry keys. Using the RegSetValueEx function, you can write
information to the Registry. The declarations for these two functions (found in the
basAPICalls module) look like this:

‘The RegQueryValueExA function is used to

‘read information from the Windows registry

Declare Function RegQueryValueEx _

Lib “advapi32.dll” Alias “RegQueryValueExA” _

(ByVal hKey As Long, ByVal lpValueName As String, _

ByVal lpReserved As Long, lpType As Long, _

lpData As Any, lpcbData As Long) As Long

‘The RegSetValueExA function is used to

‘write information to the Windows registry

Declare Function RegSetValueEx _

Lib “advapi32.dll” Alias “RegSetValueExA” _

(ByVal hKey As Long, _

ByVal lpValueName As String, _

ByVal Reserved As Long, _

ByVal dwType As Long, _

lpData As Any, _

ByVal cbData As Long) As Long

Before you use either function, you must first obtain a handle to the Registry key you
wish to affect. This requires the RegOpenKeyEx function:

‘The RegOpenKeyExA function is used to

‘Return a numeric value that references

‘a specific registry key

Declare Function RegOpenKeyEx _

Lib “advapi32.dll” Alias “RegOpenKeyExA” _

(ByVal hKey As Long, ByVal lpSubKey As String, _

ByVal ulOptions As Long, ByVal samDesired As Long, _

phkResult As Long) As Long

CHAPTER 25 Exploiting the Power of the Windows API994

Finally, when you are done reading from or saving to the Registry, you must use the
RegCloseKey function to close the Registry key. The declaration for the RegCloseKey func-
tion looks like this:

‘The RegCloseKey function closes the designated

‘registry key

Public Declare Function RegCloseKey _

Lib “advapi32.dll” (ByVal hKey As Long) As Long

Listing 25.2 shows how you can use the RegQueryValueEx function to read from the
Registry.

LISTING 25.2 Using RegQueryValueEx to Read Registry Information

Private Sub cmdRead_Click()

Dim strValue As String * 256

Dim lngRetval As Long

Dim lngLength As Long

Dim lngKey As Long

‘Retrieve handle of the registry key

If RegOpenKeyEx(HKEY_CURRENT_USER, _

Me.txtKeyName.Value, _

0, KEY_QUERY_VALUE, lngKey) Then

End If

lngLength = 256

‘Retrieve the value of the key

lngRetval = RegQueryValueEx(_

lngKey, Me.txtValueName, 0, 0, ByVal strValue, lngLength)

Me.txtValue = Left(strValue, lngLength)

‘Close the key

RegCloseKey (lngKey)

End Sub

You will find this code in the frmRegistry form in the sample database. Notice that
the code first retrieves a handle to the requested Registry key. It then uses the
RegQueryValueEx function to retrieve the designated value from the Registry. After the
code is complete, it closes the Registry key. For example, you could request the value Last
User from the Software\Microsoft\Office\12.0\Access\Settings Registry key. The
value stored for the MRU1 setting is displayed in the txtValue text box.

Using API Functions 995

2
5

Listing 25.3 shows how you can use the RegSetValueEx function to write to the Registry.

LISTING 25.3 Using RegSetValueEx to Write Information to the Registry

Private Sub cmdWrite_Click()

Dim strValue As String

Dim strKeyName As String

Dim lngRetval As Long

Dim lngLength As Long

Dim lngKey As Long

‘Create string with Key name

strKeyName = Me.txtKeyName.Value & vbNullString

‘Retrieve handle of the registry key

If RegOpenKeyEx(HKEY_CURRENT_USER, _

strKeyName, _

0, KEY_WRITE, lngKey) Then

End If

‘Create string with string to store

strValue = Me.txtValue.Value & vbNullString

‘Create variable with length of string to store

lngLength = Len(Me.txtValue) + 1

‘Save the value to the key

lngRetval = RegSetValueEx(_

lngKey, Me.txtValueName, 0, REG_SZ, _

ByVal strValue, lngLength)

‘Close the key

RegCloseKey (lngKey)

End Sub

In this listing, the routine first opens a handle to the designated Registry key. It then calls
the RegSetValueEx function, passing the handle, the value you want to modify, the type
of data the key contains, and the new value. Finally, it closes the Registry key.

CAUTION

I generally do not make a practice of writing information to the Windows Registry. If
you write to an important Registry key and make a mistake, you can render the
Windows operating environment unusable. When you must write to the Windows
Registry, do so sparingly and carefully.

CHAPTER 25 Exploiting the Power of the Windows API996

NOTE

Listing 25.3 shows you how to write to a Registry key that contains a string. To write
to a Registry that expects a DWORD value, you must use the REG_DWORD constant
rather than the REG_SZ constant.

Getting Information About the Operating Environment
By using Windows API calls, you can get volumes of information about the system envi-
ronment, including the type of hardware on which the application is running, the
amount of memory that exists or is available, and the operating system version under
which the application is running. It is handy and professional to include system informa-
tion in your application’s Help About box. It also is important to include this system
information in your error handling and logging because such information can help you
diagnose the problem. This is discussed in Chapter 17, “Error Handling: Preparing for the
Inevitable.”

Figure 25.1 shows a Custom About dialog box that includes system environment informa-
tion. This form uses several Windows API calls to get the system information displayed on
the form.

Using API Functions 997

2
5

FIGURE 25.1 A Custom About dialog box illustrating the capability to obtain system informa-
tion from the Windows API.

Before you can call any of the DLL functions required to obtain this information, you
must declare all the necessary functions to the compiler. This example accomplishes this
in the General Declarations section of the module basUtils. You must also include any
constants and type structures used by the DLL calls in the General Declarations section.
Listing 25.4 shows what the General Declarations section of basAPICalls looks like.

LISTING 25.4 The General Declarations Section of basAPICalls

Option Compare Database

Option Explicit

Public Const MAX_PATH = 160

‘The GetVersionEx function gets information about

‘the version of the operating system that is currently

‘running. The information is filled into the type

‘structure OSVERSIONINFO.

Declare Function abGetVersionEx _

Lib “kernel32” _

Alias “GetVersionExA” _

(lpOSInfo As OSVERSIONINFO) As Boolean

Type OSVERSIONINFO

dwOSVersionInfoSize As Long

dwMajorVersion As Long

dwMinorVersion As Long

dwBuildNumber As Long

dwPlatformId As Long

strReserved As String * 128

End Type

‘The GetSystemMetrics function utilizes three constants to

‘determine whether a mouse is present and to determine

‘the width and height of the screen.

Const SM_CXSCREEN = 0

Const SM_CYSCREEN = 1

Const SM_MOUSEPRESENT = 19

Declare Function abGetSystemMetrics _

Lib “user32” _

Alias “GetSystemMetrics” _

(ByVal nIndex As Long) As Long

CHAPTER 25 Exploiting the Power of the Windows API998

‘The GlobalMemoryStatus function retrieves information

‘about current available memory. It points to a type

‘structure called SYSTEM_INFO, filling in its elements

‘with relevant memory information.

Type MEMORYSTATUS

dwLength As Long

dwMemoryLoad As Long

dwTotalPhys As Long

dwAvailPhys As Long

dwTotalPageFile As Long

dwAvailPageFile As Long

dwTotalVirtual As Long

dwAvailVirtual As Long

End Type

Declare Sub abGlobalMemoryStatus _

Lib “kernel32” _

Alias “GlobalMemoryStatus” _

(lpBuffer As MEMORYSTATUS)

‘The GetSystemInfo function returns information about

‘the system. It fills in the type structure SYSTEM_INFO

‘with relevant information about the system.

Type SYSTEM_INFO

dwOemID As Long

dwPageSize As Long

lpMinimumApplicationAddress As Long

lpMaximumApplicationAddress As Long

dwActiveProcessorMask As Long

dwNumberOrfProcessors As Long

dwProcessorType As Long

dwAllocationGranularity As Long

dwReserved As Long

End Type

Declare Sub abGetSystemInfo Lib “kernel32” _

Alias “GetSystemInfo” _

(lpSystemInfo As SYSTEM_INFO)

‘The GetWindowsDirectory function retrieves the name of the

‘directory within which Windows is running

Using API Functions 999

2
5

LISTING 25.4 Continued

Declare Function abGetWindowsDirectory _

Lib “kernel32” _

Alias “GetWindowsDirectoryA” _

(ByVal lpBuffer As String, _

ByVal nSize As Long) As Long

‘The GetSystemDirectory function retrieves the name of the

‘directory in which the Windows system files reside.

Declare Function abGetSystemDirectory _

Lib “kernel32” _

Alias “GetSystemDirectoryA” _

(ByVal lpBuffer As String, _

ByVal nSize As Long) As Long

‘The GetTempPath function retrieves the name of the

‘directory where temporary files are stored.

Declare Function abGetTempPath _

Lib “kernel32” _

Alias “GetTempPathA” _

(ByVal nBufferLength As Long, _

ByVal lpBuffer As String) As Long

‘The GetCommandLine function retrieves the command

‘line for the current process.

Declare Function abGetCommandLine _

Lib “kernel32” _

Alias “GetCommandLineA” () _

As String

‘The GetClassName Function returns the class name

‘of a window

Declare Function abGetClassName _

Lib “user32” _

Alias “GetClassNameA” _

(ByVal hwnd As Long, _

ByVal lpClassName As String, _

ByVal nMaxCount As Long) _

As Long

CHAPTER 25 Exploiting the Power of the Windows API1000

LISTING 25.4 Continued

‘Gets the handle of a parent window

Declare Function abGetParent _
Lib “user32” _
Alias “GetParent” _
(ByVal hwnd As Long) _
As Long

‘The GetWindowText Function gets the title of the
‘current window

Declare Function abGetWindowText _
Lib “user32” _
Alias “GetWindowTextA” _
(ByVal hwnd As Long, _
ByVal lpString As String, _
ByVal cch As Long) _
As Long

‘The SetWindowText Function modifies the title of the
‘current window

Declare Function abSetWindowText _
Lib “user32” _
Alias “SetWindowTextA” _
(ByVal hwnd As Long, _
ByVal lpString As String) _
As Long

‘The GetDriveType Function returns an integer
‘indicating the drive type

Public Const DRIVE_UNKNOWN = 0
Public Const DRIVE_UNAVAILABLE = 1
Public Const DRIVE_REMOVABLE = 2
Public Const DRIVE_FIXED = 3
Public Const DRIVE_REMOTE = 4
Public Const DRIVE_CDROM = 5
Public Const DRIVE_RAMDISK = 6

Declare Function abGetDriveType _
Lib “kernel32” _
Alias “GetDriveTypeA” _
(ByVal nDrive As String) _
As Long

Using API Functions 1001

2
5

LISTING 25.4 Continued

‘The GetDiskFreeSpace Function determines the amount of

‘free space on the active drive

Declare Function abGetDiskFreeSpace _

Lib “kernel32” _

Alias “GetDiskFreeSpaceA” _

(ByVal lpRootPathName As String, _

lpSectorsPerCluster As Long, _

lpBytesPerSector As Long, _

lpNumberOfFreeClusters As Long, _

lpTotalNumberOfClusters As Long) _

As Long

‘Constants used by RegOpenKeyEx

Public Const KEY_QUERY_VALUE = &H1

Public Const KEY_SET_VALUE = &H2

Public Const READ_CONTROL = &H20000

Public Const STANDARD_RIGHTS_WRITE = (READ_CONTROL)

Public Const SYNCHRONIZE = &H100000

Public Const KEY_CREATE_SUB_KEY = &H4

Public Const KEY_WRITE = ((STANDARD_RIGHTS_WRITE Or KEY_SET_VALUE Or

*KEY_CREATE_SUB_KEY) And (Not SYNCHRONIZE))

Public Const HKEY_CLASSES_ROOT = &H80000000

Public Const HKEY_CURRENT_CONFIG = &H80000005

Public Const HKEY_CURRENT_USER = &H80000001

Public Const HKEY_DYN_DATA = &H80000006

Public Const HKEY_LOCAL_MACHINE = &H80000002

Public Const HKEY_PERFORMANCE_DATA = &H80000004

Public Const HKEY_USERS = &H80000003

Public Const REG_SZ = 1 ‘ Unicode nul terminated string

Public Const REG_DWORD = 4 ‘ 32-bit number

‘The RegOpenKeyExA function is used to

‘Return a numeric value that references

‘a specific registry key

Declare Function RegOpenKeyEx _

Lib “advapi32.dll” Alias “RegOpenKeyExA” _

(ByVal hKey As Long, ByVal lpSubKey As String, _

ByVal ulOptions As Long, ByVal samDesired As Long, _

phkResult As Long) As Long

CHAPTER 25 Exploiting the Power of the Windows API1002

LISTING 25.4 Continued

‘The RegQueryValueExA function is used to

‘read information from the Windows registry

Declare Function RegQueryValueEx _

Lib “advapi32.dll” Alias “RegQueryValueExA” _

(ByVal hKey As Long, ByVal lpValueName As String, _

ByVal lpReserved As Long, lpType As Long, _

lpData As Any, lpcbData As Long) As Long

‘The RegSetValueExA function is used to

‘write information to the Windows registry

Declare Function RegSetValueEx _

Lib “advapi32.dll” Alias “RegSetValueExA” _

(ByVal hKey As Long, _

ByVal lpValueName As String, _

ByVal Reserved As Long, _

ByVal dwType As Long, _

lpData As Any, _

ByVal cbData As Long) As Long

‘The RegCloseKey function closes the designated

‘registry key

Public Declare Function RegCloseKey _

Lib “advapi32.dll” (ByVal hKey As Long) As Long

As you can see, several type structures, constants, and Declare statements are
required to obtain all the information that appears on the form. When the form
(frmSystemInformation) is opened, all the Windows API functions are called, and the
text boxes on the form are filled with the system information. The Open event of the
form frmSystemInformation calls a subroutine called GetSysInfo, which is shown in
Listing 25.5.

LISTING 25.5 The GetSysInfo Subroutine

Sub GetSysInfo(frmAny As Form)

Dim intMousePresent As Integer

Dim strBuffer As String

Dim intLen As Integer

Dim MS As MEMORYSTATUS

Dim SI As SYSTEM_INFO

Dim strCommandLine As String

Using API Functions 1003

2
5

LISTING 25.4 Continued

frmAny.txtScreenResolution = abGetSystemMetrics(SM_CXSCREEN) & _

“ By “ & abGetSystemMetrics(SM_CYSCREEN)

intMousePresent = CBool(abGetSystemMetrics(SM_MOUSEPRESENT))

frmAny.txtMousePresent = IIf(intMousePresent, “Mouse Present”, _

“No Mouse Present”)

‘Set the length member before you call GlobalMemoryStatus

MS.dwLength = Len(MS)

abGlobalMemoryStatus MS

frmAny.txtMemoryLoad = MS.dwMemoryLoad & “%”

frmAny.txtTotalPhysical = Format(Fix(MS.dwTotalPhys / 1024), _

“###,###”) & “K”

frmAny.txtAvailablePhysical = Format(Fix(MS.dwAvailPhys / 1024), _

“###,###”) & “K”

frmAny.txtTotalVirtual = Format(Fix(MS.dwTotalVirtual / 1024), _

“###,###”) & “K”

frmAny.txtAvailableVirtual = Format(Fix(MS.dwAvailVirtual / 1024), _

“###,###”) & “K”

abGetSystemInfo SI

frmAny.txtProcessorMask = SI.dwActiveProcessorMask

frmAny.txtNumberOfProcessors = SI.dwNumberOfProcessors

frmAny.txtProcessorType = SI.dwProcessorType

strBuffer = Space(MAX_PATH)

intLen = abGetWindowsDirectory(strBuffer, MAX_PATH)

frmAny.txtWindowsDir = Left(strBuffer, intLen)

strBuffer = Space(MAX_PATH)

intLen = abGetSystemDirectory(strBuffer, MAX_PATH)

frmAny.txtSystemDir = Left(strBuffer, intLen)

strBuffer = Space(MAX_PATH)

intLen = abGetTempPath(MAX_PATH, strBuffer)

frmAny.txtTempDir = Left(strBuffer, intLen)

End Sub

Now look at this subroutine in detail. The subroutine calls the function GetSystemMetrics
(aliased as abGetSystemMetrics) three times. The first time, it is sent the constant SM_
CXSCREEN, and the second time, it is sent the constant SM_CYSCREEN. These calls return the
horizontal and vertical screen resolutions. When passed the constant SM_MOUSEPRESENT,

CHAPTER 25 Exploiting the Power of the Windows API1004

LISTING 25.5 Continued

the GetSystemMetrics function returns a logical True or False, indicating whether a
mouse is present.

The GlobalMemoryStatus API call fills in a structure with several pieces of information
regarding memory. The code fills the elements of the structure with the memory load,
total and available physical memory, and total and available virtual memory.

The GetSystemInfo API call also provides you with valuable system information. It fills in
a structure with several technical tidbits, including the active processor mask, the number
of processors, and the processor type.

Finally, the function calls GetWindowsDirectory, GetSystemDirectory, and GetTempPath.
These three functions return the Windows folder, System folder, and temp file path,
respectively. Notice that buffer space is preallocated before each call. Because each call
returns the length of the folder name retrieved, you then take the characters on the left
side of the buffer for the number of characters specified in the return value.

Determining Drive Types and Available Drive Space
Often, you need to determine the types of drives available and the amount of space free
on each drive. Fortunately, Windows API functions are available to help you to accom-
plish these tasks. The frmListDrives form lists the type of each drive installed on the
system and the amount of free space on each drive, as shown in Figure 25.2. The declara-
tions that are required for the APIs are shown in Listing 25.6.

Using API Functions 1005

2
5

FIGURE 25.2 The frmListDrives form showing the type of each drive installed on the
system and the amount of free space on each drive.

LISTING 25.6 API Declarations

‘The GetDriveType Function returns an integer

‘indicating the drive type

Public Const DRIVE_UNKNOWN = 0

Public Const DRIVE_UNAVAILABLE = 1

Public Const DRIVE_REMOVABLE = 2

Public Const DRIVE_FIXED = 3

Public Const DRIVE_REMOTE = 4

Public Const DRIVE_CDROM = 5

Public Const DRIVE_RAMDISK = 6

Declare Function abGetDriveType _

Lib “kernel32” _

Alias “GetDriveTypeA” _

(ByVal nDrive As String) _

As Long

‘The GetDiskFreeSpace function determines the amount of

‘free space on the active drive

Declare Function abGetDiskFreeSpace _

Lib “kernel32” _

Alias “GetDiskFreeSpaceA” _

(ByVal lpRootPathName As String, _

lpSectorsPerCluster As Long, _

lpBytesPerSector As Long, _

lpNumberOfFreeClusters As Long, _

lpTotalNumberOfClusters As Long) _

As Long

The Click event of the cmdListDrives command button located on frmListDrives calls a
subroutine called GetDriveInfo, sending it the txtDrives text box. Listing 25.7 shows the
GetDriveInfo procedure.

LISTING 25.7 The GetDriveInfo Procedure

Sub GetDriveInfo(ctlAny As Control)

Dim intDrive As Integer

Dim strDriveLetter As String

Dim strDriveType As String

Dim strSpaceFree As String

‘Loop through all drives

For intDrive = 65 To 90 ‘A through Z

CHAPTER 25 Exploiting the Power of the Windows API1006

strDriveLetter = (Chr(intDrive) & “:\”)
‘Get Drive Type
strDriveType = TypeOfDrive(strDriveLetter)
‘Get Space Free
strSpaceFree = NumberOfBytesFree(strDriveLetter)
ctlAny.Value = _

ctlAny.Value & _
Left(strDriveLetter, 2) & _
“ - “ & strDriveType & _
IIf(strDriveType <> “Drive Doesn’t Exist”, _

strSpaceFree, “”) & _
vbCrLf

Next intDrive

End Sub

The routine loops through all available drive letters. For each drive letter, the code calls
two user-defined functions: TypeOfDrive and NumberOfBytesFree. Listing 25.8 shows the
TypeOfDrive function.

LISTING 25.8 The TypeOfDrive Function

Function TypeOfDrive(ByVal strDrive As String) As String
Dim intDriveType As Integer
Dim strDriveType As String

intDriveType = abGetDriveType(strDrive)
Select Case intDriveType

Case DRIVE_UNKNOWN
strDriveType = “Type Unknown”

Case DRIVE_UNAVAILABLE
strDriveType = “Drive Doesn’t Exist”

Case DRIVE_REMOVABLE
strDriveType = “Removable Drive”

Case DRIVE_FIXED
strDriveType = “Fixed Drive”

Case DRIVE_REMOTE
strDriveType = “Network Drive”

Case DRIVE_CDROM
strDriveType = “CD-ROM”

Case DRIVE_RAMDISK
strDriveType = “RAM Disk”

End Select
TypeOfDrive = strDriveType

End Function

Using API Functions 1007

2
5

LISTING 25.7 Continued

The TypeOfDrive function receives a drive letter as a parameter. It calls the Windows API
function GetDriveType to determine the type of drive whose drive letter was passed to the
function. The GetDriveType function returns a numeric value that indicates the type of
the specified drive. The returned value is evaluated with a case statement, and text repre-
senting the drive type is returned from the function.

The NumberOfBytesFree function determines how many bytes are free on a particular
drive, as shown in Listing 25.9.

LISTING 25.9 The NumberOfBytesFree Function

Function NumberOfBytesFree(ByVal strDrive As String) As String

Dim lngSectors As Long

Dim lngBytes As Long

Dim lngFreeClusters As Long

Dim lngTotalClusters As Long

Dim intErrNum As Integer

intErrNum = abGetDiskFreeSpace(strDrive, lngSectors, _

lngBytes, lngFreeClusters, lngTotalClusters)

NumberOfBytesFree = “ with “ & _

Format((CDbl(lngBytes) * CDbl(lngSectors)) * _

CDbl(lngFreeClusters), “#,##0”) & _

“ Bytes Free”

End Function

This function receives a drive letter as a parameter. It then calls the GetDiskFreeSpace
Windows API function, sending it the drive letter and several long integers. These long
integers are filled in with the information required to determine the number of bytes free
on the specified drive.

After the code determines the type of drive and number of bytes free, the GetDriveInfo
procedure concatenates the information with the text contained in a text box on the
frmListDrives form. If the drive specified is unavailable, the amount of available disk
space is not printed.

Practical Examples: Using Windows API Functions
in Your Applications
Add an error handler to your application that displays system information. Review all the
type structures and function declarations. Also review the function calls. Notice how the
return values are used. Make sure that you understand how the Windows API calls make
the retrieval of the information included on the system information form possible.

CHAPTER 25 Exploiting the Power of the Windows API1008

Summary
External libraries, referred to as dynamic link libraries (DLLs), open up the entire
Windows API as well as other function libraries to your custom applications. Using exter-
nal libraries, your applications can harness the power of functions written in other
languages, such as C, Delphi, Visual Basic, Visual Basic .NET, or C#. In this chapter, you
learned how to declare API functions, type structures, and constants, and how to call
Windows API functions. Using the techniques that you learned, you can easily extend
beyond the power of Access, harnessing the power of the operating system environment.

Summary 1009

2
5

This page intentionally left blank

IN THIS CHAPTER

. Why This Chapter Is Important

. Preparing a Database to Be a
Library

. Creating a Reference

. Debugging a Library Database

. Practical Examples: Building a
Library for Your Application

CHAPTER 26

Creating Your Own
Libraries

Why This Chapter Is Important
As your knowledge of the VBA language expands and you
become more proficient as a VBA programmer, you proba-
bly will develop functions and subroutines that you would
like all your databases to share. Without the use of library
databases, the code in each of your databases is an island
unto itself. Although you can call the functions and
subroutines within your code modules from anywhere in
the same database, you cannot call these procedures from a
different database.

Without a shared library of code and other standard
objects, you will find yourself copying routines and other
database objects from one database to the next. All the
applications you build can use the library databases that
you create. You can distribute your library databases to all
your users. A library database is just like any other data-
base; it is simply a collection of procedures and objects that
you want to share among numerous databases. The only
difference between the library database and other databases
is in the way that your application references the database.
Instead of opening a library database to use it, you refer-
ence it from another database.

Access is highly dependent on library databases. The Table
Wizard, Form Wizard, Report Wizard, Database Wizard,
Database Splitter, Database Analyzer, and Database
Documenter are all examples of tools that reside in library
databases. In fact, all the wizards, builders, and menu add-
ins you are accustomed to using while developing your
applications are contained within library databases.

Chapter 27, “Using Builders and Wizards,” covers these tools. This chapter focuses on
creating library databases and placing generic functions in a library database to make
them available to all your application databases.

Preparing a Database to Be a Library
Creating a library database involves two steps:

1. Writing the functions and creating the objects to be included in the library

2. Loading the database as a library

You begin by creating the generic objects you want to share among your applications. To
load the database as a library, you must reference it from another database. The next
section covers this process.

Before you can reference a database as a library, you need to think about how to construct
the database so that it best serves you as a library. Although a library database is just a
normal database, planning the design of the library is integral to its success and useful-
ness. Improper planning can cause numerous problems, from the need for extra memory
to a database malfunction.

Structuring Code Modules for Optimal Performance
Library databases contain the general functions that you use in most of your applications.
Because of the way Access loads code modules, you must structure your library databases
effectively to achieve optimal performance.

Access 2007 loads code modules only if they are needed. If your code does not call any
procedures within a particular module, Access never loads the module into memory. On
the other hand, if your code calls a single subroutine or function, or if your code refer-
ences a public variable, Access loads the entire module. Therefore, it is crucial that you
structure your modules to minimize what is loaded into memory, using these techniques:

. Separate frequently used procedures from those that you call infrequently.

. Place in the same module procedures that you use together.

. Place in their own modules procedures that you rarely call.

. If you call the same procedure by routines in more than one module, consider
duplicating the routine and placing a copy of it in each module. This method
prevents an entire module from loading just because you call a single routine
within it.

. Place in the same module procedures within a call tree. This step is necessary
because Access looks at the potential call tree when it loads a module. If a procedure
in one module calls a procedure from another module, Access loads both modules
into memory.

CHAPTER 26 Creating Your Own Libraries1012

Although you generally want to load as little as possible into memory, the opposite is true
for commonly used functions. By placing frequently used procedures in the same module,
you ensure that Access loads them into memory so that it can access them quickly when
you call them. This improves the performance of your application.

Writing Library Code That Runs
Code that runs perfectly within a normal database might not run as expected when it is
part of a library database. A good example is the CurrentDB function. As you have seen
throughout this book, the CurrentDB function is a commonly used function that enables
you to reference the current database. You would think that the CurrentDB function refer-
ences the database in which the code is running, but this is actually not the case. It
specifically references the database that is active in the user interface. If a library function
refers to CurrentDB, it does not refer to itself; instead, it refers to the application database
that is calling the library function. If you want to refer to the library database, you must
use the CodeDB function. The CodeDB function always refers to the database in which the
code is running. You must decide whether CurrentDB or CodeDB is applicable for each
situation.

Compiling the Library
Compiling a library database before you distribute it ensures optimal performance. If you
do not compile the library code, Access will compile it each time you access it, which
significantly degrades the performance of your application. Chapter 18, “Optimizing Your
Application,” covers the compilation process and its benefits. After you complete all
changes to the library database, select Debug, Compile. You must choose this command
each time you make changes to the library database.

Creating a Reference
A reference is Access’s way of locating a library database so that it can use the code in the
library. You can establish references in four ways:

. Create a library reference

. Create a runtime reference

. Create an explicit reference

. Use VBA code

TIP

Much of the text that follows refers to the Windows Registry. You can access the
Windows Registry using the RegEdit utility. To use RegEdit, select the Run option
from the Start menu and then type RegEdit. With Vista, Start does not appear on the
Start menu by default. You must add it to the Start menu before running RegEdit.

Creating a Reference 1013

2
6

Creating a Library Reference
You create a library reference by adding the library to the Menu Add-ins section of the
Windows Registry, as shown in Figure 26.1. The Menu Add-ins section is located in the
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Office\12.0\Access\Menu Add-Ins key. This
type of reference is limited because it allows you to invoke the functions of the library
database only as an add-in. Chapter 27 covers add-ins in more detail.

CHAPTER 26 Creating Your Own Libraries1014

FIGURE 26.1 You create a library reference by adding the library to the Menu Add-ins
section of the Windows Registry.

Creating a Runtime Reference
Creating a runtime reference involves establishing a reference to the library at runtime
using the Run method of the Application object. This method of creating a reference
actually opens the library database and executes the specified function. It uses OLE
automation to accomplish this task.

The major advantage of this technique is that Access does not load the library code into
memory until it is ready to use it. Furthermore, this technique does not require that
Access load additional modules in the call stack into memory unless you explicitly call
them. Creating a runtime reference does have a few disadvantages, however. Specifically,
the library database must be located in the path specified in the AddInPath key in the
Windows Registry. The AddInPath key is located in the HKEY_LOCAL_MACHINE\SOFTWARE\
Microsoft\Office\12.0\Access\Wizards subdirectory of the Windows Registry, as shown
in Figure 26.2. If the key does not appear in your registry, you will need to add it.

FIGURE 26.2 The AddInPath key is located in the HKEY_LOCAL_MACHINE\SOFTWARE\
Microsoft\Office\12.0\Access\Wizards subdirectory of the Windows Registry.

Calling a Function from a Library at Runtime
The code in Listing 26.1 illustrates how to call a function in a library. Notice that the
example calls the IsLoaded function from the library. You can find this code in the
CHAP26EX.ACCDB database on the sample code CD-ROM.

LISTING 26.1 Calling a Function in a Library

Sub AppRun()

If Application.Run(“Chap26Lib.IsLoaded”, “frmCustomers”) Then

MsgBox “Customers Form is Loaded”

Else

MsgBox “Customers Form is NOT Loaded!!”

End If

End Sub

Listing 26.1 uses the Run method of the Application object to call a function called
IsLoaded, which is located in the CHAP26LIB.ACCDB library. You must reference this file
with an explicit reference (see “Creating an Explicit Reference,” later in this chapter), or
you must place the library in the directory you specified in the AddInPath key of the
Windows Registry. Notice the explicit reference to the name of the library in which the
function is located. When using this method of loading a library (without an explicit
reference), you must specify the library name.

Creating a Reference 1015

2
6

Using the LoadOnStartup Key
You can add a LoadOnStartup key to the Windows Registry. This key provides a means for
Access to load a type library when the user loads the database. A type library is not an
actual module, but more of a blueprint of what the module looks like. It displays the
functions and constants for a specific module. This feature is helpful because Access can
look up functions without having to actually load the module in which you placed the
function. Access does not automatically create this key for you. To create the
LoadOnStartup key and add an entry to it, follow these steps:

1. Choose Run from the Windows Start menu.

2. Type RegEdit and click OK; this launches the Registry Editor.

3. Open the Registry tree until you see HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\
Office\12.0\Access\Wizards.

4. Click the Wizards entry.

5. Choose Edit, New, Key. The Registry Editor adds a new key.

6. Type LoadOnStartup as the name of the new key.

7. With LoadOnStartup selected, choose Edit, New, String Value.

8. Type the full name and path of the library as the name of the new string value.

9. Choose Edit, Modify.

10. Type rw for the value.

Figure 26.3 shows an example of a completed entry that references the library in the
C:\Libraries folder: CHAP26LIB.ACCDB.

When the user launches Access, Access loads the module and procedure lists of library
databases listed under the LoadOnStartup key. When you use the Run method (discussed
earlier in the “Creating a Library Reference” section), Access searches for the specified
procedure in libraries that you have loaded or referenced. If it does not find the proce-
dure, Access searches any databases listed in the LoadOnStartup key and then locates and
loads the required library.

As you can see, the LoadOnStartup key can reap the benefits of Application.Run by using
the type library. Access can check the functions without loading the actual module until
you reference it explicitly through code.

NOTE

The LoadOnStartup key is not a panacea. Loading the type library when you load
Access does slow down the initial load time for your application. Furthermore, Access
uses the memory occupied by the type information regardless of whether you ever
actually access the library functions. You must decide whether either of these facts is
an issue.

CHAPTER 26 Creating Your Own Libraries1016

FIGURE 26.3 This completed entry references the library in the C:\Libraries folder:
CHAP26LIB.ACCDB.

Creating an Explicit Reference
The most common type of reference by far is an explicit reference. You can create this
type of reference from any code module in the database referencing the library. To create
an explicit reference, follow these steps:

1. Click to select the Database Tools tab and select Visual Basic from the Macro group.
The VBE appears.

2. Choose Tools, References from the VBE menu. The References dialog box appears, as
shown in Figure 26.4.

Creating a Reference 1017

2
6

FIGURE 26.4 The References dialog box is the place where you create an explicit reference.

3. Click the Browse button.

4. Select Microsoft Office Access Databases (*.accdb) from the Files of Type drop-down.

5. Locate the library database you want to reference.

6. Click Open to close the Add References dialog box.

7. Click OK to close the References dialog box.

When you add a library database to the References dialog box, Access loads the database
as a library when you make a call to the library from your code. You can call a library
routine just as you would call any subroutine or function. You then can use code in the
library database to open forms and other objects stored in the library. Access does not
actually load the library database into memory until code in the active application data-
base calls a function or subroutine that is located in the library.

Explicit library references impose a few limitations:

. The references you add in a database are available only to that database. Therefore,
you must add the library reference to each application database that needs to use
the library.

. Access stores the explicit path to the reference. This means that, if you move the
library, Access will not be able to resolve the reference. Exceptions to this rule are
covered later in this section.

When you call a function that is in a library that Access cannot locate, the message
shown in Figure 26.5 appears. The References dialog box shows the library is missing, as
shown in the sixth line of the Available References list box in Figure 26.6.

Although Access might not be able to find a library database that you have moved, it does
its best to resolve library references. By default, Access looks in these places to attempt to
resolve a library reference:

. The absolute path of the library

. The relative path to the library

. The current folder

. The directory where you installed Access

. The Windows path (Windows and Windows\System folders)

. The PATH environment variable

. The path located in the RefLibPaths key of the Windows Registry

CHAPTER 26 Creating Your Own Libraries1018

Creating a Reference 1019

2
6

FIGURE 26.5 A warning message indicates that the library database cannot be located.

FIGURE 26.6 The References dialog box shows a library flagged as missing.

A couple of these locations require further explanation. If the library is not located in
exactly the same location on the user’s machine as it is on your machine, Access searches
the relative path to the library next. This means that, if you placed the library in the same
directory as the database that references it, or in the same relative location, Access will
locate the library database. Suppose you have placed your application in C:\AccessApps\
Sales. You have placed the library database in C:\AccessApps\Sales\Libraries. The user
installs the application in C:\SalesApp with the library installed in C:\SalesApp\
Libraries. In this case, Access can resolve the reference to the library.

Another trick when dealing with library databases is to use the RefLibPaths key of the
Windows Registry. If you create a key called RefLibPaths in the Windows Registry, Access
also searches the paths specified under RefLibPaths in an attempt to resolve any refer-
ences. To use this trick, follow these steps:

1. Create a RefLibPaths key under HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\
Office\12.0\Access, if it does not already exist.

2. With the key selected, choose Edit, New, String Value.

3. Type the name of the library database as the name of the new string value.

4. Choose Edit, Modify.

5. Type the name of the path containing the library as the value.

6. Repeat steps 2 through 5 for each library you are referencing.

This is a good method to use if you will be distributing an application containing several
library databases. You can select a location for the library databases and then reference
that location in the Windows Registry. You even can create the Registry entries program-
matically by using Windows API calls or the VBA SaveSetting statement. Figure 26.7
shows the RefLibPaths key with an entry for the CHAP26LIB.ACCDB library.

CHAPTER 26 Creating Your Own Libraries1020

FIGURE 26.7 Access searches the RefLibPaths key of the Windows Registry to resolve
any references.

TIP

You can use the Packaging Wizard to create the RefLibPaths key in the Windows
Registry. This is the easiest way to create the RefLibPaths entry, but it requires that
you distribute your application using the Packaging Wizard.

Creating a Reference Using VBA Code
With Access 2000 came the capability to create library references using VBA code. You use
the AddFromFile method to accomplish this task. You apply the AddFromFile method to
the References collection, which is similar to other collections used within Access and
provides a hook to the references associated with a database. The AddFromFile method of
the References collection accepts a string as a parameter. The string contains the name of
the library reference you are adding. Listing 26.2 shows the code to pass in a library name
and then add a reference to it.

LISTING 26.2 Locating and Referencing Libraries in Code

Function CreateLibRef(strLibName as String)

Dim ref As Reference

On Error GoTo CreateLibRef_Err

‘Create new reference

Set ref = References.AddFromFile(strLibName)

CreateLibRef = True

Exit_CreateLibRef:

Exit Function

CreateLibRef_Err:

Dim intAnswer As Integer

Dim strLocation As String

intAnswer = MsgBox(“Library Not Found, Attempt to Locate?”, _

vbYesNo, “Error”)

If intAnswer = vbYes Then

strLocation = InputBox(“Please Enter the Location of the Library”)

Resume

Else

CreateLibRef = False

GoTo Exit_CreateLibRef

End If

End Function

The routine begins by invoking an error handler. A reference object is then set to the result
of executing the AddFromFile method on the References collection. If the AddFromFile
method executes successfully, Access creates the reference, and the function returns a True
condition. Otherwise, the code prompts the user whether he wants to locate the library

Creating a Reference 1021

2
6

database. If he responds affirmatively, the code prompts him for the location of the library
database and the code attempts once again to establish the reference. If he opts not to
supply a location, the routine terminates, returning a False condition.

Debugging a Library Database
You can open a library database and test it just like any other database. Although you
always should begin testing the library functions this way, it also is important that you
give the database a test drive as a library. In other words, after you eliminate any bugs
from the database, you should reference it from another database and test it as a library
database.

If you need to make changes to a library database while accessing it from another data-
base, you can do so easily by following these steps:

1. Make sure that you have referenced the library database in Tools, References.

2. Click the Object Browser tool from the Module Design window.

3. From the Project/Library drop-down menu, select the library database that contains
the code you want to modify (see Figure 26.8).

CHAPTER 26 Creating Your Own Libraries1022

FIGURE 26.8 Use the Object Browser to modify a library database.

4. Select the class you want to modify from the Classes list box.

5. Select the member you want to modify from the Members list box.

6. Click View Definition (the button with the arrow pointing toward the box), or
double-click the member whose code you want to view. Access places you in the
correct module and procedure of the library database. You can now make changes to
the code in the database as required.

Practical Examples: Building a Library for
Your Application
Now that you are familiar with library databases and what they offer, try extracting all the
generic functions from an application and placing them in a library database. This section
presents a step-by-step roadmap for accomplishing this task.

NOTE

This process already has been completed for CHAP26.ACCDB. The associated library
database is called CHAP26LIB.ACCDB. If you want to complete this process as an exer-
cise, copy CHAP26.ACCDB and complete the outlined steps.

CAUTION

If the Common Dialog control is not installed on your machine or the user’s machine,
this example will not work. You will first need to check Tools, References within the
IDE. Remove the missing reference to the common dialog control. Next, scroll down
and look for the Microsoft Windows Common Controls 6.0 and make sure that you
select it. If the Microsoft Windows Common Controls 6.0 is not available, you will need
to copy the common dialog control from the sample CD, and register it on your
computer. The file that you need to copy is called ComDlg32.ocx. To register it, you
select Browse from the Tools, References dialog.

To extract the generic functions from the Time and Billing application and place them in
a library database, follow these steps:

1. Create a new database that will become the library database. Import the basUtils,
basGenericErrorHandler, and basWinAPI modules as well as the frmError form into
the library database.

2. Remove two routines from basUtils within the library database: RunReport and
GetCompanyInfo. Assume that these routines are specific to the application database
and should not be moved to become a part of the library.

3. Choose Debug, Compile to ensure that you do not get compile errors in the library
database.

4. Open the application database.

5. Remove basGenericErrorHandler, basWinAPI, and frmError from the application
database.

Practical Examples: Building a Library for Your Application 1023

2
6

6. Remove six subroutines from basUtils in the application database: IsLoaded,
FlipEnabled, ImportantKey, AreTablesAttached, LastOccurrence, and TryAgain.

7. Choose Tools, References to reference the library database.

8. Choose Debug, Compile to ensure that you do not get compile errors in the applica-
tion database.

9. Test the application to ensure that it runs successfully. To properly check all aspects
of the application, you need to introduce an error to test the error-handling
routines. Rename the CHAP26DATA.ACCB database to test the linking routines.

You should move one more database element to the library database: the Report Selection
Criteria form. This form is generic; therefore, you can use it in many of the applications
you create.

Follow these steps to move the frmReportDateRange form to the library database:

1. Open the library database and import the frmReportDateRange form.

2. Create a module called basGenericForms and add the OpenReportDateRange sub-
routine to the module. Because you cannot open a form in a library database
directly, you must create a routine within the library database that opens the form.

3. Open the application database and remove the frmReportDateRange form.

4. Modify the appropriate objects within the application database like this:

Sub OpenReportDateRange(strOpenArg As String)

DoCmd.OpenForm “frmReportDateRange”, , , , , acDialog, _

strOpenArg

End Sub

You must modify three reports in the application database to accommodate the
movement of the frmReportDateRange form to a library database:
rptProjectBillingsByWorkCode, rptClientBillingsByProject, and
rptEmployeeBillingsByProject. You must modify the Open event of the
rptProjectBillingsByWorkCode report to look like this:

Private Sub Report_Open(Cancel As Integer)

Call OpenReportDateRange(“rptProjectBillingsByWorkCode”)

If Not IsLoaded(“frmReportDateRange”) Then

Cancel = True

End If

End Sub

Instead of opening the form directly, which would not work because the form is in a
library database, you must call the OpenReportDateRange library routine to open the form.
The code uses the strOpenArg parameter to the OpenReportDateRange subroutine as the
OpenArgs parameter for the frmReportCriteria form. You must make similar changes to

CHAPTER 26 Creating Your Own Libraries1024

the rptClientBillingsByProject and rptEmployeeBillingsByProject reports. You
should modify the Open event of the rptClientBillingsByProject report to look like
Listing 26.3.

LISTING 26.3 Modifying the Open Event of the rptClientBillingsByProject Report

Private Sub Report_Open(Cancel As Integer)

Call OpenReportDateRange(“rptClientBillingsByProject”)

If Not IsLoaded(“frmReportDateRange”) Then

Cancel = True

Else

Select Case Forms!frmReportDateRange!optDetailLevel.Value

Case 1

Me.Caption = Me.Caption & “ – Summary Only”

Me!lblTitle.Caption = Me.lblTitle.Caption & “ – _

Summary Only”

Me.Detail.Visible = False

Case 2

Me.Caption = Me.Caption & “ – Detail Only”

Me!lblTitle.Caption = Me.lblTitle.Caption & “ – _

Detail Only”

Me.GroupHeader0.Visible = False

Me.GroupFooter1.Visible = False

Me!CompanyNameDet.Visible = True

Case 3

Me.Caption = Me.Caption & “ – Summary and Detail”

Me!lblTitle.Caption = Me.lblTitle.Caption & _

“ – Summary and Detail”

Me!CompanyNameDet.Visible = False

End Select

End If

End Sub

Modify the Open event of the rptEmployeeBillingsByProject report to look like this:

Private Sub Report_Open(Cancel As Integer)

Call OpenReportDateRange(“rptEmployeeBillingsByProject”)

If Not IsLoaded(“frmReportDateRange”) Then

Cancel = True

End If

End Sub

After you move the generic features of the application to the library database, you can try
to build another application database and use the same library features.

Summary 1025

2
6

Summary
Library databases enable you to create libraries of code, forms, reports, and other objects
that you will share between multiple databases. Library databases facilitate the application
development process by enabling you to easily centralize the development of common
code libraries. You also can use these databases to incorporate add-ins, wizards, and
builders into your applications and development environment (covered in Chapter 27).

This chapter began by defining a library database and then walked you through all the
steps required to prepare a database to become a library database. The chapter discussed
the several methods to reference a library database, highlighting the pros and cons of each.

After you reference a library database, the debugging process begins. This chapter high-
lighted how easy it is to debug a Microsoft Office Access 2007 library database. Finally,
it provided you with practical examples of how you can use library databases in your
applications.

Library databases can greatly facilitate the application development process, enabling you
to easily implement sophisticated functionality in all your applications. Although the
process of designing library databases can be intimidating at first, a well-planned library
database can shave hours off the application development and maintenance processes.

CHAPTER 26 Creating Your Own Libraries1026

IN THIS CHAPTER

. Why This Chapter Is Important

. Using Builders

. Using Wizards

. Using Menu Add-Ins

. Practical Examples: Designing
Your Own Add-Ins

CHAPTER 27

Using Builders
and Wizards

Why This Chapter Is Important
Add-ins are tools that extend the functionality of Access.
They enhance the Access environment by making difficult
tasks easier, automating repetitive tasks, and adding
enhanced functionality. You can design add-ins for yourself
or for others in your organization to use. You even might
want to distribute add-ins as part of your application so
that your users can build their own database objects. If you
are really ambitious, you might decide to build an add-in
for sale in the Access third-party market.

Microsoft Access supports three types of add-ins: builders,
wizards, and menu add-ins. Each has its own advantages
and uses. When you begin the process of designing an add-
in, you must decide whether it will be a builder, wizard, or
menu add-in. This decision affects how you design the add-
in as well as how you install it. This chapter defines and
shows you how to design and install each type of add-in.

Using Builders
A builder is an add-in that helps users construct an expres-
sion or another data element. Builders most often are used
to help users fill in a property of a database object. Builders
generally consist of a single dialog box that appears after
the user clicks the ellipsis to the right of the property on
the property sheet. An example of a builder is the
Expression Builder that appears when users are setting the
control source of a text box on a form. Access supports
three types of builders:

. Property builders

. Control builders

. Expression builders

Looking at Design Guidelines
When you are designing your own builder, the design should be consistent with that of
the builders included in Access. You therefore must learn about the standards for an
Access builder. To design builders that are consistent with the built-in builders, keep a few
guidelines in mind:

. Set the AutoCenter property of the Builder form to Yes.

. Remove record selectors and navigation buttons.

. Remove scrollbars.

. Be consistent about the placement of objects on the form. Place the OK and Cancel
buttons in the same place in each builder you create, for example.

. Design the forms as dialog boxes.

Creating a Builder
Now that you are familiar with some general design guidelines for builders, you are ready
to design your first builder. What a builder does is completely up to your imagination. For
illustration, the following sections begin with a simple builder that prompts users to
select the special effect for a text box. Three overall steps are required to create the
builder:

1. Write a builder function.

2. Design a builder form.

3. Register the builder.

The following sections go over each of these steps in detail.

Writing a Builder Function
The builder function is the function Access calls each time you launch the builder. The
function launches the builder form and then returns a value to the appropriate property.
Listing 27.1 is an example of a builder function. It is located in CHAP27LIB.ACCDA in the
basBuilders module on the accompanying CD-ROM.

LISTING 27.1 Creating a Builder Function

Function SpecialEffect(strObject As String, _

strControl As String, _

strCurrentValue As String)

On Error GoTo SpecialEffect_Err

‘Open the special effect form, passing it the special

‘effect currently selected

CHAPTER 27 Using Builders and Wizards1028

DoCmd.OpenForm FormName:=”frmSpecialEffect”, _

WindowMode:=acDialog, _

OpenArgs:=strCurrentValue

‘If the user selects a special effect and clicks OK, the

‘form remains open but hidden. Return a value based on

‘which special effect the user selected

If SysCmd(acSysCmdGetObjectState, acForm, _

“frmSpecialEffect”) = acObjStateOpen Then

Select Case Forms!frmSpecialEffect.optSpecialEffect.Value

Case 1

SpecialEffect = “Flat”

Case 2

SpecialEffect = “Raised”

Case 3

SpecialEffect = “Sunken”

Case 4

SpecialEffect = “Etched”

Case 5

SpecialEffect = “Shadowed”

Case 6

SpecialEffect = “Chiseled”

End Select

‘Close the form when done

DoCmd.Close acForm, “frmSpecialEffect”

Else

‘If the user clicks Cancel, return the original value

‘for the special effect

SpecialEffect = strCurrentValue

End If

SpecialEffect_Exit:

Exit Function

SpecialEffect_Err:

MsgBox “Error # “ & Err.Number & “: “ & Err.Description

Resume SpecialEffect_Exit

End Function

A builder function must receive three preset arguments and must return the value that
will become the value for the property being set. The three preset arguments follow:

Using Builders 1029

2
7

LISTING 27.1 Continued

. strObject—The name of the table, query, form, report, or module on which the
builder operates

. strControl—The name of the control to which the property applies

. strCurrentValue—The current property value

Although the names of the arguments are arbitrary, you cannot change their data types,
positions, and content. Access automatically fills in the values for the three arguments.

The SpecialEffect function opens the form called frmSpecialEffect in Dialog mode,
passing it the current value of the property as the OpenArgs value. Figure 27.1 shows the
frmSpecialEffect form.

CHAPTER 27 Using Builders and Wizards1030

FIGURE 27.1 Here, you see the Special Effect builder form.

The following code is located in the Click event of the cmdOk command button on the
form:

Private Sub cmdOK_Click()

Me.Visible = False

End Sub

Notice that the code sets the Visible property of the form to False. The code placed
behind the cmdCancel command button looks like this:

Private Sub cmdCancel_Click()

DoCmd.Close

End Sub

This code closes the frmSpecialEffect form.

After the user clicks OK or Cancel, the code within the SpecialEffect function
continues to execute. The function uses the SysCmd function to determine whether the
frmSpecialEffect form is loaded. You also can use the user-defined IsLoaded function to
accomplish this task. If the frmSpecialEffect form still is loaded, the user must have
selected a special effect and clicked OK. Because the form is still open, the function can
determine which option button the user selected.

The Case statement within the SpecialEffect function evaluates the value of the
optSpecialEffect option group found on the frmSpecialEffect form. It sets the return
value for the function equal to the appropriate string, depending on the option button
that the user of the builder selects. If the user selects the second option button (with a
value of 2), for example, the SpecialEffect function returns the string “Raised”. After
the code evaluates the option button value and sets the return value, the code no longer
needs the frmSpecialEffect form, so the code then closes the form.

If the user chooses Cancel from the frmSpecialEffect form, the SysCmd function returns
False, and the code sets the return value of the SpecialEffect function equal to
strCurrentValue, the original property value. In this case, the code does not change the
property value.

Designing a Builder Form
Although you have seen the code behind the Click event of the OK and Cancel buttons
on the frmSpecialEffect form, you have not learned about the design of the form or the
idea behind this builder. Ordinarily, when you set the SpecialEffect property from the
Property sheet, no wizard exists to assist with the process. Although the process of setting
the SpecialEffect property is quite simple, the main problem is that it is difficult to
remember exactly what each special effect looks like. I designed the custom special effect
builder with this potential problem in mind. It enables users of the builder to see what
each special effect looks like before deciding which effect to select.

The properties of the form are quite simple. I set the Modal property of the form to Yes
and removed the record selectors, navigation buttons, and scrollbars. I also set the
AutoCenter property of the form to Yes and included six text boxes on the form. In addi-
tion, I set the special effect of each text box to a different style. The form includes an
option group. This group has a different value, depending on which option button the
user selects. The code sets the Default property of the OK command button to Yes,
making the OK button the default choice. The code sets the Cancel property of the
Cancel command button to Yes, ensuring that if the user presses Esc, the code behind the
Cancel button executes. The preceding section showed the code behind the Click events
of the OK and Cancel buttons. Listing 27.2 shows one more piece of code that enhances
this builder.

Using Builders 1031

2
7

LISTING 27.2 Enhancing the Builder

Private Sub Form_Load()

‘Set the value of the Option group

‘To the current value of the property

Select Case Me.OpenArgs

Case “Flat”

Me.optSpecialEffect.Value = 1

Case “Raised”

Me.optSpecialEffect.Value = 2

Case “Sunken”

Me.optSpecialEffect.Value = 3

Case “Etched”

Me.optSpecialEffect.Value = 4

Case “Shadowed”

Me.optSpecialEffect.Value = 5

Case “Chiseled”

Me.optSpecialEffect.Value = 6

End Select

End Sub

I added this subroutine to the Load event of the builder form. It sets the value of the
option group to the current value of the property (passed in as an OpenArg).

Although the frmSpecialEffect form is not particularly exciting, it illustrates quite well
that you can design a form of any level of complexity to facilitate the process of setting a
property value. So far, though, you have not provided an entry point to the builder. If
you select the SpecialEffect property, no ellipsis appears. You do not yet have access to
the builder.

Registering a Builder
Before you can use a builder, you must register it in one of two ways:

. Manually add the required entries to the Windows Registry.

. Set up the library database so that the Add-in Manager can create the Windows
Registry entries for you.

Manually Adding Entries to the Windows Registry
Adding the required entries to the Windows Registry involves four steps:

1. If no Registry key exists for the property for which you are designing a builder, add
the property as a subkey under Property Wizards.

2. Add an additional subkey for the builder.

3. Add four predefined Registry values for the key.

4. Set the proper data value for each value name.

CHAPTER 27 Using Builders and Wizards1032

You must create four value names for the subkey. They are Can Edit, Description,
Function, and Library. Table 27.1 describes these value names for the Registry subkey.

TABLE 27.1 Values for the Registry Subkey

Value Name Value Type Purpose

Can Edit DWORD Allows the builder to operate on and modify an existing value
Description String Specifies a subkey description that appears in the dialog

box, which is invoked automatically if more than one builder
exists for a property

Function String Name of the builder function
Library String Name of the library containing the builder function

Now that you have an overview of the steps involved in the process, you are ready
to walk through the steps in detail. The following steps set up the builder called
SpecialEffect, which is contained in the library database CHAP27LIB.ACCDA in the folder
C:\My Libraries:

1. To invoke the Registry Editor, choose Start, Run from the taskbar. Type regedit and
click OK. This invokes the Registry Editor. Note that if you are using Vista, you must
type regedit in the Start Search item on the Start menu.

2. Locate the HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Office\12.0\Access\
Wizards\Property Wizards key, as shown in Figure 27.2.

Using Builders 1033

2
7

FIGURE 27.2 Use the Registry Editor to navigate to the Property Wizards Registry key.

3. Determine whether a subkey exists with the name of the property for which you are
creating a builder (in this case, SpecialEffect). If so, skip to step 6.

4. Choose Edit, New, Key.

5. Type the property name as the name for the new key (in this case, SpecialEffect).

6. With the new key selected, choose Edit, New, Key again.

7. Type a descriptive name for your builder (in this case, SpecialEffectBuilder).

8. Choose Edit, New, DWORD Value.

9. Type Can Edit as the value name.

10. Choose Edit, New, String Value.

11. Type Description as the value name.

12. Choose Edit, New, String Value.

13. Type Function as the value name.

14. Choose Edit, New, String Value.

15. Type Library as the value name.

16. Double-click the Can Edit value name. The Edit DWORD Value dialog box appears,
as shown in Figure 27.3.

CHAPTER 27 Using Builders and Wizards1034

FIGURE 27.3 Double-click the Can Edit value name to bring up the Edit DWORD Value
dialog box.

17. Enter 1 for Value Data and click OK.

18. Double-click the Description value name. The Edit String dialog box appears, as
shown in Figure 27.4.

19. Enter the description you want the user of the builder to see if he has more than
one builder assigned to the property (in this case, Special Effect Builder).
Click OK.

20. Double-click the Function value name. Enter the name of the builder function (in
this case, SpecialEffect). Click OK.

Using Builders 1035

2
7

FIGURE 27.5 The completed Registry entries required to add the builder.

FIGURE 27.4 The Edit String dialog box appears when you double-click the Description
value name.

21. Double-click the Library value name. Enter the name and location of the library
database (in this case, C:\Libraries\chap27lib.accda). You do not have to enter
the path if the library is located in the Access folder.

Figure 27.5 shows the completed Registry entries. The builder now should be ready to use.
To test the builder, you need to exit and relaunch Access. If you successfully created all
the Registry entries, you can use the builder. To test the builder, open any database (other
than the library database), create a new form, and add a text box. Select Special Effect
from the Format tab of the Properties sheet. An ellipsis appears to the right of the Special
Effect drop-down arrow, as shown in Figure 27.6. If you click the ellipsis, the builder form
appears. Select a special effect and click OK. The special effect you selected now appears in
the SpecialEffect property.

FIGURE 27.6 Using the custom builder.

NOTE

If you do not exactly follow the format for the value names, the message There Is an
Invalid Add-in Entry for ‘SpecialEffectBuilder’ appears, as shown in Figure
27.7. You must correct the Registry entry.

CHAPTER 27 Using Builders and Wizards1036

FIGURE 27.7 This error message appears if the Registry entry is invalid.

Automating the Creation of Registry Entries
The alternative to editing the Windows Registry manually is to set up the library database
so that the Add-In Manager can create the Registry entries for you. This involves adding a
table to the library database. You must call the table USysRegInfo. Follow these steps:

1. Show the system tables. (Access considers tables that begin with USys or MSys system
tables and, by default, hides them.) With the library database open, right-click the
top of the Navigation Pane and select Navigation Options. The Navigation Options
dialog box appears. Click Show System Objects. Click OK. Figure 27.8 shows the data-
base with Tables selected in the Objects list. Notice that the hidden tables appear.

2. Import an existing USysRegInfo table by right-clicking within the Navigation Pane
and selecting Import, Access Database. Using the Import dialog box, move to the
\Program Files\Microsoft Office 2007\Office12\ACCWIZ folder and locate
the ACWZMAIN.ACCDE file. This is a library file that ships with Access. Select the
ACWZMAIN.ACCDE file and click Open. When you return to the Get External Data
dialog box, click OK. The Import Objects dialog box appears, as shown in Figure 27.9.

Using Builders 1037

2
7FIGURE 27.8 The Tables tab shows the system objects.

FIGURE 27.9 Using the Import Objects dialog box to add the USysRegInfo table to your
library database.

3. Locate and select the USysRegInfo table and click OK. Access adds a copy of the
USysRegInfo table to your library database. Click Close to complete the process.

4. Double-click to open the USysRegInfo table in the database window.

5. Delete any existing entries in the table.

6. Add specific entries to the USysRegInfo table. Figure 27.10 shows these entries, and
Table 27.2 explains them. Close the table.

CHAPTER 27 Using Builders and Wizards1038

FIGURE 27.10 The completed table with entries for Registry.

TABLE 27.2 The Structure of the USysRegInfo Table

Field Name Description

SubKey Name of the subkey value in the Registry where the value you are adding
is located

Type Type of subkey value you are creating (string, binary, or DWORD)
ValName Value name for the entry
Value Value associated with the value name

7. Open the database that references the add-in.

8. Click to select the Database Tools tab and then open the Add-Ins drop-down in the
Database Tools group. Select Add-In Manager. The Add-In Manager dialog box
appears, as shown in Figure 27.11.

FIGURE 27.11 The Add-in Manager dialog box.

9. Click the Add New button to launch the Open dialog box. Here, you can browse for
your add-in or select it from within the default folder.

10. Locate the add-in that you want to add and click Open. Access adds the add-in you
select to the Add-in Manager dialog box and selects the add-in for you.

11. Click Close. You now are ready to use the add-in.

Using Wizards
A wizard consists of a series of dialog boxes that provide a step-by-step interface for creat-
ing a database object. The wizard shields users from the complexities of the process. You
probably are familiar with wizards such as the Form Wizard, Report Wizard, and Database
Wizard. Access 12 supports the development of several types of custom wizards:

. Table wizards

. Query wizards

. Form wizards

. Report wizards

. Data Access Page wizards

. Property wizards

. Control wizards

Looking at Design Guidelines
Wizard design guidelines are almost identical to builder design guidelines. The main
difference is that a wizard generally presents the user with multiple modal dialog boxes,
whereas a builder generally consists of a single modal dialog box. The user must supply
information to meet all the data requirements for the wizard before she can close the last
dialog box.

Using Wizards 1039

2
7

Creating a Wizard

NOTE

To successfully create and run the wizard, you must select Options on the Message
Bar and indicate that you want to Enable this content.

Creating a wizard is more complex than creating a builder. A wizard generally requires a
multipage form and code that creates database objects. Consider a wizard that creates a
simple form. The wizard comprises two modal dialog boxes, shown in Figures 27.12 and
27.13. The first dialog box asks the user for a form caption, form name, and message to
appear on the new form. The second dialog box enables the user to add OK and Cancel
buttons to the form. The multipage form and all the code that enables it to work are in
the CHAP27LIB.ACCDA database on the accompanying CD-ROM.

CHAPTER 27 Using Builders and Wizards1040

FIGURE 27.12 Step 1 of the custom Form Wizard.

Each page of the wizard contains code to ensure that it operates successfully. I called the
form frmGetFormInfo. The first page of this multipage form gives the user the opportunity
to choose the next action: Cancel, Next, or Finish. The code for the Cancel button looks
like this:

Private Sub cmdCancel1_Click()

DoCmd.Close

End Sub

FIGURE 27.13 Step 2 of the custom Form Wizard.

This code closes the wizard form. The code takes no other actions because the user is
canceling the process. If the user clicks Next, this code executes:

Private Sub cmdNext1_Click()

DoCmd.GoToPage 2

Me.Caption = “My Form Wizard - Step 2”

End Sub

This code moves to the second page of the form and changes the caption of the form to
indicate that the user is on step 2 of the wizard. The code under the Finish button looks
like this:

Private Sub cmdFinish1_Click()

If CreateCustomForm() Then

MsgBox “Form Created Successfully”

DoCmd.Close

Else

MsgBox “Unable to Create Form”

End If

End Sub

This code calls a function called CreateCustomForm, which is responsible for building the
actual form. Later in this section, I discuss the details of the CreateCustomForm function.

Using Wizards 1041

2
7

If the function returns True, the code closes the wizard form and displays a message indi-
cating that the process was successful. Otherwise, the code displays a message indicating
that it did not successfully create the form, and the user remains in the wizard. The
second page of the form contains similar subroutines. The code under the Back button
looks like this:

Private Sub cmdBack2_Click()

DoCmd.GoToPage 1

Me.Caption = “My Form Wizard - Step 1”

End Sub

This code moves back to the first page of the form. If the user chooses Cancel, this code
executes:

Private Sub cmdCancel2_Click()

DoCmd.Close

End Sub

This code closes the form, taking no further action. If the user clicks Finish, the Click
event code of the cmdFinish2 command button executes:

Private Sub cmdFinish2_Click()

Call cmdFinish1_Click

End Sub

This code calls the code under the Click event of the cmdFinish1 command button.

The CreateCustomForm function (located in the basWizards module of the library data-
base), as shown in Listing 27.3, contains the code that actually builds the new form.

LISTING 27.3 The CreateCustomForm Function That Builds the Form

Function CreateCustomForm() As Boolean

On Error GoTo CreateCustomForm_Err

Dim frmNew As Form

Dim ctlNew As Control

‘Create a new form and set several of its properties

Set frmNew = CreateForm()

frmNew.Caption = Forms!frmGetFormInfo.txtFormCaption

frmNew.RecordSelectors = False

frmNew.NavigationButtons = False

frmNew.AutoCenter = True

‘Create a Label control on the new form

CHAPTER 27 Using Builders and Wizards1042

‘Set several of its properties

Set ctlNew = CreateControl(frmNew.Name, acLabel)

ctlNew.Caption = Forms!frmGetFormInfo.txtLabelCaption

ctlNew.Width = 3000

ctlNew.Height = 1000

ctlNew.Top = 1000

ctlNew.Left = 1000

‘Evaluate to see if the user requested an OK command button

‘If he did, add the command button and set its properties

‘Add Click event code for the command button

If Forms!frmGetButtons.chkOK.Value = –1 Then

Set ctlNew = CreateControl(frmNew.Name, acCommandButton)

ctlNew.Caption = “OK”

ctlNew.Width = 1000

ctlNew.Height = 500

ctlNew.Top = 1000

ctlNew.Left = 5000

ctlNew.Name = “cmdOK”

ctlNew.Properties(“OnClick”) = “[Event Procedure]”

frmNew.Module.InsertText “Sub cmdOK_Click()” & vbCrLf & _

vbTab & “DoCmd.Close acForm, “”” & _

Forms!frmGetFormInfo.txtFormName & _

“””” & vbCrLf & “End Sub”

End If

‘Evaluate to see if the user requested a Cancel command button

‘If he did, add the command button and set its properties

‘Add Click Event Code for the Command Button

If Forms!frmGetButtons.chkCancel.Value = –1 Then

Set ctlNew = CreateControl(frmNew.Name, acCommandButton)

ctlNew.Caption = “Cancel”

ctlNew.Width = 1000

ctlNew.Height = 500

ctlNew.Top = 2000

ctlNew.Left = 5000

ctlNew.Name = “cmdCancel”

ctlNew.Properties(“OnClick”) = “[Event Procedure]”

frmNew.Module.InsertText “Sub cmdCancel_Click()” & vbCrLf & _

vbTab & “MsgBox(“”You Canceled!!””)” & vbCrLf & “End Sub”

End If

‘If the user entered a form name, save the form

Using Wizards 1043

2
7

LISTING 27.3 Continued

If Not IsNull(Forms!frmGetFormInfo.txtFormName) Then

DoCmd.Save , Forms!frmGetFormInfo.txtFormName

End If

‘Return True if no errors

CreateCustomForm = True

Exit Function

CreateCustomForm_Err:

MsgBox “Error # “ & Err.Number & “: “ & Err.Description

CreateCustomForm = False

Exit Function

End Function

The code first creates both form and control object variables. It sets the form object vari-
able to the return value from the CreateForm function. The CreateForm function creates
a new form object. The code sets several properties of the new form object: Caption,
RecordSelectors, NavigationButtons, and AutoCenter. Next, the function uses the
CreateControl function to create a new label. It calls a reference to the new label ctlNew.
The code sets the Caption, Width, Height, Top, and Left properties of the new label. If the
user indicated that he wanted an OK button, the code creates a new command button.
The code sets the Caption, Width, Height, Top, Left, Name, and Properties properties for
the button. The code uses the InsertText method to insert code for the Click event of
the command button. If the user requested a Cancel button, the code sets the same prop-
erties. Finally, if the user indicated a name for the new form, the code uses the Save
method to save the new form object.

NOTE

Access provides several functions for you to create and delete forms, reports, form
controls, and report controls. You can use ActiveX Data Object (ADO) code to create,
modify, and delete tables and queries. Using the functions and ADO code, you can
manipulate database objects any way you want. Chapter 15, “What Are ActiveX Data
Objects, and Why Are They Important?” covers ADO code.

Getting the Wizard Ready to Go
As you do with a builder, you need to add a wizard to the Windows Registry before you
can use it. You can do this by modifying the Registry directly or by adding entries to the
USysRegInfo table. Figure 27.14 shows the completed Registry entry for the custom Form
Wizard.

CHAPTER 27 Using Builders and Wizards1044

LISTING 27.3 Continued

Using Menu Add-Ins 1045

2
7

FIGURE 27.14 Registry entries for the custom Form Wizard.

Notice that the function name is MyCustomForm. This is the entry point to the wizard. The
Library key designates the name of the library add-in database containing the entry
point function. The Description key specifies what appears in the New Object dialog
box. Finally, the Index key designates the order in which Access displays the wizard in the
list in the New Object dialog box. The MyCustomForm function, located in the basWizards
module, simply calls the frmGetFormInfo form, initiating the wizard process:

Function MyCustomForm(strRecordSource As String) As Variant

DoCmd.OpenForm FormName:=”frmGetFormInfo”, WindowMode:=acDialog

End Function

Using Menu Add-Ins
A menu add-in is a general-purpose tool that enables you to perform a task that generally
affects multiple objects or Access itself. The Database Splitter and Database Documenter
are examples of menu add-ins. You access menu add-ins through the Add-Ins submenu of
the Tools menu.

Looking at Design Guidelines
Menu add-ins are available to the user whenever the Tools menu is available. Menu add-
ins are not context sensitive like wizards and builders. Therefore, they should in no way
rely on what the user is doing at a particular moment.

Creating a Menu Add-In
Creating a menu add-in is just like creating a wizard. The difference is in how you install
the add-in. You must register the menu add-in under HKEY_LOCAL_MACHINE\SOFTWARE
\Microsoft\Office\12.0\Access\Menu Add-Ins. You can accomplish the registration
process by modifying the Registry directly or by using the USysRegInfo table. Figure 27.15
shows the Registry with the correct entries to run the Form Wizard, created earlier in this
chapter, as an add-in. Figure 27.16 shows how you can automate the registration process
by using the USysRegInfo table. I included three entries in the USysRegInfo table. All
three entries designate the proper place in the Registry tree to add the new key. The first
entry contains the subkey and a type of zero. The second entry contains the value name
Expression and the name of the entry point function as the value. Notice that the
expression name is preceded by an equal sign (=) and is followed by parentheses. Access
requires the quotation marks within the parentheses because this particular entry-point
function requires an argument. The third and final entry contains the value name
Library and the name of the library as the value. This is all you need to do to turn a
wizard into a menu add-in.

CHAPTER 27 Using Builders and Wizards1046

FIGURE 27.15 Registry entries for the menu add-in.

FIGURE 27.16 The USysRegInfo entries for the menu add-in.

Practical Examples: Designing Your Own Add-Ins
The types of builders, wizards, and menu add-ins that you create depend on your specific
needs. To reinforce what you have learned, this section includes the step-by-step process
for creating a builder to help you add validation text messages. When you invoke the
builder, the Choose Builder dialog box shown in Figure 27.17 appears. This dialog box
appears because you will design two builders: one that enables the user to select from a
list of polite messages and another that enables the user to select from rude messages.
If the user selects Polite Validation Text Builder, the dialog box in Figure 27.18 appears. If
the user selects Rude Validation Text Builder, the dialog box in Figure 27.19 appears.

Practical Examples: Designing Your Own Add-Ins 1047

2
7

FIGURE 27.17 The Choose Builder dialog box.

FIGURE 27.18 The polite messages builder.

CHAPTER 27 Using Builders and Wizards1048

FIGURE 27.19 The rude messages builder.

Listing 27.4 shows the first entry-point function, located in basBuilders.

LISTING 27.4 The First Entry-Point Function

Function ValidTextPolite(strObject As String, _

strControl As String, _

strCurrentValue As String)

On Error GoTo ValidTextPolite_Err

‘Open the Builder form

DoCmd.OpenForm FormName:=”frmPolite”, _

WindowMode:=acDialog, _

OpenArgs:=strCurrentValue

‘If the user selected a message and clicked OK,

‘return the selected text to the caller

If SysCmd(acSysCmdGetObjectState, acForm, _

“frmPolite”) = acObjStateOpen Then

Select Case Forms!frmPolite.optPolite.Value

Case 1

ValidTextPolite = “The Incorrect Value Was Entered”

Case 2

ValidTextPolite = “The Computer Cannot Comprehend Your Entry”

Case 3

ValidTextPolite = “I’m Sorry, Could You Please Try Again”

Case 4

ValidTextPolite = “Please Make Another Selection”

Case 5

ValidTextPolite = “Amount Too High”

Case 6

ValidTextPolite = “Amount Too Low”

End Select

‘Close the form

DoCmd.Close acForm, “frmPolite”

‘If the user clicked Cancel, return the original value

Else

ValidTextPolite = strCurrentValue

End If

ValidTextPolite_Exit:

Exit Function

ValidTextPolite_Err:

Practical Examples: Designing Your Own Add-Ins 1049

2
7

MsgBox “Error # “ & Err.Number & “: “ & Err.Description

Resume ValidTextPolite_Exit

End Function

The ValidTextPolite function shown in Listing 27.4 receives all the parameters required
by a builder function. The function opens frmPolite modally, passing it the current
ValidationText property value of the selected control as the OpenArg. If the user selects a
value from the frmPolite form and clicks OK, the code evaluates the selected value and
returns the appropriate text from the ValidTextPolite function. The return value
becomes the validation text of the selected control. Listing 27.5 shows the Load event
of frmPolite.

LISTING 27.5 The Load Event of frmPolite

Private Sub Form_Load()

‘Set the value of the Option group

‘To the current value of the property

Select Case Me.OpenArgs

Case “The Incorrect Value Was Entered”

Me.optPolite.Value = 1

Case “The Computer Cannot Comprehend Your Entry”

Me.optPolite.Value = 2

Case “I’m Sorry, Could You Please Try Again”

Me.optPolite.Value = 3

Case “Please Make Another Selection”

Me.optPolite.Value = 4

Case “Amount Too High”

Me.optPolite.Value = 5

Case “Amount Too Low”

Me.optPolite.Value = 6

End Select

End Sub

This code ensures that the value of the option button on the frmPolite form reflects the
text that the user entered in the ValidationText property of the current control. The
ValidTextRude entry-point function is similar to ValidTextPolite. Listing 27.6 shows
the ValidTextRude entry-point text function; you can find it in basBuilders module on
the accompanying CD-ROM.

LISTING 27.6 The ValidTextRude Entry-Point Function

Function ValidTextRude(strObject As String, _

strControl As String, _

CHAPTER 27 Using Builders and Wizards1050

LISTING 27.4 Continued

strCurrentValue As String)

On Error GoTo ValidTextRude_Err

‘Open the Builder form

DoCmd.OpenForm FormName:=”frmRude”, _

WindowMode:=acDialog, _

OpenArgs:=strCurrentValue

‘If the user selected a message and clicked OK,

‘return the selected text to the caller

If SysCmd(acSysCmdGetObjectState, acForm, _

“frmRude”) = acObjStateOpen Then

Select Case Forms!frmRude!optRude.Value

Case 1

ValidTextRude = “Get a Clue Dude!”

Case 2

ValidTextRude = “What the Heck do You Think You’re Doing”

Case 3

ValidTextRude = “Give Me a Break!!!”

Case 4

ValidTextRude = “I’m a Computer, I’m not an Idiot!!”

Case 5

ValidTextRude = “Read the Manual Dude”

Case 6

ValidTextRude = “You Really Think I Believe That?”

End Select

‘Close the form

DoCmd.Close acForm, “frmRude”

‘If the user clicked Cancel, return the original value

Else

ValidTextRude = strCurrentValue

End If

ValidTextRude_Exit:

Exit Function

ValidTextRude_Err:

MsgBox “Error # “ & Err.Number & “: “ & Err.Description

Resume ValidTextRude_Exit

End Function

Practical Examples: Designing Your Own Add-Ins 1051

2
7

LISTING 27.6 Continued

The Load event of frmRude is similar to the Load event of frmPolite, as Listing 27.7
shows.

LISTING 27.7 The Load Event of frmRude

Private Sub Form_Load()

‘Set the value of the Option group

‘To the current Value of the property

Select Case Me.OpenArgs

Case “Get a Clue Dude!”

Me.optRude.Value = 1

Case “What the Heck Do You Think You’re Doing”

Me.optRude.Value = 2

Case “Give Me a Break!!!”

Me.optRude.Value = 3

Case “I’m a Computer, I’m not an Idiot!!”

Me.optRude.Value = 4

Case “Read the Manual Dude”

Me.optRude.Value = 5

Case “You Really Think I Believe That?”

Me.optRude.Value = 6

End Select

End Sub

To create the builder, design both forms so that they look like the ones in Figures 27.18
and 27.19. Include code for the Load event of each form as listed previously. The code
behind the OK button of each form sets the Visible property of the form to False. The
code behind the Cancel button on each form closes the form. Make sure that you name
the option groups optPolite and optRude so that the code runs properly for each form.
You can place the two entry-point functions, ValidTextPolite and ValidTextRude, in any
code module in the library database. The last step involves registering the two builders.
The entries in USysRegInfo, shown in Figure 27.20, accomplish the task of registering the
builder the first time that the user selects the add-in through the Add-Ins dialog box. You
can find this table in the CHAP27LIB.ACCDE database.

NOTE

To complete the process, you must reference the add-in from the database that will
use it. Steps 7 through 11, in the section of this chapter titled “Automating the
Creation of Registry Entries” covers this process.

CHAPTER 27 Using Builders and Wizards1052

FIGURE 27.20 Registry entries for the polite and rude builders.

Summary
By creating builders, wizards, and add-ins, you can enhance the development environ-
ment for yourself and your users. You even can add wizards so that your users can build
their own queries, forms, or reports on the fly without a full copy of Access. Your wizard
simply needs to prompt the user for the appropriate information and then build the
objects to his specifications. What you can do with wizards, builders, and add-ins is
limited only by your imagination.

Summary 1053

2
7

This page intentionally left blank

IN THIS CHAPTER

. Why This Chapter Is Important

. Saving Database Objects
as HTML

. Linking to HTML Files

. Importing HTML Files

. Saving Database Objects
as XML

. Importing XML Files

. Practical Examples

CHAPTER 28

An Introduction to
Access and the

Internet/Intranet

Why This Chapter Is Important
The Internet is part of our everyday lives. The Internet’s
penetration into the life of an Access developer is no excep-
tion. You can save almost every Access 2007 object as
HTML. In this chapter, you’ll save tables, query results,
forms, and reports, all to HTML. As you’ll see, the process is
quite simple and produces excellent results.

NOTE

The examples in this chapter are based on the
Northwind sample database that you can download
from within Microsoft Access.

Saving Database Objects
as HTML
Probably one of the most basic but powerful features in
Access is the capability to save database objects as
Hypertext Markup Language (HTML) documents. You can
publish table data, query results, form datasheets, and
reports, all as HTML. The following sections cover each of
these objects.

Saving Table Data as HTML
When saving table data to HTML, you can store it in the HTML file format so that you
can easily publish it on the Web. Just follow these steps:

1. Use the Navigation Pane to select the table that you want to export.

2. Click to select the External Data tab and then open the More drop-down in the
Export group.

3. Select HTML Document (see Figure 28.1). The Export – HTML Document dialog box
appears (see Figure 28.2).

4. Enter a name and location for the HTML document that you are generating.

5. Indicate if you want to export the document with formatting and layout and
whether you want to open the document when the export process is complete.

6. Designate whether you want to export just selected records, and click OK to
proceed. The HTML Output Options dialog box appears (see Figure 28.3).

7. Designate a template that you want to use for the outputted document and what
type of encoding you want to use.

CHAPTER 28 An Introduction to Access and the Internet/Intranet1056

FIGURE 28.1 Select HTML Document from the More drop-down in the Export group.

FIGURE 28.2 The Export – HTML dialog box allows you to select options for the export
process.

Saving Database Objects as HTML 1057

2
8

FIGURE 28.3 The HTML Output Options dialog box allows you to designate additional
options used during the export process.

8. Click OK to finish the process. Access 2007 generates the HTML file and displays it
(see Figure 28.4) if you indicated that you wanted to open the document when the
export process was complete. If you’d like, you can view the HTML source (see
Figure 28.5).

9. Access prompts you to save the export steps. Indicate your option and click Close to
complete the process.

FIGURE 28.4 Access displays the generated document in your browser.

CHAPTER 28 An Introduction to Access and the Internet/Intranet1058

FIGURE 28.5 You can easily view the HTML source associated with the generated web page.

Saving Database Objects as HTML 1059

2
8

Saving Query Results as HTML
The capability to save query results as HTML means you don’t need to save all fields and
all records to an HTML file. In fact, you can even save the results of Totals queries and
other complex queries as HTML. Saving the result of a query as HTML is similar to saving
a table as HTML:

1. Use the Navigation Pane to select the query that you want to export.

2. Click to select the External Data tab, and then open the More drop-down in the
Export group.

3. Select HTML Document. The Export – HTML Document dialog box appears.

4. Enter a name and location for the HTML document that you are generating.

5. Indicate if you want to export the document with formatting and layout and
whether you want to open the document when the export process is complete.

6. Designate whether you want to export just selected records, and click OK to
proceed. The HTML Output Options dialog box appears.

7. Designate a template that you want to use for the outputted document and what
type of encoding you want to use.

8. Click OK to finish the process. Access 2007 generates the HTML file and displays it
if you indicated that you wanted to open the document when the export process
was complete. If you’d like, you can view the HTML source.

9. Access prompts you to save the export steps. Indicate your option and click Close to
complete the process.

Access exports the file to HTML so that you can view it from any web browser. You can
also view the HTML source.

Saving Forms as HTML
Because an HTML file is a static file, you can save only a form’s datasheet as HTML. A
static HTML file doesn’t change as the data in the database changes; plus, you cannot
modify the data in the HTML file. To save a form’s datasheet as HTML, follow these steps:

1. Use the Navigation Pane to select the form that you want to export.

2. Click to select the External Data tab, and then open the More drop-down in the
Export group.

3. Select HTML document. The Export – HTML Document dialog box appears.

4. Enter a name and location for the HTML document that you are generating.

5. Indicate whether you want to open the document when the export process is
complete, and click OK. The HTML Output dialog box appears.

6. Designate a template that you want to use for the outputted document and what
type of encoding you want to use.

7. Click OK to finish the process. Access 2007 generates the HTML file and displays it
if you indicated that you wanted to open the document when the export process
was complete. If you’d like, you can view the HTML source.

8. Access prompts you to save the export steps. Indicate your option, and click Close
to complete the process.

Access exports the file to HTML so that you can view it from any web browser. You can
also view the HTML source.

Saving Reports as HTML
You can save reports and their formatting as HTML, too, which is an elegant way to
publish data on an Internet or intranet site. To publish a report as HTML, just follow
these steps:

1. Use the Navigation Pane to select the report that you want to export.

2. Click to select the External Data tab, and then open the More drop-down in the
Export group.

3. Select HTML document. The Export – HTML Document dialog box appears.

4. Enter a name and location for the HTML document that you are generating.

5. Indicate whether you want to open the document when the export process is
complete, and click OK. The HTML Output dialog box appears.

6. Designate a template that you want to use for the outputted document and what
type of encoding you want to use.

7. Click OK to finish the process. Access 2007 generates the HTML file as a nicely
formatted report (see Figure 28.6). If you indicated that you wanted to open the
document when the export process was complete, Access displays the report. If
you’d like, you can view the HTML source.

8. Access prompts you to save the export steps. Indicate your option, and click Close
to complete the process.

Access exports the file to HTML so that you can view it from any web browser. You can
also view the HTML source. Figure 28.6 shows a report published as HTML. Because this is
a multipage report, Access generates several HTML files. Each page of the report is linked,
and you can easily navigate from page to page by using the First, Previous, Next, and Last
hyperlinks automatically generated during the export process (see Figure 28.7).

CHAPTER 28 An Introduction to Access and the Internet/Intranet1060

Saving Database Objects as HTML 1061

2
8

FIGURE 28.6 The report appears as a nicely formatted document.

FIGURE 28.7 The export process generates First, Previous, New, and Last hyperlinks, allow-
ing you to navigate between the pages.

FIGURE 28.8 The Get External Data – HTML dialog box allows you to select options for the
import process.

3. Enter a name and location for the HTML document that you are linking to.

4. Indicate whether you want to import the source data into a new table, append it
to an existing table, or link to it. In this case, select Link to the Data Source By
Creating a Linked Table. Click OK to proceed. The Link HTML Wizard appears
(see Figure 28.9).

5. Designate whether the first row contains column headings. If you click Advanced, a
plethora of additional options appear (see Figure 28.10). Options include the ability
to change field names and data types as well as specifications for dates, times, and
numbers. Click OK to close the dialog box and return to the wizard.

Linking to HTML Files
Just as you can link to dBASE tables, Paradox tables, or Open Database Connectivity
(ODBC) data sources, you can also link to HTML files by following these steps:

1. Click to select the External Data tab, and then open the More drop-down in the
Import group.

2. Select HTML document. The Get External Data – HTML Document dialog box
appears (see Figure 28.8).

CHAPTER 28 An Introduction to Access and the Internet/Intranet1062

Linking to HTML Files 1063

2
8

FIGURE 28.9 The Link HTML Wizard allows you to designate the specifics of the linking
process.

FIGURE 28.10 Using the Advanced dialog box, you can refine the linking options.

6. Click Next. The second step of the wizard appears (see Figure 28.11). Once again,
Access gives you the opportunity to modify field types and field names. After you
have made any desired changes, click Next to continue. The final step of the wizard
appears.

CHAPTER 28 An Introduction to Access and the Internet/Intranet1064

FIGURE 28.11 The second step of the wizard allows you to designate field types and field
names that will apply to the new table.

7. Select a name for the linked table, and click Finish. A dialog box appears indicating
that the linking process was successful (see Figure 28.12).

8. Click OK to complete the process.

FIGURE 28.12 A dialog box appears indicating the linking process was successful.

Importing HTML Files
You can import the data in an HTML file so that it can be used exactly like any other
Access table. Follow these steps to import an HTML file:

1. Click to select the External Data tab, and then open the More drop-down in the
Import group.

2. Select HTML document. The Get External Data – HTML Document dialog box
appears.

3. Enter a name and location for the HTML document that you are importing.
Click OK.

4. Select Import the Source Data into a New Table in the Current Database. Click OK to
proceed. The Import HTML Wizard appears.

5. Designate whether the first row contains column headings. If you click Advanced, a
plethora of additional options appear. Options include the ability to change field
names and data types as well as specifications for dates, times, and numbers. Click
OK to close the dialog box and return to the wizard.

Linking to HTML Files 1065

2
8

6. Click Next. The second step of the wizard appears. Once again, Access gives you
the opportunity to modify field types and field names. After you have made any
desired changes, click Next to continue. The third step of the wizard appears (see
Figure 28.13).

CHAPTER 28 An Introduction to Access and the Internet/Intranet1066

FIGURE 28.13 You can designate whether you want a primary key for your new table.

7. Designate whether you want to set the primary key, let Access set the primary key,
or import the table without a primary key. Select your option, and click Next.

8. Select a name for the linked table, and click Finish. A dialog box appears asking
whether you want to save your import steps.

9. Click Close to complete the process.

Saving Database Objects as XML
You not only can save database objects as HTML, but you also can save them as XML.
XML is another commonly used file format on the Internet. Here’s how you save a table
as XML:

Saving Database Objects as XML 1067

2
8

FIGURE 28.14 The Export – XML File dialog box allows you to designate the file and location
that you wish to export to.

3. Select a name and location for the new file and click OK.

4. Indicate whether you want to export the data, schema, and presentation of your
data. Make your selections, and then click OK.

5. The final step of the wizard appears, prompting you to save your export steps. Click
Close to close the dialog.

6. If you browse the XML file that you generated, it will appear as in Figure 28.15.

1. Use the Navigation Pane to select the table that you want to export.

2. Click to select the External Data tab, and then use the More drop-down to select
XML File. The Export – XML File dialog box appears (see Figure 28.14).

CHAPTER 28 An Introduction to Access and the Internet/Intranet1068

FIGURE 28.15 You can open the generated XML file in your browser.

Importing XML Files
Another option available to you is the ability to import an existing XML document. The
process is similar to that used for an HTML document. Just follow these steps:

1. Click to select the External Data tab, and then click the XML button in the Import
group. The Get External Data – XML Document dialog box appears.

2. Enter a name and location for the XML document that you are importing. Then
click OK. The Import XML dialog box appears (see Figure 28.16).

3. Designate whether you want to import the structure only, import structure and
data, or append the XML data to an existing table. Click OK to continue. The wizard
asks whether you want to save your import steps.

4. Click Close to close the dialog box. The table should now appear in the Navigation
Pane along with the other Access tables.

FIGURE 28.16 The Import XML dialog box allows you to designate the specifics of the
import process.

Practical Examples
Practice saving one of your own tables as HTML. Next, save a query, form, and report as
HTML. View the resulting pages in your browser.

Summary
You can easily integrate Access with the Internet or with an intranet. Access enables you
to easily publish database objects to the Web and import HTML data from the Web. In
fact, you can even create dynamic web pages and build forms that display and update live
data directly from a browser! Access 2007 helps bring your data to the continually evolv-
ing IT world; the possibilities are endless!

Summary 1069

2
8

This page intentionally left blank

PART V

Adding Polish to Your
Application

IN THIS PART

CHAPTER 29 Documenting Your Application 1073

CHAPTER 30 Maintaining Your Application 1091

CHAPTER 31 Database Security Made Easy 1103

This page intentionally left blank

IN THIS CHAPTER

. Why This Chapter Is Important

. Preparing Your Application to
Be Self-Documenting

. Using the Database
Documenter

. Using the Object Dependency
Feature

. Writing Code to Create Your
Own Documentation

. Practical Examples: Applying
What You Learned

CHAPTER 29

Documenting Your
Application

Why This Chapter Is Important
Back in the days of mainframes and very formal centralized
management information systems (MIS) departments,
documentation was a mandatory requirement for the
completion of an application. Today, it seems as though all
types of people are developing applications: administrative
assistants, CEOs, sales managers, MIS professionals, and so
on. To make matters worse, many of us who consider
ourselves MIS professionals never received any formal
systems training. Finally, the demand to get an application
up and running and then to move on to the next applica-
tion is more prevalent than ever. As a result of all these
factors, it seems that documentation has gone by the
wayside.

Despite all the reasons why documentation doesn’t seem
to happen, properly documenting your application is as
important today as it was in the mainframe days. Docu-
mentation provides you and your users with these benefits:

. It makes the system easy for you and others to
maintain.

. It helps state the purpose and function of each object
in the application.

This chapter covers the various ways in which you can
document your application objects and code.

Preparing Your Application to Be Self-Documenting
Fortunately, Access ships with an excellent tool to assist you with the process of docu-
menting your database: the Database Documenter. Although you can use this tool
without special preparation on your part, a little bit of work as you build the components
of your application can go a long way toward enhancing the value of the Database
Documenter’s output.

Documenting Your Tables
The Database Documenter prints all field and table descriptions that you enter in the
design of a table. Figure 29.1 shows a table in Design view. Notice the descriptions for the
ClientID and StateProvince fields. These descriptions provide additional information
that is not readily obvious from looking at the field names. The Table Properties window
also contains a Description property. This Database Documenter includes this property
when you print the table’s documentation.

CHAPTER 29 Documenting Your Application1074

FIGURE 29.1 The descriptions that you include for each field appear in the Database
Documenter.

Entering a table description also assists you and the users of your database when you are
working with the tables in the database. Figure 9.2 shows the Navigation Pane after I
entered table descriptions. The description of each table appears in the Navigation Pane.
If the descriptions don’t appear, you may need to adjust the View setting to View By
Details to see the descriptions.

FIGURE 29.2 The description of each table appears in the Navigation Pane.

Documenting Your Queries
Just as you can enhance the output that the Database Documenter provides for tables,
you also can enhance the output it provides for queries. Figure 29.3 shows the Query
Properties window. I filled in the Description property with a detailed description of the
purpose of the query. Figure 29.4 shows the description of an individual column in a
query. Access includes both the query and field descriptions in the output provided by
the Database Documenter.

Documenting Your Forms
Documentation is not limited to table and query objects. A form also has a Description
property. You cannot access it from the Design view of the form, though. To view or
modify the Description property of a form, follow these steps:

1. Display the Navigation Pane.

2. Right-click the form for which you want to add a description.

3. Choose View Properties. The Object Properties dialog box appears, as shown in
Figure 29.5.

4. Enter a description in the Description text box.

Preparing Your Application to Be Self-Documenting 1075

2
9

FIGURE 29.3 The Description property shows a detailed description of the purpose of
the query.

CHAPTER 29 Documenting Your Application1076

FIGURE 29.4 You can also describe an individual column in a query.

5. Click OK. The description you entered appears in the Navigation Pane, as shown in
Figure 29.6, and it also appears in the output from the Database Documenter.

Preparing Your Application to Be Self-Documenting 1077

2
9

FIGURE 29.5 You can use the Object Properties dialog box to document each object in the
database.

FIGURE 29.6 The Navigation Pane shows a description of a form.

Documenting Your Reports
You document reports in exactly the same manner as forms. Reports have a Description
property that you must enter in the Object Properties dialog box. Remember that to
access this dialog box, you right-click the object in the Navigation Pane and then choose
Properties.

Documenting Your Macros
You can document macros in significantly more detail than forms and reports. You can
document each line of the macro, as shown in Figure 29.7. Not only does this provide
documentation in the Database Documenter, but macro comments also become code
comments when you convert a macro to a Visual Basic module. In addition to document-
ing each line of a macro, you can add a description to the macro. As with forms and
reports, to accomplish this, right-click the macro from the Navigation Pane and choose
Properties.

CHAPTER 29 Documenting Your Application1078

FIGURE 29.7 You can document a macro by including a description of what each line of the
macro does.

Documenting Your Modules
I cannot emphasize enough how important it is to document your modules with
comments. Of course, you do not need to document every line of code. I document all
areas of my code that I feel are not self-explanatory. Comments assist me when I revisit
the code to make modifications and enhancements. They also assist anyone who is

responsible for maintaining my code. Finally, they provide the user with documentation
about what my application is doing. Comments print with your code modules, as shown
later in this chapter in the section “Using the Database Documenter.” As with the other
objects, you can right-click a module to assign a description to it.

Using Database Properties to Document the Overall Database
In addition to enabling you to assign descriptions to the objects in the database,
Microsoft Access enables you to document the database as a whole. You do this by filling
in the information included in the Database Properties window. To access a database’s
properties, click the Microsoft Office Access button and select Manage. Choose Database
Properties from the Manage cascading menu. The Database Properties dialog box appears,
as shown in Figure 29.8. As you can see, it is a tabbed dialog box; tabs include General,
Summary, Statistics, Contents, and Custom.

Preparing Your Application to Be Self-Documenting 1079

2
9

FIGURE 29.8 The Database Properties window shows the General properties of a database.

Descriptions of the tabs in the Database Properties dialog box follow:

. General—The General tab displays general information about your database. This
includes the date the database was created, when it was last modified, when it was
last accessed, its location, its size, its MS-DOS name, and its file attributes. You
cannot modify any of the information on the General tab.

. Summary—The Summary tab, shown in Figure 29.9, contains modifiable informa-
tion that describes the database and what it does. This tab includes the database
title, its subject, and comments about the database. It also includes the hyperlink
base—a base address used for all relative hyperlinks inserted in the database. This
can be an Internet address (URL) or a filename path (UNC).

CHAPTER 29 Documenting Your Application1080

FIGURE 29.9 The Summary tab of the Database Properties dialog box contains modifiable
information that describes the database and what it does.

. Statistics—The Statistics tab contains statistics of the database, such as when it was
created, last modified, and last accessed.

. Contents—The Contents tab, shown in Figure 29.10, includes a list of all the
objects contained in the database.

FIGURE 29.10 The Contents tab of the Database Properties dialog box includes a list of all
the objects contained in the database.

. Custom—The Custom tab enables you to define custom properties associated with
the database. This capability is useful when you are dealing with a large organiza-
tion with numerous databases, and you want to be able to search for all the data-
bases containing certain properties.

Using the Database Documenter
The Database Documenter is an elegant tool that is part of the Access application. It
enables you to selectively produce varying levels of documentation for each object in
your database. To use the Database Documenter, follow these steps:

1. Make sure that a database is open.

2. Click to select the Database Tools tab.

3. Click to select the Database Documenter tool in the Analyze group. The
Documenter dialog box appears, as shown in Figure 29.11.

Using the Database Documenter 1081

2
9

FIGURE 29.11 You can use the Documenter dialog box to designate which objects you want
to document.

4. Click the appropriate tab to select the type of object you want to document. To
document a table, for example, click the Tables tab.

5. Enable the check box to the left of each object that you want to document. You can
click the Select All command button to select all objects shown on a tab.

6. Click the Options button to refine the level of detail provided for each object.
Depending on which object type you selected, the Database Documenter displays
different options. The next section of this chapter covers Database Documenter
options.

7. Repeat steps 4–6 to select all database objects that you want to document.

8. Click OK when you are ready to produce the documentation.

TIP

To document all objects in the database, click the All Object Types tab and then click
Select All.

CAUTION

Access can produce a very large volume of documentation, particularly if you select
numerous objects. For this reason, you should carefully select the objects that you
want to document. Make sure that, after you preview the results, you verify that you
got what you expected before you print volumes of meaningless documentation.

NOTE

To document the properties of the database or the relationships between the tables in
the database, click the Current Database tab and select Properties or Relationships.

After you select all the desired objects and options and click OK, the Object Definition
window appears. You can use this Print Preview window to view the documentation
output for the objects you selected (see Figure 29.12). This Print Preview window is just
like any other Print Preview window; you can view each page of the documentation and
send the documentation to the printer.

CHAPTER 29 Documenting Your Application1082

FIGURE 29.12 The Object Definition Print Preview window allows you to view each page of
the documentation and send the documentation to the printer.

NOTE

The PDF/XPS option may not appear on your toolbar. It is a downloadable feature that
you must obtain from Microsoft’s website. You can access it via help under the topic
“Enable support for other file formats, such as PDF and XPS.”

Using the Documenter Options
By default, the Database Documenter outputs a huge volume of information for each
selected object. For example, the Database Documenter documents each control on a
form, including every property of the control. You can easily produce 50 pages of docu-
mentation for a couple of database objects. Besides being a tremendous waste of paper,
this volume of information is overwhelming to review. Fortunately, you can refine the
level of detail provided by the Documenter for each category of object you are document-
ing. Just click the Options button in the Documenter dialog box.

Figure 29.13 shows the table definition options. Notice that you can specify whether you
want to print table Properties, Relationships, and Permissions by User and Group. You
also can indicate the level of detail you want to display for each field: Nothing; Names,
Data Types, and Sizes; or Names, Data Types, Sizes, and Properties. For table indexes, you
can opt to include Nothing; Names and Fields; or Names, Fields, and Properties.

Using the Database Documenter 1083

2
9

FIGURE 29.13 You can use the Print Table Definition dialog box to designate which aspects
of a table’s definition Access will document.

If you select the Queries tab in the Documenter dialog box and then click Options, the
Print Query Definition dialog box appears, as shown in Figure 29.14. Here, you can select
the level of detail the Database Documenter will output for the selected queries. You can
choose whether to include Properties, SQL, Parameters, Relationships, and Permissions by
User and Group for the query. You also can select the level of detail for each column of
the query and for the indexes involved in the query.

FIGURE 29.14 You use the Print Query Definition dialog box to designate which aspects of a
query’s definition the Database Documenter includes in the output.

The Form and Report options are similar to one another. Figure 29.15 shows the Print
Form Definition dialog box. Here, you can specify whether you want to print Properties,
Code, and Permissions by User and Group for a form. For each control on the form, you
can choose to print Nothing, the Names of the controls, or the Names and Properties of
the controls. The Print Report Definition dialog box offers the same options. Both dialog
boxes offer a Properties button, used to designate the categories of properties that the
Database Documenter prints. You can opt to print Other properties, Event properties,
Data properties, or Format properties.

CHAPTER 29 Documenting Your Application1084

FIGURE 29.15 You use the Print Form Definition dialog box to designate which aspects of a
form’s definition the Database Documenter includes in the output.

For macros, you can choose whether you want to print macro Properties, Actions and
Arguments, or Permissions by User and Group. For modules, you can choose to view
Properties, Code, and Permissions by User and Group.

As you can see, the Database Documenter gives you great flexibility in the level of detail
it provides. Of course, if you haven’t filled in the properties of an object (for example, the
description), it does you no good to ask the Documenter to print those properties.

Producing Documentation in Other Formats
After you produce the documentation and it appears in the Object Definition Print
Preview window, you can output it to other formats. When the Print Preview window is
active, the Print Preview tab appears (see Figure 29.16). The Data group provides you with
several options for exporting your report. You can export to a PDF file, XPS file, Word
document, Text file, Access database, XML file, Snapshot file, or HTML document!
Depending on the option that you select, the next step varies. For example, if you opt
to send the file to Microsoft Word, the Export – RTF File dialog box appears (see Figure
29.17). Here, you designate the destination and export options for the file.

Using the Database Documenter 1085

2
9

FIGURE 29.16 The Print Preview tab allows you to output your documentation to
other formats.

FIGURE 29.17 Using the Export – RTF File dialog box, you can select the export options for
Microsoft Word.

Using the Object Dependency Feature
Microsoft added a wonderful feature in Access 2003. It provides the capability to view
information about object dependencies. Here’s how it works:

1. To invoke the Object Dependency feature, click to select the Database Tools tab.

2. Click Object Dependencies in the Show/Hide group. A message appears indicating
that the dependency information needs to be updated before you can view object
dependencies (see Figure 29.18).

CHAPTER 29 Documenting Your Application1086

FIGURE 29.18 You must invoke the Track name AutoCorrect info option for dependency
information to appear.

3. Click OK to continue. The Object Dependencies pane appears (see Figure 29.19).

4. Click to expand the node for which you want to view object dependencies. In
Figure 29.20, you can see all the objects that depend on tblProjects.

FIGURE 29.19 The Object Dependencies pane allows you to view an object’s dependencies.

Using the Object Dependency Feature 1087

2
9

FIGURE 29.20 The Object Dependencies pane shows you the objects that depend on the
selected object, as well as objects that the selected object depends on.

5. By default, the Object Dependencies pane shows you the objects that depend on the
selected object. You can click the Objects That I Depend On button to view the
objects that the selected object depends on.

6. Using the Object Dependencies pane, you can drill even further down the chain to
the objects that depend on those objects.

7. Close the Object Dependencies pane when you are finished viewing and working
with object dependencies.

Writing Code to Create Your Own Documentation
Most of the time, the options that the Database Documenter provides are sufficient. At
times, you won’t like the format that the Database Documenter selects—or, more impor-
tantly, you might want to document properties of the database objects not available
through the user interface. In these situations, you can choose to enumerate the database
objects using code and output them to a custom report format.

Using ADOX (ADO Extensions for DDL and Security), you can enumerate any of the
objects in your database. Listing 29.1 shows an example.

LISTING 29.1 Using ADOX to Enumerate the Table Objects in a Database

Sub EnumerateTables()

Dim conn As New Connection

Dim adoCat As New ADOX.Catalog

Dim adoTbl As New ADOX.Table

Dim strSQL As String

DoCmd.SetWarnings False

Set conn = CurrentProject.Connection

adoCat.ActiveConnection = conn

For Each adoTbl In adoCat.tables

If adoTbl.Type = “Table” Then

strSQL = “INSERT INTO tblTableDoc” _

& “(TableName, DateCreated, LastModified) “ _

& “Values (“”” & adoTbl.Name & “””, #” _

& adoTbl.DateCreated & “#, #” _

& adoTbl.DateModified & “#) “

conn.Execute strSQL

End If

Next adoTbl

DoCmd.SetWarnings True

End Sub

CHAPTER 29 Documenting Your Application1088

NOTE

For the code in Listing 29.1 to run, you must first set a reference (via Tools,
References) to the Microsoft ADO Ext 2.7 for DDL and Security library.

The EnumerateTables routine, located in the basDocument module of CHAP29EX.ACCDB on
your sample code CD-ROM, documents various information about the tables in the data-
base. It uses the ADOX catalog and table objects and a For...Each loop to loop through
all the table definitions in the database. For each table in the database, it determines
whether the table’s type property is set to “Table”, indicating that it is a standard table
(as opposed to a system table or a query). It then uses the Execute method of the
Connection object to execute a SQL statement, inserting all the requested information
about the table definition into a table called tblTableDoc. You can use this table as the
foundation for a report. Of course, when you use appropriate For...Each loops and prop-
erties, along with the ADOX object model, you can obtain any information about any of the
objects in the database using the same technique.

Practical Examples: Applying What You Learned
Practice using various options in the Database Documenter for your own applications.
As you change the options for each object type, view the output differences. If you are
particularly ambitious, try writing some code to enumerate the objects of the database.

Summary
Documentation is a necessary part of the application development process; fortunately,
Microsoft Access makes documenting your application easy. This chapter covered the
object Description properties Access provides, as well as the extremely powerful Database
Documenter. It also covered a feature related to documentation called Object Depen-
dency. Finally, the chapter highlighted how you can create your own documentation
using ADOX and custom reports. Using any combination of the techniques covered in
the chapter, you can produce complete documentation for all aspects of your application.

Summary 1089

2
9

This page intentionally left blank

IN THIS CHAPTER

. Why This Chapter Is Important

. Compacting Your Database

. Backing Up Your Database

. Converting an Access
Database

. Detecting Broken References

. Practical Examples:
Maintaining Your Application

CHAPTER 30

Maintaining Your
Application

Why This Chapter Is Important
Although you don’t need to do too much to maintain an
Access database, you must know about a few important
techniques that you should use to ensure that you main-
tain your databases as effectively as possible. The first
technique is compacting. Compacting a database means
removing unused space from a database (.accdb or .mdb
file). The second technique involves backing up your data-
bases. Without a proper backup procedure in place, you are
like a circus performer without a safety net. Another useful
technique to have at your disposal is the capability to
convert a database created in an earlier version of Access to
the .accdb file format. Finally, it is important that you are
able to detect broken references within your database. This
chapter covers the compacting process and the ways you
can compact. It also covers all the other maintenance tech-
niques available to you within Microsoft Access.

Compacting Your Database
As you and the users of your application work with a data-
base, the database grows in size. To maintain a high state of
performance, Access defers the removal of discarded pages
from the database until you explicitly compact the database
file. This means that as you add data and other objects to
the database and remove data and objects from the data-
base, Access does not reclaim the disk space that the deleted
objects occupied. This not only results in a very large data-
base file, but it also ultimately degrades performance, as the
physical file becomes fragmented on disk. Compacting a
database accomplishes the following tasks:

. Reclaims all space occupied by deleted data and database objects.

. Reorganizes the database file so that the pages of each table in the database are
contiguous. This improves performance because, as the user works with the table,
the data in the table is located contiguously on the disk.

. Resets counter fields so that the next value will be one more than the last undeleted
counter value. If, while testing, you add many records that you delete just prior to
placing the application in production, compacting the database resets all the
counter values back to 1.

. Re-creates the table statistics used by the Access Database Engine when it executes
queries and marks all queries so that the Access Database Engine recompiles them
the next time they are run. These are two important related benefits of the compact-
ing process. If you have added indexes to a table, or the volume of data in the table
has changed dramatically, the query won’t execute efficiently. The reason is that the
Access Database Engine bases the stored query plan it uses to execute the query on
inaccurate information. When you compact the database, the Access Database
Engine updates all table statistics and the plan for each query to reflect the current
state of the tables in the database.

TIP

Defragmenting the hard drive that a database is stored on before performing the
compacting process is a good idea. The defragmentation process ensures that as
much contiguous disk space as possible is available for the compacted database.

NOTE

In earlier versions of Access, the repair process was a separate utility from the
compacting process. With Access 2000, Access 2002, Access 2003, and Access
2007, there is no longer a separate repair process. The compacting and repair
processes both occur when you compact a database. When you open a database in
need of repair, Access prompts you to compact it.

To compact a database, you can use one of five techniques:

. Use commands provided in the user interface.

. Click an icon you set up for the user.

. Set up the database so that Access compacts it whenever you close it.

. Use the CompactDatabase method of the JetEngine object.

. Use the CompactRepair method of the Application object.

CHAPTER 30 Maintaining Your Application1092

Regardless of which method you select for the compacting procedure, the following
conditions must be true:

. The user performing the procedure must have the rights to open the database
exclusively.

. The user performing the procedure must have Modify Design permission for all
tables in the database.

. The database must be available for you or the user to open it for exclusive use. This
means that no other users can be using the database.

. The drive or network share that the database is located on cannot be read-only.

. The file attribute of the database cannot be set to read-only.

. Enough disk space must be available for both the original database and the
compacted version of the database. This is true even if you compact the database to
a database by the same name.

CAUTION

Backing up the database before you attempt to compact it is a good idea. It is possi-
ble for the compact process to damage the database. Also, do not use the compacting
process as a substitute for carefully following backup procedures. The compacting
process is not always successful. Nothing is as foolproof as a fastidiously executed
routine backup process.

NOTE

If, at any time, Access detects that something has damaged a database, it will prompt
you to repair the database. This situation occurs when you attempt to open, compact,
encrypt, or decrypt the damaged database. At other times, Access might not detect
the damage. Instead, you might suspect that damage has occurred because the data-
base behaves unpredictably. This is the time you should first back up and then
perform the compacting process, using one of the methods covered in this chapter.

Using the User Interface
Access provides a fairly straightforward user interface to the compacting operation. To
compact a currently open database, click the Microsoft Office Access button and select
Manager, Compact and Repair Database. Access closes the database, compacts it, and then
reopens it.

To compact a database other than the currently open database, follow these steps:

1. Close the open database.

2. Click to select the Microsoft Office Access button and then choose Manage,
Compact and Repair Database. The Database to Compact From dialog box appears,
as shown in Figure 30.1.

Compacting Your Database 1093

3
0

FIGURE 30.1 The Database to Compact From dialog box allows you to select the database
you want to compact.

3. Select the database you want to compact and click Compact. The Compact Database
Into dialog box appears, as shown in Figure 30.2.

CHAPTER 30 Maintaining Your Application1094

FIGURE 30.2 The Compact Database Into dialog box allows you to select the name for the
compacted database.

4. Select the name for the compacted database. This can be the same name as the orig-
inal database name, or it can be a new name. (If you are compacting a database to
the same name, make sure that it is backed up.) Click Save.

5. If you select the same name, Access prompts you to replace the existing file.
Click Yes.

Using a Shortcut
To give users a simple way to compact a database, you can create an icon that performs the
compacting process. You accomplish this by using the /Compact command-line option,
which compacts the database without ever opening it. The shortcut looks like this:

c:\Progam Files\Microsoft Office 2007\Office12

\Msaccess.exe c:\Databases\TimeAndBilling.ACCDB /Compact

You can follow this syntax with a space and the name of a destination database if you do
not want Access to overwrite the current database with the compacted version. If you do
not include a path for the destination database, Access places it in the My Documents
folder by default.

NOTE

In Vista, the default location for new files is within \Users\UserName\Documents.

To create a shortcut, follow these steps:

1. Open the folder where you have installed your application.

2. Right-click the application (ACCDB) icon for your database.

3. Choose Create Shortcut.

4. Right-click the shortcut you just created.

5. Choose Properties.

6. Click the Shortcut tab.

7. Modify the shortcut to appear with the syntax shown in the previous example.

Compacting Whenever a Database Closes
Using the environmental setting Compact on Close, you can designate that Access will
compact specific databases whenever the user closes them. Access compacts a database
upon close only if it determines that the compact process will reduce the size by at least
256KB. To set the Compact on Close environmental setting, follow these steps:

1. Open the database that you want to affect. Click the Microsoft Office Access button
and select Access Options. The Access Options dialog box appears.

2. Click the Current Database tab of the Access Options dialog box (see Figure 30.3).

3. Click the Compact on Close check box.

Compacting Your Database 1095

3
0

FIGURE 30.3 Select the Current Database tab of the Access Options dialog box.

NOTE

Although set in the Access Options dialog box, because the Compact on Close setting
is on the Current Database tab, it applies only to the database that is open when you
select the option. This feature allows you to selectively designate which databases
Access compacts when the user closes them.

CAUTION

Remember that when you use the Compact on Close option, the database must meet
all the conditions ordinarily required for Access to compact a database. For example, if
other users are in the database when someone tries to close it, the user trying to
close the database receives an error.

Using the CompactDatabase Method of the JetEngine Object
Using the CompactDatabase method, you can compact a database using code. The
CompactDatabase method is performed on a member of the Microsoft Jet and Replication
Objects (JRO), the JetEngine object. It receives a source connection string and a destina-
tion connection string as parameters. The Access Database Engine uses these connection

CHAPTER 30 Maintaining Your Application1096

strings to designate the source and destination databases, respectively. The Access
Database Engine also uses the Source Connection and Destination Connection parame-
ters for the following purposes:

. To change the locale of the database

. To encrypt or decrypt the database

. To convert the database from an older Jet version to a new version

. To specify the user ID and password

The Locale Identifier property of the Destination Connection parameter determines the
collating order in which the Access Database Engine sorts the data in the compacted data-
base. You use this option when you are working with a database in which the data is
stored in another language, and you want the data to be collated in a particular language.

The Jet OLEDB:Encrypt Database property of the Destination Connection parameter
specifies whether you want the compacted database to be encrypted. If you do not specify
this property, the compacted database will have the same encryption status as the original
source database.

The Jet OLEDB:Engine Type property of the Source Connection parameter designates the
version of the source database to open. The Jet OLEDB:Engine Type property of the
Destination Connection parameter indicates the version of the new database. If this
property is omitted, the version of the source and destination databases is the same.

Finally, the User ID and Password properties of the Source Connection parameter enable
you to supply the name of the user and the user’s password for a database that is pass-
word protected.

The following code, contained in the basCompactDB module of Chap30Ex.ACCDB, compacts
and encrypts a database called Chap30Big.ACCDB:

Sub CompactDB()

Dim je As New JRO.jetengine

Dim strFilePath As String

‘Store path of current database in a variable

strFilePath = Left(CurrentDb.Name, InStrRev(CurrentDb.Name, “\”))

‘If destination database exists, delete it

If Len(Dir(strFilePath & “Chap30Small.mdb”)) Then

Kill strFilePath & “Chap30Small.mdb”

End If

‘Use the CompactDatabase method of the JetEngine

‘object to compact the database

je.CompactDatabase SourceConnection:= _

“Data Source=” & strFilePath & “Chap30Big.mdb”, _

Compacting Your Database 1097

3
0

DestConnection:=”Data Source=” & strFilePath & “Chap30Small.mdb; “ & _

“Jet OLEDB:Encrypt Database=True”

End Sub

The code names the compacted database Chap30Small.MDB. The code also encrypts the
database during the compacting process.

For this code to execute successfully, remember that you must close the Chap30Big data-
base, and the user running the code must have the right to open the database exclusively.
Furthermore, the user must have Modify Design permissions for all tables in the database.
Finally, because the JRO JetEngine object performs the CompactDatabase method, you
must include a reference to the Microsoft JRO 2.1 Library. Access does not reference this
library by default when you create a new Access database. You must use Tools, References
to reference it.

NOTE

The CompactDatabase method of the JetEngine object does not work with an Access
2007 database. You need to use the CompactRepair method of the Application
object when working with Access 2007 files, and you can use the CompactDB method
with databases stored in an earlier file format.

Using the CompactRepair Method of the Application Object
An alternative to the JetEngine object is a method introduced with the Access 2007
Application object. The CompactRepair method simplifies the process shown in the
preceding section:

Sub CompactDBApp()

Dim strFilePath As String

‘Store path of current database in a variable

strFilePath = Left(CurrentDb.Name, InStrRev(CurrentDb.Name, “\”))

‘If destination database exists, delete it

If Len(Dir(strFilePath & “Chap30Small.accdb”)) Then

Kill strFilePath & “Chap30Small.accdb”

End If

‘Use the CompactRepair method of the application object

‘to compact and repair the database

Application.CompactRepair strFilePath & “Chap30Big.accdb”, _

strFilePath & “Chap30Small.accdb”, True

End Sub

CHAPTER 30 Maintaining Your Application1098

The code, located in basCompactDB, declares a string variable. The Left and InstrRev

functions extract the current path from the Name property of the CurrentDB object. If the
designation file is located in the current folder, the code deletes it. The CompactRepair
method of the Application object compacts and repairs the database into the designated
destination database. The CompactRepair method receives three parameters. The first is
the name and location of the source database, the second is the name and location of the
destination database, and the third is whether you want Jet to log the operation.

Backing Up Your Database
Introduced with Access 2003 is the capability to back up your database from within
Microsoft Access. Here’s the process:

1. Open the database that you want to back up.

2. Click the Microsoft Office Access button and select Manage, Back Up Database. The
Save As dialog box appears (see Figure 30.4).

Backing Up Your Database 1099

3
0

FIGURE 30.4 The Save As dialog box allows you to provide the name and location for the
backup database.

3. Supply a filename and location for the database that you are backing up.

4. Click Save. Access creates a backup with the name and location that you designated.

Because the backup process simply creates a copy of the open database in a name and
location that you specify, restoring the database involves moving and/or renaming the
backup database file to the production location and name. You can then simply open the
backup database and continue working as usual.

NOTE

After you have moved or renamed the backup database, you can access it from the
Microsoft Office Access button just like any other Access database.

Converting an Access Database
Access 2007 makes it easy to interact with other versions of Access. Access 2007 allows
you to open, read, and update Access databases stored in the Access 2000 file format and
the Access 2002–2003 file format, without converting the files to the Access 2007 file
format. It is important to note that as long as the database is stored in the MDB file
format, you will not be able to take full advantage of Microsoft Office Access 2007’s rich
set of new features.

As mentioned earlier, you can use Access 2000 files and Access 2002–2003 files with
Access 2007. If you want to convert an open database stored in the Access 2000 or Access
2002–2003 file format to the Access 2007 file format, take the following steps:

1. Click the Microsoft Office Access button and select Convert (see Figure 30.5). The
Convert Database Into dialog box appears.

CHAPTER 30 Maintaining Your Application1100

FIGURE 30.5 The Convert Database option appears after you click the Microsoft Office
Access button.

2. Select a location and filename and then click Save to complete the process. Access
warns you that the database has been upgraded and cannot be shared with users of
Access 2003 or earlier versions (see Figure 30.6).

FIGURE 30.6 Access warns you that you cannot use the ACCDB file with previous versions
of Access.

A method introduced with Access 2002 makes it easy to programmatically convert an
Access database from one version to another. The code, found in basMaintenance, looks
like this:

Sub ConvertAccessDatabase()

Dim strFilePath As String

‘Store current file path into variable

strFilePath = Left(CurrentDb.Name, InStrRev(CurrentDb.Name, “\”))

‘Delete destination database if it exists

If Len(Dir(strFilePath & “Chap30V2007.accdb”)) Then

Kill strFilePath & “Chap30V2007.accdb”

End If

‘Convert source database to Access 2007 file format

Application.ConvertAccessProject strFilePath & “Chap30Small.mdb”, _

strFilePath & “Chap30V2007.mdb”, _

DestinationFileFormat:=acFileFormatAccess12

End Sub

To begin, the code declares a string variable. It uses the built-in Left and InStrRev

functions to extract the path associated with the current database and place it in the
strFilePath variable. If the destination database exists in the current folder, the code
deletes it. The code uses the ConvertAccessProject method of the Application object to
convert the Chap30Small.mdb database, located in the current folder and stored in the
Access 2002–2003 file format, to the Chap30V2007.ACCDB database, located in the current
folder and stored in the Access 2007 file format.

NOTE

Constants exist for the ConvertAccessProject method that allow you to convert to
the Access 2007, Access 2002, Access 2000, Access 97, Access 95, and Access 2.0
file formats.

Converting an Access Database 1101

3
0

Detecting Broken References
Prior to Access 2002, it was difficult to locate and diagnose broken references. Access 2007
offers BrokenReference, a property of the Application object that rectifies this problem.
If broken references exist, the property evaluates to True. If no broken references exist, it
evaluates to False. Querying the BrokenReferences property is much more efficient than
looping through each reference to determine whether it is intact. The code, found in
basMaintenance, looks like this:

Sub DetectBrokenReference()

‘Display whether or not database contains a broken reference

MsgBox Application.BrokenReference

End Sub

Practical Examples: Maintaining Your Application
Begin by using the techniques you learned to back up a database. Then practice compact-
ing the database using each of the five methods covered in the chapter. Finally, determine
whether your database has any broken references.

Summary
You should perform the compacting process regularly—especially on databases containing
your application data. The compacting process provides major benefits in terms of both
performance and conservation of disk space. The more activity that occurs on a database,
the more frequently you should compact it. Although you should consider the compact-
ing process an important part of the database maintenance process, remember that there
is absolutely no substitute for proper backup techniques. This chapter also showed you a
feature included in Access 2007 that allows you to back up an open database.

In addition to compacting your database, you need to understand the database conver-
sion options available to you. You can convert databases from one version of Access to
another using either the user interface or code. Finally, whereas it was an arduous, time-
consuming process to detect broken references prior to Access 2002, the BrokenReference
property makes this process much easier, by reporting whether all database references are
intact. Using all the techniques covered in this chapter should save you a lot of time and
effort in maintaining and working with your databases.

CHAPTER 30 Maintaining Your Application1102

IN THIS CHAPTER

. Why This Chapter Is Important

. What’s New in Access 2007
Security?

. What Happened to User-Level
Security?

. Trusting a Database

. Using a Database Password to
Encrypt an Office Access 2007
Database

. Packaging, Signing, and
Distributing an Access
Database

. Using the Trust Center

. Understanding How Databases
Behave When Trusted and
Untrusted

. Working in Sandbox Mode

. Removing User-Level Security

. Enabling or Disabling ActiveX
Controls

. Enabling or Disabling Add-Ins

. Adding a Trusted Publisher

. Practical Examples: Securing
an Access 2007 Database

CHAPTER 31

Database Security
Made Easy

Why This Chapter Is Important
Security in Microsoft Office Access 2007 is significantly
different from that of its predecessors. Without knowledge
of how the new security paradigm works, both you and
your users will be very surprised at how things have
changed. In this chapter, we’ll explore all the changes to
Microsoft Office Access 2007. After reading this chapter,
you will be prepared to successfully deploy Access 2007
applications to your users.

What’s New in Access 2007
Security?
Microsoft has completely revamped security in Microsoft
Office Access 2007. The User Security model has been
completely eliminated in Access 2007, unless you keep
your database in the old Access file format (.MDB or .MDE)
and that database already has user-level security applied. In
other words, if you open a database created in an earlier
version of Access and that database already has security
applied, Access 2007 will support user-level security for that
database. If you convert a database created in an earlier
version of Access to the Access 2007 file format, Access
2007 will strip all user-level security settings from the data-
base, and Access 2007 security will apply. The following is
an overview of the changes to security in Access 2007:

. In Microsoft Access 2003, you had to code sign and
trust a database before you could view any of its data.
With Microsoft Office Access 2007, you can view the
data in a database without having to enable Visual
Basic for Applications (VBA) code.

. With Microsoft Office Access 2007, if you place a database (new or old database
format) in a trusted location, those files will open and run without displaying
warning messages or asking you to enable disabled content. A trusted location is a file
folder or network share that you designate as secure. Furthermore, if you open data-
bases created in earlier versions of Access and those databases have been digitally
signed, if you have chosen to trust the publisher, those files will run without
making trust decisions. VBA code in the signed database will not run until you trust
the publisher. If the digital signature becomes invalid, you will once again not be
able to run the VBA code.

. Microsoft Office Access 2007 includes a new feature called the Trust Center. Using the
Trust Center, you can set and change security options within Microsoft Access 2007.

. In Microsoft Access 2003, you had to deal with a multitude of security messages
when you opened a database. Microsoft has greatly simplified this process with
Microsoft Office Access 2007. When you open a Microsoft Office Access 2007 data-
base, a message bar appears (see Figure 31.1). You simply click the Options button on
the message bar. The Microsoft Office Security Options dialog appears. Click to select
Enable this content and then click OK. Access enables all disabled components.

CHAPTER 31 Database Security Made Easy1104

FIGURE 31.1 Using the message bar, you can easily enable disabled components.

. In Microsoft Access 2003, you had to apply security certificates to individual data-
base components. In Microsoft Office Access 2007, the process of signing and
distributing files is quite easy. All you need to do is to sign the database and then
distribute it.

. Microsoft Office Access 2007 has a stronger algorithm for encrypting data. The
encryption of a database scrambles the data in your tables. This prevents unwanted
users from viewing the data in your Access databases using a tool such as a text
editor.

. With Microsoft Office Access 2007 security, certain macro actions can execute
without you or the user having to enable the database. In fact, all embedded macros
run even if they contain macro actions that Access would ordinarily disable.

. If you open a database in a trusted location, all components of the database run
without the need to explicitly trust the database.

. If you package, sign, and deploy a database from an earlier version of Access (.MDB
or .MDE file), and the database contains a valid digital signature from a trusted
publisher whose certificate you have trusted, all components will run without the
need to make trust decisions. This is true whether you extract the database to a
trusted or an untrusted location. When you package a database that is untrusted or
one that contains an invalid digital signature, you will have to choose an option
from the message bar to trust the database each time you open it, unless you deploy
it to a trusted location.

. You must enable databases each time you open them if they are untrusted or you
place them in an untrusted location.

NOTE

Although Microsoft Office Access 2007 offers an improved security model, if your data
requires a higher level of security than what Access provides, you should store your
data on a server such as Microsoft SharePoint Services version 3 or SQL Server
2005. Your Access forms and reports can then access the data stored on the server.
For more information on integrating Access 2007 with SharePoint services see
Chapter 21, “Access 2007 and SharePoint.”

What Happened to User-Level Security?
As discussed in the “What’s New in Access 2007 Security?” section of this chapter,
Microsoft has eliminated user-level security, unless you keep your database in the old .MDB
file format. If you opt to keep your database in the old file format (.MDB), user-level secu-
rity will work just as it did in Access 2003. Unfortunately, you will not be able to take
advantage of most of the new features available with Access 2007. For example, you will
not be able to use rich text in Memo fields. After you convert your database to the Access
2007 file format (.ACCDB), Access strips user-level security from the database, and it will
no longer be available to you.

If you do keep your database in the .MDB file format, you need to be aware that, by
default, Access disables all potentially unsafe code. You must first trust the database before
the code in your database will run.

What Happened to User-Level Security? 1105

3
1

Trusting a Database
Whether you create your database in the .MDB or .ACCDB format, you will need to trust the
database before you can run any code within it. You can opt to trust that database for the
current session, or you can trust the database permanently. The text that follows shows
what’s involved for each scenario.

Trusting a Database for the Current Session
One option is to trust a database while it is open. This process is quite simple. When you
open the database, the message bar appears with a security warning that certain content
in the database has been disabled (refer to Figure 31.1). After you click the Options
button, the Microsoft Office Security Options dialog box appears (see Figure 31.2). Here,
either you can opt to enable the content contained in the database, or you can have
Access disable the code within the database. If you click Enable This Content, the data-
base is fully functional as long as it is open.

CHAPTER 31 Database Security Made Easy1106

FIGURE 31.2 The Microsoft Office Security Options dialog box allows you to trust a data-
base for the current session.

Trusting a Database Permanently
Sometimes you know a database is safe, and you want to permanently enable its function-
ality. To do this, you need to create a trusted location. The steps are as follows:

1. Click to open the Microsoft Access button. You don’t need to open the database that
you want to trust.

2. Click Access Options. The Access Options dialog box appears.

3. Click to select Trust Center. The Access Options dialog box appears, as shown in
Figure 31.3.

Trusting a Database 1107

3
1

FIGURE 31.3 The Trust Center page of the Access Options dialog box allows you to create a
trusted location.

4. Click Trust Center Settings. The Trust Center dialog box appears. Select Trusted
Locations on the left side of the dialog box. Your screen appears as shown in
Figure 31.4.

5. Click the Add New Location button. The Microsoft Office Trusted Location dialog
box appears (see Figure 31.5).

6. Browse to select the location whose content you want to trust.

7. Indicate whether you want to trust subfolders as well.

8. Click OK after making your selections. The Trusted Locations dialog box appears
with the new trusted location.

9. To complete the process, you must move the database to the trusted location (unless
it is already there). With the database open, click the Microsoft Office button.

10. Select Save As, Access 2007 Database.

11. Navigate to the trusted location and then click Save. When you open any databases
in the trusted location, the message bar does not appear.

FIGURE 31.4 You use the Trust Center dialog box to add a trusted location.

CHAPTER 31 Database Security Made Easy1108

FIGURE 31.5 The Microsoft Office Trusted Location dialog box allows you to designate the
specifics of the trusted location.

NOTE

An alternative to steps 9–11 is to close the database and then copy it to the
trusted folder.

Using a Database Password to Encrypt an Office
Access 2007 Database
The Encryption tool in Microsoft Office Access 2007 replaces two features available in
Access 2003: database encryption and the database password. The following are the steps
necessary to encrypt an Access 2007 database:

1. Open the database in Exclusive mode. To do this, select Open Exclusive from the
Open drop-down in the Open dialog box (see Figure 31.6).

Using a Database Password to Encrypt an Office Access 2007 Database 1109

3
1

FIGURE 31.6 To encrypt a database, you must open it with the Open Exclusive option.

2. After you have opened the database, switch to the Database Tools tab.

3. Select Encrypt with Password in the Database Tools group. The Set Database
Password dialog box appears (see Figure 31.7).

FIGURE 31.7 You use the Set Database Password dialog box to enter a password for the
database.

4. Enter and verify the desired password and then click OK. The status bar will inform
you that Access is encrypting the database.

5. Close and reopen the database. The Password Required dialog box appears (see
Figure 31.8).

6. Enter the password and click OK. The database will now function as usual.

CHAPTER 31 Database Security Made Easy1110

FIGURE 31.8 When you open an encrypted database, Access prompts you for a password.

Removing a Password from a Database
Removing a password from a database is quite simple. Here are the steps involved:

1. Open the database in Exclusive mode.

2. Select the Decrypt Database option in the Database Tools group of the Database
Tools tab. The Unset Database Password dialog box appears (see Figure 31.9).

3. Enter the password for the database and click OK. Access removes the database
password.

FIGURE 31.9 To remove a password from a database, you must supply the existing
password.

Packaging, Signing, and Distributing an
Access Database
Access 2007 makes the process of packaging, signing, and distributing an Access database
very simple. After you create an .ACCDB or .ACCDE file, you package the file, apply a digital
signature to the database, and then distribute the signed package to other users. The
process of packaging and signing a database generates an Access Deployment (.ACCDC) file
and places it in a designated location. The following are some facts that you should be
aware of before you begin the process of packaging, signing, and distributing an Access
database:

. You can use the new Access 2007 Package-and-Sign feature only on databases stored
in the Access 2007 file format (.ACCDB or .ACCDE).

. Each package can contain only one database.

. When you use the Package-and-Sign feature, Access signs all objects in the database
(not just code and macros).

. The packaging process generates a compressed file that facilitates the process of
downloading a package.

Now that you are aware of some of the details applicable to the process, you can take the
following steps:

1. Create a self-signed certificate.

2. Create a signed package.

3. Extract and use a signed package.

Creating a Self-Signed Certificate
As outlined in the preceding section, the first step in the process of packaging a database
is to create a self-signed certificate. To do that, follow these steps:

1. From the Start menu, select All Programs, Microsoft Office, Microsoft Office Tools,
Digital Certificate for VBA Projects. The Create Digital Certificate dialog box appears
(see Figure 31.10).

Packaging, Signing, and Distributing an Access Database 1111

3
1

FIGURE 31.10 You use the Create Digital Certificate dialog box to create a new certificate.

2. Enter a name for the new certificate.

3. Click OK. A message appears, indicating that the new certificate was created success-
fully (see Figure 31.11).

FIGURE 31.11 Access informs you when the certificate is successfully created.

4. Click OK to complete the process.

Creating a Signed Package
Now that you have created a signed certificate, you are ready to create a signed package.
Here’s how:

1. Open the database that you want to package and sign.

2. Click the Microsoft Office button and then select Publish, Package and Sign (see
Figure 31.12). The Select Certificate dialog box appears (see Figure 31.13).

3. Select a digital certificate and click OK. The Create Microsoft Office Access Signed
Package dialog box appears (see Figure 31.14).

CHAPTER 31 Database Security Made Easy1112

FIGURE 31.12 Select Publish, Package and Sign to create a signed package.

FIGURE 31.13 The Select Certificate dialog box allows you to select a digital certificate.

Packaging, Signing, and Distributing an Access Database 1113

3
1

FIGURE 31.14 The Create Microsoft Office Access Signed Package dialog allows you to
enter information about the signed package.

4. Supply a name and location for the signed package and then click Create. Access
creates the .ACCDC file and places it in the location that you designated.

Extracting and Using a Signed Package
When you are ready to use the packaged database, you extract and use the signed
package. Here are the steps involved:

1. With Access open, click the Microsoft Office button and select Open. The Open
dialog box appears.

2. From the Files of Type drop-down, select Microsoft Office Access Signed Packages
(see Figure 31.15).

CHAPTER 31 Database Security Made Easy1114

FIGURE 31.15 From the Files of Type drop-down, select Microsoft Office Access Signed
Packages.

3. Select the .ACCDC file that you want to extract and click Open. The Microsoft Office
Access Security Notice, shown in Figure 31.16, appears.

FIGURE 31.16 The Microsoft Office Access Security Notice allows you to designate certifi-
cate options.

4. If you want to trust all certificates from the publisher of the database, you can click
the appropriate button. If you just want to trust this database, click Open. The
Extract Database To dialog box appears.

5. Select a name and location for the extracted database and click Open. Access
extracts the database and opens it.

Using the Trust Center
You use the Trust Center to change security and privacy settings in Microsoft Access. Take
the following steps to work with the Trust Center:

1. Click the Microsoft Office button and select Access Options.

2. Select Trust Center on the left side of the Access Options dialog box.

3. Click Trust Center Settings. The Trust Center dialog box appears. Here, you can set
the various security settings for Microsoft Office Access 2007.

Working with the Message Bar
The message bar provides quite a bit of valuable information. Access displays security
alerts, workflow tasks, server document information, and policy messages. The message
bar appears by default whenever it is appropriate. You can use the Trust Center to control
when the message bar displays (see Figure 31.17). The first option shows all appropriate
security messages. The second option hides the message bar in all situations. This feature
interacts with the Disable All Macros Without Notification option. If you click Disable All
Macros Without Notification, you won’t get message bar alerts. If you select Never Show
Information About Blocked Content, you will not receive any warnings about security
issues, regardless of the other settings that you have selected in the Trust Center.

Using the Trust Center 1115

3
1

FIGURE 31.17 The message bar options of the Trust Center dialog box allow you to control
when the message bar displays.

Using Privacy Settings
A homograph is one of two or more words that are spelled the same but have different
meanings or pronunciations. An example is bass, meaning a fish or the lowest voice in a
four-part chorus. In Internet terms, a homograph is a website that sounds like a well-
known website but actually links you to a website that isn’t legitimate. Phishers spoof the
domain names of banks, credit card issuers, and other companies to gather your personal
information. Links in your application can open you and your users up to homograph
attacks and phishing schemes. Fortunately, the Trust Center can help to protect you and
your users from homograph attacks and phishing schemes.

By default, you get security alerts whenever you have a document open and you click to
navigate to a website that has potentially been spoofed. Access also warns you when you
attempt to open a file from a website with an address that has a potentially spoofed
domain name.

Working with Access Macros and VBA Code
You use macros to automate frequently used tasks. Unfortunately, a hacker can place a
virus in an Access database that can propagate to your machine or even your network. For
this reason, Access protects you against potentially unsafe macros and VBA code. You use
the Macro Settings options in the Trust Center to control how your application reacts to
macros (see Figure 31.18).

CHAPTER 31 Database Security Made Easy1116

FIGURE 31.18 The Macro Settings allow you to determine what happens when your applica-
tion contains a macro or VBA code.

If you choose Disable All Macros Without Notification, no macros run. If you want to run
macros in a database with this setting in place, you must place any unsigned macros in a
trusted location. The Trust Center ignores databases located in a trusted location.

If you choose Disable All Macros with Notification, Access disables macros but provides
you with a warning that macros are present. This is the default setting. It’s up to you as to
whether you want to enable macros in each database. When you enable a macro, it is
active only for the current session.

If you choose Disable All Macros Except Digitally Signed Macros, Access disables all
macros, except those with a digital signature from a trusted publisher. With this option,
Access notifies you that a publisher is not trusted. You are given the option of enabling
the signed macros or of trusting the publisher. Access disables all unsigned macros
without notification.

If you select the Enable All Macros option, you allow all macros in all databases to run
without warning. This option is potentially very dangerous, and you should give some
deep thought as to whether you really want to select it.

Security Tips and Tricks
There are certain situations regarding macros that you should know about. The first situa-
tion that you should know about is when a macro is not signed. You therefore cannot
verify the publisher. Unless you know that the macro was from a trustworthy source, you
should not enable the macros. With Microsoft Office Access 2007, you can do anything
with a disabled database except run macros and VBA code.

The second situation is when the macro has been digitally signed but the signature has
expired. As with the first situation, you should not run the macros contained in the data-
base except if you know that the database is from a trustworthy source.

The next situation is when the macro signature is invalid. As with the preceding two situ-
ations, you should not run macros in a database with an invalid signature. In fact, the
reason that the signature may not be valid is that someone tampered with it!

Another situation is when the macro signature is not trusted. In this case, the signature is
valid, but you haven’t yet opted to trust the publisher. When this situation occurs, a secu-
rity dialog box appears, allowing you to trust all macros provided from the publisher of
the database that you are opening. When you select that option, you are adding the
publisher to the Trusted Publishers list in the Trust Center.

Working with Trusted Locations
The Trusted Locations portion of the Trust Center appears as shown in Figure 31.19.
Using trusted locations, you can eliminate the need to enable the macros in a database
each time you open it. You can leave the security settings at the default value, requiring
you to enable macros in each of your databases that are not in a trusted location. Macros
in any databases placed in a trusted location are automatically enabled, and you won’t
receive security alerts.

Using the Trust Center 1117

3
1

CHAPTER 31 Database Security Made Easy1118

FIGURE 31.19 The Trusted Locations part of the Trust Center allows you to manage the
locations of your files.

You can place your databases with macros and VBA code in a directory on your local
machine or in a directory on the network. There are a couple of issues you should be
aware of with each option. If you store your macros on your local machine, make sure
that you use a Microsoft Windows logon password to protect your computer. This will
keep people from tampering with your macros or your Access settings. Storing your data-
bases on a network drive is less secure. The reason is that more people have access to
them. Do not place your files in a public folder on a network share because they are very
susceptible to tampering. Finally, if you opt to store your files on your local machine, do
not place them within the Documents or My Documents folders because this will greatly
increase your security risk. Instead, place them in a subfolder within the Documents or
My Documents folders and make that folder the trusted location.

Creating a Trusted Location
To create a trusted location, you must first go to the Trusted Locations page of the Trust
Center. Here’s the process.

1. Click the Microsoft Office button and select Access Options. The Access Options
dialog box appears.

2. Click Trust Center on the left side of the dialog box.

3. Click the Trust Center Settings command button. The Trust Center dialog box
appears.

4. Click Trusted Locations on the left side of the dialog box. Your dialog box appears as
shown previously in Figure 31.19.

5. Click Add New Location. The Microsoft Office Trusted Location dialog box appears
(see Figure 31.20).

Using the Trust Center 1119

3
1

FIGURE 31.20 The Microsoft Office Trusted Location dialog box allows you to add trusted
locations.

6. Enter the path for the trusted location and indicate whether you also want to trust
subfolders. Finally, you can enter a description of the location that you are adding.

7. Click OK to complete the process. The location that you added appears in the list of
trusted locations.

Removing a Trusted Location
Just as you can add a trusted location, you can remove one as well. Here are the steps
involved:

1. Click the Microsoft Office button and select Access Options. The Access Options
dialog box appears.

2. Click Trust Center on the left side of the dialog box.

3. Click the Trust Center Settings command button. The Trust Center dialog box
appears.

4. Click Trusted Locations on the left side of the dialog box.

5. Select the location that you want to remove.

6. Click the Remove button. Access removes the location without warning.

Modifying a Trusted Location
Sometimes you will want to modify the settings associated with a Trusted Location. To do
so, follow these steps:

1. Click the Microsoft Office button and select Access Options. The Access Options
dialog box appears.

2. Click Trust Center on the left side of the dialog box.

3. Click the Trust Center Settings command button. The Trust Center dialog box
appears.

4. Click Trusted Locations on the left side of the dialog box.

5. Select the location that you want to modify.

6. Click the Modify button. The Microsoft Office Trusted Location dialog box appears
(the same dialog box that allowed you to add a trusted location).

7. Make the desired changes and click OK to close the dialog box.

Working with Trusted Publishers
Just as you can trust a file location, you can also trust publishers of database files. The
Trusted Publishers page of the Trust Center dialog box appears as shown in Figure 31.21.
In the figure, you can see the list of trusted publishers. To view a certificate, click the View
button. The Certificate dialog box appears. The General tab of the dialog box, pictured in
Figure 31.22, shows general information about the certificate. The Details tab, pictured in
Figure 31.23, shows additional information about the certificate. The Certification Path
tab shows you a tree of levels of certification (see Figure 31.24). If you click one of the
levels and then click View Certificate, you will see the certificate associated with another
certificate in the certification path.

CHAPTER 31 Database Security Made Easy1120

FIGURE 31.21 You use the Trust Center dialog box to view a list of trusted publishers.

Using the Trust Center 1121

3
1

FIGURE 31.22 You can easily view the certificate associated with a trusted publisher.

FIGURE 31.23 The Details tab shows additional information about a publisher.

CHAPTER 31 Database Security Made Easy1122

FIGURE 31.24 Using the Certification Path tab, you can see publishers included in the certi-
fication process.

Understanding How Databases Behave When
Trusted and Untrusted
Unless a database has a digital signature or is located in a trusted location, Access disables
several features. The following is a list of differences between a trusted and untrusted
database:

. All VBA code is disabled.

. All unsafe expressions (certain formulas and functions in the database) are disabled.

. Unsafe actions in all macros are disabled. Unsafe actions include any functionality
that could potentially modify the database or gain access to resources outside the
database.

. Action queries, data definition language (DDL) queries, and SQL pass-through
queries are all disabled.

. All ActiveX controls are disabled.

Working in Sandbox Mode
By default, when you are working in Access, you are working in Sandbox mode. With
Sandbox mode enabled, Access blocks all expressions that it considers unsafe. These
expressions include commands such as Kill and Shell that could be used to damage data
and files on a computer. Sometimes you will want to execute such commands in a data-
base located in a trusted location or with a valid trust signature. In those situations, you
can disable Sandbox mode. Unfortunately, you can make this change only by modifying
the Registry.

CAUTION

Modifying the Registry is a dangerous proposition. If you make a mistake when modify-
ing the Registry, you can render your computer unusable. It is therefore important that
you carefully back up all important data on your computer before you attempt to make
the desired changes to the Registry.

To disable Sandbox mode in Windows Vista, follow these steps:

1. Close all running instances of Microsoft Access.

2. Select Start, All Programs, Accessories.

3. Click Run. The Open dialog box appears.

4. Type regedit and press Enter. The Registry Editor appears.

5. Expand the HKEY_LOCAL_MACHINE branch of the Registry.

Working in Sandbox Mode 1123

3
1

6. Navigate to the key \Software\Microsoft\Office\12.0\Access Connectivity
Engine\Engines.

7. In the right pane of the Registry Editor, under Name, double-click SandboxMode.
The Edit DWORD Value dialog box appears.

8. Change the Value Data field from 3 to 2 and click OK.

9. Close the Registry Editor.

To disable Sandbox mode in Microsoft Windows XP or Microsoft Windows Server 2003,
follow these steps:

1. Close all running instances of Microsoft Access.

2. Select Start, Run. The Open dialog box appears.

3. Type regedit and press Enter. The Registry Editor appears (see Figure 31.25).

CHAPTER 31 Database Security Made Easy1124

FIGURE 31.25 Using the Registry Editor, you can disable Sandbox mode.

4. Expand the HKEY_LOCAL_MACHINE branch of the Registry.

5. Navigate to the key \Software\Microsoft\Office\12.0\Access Connectivity
Engine\Engines.

6. In the right pane of the Registry Editor, under Name, double-click SandboxMode.
The Edit DWORD Value dialog box appears (see Figure 31.26).

FIGURE 31.26 Change the SandboxMode value from 3 to 2.

7. Change the Value Data field from 3 to 2 and click OK.

8. Close the Registry Editor.

Removing User-Level Security
The only way to remove user-level security while working with Microsoft Office Access
2007 is to convert the .MDB file to an .ACCDB file. The database that you are converting
cannot be encrypted, and you must belong to the Admins group of the workgroup used
to secure the database.

To convert a database to the .ACCDB file format, take the following steps:

1. Click the Microsoft Office button and select Convert. The Save As dialog box
appears.

2. From the Save In list, select a location for the database.

3. Make sure that you set the Save As type to Microsoft Office Access 2007 Database
(.ACCDB).

An alternative is to use the Save As command to save an Access database in the .ACCDB
format. Here are the steps involved:

1. Click the Microsoft Office button and select Save As, Access 2007 File Format. The
Save As dialog box appears.

2. From the Save In list, select a location for the database.

3. Make sure that you set the Save As type to Microsoft Office Access 2007 Database
(.ACCDB).

4. Click Save to complete the process.

Enabling or Disabling ActiveX Controls
ActiveX controls are programs that do not run as standalone applications. Instead, ActiveX
controls reside within a Microsoft Office file or within a browser such as Internet Explorer.
ActiveX controls add rich functionality to your applications. For example, you can use an

Enabling or Disabling ActiveX Controls 1125

3
1

ActiveX control to add scheduling features to an Access database. ActiveX controls have
full access to your computer. This makes them very powerful. For example, ActiveX
controls can access the local file system and can change Registry settings of your operat-
ing system. This makes them potentially very dangerous. A hacker can use an ActiveX
control to render Windows unusable!

You can take two steps to help ensure that ActiveX controls do not cause harm to your
computer. First, as the developer, you can design ActiveX controls with security in mind.
Second, you can use the Trust Center to check for two settings before the ActiveX control
is loaded. It is important that the kill bit on the control is set in the Registry. This
prevents controls that have a known exploit from being loaded. If the kill bit is set, Access
will not load the control under any circumstances. Another important step is to ensure
that the control is marked Safe for Initialization (SFI). The developer marks the control
as SFI to verify the safety of the control. If the control is determined to be Unsafe for
Initialization (UFI), the Trust Center applies additional restrictions on it. If a database
contains VBA code (or macros) and ActiveX controls, the Trust Center applies even further
restrictions.

If you load a database containing an ActiveX control, you will receive a Security Warning
in the message bar. You must click Options and then select Enable This Content before
the ActiveX control becomes usable. The exception to this scenario is if the database is
either signed or placed in a trusted location. If the kill bit is set, the ActiveX control will
not be enabled in either of those situations.

You can use the Trust Center to change ActiveX security settings for all your databases.
Here’s the process:

1. Click the Microsoft Office button and select Access Options. The Access Options
dialog box appears.

2. Click Trust Center on the left side of the dialog box.

3. Click the Trust Center Settings command button. The Trust Center dialog box
appears.

4. Click ActiveX Settings. Here, you can disable all ActiveX controls without notifica-
tion, you can ask to be prompted before enabling Unsafe for UFI controls with addi-
tional restrictions and SFI controls with minimal restrictions, you can ask to be
prompted before enabling all controls with minimal restrictions, or you can enable
all controls without restrictions and without prompting. I do not recommend the
final option because it opens you up for significant damage to your computer.

Enabling or Disabling Add-Ins
An add-in increases functionality to an Access application. An example is XML schemas.
An add-in extends the capabilities of Microsoft Access. As with ActiveX controls, you can
determine how Access handles add-ins. Here’s how:

1. Click the Microsoft Office button and select Access Options. The Access Options
dialog box appears.

CHAPTER 31 Database Security Made Easy1126

2. Click Trust Center on the left side of the dialog box.

3. Click the Trust Center Settings command button. The Trust Center dialog box
appears.

4. Click Add-Ins. The screen appears as shown in Figure 31.27. The first option is
Require Application Add-Ins to Be Signed by Trusted Publisher. The second option
is Disable Notification for Unsigned Add-Ins. This option becomes available only
when you select the first option. Finally, you can choose Disable All Application
Add-Ins. It is important to note that this option may significantly impair the func-
tionality of your application.

Adding a Trusted Publisher 1127

3
1

FIGURE 31.27 You can determine how Access reacts to add-ins.

Adding a Trusted Publisher
Earlier in this chapter, you learned how to view and remove Trusted Publishers. In this
section, you learn how to add a Trusted Publisher. Before you add a Trusted Publisher, it is
important that you understand when you should consider the developer of a database to
be a Trusted Publisher. The following criteria should help you out:

. The code in the project is signed by the developer with a digital signature.

. The digital signature is considered valid.

. The digital signature is current. (It hasn’t expired.)

. The certificate associated with the digital signature was issued by a reputable certifi-
cate authority (CA).

. The developer who signed the code project is a trusted publisher.

When you open a document containing macros and the document has been signed, one
of the choices is Trust All from Publisher (see Figure 31.28). This option appears only if
the signature for the document is valid. Simply select Trust All from Publisher, and all
future databases published by that publisher will be considered safe.

CHAPTER 31 Database Security Made Easy1128

FIGURE 31.28 You can trust all databases created by a particular publisher.

Practical Examples: Securing an Access
2007 Database
To secure an Access 2007 database, add a database password to an Access 2007 database of
your choice. Then test the database to ensure that you can open it properly. Add a digital
signature to the database and place it in a trusted location. Notice that you no longer
have to enable macros and VBA code. Finally, practice using the Trust Center to work
with the message bar, modify privacy settings, work with trusted locations, and work with
trusted publishers.

Summary
Security in Access 2007 is dramatically different from that of its predecessors. User-level
security is not available with the new .ACCDB file format. Instead, you can add a password
to an Access database and encrypt it so that no one can view it with a tool such as a text
editor. Whereas macros and VBA code ran without restriction in Access 2003 and lower,
they will not run in Access 2007 unless the database has a valid digital signature or is
placed in a trusted folder. It is important that you understand the specifics of Microsoft
Office Access 2007 security so that your users will be able to properly take advantage of
your macros and VBA code.

PART VI

Appendixes

The following appendixes are available for download
at www.samspublishing.com/title/0672329328.

IN THIS PART

APPENDIX A Naming Conventions PDF:1131

APPENDIX B Table Structures PDF:1137

www.samspublishing.com/title/0672329328

This page intentionally left blank

APPENDIX A

Naming Conventions

This appendix gives you suggestions for naming variables
and other database objects. The suggested standards are
based on the Reddick VBA Naming Conventions (RVBA),
which are commonly accepted in the industry.

When you’re creating variable names, it’s important to
make the type and intended use of each variable clear and
self-documenting. Here are a few rules to follow:

. Remember to always make variable names mixed
case, with each word or abbreviation in the variable
name capitalized.

. Don’t use underscore characters in your variable
names.

. Abbreviate variable names only when it’s necessary.

. Make the beginning of each variable name describe
the type of data it contains.

Following these conventions will go a long way toward
keeping your code concise and readable. The format for an
object is

[prefixes]tag[BaseName[Suffixes]]

A prefix appears in lowercase and is used to indicate addi-
tional information, such as the scope of a variable. The tag
also appears in lowercase. It is a short set of characters that
indicate the type of an object. Use the BaseName to indicate
what the object represents. Capitalize the first letter of each
word in the BaseName. Suffixes, when used, provide addi-
tional information about the meaning of the BaseName. An
example of a name for an object is

mstrFirstName

Use the prefix m to indicate that the variable appears at the module level. The tag str
indicates that the variable contains a string. The BaseName FirstName indicates that the
variable holds a first name. Table A.1 recommends prefixes for Access object tags.

TABLE A.1 Recommended Prefixes for Access Object Tags

Prefix Control Type Example

app Application appInfoBase

chk CheckBox chkReadOnly

cbo ComboBox cboLanguages

cmd CommandButton cmdRefreshTable

ctl Control ctlAny

ctls Controls ctlsAll

ocx CustomControl ocxCalendar

dap DataAccessPage dapCustomers

dcm DoCmd dcmOpenForm

fcd FormatCondition fcdOverDue

fcds FormatConditions fcdsRules

frm Form frmDataEntryView

frms Forms frmsClientsAndOrders

hyp Hyperlink hypCustomers

img Image imgHeadShot

lbl Label lblShowAllCheckBox

lin Line linDivider

lst ListBox lstLastTenSites

bas Module basErrorControl

ole ObjectFrame oleWorksheet

opt OptionButton optReadOnly

fra OptionGroup (frame) fraColorSchemes

brk PageBreak brkTopOfForm

pal PaletteButton palBackgroundColor

prps Properties prpsActiveForm

shp Rectangle shpHidableFrame

ref Reference refExcel

refs References refsApps

rpt Report rptOrders

rpts Reports rptsTodaysChanges

scr Screen scrSecondSplashScreen

sec Section secOrderDetail

fsub Subform fsubBillableHours

rsub SubReport rsubTopFiveSales

tab TabControl tabCustomer

txt TextBox txtAdditionalNotes

tgl ToggleButton tglShowFormatting

APPENDIX A Naming Conventions1132

Table A.2 lists prefix tags for standard variable types, as well as the storage space required
by each.

TABLE A.2 Standard Variable Data Type Tags

Prefix Data Type Storage Example

byte or byt Byte 1 Byte byteArray

bool or f Boolean 2 bytes boolSecurityClear

int Integer 2 bytes intLoop

lng Long 4 bytes lngEnv

sng Single 4 bytes sngValue

dbl Double 8 bytes dblValue

cur Currency 8 bytes curCostPerUnit

dat Date and Time 8 bytes datStartTime

obj Object Varies objActiveObject

str String 1 byte per character strFirstName

stf String (fixed length) 10 bytes + 1 byte per char stfSocNumber

var Variant 16 bytes + 1 byte per char varInput

Access 2003 provides the ActiveX Data Objects (ADO) Library. Table A.3 lists the recom-
mended tags for ADO.

TABLE A.3 Recommended ADO Tags

Prefix Object Type

cmd Command
cnn Connection
err Error
errs Errors
fld Field
flds Fields
prm Parameter
prms Parameters
prp Property
prps Properties
rst Recordset

The Access Database Engine uses objects you might need to refer to in VBA code. Table
A.4 lists the Jet and Access Database Engine object types and their standard naming
prefixes.

APPENDIX A Naming Conventions 1133

A

TABLE A.4 Jet and Access Database Engine Object/Collection Prefixes

Prefix Object Type

cnt Container
cnts Containers
db Database
dbs Databases
dbe DBEngine
doc Document
docs Documents
err Error
errs Errors
fld Field
flds Fields
grp Group
grps Groups
idx Index
idxs Indexes
prm Parameter
prms Parameters
pdbe PrivDBEngine
prp Property
prps Properties
qry (or qdf) QueryDef
qrys (or qdfs) QueryDefs
rst Recordset
rsts Recordsets
rel Relation
rels Relations
tbl (or tdf) TableDef
tbls (or tdfs) TableDefs
usr User
usrs Users
wrk Workspace
wrks Workspaces

In addition to the standard notations for variables, there are variable notations for scope
and lifetime. They should be placed at the beginning of the variable, before any other
prefix. Table A.5 lists the scope and lifetime prefixes.

APPENDIX A Naming Conventions1134

TABLE A.5 Prefixes for Scope and Lifetime

Prefix Description

(None) Local variable, procedure-level lifetime
s Local variable, program-level lifetime (static variable)
m Private (module) variable, program-level lifetime
g Public (global) variable, program-level lifetime

Table A.6 lists general naming convention tags for the Navigation Pane objects.

TABLE A.6 Tags for Navigation Pane Objects

Prefix Object Type

tbl Table
qry Query
frm Form
rpt Report
mcr Macro
dap DataAccessPage
bas Module

There are two sets of naming conventions you can use when naming specific database
window objects: Either use the prefix for the general object prefix from the table, or
supply one of the more descriptive tags listed in Table A.7.

TABLE A.7 Tags for Specific Navigation Pane Objects

Prefix Suffix Object Type

tlkp Lookup Table (lookup)
qsel (none) Query (select)
qapp Append Query (append)
qxtb XTab Query (crosstab)
qddl DDL Query (DDL)
qdel Delete Query (delete)
qflt Filter Query (filter)
qlkp Lookup Query (lookup)
qmak MakeTable Query (make table)
qspt PassThru Query (SQL pass-through)

APPENDIX A Naming Conventions 1135

A

TABLE A.7 Continued

Prefix Suffix Object Type

qtot Totals Query (totals)
quni Union Query (union)
qupd Update Query (update)
fdlg Dlg Form (dialog)
fmnu Mnu Form (menu)
fmsg Msg Form (message)
fsfr Subform Form (subform)
rsrp SubReport Form (subreport)
mmnu Mnu Macro (menu)

APPENDIX A Naming Conventions1136

IN THIS APPENDIX

. The tblClients Table

. The tblClientAddresses
Table

. The tblAddressTypes Table

. The tblClientPhones Table

. The tblPhoneTypes Table

. The tblCorrespondence Table

. The tblCorrespondenceTypes
Table

. The tblTerms Table

. The tblContactType Table

. The tblCompanyInfo Table

. The tblEmployees Table

. The tblErrorLog Table

. The tblErrors Table

. The tblExpenseCodes Table

. The tblPaymentMethods Table

. The tblPayments Table

. The tblProjects Table

. The tblTimeCardExpenses
Table

. The tblTimeCardHours Table

. The tblTimeCards Table

. The tblWorkCodes Table

APPENDIX B

Table Structures

This appendix gives you a complete listing of all the tables
included in the hypothetical time and billing application.
Each table includes the following:

. A list of the field names, types, and lengths of each
field in the table

. A detailed list of the properties associated with each
field in the table

The tblClients Table
The tblClients table stores pertinent information about each client, such as the
company name, contact name, and phone numbers.

TABLE B.1 The tblClients Table

Field Name Type Size (Bytes)

AssociatedWith Text 30
ClientID AutoNumber (Long) 4
CompanyName Text 50
ContactFirstName Text 30
ContactLastName Text 50
ContactTitle Text 50
ContactTypeID Number (Long) 4
DefaultRate Currency 8
HomePage Hyperlink
IntroDate Date/Time 8
Miles Number (Long) 4
Notes Memo (Varies)
ReferredBy Text 30
TermTypeID Number (Long) 4

TABLE B.2 The Field Properties for Each Field in the tblClients Table

Property Value

ClientID Number (Long)

AllowZeroLength False

Attributes Fixed size, auto-increment

Caption Client ID

CollatingOrder General

ColumnHidden False

ColumnOrder Default

ColumnWidth Default

OrdinalPosition 0
Required False

SourceField ClientID

SourceTable tblClients

CompanyName Text

AllowZeroLength False

Attributes Variable length

Caption Company Name

APPENDIX B Table Structures1138

Property Value

CompanyName Text

CollatingOrder General

ColumnHidden False

ColumnOrder Default

ColumnWidth Default

DisplayControl Text Box

OrdinalPosition 1
Required True

SourceField CompanyName

SourceTable tblClients

ContactFirstName Text

AllowZeroLength False

Attributes Variable length

Caption Contact First Name

CollatingOrder General

ColumnHidden False

ColumnOrder Default

ColumnWidth Default

DisplayControl Text Box

OrdinalPosition 7
Required False

SourceField ContactFirstName

SourceTable tblClients

ContactLastName Text

AllowZeroLength False

Attributes Variable length

Caption Contact Last Name

CollatingOrder General

ColumnHidden False

ColumnOrder Default

ColumnWidth Default

DisplayControl Text Box

OrdinalPosition 8
Required False

SourceField ContactLastName

SourceTable tblClients

The tblClients Table 1139

B

TABLE B.2 Continued

Property Value

ContactTitle Text

AllowZeroLength False

Attributes Variable length

Caption Contact Title

CollatingOrder General

ColumnHidden False

ColumnOrder Default

ColumnWidth Default

DisplayControl Text Box

OrdinalPosition 9
Required False

SourceField ContactTitle

SourceTable tblClients

ContactTypeID Long Integer

AllowZeroLength False

Attributes Fixed size

Caption Contact Type ID

CollatingOrder General

ColumnHidden False

ColumnOrder Default

ColumnWidth Default

DataUpdatable False

DecimalPlaces Auto

DisplayControl Text Box

OrdinalPosition 6
Required False

ReferredBy Text

AllowZeroLength False

Attributes Variable length

Caption Referred By

CollatingOrder General

ColumnHidden False

ColumnOrder Default

ColumnWidth Default

DisplayControl Text Box

OrdinalPosition 15
Required False

SourceField ReferredBy

SourceTable tblClients

APPENDIX B Table Structures1140

TABLE B.2 Continued

Property Value

AssociatedWith Text

AllowZeroLength False

Attributes Variable length

Caption Associated With

CollatingOrder General

ColumnHidden False

ColumnOrder Default

ColumnWidth Default

DisplayControl Text Box

OrdinalPosition 16
Required False

SourceField Associated With

SourceTable tblClients

IntroDate Date/Time

AllowZeroLength False

Attributes Fixed size

Caption Intro Date

CollatingOrder General

ColumnHidden False

ColumnOrder Default

ColumnWidth Default

DefaultValue =Date()

OrdinalPosition 17
Required True

SourceField IntroDate

SourceTable tblClients

ValidationRule <=Date()

ValidationText Date Entered Must Be On Or Before Today

DefaultRate Currency

AllowZeroLength False

Attributes Fixed size

Caption Default Rate

CollatingOrder General

ColumnHidden False

ColumnOrder Default

ColumnWidth Default

DecimalPlaces 255
DefaultValue 125

The tblClients Table 1141

B

TABLE B.2 Continued

Property Value

DefaultRate Currency

Format Currency

OrdinalPosition 18
Required False

SourceField DefaultRate

SourceTable tblClients

ValidationRule Between 75 and 150

ValidationText Rate must be between 75 and 150

Notes Memo

AllowZeroLength False

Attributes Variable length

CollatingOrder General

ColumnHidden False

ColumnOrder Default

ColumnWidth Default

OrdinalPosition 19
Required False

SourceField Notes

SourceTable tblClients

Miles Long Integer

AllowZeroLength False

Attributes Fixed size

CollatingOrder General

ColumnHidden False

ColumnOrder Default

ColumnWidth Default

DataUpdatable False

DecimalPlaces Auto

DisplayControl Text Box

OrdinalPosition 17
Required False

SourceField Miles

SourceTable tblClients

TermTypeID Long Integer

AllowZeroLength False

Attributes Fixed size

Caption Term Type ID

APPENDIX B Table Structures1142

TABLE B.2 Continued

Property Value

TermTypeID Long Integer

CollatingOrder General

ColumnHidden False

ColumnOrder Default

ColumnWidth Default

DataUpdatable False

DecimalPlaces Auto

DisplayControl Text Box

OrdinalPosition 18
Required False

SourceField TermTypeID

SourceTable tblClients

HomePage Hyperlink

AllowZeroLength False

Attributes Variable length

Caption Home Page

CollatingOrder General

ColumnHidden False

ColumnOrder Default

ColumnWidth Default

OrdinalPosition 20
Required False

SourceField HomePage

SourceTable tblClients

The tblClientAddresses Table
The tblClientAddresses table stores the addresses for a client. One client can have multi-
ple addresses. Each address has a specific address type.

TABLE B.3 The tblClientAddresses Table

Field Name Type Size (Bytes)

Address1 Text 50
Address2 Text 50
AddressID Auto Number (Long) 4
AddressTypeID Long Integer 4
ClientID Long Integer 4

The tblClientAddresses Table 1143

B

TABLE B.2 Continued

Field Name Type Size (Bytes)

PostalCode Text 20
StateProvince Text 20
Country Text 20

TABLE B.4 The Field Properties for Each Field in the tblClientAddresses Table

Property Value

AddressID Long Integer

AllowZeroLength False

Attributes Fixed size, auto-increment

Caption Address ID

CollatingOrder General

ColumnHidden False

ColumnOrder Default

ColumnWidth Default

DataUpdatable False

OrdinalPosition 1
Required False

SourceField AddressID

SourceTable tblClientAddresses

ClientID Long Integer

AllowZeroLength False

Attributes Fixed size

Caption Client ID

CollatingOrder General

ColumnHidden False

ColumnOrder Default

ColumnWidth Default

DataUpdatable False

DecimalPlaces Auto

DisplayControl Text Box

OrdinalPosition 2
Required False

SourceField ClientID

SourceTable tblClientAddresses

Address1 Text

AllowZeroLength False

Attributes Variable length

APPENDIX B Table Structures1144

TABLE B.3 Continued

Property Value

Address1 Text

Caption Address 1

CollatingOrder General

ColumnHidden False

ColumnOrder Default

ColumnWidth Default

DataUpdatable False

DisplayControl Text Box

IMEMode 0
IMESentenceMode 3
OrdinalPosition 3
Required False

SourceField Address1

SourceTable tblClientAddresses

UnicodeCompression True

Address2 Text

AllowZeroLength False

Attributes Variable length

Caption Address 2

CollatingOrder General

ColumnHidden False

ColumnOrder Default

ColumnWidth Default

DataUpdatable False

DisplayControl Text Box

IMEMode 0
IMESentenceMode 3
OrdinalPosition 4
Required False

SourceField Address2

SourceTable tblClientAddresses

UnicodeCompression True

City Text

AllowZeroLength False

Attributes Variable length

CollatingOrder General

ColumnHidden False

ColumnOrder Default

The tblClientAddresses Table 1145

B

TABLE B.4 Continued

Property Value

City Text

ColumnWidth Default

DataUpdatable False

DisplayControl Text Box

IMEMode 0
IMESentenceMode 3
OrdinalPosition 5
Required False

SourceField City

SourceTable tblClientAddresses

UnicodeCompression True

StateProvince Text

AllowZeroLength False

Attributes Variable length

Caption State/Province

CollatingOrder General

ColumnHidden False

ColumnOrder Default

ColumnWidth Default

DataUpdatable False

DisplayControl Text Box

IMEMode 0
IMESentenceMode 3
OrdinalPosition 6
Required False

SourceTable tblClientAddresses

UnicodeCompression True

PostalCode Text

AllowZeroLength False

Attributes Variable length

Caption Postal Code

CollatingOrder General

ColumnHidden False

ColumnOrder Default

ColumnWidth Default

DataUpdatable False

DisplayControl Text Box

IMEMode 0

APPENDIX B Table Structures1146

TABLE B.4 Continued

Property Value

PostalCode Text

IMESentenceMode 3
OrdinalPosition 7
Required False

SourceField PostalCode

SourceTable tblClientAddresses

UnicodeCompression True

Country Text

AllowZeroLength False

Attributes Variable length

CollatingOrder General

ColumnHidden False

ColumnOrder Default

ColumnWidth Default

DataUpdatable False

DisplayControl Text Box

IMEMode 0
IMESentenceMode 3
OrdinalPosition 8
Required False

SourceField Country

SourceTable tblClientAddresses

UnicodeCompression True

AddressTypeID Long Integer

AllowZeroLength False

Attributes Fixed size

Caption Address Type ID

CollatingOrder General

ColumnHidden False

ColumnOrder Default

ColumnWidth Default

DataUpdatable False

DecimalPlaces Auto

DisplayControl Text Box

OrdinalPosition 9
Required False

SourceField AddressTypeID

SourceTable tblClientAddresses

The tblClientAddresses Table 1147

B

TABLE B.4 Continued

The tblAddressTypes Table
The tblAddressTypes table stores the valid address types. It relates to the
tblClientAddresses table and is a lookup table for the AddressTypeID stored in the
tblClientAddresses table.

TABLE B.5 The tblAddressTypes Table

Field Name Type Size (Bytes)

AddressType Text 50
AddressTypeID AutoNumber (Long) 4

TABLE B.6 The Field Properties for Each Field in the tblAddressTypes Table

Property Value

AddressTypeID Long Integer

AllowZeroLength False

Attributes Fixed size, auto-increment

Caption Address Type ID

CollatingOrder General

ColumnHidden False

ColumnOrder Default

ColumnWidth Default

DataUpdatable False

OrdinalPosition 1
Required False

SourceField AddressTypeID

SourceTable tblAddressTypes

AddressType Text

AllowZeroLength False

Attributes Variable length

Caption Address Type

CollatingOrder General

ColumnHidden False

ColumnOrder Default

ColumnWidth Default

DataUpdatable False

DisplayControl Text Box

IMEMode 0
IMESentenceMode 3
OrdinalPosition 2
Required False

APPENDIX B Table Structures1148

Property Value

AddressType Text

SourceField AddressType

SourceTable tblAddressTypes

UnicodeCompression True

The tblClientPhones Table
The tblClientPhones table stores the phone numbers for a client. One client can have
multiple phone numbers. Each address has a specific phone type.

TABLE B.7 The Field Properties for Each Field in the tblClientPhones Table

Field Name Type Size (Bytes)

ClientID Long Integer 4
PhoneID AutoNumber (Long) 4
PhoneNumber Text 50
PhoneTypeID Long Integer 4

TABLE B.8 The Field Properties for Each Field in the tblClientPhones Table

Property Value

PhoneID Long Integer

AllowZeroLength False

Attributes Fixed size, auto-increment

Caption Phone ID

CollatingOrder General

ColumnHidden False

ColumnOrder Default

ColumnWidth Default

DataUpdatable False

OrdinalPosition 1
Required False

SourceField PhoneID

SourceTable tblClientPhones

ClientID Long Integer

AllowZeroLength False

Attributes Fixed size

Caption Client ID

CollatingOrder General

The tblClientPhones Table 1149

B

TABLE B.6 Continued

Property Value

ClientID Long Integer

ColumnHidden False

ColumnOrder Default

ColumnWidth Default

DataUpdatable False

DecimalPlaces Auto

DisplayControl Text Box

OrdinalPosition 2
Required False

SourceField ClientID

SourceTable tblClientPhones

PhoneNumber Text

AllowZeroLength False

Attributes Variable length

Caption Phone Number

CollatingOrder General

ColumnHidden False

ColumnOrder Default

ColumnWidth Default

DataUpdatable False

DisplayControl Text Box

IMEMode 0
IMESentenceMode 3
OrdinalPosition 3

Required False

SourceField PhoneNumber

SourceTable tblClientPhones

UnicodeCompression True

PhoneTypeID Long Integer

AllowZeroLength False

Attributes Fixed size

Caption Phone Type ID

CollatingOrder General

ColumnHidden False

ColumnOrder Default

ColumnWidth Default

DataUpdatable False

DecimalPlaces Auto

APPENDIX B Table Structures1150

TABLE B.8 Continued

Property Value

PhoneTypeID Long Integer

DisplayControl Text Box

OrdinalPosition 4
Required False

SourceField PhoneTypeID

SourceTable tblClientPhones

The tblPhoneTypes Table
The tblPhoneTypes table stores the valid phone types. It relates to the tblClientPhones
table and is a lookup table for the PhoneTypeID stored in the tblClientPhones table.

TABLE B.9 The tblPhoneTypes Table

Field Name Type Size (Bytes)

PhoneType Text 50
PhoneTypeID AutoNumber (Long) 4

TABLE B.10 The Field Properties for Each Field in the tblPhoneTypes Table

Property Value

PhoneTypeID Long Integer

AllowZeroLength False

Attributes Fixed size, auto-increment

Caption Phone Type ID

CollatingOrder General

ColumnHidden False

ColumnOrder Default

ColumnWidth Default

DataUpdatable False

OrdinalPosition 1

Required False

SourceField PhoneTypeID

SourceTable tblPhoneTypes

PhoneType Text

AllowZeroLength False

Attributes Variable length

Caption Phone Type

CollatingOrder General

ColumnHidden False

The tblPhoneTypes Table 1151

B

TABLE B.8 Continued

Property Value

PhoneType Text

ColumnOrder Default

ColumnWidth Default

DataUpdatable False

DisplayControl Text Box

IMEMode 0
IMESentenceMode 3
OrdinalPosition 2
Required False

SourceField PhoneType

SourceTable tblPhoneTypes

UnicodeCompression True

The tblCorrespondence Table
The tblCorrespondence table contains a history of correspondence made to a particular
client. It relates to the tblClients table.

TABLE B.11 The tblCorrespondence Table

Field Name Type Size (Bytes)

ClientID Long Integer 4
ConsultantID Long Integer 4
CorrespondenceID AutoNumber (Long) 4
CorrespondenceTypeID Long Integer 4
DateSent Date/Time 8
Description Text 50
Document OLE Object —
Notes Memo (Varies)

TABLE B.12 The Field Properties for Each Field in the tblCorrespondence Table

Property Value

CorrespondenceID Long Integer

AllowZeroLength False

Attributes Fixed size, auto-increment

CollatingOrder General

ColumnHidden False

ColumnOrder Default

ColumnWidth Default

APPENDIX B Table Structures1152

TABLE B.10 Continued

Property Value

CorrespondenceID Long Integer

DataUpdatable False

OrdinalPosition 1
Required False

SourceField CorrespondenceID

SourceTable tblCorrespondence

ClientID Long Integer

AllowZeroLength False

Attributes Fixed size

Caption Client ID

CollatingOrder General

ColumnHidden False

ColumnOrder Default

ColumnWidth Default

DataUpdatable False

DecimalPlaces Auto

DisplayControl Text Box

OrdinalPosition 2
Required False

SourceField ClientID

SourceTable tblCorrespondence

Description Text

AllowZeroLength False

Attributes Variable length

CollatingOrder General

ColumnHidden False

ColumnOrder Default

ColumnWidth Default

DataUpdatable False

DisplayControl Text Box

IMEMode 0
IMESentenceMode 3
OrdinalPosition 3
Required False

SourceField Description

SourceTable tblCorrespondence

UnicodeCompression True

The tblCorrespondence Table 1153

B

TABLE B.12 Continued

Property Value

Notes Memo

AllowZeroLength False

Attributes Variable length

CollatingOrder General

ColumnHidden False

ColumnOrder Default

ColumnWidth Default

DataUpdatable False

IMEMode 0
IMESentenceMode 3
OrdinalPosition 4
Required False

SourceField Notes

SourceTable tblCorrespondence

UnicodeCompression True

DateSent Date/Time

AllowZeroLength False

Attributes Fixed size

Caption Date Sent

CollatingOrder General

ColumnHidden False

ColumnOrder Default

ColumnWidth Default

DataUpdatable False

IMEMode 0
IMESentenceMode 3
InputMask 99/99/0000

OrdinalPosition 5
Required False

SourceField DateSent

SourceTable tblCorrespondence

CorrespondenceTypeID Long Integer

AllowZeroLength False

Attributes Fixed size

Caption Correspondence Type ID

CollatingOrder General

ColumnHidden False

APPENDIX B Table Structures1154

TABLE B.12 Continued

Property Value

CorrespondenceTypeID Long Integer

ColumnOrder Default

ColumnWidth Default

DataUpdatable False

DecimalPlaces Auto

DisplayControl Text Box

OrdinalPosition 6
Required False

SourceField CorrespondenceTypeID

SourceTable tblCorrespondence

ConsultantID Long Integer

AllowZeroLength False

Attributes Fixed size

Caption Consultant ID

CollatingOrder General

ColumnHidden False

ColumnOrder Default

ColumnWidth Default

DataUpdatable False

DecimalPlaces Auto

DisplayControl Text Box

OrdinalPosition 7
Required False

SourceField ConsultantID

SourceTable tblCorrespondence

Document OLE Object

AllowZeroLength False

Attributes Variable length

CollatingOrder General

ColumnHidden False

ColumnOrder Default

ColumnWidth Default

DataUpdatable False

OrdinalPosition 8
Required False

SourceField Document

SourceTable tblCorrespondence

The tblCorrespondence Table 1155

B

TABLE B.12 Continued

The tblCorrespondenceTypes Table
The tblCorrespondenceTypes table stores the valid correspondence types. It relates to the
tblCorrespondence table and is a lookup table for the CorrespondenceTypeID stored in
the tblCorrespondence table.

TABLE B.13 The tblCorrespondenceTypes Table

Field Name Type Size (Bytes)

CorrespondenceType Text 50
CorrespondenceTypeID AutoNumber (Long) 4

TABLE B.14 The Field Properties for Each Field in the tblCorrespondenceTypes Table

Property Value

CorrespondenceTypeID Long Integer

AllowZeroLength False

Attributes Fixed size, auto-increment

Caption Correspondence Type ID

CollatingOrder General

ColumnHidden False

ColumnOrder Default

ColumnWidth Default

DataUpdatable False

OrdinalPosition 1
Required False

SourceField CorrespondenceTypeID

SourceTable tblCorrespondenceTypes

CorrespondenceType Text

AllowZeroLength False

Attributes Variable length

Caption Correspondence Type

CollatingOrder General

ColumnHidden False

ColumnOrder Default

ColumnWidth Default

DataUpdatable False

DisplayControl Text Box

IMEMode 0
IMESentenceMode 3
OrdinalPosition 2
Required False

APPENDIX B Table Structures1156

Property Value

CorrespondenceType Text

SourceField CorrespondenceType

SourceTable tblCorrespondenceTypes

UnicodeCompression True

The tblTerms Table
The tblTerms table stores the valid term types. It relates to the tblClients table and is a
lookup table for the TermTypeID stored in the tblClients table.

TABLE B.15 The tblTerms Table

Field Name Type Size (Bytes)

TermType Text 50
TermTypeID AutoNumber (Long) 4

TABLE B.16 The Field Properties for Each Field in the tblTerms Table

Property Value

TermTypeID Long Integer

AllowZeroLength False

Attributes Fixed size, auto-increment

Caption Term Type ID

CollatingOrder General

ColumnHidden False

ColumnOrder Default

ColumnWidth Default

DataUpdatable False

OrdinalPosition 1
Required False

SourceField TermTypeID

SourceTable tblTerms

TermType Text

AllowZeroLength False

Attributes Variable length

Caption Term Type

CollatingOrder General

ColumnHidden False

ColumnOrder Default

The tblTerms Table 1157

B

TABLE B.14 Continued

Property Value

TermType Text

ColumnWidth Default

DataUpdatable False

DisplayControl Text Box

IMEMode 0
IMESentenceMode 3
OrdinalPosition 2
Required False

SourceField TermType

SourceTable tblTerms

UnicodeCompression True

The tblContactType Table
The tblContactType table stores the valid contact types. It relates to the tblClients table
and is a lookup table for the ContactTypeID stored in the tblClients table.

TABLE B.17 The tblContactType Table

Field Name Type Size (Bytes)

ContactType Text 50
ContactTypeID AutoNumber (Long) 4

TABLE B.18 The Field Properties for Each Field in the tblContactType Table

Property Value

ContactTypeID Long Integer

AllowZeroLength False

Attributes Fixed size, auto-increment

Caption Contact Type ID

CollatingOrder General

ColumnHidden False

ColumnOrder Default

ColumnWidth Default

DataUpdatable False

OrdinalPosition 1
Required False

SourceField ContactTypeID

SourceTable tblContactType

APPENDIX B Table Structures1158

TABLE B.16 Continued

Property Value

ContactType Text

AllowZeroLength False

Attributes Variable length

Caption Contact Type

CollatingOrder General

ColumnHidden False

ColumnOrder Default

ColumnWidth Default

DataUpdatable False

DisplayControl Text Box

IMEMode 0
IMESentenceMode 3
OrdinalPosition 2
Required False

SourceField ContactType

SourceTable tblContactType

UnicodeCompression True

The tblCompanyInfo Table
The tblCompanyInfo table stores information about your company, including addresses
and default payment terms.

TABLE B.19 The tblCompanyInfo Table

Field Name Type Size (Bytes)

SetupID AutoNumber (Long) 4
CompanyName Text 50
Address Text 255
City Text 50
StateProvince Text 20
PostalCode Text 20
Country Text 50
PhoneNumber Text 30
FaxNumber Text 30
DefaultPaymentTerms Text 255
DefaultInvoiceDescription Memo (Varies)

The tblCompanyInfo Table 1159

B

TABLE B.18 Continued

TABLE B.20 The Properties of Each Field in the tblCompanyInfo Table

Property Value

SetupID Number (Long)

AllowZeroLength False

Attributes Fixed size, auto-increment

Caption SetupID

CollatingOrder General

ColumnHidden False

ColumnOrder Default

ColumnWidth Default

OrdinalPosition 0
Required False

SourceField SetupID

SourceTable tblCompanyInfo

CompanyName Text

AllowZeroLength False

Attributes Variable length

Caption Company Name

CollatingOrder General

ColumnHidden False

ColumnOrder Default

ColumnWidth Default

DisplayControl Text Box

OrdinalPosition 1
Required False

SourceField CompanyName

SourceTable tblCompanyInfo

Address Text

AllowZeroLength False

Attributes Variable length

CollatingOrder General

ColumnHidden False

ColumnOrder Default

ColumnWidth Default

DisplayControl Text Box

OrdinalPosition 2
Required False

SourceField Address

SourceTable tblCompanyInfo

APPENDIX B Table Structures1160

Property Value

City Text

AllowZeroLength False

Attributes Variable length

CollatingOrder General

Column Hidden False

ColumnOrder Default

ColumnWidth Default

DisplayControl Text Box

OrdinalPosition 3
Required False

SourceField City

SourceTable tblCompanyInfo

StateProvince Text

AllowZeroLength False

Attributes Variable length

Caption State/Province

CollatingOrder General

ColumnHidden False

ColumnOrder Default

ColumnWidth Default

DisplayControl Text Box

OrdinalPosition 4
Required False

SourceField StateProvince

SourceTable tblCompanyInfo

PostalCode Text

AllowZeroLength False

Attributes Variable length

Caption Postal Code

CollatingOrder General

ColumnHidden False

ColumnOrder Default

ColumnWidth Default

DisplayControl Text Box

InputMask 00000\-9999

OrdinalPosition 5
Required False

The tblCompanyInfo Table 1161

B

TABLE B.20 Continued

Property Value

PostalCode Text

SourceField PostalCode

SourceTable tblCompanyInfo

Country Text

AllowZeroLength False

Attributes Variable length

CollatingOrder General

ColumnHidden False

ColumnOrder Default

ColumnWidth Default

DisplayControl Text Box

OrdinalPosition 6
Required False

SourceField Country

SourceTable tblCompanyInfo

PhoneNumber Text

AllowZeroLength False

Attributes Variable length

Caption Phone Number

CollatingOrder General

ColumnHidden False

ColumnOrder Default

ColumnWidth Default

DisplayControl Text Box

InputMask !\(999”) “000\-0000

OrdinalPosition 7

Required False

SourceField PhoneNumber

SourceTable tblCompanyInfo

FaxNumber Text

AllowZeroLength False

Attributes Variable length

Caption Fax Number

CollatingOrder General

ColumnHidden False

APPENDIX B Table Structures1162

TABLE B.20 Continued

Property Value

FaxNumber Text

ColumnOrder Default

ColumnWidth Default

DisplayControl Text Box

InputMask !\(999”) “000\-0000

OrdinalPosition 8

Required False

SourceField FaxNumber

SourceTable tblCompanyInfo

DefaultPaymentTerms Text

AllowZeroLength False

Attributes Variable length

Caption Default Payment Terms

CollatingOrder General

ColumnHidden False

ColumnOrder Default

ColumnWidth Default

DisplayControl Text Box

OrdinalPosition 9
Required False

SourceField DefaultPaymentTerms

SourceTable tblCompanyInfo

DefaultInvoiceDescription Memo

AllowZeroLength False

Attributes Variable length

Caption Default Invoice Description

CollatingOrder General

ColumnHidden False

ColumnOrder Default

ColumnWidth Default

OrdinalPosition 10

Required False

SourceField DefaultInvoiceDescription

SourceTable tblCompanyInfo

The tblCompanyInfo Table 1163

B

TABLE B.20 Continued

The tblEmployees Table
The tblEmployees table includes relevant employee information, such as name, address,
and billing rate.

TABLE B.21 The tblEmployees Table

Field Name Type Size (Bytes)

Address Text 255
BillingRate Currency 8
City Text 50
Country Text 50
EmailName Text 50
EmployeeID AutoNumber (Long) 4
Extension Text 30
FirstName Text 50
HomePhone Text 30
LastName Text 50
PostalCode Text 20
StateOrProvince Text 20
Title Text 50
WorkPhone Text 30

TABLE B.22 The Properties of Each Field in the tblEmployees Table

Property Value

EmployeeID Number (Long)

AllowZeroLength False

Attributes Fixed size, auto-increment

Caption Employee ID

CollatingOrder General

OrdinalPosition 0

Required False

SourceField EmployeeID

SourceTable tblEmployees

FirstName Text

AllowZeroLength False

Attributes Variable length

Caption First Name

CollatingOrder General

OrdinalPosition 1
Required False

SourceField FirstName

SourceTable tblEmployees

APPENDIX B Table Structures1164

Property Value

LastName Text

AllowZeroLength False

Attributes Variable length

Caption Last Name

CollatingOrder General

OrdinalPosition 2
Required False

SourceField LastName

SourceTable tblEmployees

Title Text

AllowZeroLength False

Attributes Variable length

CollatingOrder General

OrdinalPosition 3

Required False

SourceField Title

SourceTable tblEmployees

EmailName Text

AllowZeroLength False

Attributes Variable length

Caption Email Name

CollatingOrder General

OrdinalPosition 4
Required False

SourceField EmailName

SourceTable tblEmployees

Extension Text

AllowZeroLength False

Attributes Variable length

CollatingOrder General

OrdinalPosition 5
Required False

SourceField Extension

SourceTable tblEmployees

Address Text

AllowZeroLength False

Attributes Variable length

The tblEmployees Table 1165

B

TABLE B.22 Continued

Property Value

Address Text

CollatingOrder General

OrdinalPosition 6
Required False

SourceField Address

SourceTable tblEmployees

City Text

AllowZeroLength False

Attributes Variable length

CollatingOrder General

OrdinalPosition 7
Required False

SourceField City

SourceTable tblEmployees

StateOrProvince Text

AllowZeroLength False

Attributes Variable length

Caption State/Province

CollatingOrder General

OrdinalPosition 8
Required False

SourceField StateOrProvince

SourceTable tblEmployees

PostalCode Text

AllowZeroLength False

Attributes Variable length

Caption Postal Code

CollatingOrder General

InputMask 00000-9999

OrdinalPosition 9
Required False

SourceField PostalCode

SourceTable tblEmployees

Country Text

AllowZeroLength False

Attributes Variable length

APPENDIX B Table Structures1166

TABLE B.22 Continued

Property Value

Country Text

CollatingOrder General

OrdinalPosition 10
Required False

SourceField Country

SourceTable tblEmployees

HomePhone Text

AllowZeroLength False

Attributes Variable length

Caption Home Phone

CollatingOrder General

InputMask !(999) 000-0000

OrdinalPosition 11
Required False

SourceField HomePhone

SourceTable tblEmployees

WorkPhone Text

AllowZeroLength False

Attributes Variable length

Caption Work Phone

CollatingOrder General

InputMask !(999) 000-0000

OrdinalPosition 12
Required False

SourceField WorkPhone

SourceTable tblEmployees

BillingRate Currency

AllowZeroLength False

Attributes Fixed size

Caption Billing Rate

CollatingOrder General

DecimalPlaces 2
Format Currency

OrdinalPosition 13
Required False

SourceField BillingRate

SourceTable tblEmployees

The tblEmployees Table 1167

B

TABLE B.22 Continued

The tblErrorLog Table
The tblErrorLog table logs all application errors encountered while using the hypotheti-
cal time and billing application, including error number and the name of the routine and
module where the error occurred.

TABLE B.23 The tblErrorLog Table

Field Name Type Size (Bytes)

ErrorDate Date/Time 8
ErrorLogID AutoNumber (Long) 4
ErrorNum Number (Integer) 2
ErrorString Text 30
ErrorTime Date/Time 8
ModuleName Text 50
RoutineName Text 50
UserName Text 30

TABLE B.24 The Properties and Values Associated with Each Field in the tblErrorLog Table

Property Value

ErrorLogID AutoNumber (Long)
AllowZeroLength False

Attributes Fixed size, auto-increment

CollatingOrder General

ColumnHidden False

ColumnOrder Default

ColumnWidth Default

Description Unique identifier for the error

OrdinalPosition 0
Required False

SourceField ErrorSeq

SourceTable tblErrorLog

ErrorDate Date/Time

AllowZeroLength False

Attributes Fixed size

CollatingOrder General

ColumnHidden False

ColumnOrder Default

ColumnWidth Default

Description Date that the error occurred

Format Medium date

OrdinalPosition 1

APPENDIX B Table Structures1168

Property Value

ErrorDate Date/Time

Required False

SourceField ErrorDate

SourceTable tblErrorLog

ErrorTime Date/Time

AllowZeroLength False

Attributes Fixed size

CollatingOrder General

ColumnHidden False

ColumnOrder Default

ColumnWidth Default

Description Time that the error occurred

Format Long Time

OrdinalPosition 2
Required False

SourceField ErrorTime

SourceTable tblErrorLog

UserName Text

AllowZeroLength False

Attributes Variable length

CollatingOrder General

ColumnHidden False

ColumnOrder Default

ColumnWidth Default

Description Name of the user

DisplayControl Text Box

OrdinalPosition 3
Required False

SourceField UserName

SourceTable tblErrorLog

ErrorNum Number (Integer)

AllowZeroLength False

Attributes Fixed size

CollatingOrder General

ColumnHidden False

ColumnOrder Default

The tblErrorLog Table 1169

B

TABLE B.24 Continued

Property Value

ErrorNum Number (Integer)

ColumnWidth Default

DecimalPlaces 255
DefaultValue 0

Description VBA Error Code

DisplayControl Text Box

OrdinalPosition 4
Required False

SourceField ErrorNum

SourceTable tblErrorLog

ErrorString Text

AllowZeroLength False

Attributes Variable length

CollatingOrder General

ColumnHidden False

ColumnOrder Default

ColumnWidth Default

Description VBA Error Description

DisplayControl Text Box

OrdinalPosition 5
Required False

SourceField ErrorString

SourceTable tblErrorLog

ModuleName Text

AllowZeroLength False

Attributes Variable length

CollatingOrder General

ColumnHidden False

ColumnOrder Default

ColumnWidth Default

Description Module in which the error occurred

DisplayControl Text Box

OrdinalPosition 6
Required False

SourceField Module

SourceTable tblErrorLog

APPENDIX B Table Structures1170

TABLE B.24 Continued

Property Value

RoutineName Text

AllowZeroLength False

Attributes Variable length

CollatingOrder General

ColumnHidden False

ColumnOrder Default

ColumnWidth Default

Description Routine in which the error occurred

DisplayControl Text Box

OrdinalPosition 7
Required False

SourceField Routine

SourceTable tblErrorLog

The tblErrors Table
The tblErrors table gives you information about how your application should respond to
error numbers.

TABLE B.25 The tblErrors Table

Field Name Type Size (Bytes)

ErrorNum AutoNumber (Long) 4
Response Number (Long) 4

TABLE B.26 The Properties and Values Associated with Each Field in the tblErrors Table

Property Value

ErrorNum Number (Long)

AllowZeroLength False

Attributes Fixed size

CollatingOrder General

ColumnHidden False

ColumnOrder Default

ColumnWidth Default

DecimalPlaces 255
DefaultValue 0
Description Number of the error

DisplayControl Text Box

OrdinalPosition 0

The tblErrors Table 1171

B

TABLE B.24 Continued

Property Value

ErrorNum Number (Long)

Required False

SourceField ErrorNum

SourceTable tblErrors

Response Number (Long)

AllowZeroLength False

Attributes Fixed size

CollatingOrder General

ColumnHidden False

ColumnOrder Default

ColumnWidth Default

DecimalPlaces 255
DefaultValue 0
Description Action to take

DisplayControl Text Box

OrdinalPosition 1
Required False

SourceField Response

SourceTable tblErrors

The tblExpenseCodes Table
The tblExpenseCodes table contains all the valid expense codes used in the hypothetical
time and billing application.

TABLE B.27 The tblExpenseCodes Table

Field Name Type Size (Bytes)

ExpenseCode Text 30
ExpenseCodeID AutoNumber (Long) 4

TABLE B.28 The Field Properties of the tblExpenseCodes Table

Property Value

ExpenseCodeID Number (Long)

AllowZeroLength False

Attributes Fixed size, auto-increment

Caption Expense Code ID

CollatingOrder General

APPENDIX B Table Structures1172

TABLE B.26 Continued

Property Value

ExpenseCodeID Number (Long)

OrdinalPosition 0
Required False

SourceField ExpenseCodeID

SourceTable tblExpenseCodes

ExpenseCode Text

AllowZeroLength False

Attributes Variable length

Caption Expense Code

CollatingOrder General

OrdinalPosition 1
Required False

SourceField ExpenseCode

SourceTable tblExpenseCodes

The tblPaymentMethods Table
The tblPaymentMethods table lists the valid payment methods.

TABLE B.29 The tblPaymentMethods Table

Field Name Type Size (Bytes)

CreditCard Yes/No 1
PaymentMethod Text 50
PaymentMethodID AutoNumber (Long) 4

TABLE B.30 The Field Properties of the tblPaymentMethods Table

Property Value

PaymentMethodID Number (Long)

AllowZeroLength False

Attributes Fixed size, auto-increment

Caption Payment Method ID

CollatingOrder General

OrdinalPosition 0
Required False

SourceField PaymentMethodID

SourceTable tblPaymentMethods

The tblPaymentMethods Table 1173

B

TABLE B.28 Continued

Property Value

PaymentMethod Text

AllowZeroLength False

Attributes Variable length

Caption Payment Method

CollatingOrder General

OrdinalPosition 1
Required False

SourceField PaymentMethod

SourceTable tblPaymentMethods

CreditCard Yes/No

AllowZeroLength False

Attributes Fixed size

Caption Credit Card?

CollatingOrder General

Format Yes/No

OrdinalPosition 2
Required False

SourceField CreditCard

SourceTable tblPaymentMethods

The tblPayments Table
The tblPayments table stores client payment information, such as the amount and date of
payment for particular projects.

TABLE B.31 The tblPayments Table

Field Name Type Size (Bytes)

CardholdersName Text 50
CreditCardExpDate Date/Time 8
CreditCardNumber Text 30
PaymentAmount Currency 8
PaymentDate Date/Time 8
PaymentID AutoNumber (Long) 4
PaymentMethodID Number (Long) 4
ProjectID Number (Long) 4

APPENDIX B Table Structures1174

TABLE B.30 Continued

TABLE B.32 The Field Properties of the tblPayments Table

Property Value

PaymentID Number (Long)

AllowZeroLength False

Attributes Fixed size, auto-increment

Caption Payment ID

CollatingOrder General

ColumnHidden False

ColumnOrder Default

ColumnWidth Default

OrdinalPosition 0
Required False

SourceField PaymentID

SourceTable tblPayments

ProjectID Number (Long)

AllowZeroLength False

Attributes Fixed size

Caption Project ID

CollatingOrder General

ColumnHidden False

ColumnOrder Default

ColumnWidth Default

DecimalPlaces 255
DisplayControl Text Box

OrdinalPosition 1
Required False

SourceField ProjectID

SourceTable tblPayments

PaymentAmount Currency

AllowZeroLength False

Attributes Fixed size

Caption Payment amount

CollatingOrder General

ColumnHidden False

ColumnOrder Default

ColumnWidth Default

DecimalPlaces 2
Format Currency

OrdinalPosition 2

The tblPayments Table 1175

B

Property Value

PaymentAmount Currency

Required False

SourceField PaymentAmount

SourceTable tblPayments

PaymentDate Date/Time

AllowZeroLength False

Attributes Fixed size

Caption Payment date

CollatingOrder General

ColumnHidden False

ColumnOrder Default

ColumnWidth Default

Format Short date

InputMask 99/99/00

OrdinalPosition 3
Required False

SourceField PaymentDate

SourceTable tblPayments

CreditCardNumber Text

AllowZeroLength False

Attributes Variable length

Caption Credit Card #

CollatingOrder General

ColumnHidden False

ColumnOrder Default

ColumnWidth Default

DisplayControl Text Box

OrdinalPosition 4
Required False

SourceField CreditCardNumber

SourceTable tblPayments

CardholdersName Text

AllowZeroLength False

Attributes Variable length

Caption Cardholder Name

CollatingOrder General

ColumnHidden False

APPENDIX B Table Structures1176

TABLE B.32 Continued

Property Value

CardholdersName Text

ColumnOrder Default

ColumnWidth Default

DisplayControl Text Box

OrdinalPosition 5
Required False

SourceField CardholdersName

SourceTable tblPayments

CreditCardExpDate Date/Time

AllowZeroLength False

Attributes Fixed size

Caption Card Exp. Date

CollatingOrder General

ColumnHidden False

ColumnOrder Default

ColumnWidth Default

Format Short date

InputMask 99/99/00

OrdinalPosition 6
Required False

SourceField CreditCardExpDate

SourceTable tblPayments

PaymentMethodID Number (Long)

AllowZeroLength False

Attributes Fixed size

BoundColumn 1
Caption Payment Method ID

CollatingOrder General

ColumnCount 3
ColumnHeads False

ColumnHidden False

ColumnOrder Default

ColumnWidth Default

ColumnWidths 0;1440;0

DecimalPlaces 255
DisplayControl Combo Box

LimitToList True

ListRows 8

The tblPayments Table 1177

B

TABLE B.32 Continued

Property Value

PaymentMethodID Number (Long)

ListWidth 1
OrdinalPosition 7
Required False

RowSourceType Table/Query

RowSource SELECT DISTINCTROW tblPaymentMethods.*
FROM tblPaymentMethods ORDER BY
tblPaymentMethods.PaymentMethod;

SourceField PaymentMethodID

SourceTable tblPayments

The tblProjects Table
The tblProjects table stores information about each project, including a cost estimate
and important dates.

TABLE B.33 The tblProjects Table

Field Name Type Size (Bytes)

ClientID Number (Long) 4
EmployeeID Number (Long) 4
ProjectBeginDate Date/Time 8
ProjectDescription Memo (Varies)
ProjectEndDate Date/Time 8
ProjectID AutoNumber (Long) 4
ProjectName Text 50
ProjectTotalEstimate Currency 8
PurchaseOrderNumber Text 30

TABLE B.34 The Field Properties of the tblProjects Table

Property Value

ProjectID Number (Long)

AllowZeroLength False

Attributes Fixed size, auto-increment

Caption Project ID

CollatingOrder General

ColumnHidden False

ColumnOrder Default

ColumnWidth Default

OrdinalPosition 0

APPENDIX B Table Structures1178

TABLE B.32 Continued

Property Value

ProjectID Number (Long)

Required False

SourceField ProjectID

SourceTable tblProjects

ProjectName Text

AllowZeroLength False

Attributes Variable length

Caption Project Name

CollatingOrder General

ColumnHidden False

ColumnOrder Default

ColumnWidth Default

DisplayControl Text Box

OrdinalPosition 1
Required True

SourceField ProjectName

SourceTable tblProjects

ProjectDescription Memo

AllowZeroLength False

Attributes Variable length

Caption Project Description

CollatingOrder General

ColumnHidden False

ColumnOrder Default

ColumnWidth Default

OrdinalPosition 2
Required False

SourceField ProjectDescription

SourceTable tblProjects

ClientID Number (Long)

AllowZeroLength False

Attributes Fixed size

BoundColumn 1
Caption Client ID

CollatingOrder General

ColumnCount 2
ColumnHeads False

The tblProjects Table 1179

B

TABLE B.34 Continued

Property Value

ClientID Number (Long)

ColumnHidden False

ColumnOrder Default

ColumnWidth Default

ColumnWidths ;14400

DecimalPlaces 255
DefaultValue 0
DisplayControl Combo Box

LimitToList True

ListRows 8
ListWidth 1
OrdinalPosition 3
Required True

RowSourceType Table/Query

RowSource SELECT DISTINCTROW
[tblClients].[ClientID],
[tblClients].[CompanyName] FROM
[tblClients];

SourceField ClientID

SourceTable tblProjects

PurchaseOrderNumber Text

AllowZeroLength False

Attributes Variable length

Caption Purchase Order Number

CollatingOrder General

ColumnHidden False

ColumnOrder Default

ColumnWidth Default

DisplayControl Text Box

OrdinalPosition 4
Required False

SourceField PurchaseOrderNumber

SourceTable tblProjects

ProjectTotalEstimate Currency

AllowZeroLength False

Attributes Fixed size

Caption ProjectTotalEstimate

CollatingOrder General

APPENDIX B Table Structures1180

TABLE B.34 Continued

Property Value

ProjectTotalEstimate Currency

ColumnHidden False

ColumnOrder Default

ColumnWidth Default

DecimalPlaces 255
DefaultValue 0
Format Currency

OrdinalPosition 5
Required False

SourceField ProjectTotalEstimate

SourceTable tblProjects

EmployeeID Number (Long)

AllowZeroLength False

Attributes Fixed size

Caption Employee ID

CollatingOrder General

ColumnHidden False

ColumnOrder Default

ColumnWidth Default

DecimalPlaces 255
DefaultValue 0
DisplayControl Text Box

OrdinalPosition 6
Required False

SourceField EmployeeID

SourceTable tblProjects

ProjectBeginDate Date/Time

AllowZeroLength False

Attributes Fixed size

Caption Project Begin Date

CollatingOrder General

ColumnHidden False

ColumnOrder Default

ColumnWidth Default

OrdinalPosition 7
Required False

SourceField ProjectBeginDate

SourceTable tblProjects

The tblProjects Table 1181

B

TABLE B.34 Continued

Property Value

ProjectEndDate Date/Time

AllowZeroLength False

Attributes Fixed size

Caption Project End Date

CollatingOrder General

ColumnHidden False

ColumnOrder Default

ColumnWidth Default

OrdinalPosition 8
Required False

SourceField ProjectEndDate

SourceTable tblProjects

The tblTimeCardExpenses Table
The tblTimeCardExpenses table stores necessary information for billable project expenses,
such as the date and amount of the expense.

TABLE B.35 The tblTimeCardExpenses Table

Field Name Type Size (Bytes)

ExpenseAmount Currency 8
ExpenseCodeID Number (Long) 4
ExpenseDate Date/Time 8
ExpenseDescription Text 255
ProjectID Number (Long) 4
TimeCardExpenseID AutoNumber (Long) 4
TimeCardID Number (Long) 4

TABLE B.36 The Field Properties of the tblTimeCardExpenses Table

Property Value

TimeCardExpenseID Number (Long)

AllowZeroLength False

Attributes Fixed size, auto-increment

Caption Time Card Expense ID

CollatingOrder General

ColumnHidden False

ColumnOrder Default

ColumnWidth Default

APPENDIX B Table Structures1182

TABLE B.34 Continued

Property Value

TimeCardExpenseID Number (Long)

OrdinalPosition 0
Required False

SourceField TimeCardExpenseID

SourceTable tblTimeCardExpenses

TimeCardID Number (Long)

AllowZeroLength False

Attributes Fixed size

Caption Time Card ID

CollatingOrder General

ColumnHidden False

ColumnOrder Default

ColumnWidth Default

DecimalPlaces 255
DisplayControl Text Box

OrdinalPosition 1
Required False

SourceField TimeCardID

SourceTable tblTimeCardExpenses

ExpenseDate Date/Time

AllowZeroLength False

Attributes Fixed size

Caption Expense Date

CollatingOrder General

ColumnHidden False

ColumnOrder Default

ColumnWidth Default

Format Short date

InputMask 99/99/00

OrdinalPosition 2
Required False

SourceField ExpenseDate

SourceTable tblTimeCardExpenses

ProjectID Number (Long)

AllowZeroLength False

Attributes Fixed size

BoundColumn 1

The tblTimeCardExpenses Table 1183

B

TABLE B.36 Continued

Property Value

ProjectID Number (Long)

Caption Project ID

CollatingOrder General

ColumnCount 3
ColumnHeads False

ColumnHidden False

ColumnOrder Default

ColumnWidth Default

ColumnWidths 0;1020;3156

DecimalPlaces 255
DisplayControl Combo Box

LimitToList True

ListRows 8
ListWidth 3
OrdinalPosition 3
Required False

RowSourceType Table/Query

RowSource SELECT DISTINCTROW tblProjects.* FROM
tblProjects ORDER BY
tblProjects.ProjectName;

SourceField ProjectID

SourceTable tblTimeCardExpenses

ExpenseDescription Text

AllowZeroLength False

Attributes Variable length

Caption Expense Description

CollatingOrder General

ColumnHidden False

ColumnOrder Default

ColumnWidth Default

DisplayControl Text Box

OrdinalPosition 4
Required False

SourceField ExpenseDescription

SourceTable tblTimeCardExpenses

ExpenseAmount Currency

AllowZeroLength False

Attributes Fixed size

APPENDIX B Table Structures1184

TABLE B.36 Continued

Property Value

ExpenseAmount Currency

Caption Expense Amount

CollatingOrder General

ColumnHidden False

ColumnOrder Default

ColumnWidth Default

DecimalPlaces 2
Format Currency

OrdinalPosition 5
Required False

SourceField ExpenseAmount

SourceTable tblTimeCardExpenses

ExpenseCodeID Number (Long)

AllowZeroLength False

Attributes Fixed size

BoundColumn 1
Caption Expense Code ID

CollatingOrder General

ColumnCount 2
ColumnHeads False

ColumnHidden False

ColumnOrder Default

ColumnWidth Default

ColumnWidths 0;2880

DecimalPlaces 255
DisplayControl Combo Box

LimitToList True

ListRows 8
ListWidth 2
OrdinalPosition 6
Required False

RowSourceType Table/Query

RowSource SELECT DISTINCTROW tblExpenseCodes.* FROM
tblExpenseCodes ORDER BY
tblExpenseCodes.ExpenseCode;

SourceField ExpenseCodeID

SourceTable tblTimeCardExpenses

The tblTimeCardExpenses Table 1185

B

TABLE B.36 Continued

The tblTimeCardHours Table
The tblTimeCardHours table stores a record of billable hours for a project, including dates
and billing rates.

TABLE B.37 The tblTimeCardHours Table

Field Name Type Size (Bytes)

BillableHours Number (Double) 8
BillingRate Currency 8
DateWorked Date/Time 8
ProjectID Number (Long) 4
TimeCardDetailID AutoNumber (Long) 4
TimeCardID Number (Long) 4
WorkCodeID Number (Long) 4
WorkDescription Text 255

TABLE B.38 The Field Properties of the tblTimeCardHours Table

Property Value

TimeCardDetailID Number (Long)

AllowZeroLength False

Attributes Fixed size, auto-increment

Caption Time Card Detail ID

CollatingOrder General

ColumnHidden False

ColumnOrder Default

ColumnWidth Default

OrdinalPosition 0
Required False

SourceField TimeCardDetailID

SourceTable tblTimeCardHours

TimeCardID Number (Long)

AllowZeroLength False

Attributes Fixed size

Caption Time Card ID

CollatingOrder General

ColumnHidden False

ColumnOrder Default

ColumnWidth Default

DecimalPlaces 255
DisplayControl Text Box

APPENDIX B Table Structures1186

Property Value

TimeCardID Number (Long)

OrdinalPosition 1
Required False

SourceField TimeCardID

SourceTable tblTimeCardHours

DateWorked Date/Time

AllowZeroLength False

Attributes Fixed size

Caption Date Worked

CollatingOrder General

ColumnHidden False

ColumnOrder Default

ColumnWidth Default

Format Short date

InputMask 99/99/00

OrdinalPosition 2
Required False

SourceField DateWorked

SourceTable tblTimeCardHours

ProjectID Number (Long)

AllowZeroLength False

Attributes Fixed size

BoundColumn 1
Caption Project ID

CollatingOrder General

ColumnCount 3
ColumnHeads False

ColumnHidden False

ColumnOrder Default

ColumnWidth Default

ColumnWidths 0;1020;3156

DecimalPlaces 255
DisplayControl Combo Box

LimitToList True

ListRows 8
ListWidth 3
OrdinalPosition 3

The tblTimeCardHours Table 1187

B

TABLE B.38 Continued

Property Value

ProjectID Number (Long)

Required False

RowSourceType Table/Query

RowSource SELECT DISTINCTROW tblProjects.* FROM
tblProjects ORDER BY
tblProjects.ProjectName;

SourceField ProjectID

SourceTable tblTimeCardHours

WorkDescription Text

AllowZeroLength False

Attributes Variable length

Caption Work Description

CollatingOrder General

ColumnHidden False

ColumnOrder Default

ColumnWidth Default

DisplayControl Text Box

OrdinalPosition 4

Required False

SourceField WorkDescription

SourceTable tblTimeCardHours

BillableHours Number (Double)

AllowZeroLength False

Attributes Fixed size

Caption Billable Hours

CollatingOrder General

ColumnHidden False

ColumnOrder Default

ColumnWidth Default

DecimalPlaces 255
DisplayControl Text Box

OrdinalPosition 5
Required False

SourceField BillableHours

SourceTable tblTimeCardHours

APPENDIX B Table Structures1188

TABLE B.38 Continued

Property Value

BillingRate Currency

AllowZeroLength False

Attributes Fixed size

Caption Billing Rate

CollatingOrder General

ColumnHidden False

ColumnOrder Default

ColumnWidth Default

DecimalPlaces 2
Format Currency

OrdinalPosition 6
Required False

SourceField BillingRate

SourceTable tblTimeCardHours

WorkCodeID Number (Long)

AllowZeroLength False

Attributes Fixed size

BoundColumn 1
Caption Work Code ID

CollatingOrder General

ColumnCount 2
ColumnHeads False

ColumnHidden False

ColumnOrder Default

ColumnWidth Default

ColumnWidths 0;2880

DecimalPlaces 255
DisplayControl Combo Box

LimitToList True

ListRows 8
ListWidth 2
OrdinalPosition 7
Required False

RowSourceType Table/Query

RowSource SELECT DISTINCTROW tblWorkCodes.* FROM
tblWorkCodes ORDER BY
tblWorkCodes.WorkCode;

SourceField WorkCodeID

SourceTable tblTimeCardHours

The tblTimeCardHours Table 1189

B

TABLE B.38 Continued

The tblTimeCards Table
The tblTimeCards table stores time card information for each employee.

TABLE B.39 The tblTimeCards Table

Field Name Type Size (Bytes)

DateEntered Date/Time 8
EmployeeID Number (Long) 4
TimeCardID Auto Number (Long) 4

TABLE B.40 The Field Properties of the tblTimeCards Table

Property Value

TimeCardID Number (Long)

AllowZeroLength False

Attributes Fixed size, auto-increment

Caption Time Card ID

CollatingOrder General

ColumnHidden False

ColumnOrder Default

ColumnWidth Default

OrdinalPosition 0
Required False

SourceField TimeCardID

SourceTable tblTimeCards

EmployeeID Number (Long)

AllowZeroLength False

Attributes Fixed size

BoundColumn 1
Caption Employee ID

CollatingOrder General

ColumnCount 3
ColumnHeads False

ColumnHidden False

ColumnOrder Default

ColumnWidth Default

ColumnWidths 0;2000;700

DecimalPlaces 255
DisplayControl Combo Box

LimitToList True

APPENDIX B Table Structures1190

Property Value

EmployeeID Number (Long)

ListRows 8
ListWidth 2
OrdinalPosition 1
Required False

RowSourceType Table/Query

RowSource SELECT tblEmployees.EmployeeID,
[LastName] & “, “ & [FirstName] AS
EmployeeName, tblEmployees.BillingRate
FROM tblEmployees ORDER BY [LastName] &
“, “ & [FirstName];

SourceField EmployeeID

SourceTable tblTimeCards

DateEntered Date/Time

AllowZeroLength False

Attributes Fixed size

Caption Date Entered

CollatingOrder General

ColumnHidden False

ColumnOrder Default

ColumnWidth Default

Format Short date

InputMask 99/99/00

OrdinalPosition 2
Required False

SourceField DateEntered

SourceTable tblTimeCards

The tblWorkCodes Table
The tblWorkCodes table supplies valid work codes for the application.

TABLE B.41 The tblWorkCodes Table

Field Name Type Size (Bytes)

WorkCode Text 30
WorkCodeID AutoNumber (Long) 4

The tblWorkCodes Table 1191

B

TABLE B.40 Continued

TABLE B.42 The Field Properties of the tblWorkCodes Table

Property Value

WorkCodeID Number (Long)

AllowZeroLength False

Attributes Fixed size, auto-increment

Caption Work Code ID

CollatingOrder General

OrdinalPosition 0
Required False

SourceField WorkCodeID

SourceTable tblWorkCodes

WorkCode Text

AllowZeroLength False

Attributes Variable length

Caption Work Code

CollatingOrder General

OrdinalPosition 1
Required False

SourceField WorkCode

SourceTable tblWorkCodes

APPENDIX B Table Structures1192

Index

Symbols
\ (backslash), input masks, 90
_ (underscore), line continuation character

(VBA), 364
; (semicolon), input masks, 90
< (less than sign), query criteria operator, 146
! (bang), 409
#Const directive, VBA, 367
& (ampersand), Null values (avoiding in

strings), 624
’ (apostrophe), VBA comments, 363
* (asterisk), queries (adding fields), 140
> (greater than sign), query criteria operator,

146
<> (not equal to), query criteria operator, 147
>= (greater than or equal to), query criteria

operator, 146
. (period), 409
= (equal sign), query criteria operator, 146
<= (less than or equal to), query criteria

operator, 146

A
About dialog box, 997
AbsolutePosition property (ADO recordsets),

699-700
ACCDB files, front ends as links to communi-

cate to back ends, 919
Access

as a front end, 842-845
options, 844

controlling from other applications, 976-979
Excel, controlling, 956-960

Page numbers preceded by PDF:
indicate pages on the website

(www.samspublishing.com/title/0672329328).

www.samspublishing.com/title/0672329328

Outlook, controlling, 974-976
PowerPoint, controlling, 970-973
taking SharePoint lists offline, 884, 903

discarding changes, 904-905
synchronizing changes, 903-904
working online, 904

Word, controlling, 966-968
Access 2007 (accdb), SharePoint Server 2007

and, 885
Access data projects, front ends communicating

directly to back ends, 921
Access Database Engine, 806
Access Object Model

AllForms collection, 420
AllMacros collection, 421
AllModules collection, 421
AllQueries collection, 423
AllReports collection, 421
AllTables collection, 422
Application object, 416

methods, 417-418
properties, 417

CodeData object, 423
CodeProject object, 423
CurrentData object, 422-423
CurrentProject object, 420-421
DoCmd object, 423-424
Forms collection, 418-419
Modules collection, 420
Reports collection, 419
Screen object, 423
special properties that refer to objects,

415-416
Access tables, linking external data, 856-857
AcDataErrAdded constant

(NotInList event), 473
AcDataErrContinue constant (NotInList

event), 473
AcDataErrDisplay constant (NotInList

event), 473
action queries, 16, 539
Action queries

Append, creating, 543-545
compared to VBA code, 547-548

Delete, creating, 542
Make Table, creating, 545-547
naming prefixes, 541
recordsets, making bulk changes, 708-712
results, previewing, 543
Update, creating, 539-541
warnings, 541, 543

Activate event, forms, 438
ActiveControl property, 415
ActiveForm property, 415
ActiveReport property, 415
ActiveX automation, 949
ActiveX controls, 1125-1126
ActiveX Data Objects. See ADO
Add method

After argument, 649
Before argument, 649
Collection object, 626-627
custom collections, 649
Key argument, 649

Add New button, 1039
Add Procedure dialog box, 352, 487
Add Watch dialog box, 747
Add-In Manager, configuring registry entries,

1036-1039
Add-In Manager command (Add-Ins

menu), 1038
Add-In Manager dialog box, 1038
add-ins, 1027, 1126-1127

builders, 1027
creating, 1028
designing, 1028, 1047,

1049-1050, 1052
forms design, 1031-1032
functions, 1028-1031
registering, 1032-1039
testing, 1035

menus, 1045-1046
wizards

creating, 1040-1044
defined, 1039
designing, 1039
registering, 1044-1045

Access1194

Page numbers preceded by PDF: indicate pages on the website (www.samspublishing.com/title/0672329328).

www.samspublishing.com/title/0672329328

Add-Ins command (Tools menu), 1038
Add-Ins menu commands, Add-In

Manager, 1038
AddFromFile method, 1021
adding

columns to form layouts, 212-213
command buttons to forms, 244-245
commands to ribbons, 944-945
comments to macros, 336-337
fields

to forms, 198-199
to reports, 278

groups to ribbons, 944-945
hyperlinks to forms, 251-253
smart tags

to forms, 253-255
to queries, 175-178

Trusted Publishers, 1127-1128
AddInPath key, 1014
AddNew method, data access class, 664
ADO (ActiveX Data Objects), 671, PDF:1133

ADO object model, 671
Command object, 678-679
Connection object, 672-675
Recordset object, 676-678

queries, creating, 718
recordsets

AbsolutePosition property, 699-700
adding records, 714-715
BOF property, 690-691
Bookmark property, 700-701
CursorType parameter, 680-682
deleting records, 712-713
EOF property, 690-691
Filter property, 695
Find method, 696-699
LockType parameter, 682-683
modifying records, 701-702
Options parameter, 684-685
parameter queries, 701-702
persisting, 702-704

How can we make this index more useful? Email us at indexes@samspublishing.com

record-movement methods, 688-689
RecordCount property, 691-693
Sort property, 693-694

tables
adding, 715-716
deleting, 717
relationships, establishing, 717-718

ADO tags, 1133
ADP (Access Data Project), splitting tables from

other objects, 835
ADP (Access Data Project) files, 56
After argument, Add method, 649
AfterDelConfirm event, forms, 435
AfterInsert event, forms, 432
AfterUpdate event

controls, 443
forms, 434

Alias property, query tables, 171
aliasing functions, 989-991
Align tools, 202
aligning

objects, forms, 200-202
report objects, 281
text, object text, 202

Alison Balter’s Mastering Access 11
Client/Server Development, 10

ALL clause, SQL, 572
ALL keyword, SQL, 576
AllForms collection, 420
AllMacros collection, 421
AllModules collection, 421
Allow AutoCorrect property, controls, 241
Allow Datasheet View property, forms, 231
Allow Filters property, 288

forms, 234
Allow PivotChart View property, forms, 231
Allow PivotTable View property, forms, 231
Allow Zero Length property (fields), 95-96
AllQueries collection, 423
AllReports collection, 421

AllReports collection 1195

AllTables collection, 422
ALTER TABLE statement, SQL, 585
alternate keys, 117
ampersand (&), Null values (avoiding in

strings), 624
And (query criteria operator), 147
ANSI functions, renaming, 990
ANSI-92 extensions, 590

stored procedures, 593-594
tables, 590-593
transactions, 594
views, 593-594

API calls, 782-784
operating environment information,

997-1005
API functions

aliasing, 989-991
constants, 991
hard drives, 1005-1008

APIs, functions, 993
Windows registry, 994-997

apostrophe (‘), VBA comments, 363
app prefix, PDF:1132
Append queries, creating, 543-545
Application Database, 836

tables, storing in, 837
Application Object

Access Object Model, 416
CompactRepair method, 1098-1099
methods, 417-418
properties, 417

application switchboards, 839
applications

client/server, suitability of Access, 10
computer consulting firm example,

developing, 72-73
controlling Access from, 976-979
corporate, developing, 8-9
designing

multiuser issues, 909
options, 919

development process
data analysis, 24-27
design phase, 24-27
implementation, 28
maintenance activities, 28
normalization rules, 24-27
prototypes, 27
task analysis, 24
testing stage, 27

development strategies, 835-837
Access as a front end, 842-845
distribution, 839-841
forms, basing on queries/embedded

SQL statements, 837
reports, basing on queries/embedded

SQL statements, 837
runtime version, 839-841
splitting database objects, 835-836

distributing, runtime version, 839-841
financial considerations, developing, 8
front-ends, 847
index usage, performance benefits, 103
installing, Windows 2000 Terminal

Services, 912
Internet, developing, 11
intranets, developing, 11
library databases, Time and Billing applica-

tion example, 1023-1025
multiuser, 910-911
navigating forms, 190
optimization, 802, 811

ACCDE files, 829
bookmarks, 826-827
Boolean expressions, 815
built-in collections, 816-817
compiling modules, 828
constants, 826
data structures, 808-809
Declare statements, 821
defined, 801
Dim statements, 821

AllTables collection1196

Page numbers preceded by PDF: indicate pages on the website (www.samspublishing.com/title/0672329328).

www.samspublishing.com/title/0672329328

dynamic arrays, 826
form-optimization techniques, 829-831
hardware configuration, 802-805
inline code, 814
Len function, 818
Me keyword, 825
object references, 821
object variables, 827
organizing modules, 829
Performance Analyzer, 807
queries, 810
report-optimization techniques, 831
specific object variables, 812-813
stored queries, 827-828
true/false evaluations, 819-820
unused code, 821
variant variables, eliminating, 811
Windows 95/98, 806
Windows registry settings, 806
With...End With construct, 823-824

performance considerations, compacting
databases, 1091-1093

personal, developing, 8
referencing, object variables, 950-952
scalability, 11
small businesses, developing, 8
source code, removing, 839
system performance, limiting factors, 9
troubleshooting, 361

ApplyFilter event, forms, 440
applying custom ribbons

to entire databases, 940-941
to forms or reports, 941-943

archiving records, Append queries, 543
arguments. See also parameters

Add method, 649
macro action arguments, 318-320
Open method, ConnectionString

argument, 864
TransferDatabase method, 852

How can we make this index more useful? Email us at indexes@samspublishing.com

TransferSpreadsheet method, 854
TransferText method, 853

arrays, 605-606, 608-610
declaring, 605-607
dynamic arrays, 826

declaring, 607-609
fixed arrays, 605
parameter arrays, 617-618
passing as parameters, 609-610
scope, 605

As String keyword, 374
ascending sorts (query results), 145
assertions, debugging applications, 752
asterisk (*), queries (adding fields), 140
attached labels, 91
Attachment field type, 86
Auto Center property, reports, 286
Auto Data Tips (debugging), 745
Auto Indent feature, 395
Auto List Members option, 395
Auto Quick Info feature, 395
Auto Repeat property, controls, 242
Auto Resize property

forms, 231
reports, 286

Auto Syntax Check feature, 395
AutoCorrect, 480-481
AutoExec macro

creating, 341-342
example of adding, 343

AutoFill method, 959
AutoFilter method, 982
automatic error checking, 477-479

reports, 505-507
automation, 950

ActiveX automation, 949
controlling Access from other applications,

976-979

automation 1197

Excel
controlling from Access, 956-960
graphs, creating from Access, 961-962,

964-965
object models, 950
object types, 950
object variables, referencing applications,

950-952
objects, 950
Outlook, controlling from Access, 974-976
PowerPoint, controlling from Access,

970-973
Time and Billing application example,

979-983
type libraries, 950
Word, controlling from Access, 966-968

automation client, 950
automation objects, 953-954

binding, 954
creating, object variables, 953
Excel automation objects, closing, 960-961
methods, 954
properties, 953

automation servers, object models, 950
AutoNumber field type, 83
AutoNumber fields

Cascade Update Related Fields option, 131
upsizing to client/servers, 923

autonumber seed, changing (ANSI-92 exten-
sions), 592

axes
exchanging in forms, 262
pivot tables, exchanging, 185

B
Back Color, 290
back ends

compared to back ends, 919
executing stored procedures, 921

tables, linking to front end application data-
base, 919

Back Style, 290
backgrounds, alternating background colors for

forms, 216-218
backing up

compacting databases, 1093
databases, 1099-1100

backslash (\), input masks, 90
bang (!), 409
bas prefix, PDF:1132, PDF:1135
basUtils module, General Declarations section,

998-1003
batch updates, recordsets, 707-708
Before argument, Add method, 649
BeforeDelConfirm event, forms, 435
BeforeInsert event, forms, 432
BeforeUpdate event

controls, 443
forms, 433

BeginTrans method, transaction processing,
929-930

Between (query criteria operator), 147
Between Date And Date function, 149
binding

automation objects, 954
late, required functions, 955-956

black-box processing, 611
BOF property (ADO recordsets), 690-691
Bookmark property (ADO recordsets), 700-701
bookmarks, 826-827

adding, 394
Boolean expressions, toggling with Not

function, 815
Border Color, 290
Border Style, 290
Border Style property

forms, 231
reports, 286

Border Width, 290

automation1198

Page numbers preceded by PDF: indicate pages on the website (www.samspublishing.com/title/0672329328).

www.samspublishing.com/title/0672329328

borders
forms, 231
reports, 286

Bound Column property, combo boxes, 223
bound controls, 242
Bound Object Frame tool, 283
bound object frames, reports, 283
bound OLE objects, 466-467

In-Place activation, 466
breakpoints (debugging), 735

removing, 736
setting, 736-741

breaks, page breaks (inserting in reports), 293
brk prefix, PDF:1132
broken references, locating, 1102
bugs, avoiding, 728
builders, 1027

builder functions, preset arguments, 1030
creating, 1028
designing, 1028, 1047, 1050

Load events, 1050-1052
ValidTextPolite function, 1049-1050
ValidTextRude function, 1050-1052

forms
designing, 1031-1032
Modal property, 1031

functions
preset arguments, 1029-1031
writing, 1028-1031

registering, 1032
Add-In Manager, 1036-1039
manual entries, 1032-1035

testing, 1035
types, 1027

built-in collections, 816-817
businesses, corporate environments

(applications development), 8-9
byt data-type prefix, 1133
ByVal keyword, 987

How can we make this index more useful? Email us at indexes@samspublishing.com

C
calculated controls, 242, 293

expressions, 293
calculated fields

nested queries, 554
queries

calculating, 159
creating, 157-158

calculations, tables and, 119
Call Stack feature (debugging), 743-744
Call Stack window, 743-744
call stacks

creating, 786, 789-790
error handling, 765

calling
functions

DLL functions, 993
invalid characters, 989
ordinal number references, 991

procedures, 354
Can Edit Subkey value (registry), 1033
Can Grow, 290

controls, 290
reports, 304
subreports, 300

Can Shrink, 290
controls, 290
reports, 304
subreports, 300

Cancel property, controls, 241
candidate keys, 117
Caption, 290
Caption property

query fields, 170
reports, 285-286

Caption property
fields, 91
forms, 229

Caption property 1199

captions
command buttons, 290
labels, 290

default, 219
option groups, 226

Cascade Delete Related Fields, Delete queries
(warnings), 543

Cascade Delete Related Records option,
131-133

Cascade Update Related Fields, Update queries
(warnings), 541

Cascade Update Related Fields option, 130
cascading error effect, 765-766
case sensitivity

function names, 986
library names, 986
upsizing to client/servers, 925

Catalog object, Delete method, 871
CBF (Code Behind Forms), 347
cbo prefix, 1132
centralizing error handling, 760
certificates, creating self-signed certificates,

1111-1112
Change event, controls, 444
Change To command (Format menu), 830
ChangeCaption procedure, 450
ChangeCaption routine, 413
characters

fields, naming, 81
literals, input masks, 90

charts, reports with charts, 272
Check Box tool, 224
check boxes

forms, adding, 224
properties, Triple state, 224

CHECK keyword (ANSI-92 extensions), 591
checkboxes, forms (adding), 224
chk prefix, 1132
Choose Builder dialog box, 1047

Class modules, 347, 484, 637, 652-654, 656,
658-659, 661-662, 664-667, 669, 791, 794.
See also modules

creating, 638-641
instantiating objects, 640
methods, adding, 639
properties, adding, 639
Property Get routine, 640-642
Property Let routine, 640-642

custom collections, 648-651
adding items to, 649
creating, 649
deleting items, 650
looping through, 650
referencing items, 650

custom error handler class, 790-791, 794
ErrorProcess method, 791-793
LogError routine, 793-794
Property Get routine, 793
Property Let routine, 793
Standard Access routine, 790

data access class, 656, 658-661, 663-665
AddNew method, 664
Delete method, 665
Edit method, 664-665
Initialize event, 658
Load event, 659
MoveNext method, 659-661
MovePrevious method, 661-662
Property Get routine, 656-658
Property Let routine, 656-658
Save method, 663-664
Scatter method, 658-659

file information class, 653-656
FullFileName property, 652-654
GetDrive routine, 653-655
GetName routine, 653-655
GetPath routine, 653-655
manipulating instances (collections),

655-656
property declarations, 652

captions1200

Page numbers preceded by PDF: indicate pages on the website (www.samspublishing.com/title/0672329328).

www.samspublishing.com/title/0672329328

Initialize event, 643
multiple class instances, creating, 642-643
object orientation, 637-638
Property Set, 642
system information class, 666-669

Initialize event, 668-669
Private variables, 666-667
Property Get routine, 667-668
Property Let routine, 667-668
type structures, 666-667

Terminate event, 644
classes, 638

custom events, adding, 651-652
hierarchies, building, 646
interfaces, sharing, 648
properties, adding Parent property, 647-648

clauses, SQL
ALL, 572
FROM, 568
GROUP BY, 573
HAVING, 573
JOIN, 570-571
ORDER BY, 569
SELECT, 567
WHERE, 568-569

clearing Immediate window, 732
clearing errors, 764
Click event

controls, 446
forms, 439

client/server technology
benefits of, 843
considerations for migrating to, 845
converting to, 842-843
costs of, 843

client/servers, 914
Access, integrating, 921
applications, suitability of Access, 10
compared to Access, 914-915
evaluating needs, 918

How can we make this index more useful? Email us at indexes@samspublishing.com

field names, compatibility, 81
versus file servers, 9
system performance

application types, 917
backup/recovery capability, 917
network demands, 917
security, 918
user base, 916

terminology, 922
upsizing, 923-925

AutoNumber fields, 923
case-sensitivity, 925
default values, 91, 924
indexes, 97, 923
preparation, 925
properties, 925
relationships, 924
reserved words, 925
security, 924
table names, 81, 924
tables, 923
validation rules, 924
VBA, 925

clients, automation clients, 950
Close Button property, reports, 287
Close event

forms, 438
reports, 494

Close keyword, 628
CloseExcel routine, 960
closing

Excel automation objects, 960-961
forms, Form event sequence, 442
windows, designing forms, 197

cmd prefix, PDF:1132
cmdFinish1 command button, 1042
cmdFinish2 command button, 1042
cmdSave command button (frmClients

form), 396

cmdSave command button 1201

cmdUndo command button (frmClients
form), 396

cnt object-naming prefix, PDF:1133-1134
cnts object-naming prefix, PDF:1133-1134
Codd, E. F., Dr., 117
code

compacting databases, 1096-1099
compiling, Compile On Demand feature,

629-630
debugging, 728

Auto Data Tips, 745
breakpoints, 735-741
Call Stack window, 743-744
Immediate window, 729-730, 734
Locals window, 744
naming standards, 728
Option Explicit statement, 728
potential problems, 751-752
quick watches, 745
runtime errors, 750-751
Set Next Statement command, 742-743
Step Into option, 738-739
Step Out feature, 742
Step Over option, 741-742
Stop statement, 735
strong-typing variables, 728
variable scoping, 728
Watch expressions, 745
watches, 735

importing external data, 852-854
TransferDatabase method, 852-853
TransferSpreadsheet method, 853-854
TransferText method, 853

library database references, VBA, 1021
linking external data, 859-863

connection information, providing,
860-861

creating links, 861-863
optimizing, 811

ACCDE files, 829
bookmarks, 826-827

Boolean expressions, 815
built-in collections, 816-817
compiling modules, 828
constants, 826
Declare statements, 821
Dim statements, 821
dynamic arrays, 826
inline code, 814
Len function, 818
Me keyword, 825
object references, 821
organizing modules, 829
specific object variables, 812-813
stored queries, 827-828
true/false evaluations, 819-820
unused code, 821
variables, 827
variant variables, eliminating, 811
With...End With construct, 823-824

writing to create documentation, 1088-1089
Code Behind Forms (CBF), 347
code modules

exporting, 630-631
structuring (library databases), 1012-1013

Code window (VBA), 388
splitting, 393

CodeData object, 423
CodeDB function, 1013
CodeProject object, 423
coding library databases, 1013
Collection object, custom collections, 626-627
collections, 407, 413

AllForms collection, 420
AllMacros collection, 421
AllModules collection, 421
AllQueries collection, 423
AllReports collection, 421
AllTables collection, 422
compared to objects, 412

cmdUndo command button1202

Page numbers preceded by PDF: indicate pages on the website (www.samspublishing.com/title/0672329328).

www.samspublishing.com/title/0672329328

custom collections, 648-651
adding items to, 649
creating, 649
deleting items, 650
looping through, 650
referencing items, 650

For...Each construct, 413
Forms collection, 418-419
manipulating multiple instances of file

information class, 655-656
Modules collection, 420
Printer, 504
referencing objects, 407
Reports collection, 419

Column Count property, combo boxes, 223
Column Width property, combo boxes, 223
columns

adding to forms, 212-213
client/servers, 922
queries, selecting, 567
removing from forms, 213-214

COM (Component Object Model), 950
Combo Box tool, 220
Combo Box Wizard, 220
combo boxes

adding/removing items at runtime, 474-475
converting text boxes to, 227-228
converting to list boxes, 228
forms, adding, 219-223
labels, 222
NotInList event, 472-473
pop-up forms, 473-474
properties, 222

Command Button Wizard, 244-245
inefficient code generation, fixing, 396-398

command buttons
adding to forms, 244-245
captions, 290
enabling and disabling, 425-428
enabling/disabling, 426-427

How can we make this index more useful? Email us at indexes@samspublishing.com

hyperlinks, adding, 251
record source, saving changes to, 396
records, undoing changes to, 396

Command object
ADO object model, 678-679
declaring, 678

command tabs, ribbons (new features), 30-33
commands

Add-Ins menu, Add-In Manager, 1038
adding to ribbons, 944-945
Debug menu

Compile, 828
Set Next Statement, 742-743

Edit menu, New, 1034
File menu, Export, 104-109
Format menu, Change To, 830
New menu, 1034
Start menu, Run, 1033
Tools menu

Add-Ins, 1038
Relationships, 124

VBA, viewing code, 387
View menu, Object Browser, 405

Comment Block tool (VBE), 364
comments

adding to macros, 336-337
VBA, 363-364

CommitTrans method, transaction processing,
929-930

Compact command-line option, 1095
Compact Database Into dialog box, 1094
Compact on Close environmental setting,

1095-1096
Compact utility, 803
CompactDatabase method, JetEngine object,

1096-1098
compacting databases, 803, 1091-1099

with code, 1096-1099
Compact on Close environmental setting,

1095-1096
shortcut icons, creating, 1095
user interface, 1093-1095

compacting databases 1203

CompactRepair method, 417
Application object, 1098-1099

compatibility, database conversion, 1100-1101
compilation objects, 629
Compile command (Debug menu), 828
Compile On Demand feature (VBA), 629-630
compiler constants, 367
compiling, 629

library databases, 1013
modules, 828
queries, 553

compiling code, Compile On Demand feature
(VBA), 629-630

Complete Word feature, modules, 386
Component Object Model (COM), 950
composite keys, 117
compressing drives, 804
computer consulting firm example, application

design, 72-73
conditional formatting, 229

forms, 228-229
Conditional Formatting dialog box, 228
Conditional If control structure, 367-368
Connection Object, creating, 675
connection information (linking external data),

860-861
Connection object

ADO object model, 672-675
BeginTrans method, 929-930
CommitTrans method, 929-930
declaring, 672
RollbackTrans method, 929-930

connection problems (external data), 873
Connection string properties, 673
ConnectionString argument (Open method), 864
Const keyword, 381, 602
constants, 602-604, 826

compiler, declaring, 367
declaring, 991
defining, 602-604

scope, 603-604

DLLs, 991, 993
errors, 382
functions, 991
Intrinsic, 381-383
intrinsic constants, 602-604

examples, 632-633
naming, 382
naming conventions, 603-604
NotInList event, 473
Object Browser, 379-380
Public, 603
scope, 381-382, 603
symbolic, 381-382
Symbolic constants, 602
system-defined constants, 602
values, errors, 603
VBA, 380
viewing, 382, 604

Object Browser, 604
constructs

For...Each, 413
For...Next, 371
With...End With, 412
With...End With construct, 823-824

Contents tab (Database Properties dialog
box), 1080

context-sensitive help, VBA, 391
contextual command tabs, ribbons

(new features), 34
Continuous forms

creating, 451-453
subforms, 453

Control Box property, reports, 286
control builders, 1027
Control events, 443

AfterUpdate, 443
BeforeUpdate, 443
Change, 444
Click, 446

CompactRepair method1204

Page numbers preceded by PDF: indicate pages on the website (www.samspublishing.com/title/0672329328).

www.samspublishing.com/title/0672329328

DblClick, 447-448
Enter, 445
Exit, 445
GotFocus, 445
KeyDown, 448
KeyPress, 449
KeyUp, 449
LostFocus, 446
MouseDown, 448
MouseMove, 448
MouseUp, 448
NotInList, 444-445
sequence, 449
Updated, 444

Control properties, forms, 237, 241-242
Control Source property, 292

combo boxes, 223
control sources, adding expressions, 243
control structures (VBA), 364

conditional If, 367-368
For Each…Next statement, 372-373
For…Next construct, 371
If...Then...Else, 365
Immediate If (IIf), 366
loops, 369-370

breaking, 371
Select Case statement, 368-369
VBA, 366-368, 370-371
With…End With statement, 372

Control Wizard, combo boxes (adding to
forms), 220

controlling printers, 503
controls

Allow AutoCorrect property, 241
Auto Repeat property, 242
bound, 242
calculated, 242, 293
calculated controls, expressions, 293
Cancel property, 241
check boxes, 224

How can we make this index more useful? Email us at indexes@samspublishing.com

checkboxes, 224
combo boxes, 219-223

converting text boxes to, 227-228
converting to list boxes, 228

conditional formatting, 229
ControlTip Text property, 241
ControlType property, 414-415
data-bound controls, 91
default properties, optimization and, 831
determining type, 414-415
Enter Key Behavior property, 241
Format property, 238
forms, 218

Data Properties, 239-240
Format Properties, 236-239
labels, 219
morphing controls, 227-228
Other Properties, 240-242

Help Context ID property, 241
hyperlinks, adding, 251
IME (Input Method Editor) property, 242
labels, associating/disassociating, 219
list boxes, 223

converting combo boxes to, 228
moving independently of label, 200
Name property, 240
naming, conflicts, 292
option buttons, 224
option groups, 224-226
properties, 240, 242, 290-293

availability, 236
Back Color, 290
Back Style, 290
Can Grow, 290
Can Shrink, 290
Data, 292
Font Color, 291
Font Italic, 291
Font Name, 291
Font Size, 291

controls 1205

Font Underline, 291
Font Weight, 291
Format, 290-291
Name, 292
Other, 292
reports, 289-291
Running Sum, 292
Tag, 292

reports, 282-284
bound object frames, 283
image controls, 284
labels, 282
lines, 282
rectangles, 283
text boxes, 282
unbound object frames, 283-284

Scroll Bars property, 237
Special Effect property, 237
Status Bar Text property, 241
subform controls, referring to, 476-477
Tab controls

adding to forms, 456
properties, changing, 456-457

Tab Index property, 241
Tab Stop property, 241
Tag property, 242
text boxes, 219

converting to combo boxes, 227-228
transparent, 237
unbound, 242
Vertical property, 241

ControlTip Text property, controls, 241
ControlType property, 414-415
ConvertAccessProject method, 418

Application object, 1100-1101
converting

to client/server technology, 842
linked tables to local tables, 871-872
macros to VBA code, 339-341

CopyFromRecordset method, 982-983

copying
macro actions, 331
records, controlling user access, 231

corporations, developing applications, 8-9
counter fields, resetting, 1092
CREATE INDEX statement, SQL, 584-585
CREATE TABLE statement, SQL, 584
CreateControl function, 1044
CreateCustomForm function, 1041-1042
CreateExcelObj subroutine, 956
CreateForm function, 1044
CreateObject function, late binding, 955-956
CreateObject function for Creating Late-bound

Excel Instance, 955
CreateRecordset function, 964-965
CreatExcelObj function, 957
creating

builders, 1028
databases, new (from scratch), 78-79
forms, 193

Design view, 196
library databases, 1012-1013
new databases from scratch, 78-79
new forms, Form Wizard, 193
pivot tables

from forms, 256-259
from queries, 179-181, 183

Primary Key indexes, 98
tables, 79-81

criteria
date criteria, refining query results,

149-150
function results as criteria for queries,

586-587
queries, Like, 554
selection criteria, refining query results,

146-149
specifying at runtime (Parameter queries),

172-175
Cross-tabulation reports, 270

controls1206

Page numbers preceded by PDF: indicate pages on the website (www.samspublishing.com/title/0672329328).

www.samspublishing.com/title/0672329328

Crosstab queries, 556-557
columns, fixed headings, 562
creating

with Crosstab Query Wizard, 557, 559
Design view, 559-560

fixed column headings, creating, 561
parameters, 562
reports, creating, 523, 525-530

Crosstab Query Wizard, 557, 559
crosstab reports, multifact crosstab reports

(creating), 533-536
ctl prefix, PDF:1132
ctls prefix, PDF:1132
cur data-type prefix, PDF:1133
Current event, forms, 431
CurrentData object, 422-423
CurrentDB function, 1013
CurrentProject object, 420-421
cursors

batch updates, 707-708
Recordset objects, selecting location,

686-687
CursorType parameter, ADO recordset types,

680-682
custom collections, 625-628, 648-651

accessing items, 627
adding items, 626-627
adding items to, 649
creating, 626, 649
deleting items, 650
iterating through items, 628
looping through, 650
referencing items, 650
removing items, 627

custom error handler class (class modules),
790-791, 794

ErrorProcess method, 791, 793
LogError routine, 793-794
Property Get routine, 793
Property Let routine, 793
Standard Access routine, 790

How can we make this index more useful? Email us at indexes@samspublishing.com

custom events, adding to classes, 651-652
custom methods, creating, 489
custom properties, creating, 484-488

PropertyGet routine, 486-488
PropertyLet routine, 486-488
Public variables, 484-486

custom ribbons, building, 841-842
Custom tab (Database Properties dialog

box), 1081
customizing

Quick Access toolbar, 38, 40-41
ribbons, 935-936

enabling display of system errors, 937
showing system tables, 936-937
USysRibbons table, 938
USysRibbons table, adding data to,

939-940
Visual Basic Editor (VBE), 394-395, 399

coding options, 394-395
docking options, 396, 399
general options, 395

Currency field type, 85
Cycle, 289
Cycle property, forms, 235

D
DAO (Data Access Objects), 671, 922

Errors collection, 769-770
naming conventions, PDF:1133-1134
records, deleting, 722-723
recordsets, RecordCount property, 692

dat data-type prefix, 1133
data

exporting
to SharePoint Server 2007, 883-884
to SharePoint sites, 885-890

external data. See external data

data 1207

field types
Attachment, 86
AutoNumber, 85
Currency, 85
Date/Time, 84
Hyperlink, 87
Memo, 84
Number, 84
OLE Object, 86
selecting, 82-84
Text, 84
Yes/No, 86

pivot tables, filtering, 183
publishing to SharePoint sites, 891-896
tables

saving in HTML format, 104-107
saving in XML format, 107-109

data access class (Class modules), 656,
658-661, 663-665

AddNew method, 664
Delete method, 665
Edit method, 664-665
Initialize event, 658
Load event, 659
MoveNext method, 659-661
MovePrevious method, 661-662
Property Get routine, 656-658
Property Let routine, 656-658
Save method, 663-664
Scatter method, 658-659

Data Access Objects. See DAO
data analysis, application development, 24-27
data entry forms, recordset methods, 719-724
Data Entry property, forms, 234
data locking, 913
data normalization, 115
Data properties

controls, Running Sum property, 292
form controls, 239-240
forms, 233-234
reports, 287

data structures, optimization, 808-809
data types

dBASE, mapping, 873
optimization, 809
variables, 359

data-bound control, 91
Database Documenter, 1074, 1082

documentation output, 1085-1086
launching, 1081-1082
Object Definition window, 1082
options, 1083, 1085

database files, linking external data, 858
Database locking, 913
Database Locking Mode property (Connection

strings), 673
database objects

Database window, viewing icons, 12
saving as XML, 1066-1068
splitting, 835-836

Database Password property (Connection
strings), 673

database projects, properties, 631-632
Database Properties dialog box, 1079-1081

Contents tab, 1080
Custom tab, 1081
General tab, 1079
Statistics tab, 1080
Summary tab, 1079

Database Splitter, 877
linking external data, 854-856

Database Splitter Wizard, 912
Database to Compact From dialog box, 1093
Database window, 12
Database window objects, naming conventions,

PDF:1135
databases

backing up, 1099-1100
behavior when trusted and untrusted, 1123
compacting, 554, 803, 1091-1099

Compact on Close environmental
setting, 1095-1096

shortcut icons, creating, 1095

data1208

Page numbers preceded by PDF: indicate pages on the website (www.samspublishing.com/title/0672329328).

www.samspublishing.com/title/0672329328

user interface, 1093-1095
with code, 1096-1099

converting to other version formats,
1100-1101

creating, 75-76
from scratch, 78-79
from SharePoint lists, 884
with templates, 76-78

default location, 1095
defined, 11
denormalization, 120
design issues, 115

benefits, 117
goals, 117
history, 117
integrity rules, 121-122
normalization rules, 118-120
rules, 116-118, 122-124

documentation, 1081
Database Documenter, 1081-1085
Database Properties dialog box,

1079-1081
writing code for documentation,

1088-1089
encrypting, 1096-1099
forms, documenting (Database

Documenter), 1075-1077
front-ends, 847
Jet engine, converting from old versions,

1096-1098
library databases, see library

databases, 1011
macros, documenting (Database

Documenter), 1078
modules, documenting (Database

Documenter), 1078
naming conventions, 79
normalization, 115-116

first normal form, 118
second normal form, 119
third normal form, 119-120

How can we make this index more useful? Email us at indexes@samspublishing.com

Object Dependency feature, invoking,
1086-1088

passwords, 867-869
performance considerations

application types, 917
backup/recovery capability, 917
network demands, 917
security, 918
user base, 916

properties, documentation, 1081
queries, documenting (Database

Documenter), 1075-1076
re-creating, 53-56
relationships, types of, 122
renaming, compiling and, 829
reports, documenting (Database

Documenter), 1078
specifications/limitations, 110
tables

adding with ADO code, 715-716
deleting with ADO code, 717
documenting (Database Documenter),

1074-1075
relationships, establishing, 717-718
specifications/limitations, 110-111

trusting, 1106-1107
date criteria, refining query results, 149-150
Date Grouping, 288
Date() function, 92
Date() function, 149
Date/Time field type, 83-84
DateAdd function, 378
DateCreated property, 424
DateDiff function, 378
DateModified property, 424
DatePart function, 149, 377
Day() function, 149
db object-naming prefix, 1133-1134
dBASE files, 872-873

mapping dBASE data types, 873

dBASE files 1209

dbe object-naming prefix, PDF:1133-1134
dbl data-type prefix, PDF:1133
DblClick event

controls, 447-448
forms, 439

dbs object-naming prefix, PDF:1133-1134
dcm prefix, PDF:1132
DDL (client/servers), 922
Deactivate event, forms, 438
Debug menu commands

Compile, 828
Set Next Statement, 742-743

Debug toolbar, displaying, 730
Debug.Print statements, 361, 734, 739
debugging. See also troubleshooting

library databases, 1022-1023
tips, 752-753

debugging applications
assertions, 752
Auto Data Tips, 745
avoiding bugs, 728
breakpoints, 735

removing, 736
setting, 736-741

Call Stack window, 743-744
Immediate window, 729-730, 734

clearing, 732
printing values to, 734
setting values of variables/properties,

730, 732
testing functions, 733
testing subroutines, 733
testing values of variables/

properties, 730
Locals window, 744
potential problems, 751-752
runtime errors, 750-751
Set Next Statement command, 742-743
Step Into option, 738-739
Step Out feature, 742

Step Over option, 741-742
Stop statement, 735
Watch expressions, 745

adding, 746-748
breaking when expressions are true,

748-749
breaking when expressions change, 749
editing, 748

watches, 735
quick watches, 745

Decimal Places, 290
declarations

automation objects, 953
Command objects, 678
Connection objects, 672
disambiguation, 672
Recordset objects, 676
variables, memory usage considerations,

674
Declare statements, 821, 986
declaring

arrays, 605-607
dynamic arrays, 607-609

compiler constants, 367
constants, 991
DLL functions, 985-986
procedures

Class modules, 355
private, 356

types, 992-993
user-defined types, 600
variables, 358

modules, 348
Option Explicit statement, 349
performance considerations, 359

decomposition, 119
DEFAULT keyword (ANSI-92 extensions), 590
default properties, 410
Default Value property (fields), 91-92
Default View property (forms), 230

dbe object-naming prefix1210

Page numbers preceded by PDF: indicate pages on the website (www.samspublishing.com/title/0672329328).

www.samspublishing.com/title/0672329328

defining constants, 602-604
scope, 603-604

Definition feature, modules, 387
defragmenting

compacting databases, 1092
hard disks, 803

Delete event, forms, 435
Delete method

Catalog object, 871
data access class, 665

Delete queries, creating, 542
DELETE statement, QL, 582-583
DeleteSetting function, 994
deleting

breakpoints, 736
custom collection items, 650
external data links, 869, 871
fields, tables, 80
fields from query grid, 142-143
files from disk, 760
macro actions, 329-330
records

Action queries, 542
controlling user access, 231
DAO, 722-723

records from recordsets (ADO), 712-713
relationships, 128
tables with ADO code, 717

delimiters, strings, 697-699
denormalization, 120
denormalizing tables, 808
dependencies

object dependencies, viewing, 109-110
objects, viewing, 110

derived keys, 116
Description property

forms, 1075
queries, 171, 1075
query fields, 170
reports, 1078
tables, 101

How can we make this index more useful? Email us at indexes@samspublishing.com

Description Subkey value (registry), 1033
design issues, 115

benefits, 117
goals, 117
history, 117
integrity rules, 121-122
normalization rules, 118-120
rules, 116-118, 122-124

design phase, application development, 24-27
Design view

Crosstab queries, 559-560
forms

creating, 196
designing, 18

reports, creating, 278
tables, viewing, 14

designing
applications

computer consulting firm example, 72-73
options, 919

builder forms, 1031-1032
builders, 1028, 1047, 1050

Load events, 1050-1052
ValidTextPolite function, 1049-1050
ValidTextRude function, 1050-1052

forms
Design view, 18
shortcut keys, 198
Time and Billing application, 263-268
toolbars, 196
windows, 197

menu add-ins, 1045
properties, setting, 402
queries, Query Design window, 17
tables

from scratch, 79-81
Time and Billing application, 111-113

wizards, 1039
designing tables, examples, 107
detail (reports), displaying, 516-517

detail (reports), displaying 1211

Detail reports, 270
Detail section

forms, 192
reports, 274

Detail Section Format event, reports, 527-529
Detail Section Print event, reports, 529
detecting objects, broken references, 1102
developing applications, 835-837

Access as a front end, 842-845
data analysis, 24-27
design phase, 24-27
forms, basing on queries/embedded SQL

statements, 837
implementation stage, 28
maintenance activities, 28
prototype stage, 27
reports, basing on queries/embedded SQL

statements, 837
runtime version, distribution, 839-841
splitting database objects, 835-836
task analysis, 24
testing stage, 27

development environment, RAM
recommendation, 803

dialog boxes, 460
About, 997
Add Procedure, 352, 487
Add Watch, 747
Add-In Manager, 1038
Choose Builder, 1047
Compact Database Into, 1094
Conditional Formatting, 228
creating, 190, 231
Database Properties, 1079, 1081
Database to Compact From, 1093
Documenter, 1081
Edit DWORD Value, 1034
Edit Relationships, 16, 125
Edit String, 1034
Edit Watch, 748
FileDialog object, 463-464

Find, 390
Import, 1037
Import Objects, 1037
input boxes, 462-463

InputBox function, 462-463
Insert Hyperlink, 103
Insert Object, 283, 466
Link, 856
message boxes, 460-462

MsgBox function, 460-462
Modal property, 235
New Object, 1045
New Query, 138
Object Browser, 405
Object Properties, 1075
Open, 1039
Parameters, 588
Performance Analyzer, 808
Pop Up property, 235
Print Form Definition (Database

Documenter), 1084
Print Query Definition (Database

Documenter), 1084
Print Table Definition (Database

Documenter), 1083
Project Properties, 631
Query Parameters, 173-175
References, 951, 1017
Replace, 391
Runtime Error, 750
Save Backup As, 1099-1100
Show Table, 139
Show Tables, 126, 576

self join queries, 564
Tab Order, 204
Zoom, 243

Dialog forms, creating, 459-460
Dim keyword, custom collections, 649
Dim statement, 953

variables, 359

Detail reports1212

Page numbers preceded by PDF: indicate pages on the website (www.samspublishing.com/title/0672329328).

www.samspublishing.com/title/0672329328

Dim statements, 821
memory usage considerations, 674

directives, VBA (#Const), 367
Dirty event, forms, 434
disabling

command buttons, 425-428
Sandbox mode

in Windows Vista, 1123-1124
in Windows XP or Windows Server 2003,

1124-1125
Snap to Grid feature, 281

disambiguation (object declarations), 672
disk space, external data, 874
Display as Hyperlink, 291
display of system errors, customizing

ribbons, 937
Display on SharePoint Site, 288
displaying

Debug toolbar, 730
detail (reports), 516-517
error descriptions, 759
error numbers, 759
errors, errors collection, 769-770
forms, in PivotTable view, 257-258
overlapping windows, tabbed documents,

46-47
pivot tables, from forms (Pivot Table view),

256-257
summary (reports), 516-518

distributing
Access databases, 1110-1111
applications, runtime version, 839-841

Dividing Lines property, forms, 232
DLLs (dynamic link libraries), 985

constants, 991-993
functions

aliasing, 989-991
calling, 993
declaring, 985-986
passing parameters, 987-989

types, 992-993

How can we make this index more useful? Email us at indexes@samspublishing.com

Do loops, 369-370
doc object-naming prefix, 1133-1134
dockable windows, 396
DoCmd object, 342, 423-424

adding report sections at runtime, 501
examples, 632-633
importing external data, 852-854

TransferDatabase method, 852-853
TransferSpreadsheet method, 853-854
TransferText method, 853

macros, executing, 374
OpenForm method, 375

docs object-naming prefix, 1133-1134
documentation

benefits, 1073
databases, 1081

Documenter dialog box, 1081
documenting

macros, adding comments, 336-337
tables, 81

documenting databases
Database Documenter, 1081-1083, 1085

documentation output, 1085-1086
forms, 1075-1077
macros, 1078
modules, 1078
Object Definition window, 1082
options, 1083-1085
queries, 1075-1076
reports, 1078
tables, 1074-1075

Database Properties dialog box, 1079-1081
writing code for documentation, 1088-1089

documents
HTML documents

importing, 874-876
linking, 877

mail merge (Word), 966-968
tabbed documents, 44-46

displaying overlapping windows, 46-47

documents 1213

domains, 116
drill-down, pivot table data, 184
drivers, ISAM drivers (Windows registry

keys), 866
drives, 804
DROP INDEX statement, SQL, 585
DROP TABLE statement, SQL, 586
DSN keyword, 867
DWORD Value command (New menu), 1034
dynamic arrays, 826

declaring, 607-609
dynamic link libraries. See DLLs
dynasets, tables, 16

E
Edit DWORD Value dialog box, 1034
Edit menu commands, New, 1034
Edit method, data access class, 664-665
Edit Relationships dialog box, 16, 125
Edit String dialog box, 1034
Edit Watch dialog box, 748
editing

project properties, 631
Watch expressions, 748

Editor Format Tab, 395
editors, Registry Editor (invoking), 1033
emailing, errors, 780-781
embedded macros, 315

creating, 332-333
embedded objects, In-Place activation, 466
embedded SQL statements, basing

forms/queries on, 837
embedding SQL statements, 250-251
Empty value, Variant variables, 618-619
enabling command buttons, 425-428
encryption, CompactDatabase method,

Application object, 1098-1099
JetEngine object, 1096-1098

enforced referential integrity, 155
Enter event, controls, 445
Enter Key Behavior property, controls, 241
entity integrity, 122
entity integrity rules, 121-122
enumerated types, Intellisense and, 644-646
environment, 802

development, RAM recommendation, 803
environmental settings, Compact on Close,

1095-1096
EOF property (ADO recordsets), 690-691
equal sign (=), query criteria operator, 146
Err object, 766-767

properties, 766
Raise method, 767-769

generating errors, 767-768
user-defined errors, creating, 768-769

err object-naming prefix, PDF:1133-1134
Error Checker, 479
error descriptions, displaying, 759
Error event

forms, 440
reports, 495

error events, 796
error forms, 784

creating, 782-784
printing, 785

error handling, 755-757
call stacks, 765

creating, 786, 789-790
cascading error effect, 765-766
centralizing, 760
clearing errors, 764
default error message, 756
default handler, returning to, 759
distributing applications, 841
Err object, 766-767

properties, 766
Raise method, 767-769

error descriptions, displaying, 759

domains1214

Page numbers preceded by PDF: indicate pages on the website (www.samspublishing.com/title/0672329328).

www.samspublishing.com/title/0672329328

error numbers, displaying, 759
examples, 798-799
Exit Sub statement, 759
generic error handlers

creating error forms, 782-784
ErrorHandler function, 772-774,

778-780
LogError routine, 774-776
On Error routine, 770-771
printing error forms, 785
type structure declaration, 772

implementing, 755-757
On Error Goto 0 statement, 759-760
On Error Goto statement, 758-759
On Error Resume Next statement, 760
On Error statements, 758
personal error handling, preventing, 786
response options, 760-764
Resume Next statement, 762-763
Resume statement, 761-762
Resume [LineLabel] statement, 763-764
Time and Billing application, 798-799

error messages
referential integrity, 129
relationships, 132

error numbers, displaying, 759
ErrorHandler function, 778-780

generic error handlers, 772-774
ErrorProcess method, custom error handler

class, 791-793
errors

automatic error checking, 477-479
reports, 505-507

clearing, 764
constants, 382

values, 603
determining appropriate response to,

776-778
emailing errors, 780-781
functions, 986
generating, 767-768

How can we make this index more useful? Email us at indexes@samspublishing.com

Immediate If (IIf) statements, 366
Invalid add-in entry message, 1036
listing, 797
logging, 774-776
logic errors, 728
responding to, 778-780
runtime errors, 750-751
user-defined, creating, 768-769

Errors collection, 769-770
errs object-naming prefix, 1133-1134
event procedures, 347

creating, 352
modules, 350

events, 404
Control events, 443

AfterUpdate, 443
BeforeUpdate, 443
Change, 444
Click, 446
DblClick, 447-448
Enter, 445
Exit, 445
GotFocus, 445
KeyDown, 448
KeyPress, 449
KeyUp, 449
LostFocus, 446
MouseDown, 448
MouseMove, 448
MouseUp, 448
NotInList, 444-445
sequence, 449
Updated, 444

custom, adding to classes, 651-652
Detail Section Format, reports, 527-529
Detail Section Print, reports, 529
error events, 796
Filter event, forms, 464-465
Form events, 431

Activate, 438
AfterDelConfirm, 435

events 1215

AfterInsert, 432
AfterUpdate, 434
ApplyFilter, 440
BeforeDelConfirm, 435
BeforeInsert, 432
BeforeUpdate, 433
Click, 439
Close, 438
Current, 431
DblClick, 439
Deactivate, 438
Delete, 435
Dirty, 434
Error, 440
Filter, 440
GotFocus, 438
KeyDown, 439-440
KeyPress, 440
KeyUp, 440
Load, 436
LostFocus, 439
MouseDown, 439
MouseMove, 439
MouseUp, 439
Open, 435
order of occurrence, 433
Resize, 436
sequence, 441-442
Timer, 441
Undo, 434
Unload, 437

Group Header Format event, 534-535
Initialize, 643
Initialize event

data access class, 658
system information class, 668-669

Load event, data access class, 659
No Data event, 831
NotInList event, combo boxes, 472-473
Page Footer Format, reports, 532

Page Header Format, reports, 527
Page Header Format event, 533
report events, 493-496

Close, 494
Error, 495
manipulating sections, 501
NoData, 494-495
Open, 493-494, 525-526
order of, 496
Page, 495

Report Footer Format, reports, 530-532
Report Header Format, 526-527, 531
report section events, 496-497, 500

Format, 496-498
order of events, 500
Print, 498-499, 522-523
Retreat, 500

Section events, 443
Terminate, 644

Excel
automation objects, closing, 960-961
controlling from Access, 956-960
graphs, creating from Access, 961-962,

964-965
exchanging

axes in forms, 262
pivot table axes, 185

excluding fields, from queries, 166-167
ExclusiveAsyncDelay setting (Windows

registry), 928
executing

macros, 21
from ribbons, 946-947

queries, 16
stored procedures on back ends, 921

Exit event, controls, 445
Exit Sub statement, error handling, 759
explicit references

creating in library databases, 1017-1020
limitations, 1018
RefLibPaths key, 1020

events1216

Page numbers preceded by PDF: indicate pages on the website (www.samspublishing.com/title/0672329328).

www.samspublishing.com/title/0672329328

explicit transaction processing, 927
implementing, 929-930

Export command (File menu), 104-109
exporting

code modules, 630-631
data

to SharePoint Server 2007, 883-884
to SharePoint sites, 885-890

form modules, 630-631
Expression Builder, 243. See also builders

building expressions in queries, 160-161
expression builders, 1027
expressions

adding to control sources, 243
Boolean expressions, toggling with Not func-

tion, 815
building in queries (Expression Builder),

160-161
calculated controls, 293
forms, 243
Null values, converting to zero, 167
queries, 554

Rushmore, 555
Watch expressions, 745

adding, 746-748
breaking when expressions are true,

748-749
breaking when expressions change, 749
editing, 748

Extensible Markup Language. See XML
external data, 848

compatibility, 847
dBASE files, 872-873

mapping dBASE data types, 873
defined, 847
examples, 877-879, 881

Database Splitter, 877
refreshing links, 878-881

How can we make this index more useful? Email us at indexes@samspublishing.com

importing, 848-850
DoCmd object, 852-854
user interface, 850-851

linking, 848-849, 854, 862-863, 912
Database Splitter, 854-856
Database Splitter Wizard, 912
performance considerations, 874
refreshing links, 869-871, 878-879, 881
removing links, 869-871
to Access tables, 856-857
to database files, 858
user interface, 856-858
user interfaces, 854
with code, 859-863

links, refreshing, 877-880
passwords, 867-869
storage, 847
text data, 873
troubleshooting, 873-874

connection problems, 873
disk space, 874

external tables
opening, 848-849, 864-865

connection information, providing, 864
OpenDatabase method, 864-865

extracting signed packages, 1113-1114

F
f data-type prefix, 1133
Fast Laser Printing, 289

forms, 236
fdlg object-naming prefix, 1136
Field List properties, queries, 171
Field List window, availability, 233
field properties

propagating, 481-483
for reports, 507-509

queries, 170

field properties 1217

Field Size property (fields), 88
field types, Hyperlink, 103-104
fields (tables), 82-84

adding
to queries, 139-141
to reports, 278

AutoNumber, Cascade Update Related
Fields option, 131

behaviors, modifying, 170
calculated fields (queries)

creating, 157-159
nested queries, 554

changing location on query grid, 143-144
combo boxes, setting width, 221
counter, resetting, 1092
data types, selecting, 82-84
Date() function, 92
foreign keys, 95
forms

adding, 198-199
adding multiple, 198
selecting, 194

indexing
queries, 554
selecting field types, 82

inserting in queries, 143
maximum number allowed, 123
multifield indexes, creating, 96
multivalued fields

creating, 65-69
effect on queries, 69, 71

naming, 81
normalization, 25
properties, 87

Allow Zero Length, 95-96
Caption, 91
Default Value, 91-92
Field Size, 88
Format, 88-89
Indexed, 96-98
Input Mask, 89-90

Required, 94-96
Unicode Compression, 97
Validation Rule, 92-94
Validation Text, 94

queries
excluding fields from output, 166-167
performance considerations, 554

removing from query grid, 142-143
searching, indexes, 96-97
selecting, reports, 275
size considerations, referential integrity,

129
sorting

query results, 1445-146
selecting field types, 82

space requirements, 82
subforms, order of fields, 249
tables

defining, 79
deleting, 80
descriptions, 80
inserting, 80
selecting types, 81
types, 79

types
:Attachment, 86
AutoNumber, 85
Currency, 85
data, 82
Date/Time, 84
Hyperlink, 87
Memo, 84
Number, 84
OLE Object, 86
Text, 84
Yes/No, 86

updating queries, 539
validation rules, adding, 93-94
values, lookups (Lookup Wizard), 98-100

Field Size property (fields)1218

Page numbers preceded by PDF: indicate pages on the website (www.samspublishing.com/title/0672329328).

www.samspublishing.com/title/0672329328

file information class (Class modules), 653-656
FullFileName property, 652-654
GetDrive routine, 653-655
GetName routine, 653-655
GetPath routine, 653-655
manipulating instances (collections),

655-656
property declarations, 652

File menu commands, Export, 104-109
file servers

applications, installing, 910
versus client/servers, 9

FileDiaolg object, 463-464
files

ACCDE files, 829
ADP files, 56
dBASE files, 872-873

mapping dBASE data types, 873
deleting, from disk, 760
importing, supported file formats, 850
INF files, 872
linking, supported file formats, 850
low-level file handling, 628-629
opening, supported file formats, 850
text files, importing, 630
WZMAIN80.MDE, importing, 1037
XML files, importing, 1068-1069

FillCells subroutine, 958
Filter event, forms, 440, 464-465
Filter On Load property, 288
Filter property, 287, 513-514

forms, 234
queries, 172
tables, 102

Filter property (ADO recordsets), 695
filtering

data, pivot table data, 183
forms, 464-465
pivot table data, forms, 261
recordsets, 695

How can we make this index more useful? Email us at indexes@samspublishing.com

FilterOn property, 513-514
filters, forms, 234
find and replace feature, VBA, 390-391
Find dialog box, 390
Find method (ADO recordsets), 696-699
finding records in recordsets, 696-699
first normal form, 118
fixed arrays, 605
fld object-naming prefix, 1133-1134
flds object-naming prefix, 1134
FlipEnabled routine, 414-415
fmnu object-naming prefix, 1136
fmsg object-naming prefix, 1136
folders, My Documents, 1095
Font Color property, controls, 291
Font Italic property, controls, 291
Font Name property, controls, 291
Font Size property, controls, 291
Font Underline property, controls, 291
Font Weight property, controls, 291
Footer section, forms, 192
footers, 274. See also Page Footers

adding at runtime (reports), 501
For Each...Next loops, 816-818
For Each…Next, 817
For Each…Next statement, 372-373
For...Each construct, 413
For...Each loops, iterating through collection

items, 628
For...Next construct, 371
Force New Page property, reports, 293, 303
Fore Color, 290
foreign key fields, 95
foreign keys, 115-116

referential integrity and, 121
foreign keys (client/servers), 922
Form and Report Class modules, 347
Form Design toolbar, 196
Form Design window, 196, 198-200, 202-204

Form Design window 1219

Form events, 431
Activate, 438
AfterDelConfirm, 435
AfterInsert, 432
AfterUpdate, 434
ApplyFilter, 440
BeforeDelConfirm, 435
BeforeInsert, 432
BeforeUpdate, 433
Click, 439
Close, 438
Current, 431
DblClick, 439
Deactivate, 438
Delete, 435
Dirty event, 434
Error, 440
Filter, 440
GotFocus, 438
KeyDown, 439-440
KeyPress, 440
KeyUp, 440
Load, 436
LostFocus, 439
MouseDown, 439
MouseMove, 439
MouseUp, 439
Open, 435
order of occurrence, 433
Resize, 436
sequence, 441-442

closing forms, 442
key presses, 442
mouse actions, 442
moving between forms, 442
opening forms, 441
sizing forms, 442

Timer, 441
Undo event, 434
Unload, 437

form layouts
columns

adding, 212-213
removing, 213-214

formatting, 210
moving, controls in, 210-211
removing, 214-215

form modules, exporting, 630-631
Form property, 416
Form view, viewing forms, 18
Form Wizard

customizing, 1040-1044
forms, creating, 193-195
one-to-many forms, creating, 246-247
starting, 195

Format, Format properties, 290
Format event, report sections, 496-497
Format function, 376
Format menu, spacing forms, 203
Format menu commands, Change To, 830
Format properties

controls, 238, 290-291
Back Color property, 290
Back Style property, 290
Can Grow property, 290
Can Shrink property, 290
Font properties, 291
Scroll Bars, 237
Special Effect, 237

fields, 88-89
form controls, 236-239
forms, 231

Allow Datasheet View, 231
Allow Form View, 233
Allow PivotChart View, 231
Allow PivotTable View, 231
Auto Resize, 231
Border Style, 231
Dividing Lines, 232
Moveable, 232

Form events1220

Page numbers preceded by PDF: indicate pages on the website (www.samspublishing.com/title/0672329328).

www.samspublishing.com/title/0672329328

Navigation Buttons, 232
Orientation, 233
Picture properties, 231
Record Selectors, 231
Scroll Bars, 232
Width, 231

query fields, 170
reports, 285

Auto Center property, 286
Auto Resize property, 286
Border Style, 286
Caption property, 285-286
Close Button, 287
Control Box, 286
Grid X property, 287
Grid Y property, 287
Grp Keep Together, 286
Grp Keep Together property, 286
Layout for Print property, 287
Min Max Buttons, 286
Page Footer, 286
Page Footer property, 286
Page Header, 286
Page Header property, 286
Picture properties, 287
Width property, 287

FormatCount property, reports, 503
formatting form layouts, 210
Formatting toolbar, 196

Align tools, 202
Report Design window, 278

forms
Access, opening from (SharePoint sites),

896-899
Allow Datasheet View property, 231
Allow Filters property, 234
Allow PivotChart View property, 231
Allow PivotTable View property, 231
alternating background colors, 216, 218
applications, navigating, 190

How can we make this index more useful? Email us at indexes@samspublishing.com

Auto Resize property, 231
axes, exchanging, 262
basing applications on runtime application

distribution, 839
basing on queries, 249-250
basing on queries/embedded SQL

statements, 837
Border Style property, 231
borders, 231
builders

designing, 1031-1032
Modal property, 1031

closing, Form event sequence, 442
combo boxes, record sources, 220
command buttons, adding, 244-245
components, 192
conditional formatting. See conditional

formatting
Continuous forms, 451-453
Control properties, 237, 241-242
controls, 218

checkboxes, 224
combo boxes, 219-223
Data properties, 239-240
Format properties, 236-239
labels, 219
list boxes, 223
morphing, 227-228
option buttons, 224
option groups, 224-226
Other properties, 240-242
text boxes, 219

creating, 193
Design View, 196
Form Wizard, 193, 195
from queries, 194
layouts, selecting, 194
queries, 193
styles, selecting, 195
Time and Billing application example,

263-268
titles, 195

forms 1221

custom methods, creating, 489
custom properties

creating, 484-488
PropertyGet routine, 486-488
PropertyLet routine, 486-488
Public variables, creating, 484-486

Cycle property, 235
data, storing in Type variables, 601
Data Entry property, 234
designing, toolbars, 196
designing (Design view), 18
Detail section, 192
Dialog forms, creating, 459-460
displaying in PivotTable view, 257-258
Dividing Lines property, 232
documenting (Database Documenter),

1075-1077
error, creating, 784
error events, 796
error forms

creating, 782-784
printing, 785

event procedures, 350
examples

frmClients, 263-265
frmProjects form, 266-267

expressions, 243
Fast Laser Printing property, 236
fields

adding, 198-199
adding multiple, 198
selecting, 194

Filter property, 234
filtering features, 464-465
filters, 234
Footer section, 192
Format properties, 231
frmClients, 659-662

command button programming
code, 396

frmGetFormInfo, 1040

frmSpecialEffect, 1030-1032
Has Module property, 235
Header section, 192
HTML format, saving in, 253
hyperlinks, adding, 251-253
Internet, compatibility, 251-252
key presses, Form event sequence, 442
labels, 219

captions, 91, 219
sizing, 203

large recordsets, display options, 838
Layout for Print property, 233
Layout view, 205-206

stacked and tabular layouts, 206-211
macros, triggering from, 326-327
Me keyword, 450
Menu Bar property, 235
modal displays, 191
Modal property, 235
Moveable property, 232
moving between, Form event sequence, 442
multipage forms, creating, 453-455
navigating, setting properties, 232
Navigation Buttons property, 232
new features, 51
objects

aligning, 200-202
moving, 200
selecting, 199-200
sizing, 202-203
spacing, 203-204
tab order, changing, 204-205

one-to-many, 246
creating, 246-248

OpenArgs property, 468
opening

Form event sequence, 441
mouse actions, 442

opening with command button code, effi-
ciency considerations, 396-398

forms1222

Page numbers preceded by PDF: indicate pages on the website (www.samspublishing.com/title/0672329328).

www.samspublishing.com/title/0672329328

optimizing, 829-831
Order By property, 234
Orientation property, 233
passing parameter query values, 588-589
Picture properties, 231
pivot tables

controlling information detail (Pivot Table
view), 261-262

creating, 256-257, 259
creating from, 256
displaying (Pivot Table view), 256-257
filtering data (Pivot Table view), 261
summarized data (Pivot Table view), 259

Pop Up property, 235
pop-up forms, 473-474
printed, 190
printing, 233
properties, 229-235

Data properties, 233
Description property, 1075
Format properties, 229, 232
property sheet, 229-230

Record Selectors property, 231
record sources, 198

changing at runtime, 233
records, ordering, 234
recordset methods, 719-724
Recordset Type property, 234
RecordSource property, 720

changing at runtime, 468-471
reports with forms, 272
Scroll Bars property, 232
Short Menu Bar property, 235
Short Menu property, 235
shortcut keys, 198
single forms, creating, 451-452
sizing, Form event sequence, 442
smart tags

action buttons, 255
adding, 253-255

How can we make this index more useful? Email us at indexes@samspublishing.com

Snap to Grid
adjusting grid, 233
temporarily disabling, 202

specifications/limitations, 262
Splash Screen forms, creating, 459
splash screens, creating, 491
split forms, 215-217
splitting into two form layouts, 214
startup forms, 490
styles, 191
subforms, 249, 453, 476-477, 830

referring to subform controls, 476-477
switchboard forms, 190

creating, 457
switching to PivotChart view, 262
synchronizing with underlying recordsets,

483-484
Tab controls

adding, 456
properties, changing, 456-457

tabbed forms
creating, 455-457
Tab controls, adding, 456

Tag property, 236
titles

Caption property, 229
Default View property, 230

UserForm, 976-977
uses, 189
viewing (Form view), 18
Width property, 231
Windows, Form Design, 198-200, 202-204
XML format, saving in, 253

Forms collection, 418-419
referencing forms, 407

fra prefix, 1132
frames

bound object frames, reports, 283
unbound object frames, reports, 283-284

frm prefix, PDF:1132, PDF:1135

frm prefix 1223

frmClients form, 659, 661-662
command button additions, 268
command buttons, programming code

for, 396
Time and Billing Application, creating, 263-

265, 268
frmGetFormInfo form, 1040
frmProjects form

creating, 266-267
Time and Billing Application, creating,

266-267
frms prefix, 1132
frmSpecialEffect form, 1030-1032
FROM clause, SQL, 568
front ends

as Access data project communicating
directly to back ends, 921

communicating to backends, with SQL Pass-
Through, 920-921

compared to back ends, 919
executing stored procedures on back

ends, 921
file format compatibility, 918
tables, linking from back end servers, 919
using Access as, 842-845

options, 844
front-ends, 847
fsfr object-naming prefix, 1136
fsub prefix, 1132
FullFileName property (file information class),

652-654
Function Subkey value (registry), 1033
functions, 348-349, 610. See also procedures

aliasing, 989-991
ANSI, renaming, 990
API functions, 993

Windows registry, 994-997
Between Date And Date, 149
builders

preset arguments, 1029-1031
writing, 1028-1031

calling
invalid characters, 989
ordinal number references, 991

calling from libraries at runtime, 1015
code, viewing, 387
CodeDB, 1013
constants, 991
CreateControl, 1044
CreateCustomForm, 1041-1042
CreateForm, 1044
CreateRecordset, 964-965
CreatExcelObj, 957
creating, 352-354

shortcut for, 354
CurrentDB, 1013
Date(), 92
Date(), 149
DateAdd, 378
DateDiff, 378
DatePart, 149, 377
Day(), 149
Declare statement, 986
DeleteSetting, 994
DLL functions

aliasing, 989-991
calling, 993
declaring, 985-986
passing parameters, 987-989

error messages, 986
ErrorHandler, 778-780

generic error handlers, 772-774
Format, 376
GetAllSettings, 994
GetSetting, 994
hard drives, 1005-1008
IIf, 366
Initials function, 586
InputBox, 462-463
Instr, 376

frmClients form1224

Page numbers preceded by PDF: indicate pages on the website (www.samspublishing.com/title/0672329328).

www.samspublishing.com/title/0672329328

InstrRev, 376
IsLoaded, 398, 1015, 1031
IsMissing, 614
IsNull, 619-620
IsNull(), 169
Left, 377
Len, 818
libraries

DLLs (dynamic link libraries), 985
Win32 API, 985

Mid, 377
modules, 22, 347
Month(), 149
MonthName, 379
MsgBox, 460-462
MyCustomForm, 1045
names, resolving conflicts, 990
Not, toggling Boolean expressions, 815
NumberOfBytesFree, 1008
Nz, 620, 625
Object Browser, 379-380
parameters, 373-374

named parameters, 616
optional parameters, 613-615
parameter arrays, 617-618
passing, 610-613
recursive procedures, 616-617

passing objects to, 413-414
ReLink, 881
Replace, 378
Required, late binding, 955-956
results as criteria for queries, 586-587
Right, 377
SaveSetting, 994
SpecialEffect, 1030
strings, 376-377
StrRev, 379
SysCmd, 1031
TypeOfDrive, 1007
UCase, 377

How can we make this index more useful? Email us at indexes@samspublishing.com

values, returning, 373-374
VBA, 377-380
Weekday(), 149
Year(), 149

G
g scope prefix, 1135
gallery, ribbons, 34
General Declarations sections

basUtils module, 998-1003
compiler constants, 367
modules, 348

General tab (Database Properties dialog box),
1079

generating errors, 767-768
generic error handlers, 770-775, 778-780,

783-784
error forms

creating, 782-784
printing, 785

ErrorHandler function, 772-774, 778-780
LogError routine, 774-776
On Error routine, 770-771
type structure declaration, 772

generic object variables compared to specific
object variables, 411

GetAllSettings function, 994
GetDrive routine, file information class,

653, 655
GetDriveInfo, 1006
GetDriveInfo procedure, 1006
GetName routine, file information class,

653-655
GetObject function, late binding, 955-956
GetOutlook function, 781
GetPath routine, file information class, 653-655
GetSetting function, 994
GetSysInfo, 1003

GetSysInfo 1225

GetSysInfo subroutine, 782, 1003
GotFocus event

controls, 445
forms, 438

graphics, reports with graphics, 272
graphs, Excel, creating from Access, 961-965
greater than or equal to (*=), query criteria

operator, 146
greater than sign (*), query criteria

operator, 146
Grid X property, reports, 287
Grid Y property, reports, 287
Gridline Styles, 291
GROUP BY clause, SQL, 573
Group Footers, reports, 275
Group Header Format event, 534-535
Group Headers, reports, 275
group levels, adding to reports, 276
grouping data, reports, 301-303
groups, adding to ribbons, 944-945
Grp Keep Together property, reports, 286
grp object-naming prefix, PDF:1134
grps object-naming prefix, PDF:1134

H
hard disks

compression, 804
defragmenting, 803

compacting databases, 1091-1092
hard drives, 1005-1008
hardware

optimization, 802
defragmenting hard disk, 803
drive compression, 804
RAM, 802

system requirements, 23
Has Module, 289

forms, 235

HasContinued property, reports, 503
HAVING clause, SQL, 573
Header section, forms, 192
headers, 274. See also Page Headers

reports, adding at runtime, 501
headings, Crosstab queries

fixed, 562
fixed column headings, 561

help
custom, adding to distribution version, 841
properties, 402
VBA, context-sensitive, 391

Help Context Id, 289
controls, 241

Help File, 289
hidden objects, restoring, 64-65
Hide Duplicates, 290
hiding

document tabs, 44, 46
objects in parent groups, 63-64
status bar, 49
system objects, 943
Unassigned Objects group, 61

hierarchies, building classes, 646
horizontal spacing, adjusting forms

automatically, 204
HTML

forms, saving as, 253
saving reports as, 306
table data, saving in, 104-107
tables, converting data, 107

HTML documents
importing, 874-876
linking to, 877

Hyperlink Address, 290
hyperlink base, 1079
Hyperlink field type, 87, 103
Hyperlink SubAddress, 290

GetSysInfo subroutine1226

Page numbers preceded by PDF: indicate pages on the website (www.samspublishing.com/title/0672329328).

www.samspublishing.com/title/0672329328

hyperlinks
adding to reports, 306
forms, adding, 251-253
labels, reports, 306

I
I/O operations, text files, 629
icons, shortcut icons (compacting

databases), 1095
idx object-naming prefix, 1134
idxs object-naming prefix, 1134
If statements, 365

compared to Select Case statements, 366
If...Then...Else control structure, 365
IIf function, 366
image controls

compared to unbound object frames, 283
reports, 284

images, splash screens, 459
IME (Input Method Editor) property,

controls, 242
img prefix, 1132
Immediate If (IIf) control structure, 366
Immediate window, 734

clearing, 732
debugging features, 729-730
functions, testing, 733
printing values to, 734
setting values of variables/properties,

730-732
subroutines, testing, 733
testing values of variables/properties, 730
troubleshooting applications, 361

implementation stage, applications
development, 28

Implements keyword, sharing interfaces, 648
implicit transaction processing, 927

How can we make this index more useful? Email us at indexes@samspublishing.com

registry settings, 927-929
ImplicitCommitSync setting (Windows

registry), 928
Import dialog box, 1037
Import HTML Wizard, 874, 876-877
Import Objects dialog box, 1037
Import Spreadsheet Wizard, 851
importing

external data, 848, 850
DoCmd object, 852-854
user interface, 850-851

files, supported file formats, 850
HTML documents, 874, 876
from SharePoint lists, 900, 902
text files, 630
USysRegInfo tables, 1037
XML files, 1068-1069

In-Place activation (embedded objects), 466
Indexed property

Fields, 96-97
tables, 98

indexed sequential access method data,
performance considerations, 849

indexes
application performance, improving, 102
limitations, 809
multifield, creating, 97
optimization, 809
performance considerations, 97
Primary Key, creating, 98
relationships, 134
searching table fields, 97
table relationships and, 103
tables, 98

performance benefits, 103
upsizing to client/servers, 97, 923

indexing fields
queries, 554
selecting field types, 82

INF files, 872

INF files 1227

infinite loops, 371
inheritance, 638
Initialize event, 643

data access class, 658
system information class, 668-669

Initials function, 586
InitVars routine, reports, 527
inline code, 814
inline code benchmark, 814
Input # keyword, 628
input boxes, 462-463

InputBox function, 462-463
input devices, minimum system

requirements, 23
Input Mask property, 292

query fields, 170
Input Mask property (fields), 89-90
Input Mask Wizard, 89-90
InputBox function, 462-463
Insert Hyperlink dialog box, 103-104
INSERT INTO statement, SQL, 583
Insert Object dialog box, 283, 466
inserting

fields, tables, 80
OLE objects, reports, 283
page breaks, reports, 293

installing
Access

multiuser applications, 910
Windows 2000 Terminal Services, 912

menu add-ins, 1046
multiuser applications, 910-911

instances, manipulating multiple instances of
file information class, 655-656

instantiating objects (Class modules), 640
instantiation, 638

Recordset objects, 676
Instr function, 376
InstrRev function, 376
int data-type prefix, 1133

integrity rules, referential and entity rules,
121-122

Intellisense, enumerated types and, 644-646
interfaces, sharing (Implements keyword), 648
International Standards Organization (ISO), 990
Internet

applications, developing, 11
forms, compatibility, 251-252
reports, Internet compatibility, 305-306

intranets, developing applications, 11
Intrinsic constants, 381-383, 602, 604
intrinsic constants

examples, 632-633
viewing (Object Browser), 604

intTemp variable, 739
Invalid add-in entry error messages, 1036
invoking Registry Editor, 1033
Is Hyperlink, 291
Is Not (query criteria operator), 147
Is Null (query criteria operator), 147
ISAM (indexed sequential access method) data,

performance considerations, 849
ISAM drivers, Windows registry keys, 866
IsLoaded function, 398, 1031
IsLoaded functions, 1015
IsMissing function, 614
IsNull function, 619-620
IsNull() function, 169
ISO (International Standards Organization), 990
Item method, Collection object, 627
iterating through collection items, 628

J
Jet, 806
JET, ANSI-92 extensions, 590

stored procedures, 593-594
tables, 590-593
transactions, 594
views, 593-594

infinite loops1228

Page numbers preceded by PDF: indicate pages on the website (www.samspublishing.com/title/0672329328).

www.samspublishing.com/title/0672329328

Jet
client/servers, 922
Errors collection, 769-770

Jet Engine
converting databases from old versions,

1096-1098
objects, naming conventions,

PDF:1133-1134
queries, optimizing, 553-555

Jet OLEDB Link Datasource, 861
refreshing external links, 869-871

Jet OLEDB Link Provider, 860
Jet OLEDB Link Provider String, 866-867
JOIN clause, SQL, 570-571
join lines (relationships), 124
joining tables, queries, 570-571
joins

outer joins
left outer joins, 563
queries, 562-564
right outer joins, 563

self joins, queries, 564-565
junction tables, 123-124

K
Key argument, Add method, 649
Key command (New menu), 1034
KeyDown event

controls, 448
forms, 439-440

KeyPress event
controls, 449
forms, 440

KeyUp event
controls, 449
forms, 440

How can we make this index more useful? Email us at indexes@samspublishing.com

keywords
ALL, SQL, 576
ANSI-92 extensions

CHECK, 591
DEFAULT, 590
NO INDEX, 591

As String, 374
ByVal, 987
Close, 628
Const, 381, 602
Dim, custom collections, 649
DSN, 867
Implements, 648
Input #, 628
Me, 450, 825
Open, 628
Preserve, 608-609
Public, 356
PWD, 867
Static, 355
TOP, SQL, 572
UID, 867
Write #, 628

Kill statement, 760

L
Label tool, 219, 282
Label Wizard, 273
labels

associating/disassociating with
controls, 219

attached labels, 91
captions, 91, 290

default, 219
combo boxes, 222
forms

adding, 219
controls, 219
sizing, 203

labels 1229

hyperlinks
adding, 251
adding to reports, 306

mailing labels, reports with labels, 273
printing

multiple labels, 520-521
in specific locations, 522-523

reports, 282
hyperlinks, 306

sizing, automatically, 281
lassoing objects, 200
late binding, required functions, 955-956
Layout for Print property

forms, 233
reports, 287

Layout view, forms, 205-206
stacked and tabular layouts, 206-211

layouts
forms, 194
reports, 277

lbl prefix, 1132
Left function, 377
left outer joins, 563
Len function, 818
less than or equal to (=), query criteria

operator, 146
less than sign (), query criteria operator, 146
libraries

function libraries, 985
procedures, unique names, 990

library databases, 1011
calling functions at runtime, 1015
compiling, 1013
creating, 1012-1013

code modules structure, 1012-1013
CodeDB function, 1013
CurrentDB function, 1013
explicit references, 1017-1020
Time and Billing application example,

1023-1025
writing code, 1013

debugging, 1022-1023
references, 1013

creating, 1014
creating with VBA code, 1021
runtime, creating, 1014-1016

Library Subkey value (registry), 1033
lifetime, variables, 355
Like (query criteria operator), 147
Like criteria, queries, 554
limitations of reports, 307
lin prefix, PDF:1132
line continuation character, VBA, 364
Line Spacing, 291
Line tool, 282
lines, reports, 282
Link Child Fields property

subforms, 249
subreports, 300

Link dialog box, 856
Link Master Fields property

subforms, 249
subreports, 300

linked tables, converting to local tables,
871-872

linking
external data, 848-849, 854, 862-863, 912

to Access tables, 856-857
with code, 859-863
to database files, 858
Database Splitter, 854-856
Database Splitter Wizard, 912
performance considerations, 874
refreshing links, 869-871, 878-879, 881
removing links, 869, 871
user interface, 856-858
user interfaces, 854

files, supported file formats, 850
HTML documents, 877
to SharePoint lists, 900, 902
tables, accessing in networks, 913

labels1230

Page numbers preceded by PDF: indicate pages on the website (www.samspublishing.com/title/0672329328).

www.samspublishing.com/title/0672329328

links
reestablishing when SharePoint sites have

been moved, 906
refreshing, 877-880

LinkTables routine, 877-880
LinkToDBase subroutine, 862
List Box Wizard, 224
list boxes

adding/removing items at runtime, 474-475
converting to combo boxes to, 228
forms, adding, 223
Multiselect property, 475-476

List Constants feature, modules, 385
List Properties and Methods feature,

modules, 384
listing errors, 797
lng data-type prefix, 1133
Load event

data access class, 659
forms, 436

LoadOnStartup key, 1016
local tables, converting from linked tables,

871-872
local variables, 361
Locals window, 744
Lock Delay property (Connection strings), 674
Lock Retry property (Connection strings), 674
locking

data, 913
tables, creating reports, 288

LockType parameter, ADO recordset types,
682-683

LogError routine
custom error handler class, 793-794
generic error handlers, 774-776

logging errors, 774-776
logic errors, 728
Long Date format (fields), 89
Lookup Wizard

Display Control property, 99-100
launching, 98-100

How can we make this index more useful? Email us at indexes@samspublishing.com

Lookup Wizard field type, 83
lookups

disadvantages, 100
Display Control property, 99-100
field values, executing (Lookup Wizard),

98, 100
looping

through custom collections, 650
through recordsets, 827

loops, 369-370
breaking, 371
control references, avoiding repeating, 370
Do, 369-370
For Each...Next, 816-818
For...Each loops, iterating through collection

items, 628
infinite, 371
records, modifying all in a recordset,

704-706
With statement, 823-824

LostFocus event
controls, 446
forms, 439

low-level file handling, 628-629
lst prefix, 1132

M
m scope prefix, 1135
macro action arguments, 318-320
macro actions, 316-317

copying actions, 331
deleting actions, 330
deleting new actions, 329
inserting new actions, 329
moving actions, 330-331
OnError, 334

macro arguments, 316
macro conditions, 316, 323-324

macro conditions 1231

Macro Design window, 316
running macros, 325

macro names, 316, 321-322
macros

AutoExec macro, creating, 341-342
capabilities of compared to VBA

programming, 345-347
converting to VBA code, 339-341
creating, 315-316, 327-328
DoCmd object, 342
documenting

adding comments, 336-337
Database Documenter, 1078

embedded macros, 315
creating, 332-333

executing
DoCmd object, 374
from ribbons, 946-947

mcrPersonalInfo, 328
modifying existing macros, 329

copying macro actions, 331
deleting macro actions, 330
deleting new macro actions, 329
inserting new macro actions, 329
moving macro actions, 330-331

versus modules, 20
new features, 334-335
running, 21, 324

from Macro Design window, 325
from Macros group of the Navigation

Pane, 326
stepping through, 338
testing, 337-338
triggering, from forms or report events,

326-327
Trust Center, 1116-1117
when to use, 339

mail merge documents (Word), 966, 968
MailError, 780-781
mailing labels, reports with labels, 273

maintenance, splitting tables from other
objects, 836

maintenance activities, applications develop-
ment, 28

Make Table queries
creating, 545-547
performance considerations, 554

MakeItBold Subroutine, 812
manipulating report sections, 501
many-to-many relationships, 123-124
mapping dBASE data types, 873
MaxBufferSize settings (Windows registry), 806
mcr prefix, 1135
mcrPersonalInfo, 328
MDE files, 829
Me keyword, 450, 825
Me property, 416
Memo field type, 84
memory

Declare statements, 987
freeing, 412
optimization, 802-803
usage considerations, declaring

variables, 674
virtual, optimizing, 803-805

menu add-ins, 1045-1046
Menu Add-ins section (registry), library

references, 1014
Menu Bar, 288

forms, 235
message boxes, 460-462

MsgBox function, 460-462
preventing rebooting during long

processes, 801
methods, 404, 408

Add
Collection object, 626-627
custom collections, 649

AddFromFile, 1021
adding to Class modules, 639
AddNew method, data access class, 664

Macro Design window1232

Page numbers preceded by PDF: indicate pages on the website (www.samspublishing.com/title/0672329328).

www.samspublishing.com/title/0672329328

Application object, 417-418
AutoFill, 959
AutoFilter, 982
automation objects, 954
BeginTrans, transaction processing,

929-930
BrokenReferences (Application

object), 1102
CommitTrans, transaction processing,

929-930
CompactDatabase method (JetEngine

object), 1096-1098
CompactRepair, 417
CompactRepair method (Application object),

1098-1099
compared to properties, 408-409
ConvertAccessProject, 418
ConvertAccessProject (Application object),

1100-1101
CopyFromRecordset, 982-983
Custom, adding to classes, 651-652
custom methods, creating, 489
Delete

Catalog object, 871
data access class, 665

Edit method, data access class, 664-665
ErrorProcess method, custom error handler

class, 791-793
executing, 408-409
Find method (ADO recordsets), 696-699
Item method, Collection object, 627
MoveFirst, 688
MoveLast, 688
MoveNext, 688, 721

data access class, 659-661
MovePrevious, 688, 721

data access class, 661-662
objects, object library, 951
OpenDatabase, 864-865
OpenForm, DoCmd object, 375
Raise (Err object), 767-769

generating errors, 767-768
user-defined errors, 768-769

How can we make this index more useful? Email us at indexes@samspublishing.com

record-movement methods (ADO
recordsets), 688-689

Remove method, 650
Collection object, 627

Requery, refreshing recordset data, 702
Resync, refreshing recordset data, 702
Rollback, transaction processing, 929-930
Save method, data access class, 663-664
Scatter method, data access class,

658-659
Supports, Recordset objects, 687
TransferDatabase

arguments, 852
importing external data, 852-853

TransferSpreadsheet
arguments, 854
importing external data, 853-854

TransferText, importing external data, 853
Microsoft Office Access button, new

features, 36
Microsoft Word. See Word
Mid function, 377
migration

importing tables, 848
to client/server environment, 845
Upsizing Wizard, 843

Min Max Buttons property, reports, 286
mini toolbar, 49-50
Modal, 288
modal forms, 191
Modal property

builder forms, 1031
forms, 235

modifying
existing macros, 329

copying macro actions, 331
deleting macro actions, 330
deleting new macro actions, 329
inserting new macro actions, 329
moving macro actions, 330-331

Trusted Locations, 1120

modifying 1233

Module Design window, modules (viewing
design), 22

Module property, 416
Module window, executing procedures, 374-375
module-level variables, see private

variables, 348
modules

basUtils, General Declarations section,
998-1003

bookmarks, adding, 394
CBF, 347
class, 347
Class, declaring procedures, 355
Class compared to Standard, 357-358
Class modules. See Class modules
code modules, exporting, 630-631
compiling, 828
Complete Word feature, 386
constants, intrinsic, 382-383
Definition feature, 387
documenting (Database Documenter), 1078
event procedures, 347, 350-352
features, 22
Form and Report Class, 347
form modules, exporting, 630-631
function libraries, 22
functions, 348-349

creating, 352-354
General Declarations sections, 348
List Constants feature, 385
List Properties and Methods feature, 384
versus macros, 20
organizing, 829
Parameter Info feature, 386
procedures

calling, 354-356, 358
private procedures, 356
public procedures, 355
scope precedence, 357
static procedures, 358

Quick Info feature, 385

standard, 347
statements

Option Explicit, 349
Option Explicit, 351

subroutines, 347-349
creating, 352-354

tools, 384-386
variables, declaring, 348
VBA, 347-350, 354-358
viewing (Module Design window), 22

Modules collection, 420
Month() function, 149
MonthName function, 379
morphing

combo boxes to list boxes, 228
text boxes to combo boxes, 227-228

morphing controls, 227-228
mouse

moving form objects, 200
reports, selecting objects, 279
selecting form objects, 199-200
sizing objects, 202

mouse actions, forms (Form event
sequence), 442

MouseDown event
controls, 448
forms, 439

MouseMove event
controls, 448
forms, 439

MouseUp event
controls, 448
forms, 439

Moveable property, 287
forms, 232

MoveFirst method, recordsets, 688
MoveLast method, recordsets, 688
MoveLayout property, reports, 502
MoveNext method, 721

data access class, 659-661
recordsets, 688

Module Design window, modules1234

Page numbers preceded by PDF: indicate pages on the website (www.samspublishing.com/title/0672329328).

www.samspublishing.com/title/0672329328

MovePrevious method, 721
data access class, 661-662
recordsets, 688

moving
controls within form layouts, 210-211
form layouts, 210-211
form objects, 200
macro actions, 330-331
report objects, 280

moving between forms, Form event
sequence, 442

MS Office 97, VBA, 345
MsgBox function, 460-462
multifact crosstab reports, creating, 533-536
multipage forms, creating, 453-455
multiple class instances (Class modules),

creating, 642-643
Multiselect property, list boxes, 475-476
multitable queries

creating, 151-153
pitfalls, 153-155
row fix-up feature, 155-157

multiuser applications, 910-911
multivalued fields

creating, 65-69
effect on queries, 69-71

My Documents folder, 1095
MyCustomForm function, 1045

N
Name property, 292

controls, 240, 292
named parameters, 375, 616
naming

constants, 382
controls, conflicts, 292
databases, rules, 79
fields, 81

How can we make this index more useful? Email us at indexes@samspublishing.com

objects, PDF:1131-1135
DAOs, PDF:1133-1134
Database window objects, PDF:1135
Jet object/collection prefixes,

PDF:1133-1134
object tag prefixes, PDF:1132-1133
Reddick naming convention, 23
scope/lifetime prefixes, PDF:1134
variable data type tags, PDF:1133

queries, 144
tables, conventions, 81
variables, PDF:1131, PDF:1134

changing, 390-391
Jet object/collection prefixes, PDF:1134
Private, 362
Public, 363
scope/lifetime prefixes, PDF:1134
variable data type tags, PDF:1133

naming conventions, constants, 603-604
naming prefixes, action queries, 541
naming standards, avoiding bugs, 728
natural keys, 116
navigating

applications, forms, 190
forms, setting properties, 232

Navigation Buttons property, forms, 232
Navigation Pane

new features, 42-43
running macros from, 326
tips and tricks, 56-58

adding custom groups to categories,
59-60

adding objects to custom groups, 60
creating custom groups containing

objects found in existing groups, 62
hiding objects in parent groups, 63-64
hiding Unassigned Objects group, 61
restoring hidden objects, 64-65

nested queries, calculated fields, 554

nested queries, calculated fields 1235

networking
client/server applications, suitability of

Access, 10
file servers versus client/servers,

performance considerations, 9
networks

applications, designing, 909
data locking, 913
linked tables, accessing, 913
servers, installing applications, 910
workstations, installing applications, 911

New command (Edit menu), 1034
new databases, creating, 75-76

from scratch, 78-79
with templates, 76-78

new features
forms, 51
macros, 334-335
mini toolbar, 49-50
Navigation Pane, 42-43
Quick Access toolbar, customizing, 38-41
reports, 51
ribbons, 30

command tabs, 30-33
contextual command tabs, 34
gallery, 34
Microsoft Office Access button, 36
Quick Access toolbar, 34-36
tips and tricks, 36, 38

security, 52, 1103-1105
status bar, 47-49
subforms/subreports, 249, 301
tabbed documents, 44-46

displaying overlapping windows, 46-47
undoing/redoing, 89
user interfaces, 28-30

new features (Access 2003), 51
New menu commands

DWORD Value, 1034
Key, 1034
String Value, 1034

New Object dialog box, 1045
New Query dialog box, 138
NextRecord property, reports, 502
No Data events, 831
NO INDEX keyword (ANSI-92 extensions), 591
NoData event, reports, 494-495
non-equi joins (SQL), 572
normal forms, 116

first, 118
second, 119
third, 119-120

normalization, 115-116
application development, rules, 24-27
denormalization, 120
first normal form, 118
second normal form, 119
third normal form, 119-120

Not (query criteria operator), 147
not equal to (*), query criteria operator, 147
Not function, toggling Boolean expressions, 815
Nothing value, object variables, 412
NotInList event

combo boxes, 472-473
controls, 444-445

Null (query criteria operator), 147
null entries, compared to zero-length, 95
Null values

avoiding in strings, 624
converting to zero, 167
examples, 632-633
primary keys, 122
queries, 579-581
query results, 166-167, 169
variables, 359
Variant variables, 619-625

Number field type, 84
NumberOfBytesFree, 1008
NumberOfBytesFree function, 1008
Numeral Shapes, 291
numeric data, summarizing (Totals queries),

161-165
Nz function, 620, 625

networking1236

Page numbers preceded by PDF: indicate pages on the website (www.samspublishing.com/title/0672329328).

www.samspublishing.com/title/0672329328

O
obj data-type prefix, 1133
object, Connection object, 929-930
Object Browser, 379-380, 405

information available in, 406
intrinsic constants, 382
pasting code templates into

procedures, 406
Project/Library drop-down list, 406
running, 405
viewing constants, 604

Object Browser command (View menu), 405
Object Browser dialog box, 405
Object Definition window (Database

Documenter), 1082
object dependencies, viewing, 479-480
Object Dependencies feature, 110

invoking, 1086-1088
object libraries, 951
object models, 950
object orientation, 637-638
Object Properties dialog box, 1075
object types, 950
object variables, 410

compared to regular variables, 410-411
generic compared to specific, 411
Nothing value, 412
referencing applications, 950-952

objects, 402, 638
Access Object Model

AllForms collection, 420
AllMacros collection, 421
AllModules collection, 421
AllQueries collection, 423
AllReports collection, 421
AllTables collection, 422
Application object methods, 417-418
Application object properties, 417
CodeData object, 423
CodeProject object, 423

How can we make this index more useful? Email us at indexes@samspublishing.com

CurrentData object, 422-423
CurrentProject object, 420-421
DoCmd object, 423-424
Forms collection, 418-419
Modules collection, 420
Reports collection, 419
Screen object, 423
special properties that refer to objects,

415-416
Application, CompactRepair method,

1098-1099
automation, 950
automation objects, 953-954
bound OLE objects, 466-467
Catalog object, Delete method, 871
CodeData object, 423
CodeProject object, 423
Collection object, 626

Add method, 626-627
Item method, 627
Remove method, 627

command buttons, enabling/disabling,
426-427

Command object, ADO object model,
678-679

compared to collections, 412
compilation, 629
Connection object, ADO object model,

672-675
CurrentData object, 422-423
CurrentProject object, 420-421
custom collections, 648-651
DAOs, naming conventions, 1133-1134
database objects, splitting, 835-836
Database window objects, naming

conventions, 1135
declaring disambiguation, 672
dependencies, displaying (Object

Dependency feature), 1086-1088
DoCmd, 423-424

adding report sections at runtime, 501
examples, 632-633

objects 1237

executing macros, 374
importing external data, 852-854
OpenForm method, 375

Err, 766-767
Err object

properties, 766
Raise method, 767-769

event procedures, 350
creating, 352

events, 404
Excel automation objects, closing, 960-961
FileDialog, 463-464
form objects

aligning, 200-202
moving, 200
selecting, 199-200
sizing, 202-203
spacing, 203-204
tab order, changing, 204-205

hidden objects, restoring, 64-65
hiding in parent groups, 63-64
instantiating (Class modules), 640
methods, 404, 408

executing, 408-409
object library, 951

naming (Reddick naming convention), 23
naming conventions, PDF:1131-1135

Jet object/collection prefixes,
PDF:1133-1134

object tag prefixes, PDF:1132-1133
scope/lifetime prefixes, PDF:1134
variable data type tags, PDF:1133

Object Browser, 379-380, 405
OLE objects

converting to images, 830
inserting in reports, 283

passing to subroutines and functions,
413-414

Printer, 503-504
procedures, calling, 354

properties, 402, 408
default, 410
modifying, 408-409
object library, 951
setting for single objects, 412
viewing, 402

Recordset object
ADO object model, 676-678
consistent compared to inconsistent

updates, 685-686
CursorType parameter, 680-682
LockType parameter, 682-683
Options parameter, 684-685
selecting location, 686-687
Supports method, 687

referencing, 407
shortcuts, 410

registering, 951
report objects

aligning, 281
moving, 280
selecting, 279-280
sizing, 281
Snap to Grid feature, 281
spacing, 282

reports, moving, 281
Screen object, 423
Table object, Properties collection, 860
unbound OLE objects, 467
viewing object dependencies, 109-110
With...End With construct, 412

ocx prefix, 1132
ODBC, client/servers, 922
OLE DB, 922
OLE Object field type, 86
OLE objects

bound OLE objects, 466-467
In-Place activation, 466

converting to images, 830
inserting in reports, 283
unbound OLE objects, 467

objects1238

Page numbers preceded by PDF: indicate pages on the website (www.samspublishing.com/title/0672329328).

www.samspublishing.com/title/0672329328

ole prefix, 1132
On Error Goto 0 statement, 759-760
On Error Goto statement, 758-759
On Error Resume Next statement, 760
On Error routine, generic error handlers,

770-771
On Error statements, 758

On Error Goto, 758-759
On Error Goto 0, 759-760
On Error Resume Next, 760

one-to-many forms, creating, 246-248
one-to-many queries, creating one-to-many

reports, 296
one-to-many relationships, 16, 122

join lines, 124
lookups, 98, 100

one-to-many reports, creating, 294-296, 299
one-to-many queries, 296
Report Wizard, 294-296
Subreport Wizard, 298-300

one-to-one relationships, 123
join lines, 124

OnError macro action, 334
Open dialog box, 1039
Open event

forms, 435
reports, 493-494, 525-526

Open keyword, 628
Open method, ConnectionString argument, 864
OpenArgs property, forms, 468
OpenDatabase method, 864-865
OpenForm method, DoCmd object, 375
opening

Access forms and reports from SharePoint
sites, 884, 896-899

external tables, 848-849, 864-865
connection information, providing, 864
OpenDatabase method, 864-865

files, supported file formats, 850
forms, Form event sequence, 441
windows, designing forms, 197

How can we make this index more useful? Email us at indexes@samspublishing.com

operators, query criteria, 146-147
opt prefix, PDF:1132
optimization, 802

code
ACCDE files, 829
bookmarks, 826-827
Boolean expressions, 815
built-in collections, 816-817
compiling modules, 828
constants, 826
Declare statements, 821
Dim statements, 821
dynamic arrays, 826
inline code, 814
Len function, 818
Me keyword, 825
object references, 821
object variables, 827
organizing modules, 829
specific object variables, 812-813
stored queries, 827-828
true/false evaluations, 819-820
unused code, 821
variant variables, eliminating, 811
With...End With construct, 823-824

coding changes, 811
data structures, 808-809
defined, 801
form-optimization techniques, 829-831
hardware, 802

Compact utility, 803
defragmenting hard disks, 803
disk compression, 804
RAM, 802-803
virtual memory, 803-805

local execution and, 804
Performance Analyzer, 807
queries, 810
report-optimization techniques, 831
software, Windows 95/98, 806

optimization 1239

splitting tables from other objects, 836
Windows 2000 Terminal Services, 804
Windows registry settings, 806

optimizing queries, 553, 555
option buttons, adding to forms, 224
Option Explicit statement

avoiding bugs, 728
modules, 349-351

Option Group Wizard, 225-226
option groups

captions, 226
forms, adding, 224-226

optional parameters, 613-615
Options parameter, ADO recordset types,

684-685
Or (query criteria operator), 147
Order, of report events, 496
ORDER BY clause, SQL, 569
Order By On Load property, 288
Order By property, 288

forms, 234
queries, 172

order of events, report section events, 500
OrderBy property, 515-516
OrderByOn property, 515-516
ordering query results, 144-145
Orientation property, 287

forms, 233
orphan records, 131
Other properties

controls, 292
form controls, 240-242

outer joins
left outer joins, 563
queries, 562-564
right outer joins, 563

Outlook, controlling from Access, 974-976
Output All Fields property, queries, 171
overlapping windows, displaying, 46-47

P
packages, signed packages

creating, 1112-1113
extracting, 1113-1114

packaging Access databases, 1110-1111
signed packages, 1112-1114

Page Break tool, 293
Page event, reports, 495
Page Footer Format event, reports, 532
Page Footer property, reports, 286
Page Footers, reports, 274
Page Header Format event, 533

reports, 527
Page Header property, reports, 286
Page Headers, reports, 274

printing first and last page entries, 530,
532-533

Page locking, 913
pal prefix, 1132
Palette Source property, 287
parameter arrays, 617-618
Parameter Info feature, modules, 386
Parameter queries, building, 172-175
parameter queries (ADO), 701-702
parameter query values, passing from forms,

588-589
parameters, 991. See also arguments

Crosstab queries, 562
CursorType, ADO recordset types, 680-682
functions, 373-374
LinkToDBase subroutine, 862
LockType, ADO recordset types, 682-683
named, 375
named parameters, 616
optional parameters, 613-615
Options, ADO recordset types, 684-685
passing, 373-374

by reference, 987
passing arrays as, 609-610

optimization1240

Page numbers preceded by PDF: indicate pages on the website (www.samspublishing.com/title/0672329328).

www.samspublishing.com/title/0672329328

passing by reference vs. passing by value,
610-613

string parameters, passing, 987, 989
subroutines, 373-374

Parameters dialog box, 588
Parent property, 416

classes, adding to, 647-648
pass-through queries, 578

creating, 578-579
passing objects to subroutines and functions,

413-414
passing parameters, 373-374

by reference vs. by value, 610-613
passing string parameters, 987-989
passwords

using database passwords to encrypt
Access 2007 databases, 1109-1110

databases, 867-869
external data, 867-869
removing, 1110

pdbe object-naming prefix, 1134
Performance Analyzer, 807

queries, 553
Performance Analyzer dialog box, 808
period (.), 409
persisting recordsets, 702-704
personal applications, developing, 8
personal error handling, preventing, 786
Picture properties

forms, 231
reports, 287

pivot charts, creating from queries, 179
Pivot Table view

forms
controlling information detail, 261-262
data filtering, 261
displaying, 256-257
summarized data, 259

query displays, 179-183
axes exchange, 185
drill-down, 184

How can we make this index more useful? Email us at indexes@samspublishing.com

exchanging axes, 185
filtering data, 183
summarized data, 181-183

pivot tables
forms

controlling information detail (Pivot Table
view), 261-262

creating from, 256-259
displaying (Pivot Table view), 256-257
filtering data (Pivot Table view), 261
summarized data (Pivot Table view), 259

queries
creating from, 179-183
filtering data, 183

replacing Crosstab queries with, 562
PivotChart view, switching to, 185, 262
PivotCharts, new features, 51
PivotTable view, displaying forms, 257-258
PivotTables, new features, 51
polymorphism, 638
Pop Up, 288
Pop Up property, forms, 235
pop-up forms, 473-474
PowerPoint

controlling from Access, 970-973
slides, 972-973

precedence, procedures, 357-358
prefixes (naming conventions), 1131
Preserve keyword, 608-609
preventing personal error handling, 786
previewing reports, 20
PreviousControl property, 416
Primary Key indexes, creating, 98
primary keys, 117

Append queries, 545
normalization, 25
normalization and, 115
Null values and, 122
Update queries, warnings, 541

primary keys (client/servers), 922

primary keys (client/servers) 1241

Print event, report sections, 522-523
Print Form Definition dialog box (Database

Documenter), 1084
Print Query Definition dialog box (Database

Documenter), 1084
Print Table Definition dialog box (Database

Documenter), 1083
PrintCount property, reports, 503
printed forms, 190
Printer object, 503-504
printers, controlling, 503
Printers collection, 504
printing

error forms, 785
forms, 233
labels

in specific locations, 522-523
multiple labels, 520-521

page headers, reports, 530-533
reports

page breaks, inserting, 293
properties, 287, 502

values to the Immediate window, 734
PrintSection property, reports, 502
private procedures, 356
private variables, 348, 362
Private variables, system information class,

666-667
prm object-naming prefix, 1134
prms object-naming prefix, 1134
procedures. See also subroutines

calling, 354
ChangeCaption, 450
declaring Class modules, 355
error handling, creating call stacks, 786,

789-790
event

creating, 352
modules, 350

executing, Module window, 374-375
GetDriveInfo, 1006

libraries, unique names, 990
private, 356
public, 355-356
recursive procedures, 616-617
scope, 358

precedence, 357-358
Static, 358
updating records, 828
variables, lifetime, 355

programming. See also coding
importing external data, 854
VBA

constants, 380
find and replace feature, 391
viewing code, 387

project properties, 631-632
Project Properties dialog box, 631
Project window, VBA, 388
Project/Library drop-down list (Object Browser),

406
propagating field properties, 481-483

reports, 507-509
properties, 402, 408

AbsolutePosition property (ADO recordsets),
699-700

ActiveControl, 415
ActiveForm, 415
ActiveReport, 415
adding to Class modules, 639
Alias property, query tables, 171
Allow Filter, 288
Application object, 417
assigning multiple properties, With...End

With construct, 412
automation objects, 953
BOF property (ADO recordsets), 690-691
Bookmark property (ADO recordsets),

700-701
Bound Column, combo boxes, 223
Caption property, query fields, 170
check boxes, Triple state property, 224

Print event, report sections1242

Page numbers preceded by PDF: indicate pages on the website (www.samspublishing.com/title/0672329328).

www.samspublishing.com/title/0672329328

Column Count, combo boxes, 223
Column Width, combo boxes, 223
combo boxes, 222
compared to methods, 408-409
Connection strings, 673
Control, forms, 237, 241-242
control defaults, optimization and, 831
Control Source, combo boxes, 223
controls, 240-242, 290-293

Allow AutoCorrect, 241
Auto Repeat, 242
availability, 236
Back Color, 290
Back Style, 290
Can Grow, 290
Can Shrink, 290
Cancel, 241
ControlTip Text, 241
Data, 292
Enter Key Behavior, 241
Font Color, 291
Font Italic, 291
Font Name, 291
Font Size, 291
Font Underline, 291
Font Weight, 291
Format, 238, 290-291
Help Context ID, 241
IME (Input Method Editor), 242
Name, 240, 292
Other, 292
Running Sum, 292
Scroll Bars, 237
Special Effect, 237
Status Bar Text, 241
Tab Index, 241
Tab Stop, 241
Tag, 242, 292
Vertical, 241

ControlType property, 414-415

How can we make this index more useful? Email us at indexes@samspublishing.com

custom properties
adding to classes, 651-652
creating, 484-488
PropertyGet routine, 486-488
PropertyLet routine, 486-488
Public variables, creating, 484-486

Data properties, form controls, 239-240
databases, documentation, 1081
DateCreated, 424
DateModified, 424
default, 410
Description property

queries, 171
query fields, 170

EOF property (ADO recordsets), 690-691
Err object, 766
Field List properties, queries, 171
field properties

propagating, 481-483, 507-509
queries, 170

fields
Default Value, 91
Input Mask, 90
Validation Rule, 94

file information class, FullFileName property,
652-654

Filter, 287
tables, 102

Filter On Load, 288
Filter property

ADO recordsets, 695
queries, 172

FilterOn, 513-514
Force New Page, reports, 293
Form, 416
Format properties

form controls, 236-239
query fields, 170

properties 1243

forms, 229-231, 233, 235
Allow Datasheet View, 231
Allow Filters, 234
Allow PivotChart View, 231
Allow PivotTable View, 231
Auto Resize, 231
Border Style, 231
Cycle, 235
Data Entry, 234
Data properties, 233
Description property, 1075
Dividing Lines, 232
Fast Laser Printing, 236
Filter, 234
Format, 231
Format properties, 229, 232
Has Module, 235
Layout for Print, 233
Menu Bar, 235
Modal, 235
Moveable, 232
Navigation Buttons, 232
OpenArgs property, 468
Order By, 234
Orientation, 233
Picture, 231
Pop Up, 235
property sheet, 229-230
Record Selectors, 231
Recordset Type, 234
RecordSource property, 468, 470-471
Scroll Bars, 232
Shortcut Menu, 235
Shortcut Menu Bar, 235
Tag, 236
Width, 231

Help, 402
Input Mask property, query fields, 170
Lookup Wizard, Display Control property,

99-100

Me, 416
modifying, 408-409
Module, 416
Multiselect property (list boxes), 475-476
Object Browser, 379-380
objects, object library, 951
Order By, 288
Order By On Load, 288
Order By property, queries, 172
OrderByOn, 515-516
Orientation, tables, 102
Other properties, form controls, 240-242
Output All Fields property, queries, 171
Parent, 416

adding to classes, 647-648
PreviousControl, 416
project properties, 631-632
queries

Description property, 1075
modifying behavior and appearance, 170
viewing, 548

Query properties, 171-172
Record Locks property, queries, 172
Record Source, 287
RecordCount property (ADO recordsets),

691-693
Recordset Type property, queries, 172
RecordsetClone, 416
RecordSource, 720
Report, 416
reports, 284, 286-289, 501-503

Auto Center, 286
Auto Resize, 286
Border Style, 286
Can Grow property, 304
Can Shrink property, 304
Caption, 285-286
Close Button, 287
Control Box, 286
controls, 289-291

properties1244

Page numbers preceded by PDF: indicate pages on the website (www.samspublishing.com/title/0672329328).

www.samspublishing.com/title/0672329328

Data, 287
Description property, 1078
Force New Page property, 303
Format, 285
FormatCount, 503
Grid X, 287
Grid Y, 287
Grp Keep Together, 286
HasContinued, 503
Layout for Print, 287
Min Max Buttons, 286
Moveable, 287
MoveLayout, 502
NextRecord, 502
Orientation, 287
Page Footer, 286
Page Header, 286
Palette Source, 287
Picture, 287
PrintCount, 503
PrintSection, 502
Repeat Section property, 304
Tag, 289
Width, 287
WillContinue, 503

Row Source Type, combo boxes, 223
Run Permissions property, queries, 172
Section, 416
Sort property (ADO recordsets), 693-694
Source property, query tables, 171
special properties that refer to objects,

415-416
Subdatasheet Name, tables, 102
subforms, 249
subreports, 300
Tab controls, 456-457
table fields, 87

Allow Zero Length, 95-96
Caption, 91
Default Value, 91-92
Field Size, 88

How can we make this index more useful? Email us at indexes@samspublishing.com

Format, 88-89
Indexed, 96-97
Input Mask, 89-90
Required, 94-96
Unicode Compression, 97
Validation Rule, 92-94
Validation Text, 94

tables, 102
Description, 101
viewing, 101-102

Top Values, queries, 171, 551-552
Unique Records, queries, 171, 549
Unique Values, queries, 171, 548-549
upsizing to client/servers, 925
Validation Rule, tables, 101
Validation Text, tables, 102
viewing, 402

Properties collection, Table object, 860
Properties window

reports, 285
VBA, 390

properties Filter, 513-514
properties OrderBy, 515-516
property builders, 1027
Property Get routine

Class modules, 640-642
custom error handler class, 793
data access class, 656-658
system information class, 667-668

Property Let routine
Class modules, 640-642
custom error handler class, 793
data access class, 656-658
system information class, 667-668

Property Set, setting values, 642
property sheet, forms, 229-230
PropertyGet routine, custom properties,

486-488
PropertyLet routine, custom properties,

486-488

PropertyLet routine, custom properties 1245

prototypes, applications development, 27
prp object-naming prefix, 1134
prps object-naming prefix, 1134
prps prefix, 1132
Public constants, 603
Public keyword, 356
public procedures, 355-356
public variables, 348, 362-363

custom properties, creating, 484-486
publishing data to SharePoint sites, 891-896
PWD keyword, 867

Q
qapp object-naming prefix, PDF:1135
qddl object-naming prefix, PDF:1135
qdel object-naming prefix, PDF:1135
qflt object-naming prefix, PDF:1135
qlkp object-naming prefix, PDF:1135
qmak object-naming prefix, PDF:1135
qry object-naming prefix, PDF:1134
qry prefix, PDF:1135
qrys object-naming prefix, PDF:1134
qsel object-naming prefix, PDF:1135
qspt object-naming prefix, PDF:1135
qtot object-naming prefix, PDF:1136
queries

Action. See Action queries
analyzing, 553

improving performance, 554-555
basing forms on, 249-250
basing forms/reports on, 837
columns, selecting, 567
compiling, 553
creating, 138-143

multiple tables, 152
with ADO code, 718

criteria
Like, 554
specifying at runtime, 172-175

Crosstab, 556-557
creating with Crosstab Query Wizard,

557-559
creating in Design view, 559-560
fixed column headings, 561-562
parameters, 562

crosstab queries, reports, creating, 523,
525-530

design examples, Time and Billing
applications, 186-187

designing (Query Design window), 17
documenting (Database Documenter),

1075-1076
effect of multivalued fields, 69, 71
efficiency of compared to SQL

statements, 838
expressions, 554

creating (Expression Builder), 160-161
Field List properties, 171
Field properties, 170
fields

adding, 139-141
calculated fields, creating, 157-159
changing location on query grid,

143-144
excluding from output, 166-167
indexing, 554
inserting after query is built, 143
performance considerations, 554
removing from query grid, 142-143

forms
combo boxes, 220
creating, 193
record sources, 198

function results as criteria, 586-587
modifying behavior and appearance,

properties, 170

prototypes, applications development1246

Page numbers preceded by PDF: indicate pages on the website (www.samspublishing.com/title/0672329328).

www.samspublishing.com/title/0672329328

multitable queries
creating, 151-153
pitfalls, 153-155
row fix-up feature, 155-157

naming, 144
nested, calculated fields, 554
null values, 579-581
one-to-many queries, creating one-to-many

reports, 296
optimization, 810
optimizing, 553-555, 810
outer joins, 562-564
Parameter queries

ADO, 701-702
building, 172-175

parameter query values, passing from
forms, 588-589

pass-through, 578
creating, 578-579

Performance Analyzer, 553
performance considerations, 553
pivot tables

creating from, 179-183
filtering data, 183

properties
Description property, 1075
Top Values, 551-552
Unique Records, 549
Unique Values, 548-549
Validation Rules, 94
viewing, 548

Query Plan, 553
Query properties, 171
Records, counting, 555
reports

creating, 527
efficiency considerations, 275

results
date criteria, 149-150
excluding fields, 166-167
Null values, 166-169

How can we make this index more useful? Email us at indexes@samspublishing.com

ordering, 144-145
selection criteria, 146-149
sorting, 145-146
updating, 150

running, 16, 141
Rushmore technology, 555-556
saving, 144
select, 16
select queries, defined, 137
self joins, 564-565
smart tags

action buttons, 176
adding, 175-178

specifications/limitations, 185-186
SQL, 566-569, 572, 575

creating, 574
stored queries, 250-251, 827-828

basing reports on, 305
subqueries, 581
table statistics, recreating, 1092
tables

adding, 139
joining, 570-571
removing, 153
selecting, 568

Time and Billing application example,
595-597

Totals queries, 161-165
Union, 577

creating, 575
creating with graphical QBE, 576-577
sorting results, 576

viewing shortcut keys, 142
windows, SQL View, 574

Query Design window, 139
queries, designing, 17

query grid, fields
moving, 143-144
removing, 142-143

Query Parameters dialog box, 173, 175

Query Parameters dialog box 1247

Query Plan, 553
Query properties, 171-172
Query Properties window, 1075
Quick Access toolbar

customizing, 38, 40-41
new features, 34-36

Quick Info feature, modules, 385
quick watches (debugging), 745
quni object-naming prefix, 1136
qupd object-naming prefix, 1136
qxtb object-naming prefix, 1135

R
Raise method (Err object), 767-769

generating errors, 767-768
user-defined errors, creating, 768-769

RAM
development environment

recommendation, 803
optimization, 802-803

ReadAheadPages settings (Windows
registry), 806

reading, text files, 629
Reading Order, 291
rebooting, preventing during long

processes, 801
recompiling modules, 828
Record Locks, 288

queries, 172
Record Selectors property, forms, 231
Record Source property, 287
record sources, forms, 198

changing at runtime, 233
combo boxes, 220

record-movement methods, ADO (ActiveX Data
Objects), 688-689

RecordCount property (ADO recordsets),
691-693

records, 599-602
adding queries, 543-545
archiving, Append queries, 543
copying/deleting, controlling user

access, 231
counting, queries, 555
deleting

DAO, 722-723
queries, 542

dynasets, 16
forms, ordering, 234
normalization rules, 25
orphan records, 131
updating, 828

queries, 539-541
RecordserClone property, 416
Recordset object

ADO object model, 676-678
declaring, 676
Open method

CursorType parameter, 680-682
LockType parameter, 682-683
Options parameter, 684-685

Recordset objects
cursors, selecting location, 686-687
Supports method, 687
updating, consistent compared to

inconsistent, 685-686
Recordset property

AddNew method, 722
MoveNext method, 721

Recordset Type property
forms, 234
queries, 172

recordsets
action queries, making bulk changes,

708-712
ADO methods

Find method, 696-699
record-movement methods, 688-689

Query Plan1248

Page numbers preceded by PDF: indicate pages on the website (www.samspublishing.com/title/0672329328).

www.samspublishing.com/title/0672329328

ADO properties
AbsolutePosition property, 699-700
BOF property, 690-691
Bookmark property, 700-701
EOF property, 690-691
Filter property, 695
RecordCount property, 691-693
Sort property, 693-694

ADO recordset types
CursorType parameter, 680-682
LockType parameter, 682-683
Options parameter, 684-685

batch updates, 707-708
data entry forms, 719-724
filtering, 695
finding records, 696-699
forms, 719-724
looping through, 827
modifying all records, 704-706
MoveFirst method, 688
MoveLast method, 688
MoveNext method, 688
MovePrevious method, 688
parameter queries, 701-702
persisting, 702-704
records

adding (ADO), 714-715
deleting (ADO), 712-713
modifying (ADO), 701-702

refreshing data, 702
sorting, 693-694
stored procedures and, 713
underlying recordsets, synchronizing forms

with, 483-484
RecordSource, 720

forms, changing at runtime, 468-471
RecordSource property (forms), changing at

runtime, 468, 470-471
Rectangle tool, 283
rectangles, 283

How can we make this index more useful? Email us at indexes@samspublishing.com

recursive procedures, 616-617
Reddick naming convention, naming objects, 23
Reddick VBA Naming Conventions

(RVBA), 1131
Redim Preserve statement, 826
redoing actions, 89
references

explicit references, creating in library
databases, 1017-1020

passing parameters, 987
runtime references, LoadOnStartup

key, 1016
References dialog box, 951, 1017
referencing

applications, 950-951
controls, avoiding repeated in loops, 370
default properties, 410
disambiguation, 672
library databases, 1013

creating references, 1014
explicit references, limitations, 1018
RefLibPaths key, 1020
runtime references, 1014-1016
VBA code, 1021

objects, 407
shortcuts, 410

referencing applications, object variables,
950-952

referencing items (custom collections), 650
referential integrity, 128-130

ANSI-92 extensions, 591
Cascade Delete Related Records option,

131-133
Cascade Update Related Fields option, 130
Delete queries, warnings, 543
Update queries, warnings, 541

referential integrity rules, 121-122
RefLibPaths key, 1020
refreshing links, 877-880

external data, 869-871, 878-881
RegEdit utility, 928

RegEdit utility 1249

Regional Options, date formats, 89
registering

builders, 1032
Add-In Manager, 1036-1039

manually, 1032-1035

wizards, 1044-1045
registering objects, 951
Registry, AddInPath key, 1014
registry

API functions, 994-997
builder configuration

Add-In Manager, 1036-1039
manual, 1032-1035

Menu Add-ins section, library
references, 1014

Registry
RefLibPaths key, 1020
subkeys, creating, 1034
wizard configuration, 1044

Registry Editor, invoking, 1033
registry keys (ISAM drivers), 866
registry settings

implicit transactions, 927-929
Windows, 806

RegQueryValueEx, 995
RegSetValueEx, 996
rel object-naming prefix, 1134
relationships, 115

benefits, 133
Cascade Delete Related Records option,

131-133
Cascade Update Related Fields option, 130
creating, 125-127
default behaviors, overriding, 130
defining, 14
deleting, 128
indexes, 103, 134
many-to-many, 123-124
modifying, 128

one-to-many, 16, 122
join lines, 124

one-to-one, 123
join lines, 124

outer joins, 562-564
referential integrity, 128-130
tables, establishing relationships with ADO

code, 717-718
Time and Billing database example,

134-136
unhiding, 14
update queries, warnings, 541
upsizing to client/servers, 924

Relationships command (Tools menu), 124
Relationships window, 124

tables, 14
ReLink function, 881
ReLink routine, 879-881
rels object-naming prefix, 1134
Remove method, 650

Collection object, 627
removing

columns, from form layouts, 213-214
form layouts, 214-215
links, external data, 869-871
passwords, 1110
Trusted Locations, 1119
user-level security, 1125

repairing databases, 1092
Repeat Section property, reports, 304
Replace dialog box, 391
Replace function, 378
replication, 52

re-creating databases, 53-56
Report Builder, 272
Report Design window, creating reports,

278-281
report events, 493-496

Close, 494
Error, 495
NoData, 494-495

Regional Options, date formats1250

Page numbers preceded by PDF: indicate pages on the website (www.samspublishing.com/title/0672329328).

www.samspublishing.com/title/0672329328

Open, 493-494, 525-526
order of, 496
Page, 495
sections, 496-497, 500

Format event, 496-498
manipulating, 501
order of events, 500
Print event, 498-499, 522-523
Retreat event, 500

triggering macros from, 326-327
Report Footer Format event, reports, 530, 532
Report Footers, 275
Report Header Format event, 526-527, 531
Report Headers, 275
Report property, 416
report sections, manipulating, 501
Report Wizard, 275-277

one-to-many reports, creating, 294-296
reports

Access, opening from SharePoint sites,
896-899

adding, fields, 278
automatic error checking, 505-507
basing on queries/embedded SQL

statements, 837
Border Style property, 286
borders, 286
charts, 272
controls, 282-284
creating, 275, 521, 528

Design view, 278
from crosstab queries, 523, 525-530
locking tables, 288
queries, 527
Report Design window, 278-281
Report Wizard, 275-277
Word, 969-970

Cross-tabulation reports, 270
custom methods, creating, 489

How can we make this index more useful? Email us at indexes@samspublishing.com

custom properties
creating, 484-488
PropertyGet routine, 486-488
PropertyLet routine, 486-488
Public variables, creating, 484-486

data, grouping, 286, 301-303
Data properties, controls, 292
detail, displaying, 516-517
Detail reports, 270
Detail section, 274
documenting (Database Documenter), 1078
error events, 796
examples, 307-309, 311-313

rptClientListing report, 307-309
rptTimeSheet report, 311-313

field properties, propagating, 507-509
fields, selecting, 275
filter properties, 513-514
forms, 272
graphics, 272
Group Footers, 275
Group Headers, 275
group levels, adding, 276
hyperlinks, adding, 306
Internet compatibility, 305-306
labels

captions, 91
hyperlinks, 306
printing, 520-523

layouts, 277
mailing labels, 273
Me keyword, 450
multifact crosstab reports, creating,

533-536
new features, 51
numbering items, 518
objects

aligning, 281
moving, 280-281
selecting, 279-280

reports 1251

sizing, 281
Snap to Grid feature, 281
spacing, 282

one-to-many reports, creating,
294-296, 299

optimizing, 831
Other properties, controls, 292
page breaks, inserting, 293
Page Footers, 274
Page Headers, 274

printing first and last page entries,
530-533

previewing, 20
Printer object, 503-504
Printers collection, 504
printing, 287

properties, 502
properties, 284, 286-289, 501-503

Auto Center, 286
Auto Resize, 286
Can Grow, 304
Can Shrink, 304
Caption, 285-286
Close Button, 287
Control Box, 286
controls, 289-291
Data, 287
Description property, 1078
Force New Page, 293, 303
Format, 285
FormatCount, 503
Grid X, 287
Grid Y, 287
Grp Keep Together, 286
HasContinued, 503
Layout for Print, 287
Min Max Buttons, 286
MoveLayout, 502
NextRecord, 502

Page Footer, 286
Page Header, 286
Picture, 287
PrintCount, 503
PrintSection, 502
Repeat Section, 304
Tag, 289
Width, 287
WillContinue, 503

Properties window, 285
queries, efficiency considerations, 275
RecordSource, changing at runtime,

509-513
Report Footers, 275
Report Headers, 275
saving as HTML, 306
sections, 274-275

adding at runtime, 501
hiding/displaying, 516-518

sort order properties, 515-516
sorting, 301-303
sorting levels, selecting, 276
specifications and limitations, 307
stored queries, 305
styles, selecting, 277
subreports, 300
summary, displaying, 516-518
Summary reports, 270
Time and Billing application examples, 537
titles, 277

Caption property, 285
types, 269

Reports collection, 419
Requery method, refreshing recordset

data, 702
Require Variable Declaration option, 395
Required property (fields), 94-96
reserved words, upsizing to client/servers, 925
Resize event, forms, 436

reports1252

Page numbers preceded by PDF: indicate pages on the website (www.samspublishing.com/title/0672329328).

www.samspublishing.com/title/0672329328

resizing
form objects, 202-203
forms, Form event sequence, 442
labels, automatically, 281
report objects, 281

responding to errors, 776-780
restoring

default settings to ribbons, 943-944
hidden objects, 64-65

Resume Next statement, 762-763
Resume statement, 761-762
Resume [LineLabel] statement, 763-764
Resync method, refreshing recordset data, 702
Retreat event, report sections, 500
retrieving data from Type variables, 601
Ribbon Name, 289
ribbons, 935

adding groups and commands to, 944-945
applying custom ribbons

to entire databases, 940-941
to forms or reports, 941-943

custom ribbons, building, 841-842
customizing, 935-936

enabling the display of system
errors, 937

showing system tables, 936-937
USysRibbons table, 938
USysRibbons table,

adding data to, 939-940
executing macros from, 946-947
new features, 30

command tabs, 30-33
contextual command tabs, 34
gallery, 34
Microsoft Office Access button, 36
Quick Access toolbar, 34-36
tips and tricks, 36-38

restoring default settings, 943-944
Right function, 377
right outer joins, 563

How can we make this index more useful? Email us at indexes@samspublishing.com

Rollback method, transaction processing,
929-930

routines
ChangeCaption, 413
CloseExcel, 960
FlipEnabled, 414-415
GetDrive routine, file information class,

653-655
GetName routine, file information class,

653-655
GetPath routine, file information class,

653-655
LogError, custom error handler class,

793-794
PropertyGet

Class modules, 640-642
custom error handler class, 793
custom properties, creating, 486-488
data access class, 656-658
system information class, 667-668

PropertyLet
Class modules, 640-642
custom error handler class, 793
custom properties, creating, 486-488
data access class, 656-658
system information class, 667-668

row fix-up feature, multitable queries, 155-157
Row Source Type property, combo boxes, 223
rows (client/servers), 922
rpt prefix, PDF:1132, PDF:1135
rptClientListing report, creating, 307-309
rpts prefix, 1132
rptTimeSheet report, creating, 311-313
rsrp object-naming prefix, PDF:1136
rst object-naming prefix, PDF:1134
rsts object-naming prefix, PDF:1134
rsub prefix, PDF:1132
rulers, forms (selecting objects), 200
Run command (Start menu), 1033
Run Permissions property, queries, 172

Run Permissions property, queries 1253

running
macros, 324

from Macro Design window, 325
from Macros group of the Navigation

Pane, 326
queries, 141

Running Sum property, controls, 292
Runtime Error dialog box, 750
runtime errors, 750-751
runtime references

calling functions, 1015
library databases, 1014-1016
LoadOnStartup key, 1016

runtime version, distributing applications,
839-840

basing applications on forms, 839
custom help, 841
database startup options, 839-840
error handling, 841
security, 839

Rushmore technology, 555-556
RVBA (Reddick VBA Naming Conventions),

PDF:1131

S
s scope prefix, 1135
Sandbox mode, 1123

disabling in Windows Vista, 1123-1124
disabling in Windows XP or Windows Server

2003, 1124-1125
Save Backup As dialog box, 1099-1100
Save method, data access class, 663-664
Save Splitter Bar Position, 216
SaveSetting function, 994
saving

database objects as XML, 1066-1068
forms, 253
queries, 144

reports as HTML, 306
table data

in HTML format, 104-107
in XML format, 107-109

scalability
applications, 11
splitting tables from other objects, 836

Scatter method, data access class, 658-659
schema (client/servers), 922
scope

arrays, 605
constants, 381-382, 603
procedures, 358

precedence, 357-358
variables, 360-363

scr prefix, 1132
Screen object, 423
Scroll Bar Align, 291
Scroll Bars property

controls, 237
forms, 232

searching
records in recordsets, 696-699
tables, indexes, 96-97

sec prefix, 1132
second normal form, 119
Section events, 443

reports, 496-497, 500
Format, 496-498
order of events, 500
Print, 498-499, 522-523
Retreat, 500

Section property, 416
sections, reports, 274-275

hiding/displaying, 516-518
security

Access compared to client/servers, 918
database passwords to encrypt Access

2007 databases, 1109-1110
distributing applications, 839

running1254

Page numbers preceded by PDF: indicate pages on the website (www.samspublishing.com/title/0672329328).

www.samspublishing.com/title/0672329328

locking data, 913
new features, 52, 1103-1105
transactions, ANSI-92 extensions, 594
Trust Center, 1115

Access macros and VBA code,
1116-1117

message bars, 1115
Trusted Locations, 1117-1120
Trusted Publishers, 1120-1122

trusting databases, 1106
for current sessions, 1106
permanently, 1106-1107

upsizing to client/servers, 924
user-level security, 1105

removing, 1125
Select Case statements, 368-369

compared to If statements, 366
SELECT clause, SQL, 567
SELECT INTO statement, SQL, 583
select queries, 16

defined, 137
SELECT statement (SQL), 567-571
selecting

form objects, 199-200
report objects, 279-280

selection criteria, refining query results,
146-149

selection handles, 199
objects, sizing, 202

self joins, queries, 564-565
self joins (SQL), 571-572
self-signed certificates, creating, 1111-1112
semicolon (;), input masks, 90
sequence of events, 449
sequence of Form events, 441-442
servers

applications, installing, 910
automation servers, 950

Set Next Statement command (Debug menu),
742-743

How can we make this index more useful? Email us at indexes@samspublishing.com

Set statements, 640, 953
memory usage considerations, 674

SharedAsyncDelay setting (Windows
registry), 928

SharePoint Server 2007, 883
Access 2007 (accdb) file format and, 885
benefits of, 884-885
creating databases from SharePoint lists,

884
exporting data to, 885-890
exporting entire databases to, 884
exporting selected data to, 883
linking to and importing from SharePoint

lists, 900-902
opening Access forms and reports from,

884, 896-899
publishing data to, 891-896
reestablishing links when SharePoint sites

have been moved, 906
taking lists offline with Access, 884,

903-905
Shift+F2 command, VBA (viewing code), 387
Short Date format (fields), 89
shortcut icons, compacting databases, 1095
shortcut keys

forms, 198
queries, viewing, 142

Shortcut Menu, 289
forms, 235

shortcuts, object references, 410
Show Tables dialog box, 126, 139, 576

self join queries, 564
showing

document tabs, 44-46
status bar, 49

showing system tables, customizing ribbons,
936-937

shp prefix, 1132
signed packages

creating, 1112-1113
extracting, 1113-1114

signed packages 1255

signing Access databases, 1110-1111
self-signed certificates, 1111-1112

simple keys, 117
Simple Query Wizard, 138
single forms, creating, 451-452
sizing

form layouts, 210-211
form objects, 202-203
forms, Form event sequence, 442
labels, automatically, 281
report objects, 281

slides (PowerPoint), 972-973
small businesses, developing applications, 8
smart tags

adding to forms, 253-255
forms
action buttons, 255
adding, 254-255
queries

action buttons, 176
adding, 175-178

Snap to Grid
disabling, 281
forms, 202

adjusting grid, 233
temporarily disabling, 202

report objects, 281
sng data-type prefix, 1133
software, optimization

compacting database, 803
defragmenting hard disk, 803
drive compression, 804
local execution, 804
swap file, 803-805
Windows 95/98, 806
Windows registry settings, 806

sort order properties, reports, 515-516
Sort property (ADO recordsets), 693-694
sorting

query results, 145-146
ascending order, 145
by more than one field, 145-146

recordsets, 693-694
reports, 301-303
Union query results, 576

Sorting and Grouping window, 301
sorting levels, selecting reports, 276
source code, removing from applications, 839
source database types, 860
Source Object property

subforms, 249
subreports, 300

Source property, query tables, 171
spacing

form objects, 203-204
report objects, 282

Special Effect, 290
controls, 237

SpecialEffect function, 1030
specific object variables, 812-813

compared to generic object variables, 411
specifications, reports, 307
SpecificBold, 813
Splash Screen forms, creating, 459
splash screens (forms), creating, 491
Split Form Orientation, 216
Split Form Printing, 216
Split Form Size, 216
Split Form Splitter Bar, 216
split forms, 215-217
splitting

database objects, 835-836
one control layout into two form

layouts, 214
tables from other objects, 835-836

SQL
ALL clause, 572
All keyword, 576
client/servers, 922
FROM clause, 568
GROUP BY clause, 573
HAVING clause, 573
history, 566

signing Access databases1256

Page numbers preceded by PDF: indicate pages on the website (www.samspublishing.com/title/0672329328).

www.samspublishing.com/title/0672329328

JOIN clause, 570-571
non-equi joins, 572
ORDER BY clause, 569
queries, 566-569, 572, 575

creating, 574
SELECT clause, 567
SELECT statement, 567-571
self joins, 571-572
statements

ALTER TABLE, 585
Append queries, 545
CREATE INDEX, 584-585
CREATE TABLE, 584
DELETE, 582-583
DROP INDEX, 585
DROP TABLE, 586
executing from VBA, 574-575
INSERT INTO, 583
left outer joins, 563
reports, 304-305
saving as queries, 305
SELECT INTO, 583
storing queries, 541
UPDATE, 582

syntax, 567
TOP keyword, 572
updating data, 582-583
WHERE clause, 568-569

SQL Pass-Through, front ends communicating to
back ends, 920-921

SQL Server 2000, Cascade Update and Delete
features, 133

SQL statements
efficiency of compared to stored

queries, 838
embedded SQL statements, basing

forms/queries on, 837
embedding, 250-251

SQL View window, queries, 574
stacked layouts

Layout view, forms, 206-209
moving and resizing, 210-211

switching to tabular layouts, 213

How can we make this index more useful? Email us at indexes@samspublishing.com

standard modules, 347
Start menu commands, Run, 1033
starting Form Wizard, 195
startup forms, 490
statements

Debug.Print, 361, 734, 739
Declare, 821, 986
Dim, 821, 953

variables, 359
Exit Sub, error handling, 759
For Each…Next statement, 372-373
If, 365

compared to Select Case statements,
366

Kill, 760
On Error, 758
On Error Goto, 758-759
On Error Goto 0, 759-760
On Error Resume Next, 760
Option Explicit, modules, 349, 351
Redim Preserve, 826
Resume, 761-762
Resume Next, 762-763
Resume [LineLabel], 763-764
Select Case, 368-369

compared to If statements, 366
Set, 953

memory usage considerations, 674
Set statement, 640
SQL. See SQL, statements
Stop statement, 735
Type, 600
With, loops, 823-824
With…End With, 372

Static keyword, variable lifetime, 355
Static procedures, 358
Static variables, 361-362
Statistics tab (Database Priorities dialog

box), 1080
status bar, new features, 47-49
Status Bar Text property, controls, 241

Status Bar Text property, controls 1257

Step Into option (debugging), 738-739
Step Out feature (debugging), 742
Step Over option (debugging), 741-742
stepping through macros, 338
stepping through code

breakpoints, setting, 739-741
Step Into option, 738-739
Step Out feature, 742
Step Over option, 741-742

stf data-type prefix, 1133
Stop statements, 735
stored procedures, 713

ANSI-92 extensions, 593-594
executing on back ends, 921

stored procedures (client/servers), 922
stored queries, 250-251, 827-828

basing reports on, 305
storing form data in Type variables, 601
str data-type prefix, 1133
strControl argument (builder function), 1030
strCurrentValue argument (builder

function), 1030
string parameters, passing, 987, 989
String Value command (New menu), 1034
strings

compiler constants, 367
compression, ANSI-92 extensions, 592
delimiters, 697-699
functions, 376-377
Null value, avoiding, 624

strObject argument (builder function), 1030
strong-typing variables, avoiding bugs, 728
StrRev function, 379
structs, 599-602
structures, 991
structuring code modules (library databases),

1012-1013
styles, forms (selecting), 195
subclassing, 638
subform controls, referring to, 476-477
Subform/Subreport Wizard, 300

one-to-many forms, creating, 247-248

subforms, 453, 476-477, 830
modifying, 249
order of fields, 249
properties, 249
referring to subform controls, 476-477
viewing, 249

SubKey field (USysRegInfo table), 1038
subkeys, creating, 1034
subprocedures, 347
subqueries, 581
Subreport Wizard, creating one-to-many reports,

298-300
subreports, 300

viewing, 249
subroutines, 347-349. See also procedures

code, viewing, 387
CreateExcelObj, 956
creating, 352-354

shortcut for, 354
Declare statement, 986
FillCells, 958
GetSysInfo, 782, 1003
LinkToDBase, 862
modules, 22, 347
parameters, 373-374
passing objects to, 413-414
testing (Immediate window), 733

Suffixes (naming conventions), 1131
summarizing data (Totals queries), 161-165
Summary reports, 270

displaying, 516-518
Summary tab (Database Properties dialog

box), 1079
Supports method, Recordset objects, 687
swap files, optimization, 803-805
Switchboard forms, creating, 457
Switchboard Manager, forms (creating), 190
switchboards

application switchboards, 839
forms, 190

Step Into option1258

Page numbers preceded by PDF: indicate pages on the website (www.samspublishing.com/title/0672329328).

www.samspublishing.com/title/0672329328

switching
between stacked and tabular form

layouts, 213
to PivotChart view, forms, 262

Symantic Ghost, 842
symbolic constants, 381-382, 602
synchronizing changes with SharePoint,

903-904
syntax, SQL, 567
SysCmd function, 1031
System Database property (Connection

strings), 673
system information class (Class modules),

666-669
Initialize event, 668-669
Private variables, 666-667
Property Get routine, 667-668
Property Let routine, 667-668
type structures, 666-667

system objects, hiding, 943
system performance. See also optimization

application types, 917
backup/recovery capability, 917
compacting database, 1091-1093
Declare statements, 987
limiting factors, 9
network demands, 917
queries, 553

improving performance, 554-555
security, 918
user base, 916
variables, declaring, 359

system requirements, hardware, 23
system-defined constants, 602

T
Tab controls

adding to forms, 456
properties, changing, 456-457

Tab Index property, controls, 241

How can we make this index more useful? Email us at indexes@samspublishing.com

tab order
form objects, changing, 204-205
forms, Cycle property, 235

Tab Order dialog box, 204
Tab Stop property, controls, 241
Tab Width feature, 395
tabbed documents, new features, 44-46

displaying overlapping windows, 46-47
tabbed forms, creating, 455-457

Tab controls, adding, 456
Table and Recordset locking, 913
Table database, 836
Table object, Properties collection, 860
tables, 12-14

Access tables, linking external data,
856-857

adding to databases, with ADO code,
715-716

adding to queries, 139
ANSI-92 extensions, 590, 592-593
back end tables, linking to front end

application database, 919
calculations and, 119
creating, 79-81

designing, 81
Make Table queries, 545-547

data, saving as HTML, 104
data fields

Attachment, 86
AutoNumber type, 85
Currency type, 85
Date/Time type, 84
Hyperlink type, 87
Memo type, 84
Number type, 84
OLE Object type, 86
Text type, 84
Yes/No type, 86

Database window, viewing, 12
decomposition, 119
deleting, with ADO code, 717
denormalization, 120

tables 1259

Description property, 101
design rules, 116-117
Design view, viewing, 14
designing

from scratch, 79-81
for optimization, 808-809
Time and Billing application, 111-113

documenting, 81
Database Documenter, 1074-1075

dynasets, 16
external tables. See external tables
field types, Hyperlink, 103-104
fields

Allow Zero Length property, 95-96
Caption property, 91
Default Value property, 91-92
defining, 79
descriptions, 80
Field Size property, 88
Format property, 88-89
Indexed property, 96-97
Input Mask property, 89-90
inserting, 80
maximum number allowed, 123
normalization, 25
properties overview, 87
Required property, 94-96
selecting data types, 82-84
types, 79
Unicode Compression property, 97
Validation Rule property, 92-94
Validation Text property, 94

Filter property, 102
foreign keys, 115

referential integrity and, 121
forms

combo boxes, 220
one-to-many, 246
one-to-many, creating, 246-248
record sources, 198

indexes
limitations of, 809
performance benefits of, 103
Primary Key, 98

joining queries, 570-571
joins, outer joins, 563-564
junction, 123-124
linking, accessing in networks, 913
locking, creating reports, 288
multiple, creating queries, 152
multitable queries

creating, 151-153
pitfalls, 153-155
row fix-up feature, 155-157

names, upsizing to client/servers, 81, 924
naming, conventions, 80
non-equi joins, 572
normalization, 115-116

first normal form, 118
second normal form, 119
third normal form, 119-120

normalization rules, 24-25, 27
Orientation property, 102
primary keys, 117
properties, 102

viewing, 101-102
queries

selecting, 568
specifications/limitations, 185-186

relationships, 115
benefits, 133
Cascade Delete Related Records option,

131-133
Cascade Update Related Fields

option, 130
creating, 125-127
defining, 14
deleting, 128
establishing with ADO code, 717-718
guidelines, 126-127
indexes, 103, 134
many-to-many, 123-124

tables1260

Page numbers preceded by PDF: indicate pages on the website (www.samspublishing.com/title/0672329328).

www.samspublishing.com/title/0672329328

modifying, 128
one-to-many, 16, 122, 124
one-to-one, 123-124
referential integrity, 128-130
types of, 122
unhiding (Relationships window), 14
viewing (Relationships window), 14

removing from queries, 153
searching, indexes, 96
self joins, 564-565, 571-572
specifications/limitations, 110-111
splitting from other objects, 835-836
statictics (queries), recreating, 1092
Subdatasheet Name property, 102
temporary tables, 837
unique identifiers, 117
upsizing to client/servers, 923
USysRegInfo

importing, 1037
structure, 1038

Validation Rule property, 101
Validation Text property, 102
workstations, installing locally, 911

tables from hypothetical time and billing
application

tblAddressTypes table, PDF:1148-1149
tblClientAddresses table, PDF:1143-1147
tblClientPhones table, PDF:1149-1151
tblClients table, PDF:1138-1143
tblCompanyInfo table, PDF:1159-1163
tblContactType table, PDF:1158-1159
tblCorrespondence table, PDF:1152-1155
tblCorrespondenceTypes table,

PDF:1156-1157
tblEmployees table, PDF:1164-1167
tblErrorLog table, PDF:1168-1171
tblErrors table, PDF:1171-1172
tblExpenseCodes table, PDF:1172-1173
tblPaymentMethods table, PDF:1173-1174
tblPayments table, PDF:1174-1178
tblPhoneTypes table, PDF:1151-1152
tblProjects table, PDF:1178-1182
tblTerms table, PDF:1157-1158

How can we make this index more useful? Email us at indexes@samspublishing.com

tblTimeCardExpenses table, PDF:1182-1185
tblTimeCardHours table, PDF:1186-1189
tblTimeCards table, PDF:1190-1191
tblWorkCodes table, PDF:1191-1192

tabular layouts
Layout view, forms, 206-209

moving and resizing, 210-211
switching to stacked layouts, 213

Tag, 289, 292
Tag property

controls, 242, 292
forms, 236
reports, 289

task analysis, application development, 24
tbl object-naming prefix, 1134
tbl prefix, 1135
templates, creating new databases, 76-78
temporary tables, 837
Terminate event, 644
testing

builders, 1035
macros, 337-338

testing stage, applications development, 27
text, aligning (object text), 202
Text Align, 291
Text Box tool, 219, 282
text boxes

converting to combo boxes, 227-228
default property, 410
forms, adding, 219
reports, 282

text data, external data, 873
Text field type, 84-85
text files

I/O operations, 629
importing, 630

Text Format property, 292
tgl prefix, 1132
third normal form, 119-120
Time and Billing application

automation, examples, 979-980, 982-983
command buttons, enabling/disabling,

426-427

Time and Billing application 1261

error handling, 798-799
form design, 263-268
frmClients form

command button additions, 268
designing, 263-265

frmProjects form, designing, 266-267
library databases, creating, 1023-1025
preparing for enterprise environment, 931
queries, 595, 597
query design examples, 186-187
reports, examples, 307-309, 311-313, 537
table design overview, 111-113
tables. See tables from hypothetical time

and billing application
VBA techniques, examples, 633-635

Time and Billing database, relationships
example, 134-136

Timer event, forms, 441
titles

forms, 195
Caption property, 229

reports, 277
Caption property, 285

tlkp object-naming prefix, 1135
Toggling Boolean Benchmark, 816
Toolbar, 289
toolbars

Debug toolbar, displaying, 730
Format, Align tools, 202
Formatting, 196

Report Design window, 278
forms, designing, 196
mini toolbar, 49-50
Quick Access toolbar, 34-36

customizing, 38-41
tools

Bound Object Frame, 283
Check Box, 224
Combo Box, 220
Formatting toolbar, Align, 202
Label, 219, 282
Line, 282
modules, 384-386

Page Break, 293
Rectangle, 283
Text Box, 219, 282
Unbound Object Frame, 283

Tools menu commands
Add-Ins, 1038
Relationships, 124

TOP keyword, SQL, 572
Top Values property, queries, 171, 551-552
Totals queries, 161, 163, 165
transaction (client/servers), 922
transaction processing, 926

benefits, 927
explicit transaction processing, 927
implementing, 929-930
implicit transaction processing, 927
methods, 929-930
modifying default behavior, 927-929
registry settings, 927-929

transactions, ANSI-92 extensions, 594
TransferDatabase method

arguments, 852
importing external data, 852-853

TransferSpreadsheet method
arguments, 854
importing external data, 853-854

TransferText method, importing external
data, 853

transparent controls, 237
triggering macros from forms or report events,

326-327
triggers (client/servers), 922
Triple state property, check boxes, 224
troubleshooting. See also debugging; error

handling
applications, 361

assertions, 752
Auto Data Tips, 745
avoiding bugs, 728
breakpoints, 735-741
Call Stack window, 743-744
Immediate window, 729-734
Locals window, 744
potential problems, 751-752

Time and Billing application1262

Page numbers preceded by PDF: indicate pages on the website (www.samspublishing.com/title/0672329328).

www.samspublishing.com/title/0672329328

runtime errors, 750-751
Set Next Statement command, 742-743
Step Into option, 738-739
Step Out feature, 742
Step Over option, 741-742
Stop statement, 735
Watch expressions, 745-749
watches, 735

external data, 873-874
connection problems, 873
disk space, 874

library databases, 1022-1023
lookup feature, disadvantages of, 100

true/false evaluations, 819-820
Trust Center, 1115

Access macros and VBA code, 1116-1117
message bars, 1115
Trusted Locations, 1117-1119

modifying, 1120
removing, 1119

Trusted Publishers, 1120-1122
trusted databases, 1123
Trusted Locations, 1117-1119

modifying, 1120
removing, 1119

Trusted Publishers, 1120-1122
adding, 1127-1128

trusting
databases

for current sessions, 1106
permanently, 1106-1107

databases, 1106
txt prefix, 1132
Type field (USysRegInfo table), 1038
type libraries, 950

binding, 954
Type statement, 600
type structure declaration, generic error

handlers, 772
type structures

examples, 633-635
system information class, 666-667

Type variables, 600-601

How can we make this index more useful? Email us at indexes@samspublishing.com

TypeOfDrive, 1007
types, DLLs, 992-993
typing variables, declaring, 359

U
UCase function, 377
UFI (Unsafe for Initialization), 1126
UID keyword, 867
Unassigned Objects group, hiding, 61
unbound controls, 242
Unbound Object Frame tool, 283
unbound object frames, reports, 283-284
unbound OLE objects, 467
UNC (universal naming conventions), 861

hyperlink field type, 87
UNC addresses, tables (Hyperlink field type),

103-104
underlying recordsets, synchronizing forms with,

483-484
underscore (_), line continuation character

(VBA), 364
Undo event, forms, 434
undoing actions, 89
unhiding tables, Relationships window, 14
Unicode, 990
Unicode Compression property (fields), 97
uniform resource locators. See URLs
union queries, 577

creating, 575
graphical QBE, 576-577

sorting results, 576
unique identifiers (tables), 117
Unique Records property, queries, 171, 549
Unique Values property, queries, 171, 548-549
Universal Naming Convention. See UNC
Unload event, forms, 437
Unsafe for Initialization (UFI), 1126
untrusted databases, 1123
Update queries, creating, 539-541
UPDATE statement, SQL, 582
Updated event, controls, 444

Updated event, controls 1263

updates, recordsets (batch updates), 707-708
updating

query results, 150
records, 828

queries, 16
Recordset objects, consistent compared to

inconsistent, 685-686
updating links (external data), 869-871,

878-881
upsizing

issues, 923-925
AutoNumber fields, 923
case-sensitivity, 925
default values, 91, 924
indexes, 97, 923
properties, 925
relationships, 924
reserved words, 925
security, 924
table/field names, 81, 924
tables, 923
validation rules, 924
VBA, 925

preparation, 925
wizards, drawbacks, 926

Upsizing Wizard, 843
URLs (Universal Naming Convention), 87

hyperlink field type, 87
tables, 103-104

Use Default Paper Size, 289
user interface

compacting databases, 1093-1095
importing external data, 850-851
linking external data, 854-858
new features, 28-30

user-defined errors, creating, 768-769
user-defined routines

creating in class modules, 354
creating in code modules, 353

user-defined types, 599-602
declaring, 600
Type variables, 600-601

user-level security, 1105
removing, 1125

UserCommitSync setting (Windows
registry), 928

UserForm, 976-977
usr object-naming prefix, 1134
USysRegInfo table, 1037-1038
USysRibbons table, 938

adding data to, 939-940
utilities, Compact, 803

V
Validation Rule property, tables, 101
Validation Rule property (fields), 92-94
validation rules

fields, adding to, 93-94
upsizing to client/servers, 924

Validation Text property
fields, 94
tables, 101

ValName field (USysRegInfo table), 1038
Value field (USysRegInfo table), 1038
values

constants, errors, 603
default, upsizing to client/servers, 91, 924
Empty, Variant variables, 618-619
Nothing value, object variables, 412
Null values

converting to zero, 167
examples, 632-633
queries, 579-581
query results, 166-167, 169
Variant variables, 619-625

printing to the Immediate window, 734
returning, functions, 373-374
variables, changing values, 743

var data-type prefix, 1133
variable scoping, avoiding bugs, 728

updates, recordsets (batch updates)1264

Page numbers preceded by PDF: indicate pages on the website (www.samspublishing.com/title/0672329328).

www.samspublishing.com/title/0672329328

variables
data types, 359
declaring, 358

memory usage considerations, 674
modules, 348
Option Explicit statement, 349
performance considerations, 359

Dim statement, 359
intTemp, 739
lifetime, 355
local, 361
naming, 362

changing, 390-391
Public, 363

naming conventions, 1131-1134
null values, 359
object, referencing applications, 950-952
object variables, 410

automation objects, 953
compared to regular variables, 410-411
generic compared to specific, 411
Nothing value, 412

private, 348, 362
Private variables, system information class,

666-667
public, 348, 362-363
scope, 360-363
specific object variables, 812-813
Static, 361-362
Type, 600-601
values

changing, 743
setting (Immediate window), 730-732
testing (Immediate window), 730

Variant
Empty value, 618-619
Null value, 619-625

variant variables, eliminating, 811
variants, 359
VBA, 358-359, 361-362

variant variables, 359
eliminating, 811
Empty value, 618-619
Null value, 619-625

How can we make this index more useful? Email us at indexes@samspublishing.com

VBA (Visual Basic for Applications), 20,
345-347, 599

#Const directive, 367
advanced techniques, Time and Billing

application examples, 633-635
arrays, 605-606, 608-610

declaring, 605-607
dynamic arrays, 607-609
fixed arrays, 605
passing as parameters, 609-610

bookmarks, adding, 394
code

compared to Action queries, 547-548
viewing, 387

Code window, splitting, 393
comments, 363-364
compared to macro capabilities, 345-347
Compile On Command feature, 629-630
constants, 380, 602-604

defining, 602-604
intrinsic constants, 382-383, 602-604,

632-633
symbolic constants, 381-382, 602
system-defined constants, 602

control structures, 364-371
Conditional If, 367-368
For Each…Next statement, 372-373
For…Next construct, 371
If...Then...Else, 365
Immediate If (IIf), 366
loops, 369-370
Select Case statement, 368-369
With…End With statement, 372

converting macros to VBA code, 339-341
custom collections, 625-628
DLL functions, declaring, 986
DoCmd object, examples, 632-633
executing macros, DoCmd object, 374
find and replace feature, 390-391
functions, 377-380, 610

DateAdd, 378
DateDiff, 378
DatePart, 377
Format, 376

VBA (Visual Basic for Applications) 1265

Instr, 376
InstrRev, 376
Left, 377
Mid, 377
MonthName, 379
named parameters, 616
Object Browser, 379-380
optional parameters, 613-615
parameter arrays, 617-618
passing parameters, 610-613
recursive procedures, 616-617
Replace, 378
Right, 377
StrRev, 379
UCase, 377

help, context-sensitive, 391
line continuation character, 364
macros versus modules, 20
Module window, executing procedures,

374-375
modules, 347, 349-350, 354-358

event procedures, 352
functions, creating, 352-354
Option Explicit statement, 349-351
procedures, calling, 354-358
subroutines, creating, 352-354

named parameters, 375
Null values, examples, 632-633
passing parameters, 373-374
programming tools

bookmarks, 394
Code window, 388
Code Window, splitting, 393
Complete Word feature, 386
context-sensitive help, 391
Definition feature, 387
find and replace feature, 390-391
List Constants feature, 385
List Properties and Methods

feature, 384
Parameter Info feature, 386
Project window, 388
Properties window, 390

Quick Info feature, 385
View Microsoft Access Tool, 390

project properties, 631-632
SQL statements, executing, 574-575
type structures, examples, 633-635
upsizing to client/servers, 925
user-defined types, 599-602

declaring, 600
Type variables, 600-602

variables, 358-359, 361-362
data types, 359
declaring, 358-359
local variables, 361
Private variables, 362
Public variables, 362
scope, 360
Static variables, 361-362

Variant variables
Empty value, 618-619
Null value, 619-625

Visual Basic Editor (VBE)
coding options, 394-395
customizing, 394-396, 399
docking options, 396
general options, 395

VBA code
references, creating, 1021
Trust Center, 1116-1117

VBA functions
testing (Immediate window), 733
Windows registry, 994-997

VBE (Visual Basic Editor), 348
Comment Block tool, 364
customizing

coding options, 394-395
docking options, 396, 399
Editor Format tab, 395
general options, 395

Immediate window, 361
Option Explicit statement, inserting in all

modules, 350
VerifyLink routine, 878-879

VBA (Visual Basic for Applications)1266

Page numbers preceded by PDF: indicate pages on the website (www.samspublishing.com/title/0672329328).

www.samspublishing.com/title/0672329328

Versions, databases (conversion formats),
1100-1101

Vertical property, 292
controls, 241

View menu, forms (changing tab order), 204
View menu commands, Object Browser, 405
View Microsoft Access Tool, 390
viewing

code, VBA, 387
constants, 382, 604

Object Browser, 604
database objects, icons (Database

window), 12
events, 404
forms

Default View property, 230
Form view, 18
properties, 229

modules, Module Design window, 22
object dependencies, 109-110, 479-480
project properties, 631
properties, 402

queries, 548
queries, shortcut keys, 142
reports, preview mode, 20
subforms, 249
subreports, 249
tables, 12-14

views
ANSI-92 extensions, 593-594
Design, creating forms, 196
Layout view. See Layout view

virtual memory, optimizing, 803-805
Visible, 290
Visual Basic Editor. See VBE
Visual Basic for Applications. See VBA

How can we make this index more useful? Email us at indexes@samspublishing.com

W
Watch expressions, 745

adding, 746-748
breaking when expressions are true,

748-749
breaking when expressions change, 749
editing, 748

watches (debugging), 735
Weekday() function, 149
WHERE clause, SQL, 568-569
Width property

forms, 231
reports, 287

WillContinue property, reports, 503
Win32 API (Application Programming

Interface), 985
data loss, preventing, 989

windows
Code window

splitting, 393
VBA, 388

dockable, 396
Field List, availability, 233
Form Design, 196-204
forms, designing, 197
Module, executing procedures, 374-375
Project window, VBA, 388
Properties

reports, 285
VBA, 390

windows
Relationships, 124
Report Design, creating reports, 278-281
SQL View, queries, 574

Windows, registry settings, 806
Windows 2000 Terminal Services

installing Access applications, 912
optimization and, 804

Windows 95/98, optimizing, 806
Windows API calls, 782-784

operating environment information,
997-1005

Windows API calls 1267

Windows Registry
AddInPath key, 1014
keys, ISAM drivers, 866
RefLibPaths key, 1020
settings, transaction processing, 927-929

Windows Server 2003, disabling Sandbox
mode, 1124-1125

Windows Vista, disabling Sandbox mode,
1123-1124

Windows XP, disabling Sandbox mode,
1124-1125

With statement, loops, 823-824
With...End With construct, 412
With…End With, 823
With…End With statement, 372
wizards

Combo Box, 220
Command Button, 244-245

fixing inefficient code, 396-398
Control, adding combo boxes to forms, 220
creating, 1040-1044
Crosstab Query Wizard, 557-559
Database Splitter Wizard, 912
defined, 1039
designing, 1039
Form

creating forms, 193-195
one-to-many forms, creating, 246-248
starting, 195

Import HTML Wizard, 874-877
Import Spreadsheet Wizard, 851
Input Mask, 89-90
Input Mask Wizard, 89-90
Label, 273
List Box, 224
Lookup, launching, 98, 100
Option Group, 225-226
registering, 1044-1045
Report, 275-277

one-to-many reports, creating, 294-296
Simple Query, 138
Subform/Subreport, 300
Subreport, one-to-many reports, creating,

298-300

Word (Microsoft)
controlling from Access, 966-968
mail merge documents, 966, 968
reports, creating, 969-970

workstations, installing applications, 911
Write # keyword, 628
writing

builder functions, 1028-1031
text files, 629

wrk object-naming prefix, 1134
WZMAIN80.MDE file, importing, 1037

X
XML (Extensible Markup Language), 107-109

forms, saving as, 253
importing XML files, 1068-1069
saving database objects as, 1066-1068
table data, saving in, 107-109

Y
Year() function, 149
Yes/No field type, 86

Z
Zoom dialog box, 243
Zoom option, 158

Windows Registry1268

Page numbers preceded by PDF: indicate pages on the website (www.samspublishing.com/title/0672329328).

www.samspublishing.com/title/0672329328

	Alison Balter’s Mastering Microsoft® Office Access 2007 Development
	Table of Contents
	Introduction
	Part I: The Basics of Access Development
	1 Access as a Development Tool
	Why This Chapter Is Important
	What Types of Applications Can You Develop in Access?
	Access as a Scalable Product
	What Exactly Is a Database?
	Getting to Know the Database Objects
	Object Naming Conventions
	Hardware Requirements
	How Do I Get Started Developing an Access Application?
	What's New in Access 2007?
	Other New Features Found in Access 2007
	Additional Tips and Tricks
	Practical Examples: The Application Design for a Computer Consulting Firm
	Summary

	2 What Every Developer Needs to Know About Databases and Tables
	Why This Chapter Is Important
	Creating a New Database
	Building a New Table
	Selecting the Appropriate Field Type for Your Data
	Working with Field Properties
	Using the All-Important Primary Key
	Working with the Lookup Feature
	Working with Table Properties
	Using Indexes to Improve Performance
	Using Access Tables with the Internet
	Viewing Object Dependencies
	Examining Database Specifications and Limitations
	Examining Table Specifications and Limitations
	Practical Examples: Designing the Tables Needed for a Computer Consulting Firm's Time and Billing Application
	Summary

	3 Relationships: Your Key to Data Integrity
	Why This Chapter Is Important
	Introduction to Relational Database Design
	Establishing Relationships in Access
	Establishing Referential Integrity
	Looking at the Benefits of Relationships
	Examining Indexes and Relationships
	Practical Examples: Establishing the Relationships Between the Tables Included in the Time and Billing Database
	Summary

	4 What Every Developer Needs to Know About Query Basics
	Why This Chapter Is Important
	What Is a Query, and When Should You Use One?
	Everything You Need to Know About Query Basics
	Ordering Your Query Result
	Refining Your Query with Criteria
	Working with Dates in Criteria
	Understanding How You Can Update Query Results
	Building Queries Based on Multiple Tables
	Creating Calculated Fields
	Getting Help from the Expression Builder
	Summarizing Data with Totals Queries
	Excluding Fields from the Output
	Understanding Nulls and Query Results
	Refining Your Queries with Field, Field List, and Query Properties
	Building Parameter Queries When You Don't Know the Criteria at Design Time
	Adding Smart Tags to Your Queries
	Creating a Pivot Table or Pivot Chart from a Query
	Understanding Query Specifications and Limitations
	Practical Examples: Building Queries Needed by the Time and Billing Application for a Computer Consulting Firm
	Summary

	5 What Every Developer Needs to Know About Forms
	Why This Chapter Is Important
	Understanding the Uses of Forms
	Examining the Anatomy of a Form
	Creating a New Form
	Working with the Form Design Window
	Working in Layout View
	Selecting the Correct Control for the Job
	Control Morphing
	Conditional Formatting
	Determining Which Form Properties Are Available and Why You Should Use Them
	Determining Which Control Properties Are Available and Why You Should Use Them
	Understanding Bound, Unbound, and Calculated Controls
	Using Expressions to Enhance Your Forms
	Using the Command Button Wizards: Programming Without Typing
	Building Forms Based on More Than One Table
	Basing Forms on Queries: The Why and How
	Connecting Access Forms and the Internet
	Adding Smart Tags to Your Forms
	Creating a Pivot Table or Pivot Chart from a Form
	Examining Form Specifications and Limitations
	Practical Examples: Designing Forms for Your Application
	Summary

	6 What Every Developer Needs to Know About Reports
	Why This Chapter Is Important
	Examining Types of Reports Available
	Understanding the Anatomy of a Report
	Creating a New Report
	Working with the Report Design Window
	Selecting the Correct Control for the Job
	What Report Properties Are Available, and Why Should You Use Them?
	What Control Properties Are Available, and Why Should You Use Them?
	Inserting Page Breaks
	Using Unbound, Bound, and Calculated Controls
	Using Expressions to Enhance Your Reports
	Building Reports Based on More Than One Table
	Working with Sorting and Grouping
	Improving Performance and Reusability by Basing Reports on Stored Queries or Embedded SQL Statements
	Using Access Reports and the Internet
	Understanding Report Specifications and Limitations
	Practical Examples: Building Reports Needed for Your Application
	Summary

	7 What Are Macros, and When Do You Need Them?
	Why This Chapter Is Important
	Learning the Basics of Creating and Running a Macro
	Running an Access Macro
	Modifying an Existing Macro
	Documenting Your Macro: Adding Comments
	Testing a Macro
	Determining When You Should Use Macros and When You Shouldn't
	Converting a Macro to VBA Code
	Creating an AutoExec Macro
	Using the DoCmd Object
	Practical Examples: Adding an AutoExec Macro to the Time and Billing Application
	Summary

	8 VBA: An Introduction
	Why This Chapter Is Important
	VBA Explained
	What Are Access Class Modules, Standard Modules, Form Modules, and Report Modules?
	Working with Variables
	Adding Comments to Your Code
	Using the Line Continuation Character
	Using the VBA Control Structures
	Passing Parameters and Returning Values
	Executing Procedures from the Module Window
	The DoCmd Object: Performing Macro Actions
	Working with Built-In Functions
	Working with Constants
	Working with the Visual Basic Editor Tools
	Customizing the VBE
	Practical Examples: Using Event Routines, User-Defined Functions, and Subroutines
	Summary

	9 Objects, Properties, Methods, and Events Explained
	Why This Chapter Is Important
	Understanding Objects, Properties, Events, and Methods
	Using the Object Browser to Learn About Access's Objects
	Referring to Objects
	Working with Properties and Methods
	Declaring and Assigning Object Variables
	Understanding the Differences Between Objects and Collections
	Passing Objects to Subroutines and Functions
	Determining the Type of a Control
	Using Special Properties That Refer to Objects
	Understanding Access's Object Model
	Taking Advantage of Additional Useful Properties
	Practical Examples: Working with Objects
	Summary

	10 Advanced Form Techniques
	Why This Chapter Is Important
	What Are the Form Events, and When Do You Use Them?
	What Are the Section and Control Events, and When Do You Use Them?
	Referring to Me
	What Types of Forms Can I Create, and When Are They Appropriate?
	Using Built-In Dialog Boxes
	Taking Advantage of Built-In, Form-Filtering Features
	Including Objects from Other Applications: Linking Versus Embedding
	Using OpenArgs
	Switching a Form's RecordSource
	Learning Power Combo Box and List Box Techniques
	Learning Power Subform Techniques
	Using Automatic Error Checking
	Viewing Object Dependencies
	Using AutoCorrect Options
	Propagating Field Properties
	Synchronizing a Form with Its Underlying Recordset
	Creating Custom Properties and Methods
	Practical Examples: Applying Advanced Techniques to Your Application
	Summary

	11 Advanced Report Techniques
	Why This Chapter Is Important
	Events Available for Reports and When to Use Them
	Order of Events for Reports
	Events Available for Report Sections and When to Use Them
	Programmatically Manipulating Report Sections
	Taking Advantage of Special Report Properties
	Controlling the Printer
	Using Automatic Error Checking
	Propagating Field Properties
	Incorporating Practical Applications of Report Events and Properties
	Practical Examples: Practicing What You Learned
	Summary

	12 Advanced Query Techniques
	Why This Chapter Is Important
	Using Action Queries
	Viewing Special Query Properties
	Optimizing Queries
	Using Crosstab Queries
	Establishing Outer Joins
	Establishing Self-Joins
	Understanding SQL
	Building Union Queries
	Using Pass-Through Queries
	Examining the Propagation of Nulls and Query Results
	Running Subqueries
	Using SQL to Update Data
	Using SQL for Data Definition
	Using the Result of a Function as the Criteria for a Query
	Passing Parameter Query Values from a Form
	Understanding Jet 4.0 ANSI-92 Extensions
	Practical Examples: Applying These Techniques in Your Application
	Summary

	13 Advanced VBA Techniques
	Why This Chapter Is Important
	What Are User-Defined Types, and Why Would You Use Them?
	Working with Constants
	Working with Arrays
	Understanding Advanced Function Techniques
	Working with Empty and Null
	Creating and Working with Custom Collections
	Handling Files with Low-Level File Handling
	Understanding and Effectively Using Compilation Options
	Importing and Exporting Code Modules
	Working with Project Properties
	Practical Examples: Putting Advanced Techniques to Use
	Summary

	14 Exploiting the Power of Class Modules
	Why This Chapter Is Important
	Object Orientation—An Introduction
	Creating and Using a Class Module
	Setting Values with Property Set
	Creating Multiple Class Instances
	Adding Code to the Initialize and Terminate Events
	Working with Enumerated Types
	Building Hierarchies of Classes
	Adding a Parent Property to Classes
	Using the Implements Keyword
	Working with Custom Collections
	Adding Your Own Events
	Practical Examples: Using Class Modules
	Summary

	15 What Are ActiveX Data Objects, and Why Are They Important?
	Why This Chapter Is Important
	Examining the ADO Model
	Understanding ADO Recordset Types
	Working with ADO Recordset Properties and Methods
	Modifying Table Data Using ADO Code
	Creating and Modifying Database Objects Using ADO Code
	Practical Examples: Applying These Techniques to Your Application
	Summary

	Part II: What to Do When Things Don't Go as Planned
	16 Debugging: Your Key to Successful Development
	Why This Chapter Is Important
	Avoiding Bugs
	Harnessing the Power of the Immediate Window
	Invoking the Debugger
	Using Breakpoints to Troubleshoot
	Stepping Through Code
	Setting the Next Statement to Execute
	Using the Call Stack Window
	Working with the Locals Window
	Working with Watch Expressions
	Continuing Execution After a Runtime Error
	Looking at Gotchas with the Immediate Window
	Using Assertions
	Debugging Tips
	Practical Examples: Debugging Real Applications
	Summary

	17 Error Handling: Preparing for the Inevitable
	Why This Chapter Is Important
	Implementing Error Handling
	Using On Error Statements
	Using Resume Statements
	Clearing an Error
	Examining the Cascading Error Effect
	Using the Err Object
	Raising an Error
	Using the Errors Collection
	Creating a Generic Error Handler
	Preventing Your Own Error Handling from Being Invoked
	Creating a Call Stack
	Building a Custom Error Handler Class
	Working with Error Events
	Creating a List of Error Codes and Descriptions
	Practical Examples: Incorporating Error Handling
	Summary

	18 Optimizing Your Application
	Why This Chapter Is Important
	Introducing Optimization
	Modifying Hardware and Software Configurations
	What Is the Access Database Engine?
	Letting the Performance Analyzer Determine Problem Areas
	Designing Tables to Optimize Performance
	Designing Database Objects to Improve Performance
	Practical Examples: Improving the Performance of Your Applications
	Summary

	Part III: Developing Multiuser and Enterprise Applications
	19 A Strategy to Developing Access Applications
	Why This Chapter Is Important
	Splitting Databases into Tables and Other Objects
	Basing Forms and Reports on Queries or Embedded SQL Statements
	Preparing an Application for Distribution
	Using Access as a Front End
	Practical Examples: Applying the Strategy to the Computer Consulting Firm Application
	Summary

	20 Using External Data
	Why This Chapter Is Important
	Importing, Linking, and Opening Files: When and Why
	Importing External Data
	Creating a Link to External Data
	Opening an External Table
	Understanding Windows Registry Settings
	Using the Jet OLEDB:Link Provider String
	Working with Passwords
	Refreshing and Removing Links
	Looking at Special Considerations
	Troubleshooting
	Looking at Performance Considerations and Links
	Working with HTML Documents
	Practical Examples: Working with External Data from Within Your Application
	Summary

	21 Access 2007 and SharePoint
	Why This Chapter Is Important?
	The Access 2007 (accdb) File Format and SharePoint
	Exporting Data to a SharePoint Site
	Publishing Data to a SharePoint Site
	Opening Access Forms and Reports from a SharePoint Site
	Linking to and Importing from SharePoint Lists
	Taking SharePoint Lists Offline with Access
	Reestablishing Links When a SharePoint Site Has Been Moved
	Summary

	22 Developing Multiuser and Enterprise Applications
	Why This Chapter Is Important
	Designing Your Application with Multiuser Issues in Mind
	Understanding Access's Locking Mechanisms
	Understanding the Client/Server Model
	Deciding Whether to Use the Client/Server Model
	Understanding the Roles That Access Plays in the Application Design Model
	Learning the Client/Server Buzzwords
	Upsizing: What to Worry About
	Proactively Preparing for Upsizing
	Using Transaction Processing
	Practical Examples: Getting Your Application Ready for an Enterprise Environment
	Summary

	Part IV: Black Belt Programming
	23 Working with and Customizing Ribbons
	Why This Chapter Is Important
	Customizing the Ribbon: An Overview
	Showing System Tables
	Enabling the Display of System Errors
	Creating the USysRibbons Table
	Adding Data to the USysRibbons Table
	Applying the Custom Ribbon
	Hiding System Objects
	Restoring the Ribbon to Its Default Settings
	Adding Additional Groups and Controls
	Executing a Macro from the Ribbon
	Practical Examples: Securing an Access 2007 Database
	Summary

	24 Automation: Communicating with Other Applications
	Why This Chapter Is Important
	Defining Some Automation Terms
	Declaring an Object Variable to Reference Your Application
	Creating an Automation Object
	Manipulating an Automation Object
	Using Early Binding Versus Late Binding
	Controlling Excel from Access
	Closing an Excel Automation Object
	Creating a Graph from Access
	Controlling Word from Access
	Controlling PowerPoint from Access
	Automating Outlook from Access
	Controlling Access from Other Applications
	Practical Examples: Using Automation to Extend the Functionality of Your Applications
	Summary

	25 Exploiting the Powerof the Windows API
	Why This Chapter Is Important
	Declaring an External Function to the Compiler
	Working with Constants and Types
	Calling DLL Functions: Important Issues
	Using API Functions
	Practical Examples: Using Windows API Functions in Your Applications
	Summary

	26 Creating Your Own Libraries
	Why This Chapter Is Important
	Preparing a Database to Be a Library
	Creating a Reference
	Debugging a Library Database
	Practical Examples: Building a Library for Your Application
	Summary

	27 Using Buildersand Wizards
	Why This Chapter Is Important
	Using Builders
	Using Wizards
	Using Menu Add-Ins
	Practical Examples: Designing Your Own Add-Ins
	Summary

	28 An Introduction to Access and the Internet/Intranet
	Why This Chapter Is Important
	Saving Database Objects as HTML
	Linking to HTML Files
	Importing HTML Files
	Saving Database Objects as XML
	Importing XML Files
	Practical Examples
	Summary

	Part V: Adding Polish to Your Application
	29 Documenting Your Application
	Why This Chapter Is Important
	Preparing Your Application to Be Self-Documenting
	Using the Database Documenter
	Using the Object Dependency Feature
	Writing Code to Create Your Own Documentation
	Practical Examples: Applying What You Learned
	Summary

	30 Maintaining Your Application
	Why This Chapter Is Important
	Compacting Your Database
	Backing Up Your Database
	Converting an Access Database
	Detecting Broken References
	Practical Examples: Maintaining Your Application
	Summary

	31 Database SecurityMade Easy
	Why This Chapter Is Important
	What's New in Access 2007 Security?
	What Happened to User-Level Security?
	Trusting a Database
	Using a Database Password to Encrypt an Office Access 2007 Database
	Packaging, Signing, and Distributing an Access Database
	Using the Trust Center
	Understanding How Databases Behave When Trusted and Untrusted
	Working in Sandbox Mode
	Removing User-Level Security
	Enabling or Disabling ActiveX Controls
	Enabling or Disabling Add-Ins
	Adding a Trusted Publisher
	Practical Examples: Securing an Access 2007 Database
	Summary

	Part VI: Appendixes
	A: Naming Conventions
	B: Table Structures
	The tblClients Table
	The tblClientAddresses Table
	The tblAddressTypes Table
	The tblClientPhones Table
	The tblPhoneTypes Table
	The tblCorrespondence Table
	The tblCorrespondenceTypes Table
	The tblTerms Table
	The tblContactType Table
	The tblCompanyInfo Table
	The tblEmployees Table
	The tblErrorLog Table
	The tblErrors Table
	The tblExpenseCodes Table
	The tblPaymentMethods Table
	The tblPayments Table
	The tblProjects Table
	The tblTimeCardExpenses Table
	The tblTimeCardHours Table
	The tblTimeCards Table
	The tblWorkCodes Table

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

