

Programming
ArcObjects
with VBA

Second Edition

Programming
ArcObjects
with VBA

A Task-Oriented Approach

Second Edition

Kang-Tsung Chang

CRC Press

Taylor & Francis Group

Boca Raton London New York
CRC Press is an imprint of the
Taylor & Francis Group, an informa business

MATLAB® is a trademark of The MathWorks, Inc. and is used with permission. The Mathworks does not warrant the
accuracy of the text or exercises in this book. This book’s use or discussion of MATLAB® software or related products
does not constitute endorsement or sponsorship by The MathWorks of a particular pedagogical approach or particular
use of the MATLAB® software.

Chapman & Hall/CRC

Taylor & Francis Group

6000 Broken Sound Parkway N'W, Suite 300
Boca Raton, FL 33487-2742

© 2008 by Taylor & Francis Group, LLC
Chapman & Hall/CRC is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Printed in the United States of America on acid-free paper
10987654321

International Standard Book Number-13: 978-1-58488-580-1 (Hardcover)

This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted
with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to
publish reliable data and information, but the author and the publisher cannot assume responsibility for the validity of
all materials or for the consequences of their use.

No part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or
other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any informa-
tion storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://
www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC) 222 Rosewood Drive, Danvers, MA 01923,
978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For orga-
nizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Krantz, Steven G. (Steven George), 1951-
Complex variables : a physical approach with applications and Matlab / Steven G. Krantz.
p. cm. -- (Textbooks in mathematics)
Includes bibliographical references and index.
ISBN 978-1-58488-580-1 (alk. paper)
1. Functions of complex variables. 2. MATLAB. I. Title. II. Series.

QA331.7.K732 2008
5159--dc22 2007023147

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

Contents

INErOAUCHON.......coveiiiiiiiiiiii ettt Xiii
Chapter 1 ATCODJECLS ..ccuevviieieieicteieceite ettt 1
L1 GEOAALADASEeeeueeeeiiiiieeiteeieeetee ettt sttt sttt st bt 2
LL1T VeCtOor Data.....cooeeieeiiiieiieiieeeteete ettt 2
1.1.2 RaASter Data.....cooieiiiiiiiiiiiiieetee ettt 3
1.1.3 Triangulated Irregular Networks (TINS).......cccoceevieniriininiininicnenn 3
1.1.4 Location Data........ccceruierieniiiiienieeiteeieeee ettt 4
1.1.5 Nongeographic Dataccccoieviiniiiiniiiiceceeeeee 4
1.2 ATCODJECES ..ottt ettt et 4
1.2.1 Objects and ClaSsescceeeeruieierieieenieieneeeeeeee e 4
1.2.2 Relationships between Classescccoceeverierinienenienieneeneeeeneenns 5
1.2.3 0 TNEETTACES ..eeeiiiiiieeiieee ettt s 6
1.2.4 Properties and Methodsccceeveeriiinieriiiinienieeeeeeeeeeeee e 7
1.3 Organization of ATCODJECLScceeruirviiniiiiirieiiieeie e 9
1.4 Help Sources 0n ArCODJECES.....c..oeueeriirieriirieieeeeneeteeeere et 10
1.4.1 ArcObjects Developer Help.......c.cocevieeinieiiniiniicniieicceeeeens 10

1.4.2 Environmental Systems Research Institute, Inc. (ESRI)
ODbJECt BIOWSET....c..eouiiiieiiiiciiciciceteeeee et 10
1.4.3 ESRI Library LOCatorccccecuevieiiinieiinieieeeciceeeee e 12
1.5 Geoprocessing ObJECtccuevieiiriiriiiieniiiieeeeee ettt 12
References CRted........oovuiiriiiiiiiieeite ettt ettt et 13
Chapter 2 Programming Basics.........ccceceviririniniiniininenenciceeeeceeeceee 15
2.1 Basic EIBMENTS.....cooiiiiiiiiiiiiieeieeieerteeteste ettt 16
2.1.1 Projects, Modules, Procedures, and Macroscceeceeveervreeneennnen. 16
2.1.2 0 Variablesoouiiiiiiiiiiieee s 17
2.1.3 Use of Properties and Methodsccccceeecieniniiniininieniieceene. 18
2.1.4 QueryInterface........c.ccoeeviiriiiiiiiiiie e 19
2.1.5 Comment Lines and Line Continuationc.ccceeeveeveereerneeeneennnen. 20
2,100 ATTAYS oo e 20
2,17 COlIBCHOMNSttt ettt ettt et es 21
2.2 WIINEZ COAE...coueiiiiiieiiiiieieeieet ettt e 21
2.2.1 If...Then...Else Stat€mMeNtccccoceeruerienieriieniiereneereeeeneeeenaeennes 21
2.2.2 Select Case StAEMENL......ccouuievueerieritienieeieeniteeieesite et esiee e esaeesaeees 22

\ PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

2.2.3 DO...LOOPD StAtEMENL ...ccuvierierireeiierieeieesieesieesteenteesreeaeesbeenseesasees 23

224 For...Next STateMENtc..coouereeriinierienienieetenieetenieeeesieeaesieeiesinens 24

2.2.5 For Each...Next StatemeNt........cccceeveeruerienieneeneeeenieenieneenieneeniennens 25

22,6 With Statementccccceeiruiiuiniiiiiiieieseeieteeeret et 25

227 DIalOoZ BOXES..cccuiiiuiieiieiiiieiienieeieesteeieesite ettt eieesaeebee st eseeseeees 26

2.3 Calling Subs and FUNCHONSc..ccceevierieniiniiniiniiieeienieeeecee e 27
2.4 Visual Basic EditOrc.ccooiiiiiiiiiniiniiiniceeceeteseeceee e 28
2.5 Debug@ing Code.....c.ccocueririinirieniieieniieienieeteeieente ettt s sieens 30
2.5.1 TYPE Of EITOT . ccuiiiiiiiiieiieieeee ettt 30

2.5.2 On Error StateMeNt.........coeevuereerienienienitenieeeenieeeenieeeesieensesseensessnens 31

2.5.3 Use of Breakpoint and Immediate Windowccecceevvervieennennen. 32
Chapter 3 Customization of the User Interfaceccocevovveeeniniininiencnnnne 35
3.1 Creating a Toolbar with Existing ArcMap Commands........c..ccccccecueueeruenne. 36
3.2 Adding a New BUttonccccouevieoienienieiniiinineneseesresteseeeereeeeeeee e 37
3.3 Adding @ New TOOL......ccoieirieriiniiieieieieteeeeese ettt 39
3.4 Storing a New Toolbar in a Templateccccecevverinenenenenenenieieeeceene. 42
3.5 Adding @ FOIMcouiiiiiniiiiiiiecicceteteeee ettt 43
3.5.1 Designing @ FOrM......cccoceeiiirinininininienenencieieteeeeeeeeeeee e 44

3.5.2 Associating Controls with Procedures.........c..ccccocevvevvevieniencnenncncnnens 45

3.53 Running @ FOIMccoceiiiiiiiininiccccctceeeeeeeeeee e 47

3.5.4 Linking a Button to @ FOrm.......cccceccvinininininiinienciiiecceeecncene 48

3.6 Storing a Form in @ Template.........ccccceeeririnininininenenceieeeeeeeeeceeene 48
Chapter 4 Dataset and Layer Management............cocceceeveeneneencneeneneenennens 51
4.1 Using Datasets in ATCGIS.......ooviiiiiiiieniiiieseeeere e 52
4.2 ArcObjects for Datasets and Layers........cccoceevveeerieerieenieenienneenieeieesee e 52
4.3 Adding Datasets as LaYersccoceecuevierienieriinieneneeieneeneeeenieenesieeve e 54
4.3.1 AdAFeatureClaSSccoceevereeeiniisienieiieiteieeeeeie ettt 54

4.3.2 AdAFeatureClASSEScocereeeuineesinieiinieeieeeceiteeesae et 56

4.3.3 AAARGSIEN ..ottt 58

4.3.4 AdALAYETFILEeeoeeeeeieeieeiieeieeeeeeeeeste ettt 59

4.3.5 AdATable...........oououeeeiiicinicinicinicinieeineeeeee e 60

4.4 Managing Layers......coccecereerierienienieientenieete ettt sttt 61
441 FINALAYET ..eooeeeeieiieieeee ettt siae st sate b saaesase e aaesaseenes 61

4.5 Managing Dataselsc.ccoeererierienienienienieetenieete ettt 62
4.5.1 COPYDAIASEL c..eveeeeeeeeiieeieeieesieeieeste et sae e esieesbeesaresabeessnesaseenees 62

Box 4.1 CopyDataset_GPccocevviiiieniieiieeieeeecieeieeee e 63

4.5.2 DeleteDatASErtc.cocuereevuineeiinieienieeieeiteieetete ettt 64

4.6 Reporting Geographic Dataset Informationc.ccceceevvenervienencenennienennn 65
4.6.1 SPALIALRES ..ooeeeeieeieeeeeee ettt ettt sttt 65
Chapter 5 Attribute Data Managementc.cecevverevenenenreneeneeneeneeeeceennes 67
5.1 Managing Attribute Data in ArcGIS..........cccooiiiiiieiieeeee e, 68

5.2 ArcObjects for Attribute Data Managementcccoeeeevueeeeneeieneeneeneene. 68

CONTENTS Vil

S5.2.1 TabBIES..uiiiiiiiiiciicicc s 68

5.2.2 Fields and Field........ccccooiviinininininiiiiiicicciciccccceee e 69

5.2.3 Relationship Classesccceeevierieriieriiienieeieenie et sere e 70

5.3 Listing Fields and Field Properties.........c..ccoccvveevienienienienieneenenicnceieneene. 73
5.3, 1 LiSTOSFIELAS ..ottt s s 73

5.3.2 LiStFICIAPTOPS ...veeeeeeeieeieeie ettt ettt e e sane s 74

5.3.3 USEFINALAYEToooueeeeieeieeie ettt saae e s 76

5.4 Adding or Deleting Fieldsccccoceririiiniiiiniiniiniiicnecicccceecceeeeene 77
5.4.1 AddDeleteField..............oooevinioniinoiininiiniiniinieeienieeieeeene e 77

Box 5.1 AddDeleteField_GPcoooovviiiiiiiiiiiicieieeeeeeeeeeeen 79

5.5 Calculating Field Valuesc.ccoceeeeririiniiieniiinieeneeieeeee et 79
5.5.1 CalculateFieldccocovirienineeniniiniiniinieeieneeieeeene e 79

Box 5.2 CalculateField_GPoooovvviiiiiiiiiiiiiieiieeeeeeeeeeeeen 80

5.5.2 UPAAIEVALUEccuueeeeeieieeiieeeeieeeeeieeee sttt 81

5.6 Joining and Relating Tables.........cccccveriiniiiiniininiieiceeceecc e 82
5.6.1 JOINTADIETOLAYEToooeeeeeiieiieeieeiieeieeiee sttt s 82

5.6.2 JOINMUILIPIETADIESc...ooeeeeeeeeeiieiieeieeeeeie ettt 84

5.6.3 RelateTableTOLAYETcocueeeeeeeieeiieeieeiiesieeieesee e nine e 86

Box 5.3 RelateTableToLayer_GPcccccovvivriiieiieniieienieeeenees 87

5.6.4 RelationalDatabase....................cooccvoeevercienencieniniiineeseineenieseenaeenees 88
Chapter 6 Data CONVEISIONoc.eeiuireieiieeieiieiiesieeie sttt ee et seesnee e eneens 91
6.1 Converting Data in ArcGISccccooviiirinininnneneeceeeeeeeeeeee 92
6.2 ArcObjects for Data CONVEISION......c.cccereruirererenienrenieneetereeeeeeeeeeeeenene 92
6.2.1 Objects for Feature Data CONVErSionccccevevveveveneeeeerenennennes 92

6.2.2 Objects for Rasterization and Vectorizationcccceeeeeeeeeecenenne. 93

6.2.3 Objects fOr XY EVENtccceviriirinirinienienieicieieeeteeeeeeeeee e 95

6.3 Converting Shapefile to GeoDatabaseccccoevererenienieneneieieeeceeenn 96
6.3.1 SAAPESILETOACCESS.cceeeueneirieiiaiiniiniieieienieeeteteeeteet et 96

Box 6.1 ShapefileTOACCESS_GPcccoviereiiieiiiieeeeeeeeee e 98

6.3.2 MultipleShapefileSTOACCESScccueoeeiereeeiieeeieeeeeee et 98

6.3.3 ShapefilesToFeatureDataseroooeverineeenencneecneeeenenenn, 100

Box 6.2 ShapefilesToFeatureDataset_GPccoccovoeeienieieneennen. 102

6.4 Converting Coverage to GeoDatabase and Shapefile............c.ccoevrenreeenne. 103
6.4.1 COVETAGETOACCESS ...ttt 103
6.4.2 CoverageToSRAPESileccuuuecueevceriininininiinienienecieeeeeeeenene 104

6.5 Performing Rasterization and Vectorization...........cc.cecceveverenenveniennennenenn 106
6.5.1 FeatureTORASIEYcc.ooueeieeiaieieteeeeeee et 106

Box 6.3 FeatureTORaSter GPcooovvveeeeeeeiiiiiiiieeeeeeee e, 108

6.5.2 FCDeSCFIPIOFTORASIEFocueeeeeeeeieeeseeeeeee e 108

6.5.3 RasterTOSHAPESIlec.oocueeeeieiiiieeeeeeeeeee e 110

6.5.4 RasterDescriptorToShapefile..............ccouvueviioeeioeiiesieiieieeeeeeen, 111

6.6 Adding XY EVENLS...cccoiviiriiniiieieieeeieeecetene sttt 113
6.0.1 XYEVERLS.....oeeiteeeeteeeetee ettt sttt 113

BoX 6.4 XYEVENLS GP ..oooeiiieeeeeeeeee e 115

Vil

PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

Chapter 7 Coordinate SYSIEMScccvierueeriirriienieeiienieesee e erieesieesseesveeeees 117
7.1 Managing Coordinate Systems in ArcGIScccccocervieniniiniinieniniineiene 118
7.1.1 Defining Coordinate SYStEMSccceevereeruerieniereenenrenienreneenene 118

7.1.2 Performing Geographic Transformationsccccceceeevienenicnnenns 118

7.1.3 Projecting DatasetS........cocueeuierieeriieeniienieeieesieenieesiteesieeseesveesine e 119

7.2 ArcObjects for Coordinate SYStEIMScceeveveerueeriuirriienieeieesreerieenreereenanes 119
7.3 Manipulating On-the-Fly Projection.........c.cccecevvieneroienenieniniienieicnceiene 122
T30 UTM_ORTREFLY ..ottt st sve st naneens 122

7.3.2 IDTM_ORTREFLY ..ottt 122

7.4 Defining Coordinate SYSEIMSccceevuireeriiriererienienienienrenieerenieeeenieeeenne 124
TA L DeEfiIEGCS ..ottt ettt sttt st aesbe e sabesaeesaeeens 125

BOX 7.1 DEAINEGC S _GP .eeeeeieees 126

7.4.2 CopySpatiQIREfErenCeuoucueevvueeciiisieeiiiesiescieenieecieesresnieeneeens 127

7.5 Performing Geographic Transformationsc..cceceeveerervienennieneenienieennenne 128
751 NAD271083_MAP ..ottt 128

7.5.2 NAD2T7t083_SHAPESILEooeeeeaiieiieeieesie ettt 129

7.6 Projecting DatasetS........cecueerierrieerieiieeiienieeieeste et sre et et et e e ebee e 134
T.60.1 PrOjectSRAPESIle.ueeeeieiieieeiieiieeieeste ettt sttt 134

Box 7.2 ProjectShapefile_GPcccoovveviirriieniiciienieeeeeeeeeen, 137

7.6.2 Use of a Different Datumc..coceveevirieninieneniinenicneeieeeeeene 137

7.6.3 ReprojectSRAPESfileooveevcuieiiieiiiiiiieiiieeie sttt 137

Box 7.3 ReprojectShapefile_GPccccoecveeviienieniiienieeienieeieenen. 141

Chapter 8 Data DiSplaycoecueeviiiiiiiiieiiteieeeieeiee sttt 143
8.1 Displaying Data in ArcGIS......ccccooeeviiriiiiniiiietceee e 144
8.1.1 Displaying Vector Dataccoceevuerercieneeiienieiineenieneeneeeeneceeees 144

8.1.2 Displaying Raster Dataccoccevverervienieiienieienieniencenceeeneeeeee 144

8.1.3 Use of Color Ramp and Classification ToolS...........cccceervrrrreennenns 144

8.1.4 Designing a LayOUL......cccueevieerieiiierieeieeniie et 144

8.2 ArcObjects for Data DiSplayccccueevieriiiniienieiiieeieeee e 145
8.2.1 Renderer ODJECS.....cccveriirriienieiiienieeite ettt sttt see et e sre e 145

8.2.2 ClassSification ODJECES.......eevueeruerriierieeriierieereenieenireeeeenieesreenieesnns 146

8.2.3 Color Ramp and Color ObJECtScceevueeriierieriieiieeieeiee e 147

8.2.4 Layout ODJECES ..eevureerieriiieiieeieeitesteesieesteesteesreesteesaeenaeesseensnesnne 148

8.3 Displaying Vector Data..........cecereevieririienieiiinieiineeieeeesie e 149
8.3.1 GraduatedColOrsc.ueeveeeceieiieeieecieiieeeesee st 149

8.3.2 GraduatedSYMDOLScccuoeeueeeiiniieiiiiieecieeie et 155

8.3.3 UNIGUESYMDOLS ...ttt 157

8.4 Displaying Raster Data.........ccoccereriiniiiiiniiiiinieneciececeecc e 158
8.4.1 RasterUniqueSYMDOLScccoecuemeeeeiiiiiieiienieeiiesieeieesve e 158

8.4.2 RasterClassifyColOTRAMPcccueveueeceeiiieiiiniieiienieeieesveeaeenes 161

8.4.3 RasterUserDefinedColorRAMP...........ccceevueeceisciiiiienieecieeeieeieeens 164

8.5 Making a Page Layout........ccoccevuereriinirnienieiinicicececeeeee et 166

8.5, 1 LAYOUL .ottt ettt ettt sttt 166

CONTENTS IX

Chapter 9 Data EXPlOTation......ccccevvieriieniiiniienieeitesieeee sttt saeeseeeeve e 175
9.1 Exploring Data in ArcGIScocoviiiiniiniiiiieereeeceeeeteeeeseeeeee 176
9.2 ArcObjects for Data EXploration..........cccceeeveereenieeniieniieeiiienieeieenie e 176
9.2.1 Use of @ QUEry Filter......cccocivviiniiiiiiiniiciie e 177

9.2.2 CUISOT ..ottt ettt ettt et 178

9.2.3 Data StatiStiCS....eevverurerieriiiiieienieetenttente ettt st et eite b eane e 179

9.3 Performing Attribute QUETYcc.coeevuireeniirieniinienienieneerenieetesieere e 180
9.3.1 S€lECtFEAIUTES ..ottt 180

Box 9.1 SelectFeatureS_GPoovvvviiiiiiiiiiiiiiieieeeeceieeeeeeeeeees 181

9.3.2 S€lECIRECOTASoueeeeiiieiiiiaiieieieeeneeeseeeseee st 181

9.4 Performing Spatial QUETYcc.cocuerieriiriinirieniinienenieneeteseetesieere e 184
Q4.1 SPALIALQUETY ...ttt sttt st sresbe e sabesaeesaeeens 184

Box 9.2 SpatialQueryByName_GPcccocvvviieiiieniiniiinieeicenen, 185

9.4.2 Spatial QUErYBYNGIMEcccueecueeiieeiieesieeiieeniteseieesreeseensesseenaneens 186

9.4.3 MultipleSpatialQUETIEsccuevueecueesiieeiiieniesiiiesieeiieesreesieeneeens 187

9.4.4 SeleCtBYSRAPEooouveeeeieiieieeiiecieeceeeste ettt sttt 189

9.5 Combining Spatial and Attribute QUETIeScecuerrvieriierriierieeieenieeieeaes 192
O.5. 1 BUFETSELECE ..ottt sttt sttt et 192

9.5.2 INIEFSECESELECE ...t 195

9.6 Deriving Descriptive StatiStiCS........cevuireeriiriereriererienenreneerenieerenieeeenne 196
9.6.1 DAIASIALISTICS ..ottt sttt 197

Box 9.3 DataStatiStiCS_GP.......cuvvviiiiiiiiiiiiiiiiieeeeeeeeeeeeveeeeeeeees 198

9.6.2 DataSUBSEISIALISHICScouveovevueeniireiniietenieeieneetesieere et 198
Chapter 10 Vector Data Operations..........cccccueeeeeeueeereninierenesensensessensennenee 201
10.1 Analyzing Vector Data in ArcGISccoooiiiiiiiiiieeeeeeeseeee 202
10.2 ArcObjects for Vector Data Analysisccocevereereriienerienieeieneeiesceiene 202
10.3 BUFFEIING -.eneeiieieitiee ettt s e 204
(O T R 217 1 2 USRS 204

BOX 10.1 BUFTEr GP .. 206

10.3.2 BUffer OPtionsS......c.ceceiuieiierieniieiienie ettt 206

10.4 Performing OVerlay........cccoeoierieiienieiiinieie ettt 207
LOA T IRIEFSECT .t 207

Box 10.2 Intersect_GPc..vvvviiiiiiiiie e 209

10.4.2 Updating Area and Perimeter of a Shapefile.........c.ccoceeeverennenne 209

10.5 Joining Data By LOCAtiONcccueriiriiriiiieiieieneee e 211
10.5.1 JOINBYLOCATIONc..veeeeeeiieaieeeieeieeeieeieesee e ve e seve e 211

10.6 Manipulating Featuresccccecerieiiinienieiiee et 213
L0.6.1 DIESSOIVE .t 213

BOX 10.3 DiSSOIVE _GP ... 214

JO.6.2 METGE..uecneeeeniieeeieeiiecieeie ettt sttt et e be e s aeebaesabeeseenees 215

10.6.3 CORIFOUA ..ottt 216

X PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

Chapter 11 Raster Data Operationscccueeveerrieenieerieeneeniieeneessueeneessseensees 221

11.1 Analyzing Raster Data in ArcGISc..cooeiiiiiniiiiniiiececee, 222

11.2 ArcObjects for Raster Data ANalysiscccceevveereeniienienieenieenieeieesveeaeens 223

11.2.1 RAStEr ODJECLS .eeeuviiiieriiieiieriieeieeeieeieeeteeieeste e e sreebeesbaesaeeaees 223

11.2.2 Operator ODJECLS ...cc.eerieeriieriieieenieeiteeieeieesreeieesreereesaesaeenaees 223

11.3 Managing Raster Datacccccocereriiniiiiininiinieiceceeee e 226

11.3.1 MAKEPETIANENT ..ottt st st 226

11.3.2 EXIFACIBYMASK ..ottt st s 228

Box 11.1 ExtractByMask_GP........cccceoceeviiinieniieiienieeeeieeene 229

11.3.3 RASIETQUETY.c.eeeeeeeeeeiieeieeiee ettt ettt s saee st esavesseenees 230

11.3.4 QUETY2RASIETS w.eoeveeeeeeeeiieeieeeiee sttt sttt et te et esane e e 231

11.4 Performing Local Operations..........c.cceceevuereenereeneniiencneenenreneeneneennenne 233

11.4.1 ReclasSNUMDETFIEld.cccueevcuiveieeniiniienieeiieieeeie e 233

Box 11.2 ReclassNumberField_GPooovvvvviiiiiiiiiiiiiiiiiiiicinnns 235

11.4.2 COMDINE2RASIETS ...c.eveeeeesiieeieeeieeiieeite st enitesteeieesre e sresae e 235

Box 11.3 Combine2Rasters_ GPoovvvivvveeiiiiiiiiiiiiiiieieieceeinnns 237

11.4.3 Other Local Operations..........cceecueerveeriersieeriensieenreesieeneesveeseennne 237

11.5 Performing Neighborhood Operations..........c.ccoceeveruenervenenereneesueneennene 237

L11.5.1 FOCAIMEAN ...ttt 238

Box 11.4 FocalMean_GP.........cccuuvevviiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeaiaas 239

11.6 Performing Zonal OPerationscccceceevuereerereenenieenereenenreneesseneensenne 239

11.6.1 ZONAIMEAN.cccueooeeeeeieiieeiiecieeieeete ettt 239

Box 11.5 ZonalMean_GPccuuveveiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeciaaas 241

11.7 Performing Distance Measure Operations............c.ccecuevervenrercreneesveneennenne 241

L1701 EUCDIST oottt ettt ettt et 241
11.7.2 Use of a Feature Layer as the Source

I EUCDIST .ottt ettt sttt sttt eaa e st e naaesabees 242

BoxX 11.6 EUCDISt_GP...c.eoiiiiieiiiiiceeteeseeeeee e 243

T1.7.3 0 STCE ettt 243

L1774 COSIDISE .ottt sttt sttt save e 245

11.7.5 COSIDISTFULL ...ttt 246

Chapter 12 Terrain Mapping and AnalysiS......ccccceceevereenineenenreenenneencneenne 249

12.1 Performing Terrain Mapping and Analysis in ArcGISc..ccccceveeviniennenne 250

12.2 ArcObjects for Terrain Mapping and Analysiscccccecevvverercieneesiencennene 250

12.3 Deriving Contour, Slope, Aspect, and Hillshadec.cccoceeeveninciinnnenne 252

12301 CORLOUF .ottt ettt 252

Box 12.1 Contour_GP......ooooeieeieeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeaaaas 253

12.3.2 SIOPE .ttt 254

BOX 12.2 SIOPE_GP....eoioiieiieiieeeeee ettt 255

12.3.3 Choice of S1ope MeEaSUTE........ccccueruierieriiienieeieeniieeieeneeesreesneenne 255

12.3.4 ReClASSIfYSIOPEeooeeeeeieiiiieiieeieeieeste sttt 256

12.3.5 ASPECT.uiiiiiiiieeieeieeete ettt ettt sttt e s ae et e s be et e sabeenanenaee 257

12.3.6 ASPECt_SYMBDOL.......ccueeeeieiiieiieiieeiieeteet ettt 258

BOX 12.3 ASPECt_GP...ooiiieiieiiieiieeeeeee ettt 260

12.3.7 Hillshade.........ccooiniiiiiiiiiiiiiiiciice e 262

CONTENTS Xl

12.4 Performing Viewshed Analysis......cc.ccoceeverieriniiiienieninienineeneeeeneeeees 262
12,41 VESIDILITY ettt e 263

12.5 Performing Watershed Analysis.....c...coccevereeriinienienieneneenineeneeeeneeeee 264
12.5.1 WaLEFSHEA ...ttt st 265

12.6 Creating and Editing TINcccccoviriiniininiiiiieieeeeeeeee e 268
12.6.1 RASIETTOTiN. ..ottt s 268

Box 12.4 RasterTOTIN_GPuuuviiiiiiiiiiiiiieieeeeieeeeeeeeeeeeeeeeias 270

12.6.2 EdIITiR .ottt e 271
12.6.3 TEINOAES ..ottt sttt st savesreenees 272
Chapter 13 Spatial Interpolation.........cccceeevieerieriieenieniienee st 275
13.1 Running Spatial Interpolation in ArcGISccccovirviineriininieniniinceiene 276
13.2 ArcObjects for Spatial Interpolation...........ceevveeriirrieeniieniieenieeieenie e 276
13.3 Performing Spatial Interpolations..........cc.ccoceevereenerienerienenieeneeieneenene 277
13301 AW et 277

BoX 13.1 IAW_GP ..o 279

13.3.2 SPNE..cuiiiiiiiitiiteieee ettt 279
13.3.3 Trend SUrfacecoceeeveeieviiniiniiieneeieeeceeeeteeeeeie et 280
13304 KFIGING.eooueiiiieeieeieeeteeit et ettt sttt ettt e st et esavesneenees 280

Box 13.2 Kriging GPccccooiiiiniiiiiiiicieececeeeceeeene 282

13.4 Comparing Interpolation Methods.........cccevcvirriieniiiniieniieeiieniecieeree e 283
13141 COMPATE oottt s 283
Chapter 14 Binary and Index Modelsccccevviirriiiniienieniieieeeeeeeeeee, 287
14.1 Building Models in ArcGIS.......cccociiiiriiiiniiiiieneceeereneecseeeee 288
14.2 ArcObjects for GIS MOdEIS......c.eecuieriiriiiiiiiiieeie et 288
14.3 Building Binary and Index MOdelSc.ccoceevirienenienenieninienceicnceiene 288
14.3.1 VectorBinaryModel................coocceeeeenciinciienieniiieiieeiieeieesveseieenens 288

Box 14.1 VectorBinaryModel_GPcccccovvieviiiiiiienieniienieeeene 293

14.3.2 VectorIndexModel................occueeeceieoieseesiiiinienieesieeeie e sveeeieees 293

Box 14.2 VectorIndexModel_GP.........ooovvvveeiiiiiiiiiiiiiiiiiiiieiccinnns 299

14.3.3 RasterBinaryMOodelcccceveueviuescienieniiieniienieesieessessneenns 300

Box 14.3 RasterBinaryModel_GPcccccoovivviiiiiiiniiniieieeee 304

14.3.4 RasterIndexModel.................ccooccueveeeniuenciinienieeiieeiieeniee e esieenes 304

Box 14.4 RasterIndexModel_GP..........ooovvvveveiiiiiiiiiiiiiiiiiiiiiiinnns 309

Introduction

This book is designed for ArcGIS users who want to get a quick start on programming
ArcObjects. Both ArcGIS and ArcObjects are products developed and distributed
by Environmental Systems Research Institute Inc. (ESRI), ArcObjects is the devel-
opment platform for ArcGIS, a software package for managing geographic infor-
mation systems (GIS). Ideally, users should learn ArcObjects before using ArcGIS,
but that is not the case in reality. Users use ArcGIS first through its toolbars and
commands. It is easier to follow the user interface in ArcGIS than to sort out objects,
properties, and methods in code. The topic of ArcObjects usually emerges when
users realize that programming ArcObjects can actually reduce the amount of repet-
itive work, streamline the workflow, and even produce functionalities that are not
easily available in ArcGIS.

How can users learn programming ArcObjects efficiently and quickly? Perhaps
surprising to some, the answer is to apply what users already know about ArcGIS
to programming ArcObjects.

THE TASK-ORIENTED APPROACH

GIS activities are task oriented. Users use GIS for data integration, data management,
data display, data analysis, and so on. Therefore, an efficient way to learn program-
ming ArcObjects is to take a task-oriented approach, which has at least three main
advantages.

First, it connects ArcObjects with what users already know. Take the example
of QueryFilter. This book first links a QueryFilter object to the task of data explo-
ration. After users know that the object can perform the same function as the Select
By Attributes command in ArcMap, which users have used many times before, it
becomes easy to understand the properties and methods that are associated with the
object.

Second, the task-oriented approach introduces objects in a way that is logical to
ArcGIS users. With thousands of objects, properties, and methods, it can be difficult,
if not impossible, for beginners to navigate the ArcObjects model diagrams. Using
the task-oriented approach, users can learn ArcObjects incrementally from one group
of tasks to another in an organized fashion.

Third, the task-oriented approach can actually help users gain a better under-
standing of ArcGIS with their new knowledge of ArcObjects. For example, as a type

Xin

XV PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

of QueryFilter, the SpatialFilter class has its own properties of geometry and spatial
relation in addition to the properties that it inherits from the QueryFilter class. This
class relationship explains why the Select By Location command in ArcMap can
accept both attribute and spatial constraints for data query. (Perhaps it is more
appropriate to name this command Select By Location and Attributes.)

ABOUT THIS BOOK

This book has fourteen chapters. The first three chapters introduce ArcObjects, pro-
gramming basics, and customization. This book adopts Visual Basic for Applications
(VBA) for programming ArcObjects. Because VBA is already embedded within
ArcMap and ArcCatalog, it is convenient for ArcGIS users to program ArcObjects
in VBA. The following summarizes the major topics covered in the first three
chapters:

¢ Chapter 1: ArcObjects — Geodatabase, ArcObjects, organization of ArcObjects,
the help sources on ArcObjects, and the Geoprocessing object.

e Chapter 2: Programming Basics — Basic elements, writing code, calling subs and
functions, Visual Basic Editor, and debugging code.

¢ Chapter 3: Customization of the User Interface — Creating a toolbar with existing
commands, adding a new button and tool, adding a form, and making basic
templates.

Chapters 4 through 14 discuss programming ArcObjects for solving common
GIS tasks. Organized around a central theme, each chapter has three parts. The first
part is a quick review of ArcGIS commands on the topic; the second part discusses
objects that are related to the theme; and the third part presents sample macros and
Geoprocessing macros for solving common tasks under the theme. This combination
of ArcGIS commands, ArcObjects, and sample macros can effectively relate the
user’s experience of working with ArcGIS to programming ArcObjects.

The CD that accompanies this book contains 95 sample macros stored in the
VBA_programs folder by chapter. Each sample macro starts with a short description
of its usage and a list of key interfaces and members (properties and methods). These
are followed by the listing and explanation of code. Many macros are divided into
two or more parts to better connect the code lines and their explanation. Stored as
text files, these sample macros can be easily imported to Visual Basic Editor in either
ArcMap or ArcCatalog to view and run.

The companion CD also includes 33 Geoprocessing macros that are new in this
second edition. These macros are stored in the GP_programs folder by chapter. The
Geoprocessing object is a new ArcObjects component that supports the execution of
hundreds of Geoprocessing tools in a scripting language such as VBA or Python. These
tools are the same as in the ArcToolbox application of ArcGIS Desktop. The Geopro-
cessing object is a “coarse-grained” object, which is simpler to use than a “fine-grained”’
object. Therefore it allows users who do not understand all the details of ArcObjects

INTRODUCTION XV

to run macros. To separate them from “regular” VBA macros, Geoprocessing macros
are included in “boxes” in Chapters 4 through 7 and in Chapters 9 through 14.

All sample macros in the text have been run successfully in ArcGIS 9.2. The
companion CD contains datasets for the test runs, which are stored by chapter in
the Data folder. Two notes must be made about use of the sample macros. First,
ArcGIS 9.1 or 9.2 is needed to run the macros. Second, the Data folder is coded in
the sample macros as residing on the C drive (for example, c:\data\chap4). If the
folder is stored on a different drive (for example, the G drive), then the path should
be changed (for example, g:\data\chap4) before running the macros.

The following summarizes the major tasks covered in each chapter:

e Chapter 4: Dataset and Layer Management — Add datasets as layers, manage
layers and datasets, and report geographic dataset information.

e Chapter 5: Attribute Data Management — List fields, add or delete fields, calculate
field values, and join and relate tables.

¢ Chapter 6: Data Conversion — Convert shapefile to geodatabase, convert coverage
to geodatabase and shapefile, perform rasterization and vectorization, and add XY
data.

e Chapter 7: Coordinate Systems — Manipulate on-the-fly projection, define the
coordinate system, perform geographic transformation, and project datasets.

¢ Chapter 8: Data Display — Display vector data, display raster data, and create a
layout page.

¢ Chapter 9: Data Exploration — Perform attribute query, perform spatial query,
combine attribute and spatial queries, and derive descriptive statistics.

¢ Chapter 10: Vector Data Operations — Run buffer, perform overlay, join data by
location, and manipulate features.

¢ Chapter 11: Raster Data Operations — Manage raster data and perform local,
neighborhood, zonal, and distance measure operations.

¢ Chapter 12: Terrain Mapping and Analysis — Derive contour, slope, aspect, and
hillshade; perform viewshed analysis; perform watershed analysis; and create and
edit triangulated irregular networks (TIN).

e Chapter 13: Spatial Interpolation — Perform spatial interpolation and compare
interpolation methods.

¢ Chapter 14: Binary and Index Models — Build binary and index models, both
vector and raster based.

TYPOGRAPHICAL CONVENTIONS

The following lists the typographical conventions used in this book:

¢ Sample VBA macros are set off from the text and appear in a different typeface.

e Sample Geoprocessing macros are included in boxes and appear in a different
typeface.

¢ Names of sample macros are capitalized and italicized.

¢ ArcObjects, interfaces, properties, and methods appear in italics.

* Names of datasets and variables appear in italics in the text.

CHAPTER 1

ArcObijects

ArcGIS from Environmental Systems Research Institute (ESRI), Inc. uses a single,
scalable architecture. The three versions of ArcGIS (ArcView, ArcEditor, and
Arclnfo) share the same applications of ArcCatalog and ArcMap. The geodatabase
data model and ArcObjects provide the foundation for these two desktop applica-
tions. They also provide the basis for readers of this book to write programs in Visual
Basic for Applications (VBA) for customized applications in ArcGIS.

The geodatabase data model replaces the georelational data model that has been
used for coverages and shapefiles, two older data formats from ESRI, Inc. These
two data models differ in how geographic and attribute data are stored. The geore-
lational data model stores geographic and attribute data separately in a split system:
geographic data (“geo”) in graphic files and attribute data (“relational’) in a relational
database. Typically, a georelational data model uses the feature label or ID to link
the two components. The two components must be synchronized so that they can
be queried, analyzed, and displayed in unison. By contrast, the geodatabase data
model stores geographic and attribute data together in a single system and geographic
data in a geometry field.

Another important difference that characterizes the geodatabase data model is
the use of object-oriented technology. Object-oriented technology treats a spatial
feature as an object and groups spatial features of the same type into a class. A class,
and by extension an object in the class, can have properties and methods. A property
describes a characteristic or attribute of an object. A method carries out an action
by an object. Developers of ArcGIS have already implemented properties and meth-
ods on thousands of classes in ArcGIS. Therefore, when we work in ArcCatalog and
ArcMap, we actually interact with these classes and their properties and methods.

This chapter focuses on the geodatabase data model and ArcObjects. To use
ArcObjects programmatically, we must understand how spatial data are structured
and stored in a geodatabase and how classes in ArcObjects are designed and orga-
nized. Section 1.1 describes the basics of the geodatabase data model, including the
types of data that the model covers. Section 1.2 explains the basics of ArcObjects,
including classes, relationships between classes, interfaces, properties, and methods.

2 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

Section 1.3 outlines the organization of ArcObjects. Section 1.4 covers the help
sources on ArcObjects.

1.1 GEODATABASE

A geographic information system (GIS) manages geospatial data. Geospatial data
are data that describe both the location and characteristics of spatial features such
as roads, land parcels, and vegetation stands on the Earth’s surface. The locations
of spatial features are measured in geographic coordinates (i.e., longitude and latitude
values) or projected coordinates (for example, Universal Transverse Mercator or
UTM coordinates). The characteristics of spatial features are expressed as numeric
and string attributes. This book uses the term geographic data to describe data that
include the locations of spatial features, and the term nongeographic data to describe
data that include only the attributes of spatial features.

A geodatabase uses tables to store geographic data as well as nongeographic
data. It is therefore important to distinguish different types of tables. A table consists
of rows and columns. Each row corresponds to a feature, and each column or field
represents an attribute. A table that contains geographic data has a geometry field,
which distinguishes the table from tables that contain only nongeographic data. The
following sections describe different types of data, including both geographic and
nongeographic data, which can be stored in a geodatabase.

1.1.1 Vector Data

The geodatabase data model represents vector-based spatial features as points,
polylines, and polygons.' A point feature may be a simple point feature or a multi-
point feature with a set of points. A polyline feature is a set of line segments, which
may or may not be connected. A polygon feature may be made of one or many
rings. A ring is a set of connected, closed, nonintersecting line segments.

A geodatabase organizes spatial features into feature classes and feature datasets.
A feature class is a collection of spatial features with the same type of geometry.
A feature class may therefore contain simple point, line, or polygon features. A
feature dataset is a collection of feature classes that have the same coordinate system
and area extent. A feature dataset can therefore be used for managing different feature
classes from the same study area or reserved for feature classes that participate in
topological relationships with each other such as in a geometric network or a planar
(two-dimensional) topology. A topology is a set of relationships that defines how
the features in one or more feature classes share geometry.

A feature class is like a shapefile in that it has simple features. A feature dataset
is similar to a coverage in having multiple datasets based on a common coordinate
system. However, this kind of analogy does not address other differences between
the traditional and geodatabase data models that are driven by advances in computer
technology.

In a geodatabase, a feature class can be a standalone feature class or part of a
feature dataset. In either case, a feature class is stored as a table. A feature class has

ARCOBJECTS 3

two default fields. One is the object or feature ID and the other is the geometry or
shape field. A feature class can have other attribute fields, but the geometry field
sets a feature class apart from other tables.

ArcGIS users recognize a feature class as a feature attribute table. When we
open the attribute table of a feature layer in ArcMap, we see the two default fields
in the table and through them, we can locate and highlight spatial features on a map
only through a feature attribute table.

Features within a feature class can be further segregated by subtype. For example,
a road feature class can have subtypes based on average daily traffic volume. The
geodatabase data model provides four general validation rules for the grouping of
objects: attribute domains, default values, connectivity rules, and relationship rules.!
An attribute domain limits an attribute’s values to a valid range of values or a valid
set of values. A default value sets an expected attribute value. Connectivity rules
control how features in a geometric network are connected to one another. Relation-
ship rules determine, for example, how many features can be associated with another.

1.1.2 Raster Data

The geodatabase data model represents raster data as a two-dimensional array of
equally spaced cells.! The use of arrays and cells for raster data is the same as the
ESRI grid model.

A large variety of raster data are available in GIS. They include satellite imagery,
digital elevation models (DEMs), digital orthophotos, scanned files, graphic files,
and software-specific raster data such as ESRI grids.? The geodatabase model treats
them equally as raster datasets, but a raster dataset may have a single band or
multiple bands. An ESRI grid typically contains a single band, whereas a multispec-
tral satellite image typically contains multiple bands.

A multiband raster dataset may also appear as the output from a raster data
operation. For example, a cost distance measure operation can produce results
showing the least accumulative cost distance, the back link, and the allocation
(Chapter 11). These different outputs can be initially saved into a multiband raster
dataset, one band per output, and later extracted to create the proper raster datasets.

1.1.3 Triangulated Irregular Networks (TINs)

The geodatabase data model uses a TIN dataset to store a set of nonoverlapping
triangles that approximate a surface. Elevation values along with x-, y-coordinates
are stored at nodes that make up the triangles. In many instances, a TIN dataset is
an alternative to a raster dataset for surface mapping and analysis. The choice
between the two depends on data flexibility and computational efficiency.?

Inputs to a TIN include DEMs, contour lines, GPS (global positioning system)
data, LIDAR (light detection and ranging) data, and survey data. We can also modify
and improve a TIN by using linear features, such as streams and roads, and area
features, such as lakes and reservoirs. Data flexibility is therefore a major advantage
of using a TIN. In addition, the triangular facets of a TIN tend to create a sharper
image of the terrain than an elevation raster does.

4 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

Computational efficiency is the main advantage of using raster datasets. The
simple data structure of arrays and cells makes it relatively easy to perform com-
putations that are necessary for deriving slope, aspect, surface curvature, viewshed,
and watershed.

1.1.4 Location Data

The term location data refers to data that can be converted to point features. Common
examples of location data are tables that contain x-, y-coordinates or street addresses.
We can convert a table with x-, y-coordinates directly into a point feature class, with
each feature corresponding to a pair of x- and y-coordinates. Using a street network
as a reference, we can geocode a list of street addresses into a set of point features.

1.1.5 Nongeographic Data

A table that stores nongeographic data does not have a geometry field. The geoda-
tabase data model defines such a table as an object class. Examples of object classes
include comma-delimited text files and dBASE files. These files or tables contain
attributes of spatial features and have keys (i.e., relate fields) to link to geographic
data in a relational database environment.

1.2 ARCOBJECTS

ArcObjects is the development platform for ArcGIS Desktop, ArcGIS Engine,
and ArcGIS Server. (This book covers only ArcGIS Desktop.) A collection of
objects, ArcObjects is behind the menus and icons that we use to perform tasks in
ArcGIS. These same objects also allow software developers to access data and to
perform tasks programmatically.

1.2.1 Objects and Classes

ArcObjects consists of objects and classes.> An object represents a spatial feature such

as a road or a vegetation stand. In a geodatabase, an object corresponds to a row in a

table and the object’s attributes appear in columns. A class is a set of objects with similar

attributes. An ArcObjects class can have built-in interfaces, properties, and methods.
ArcObjects includes three types of classes:

The most common type is the coclass. A coclass can be used to create new objects.
For example, FeatureClass is a coclass that allows new feature class objects to be
created as instances of the coclass.

The second type is the abstract class. An abstract class cannot be used to create new
objects, but it exists so that other classes (i.e., subclasses) can use or share the
properties and methods that the class supports. For example, GeoDataset is an
abstract class. The class exists so that geographic datasets such as feature classes
and raster datasets can all share the properties of extent and spatial reference that
the GeoDataset class supports.

ARCOBJECTS 5

The third type is the class. A class cannot be used directly to create new objects;
instead, objects of a class can only be created from another class. For example,
EnumlnvalidObject is a noncreatable class because an EnumlinvalidObject can only
be obtained from another object such as a data conversion object. When converting
a shapefile from one coordinate system to another, for example, a data conversion
object automatically creates an EnuminvalidObject to keep track of those objects
that have failed to be converted.

1.2.2 Relationships between Classes

Object-oriented technology has introduced different types of relationships that can
be established between classes. Developers of ArcObjects have generally followed
these relationships. A good reference on relationships between classes in ArcObjects
is Zeiler.? There are also books such as Larman’s* that deal with this topic in the
general context of object-oriented analysis and design. A basic understanding of
class relationships is important for navigating the object model diagrams and for
programming ArcObjects as well.

Association describes the relationship between two classes. An association
uses multiplicity expressions to define how many instances of one class can be
associated with the other class. Common multiplicity expressions are one (1),
one or more (1..¥). For example, Figure 1.1 shows an association between Fields
and Field and between Field and GeometryDef. The multiplicity expressions in
Figure 1.1 suggest that:

One fields object, which represents a collection of fields in a table, can be associated
with one or more field objects.

One field object can be associated with zero or one GeometryDef object, which
represents a geometry definition.

A field associated with a geometry definition is the geometry field, and a table can
have one geometry field at most.

Type inheritance defines the relationship between a superclass and a subclass.
A subclass is a member of a superclass and inherits the properties and methods of
the superclass. But a subclass can have additional properties and methods to separate
itself from other members of the superclass. For example, Figure 1.2 shows Geo-
graphicCoordinateSystem is a type of SpatialReference (an abstract class). Geographic-
CoordinateSystem, ProjectedCoordinateSystem, and UnknownCoordinateSystem

GeometryDef

Figure 1.1 The association between Fields and Field is one or more, and between Field and
GeometryDef is zero or one.

6 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

SpatialReference

Geographic- Projected- Unknown-
Coordinate- Coordinate- | |Coordinate-
System System System

Figure 1.2 SpatialReference and its three subclasses.

share the same properties and methods that the SpatialReference class supports, but
the GeographicCoordinateSystem class has additional properties and methods that
are unique to the geographic coordinate system.

Composition describes the whole—part relationship between classes. Composi-
tion is a kind of association except that the multiplicity at the composite end is
typically one and the multiplicity at the other end can be zero or any positive integer.
For example, a composition describes the relationship between the Map class and
the FeatureLayer class (Figure 1.3). A map object represents a map or a data frame
in ArcMap and a feature layer object represents a feature-based layer in a map. A
map can be associated with a number of feature layers. Or, to put it the other way, a
feature layer is part of a map.

Aggregation, also called shared aggregation, describes the whole—part relation-
ship between classes. Unlike composition, however, the multiplicity at the composite
end of an aggregation relationship is typically more than one. For example, Figure 1.4
shows that a SelectionSet object can be created from a QueryFilter object and a
Table object. A table and a query filter together at the composite end can create a
selection set (a data subset) at the other end.

Instantiation means that an object of a class can be created from an object of
another class. Figure 1.4 shows that, for example, a selection set can be created from
a query filter and a table. Another example is an EnumlnvalidObject, which, as
explained earlier, can be created from a FeatureDataConverter object (Figure 1.5).

1.2.3 Interfaces

When programming with objects in ArcObjects, one would never work with the
object directly but, instead, would access the object via one of its interfaces. An
interface represents a set of externally visible operations. For example, a Ras-
terReclassOp object implements [RasterAnalysisEnvironment and IReclassOp

FeatureLayer

Figure 1.3 A Map object composes zero, one, or more FeatureLayer objects.

ARCOBJECTS 7

QueryFilter - — -,

Lo - »fslcionse

Figure 1.4 A QueryfFilter object and a Table object together can create a SelectionSet object.

(Figure 1.6). We can access a RasterReclassOp object via either the [Raster-
AnalysisEnvironment interface or the IReclassOp interface, but not the object
itself.

An object may support two or more interfaces and, additionally, the same object
may inherit interfaces from its superclass. Given multiple interfaces, it is possible
to access an interface via another interface, or to jump from an interface to another.
This technique is called Querylnterface or QI for short. QI simplifies the process
of coding. Suppose we want to use a RasterReclassOp object to perform raster data
classification. First, we use IRasterAnalysisEnvironment to set up the analysis envi-
ronment. Then, we switch, via QI, to IReclassOp to perform data reclassification.
Chapter 2 on the basics of programming has a more detailed discussion on the QI
technique.

Some objects in ArcObjects have two or more similar interfaces. For example,
a FeatureDataConverter object implements [FeatureDataConverter and
IFeatureDataConverter2. Both interfaces have methods to convert a feature class to
a geodatabase feature class. But [FeatureDataConverter2 has the additional option
of working with data subsets. Object-oriented technology allows developers of
ArcObjects to add new interfaces to a class without having to remove or update the
existing interfaces.

1.2.4 Properties and Methods

An interface represents a set of externally visible operations. More specifically, an
interface allows programmers to use the properties and methods that are on the
interface. A property describes an attribute or characteristic of an object. A method,
also called behavior, performs a specific action. Figure 1.7, for example, shows the
properties and methods on IRasterAnalysisEnvironment. These properties and meth-
ods are collectively called members on the interface.

FeatureDataConverter

v
EnumlInvalidObject

Figure 1.5 An EnuminvalidObject can only be created by a FeatureDataConverter object.

8 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

IReclassOp 0—
IRasterAnalysisEnvironment O—

RasterReclassOp

Figure 1.6 A RasterReclassOp object supports both /ReclassOp and IRasterAnalysisEnvi-
ronment.

A property can be for read only, write only, or both read and write. The read
property is also called the get property, and the write property the put property.
In Figure 1.7, the barbell symbols accompany the properties of Mask and Out-
Workspace on IRasterAnalysisEnvironment. The square on the left is for the get
property, and the square on the right is for the put property. If the square on the
right is open, such as in Figure 1.7, the property is defined as put by reference.
If it is solid, the property is defined as put by value. The two put properties differ
depending on if a value or an object is assigned to the property. Additionally, the
put by reference property requires the keyword Sef, whereas the put by value
property does not. For example, to specify an analysis mask through the Mask
property on IRasterAnalysisEnvironment, we need to use a statement such as Set
pEnv.Mask = pMaskDataset, where pEnv represents an analysis environment and
pMaskDataset represents an analysis mask object.

To carry out an action, a method on an interface may require some arguments
and may return a value or values. In Figure 1.7, the arrow symbols show the
methods of SetCellSize and SetExtent on IRasterAnalysisEnvironment. The syntax
of the SerCellSize method is object.SetCellSize (envType [,cellSizeProvider]).
The method has two arguments of which the first is required and the second is
optional.

An interface may not have both properties and methods. Some interfaces have
properties only, while some have methods only. IReclassOp, for example, only has
methods. Figure 1.8 shows two of the five methods on IReclassOp. These methods
all perform reclassification of raster data but use different mechanisms. The Reclass-
ByASClIIFile method uses an ASCII file, whereas the ReclassByRemap method uses
a remap that can be built programmatically.

IRasterAnalysisEnvironment
B—{1] Mask
B—{] OutWorkspace

44— SetCellSize
«4—— SetExtent

Figure 1.7 Properties and methods on [RasterAnalysisEnvironment. Properties are shown
with the barbell symbols, and methods are shown with the arrow symbols. Occa-
sionally in this book, properties and methods are shown with the double colon
symbols, such as IRasterAnalysisEnvironment::Mask.

ARCOBJECTS 9

IReclassOp
<«— ReclassByASCIIFile
<4— ReclassByRemap

Figure 1.8 Methods on /ReclassOp.

1.3 ORGANIZATION OF ARCOBJECTS

ArcGIS 9.2 has thousands of coclasses and interfaces. ESRI, Inc. groups ArcOb-
jects into more than 65 libraries. Examples of core libraries are ArcCatalog,
ArcCatalogUI, ArcMap, ArcMapUI, Carto, Display, Geodatabase, and Geopro-
cessing. Examples of extension libraries are 3D Analyst, Spatial Analyst, and
Network Analyst. Each library consists of objects that can be diagrammed by their
class relationships. For example, the Carto library has objects such as a map
document, map, and page layout.

The organization of ArcObjects by library and subsystem resembles that of
ArcGIS and its applications and functionalities. This organization provides a good
starting point for those who are already familiar with operations in ArcGIS. For
example, the Spatial Analyst extension library organizes objects by type of raster data
operation. Therefore, the library’s object model lists RasterConditionalOp, Raster-
ExtractionOp, RasterLocalOp, RasterMapAlgebraOp, RasterNeighborhoodOp, Ras-
terZonalOp, and other objects that closely resemble different functionalities of the
Spatial Analyst extension by name. ArcGIS users who are familiar with the Spatial
Analyst extension should have no problems using these objects. Objects in other
libraries such as Geodatabase, ArcMap, and ArcCatalog are more difficult to relate
to because many of them represent new object-oriented concepts and methods.

To use an object in a library, it requires that a reference be made to the library
first. This means that the library to be referenced must be available to the user. The
availability of ArcObject libraries depends on available licenses. For example, a user
will not have access to the ArcScene library and its objects without having a license
for the ArcScene extension.

As of ArcGIS 9.2, ArcObjects core libraries and 3D Analyst and Spatial Analyst
extension libraries are automatically loaded in VBA. In other words, we do not have
to make reference to these libraries before using objects in them. For those libraries
that are not automatically loaded, the Tools menu of Visual Basic Editor has a
References selection that opens a dialog listing available object libraries and allows
the user to make reference to them.

ArcObjects contains objects developed by ESRI, Inc. A recent development is
industry-specific objects. Because real-world objects all have different properties
and methods, it is impossible to apply, for example, the methods and properties of
transportation-related objects to forestry-related objects. ESRI has set up a Web site
that supports the development of object models for address, forestry, transpor-
tation, hydro, land parcels, environmental regulated facilities, and other fields
(http://www.esri.com/software/arcgisdatamodels/). At the same time, increased

10 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

research activities have developed complex objects for 3D, transportation, and other
applications.>” It is worth watching these new objects.

1.4 HELP SOURCES ON ARCOBJECTS

The help sources on ArcObjects include books and documents. ESRI has published
two books on ArcObjects: Exploring ArcObjects,® and Getting to Know ArcObjects:
Programming ArcGIS with VBA.® The former is a two-volume reference on ArcOb-
jects, and the latter is a workbook with 20 hands-on exercises. There are other
publications such as ArcGIS Developer’s Guide for VBA, which covers the basics
of developing ArcGIS applications,” and Avenue Wraps, which is a guide for con-
verting Avenue scripts into VBA code.!” This section covers electronic and online
help documents, which one must regularly consult while programming ArcObjects.

1.4.1 ArcObjects Developer Help

Developer Help on the start-up menu of ArcGIS offers VBA Developer Help, which
has links to ArcObjects library reference, Geoprocessing tool reference (Section
1.5), query the samples, and the ESRI Developer Network (EDN) Web site
(http://edn.esri.com). EDN maintains the up-to-date ArcGIS development informa-
tion, including object libraries, sample code, technical documents, and object model
diagrams. The first page of EDN Documentation Library lists the following libraries
for ArcGIS: Current library, 9.1 library, 9.0 library, and 8.x library. Click on Current
library. Then click on ArcObjects Library Reference on the side bar. The library
reference lists ArcObjects core and extension libraries. We can look at the Geo-
Analyst library as an example by clicking on it. Help on the library is organized
into GeoAnalyst Library Overview, GeoAnalyst Library Contents, GeoAnalyst
Library Object Model Diagram, Interfaces, CoClasses and Classes, and Constants
(i.e., enumerations). The overview page introduces the library and coclasses and classes
in it. The contents page lists interfaces, coclasses and classes, and enumerations. The
object model diagram is in PDF and shows relationships between classes as well as
the interfaces, properties, and methods of the coclasses and classes (Figure 1.9). Both
the interfaces page and the coclasses and classes page are sorted by alphabetical
order. Suppose we want to get help on IRasterAnalysisEnvironment. We can click
Interfaces, IR, and then IRasterAnalysisEnvironment. The interface and its properties
and methods are listed in separate entries. If we click GerCellSize Method, it shows
the method’s syntax for Visual Basic as well as other languages.

1.4.2 Environmental Systems Research Institute, Inc. (ESRI)
Object Browser

The ESRI Object Browser, or EOBrowser, is a utility for browsing object libraries.
The utility is available through ArcGIS/Develop Tools in the start-up menu. The
Object Library References dialog, which can be accessed through the browser’s File

ARCOBJECTS 11

RasterMathSupportOp
IMathSupportOp o— MathSupportOp: Iunknown

«— Divide (In geoDataset1: IGeoDataset, in
geoDataset2: IGeoDataset) ?? GeoDataset

«— Float (In geoDataset ??: IGeoDataset):
IGeoDataset

< Int (In geoDataset: IGeoDataset):
IGeoDataset

<— Minus (In geoDataset1: IGeoDataset in
geoDataset2: IGeoDataset): ?? IGeoDataset

«— Plus (In geoDatasetl: IGeoDataset in
geoDataset2: IGeoDataset): [IGeoDataset

«— Times (In geoDataset1: IGeoDataset in
geoDataset2: IGeoDataset): IGeoDataset

Figure 1.9 A portion of the Spatial Analyst Object Model diagram.

menu, allows the user to add and remove object libraries (Figure 1.10). The
EOBrowser window has controls so that the user can select all coclasses and all
interfaces in an object library for display and browsing (Figure 1.11). Suppose we
want to browse IRasterAnalysisEnvironment. First select Object Library References
from the browser’s File menu. If the window does not list ESRI GeoAnalyst Object
Library as an active library, click on the Add button and select ESRI GeoAnalyst
Object Library from the Select From Registry dropdown menu. Close the Object
Library References dialog. Type irasteranalysisenviron in the Search For box, click
the Contains button, uncheck All boxes for Coclasses, Interfaces, Enumerations, and
Structures, but check the Interface Name box. Then click the Search button. IRaster-
AnalysisEnvironment should now appear at the top of the EOBrowser window. Click
IRasterAnalysisEnvironment and then Show Selected Objects. This displays the
properties and methods (sub) of IRasterAnalysisEnvironment.

Object Library References x|
Mark Active References:
Libraty Mame | Location]
[X]ESRI Object Library Charcgs\arcexe83\bin\esriCore. olb

| ok | Cancel |

Figure 1.10 The Object Library References dialog box lets the user add and remove object
libraries.

12 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

ol
Ele View Help
| tiame * | Desaption 14
FieidMap Field map. =l
FieldMappngli] Field mapping UL
Fiaids. ESRI Fislds Object
CoClass FilsName File Name Object,
FieNames FileNames cbject mainkains an array of file ... lJ
Edahunaon Y W T S

B Class Fields
B A5 IClone
B As IFields

P Field(Index as Long) as IField

Interfaces 5 Al F v FieldCount as Long
o e F 1 FindField(Name as Striing) as Long
i f F 1 FindFieldByAliasNameMName as String) as Long
B AsIF
_ F Field{Index as Long) as IField
Erumerations ra P v FieldCount as Long
_ Function FindField(Name as String) s Long
I™ Erumeration Name Function FindFieldByAliasName(Name a5 String) 35 Long
'|: :mc:: Sub FindFi oualificati as ISOLSyntax, Mame as String, Index a5 Long)
) B As IFieldsEdit
i Froperty Field{index as Long) as IField
Struchures ra P v FieldCount a5 Long
rs N F 1 FindField(Mame as String) a5 Long
I~ Membes Name Funchion FindFieldByAliasName (Name as Stiing) as Long
B As IPersist =
roan | li

Figure 1.11 The top part of the EOBrowser shows all coclasses in the ESRI Object Library,
and the bottom part shows all interfaces that the Fields coclass supports.

1.4.3 ESRI Library Locator

The ESRI Library Locator is a tool, available through ArcGIS/Develop Tools in the
start-up menu, for finding the object library that contains a specified interface or
coclass. The tool opens a dialog for the user to type in an interface, coclass,
enumeration, or structure. Then it reports the library that contains the search item.

1.5 GEOPROCESSING OBJECT

The Geoprocessing object is a new ArcObjects component that supports the execution
of hundreds of Geoprocessing tools in a scripting language such as VBA or Python.
These tools correspond to tools in the ArcToolbox application of ArcGIS Desktop.
The Geoprocessing object differs from other objects because it implements GpDis-
patch, which can pass strings or objects from a script to the Geoprocessing object as
commands and values. The Geoprocessing object is often called a “coarse-grained”
object. Unlike other objects, which typically involve lots of little pieces when used in
a macro, a coarse-grained object is simpler to use and can do more work, thus allowing
users who do not understand all the details of “fine-grained” objects to run programs.

For readers who are familiar with ArcInfo Workstation, programming the
Geoprocessing tools is similar to programming ArcInfo commands in AML (Arc
Macro Language). As long as the syntax is followed correctly, the object or command
will work. How the object or command is pieced together is not a matter of concern
to the programmer.

ARCOBJECTS 13

This book covers macros using the Geoprocessing (GP) object in Chapters 4 to
7 and 9 to 14. These GP macros are presented in boxes so that they are separated
from regular ArcObjects macros. As the name suggests, the Geoprocessing object
has little to offer in the areas of data display, data query, and layer management.
This shortcoming, however, can be remedied by combining GP macros with regular
macros. Chapter 12 has an example that combines a GP macro for deriving an aspect
layer from a digital elevation model (DEM) and a regular macro for displaying the
aspect layer with color symbols.

As a coarse-grained object, the Geoprocessing object is most useful to GIS users
who must perform repetitive data processing tasks. Software developers, who must
work with properties and methods of ArcObjects and combine them in various ways
in macros, will find the Geoprocessing object less useful.

The Geoprocessing tool reference of ArcGIS Desktop Help Online offers up-to-
date information on tools that can be used with the Geoprocessing object. The tools
are organized in the same way as in ArcToolbox. To get the syntax for the Clip tool,
for example, one would select Analysis toolbox, Extract toolset, Tools, and then
Clip (Analysis). On the Clip (Analysis) page, scroll down to the command line
syntax. The help document lists the syntax as follows:

Clip_analysis <in_features> <clip_features> <out_feature_class> {cluster_tolerance}

The first three parameters are the required parameters, representing the input layer,
the clip layer, and the output layer. The last parameter of cluster tolerance is optional.
This command line syntax is to be used in a VBA macro. Python script users, on
the other hand, must follow the scripting syntax: Clip_analysis (in_features,
clip_features, out-feature-class, cluster_tolerance). Python is a text-based, platform-
independent language that can be downloaded from http://www.python.org. This
book does not cover Python scripting.

ESRI, Inc. has published two documents on the Geoprocessing tools: Writing
Geoprocessing Scripts with ArcGIS and Geoprocessing Commands: Quick Reference
Guide. Both documents can be downloaded from their Web site (http://www.
esri.com).

REFERENCES CITED

1. Zeiler, M., Modeling Our World: The ESRI Guide to Geodatabase Design, Environ-
mental Systems Research Institute (ESRI), Redlands, CA, 1999.

2. Chang, K., Introduction to Geographic Information Systems, 4th ed., McGraw-Hill,
New York, 2006.

3. Zeiler, M., Ed., Exploring ArcObjects, ESRI, Redlands, CA, 2001.

4. Larman, C., Applying UML and Patterns: An Introduction to Object-Oriented Analysis
and Design and the Unified Process, 2nd ed., Prentice Hall, Upper Saddle River, NJ,
2001.

5. Koncz, N.A. and Adams, T.M., A data model for multi-dimensional transportation
applications, International Journal of Geographic Information Science, 16,551, 2002.

6. Huang, B., An object model with parametric polymorphism for dynamic segmenta-
tion, International Journal of Geographic Information Science, 17, 343, 2003.

14

10.

PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

Shi, W., Yang, B., and Li, Q., An object-oriented data model for complex objects in
three-dimensional geographic information systems, International Journal of Geo-
graphic Information Science, 17, 411, 2003.

Burke, R., Getting to Know ArcObjects: Programming ArcGIS with VBA, ESRI,
Redlands, CA, 2003.

Razavi, A.H., ArcGIS Developer’s Guide for VBA, OnWord Press/Delmar Learning,
Clifton Park, NY, 2002.

Tonias, C.N. and Tonias, E.C., Avenue Wraps, CEDRA Press, Rochester, NY, 2002.

CHAPTER 2

Programming Basics

ArcObjects is the development platform for ArcGIS. Because ArcObjects is built
using Microsoft’s COM (Component Object Model) technology, it is possible to use
any COM-compliant development language with ArcObjects to customize applica-
tions in ArcGIS. This book adopts Visual Basic for Applications (VBA), which is
already embedded in ArcMap and ArcCatalog of ArcGIS. Other COM-compliant
programming languages include Visual Basic and C++.

Writing application programs for ArcGIS requires knowledge of both VBA and
ArcObjects: VBA provides the programming language and ArcObjects provides
objects and their built-in properties and methods. It may be of interest to some
readers to compare ArcObjects with Avenue and AML (Arc Macro Language), two
programming languages previously developed by Environmental Systems Research
Institute, Inc. (ESRI). Programming ArcObjects is similar to Avenue programming
in that both use objects and their built-in properties and methods (called requests in
Avenue), but they differ in two important aspects. First, we program ArcObjects
using VBA, a common programming language available in Microsoft’s products.
Second, ArcObjects has many more objects, properties, and methods than Avenue
does. Programming ArcObjects is conceptually different from AML programming
because AML is a procedural, rather than an object-oriented, language. The exception
is the Geoprocessing object, which, as explained in Chapter 1, is a coarse-grained
object. Programming the Geoprocessing tools is in many ways similar to program-
ming ArcInfo commands in AML.

This chapter deals with the programming language and code writing, although
many examples in the chapter do involve ArcObjects. Section 2.1 discusses the basic
elements in VBA programming such as procedures, variables, interfaces, and arrays.
Section 2.2 offers common techniques for writing code. Section 2.3 explains how
to put together a program as a collection of code blocks. Section 2.4 covers Visual
Basic Editor, a medium for preparing, compiling, and running macros. Section 2.5
covers the debugging tools that can help identify mistakes in macros.

16 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

2.1 BASIC ELEMENTS

This section covers the basic programming elements. Many elements are directly
related to VBA. Therefore, additional information on these elements can be found
in the Microsoft Visual Basic Help, which is accessible through Visual Basic Editor
in either ArcMap or ArcCatalog.

2.1.1 Projects, Modules, Procedures, and Macros

Procedures are the basic units in VBA programming. A procedure is a block of code
that can perform a specific task such as defining the coordinate system of a geo-
graphic dataset. Applications developed using VBA are called macros in Microsoft’s
products such as Word, Excel, and Access. A macro is functionally similar to a
procedure. A module is a collection of procedures, and a project is a collection of
modules (Figure 2.1). Most sample macros in this book are procedures, but some
are modules. For example, modules, each with several procedures, are used to build
binary and index models in Chapter 14.

A procedure can be private or public. A private procedure can only be called or
used by another procedure in the same module. By contrast, a public procedure is
available to different modules that make up a project.

Three types of procedures exist: events, subs, and functions. Event procedures
are associated with controls on a form or dialog such as command buttons. Subs
and functions, on the other hand, are not directly associated with controls. A function

10l
J4ﬂemmwwmm:mswwwuah 18] x|
an =] N.*BH-H* y o mbd HEH T @, =

|iGene|all j |(Declarations) ll
m ’— |g Frivate Sub P.ec:lasaNurd:ch'Leld(pRu'D“m‘*m"”

+ Nnrmal {Normal.mxt) D_ispll)ﬂndoxclasses

i [FindLayer
= éP_rulz:t Dim pMxDoc As IMxDocument lGetRGEColor
%[5 ArcMap Objects Dim pMap As INap
=1 55 Modules Dim pRasterZly As IRasterLayexrStart
5 ‘QM-IBI Dim pGeols Az IGeoDataset
4 (5 References Dim pReclassOp A= IReclassOp
Dim pRemap A= IRemap
Properties - Modulel x| Dim pNRemap A=z INumberRemap
|Mnddzl L’ Dim pCutRaster As IRaster
Dim pReclasslLy Ais IRasterLayer
Alphabetic Icatmbedi Set pMxDoc = ThisDocument
Moddal Set pHap = pHxDoc.FocusMap

' Pass landuse gd.
Set pRaster2Zly = pRasterly
Set pGeoDs = pRasterily.Raster
' Use a number remap to reclass landuse gd.
Set pReclassOp = New RasterReclassOp
Set plRemap = New NumberRemap
With pNRemap
.HapValue 20, Z0
.MapValue 40, 40
-HapValue 45, 45

.MapValue 50, S50 -
== | >

Figure 2.1 On the left of Visual Basic Editor, the Project Explorer shows that Module1 is a
module in the Project. On the right, the procedure list shows that ReClassNum-
berField is the procedure in the Code window.

PROGRAMMING BASICS 17

returns a value, whereas a sub does not. This book uses mainly subs and functions.
Chapters 3 and 8 have examples that use event procedures to customize the user
interface.

A procedure starts with the keyword of Sub or Function and ends with the End
Sub or End Function statement. VBA automatically creates the first and last lines
of a new procedure, which are called the wrapper lines.

2.1.2 Variables

A variable stores a value that can be accessed or changed by a macro. VBA requires
that a variable be declared before it can be used. Declaration statements can be all
placed at the top of a macro or placed wherever they are needed. This book adopts
the style of declaring variables at the top of a macro. If a macro is divided into parts,
then variables are declared at the top of each part. To ensure that variables are
declared explicitly, the addition of Option Explicit at the beginning of a module is
recommended. When a variable is not declared in a macro, the Option Explicit
statement highlights the line in which an undeclared variable resides and produces
an error message stating “compile error: variable not defined.”

How to declare a variable in a macro depends on whether the variable refers to
an ArcObjects class or not. The following two lines declare a counter variable n,
which does not refer to an ArcObjects class, and assign 5 to be its value:

Dim n As Integer
n=5

Dim is the most often used keyword for declaring a variable. A variable declared
with the Dim keyword within a procedure is only available in that procedure. But a
variable declared with the Dim keyword at the head (i.e., the Declarations section)
of a module is available to all procedures within the module. Other keywords for
declaring variables include Public and Private. A public variable is available to all
modules in a project. A private variable, on the other hand, is available only to the
module in which it is declared. A declaration statement usually includes a data type.
“Integer” in “Dim n As Integer” represents the data type. Other data types include
Boolean, Single, Double, String, and Variant.

If a variable refers to an existing class in ArcObjects, it must be declared by pointing
to an interface that the class supports. The properties and methods of an object are
hidden according to the encapsulation principle in object-oriented technology. There-
fore, the object can only be accessed through the predefined interfaces. Encapsulation
also means that the terms “interface” and “object” can be interchangeable.

The following two lines show how to declare a variable by referencing an existing
class in ArcObjects:

Dim pField As IFieldEdit
Set pField = New Field

The first line declares pField by pointing the variable to the /FieldEdit interface
that the Field coclass supports (Figure 2.2). The second line creates a new field
object by making pField an instance of the Field class. p in pField stands for pointer,

18 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

IFieldEdit

Figure 2.2 A field variable can be declared by pointing to IFieldEdit that a Field object
supports.

and [in [FieldEdit stands for interface. IFieldEdit has the uppercase and lowercase
letters for better reading. These are the naming conventions in object-oriented pro-
gramming. The keyword Set assigns a value to a variable.

The next example defines the top layer in an active data frame of a running
ArcMap.

Dim pMxDoc As IMxDocument
Dim pMap As IMap

Dim pFeatureLayer As ILayer

Set pMxDoc = ThisDocument

Set pMap = pMxDoc.FocusMap
Set pFeatureLayer = pMap.Layer(0)

The Dim statements point pMxDoc to IMxDocument, pMap to IMap, and pFea-
tureLayer to IFeatureLayer. The first Set statement assigns ThisDocument to pMxDoc.
ThisDocument is the predefined name of an MxDocument object. When we launch
ArcMap, MxDocument and Application are already in use. The alternative to This-
Document is Application.Document, which refers to the document of the ArcMap
application. The second Set statement assigns FocusMap or the focus map of the map
document to pMap. The third statement assigns Layer(0) or the top layer in the focus
map to pFeatureLayer. (0) is called an index, and the index begins with 0 in VBA.
FocusMap and Layer() are both properties, which are covered in the next section.

2.1.3 Use of Properties and Methods

Properties are attributes of an object. As examples, FocusMap is a property on
IMxDocument and Layer(0) is a property on IMap. The syntax for using a property
is object.property, such as pMxDoc.FocusMap. Both FocusMap and Layer() happen
to be get-only, or read-only, properties. The following example shows the put, or
write, properties:

Dim pFeatureClass As IFeatureClass
Set pFeaturelayer.FeatureClass = pFeatureClass
PFeaturelLayer.Name = "breakstrm"

The example shows two methods for putting properties: by reference and by
value. The second line statement sets pFeatureClass to be the feature class of
pFeatureLayer by reference, and the third line statement assigns the string “break-
strm” to be the name of pFeatureLayer by value.

The difference between put by reference and put by value is the use of the Set
keyword. How can we tell which method to use? One approach is to consult the
ArcObjects Developer Help. The put by reference property has an open square
symbol, whereas the put by value property has a solid square symbol. Another
approach is to let the VBA compiler catch the error. The error messages are

PROGRAMMING BASICS 19

“Method or data member not found” if the Set keyword is missing and “Invalid use
of property” if the Ser keyword is unnecessary.

Methods perform specific actions. A method may or may not return a value. The
syntax for calling a method is object.method. Many methods require object qualifiers
and arguments. The following line, for example, adds a feature layer to a map:

PMap.AddLayer pFeaturelLayer

The AddLayer method on IMap adds pFeatureLayer to pMap. The method requires
an object qualifier (i.e., pFeatureLayer) and does not return a value or an interface.

The next example gets a workspace on disk and then gets a shapefile from the
workspace.

Dim pFeatureWorkspace As IFeatureWorkspace

Dim pFeatureClass As IFeatureClass

Set pFeatureWorkspace = pWorkspaceFactory.OpenFromFile("c:\data\chap2", 0)
Set pFeatureClass = pFeatureWorkspace.OpenFeatureClass("emidastrm")

The OpenFromFile method on IWorkspaceFactory returns an interface on the
specified workspace (i.e., "c:\data\chap2\"). The code then switches to the IFeature-
Workspace interface and uses the OpenFeatureClass method on the interface to open
emidastrm in the workspace. Both OpenFromFile and OpenFeatureClass require
arguments in their syntax. The first argument for OpenFromFile is a workspace, and
the second argument of O tells VBA to get the ArcMap window handle. The only
argument for OpenFeatureClass is a string that shows the name of the feature class.

VBA has the automatic code completion feature to work with properties and
methods. After an object variable is entered with a dot, VBA displays available
properties and methods for the object variable in a dropdown list. We can either
scroll through the list to select a property or method, or type the first few letters to
come to the property or method to use.

2.1.4 Queryinterface

A class object may support two or more interfaces, and each interface may have a
number of properties and methods. When we declare a variable, we point the variable
to a specific interface. To switch to a different interface, we can use Querylnterface
or QI for short. QI lets the programmer jump from one interface to another.

We can revisit the code fragment from Section 2.1.3 to get a better understanding
of QI

Dim pFeatureWorkspace As IFeatureWorkspace

Dim pFeatureClass As IFeatureClass

Set pFeatureWorkspace = pWorkspaceFactory.OpenFromFile("c:\data\chap2", 0)
Set pFeatureClass = pFeatureWorkspace.OpenFeatureClass("emidastrm") ' Ql

The syntax of the OpenFromFile method suggests that the method returns the
IWorkspace interface that a workspace object supports. But to use the OpenFeature-
Class method, which is on IFeatureWorkspace, the code must perform a QI for
IFeatureWorkspace that a workspace object also supports (Figure 2.3).

20 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

I'WorkspaceFactory::OpenFromFile

I'Workspace O—
Workspace

[FeatureWorkspace O—j

IFeatureWorkspace::OpenFeatureClass

Figure 2.3 The diagram shows how to switch from [Workspace to IFeatureWorkspace by
using Ql.

The next example shows a code fragment for converting feature data to raster
data. A RasterConversionOp object supports both IConversionOp and I[Raster-
AnalysisEnvironment (Figure 2.4). The IConversionOp interface has methods for
converting feature data to raster data, and the IRasterAnalysisEnvironment inter-
face has properties and methods to set the analysis environment. The following
example uses QI to define the output cell size as 5000 for a vector to raster data
conversion:

Dim pConversionOp As IConversionOp

Dim pEnv As IRasterAnalysisEnvironment

Set pConversionOp = New RasterConversionOp
Set pEnv = pConversionOp ' QI
PEnv.SetCellSize esriRasterEnvValue, 5000

2.1.5 Comment Lines and Line Continuation

A comment line is a line of text that is added to explain how a code statement or a
block of code works. A comment line starts with an apostrophe ('). Except for short
comment lines such as QI, which can be placed at the end of a statement, this book
typically places a comment line before a statement or a group of statements. By
default, comments are displayed as green text in Visual Basic Editor.

A code statement usually fits on one line. A long statement can be divided into
two or more lines. An underscore (_) at the end of a line statement means that the
statement continues onto the next line.

2.1.6 Arrays

An array is a special type of variable that holds a set of values of the same data type,
rather than a single value as in the case of a regular variable. Arrays are declared the

IConversionOp O——
IRasterAnalysisEnvironment O——

RasterConversionOp

Figure 2.4 Use QI to jump from IConversionOp to IRasterAnalysisEnvironment.

PROGRAMMING BASICS 21

same way as other variables using the Dim, Private, and Public statements, but an array
variable must have the additional specification for the size of the array. For example,
the following line declares the AnArray variable as an array of 11 (0 to 10) integers:

Dim AnArray(10) As Integer

AnArray is a static array, meaning that it has a predefined size of 11. The other
type of array is a dynamic array. A dynamic array has no fixed size but uses VBA
keywords (e.g., ReDim) to find out information about the array and to change its
size. A dynamic array must be declared at the module level.

2.1.7 Collections

A collection consists of a set of ordered objects that do not have to be of the same
data type. Collections are therefore special arrays. A collection can be created as
follows:

Dim theList As New Collection

The following code fragment uses a loop and the method Add on a Collection
object to add the field names on theList:

Dim thelist As New Collection

For ii = O To pFields.FieldCount - 1
Set aField = pFields.Field(ii)
fieldName = aField.Name
theList.Add (fieldName)

Next

2.2 WRITING CODE

This section covers programming techniques for handling decision making, branch-
ing, repetitive operations, and dialogs.

2.2.1 [If...Then...Else Statement

A simple way for decision making in a macro is to use the If... Then... Else statement.
The statement has the following syntax:

If condition Then
[statements]

Else
[else_statements]

End If

If the condition is true, the program executes statements that follow the Then
keyword. If the condition is false, the program executes statements that follow the
Else keyword. The If...Then...Else statement can therefore handle two possible

22 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

outcomes. To handle more than two outcomes, one can add the Elself clause to the
statement:

If condition Then
[statements]
Elself condition-n Then
[elseif_statements]
Else
[else_statements]
End If

The following example assigns 5 to the variable n if the name of the top layer
is idcounty and 3 to n if the name is not idcounty:

If (oFeatureLayer.Name = "idcounty") Then
n=>5

Else
n=3

End If

When the If...Then...Else statement is used jointly with the TypeOf keyword,
the statement can check whether an object supports a specific interface before using
the interface. The following code fragment verifies that pConversionOp does support
IRasterAnalysisEnvironment before specifying the output cell size of 5000:

Dim pConversionOp As IConversionOp

Dim pEnv As IRasterAnalysisEnvironment

Set pConversionOp = New RasterConversionOp

If TypeOf pConversionOp Is IRasterAnalysisEnvironment Then
Set pEnv = pConversionOp ' Ql
PEnv.SetCellSize esriRasterEnvValue, 5000

End If

Another common use of the If...Then...Else statement is to check for a condition
that can cause a program error such as division by zero. If such a condition is
determined to exist, the Exit Sub statement placed after Else can terminate the
execution of a macro immediately.

2.2.2 Select Case Statement

The If...Then...Else statement can become confusing and untidy if more than three
or four possible outcomes exist. An alternative is to use the Select Case statement,
which has the following syntax:

Select Case test_expression
[Case expression_list-n
[statements-n]]...

[Case Else
[else_statements]]
End Select

ArcObjects codes the data type of a field in numeric values from 0 to 8. A Select
Case statement can translate these numeric values into text strings. The following

PROGRAMMING BASICS 23

example uses a Select Case statement to prepare the data type description of a
field:

Dim fieldType As Integer
Dim typeDes As String
Select Case fieldType
Case 0

typeDes = "Smallinteger"

Case 1

typeDes = "Integer”
Case 2

typeDes = "Single"
Case 3

typeDes = "Double"
Case 4

typeDes = "String"
Case 5

typeDes = "Date"
Case 6

typeDes = "OID"
Case 7

typeDes = "Geometry"
Case 8

typeDes = "Blob"
End Select

2.2.3 Do...Loop Statement

A Do...Loop statement repeats a block of statements in a macro. VBA offers two
types of loops. A Do While loop continues while the condition is true:

Do While condition
[statements]
Loop

The following example uses a Do While loop to repeat a block of statement as long
as the user provides the name of a shapefile and stops the loop when plnput is empty:

Dim plnput As String

plnput = InputBox("Enter the name of the input shapefile")
Do While plnput <> ""
[statements]

Loop
A Do Until loop continues until the condition becomes true:

Do Until condition
[statements]
Loop

The following example uses a Do Until loop to count how many cities are in a
cursor (that is, a selection set):

24 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

Dim pCity As IFeature
Dim intCount As Integer
Dim pCityCursor As IFeatureCursor
Set pCity = pCityCursor.NextFeature
Do Until pCity is Nothing
IntCount = intCount + 1
Set pCity = pCityCursor.NextFeature
Loop

The FeatureCursor object holds a set of selected features. The IFeatureCursor
interface has the NextFeature method that advances the position of the feature
cursor by one and returns the feature at that position. By using the cursor and the
NextFeature method, the code increases the intCount value by 1 each time Next-
Feature advances a feature. The loop continues until no feature (i.e., Nothing) is
advanced.

2.2.4 For...Next Statement

Like the Do...Loop statement, the For...Next statement also repeats a block of
statements. But instead of using a conditional statement for the loops, the For...Next
statement runs a given number of times as determined by the start, end, and step
(with the default of one) values:

For counter = start To end [Step step]
[statements]
Next

The following example uses a For...Next statement to add the field names of a
feature class to an array:

Dim pFields As IFields

Dim ii As Long

Dim aField As IField

Dim fieldName As Variant

Dim theList As New Collection

For ii = 0 To pFields.FieldCount - 1
Set aField = pFields.Field(ii)
fieldName = aField.Name
theList.Add (fieldName)

Next

The FieldCount property on IFields returns the number of fields in pFields. The
code then sets the For...Next statement to begin with zero and to end with the number
of fields minus 1 so that the ii counter corresponds to the index of a field.

The Exit For statement provides a way to exit a For...Next loop and transfers
control to the statement following the Next statement. The following example uses
an Exit For statement to exit the loop if a layer named idcities is located before
reaching a fixed number of loops:

PROGRAMMING BASICS 25

Dim pMxDoc As IMxDocument
Dim pMap As IMap
Dim pLayer As ILayer
Dim i As Integer
Set pMxDoc = ThisDocument
Set pMap = pMxDoc.FocusMap
For ii = 0 To pMap.LayerCount - 1
Set pLayer = pMap.Layer(i)
If pLayer.Name = "idcities" Then
i=i
Exit For
End If
Next ii
MsgBox "idcounty is at index " & i

2.2.5 For Each...Next Statement

The For Each...Next statement repeats a group of statements for each element in an
array or collection.

For Each element In group
[statements]
Next

The following code fragment uses a For Each...Next statement to print each field
name in a collection of field names referenced by theList:

' Display the list of field names in a message box
For Each fieldName In theList

MsgBox "The field name is " & fieldName
Next fieldName

2.2.6 With Statement

The With statement lets the programmer perform a series of statements on a single
object. The With statement has the following syntax:

With object
[statements]
End With

The following code fragment uses a With block to edit the name, type, and length
properties of a new field:

Dim pField As IFieldEdit

Set pField = New Field

With pField
.Name = "pop2000"
.Type = esriFieldTypelnteger
.Length = 8

End With

26 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

The alternative to the With block is to use the following line statements:

pField.Name = "pop2000”
pField.Type = esriFieldTypelnteger
pField.Length = 8

2.2.7 Dialog Boxes

Dialogs in a macro serve the purpose of getting information from and to the user.
This section covers message boxes and input boxes, two simple dialog boxes that
are frequently used in VBA macros. Other types of dialogs are covered elsewhere
in the book. Chapter 3 covers custom dialogs using Visual Basic forms, Chapters
4 and 14 use browser dialogs for selecting datasets, and Chapter 10 uses a progress
dialog for reporting the progress of a spatial join operation. Browser and progress
dialogs are examples of dialogs that allow an ArcObjects macro to interact with
the user.

A message box can be used as a statement or a function. As a statement, a
message box shows text. For example, the following statement displays the quoted
text and the value of the fieldName variable:

MsgBox "The field name is " & fieldName

After viewing the field name, the user must acknowledge by clicking the OK
button, which is also displayed in the message box. VBA has the following chr$()
functions for handling multiline messages: chr$(13) for a carriage return character,
and chr$(10) for a linefeed character. Additionally, the constant vbCrLf also func-
tions as chr$(10) in creating a new line. For example, the following statement
displays the minimum and maximum values in two separate lines:

MsgBox "The minimum is: " & Min & Chr$(10) & "The maximum is: " & Max

As a function, a message box returns the ID of the button that the user presses.
The message box includes a prompt (for example, Do you want to continue?), the
Yes and No buttons, a question mark icon, and a title of Continue. The returned
value is 6 for Yes and 7 for No. The following code fragment creates a message box
and returns a value to iAnswer based on the user’s decision:

Dim iAnswer As Integer
iAnswer = MsgBox("Do you want to continue?", vbYesNo + vbQuestion, "Continue")
MsgBox "The answer is : " & iAnswer

An input box displays a prompt in a dialog box and returns a string containing
the user’s input. The following example displays the prompt of “Enter the name of
the input shapefile” in a dialog box and returns the user’s input as a string to the
pInput variable:

Dim plnput As String
plnput = InputBox("Enter the name of the input shapefile")

PROGRAMMING BASICS 27

2.3 CALLING SUBS AND FUNCTIONS

A procedure, either a sub or a function, can be called by another procedure. VBA
actually provides many simple functions that we use regularly in macros. Both
message boxes and input boxes are VBA functions. Other examples include CStr
and ClInt. The CStr function converts a number to a string, and the Clnt function
returns an integer number.

This section goes beyond simple VBA functions and deals with the topic in a
broader context. A procedure, depending on whether it is private or public, can be
called by another procedure in the same module or throughout a project. Therefore,
we can think of a sub or a function as a tool and build a module as a collection of
tools. The major advantage of organizing code into separate subs and functions is
that they can be reused in different modules. Other advantages include ease of
debugging in smaller blocks of code and a better organization of code.

In the following example, the Start sub uses an input box to get a number from
the user and then calls the Inverse sub to compute and report the inverse of the
number:

Private Sub Start ()
Dim n As Integer
n = InputBox("Type a number")
' Call the Inverse sub.
Inverse n
End Sub

Private Sub Inverse (m)

Dim d As Double

d=1/m

MsgBox "The inverse of the number is: " & d
End Sub

The Start sub passes n entered by the user as an argument to the Inverse sub.
Inverse uses the passed value m (same as n) to compute its inverse. Notice that the
example does not use the Call keyword. If the programmer prefers to use the
keyword, the inverse n statement can be changed to:

Call Inverse (n)

The next example lets the Start sub call a function instead of a sub to accomplish
the same task:

Private Sub Start ()
Dim n As Integer
Dim dd As Double
n = InputBox(“Type a number”)
' Call the Inverse function and assign the return value to dd.
dd = Inverse (n)
MsgBox "The inverse of the number is: " & dd
End Sub

28 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

Private Function Inverse (m) As Double
Dim d As Double
d=1/m
Inverse = d ' Return the d value.
End Function

A couple of changes are noted when the code calls a function instead of a sub.
First, the Start sub uses the following line to assign the returned value from the
Inverse function to dd, which has been previously declared as a Double variable:

dd = Inverse (n)

Second, the code adds the As Double clause to the first line of Inverse:

Private Function Inverse (m) As Double

The clause declares Inverse to be a Double procedure. Thus the value returned by
the function is also of the Double data type.

Third, the following line assigns d, which is the inverse of the passed value m,
to Inverse:

Inverse = d

The d value is eventually returned to Start and assigned to the dd variable.

2.4 VISUAL BASIC EDITOR

Visual Basic Editor is a tool for compiling and running programs. To open Visual
Basic Editor in either ArcCatalog or ArcMap, one can click the Tools menu, point
to Macros, and select Visual Basic Editor.

Figure 2.5 shows Visual Basic Editor in ArcMap. A menu bar, a toolbar, and
windows make up the user interface. Several commands ought to be mentioned at
this point. Import File and Export File on the File menu allow the user to import
and export macros in text file format. The Debug menu has commands for compiling
and debugging macros, and the Run menu has commands for running and resetting
macros. The same commands of Run Sub/UserForm, Break, and Reset are also
available on the toolbar.

Figure 2.5 shows four types of windows: Code, Project, Properties, and Imme-
diate. The Code window is the area for preparing and editing a macro. We can either
type a new macro or import a macro. At the top of the Code window are two
dropdown lists. On the left is the object list, and on the right is the procedure list.
The Project window, also called the Project Explorer, displays a hierarchical list of
projects and the contents and references of each project. Normal.mxt is a template
for all map documents and is present whenever Visual Basic Editor is launched.
Project, on the other hand, is specific to a map document. Macros for specific tasks
are typically developed and stored at the current Project level. The Properties window
shows the properties of controls, such as command buttons and text boxes on a user
form. Chapter 3 on customization of the user interface covers the use of the Properties
window. The Immediate window is designed for debugging. When used with a
Debug. Print statement, the window can show the value of a variable for debugging.

PROGRAMMING BASICS 29

_ioix
Menubar |4 e vew Iset Fomat Debug fun Toos addirs Window Help) =181
Toolbar |@E-H L T RH o |) 1 HES2 B T
ey =| rrm— -
CEICI| 2 5
: éhkﬁtmm} Object list Procedure list [
Project t - Archap Cbiects
window ¢4 Moddel
+ [References
Propertes _Model __E| Code window
Module] todie .
Hghabetic | Categrized |
Moddel

= T of
POty oW | -

Immediate window

K1 L)

Figure 2.5 Visual Basic Editor consists of a menu bar, a toolbar, the Project window, the
Property window, the Code window, the object list, the procedure list, and the
Immediate window.

Visual Basic Editor in ArcCatalog is set up the same way as in ArcMap; the
only difference is that the Project Explorer in ArcCatalog contains only Nor-
mal.gxt. ArcCatalog does not have documents, and all customizations apply to the
application.

The following shows how to use Visual Basic Editor to import and use a sample
module on the companion CD of this book:

1. Right-click Project in the Project Explorer in ArcMap and select Import File. (In
ArcCatalog, right-click Normal in the Project Explorer and select Import File.)

2. Select All Files from the file type dropdown list in the Import File dialog. Navigate
to the sample module in text file format. Click Open to import the sample module
to Visual Basic Editor.

3. Click the plus sign next to the Modules folder in Project to open its contents.

4. Right-click Modulel and select View Code. The code now appears in the Code
window, and the procedure list shows the name of the module.

5. Select Compile Project from the Debug menu to make sure that the module
compiles successfully. To run the module, simply click on the Run Sub/UserForm
button.

Most macros on the companion CD are designed for ArcMap so that the datasets
can be displayed and analyzed immediately. Some macros, such as those for data
conversion, can be run in either ArcCatalog or ArcMap.

30 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

2.5 DEBUGGING CODE

Every programmer has to deal with programming errors. Some errors are easy to fix,
while others may take hours or days to correct. VBA has various debugging tools
that can assist programmers in fixing errors. This section covers some of these tools.

2.5.1 Type of Error

There are three possible types of errors in VBA macros: compile, run-time, and
logic. VBA stops compiling when it finds a compile error. Compile errors are caused
by mistakes with VBA programming syntax. A compile error can occur when a
macro misses the End With line in a With block or the Loop keyword in a Do Until
statement. A compile error can also occur if a macro uses a property or method that
is not available on an interface. For example, the IFeatureWorkspace interface has
the OpenFeatureClass method but not OpenFromFile. When a macro tries to use
OpenFromFile to open a feature class, VBA displays a compile error with the
message of “Method or data member not found.” To make sure that a property or
method is available on an interface, one can first highlight the interface in the code
window and then press F1. This will open the Help page on the interface from the
ArcObjects Developer Help.

A run-time error occurs when a macro, which has been compiled successfully,
is running. Run-time errors are more difficult to fix than compile errors. The fol-
lowing code is supposed to report the name of each layer in the active map:

Private Sub LayerName()
Dim pMxDoc As IMxDocument
Dim pMap As IMap
Dim pFeatureLayer As IFeatureLayer
Dim ii As Integer
Set pMxDoc = ThisDocument
Set pMap = pMxDoc.FocusMap
' Loop through each layer, and report its name.
For ii = 1 To pMap.LayerCount
Set pFeatureLayer = pMap.Layer(ii)
MsgBox "The name of layer is: " & pFeatureLayer.name
Next
End Sub

The macro has no compile errors, but it has a run-time error stating “Run-time
error '5": Invalid procedure call or argument.” VBA expects to have one more layer
than what is available in the active map. To make the macro run successfully, the
For...Next statement must be changed to

For ii = 0 To pMap.LayerCount - 1

The next example is similar to the module used previously to derive the inverse
of a typed number except that it does not pass the typed number n as an argument
from the calling sub to the function. Therefore, m in the Inverse function is treated
as 0. The error message in this case is “Run-time error '11": Division by zero.”

PROGRAMMING BASICS 31

Private Sub Start()
Dim n As Integer
Dim dd As Double
n = InputBox("Type a number")
' Call the Inverse function and assign the return value to dd.
dd = Inverse()
MsgBox "The inverse of the number is: " & dd
End Sub

Private Function Inverse() As Double
Dim d As Double
d=1/m
Inverse = d ' Return the value d.
End Function

Logic errors are even more difficult to correct than run-time errors. A logic
error does not stop a macro from compiling and running but produces an incorrect
result. One type of logical error that every programmer dreads is endless loops.
Endless loops can be caused by failing to set the condition in a Do...Loop statement
correctly.

2.5.2 On Error Statement

VBA has a built-in object called Err. The Err object has properties that identify the
number, description, and source of a run-time error. We can use the On Error
statement to display the properties of the Err object when an error occurs:

On Error GoTo line

The code below includes the On Error statement to trap the run-time error of
division by zero:

Private Sub Start()
On Error GoTo ErrorHandler
Dim n As Integer
Dim dd As Double
n = InputBox(“Type a number”)
' Call the Inverse function and assign the return value to dd.
dd = Inverse()
MsgBox "The inverse of the number is: " & dd
Exit Sub ' Exit to avoid error handler.
ErrorHandler: ' Error-handling routine.
MsgBox Str(Err.Number) & ": " & Err.Description, , "Error"
End Sub

Private Function Inverse() As Double
Dim d As Double
d=1/m
Inverse = d ' Return the value d.
End Function

32 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

& Microsoft Visual Basic - Project [break] - [Module1 (Code)] =101 x|
|4 gl Edt Yo lncet Fomat Qebuy Bn Toos fddins Window beb I =131
@@E-H Ry ek HMEE T O vz L

[(Generay =] [Layerttame =

Frivate Sub LayerName () =
Dim pMxDoc A= IMxDocument =T
Dim pMap A= IMap
Dim pFeacurelayer As IFeatureLayer
Dim ii As Integer
Ser pMxDoc = ThisDocument
Set pHap = pHMxDoc.FocusMap
' Loop through each layer, and report its name.

For ii = 1 To pMap.LayerCount
Set pFeaturelayer = pMap.Layer(1i)
Debug.Print ii & ": " & pFeaturelayer.name

End Sub

== | i
unmediate K

1: idroads

LT 2

Figure 2.6 The breakpoint at the Next line allows the programmer to see that the layer index
is 1 and idroads is the name of the layer.

When the error occurs, the ErrorHandler: routine displays “11:Division by zero”
in a message box with the title of Error. Notice that the On Error statement is placed
at the top of the code. When a run-time error occurs, the code goes to the ErrorHandler:
routine and displays the error message. Also notice that the Exit Sub line is used right
before the ErrorHandler: routine to avoid the error message if no errors occurred.

2.5.3 Use of Breakpoint and Immediate Window

A breakpoint suspends execution at a specific statement in a procedure. A breakpoint
therefore allows the programmer to examine variables and to make sure that the code
is working properly. The following code places a breakpoint at the Next line of the
For...Next statement and uses Debug. Print (the Print method of the Debug object) to
print the counter value and the layer’s name in the Immediate window (Figure 2.6):

Private Sub LayerName()
Dim pMxDoc As IMxDocument
Dim pMap As IMap
Dim pFeatureLayer As IFeatureLayer
Dim i As Integer
Set pMxDoc = ThisDocument
Set pMap = pMxDoc.FocusMap
' Loop through each layer, and report its name.
For ii = 0 To pMap.LayerCount - 1
Set pFeatureLayer = pMap.Layer(ii)
Debug.Print ii & ": " & pFeatureLayer.name
Next
End Sub

PROGRAMMING BASICS 33

Step Step Step
Into Over Out

M oy 1 ad%EEEO0DReS

L L

/ U
Continue Reset Toggle
Breakpoint

Figure 2.7 The Debug toolbar has the tools of Continue, Reset, Toggle Breakpoint, Step Into,
Step Over, and Step Out.

The first time through the loop, the Immediate window shows zero and the name
of the top layer in the active map. Click on the Continue button (the same button
for Run Macro), and the window shows the next set of values.

Visual Basic Editor has Toggle Breakpoint on the Debug menu, as well as on
the Debug toolbar, to add or remove a breakpoint at the current line (Figure 2.7).
Other commands on the Debug menu include Step Into for executing code one
statement at a time, Step Over for executing a procedure as a unit, Step Out for
executing all remaining code in a procedure as if it were a single statement, and
Run To Cursor for selecting a statement to stop execution of code.

CHAPTER 3

Customization of the User Interface

As a commercial product, ArcGIS is designed to serve as many users as possible
and to meet as many needs as possible. It is no surprise that the software package
has a large number of extensions, toolbars, and commands. But most users only use
a portion of the available tools at a time. Therefore, a common customization is to
simplify the way we interact with ArcGIS. ArcGIS Desktop provides options to view
or hide a toolbar. When working in ArcMap, we typically bring those toolbars
necessary for a specific task to view and hide the others. Selecting toolbars to view
and use is perhaps the easiest form of customization.
Customization can take other forms:

» Streamline the workflow. For example, instead of defining a new field and then
calculating the field values in separate steps, we may want to combine them into
one step.

* Reduce the amount of repetitive work. For example, rather than repeating for each
dataset the same task of defining a common coordinate system, we may write a
macro to complete the entire job with a single button click.

* Prevent the user from making unnecessary mistakes. For example, if a project
requires distance measures to be in feet, we may choose feet as measurement
units in code to prevent use of other units.

The above examples show that customization is most useful if a project has a set of
well-defined tasks.

This chapter introduces common methods for customizing the user interface.
Section 3.1 describes how to create a new toolbar with existing ArcMap com-
mands. Sections 3.2 and 3.3 discuss how to add a new button and a new tool
respectively. Section 3.4 demonstrates the procedure for storing a new toolbar in
a template. Section 3.5 explains the design and use of a Visual Basic form. Section 3.6
covers the procedure for storing a password-protected form in a template.

35

36

PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

3.1 CREATING A TOOLBAR WITH EXISTING ARCMAP COMMANDS

No code writing is required for creating a new toolbar with existing buttons and
tools in ArcMap. It is a simple copy-and-paste process. Suppose an application
requires the following commands (buttons and tools) on a new toolbar: Zoom In,
Full Extent, Select By Attributes, and Select By Location. The following shows the

procedure for completing the task:

1.

2. Click New in the Customize dialog. In the New Toolbar dialog, enter Selection
for the toolbar name and save the toolbar in Untitled. Click OK to dismiss the
New Toolbar dialog. A new toolbar now appears in ArcMap.

3. Click the Commands tab in the Customize dialog. Click the category of Pan/Zoom
to view its commands (Figure 3.2). After locating the Full Extent command, drag
and drop it onto the new toolbar. Next add the Zoom In command.

4. Click the category of Selection. Drag and drop the commands of Select By
Attributes and Select By Location onto the new toolbar. As shown in Figure 3.3,
the new toolbar now has four commands. These commands can be rearranged in
the same way as any graphic elements.

5. Right-click a command on the toolbar to open its context menu. The menu has
the options to delete, to change the image icon, to use text only, or to use image
and text. The option for View Source is not available.

21
Toolbars ICnmmands[Dpliansl
Toolbars:
Main Menu New... |
| Standard
| Tools Henarne I
v|Draw :
V|Spatial nalyst Deiete |
13D Analyst
Z:Layout ¥ Reset... I
v Editor
VFeature Analyst &Tool Bar
v Topology
| |Geostatistical Analyst
[1Survey Editor
[|Context Menus LI
Keyboard... I Audd from file.... I | Close I
Figure 3.1 The Customize dialog box has the three tabs of Toolbars, Commands, and Options.

Select Customize from the Tools menu in ArcMap, or double-click on an empty
area of a toolbar, to open the Customize dialog (Figure 3.1). The Customize dialog
has three tabs: Toolbars, Commands, and Options. The Toolbars tab shows all
toolbars available in ArcMap. The Commands tab shows all commands available
in ArcMap by category. The Options tab has options to lock a customization with
a password. The Customize dialog in ArcCatalog is set up the same as in ArcMap.

CUSTOMIZATION OF THE USER INTERFACE 37

customze 2/x]

Toolars Commands | @ptions |

Categories: Commands:

Macros ﬂ @ Clear Rotation -
m;’:ﬁenu @ Continuous Zoom and Pan

Paae Lavout » v Fixed Zoom In

T N | Ficcd Zoom Out

Publisher Full Extent

Report Object —

Bsﬁ.t: Edillizcg Commands « Go Back To Previous Extent
Selection l’ Go ToNext Extent

Spatial Analyst N Map Scale

Surface 4

Survey Analpst Page Down

Survey Data Exchange | | PageLeh ~|

Description I
Savein: [Nomalme] Keyboad.. | Addfromfie.. | Close |

Figure 3.2 On the Commands tab, highlight the category of Pan/Zoom and view existing
ArcMap commands in that category.

This new toolbar with four commands can now be used by itself or along with
other toolbars in ArcMap.

3.2 ADDING A NEW BUTTON

A new button must be associated with a macro so that the macro can be executed
to accomplish a specific task when the button is clicked on. Suppose the task is to
report the fields of a geographic dataset in a message box. (Chapter 5 covers macros
on managing and reporting fields.) The first step is to prepare an event (Click)
procedure as follows:

Private Sub UlButtonFields_Click ()
' Part 1: Get the feature class and its fields.
Dim pMxDoc As IMxDocument
Dim pMap As IMap

Selection S
" ROR

Figure 3.3 The new Selection toolbar has four commands.

38 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

Dim pFeatureLayer As IFeatureLayer

Dim pFeatureClass As IFeatureClass

Dim pFields As IFields

Dim count As Long

Set pMxDoc = ThisDocument

Set pMap = pMxDoc.FocusMap

Set pFeatureLayer = pMap.Layer(0)

Set pFeatureClass = pFeaturelLayer.FeatureClass
Set pFields = pFeatureClass.Fields

' Part 2: Prepare a list of fields and display the list.
Dim ii As Long
Dim aField As IField
Dim fieldName As Variant
Dim thelist As New Collection
Dim NamelList As Variant
' Loop through each field, and add the field name to a list.
For ii = 0 To pFields.FieldCount - 1
Set aField = pFields.Field(ii)
fieldName = aField.name
theList.Add (fieldName)
Next
' Display the list of field names in a message box.
For Each fieldName In theList
NameList = NameList & fieldName & Chr(13)
Next fieldName
MsgBox Namelist, , "Field Names"
End Sub

After the macro has been compiled and run successfully, the next step is to link
the macro to a button by using the following instructions:

1. Select Customize from the Tools menu in ArcMap.

Click New in the Customize dialog. In the New Toolbar dialog, enter Thermal for
the toolbar name and save the toolbar in Untitled. Click OK to dismiss the New
Toolbar dialog. The Thermal toolbar now appears in ArcMap.

3. On the Commands tab of the Customize dialog, select the category of UIControls
and then click the New UlControl button (Figure 3.4). In the next dialog, check
the option button for UIButtonControl and click Create (Figure 3.5).

4. A new command called Project.UIButtonControll appears in the Customize dia-
log. UIButtonControll is a default name. Click the new command and rename
the button Project.UIButtonFields. Drag and drop Project.UIButtonFields onto the
new toolbar.

5. While the Customize dialog is still open, right-click the new button control and
select View Source from its context menu. View Source opens Visual Basic Editor.
The first and last wrapper lines of the UIButtonFields_Click() Sub are already in
the Code window (Figure 3.6). Copy and paste UlButtonFields_Click on the
companion CD to the Code window.

To test how the button works, do the following:

CUSTOMIZATION OF THE USER INTERFACE 39

20
Toolbars Commands I Options |
Categories: Commands:

3D Analyst -
3D View
Adjustment

Advanced Edit Tools
ArcPad

ArcScan

Altribute transfer

Data Corwerters

Data Frames
DataGraph
Dimensioning
Disconnected E diting ;I
NewUIContol.. | Delete UlCaricl | Desoipion |

Save in |Untilled vl Keyboard... | Add from file... I Close |

Figure 3.4 The New UlControl button is for creating a new control.

1. Add thermal.shp to ArcMap. The shapefile shows thermal springs and wells in
Idaho.
2. When the new button is clicked, a message box appears with the fields in thermal.

3.3 ADDING A NEW TOOL

A button performs a task as soon as it is clicked on. A tool, on the other hand,
requires the user to do something first before the tool can perform a task. The
interaction with the user means that a tool has more events to consider and more
coding to do than a button. Events associated with a tool include Select, DbIClick,
MouseDown, MouseUp, and MouseMove.

New UIControl | x|

UlContral Type

" UIEditBoxContral

" UlToolControl " UlComboBoxContral

| Create I Create and Edit Cancel

Figure 3.5 The New UlControl dialog shows four types of controls, including Button and Tool.

40 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

& Microsoft Yisual Basic - Project - [ThisDocument (Code)] - |Q]1|
| Ele £t Yew Inset Fomat Debug Run Took Addins Widow Heb =181
[@3-B/' 228 oo) g HEE 2 B 1, s
|m|m°|fm, j |Eﬂl:k =
oEo | - ‘I_
Prwat,e Sub UIButtonFields Click() =
" Q.§ Normal (Normal.mxt) - =1
= 8 Project End Sub
=155 ArcMap Objects
&) ThisDocument
(1] References
properties - Thsbocument X
| Thisbocument MxDacument = |
AR i
== | g [
4 | o

Figure 3.6 Visual Basic Editor automatically adds the wrapper lines of the UlButtonFields_-
Click sub. The object list shows UlButtonFields, and the procedure list shows Click.

This section describes a new tool, which uses a point entered by the user to
report the number of features within 16,000 meters of the point. The tool essen-
tially performs a spatial query based on the user’s input. The procedure to be
associated with the tool is a MouseDown event procedure. A MouseDown event
procedure has four variables in its argument list: button, shift, x, and y. The user
actually sets the values for these variables by clicking a point on the computer
screen. The button value is either 1 or 2: 1 if the user is holding down the left
mouse button and 2 if the user is holding down the right mouse button. The shift
value is either O or 1: O if the Shift key is not depressed and 1 if the Shift key
is depressed. The x and y values represent the location of the mouse pointer on
the map display.

The first step is to prepare the event (MouseDown) procedure as follows
(Chapter 9 covers the programming techniques for spatial query):

Private Sub UlToolQuery_MouseDown(ByVal button As Long, ByVal shift As Long, ByVal x As Long, ByValy As Long)
' Part 1: Get the point clicked by the user.
Dim pMxDoc As IMxDocument
Dim pActiveView As |ActiveView
Dim m_bInMouseDown As Boolean
Dim pPoint As IPoint
Set pMxDoc = ThisDocument

CUSTOMIZATION OF THE USER INTERFACE 41

Set pActiveView = pMxDoc.FocusMap
' Convert the entered point from display coordinates to map coordinates.
Set pPoint = pActiveView.ScreenDisplay. DisplayTransformation. ToMapPoint(x, y)

' Part 2: Perform a spatial query of features within 16,000 meters of the entered point.
Dim pLayer As IFeatureLayer
Dim pSpatialFilter As ISpatialFilter
Dim pTopoOperator As [TopologicalOperator
Dim pSelection As IFeatureSelection
Dim pElement As IElement
Dim pSelectionSet As ISelectionSet
Set pLayer = pMxDoc.FocusMap.Layer(0)
' Create a 16,000-meter buffer polygon around the clicked point.
Set pTopoOperator = pPoint
Set pElement = New PolygonElement
pElement.Geometry = pTopoOperator.Buffer(16000)
' Create a spatial filter for selecting features within the buffer polygon.
Set pSpatialFilter = New SpatialFilter
pSpatialFilter.SpatialRel = esriSpatialRelContains
Set pSpatialFilter. Geometry = pElement.Geometry
' Refresh the active view.
pActiveView.PartialRefresh esriViewGeoSelection, Nothing, Nothing
' Perform spatial query.
Set pSelection = pLayer
pSelection.SelectFeatures pSpatialFilter, esriSelectionResultNew, False
' Refresh the active view to highlight the selected features.
pActiveView.PartialRefresh esriViewGeoSelection, Nothing, Nothing
' Create a selection set and report number of features in the set.
Set pSelectionSet = pSelection.SelectionSet
MsgBox pSelectionSet.Count & " thermals selected”
End Sub

After the macro has been compiled successfully, the next step is to link the macro
to a tool. In this case, the new tool is added to the Thermal toolbar from Section
3.2 as follows:

1. Open the Customize dialog.

2. Click Commands in the Customize dialog. Select the category of UlControls and
click New UlControl. In the next dialog, select UlToolControl and then click
Create. Rename the new control Project.UIToolQuery. Drag and drop
Project.UIToolQuery onto the Thermal toolbar.

3. Right-click UIToolQuery and select View Source. View Source opens Visual Basic
Editor. The top of the Code window has the object dropdown list on the left and
the (event) procedure list on the right. The object list shows UlToolQuery and the
procedure list shows the default procedure of Select. This application, however,
uses the MouseDown event. Click the procedure dropdown arrow and choose
MouseDown (Figure 3.7). Visual Basic Editor automatically inserts the wrapper
lines for the UI'ToolQuery_MouseDown Sub in the Code window. Copy and paste
UlToolQuery_MouseDown on the companion CD to the Code window. (The
UlToolQuery_Select Sub remains in the Code window. It can be left alone or
deleted.) Close Visual Basic Editor.

42 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

i Microsolft Yisual Basic - Project - [ThisDocument (Code)] =10} x|
| pie gdt wew fnset Fomat pebug Run fook Addins Window e =181 x|
@E-H P mRA o = o ek MEY? B nw =

[u‘looluuely d Select ;I

=]
M ' Part 2: Prepare a lisc of £ ek =

L]

i3 Normal (Normal.mxt) Dim ii As Long e

4[5 References

Properties - ThisDocument B3

| ThisDocumen! MDocment = |
Aphabetic | Categorized |

Dim Namelist As Variant

' Loop through each field, and

For ii = 0 To pFields.FieldCoy
Ser aField = pFields.Field

. [Enabled
= 28 Project Dim aField As IField keyDown
=58 ArcMap Objects Dim fieldName As Variant IeyUp

&} ThisDocument Dim theList ks New Collection [Message

MouseDown

fMouseMove
Mouselp
[Refresh
[Select

fieldName = aField.Name

ToclTp

cthelist.idd (fieldNamwe)
Next

' Display the list of field names in a message box
For Each fieldName In theList
NemelList = NamweList & fieldName & Chr(13)
Next fieldName
MagBox NameList, , "Field Names"
End Sub
Private Sub UIToolQuery Select()

End Sub

== | fi

Figure 3.7 The procedure list shows different events, including MouseDown.

The Thermal toolbar now has a button and a tool. To test how the new tool
works, do the following:

1. Make sure that thermal.shp is still in view. Click the new tool. Then click a point
on the map.

2. A message box reports how many thermal wells and springs are within 16,000
meters of the entered point. At the same time, the selected thermal wells and
springs are highlighted in the map.

3. Click another point on the map. The tool again reports the number of features
selected and refreshes the map to show the newly selected features.

3.4 STORING A NEW TOOLBAR IN A TEMPLATE

A customized toolbar such as the Thermal toolbar can be saved for future use or
distributed to other users. ArcMap users can save a customized application at
three different levels: the Normal template (Normal.mxt), a base template (.mxt),
or the current map document (.mxd). Normal.mxt is used every time ArcMap is
launched. An mxd file, on the other hand, is available only in a particular map
document. A base template represents an intermediate customization between
Normal.mxt and the local mxd file. An mxt file is used whenever the user opts
to open the file.

A layout template (e.g., USA.mxt) is one type of template that is familiar to
many ArcGIS users; it has a layout design complete with map elements such as a

CUSTOMIZATION OF THE USER INTERFACE 43

Save jn: | 9 customize | ek B2~

File hame: Thermal.mxt | Save I

Save as type: |ArcMap Templates [* mxt) j Cancel I
ArcMap Documents 1% mxd] [£

Figure 3.8 Save the new Thermal toolbar as an ArcMap Template.

legend and a scale bar. To make a map based on a layout template, we only have to
add data, a title, and any other supporting information. A layout template therefore
represents a customized application that is available to any ArcMap users who ask
for it.

The following shows how to make a template that contains the Thermal toolbar
so that the template can be distributed to other users:

1. Use thermal to test that the commands on the Thermal toolbar work correctly.
Remove thermal. Select Save As from the File menu in ArcMap. In the Save As
dialog, select to save as ArcMap Templates (*.mxt) and enter Thermal.mxt for the
file name (Figure 3.8). Exit ArcMap.

2. Anyone who has access to Thermal.mxt can now use the commands on the Thermal
toolbar. Launch ArcMap. Click on Thermal.mxt in the ArcMap dialog to open the
template. (If Thermal mxt does not show up in the dialog, select Open in the File
menu to locate and open the template.) The commands on the Thermal toolbar
are ready to work with the top layer in the active map.

3.5 ADDING A FORM

A form is a dialog box that uses controls such as text boxes and command buttons
for the user interface. A variety of dialog boxes or forms exist. For example, a
message box or an input box is actually a form, albeit with only a couple of controls.

Forms are particularly useful for gathering from the user various inputs that are
needed for an operation. For example, a form can be used to get a numeric field,

44 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

the number of classes, and the classification method before making a graduated color
map. (Chapter 8 has an example of using a form to gather such inputs.)

As an introduction to forms, this section uses a relatively simple form with four
controls: a label, a dropdown list with acres and square miles, a command button
to run, and a command button to cancel. The user can use the form to convert area
units of a feature class from square meters to either acres or square miles and to
save the new area units in a new field.

3.5.1 Designing a Form

Visual Basic Editor provides the environment for designing a user form. The fol-
lowing shows the steps for opening a form and placing controls from the toolbox
onto the form in ArcMap:

1. Click the Tools menu in ArcMap, point to Macros, and select Visual Basic Editor.
2. Right-click Project in the Project Explorer, point to Insert, and select UserForm.
The Toolbox and UserForm1 now appear in Visual Basic Editor (Figure 3.9). The
Properties window shows the default properties of UserForm1. Change the name
of the form to frmAreaUnits, and change the caption to New Area Units. The
prefix of frm in frmAreaUnits is the recommended naming convention for a form.
3. The Toolbox offers 15 different controls. (If the Toolbox disappears, click the
View Object button at the top of the Project Explorer.) The tool tips show that
these controls are: Select Object, Label, TextBox, ComboBox, ListBox, Check-
Box, OptionButton, ToggleButton, Frame, CommandButton, TabStrip, MultiPage,

4 Microsolt Visual Basic - Project - [UserForm1 (UserForm)] =101 |
|G Ele Edt Vew Insert Format Debug Run Jooks Addins Widow Hep : =181 x|
|[@@-8| & &R »ou om bl MR YR O g

Project -Project ____EJ]

EEIE I
+ 28 Normal (Normal.mzxt) :

508 Project 5
- (5 ArcMap Objects Cortroks |
=g] ;ms " x A abl BB
(& References Fea2Ma
Properties _Userform! _ B] L L
[I.IserFurml UserFarm z[

Figure 3.9 Controls in the Toolbox are placed onto UserForm1 to make a form. The Properties
window shows the properties of each control, including the form.

CUSTOMIZATION OF THE USER INTERFACE 45

Xl

Figure 3.10 The New Area Units form contains four controls.

ScrollBar, SpinButton, and Image. The Microsoft Forms Reference section of
Microsoft Visual Basic Help covers each control and its usage. The sample form
in this section uses a label, a combo box, and two command buttons.

4. This step is to add controls to the form. Drag the label control from the toolbox
and drop it onto the form. Drag and drop a combo box and two command buttons
onto the form. At design time, the controls on the form are graphic elements.
Therefore they can be added, removed, resized, and repositioned. Arrange the
controls so that the form looks like Figure 3.10.

5. The Properties window allows the user to set the properties of a control at design
time. The alternative is to set control properties at run time. This step is to set the
properties of each control on frmAreaUnits at design time. Click Labell on the
form. Rename the label [b/Units and change its caption to Select area units.
Rename the combo box cboUnits, and change the Style property to 2 — finStyle-
DropDownlList on the dropdown list. Rename the first command button cmdRun
and change its caption to Run. Rename the second command button cmdCancel
and change its caption to Cancel. Again, the prefixes of 1bl, cbo, and cmd are the
recommended naming conventions for labels, combo boxes, and command buttons
respectively.

3.5.2 Associating Controls with Procedures

After the design of the frmAreaUnits form is complete, the next task is to associate
the event procedures with the form and its controls:

1. Double-click the form to open the Code window. (An alternative is to click the
View Code button in the Project Explorer.) At the top of the Code window are
two dropdown lists. On the left is the object (control) list that includes the form
and its controls. On the right is the procedure list. VBA automatically adds Private
Sub UserForm_Click() to the Code window because Click is the default procedure
for a form. For this sample application, choose Initialize from the procedure list

46 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

o Microsolt Yisual Basic - Project - [frmArealinits (Code)] .g.m]ﬂ
| BB Fe Edt View Insert Format Debug Run Tools Addns Wdow el . =imlx]
LR o |y g k| ME W2 B e -
)
| |emacancel x| |cliek =
Private Sub cmdCancel Click() =
i+ B4 Normal (Normal.mxt) -
1= .ngjzl:t End Sub
4 (5 ArcMap Objects
Private Sub cmdRun Click()
End Sub
Frivate Sub UserForm Initialize()
End Sub
lpContextlD O -
mecScrniiarein - froseroinar 20 | |2 4] | >

Figure 3.11 The Code window shows the wrapper lines of the three subs to be used for
converting area units.

instead. Proceed to select cmdRun and cmdCancel from the object list. The Code
window now has the wrapper lines for UserForm_Initialize, cmdRun_Click, and
cmdCancel_Click (Figure 3.11). To complete the task, code must be provided for
each of the procedures.

2. Copy and paste the code in UserForm_Initialize to the UserForm_Initialize pro-
cedure to initialize the user form. The code adds two choices of area units to the
combo box at run time.

Private Sub UserForm_Initialize()
' Add items to the dropdown list.
cboUnits.Addltem "Acres"
cboUnits.Additem "SgMiles"

End Sub

3. Copy and paste the code in cmdRun_Click to the cmdRun_Click procedure. At
a click of the Run command button, the code adds either Acres or SqMiles as a
new field to the feature class of the top layer in the active map, prepares a feature
cursor, and calculates the new field values. Notice that cboUnits.ListIndex is used
in Parts 2 and 3 of the procedure to determine if the user’s choice is Acres or
SgMiles. If the value of cboUnits.ListIndex is O, the user’s choice is Acres; if the
value is 1, the user’s choice is SqMiles.

Private Sub cmdRun_Click()
' Part 1: Define the feature class.
Dim pMxDoc As IMxDocument
Dim pFeatureLayer As IFeatureLayer
Dim pFeatureClass As IFeatureClass

CUSTOMIZATION OF THE USER INTERFACE

Set pMxDoc = ThisDocument
Set pFeatureLayer = pMxDoc.FocusMap.Layer(0)
Set pFeatureClass = pFeaturelayer.FeatureClass

' Part 2: Add Acres or SqMiles as a new field.
Dim pField As IFieldEdit
Set pField = New Field
pField.Type = esriFieldTypeDouble
If cboUnits.Listindex = O Then
pField.Name = "Acres"
Else
pField.Name = "SgMiles"
End If
pFeatureClass.AddField pField

' Part 3: Calculate the new field values.

Dim pCursor As ICursor

Dim pCalculator As ICalculator

' Prepare a cursor with all records.

Set pCursor = pFeatureClass.Update(Nothing, True)

' Define a calculator.

Set pCalculator = New Calculator

Set pCalculator.Cursor = pCursor

' Calculate the field values.

If cboUnits.Listindex = O Then
pCalculator.Expression = "[Area] / 4046.7808"
pCalculator.Field = "Acres"
pCalculator.Calculate

Else
pCalculator.Expression = "([Area] / 1000000) * 0.3861"
pCalculator.Field = "SgMiles"
pCalculator.Calculate

End If

End Sub

4. Finally, type End between the wrapper lines of the cmdCancel_Click procedure.
The End statement terminates code execution.

Private Sub cmdCancel_Click()
End
End Sub

3.5.3 Running a Form

To test how the frmAreaUnits form works, do the following:

1. Add idcounty.shp to ArcMap. The county shapefile has square meters as area units.
Click the Run Sub/UserForm button. The form appears. Select either Acres or
SgMiles from the dropdown list. Click Run on the form.

3. Open the attribute table of idcounty. A new field has been added to the table and
the field values have been calculated.

47

48

PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

We can export the frmAreaUnits form, after it has been tested successfully, by
selecting Export File from the File menu in Visual Basic Editor. The form is saved
as a form file with the frm extension. Additionally, an frx file is created to save
information about the graphics on the form. (frmAreaUnits_Copy.frm on the com-
panion CD is a copy of the form.)

3.5.4 Linking a Button to a Form

This section shows how to link a customized button to the frmAreaUnits form so
that when the button is clicked, it will open the form for use.

Make sure that the frmAreaUnits form is still available in the Project Explorer of
Visual Basic Editor. Otherwise, import the form.

Select Customize from the Tools menu in ArcMap to open the Customize dialog.
Click New in the Customize dialog. Enter Calculate Area Units for the toolbar
name and save the toolbar in Untitled.

On the Commands tab of the Customize dialog, select the category of UIControls
and click the New UIControl button. In the next dialog, check the option button
for UIButtonControl and click Create. Change the name of the new command
to Project.UIButtonUnits. Drag and drop Project.UIButtonUnits onto the new
toolbar.

Right-click the new button control and select View Source. Visual Basic Editor
opens with the wrapper lines of the UIButtonUnits_Click() Sub in the Code
window. Type the following line between the wrapper lines: frmAr-
eaUnits.Show. When this line of code runs, the Show method opens the frmAr-
eaUnits form.

Close Visual Basic Editor. Add idcounty2.shp to an active map. Click on the
customized button. The New Area Units form appears and is ready for use.

3.6 STORING A FORM IN A TEMPLATE

Similar to a new toolbar with commands, a form and its controls can be stored
the Normal.mxt, a base template, or a map document. The following shows how to
store frmAreaUnits.frm in a base template:

1.

Exit ArcMap so that the template to be created will not have datasets from the
previous section. Launch ArcMap, and open Visual Basic Editor. Right-click
Project in the Project Explorer and select Import File. Import frmAreaUnits.frm.
Select Save As from the File menu in ArcMap. In the Save As dialog, select to
save as ArcMap Templates (*.mxt) and enter AreaUnits.mxt for the file name. Exit
ArcMap.

ArcMap offers password protection to viewing project properties. This step is to
add the password protection to AreaUnits.mxt. Launch ArcMap, and open
AreaUnits.mxt. Open Visual Basic Editor in ArcMap. The Project Explorer lists Tem-
plateProject(AreaUnits.mxt). Select TemplateProject Properties by right-clicking

i

n

CUSTOMIZATION OF THE USER INTERFACE 49

TemplateProject - Project Properties) ll

General FProtection I

—Lock project

v Lock project For viewing

—Password to view project propetties

Password I [F—

Confirm password | ity

| oK I Cancel Help

Figure 3.12 The Protection tab of the Template Properties dialog box lets the user enter the
protection password.

TemplateProject(AreaUnits.mxt). On the Protection tab of the next dialog,
choose to lock the project for viewing and enter a password for protection
(Figure 3.12). Select Save AreaUnits.mxt from the File menu of Visual Basic
Editor.

4. Next time when AreaUnits.mxt is opened in ArcMap, a password is required to
view the form and its associated procedures.

VBA users can only save a customization in the Normal.mxt, an mxt file, or an
mxd file. To create a dll (dynamic-link library) or an exe (executable) file, we must
use standalone Visual Basic, C++, or other programming languages.

CHAPTER 4

Dataset and Layer Management

The Geodatabase data model separates geographic data from nongeographic data.
Geographic data have the geometry of spatial features, whereas nongeographic data
do not. Geographic data include feature-based and raster-based datasets, and non-
geographic data include tables in text, dBASE, and other formats.

The first step in many custom applications is to add geographic datasets as layers
in ArcMap. A layer is a reference to a geographic dataset. This definition of layer
carries two meanings:

¢ A layer must be associated with a dataset. A layer can therefore be described as
a feature layer if it is associated with a feature-based dataset such as a shapefile,
a coverage, or a geodatabase feature class. A raster layer refers to a layer that is
associated with a raster dataset.

* A layer is a graphic representation of a geographic dataset. We can therefore use
different attributes and different symbols to display a layer without affecting the
underlying dataset.

ArcMap organizes layers hierarchically. A map document may consist of one or
more data frames, and a data frame may have one or more layers. Within a data
frame, a layer can be added, deleted, or changed in the drawing order. A layer can
also be saved as a layer file, a cartographic view of a geographic dataset.

Nongeographic data are called tables in ArcMap. Tables are listed in the table
of contents on the Source tab, and they can be added and deleted in the same way
as layers. To display tabular data in a map, they must be first linked to a feature
class (a feature attribute table).

This chapter covers management of datasets and layers. Section 4.1 describes
use of datasets in ArcGIS. Section 4.2 reviews objects relevant to datasets and layers
in ArcObjects. Section 4.3 includes a series of macros for adding different types of
datasets in ArcMap. Section 4.4 offers a macro for managing layers in an active
map. Section 4.5 discusses macros and a Geoprocessing (GP) macro for copying
and deleting datasets. Section 4.6 includes a macro for reporting the spatial reference
and area extent of a geographic dataset. All macros start with the listing of key
interfaces and key members (properties and methods) and the usage.

51

52 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

4.1 USING DATASETS IN ARCGIS

ArcCatalog is the ArcGIS Desktop application for managing datasets. The catalog
tree groups datasets by the connected folder. Within each folder, different icons
represent different types of datasets. The context menu of each dataset, regardless
of its type, offers commands to copy, delete, and rename the dataset.

ArcMap is the application for displaying and analyzing datasets. The Add Data
button lets the user add geographic datasets as layers and nongeographic datasets
as tables to an active data frame. Each data frame has a context menu with commands
for removing or activating the data frame. Each data frame also has a table of contents
that lists the datasets it contains. The table of contents has two tabs: Display and
Source. The Display tab shows the drawing order of the layers. The Source tab
organizes the layers and tables by data source. To list tables that have been added
as datasets to a data frame, the table of contents must be on the Source tab.

The context menu of a layer has a command to remove the dataset from an active
data frame. It also has a command to save the layer as a layer file. The context menu
of a table has commands to remove and open the table.

4.2 ARCOBJECTS FOR DATASETS AND LAYERS

Figure 4.1 shows the hierarchical structure of map and layer objects in ArcMap. At
the top of the hierarchy is the Application, which in this case represents ArcMap.
The Application is composed of MxDocument objects; an MxDocument object is
composed of Map objects, and a Map object is composed of Layer objects. A data
frame in ArcMap represents a map object. Examples of layers include feature layers,
raster layers, and TIN (triangulated irregular network) layers.

Application

Feature- | |Raster-| | TIN-
Layer Layer | | Layer

Figure 4.1 The hierarchical structure of the Application, MxDocument, Map, and Layer
classes in ArcMap.

DATASET AND LAYER MANAGEMENT 53

WorkspaceFactory
I
I

| GeoDataset | | Table‘

T

Feature- Raster-
Dataset Dataset

Figure 4.2 The hierarchical structure of the WorkspaceFactory, Workspace, and Dataset
classes in Geodatabase.

Figure 4.2 shows the hierarchical structure of datasets and data source objects
in the Geodatabase library. At the top of the hierarchy is the WorkspaceFactory
abstract class. Many coclasses inherit the properties and methods of the Workspace-
Factory class. These coclasses include ShapefileWorkspaceFactory, ArclnfoWork-
spaceFactory, RasterWorkspaceFactory, AccessWorkspaceFactory, and FileGDB-
WorkspaceFactory for shapefiles, coverages, rasters, personal geodatabases, and file
geodatabases respectively.

A workspace factory object can create a new workspace. The OpenFromFile
method on IWorkspaceFactory, for example, returns an interface (i.e., [Workspace)
on a workspace by following the pathname of a file or directory. Using the returned
IWorkspace, we can perform a Querylnterface (QI) for IFeatureWorkspace to open
feature-based datasets such as shapefiles or feature classes, or for IRasterWorkspace
to open raster-based datasets. A workspace object is therefore a container of different
types of datasets.

The Dataset abstract class represents both geographic and nongeographic data
(Figure 4.2). Two Dataset types are GeoDataset and Table. A GeoDataset object
has the two important properties of Extent and SpatialReference, which describe the
area extent and the spatial reference of a geographic dataset respectively. Types of
geodataset objects include feature layers, feature classes, raster datasets, and raster
layers. A Table object is a collection of rows with attributes stored in columns.
Examples of table objects include tables in text and dBASE formats as well as
feature classes.

Macros dealing with workspaces and datasets often use name objects. A Name
object identifies and locates a geodatabase object such as a workspace or a dataset.
A name object is a lightweight version of an object because it typically has a limited
number of properties and methods. Among the methods that a name object has is

54 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

the Open method, which allows the programmer to get an instance of the actual
object. This chapter uses the name objects in adding a nongeographic table in
ArcMap. Chapter 6 uses a variety of name objects for data conversion.

4.3 ADDING DATASETS AS LAYERS

This section covers adding geographic and nongeographic datasets in ArcMap. The
geographic datasets include the shapefile, coverage, geodatabase feature class, and
raster. Nongeographic datasets include the layer file and dBASE table. From the
programming perspective, different dataset types require the use of different data
source objects.

4.3.1 AddFeatureClass

AddFeatureClass adds a shapefile to an active map. The macro performs the same
function as using the Add Data command in ArcMap. With minor modifications,
AddFeatureClass can also add a coverage or a geodatabase feature class to an active map.

Key Interfaces: IMxDocument, IMap, IWorkspaceFactory, IFeatureWorkspace, IFea-
tureLayer, IFeatureClass

Key Members: FocusMap, OpenFromFile, OpenFeatureClass, FeatureClass, Name,
AliasName, AddLayer

Usage: Import AddFeatureClass to Visual Basic Editor in ArcMap. Run the macro.
The macro adds emidastrm to the active map.

Private Sub AddFeatureClass()
Dim pMxDoc As IMxDocument
Dim pMap As IMap
Dim pWorkspaceFactory As IWorkspaceFactory
Dim pFeatureWorkspace As IFeatureWorkspace
Dim pFeatureLayer As IFeatureLayer
Dim pFeatureClass As IFeatureClass
' Specify the workspace and the feature class.
Set pWorkspaceFactory = New ShapefileWorkspaceFactory
Set pFeatureWorkspace = pWorkspaceFactory.OpenFromFile("c:\data\chap4", 0)
Set pFeatureClass = pFeatureWorkspace.OpenFeatureClass("emidastrm")
' Prepare a feature layer.
Set pFeatureLayer = New FeaturelLayer
Set pFeaturelayer.FeatureClass = pFeatureClass
pFeaturelLayer.Name = pFeaturelLayer.FeatureClass.AliasName
' Add the feature layer to the active map.
Set pMxDoc = ThisDocument
Set pMap = pMxDoc.FocusMap
pMap.AddLayer pFeatureLayer
' Refresh the active view.
pMxDoc.ActiveView.Refresh
End Sub

DATASET AND LAYER MANAGEMENT 55

The macro first creates pWorkspaceFactory as an instance of the ShapefileWork-
spaceFactory class. Next the code uses the OpenFromFile method on IWorkspace-
Factory to return an IWorkspace, perform a QI for the IFeatureWorkspace interface,
and uses the OpenFeatureClass method to open a feature class. The feature class
is emidastrm, which is referenced by pFeatureClass. Using pFeatureClass and its
name, the code creates pFeatureLayer as an instance of the FeatureLayer class.
The last part of the macro adds pFeatureLayer to an active map. The code sets
pMxDoc to be ThisDocument and pMap to be the focus map of pMxDoc. (This-
Document is the predefined name of the MxDocument object, which, along with
the Application object, is already in use when ArcMap is launched.) Then the code
uses the AddLayer method on IMap to add pFeatureLayer to the active map, before
refreshing the view.

With two minor changes, we can use AddFeatureClass to add a coverage to an
active map. Suppose we want to add the arcs of the breakstrm coverage. The first
change relates to the workspace factory and the path to the feature class.

' Specify the workspace and the feature class.

Set pWorkspaceFactory = New ArcinfoWorkspaceFactory

Set pFeatureWorkspace = pWorkspaceFactory.OpenFromFile("c:\data\chap4\", 0)
Set pFeatureClass = pFeatureWorkspace.OpenFeatureClass("breakstrm:Arc")

ArcInfoWorkspaceFactory is the class that creates workspaces for coverages.
Also, the argument for the OpenFeatureClass method must be arc (i.e., line) for the
feature class.

Arc is one of the feature classes contained in breakstrm; the others are node and
tic. To avoid having the feature layer named simply as Arc, the second change adds
a prefix of breakstrm: to the name property of pFeatureLayer.

' Add the prefix to the layer name.
pFeatureLayer.Name = "breakstrm: " & pFeaturelLayer.FeatureClass.AliasName

With one minor change, we can also use AddFeatureClass to add a geodatabase
feature class to an active map. The feature class can be either standalone or part of
a feature dataset. For example, to add the emidastrum feature class in emida.mdb,
we need to make the following change in AddFeatureClass:

' Specify the workspace and the feature class.

Set pWorkspaceFactory = New AccessWorkspaceFactory

Set pFeatureWorkspace = pWorkspaceFactory.OpenFromFile("c:\data\chap4\emida.mdb", 0)
Set pFeatureClass = pFeatureWorkspace.OpenFeatureClass("emidastrm")

AccessWorkspaceFactory is the class that creates workspaces for personal geo-
databases. Also, the path to the feature workspace must include the geodatabase
(i.e., emida.mdb). Each feature class, whether it is standalone or part of a feature
dataset, has a unique name so that the OpenFeatureClass method can use the name
to open the feature class regardless of its type.

56 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

4.3.2 AddFeatureClasses

AddFeatureClasses lets the user select shapefiles from a dialog box and adds them
to an active map. The dialog box is similar to the Add Data tool in ArcMap, except
that it only shows shapefiles.

Key Interfaces: /GxDialog, IGxObjectFilter, IEnumGxObject, IGxDataset

Key Members: AllowMultiSelect, ButtonCaption, ObjectFilter, StartingLocation,
Title, DoModalOpen, Next, Refresh, UpdateContents

Usage: Import AddFeatureClasses to Visual Basic Editor in ArcMap. Run the macro.
A dialog box with the Add Shapefiles caption appears. Choose idcities.shp and
idcounty.shp and click Add. The macro adds the two shapefiles, which are based
on the same coordinate system, to the active map.

Private Sub AddFeatureClasses()

' Part 1: Prepare an Add Shapefiles dialog.

Dim pGxDialog As IGxDialog

Dim pGxFilter As IGxObjectFilter

Set pGxDialog = New GxDialog

Set pGxFilter = New GxFilterShapefiles

' Define the dialog's properties.

With pGxDialog
AllowMultiSelect = True
.ButtonCaption = "Add"
Set .ObjectFilter = pGxFilter
.StartingLocation = "c:\data\chap4"
.Title = "Add Shapefiles"

End With

Part 1 prepares an Add Shapefiles dialog. The code first creates pGxDialog
as an instance of the GxDialog class and pGxFilter as an instance of the GxFilter-
Shapefiles class. Both GxDialog and GxFilter are ArcCatalog classes. COM
(Component Object Model) technology allows ArcCatalog objects to be used in Arc-
Map. A GxDialog object is basically a form that has been coded by ArcGIS developers
to accept the datasets selected by the user and add them to ArcMap. A GxFilter object
filters the type of data to be displayed in a GxDialog object. GxFilter is an abstract
class with more than 30 different types. Part 1 uses the GxFilterShapefiles class,
limiting the data sources to only shapefiles. The rest of Part 1 uses a With block to
define the properties of pGxDialog: the title is Add Shapefiles, the button caption is
Add, the object filter is pGxFilter, and the starting location is the path to the data
sources. The AllowMultiSelect property is set to be true, meaning that the user can
select multiple datasets. If false, then the user can only select a single dataset at a time.

' Part 2: Get the datasets from the dialog and add them to the active map.
Dim pGxObjects As IEnumGxObject

Dim pMxDoc As IMxDocument

Dim pMap As IMap

Dim pGxDataset As IGxDataset

DATASET AND LAYER MANAGEMENT 57

Dim pLayer As IFeatureLayer
Set pMxDoc = ThisDocument
Set pMap = pMxDoc.FocusMap
' Open the dialog.
pGxDialog.DoModalOpen 0, pGxObjects
Set pGxDataset = pGxObjects.Next
' Exit sub if no dataset has been added.
If pGxDataset Is Nothing Then
Exit Sub
End If
' Step through the datasets and add them as layers to the active map.
Do Until pGxDataset Is Nothing
Set pLayer = New FeaturelLayer
Set plLayer.FeatureClass = pGxDataset.Dataset
pLayer.Name = plLayer.FeatureClass.AliasName
pMap.AddLayer pLayer
Set pGxDataset = pGxObjects.Next
Loop
' Refresh the map and update the table of contents.
pMxDoc.ActivatedView.Refresh
pMxDoc.UpdateContents
End Sub

Part 2 gets the datasets selected by the user and adds them as layers to the active
map. The DoModalOpen method on IGxDialog opens the dialog box and saves the
selected shapefiles into a collection. In the code, the first argument for DoModalOpen
is set to be zero (i.e., to use the ArcMap window) and the second is pGxObjects, a
reference to an EnumGxObject. An EnumGxObject represents a collection of ordered
objects. The code uses the Next method on IEnumGxObject to advance one object
at a time and assigns the object to the pGxDataset variable, a reference to a
GxDataset object. A type of GxObject, a GxDataset object represents a dataset
(Figure 4.3). If the Next method advances nothing the first time, exit the sub. If the
collection contains selected shapefiles, then the code uses a Do...Loop to step
through each of them. Within each loop, the code creates pLayer as an instance of
the FeatureLayer class, assigns the dataset of pGxDataset to be the feature class of
pLayer, and adds the layer to the active map. Finally, the code refreshes the view
and updates the table of contents of the map document.

IGxDataset 0——| GxDataset

IGxDataset
B— Dataset

Figure 4.3 A type of GxObject, a GxDataset object represents a dataset that can be read
via the Dataset property on IGxDataset.

58 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

4.3.3 AddRaster

AddRaster adds a raster dataset to an active map. The macro performs the same
function as using the Add Data command in ArcMap.

Key Interfaces: IWorkspaceFactory, IRasterWorkspace, IRasterLayer, IRasterDataset

Key Members: OpenFromFile, OpenRasterDataset, CreateFromDataset, AddLayer

Usage: Import AddRaster to Visual Basic Editor in ArcMap. Run the macro. The
macro adds emidalat to the active map.

Private Sub AddRaster()
Dim pMxDoc As IMxDocument
Dim pMap As IMap
Dim pWorkspaceFactory As IWorkspaceFactory
Dim pRasterWorkspace As IRasterWorkspace
Dim pRasterDS As IRasterDataset
Dim pRasterLayer As IRasterLayer
' Specify the workspace and the raster dataset.
Set pWorkspaceFactory = New RasterWorkspaceFactory
Set pRasterWorkspace = pWorkspaceFactory.OpenFromFile("c:\data\chap4\", 0)
Set pRasterDS = pRasterWorkspace.OpenRasterDataset("emidalat")
' Prepare a raster layer.
Set pRasterLayer = New RasterLayer
pRasterlLayer.CreateFromDataset pRasterDS
' Add the raster layer to the active map.
Set pMxDoc = ThisDocument
Set pMap = pMxDoc.FocusMap
pMap.AddLayer pRasterLayer
pMxDoc.ActiveView.Refresh
End Sub

The macro creates pWorkspaceFactory as an instance of the RasterWorkspace-
Factory class and uses the OpenFromFile method on IWorkspaceFactory to open a
raster-based workspace referenced by pRasterWorkspace. Next, the code uses the
OpenRasterDataset method on IRasterWorkspace to open a raster dataset named
emidalat and referenced by pRasterDS. Then the code creates pRasterLayer as an
instance of the RasterLayer class and defines its dataset. Finally, the code uses the
AddLayer method on IMap to add pRasterLayer to the active map.

The CreateFromDataset method is one of the three methods on IRasterLayer
for creating a raster layer. The other two methods are CreateFromFilePath and
CreateFromRaster (Figure 4.4). The following macro uses the CreateFromFilePath
method to complete the same task as AddRaster.

Private Sub AddRaster_2()
Dim pMxDocument As IMxDocument
Dim pMap As IMap
Set pMxDocument = ThisDocument
Set pMap = pMxDocument.FocusMap
Dim pRasterLayer As IRasterLayer

DATASET AND LAYER MANAGEMENT 59

IRasterLayer

4—— CreateFromDataset
4— CreateFromFilepath
«4— CreateFromRaster

Figure 4.4 Methods on /RasterLayer.

Set pRasterLayer = New RasterLayer
pRasterlLayer.CreateFromFilePath "c:\data\chap4\emidalat"
pMap.AddLayer pRasterLayer

End Sub

4.3.4 AddLayerFile

AddLayerFile adds a layer file to an active map. The macro performs the same
function as using the Add Data command in ArcMap.

Key Interfaces: /GxFile, IGxLayer

Key Members: Path, Layer, AddLayer

Usage: Import AddLayerFile to Visual Basic Editor in ArcMap. Run the macro. The
macro adds emidalat.lyr to the active map. Because emidalat.lyr references emi-
dalat, the location of emidalat must be known before the macro can complete its
task.

Private Sub AddLayerFile()

Dim pMxDoc As IMxDocument

Dim pMap As IMap

Dim pGxLayer As IGxLayer

Dim pGxFile As IGxFile

' Get the layer file.

Set pGxLayer = New GxLayer

Set pGxFile = pGxLayer

pGxFile.Path = "c:\data\chap4\emidalat.lyr"

' Add the layer file to the active map.

Set pMxDoc = ThisDocument

Set pMap = pMxDoc.FocusMap

pMap.AddLayer pGxLayer.Layer

pMxDoc.ActiveView.Refresh

' If red exclamation mark appears, use Set Data Source on the Source tab of

' the Properties dialog to set the layer file's data source.
End Sub

The macro creates pGxLayer as an instance of the GxLayer class. Next the code
performs a QI for the /GxFile interface and uses the Path property to define the path
to emidalat.lyr (Figure 4.5). Then the code uses the AddLayer method on IMap to
add the layer associated with pGxLayer to the active map. Both GxLayer and GxFile
are ArcCatalog objects.

60 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

IGxFile O—
IGxLayer O—

GxLayer

IGxFile
H—HM Path

Figure 4.5 GxLayer and the interfaces that a GxLayer object supports.

4.3.5 AddTable

AddTable adds a nongeographic table to an active map and opens the table. The
macro performs the same function as using the Add Data command in ArcMap to
add a table and using the Open command to open the table. AddTable has three
parts. Part 1 uses the name objects to define the input table, Part 2 adds the table to
the active map, and Part 3 uses a table window to open the table.

Key Interfaces: [WorkspaceName, IDatasetName, IName, [Table, ITableCollection,
ITableWindow

Key Members: WorkspaceFactoryProgID, PathName, Name, WorkspaceName, Add-
Table, UpdateContents, Table, Application, Show

Usage: Import AddTable to Visual Basic Editor in ArcMap. Run the macro. The macro
opens the comp.dbf table and adds the table to the active map. Click on the Source
tab in the table of contents to see comp.dbf.

Private Sub AddTable()
' Part 1: Define the input table.
Dim pWSName As IWorkspaceName
Dim pDatasetName As IDatasetName
Dim pName As IName
Dim pTable As [Table
' Get the dbf file by specifying its workspace and name.
Set pDatasetName = New TableName
Set pWSName = New WorkspaceName
pWSName.WorkspaceFactoryProglD = "esriCore.ShapefileWorkspaceFactory"
pWSName.PathName = "c:\data\chap4"
pDatasetName.Name = "comp.dbf"
Set pDatasetName.WorkspaceName = p\WWSName
Set pName = pDatasetName
' Open the dbf table.
Set pTable = pName.Open

Part 1 first creates pDatasetName as an instance of the TableName class. Next,
the code defines the workspace name and name properties of pDatasetName by
using members on IWorkspaceName and IDatasetName. Notice that the program ID
of the workspace factory is esriCore.ShapefileWorkspaceFactory because the dataset
to be added is a dBASE file. (If the dataset to be added is a text file, one would opt
for esriCore.TextfileWorkspaceFactory.) The code then switches to the IName inter-
face and uses the Open method to open pTable.

DATASET AND LAYER MANAGEMENT 61

' Part 2: Add the table to the active map.
Dim pMxDoc As IMxDocument

Dim pMap As IMap

Dim pTableCollection As ITableCollection
Set pMxDoc = Application.Document
Set pMap = pMxDoc.FocusMap

Set pTableCollection = pMap ' QI
pTableCollection.AddTable pTable
pMxDoc.UpdateContents

Part 2 first sets pMap to be the active map. The code then accesses the ITable-
Collection interface and uses the AddTable method to add pTable to pMap. The
UpdateContents method on IMxDocument updates ArcMap’s table of contents.

' Part 3: Open the table in a table window.
Dim pTableWindow As [TableWindow
' Create a table window and specify its properties and methods.
Set pTableWindow = New TableWindow
With pTableWindow
Set .Table = pTable
Set .Application = Application
.Show True
End With
End Sub

Part 3 creates pTableWindow as an instance of the TableWindow class. Next the
code uses a With block to define the table window for view. The Application property
is set to be Application, which represents ArcMap in this case. If the Application
property is not set, the macro will crash!

4.4 MANAGING LAYERS

Layers in a map are indexed from the top with the base of zero. A common
application of layer management is to locate a particular layer by its index so that
the layer can be accessed in code.

4.41 FindLayer

FindLayer finds a layer in the active map and reports its index value. Sample modules
in this book frequently use FindLayer as a function and call the function to access
a layer.

Key Interfaces: IMap

Key Members: LayerCount, Layer(), Name

Usage: Add emidalat and emidastrm.shp to an active map. Import FindLayer to Visual
Basic Editor in ArcMap. Run the macro. The macro first reports the number of
datasets in the active map. After getting a layer name (for example, emidalat) from
the user, the macro reports the index of the layer.

62 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

Private Sub FindLayer()
Dim pMxDoc As IMxDocument
Dim pMap As IMap
Dim FindDoc As Variant
Dim alLName As String
Dim name As String
Dim i As Long
Set pMxDoc = ThisDocument
Set pMap = pMxDoc.FocusMap
MsgBox "The active map has " & pMap.LayerCount & " datasets."
' Use an input box to get a layer name.
name = InputBox("Enter a layer name:", "")
' Loop through layers in the active map and match the entered name
' with the layer name in uppercase.
For i = 0 To pMap.LayerCount - 1
alLName = UCase(pMap.Layer(j).name)
' Given a match, assign the counter to FindDoc.
If (@LName = (UCase(name))) Then
FindDoc = i
Exit for
End If
Next
MsgBox name & " is at index " & FindDoc
End Sub

The macro first uses the LayerCount property on IMap to report the number of
layers in the active map. Next, the code gets a layer name from the user and assigns
it to the Name variable. Using a For...Next loop, the code steps through each layer,
converts the name of the layer to its uppercase, and matches the name with the
uppercase of the input name. When a match is found, its index is assigned to the
FindDoc variable. A message box then reports the name of the layer and its index.
UCase is a VBA function that converts a string to the uppercase.

4.5 MANAGING DATASETS

This section covers dataset management, such as copying and deleting datasets
programmatically. Before deleting a dataset, the layer that uses the dataset should
be first removed from ArcMap.

4.5.1 CopyDataset

CopyDataset copies the dataset of a layer in the active map and saves the copied
dataset in a specified workspace. The macro performs the same function as using
the Copy command in ArcCatalog.

Key Interfaces: [WorkspaceFactory, [FeatureWorkspace, IDataset, I[FeatureClass
Key Members: OpenFromFile, Copy

DATASET AND LAYER MANAGEMENT 63

Usage: Add emidastrm.shp to an active map. Import CopyDataset to Visual Basic
Editor in ArcMap. Run the macro. The macro copies emidastrm.shp and saves the
copy as emidastrmCopy.shp.

Private Sub CopyDataset()
' Part 1: Define the top layer as the dataset to be copied.
Dim pMxDocument As IMxDocument
Dim pMap As IMap
Dim pFeatureLayer As IFeatureLayer
Dim pFeatureClass As IFeatureClass
Set pMxDocument = ThisDocument
Set pMap = pMxDocument.FocusMap
Set pFeatureLayer = pMap.Layer(0)
Set pFeatureClass = pFeaturelLayer.FeatureClass

Part 1 defines pFeatureClass as the feature class of the top layer in the active
map. This feature class is the geographic dataset to be copied.

' Part 2: Copy the dataset and add it to the active map.

Dim pWorkspaceFactory As IWorkspaceFactory

Dim pFeatureWorkspace As IFeatureWorkspace

Dim pDataset As IDataset

Dim pCopyFC As IFeatureClass

Dim CopyDSName As String

' Define the workspace for the copied dataset.

Set pWorkspaceFactory = New ShapefileWorkspaceFactory

Set pFeatureWorkspace = pWorkspaceFactory.OpenFromFile("c:\data\chap4\", 0)

' Copy the dataset.

Set pDataset = pFeatureClass

CopyDSName = pFeatureLayer.name & "Copy"

Set pCopyFC = pDataset.Copy(CopyDSName, pFeatureWorkspace)
End Sub

Part 2 creates pWorkspaceFactory as an instance of the ShapefileWorkspaceFac-
tory class and uses the OpenFromFile method to open a feature-based workspace.
Then the code performs a QI for the IDataset interface, and uses the Copy method
to make a copy of pFeatureClass.

Box 4.1 CopyDataset_GP

CopyDataset_GP uses the CopyFeatures tool in the Data Management toolbox
to make a copy of idcounty.shp and save the copy as idcountycopy2.shp. A macro
that uses a Geoprocessing tool must first create the Geoprocessing object. The
name of a tool (CopyFeatures) is usually followed by the name of the toolbox
(Management for Data Management) in which the tool resides. This naming
convention becomes necessary if two or more tools with the same name exist.
Run the macro in ArcEditor, and check for the copied dataset in the Catalog tree.
CopyDataset_GP performs the same task as CopyDataset.

64 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

Private Sub CopyDataset_GP()

' Create the Geoprocessing object.

Dim GP As Object

Set GP = CreateObject("esriGeoprocessing.GpDispatch.1")

' CopyFeatures <in_features> <out_feature_class> {configuration_keyword}

' {spatial_grid_1} {spatial_grid_2} {spatial_grid_3}

' Execute the copyfeatures tool, which has two required parameters.

GP.CopyFeatures_management "c:\data\chap4\idcounty.shp", "c:\data\chap4\idcountycopy2.shp"
End Sub

4.5.2 DeleteDataset

DeleteDataset removes a layer from an active map and deletes the layer’s dataset.
The macro performs the same function as using the Remove command in ArcMap
to remove a layer first and then, using the Delete command in ArcCatalog, to delete
the layer’s dataset.

Key Interfaces: IMap, IDataset, [ActiveView

Key Members: DeleteLayer, Delete, Refresh

Usage: Add emidastrmCopy.shp to an active map. Import DeleteDataset to Visual
Basic Editor in ArcMap. Run the macro. The macro removes the emidastrmCopy
layer from the active map and deletes emidastrmCopy.shp.

Private Sub DeleteDataset()
Dim pMxDocument As IMxDocument
Dim pMap As IMap
Dim pFeatureLayer As IFeatureLayer
Dim pFeatureClass As IFeatureClass
Dim pDataset As IDataset
Dim pActiveView As IActiveView
Set pMxDocument = ThisDocument
Set pMap = pMxDocument.FocusMap
' Define the dataset to be deleted.
Set pFeatureLayer = pMap.Layer(0)
Set pFeatureClass = pFeaturelLayer.FeatureClass
' Remove the layer from the active map.
pMap.DeletelLayer pFeaturelLayer
' Delete the dataset.
Set pDataset = pFeatureClass
pDataset.Delete
' Refresh the map.
Set pActiveView = pMap
pActiveView.Refresh

End Sub

The macro sets pFeatureLayer to be the top layer in the active map and pFea-
tureClass to be its feature class. Next, the code uses the DeleteLayer method on
IMap to remove pFeatureLayer from the active map, and then the code accesses
IDataset and uses the Delete method to delete pFeatureClass. Finally, the code
refreshes the map.

DATASET AND LAYER MANAGEMENT 65

4.6 REPORTING GEOGRAPHIC DATASET INFORMATION

This section shows how we can report the spatial reference and area extent properties
of a GeoDataset object by using a macro.

4.6.1 SpatialRef

SpatialRef reports the spatial reference and the extent of a geographic dataset. The
macro performs the same function as looking up the metadata of a geographic dataset
in ArcCatalog or getting the information on the Source tab of the Layer Properties
dialog in ArcMap.

Key Interfaces: /GeoDataset, ISpatialReference, IEnvelope

Key Members: SpatialReference, Extent, Xmin, YMin, XMax, YMax

Usage: Add emidastrm.shp to an active map. Import SpatialRef to Visual Basic Editor
in ArcMap. Run the macro. The macro reports the dataset’s coordinate system and
area extent.

Private Sub SpatialRef()
Dim pMxDocument As IMxDocument
Dim pMap As IMap
Dim pFeatureLayer As IFeatureLayer
Dim pGeoDataset As IGeoDataset
Dim pSpatialRef As ISpatialReference
Dim pEnvelope As IEnvelope
Dim MinX, MaxX, MinY, MaxY As Double
Set pMxDocument = ThisDocument
Set pMap = pMxDocument.FocusMap
' Define the input geodataset.
Set pFeatureLayer = pMap.Layer(0)
Set pGeoDataset = pFeatureLayer 'Ql
' Derive the spatial reference and extent of the geodataset.
Set pSpatialRef = pGeoDataset.SpatialReference
Set pEnvelope = pGeoDataset.Extent
' Get MinX, MinY, MaxX, and MaxY.
MinX = pEnvelope. XMin
MinY = pEnvelope.YMin
MaxX = pEnvelope.XMax
MaxY = pEnvelope.YMax
' Report the geodataset information.
MsgBox "The layer's spatial reference is: " & pSpatialRef.Name

MsgBox "Minimum X is: " & MinX & " Minimum Y is: " & MinY & Chr$(10) & "Maximum X is: " & MaxX & _
"Maximum Y is: " & MaxyY

End Sub

The macro first defines pFeatureLayer as the top layer in the active map. Next, the
code accesses the IGeoDataset interface and derives the SpatialReference and Extent
properties of pFeatureLayer. The extent of a geographic dataset is an envelope or a
rectangular object. The code assigns the XMin, YMin, XMax, and YMax values of the
envelope to the variables of MinX, MinY, MaxX, and MaxY respectively. Finally, the
code uses the dialog boxes to report the spatial information of pFeatureLayer.

CHAPTER 5

Attribute Data Management

A geographic information system (GIS) involves both geographic data and attribute
data. Geographic data relate to the geometry of spatial features, whereas attribute
data describe the characteristics of the features. The geodatabase data model uses
tables to store both types of data in a relational database environment. A table with
a geometry field is a feature class, a feature attribute table, or simply a geographic
dataset. A table with attribute data only is a nongeographic dataset.

A table, either a feature class or a nongeographic table, consists of rows and
columns. Each row represents a feature, and each column represents a character-
istic. A row is also called a record, and a column a field. The intersection of a
column and a row shows the value of a particular characteristic for a particular
feature.

Attribute data management takes place at either the field level or the table
level. At the field level, common tasks include deriving the field information,
adding fields, deleting fields, and calculating the field values. These tasks require
working with the properties of a field, such as name, type, and length. At the table
level, common tasks typically involve joining and relating tables in a relational
database environment. A join brings together two tables. A relate connects two
tables but keeps the tables separate. Both operations use keys and relationships to
link tables.

This chapter covers attribute data management. Section 5.1 reviews management
of attribute data using ArcGIS. Section 5.2 discusses objects relevant to tables, fields,
and relationship classes. Section 5.3 includes macros for listing fields and the field
properties. Section 5.4 offers a macro and a Geoprocessing (GP) macro for adding
and deleting fields. Section 5.5 offers macros and a GP macro for calculating the
field values. Section 5.6 discusses four macros for joining and relating tables and a
GP macro for relating a table to a layer. All macros start with the listing of key
interfaces and key members (properties and methods) and the usage.

67

68 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

5.1 MANAGING ATTRIBUTE DATA IN ARCGIS

An ArcGIS user can add and delete fields in either ArcCatalog or ArcMap. To add
a field, we must first define the field properties. Depending on the field type, the
definition may include length, precision, and scale. Length is the maximum length,
in bytes, reserved for the field. Precision is the number of digits reserved for a
numeric field. Scale is the number of decimal digits reserved for a field of the Double
data type.

Field Calculator, available through a field’s context menu in ArcMap, is a tool
for calculating the field values. To use Field Calculator, we must prepare a calculation
expression with fields and mathematical functions.

Joins and relates are available through the context menu or the properties of a
feature layer or a table in ArcMap. To add a join or relate, we must specify the tables
to join or relate and the fields on which the join or relate is based. The fields used
in a join or relate are called keys. A primary key represents a field whose values
can uniquely identify a record in a table. Its counterpart in another table for the
purpose of linkage is a foreign key. Joins and relates can only be built one at a time,
but existing joins and relates can be removed individually or as a group.

There are four possible relationships, also called cardinalities, in connecting two
tables. The one-to-one relationship means that one and only one record in a table
is related to one and only one record in another table. The one-to-many relationship
means that one record in a table may be related to many records in another table.
The many-to-one relationship means that many records in a table may be related to
one record in another table. And the many-to-many relationship means that many
records in a table may be related to many records in another table.

Joins are usually recommended for the one-to-one or many-to-one relationship.
Given a one-to-one relationship, two tables are joined by record. Given a many-
to-one relationship, many records in the base table have the same value from a
record in the other table. Relates, on the other hand, are appropriate for all four
relationships.

5.2 ARCOBJECTS FOR ATTRIBUTE DATA MANAGEMENT

This section covers objects that are related to table, fields, field, and relationship
classes.

5.2.1 Tables

Figure 5.1 shows the hierarchical structure of Table, ObjectClass, and FeatureClass.
The ObjectClass is a type of the Table class whose rows represent entities, and the
FeatureClass is a type of the ObjectClass whose rows represent features. A feature
class object has two default fields: the shape field that stores the geometry of features,
and the FID field that stores the feature IDs.

Chapter 4 has shown how to access a feature class through its data source.
Another way to access a feature class is through a feature layer that is already present

ATTRIBUTE DATA MANAGEMENT 69

/\

Figure 5.1 FeatureClass is a type of ObjectClass, and ObjectClass is a type of Table.

in an active map. For example, we can access a feature layer by using the Layer()
property of IMap and then access the layer’s feature class by using the FeatureClass
property on [FeatureLayer (Figure 5.2).

Chapter 4 has also shown how to access a dBASE file or a text file through its
data source. An alternative for accessing a file is through a standalone table that is
already present in an active map. A StandaloneTable object is not associated with
a feature class but is based on a nongeographic table. Figure 5.3 shows how to access
the table underlying a standalone table. First, use the IStandaloneTableCollection
interface that a map object supports to access the standalone table. Second, use the
Table property on IStandalonelable to access the table. Conceptually, a standalone
table is like a feature layer and the Table property of a standalone table is like the
FeatureClass property of a feature layer.

5.2.2 Fields and Field

A Fields object is a collection of fields such as a feature class or a nongeographic
table. In either case, a fields object is associated with a table object (Figure 5.4).
We can therefore add, delete, or find a field through a fields or table object. The
AddField and DeleteField methods are available on both I7able and IFieldsEdit, and
the FindField method is available on both ITable and IFields.

A Fields object consists of one or more Field objects (Figure 5.4). Each field has
an index or a numbered position. A Field object implements IField and IFieldEdit.

IMap o Map

IFeatureLayer O—{ FeatureLayer

IMap [FeatureLayer
B—— Layer | | B— FeatureClass

Figure 5.2 A feature class can be accessed through a feature layer in an active map.

70 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

IStandaloneTableCollection O Map

IStandaloneTable O— StandaloneTable

IStandaloneTableCollection IStandaloneTable
B—— StandaloneTable B—{1 Table

Figure 5.3 A table can be accessed through a standalone table in an active map.

[Field has the read-only field properties such as name, length, precision, and type.
IFieldEdit, on the other hand, has write-only field properties and is therefore useful
for defining a new field.

ArcObjects has the Calculator coclass for calculating the field values. /Calcu-
lator has the properties of Cursor, Expression, and Field as well as the Calculate
method (Figure 5.5). A cursor is a data-access object, which allows a macro to step
through a set of records in a table. The Calculate method uses an expression defined
by the user to calculate the values of a specified field.

5.2.3 Relationship Classes

In ArcObjects, a join or relate is defined as a relationship class linking two tables.
Relationship classes can be stored in a geodatabase or, as in this chapter, built in

ITable
B— Fields IField
<—— AddField [Table o—@ B— Length
«4— DeleteField B— Name
«4— FindField IFields O—— a B—— Precision
Fields
IFieldsEdits O— B— Type
IFields
B— Field 1..*%
B— FieldCount [Field O Field IFieldEdit
FindField IFieldEdit O——
¢ —M Length
- - — Ml Name
IFieldsEdit
AddField —# Precision
«4— DeleteField B Type

Figure 5.4 The relationship between Table, Fields, and Field objects as well as properties
and methods of these objects.

ATTRIBUTE DATA MANAGEMENT 71

ICalculator
O—— Cursor

B— Expression
—M Field

<4— Calculate

Figure 5.5 Properties and methods on [Calculator.

code between tables that are in use. To build a join or relate in code requires the
relationship class be prepared as a memory (i.e., virtual) relationship class first
(Figure 5.6). The MemoryRelationshipClassFactory coclass implements IMemory-
RelationshipClassFactory, which has the Open method to create memory relation-
ship class objects.

A join or relate can be set up after a memory relationship class is opened. The
setup is made through a feature layer object, but the method differs between a join
and a relate. A feature layer object implements IDisplayRelationshipClass, which
has the DisplayRelationshipClass method to set up a join between two tables and
to get the joined table ready for use (Figure 5.7).

To join more than two tables, ArcObjects stipulates that a RelQueryTable object
be created from the first join and the object be used as the source to create another
RelQueryTable object for the second join (Figure 5.8). Representing a joined pair
of tables, a RelQueryTable object is obtained through the RelQueryTableFactory
coclass. IRelQueryTableFactory provides the Open method that can create a new
RelQueryTable object.

A feature layer object also implements IRelationshipClassCollection, and IRe-
lationshipClassCollectionEdit is used for managing relates (Figure 5.9). IRelation-
shipClassCollection has members for deriving and finding relates, and IRelation-
shipClassCollectionEdit has methods for adding or removing a relate.

| RelationshipClass |

T

MemoryRelationship-
Class

IMemoryRelationshipClassFactory A
<4—Open :

MemoryRelationship-

IMemoryRelationshipClassFactory o— ClassFactory

Figure 5.6 A MemoryRelationshipClassFactory can create a MemoryRelationshipClass
object, which is a type of RelationshipClass.

72 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

IDisplayRelationshipClass O— FeatureLayer

IDisplayRelationshipClass

«4— DisplayRelationshipClass

Figure 5.7 IDisplayRelationshipClass can set up a join for a feature layer.

Feature Class

\ Table 1

MemoryRelationshipClass 1

Y

RelQueryTable 1

A

Table 2

Y

MemoryRelationshipClass 2

Y

RelQueryTable 2

Y

IDisplayRelationshipClass 0—— Feature Layer

Figure 5.8 The diagram shows a flow chart for joining two tables to a feature class.

IRelationshipClassCollection O—
IRelationshipClassCollectionEdit O—

FeatureLayer

IRelationshipClassCollection IRelationshipClassCollectionEdit
B—— RelationshipClasses «4—— AddRelationship
<«4— FindRelationshipClasses 4—— RemoveRelationship

Figure 5.9 A FeatureLayer object supports interfaces that work with relates.

ATTRIBUTE DATA MANAGEMENT 73

5.3 LISTING FIELDS AND FIELD PROPERTIES

This section introduces macros for reporting the number of fields and field properties
in a dataset.

5.3.1 ListOfFields

ListOfFields reports the number of fields in a feature class and the field names. The
macro performs the same function as using the Fields tab in a feature layer’s
Properties dialog. ListOfFields has two parts. Part 1 gets the feature class and reports
the number of fields in the feature class. Part 2 steps through each field, gets the
field name, adds the field name to a list, and reports the list.

Key Interfaces: IFields, IField

Key Members: Fields, FieldCount, Field(), Name, Add

Usage: Add idcounty.shp to an active map. Idcounty shows 44 counties in Idaho and
has some demographic attributes. Import ListOfFields to Visual Basic Editor. Run
the macro. The first message box reports the number of fields in idcounty, and the
second message lists the field names.

Private Sub ListOfFields()
' Part 1: Get the feature class and its fields.
Dim pMxDoc As IMxDocument
Dim pMap As IMap
Dim pFeatureLayer As IFeatureLayer
Dim pFeatureClass As IFeatureClass
Dim pFields As IFields
Dim count As Long
Set pMxDoc = ThisDocument
Set pMap = pMxDoc.FocusMap
Set pFeatureLayer = pMap.Layer(0)
Set pFeatureClass = pFeaturelayer.FeatureClass
Set pFields = pFeatureClass.Fields
' Get the number of fields.
count = pFields.FieldCount
MsgBox "There are " & count & " fields"

Part 1 sets pFeatureClass to be the feature class of the top layer in the active map.
Next the code sets pFields to be the fields of pFeatureClass, and the count variable to
be the Fieldcount property on IFields. A message box then reports the number of fields.

' Part 2: Prepare a list of fields and display the list.

Dim ii As Long

Dim aField As IField

Dim fieldName As Variant

Dim NamelList As Variant

' Loop through each field, and add the field name to a list.
For ii = 0 To pFields.FieldCount - 1

74 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

Set aField = pFields.Field(ii)
fieldName = aField.name
NameList = NameList & fieldName & Chr(13)
Next
' Display the list of field names in a message box.
MsgBox Namelist, , "Field Names"
End Sub

Part 2 uses a For...Next statement to step through each field in pFields. Because
the loop starts with the base of zero, the predefined number of iterations is based
on the FieldCount value minus one. Each time through the loop, the code assigns
the name of the field to the fieldName variable and adds the name to Namelist.
Finally, the code displays each field name in a message box. The constant Chr(13)
adds a carriage return.

5.3.2 ListFieldProps

ListFieldProps reports the field name, type, length, precision, and scale of each
field in a dataset. The macro performs the same function as using the Fields tab
in a feature layer’s Properties dialog. ListFieldProps has two parts. Part 1 gets
the feature class and its fields. Part 2 gets the field properties of each field and
reports them.

Key Interfaces: /Fields, IField

Key Members: Fields, FieldCount, Field(), Name, Type, Length, Precision, Scale, Add

Usage: Add idcounty.shp to an active map. Import ListFieldProps to Visual Basic Editor.
Run the macro. The message box lists the properties of each field in idcounty.

Private Sub ListFieldProps()
' Part 1: Get the feature class and its fields.
Dim pMxDoc As IMxDocument
Dim pMap As IMap
Dim pFeatureLayer As IFeatureLayer
Dim pFeatureClass As IFeatureClass
Dim pFields As IFields
Dim count As Long
Set pMxDoc = ThisDocument
Set pMap = pMxDoc.FocusMap
Set pFeatureLayer = pMap.Layer(0)
Set pFeatureClass = pFeaturelayer.FeatureClass
Set pFields = pFeatureClass.Fields

Part 1 is the same as ListOfFields. The code derives the number of fields from
the feature class of the top layer and saves the fields in pFields.

' Part 2: Get the field properties for each field, and report them.
Dim ii As Long
Dim aField As IField

ATTRIBUTE DATA MANAGEMENT

Dim fieldName As String
Dim fieldType As Integer
Dim fieldLength As Integer
Dim fieldPrecision As Integer
Dim fieldScale As Integer
Dim typeDes As String
Dim out As Variant
Dim theList As New Collection
Dim NamelList As Variant
' Set up a do loop.
For ii = 0 To pFields.FieldCount - 1
Set aField = pFields.Field(ii)
' Derive properties of the field.
fieldName = aField.name
fieldType = aField.Type
fieldLength = aField.Length
fieldPrecision = aField.Precision
fieldScale = aField.Scale
' Determine the field type.
Select Case fieldType

Case 0

typeDes = "Smallinteger"

Case 1

typeDes = "Integer"
Case 2

typeDes = "Single"
Case 3

typeDes = "Double"
Case 4

typeDes = "String"
Case 5

typeDes = "Date"
Case 6

typeDes = "OID"
Case 7

typeDes = "Geometry"
Case 8

typeDes = "Blob"
End Select

' Save the field properties to the variable out.
out = fieldName & "" & typeDes & "" & fieldLength & "" & fieldPrecision &"" & fieldScale
' Add the variable out to a list.
theList.Add out
Next
' Display the list in a message box.
For Each out In theList
NameList = NameList & out & Chr(13)
Next out
MsgBox Namelist, , "Field Name, Type, Length, Precision, & Scale"
End Sub

75

76 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

Part 2 uses a For...Next statement to step through each field in pFields and to
derive its field property values. Besides the field name, the code works with the
additional field properties of type, length, precision, and scale. Because the field type
value can range from zero to eight, the code uses a Select Case statement to translate
the value into a description such as integer or double. The field length is the maximum
length in bytes. The field precision is the number of digits reserved for a numeric
field. The field scale is the number of decimal digits reserved for a double field. After
the field properties are derived, they are strung together and assigned to the variable
out. A variant-type variable can take any type of data. The code then adds out to
theList. Finally, a message box reports theList, one field per line.

5.3.3 UseFindLayer

UseFindLayer consists of a sub and a function. The FindLayer function uses an
input box to get the name of a layer from the user and returns the index of the layer
to the Start sub. Start then reports the number of fields in the layer.

Key Interfaces: [Fields, [Field

Key Members: Fields, FieldCount, Field, Name, Add

Usage: Add idcounty.shp and idcities.shp to an active map. Import UseFindLayer to
Visual Basic Editor. Run the module. Enter the name of a layer in the input box.
The module reports the number of fields in the layer.

Private Sub Start()
Dim pMxDoc As IMxDocument
Dim pMap As IMap
Dim i As Long
Dim pFeatureLayer As IFeatureLayer
Dim pFeatureClass As IFeatureClass
Dim pFields As IFields
Dim count As Long
Set pMxDoc = ThisDocument
Set pMap = pMxDoc.FocusMap
' Run the FindLayer function.
i = FindLayer()
' Use the returned Id to locate the layer.
Set pFeatureLayer = pMap.Layer(i)
Set pFeatureClass = pFeatureLayer.FeatureClass
Set pFields = pFeatureClass.Fields
' Get the number of fields.
count = pFields.FieldCount
MsgBox "There are " & count & " fields"
End Sub

Start assigns the returned value from FindLayer to i, and uses i as the index to
locate pFeatureLayer. Next the code sets pFeatureClass to be the feature class of
PFeatureLayer and pFields to be the fields of pFeatureClass. A message box reports
the number of fields in pFields.

ATTRIBUTE DATA MANAGEMENT 77

Private Function FindLayer() As Long
Dim pMxDoc As IMxDocument
Dim pMap As IMap
Dim FindDoc As Variant
Dim alLName As String
Dim name As String
Dim i As Long
Set pMxDoc = ThisDocument
Set pMap = pMxDoc.FocusMap
' Use an input box to get a layer name.
name = InputBox("Enter a layer name:", "")
' Locate the layer in the active map.
For i = 0 To pMap.LayerCount - 1
alLName = UCase(pMap.Layer(j).name)
If (@LName = (UCase(name))) Then
FindDoc = i
Exit For
End If
Next
FindLayer = FindDoc
End Function

FindLayer receives a layer name from an input box and assigns it to the Name
variable. Next, the code steps through layers in the active map and matches the upper
case of Name with the upper case of the layer’s name. When a match is found, the
code assigns the layer’s index value i to the FindDoc variable. The function then
returns FindDoc as the value of FindLayer to the Start sub.

5.4 ADDING OR DELETING FIELDS
This section covers a macro for adding fields to, and deleting fields from, a dataset.
5.4.1 AddDeleteField

AddDeleteField adds two new fields to, and deletes a field from, a feature attribute
table. The macro performs the same function as using a dataset’s Properties dialog
in ArcCatalog to add and delete fields. AddDeleteField is organized into three parts.
Part 1 defines the feature class, Part 2 defines two new fields and adds the fields to
the feature class, and Part 3 deletes a field from the feature class.

Key Interfaces: [FeatureClass, IFieldEdit, [Fields, IField

Key Members: FeatureClass, Name, Type, Length, AddField, Fields, FindField,
Field(), DeleteField

Usage: Add idcounty2.shp to an active map. Open the attribute table of idcounty?2.
The table shows a field named Pop94, which will be deleted by the macro. Two
new fields, Pop1990 and Pop2000, will be added to the table. Import AddDeleteField
to Visual Basic Editor. Run the macro. Check the attribute table of idcounty2 again
to make sure that the task is done correctly.

78 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

Private Sub AddDeleteField()
' Part 1: Get a handle on the feature class.
Dim pMxDoc As IMxDocument
Dim pFeatureLayer As IFeatureLayer
Dim pFeatureClass As IFeatureClass
Set pMxDoc = ThisDocument
Set pFeatureLayer = pMxDoc.FocusMap.Layer(0)
Set pFeatureClass = pFeaturelLayer.FeatureClass

Part 1 sets pFeatureClass to be the feature class of the top layer in the active map.

' Part 2: Add two new fields.

Dim pField1 As IFieldEdit

Dim pField2 As IFieldEdit

' Define the first new field.

Set pField1 = New Field
pField1.name = "Pop1990"
pField1.Type = esriFieldTypelnteger
pField1.Length = 8

' Add the first new field.
pFeatureClass.AddField pField1

' Define the second new field.

Set pField2 = New Field
pField2.name = "Pop2000"
pField2.Type = esriFieldTypelnteger
pField2.Length = 8

' Add the second new field.
pFeatureClass.AddField pField2

Part 2 creates pFieldl as an instance of the Field class and uses the IFieldEdit
interface to define its field properties of name, type, and length. Next, the code uses
the AddField method on IFeatureClass to add pFieldl to pFeatureClass. The code
uses the same procedure to add pField2 to pFeatureClass.

' Part 3: Delete a field.

Dim pFields As IFields

Dim i As Integer

Dim pField3 As IField

Set pFields = pFeatureClass.Fields

i = pFields.FindField("Pop94")

Set pField3 = pFields.Field(ii)

pFeatureClass.DeleteField pField3
End Sub

Part 3 first sets pFields to be the fields of pFeatureClass. Next, the code uses
the FindField method on IFields to find the index of Pop94 among the fields,
assigns the index value to the ii variable, and sets pField3 to be the field at the
index ii. Then the code uses the DeleteField method on IFeatureClass to delete
pField3.

ATTRIBUTE DATA MANAGEMENT 79

Box 5.1 AddDeleteField_GP

AddDeleteField_GP uses DeleteField and AddField, two tools in the Data
Management toolbox, to first delete a field (Pop94) and then add two new fields
(Pop1990 and Pop2000) in idcounty5.shp. Run the macro in ArcCatalog. The
macro performs the same tasks as AddDeleteField.

Private Sub AddDeleteField_GP()
' Make sure that chap5 is not the active folder in the catalog tree.
' Create the Geoprocessing object and define its workspace.
Dim GP As Object
Set GP = CreateObject("esriGeoprocessing.GpDispatch.1")
' Specify GP's workspace.
Dim filepath As String
filepath = "c:\data\chap5\"
GP.Workspace = filepath
' DeleteField <in_table> <drop_field;drop_field...>
' AddField <in_table> <field_name> <LONG | TEXT | FLOAT | DOUBLE | SHORT | DATE | BLOB>
' {field_precision} {field_length} {field_alias} {NULLABLE | NON_NULLABLE}
' {NON_REQUIRED | REQUIRED} {field_domain}
' Execute the deletefield and addfield tools.
GP.DeleteField_management "idcounty5.shp", "Pop94"
GP.AddField_management "idcounty5.shp", "Pop1990", "SHORT"
GP.AddField_management "idcounty5.shp", "Pop2000", "SHORT"
End Sub

5.5 CALCULATING FIELD VALUES

This section focuses on the field value. The first macro shows how to use an
expression to calculate the field values programmatically. The second macro shows
how to update the field values of a data subset.

5.5.1 CalculateField

CalculateField calculates the values of a field by using the values of two existing
fields in a feature class. The macro performs the same function as using Field
Calculator for calculation. CalculateField has two parts. Part 1 finds the field to
be calculated, and Part 2 calculates the field value for each record (feature) in a
Cursor.

Key Interfaces: [FeatureClass, IFields, ICursor, ICalculator

Key Members: FeatureClass, Fields, FindField, Update, Cursor, Expression, Field,
Calculate

Usage: Add idcounty3.shp to an active map. The attribute table of idcounty3 contains
three fields: Pop1990, county population in 1990; Pop2000, county population in
2000; and Change. Import CalculateField to Visual Basic Editor. Run the macro.
The macro calculates the field values of Change from Pop1990 and Pop2000.

80 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

Private Sub CalculateField()
' Par 1: Find the field to be calculated.
Dim pMxDoc As IMxDocument
Dim pFeatLayer As IFeatureLayer
Dim pFeatureClass As IFeatureClass
Dim pFields As IFields
Set pMxDoc = ThisDocument
Set pFeatlLayer = pMxDoc.FocusMap.Layer(0)
Set pFeatureClass = pFeatLayer.FeatureClass

Part 1 sets pFeatureClass to be the feature class of the top layer in the active
map.

' Part 2: Calculate the field values by using a cursor.
Dim pCursor As ICursor
Dim pCalculator As ICalculator
' Prepare a cursor with all records.
Set pCursor = pFeatureClass.Update(Nothing, True)
' Define a calculator.
Set pCalculator = New Calculator
With pCalculator
Set .Cursor = pCursor
.Expression = "(([Pop2000] - [Pop1990]) / [Pop1990]) * 100"
.Field = "Change"
End With
' Calculate the field values.
pCalculator.Calculate
End Sub

Part 2 first creates a cursor from pFeatureClass by using the Update method on
IFeatureClass. Because the Update method uses Nothing in place of a query filter
object, all records are included in the cursor. (Chapter 9 covers query filter objects.)
Next the code creates pCalculator as an instance of the Calculator class and defines
its properties in a With statement. The cursor is set to be pCursor, the expression is
an equation to calculate the percent change of county population between 1990 and
2000, and the field is Change. Finally, the code uses the Calculate method on
ICalculator to complete the task.

Box 5.2 CalculateField_GP

CalculateField_GP uses the CalculateField tool in the Data Management toolbox
to calculate the field values of Change in idcounty6.shp. Run the macro in
ArcCatalog. The macro performs the same task as CalculateField.

Private Sub CalculateField_GP()
' Create the Geoprocessing object.
Dim GP As Object
Set GP = CreateObject("esriGeoprocessing.GpDispatch.1")

ATTRIBUTE DATA MANAGEMENT 81

' CalculateField <in_table> <field> <expression>
' Execute the calculatefield tool.

GP.CalculateField_management "c:\data\chapb\idcounty6.shp”, "Change", "([Pop2000] - [Pop1990])_
/[Pop1990] * 100"

End Sub

5.5.2 UpdateValue

UpdateValue differs from CalculateField in two aspects. First, UpdateValue calcu-
lates the field values for a data subset instead of every record. Second, the macro
does not use ICalculator to calculate the field values.

UpdateValue performs the same function as using the Select By Attributes
command in the Selection menu to first select a data subset, and then using Field
Calculator to calculate the field values. The macro has three parts. Part 1 defines the
feature class, Part 2 selects a data subset, and Part 3 calculates the field value for
each record in the data subset.

Key Interfaces: IFeatureClass, IFields, IQueryFilter, IFeatureCursor, IFeature

Key Members: FeatureClass, WhereClause, Update, FindField, NextFeature, Value,
UpdateFeature

Usage: Add idcounty4.shp to an active map. The attribute table of idcounty4 contains
the field Change, which shows the rate of population change between 1990 and
2000 for Idaho counties. Import UpdateValue to Visual Basic Editor. Run the
macro. The macro populates the field Class with the value of 1 for high-growth
counties (i.e., Change > 30%) and O for other counties.

Private Sub UpdateValue()
' Part 1: Define the feature class.
Dim pMxDoc As IMxDocument
Dim pFeatLayer As IFeatureLayer
Dim pFeatureClass As IFeatureClass
Dim pFields As IFields
Dim ii As Integer
Set pMxDoc = ThisDocument
Set pFeatlLayer = pMxDoc.FocusMap.Layer(0)
Set pFeatureClass = pFeatLayer.FeatureClass

Part 1 sets pFeatureClass to be the feature class of the top layer in the active map.

' Part 2: Prepare a feature cursor.

Dim pQFilter As IQueryFilter

Dim pUpdateFeatures As IFeatureCursor

' Prepare a query filter.

Set pQFilter = New QueryFilter

pQFilter.WhereClause = "Change > 30"

' Create a feature cursor for updating.

Set pUpdateFeatures = pFeatureClass.Update(pQFilter, False)

Part 2 creates pQFilter as an instance of the QueryFilter class and defines its
WhereClause condition as “Change > 30.” A query filter object filters a data subset
that meets its WhereClause expression. The code then uses pQFilter as an object

82 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

IFeatureCursor

<4— FindField
4— NextFeature
<4— UpdateFeature

Figure 5.10 /FeatureCursor has methods for managing fields and features.

qualifier and the Update method on [FeatureClass to create a cursor of selected
features. A feature cursor is a data-access object designed for the updating, deleting,
and inserting of features. A feature cursor object has the FindField, NextFeature,
and UpdateFeature methods (Figure 5.10).

' Part 3: Calcuate the Class value.

Dim indexClass As Integer

Dim pFeature As IFeature

indexClass = pUpdateFeatures.FindField("Class")

Set pFeature = pUpdateFeatures.NextFeature

' Loop through each feature and update its Class value.

Do Until pFeature Is Nothing
pFeature.Value(indexClass) = 1
pUpdateFeatures.UpdateFeature pFeature
Set pFeature = pUpdateFeatures.NextFeature

Loop

End Sub

Part 3 first uses the FindField method on [FeatureCursor to find the index of the
field Class and assigns the index value to the indexClass variable. The rest of the code
uses a loop to step through each selected feature, assigns 1 as the value to the field at
indexClass, and uses the UpdateFeature method on IFeatureCursor to update the
feature.

5.6 JOINING AND RELATING TABLES

This section covers joins and relates with four sample macros, two on join and two
on relate. By having two macros on each type of relationship class, this section
shows how to link a nongeographic table to a feature class as well as how to link
two or more nongeographic tables to a feature class.

5.6.1 JoinTableToLayer

JoinTableToLayer joins a dBASE file to a feature class. The macro performs the
same function as using Join in a feature layer’s context menu in ArcMap. Join-
TableToLayer has three parts. Part 1 defines the feature class, Part 2 defines the
attribute table to be joined, and Part 3 joins the attribute table to the feature class.

ATTRIBUTE DATA MANAGEMENT 83

Key Interfaces: [FeatureClass, ITable, 1StandaloneTableCollection, IStandalone-
Table, IMemoryRelationshipClassFactory, IRelationshipClass, IDisplayRelation-
shipClass

Key Members: FeatureClass, StandaloneTable(), Table, Open, DisplayRelationship-
Class

Usage: Add wp.shp and wpdata.dbf to an active map. wp is a shapefile of vegetation
stands, and wpdata is a dBASE file containing attributes of the vegetation stands.
The common field in wp’s attribute table and wpdata is ID. Import JoinTableTo-
Layer to Visual Basic Editor. Run the macro. Enter ID for the name of the join
field. The macro joins the attributes in wpdata to wp’s attribute table. To verify
that the macro works, open the attribute table of wp. The table should have two
sets of attributes: one set has the prefix of wp and the other set has the prefix of
wpdata.

Private Sub JoinTableToLayer()
' Part 1: Get a handle on the layer's attribute table.
Dim pMxDoc As IMxDocument
Dim pMap As IMap
Dim pFeatureLayer As IFeatureLayer
Dim pFeatureClass As IFeatureClass
Set pMxDoc = ThisDocument
Set pMap = pMxDoc.FocusMap
Set pFeatureLayer = pMap.Layer(0)
Set pFeatureClass = pFeaturelayer.FeatureClass

Part 1 sets pFeatureClass to be the feature class of the top layer in the active map.

' Part 2: Define the table to be joined.

Dim pTabCollection As IStandaloneTableCollection
Dim pStTable As IStandaloneTable

Dim pFromTable As ITable

Set pTabCollection = pMap

Set pStTable = pTabCollection.StandaloneTable(0)
Set pFromTable = pStTable.Table

Part 2 first performs a Querylnterface (QI) for the IStandaloneTableCollection
interface and sets pStTable to be the first standalone table in pMap. The code then
sets pFromTable to be the table underlying pStTable.

' Part 3: Join the table to the layer's attribute table.

Dim strdnField As String

Dim pMemRelFact As IMemoryRelationshipClassFactory

Dim pRelClass As IRelationshipClass

Dim pDispRC As IDisplayRelationshipClass

' Prompt for the join field.

strdnField = InputBox("Provide the name of the join field:", "Joining a table to a layer", "")
' Create a memory relationship class.

Set pMemRelFact = New MemoryRelationshipClassFactory

' The underscore _ means continuation of a line statement.

Set pRelClass = pMemRelFact.Open("TableToLayer", pFromTable, strdnField, pToTable, strdnField, "wp", _
"wpdata", esriRelCardinalityOneToOne)

' Perform a join.

84 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

Set pDispRC = pFeaturelLayer
pDispRC.DisplayRelationshipClass pRelClass, esriLeftOuterdoin
End Sub

Part 3 creates a memory relationship class (i.e., virtual join) before joining the
two tables. The code first gets the join field from an input box. Next, the code creates
pMemRelFact as an instance of the MemoryRelationshipClassFactory class and uses
the Open method on IMemoryRelationshipClassFactory to create a relationship class
referenced by pRelClass. The Open method uses eight object qualifiers and argu-
ments. The two object qualifiers of pFromTable and pFeatureClass have been
defined. The name of the relationship class is “TableToLayer.” The origin primary
key and the origin foreign key are both str/nField. The forward path label and the
backward path label are wp and wpdata respectively, and the cardinality or the type
of relationship is specified as one-to-one. Finally, the code accesses the IDisplay-
RelationshipClass interface and uses the DisplayRelationshipClass method to per-
form the join. Besides pRelClass, DisplayRelationshipClass uses the argument of
esriLeftOuterJoin, which stipulates that the join operation includes all rows, rather
than the matched rows only.

5.6.2 JoinMultipleTables

JoinMultipleTables joins two dBASE tables to a feature class. Conceptually, Join-
MultipleTables is similar to JoinTableToLayer, but programmatically, JoinMultiple-
Tables requires use of IRelQueryTable objects to carry out two joins. The macro
performs the same function as using the Join command in a feature layer’s context
menu in ArcMap. JoinMultipleTables has five parts. Part 1 defines the feature class,
Part 2 defines the two tables to be joined, Part 3 creates the first virtual join, followed
by the second virtual join in Part 4, and Part 5 performs the join operation.

Key Interfaces: IStandaloneTableCollection, IStandaloneTable, ITable, IMemoryRe-
lationshipClassFactory, IRelationshipClass, IRelQueryTableFactory, IRelQue-
ryTable, IDisplayRelationshipClass

Key Members: FeatureClass, StandaloneTable(), Table, Open, DisplayRelationship-
Class

Usage: Add idcounty4.shp, change.dbf, and population.dbfto an active map. idcounty4
is a shapefile showing 44 Idaho counties. change and population are two dBASE
files that contain demographic data of Idaho counties. (This macro will not work
with text files.) The keys for joining change to idcounty are both co_name. The
keys for joining population to the joined table are change.co_name and co_name.
The keys have been hard-coded in the macro. Import JoinMultipleTables to Visual
Basic Editor. Run the macro. The macro joins the attributes in change and popu-
lation to the attribute table of idcounty4. To verify that the macro works, open the
attribute table of idcounty4. The table should include attributes from change and
population. Each field in the table should have a prefix to identify its source.

Private Sub JoinMultipleTables()
' Part 1: Define the feature class.
Dim pMxDoc As IMxDocument
Dim pMap As IMap

ATTRIBUTE DATA MANAGEMENT 85

Dim pFeatureLayer As IFeatureLayer

Dim pFeatureClass As IFeatureClass

Set pMxDoc = ThisDocument

Set pMap = pMxDoc.FocusMap

Set pFeatureLayer = pMap.Layer(0)

Set pFeatureClass = pFeaturelLayer.FeatureClass

Part 1 sets pFeatureClass to be the feature class of the top layer in the active map.

' Part 2: Define the two tables to be joined.

Dim pTabCollection As IStandaloneTableCollection
Dim pStTable1 As IStandaloneTable

Dim pFromTable1 As [Table

Dim pStTable2 As IStandaloneTable

Dim pFromTable2 As [Table

Set pTabCollection = pMap

' Define the first table.

Set pStTable1 = pTabCollection.StandaloneTable(0)
Set pFromTable1 = pStTable1.Table

' Define the second table.

Set pStTable2 = pTabCollection.StandaloneTable(1)
Set pFromTable2 = pStTable2.Table

Part 2 performs a QI for the IStandaloneTableCollection interface and sets
pStTablel and pStTable2 to be the first and second standalone tables respectively in
pMap. The code then defines pFromTablel and pFromTable2 to be the underlying
tables of pStTablel and pStTable2 respectively.

' Part 3: Join the first table to the feature class.

Dim pMemRelFact As IMemoryRelationshipClassFactory
Dim pRelClass1 As IRelationshipClass

Dim pRelQueryTableFact As IRelQueryTableFactory

Dim pRelQueryTab1 As IRelQueryTable

' Create the first virtual join.

Set pMemRelFact = New MemoryRelationshipClassFactory

Set pRelClass1 = pMemRelFact.Open("Table1ToLayer", pFeatureClass, "co_name", pFromTable1, "co_name", _
"forward", "backward", esriRelCardinalityOneToOne)

' Create the first relquerytable.
Set pRelQueryTableFact = New RelQueryTableFactory
Set pRelQueryTab1 = pRelQueryTableFact.Open(pRelClass1, True, Nothing, Nothing, "*, True, True)

Part 3 creates pMemRelFact as an instance of the MemoryRelationshipClassFac-
tory class and uses the Open method to create a memory relationship class object
referenced by pRelClassi. The two tables specified for the Open method are pFea-
tureClass and pFromTablel. Next, the code creates pRelQueryTableFact as an
instance of the RelQueryTableFactory class and uses the Open method on IRelQuery-
TableFactory and pRelClassl as an argument to create pRelQueryTabl, a reference
to an IRelQueryTable object.

' Part 4: Join the second table to the joined table.
Dim pRelClass2 As IRelationshipClass

86 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

Dim pRelQueryTab2 As IRelQueryTable
' Create the second virtual join.
Set pMemRelFact = New MemoryRelationshipClassFactory

Set pRelClass2 = pMemRelFact.Open("Table2ToLayer", pRelQueryTab1, "change.co_name", _
pFromTable2, "co_name", "forward", "backward", esriRelCardinalityOneToOne)

' Create the second relquerytable.
Set pRelQueryTableFact = New RelQueryTableFactory
Set pRelQueryTab2 = pRelQueryTableFact.Open(pRelClass2, True, Nothing, Nothing, "*, True, True)

Part 4 follows the same procedure as in Part 3: use pRelQueryTabl and
pFromTable?2 as inputs to create pRelClass2, and use pRelClass2 as an input to create
pRelQueryTab?2.

' Part 5: Perform the join operation.

Dim pDispRC2 As IDisplayRelationshipClass

Set pDispRC2 = pFeatureLayer

pDispRC2.DisplayRelationshipClass pRelQueryTab2.RelationshipClass, esriLeftOuterJoin
End Sub

Part 5 accesses the IDisplayRelationshipClass interface and uses the DisplayRe-
lationshipClass method to perform the join operation. Notice that the method uses
RelQueryTab2 as an object qualifier.

5.6.3 RelateTableToLayer

RelateTableToLayer creates a relate between a dBASE file and a feature class. The
macro performs the same function as using Relate in a feature layer’s context menu
in ArcMap. RelateTableToLayer has three parts. Part 1 defines the feature class, Part
2 defines the nongeographic table for a relate, and Part 3 asks for the keys to establish
a relate, creates a virtual relate, and performs a relate.

Key Interfaces: [FeatureClass, ITable, IStandaloneTableCollection, IStandalone-
Table, IMemoryRelationshipClassFactory, IRelationshipClass, IRelationship-
ClassCollectionEdit

Key Members: FeatureClass, StandaloneTable(), Table, Open, AddRelationshipClass

Usage: Add wp.shp and wpdata.dbf to an active map. ID in both the attribute table
of wp and wpdata can be used as the key. Import RelateTableToLayer to Visual
Basic Editor. Run the macro. Enter ID in both input boxes. The macro creates a
relate between wpdata and the attribute table. To verify that the macro works, open
the attribute table and select some records from the table. Click Options in the
attribute table and point to Related Tables. TableToLayer: wpdata should appear
on the side bar. Click on the side bar, and wpdata appears with highlighted records
that correspond to the selected records in wp.

Private Sub RelateTabletolLayer()
' Part 1: Define the feature class.
Dim pMxDoc As IMxDocument
Dim pMap As IMap
Dim pFeatureLayer As IFeatureLayer
Dim pFeatureClass As IFeatureClass

ATTRIBUTE DATA MANAGEMENT 87

Set pMxDoc = ThisDocument

Set pMap = pMxDoc.FocusMap

Set pFeatureLayer = pMap.Layer(0)

Set pFeatureClass = pFeaturelayer.FeatureClass

Part 1 sets pFeatureClass to be the feature class of the top layer in the active map.

' Part 2: Define the table for a relate.

Dim pTabCollection As IStandaloneTableCollection
Dim pStTable As IStandaloneTable

Dim pFromTable As ITable

Set pTabCollection = pMap

Set pStTable = pTabCollection.StandaloneTable(0)
Set pFromTable = pStTable.Table

Part 2 defines pFromTable to be the underlying table of the first standalone table
in the active map.

' Part 3: Perform the relate.

Dim strLayerField As String

Dim strTableField As String

Dim pMemRelFact As IMemoryRelationshipClassFactory

Dim pRelClass As IRelationshipClass

Dim pRelClassCollEdit As IRelationshipClassCollectionEdit

' Prompt for the keys.

strLayerField = InputBox("Provide the key from the layer: ", "Relating a table to a layer", "")
strTableField = InputBox("Provide the key from the table: ", "Relating a table to a layer", "")
' Create a virtual relate.

Set pMemRelFact = New MemoryRelationshipClassFactory

Set pRelClass = pMemRelFact.Open("TableToLayer", pFromTable, strTableField, pFeatureClass, _

strLayerField, "wp", "wpdata", esriRelCardinalityOneToOne)
' Add the relate to the collection.
Set pRelClassCollEdit = pFeaturelLayer
pRelClassCollEdit.AddRelationshipClass pRelClass

End Sub

Part 3 starts by prompting for the keys for establishing the relate. Next, the code
creates pMemRelFact as an instance of the MemoryRelationshipClassFactory class.
The code then uses the Open method on IMemoryRelationshipClassFactory to create
a virtual relate referenced by pRelClass. Finally, the code switches to the IRelation-
shipClassCollectionEdit interface and uses the AddRelationshipClass method to add
pRelClass to the relation class collection of the feature layer.

Box 5.3 RelateTableToLayer_GP

RelateTableToLayer_GP uses the CreateRelationshipClass tool in the Data Man-
agement toolbox to create a relate between a feature class and a table. Both
datasets must reside in a geodatabase. For this example, the geodatabase is
relation.mdb, the feature class is wp, and the table is wpdata. Run the macro in

88 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

ArcCatalog. Enter wp in the first input box, ID in the second, wpdata in the third,
and ID in the fourth. ID is the key for the relate. When it is done, a relationship
class (wp_wpdata) should appear in relation.mdb. Except for using a personal
geodatabase, RelateTableToLayer_GP performs the same task as RelateTable-
ToLayer.

Private Sub RelateTableTolLayer_GP()
' This macro can only work with Geodatabase feature classes and tables.
' Create the geoprocessing object and define its workspace.
Dim GP As Object
Set GP = CreateObject("esriGeoprocessing.GpDispatch.1")
' Specify a geodatabase for GP's workspace.
Dim filepath As String
filepath = "c:\data\chap5\relation.mdb"
GP.Workspace = filepath
' CreateRelationshipClass <origin_table> <destination_table> <out_relationship_class>
' <SIMPLE | COMPOSITE> <forward_label> <backward_label>
' <NONE | FORWARD | BACKWARD | BOTH>
' <ONE_TO_ONE | ONE_TO_MANY | MANY_TO_MANY>

<NONE | ATTRIBUTED> <origin_primary_key> <origin_foreign_key>
' {destination_primary_key}{destination_foreign_key}
Dim table1 As String

table1 = InputBox("Enter the name of the origin table")
Dim key1 As String

key1 = InputBox("Enter the name of the origin key")

Dim table2 As String
table2 = InputBox("Enter the name of the destination table")

Dim key2 As String
key2 = InputBox("Enter the name of the destination key")
' Execute the createrelationshipclass tool.

GP.CreateRelationshipClass_management table1, table2, "wp_wpdata", "SIMPLE", "wpdata", "wp", _
"NONE", "ONE_TO_ONE", "NONE", key1, key2

End Sub

5.6.4 RelationalDatabase

RelationalDatabase creates relates between a feature class and three dBASE files from
arelational database. The macro performs the same function as using Relate in ArcMap
three times. RelationalDatabase has four parts. Part 1 defines the feature class, Part
2 defines the three dBASE files for relates, Part 3 creates three virtual relates, and Part
4 adds the relates to the relationship class collection of the feature layer.

Key Interfaces: IFeatureClass, ITable, IStandaloneTableCollection, IStandalone-
Table, IMemoryRelationshipClassFactory, IRelationshipClass, IRelationship-
ClassCollectionEdit

Key Members: FeatureClass, StandaloneTable(), Table, Open, AddRelationshipClass

Usage: Add mosoils.shp, comp.dbf, forest.dbf, and plantnm.dbf to an active map. The
macro assumes that the order of the three tables is comp, forest, and plantnm from

ATTRIBUTE DATA MANAGEMENT 89

top to bottom in the table of contents. Mosoils is a soil shapefile, and the three
dBASE files contain soil attributes from a relational database. The key relating
mosoils and comp is MUSYM, the key relating comp and forest is MUID, and the
key relating forest and plantnm is PLANTSYM. Import RelationalDatabase to
Visual Basic Editor. Run the macro. Enter the proper key in each of the three input
boxes. To verify that the macro works, select some records from the attribute table
of mosoils and then open comp to see the corresponding records.

Private Sub RelationalDatabase()
' Part 1: Get a handle on the mosoils attribute table.
Dim pMxDoc As IMxDocument
Dim pMap As IMap
Dim pFeatureLayer As IFeatureLayer
Dim pFeatureClass As IFeatureClass
Set pMxDoc = ThisDocument
Set pMap = pMxDoc.FocusMap
Set pFeatureLayer = pMap.Layer(0)
Set pFeatureClass = pFeaturelLayer.FeatureClass

Part 1 sets pFeatureClass to be the feature class of the top layer in the active map.

' Part 2: Define the tables for relates.

Dim pTabCollection As IStandaloneTableCollection
Dim pStTable1 As IStandaloneTable

Dim pCompTable As [Table

Dim pStTable2 As IStandaloneTable

Dim pForestTable As [Table

Dim pStTable3 As IStandaloneTable

Dim pPlantnmTable As [Table

Set pTabCollection = pMap

' Define the first table.

Set pStTable1 = pTabCollection.StandaloneTable(0)
Set pCompTable = pStTable1.Table

' Define the second table.

Set pStTable2 = pTabCollection.StandaloneTable(1)
Set pForestTable = pStTable2.Table

' Define the third table.

Set pStTable3 = pTabCollection.StandaloneTable(2)
Set pPlantnmTable = pStTable3.Table

Part 2 sets the tables underlying the three standalone tables as pCompTable,
pForestlable, and pPlantnmTable respectively.

' Part 3: Create three virtual relates.

Dim strField1 As String

Dim pMemRelFact As IMemoryRelationshipClassFactory
Dim pRelClass1 As IRelationshipClass

Dim strField2 As String

Dim pRelClass2 As IRelationshipClass

Dim strField3 As String

Dim pRelClass3 As IRelationshipClass

90 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

' Create the first virtual relate.
strField1 = InputBox("Provide the common field in Mosoils and Comp: ", "Relate Mosoils to Comp", ")
Set pMemRelFact = New MemoryRelationshipClassFactory

Set pRelClass1 = pMemRelFact.Open("Mosoils-Comp", pCompTable, strField1, pFeatureClass, strField1, _
"Mosoils", "Comp", esriRelCardinalityManyToMany)

' Create the second virtual relate.
strField2 = InputBox("Provide the common field in Comp and Forest: ", "Relate Comp to Forest", "")

Set pRelClass2 = pMemRelFact.Open("Comp-Forest", pForestTable, strField2, pCompTable, strField2, _
"Comp", "Forest", esriRelCardinalityManyToMany)

' Create the third virtual relate.
strField3 = InputBox("Provide the common field in Forest and Plantnm: ", "Relate Forest to Plantnm", ")

Set pRelClass3 = pMemRelFact.Open("Forest-Plantnm", pPlantnmTable, strField3, pForestTable, _
strField3, "Forest", "Plantnm"”, esriRelCardinalityManyToMany)

Part 3 uses the proper keys and tables to create three memory relationship classes,
referenced by pRelClass1, pRelClass2, and pRelClass3 respectively. Notice that the
Open method specifies many-to-many for the type of relationship (cardinality)
argument.

' Part 4: Add the relates to the collection.
Dim pRelClassCollEdit As IRelationshipClassCollectionEdit
Set pRelClassCollEdit = pFeaturelLayer
pRelClassCollEdit.AddRelationshipClass pRelClass1
pRelClassCollEdit. AddRelationshipClass pRelClass2
pRelClassCollEdit. AddRelationshipClass pRelClass3

End Sub

Part 4 performs a QI for the IRelationshipClassCollectionEdit interface and uses
the AddRelationshipClass method to add the three virtual relates to the relationship
class collection of pFeatureLayer.

CHAPTER 6

Data Conversion

A major application of geographic information systems (GIS) is integration of data
from different sources and in different formats. To allow for data integration, a GIS
must be able to read different data formats and to convert data from one format into
another. Data conversion can take place in a variety of ways of which the three most
common are:

Between vector data of different types
Between vector and raster data
From x-, y-coordinates to point data

Environmental Systems Research Institute Inc. (ESRI), has introduced a new
vector data model with the release of each major product for the past 20 years:
coverages with ArcInfo, shapefiles with ArcView, and geodatabases with ArcGIS.
Although ArcGIS users can use all three types of vector data, many have converted
traditional coverages and shapefiles into geodatabases to take advantage of object-
oriented technology and new developments from ESRI, Inc.

Conversion between vector and raster data is important for digitizing (e.g.,
tracing from scanned files) and data analysis. Vector to raster data conversion, or
rasterization, converts points, lines, and polygons to cells and fills the cells with
values from an attribute. Raster to vector data conversion, or vectorization, extracts
points and lines from cells and usually requires generalization and weeding of the
extracted features.

Tables that record the location of weather stations or a hurricane track typically
contain x-, y-coordinates. Representing the geographic locations, these x and y
coordinates can be converted into point features. It is an alternative to digitizing the
point locations on a digitizing tablet.

This chapter deals with the three common types of data conversion. Section 6.1
reviews data conversion operations in ArcGIS. Section 6.2 discusses objects that are
related to data conversion. Section 6.3 includes macros and Geoprocessing (GP)
macros for converting shapefiles into standalone feature classes or feature classes
in a feature dataset. Section 6.4 has macros for converting coverages into shapefiles

91

92 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

or geodatabases. Section 6.5 discusses macros for rasterization and vectorization
and a GP macro for rasterization. Section 6.6 has a macro and a GP macro for
converting x-, y-coordinates into point data. All macros start with the listing of key
interfaces and key members (properties and methods) and the usage.

6.1 CONVERTING DATA IN ARCGIS

ArcGIS has data conversion commands in all three applications of ArcCatalog,
ArcMap, and ArcToolbox. ArcToolbox is probably the first choice among many
users because it has a large set of data conversion tools in one place. Conversion
Tools in ArcToolbox offers the following seven categories:

From Raster

To CAD (computer-aided design)
To Coverage

To dBASE

To Geodatabase

To Raster

To Shapefile

3D Analyst Tools also offers conversion tools between raster and TIN (triangu-
lated irregular network), and Coverage Tools has tools for converting from and to
coverage.

ArcCatalog incorporates data conversion commands into the context menus. The
context menu of a personal geodatabase has the Import command for importing
feature classes, tables, and raster datasets to geodatabase. The context menu of a
shapefile or a coverage has the Export command for exporting the dataset to geo-
database and other formats. The context menu of an event table has the Create
Features command that can create point features from x- and y-coordinates and the
Export command that can export the table to dBASE and geodatabase.

In ArcMap, conversion of vector data from one format into another is available
through the Data/Export Data command in the dataset’s context menu. Conversion
between raster and vector data, on the other hand, is available through the Convert
command in Spatial Analyst and 3D Analyst. The Tools menu in ArcMap has the Add
XY Data command for converting a table with x-, y-coordinates into point features.

6.2 ARCOBJECTS FOR DATA CONVERSION

This section covers objects for feature data conversion, rasterization and vectoriza-
tion, and XY event.

6.2.1 Objects for Feature Data Conversion

The principal ArcObjects component for converting data between geodatabases,
shapefiles, and coverages is the FeatureDataConverter class (Figure 6.1). A feature

DATA CONVERSION 93

IFeatureDataConverter
4—— ConvertFeatureClass
44— ConvertFeatureDataset
4—— ConvertTable

Figure 6.1 [FeatureDataConverter has methods for converting feature datasets.

data converter object implements IFeatureDataConverter and IFeatureDataConverter2.
Both interfaces have methods for converting feature classes, feature datasets, and
tables. IFeatureDataConverter2 has the additional functionality of working with data
subsets. An alternative to [FeatureDataConverter is IExportOperation, which,
although with fewer options, also has methods for converting vector data of different
formats (Figure 6.2).

Three name objects appear frequently in this chapter. A WorkspaceName object
can identify and locate a workspace. To create a workspace name object, one must
define the type of workspace factory and the path name (Figure 6.3). The Work-
spaceFactoryProglID property on IWorkspaceName lets the programmer specify the
type of workspace factory. A path name specifies the path of a workspace, which
can be coded as a string or based on a generic PropertySet object. IPropertySet has
methods that can set and hold properties for objects such as workspaces.

A DatasetName object can represent various types of datasets (Figure 6.4).
IDatasetName has the properties of Name and WorkspaceName that let the program-
mer set the names of the dataset and the workspace of a dataset name object
respectively.

A FeatureClassName object can identify and locate an object, which may represent
a shapefile, a coverage, or a geodatabase feature class. Because FeatureClassName is
a type of the DatasetName class, we can Querylnterface (QI) for the IDatasetName
interface to specify the name and the workspace of the feature class. Likewise, because
FeatureClassName is a type of the Name class, we can perform a QI for the IName
interface and use the Open method to open the feature class (Figure 6.5).

6.2.2 Objects for Rasterization and Vectorization

The principal component for conversion between vector and raster data is the Raster-
ConversionOp class (Figure 6.6). A RasterConversionOp object implements

IExportOperation
«4— ExportFeatureClass

<

ExportTable

Figure 6.2 |ExportOperation has methods for exporting feature datasets.

94 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

IWorkspaceName
B— ConnectProperties
B— PathName

B— WorkspaceFactoryProgID

WorkspaceFactoryProgID:
esricore.AccessWorkspaceFactory
esricore.ArcInfoWorkspaceFactory
esricore.RasterWorkspaceFactory
esricore.ShapefileWorkspaceFactory

Figure 6.3 /WorkspaceName has properties for identifying workspace factory and path.

IDatasetName: | DatasetName
Name
WorkspaceName AN

[l
FeatureDataset- | |RasterDataset- TableName
Name Name

ObjectClassName
7AN

| FeatureClassName ‘

Figure 6.4 Types of DatasetName can share the properties of Name and WorkspaceName
on [DatasetName.

IName
/\
/\
FeatureClassName

IDatasetName O

Figure 6.5 A FeatureClassName object inherits IName and IDatasetName.

DATA CONVERSION 95

IConversionOp O————

RasterConversionOp
IRasterAnalysisEnvironment O——
IConversionOp IRasterAnalysisEnvironment
<4 RasterDataToLineFeatureData < SetCellSize
<4 RasterDataToPointFeatureData « SetExtent
< RasterDataToPolygonFeatureData
< ToFeatureData
< ToRasterDataset

Figure 6.6 A RasterConversionOp object supports IConversionOp and [RasterAnalysis-
Environment.

IConversionOp and IRasterAnalysisEnvironment. IConversionOp offers methods for
converting raster data to point, line, and polygon feature data as well as for converting
vector data to raster data. IRasterAnalysisEnvironment has members for the conver-
sion environment such as the output cell size.

A RasterDatasetName object is the raster equivalent of a FeatureClassName
object. But macros for rasterization or vectorization do not use raster dataset name
objects because methods on /ConversionOp require use of the actual datasets rather
than the name objects.

6.2.3 Objects for XY Event

XYEventSource, XYEventSourceName, and XYEvent2FieldsProperties are the pri-
mary components for converting x-, y-coordinates into point features (Figure 6.7).
An XY event source object is unique in the following ways:

¢ An XY event source object is created through an XY event source name object.

* An XY event source object is a type of a point feature class.

* The point feature class represented by an XY event source object is dynamic,
meaning that the feature class is generated from a table rather than a physical
dataset. Once a dynamic feature class is created, it can be exported to a shapefile
or a geodatabase feature class.

An XYEvent2FieldsProperties object implements IXYEvent2FieldsProperties,
which can define the properties of the x field, y field, and z field (optional) of a point
feature class. These properties can be passed on to an XY event source name object.
IXYEventSourceName also has members for specifying the source table and the
spatial reference.

96 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

IXYEventSourceName
B—] EventProperties

B—] EventTableName
B—] SpatialReference

IXYEvent2FieldsProperties
H—® XFieldName

H— YFieldName
H—M ZFieldName

Figure 6.7 XYEventSourceName and XYEvent2FieldProperties have properties that can
define an XYEventSource object.

6.3 CONVERTING SHAPEFILE TO GEODATABASE

A shapefile contains one set of spatial data, which may represent point, line, or area
features. When converted into the geodatabase format, a shapefile becomes a feature
class, which can be a standalone feature class or part of a feature dataset in the
geodatabase. This section covers both types of conversion. This section also shows
two ways of getting multiple shapefiles for conversion: one uses a dialog box and
the other uses the input box.

6.3.1 ShapefileToAccess

ShapefileToAccess converts a shapefile into a feature class and saves the output as a
standalone feature class in a new geodatabase. The macro performs the same function
as creating a new personal geodatabase in ArcCatalog and using the Import/Feature
Class (Single) command to import a shapefile to the geodatabase. ShapefileToAccess
is organized into three parts. Part 1 defines the output, including its workspace and
name, Part 2 defines the input, and Part 3 performs the data conversion. Shapefile-
ToAccess uses the lightweight name objects throughout the code.

Key Interfaces: [WorkspaceName, [FeatureClassName, IDatasetName, [Feature-
DataConverter

Key Members: WorkspaceFactoryProgID, PathName, Name, WorkspaceName, Con-
vertFeatureClass

Usage: Import ShapefileToAccess to Visual Basic Editor in ArcCatalog. Run the
macro. The macro reports “Shapefile conversion complete” when the conversion
is done. The macro adds Trial.mdb to the Catalog tree and Soils as a feature class
in the geodatabase. Soils is converted from soils.shp.

Private Sub ShapefileToAccess()
' Part 1: Define the output.
Dim pWorkspaceName As IWorkspaceName
Dim pFeatureClassName As IFeatureClassName
Dim pDatasetName As IDatasetName

DATA CONVERSION 97

' Define the workspace.

Set pWorkspaceName = New WorkspaceName
pWorkspaceName.WorkspaceFactoryProgID = "esricore.AccessWorkspaceFactory"
pWorkspaceName.PathName = "c:\data\chap6\Trial.mdb"

' Define the dataset.

Set pFeatureClassName = New FeatureClassName

Set pDatasetName = pFeatureClassName

Set pDatasetName.WorkspaceName = pWorkspaceName

pDatasetName.name = "Soils"

Part 1 first creates pWorkspaceName as an instance of the WorkspaceName class
and defines its WorkspaceFactoryProgID and PathName properties. Next, the code
creates pFeatureClassName as an instance of the FeatureClassName class and uses
the IDatasetName interface to set its WorkspaceName and Name properties.

' Part 2: Define the input.

Dim pInShpWorkspaceName As IWorkspaceName

Dim pFCName As IFeatureClassName

Dim pShpDatasetName As IDatasetName

' Define the workspace.

Set pInShpWorkspaceName = New WorkspaceName
pInShpWorkspaceName.PathName = "c:\data\chap6"
plnShpWorkspaceName.WorkspaceFactoryProgID = "esriCore.ShapefileWorkspaceFactory"
' Define the dataset.

Set pFCName = New FeatureClassName

Set pShpDatasetName = pFCName

pShpDatasetName.name = "soils.shp"

Set pShpDatasetName.WorkspaceName = plnShpWorkspaceName

Part 2 creates pInShpWorkspaceName as an instance of the WorkspaceName
class and specifies its PathName and WorkspaceFactoryProgID properties. Next,
the code creates pFCName as an instance of the FeatureClassName class and
accesses the IDatasetName interface to specify its Name and WorkspaceName
properties.

' Part 3: Perform data conversion.
Dim pShpToFC As IFeatureDataConverter
Set pShpToFC = New FeatureDataConverter
pShpToFC.ConvertFeatureClass pFCName, Nothing, Nothing, pFeatureClassName, Nothing, Nothing, "*, 1000, O
MsgBox "Shapefile conversion complete!”
End Sub

Part 3 creates pShpToFC as an instance of the FeatureDataConverter class and
uses the ConvertFeatureClass method on IFeatureDataConverter to convert pFCName
into pFeatureClassName. Besides the two object qualifiers, the ConvertFeatureClass
method specifies 1000 for the flush interval. The flush interval dictates the interval for
committing data, which may be important for loading large amounts of data into a
geodatabase. An alternative to [FeatureDataConverter for data conversion is IExport-
Operation, which also has methods for exporting feature classes and tables. For
converting a shapefile into a geodatabase feature class, /[ExportOperation functions in

98 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

nearly the same way as IFeatureDataConverter. The following bit of code replaces
IFeatureDataConverter with IExportOperation in Part 3 of ShapefileToAccess:

' Part 3: Use a new ExportOperation to complete the conversion task.

Dim pShpToFC As IExportOperation

Set pShpToFC = New ExportOperation
pShpToFC.ExportFeatureClass pFCName, Nothing, Nothing, Nothing, pFeatureClassName, O

Box 6.1 ShapefileToAccess_GP

ShapefileToAccess_GP uses the CreatePersonalGDB tool in the Management
toolbox and the FeatureclassToFeatureclass tool in the Conversion toolbox to first
create a personal geodatabase (lochsa.mdb) and then convert a shapefile (deer.shp)
to a standalone feature class (deer) in the geodatabase. Run the macro in Arc-
Catalog. The output can be examined in the Catalog tree.

Private Sub ShapefileToAccess_GP()

' Create the Geoprocessing object and define its workspace.

Dim GP As Object

Set GP = CreateObject("esriGeoprocessing.GpDispatch.1")

Dim filepath As String

filepath = "c:\data\chap6\"

GP.Workspace = filepath

' CreatePersonalGDB <out_folder_path> <out_name>

' Execute the createpersonalGDB tool.

GP.CreatePersonalGDB_management filepath, "lochsa.mdb"

' FeatureclassToFeatureclass <input_features> < output_location>

' <output_feature_class_name> {expression} {field_info} {SAME_AS_TEMPLATE |

' DISABLED | ENABLED} {SAME_AS_TEMPLATE | DISABLED | ENABLED}

' {configuration_keywordy} {first_spatial_grid}

' Execute the featureclasstofeatureclass tool.

GP.FeatureclassToFeatureclass_conversion "deer.shp”, "lochsa.mdb", "deer"
End Sub

6.3.2 MultipleShapefilesToAccess

MultipleShapefilesToAccess converts two or more shapefiles into standalone feature
classes and saves the feature classes in a new geodatabase. The macro performs the same
function as creating a new personal geodatabase in ArcCatalog and using the
Import/Feature Class (Multiple) command to import two or more shapefiles to the geo-
database. MultipleShapefilesToAccess has three parts. Part 1 defines the output and input
workspace name objects, Part 2 uses a dialog box to get the shapefiles to be converted,
and Part 3 uses a Do...Loop to convert shapefiles into standalone feature classes.

Key Interfaces: /Workspacename, IGxDialog, IGxObjectFilter, IEnumGxObject, IGx-
Dataset, [FeatureClassName, IDatasetName, [FeatureDataConverter

Key Members: WorkspaceFactoryProgID, PathName, AllowMultiSelect, ButtonCap-
tion, ObjectFilter, StartingLocation, Title, DoModalOpen, Next, Name, Workspace-
Name, ConvertFeatureClass

Usage: Import MultipleShapefilesToAccess to Visual Basic Editor in ArcCatalog. Run
the macro. Select landuse.shp, sewers.shp, and soils.shp from the dialog box for
conversion. The macro adds SiteAnalysis.mdb to the Catalog tree and landuse, sewers,

DATA CONVERSION 99

and soils, converted from the shapefiles, as feature classes in the geodatabase. The
macro uses the prefix of the shapefile (e.g., landuse) to name the output feature class.

Private Sub MultipleShapefilesToAccess()
' Part 1: Define the output and input workspaces.
Dim pWorkspaceName As IWorkspaceName
Dim plnShpWorkspaceName As IWorkspaceName
' Define the output workspace.
Set pWorkspaceName = New WorkspaceName
pWorkspaceName.WorkspaceFactoryProgID = "esricore.AccessWorkspaceFactory"
pWorkspaceName.PathName = "c:\data\chap6\SiteAnalysis.mdb"
' Define the input workspace.
Set pInShpWorkspaceName = New WorkspaceName
plnShpWorkspaceName.pathname = "c:\data\chap6"
pInShpWorkspaceName.WorkspaceFactoryProgID = "esriCore.ShapefileWorkspaceFactory"

Part 1 creates pWorkspaceName as an instance of the WorkspaceName class and
defines its WorkspaceFactoryProgID and PathName properties. The code creates and
defines pInShpWorkspaceName in the same way.

' Part 2: Prepare a dialog box for selecting shapefiles to convert.
Dim pGxDialog As IGxDialog
Dim pGxFilter As IGxObjectFilter
Dim pGxObjects As IEnumGxObject
Dim pGxDataset As IGxDataset
Set pGxDialog = New GxDialog
Set pGxFilter = New GxFilterShapefiles
' Define the dialog's properties.
With pGxDialog
AllowMultiSelect = True
.ButtonCaption = "Add"
Set .ObjectFilter = pGxFilter
.StartingLocation = pInShpWorkspaceName.PathName
.Title = "Select Shapefiles to Convert"
End With
' Open the dialog.
pGxDialog.DoModalOpen 0, pGxObjects
" Exit sub if no shapefile has been selected.
Set pGxDataset = pGxObjects.Next
If pGxDataset Is Nothing Then
Exit Sub
End If

Part 2 creates pGxDialog as an instance of the GxDialog class and pGxFilter as
an instance of the GxFilterShapefiles class. Next, the code defines the properties of
pGxDialog to allow for multiple selections, to start at the input workspace location,
and to show only shapefiles. The code then uses the DoModalOpen method on
IGxDialog to open the dialog box and to save the selected shapefiles into a collection.
If no shapefile has been selected, exit the sub.

' Part 3: Loop through each selected shapefile and convert it to a feature class.
Dim pFeatureClassName As IFeatureClassName
Dim pDatasetName As |IDatasetName

100 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

Dim pFCName As IFeatureClassName

Dim pShpDatasetName As IDatasetName

Dim pShpToFC As IFeatureDataConverter

Do Until pGxDataset Is Nothing
' Define the output dataset.
Set pFeatureClassName = New FeatureClassName
Set pDatasetName = pFeatureClassName
Set pDatasetName.WorkspaceName = pWorkspaceName
pDatasetName.name = pGxDataset.Dataset.name
' Define the input dataset.
Set pFCName = New FeatureClassName
Set pShpDatasetName = pFCName
pShpDatasetName.name = pGxDataset.Dataset.name & ".shp"
Set pShpDatasetName.WorkspaceName = pInShpWorkspaceName
' Perform data conversion.
Set pShpToFC = New FeatureDataConverter
pShpToFC.ConvertFeatureClass pFCName, Nothing, Nothing, pFeatureClassName, Nothing, Nothing, ", 1000, 0
Set pGxDataset = pGxObjects.Next

Loop

MsgBox "Shapefile conversions complete!”

End Sub

Part 3 steps through each shapefile selected for conversion. The code performs
a QI for the IDatasetName interface to specify the Name and WorkspaceName
properties of the output dataset and the input dataset. Then the code uses the
ConvertFeatureClass method to convert the input dataset into the output dataset.
The loop stops when nothing is advanced from pGxObjects.

6.3.3 ShapefilesToFeatureDataset

ShapefilesToFeatureDataset converts one or more shapefiles into feature classes
and saves the feature classes in a specified feature dataset of a geodatabase. The
output from the macro therefore follows a hierarchical structure of geodatabase,
feature dataset, and feature class. Because all feature classes in a feature dataset
must share the same spatial reference (i.e., the same coordinate system and extent),
a feature dataset is typically reserved for feature classes that are from the same study
area or participate in topological relationships with each other.

ShapefilesToFeatureDataset performs the same function as creating a new per-
sonal geodatabase, creating a new feature dataset, and using the Import/Feature Class
(Multiple) command to import one or more shapefiles to the geodatabase. By default,
a feature dataset uses the extent of the first shapefile as its area extent. If the first
shapefile has a smaller area extent, then portions of other shapefiles will disappear
after conversion.

ShapefilesToFeatureDataset is organized into two parts. Part 1 defines the output
workspace, the output feature dataset, and the input workspace; and Part 2 uses the
input box and a Do...Loop statement to get shapefiles for conversion.

DATA CONVERSION 101

Key Interfaces: /Workspacename, IFeatureDatasetName, [DatasetName, [Feature-
ClassName, IFeatureDataConverter

Key Members: WorkspaceFactoryProglD, PathName, Name, WorkspaceName, Con-
vertFeatureClass

Usage: Import ShapefilesToFeatureDataset to Visual Basic Editor in ArcCatalog. Run
the macro. Enter landuse, sewers, and soils sequentially in the input box. Click
Cancel in the input box to dismiss the dialog. The macro adds to the Catalog tree
a hierarchy of SiteAnalysis2.mdb, StudyAreal, and landuse, sewers, and soils. The
feature classes in the geodatabase are converted from the shapefiles.

Private Sub ShapefilesToFeatureDataset()
' Part 1: Define the output and input workspaces.
Dim pWorkspaceName As [WorkspaceName
Dim pFeatDSName As IFeatureDatasetName
Dim pDSName As IDatasetName
Dim pInShpWorkspaceName As IWorkspaceName
' Define the output workspace.
Set pWorkspaceName = New WorkspaceName
pWorkspaceName.WorkspaceFactoryProgID = "esricore.AccessWorkspaceFactory"
pWorkspaceName.PathName = "c:\data\chap6\SiteAnalysis2.mdb"
' Specify the output feature dataset.
Set pFeatDSName = New FeatureDatasetName
Set pDSName = pFeatDSName
Set pDSName.WorkspaceName = pWorkspaceName
pDSName.Name = "StudyAreal"
' Specify the input workspace.
Set pInShpWorkspaceName = New WorkspaceName
pInShpWorkspaceName.pathname = "c:\data\chap6"
pInShpWorkspaceName.WorkspaceFactoryProgID = "esriCore.ShapefileWorkspaceFactory"

Part 1 defines the output and input workspaces in the same way as Multiple-
ShapefilesToAccess. The change is with the feature dataset for the output. The code
creates pFeatDSName as an instance of the FeatureDatasetName class and switches
to the IDatasetName interface to define its WorkspaceName and Name properties.

' Part 2: Loop through every shapefile to be converted.

Dim pFeatureClassName As IFeatureClassName

Dim pDatasetName As IDatasetName

Dim pFCName As IFeatureClassName

Dim pShpDatasetName As IDatasetName

Dim pShpToFC As IFeatureDataConverter

Dim plnput As String

' Use the input box to get an input shapefile.

plnput = InputBox("Enter the name of the input shapefile")

' Loop through each input shapefile while the input box is not empty.

Do While pInput <>
' Define the output dataset.
Set pFeatureClassName = New FeatureClassName

102 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

Set pDatasetName = pFeatureClassName

Set pDatasetName.WorkspaceName = pWorkspaceName
pDatasetName.Name = plnput

' Define the input dataset.

Set pFCName = New FeatureClassName

Set pShpDatasetName = pFCName

pShpDatasetName.Name = plnput & ".shp"

Set pShpDatasetName.WorkspaceName = pInShpWorkspaceName
' Perform data conversion.

Set pShpToFC = New FeatureDataConverter

pShpToFC.ConvertFeatureClass pFCName, Nothing, pFeatDSName, pFeatureClassName, Nothing,
Nothing, ", 1000, O

plnput = InputBox("Enter the name of the input shapefile")
Loop

MsgBox "Shapefile conversions complete!"
End Sub

Part 2 uses the InputBox function and a Do...Loop statement to loop through

every shapefile to be converted. The ConvertFeatureClass method uses an additional
object qualifier of pFeatDSName for the feature dataset.

Box 6.2 ShapefilesToFeatureDataset_GP

ShapefilesToFeatureDataset_GP uses the CreatePersonalGeodatabase tool to create
trial. mdb, the CreateFeatureDataset tool to create analysisl, and the Featureclass-
ToGeodatabase tool to convert three shapefiles (landuse, sewers, and soils) into
feature classes and store them in analysisl. Parameter 1 for the FeatureclassToGeo-
database tool allows multiple input features; therefore, the macro does not need a
Do Loop. Run the macro in ArcCatalog, and examine the output in the Catalog tree.

Private Sub ShapefilesToFeatureDataset_GP()
' Create the Geoprocessing object and define its workspace.
Dim GP As Object
Set GP = CreateObject("esriGeoprocessing.GpDispatch.1")
' CreatePersonalGDB <out_folder_path> <out_name>
' Execute the createpersonalGDB tool.
GP.CreatePersonal GDB_management "c:\data\chap6", "trial.mdb"
' CreateFeatureDataset <out_dataset_path> <out_name> {spatial_reference}
' Execute the createfeaturedataset tool.
GP.CreateFeatureDataset_management "trial.mdb", "analysis1"
' Define two parameters: one for input features and the other for geodatabase.
Dim parameter1 As String
parameter1 = "landuse.shp;sewers.shp;soils.shp"
Dim parameter2 As String
parameter2 = "trial. ndb\analysis1"
' FeatureclassToGeodatabase <input_features; input_features...> < output_geodatabase>
' Execute the featureclasstogeodatabase tool.
GP.FeatureclassToGeodatabase_conversion parameter1, parameter2
End Sub

DATA CONVERSION 103

6.4 CONVERTING COVERAGE TO GEODATABASE
AND SHAPEFILE

This section covers conversion of traditional coverages into geodatabase feature
classes and shapefiles. A coverage consists of different datasets such as arc, tic, and
labels. A coverage based on the regions or dynamic segmentation data model has
even more datasets. Therefore, to convert a coverage, we must start by identifying
the dataset to be converted.

6.4.1 CoverageToAccess

CoverageToAccess converts a coverage to a feature class and saves the feature class
in a specified geodatabase. The macro performs the same function as creating a new
personal geodatabase in ArcCatalog and using the Import/Feature Class (Single)
command to import a coverage into the geodatabase. CoverageToAccess has three
parts. Part 1 defines the output including its workspace and name, Part 2 defines the
input including the workspace and the specific dataset of the coverage to be con-
verted, and Part 3 performs the data conversion.

Key Interfaces: IPropertySet, IWorkspaceFactory, IWorkspaceName, IFeatureClass-
Name, [DatasetName, [FeatureDataConverter

Key Members: SetProperty, Create, WorkspaceName, Name, PathName, Workspace-
FactoryProglD, ConvertFeatureClass

Usage: Import CoverageToAccess to Visual Basic Editor in ArcCatalog. Run the
macro. The macro adds emida.mdb to the Catalog tree and breakstrm as a feature
class in the geodatabase. The feature class in the geodatabase is converted from
the arcs of the breakstrm coverage.

Private Sub CoverageToAccess()
' Part 1: Define the output.
Dim pPropset As IPropertySet
Dim pOutAcFact As IWorkspaceFactory
Dim pOutAcWorkspaceName As IWorkspaceName
Dim pOutAcFCName As IFeatureClassName
Dim pOutAcDSName As IDatasetName
' Set the connection property.
Set pPropset = New PropertySet
pPropset.SetProperty "Database”, "c:\data\chap6"
' Define the workspace.
Set pOutAcFact = New AccessWorkspaceFactory
Set pOutAcWorkspaceName = pOutAcFact.Create('c:\data\chap6", "emida", pPropset, 0)
' Define the dataset.
Set pOutAcFCName = New FeatureClassName
Set pOutAcDSName = pOutAcFCName
Set pOutAcDSName.WorkspaceName = pOutAcWorkspaceName
pOutAcDSName.name = "breakstrm"

Part 1 defines the input. The code first creates pPropset as an instance of the
PropertySet class. The Create method on IWorkspaceFactory uses pPropset and other

104 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

arguments to create pOutAcWorkspaceName. Next, the code creates pOutAcFCName
as an instance of the FeatureClassName class and performs a QI for the IDatasetName
interface to set its WorkspaceName and Name properties.

' Part 2: Specify the Input.

Dim pInCovWorkspaceName As [WorkspaceName

Dim pFCName As IFeatureClassName

Dim pCovDatasetName As |IDatasetName

' Define the workspace.

Set pInCovWorkspaceName = New WorkspaceName
plnCovWorkspaceName.PathName = "c:\data\chap6"
plnCovWorkspaceName.WorkspaceFactoryProgID = "esriCore.ArcinfoWorkspaceFactory.1"
' Define the dataset of the coverage to be converted.

Set pFCName = New FeatureClassName

Set pCovDatasetName = pFCName

pCovDatasetName.name = "breakstrm:arc"

Set pCovDatasetName.WorkspaceName = plnCovWorkspaceName

Part 2 specifies the input. The code creates pInCovWorkspaceName as an instance
of the WorkspaceName class and defines its PathName and WorkspaceFactoryProgID
properties. Then the code creates pFFCName as an instance of the FeatureClassName
class and uses the IDatasetName interface to set the Name and WorkspaceName prop-
erties. Notice that the name is “breakstrm:arc,” which refers to the arcs of breakstrm.

' Part 3: Perform data conversion.
Dim pCovtoFC As IFeatureDataConverter
Set pCovtoFC = New FeatureDataConverter
pCovtoFC.ConvertFeatureClass pFCName, Nothing, Nothing, pOutAcFCName, Nothing, Nothing, "*, 1000, O
MsgBox "Coverage conversion complete!”
End Sub

Part 3 uses the ConvertFeatureClass method on IFeatureDataConverter to
convert pFCName to pOutAcFCName.

6.4.2 CoverageToShapefile

CoverageToShapefile converts a coverage into a shapefile. The macro performs the
same function as using the Coverage to Shapefile tool in ArcToolbox or the
Data/Export Data command in the context menu of a coverage in ArcMap. Coverage-
ToShapefile has three parts. Part 1 defines the input coverage’s workspace, dataset,
and geometry; Part 2 specifies the output workspace and dataset; and Part 3 converts
the coverage to a shapefile and adds the shapefile as a feature layer in the active map.

Key Interfaces: IWorkspaceName, IFeatureClassName, IDatasetName, IPropertySet,
IName, IFeatureDataConverter

Key Members: PathName, WorkspaceFactoryProgID, Name, WorkspaceName, Set-
Property, ConnectionProperties, ConvertFeatureClass

Usage: Add breakstrm.arc, the arc layer of the coverage breakstrm, to an active map.
Import CoverageToShapefile to Visual Basic Editor. Run the macro. The macro
creates breakstrm.shp and adds the shapefile as a feature layer to the active map.

DATA CONVERSION 105

Private Sub CoverageToShapefile()
' Part 1: Define the input coverage.
Dim pInCovWorkspaceName As IWorkspaceName
Dim pInFCName As IFeatureClassName
Dim pCovDatasetName As IDatasetName
' Define the workspace.
Set pInCovWorkspaceName = New WorkspaceName
pInCovWorkspaceName.pathname = "c:\data\chap6"
plnCovWorkspaceName.WorkspaceFactoryProgID = "esriCore.ArcinfoWorkspaceFactory.1"
' Define the dataset.
Set pInFCName = New FeatureClassName
Set pCovDatasetName = pInFCName
pCovDatasetName.Name = "breakstrm:arc"
Set pCovDatasetName.WorkspaceName = pInCovWorkspaceName

Part 1 defines the input coverage. The code first creates pInCovWorkspaceName
as an instance of the WorkspaceName class and defines its PathName and Work-
spaceFactoryProgID properties. Then the code creates pInFCName as an instance
of the FeatureClassName class and accesses the IDatasetName interface to define
its Name and WorkspaceName properties.

' Part 2: Define the output.

Dim pPropset As IPropertySet

Dim pOutShWSName As IWorkspaceName

Dim pOutShFCName As IFeatureClassName

Dim pOutshDSName As IDatasetName

' Set the connection property.

Set pPropset = New PropertySet

pPropset.SetProperty "DATABASE", "c:\data\chap6"

' Define the workspace.

Set pOutShWSName = New WorkspaceName
pOutShWSName.ConnectionProperties = pPropset
pOutShWSName.WorkspaceFactoryProgID = "esriCore.shapefileWorkspaceFactory.1"
' Define the dataset.

Set pOutShFCName = New FeatureClassName

Set pOutshDSName = pOutShFCName

Set pOutshDSName.WorkspaceName = pOutShWSName
pOutshDSName.Name = "breakstrm.shp"

Part 2 defines the output. The code first creates pPropset as an instance of the
PropertySet class and uses pPropset, along with the shapefile workspace factory, to
define an instance of the WorkspaceName class referenced by pOutShWSName. Next,
the code creates pOutShFCName as an instance of the FeatureClassName class and
accesses the IDatasetName interface to define its WorkspaceName and Name properties.

' Part 3: Convert the coverage to a shapefile and display the shapefile.
Dim pName As IName

Dim pCovtoshape As IFeatureDataConverter

Dim pOutShFC As IFeatureClass

Dim pOutSh As IFeaturelLayer

106 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

Dim pMxDoc As IMxDocument
Dim pMap As IMap
' Convert the coverage to a shapefile.
Set pCovtoshape = New FeatureDataConverter
pCovtoshape.ConvertFeatureClass plnFCName, Nothing, Nothing, pOutShFCName, Nothing, Nothing, "*, 1000, O
' Create a feature layer from the output feature class name object.
Set pName = pOutShFCName
Set pOutShFC = pName.Open
Set pOutSh = New FeaturelLayer
Set pOutSh.FeatureClass = pOutShFC
pOutSh.Name = "breakstrm.shp"
' Add the feature layer to the active map.
Set pMxDoc = ThisDocument
Set pMap = pMxDoc.FocusMap
pMap.AddLayer pOutSh
MsgBox "Coverage conversion complete!”
End Sub

Part 3 converts pInFCName to pOutShF CName by using the ConvertFeatureClass
method on [FeatureDataConverter. Next, the code opens a feature class referenced by
pOutShFC from its name object, and creates a feature layer from pOutShFC. Finally,
the code adds the feature layer referenced by pOutSh to the active map.

6.5 PERFORMING RASTERIZATION AND VECTORIZATION

This section covers rasterization and vectorization. Rasterization creates a raster and
populates the cells of the raster with values from an attribute of a feature class. The
raster is an ESRI grid, a software-specific raster. The attribute can be a specified
field or feature ID by default. Vectorization creates a feature class from a raster. The
cell values of the input raster are stored in a field of the feature class called
GRIDCODE. Other fields may be added through code.

6.5.1 FeatureToRaster

FeatureToRaster converts a feature layer into a permanent raster and adds the raster
to the active map. The input feature layer may represent a shapefile, a coverage, or
a geodatabase feature class. The output raster contains cell values that correspond
to the feature IDs of the input dataset.

The macro performs the same function as using the Convert/Features to Raster
command in Spatial Analyst. FeatureToRaster has three parts. Part 1 defines the
input feature layer, Part 2 performs the conversion and saves the output raster in a
specified workspace, and Part 3 creates a raster layer from the output and adds the
layer to the active map.

Key Interfaces: IWorkspace, IWorkspaceFactory, IConversionOp, IRasterAnalysisEn-
vironment, IRasterDataset

DATA CONVERSION 107

Key Members: OpenFromkFile, SetCellSize, ToRasterDataset, CreateFromDataset,
Name

Usage: Add nwroads.shp, an interstate highway shapefile of the Pacific Northwest, to
an active map. Import FeatureToRaster to Visual Basic Editor in ArcMap. Run
the macro. FeatureToRaster adds roadsgd as a raster layer to the active map.

Private Sub FeatureToRaster()
' Part 1: Define the input dataset.
Dim pMxDoc As IMxDocument
Dim pMap As IMap
Dim plnputFL As IFeaturelLayer
Dim plnputFC As IFeatureClass
Set pMxDoc = ThisDocument
Set pMap = pMxDoc.FocusMap
Set pInputFL = pMap.Layer(0)
Set pInputFC = plnputFL.FeatureClass

Part 1 sets pInputFC to be the feature class of the top layer in the active map.

' Part 2: Convert feature class to raster.

Dim pWS As IWorkspace

Dim pWSF As IWorkspaceFactory

Dim pConversionOp As IConversionOp

Dim pEnv As IRasterAnalysisEnvironment

Dim pOutRaster As IRasterDataset

' Set the output workspace.

Set pWSF = New RasterWorkspaceFactory

Set pWS = pWSF.OpenFromFile("c:\data\chap6", 0)

' Prepare a raster conversion operator, and perform the conversion.
Set pConversionOp = New RasterConversionOp

Set pEnv = pConversionOp

pEnv.SetCellSize esriRasterEnvValue, 5000

Set pOutRaster = pConversionOp.ToRasterDataset(plnputFC, "GRID", pWS, "roadsgd")

Part 2 performs the conversion. The code first defines the output workspace
referenced by pWS. Next, the code creates pConversionOp as an instance of the
RasterConversionOp class and uses the IRasterAnalysisEnvironment interface to
set the output cell size of 5000 (meters). The code then uses the ToRasterDataset
method on IConversionOp to convert pInputF'C into pOutRaster and to save the
output in pWS.

' Part 3: Create a new raster layer and add the layer to the active map.
Dim pOutRasterLayer As IRasterlLayer
Set pOutRasterLayer = New RasterLayer
pOutRasterlLayer.CreateFromDataset pOutRaster
pOutRasterLayer.Name = "roadsgd"
pMap.AddLayer pOutRasterLayer

End Sub

Part 3 uses the CreateFromDataset method on IRasterLayer to create a new
raster layer from pOutRaster, and adds the layer to the active map.

108 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

Box 6.3 FeatureToRaster_GP

FeatureToRaster_GP uses the FeatureToRaster tool in the Conversion toolbox
to convert nwroads.shp into a raster (roadsgd2). Enter RTE_NUMI in the input
box for the field to be used and 5000 (meters) for the output cell size. Run the
macro in ArcCatalog and examine the output in the Catalog tree.

Private Sub FeatureToRaster_GP()

' Create the Geoprocessing object.

Dim GP As Object

Set GP = CreateObject("esriGeoprocessing.GpDispatch.1")

' FeatureToRaster <input_features> <field> <output_raster> {cell_size}

Dim value As String

value = InputBox("Enter the field name for the cell value")

Dim size As Integer

size = InputBox("Enter the output cell size in meters")

' Execute the featuretoraster tool.

GP.FeatureToRaster_conversion "c:\data\chap6\nwroads.shp", value, "c:\data\chap6\roadsgd?2", size
End Sub

6.5.2 FCDescriptorToRaster

FeatureToRaster produces an output raster that has feature IDs as cell values. In
some cases, it is more useful to have cell values that correspond to county names
or highway numbers instead of feature IDs. FCDescriptorToRaster, which uses a
feature class descriptor as the input dataset, is useful for those cases. A Feature-
ClassDescriptor object implements [FeatureClassDescriptor, which has methods for
creating a feature class descriptor based on a specific field of a dataset (Figure 6.8).

FCDescriptorToRaster performs the same function as using the Convert/Fea-
tures to Raster command in Spatial Analyst. The Convert/Features to Raster dialog
allows the user to specify a field that corresponds to the cell value. FCDescriptor-
ToRaster has three parts. Part 1 creates a feature class descriptor from a feature
layer, Part 2 converts the feature class descriptor into a permanent raster, and Part
3 creates a new raster layer from the output raster and adds the layer to the active map.

Key Interfaces: IFeatureClassDescriptor, IWorkspace, IWorkspaceFactory, IConver-
sionOp, IRasterAnalysisEnvironment, IRasterDataset

Key Members: Create, OpenFromkFile, SetCellSize, ToRasterDataset, CreateFrom-
Dataset, Name

Usage: Add nwroads.shp to an active map. Import FCDescriptorToRaster to Visual
Basic Editor in ArcMap. Run the macro. FCDescriptorToRaster adds rtenumgd

IFeatureClassDescriptor
<4— Create
«4— CreateFromSelectionSet

Figure 6.8 Methods on IFeatureClassDescriptor.

DATA CONVERSION 109

as araster layer to the active map. The attribute table of rtenumgd has the Rte_num1
field that lists the highway numbers.

Private Sub FCDescriptorToRaster()
' Part 1: Get a handle on the descriptor of a shapefile to be converted.
Dim pMxDoc As IMxDocument
Dim pMap As IMap
Dim pInputFL As IFeatureLayer
Dim plnputFC As IFeatureClass
Dim pFCDescriptor As IFeatureClassDescriptor
Dim sFieldName As String
Set pMxDoc = ThisDocument
Set pMap = pMxDoc.FocusMap
Set pInputFL = pMap.Layer(0)
Set pInputFC = plnputFL.FeatureClass
' Create a feature class descriptor based on the field RTE_NUM1.
Set pFCDescriptor = New FeatureClassDescriptor
sFieldName = "RTE_NUM1"
pFCDescriptor.Create plnputFC, Nothing, sFieldName

Part 1 sets pInputFC to be the feature class of the top layer in the active map.
Next, the code creates pFCDescriptor as an instance of the FeatureClassDescriptor
class and assigns RTE_NUMI1 to the string variable sFieldName. The code then uses
the Create method on IFeatureClassDescriptor and sFieldName as an argument to
create pFCDescriptor.

' Part 2: Convert the feature class descriptor to a raster.

Dim pWS As IWorkspace

Dim pWSF As IWorkspaceFactory

Dim pConversionOp As IConversionOp

Dim pEnv As IRasterAnalysisEnvironment

Dim pOutRaster As IRasterDataset

Set pWSF = New RasterWorkspaceFactory

Set pWS = pWSF.OpenFromFile("c:\data\chap6", 0)

Set pConversionOp = New RasterConversionOp

Set pEnv = pConversionOp

pEnv.SetCellSize esriRasterEnvValue, 5000

' Use the feature class descriptor as the input for conversion.
Set pOutRaster = pConversionOp.ToRasterDataset(pFCDescriptor, "GRID", pWS, "rtenumgd")

Part 2 sets pWS as a reference to the output workspace and pConversionOp as
an instance of the RasterConversionOp class. The code then uses the ToRaster-
Dataset method and pFCDescriptor as an object qualifier to create pOutRaster.

' Part 3: Create a new raster layer and add the layer to the active map.
Dim pOutRasterLayer As IRasterlLayer
Set pOutRasterLayer = New RasterLayer
pOutRasterlLayer.CreateFromDataset pOutRaster
pOutRasterLayer.Name = "rtenumgd"
pMap.AddLayer pOutRasterLayer

End Sub

110 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

Part 3 creates a new raster layer from pOutRaster and adds the layer to the
active map.

6.5.3 RasterToShapefile

RasterToShapefile converts a raster into a shapefile. The macro performs the same
function as using the Convert/Raster to Features command in Spatial Analyst. The
output shapefile contains a default field called GRIDCODE that stores the cell values
of the input raster.

RasterToShapefile is organized into three parts. Part 1 defines the input raster,
Part 2 performs the conversion and saves the output shapefile in a specified work-
space, and Part 3 creates a feature layer from the output and adds the layer to the
active map.

Key Interfaces: IWorkspace, IWorkspaceFactory, IConversionOp, IFeatureClass

Key Members: OpenFromFile, RasterDataToLineFeatureData, FeatureClass, Name

Usage: Add nwroads_gd, a raster showing interstate highways in the Pacific Northwest,
to an active map. Import RasterToShapefile to Visual Basic Editor in ArcMap. Run
the macro. RasterToShapefile adds roads.shp as a feature layer to the active map.

Private Sub RasterToShapefile()
' Part 1: Get a handle on the input raster.
Dim pMxDoc As IMxDocument
Dim pMap As IMap
Dim plnputRL As IRasterLayer
Dim pInputRaster As IRaster
Set pMxDoc = ThisDocument
Set pMap = pMxDoc.FocusMap
Set pInputRL = pMap.Layer(0)
Set pInputRaster = plnputRL.Raster

Part 1 sets pInputRaster to be the raster of the top layer in the active map.

' Part 2: Convert the raster to a shapefile.

Dim pWS As IWorkspace

Dim pWSF As IWorkspaceFactory

Dim pConversionOp As IConversionOp

Dim pOutFClass As IFeatureClass

' Set the output workspace.

Set pWSF = New ShapefileWorkspaceFactory

Set pWS = pWSF.OpenFromFile("c:\data\chap6", 0)

' Prepare a raster conversion operation, and perform the conversion.
Set pConversionOp = New RasterConversionOp

Set pOutFClass = pConversionOp.RasterDataToLineFeatureData(plnputRaster, pWS, "roads.shp", True, True, 5000)

Part 2 sets pWS to be the workspace of the output shapefile. The code then
creates pConversionOp as an instance of the RasterConversionOp class and uses the
RasterDataToLineFeatureData method on IConversionOp to create pOutFClass.
The method requires pInputRaster and pWS as the object qualifiers. Additionally, it
has four arguments. The first is the name of the output dataset. The second, if true,

DATA CONVERSION 111

means that cells with values of <= 0 or no data belong to the background. The third,
if true, means applying line generalization or weeding to the output. The last is the
minimum length of dangling arcs on the output.

The IConversionOp interface also has a method called ToFeatureData, which
can convert a raster to a polyline shapefile. But, because ToFeatureData does not
include the options of line generalization and dangling arcs, the output is typically
less desirable than that from RasterDataToLineFeatureData.

' Part 3: Create a new raster layer and add the layer to the active map.
Dim pOutputFeatLayer As IFeatureLayer
Set pOutputFeatlLayer = New FeatureLayer
Set pOutputFeatlLayer.FeatureClass = pOutFClass
pOutputFeatLayer.Name = pOutFClass.AliasName
pMap.AddLayer pOutputFeatLayer

End Sub

Part 3 creates a new feature layer from pOutFClass and adds the layer to the
active map.

6.5.4 RasterDescriptorToShapefile

RasterDescriptorToShapefile uses a raster descriptor as an input and adds a field in
addition to GRIDCODE to the output shapefile. Like a feature class descriptor, a
raster descriptor is based on a specific field in a raster. A RasterDescriptor object
implements [RasterDescriptor, which has methods for creating raster descriptors
(Figure 6.9).

RasterDescriptorToShapefile has three parts. Part 1 creates a raster descriptor
from the input raster, Part 2 performs the conversion and saves the output shapefile
in a specified workspace, and Part 3 creates a feature layer from the output and adds
the layer to the active map.

Key Interfaces: [RasterDescriptor, IWorkspace, IWorkspaceFactory, IConversionOp,
IFeatureClass

Key Members: Create, OpenFromFile, RasterDataToPolygonFeatureData, Feature-
Class, Name

Usage: Add nwcounties_gd, a raster showing counties in the Pacific Northwest, to an
active map. Import RasterDescriptorToShapefile to Visual Basic Editor in ArcMap.
Run the macro. RasterDescriptorToShapefile adds Fips.shp as a feature layer to
the active map. The attribute table of Fips has FIPS (federal information processing
codes) as a field in addition to the default field of GRIDCODE.

IRasterDescriptor
<4— Create
<4— CreateFromSelectionSet

Figure 6.9 Methods on /RasterDescriptor.

112 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

Private Sub RasterDescriptorToShapefile()
' Part 1: Get a handle on the descriptor of the raster to be converted.
Dim pMxDoc As IMxDocument
Dim pMap As IMap
Dim plnputRL As IRasterLayer
Dim plnputRaster As IRaster
Dim pRasterDescriptor As IRasterDescriptor
Dim sFieldName As String
Set pMxDoc = ThisDocument
Set pMap = pMxDoc.FocusMap
Set pInputRL = pMap.Layer(0)
Set plnputRaster = plnputRL.Raster
' Create a raster descriptor based on the field Fips.
Set pRasterDescriptor = New RasterDescriptor
sFieldName = "Fips"
pRasterDescriptor.Create plnputRaster, Nothing, sFieldName

Part 1 sets pInputRaster to be the raster of the top layer in the active map. Next,
the code creates pRasterDescriptor as an instance of the RasterDescriptor class and
assigns Fips to the string variable sFieldName. The code then uses the Create method
on IRasterDescriptor to create pRasterDescriptor.

' Part 2: Convert the raster descriptor to a shapefile.

Dim pWS As IWorkspace

Dim pWSF As IWorkspaceFactory

Dim pConversionOp As IConversionOp

Dim pOutFClass As IFeatureClass

Set pWSF = New ShapefileWorkspaceFactory

Set pWS = pWSF.OpenFromFile("c:\data\chap6", 0)

Set pConversionOp = New RasterConversionOp

' Use the raster descriptor as the input for conversion.

Set pOutFClass = pConversionOp.RasterDataToPolygonFeatureData(pRasterDescriptor, pWS, "Fips.shp”, True)

Part 2 first sets pWS as a reference to the workspace for the output shapefile.
The code then creates pConversionOp as an instance of the RasterConversionOp
class and uses the RasterDataToPolygonFeatureData method on IConversionOp to
create pOutFClass. Notice that the method uses pRasterDescriptor as an object
qualifier.

' Part 3: Create a new raster layer and add the layer to the active map.
Dim pOutputFeatLayer As IFeatureLayer
Set pOutputFeatlLayer = New FeatureLayer
Set pOutputFeatLayer.FeatureClass = pOutFClass
pOutputFeatLayer.Name = pOutFClass.AliasName
pMap.AddLayer pOutputFeatLayer

End Sub

Part 3 creates a feature layer from pOutFClass and adds the layer to the
active map.

DATA CONVERSION 113

6.6 ADDING XY EVENTS

This section covers conversion of a table with x-, y-coordinates into point features.
The coordinates can be either geographic or projected. After conversion, each pair
of x-, y-coordinates becomes a point.

6.6.1 XYEvents

XYEvents adds a point layer from a table with x-, y-coordinates to an active map.
The source of the table is a text file. The layer can later be exported to a shapefile
based on the coordinate system that has already been defined for the x-, y-coordinates.
The macro performs the same function as using the Add XY Data command in
ArcMap’s Tools menu.

XYEvents is organized into three parts. Part 1 defines the text file in terms of
its workspace and name, Part 2 defines the event source including its event-to-fields
properties and spatial reference, and Part 3 creates a new feature layer from the
event source and adds the layer to the active map.

Key Interfaces: [WorkspaceName, [ITableName, [DatasetName, IXYEvent-
2FieldsProperties, ISpatialReferenceFactory, IProjectedCoordinateSystem, IXY-
EventSourceName, IXYEventSource

Key Members: PathName, WorkspaceFactoryProglD, Name, WorkspaceName,
XFieldName, YFieldName, ZFieldName, CreateProjectedCoordinateSystem, Event-
Properties, SpatialReference, EventlableName, Open, FeatureClass

Usage: Import XYEvents to ArcMap’s Visual Basic Editor. Run the macro. The macro
adds a layer named XYEvents to the active map. The source for XYEvents is
events.txt, a table with x-, y-coordinates.

Private Sub XYEvents()
' Part 1: Define the text file.
Dim pWorkspaceName As IWorkspaceName
Dim pTableName As [TableName
Dim pDatasetName As |DatasetName
' Define the input table’s workspace.
Set pWorkspaceName = New WorkspaceName
pWorkspaceName.PathName = "c:\data\chap6"
pWorkspaceName.WorkspaceFactoryProglD = "esriCore.TextFileWorkspaceFactory.1"
' Define the dataset.
Set pTableName = New TableName
Set pDatasetName = pTableName
pDatasetName.Name = "events.txt"
Set pDatasetName.WorkspaceName = pWorkspaceName

Part 1 defines the input text file. The code creates pWorkspaceName as an instance
of the WorkspaceName class and defines its PathName and WorkspaceFactoryProgID
properties. Notice that the ProgID is esriCore.TextFileWorkspaceFactory. Next, the
code creates pTableName as an instance of the TableName class and accesses the
IDatasetName interface to specify its properties of name and workspace.

114 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

' Part 2: Define the XY events source name object.
Dim pXYEvent2FieldsProperties As IXYEvent2FieldsProperties
Dim pSpatialReferenceFactory As ISpatialReferenceFactory
Dim pProjectedCoordinateSystem As IProjectedCoordinateSystem
Dim pXYEventSourceName As IXYEventSourceName
' Set the event to fields properties.
Set pXYEvent2FieldsProperties = New XYEvent2FieldsProperties
With pXYEvent2FieldsProperties
XFieldName = "easting"
.YFieldName = "northing"
ZFieldName = ""
End With
' Set the spatial reference.
Set pSpatialReferenceFactory = New SpatialReferenceEnvironment

Set pProjectedCoordinateSystem = _
pSpatialReferenceFactory.CreateProjectedCoordinateSystem(esriSRProjCS_NAD1927UTM_11N)

' Specify the event source and its properties.

Set pXYEventSourceName = New XYEventSourceName

With pXYEventSourceName
Set .EventProperties = pXYEvent2FieldsProperties
Set .SpatialReference = pProjectedCoordinateSystem
Set .EventTableName = pTableName

End With

Part 2 defines the event source. First, the code creates pXYEvent2FieldsProperties
as an instance of the XYEvent2FieldsProperties class and specifies the XFiledName,
YFieldName, and ZFieldName properties on IXYEvent2FieldsProperties in a With
statement. Next, the code creates a projected coordinate system referenced by
pProjectedCoordinateSystem. The code then creates pXYEventSourceName as an
instance of the XYEventSourceName class and defines the properties of EventProp-
erties, SpatialReference, and EventlableName in a With block. The referenced
objects for these three properties have all been defined previously.

' Part 3: Display XY events.
Dim pMxDoc As IMxDocument
Dim pMap As IMap
Dim pName As IName
Dim pXYEventSource As IXYEventSource
Dim pFLayer As IFeatureLayer
Set pMxDoc = ThisDocument
Set pMap = pMxDoc.FocusMap
' Open the events source name object.
Set pName = pXYEventSourceName
Set pXYEventSource = pName.Open
' Create a new feature layer and add the layer to the display.
Set pFLayer = New Featurelayer
Set pFLayer.FeatureClass = pXYEventSource
pFLayer.Name = "XYEvent"
pMap.AddLayer pFLayer
End Sub

DATA CONVERSION 115

Part 3 opens pXYEventSource from pXYEventSourceName. An event source object
can only be created from an event source name object. Finally, the code creates a
new feature layer from pXYEventSource and adds the layer to the active map.

Box 6.4 XYEvents_GP

XYEvents_GP uses the MakeXYEventLayer tool in the Data Management toolbox
to convert a text file, events.txt, with x-, y-coordinates into an event layer. In the
macro, the tool is specified without the toolbox (Management) because the tool’s
name is unique. Run this macro in ArcMap and examine the output.

Private Sub XYEvents_GP()
' Run this macro in ArcMap so that the event layer can be displayed.
' Create the Geoprocessing object.
Dim GP As Object
Set GP = CreateObject("esriGeoprocessing.GpDispatch.1")
' MakeXYEventLayer <table> <in_x_field> <in_y_field> <out_layer> {spatial_reference}
' Execute the makexyeventlayer tool.

GP.MakeXYEventLayer "c:\data\chapB\events.txt", "easting”, "northing", "c:\data\chap6\XYEvent2", _
esriSR_ProjCS_NAD1927UTM_11N

End Sub

CHAPTER 7

Coordinate Systems

A coordinate system is a location reference system for spatial features on the Earth’s
surface. Because a geographic information system (GIS) works with geospatial data,
the coordinate system plays a key role in a GIS project. There are two types of
coordinate systems: geographic and projected. A geographic coordinate system
consists of lines of longitude and latitude. A projected coordinate system is a plane
coordinate system based on a map projection. For example, the Universal Transverse
Mercator (UTM) coordinate system is based on the transverse Mercator projection.

A coordinate system, either geographic or projected, is defined by a set of param-
eters. The basic parameter of a geographic coordinate system is a datum, which is in
turn based on a spheroid. Two commonly used datums in the United States are NAD27
(North American Datum of 1927) based on the Clarke 1866 spheroid and NADS3
(North American Datum of 1983) based on the GRS80 (Geodetic Reference System
1980) spheroid. The parameters of a projected coordinate system define not only the
projection but also the geographic coordinate system that the projection is based on.
For example, the NAD27UTM_11N coordinate system is based on NAD27 as well
as the projection parameters of UTM_Zone_11 North, which includes the central
meridian at 117°W, a scale factor of 0.9996, the latitude of projection origin at the
equator, a false easting of 500,000 meters, and a false northing of 0.

ArcGIS saves the definition of a coordinate system in a spatial reference file
(e.g., a prj file for a shapefile). ArcGIS considers a geographic dataset without the
spatial reference information to have an unknown coordinate system. The presence
of the spatial reference information is not only required for projecting a dataset from
one coordinate system to another but also important for spatial analysis.

This chapter covers coordinate systems. Section 7.1 reviews commands for
managing coordinate systems in ArcGIS. Section 7.2 discusses objects that are
related to coordinate systems. Section 7.3 includes macros and a Geoprocessing
(GP) macro for defining on-the-fly projection. Section 7.4 has macros and a GP
macro for defining and importing a coordinate system. Section 7.5 includes macros
for datum change. Section 7.6 discusses macros for projecting and reprojecting
geographic datasets and a GP macro for projecting a shapefile. All macros start with
the listing of key interfaces and key members (properties and methods) and the usage.

117

118 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

7.1 MANAGING COORDINATE SYSTEMS IN ARCGIS

ArcMap uses on-the-fly projection for data display. On-the-fly projection takes the
spatial reference information of each dataset in a data frame and automatically
converts these datasets to a common coordinate system. This common coordinate
system is the coordinate system of the first layer added to the map. Alternatively, it
can be set as a property of the data frame. On-the-fly projection does not actually
change the original coordinate system of a dataset; it is designed for data display.
If a dataset has an unknown coordinate system, ArcMap may use an assumed
coordinate system. For example, NAD27 is the assumed geographic coordinate
system.

On-the-fly projection cannot replace the projecting tasks. Projecting a dataset is
recommended if the dataset is used frequently in a different coordinate system.
Likewise, projecting the datasets to be used in spatial analysis to the same coordinate
system is also recommended to obtain the most accurate results.

ArcToolbox has a suite of projection tools for working with coordinate systems.
By function, these tools can be classified into the following three groups:

Defining coordinate systems
Performing geographic transformations
Projecting datasets

7.1.1 Defining Coordinate Systems

ArcToolbox has the Define Projection tools for defining coordinate systems. There
are three basic methods for defining a coordinate system:

e Select lets the user choose a predefined coordinate system. The parameters of a
predefined coordinate system are known and already coded in the software.

e Import lets the user copy the spatial reference information from one dataset to
another.

e New is for a custom coordinate system. A custom geographic coordinate system
requires a datum, an angular unit, and a prime meridian for its definition. A custom
projected coordinate system requires the parameters of a geographic coordinate
system as well as the parameters of the projected coordinate system for its defi-
nition.

7.1.2 Performing Geographic Transformations

Geographic transformation refers to the transformation or conversion from one
geographic coordinate system to another. A common scenario for geographic trans-
formation is datum change, such as changing from NAD27 to NADS83. Geographic
transformation is included in the Project tools of ArcToolbox. Whenever a projection
involves a datum change, a dialog appears with the datum to convert from, the datum
to convert to, and a list of transformation methods. In North America, NADCON is
a popular method for transformation between NAD27 and NADS3. The Project tools
save new coordinates from a geographic transformation into the output dataset.

COORDINATE SYSTEMS 119

7.1.3 Projecting Datasets

ArcToolbox has the Project tools for feature and raster datasets. In both cases, the
tool produces a new dataset based on the defined coordinate systems for the input
and the output. Two common types of projections exist. The first type projects a
dataset from a geographic to a projected coordinate system, such as from NAD27
geographic coordinates to UTM coordinates. The second type projects a dataset from
one projected coordinate system to another, such as from UTM coordinates to State
Plane coordinates. The second type of projection is sometimes called reprojection.

7.2 ARCOBJECTS FOR COORDINATE SYSTEMS

A primary ArcObjects component for managing coordinate systems is the Spatial-
Reference abstract class. A spatial reference object implements ISpatialReference,
which provides access to the spatial reference properties of a dataset, such as the
name of its coordinate system.

The SpatialReference class is inherited by three coclasses: GeographicCoordinate-
System, ProjectedCoordinateSystem, and UnknownCoordinateSystem (Figure 7.1).
These coclasses manage geographic, projected, and unknown coordinate systems
respectively.

A geographic coordinate system object implements /GeographicCoordinateSys-
tem and IGeographicCoordinateSystemEdit (Figure 7.2). IGeographicCoordinate-
System provides access to the properties of coordinate unit, datum, name, and prime
meridian. IGeographicCoordinateSystemEdit has methods for defining the properties
of a new geographic coordinate system.

SpatialReference
JAN
Geographic- Projected- Unknown-
Coordinate- Coordinate- Coordinate-
System System System

Projection
Prime-
Meridian Parameter

Angular- Linear-
Unit Unit

Figure 7.1 SpatialReference is an abstract class with three types of coordinate systems:
geographic, projected, and unknown. Each geographic and projected coordinate
system is associated with a set of parameters.

120 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

IGeographicCoordinateSystem O—

GeographicCoordinateSystem
IGeographicCoordinateSystemEdit O—

IGeographicCoordinateSystem IGeographicCoordinateSystemEdit
B—— CoordinateUnit 44— Define
B—— Datum «4— DefineEx
B—— Name
B—— PrimeMeridian

Figure 7.2 A GeographicCoordinateSystem object supports /GeographicCoordinateSystem
and IGeographicCoordinateSystemEdit.

Likewise, a projected coordinate system object implements /ProjectedCoordi-
nateSystem and IProjectedCoordinateSystemEdit (Figure 7.3). IProjectedCoordi-
nateSystem provides access to the properties of central meridian, central parallel,
coordinate unit, false easting, false northing, geographic coordinate system, name,
scale factor, first standard parallel, second standard parallel, and others. IProjected-
CoordinateSystemEdit has the method to define the properties of a projected coor-
dinate system.

Two other primary components for coordinate systems are SpatialReference-
Environment and GeoTransformation. The SpatialReference Environment coclass lets

IProjectedCoordinateSystem O—

ProjectedCoordinateSystem
IProjectedCoordinateSystemEdit O—

IProjectedCoordinateSystem IProjectedCoordinateSystemEdit
H—H CentralMeridian 4— Define
H—@ CentralParallel

B—— CoordinateUnit

BE— FalseEasting

B— FalseNorthing

B—— GeographicCoordinateSystem
H—— Name

B— ScaleFactor

B— StandardParallell
B—M StandardParallel2

Figure 7.3 A ProjectedCoordinateSystem object supports /ProjectedCoordinateSystem and
IProjectedCoordinateSystemEdit.

COORDINATE SYSTEMS 121

ISpatialReferenceFactory O——
ISpatialReferenceFactory2 O—— .
ISpatialReferenceFactory3 O—— Environment

SpatialReference-

ISpatialReferenceFactory

< CreateGeographicCoordinateSystem

< CreateGeoTransformation

< CreateProjectedCoordinateSystem

< CreateESRISpatialReferenceFromPRJFile
< ExportESRISpatialReferenceToPRJFile
4—— CreateParameter

< CreateUnit

< CreateProjection

Figure 7.4 Methods on ISpatialReferenceFactory that a SpatialReferenceEnvironment object
supports.

the user create coordinate systems by using predefined spatial reference objects. A
spatial reference environment object implements three versions of ISpatialReference-
Factory (Figure 7.4). ISpatialReferenceFactory has the methods for using predefined
spatial reference objects such as NAD27 and UTM to define a coordinate system.
ISpatialReferenceFactory?2 has additional methods for working with predefined geo-
graphic transformations and ISpatialReferenceFactory3 has additional methods for
a vertical coordinate system and a high precision spatial reference.

The GeoTransformation abstract class manages geographic transformations
(Figure 7.5). Of particular interest to ArcGIS users in the United States is GridTrans-
formation, a subclass of GeoTransformation that uses a grid-based method for
converting geographic coordinates between the NAD27 and NADS83 datums.

Besides objects that are directly related to coordinate systems, macros for pro-
jection and reprojection must use other objects to create a new dataset. These
additional objects deal mainly with data conversion, fields, and the geometry field.
They are discussed in Section 7.5 and Section 7.6.

| GeoTransformation ‘

1

IGridTransformationO—| GridTransformation ‘

IGridTransformation f
NADCON-
Transformation

< GetSpatialReferences
«4— DPutSpatialReferences

Figure 7.5 NADCONTransformation is a type of GridTransformation, which is in turn a type
of GeoTransformation.

122 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

7.3 MANIPULATING ON-THE-FLY PROJECTION

This section offers two examples of altering the common coordinate system for on-
the-fly projection. The first uses the UTM, a predefined coordinate system. The
second uses the IDTM (Idaho Statewide Transverse Mercator) coordinate system, a
custom coordinate system.

7.3.1 UTM_OnTheFly

UTM_OnTheFly adopts a UTM coordinate system for an active map. The macro per-
forms the same function as using the map property to specify a UTM coordinate system
for the active map. UTM_OnTheFly has two parts. Part 1 defines the active map, and
Part 2 creates the NAD27UTM_11N coordinate system and assigns it to the active map.

Key Interfaces: ISpatialReferenceFactory, IProjectedCoordinateSystem

Key Members: CreateProjectedCoordinateSystem, SpatialReference

Usage: Import UTM_OnTheFly to Visual Basic Editor in ArcMap. If necessary, insert
a new data frame. Right-click the new data frame, select Properties, and make sure
that the Coordinate System tab shows no projection for the current coordinate
system. Run the macro. NAD_1927_UTM_Zone_11N should appear as the current
coordinate system.

Private Sub UTM_OnTheFly()
' Part 1: Define the active map.
Dim pMxDoc As IMxDocument
Dim pMap As IMap
Set pMxDoc = Application.Document
Set pMap = pMxDoc.FocusMap

Part 1 sets pMap to be the focus map of the current document.

' Part 2: Create a Projected Coordinate System.
Dim pSpatRefFact As ISpatialReferenceFactory
Dim pPCS As IProjectedCoordinateSystem
Set pSpatRefFact = New SpatialReferenceEnvironment
Set pPCS = pSpatReffFact.CreateProjectedCoordinateSystem(esriSRProjCS_NAD1927UTM_11N)
Set pMap.SpatialReference = pPCS
' Refresh the map.
pMxDoc.ActiveView.Refresh
End Sub

Part 2 first creates pSpatRefFact as an instance of the SpatialReferenceEnviron-
ment class. Next, the code uses the CreateProjectedCoordinateSystem method on
ISpatialReferenceFactory to create the NAD27UTM_11N coordinate system, which
is referenced by pPCS. Then the code sets pPCS to be the spatial reference of the
active map before refreshing the active view of the map document.

7.3.2 IDTM_OnTheFly

IDTM _OnTheFly adopts IDTM as the common coordinate system for an active
map. The macro performs the same function as using the map property to specify

COORDINATE SYSTEMS 123

the IDTM coordinate system for the active map. IDTM_OnTheFly has three parts.
Part 1 defines the projection, geographic coordinate system, and linear unit of IDTM,;
Part 2 stores IDTM’s projection parameters in an array; and Part 3 creates IDTM
and sets IDTM to be the active map’s coordinate system.

Key Interfaces: ISpatialReferenceFactory2, IGeographicCoordinateSystem, IProjec-
tion, 1Unit, ILinearUnit, IParameter, IProjectedCoordinateSystemEdit

Key Members: CreateProjection, CreateGeographicCoordinateSystem, CreateUnit,
CreateParameter, Define, SpatialReference

Usage: Import IDTM_OnTheFly to Visual Basic Editor in ArcMap. Run the macro.
To make sure that the macro works, right-click the active map and select Properties.
On the Coordinate System tab, UserDefinedPCS with the IDTM parameters should
appear as the current coordinate system.

Private Sub IDTM_OnTheFly()
' Part 1: Define the active map and the IDTM coordinate system.
Dim pMxDoc As IMxDocument
Dim pMap As IMap
Set pMxDoc = Application.Document
Set pMap = pMxDoc.FocusMap
' Define the coordinate system's projection, geographic coordinate system (datum), and unit.
Dim pSpatRefFact As ISpatialReferenceFactory2
Dim pProjection As IProjection
Dim pGCS As IGeographicCoordinateSystem
Dim pUnit As 1Unit
Dim pLinearUnit As ILinearUnit
Set pSpatRefFact = New SpatialReferenceEnvironment
Set pProjection = pSpatRefFact.CreateProjection(esriSRProjection_Transverse Mercator)
Set pGCS = pSpatRefFact.CreateGeographicCoordinateSystem(esriSRGeoCS_ NAD1983)
Set pUnit = pSpatRefFact.CreateUnit(esriSRUnNit_Meter)
Set pLinearUnit = pUnit

Part 1 creates pSpatRefFact as an instance of the SpatialReferenceEnvironment
class and uses methods on ISpatialReferenceFactory2 to define the following: trans-
verse Mercator for the projection, NADS83 for the geographic coordinate system,
and meter for the linear unit. The CreateUnit method initially creates an IUnit object,
but because ILinearUnit inherits IUnit, pLinearUnit can be set to be equal to pUnit.

' Part 2: Store the 5 known parameters of IDTM in an array.

Dim aParamArray(5) As IParameter

Set aParamArray(0) = pSpatRefFact.CreateParameter(esriSRParameter_FalseEasting)
aParamArray(0).Value = 2500000

Set aParamArray(1) = pSpatReffFact.CreateParameter(esriSRParameter_FalseNorthing)
aParamArray(1).Value = 1200000

Set aParamArray(2) = pSpatRefFact.CreateParameter(esriSRParameter_CentralMeridian)
aParamArray(2).Value = -114

Set aParamArray(3) = pSpatRefFact.CreateParameter(esriSRParameter_LatitudeOfOrigin)
aParamArray(3).Value = 42

Set aParamArray(4) = pSpatRefFact.CreateParameter(esriSRParameter_ScaleFactor)
aParamArray(4).Value = 0.9996

124 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

Part 2 uses the CreateParameter method on ISpatialReferenceFactory2 to store
the five known parameters of IDTM in an array. Using the index and value properties
of IParameter, the code stores the false easting of 2500000 as the first element of
the array, the false northing of 1200000 as the second element, the central meridian
of 114 as the third element, the latitude of origin of 42 as the fourth element, and
the scale factor of 0.9996 at the central meridian as the fifth element.

' Part 3: Use the Define method of IProjectedCoordinateSystemEdit to create IDTM.
Dim pProjCoordSysEdit As IProjectedCoordinateSystemEdit
Set pProjCoordSysEdit = New ProjectedCoordinateSystem
pProjCoordSysEdit.Define "UserDefinedPCS", _
"UserDefinedAlias", _
"UsrDefAbbrv", _
"Custom IDTM", _
"Suitable for Idaho", _
pGCS, _
pLinearUnit, _
pProjection, _
aParamArray
' Set the map to use IDTM and refresh the map.
Set pMap.SpatialReference = pProjCoordSysEdit
pMxDoc.ActiveView.Refresh
End Sub

Part 3 first creates pProjCoordSysEdit as an instance of the ProjectedCoordi-
nateSystem class. The code then uses the Define method on IProjectedCoordinate-
SystemEdit to define the coordinate system. The Define method requires nine object
qualifiers and arguments, each of which is listed in a separate line for clarity. The
first five arguments are the name, alias name, abbreviation, remarks, and usage of
the coordinate system. The last four object qualifiers relate to the projection param-
eters from Part 1. After IDTM is created, the macro sets the active map to use IDTM
as its spatial reference and refreshes the map.

7.4 DEFINING COORDINATE SYSTEMS

This section covers two scenarios in which the coordinate system of a geographic
dataset is defined. The first uses a VBA (Visual Basic for Applications) macro to
code the spatial reference information of a dataset. The information is presumably
available in the dataset’s metadata. The second defines the spatial reference infor-
mation of a dataset by copying the information from another dataset.

A GeoDataset object that implements /GeoDataset and IGeoDatasetSche-
makEdit is required to read or change a dataset’s spatial reference (Figure 7.6).
IGeoDataset has the read-only properties of Extent and SpatialReference. 1Geo-
DatasetSchemaEdit has the members of CanAlterSpatialReference and AlterSpa-
tialReference for editing a dataset’s spatial reference. Both interfaces are used in
this section.

COORDINATE SYSTEMS 125

IGeoDataset O—
IGeoDatasetSchemaEdit O—

GeoDataset

IGeoDataset IGeoDatasetSchemaEdit

B— Extent B—— CanAlterSpatialReference

B—— SpatialReference «4— AlterSpatialReference

Figure 7.6 A GeoDataset object supports /IGeoDataset and IGeoDatasetSchemaEdit.

7.4.1 DefineGCS

DefineGCS defines a shapefile’s geographic coordinate system as NAD27. The
macro performs the same function as using the Define Projection tool in ArcToolbox.
DefineGCS has three parts. Part 1 creates the NAD27 coordinate system, Part 2
defines the input shapefile, and Part 3 alters the shapefile’s spatial reference infor-
mation and exports the information to a prj file.

Key Interfaces: ISpatialReferenceFactory, IGeographicCoordinateSystem, ISpatial-
Reference, IGeoDataset, 1GeoDatasetSchemaEdit

Key Members: CreateGeographicCoordinateSystem, ExportESRISpatialReference-
ToPRJFile, CanAlterSpatialReference, CreateESRISpatialReferenceFromPRJFile,
AlterSpatialReference, SpatialReference

Usage: Add idll.shp to the active map in ArcMap. Without a spatial reference file, idll
has an assumed NAD27 geographic coordinate system. Import DefineGCS to
Visual Basic Editor in ArcMap. Run the macro. A message box verifies that
GCS_North_American_1927 is the new spatial reference for idll. The macro also
creates a prj file with the prefix of the shapefile name.

Private Sub DefineGCS()
' Part 1: Create the NAD27 coordinate system.
Dim pSpatRefFact As ISpatialReferenceFactory
Dim pGeogCS As |IGeographicCoordinateSystem
Dim pSpatialReference As ISpatialReference
Set pSpatRefFact = New SpatialReferenceEnvironment
Set pGeogCS = pSpatRefFact.CreateGeographicCoordinateSystem(esriSRGeoCS_NAD1927)

Part 1 creates pSpatRefFact as an instance of the SpatialReferenceEnvironment
class and uses the CreateGeographicCoordinateSystem method to create a geo-
graphic coordinate system based on NAD27 and referenced by pGeogCS.

' Part 2: Define the input shapefile.
Dim pMxDoc As IMxDocument

Dim pMap As IMap

Dim pFeatureLayer As IFeatureLayer
Dim pFeatureClass As IFeatureClass
Set pMxDoc = Application.Document
Set pMap = pMxDoc.FocusMap

126 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

Set pFeatureLayer = pMap.Layer(0)
Set pFeatureClass = pFeaturelLayer.FeatureClass

Part 2 defines pFeatureLayer to be the top layer in the active map and pFeature-
Class to be its feature class.

' Part 3: Verify and alter the shapefile's spatial reference.
Dim pGeoDataset As IGeoDataset
Dim pGeoDatasetEdit As IGeoDatasetSchemaEdit
Set pGeoDatasetEdit = pFeatureClass
' Verify if the shapefile's spatial reference can be altered.
If (nGeoDatasetEdit.CanAlterSpatialReference = True) Then
' Alter the target layer's spatial reference.
pGeoDatasetEdit.AlterSpatialReference pGeogCS
Else
Exit Sub
End If
' Get the spatial reference information and export it to a prj file.
Set pGeoDataset = pFeatureClass
Set pSpatialReference = pGeoDataset.SpatialReference
pSpatRefFact.ExportESRISpatialReferenceToPRJFile "c:\data\chap7\idll", pSpatialReference
MsgBox pSpatialReference.Name
End Sub

Part 3 first performs a Querylnterface (QI) for the IGeoDatasetSchemaEdit
interface and uses the CanAlterSpatialReference property to test whether the
spatial reference of pFeatureClass can be altered. If it can be, the code uses the
AlterSpatialReference method to alter the spatial reference with pGeogCS. If it
cannot be, exit the sub. Next, the code uses the IGeoDataset interface to assign
the spatial reference of pFeatureClass to pSpatialReference. The ExportESRISpa-
tialReferenceToPRJFile method on ISpatialReferenceFactory then exports pSpa-
tialReference to idll.prj. Finally, a message box displays the name of the updated
spatial reference.

Box 7.1 DefineGCS_GP

DefineGCS_GP uses the DefineProjection tool in the Data Management toolbox to
define the geographic coordinate system of idl/[2.shp, which has an assumed NAD27
geographic coordinate system. Run the macro in ArcCatalog and use the metadata
tab to check the outcome.

Private Sub DefineGCS_GP()

' Create the Geoprocessing object.

Dim GP As Object

Set GP = CreateObject("esriGeoprocessing.GpDispatch.1")

' DefineProjection <in_dataset> <coordinate_system>

' Execute the defineprojection tool.

GP.DefineProjection_management "c:\data\chap7\idll2. shp", esriSRGeoCS_NAD1927
End Sub

COORDINATE SYSTEMS 127

7.4.2 CopySpatialReference

CopySpatialReference copies the spatial reference from a source layer to a target layer.
The macro performs the same function as using the Project tool in ArcToolbox to import
the spatial reference from one dataset to another. CopySpatialReference assumes that
the prj file of the source layer already exists on disk. If it does not exist, one can use a
macro similar to DefineGCS to first create the prj file. The macro has two parts. Part
1 defines the target layer, and Part 2 verifies that the target layer’s spatial reference is
unknown and can be altered, before copying the prj file from the source layer.

Key Interfaces: IGeoDataset, ISpatialReference, ISpatialReferenceFactory, 1Geo-
DatasetSchemakEdit, IProjectedCoordinateSystem

Key Members: SpatialReference, CanAlterSpatialReference, CreateESRISpatialRef-
erenceFromPRJFile, AlterSpatialReference

Usage: Add emidastrm.shp, a stream shapefile with an unknown coordinate system,
to an active map. Import CopySpatialReference to Visual Basic Editor in ArcMap.
Run the macro. The macro creates emidastrm.prj by copying the prj file of emidalat
on disk. emidalat is an elevation grid projected onto the NAD1927_UTM_Zone
11N coordinate system. Its prj file resides in the emidalat folder as prj.adf. Two
messages appear during the execution of the macro: “unknown,” the initial coor-
dinate system for emidastrm; and “NAD_1927_UTM_11N,” the new spatial reference
for emidastrm.

Private Sub CopySpatialReference()
' Part 1: Define the target layer.
Dim pMxDoc As IMxDocument
Dim pMap As IMap
Dim pTargetFL As IFeatureLayer
Dim pTargetGD As IGeoDataset
Set pMxDoc = ThisDocument
Set pMap = pMxDoc.FocusMap
Set pTargetFL = pMap.Layer(0)
Set pTargetGD = pTargetFL.FeatureClass

Part 1 sets pTargetFL to be the top layer in the active map and pTargetDG to be

its feature class.

«»

' Part 2: Copy a prj file on disk to be the target layer's.

Dim pTargetSR As ISpatialReference

Dim pGeoDatasetEdit As IGeoDatasetSchemaEdit

Dim pSpatRefFact As ISpatialReferenceFactory

Dim pProjCoordSys As IProjectedCoordinateSystem

Set pTargetSR = pTargetGD.SpatialReference

MsgBox pTargetSR.Name

' Verify that the target layer has unknown spatial reference.

If (pTargetSR.Name = "Unknown") Then
Set pGeoDatasetEdit = pTargetGD
' If the spatial reference can be altered, create a prj file for the target layer.
If (pGeoDatasetEdit.CanAlterSpatialReference = True) Then

128 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

Set pSpatRefFact = New SpatialReferenceEnvironment

Set pProjCoordSys = pSpatReffFact.CreateESRISpatialReferenceFromPRJFile _
(c:\data\chap7\emidalat\prj.adf")

' Alter the target layer's spatial reference.
pGeoDatasetEdit.AlterSpatialReference pProjCoordSys
' Get the updated spatial reference and report its name.
Set pTargetSR = pTargetGD.SpatialReference
MsgBox pTargetSR.Name
Else
Exit Sub
End If
Else
Exit Sub
End If
End Sub

Part 2 sets pTargetSR to be the spatial reference of pTargetGD. If the name of
pTargetSR is unknown, the code switches to the IGeoDatasetSchemaEdit interface
and verifies that its spatial reference can be altered. If it can be, the code uses the
CreateESRISpatialReferenceFromPRJFile method on ISpatialReferenceFactory to
create pProjCoordSys from prj.adf, the prj file of the source layer. The code then
alters the spatial reference of pTargetDG with pProjCoordSys. A message box
follows and reports the name of the target layer’s new spatial reference.

7.5 PERFORMING GEOGRAPHIC TRANSFORMATIONS

A datum change may take place between two geographic coordinate systems, between
a geographic and a projected coordinate system, or between two projected coordinate
systems. Each scenario requires a geographic transformation. This section deals only
with the geographic transformations between two geographic coordinate systems.
The other two scenarios are treated as reprojection and are covered in Section 7.6.

7.5.1 NAD27to83 Map

NAD27to83_Map transforms the geographic coordinate system of an active map
from NAD27 to NADS83. The macro performs the same function as using the map
property to change the geographic coordinate system of an active map. Because on-
the-fly projection includes datum transformation, NAD83 applies to existing as well
as new layers in the active map. NAD27to83_Map has two parts. Part 1 performs
the geographic transformation from NAD27 to NADS83, and Part 2 applies the
transformation to the spatial reference property of the active map.

Key Interfaces: ISpatialReferenceFactory2, IGridTransformation, IGeographicCoor-
dinateSystem

Key Members: CreateGeoTransformation, GetSpatialReferences, SpatialReference

Usage: Right-click the active data frame in ArcMap, and select Properties. On the
Coordinate System tab of the next dialog, click the Clear button to clear the current

COORDINATE SYSTEMS 129

coordinate system, if necessary. Add idlI[27.shp to the map. The map property
shows GCS_North_American_1927 as the current coordinate system. Import
NAD27t0o83_Map to Visual Basic Editor. Run the macro. The map’s current coor-
dinate system should now appear as GCS_North_American_1983.

Private Sub Nad27t083_Map()
' Part 1: Perform a geographic transformation from NAD27 to NAD83.
Dim pSpatRefFact As ISpatialReferenceFactory2
Dim pGeotransNAD27toNAD83 As IGridTransformation
Dim pFromGCS As IGeographicCoordinateSystem
Dim pToGCS As IGeographicCoordinateSystem
Set pSpatReffFact = New SpatialReferenceEnvironment

Set pGeotransNAD27toNAD83 = pSpatRefFact.CreateGeoTransformation _
(esriSRGeoTransformation_NAD_1927_TO_NAD_1983_NADCON)

pGeotransNAD27toNAD83.GetSpatialReferences pFromGCS, pToGCS

MsgBox "The geographic coordinate system has been changed from " & pFromGCS.Name & "to " & _
pToGCS.Name

Part 1 creates pSpatRefFact as an instance of the SpatialReferenceEnvironment
class and uses the CreateGeoTransformation method on ISpatialReferenceFactory?2
to create pGeotransNAD27toNADS83, a reference to IGridTransformation. The trans-
formation is grid based and uses the NADCON method. The code then uses the
GetSpatialReferences method on IGridTransformation to verify the geographic coor-
dinate systems involved in the transformation.

' Part 2: Set the spatial reference of the active map.
Dim pMxDoc As IMxDocument
Dim pMap As IMap
Set pMxDoc = Application.Document
Set pMap = pMxDoc.FocusMap
Set pMap.SpatialReference = pToGCS
End Sub

Part 2 sets the spatial reference of the active map to be that of pToGCS, the
output of the geographic transformation from Part 1.

7.5.2 NAD27to83 Shapefile

NAD27to83_Shapefile reprojects a shapefile based on NAD27 to a new shapefile
based on NADS83. The macro performs the same function as using the Project tool
in ArcToolbox to transform the shapefile from NAD27 to NAD83 coordinates.
NAD27t083_Shapefile has six parts. Part 1 defines the input shapefile. Part 2 per-
forms a geographic transformation from NAD27 to NADS3. Part 3 defines the output
shapefile. Part 4 creates fields in the output based on the input fields. Part 5 finds
the geometry field and defines the field’s spatial reference and spatial index. Part 6
projects the input into the output and reports any processing errors.

Because NAD27t083_Shapefile creates a new shapefile from reprojection, the
macro requires the use of objects that are not directly related to coordinate systems.

A FeatureDataConverter object implements [FeatureDataConverter and
IFeatureDataConverter2 (Figure 7.7). Both interfaces have methods for converting

130 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

IFeatureDataConverter O——
FeatureDataConverter
[FeatureDataConverter2 O———
T
|
[FeatureDataConverter ;
« ConvertFeatureClass R .
| EnumlInvalidObject |
« ConvertFeatureDataset '
< ConvertTable |

v
| InvalidObjectInfo |

Figure 7.7 A FeatureDataConverter object creates an EnuminvalidObject, which in turn creates
an InvalidObjectinfo object.

feature classes, feature datasets, and tables. [FeatureDataConverter2 has the addi-
tional functionality of working with data subsets. Created by a feature data converter
object, an EnumlInvalidObject enumerator captures objects that have failed the con-
version process. Created by an EnuminvalidObject enumerator, InvalidObjectinfo
provides information about failed objects.

A FieldChecker object implements IFieldChecker, which has methods for cre-
ating a new set of fields from another set and for validating the fields (Figure 7.8).
A field checker object creates an EnumFieldError enumerator and a FieldError
object for fields that have caused problems in the conversion process.

Accessed from a field, a GeometryDef object defines the spatial properties of a
feature class (Figure 7.9). A GeometryDef object implements IGeometryDef and
1GeometryDefEdit. IGeometryDef has the read-only access to the spatial properties,
whereas IGeometryDefEdit has the write-only access to define the spatial properties.

Key Interfaces: ISpatialReferenceFactory2, IGridTransformation, IGeographicCoor-
dinateSystem, IWorkspaceName, I[FeatureClassName, IDatasetName, IName,
IGeoDataset, IFields, IFieldChecker, IField, IGeometryDef, 1GeometryDefEdit,
IFeatureDataConverter

Key Members: CreateGeoTransformation, GetSpatialReferences, SpatialReference,
WorkspaceFactoryProgID, PathName, Name, WorkspaceName, Fields, Validate,
FieldCount, Field(), GeometryDef, ConvertFeatureClass

IFieldChecker O0——— FieldChecker

T
|
IFieldChecker |

¢ Validate EnumFieldError

FieldError

Figure 7.8 A FieldChecker object creates an EnumFieldError object, which in turn creates a
FieldError object.

COORDINATE SYSTEMS 131

Fields

IGeometryDef O—
IGeometryDefEdit O—

GeometryDef

IGeometryDefEdit
—# GeometryType

—# GridCount
—M GridSize

— SpatialReference

Figure 7.9 The relationship between the Fields, Field, and GeometryDef classes.

Usage: Import NAD27to83_Shapefile to Visual Basic Editor. Run the macro. The
macro transforms idll27.shp in NAD27 geographic coordinates into id/I/83.shp in
NADS3 geographic coordinates. Check the metadata of both shapefiles to verify
the transformation. Also check the fields of idllS§3 to make sure that they are
identical to those of idlI27.

Private Sub NAD27t083_Shapefile()
' Part 1: Define the shapefile.
Dim pInWSName As IWorkspaceName
Dim pInFCName As IFeatureClassName
Dim pInDatasetName As IDatasetName
Dim pName As IName
Dim pInFC As IFeatureClass
' Set the input shapefile's workspace and path names.
Set pInWSName = New WorkspaceName
plnWSName.WorkspaceFactoryProglD = "esriCore.ShapefileWorkspaceFactory.1"
pInWSName.PathName = "c:\data\chap7"
' Set the input feature class and dataset names.
Set pInFCName = New FeatureClassName
Set plnDatasetName = pInFCName
plnDatasetName.Name = "idll27"
Set pInDatasetName.WorkspaceName = plnWSName
' Set the input geodataset.
Set pName = pInFCName
Set pInFC = pName.Open

Part 1 uses the name objects to define the input shapefile’s workspace, feature
class, and name. The code creates pInFCName as an instance of the FeatureClass-
Name class and performs a QI for the IDatasetName interface to define its name
and workspace. Next, the code sets pName, a reference to IName, to be pInFCName,
and uses the Open method on IName to open pInFC.

132 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

' Part 2: Perform a geographic transformation from NAD27 to NAD83.
Dim pSpatRefFact As ISpatialReferenceFactory2

Dim pGeotransNAD27toNAD83 As IGridTransformation

Dim pFromGCS As IGeographicCoordinateSystem

Dim pToGCS As IGeographicCoordinateSystem

Set pSpatReffFact = New SpatialReferenceEnvironment

Set pGeotransNAD27toNAD83 = pSpatRefFact.CreateGeoTransformation _
(esriSRGeoTransformation_NAD_1927_TO_NAD_1983_NADCON)

' Verify the From and To geographic coordinate systems.
pGeotransNAD27toNAD83.GetSpatialReferences pFromGCS, pToGCS
MsgBox "The geographic transformation is from " & pFromGCS.Name & " to " & pToGCS.Name

Part 2 performs a geographic transformation from NAD27 to NAD83. The code
creates pSpatRefFact as an instance of the SpatialReferenceEnvironment class and
uses the CreateGeoTransformation method on ISpatialReferenceFactory2 to create
pGeotransNAD27toNADS3. The code then uses the GetSpatialReferences method
on IGridTransformation to return the input and output geographic coordinate sys-
tems, which are referenced by pFromGCS and pToGCS respectively.

' Part 3: Define the output shapefile.

Dim pOutWSName As IWorkspaceName

Dim pOutFCName As IFeatureClassName

Dim pOutDataSetName As |IDatasetName

' Set the output shapefile's workspace and path names.
Set pOutWSName = New WorkspaceName
pOutWSName.WorkspaceFactoryProgID = "esriCore.ShapeFileWorkspaceFactory.1"
pOutWSName.PathName = "c:\data\chap7"

' Set the output feature class and dataset names.

Set pOutFCName = New FeatureClassName

Set pOutDataSetName = pOutFCName

Set pOutDataSetName.WorkspaceName = pOutWSName
pOutDataSetName.Name = "idll83"

Part 3 defines the output shapefile’s workspace, feature class, and name in the
same way as Part 1. Only the name objects are used.

' Part 4. Create the output fields based on the input’s fields.
Dim pOutFCFields As IFields

Dim pInFCFields As IFields

Dim pFieldCheck As IFieldChecker

Dim i As Long

Set pInFCFields = pInFC.Fields

Set pFieldCheck = New FieldChecker

pFieldCheck.Validate pInFCFields, Nothing, pOutFCFields

Part 4 creates pFieldCheck as an instance of the FieldChecker class and uses the
Validate method on IFieldChecker to create the output fields referenced by pOut-
FCFields from the input fields referenced by pInFCFields. Because the input and
output are both shapefiles, the code does not have to perform error checking using
the EnumkFieldError and FieldError objects.

COORDINATE SYSTEMS 133

' Part 5: Locate and define the geometry field.
Dim pGeoField As IField
Dim pOutFCGeoDef As IGeometryDef
Dim pOutFCGeoDefEdit As IGeometryDefEdit
' Find the index of the geometry field.
For i = 0 To pOutFCFields.FieldCount - 1
If pOutFCFields.Field(). Type = esriFieldTypeGeometry Then
Set pGeoField = pOutFCFields.Field(i)
Exit For
End If
Next i
' Get the geometry field's geometry definition.
Set pOutFCGeoDef = pGeoField. GeometryDef
' Define the spatial index and spatial reference.
Set pOutFCGeoDefEdit = pOutFCGeoDef
pOutFCGeoDefEdit.GridCount = 1
pOutFCGeoDefEdit.GridSize(0) = 200
Set pOutFCGeoDefEdit.SpatialReference = pToGCS

Part 5 locates and defines the geometry field. The code loops through pOut-
FCFields, checks for the geometry type, and saves the geometry field, referenced
by pGeoField, by its index value. Next, the code sets pOutFCGeoDef to be the
geometry definition of pGeoField and uses the IGeometryDefEdit interface to set its
properties of GridCount, GridSize, and SpatialReference. Grid count and grid size
make up the spatial index of the output shapefile, which is designed to improve the
display, spatial query, and feature identification of the shapefile. In this case, the
spatial index has one grid and the grid size of 200. The spatial reference assigned
to the output shapefile is pToGCS, a reference to NADS3.

' Part 6: Perform data conversion and error checking.
Dim pFDConverter As IFeatureDataConverter

Dim pEnumErrors As IEnuminvalidObject

Dim pErrinfo As InvalidObjectinfo

' Perform feature data conversion.

Set pFDConverter = New FeatureDataConverter

Set pEnumErrors = pFDConverter.ConvertFeatureClass(plnFCName, Nothing, Nothing, _
pOutFCName, pOutFCGeoDef, pOutFCFields, "", 1000, 0)

' If an error exists, report an error message in the immediate window.
Set pErrinfo = pEnumErrors.Next
If Not pErrinfo Is Nothing Then
Debug.Print "Conversion completed with errors"
Else
Debug.Print "Conversion completed"
End If
End Sub

Part 6 performs data conversion and error checking. The code first creates
pFDConverter as an instance of the FeatureDataConverter class, and uses the
ConvertFeatureClass method to import data from the input feature class to the
output. The method uses qualifying objects that have been previously defined in

134 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

Parts 4 and 5. Additionally, the code uses a flush interval of 1000, which controls
the interval for committing data. (The flush interval is important for loading large
amounts of data into a geodatabase.) Finally, the code checks for invalid features
during the conversion process. If an invalid feature exists, the Immediate window
displays an error message. If not, the window displays the message of “Conversion
completed.”

7.6 PROJECTING DATASETS

Similar to use of the Project tools in ArcToolbox, projection using a VBA macro
also follows the sequence of defining the input’s coordinate system and the output’s
coordinate system. Additionally, the code must be able to handle the creation of the
output dataset, which includes copying fields from the input dataset and defining
the geometry field.

7.6.1 ProjectShapefile

ProjectShapefile projects a shapefile from NAD27 geographic coordinates to
NAD27UTM_11N projected coordinates. The module performs the same function as
using the Project tool in ArcToolbox to project a shapefile. ProjectShapefile has four
parts. Part 1 defines the input shapefile and its spatial reference. Part 2 creates the
output fields based on the input fields. Part 3 finds the geometry field and defines the
field’s spatial reference and spatial index. Part 4 projects the input into the output and
reports any processing errors. ProjectShapefile is similar to NAD27to83_Shapefile in
terms of programming except that ProjectShapefile uses functions to define the name
objects of workspace and dataset, one for the input and the other for the output.

Key Interfaces: IWorkspaceName, [FeatureClassName, IDatasetName, IName, IGeo-
Dataset, IGeographicCoordinateSystem, 1SpatialReferenceFactory, IFields, IField,
IFieldChecker, 1GeometryDef, IProjectedCoordinateSystem, 1GeometryDefEdit,
IFeatureDataConverter

Key Members: WorkspaceFactoryProglD, PathName, Name, WorkspaceName, Cre-
ateGeographicCoordinateSystem, SpatialReference, Fields, Validate, FieldCount,
Field(), GeometryDef, CreateProjectedCoordinateSystem, ConvertFeatureClass

Usage: Import ProjectShapefile to Visual Basic Editor. Run the module. The module
projects idli27.shp in NAD27 geographic coordinates into idutm27.shp in
NAD27UTM_11N projected coordinates. Check the metadata of the shapefiles to
verify the result.

Private Sub ProjectShapefile()
' Part 1: Define the input shapefile.
Dim pInFCName As IFeatureClassName
Dim pSpatRefFact As ISpatialReferenceFactory
Dim pName As IName
Dim pInFC As IFeatureClass
' Use the InputName function to find the input shapefile.
Set pInFCName = InputName("c:\data\chap7", "idll27")

COORDINATE SYSTEMS 135

Set pName = pInFCName
Set pInFC = pName.Open

Part 1 locates the input shapefile. The code passes the input shapefile’s workspace
and name to the InputName function, runs the function, and gets pInFCName, a
reference to IFeatureClassName, from the function. The code then opens pInFC-
Name to get pInFC.

' Part 2: Create the output fields based on the input’s fields.
Dim pOutFCFields As IFields

Dim pInFCFields As IFields

Dim pFieldCheck As IFieldChecker

Dim i As Long

Set pInFCFields = pInFC.Fields

Set pFieldCheck = New FieldChecker

pFieldCheck.Validate pInFCFields, Nothing, pOutFCFields

Part 2 creates pFieldCheck as an instance of the FieldChecker class and uses the
Validate method to create pOutFCFields from pInFCFields.

' Part 3: Locate and define the geometry field.
Dim pGeoField As IField
Dim pOutFCGeoDef As IGeometryDef
Dim pPCS As IProjectedCoordinateSystem
Dim pOutFCGeoDefEdit As IGeometryDefEdit
' Loop through the fields to locate the geometry field.
For i = 0 To pOutFCFields.FieldCount - 1

If pOutFCFields.Field(). Type = esriFieldTypeGeometry Then

Set pGeoField = pOutFCFields.Field(i)
Exit For

End If
Next i
' Set the output’s coordinate system.
Set pSpatRefFact = New SpatialReferenceEnvironment
Set pPCS = pSpatRefFact.CreateProjectedCoordinateSystem(esriSRProjCS_NAD1927UTM_11N)
' Get and edit the geometry field's geometry definition.
Set pOutFCGeoDef = pGeoField. GeometryDef
Set pOutFCGeoDefEdit = pOutFCGeoDef
pOutFCGeoDefEdit.GridCount = 1
pOutFCGeoDefEdit. GridSize(0) = 200
Set pOutFCGeoDefEdit.SpatialReference = pPCS

Part 3 locates the geometry field referenced by pGeoField by looping through
the fields in pOutFCFields. Next, the code creates pPCS as a new projected coor-
dinate system based on NAD1927UTM_11N. The code then sets pOutFCGeoDef
to be the geometry definition of pGeoField, and performs a QI for the IGeometry-
DefEdit interface to edit its spatial index and spatial reference.

' Part 4. Create the output, and report any errors in creating the output.
Dim pFDConverter As IFeatureDataConverter

136 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

Dim pOutFCName As IFeatureClassName

Dim pEnumErrors As IEnuminvalidObject

Dim pErrinfo As linvalidObjectinfo

Set pFDConverter = New FeatureDataConverter

Set pOutFCName = OutputName("c:\data\chap7", "idutm27")

Set pEnumErrors = pFDConverter.ConvertFeatureClass(plnFCName, Nothing, Nothing, pOutFCName, _
pOutFCGeoDef, pOutFCFields, "*, 1000, 0)

' If an error exists, show an error message.
Set pErrinfo = pEnumErrors.Next
If Not pErrinfo Is Nothing Then
Debug.Print "Conversion completed with errors"
Else
Debug.Print "Conversion completed"
End If
End Sub

Part 4 creates the output shapefile and reports any errors in data conversion. The
code first runs the QutputName function to define the output shapefile. Then the
code uses the ConvertFeatureClass method on [FeatureDataConverter to create
pOutFCName, a reference to IFeatureClassName. The Immediate window reports
any invalid object during the conversion.

Private Function InputName(InWSPath As String, InDataset As String) As IFeatureClassName
Dim pInWSName As IWorkspaceName
Dim pInFCName As IFeatureClassName
Dim plnDatasetName As IDatasetName
' Set the input shapefile's workspace and path names.
Set pInWSName = New WorkspaceName
plnWSName.WorkspaceFactoryProglD = "esriCore.ShapefileWorkspaceFactory.1"
plnWSName.PathName = InWSPath
' Set the input feature class and name.
Set pInFCName = New FeatureClassName
Set pInDatasetName = pInFCName
plnDatasetName.Name = InDataset
Set pInDatasetName.WorkspaceName = pInWSName
Set InputName = pInFCName
End Function

The InputName function receives the names of the input shapefile and its
workspace path as strings, and returns pInFCName, a reference to an [FeatureClass-
Name object, to ProjectShapefile.

Private Function OutputName(OutWSPath As String, OutDataset As String) As IFeatureClassName
Dim pOutWSName As IWorkspaceName
Dim pOutFCName As IFeatureClassName
Dim pOutDatasetName As IDatasetName
' Set the output shapefile's workspace and path names.
Set pOutWSName = New WorkspaceName
pOutWSName.WorkspaceFactoryProgID = "esriCore.ShapeFileWorkspaceFactory.1"
pOutWSName.PathName = OutWSPath

COORDINATE SYSTEMS 137

' Set the output feature class and name.
Set pOutFCName = New FeatureClassName
Set pOutDatasetName = pOutFCName
Set pOutDatasetName.WorkspaceName = pOutWSName
pOutDatasetName.Name = OutDataset
Set OutputName = pOutFCName
End Function

The OutputName function receives the names of the output shapefile and its
workspace path, and returns pOutFCName, a reference to an IFeatureClassName
object, to ProjectShapefile.

Box 7.2 ProjectShapefile_GP

ProjectShapefile_GP uses the Project tool in the Data Management toolbox to
project idli27_2.shp from NAD27 geographic coordinates to NAD27UTM_11N
projected coordinates and save the output as idutm27_2.shp. Run the macro in
ArcCatalog and verify the result by using the metadata tab.

Private Sub ProjectShapefile_GP()
' Create the Geoprocessing object.
Dim GP As Object
Set GP = CreateObject("esriGeoprocessing.GpDispatch.1")
' Project <in_dataset> <out_dataset> <out_coordinate_system>
' {transform_method:transform_methody}
' Execute the project tool.

GP.Project_management "c:\data\chap7\idll27.shp", "c:\data\chap7\idutm27_2.shp", _
esriSRProjCS_NAD1927UTM_11N

End Sub

7.6.2 Use of a Different Datum

The only change needed for projecting a shapefile from NAD27 to
NADS83UTM_11N coordinates is the line statement for setting the output file’s
spatial reference in Part 4 of ProjectShapefile:

Set pPCS = pSpatRefFact.CreateProjectedCoordinateSystem(esriSRProjCS_NAD-
1983UTM_11N)

7.6.3 ReprojectShapefile

ReprojectShapefile reprojects a shapefile from one projected coordinate system to
another. Specifically, it reprojects a shapefile from NAD27UTM_11N to IDTM
coordinates. The module performs the same function as using the Project tool in
ArcToolbox to project a shapefile.

ReprojectShapefile has five parts. Additionally, the module uses a function to
define IDTM. Part 1 defines the input shapefile and its spatial reference. Part 2
defines the output shapefile. Part 3 creates the output fields based on the input fields.
Part 4 finds the geometry field and defines the field’s spatial reference and spatial

138 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

index. Part 5 projects the input into the output and reports any processing errors.
Many line statements in ReprojectShapefile have been used in previous sample
macros. Therefore, it does not require a detailed explanation of its code structure.

Key Interfaces: IWorkspaceName, IFeatureClassName, IDatasetName, IProjected-
CoordinateSystem, ISpatialReferenceFactory, IName, IGeoDataset, [Fields, [Field,
IFieldChecker, 1GeometryDef, 1GeometryDefEdit, [FeatureDataConverter,
1Projection, 1GeographicCoordinateSystem, IProjectedCoordinateSystemEdit

Key Members: WorkspaceFactoryProglD, PathName, Name, WorkspaceName, Spa-
tialReference, Fields, Validate, FieldCount, GeometryDef, Field(), CreateProjected
CoordinateSystem, ConvertFeatureClass, CreateProjection, CreateGeographicCo-
ordinateSystem, CreateParameter

Usage: Import ReprojectShapefile to Visual Basic Editor. Run the macro. The macro
projects idutm27.shp in NAD27UTM_11N projected coordinates into idtm.shp in
IDTM projected coordinates. (Idutm27.shp was created in Section 7.6.1.) Check
the metadata of the shapefiles to verify the result.

Private Sub ReprojectShapefile()
' Part 1: Define the input shapefile and its spatial reference.
Dim pInWSName As IWorkspaceName
Dim pInFCName As IFeatureClassName
Dim pInDatasetName As IDatasetName
Dim pInCS As IProjectedCoordinateSystem
Dim pSpatRefFact As ISpatialReferenceFactory
Dim pName As IName
Dim pInFC As IFeatureClass
Dim pInGeoDataset As IGeoDataset
' Define the input shapefile's workspace and path.
Set pInWSName = New WorkspaceName
pInNWSName.WorkspaceFactoryProgID = "esriCore.ShapefileWorkspaceFactory.1"
plnWSName.PathName = "c:\data\chap7"
' Define the input feature class.
Set piInFCName = New FeatureClassName
Set pInDatasetName = pInFCName
pinDatasetName.Name = "idutm27"
Set pInDatasetName.WorkspaceName = plnWSName
' Define the input shapefile's projected coordinate system.
Set pSpatRefFact = New SpatialReferenceEnvironment
Set pInCS = pSpatRefFact.CreateProjectedCoordinateSystem(esriSRProjCS_NAD1927UTM_11N)
' Assign the spatial reference to the input shapefile.
Set pName = pInFCName
Set pInFC = pName.Open
Set pInGeoDataset = pInFC
Set pInCS = pInGeoDataset.SpatialReference

Part 1 sets pInFC to be the input shapefile and pInCS to be its spatial reference.
The code defines pInCS as the NAD27UTM_11N projected coordinate system.

' Part 2: Define the output shapefile.
Dim pOutWSName As IWorkspaceName

COORDINATE SYSTEMS 139

Dim pOutFCName As IFeatureClassName

Dim pOutDatasetName As IDatasetName

' Set the output shapefile's workspace and path names.
Set pOutWSName = New WorkspaceName
pOutWSName.WorkspaceFactoryProgID = "esriCore.ShapeFileWorkspaceFactory.1"
pOutWSName.PathName = "c:\data\chap7"

' Set the output feature class and dataset names.

Set pOutFCName = New FeatureClassName

Set pOutDatasetName = pOutFCName

Set pOutDatasetName.WorkspaceName = pOutWSName
pOutDatasetName.Name = "idtm"

Part 2 defines the workspace and name of the output shapefile.

' Part 3: Create the output fields based on the input’s fields.
Dim pOutFCFields As IFields

Dim pInFCFields As IFields

Dim pFieldCheck As IFieldChecker

Dim i As Long

Set pInFCFields = pInFC.Fields

Set pFieldCheck = New FieldChecker

pFieldCheck.Validate pInFCFields, Nothing, pOutFCFields

Part 3 creates the fields for the output based on the fields of the input shapefile.

' Part 4: Locate and define the geometry field.
Dim pGeoField As IField
Dim pOutFCGeoDef As IGeometryDef
Dim pPCS As IProjectedCoordinateSystem
Dim pOutFCGeoDefEdit As IGeometryDefEdit
' Loop through the fields to locate the geometry field.
For i = 0 To pOutFCFields.FieldCount - 1

If pOutFCFields.Field(). Type = esriFieldTypeGeometry Then

Set pGeoField = pOutFCFields.Field(i)
Exit For

End If
Next i
' Use the OutCS function to define the output's coordinate system.
Set pPCS = OutCS|()
' Get and edit the geometry field's geometry definition.
Set pOutFCGeoDef = pGeoField.GeometryDef
Set pOutFCGeoDefEdit = pOutFCGeoDef
pOutFCGeoDefEdit.GridCount = 1
pOutFCGeoDefEdit.GridSize(0) = 200
Set pOutFCGeoDefEdit.SpatialReference = pPCS

Part 4 loops through the output fields, locates the geometry field, and defines
the geometry definition of the field. Then the code calls the OutCS function to get
the projected coordinate system for the output.

140 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

' Part 5: Create the output, and report any errors in creating the output.
Dim pFDConverter As IFeatureDataConverter

Dim pEnumErrors As IEnuminvalidObject

Dim pErrinfo As linvalidObjectinfo

Set pFDConverter = New FeatureDataConverter

Set pEnumErrors = pFDConverter.ConvertFeatureClass(plnFCName, Nothing, Nothing, pOutFCName, _
pOutFCGeoDef, pOutFCFields, "", 1000, 0)

' If an error exists, show an error message.
' pEnumErrors.Reset
Set pErrinfo = pEnumErrors.Next
If Not pErrinfo Is Nothing Then
Debug.Print "Conversion completed with errors"
Else
Debug.Print "Conversion completed"
End If
End Sub

Part 5 creates the output shapefile and reports any errors in creating the output.

Private Function OutCS() As IProjectedCoordinateSystem
Dim pSpatRefFact As ISpatialReferenceFactory2
Dim pProjection As IProjection
Dim pGCS As IGeographicCoordinateSystem
Dim pUnit As [Unit
Dim pLinearUnit As ILinearUnit
Dim aParamArray(5) As IParameter
Dim pProjCoordSysEdit As IProjectedCoordinateSystemEdit
Dim pProjCoordSys As IProjectedCoordinateSystem
' Define the IDTM Coordinate System.
Set pSpatReffFact = New SpatialReferenceEnvironment
Set pProjection = pSpatRefFact.CreateProjection(esriSRProjection_TransverseMercator)
Set pGCS = pSpatRefFact.CreateGeographicCoordinateSystem(esriSRGeoCS_NAD1983)
Set pUnit = pSpatRefFact.CreateUnit(esriSRUnNit_Meter)
Set pLinearUnit = pUnit
' Store the 5 known parameters of IDTM in an array.
Set aParamArray(0) = pSpatReffFact.CreateParameter(esriSRParameter_FalseEasting)
aParamArray(0).Value = 2500000
Set aParamArray(1) = pSpatRefFact.CreateParameter(esriSRParameter_FalseNorthing)
aParamArray(1).Value = 1200000
Set aParamArray(2) = pSpatRefFact.CreateParameter(esriSRParameter_CentralMeridian)
aParamArray(2).Value = -114
Set aParamArray(3) = pSpatReffFact.CreateParameter(esriSRParameter_LatitudeOfOrigin)
aParamArray(3).Value = 42
Set aParamArray(4) = pSpatRefFact.CreateParameter(esriSRParameter_ScaleFactor)
aParamArray(4).Value = 0.9996
' Create IDTM by defining its properties.
Set pProjCoordSysEdit = New ProjectedCoordinateSystem
pProjCoordSysEdit.Define "UserDefinedPCS", _
"UserDefinedAlias", _
"UsrDefAbbrv", _

COORDINATE SYSTEMS 141

"Custom IDTM", _
"Suitable for Idaho", _
pGCS, _
pLinearUnit, _
pProjection, _
aParamArray
Set OutCS = pProjCoordSysEdit
End Function

The OutCS function creates pProjCoordSysEdit as an instance of the Project-
edCoordinateSystem class and defines its properties, including the geographic coor-
dinate system, the linear unit, and five known parameters for the projection. The
function then returns the defined projected coordinate system to ReprojectShapefile.

Box 7.3 ReprojectShapefile_GP

ReProjectShapefile_GP uses the Project tool in the Data Management toolbox to
project idutm27_2.shp from NAD27 UTM_11IN coordinates to NAD83 UTM_11IN
coordinates and save the output as idutm83_2.shp. The macro uses NAD_1927_-
to_NAD_1983_NADCON for the geographic transformation. Run the macro in
ArcCatalog.

Private Sub ReprojectShapefile_GP()
' Create the Geoprocessing object.
Dim GP As Object
Set GP = CreateObject("esriGeoprocessing.GpDispatch.1")
' Project <in_dataset> <out_dataset> <out_coordinate_system>
' {transform_method:transform_method}
' Notice that the transform method is NAD_1927_to_NAD_1983_NADCON.
‘ Execute the project tool.

GP.project_management "c:\data\chap7\idutm27_2.shp", "c\data\chap7\idutm83_2.shp", _
"Coordinate Systems\Projected Coordinate Systems\Utm\Nad 1983INAD 1983 UTM Zone 11N.prj"
"NAD_1927_to_NAD_1983_NADCON"

End Sub

CHAPTER 8

Data Display

Spatial features are characterized by their locations and attributes. Data display
involves choice of symbols to show attribute data at the locations of spatial features.
Cartographers consider symbol types and visual variables for choice of symbols.
Symbol types correspond to feature types: point symbols for point features, line
symbols for line features, and area symbols for area features. Visual variables, which
include color, size, texture, shape, and pattern, distinguish between symbols and
communicate data characteristics to the viewer.

Color is a popular visual variable but is often misused. A color has the three
visual dimensions of hue, value, and chroma. Hue is the quality that distinguishes
one color from another, value is the lightness or darkness of a color, and chroma
refers to the richness of a color. The use of color and its visual dimensions depends
on the type of data to be displayed. Cartographic studies have shown that hue is a
visual variable better suited for qualitative or categorical data, whereas value and
chroma are better suited for quantitative data. Cartographic studies have also rec-
ommended a number of conventional color schemes for mapping quantitative data.

Layout design is part of map design. A map requires a title, a legend, a north
arrow, a scale bar, and other elements to communicate the map information. The
task of layout design is to arrange these various elements on a map so that the map
would look balanced and organized to the viewer. Cartographers used to use thumb-
nail sketches to experiment with layout design. Now the experimentation can be
easily performed on the computer monitor.

This chapter covers data display with emphasis on symbology, color, and layout.
Section 8.1 reviews data display options in ArcGIS. Section 8.2 discusses objects
that are related to various aspects of data display. Section 8.3 offers macros for
displaying vector data. Section 8.4 includes macros for displaying raster data. Section
8.5 discusses a macro for making a layout page. All macros start with the listing of
key interfaces and key members (properties and methods) and the usage.

143

144 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

8.1 DISPLAYING DATA IN ARCGIS

ArcMap provides many data display options on the Symbology tab of the Layer
Properties dialog. These options depend on the data type. The primary data types
are vector and raster data. At the secondary level, vector data include point, line,
and area features and raster data include categorical and numeric data.

8.1.1 Displaying Vector Data

For vector data, the display options include Features, Categories, Quantities, Charts,
and Multiple Attributes. The features option draws all features with a single symbol.
The categories option displays unique values from a field or multiple fields. The
quantities option offers graduated colors, graduated symbols, proportional symbols,
and dot density. Charts include pie, bar/column, and stacked charts. The multiple
attributes option uses more than one attribute for data display. ArcMap initially
assigns default symbols to a data display option: point symbols for point features,
line symbols for line features, and area symbols for area features. The user can alter
these default symbols in terms of symbol type, color, size, pattern, and other visual
variables.

8.1.2 Displaying Raster Data

For raster data, the display options include Unique Values, Classified, and Stretched.
The unique values option displays unique cell values of a raster. The classified option
displays classes of cell values. The stretched option stretches cell values to increase
the visual contrast in data display. ArcMap initially assigns a default set of area (fill)
symbols to a display option. The user can alter these symbols individually or as a

group.
8.1.3 Use of Color Ramp and Classification Tools

Color ramp and classification are two tools on the Symbology tab for data display.
A color ramp represents a range of distinctive or sequential colors. ArcMap offers
a series of predefined color ramps, and the user can choose a color ramp graphically
or by description (for example, yellow to dark red). Each color ramp has a properties
dialog that allows the user to select the two end colors and an algorithm for producing
the intermediate colors between them. The classification tool lets the user choose
number of classes and method for subdividing a dataset into classes. Available
classification methods are manual, equal interval, defined interval, quantile, natural
breaks, and standard deviation. The natural breaks method, which classifies data
values into natural groupings statistically, is the default method.

8.1.4 Designing a Layout

ArcMap offers two options for layout design. The first option is to use a layout
template. Current layout templates are grouped into general, industry, USA, and

DATA DISPLAY 145

world. Each group has a list of choices. For example, the layout templates for the
United States include USA, conterminous USA, and five different regions of the
country. The second option is to open a layout page and build on it one map element
at a time. These map elements can be graphically manipulated for size change,
repositioning, and other modifications on the layout page.

8.2 ARCOBJECTS FOR DATA DISPLAY

A data display macro, especially a layout macro, tends to involve more objects than
other types of macros do. This section presents a summary of objects that are
important to data display.

8.2.1 Renderer Objects

ArcObjects uses the term renderer to describe a set of symbols for displaying data
values. A renderer is therefore like a legend. ArcObjects has two general (abstract)
classes of renderers: FeatureRenderer for vector data and RasterRenderer for raster data.

A variety of feature renderers inherit the functionality of the FeatureRenderer
class (Figure 8.1). Two of these renderers to be covered in the sample macros are
UniqueValueRenderer and ClassBreaksRenderer. A unique value renderer uses a
different symbol for each unique value, which may come from a field or a combi-
nation of fields. A class breaks renderer uses a different symbol for each class of
data values.

ArcObjects organizes feature-based symbols into three general classes: Marker-
Symbol for point features, LineSymbol for line features, and FillSymbol for area
features (Figure 8.2). Each of these abstract symbol classes is inherited by a number
of coclasses. Of these coclasses, SimpleMarkerSymbol, SimpleLineSymbol, and
SimpleFillSymbol can generate the commonly used point, line, and area symbols
respectively.

| FeatureRenderer |

BiUniqueRenderer ProportionalSymbolRenderer |
[T 1T I I I

| ChartRenderer | | ScaleDependentRenderer |
1

| ClassBreaksRenderer | SimpleRenderer
I
|D0tDensityRenderer| | UniqueValueRenderer ‘

Figure 8.1 FeatureRenderer is an abstract class with many feature-based renderer types,
each of which is a coclass.

146 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

Symbol
AN
MarkerSymbol LineSymbol FillSymbol
T A
SimpleMarker- SimpleLine- SimpleFill-
Symbol Symbol Symbol

Figure 8.2 SimpleMarkerSymbolis a type of MarkerSymbol, which is in turn a type of Symbol.
SimpleMarkerSymbol is a coclass, whereas both MarkerSymbol and Symbol are
abstract classes. The same is true for the other two feature-based symbols.

The RasterRenderer abstract class is inherited by four coclasses: Raster-
UniqueValueRenderer, RasterClassifyColorRampRenderer, RasterStretchColor-
RampRenderer, and RasterRGBRenderer. As suggested by the name, the first three
renderers are used for the display options of unique values, classified, and stretched
respectively. A raster RGB (red, green, and blue) renderer object is designed for
multiband data such as satellite images. The only symbol option for displaying cell-
based raster data is the fill symbol.

8.2.2 Classification Objects

A macro for displaying classified data requires a classification object. ArcObjects
offers five predefined classification objects (Figure 8.3):

* A DefinediInterval object uses a defined and precise interval such as 100 or 1,000.
* An Equalilnterval object produces classes with an equal interval.
* A NaturalBreaks object uses a statistical method to create classes with natural

breaks between them.
Classify

NaturalBreaks

Equallnterval

DefinedInterval

StandardDeviation

Quantile

Figure 8.3 Classify is an abstract class with five classification types, each of which is a
coclass.

DATA DISPLAY 147

* A Quantile object creates classes with an equal number of values in each class.
* A StandardDeviation object produces classes that are based on one whole or part
of a standard deviation from the mean.

In addition to these predefined classification objects, one can also use a user-
defined classification.

The use of a predefined classification object typically involves a TableHistogram
object. A TableHistogram object implements [Histogram and ITableHistogram.
These two interfaces have members to gather histogram data from a table, such as
data values and frequencies, and to pass the histogram data to a classification object.
The classification object can then use the histogram data to compute the class breaks.

8.2.3 Color Ramp and Color Objects

A color ramp is a collection of colors. ArcObjects has four coclasses of color ramps
(Figure 8.4):

* A RandomColorRamp object creates a series of randomized colors.

* An AlgorithmicColorRamp object produces a sequential series of colors using two
end colors and a defined algorithm.

* A PresetColorRamp object is a series of 13 specific colors.

¢ A MultiPartColorRamp object is a collection of color ramps.

The algorithms available for generating intermediate colors in an algorithmic
color ramp are: esriHSVAlgorithm, esriCIELabAlgorithm, and esriLabL.ChAlgo-
rithm. A color ramp produced by either the esriCIELab or esriLabL.Ch algorithm
appears to blend the two end colors, whereas a color ramp produced by the esriHSV
algorithm may contain additional hues.

ColorRamp : Color
| |
| | RgbColor
Algorithmic-
ColorRamp CmykColor
[
Random-
ColorRamp HlsColor
[
Preset- HsvColor
ColorRamp
l GrayColor
MultiPart-
ColorRamp

Figure 8.4 The relationship between the ColorRamp and Color classes, and the subtypes of
each class.

148 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

IActiveView O———
IGraphicsContainer O——— PageLayout
IPageLayout O——

[ActiveView IGraphicsContainer
«4—— PartialRefresh| | ¢——— AddElement
<4— Refresh <4—— FindFrame

Figure 8.5 A Pagelayout object supports /ActiveView, IGraphicsContainer, and IPageLayout.

ArcObjects uses a color model to define colors in a color ramp (Figure 8.4). For
example, a bright yellow color is represented by (255, 255, 0) in the RGB model.
Besides RGB, ArcObjects has CMYK (cyan, magenta, yellow, and black), HLS (hue,
lightness, and saturation), HSV (hue, saturation, and value), and Grayscale. Addi-
tionally, ArcObjects offers CIELAB as a device-independent color model and uses
it to store colors internally.

8.2.4 Layout Objects

A layout consists of various map elements. Each element has its own display style
and its own position on a layout page. Because of the complexity of the topic, this
section limits the discussion of layout objects to only those that are used later in a
sample module.

The primary component that works with a layout is the PageLayout coclass. A
page layout object implements IActiveView, IGraphicsContainer, and IPageLayout
(Figure 8.5). IActiveView has methods to refresh, or partially refresh, the layout view.
IGraphicsContainer has methods for adding and finding elements in a layout. IPage-
Layout has members that are mainly important to the interaction between the user
and a layout.

The IGraphicsContainer interface manages two types of elements in a layout:
frame elements and text elements (Figure 8.6). Both types of elements implement
IElement, which has access to the shape and the screen display of the element.

A frame element refers to an object that forms a border around other elements
or objects. Two frame elements important to a layout design are MapFrame and
MapSurroundFrame (Figure 8.7). A map frame object implements IMapFrame,
which has access to a map object (for example, the focus map in the data view) and
can create map surrounds. By definition, a map surround is an element that is

[Element O——— Element

IElement
B—8 Geometry

<4—— Activate TextElement FrameElement

Figure 8.6 TextElement and FrameElement are types of the Element class.

DATA DISPLAY 149

FrameElement
[|
IMapFrame O—/ MapFrame MapSurroundFrame
IMapFrame
B— Map
<4 CreateSurroundFrame

Figure 8.7 MapFrame and MapSurroundFrame are types of the FrameElement class. A map
frame object has access to a map and can create map surround objects.

associated with a map, such as a legend, a north arrow, or a scale bar. A map surround
frame object supports IMapSurroundFrame, which provides access to a map sur-
round within the frame. In layout design, each map surround frame must be related
to a map frame.

A text element may represent a title or a feature label on a layout page. A
TextElement object supports ITextElement that can access the text string and symbol.
A TextSymbol object implements IFormattedTextSymbol and ITextSymbol. Both inter-
faces let the user define text symbol properties such as color, font, horizontal
alignment, size, and others. But /FormattedTextSymbol has more options than
ITextSymbol does, especially in terms of character spacing and display properties.
A StdFont object implements [FontDisp, which allows access to the font properties
such as name, boldness, and size.

8.3 DISPLAYING VECTOR DATA

This section covers use of VBA (Visual Basic for Applications) macros for displaying
vector data. These sample macros cover point, line, and area features; display both
numeric and categorical data; and use both predefined and user-defined classification
objects. Additionally, one sample macro uses a form to gather the necessary inputs
from the user for data display.

8.3.1 GraduatedColors

GraduatedColors uses a sequential color ramp and a predefined classification object
to display a choropleth map. A choropleth map shows data values based on admin-
istrative units. The macro performs the same function as using the Symbology/Quan-
tities/Graduated colors command in the Layer Properties dialog in ArcMap.

150 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

Figure 8.8 GraduatedColors uses the form to get a field name, a classification method, and
a number of classes for data display.

GraduatedColors uses a user form to get a field, a classification method, and a
number of classes for choropleth mapping (Figure 8.8). The form has two text boxes,
a combo box, and two buttons:

txtField: A text box for entering the name of a numeric field.
cboMethod: A combo box with three predefined classification systems.
txtNumber: A text box for entering the number of classes.

cmdRun: A command button to execute data display.

cmdCancel: A command button to exit the form.

Associated with the GraduatedColors user form are three subs and one function:

UserForm_Initialize: Initialize the user form by populating the method dropdown list.
cmdRun_Click: Use the user inputs to display data.

GetRGBColor: Return a color based on the input RGB values.

cmdCancel_Click: Exit the user form.

Of the four procedures, cmdRun_Click involves most code writing and requires
explanation. The other three are straightforward.

Key Interfaces: ITable, ITableHistogram, IHistogram, IClassify, IClassBreaksRen-
derer, 1AlgorithmicColorRamp, IEnumColors, IFillSymbol, IGeoFeatureLayer
Key Members: Field, Table, GetHistogram, SetHistogramData, Classify, Class-
Breaks, BreakCount, MinimumBreak, Algorithm, ToColor, FromColor, Size, Create-
Ramp, Colors, Color, Break(), Symbol(), Label(), Renderer, PartialRefresh, Update-
Contents

Usage: Add idcounty.shp to an active map. The shapefile has a field called change
that shows the rate of population change between 1990 and 2000 in Idaho by
county. Import GraduatedColors.frm to Visual Basic Editor. Right-click
UserForm1 and select View Code. Select UserForm from the object list at the upper

DATA DISPLAY 151

left of the Code window. Click Run Sub/UserForm. Enter “change” for the name
of the field. Select a classification method from the method dropdown list. Enter
the number of classes. Click on the Run button. The module uses a yellow-to-red
color ramp to display the rate of population change data.

Private Sub UserForm_Initialize()
cboMethod.Addltem "NaturalBreaks"
cboMethod.Addltem "Equalinterval”
cboMethod.Addltem "Quantile”

End Sub

UserForm_Initialize uses the Addltem method to add the three classification
methods to the method combo box.

Private Sub cmdRun_Click()
' Part 1: Define the feature layer and derive its histogram data.
Dim pMxDoc As IMxDocument
Dim pMap As IMap
Dim pLayer As IFeatureLayer
Dim pTable As [Table
Dim pTableHistogram As ITableHistogram
Dim pHistogram As IHistogram
Dim DataValues As Variant
Dim DataFrequencies As Variant
Set pMxDoc = ThisDocument
Set pMap = pMxDoc.FocusMap
Set plLayer = pMap.Layer(0)
Set pTable = pLayer
' Define the table histogram.
Set pTableHistogram = New TableHistogram
pTableHistogram.Field = txtField.Value
Set pTableHistogram.Table = pTable
' Derive the data values and frequencies from the histogram.
Set pHistogram = pTableHistogram
pHistogram.GetHistogram DataValues, DataFrequencies

Part 1 of emdRun_Click derives from the feature layer the histogram data to be
used for classification. The code first sets pLayer to be the top layer in the active
map and pTable, a reference to ITable, to be the same as pLayer. Next, the code
creates pTableHistogram as an instance of the TableHistogram class and defines the
Field as txtField. Value, the field name entered in the user form, and the Table as
plable (Figure 8.9). The code then performs a Querylnterface (QI) for the /Histo-
gram interface and uses the GerHistogram method to derive the histogram data from
plableHistogram. Of the derived histogram data, DataValues contains an array of
data values, and DataFrequencies contains an array of frequencies corresponding to
the data values.

' Part 2: Create a class breaks renderer.
Dim pClassify As IClassify
Dim Classes() As Double

152 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

IHistogram O—— Table-
ITableHistogram O—— Histogram

IHistogram ITableHistogram
«4— GetHistogram Field
B—7 Table

Figure 8.9 A TableHistogram object supports IHistogram and ITableHistogram. ITableHisto-
gram has the properties to identify the table and the field. /Histogram has a method
to get the histogram data.

Dim pClassBreaksRenderer As IClassBreaksRenderer
' Set up the classification method.
Select Case cboMethod.Listindex
Case 0
Set pClassify = New NaturalBreaks
Case 1
Set pClassify = New Equalinterval
Case 2
Set pClassify = New Quantile
End Select
' Prepare a classify object.
pClassify.SetHistogramData DataValues, DataFrequencies
pClassify.Classify Val(txtNumber.Value)
' Create an array of class breaks.
Classes = pClassify.ClassBreaks
' Prepare a class breaks renderer.
Set pClassBreaksRenderer = New ClassBreaksRenderer
With pClassBreaksRenderer
.Field = txtField.Value
.BreakCount = Val(txtNumber.Value)
.MinimumBreak = Classes(0)
End With

Part 2 of cmdRun_Click performs three tasks: using the selected classification
method and the histogram data to prepare a classification object, deriving class
breaks from the classification object, and linking the class breaks to a class breaks
renderer. For the first task, the code creates pClassify as an instance of the Natural-
Breaks, Equallnterval, or Quantile class, depending on the user’s choice. Next, the
code uses methods on IClassify to set the histogram data from Part 1 and to classify
the histogram data into the number of classes entered by the user (i.e., txtNum-
ber.Value) (Figure 8.10). For the second task, the code stores the class breaks into
the array variable Classes. By default, the array is indexed from zero. For the third
task, the code creates pClassBreaksRenderer as an instance of the ClassBreaksRen-
derer class and defines its properties of field, break count, and minimum break in
a With block (Figure 8.11). In this case, the first class break is the minimum value

DATA DISPLAY 153

IClassify O NaturalBreaks

IClassify
B—— ClassBreaks
B— ClassID
4— Classify
<4— SetHistogramData

Figure 8.10 Properties and methods on the [Classify interface. All predefined classification
classes including NaturalBreaks implement the IClassify interface.

in the dataset, and the subsequent breaks correspond to the upper class limits. The
number of class breaks is therefore the number of classes plus one.

' Part 3: Create a color ramp.

Dim pAlgoRamp As IAlgorithmicColorRamp

Dim pColors As IEnumColors

' Prepare a color ramp.

Set pAlgoRamp = New AlgorithmicColorRamp

With pAlgoRamp
Algorithm = esriCIELabAlgorithm
.ToColor = GetRGBColor(255, 0, 0)
.FromColor = GetRGBColor(255, 255, 0)
.Size = Val(txtNumber.Value)
.CreateRamp (True)

End With

' Store the colors.

Set pColors = pAlgoRamp.Colors

Part 3 of emdRun_Click creates a color ramp. The code creates pAlgoRamp as
an instance of the AlgorithmicColorRamp class, and defines its properties of algo-
rithm, end colors, and size before creating the ramp. The color ramp starts from a
yellow color and ends with a red color. The code uses the GetRGBColor function

IClassBreaksRenderer

H—H8 Break

H—H BreakCount
H— Field

B— Label

B—8 MinimumBreak

H—8 Symbol

Figure 8.11 Properties on the IClassBreaksRenderer interface for defining graduated color
symbols.

154 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

to define the end colors and the esriCIELabAlgorithm to generate the intermediate
colors. After they are generated, these colors are stored as a sequence of colors
referenced by pColors.

' Part 4: Assign a color symbol, break, and label to each of the classes.
Dim pFillSymbol As IFillSymbol
Dim | As Integer
For I = 0 To pClassBreaksRenderer.BreakCount - 1
Set pFillSymbol = New SimpleFillSymbol
pFillSymbol.Color = pColors.Next
pClassBreaksRenderer.Symbol(l) = pFillSymbol
pClassBreaksRenderer.Break(l) = Classes(l + 1)
pClassBreaksRenderer.Label(l) = CSng(Classes(l)) & " - " & CSng(Classes(| + 1))
Next |

Part 4 of cmdRun_Click defines a color symbol, a break, and a label for each class
in the class breaks renderer. The color symbols stored in pColors are initially assigned
to pFillSymbol, which are in turn assigned as symbols to each class in pClassBreaks-
Renderer in a For...Next loop. Two other properties of pClassBreaksRenderer are
assigned within the same loop. The Break(I) property, which represents the upper
bound of each class, is given the value of Classes(I+1). The Label(I) property is given
the value of CSng(Classes(I)) & " - " & CSng(Classes(I + 1)). The CSng (conversion
to single) function truncates the long fractional part of numeric values.

' Part 5: Draw the graduated color map.
Dim pGeoFeatureLayer As IGeoFeaturelayer
' Assign the renderer to the feature layer.
Set pGeoFeatureLayer = pLayer
Set pGeoFeatureLayer.Renderer = pClassBreaksRenderer
' Refresh the map and its table of contents.
pMxDoc.ActiveView.PartialRefresh esriViewGeography, pLayer, Nothing
pMxDoc.UpdateContents
End Sub

Part 5 of cmdRun_Click accesses IGeoFeatureLayer and assigns pClassBreaks-
Renderer to be the renderer. IGeoFeatureLayer controls the display of a feature
layer. The code then refreshes the view and updates the document’s table of contents.

Private Function GetRGBColor(R As Long, G As Long, B As Long)
Dim pColor As IRgbColor
Set pColor = New RgbColor
pColor.Red = R
pColor.Green = G
pColor.Blue = B
GetRGBColor = pColor
End Function

GetRGBColor uses the input values of R, G, and B from emdRun_Click in Part 3
to create a new RGB color referenced by pColor. GetRGBColor then returns pColor
to cmdRun_Click.

DATA DISPLAY 155

Private Sub cmdCancel_Click()
End
End Sub

cmdCancel_Click exits the user form.

8.3.2 GraduatedSymbols

GraduatedSymbols uses different-sized circles to display different ranges of a field’s
values. The classification of the field values is user-defined rather than predefined.
The macro performs the same function as using the Symbology/Quantities/Gradu-
ated symbols command in the Layer Properties dialog in ArcMap.

GraduatedSymbols has three parts. Part 1 creates a class breaks renderer. Part 2
prepares the symbol, break, and label for each class in the renderer. Part 3 assigns
the renderer to the feature layer and refreshes the view.

Key Interfaces: /ClassBreaksRenderer, 1SimpleMarkerSymbol, 1GeoFeatureLayer

Key Members: Field, BreakCount, Color, Outline, OutlineColor; Size, Style, Symbol(),
Break(), Label(), Renderer, PartialRefresh, UpdateContents

Usage: Add idicity.shp, a shapefile that contains the ten largest cities in Idaho, to an
active map. Import GraduatedSymbols to Visual Basic Editor. Run the macro. The
macro produces a map showing the cities in graduated circles and the city names.

Private Sub GraduatedSymbols()
' Part 1: Create a class breaks renderer.
Dim pClassBreaksRenderer As IClassBreaksRenderer
Set pClassBreaksRenderer = New ClassBreaksRenderer
With pClassBreaksRenderer
.Field = "Population”
.BreakCount = 3
End With

Part 1 creates pClassBreaksRenderer as an instance of the ClassBreaksRenderer
class and defines its properties of field and break count.

' Part 2: Set the symbol, break, and label for each class.
Dim pMarkerSymbol As ISimpleMarkerSymbol
' Set the first class's symbol, break, and label.
Set pMarkerSymbol = New SimpleMarkerSymbol
With pMarkerSymbol
.Color = GetRGBColor(255, 255, 0)
.Outline = True
.OutlineColor = GetRGBColor(0, 0, 0)

.Size = 12
.Style = esriSMSCircle
End With

pClassBreaksRenderer.Symbol(0) = pMarkerSymbol
pClassBreaksRenderer.Break(0) = 20000
pClassBreaksRenderer.Label(0) = "14300 - 20000"
' Set the second class's symbol, break, and label.

156 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

Set pMarkerSymbol = New SimpleMarkerSymbol
With pMarkerSymbol

.Color = GetRGBColor(255, 125, 0)

.Outline = True

.OutlineColor = GetRGBColor(0, 0, 0)

.Size = 18
.Style = esriSMSCircle
End With

pClassBreaksRenderer.Symbol(1) = pMarkerSymbol
pClassBreaksRenderer.Break(1) = 30000
pClassBreaksRenderer.Label(1) = "20001 - 30000"
' Set the third class's symbol, break, and label.
Set pMarkerSymbol = New SimpleMarkerSymbol
With pMarkerSymbol

.Color = GetRGBColor(255, 0, 0)

.Outline = True

.OutlineColor = GetRGBColor(0, 0, 0)

.Size = 24
.Style = esriSMSCircle
End With

pClassBreaksRenderer.Symbol(2) = pMarkerSymbol
pClassBreaksRenderer.Break(2) = 125660
pClassBreaksRenderer.Label(2) = "30001 - 125660"

Part 2 sets the symbol, break, and label for each class of the renderer. The code
creates pMarkerSymbol as an instance of the SimpleMarkerSymbol class and defines
the following five symbol properties: Color is the symbol color, Outline indicates
whether or not to draw the outline, OutlineColor is the symbol outline color, Size
is the symbol size measured in points, and Style is the symbol style (e.g., circle,
square, or diamond). The GetRGBColor function provides the colors for the symbol
and the symbol outline, and then the code assigns pMarkerSymbol to be the symbol
of the first class, followed by assigning the class’s upper limit and label. The same
procedure for the first class applies to the other two classes.

' Part 3: Draw the feature layer and refresh the table of contents.
Dim pMxDoc As IMxDocument
Dim pMap As IMap
Dim pLayer As ILayer
Dim pGeoFeatureLayer As IGeoFeaturelLayer
Set pMxDoc = ThisDocument
Set pMap = pMxDoc.FocusMap
Set pLayer = pMap.Layer(0)
' Set the renderer and annotation for drawing.
Set pGeoFeatureLayer = pLayer
Set pGeoFeatureLayer.Renderer = pClassBreaksRenderer
pGeoFeaturelLayer.DisplayField = "City_Name"
pGeoFeaturelLayer.DisplayAnnotation = True
pMxDoc.ActiveView.PartialRefresh esriViewGeography, pLayer, Nothing
pMxDoc.UpdateContents

End Sub

DATA DISPLAY 157

Part 3 first accesses IGeoFeatureLayer to assign the renderer and to display the
field City_Name as annotation. The code then refreshes the map and updates the
table of contents.

8.3.3 UniqueSymbols

UniqueSymbols uses a set of symbols to display each unique value of a field. These
unique values represent categorical data such as different road types. The macro
performs the same function as using the Symbology/Categories/Unique values com-
mand in the Layer Properties dialog in ArcMap.

UniqueSymbols has two parts. Part 1 creates a unique value renderer and pop-
ulates the renderer with symbols for each unique value of a specified field, and Part 2
assigns the renderer to the feature layer and refreshes the view.

Key Interfaces: /UniqueValueRenderer, ILineSymbol, IGeoFeatureLayer

Key Members: FieldCount, Field(), Color, Width, AddValue, Renderer, PartialRefresh,
UpdateContents

Usage: Add idroads.shp to an active map. Import UniqueSymbols to Visual Basic
Editor. Run the macro. The macro produces a map showing the interstate, U.S.,
and state highways in three different line symbols.

Private Sub UniqueSymbols()
' Part 1: Prepare a unique value renderer.
Dim pUniqueValueRenderer As IUniqueValueRenderer
Dim pSym1 As ILineSymbol
Dim pSym2 As ILineSymbol
Dim pSym3 As ILineSymbol
' Define the renderer.
Set pUniqueValueRenderer = New UniqueValueRenderer
pUnigqueValueRenderer.FieldCount = 1
pUnigueValueRenderer.Field(0) = "Route_Desc"
' Add the first symbol to the renderer.
Set pSym1 = New SimpleLineSymbol
pSym1.Color = GetRGBColor(255, 0, 0)
pSym1.Width = 3
pUniqueValueRenderer.AddValue "Interstate”, "", pSym1
' Add the second symbol to the renderer.
Set pSym2 = New SimpleLineSymbol
pSym2.Color = GetRGBColor(255, 100, 0)
pSym2.Width = 2
pUniqueValueRenderer. AddValue "U.S.", "", pSym2
' Add the third symbol to the renderer.
Set pSym3 = New SimpleLineSymbol
pSym3.Color = GetRGBColor(255, 150, 0)
pSym3.Width = 1
pUniqueValueRenderer.AddValue "State", "", pSym3

Part 1 creates a unique value renderer with three symbols. The code creates
pUniqueValueRenderer as an instance of the UniqueValueRenderer class and defines its

158 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

IUniqueValueRenderer
B— Field()

H—H FieldCount

<4—— AddValue

Figure 8.12 Members on the /UniqueValueRenderer interface for defining unique symbols.

field count as one and its field as Route_Desc (Figure 8.12). These properties are nec-
essary because a unique value renderer can apply to two or more fields. Next the code
creates pSyml as an instance of the SimpleLineSymbol class and defines its color and
width properties. The color is generated by the GetRGBColor function, and the width
is specified in points. Then the code uses the AddValue method on IUniqueValueRenderer
to add the unique value (i.e., Interstate) and corresponding symbol (i.e., pSym1I) to the
renderer. The same procedure is repeated for the second and third unique values.

' Part 2: Assign the renderer to the feature layer and refresh the map and its table of contents.
Dim pMxDoc As IMxDocument
Dim pMap As IMap
Dim pLayer As IFeatureLayer
Dim pGeoFeatureLayer As IGeoFeaturelLayer
Set pMxDoc = ThisDocument
Set pMap = pMxDoc.FocusMap
Set plLayer = pMap.Layer(0)
Set pGeoFeatureLayer = pLayer
Set pGeoFeatureLayer.Renderer = pUniqueValueRenderer
pMxDoc.ActiveView.PartialRefresh esriViewGeography, pLayer, Nothing
pMxDoc.UpdateContents
End Sub

Part 2 sets pLayer to be the top layer in the active map. Next, the code uses the
IGeoFeatureLayer interface to assign the renderer. Finally, the code refreshes the
view and updates the table of contents.

8.4 DISPLAYING RASTER DATA

Unlike vector data, which may be represented by point, line, or area (fill) symbols,
raster data are represented only by fill symbols. Raster data can be categorical or
numeric, however. Therefore, fill symbols for displaying raster data can be unique
symbols or graduated color symbols.

8.4.1 RasterUniqueSymbols
RasterUniqueSymbols uses a symbol for each unique cell value to draw a raster

layer. The macro performs the same function as using the Symbology/Unique values
command in the Layer Properties dialog in ArcMap.

DATA DISPLAY 159

RasterUniqueSymbols has four parts. Part 1 defines the raster dataset to draw.
Part 2 creates a raster unique value renderer and connects the renderer to the raster
dataset. Part 3 assigns colors generated from a random color ramp and labels to each
unique value. Part 4 applies the renderer to the raster layer and refreshes the view.

Key Interfaces: [Tuble, IRasterBand, IRasterBandCollection, IRasterUniqueValue-
Renderer, IRasterRenderer, IRandomColorRamp, ISimpleFillSymbol

Key Members: Raster, Item(), AttributeTable, RowCount, FindField, Size, Create-
Ramp, GetRow, Value, Update, Renderer, Refresh, UpdateContents

Usage: Add hucgd, a raster containing major watersheds in Idaho, to an active map.
Import RasterUniqueSymbols to Visual Basic Editor. Run the macro. The macro
displays each watershed in hucgd with a unique symbol. These unique symbols
differ from those initial symbols used by ArcMap for displaying hucgd.

Private Sub RasterUniqueSymbols()
' Part 1: Define the raster dataset to draw.
Dim pMxDoc As IMxDocument
Dim pMap As IMap
Dim pRLayer As IRasterLayer
Dim pRaster As IRaster
Dim pTable As [Table
Dim pBand As IRasterBand
Dim pBandCol As IRasterBandCollection
Dim TableExist As Boolean
Dim NumOfValues As Integer
Dim Fieldindex As Integer
Dim FieldName As String
Set pMxDoc = ThisDocument
Set pMap = pMxDoc.FocusMap
Set pRLayer = pMap.Layer(0)
' Work with the first band of the raster.
Set pRaster = pRLayer.Raster
Set pBandCol = pRaster
Set pBand = pBandCol.ltem(0)
' Make sure the band has an attribute table. If not, exit sub.
pBand.HasTable TableExist
If Not TableExist Then Exit Sub
Set pTable = pBand.AttributeTable
' Get the row count.
NumOfValues = pTable.RowCount(Nothing)
' Find the field Value.
FieldName = "Value"
Fieldindex = pTable.FindField(FieldName)

Part 1 defines the raster dataset and the field to draw. The code sets pRaster to
be the raster of the top layer in the active map. Next, the code accesses the IRaster-
BandCollection interface to set pBand as the first band of pRaster. If pBand has a
table, then the code assigns the attribute table to pTable. If not, the sub stops. Using
plable as the source, the code assigns the number of rows to the NumOfValues
variable and the index of the field Value to the FieldIndex variable.

160

Fig

an

PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

IRasterRenderer O—

RasterUniqueValueRenderer
IRasterUniqueValueRenderer O—

IRasterRenderer IRasterUniqueValueRenderer
B—] Raster B— Heading
<—— Update B—M HeadingCount
B—H Label
E— Symbol
<4— AddValue

ure 8.13 A RasterUniqueValueRenderer object supports /RasterRenderer and |Raster-
UniqueValueRenderer. The interfaces provide access to the unique symbols and
raster for data display.

' Part 2: Define a raster unique value renderer.
Dim pUVRen As IRasterUniqueValueRenderer
Dim pRasRen As IRasterRenderer

Set pUVRen = New RasterUniqueValueRenderer
Set pRasRen = pUVRen

Set pRasRen.Raster = pRaster
pRasRen.Update

Part 2 defines the renderer for displaying pRaster. The code creates pUVRen as
instance of the RasterUniqueValueRenderer class. A raster unique value renderer

object supports IRasterRenderer and IRasterUniqueValueRenderer (Figure 8.13).
Next, the code performs a QI for the IRasterRenderer interface to define pRaster as
the raster and to update the renderer. A raster renderer must be updated for any
changes that have been made.

' Part 3: Assign symbol and label to each unique value in the renderer.
Dim pRamp As IRandomColorRamp
Dim | As Long
Dim pRow As IRow
Dim UnigValue As Variant
Dim pFSymbol As ISimpleFillSymbol
' Create a random color ramp.
Set pRamp = New RandomColorRamp
With pRamp
.Size = NumOfValues
.CreateRamp (True)
End With
' Add unique values, labels, and symbols to the renderer.
For I = 0 To NumOfValues - 1
Set pRow = pTable.GetRow(l)
' Add a unique value.
UnigValue = pRow.Value(Fieldindex)
pUVRen.AddValue O, |, UnigValue

DATA DISPLAY 161

' Add corresponding label.

pUVRen.Label(0, I) = CStr(UnigValue)

' Add corresponding symbol.

Set pFSymbol = New SimpleFillSymbol

pFSymbol.Color = pRamp.Color(l)

pUVRen.Symbol(0, I) = pFSymbol
Next |

Part 3 populates the symbol and label in the renderer. The code first creates
pRamp as an instance of the RandomColorRamp class, and sets the number of colors
to be the same as the number of unique values before creating the ramp. Then the
code uses a For...Next loop to add the unique values and their corresponding labels
and symbols to pUVRen. The unique value is the value at the row defined by I and
the column defined by Fieldlndex. The label is the string converted from the unique
value, and the symbol is a simple fill symbol with a color generated from pRamp.
The members of AddValue, Label, and Symbol on IRasterUniqueValueRenderer all
use two indices: the first represents the iHeading and the second represents the
IClass. Headings are used for organizing unique values. One can create a new
heading, for example, by combining two or more unique values (e.g., two or more
unique values from a multiband raster). Because this macro works with individual
unique values, the code specifies iHeading as zero (i.e., the first and only heading)
and IClass as I (i.e., the row number).

' Part 4: Update the renderer, draw the layer, and refresh the view.
pRasRen.Update
Set pRLayer.Renderer = pUVRen
pMxDoc.ActiveView.Refresh
pMxDoc.UpdateContents
End Sub

Part 4 updates pRasRen before assigning it to be the renderer for pRLayer.
Finally, the code refreshes the view and updates the table of contents.

8.4.2 RasterClassifyColorRamp

RasterClassifyColorRamp displays a raster layer by using a classification object,
a raster classify renderer, and a user-defined color ramp. The macro performs the
same function as using the Symbology/Classified command in the Layer Properties
dialog in ArcMap. RasterClassifyColorRamp has three parts. Part 1 derives the
histogram data from the raster for display, Part 2 prepares a raster renderer, and
Part 3 defines the properties of the renderer and uses the renderer to draw the
raster layer.

Key Interfaces: [Raster, ITable, IRasterBandCollection, IRasterBand, ITableHisto-
gram, IHistogram, IClassify, IRasterClassifyColorRampRenderer, IRaster-
ClassifyUlProperties, IRasterRenderer, IAlgorithmicColorRamp, IEnumColors,
IFillSymbol

Key Members: Raster, Item(), AttributeTable, Field, Table, GetHistogram, SetHitogram-
Data, Classify, ClassBreaks, ClassID, ClassCount, ClassField, ClassificationMethod,

162 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

Update, Algorithm, FromColor, ToColor, Size, CreateRamp, Color, Symbol(),
Break(), Label(), Refresh, UpdateContents

Usage: Add intemida, an integer elevation raster, to an active map. Import Raster-
ClassifyColorRamp to Visual Basic Editor. Run the macro. The macro displays
intemida using ten equal interval classes and a color ramp from red to blue.

Private Sub RasterClassifyColorRamp()
' Part 1: Prepare the raster dataset for display.
Dim pMxDoc As IMxDocument
Dim pMap As IMap
Dim pRLayer As IRasterLayer
Dim pRaster As IRaster
Dim pTable As [Table
Dim pBandCol As IRasterBandCollection
Dim pRasBand As IRasterBand
Dim TestTable As Boolean
Dim pTableHist As ITableHistogram
Dim pHist As IHistogram
Dim vwalues As Variant
Dim vFrequencies As Variant
' Define the raster dataset and verify it has a table.
Set pMxDoc = ThisDocument
Set pMap = pMxDoc.FocusMap
Set pRLayer = pMap.Layer(0)
Set pRaster = pRLayer.Raster
Set pBandCol = pRaster
Set pRasBand = pBandCol.ltem(0)
pRasBand.HasTable TestTable
If TestTable = False Then Exit Sub
Set pTable = pRasBand.AttributeTable
' Derive the histogram data from the table.
Set pTableHist = New TableHistogram
pTableHist.Field = "Value"
Set pTableHist.Table = pTable
Set pHist = pTableHist
pHist.GetHistogram vValues, vFrequencies

Part 1 verifies the raster has a table and derives the histogram data from the
table. The code first defines the following objects: pRaster to be the raster of the
first layer in the active map, pBandCol to be the same as pRaster, and pRasBand to
be the first band of the band collection. Next, the code verifies that pRasBand has
a table and sets pTable to be the attribute table of pRasBand. The rest of Part 1
derives the histogram data from pTable. The code creates pTableHist as an instance
of the TableHistogram class and defines its field and table properties, and then the
code switches to the IHistogram interface and uses the GetHistogram method to
derive the data values and frequencies from pTable.

' Part 2: Prepare the raster renderer.
Dim pClassify As IClassify
Dim ClassBreak As Variant

DATA DISPLAY 163

Dim pUID As UID

Dim pClassRen As IRasterClassifyColorRampRenderer
Dim pClassProp As IRasterClassifyUlProperties

Dim pRasRen As IRasterRenderer

' Prepare an equal interval classification object with 10 classes.
Set pClassify = New Equalinterval
pClassify.SetHistogramData vValues, vFrequencies
pClassify.Classify 10

' Store the class breaks.

ClassBreak = pClassify.ClassBreaks

' Obtain the classification UID.

Set pUID = pClassify.ClassID

' Prepare a raster classify renderer.

Set pClassRen = New RasterClassifyColorRampRenderer
pClassRen.ClassCount = 10

pClassRen.ClassField = "Value"

' Define the classification method.

Set pClassProp = pClassRen

Set pClassProp.ClassificationMethod = pUID

' Define the raster and update the renderer.

Set pRasRen = pClassRen

Set pRasRen.Raster = pRaster

pRasRen.Update

Part 2 prepares a classification object and a raster renderer. This preparation
requires several steps. First, the code creates pClassify as an instance of the Equal-
Interval class. The code then uses members on /Classify to get the histogram data for
a classification with ten classes, to save the class breaks into an array referenced by
ClassBreak, and to obtain the classification’s unique identifier (UID). Second, the code
creates pClassRen as an instance of the RasterClassifyColorRampRenderer class and
defines its properties of class count and class field. Third, the code accesses IRasterClas-
sifyUlProperties to specify pUID for the classification method. Finally, the code uses
the IRasterRenderer interface to define the raster and to update the raster. Figure 8.14
shows the interfaces that a raster classify color ramp renderer object supports.

IRasterClassifyColorRampRenderer O—j
IRasterClassifyUIProperties O—
IRasterRenderer O—

RasterClassify-
ColorRampRenderer

IRasterClassifyColorRampRenderer IRasterClassifyUIProperties

H—H ClassCount B—1 ConnectProperties

H—H ClassField

Figure 8.14 A RasterClassifyColorRampRenderer object supports /RasterClassifyColorRam-
pRenderer, |RasterClassifyUlProperties, and IRasterRenderer. The first two
interfaces can define the classification of raster data and the third, as shown
in Figure 8.13, connects the raster and its renderer.

164 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

' Part 3: Define the properties of the renderer, and use the renderer to draw the map.
Dim pAlgoRamp As IAlgorithmicColorRamp
Dim pColors As IEnumColors
Dim pFillSymbol As IFillSymbol
Dim | As Integer
' Prepare a color ramp.
Set pAlgoRamp = New AlgorithmicColorRamp
With pAlgoRamp
.Algorithm = esriHSVAIgorithm
.FromColor = GetRGBColor(255, 0, 0)
.ToColor = GetRGBColor(0, 0, 255)
.Size = 10
.CreateRamp (True)
End With
Set pColors = pAlgoRamp.Colors
' Define the symbol, break, and label for each class.
For | = 0 To pClassRen.ClassCount - 1
Set pFillSymbol = New SimpleFillSymbol
pFillSymbol.Color = pColors.Next
pClassRen.Symbol(l) = pFillSymbol
pClassRen.Break(l) = ClassBreak(l)
pClassRen.Label(l) = ClassBreak() & " - " & ClassBreak(l + 1)
Next |
' Assign the raster renderer to the layer and refresh the map.
pRasRen.Update
Set pRLayer.Renderer = pRasRen
pMxDoc.ActiveView.Refresh
pMxDoc.UpdateContents
End Sub

Part 3 provides the symbol, break, and label to the renderer and uses the renderer
to draw the raster layer. The code first creates pAlgoRamp as an instance of the
AlgorithmicColorRamp class, and defines its properties. The GetRGBColor function
is used to define the two end colors of the color ramp. The colors from pAlgoRamp
are stored in an enumerator referenced by pColors. Next, the code uses a For...Next
loop to assign the symbol, break, and label to each class in pClassRen. Finally, the
code updates pRasRen with the changes made through pClassRen and uses pRasRen
as the renderer to draw the raster layer.

8.4.3 RasterUserDefinedColorRamp

RasterUserDefinedColorRamp displays a classified raster layer by using user-
defined class breaks and color ramp. The macro performs the same function as using
the Symbology/Classified command in the Layer Properties dialog in ArcMap.
RasterUserDefinedColorRamp has three parts. Part 1 defines the raster and prepares
a raster renderer. Part 2 creates a color ramp, followed by specifying the label, break,
and symbol of each class for the renderer. Part 3 assigns the renderer to the raster
and refreshes the map.

DATA DISPLAY 165

Key Interfaces: IRaster, IRasterClassifyColorRampRenderer, IRasterRenderer, 1Al-
gorithmicColorRamp, IFillSymbol

Key Members: Raster, ClassCount, Update, Algorithm, FromColor, ToColor, Size,
CreateRamp, Break(), Label(), Color, Symbol(), Renderer, Refresh, UpdateContents

Usage: Add emidalat, an elevation raster, to an active map. Import RasterUserDe-
finedColorRamp to Visual Basic Editor. Run the macro. The macro redraws emi-
dalat in three classes using symbols from a color ramp.

Private Sub RasterUserDefinedColorRamp()
' Part 1: Define the raster dataset and a raster renderer.
Dim pMxDoc As IMxDocument
Dim pMap As IMap
Dim pRLayer As IRasterLayer
Dim pRaster As IRaster
Dim pClassRen As IRasterClassifyColorRampRenderer
Dim pRasRen As IRasterRenderer
' Define the raster dataset.
Set pMxDoc = ThisDocument
Set pMap = pMxDoc.FocusMap
Set pRLayer = pMap.Layer(0)
Set pRaster = pRLayer.Raster
' Define a raster classify color ramp renderer.
Set pClassRen = New RasterClassifyColorRampRenderer
pClassRen.ClassCount = 3
Set pRasRen = pClassRen
Set pRasRen.Raster = pRaster
pRasRen.Update

Part 1 defines the raster and a raster renderer. The code sets pRaster to be the
raster of the layer to draw. Next, the code creates pClassRen as an instance of the
RasterClassifyColorRampRenderer class and specifies three for the class count. Then
the code uses the IRasterRenderer interface to define the raster and to update the
renderer.

' Part 2: Specify the properties for the renderer.
Dim pRamp As IAlgorithmicColorRamp
Dim pFSymbol As IFillSymbol
' Create a color ramp.
Set pRamp = New AlgorithmicColorRamp
With pRamp
.Algorithm = esriCIELabAlgorithm
.FromColor = GetRGBColor(0, 255, 255)
.ToColor = GetRGBColor(0, 0, 255)
.Size =3
.CreateRamp True
End With
' Specify the label, break, and symbol for each class in the renderer.
Set pFSymbol = New SimpleFillSymbol
pFSymbol.Color = pRamp.Color(0)
pClassRen.Symbol(0) = pFSymbol

166 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

pClassRen.Break(0) = 855
pClassRen.Label(0) = "855 - 1000"
pFSymbol.Color = pRamp.Color(1)
pClassRen.Symbol(1) = pFSymbol
pClassRen.Break(1) = 1000
pClassRen.Label(1) = "1000 - 1200"
pFSymbol.Color = pRamp.Color(2)
pClassRen.Symbol(2) = pFSymbol
pClassRen.Break(2) = 1200
pClassRen.Label(2) = "1200 - 1350"

Part 2 specifies the properties of the renderer. The code first creates pRamp as
an instance of the AlgorithmicColorRamp class and defines its properties. Then the
code uses colors from pRamp and hard-coded class breaks and labels to define the
properties for each class in pClassRen.

' Part 3: Assign the renderer to the layer and refresh the map.
pRasRen.Update
Set pRLayer.Renderer = pRasRen
pMxDoc.ActiveView.Refresh
pMxDoc.UpdateContents

End Sub

After the renderer is set up in Part 2, Part 3 assigns the updated pRasRen to the
raster layer, refreshes the map, and updates the document’s table of contents.

8.5 MAKING A PAGE LAYOUT

A page layout may contain one or more maps and various map elements. A module
for making a page layout typically involves more objects and code lines than other
types of applications.

8.5.1 Layout

Layout prepares a layout of a thematic map showing the rate of population change by
county in Idaho between 1990 and 2000. The layout includes the map body, a title, a
subtitle, a legend, a north arrow, and a scale bar. The module performs the same function
as using the Insert menu in the Layout View to add different map elements to the layout.
Layout is organized into five subs. Start is the startup sub, which calls the other subs.
AddTitle adds the title and subtitle, AddLegend adds the legend, AddNorthArrow adds
the north arrow, and AddScaleBar adds the scale bar to the layout.

Key Interfaces: /GraphicsContainer, IMapFrame, 1Element, IActiveView, IPageLay-
out, ITextElement, I[FormattedTextSymbol, 1FontDisp, IPoint, I[Envelope, IMapSur-
roundFrame, IMapSurround, IMarkerNorthArrow, ICharacterMarkerSymbol

Key Members: PageLayout, FindFrame, Text, Name, Size, Bold, Font, Case, Hori-
zontalAlignment, Symbol, Geometry, AddElement, Value, PutCoords, CreateSur-
roundFrame, Activate, MarkerSymbol, Characterlndex

DATA DISPLAY 167

Usage: Add idcounty.lyr to a new map (if necessary, set the layer file’s data source
to be idcounty.shp). Make sure that no other maps are in the map document. The
layer file shows the rate of population change by county between 1990 and 2000
in Idaho. In ArcMap’s table of contents, double-click and delete idcounty (the layer
name) and Change (the field name). (The layer name and the field name are
confusing to the viewer.) Change from Data View to Layout View. The layout page
size for this macro is 8.5 by 11 inches, and all point measurements are in inches.
Therefore, select Page and Print Setup from the File menu and, in the next dialog,
uncheck Use Printer Paper Settings and set the Width of the page to be 8.5 inches
and the Height to be 11 inches. Now use the handle of the map frame to resize
the map so that it fills the page. Import Layout to Visual Basic Editor. Run the
module. The module adds the title, subtitle, legend, north arrow, and scale bar to
the layout. Because the map and the map elements are graphic elements, they can
be reduced, enlarged, and moved on the page layout if necessary.

Public Sub Start()

' Set the variables and run the subs.

Dim pMxDoc As IMxDocument

Dim pPagelayout As IPagelLayout

Dim pGraphicsContainer As IGraphicsContainer

Dim pActiveView As |ActiveView

Dim pMapFrame As IMapFrame

Dim pElement As |Element

' Set the layout view.

Set pMxDoc = Application.Document

Set pPagelayout = pMxDoc.PagelLayout

Set pGraphicsContainer = pPagelayout

Set pActiveView = pPagelayout

' Set the map frame.

Set pMapFrame = pGraphicsContainer.FindFrame(pMxDoc.FocusMap)

Set pElement = pMapFrame

' Call subs to add map elements.

Call AddTitleSubtitle

Call AddLegend(pElement)

Call AddNorthArrow(pElement)

Call AddScalebar(pElement)

' Refresh the layout.

pActiveView.PartialRefresh esriViewGraphics, Nothing, Nothing
End Sub

Start defines the page layout and runs the subs to add the title, subtitle, legend,
north arrow, and scale bar to the layout. The code sets pPageLayout to be the page
layout of the map document, and sets both pGraphicsContainer and pActiveView to
be the same as pPageLayout. Next, Start sets pMapFrame to be the map frame for
the focus map of the map document. IMapFrame provides access to the map within
the frame and has methods to create map surrounds, such as the legend, north arrow,
and scale bar, that are associated with the map. Therefore, pElement, which is set
to be pMapFrame, must be passed as an argument to the subs that add the legend,
north arrow, and scale bar to the layout. After all the elements are added to the
layout, the code refreshes the layout view.

168 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

Private Sub AddTitleSubtitle()
' Part 1: Set the page layout.
Dim pMxDoc As IMxDocument
Dim pPagelayout As IPagelLayout
Dim pGraphicsContainer As IGraphicsContainer
Set pMxDoc = Application.Document
Set pPagelayout = pMxDoc.Pagelayout
Set pGraphicsContainer = pPagelLayout

Part 1 of AddTitleSubtitle defines the page layout.

' Part 2: Add the title.
Dim pTextElement As [TextElement
Dim pTextSymbol As IFormattedTextSymbol
Dim pTextFont As IFontDisp
Dim pElement As IElement
Dim pPoint As IPoint
' Define the text font.
Set pTextFont = New StdFont
With pTextFont
.Name = "Times New Roman"
.Size = 24
.Bold = True
End With
' Define the text symbol.
Set pTextSymbol = New TextSymbol
With pTextSymbol
.Font = pTextFont
.Case = esriTCAlICaps
.HorizontalAlignment = esriTHACenter
End With
' Define the title as a text element.
Set pTextElement = New TextElement
pTextElement.Text = "ldaho 1990-2000"
pTextElement.Symbol = pTextSymbol
' Define the position to plot the title.
Set pElement = pTextElement
Set pPoint = New Point
pPoint.X = 5#
pPoint.Y = 10#
pElement.Geometry = pPoint
' Add the title to the graphics container.
pGraphicsContainer.AddElement pTextElement, O

Part 2 of AddTitleSubtitle adds a title to the layout. The code performs two tasks:
it defines the title as a text element and locates the title on the layout. The definition
of a text element includes a text symbol, the definition of which in turn includes a
text font (Figure 8.15). Therefore, the code first creates pTextFont as an instance of
the StdFont class and defines its properties of name, size, and boldness in a With
block. Next, the code creates pTextSymbol as an instance of the TextSymbol class

DATA DISPLAY 169

IFontDis ._W IFormattedTextSymbol [TextEl t
PO [TextSymbol o TextSymbol extElement 0— TextElement

[FontDisp IFormatted TextSymbol ITextElement
N -
=—a Bold \ =—m Case I Symbol
=—a Name ' =—a Font m—am Text
B—a Size =—a HorizontalAlignment

Figure 8.15 The diagram shows text-related objects and their properties for adding the title
and subtitle to the layout. IFontDisp defines the font for the text symbol, and
IFormattedTextSymbol defines the symbol for the text element.

and defines its properties of font, case, and horizontal alignment. To complete the first
task of defining the title, the code creates pTextElement as an instance of the TextEle-
ment class and defines its properties of text and symbol. The code starts the second
task by creating pPoint as an instance of the Point class and defines the point’s X
and Y properties. Both X and Y values are measured in inches, with the origin at the
lower left corner of the page layout. The code then accesses the IElement interface
and assigns pPoint to be the geometry of pTextElement. Because the horizontal
alignment of the text symbol is center justified (i.e., esriTHACenter), pPoint is at
the center point of the title. After the definition is complete, the code uses the
AddElement method on IGraphicsContainer to add pTextElement to the graphics
container.

' Part 3: Add the subtitle.
' Define the text font.
Set pTextFont = New StdFont
With pTextFont
.Name = "Times New Roman"
.Size = 14
End With
' Define the text symbol.
Set pTextSymbol = New TextSymbol
With pTextSymbol
.Font = pTextFont
.Case = esriTCAlICaps
.HorizontalAlignment = esriTHACenter
End With
' Define the subtitle as a text element.
Set pTextElement = New TextElement
pTextElement.Text = "Rate of Population Change by County’
pTextElement.Symbol = pTextSymbol
' Define the position to plot the subtitle.
Set pElement = pTextElement
Set pPoint = New Point
pPoint.X = 5#
pPoint.Y = 9.5
pElement.Geometry = pPoint

170 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

' Add the subtitle to the graphic container.
pGraphicsContainer.AddElement pTextElement, O
End Sub

Part 3 of AddTitleSubtitle follows the same procedure as in Part 2 to add a
subtitle to the layout. The subtitle should appear half an inch below the title in a
smaller text size.

Private Sub AddLegend(pElement As IElement)
' Part 1: Define the page layout.
Dim pMxDoc As IMxDocument
Dim pPagelayout As IPagelayout
Dim pGraphicsContainer As IGraphicsContainer
Dim pActiveView As |ActiveView
Set pMxDoc = Application.Document
Set pPagelayout = pMxDoc.Pagelayout
Set pGraphicsContainer = pPagelayout
Set pActiveView = pPagelayout

Part 1 of AddLegend defines the page layout.

' Part 2: Create a legend map surround frame.

Dim pMapFrame As IMapFrame

Dim pID As New UID

Dim pMapSurroundFrame As IMapSurroundFrame

Dim pMapSurround As IMapSurround

' Get the map frame.

Set pMapFrame = pElement

' Create a legend map surround frame.

plD.Value = "esriCore.Legend"

Set pMapSurroundFrame = pMapFrame.CreateSurroundFrame(plD, pMapSurround)

Part 2 of AddLegend creates a map surround frame for the legend. The code
first sets pMapFrame to be pElement, an argument passed from Layout. Next, the
code sets the value of pID, a new unique identifier (UID) object, to be “esriCore.Legend.”
Then the code uses the CreateSurroundFrame method on IMapFrame to create a
legend within a frame. The legend is referenced by pMapSurround, and the frame
is referenced by pMapSurroundFrame.

' Part 3: Create the legend and add the legend to the graphics container.
Dim pFrameElement As IElement

Dim pEnvelope As IEnvelope

' Define the geometry of the legend.

Set pEnvelope = New Envelope

pEnvelope.PutCoords 5.5, 7, 6.5, 8.4

Set pFrameElement = pMapSurroundFrame

pFrameElement.Geometry = pEnvelope

' Activate the screen display of the legend.

pFrameElement.Activate pActiveView.ScreenDisplay

DATA DISPLAY 171

' Add the legend to the graphics container.
pGraphicsContainer.AddElement pFrameElement, O
End Sub

Part 3 of AddLegend creates the legend on the layout. The code first creates
pEnvelope as an instance of the Envelope class and uses the PutCoords method to
define the envelope’s xmin, ymin, xmax, and ymax values. An envelope object
represents a rectangular shape, and in this case, it controls the size and position of
the legend. Next, the code uses the IElement interface to assign pEnvelope to be the
geometry of the map surround frame. Finally, the code activates the screen display
of the legend frame and adds the frame to the graphics container.

Private Sub AddNorthArrow(pElement As IElement)
' Part 1: Define the page layout.
Dim pMxDoc As IMxDocument
Dim pPagelayout As IPagelayout
Dim pGraphicsContainer As IGraphicsContainer
Dim pActiveView As IActiveView
Set pMxDoc = Application.Document
Set pPagelayout = pMxDoc.PagelLayout
Set pGraphicsContainer = pPagelayout
Set pActiveView = pPagelayout

Part 1 of AddNorthArrow defines the page layout.

' Part 2: Create a north arrow map surround frame.

Dim pMapFrame As IMapFrame

Dim pID As New UID

Dim pMapSurroundFrame As IMapSurroundFrame

Dim pFrameElement As IElement

Dim pMapSurround As IMapSurround

Dim pMarkerNorthArrow As IMarkerNorthArrow

Dim pCharacterMarkerSymbol As ICharacterMarkerSymbol

' Get the map frame.

Set pMapFrame = pElement

' Create a north arrow map surround frame.

plD.Value = "esriCore.MarkerNorthArrow"

' Choose a north arrow design other than the default.

Set pMarkerNorthArrow = New MarkerNorthArrow

Set pCharacterMarkerSymbol = pMarkerNorthArrow.MarkerSymbol
pCharacterMarkerSymbol.Characterindex = 176
pMarkerNorthArrow.MarkerSymbol = pCharacterMarkerSymbol
Set pMapSurround = pMarkerNorthArrow

Set pMapSurroundFrame = pMapFrame.CreateSurroundFrame(plD, pMapSurround)

Part 2 of AddNorthArrow creates a map surround frame for the north arrow. The
code first sets pMapFrame to be pElement, an argument passed from Layout. Next,
the code sets the value of pID to be “esriCore.MarkerNorthArrow.” ArcObjects offers
a wide variety of north arrow objects. The default option is a rather fancy north
arrow, but one can use additional line statements to specify a simpler north arrow.

172 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

The code creates pMarkerNorthArrow as an instance of the MarkerNorthArrow class,
and initially sets pCharacterMarkerSymbol to be its marker symbol. Then the code
specifies pCharacterMarkerSymbol to be the character at index 176 and assigns the
symbol to be the marker symbol for pMarkerNorthArrow. In this case, the north
arrow, a simpler symbol than the default, is a character marker symbol at the index
of 176. Finally, the code uses the chosen symbol as an object qualifier to create a
north arrow map surround frame. (To see other character marker symbols for the
north arrow, do the following in the Layout View of ArcMap: select North Arrow
from the Insert menu, click Properties in the North Arrow Selector dialog, and then
click the Character dropdown arrow in the North Arrow dialog. The index value of
the character symbol shows up in the ToolTip message box.)

' Part 3: Create the north arrow and add it to the graphics container.

Dim pEnvelope As IEnvelope

' Create a envelope for the north arrow.

Set pEnvelope = New Envelope

pEnvelope.PutCoords 5.7, 6.2, 5.9, 6.4

Set pFrameElement = pMapSurroundFrame

pFrameElement.Geometry = pEnvelope

pFrameElement.Activate pActiveView.ScreenDisplay

' Add the north arrow to the graphics container.

pGraphicsContainer.AddElement pFrameElement, O
End Sub

Part 3 of AddNorthArrow creates a new envelope and assigns the envelope to
be the geometry of the map surround frame for the north arrow. Then the code
activates the screen display of the frame element and adds the element to the graphics
container.

Private Sub AddScalebar(pElement As IElement)
' Part 1: Define the page layout.
Dim pMxDoc As IMxDocument
Dim pPagelayout As IPagelayout
Dim pGraphicsContainer As IGraphicsContainer
Dim pActiveView As IActiveView
Set pMxDoc = Application.Document
Set pPagelayout = pMxDoc.Pagelayout
Set pGraphicsContainer = pPagelayout
Set pActiveView = pPagelayout

Part 1 of AddScaleBar defines the page layout.

' Part 2: Create a scalebar map surround frame.
Dim pMapFrame As IMapFrame

Dim pID As New UID

Dim pMapSurroundFrame As IMapSurroundFrame
Dim pFrameElement As IElement

Dim pMapSurround As IMapSurround

Dim pScaleMarks As IScaleMarks

DATA DISPLAY 173

' Get the map frame.

Set pMapFrame = pElement

' Create a scale bar map surround frame.

pID.Value = "esriCore.Scalebar"

Set pMapSurround = New AlternatingScaleBar

Set pScaleMarks = pMapSurround

pScaleMarks.MarkFrequency = esriScaleBarMajorDivisions

Set pMapSurroundFrame = pMapFrame.CreateSurroundFrame(plD, pMapSurround)

Part 2 of AddScalebar creates a scale bar map surround frame. The code first
sets pMapFrame to be pElement, an argument passed from Layout. Next, the code
defines the value of pID to be “esriCore.Scalebar.” Then the code creates pMapSur-
round as an instance of the AlternatingScaleBar class and uses this scale bar option
to create a map surround frame. An AlternatingScaleBar object uses two symbols
such as black and white to create a scale bar. The MarkFrequency property of
IScaleMarks stipulates that the markings are to be added to the major divisions.

' Part 3: Create the scalebar and add it to the graphics container.

Dim pEnvelope As |IEnvelope

' Create an envelope for the scale bar.

Set pEnvelope = New Envelope

pEnvelope.PutCoords 5.2, 5.4, 7.2, 6#

Set pFrameElement = pMapSurroundFrame

pFrameElement.Geometry = pEnvelope

pFrameElement.Activate pActiveView.ScreenDisplay

' Add the scale bar to the graphics container.

pGraphicsContainer.AddElement pFrameElement, O
End Sub

Part 3 of AddScalebar creates a new envelope and assigns the envelope to be
the geometry of the map surround frame for the scale bar. The code then activates
the screen display of the frame element and adds the element to the graphics
container.

CHAPTER 9

Data Exploration

Data exploration involves data-centered query and analysis. It allows users to exam-
ine the general trends in the data, to take a close look at data subsets, and to focus
on possible relationships between datasets. For some users of geographic information
systems (GIS), data exploration serves as a starting point in formulating research
questions and hypotheses. For others, data exploration constitutes their routine tasks.

Data exploration in ArcGIS can be based on an attribute query or spatial query. An
attribute query selects records by using a SQL (Structured Query Language) statement
and attribute data in a feature class or an attribute table. A spatial query selects features
by using a cursor, a graphic object, or a spatial relationship. The use of a cursor or a
graphic object (for example, a circle) for selecting features is straightforward. The use
of a spatial relationship, on the other hand, requires a statement that can link “features
to select” and “features to be selected” spatially. Common spatial relationships are
containment, intersect, and proximity. The result from an attribute or spatial query is a
data subset, which can be highlighted in a table, a feature layer, or both.

A data exploration task may use both attribute and spatial queries. This happens
when the selection of a data subset involves both attribute and spatial conditions.
One of the sample macros in this chapter selects thermal wells and springs that are
within a certain distance of an interstate highway (a spatial condition) and have
water temperatures above a certain reading (an attribute condition). Therefore the
macro must perform both attribute and spatial queries.

Data exploration in GIS may also involve derivation of descriptive statistics such
as minimum, maximum, range, mean, and standard deviation from numeric data.
These descriptive statistics are derived on a field using either all records or a data
subset in a table.

This chapter covers data exploration. Section 9.1 reviews data exploration options
in ArcGIS. Section 9.2 discusses objects that are important to data exploration.
Section 9.3 offers macros and a Geoprocessing (GP) macro for attribute queries.
Section 9.4 offers macros and a GP macro for spatial queries. Section 9.5 includes
macros for combining attribute and spatial queries. Section 9.6 has macros and a GP
macro for deriving and reporting descriptive statistics. All macros start with the listing
of key interfaces and key members (that is, properties and methods) and the usage.

175

176 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

9.1 EXPLORING DATA IN ARCGIS

ArcMap has the Select By Attributes command for attribute queries. SQL is the
query language. The basic syntax of a SQL statement is

select <attribute list>
from <table>
where <condition>

The select keyword selects field(s) from a database, the from keyword selects table(s)
from a database, and the where keyword specifies the condition for data query. SQL
is integrated with the user interface in ArcMap: the table to be selected from is the
activated table, and fields to be queried are available in a dropdown list. The user
only has to prepare the where clause (the query expression) in the Select By Attributes
dialog.

ArcMap has Select Features, Select By Graphics, and Select By Location for
spatial queries. These three commands correspond to selecting features by using a
cursor, a graphic, and a spatial relationship respectively. Select By Location is the
only command that uses a dialog. The dialog requires the user to specify one or
more layers whose features will be selected, and a layer whose features will be used
for selection. The dialog offers 11 spatial relationships to connect features to be
selected and features used for selection. These relationships are: “are completely
within,” “completely contain,” “have their center in,” “contain,” “are contained by,”
“intersect,” “are crossed by the outline of,” “are within a distance of,” “share a line
segment with,” “touch the boundary of,” and “are identical to.” The spatial concepts
of containment, intersect, and proximity are the basis for these relationships.

Both Select By Attributes and Select By Location offer the selection methods
of “create a new selection,” “add to current selection,” “remove from current selec-
tion,” and “select from current selection.” Therefore, after selecting a feature subset,
we may add features to, remove features from, or select features from the subset or
we may select a new subset.

ArcMap offers two ways to derive descriptive statistics on a field. The context
menu of a field in a feature attribute table has the Statistics command. When selected,
the command displays the field’s statistics using all or selected records. The Statistics
command is also available in the Selection menu. This command derives statistics
for selected features.

99 ¢ LEINT3

9.2 ARCOBJECTS FOR DATA EXPLORATION

The primary ArcObjects components for data query are QueryFilter and SpatialFilter
(Figure 9.1). A query filter object can retrieve a data subset from a feature layer, a
feature class, or a table by using the condition expressed in the WhereClause property.

The SpatialFilter class is a type of the QueryFilter class. This means that a
spatial filter object can include both spatial and attribute constraints in performing
a data query. Two important properties of a spatial filter object are Geometry and

DATA EXPLORATION 177

IQueryFilter O— QueryFilter

I

IQueryFilter C SpatialFilter
ISpatialFilter O—
IQueryFilter ISpatialFilter

B—8 WhereClause| | B— Geometry
H—H SpatialRel
H— WhereClause

Figure 9.1 SpatialFilter is a type of QueryFilter. Notice that a spatial filter object has its own
properties in addition to the WhereClause property that it inherits from QueryFilter.

SpatialRel. The Geometry property defines the query geometry to filter results. The
query geometry may be the shape of a selected polygon in a feature layer, a rectangle
based on the extent drawn by the user, or a buffer zone around a highway segment.
The SpatialRel property defines the spatial relationship for filtering. ArcObjects has
ten predefined spatial relationships (Figure 9.2).

9.2.1 Use of a Query Filter

A query filter object can be used on a feature layer or a feature class. When used
on a feature layer, a query filter produces a set of selected features for visual
inspection. A FeatureLayer object implements IFeatureSelection, and the Select-
Features method on IFeatureSelection can use a query filter to select features
(Figure 9.3). IFeatureSelection also has properties to set the color and symbol for
displaying the selected features.

When used on a feature class, a query filter produces a data subset for data
manipulation or presentation. Figure 9.4 shows that a SelectionSet object can be

esriSpatialRelEnum Constants

esriSpatialRelUndefined
esriSpatialRellntersects
esriSpatialRelEnvelopelntersects
esriSpatialRelIndexIntersects
esriSpatialRelTouches
esriSpatialRelOverlaps
esriSpatialRelCrosses
esriSpatialRel Within
esriSpatialRelContains
esriSpatialRelRelation

Figure 9.2 Predefined spatial relationships in ArcObjects.

178 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

[FeatureLayer O—
IFeatureSelection O—

FeatureLayer

IFeatureSelection
B—8 BufferDistance

B— SelectionColor
B—1 SelectionSet

B—7 SelectionSymbol
<

SelectFeatures

Figure 9.3 Properties and methods on /FeatureSelection.

created from a table object and a query filter object. A selection set object supports
ISelectionSet, which has methods to manage the selection set such as making it
permanent or combining it with another selection set. A TableWindow object imple-
ments /TableWindow, which has members to set up a table for data presentation and
to highlight the selected subset (Figure 9.5).

Because the relationship between selected features and a selection set is like that
between a feature layer and its feature class, there are ways to connect selected
features and a selection set. For example, the SelectionSet property on [FeatureSe-
lection can produce a selection set from the selected features.

9.2.2 Cursor

A cursor is a data-access object that allows the programmer to step through each
row of a table for such purposes as counting and editing. Figure 9.6 shows two ways

QueryFilter |-——
S —
'

Table |---

ISelectionSet
B— Count
<4— Add
<4— Combine
«4—— MakePermanent
4— Search
«4— Select

Figure 9.4 A QueryfFilter object and a Table object together can create a SelectionSet object.
ISelectionSet has members to manage the selection set.

DATA EXPLORATION 179

ITableWindow

B— ShowSelected
B—] Table

B— TableSelectionAction
—0 Application

<4— Show
<4— UpdateSelection

Figure 9.5 /TableWindow has members to set up a table for view.

for creating a cursor: combining a query filter and a table or a feature class or a
feature layer, or combining a query filter and a selection set.

A cursor object created from a feature class or a feature layer is a feature cursor.
A feature cursor object supports IFeatureCursor (Figure 9.7). Two important meth-
ods on [FeatureCursor are NextFeature and UpdateFeature. The NextFeature method
advances the position of the cursor by one and returns the feature at that position.
The method is therefore useful for setting up a loop to step through each feature in
the cursor. The UpdateFeature method can update the feature corresponding to the
current position of the cursor.

9.2.3 Data Statistics

The primary component for deriving descriptive statistics is DataStatistics. A data
statistics object implements /DataStatistics, which has properties that let the user
set a field to gather statistics on and a cursor to use either all records or the selected
records (Figure 9.8).

SelectionSet (- ——,

FeatureClass

Figure 9.6 Two ways for creating a Cursor object.

180 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

IFeatureCursor

4— NextFeature
<4— UpdateFeature

Figure 9.7 Methods on IFeatureCursor.

9.3 PERFORMING ATTRIBUTE QUERY

This section includes three sample macros for attribute query from a feature layer
and from a table.

9.3.1 SelectFeatures

SelectFeatures selects from a feature layer features that meet a query expression
and highlights the selected features. The macro performs the same function as using
the Select By Attributes command in ArcMap. SelectFeatures has two parts. Part 1
defines the feature layer, and Part 2 prepares a new query filter, uses the query filter
to select features, and highlights the selected features.

Key Interfaces: [ActiveView, IFeatureLayer, [FeatureSelection, IQueryFilter

Key Members: WhereClause, SelectFeatures, PartialRefresh

Usage: Add idcities.shp to the focus map as the top layer. Import SelectFeatures to
Visual Basic Editor in ArcMap. Run the macro. Those cities that have population
> 10000 are selected and highlighted.

Private Sub SelectFeatures()
' Part 1: Define the feature layer.
Dim pDoc As IMxDocument
Dim pMap As IMap
Dim pActiveView As IActiveView
Dim pFeatureLayer As IFeatureLayer
Set pDoc = ThisDocument
Set pMap = pDoc.FocusMap
Set pActiveView = pMap
Set pFeatureLayer = pMap.Layer(0)

IDataStatistics
—10 Application
H— SpatialRel
B—— Statistics

B— UniqueValues

Figure 9.8 [DataStatistics has properties for accessing statistics and unique values on a field.

DATA EXPLORATION 181

Part 1 sets pFeatureLayer to be the top layer in the active map.

' Part 2: Select features.

Dim pQueryFilter As IQueryFilter

Dim pFeatureSelection As IFeatureSelection

' Prepare a query filter.

Set pQueryFilter = New QueryFilter

pQueryFilter.WhereClause = "Population > 10000"

' Refresh the old selection if any to erase it.

pActiveView.PartialRefresh esriViewGeoSelection, Nothing, Nothing

' Select features.

Set pFeatureSelection = pFeatureLayer

pFeatureSelection.SelectFeatures pQueryFilter, esriSelectionResultNew, False

' Refresh again to draw the new selection.

pActiveView.PartialRefresh esriViewGeoSelection, Nothing, Nothing
End Sub

Part 2 first creates pQueryFilter as an instance of the QueryFilter class and
defines its WhereClause property. Next, the code refreshes the active view to erase
any previous selection. Then the code performs a Querylnterface (QI) for IFeature-
Selection and uses the SelectFeatures method to create a new selection of features.
Finally, the code refreshes the active view and draws the new selection. The esri-
ViewGeoSelection option limits the refresh to the selected features only.

Box 9.1 SelectFeatures_GP

SelectFeatures_GP uses the SelectLayerByAttribute tool in the Data Management
toolbox to select from idcities.shp those cities with population > 10,000. Add idci-
ties.shp as the top layer in an active map. Run the macro. Selected cities are
highlighted.

Private Sub SelectFeatures_GP()
' Run this macro in ArcMap with idcities.shp as the top layer in the active map.
' Create the Geoprocessing object.
Dim GP As Object
Set GP = CreateObject("esriGeoprocessing.GpDispatch.1")
' SelectlLayerByAttribute <in_layer_or_view> {NEW_SELECTION | ADD_TO_SELECTION |
' CLEAR_SELECTION} {where_clause}
'Execute the selectlayerbyattribute tool.
GP.SelectLayerByAttribute "idcities", "NEW_SELECTION", "POPULATION > 10000"
End Sub

9.3.2 SelectRecords

SelectRecords selects records from the attribute table of a shapefile, displays the
selected records in a table window, and displays the feature layer with selected
features highlighted. SelectRecords has four parts. Part 1 defines the feature class.
Part 2 prepares a query filter and uses it to select records that meet the query

182 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

expression. Part 3 prepares a table window, shows the table, and highlights the
selected records. Part 4 displays a new feature layer based on the feature class and
highlights features of the selected records.

Key Interfaces: IWorkspaceName, IDatasetName, IName, ITable, IQueryFilter,
IScratchWorkspaceFactory, ISelectionSet, ITableWindow, IFeatureLayer, IFeature-
Selection, IActiveView

Key Members: WorkspaceFactoryProgID, PathName, WorkspaceName, Name, Open,
WhereClause, Select, Table, TableSelectionAction, UpdateSelection, Application,
Show, FeatureClass, PartialRefresh, SelectionSet

Usage: Import SelectRecords to Visual Basic Editor in ArcMap. Run the macro. The
macro opens the attribute table of idcounty, highlights the selected records, adds
idcounty to the active map, and highlights features of the selected records.

Private Sub SelectRecords()

its

' Part 1: Define the table.

Dim pWSName As IWorkspaceName

Dim pDatasetName As IDatasetName

Dim pName As IName

Dim pTable As [Table

' Get the dbf file.

Set pWSName = New WorkspaceName
pWSName.WorkspaceFactoryProglD = "esriCore.ShapefileWorkspaceFactory.1"
pWSName.PathName = "c:\data\chap9"

Set pDatasetName = New TableName
pDatasetName.Name = "idcounty.dbf"

Set pDatasetName.WorkspaceName = pWSName
Set pName = pDatasetName

' Open the dbf table.

Set pTable = pName.Open

Part 1 creates pDatasetName as an instance of the TableName class and defines
workspace and name. Next, the code accesses IName and uses the Open method

to open pTable, a reference to the actual table.

' Part 2: Perform selection.

Dim pQFilter As IQueryFilter

Dim pScratchWS As IWorkspace

Dim pScratchWSFactory As IScratchWorkspaceFactory

Dim pSelectionSet As ISelectionSet

' Prepare a query filter.

Set pQFilter = New QueryFilter

pQFilter.WhereClause = "Change > 30"

' Select records and save the selection in a scratch workspace.
Set pScratchWSFactory = New ScratchWorkspaceFactory

Set pScratchWS = pScratchWSFactory.DefaultScratchWorkspace
Set pSelectionSet = pTable.Select (pQFilter, esriSelectionTypeHybrid, esriSelectionOptionNormal, pScratchws)

Part 2 creates pQFilter as an instance of the QueryFilter class and defines its

WhereClause property. Next, the code creates a scratch workspace referenced by
pScratchWS. The code then uses the Select method on ITable to create a selection

DATA EXPLORATION 183

set referenced by pSelectionSet. The Select method requires two selection constants
in addition to the object qualifiers of pQFilter and pScratchWS.

' Part 3: Show the selection in a table window.
Dim pTableWindow As [TableWindow
' Create a table window and specify its properties and methods.
Set pTableWindow = New TableWindow
With pTableWindow
Set .Table = pTable
.TableSelectionAction = esriSelectFeatures
.ShowSelected = False
Set .Application = Application
.Show True
.UpdateSelection pSelectionSet
End With

Part 3 creates pTableWindow as an instance of the TableWindow class and defines
its display properties as follows: pTable for Table, esriSelectFeatures for Table-
SelectionAction, False for ShowSelected, Application for Application, True for Show,
and pSelectionSet for UpdateSelection. A false value for ShowSelected means that
all records are displayed. A true value for ShowSelected, on the other hand, means
that only the selected records are displayed. The entry of Application for Application
is important because it specifies ArcMap (Application) as the window for displaying
pTableWindow. If this property is not specified, the macro will crash.

' Part 4: Show selected features in the feature layer.

Dim pMxDoc As IMxDocument

Dim pMap As IMap

Dim pFeatureLayer As IFeatureLayer

Dim pFeatSelection As IFeatureSelection

Dim pActiveView As IActiveView

Set pMxDoc = ThisDocument

Set pMap = pMxDoc.FocusMap

' Use the dBASE table to create a new feature layer.

Set pFeatureLayer = New FeaturelLayer

Set pFeaturelLayer.FeatureClass = pTable

pFeatureLayer.Name = "idcounty"

' Add the new layer to the active map.

pMap.AddLayer pFeatureLayer

' Refresh the view to draw selected features.

Set pActiveView = pMap

Set pFeatSelection = pFeaturelLayer

Set pFeatSelection.SelectionSet = pSelectionSet

pActiveView.PartialRefresh esriViewGeoSelection, Nothing, Nothing
End Sub

Part 4 creates pFeatureLayer as an instance of the FeatureLayer class, sets pTable
to be its feature class, and sets idcounty to be its name. Next, the code adds
pFeatureLayer to the active map. Finally, the code refreshes the view to draw the
selected features in pSelectionSet.

184 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

9.4 PERFORMING SPATIAL QUERY

A VBA (Visual Basic for Applications) macro for a spatial query requires the use
of a spatial filter object. A spatial filter in turn requires a query object whose
geometry will be used for selecting features and a spatial relationship by which
features of a target layer will be selected. Because a spatial filter object can have
both spatial and attribute constraints, it is more versatile than a query filter object
for custom applications.

9.4.1 SpatialQuery

SpatialQuery uses the shape of a preselected county and the spatial relationship
of containment to select cities that the county contains. The macro performs the
same function as using the Select By Location command in ArcMap to select
features from the city layer that are completely within the selected feature in the
county layer.

SpatialQuery has three parts. Part 1 defines the selected feature on the layer for
selection (the county layer), Part 2 sets up a spatial filter, and Part 3 selects features
and uses a cursor to count the number of selected features (selected cities).

Key Interfaces: IFeatureSelection, ISelectionSet, IFeatureCursor, IFeature, 1Spatial-
Filter, I[FeatureClass

Key Members: SelectionSet, Search, NextFeature, Geometry, Shape, SpatialRel, Fea-
tureClass

Usage: Add idcounty.shp and idcities.shp to the active map. idcities must be on top
of idcounty. Use the Select Features tool to select a county. Import SpatialQuery
to Visual Basic Editor in ArcMap. Run the macro. A message box reports the
number of cities selected.

Private Sub SpatialQuery()
' Part 1: Define the selected feature on the layer for selection.
Dim pMxDoc As IMxDocument
Dim pCountyLayer As IFeatureSelection
Dim pCountySelection As ISelectionSet
Dim pCountyCursor As IFeatureCursor
Dim pCounty As IFeature
Set pMxDoc = ThisDocument
Set pCountylLayer = pMxDoc.FocusMap.Layer(1)
Set pCountySelection = pCountyLayer.SelectionSet
' Create a cursor from the selected feature in Layer (1).
pCountySelection.Search Nothing, True, pCountyCursor
' Return the selected feature from the cursor.
Set pCounty = pCountyCursor.NextFeature
' Exit the sub if no feature has been selected.
If pCounty Is Nothing Then
MsgBox "Please select a county”
Exit Sub
End If

DATA EXPLORATION 185

Part 1 locates and verifies the selected feature on the layer for selection. The code
sets pCountyLayer to be the second layer in the active map and pCountySelection to
be the selection set of the layer. Next, the code uses the Search method on ISelectionSet
to create a feature cursor referenced by pCountyCursor. Because the macro is designed
to work with a selected county, the feature cursor should contain a single county. The
NextFeature method on IFeatureCursor returns the county and assigns it to pCounty.
If pCountyCursor contains no selected feature, the macro terminates.

' Part 2: Prepare a spatial filter.

Dim pSpatialFilter As ISpatialFilter

Set pSpatialFilter = New SpatialFilter

Set pSpatialFilter.Geometry = pCounty.Shape
pSpatialFilter.SpatialRel = esriSpatialRelContains

Part 2 creates pSpatialFilter as an instance of the SpatialFilter class and defines
its query geometry and spatial relationship. In this case, the query geometry is the
shape of pCounty and the spatial relationship is esriSpatialRelContains, which
stipulates that the query geometry contains the target geometry (that is, cities).

' Part 3: Select features and report number of selected features.
Dim pCityLayer As IFeatureLayer
Dim pCityFClass As IFeatureClass
Dim pCityCursor As IFeatureCursor
Dim pCity As IFeature
Dim intCount As Integer
Set pCityLayer = pMxDoc.FocusMap.Layer(0)
' Select features from Layer (0) and save them to a cursor.
Set pCityFClass = pCityLayer.FeatureClass
Set pCityCursor = pCityFClass.Search(pSpatialFilter, False)
' Loop through the cursor and count number of selected features.
Set pCity = pCityCursor.NextFeature
Do Until pCity Is Nothing
intCount = intCount + 1
Set pCity = pCityCursor.NextFeature
Loop
MsgBox "This county has " & intCount & " cities"
End Sub

Part 3 sets pCityLayer to be the top layer in the active map and pCityFClass to
be its feature class. Next, the code uses the Search method on [FeatureClass to
create a feature cursor referenced by pCityCursor. (An alternative is to use the Search
method on [FeatureLayer to create the cursor.) The code then steps through each
feature in pCityCursor and counts the number of features using the intCount variable.
Finally, the code reports intCount in a message box.

Box 9.2 SpatialQueryByName_GP

SpatialQueryByName_GP uses the SelectLayerByAttribute tool and a name given
by the user, such as Ada, to select a county and then the SelectLayerByLocation tool

186 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

to select cities that are within the county. Add idcities.shp and idcounty.shp to
the active map in ArcMap. The macro selects and highlights the selected county
and cities.

Private Sub SpatialQueryByName_GP()
" Run this macro in ArcMap with idcounty.shp and idcities.shp in the active map.
' idcities must be on top of idcounty.
‘Create the Geoprocessing object
Dim GP As Object
Set GP = CreateObject("esriGeoprocessing.GpDispatch.1")
' SelectLayerByAttribute <in_layer_or_view> {NEW_SELECTION | ADD_TO_SELECTION |
' CLEAR_SELECTION} {where_clause}
‘Execute the selectlayerbyattribute tool.
Dim name As String
name = InputBox("Enter the name of a county")
GP.SelectLayerByAttribute "idcounty", "NEW_SELECTION", "CO_NAME = " & name & """
' SelectLayerBylLocation <in_layer> {INTERSECT | WITHIN_A_DISTANCE | COMPLETELY_CONTAINS |
' COMPLETELY_WITHIN | HAVE_THEIR_CENTER_IN | SHARE_A_LINE_SEGMENT_WITH |
' BOUNDARY_TOUCHES | ARE_IDENTICAL_TO | CROSSED_BY_THE_OUTLINE_OF |
' CONTAINS | CONTAINED_BY}{select_features} {search_distance} {NEW_SELECTION |
' ADD_TO_SELECTION | REMOVE_FROM_SELECTION | SUBSET_SELECTION | SWITCH_SELECTION}
' Execute the selectlayerbylocation tool.
GP.SelectLayerBylLocation "idcities", "COMPLETELY_WITHIN", "idcounty"
End Sub

9.4.2 SpatialQueryByName

Instead of using a preselected county, SpatialQueryByName uses an input box to get
the name of a county from the user. The code then selects and highlights the county
before selecting cities that the county contains. The only difference between Spa-
tialQuery and SpatialQueryByName is Part 1. Parts 2 and 3 are the same and are
not listed below. (SpatialQueryByName.txt on the companion CD has all three parts.)

To use SpatialQueryByName, first add idcounty.shp and idcities.shp to the active
map. idcities must be on top of idcounty. Import SpatialQueryByName to Visual
Basic Editor in ArcMap. Run the macro. Enter the name of a county, such as Ada.
(The evaluation of the county name is case sensitive.) A message box reports the
number of cities selected within Ada County.

Private Sub SpatialQueryByName()
' Part 1: Define the selected feature on the layer for selection.
Dim pMxDoc As IMxDocument
Dim pActiveview As |Activeview
Dim pCountyLayer As IFeatureLayer
Dim pFeatureSelection As IFeatureSelection
Dim name As String
Dim pQueryFilter As IQueryFilter
Dim pCountySelection As ISelectionSet
Dim pCountyCursor As IFeatureCursor

DATA EXPLORATION 187

Dim pCounty As IFeature

Set pMxDoc = ThisDocument

Set pActiveview = pMxDoc.FocusMap

Set pCountylLayer = pMxDoc.FocusMap.Layer(1)

' Get a county name from the user.

name = InputBox("Enter a county name: ", ")

' Prepare a new query filter.

Set pQueryFilter = New QueryFilter

pQueryFilter.WhereClause = "CO_NAME = " & name & """

' Refresh or erase any previous selection.
pActiveview.PartialRefresh esriviewGeoSelection, Nothing, Nothing
' Select features.

Set pFeatureSelection = pCountylLayer

' Refresh again to draw the new selection.
pFeatureSelection.SelectFeatures pQueryFilter, esriSelectionResultNew, False
pActiveview.PartialRefresh esriviewGeoSelection, Nothing, Nothing
' Create a selection set from the selected feature.

Set pCountySelection = pFeatureSelection.SelectionSet

' Create a cursor from the selection set.

pCountySelection.Search Nothing, True, pCountyCursor

' Return the selected feature.

Set pCounty = pCountyCursor.NextFeature

Part 1 uses an input box to get a county name from the user and assigns it to
the string variable name. Next, the code performs a QI for the IFeatureSelection
interface and uses the SelectFeatures method to select the county. The code then
highlights the selected county in the map. The rest of Part 1 processes the selected
county before using it for selecting cities. The code sets pCountySelection to be the
selection set of pFeatureSelection. Then the code creates a feature cursor and uses
the NextFeature method to return the selected county.

9.4.3 MultipleSpatialQueries

MultipleSpatialQueries selects cities that are within two or more selected counties.
The code steps through each county and adds selected cities to those that are already
in a cursor. MultipleSpatialQueries has three parts. Part 1 defines the layer for
selection (county layer) and the selected features on the layer. Part 2 loops through
each selected county, uses a spatial filter to select cities that are within the county,
and adds the selected cities to a cursor. Part 3 draws all selected features including
counties and cities and reports the number of selected cities.

Key Interfaces: [FeatureSelection, ISelectionSet, IFeatureCursor, [Feature, ISpatial-
Filter, IFeatureSelection, IActiveView

Key Members: SelectionSet, Search, Geometry, SpatialRel, SelectFeatures, NextFeature

Usage: Add idcounty.shp and idcities.shp to the active map. idcities must be on top
of idcounty. Use the Select Features tool to select two or more counties. Import
MultipleSpatialQueries to Visual Basic Editor in ArcMap. Run the macro. The
macro draws all selected counties and cities, and a message box reports the number
of cities selected.

188 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

Private Sub MultipleSpatialQueries()
' Part 1: Define the selected counties.
Dim pMxDoc As IMxDocument
Dim pCountylLayer As IFeatureSelection
Dim pCountySelection As ISelectionSet
Dim pCountyCursor As IFeatureCursor
Dim pCounty As IFeature
Set pMxDoc = ThisDocument
Set pCountylLayer = pMxDoc.FocusMap.Layer(1)
Set pCountySelection = pCountylLayer.SelectionSet
' Create a cursor from the selected counties.
pCountySelection.Search Nothing, True, pCountyCursor

Part 1 defines pCountyLayer to be the second layer in the active map and creates
pCountyCursor as a feature cursor that contains the selection set in pCountyLayer.

' Part 2: Loop through each selected county to select cities.

Dim intCount As Integer

Dim pCityLayer As IFeaturelLayer

Dim pSpatialFilter As ISpatialFilter

Dim pCitySelection As IFeatureSelection

intCount = 0

Set pCityLayer = pMxDoc.FocusMap.Layer(0)

Set pCitySelection = pCityLayer

' Step through each county to select cities.

Set pCounty = pCountyCursor.NextFeature

Do Until pCounty Is Nothing
' Prepare a spatial filter.
Set pSpatialFilter = New SpatialFilter
Set pSpatialFilter. Geometry = pCounty.Shape
pSpatialFilter.SpatialRel = esriSpatialRelContains
' Select cities and add them to those already selected.
pCitySelection.SelectFeatures pSpatialFilter, esriSelectionResultAdd, False
Set pCounty = pCountyCursor.NextFeature

Loop

Part 2 first sets pCityLayer to be the top layer in the active map. Next, the code
steps through each selected feature in pCountyCursor. Within the loop, the code
prepares a spatial filter and defines its properties of geometry and spatial relationship.
The code then uses the SelectFeatures method on IFeatureSelection to select cities
that are within the county. The argument for the selection method is esriSelection-
ResultAdd, which adds selected features to those already selected.

' Part 3: Draw all selected features and report number of selected cities.
Dim pActiveView As IActiveView

Dim pSelCity As ISelectionSet

Dim pCityCursor As IFeatureCursor

Dim pCity As IFeature

Set pActiveView = pMxDoc.FocusMap

' Refresh selected features.

DATA EXPLORATION 189

pActiveView.PartialRefresh esriviewGeoSelection, Nothing, Nothing
' Prepare a cursor for selected cities.
Set pSelCity = pCitySelection.SelectionSet
pSelCity.Search Nothing, True, pCityCursor
' Count number of cities in the cursor.
Set pCity = pCityCursor.NextFeature
Do Until pCity Is Nothing
intCount = intCount + 1
Set pCity = pCityCursor.NextFeature
Loop
MsgBox "These counties have " & intCount & " cities."
End Sub

Part 3 draws all selected features by using the PartialRefresh method on IActive-
View. The code then creates a cursor for the selection set of pCitySelection from
Part 2 and counts the number of selected cities in the cursor.

9.4.4 SelectByShape

SelectByShape uses a rectangle element drawn by the user as the query geometry
to select cities that meet an attribute query expression. The macro performs the same
function as using the Select Features tool, followed by Select By Location, in
ArcMap to select features. SelectByShape is organized into three parts. Part 1 uses
the extent drawn by the user to prepare a rectangle element. Part 2 prepares a fill
symbol, shown only with an outline in red, for the rectangle. Part 3 prepares a spatial
filter, selects cities within the rectangle, and counts the number of cities selected.

Key Interfaces: /GraphicsContainer, IEnvelope, IRubberBand, 1Element, IFillShape-
Element, IFillSymbol, IColor, ILineSymbol, ISpatialFilter, IFeatureCursor, IFeature

Key Members: TrackNew, Geometry, Symbol, Color, Outline, Transparency, Width,
AddElement, WhereClause, SpatialRel, Search, NextFeature

Usage: Add idcities.shp to the active map. Follow the steps below to attach SelectByShape
to a tool so that the user can use the tool to draw a rectangle and to run the macro.

1. Double-click the empty space to the right of a toolbar in ArcMap to open the
Customize dialog.

2. Click New in the Customize dialog. In the New Toolbar dialog, use the dropdown
menu to select Untitled to save in. Click OK. Custom Toolbar 1 is added as a new
toolbar to ArcMap.

3. Click the Commands tab. Select UIControls from the list of categories. Click New
UlIControl to open its dialog. Check the option for UIToolControl and then Create.
Drag Project UIToolControll from the Commands list to the new toolbar.

4. Right-click UIToolControll and, if desired, select Change Button Image to change
the tool icon. Right-click UIToolControll again and select View Source to open
Visual Basic Editor. Make sure that the object list on the upper left of the Code
window shows UlToolControll and the procedure list on the upper right shows
MouseDown rather than the default option of Select. Copy and paste SelectBy-
Shape to the Code window. Check the code lines and make sure that there are no
errors due to misaligned code lines. Close Visual Basic Editor.

190 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

5. Click on UlToolControll and draw a rectangle on idcities. The rectangle is shown
in a red outline symbol and a message box reports how many cities meet the
selection criteria.

6. The rectangle is a graphic element, which can be deleted from the display by first
using the Select Elements tool to select it.

Private Sub UlToolControl1_MouseDown(ByVal button As Long, ByVal shift As Long,ByVal x As Long, ByVal y As Long)
' Part 1: Get a rectangle element drawn by the user.
Dim pEnv As |Envelope
Dim pRubberEnv As IRubberBand
Dim pMxDoc As IMxDocument
Dim pElem As |[Element
' Create a new rubber envelope.
Set pRubberEnv = New RubberEnvelope
' Return a new envelope from the tracker object.
Set pMxDoc = ThisDocument
Set pEnv = pRubberEnv.TrackNew(pMxDoc.ActiveView.ScreenDisplay, Nothing)
' Create a new envelope element.
Set pElem = New RectangleElement
pElem.Geometry = pEnv

Part 1 makes a rectangle element based on the extent drawn by the user. The
code first creates pRubberEnv as an instance of the RubberEnvelope class, which
implements /RubberBand (Figure 9.9). Next, the code uses the TrackNew method
on IRubberBand to track (rubberband) the shape on the screen and assigns the
shape to an /Envelope object referenced by pEnv. The code then creates pElem as
an instance of the RectangleElement class and assigns pEnv to be its geometry
(Figure 9.10).

RubberBand

AN

| RubberEnvelope | | RubberPoint |

[[[
| RubberCircle | | RubberPolygon |

[[
| RubberLine | |RubberRectangularPolygon

IRubberBand

«4— TrackExisting
4— TrackNew

Figure 9.9 RubberEnvelope is one of six types of RubberBand. A rubber envelope object
shares the methods on /RubberBand.

DATA EXPLORATION 191

[Element O—

RectangleElement
IFillShapeElement O—

IElement IFillShapeElement
B—8 Geometry | | B— Symbol

Figure 9.10 A RectangleElement object supports /Element and IFillShapeElement. The inter-
faces provide access to the geometry and symbol of the object.

' Part 2: Add the rectangle with a red outline to view.
Dim pFillShapeElement As IFillShapeElement
Dim pFillSymbol As IFillSymbol

Dim pColor As IColor

Dim pLineSymbol As ILineSymbol

Dim pGContainer As IGraphicsContainer
Set pFillShapeElement = pElem

' Set the fill symbol.

Set pFillSymbol = pFillShapeElement.Symbol
Set pColor = pFillSymbol.Color
pColor.Transparency = 0

pFillSymbol.Color = pColor

' Set the outline symbol.

Set pLineSymbol = pFillSymbol.Outline
pColor.Transparency = 255

pColor.RGB = RGB(255, 0, 0)
pLineSymbol.Width = 0.1
pFillSymbol.Outline = pLineSymbol

' Assign the symbol to the rectangle.
pFillShapeElement.Symbol = pFillSymbol

' Add the rectangle to the graphics container, and refresh the display.
Set pGContainer = pMxDoc.ActiveView
pGContainer.AddElement pElem, O
pMxDoc.ActiveView.Refresh

Part 2 adds the rectangle in a red outline symbol to view. The code first accesses
IFillShapeElement to define a fill symbol for pElem (Figure 9.10). The symbol
consists of a fill color and an outline symbol. In this case, the fill color has a
transparency of zero, meaning that the color is transparent. The outline symbol is a
thin line symbol in solid red. The red, green, blue (RGB) property of pColor defines
the color of the outline symbol, which is derived by using Visual Basic’s RGB
function. The Width property of pLineSymbol defines the width of the outline symbol.
After the fill symbol is defined, the code assigns pFillSymbol to be the symbol of
pElem. Finally, the code adds pElem to the graphics container, which is set to be
the active view of the document, and refreshes the view.

' Part 3: Use the rectangle to search features in the top layer.
Dim pSpatialFilter As ISpatialFilter
Dim pCityLayer As IFeaturelLayer

192 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

Dim pCityCursor As IFeatureCursor
Dim pCity As IFeature
Dim intCount As Integer
' Prepare a spatial filter.
Set pSpatialFilter = New SpatialFilter
pSpatialFilter.WhereClause = "Population > 5000"
Set pSpatialFilter.Geometry = pEnv
pSpatialFilter.SpatialRel = esriSpatialRelContains
' Create a cursor by searching the top layer's feature class.
Set pCityLayer = pMxDoc.FocusMap.Layer(0)
Set pCityCursor = pCityLayer.Search(pSpatialFilter, False)
' Count number of features in the cursor.
Set pCity = pCityCursor.NextFeature
Do Until pCity Is Nothing
intCount = intCount + 1
Set pCity = pCityCursor.NextFeature
Loop
MsgBox "There are " & intCount & " cities over 5000 within the rectangular area."
End Sub

Part 3 creates pSpatialFilter as an instance of the SpatialFilter class and defines
its properties of WhereClause, geometry, and spatial relationship. Next, the code
sets pCityLayer to be the top layer in the active map and uses the Search method
on [FeatureLayer to create a feature cursor. Finally, the code steps through each
feature in the cursor and reports the number of selected cities in a message box.

9.5 COMBINING SPATIAL AND ATTRIBUTE QUERIES

Because a spatial filter object can use both spatial and attribute constraints, it seems
redundant to have a separate section on combining spatial and attribute queries. In
many scenarios, however, a macro needs to perform an attribute query or a spatial
query or both more than once; this creates a more challenging task to solve than the
sample macros covered so far in this chapter.

9.5.1 BufferSelect

BuffferSelect selects thermal springs and wells that have water temperatures higher
than 60°C and are within 8000 meters of an interstate in Idaho. The macro has three
parts. Part 1 defines a road layer, selects interstates by attributes, and saves the
interstates into a feature cursor. Part 2 loops through each interstate segment in the
cursor, buffers it with a distance of 8000 meters, and uses a spatial filter object to
select thermal springs and wells that the buffer contains. Part 3 draws all selected
features and reports the total number of thermal springs and wells selected.

BufferSelect uses ITopologicalOperator to create the buffer zone around the
interstates. Implemented by a point, polyline, or polygon object, ITopologicalOper-
ator has methods such as buffer, clip, intersect, and union to create new geometries
(Figure 9.11).

DATA EXPLORATION 193

ITopologicalOperator
<«4— Buffer
<+— Clip
«4— Difference
<4— Intersect
<4— Union

Figure 9.11 Methods on /TopologicalOperator.

Key Interfaces: [FeatureSelection, IQueryFilter, I1SelectionSet, IFeatureCursor, 1Spa-
tialFilter, IElement, IFeature, ITopologicalOperator, IActiveView

Key Members: WhereClause, SelectFeatures, BufferDistance, SelectionSet, Search,
NextFeature, Shape, Buffer, Geometry, SpatialRel, PartialRefresh

Usage: Add idroads.shp and thermal.shp to the active map. idroads must be on top
of thermal. Import BufferSelect to Visual Basic Editor in ArcMap. Run the macro.
A message box reports the number of thermal springs and wells that meet the
selection criteria. The interstates and the selected thermal springs and wells are
highlighted on the map.

Private Sub BufferSelect()
' Part 1: Create a cursor of interstates.
Dim pMxDoc As IMxDocument
Dim pMap As IMap
Dim pRoadLayer As IFeatureLayer
Dim pFeatSelection As IFeatureSelection
Dim pQueryFilter As IQueryFilter
Dim pRoadSelSet As ISelectionSet
Dim pRoadCursor As IFeatureCursor
Set pMxDoc = ThisDocument
Set pMap = pMxDoc.FocusMap
Set pRoadLayer = pMap.Layer(0)
Set pFeatSelection = pRoadlLayer
' Select interstates.
Set pQueryFilter = New QueryFilter
pQueryFilter.WhereClause = "Route_Desc = 'Interstate'"
pFeatSelection.SelectFeatures pQueryFilter, esriSelectionResultNew, False
' Display an 8000-meter buffer around the interstates.
pFeatSelection.BufferDistance = 8000
' Create a feature cursor of selected interstates.
Set pRoadSelSet = pFeatSelection.SelectionSet
pRoadSelSet.Search Nothing, False, pRoadCursor

Part 1 first defines pRoadLayer as the top layer in the active map. To select the
interstates, the code creates a query filter object, switches to the IFeatureSelection
interface, and uses the SelectFeatures method to create a feature selection refer-
enced by pFeatSelection. The BufferDistance property of pFeatSelection is set to
display a buffer distance of 8000 meters. Then the code assigns the selection set

194 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

of pFeatSelection to pRoadSelSet and creates from pRoadSelSet a feature cursor
referenced by pRoadCursor. Because the creation of the cursor uses no query filter,
all selected interstates are included in the cursor.

' Part 2: Buffer each interstate segment, and select thermals.
Dim pSpatialFilter As ISpatialFilter
Dim pThermalLayer As IFeaturelLayer
Dim pElement As |Element
Dim pThermalSelection As IFeatureSelection
Dim pRoad As IFeature
Dim pTopoOperator As [TopologicalOperator
' Prepare a spatial filter.
Set pSpatialFilter = New SpatialFilter
pSpatialFilter.WhereClause = "temp > 60"
pSpatialFilter.SpatialRel = esriSpatialRelContains
' Define the thermal layer whose features will be selected.
Set pThermallLayer = pMxDoc.FocusMap.Layer(1)
Set pThermalSelection = pThermallLayer
' Step through each interstate segment and select thermals.
Set pRoad = pRoadCursor.NextFeature
Do Until pRoad Is Nothing
' Create an 8000-meter buffer from the road.
Set pTopoOperator = pRoad.Shape
Set pElement = New PolygonElement
pElement.Geometry = pTopoOperator.Buffer(8000)
' Define the geometry of the spatial filter.
Set pSpatialFilter. Geometry = pElement.Geometry
' Select thermals and add them to the selection set.
pThermalSelection.SelectFeatures pSpatialFilter, esriSelectionResultAdd, False
Set pRoad = pRoadCursor.NextFeature
Loop

Part 2 selects thermal springs and wells that meet the following two criteria:
within 8000 meters of an interstate, and having water temperatures above 60°C. The
code initially creates a spatial filter object referenced by pSpatialFilter and defines
its attribute constraint and spatial relationship. Next, the code sets pThermalLayer
to be the second layer in the active map and accesses the IFeatureSelection interface.
Then the code steps through each selected interstate segment. Within the loop, two
tasks are performed. First, the code uses the Buffer method on ITopologicalOperator
to create an 8000-meter buffer polygon around the shape of each line segment. This
buffer polygon is then assigned to be the geometry of pSpatialFilter. Second, the
code uses the SelectFeatures method on IFeatureSelection to create a feature selec-
tion. The argument used for the selection method is esriSelectionResultAdd, which
adds selected thermal springs and wells to the current selection. The loop continues
until all interstates are exhausted.

' Part 3: Draw all selected features, and report number of thermals selected.
Dim pActiveView As IActiveView
Dim pThermalSelSet As ISelectionSet

DATA EXPLORATION 195

Set pActiveView = pMxDoc.FocusMap

pActiveView.PartialRefresh esriViewGeoSelection, Nothing, Nothing

Set pThermalSelSet = pThermalSelection.SelectionSet

MsgBox "There are " & pThermalSelSet.Count & " thermals selected"
End Sub

Part 3 draws all selected interstates and thermal springs and wells. Finally, a message
box reports the number of thermal springs and wells that meet the selection criteria.

9.5.2 IntersectSelect

IntersectSelect selects counties in Idaho that intersect the interstate highways and
have a rate of population increase over 15% between 1990 and 2000. Like Buffer-
Select, IntersectSelect uses both attribute and spatial queries. One major difference
is that IntersectSelect applies the intersect relationship in selecting counties.
IntersectSelect has three parts. Part 1 selects interstates from the road layer and
creates a feature cursor of the selected features. Part 2 uses a spatial filter object to
select counties that intersect an interstate and have a high rate of population growth.
Part 3 shows the selected features and reports the number of counties selected.

Key Interfaces: [FeatureSelection, IQueryFilter, I1SelectionSet, IFeatureCursor, ISpa-
tialFilter, IElement, [Feature, IActiveView

Key Members: WhereClause, SelectFeatures, SelectionSet, Search, NextFeature,
Shape, Geometry, SpatialRel, PartialRefresh

Usage: Add idroads.shp and idcounty.shp to the active map. idroads must be on top
of idcounty. (If necessary, clear selected features of idroads.) Import IntersectSelect
to Visual Basic Editor in ArcMap. Run the macro. A message box reports the
number of counties that meet the selection criteria. The interstates and the selected
counties are highlighted on the map.

Private Sub IntersectSelect()
' Part 1: Create a cursor of interstates.
Dim pMxDoc As IMxDocument
Dim pMap As IMap
Dim pRoadlLayer As IFeaturelLayer
Dim pFeatSelection As IFeatureSelection
Dim pQueryFilter As IQueryFilter
Dim pRoadSelSet As ISelectionSet
Dim pRoadCursor As IFeatureCursor
Set pMxDoc = ThisDocument
Set pMap = pMxDoc.FocusMap
Set pRoadLayer = pMap.Layer(0)
Set pFeatSelection = pRoadLayer
' Select interstates.
Set pQueryFilter = New QueryFilter
pQueryFilter.WhereClause = "Route_Desc = 'Interstate
pFeatSelection.SelectFeatures pQueryFilter, esriSelectionResultNew, False

' Create a feature cursor of selected interstates.
Set pRoadSelSet = pFeatSelection.SelectionSet
pRoadSelSet.Search Nothing, False, pRoadCursor

196 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

Part 1 uses a query filter to select interstates from the road layer, before creating
a feature cursor from the selected interstates.

' Part 2: Select high-growth counties that intersect an interstate.
Dim pCountylLayer As IFeatureLayer
Dim pElement As |Element
Dim pCountySelection As IFeatureSelection
Dim pRoad As IFeature
Dim pSpatialFilter As ISpatialFilter
Set pCountylLayer = pMxDoc.FocusMap.Layer(1)
Set pCountySelection = pCountylLayer
' Prepare a spatial filter.
Set pSpatialFilter = New SpatialFilter
pSpatialFilter.WhereClause = "change > 15"
pSpatialFilter.SpatialRel = esriSpatialRellntersects
' Step through each interstate and select counties.
Set pRoad = pRoadCursor.NextFeature
Do Until pRoad Is Nothing
' Define the geometry of the spatial filter.
Set pSpatialFilter.Geometry = pRoad.Shape
' Select counties and add them to the selection set.
pCountySelection.SelectFeatures pSpatialFilter, esriSelectionResultAdd, False
Set pRoad = pRoadCursor.NextFeature
Loop

Part 2 first creates a spatial filter object and defines its attribute constraint and
spatial relationship. Next, the code steps through each interstate in a loop. Within
the loop, the code defines the query geometry as the shape of the interstate and
selects counties that intersect the interstate. As the loop continues, selected counties
are added to the current selection set.

' Part 3: Draw all selected features and report number of counties selected.
Dim pActiveView As |ActiveView
Dim pCountySelSet As ISelectionSet
Set pActiveView = pMxDoc.FocusMap
' Draw all selected features.
pActiveView.PartialRefresh esriViewGeoSelection, Nothing, Nothing
Set pCountySelSet = pCountySelection.SelectionSet
MsgBox "There are " & pCountySelSet.Count & " counties selected"
End Sub

Part 3 draws all selected interstates and counties. A message box then reports
the number of selected counties.

9.6 DERIVING DESCRIPTIVE STATISTICS

This section discusses how to program ArcObjects to derive descriptive statistics on a
field of a feature layer. These statistics can be based on all records or a subset of records.

DATA EXPLORATION 197

9.6.1 DataStatistics

DataStatistics derives and reports descriptive statistics on a field using all records
of a feature layer. The macro performs the same function as using the Statistics
command in a field’s context menu in ArcMap. DataStatistics has three parts. Part
1 defines the feature layer and creates a cursor from the layer. Part 2 creates a data
statistics object and uses the object to derive the descriptive statistics of a field. Part
3 displays the statistics in a message box.

Key Interfaces: ICursor, IDataStatistics, IStatisticsResults

Key Members: Search, Field, Cursor, Statistics, Maximum, Minimum, Mean

Usage: Add idcounty.shp to an active map. Import DataStatistics to Visual Basic
Editor. Run the macro. The macro uses a message box to display the maximum,
minimum, and mean values of the field change.

Private Sub DataStatistics()
' Part 1: Define the feature layer and cursor.
Dim pMxDoc As IMxDocument
Dim pFLayer As IFeatureLayer
Dim pCursor As ICursor
Set pMxDoc = ThisDocument
Set pFLayer = pMxDoc.FocusMap.Layer(0)
Set pCursor = pFlLayer.Search(Nothing, False)

Part 1 Sets pFLayer to be the top layer in the active map and creates pCursor
that includes every feature in pFLayer.

' Part 2: Derive statistics on the field change.
Dim pData As IDataStatistics

Dim pStatResults As IStatisticsResults

Dim pChangeMax As Double

Dim pChangeMin As Double

Dim pChangeMean As Double

' Create a data statistics object.

Set pData = New DataStatistics

pData.Field = "change"

Set pData.Cursor = pCursor

Set pStatResults = pData.Statistics

' Get the maximum, minimum, and mean values.
pChangeMax = pStatResults.Maximum
pChangeMin = pStatResults.Minimum
pChangeMean = pStatResults.Mean

Part 2 creates pData as an instance of the DataStatistics class and defines
the following properties for the object: Field to be change, Cursor to be pCursor,
and Statistics to be pStatResults. The code then uses the properties of IStatis-
ticsResults to save the maximum, minimum, and mean statistics into the proper
variables.

198 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

' Part 3: Display the statistics in a message box.

Dim sMsg As String

sMsg = "Statistics of the field change are:" & vbCrLf
sMsg = sMsg & " " & vbCrlLf
sMsg = sMsg & "Maximum: " & pChangeMax & vbCrLf
sMsg = sMsg & "Minimum: " & pChangeMin & vbCrLf
sMsg = sMsg & "Mean: " & pChangeMean & vbCrLf

sMsg = sMsg & " !
MsgBox sMsg
End Sub

Part 3 uses a message box to display the statistics derived from Part 2. The
constant vbCrLf creates a new line.

Box 9.3 DataStatistics_GP

DataStatistics_GP uses the Statistics tool in the Analysis toolbox to derive from
idcounty.shp the minimum, maximum, and mean on the field Change and save the
statistics to a dbf file. Run the macro in ArcCatalog, and open the dbf file to view
the results.

Private Sub DataStatistics_GP()

' Create the Geoprocessing object.

Dim GP As Object

Set GP = CreateObject("esriGeoprocessing.GpDispatch.1")

' Statistics <in_table> <out_table> <field{Statistic Type}; field{Statistic Type}...> {case_field}

' Define the third parameter for the command.

Dim Parameter3 As String

Parameter3 = "CHANGE MIN;CHANGE MAX;CHANGE MEAN;CHANGE STD"

' Execute the statistics tool.

GP.Statistics "c:\data\chap9\idcounty.shp", "c:\data\chap9\stats2.dbf", Parameter3
End Sub

9.6.2 DataSubsetStatistics

DataSubsetStatistics report statistics on a set of selected records. The macro performs
the same function as using the Statistics command on a field of selected records in
ArcMap. DataSubsetStatistics has three parts. Part 1 defines the feature layer and
creates a cursor from the layer, Part 2 creates a data statistics object and uses the object
to derive a field’s descriptive statistics, and Part 3 displays the statistics in a message box.

Key Interfaces: /QueryFilter, ICursor, IDataStatistics, IStatisticsResults

Key Members: WhereClause, Search, Field, Cursor, Statistics, Maximum, Minimum,
Mean

Usage: Add idcounty.shp to an active map. Import DataSubsetStatistics to Visual
Basic Editor. Run the macro. The macro uses a message box to display the
maximum, minimum, and mean values of the field change for those counties that
have change > 20.

DATA EXPLORATION 199

Private Sub DataSubsetStatistics()
' Part 1: Get a handle on the feature layer and cursor.
Dim pMxDoc As IMxDocument
Dim pFLayer As IFeaturelLayer
Dim pQueryFilter As IQueryFilter
Dim pCursor As ICursor
Set pMxDoc = ThisDocument
Set pFLayer = pMxDoc.FocusMap.Layer(0)
Set pQueryFilter = New QueryFilter
pQueryFilter.WhereClause = "change > 20"
Set pCursor = pFLayer.Search(pQueryFilter, False)

Part 1 creates a query filter object and defines its WhereClause property. The
code then creates a cursor that contains only those counties that have change > 20.

' Part 2: Derive statistics on the field change.
Dim pData As IDataStatistics

Dim pStatResults As IStatisticsResults

Dim pChangeMax As Double

Dim pChangeMin As Double

Dim pChangeMean As Double

' Define an IDataStatistics object.

Set pData = New DataStatistics

pData.Field = "change"

Set pData.Cursor = pCursor

Set pStatResults = pData.Statistics

' Get the maximum, minimum, and mean values.
pChangeMax = pStatResults.Maximum
pChangeMin = pStatResults.Minimum
pChangeMean = pStatResults.Mean

Part 2 creates a data statistics object, and derives its maximum, minimum, and
mean.

' Part 3: Display the statistics in a message box.

Dim sMsg As String

sMsg = "Statistics of the field change are:" & vbCrLf
sMsg = sMsg & " " & vbCrlLf
sMsg = sMsg & "Maximum: " & pChangeMax & vbCrLf
sMsg = sMsg & "Minimum: " & pChangeMin & vbCrLf
sMsg = sMsg & "Mean: " & pChangeMean & vbCrLf

sMsg = sMsg & " !
MsgBox sMsg
End Sub

Part 3 reports the statistics in a message box.

CHAPTER 10

Vector Data Operations

Vector data analysis is based on the geometric objects of point, line, and polygon.
Vector-based operations typically involve the shape of spatial features. Some oper-
ations also involve feature attributes. Four common types of vector data analyses
are buffering, overlay, spatial join, and feature manipulation.

Buffering creates a buffer zone that is within a specified distance of each spatial
feature in the input layer. If an input layer has 20 line segments, the first step in
buffering is to create 20 buffer zones. These buffer zones are often dissolved to
remove the overlapped areas between them. An important requirement for buffering
is that the input layer must have the spatial reference information, which is needed
for distance measurements.

Overlay combines the shapes and attributes of two layers to create the output.
One of the two layers is the input layer and the other, the overlay layer. Each feature
in the output contains a combination of attributes from both layers, and this com-
bination separates the feature from its neighbors. Two common overlay methods are
union and intersect. Union preserves all features from both layers, whereas intersect
preserves only those features that fall within the overlapped area between the layers.

Spatial join joins attribute data from two layers by using a spatial relationship such
as nearest neighbor, containment, or intersection. If nearest neighbor is applied, the
distance measures between features of the two layers can also be included in the output.

Feature manipulation refers to various methods for manipulating features in a
layer or between two layers. Unlike overlay, feature manipulation does not combine
the shapes and attributes of the two layers into the output. Common manipulations
include clip, dissolve, and merge.

This chapter covers vector data operations. Section 10.1 reviews vector data
analysis using ArcGIS. Section 10.2 discusses objects that are related to vector data
analysis. Section 10.3 offers a macro and a Geoprocessing (GP) macro for buffering.
Section 10.4 offers a macro and a GP macro for an overlay operation. Section 10.5
has a macro for a spatial join operation. Section 10.6 includes macros and a GP
macro for feature manipulation operations. All macros start with the listing of key
interfaces and key members (properties and methods) and the usage.

201

202 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

10.1 ANALYZING VECTOR DATA IN ARCGIS

ArcGIS offers feature-based analysis tools through ArcToolbox. Analysis Tools
includes clip, select, and split in the Extract toolset; erase, identity, intersect, sym-
metrical difference, union, and update in the Overlay toolset; and buffer, near, and
point distance in the Proximity toolset. Data Management Tools has append and
merge in the General toolset and dissolve and eliminate in the Generalization toolset.

Spatial Join in ArcMap can join attributes from two feature attribute tables based on
a spatial relationship between features. The spatial relationship can be proximity, so that
the joining of attributes takes place between features of a layer and their closest features
in another layer. Alternatively, the spatial relationship can be containment, so that the
joining of attributes takes place between features of a layer and the features of another
layer that contain them. Spatial join can use a maximum search distance as a constraint,
and the result of spatial join can include distance measures or aggregate statistics.

10.2 ARCOBJECTS FOR VECTOR DATA ANALYSIS

The primary ArcObjects components for vector data analysis are FeatureCursor-
Buffer, BasicGeoprocessor, and SpatialJoin. A feature cursor buffer object supports
IFeatureCursorBuffer, which has different methods and properties for the buffering
operation (Figure 10.1). As examples, the Dissolve property determines whether
overlapping buffered features should be dissolved, the RingDistance property sets the
number of buffer rings, and the ValueDistance property specifies the constant buffer
distance. [FeatureCursorBuffer2 has additional properties that specify the spatial
reference systems of the data frame, the source data, the target, and the buffering. A
feature cursor buffer object also implements IBufferProcessingParameter, which has
access to members that set and retrieve parameters for the buffering process.

A basic geoprocessor object implements IBasicGeoprocessor. IBasicGeoprocessor
offers methods for intersect, union, clip, dissolve, and merge (Figure 10.2). All
methods except for merge allow use of selected features as inputs.

IFeatureCursorBuffer

<

Buffer
—1M Dissolve
— FieldDistance
—# RingDistance

— Units
— ValueDistance

Figure 10.1 Properties on IFeatureCursorBuffer can define the buffering parameters.

VECTOR DATA OPERATIONS 203

IBasicGeoProcessor

<+— Clip
<4— Dissolve
<4— Intersect
<4— Merge

<4— Union

Figure 10.2 Methods on /BasicGeoProcessor.

A spatial join object supports ISpatialJoin, which provides methods for joining
attributes of features based on a spatial relationship between features (Figure 10.3).
The JoinAggregate method joins features using aggregate statistics, the JoinNearest
method joins features using the nearest relationship, and the JoinWithin method joins
features using the containment relationship.

Because vector data analysis deals with discrete features of points, lines, and
areas, the properties and methods of these discrete features may become important
for some applications. One example is the updating of the area and perimeter values
of polygons on the output shapefile of an overlay operation. Another example is the
derivation of centroids of a polygon feature class. Figure 10.4 summarizes properties
and methods on /Point, ICurve, and IArea that are important for vector data analysis.

When developing VBA (Visual Basic for Applications) macros for vector data
analysis, we must be careful in separating vector data analysis from spatial data
query (Chapter 9). A vector data analysis produces an output layer, whereas a spatial
query produces a data subset that meets the selection criteria. Terms used in vector
data analysis also appear for spatial data query, however. Among the spatial rela-
tionships that can be queried are constants such as esriSpatialRellntersects and
esriSpatialRelEnvelopelntersects. For creating geometries for spatial query, the /7o-
pologicalOperator interface actually provides methods for buffer, clip, intersect, and
union. Therefore, it is important to know the context in which buffer, intersect, or
union is used.

ISpatialjoin
<4— JoinAggregate

4— JoinNearest

<4— JoinWithin

Figure 10.3 Methods on ISpatialJoin.

204 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

ICurve
IPoint B—— Length
X < QueryFromPoint
—ay <4— QueryToPoint
.z IArea
< PutCoords B— Area
< QueryCoords| | B Centroid
< QueryCentroid

Figure 10.4 /Point, ICurve, and IArea have members that can be important for vector data
analysis.

10.3 BUFFERING

Writing VBA macros for buffering involves two important considerations. First,
because the distance units used in buffering may or may not be the same as the map
units of the input layer, a macro must specify the spatial reference of the input layer
as well as the output layer. Second, because buffering is performed for each point,
each line, or each polygon, a macro must set up a feature cursor for stepping through
each feature for buffering.

10.3.1 Buffer

Buffer creates a buffer zone around features of a line shapefile. Buffer has four
parts. Part 1 creates a cursor of all features in the input dataset and gets the spatial
reference of the active map. Part 2 defines the workspace and dataset name for the
output. Part 3 performs buffering. Part 4 creates a feature layer from the output and
adds the layer to the active map.

Key Interfaces: IFeatureClass, IFeatureCursor, ISpatialReference, IFeatureCursor-
Buffer2, IWorkspaceName, IDatasetName, [FeatureClassName, IName

Key Members: FeatureClass, Search, SpatialReference, FeatureCursor, Dissolve, Val-
ueDistance, BufferSpatialReference, DataFrameSpatialReference, SourceSpatial-
Reference, TargetSpatialReference, WorkspaceFactoryProglD, PathName, Name,
WorkspaceName, Buffer

Usage: Add sewers.shp to an active map. sewers.shp is measured in UTM coordinates
and has the spatial reference information. Import Buffer to Visual Basic Editor.
Run the macro. The macro creates a new shapefile named Buffer_Result and adds
the shapefile as a feature layer to the active map.

Private Sub Buffer()
' Part 1: Get the map's spatial reference, and prepare a feature cursor.
Dim pMxDoc As IMxDocument

VECTOR DATA OPERATIONS 205

Dim pMap As IMap

Dim pFeatureLayer As IFeatureLayer

Dim pFCursor As IFeatureCursor

Dim pSpatialReference As ISpatialReference

Set pMxDoc = ThisDocument

Set pMap = pMxDoc.FocusMap

' Set the spatial reference.

Set pSpatialReference = pMap.SpatialReference

' Prepare a feature cursor of all features in the top layer.
Set pFeatureLayer = pMap.Layer(0)

Set pFCursor = pFeatureLayer.Search(Nothing, False)

Part 1 sets pSpatialReference to be the spatial reference of the active map. Next,
the code uses the Search method on IFeatureLayer to create a feature cursor refer-
enced by pFCursor. Because the Search method does not use a query filter object,
pFCursor contains all features of the feature layer.

' Part 2: Define the output.

Dim pBufWSName As IWorkspaceName

Dim pBufDatasetName As |IDatasetName

Dim pBufFCName As IFeatureClassName

' Define the output's workspace and name.

Set pBufFCName = New FeatureClassName

Set pBufDatasetName = pBufFCName

Set pBufWSName = New WorkspaceName
pBufWSName.WorkspaceFactoryProgID = "esriCore.ShapeFileWorkspaceFactory.1"
pBufWSName.PathName = "c:\data\chap10"

Set pBufDatasetName.WorkspaceName = pBufWSName
pBufDatasetName.Name = "Buffer_result"

Part 2 creates pBufFCName as an instance of the FeatureClassName class. Then
the code performs a Querylnterface (QI) for IDatasetName to define the workspace
and name of pBufFCName.

' Part 3: Perform buffering.
Dim pFeatureCursorBuffer2 As IFeatureCursorBuffer2
' Define a feature cursor buffer object.
Set pFeatureCursorBuffer2 = New FeatureCursorBuffer
With pFeatureCursorBuffer2
Set .FeatureCursor = pFCursor
.Dissolve = True
.ValueDistance = 300
Set .BufferSpatialReference = pSpatialReference
Set .DataFrameSpatialReference = pSpatialReference
Set .SourceSpatialReference = pSpatialReference
Set .TargetSpatialReference = pSpatialReference
End With
' Use the buffer method.
pFeatureCursorBuffer2.buffer pBufFCName

Part 3 creates pFeatureCursorBuffer2 as an instance of the FeatureCursorBuffer
class and defines its properties in a With block. The code specifies pFCursor for the

206 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

feature cursor, True for dissolving overlapped areas, 300 (meters) for the constant
buffer distance, and pSpatialReference for the spatial reference for buffering, the
data frame, the source dataset, and the target dataset. The code then uses the Buffer
method on IFeatureCursorBuffer2 to buffer features in pFCursor and creates the
output referenced by pBufFFCName.

' Part 4: Create the output layer and add it to the active map.
Dim pName As IName
Dim pBufFC As IFeatureClass
Dim pBuUfFL As IFeatureLayer
Set pName = pBufFCName
Set pBufFC = pName.Open
Set pBufFL = New FeatureLayer
Set pBufFL.FeatureClass = pBufFC
pBufFL.Name = "Buffer_Result"
pMap.AddLayer pBufFL

End Sub

Part 4 first accesses the IName interface and uses the Open method to open a
feature class object referenced by pBufF'C. The code then creates a feature layer
from pBufFC and adds the layer to the active map.

Box 10.1 Buffer_GP

Buffer_GP uses the Buffer tool in the Analysis toolbox to buffer sewers.shp with a
constant buffer distance of 300 meters. The macro also specifies that the buffer zones
be dissolved. Run the macro in ArcCatalog and examine the output shapefile
(Buffer_result2.shp) in the Catalog tree.

Private Sub Buffer_GP()

' Create the Geoprocessing object.

Dim GP As Object

Set GP = CreateObject("esriGeoprocessing.GpDispatch.1")

' Buffer <in_features> <out_feature_class> <buffer_distance_or_field> {FULL | LEFT | RIGHT}

' {ROUND | FLAT} {NONE | ALL | LIST} {dissolve_field;dissolve_field...}

' Execute the buffer tool.

GP.Buffer_analysis "c:\data\chap10\sewers.shp", "c:\data\chap10\Buffer_result2.shp", "300", ", "", "ALL"
End Sub

10.3.2 Buffer Options

In Section 10.3.1, Buffer buffers line features with a constant distance. A variety of
buffer options are available through the properties of a feature cursor buffer object.
The following summarizes these options by referring to statements in Buffer.

¢ To change from a constant buffer distance to varying buffer distances, change the
statement .ValueDistance = 300 to .FieldDistance = *“Dis-
tanceField” where DistanceField is the field that specifies the buffer distances.

VECTOR DATA OPERATIONS 207

e To create multiple buffer zones, change the statement .ValueDistance =
300 to .RingDistance(3) = 100, where 3 means three rings and 100
means a 100-meter buffer distance for each ring.

* To create undissolved or discrete buffer zones, change the statement . Dissolve

= Trueto .Dissolve = False.

¢ To use different buffer units (e.g., feet) than map units (e.g., meters), add the
statement Units (esriMeters) = esriFeet as an additional property of
pFeatureCursorBuffer2.

10.4 PERFORMING OVERLAY

To perform an overlay, a VBA macro must identify the input layer and the overlay
layer. Among the methods offered by IBasicGeoprocessor are intersect, union, and
clip. All three methods have exactly the same syntax. Therefore, the following macro
on intersect can also be used for union and clip by simply changing the method on
IBasicGeoprocessor.

10.4.1 Intersect

Intersect uses the intersect method to create an overlay output. Intersect has four
parts. Part 1 defines the datasets for the intersect operation. Part 2 defines the output
including its workspace and name. Part 3 sets up a basic geoprocessor object and
runs the intersect method. Part 4 creates a feature layer from the output and adds
the layer to the active map.

Key Interfaces: [FeatureClass, IWorkspaceName, [FeatureClassName, IDataset-
Name, IBasicGeoprocessor

Key Members: FeatureClass, WorkspaceFactoryProgID, PathName, Name, Work-
spaceName, Intersect

Usage: Add landsoil.shp and sewerbuf.shp to an active map. landsoil will be used as
the input layer, and sewerbuf as the overlay layer. landsoil must be on top of
sewerbuf in the table of contents. Import Intersect to Visual Basic Editor. Run the
macro. The macro creates Intersect_result.shp and adds the shapefile as a feature
layer to the active map.

Private Sub Intersect()
' Part 1: Define the datasets for intersect.
Dim pMxDoc As IMxDocument
Dim pMap As IMap
Dim plnputLayer As IFeatureLayer
Dim pOverlayLayer As IFeatureLayer
Dim plnputFC As IFeatureClass
Dim pOverlayFC As IFeatureClass
Set pMxDoc = ThisDocument
Set pMap = pMxDoc.FocusMap
' Define the input feature class.
Set pinputLayer = pMap.Layer(0)
Set plnputFC = plnputLayer.FeatureClass

208 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

' Define the overlay table.
Set pOverlayLayer = pMap.Layer(1)
Set pOverlayFC = pOverlayLayer.FeatureClass

Part 1 sets the input layer to be the top layer, and the overlay layer the second
layer, in the active map. The code then sets pInputFC to be the feature class of the

input layer and pOverlayFC to be the feature class of the overlay layer.

' Part 2: Define the output dataset.

Dim pNewWSName As IWorkspaceName

Dim pFeatClassName As IFeatureClassName

Dim pDatasetName As |DatasetName

Set pFeatClassName = New FeatureClassName

Set pDatasetName = pFeatClassName

Set pNewWSName = New WorkspaceName
pNewWSName.WorkspaceFactoryProgID = "esriCore.ShapeFileWorkspaceFactory"
pNewWSName.PathName = "c:\data\chap10"

Set pDatasetName.WorkspaceName = pNewWSName
pDatasetName.name = "Intersect_result"

Part 2 creates pFeatClassName as an instance of the FeatureClassName class.
The code then uses the IDatasetName interface to define the workspace and name

of pFCName.

' Part 3: Perform intersect.

Dim pBGP As IBasicGeoprocessor

Dim tol As Double

Dim pOutputFC As IFeatureClass

' Define a basic geoprocessor object.

Set pPBGP = New BasicGeoprocessor

' Use the default tolerance.

tol = O#

" Run intersect.

Set pOutputFC = pBGR.Intersect(plnputTable, False, pOverlayTable, False, tol, pFeatClassName)

Part 3 creates pBGP as an instance of the BasicGeoprocessor class and uses the
Intersect method on IBasicGeoprocessor to create the output referenced by pOut-
putFC. Intersect uses six object qualifiers and arguments. The four object qualifiers
have been previously defined. The two arguments determine if only subsets of
pInputF'C and/or pOverlayFC are used in the overlay operation. If they are set to

be false, the overlay operation ignores any selected subsets.

' Part 4: Create the output layer and add it to the active map.
Dim pOutputFeatLayer As IFeatureLayer
Set pOutputFeatlLayer = New FeatureLayer
Set pOutputFeatLayer.FeatureClass = pOutputFC
pOutputFeatLayer.name = pOutputFeatClass.AliasName
pMap.AddLayer pOutputFeatLayer

End Sub

VECTOR DATA OPERATIONS 209

Part 4 creates a feature layer from pOutputFC, and adds the layer to the
active map.

Box 10.2 Intersect_GP

Intersect_GP uses the Intersect tool in the Analysis toolbox to perform an overlay
operation between sewerbuf.shp and soils.shp. Run the macro in ArcCatalog and
view the output shapefile (sewerbuf _soils.shp) in the Catalog tree.

Private Sub intersect_GP()
' Create the Geoprocessing object and define its workspace.
Dim GP As Object
Set GP = CreateObject("esriGeoprocessing.GpDispatch.1")
Dim filepath As String
filepath = "c:\data\chap10"
GP.Workspace = filepath
" Intersect <features{Ranks};features{Ranks}> <out_feature_class>
' {ALL | NO_FID | ONLY_FID} {cluster_tolerance} {INPUT | LINE | POINT}
' Define parameter 1 and parameter 2 for the command.
Dim parameter1 As String
parameter1 = "sewerbuf.shp;soils.shp"
Dim parameter2 As String
parameter2 = "sewerbuf_soils.shp"
' Execute the intersect tool.
GP.Intersect_analysis parameter1, parameter2
End Sub

10.4.2 Updating Area and Perimeter of a Shapefile

A basic geoprocessor object does not automatically update the area and perimeter
of an output shapefile from an overlay operation. The attribute table of the output
from Intersect in fact contains two sets of area and perimeter from the input and
overlay layers. However, neither set has been updated.

If geodatabase feature classes are used as inputs to an overlay operation, the
output feature class will have the fields of shape_area and shape_length with
correct area and perimeter values. (Chapter 14 has a sample macro that uses
geodatabase feature classes in an overlay operation.) But if shapefiles are used
as inputs, the area and perimeter of the output shapefile can be updated in two
ways. The first method is to convert the shapefile to a geodatabase feature class
by using a conversion macro such as ShapefileToAccess in Chapter 6. The
geodatabase feature class will have the fields of shape_area and shape_length
with the updated values. The second method is to add the following code
fragment to Intersect as Part 5. (Intersect_Update.txt on the companion CD is
a complete macro. The macro produces Intersect_result2 with the updated area
and perimeter values.)

210 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

' Part 5: Update area and perimeter of the output shapefile.
Dim pField1 As IFieldEdit
Dim pField2 As IFieldEdit
Dim pUpdateCursor As IFeatureCursor
Dim intArea As Integer
Dim intLeng As Integer
Dim pArea As |Area
Dim pCurve As ICurve
Dim pFeature As IFeature
' Define the two fields to be added.
Set pField1 = New Field
pField1.Name = "Shape_area"
pField1.Type = esriFieldTypeDouble
Set pField2 = New Field
pField2.Name = "Shape_leng"
pField2.Type = esriFieldTypeDouble
' Add the two new fields.
pOutputFC.AddField pField1
pOutputFC.AddField pField2
' Create a feature cursor to update each feature's new fields.
Set pUpdateCursor = pOutputFC.Update(Nothing, False)
' Locate the new fields.
intArea = pUpdateCursor.FindField("Shape_area")
intLeng = pUpdateCursor.FindField("Shape_leng")
Set pFeature = pUpdateCursor.NextFeature
' Loop through each feature.
Do Until pFeature Is Nothing
' Update the area field.
Set pArea = pFeature.Shape
pFeature.Value(intArea) = pArea.Area
' Update the length field.
Set pCurve = pFeature.Shape
pFeature.Value(intLeng) = pCurve.Length
' Update the feature.
pUpdateCursor.UpdateFeature pFeature
Set pFeature = pUpdateCursor.NextFeature
Loop

Part 5 first defines two new fields and adds them to pOutputFC. Next, the code
uses the Update method on [FeatureClass to create a feature cursor referenced by
pUpdateCursor, finds the index of the new field, and sets up a loop to step through
each feature in pUpdateCursor. Within the loop, the Shape_area field is given the
value of the area of the feature (pArea.Area) and the Shape_leng is given the value
of the perimeter of the feature (pCurve.Length). Then the UpdateFeature method
on [FeatureCursor updates the feature in the database.

When Intersect is run with the additional Part 5, the attribute table of the output
shapefile will have the additional fields of Shape_area and Shape_leng. The values
in those two fields are the updated values of area and perimeter.

VECTOR DATA OPERATIONS 211

10.5 JOINING DATA BY LOCATION

Spatial join joins attributes of two layers based on a spatial relationship between
features. A common application of spatial join is to derive the distance between
features using the nearest relationship.

10.5.1 JoinByLocation

JoinByLocation joins line features to point features using the nearest relationship.
The macro performs the same function as using the option of “Join data from another
layer based on spatial location” of Join Data in ArcMap. JoinByLocation has four
parts. Part 1 defines the source table and the join table. Part 2 prepares the name
objects of the output’s workspace, feature class, and dataset. Part 3 defines a spatial
join object and runs the nearest method. Part 4 creates a feature layer from the output
and adds the layer to the active map.

Key Interfaces: IFeatureClass, IWorkspaceName, IFeatureClassName, IDataset-
Name, ISpatialJoin

Key Members: FeatureClass, WorkspaceFactoryProgID, PathName, Name, Work-
spaceName, ShowProcess, LeftOuterJoin, SourceTable, JoinTable, JoinNearest

Usage: Add deer.shp and edge.shp to an active map. deer contains deer sighting
locations, and edge shows edges between different vegetation covers. In this spatial
join operation, deer is the source table and edge is the join table. deer must be on
top of edge in the table of contents. Import JoinByLocation to Visual Basic Editor.
Run the macro. The macro creates a new layer named Spatial_Join. The attribute
table of Spatial_Join has the same number of records as the deer attribute table,
but each record of Spatial_Join has attributes from deer and edge as well as a new
distance field.

Private Sub JoinByl.ocation()
' Part 1: Define the source and join tables.
Dim pMxDoc As IMxDocument
Dim pMap As IMap
Dim pSourcelayer As IFeatureLayer
Dim pSourceFC As IFeatureClass
Dim pJoinLayer As IFeaturelLayer
Dim pdoinFC As IFeatureClass
Set pMxDoc = ThisDocument
Set pMap = pMxDoc.FocusMap
' Define the source feature class.
Set pSourcelayer = pMap.Layer(0)
Set pSourceFC = pSourcelayer.FeatureClass
' Define the join feature class.
Set pJoinLayer = pMap.Layer(1)
Set pJoinFC = pJoinLayer.FeatureClass

Part 1 sets pSourceFC to be the feature class of the top layer in the active map,
and pJoinFC to be the feature class of the second layer.

212 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

' Part 2: Define the output dataset.

Dim pOutWorkspaceName As IWorkspaceName

Dim pFCName As IFeatureClassName

Dim pDatasetName As IDatasetName

Set pFCName = New FeatureClassName

Set pDatasetName = pFCName

Set pOutWorkspaceName = New WorkspaceName
pOutWorkspaceName.WorkspaceFactoryProglD = "esriCore.ShapefileWorkspaceFactory.1"
pOutWorkspaceName.PathName = "c:\data\chap10"
pDatasetName.Name = "Spatial_Join"

Set pDatasetName.WorkspaceName = pOutWorkspaceName

Part 2 creates pF'CName as an instance of the FeatureClassName class. The code
then performs a QI for IDatasetName to define the workspace and name of pFC-
Name.

' Part 3: Perform spatial join.
Dim pSpatialJoin As ISpatialJoin
Dim pOutputFeatClass As IFeatureClass
Dim maxMapDist As Double
' Create and define a spatial join object.
Set pSpatialJoin = New SpatialJoin
With pSpatialJoin
.ShowProcess(True) = 0
.LeftOuterdoin = False
Set .SourceTable = pSourceFC
Set .JoinTable = pJoinFC
End With
' Use infinity as the maximum map distance.
maxMapDist = -1
' Run the join nearest method.
Set pOutputFC = pSpatialdoin.JoinNearest(pFCName, maxMapDist)

Part 3 creates pSpatialJoin as an instance of the SpatialJoin class and defines
its properties in a With block. The code specifies True for ShowProcess so that a
message box will update the processing. The code specifies False for LeftOuterJoin
so that a record will be added from the source table to the output only if the record
has a match in the join table. Then the code uses the JoinNearest method on
ISpatialjoin to create the output referenced by pOutputFC. The maximum map
distance for the search radius for spatial join is —1, which means infinity.

' Part 4: Create the output layer and add it to the active map.
Dim pOutputFeatLayer As IFeatureLayer
Set pOutputFeatlLayer = New FeatureLayer
Set pOutputFeatLayer.FeatureClass = pOutputFC
pOutputFeatLayer.Name = pOutputFC.AliasName
pMap.AddLayer pOutputFeatLayer

End Sub

Part 4 creates a feature layer from pOutputFC, and adds the layer to the active map.

VECTOR DATA OPERATIONS 213

10.6 MANIPULATING FEATURES

The IBasicGeoprocessor interface offers the methods of clip, dissolve, and merge
for manipulating spatial features. This section covers dissolve and merge. Addition-
ally, this section includes a macro that derives centroids for each polygon of a
shapefile and saves the centroids into a new shapefile. The centroid is the geometric
center of a polygon, a common measure that can be used as an input to vector data
analysis.

10.6.1 Dissolve

Dissolve aggregates features of the input layer based on the values of an attribute.
Dissolve has four parts. Part 1 defines the input table. Part 2 defines the workspace
and name of the output. Part 3 performs dissolve. Part 4 creates a feature layer from
the output and adds the layer to the active map.

Key Interfaces: ITable, IWorkspaceName, IFeatureClassName, IDatasetName, IBa-
sicGeoprocessor

Key Members: WorkspaceFactoryProgID, PathName, Name, WorkspaceName, Dissolve

Usage: Add vulnershp to an active map. Open the attribute table of vulner and make
sure that it contains the fields of Class and Shape_area. Class will be used as the
dissolve field and shape_area, the summary field, in Dissolve. Import Dissolve to
Visual Basic Editor. Run the macro. The macro adds a new layer named
Dissolve_result to the active map. Dissolve_result is a shapefile that allows a polygon
to have multiple components. Therefore, the attribute table of Dissolve_result has
only five records, one for each class value. The field Shape_area in the attribute table
summarizes the values of Shape_area in the input layer for each class value.

Private Sub Dissolve()
' Part 1: Define the input table.
Dim pMxDoc As IMxDocument
Dim pMap As IMap
Dim plnputFeatLayer As IFeatureLayer
Dim plnputTable As [Table
Set pMxDoc = ThisDocument
Set pMap = pMxDoc.FocusMap
Set pInputFeatlLayer = pMap.Layer(0)
Set pInputTable = plnputFeatLayer

Part 1 sets pInputFeatLayer to be the top layer in the active map. The code then
uses the ITable interface to set pInputTable to be the same as plnputFeatLayer.

' Part 2: Define the output dataset.

Dim pNewWSName As IWorkspaceName
Dim pFCName As IFeatureClassName

Dim pDatasetName As IDatasetName

Set pFCName = New FeatureClassName
Set pDatasetName = pFCName

Set pNewWSName = New WorkspaceName

214 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

pNewWSName.WorkspaceFactoryProgID = "esriCore.ShapefileWorkspaceFactory.1"
pNewWSName.PathName = "c:\data\chap10"

pDatasetName.Name = "Dissolve_result"

Set pDatasetName.WorkspaceName = pNewWSName

Part 2 creates pFCName as an instance of the FeatureClassName class and
accesses IDatasetName to define the workspace and name for pFCName.

' Part 3: Perform dissolve.

Dim pBGP As IBasicGeoprocessor

Dim pOutputFC As IFeatureClass

Set pPBGP = New BasicGeoprocessor

' Run dissolve.

Set pOutputFC = pBGP.Dissolve(plnputTable, False, "Class", "Dissolve.Shape, Sum.Shape_area", pFCName)

Part 3 creates pBGP as an instance of the BasicGeoprocessor class and uses the
Dissolve method on [BasicGeoprocessor to create the output referenced by pOut-
putFC. Dissolve requires three arguments in addition to two object qualifiers already
defined. The code specifies False for useSelected so that all records in the input table
will be dissolved. The code specifies Class for dissolveField, or the field to dissolve.
The argument summaryFields has a different syntax from the others. The first entry
in the comma-delimited string, Dissolve.Shape, is required if the output is a shapefile
(not a summary table). The second entry, Sum.Shape_area, specifies that the
Shape_area values be summed for each value of the dissolve field. Besides sum, other
available statistics are count, minimum, maximum, average, variance, and standard
deviation.

' Part 4: Create the output feature layer and add the layer to the active map.
Dim pOutputFeatLayer As IFeatureLayer
Set pOutputFeatlLayer = New FeatureLayer
Set pOutputFeatLayer.FeatureClass = pOutputFC
pOutputFeatLayer.Name = pOutputFC.AliasName
pMap.AddLayer pOutputFeatLayer
End Sub

Part 4 creates a feature layer from pOutputFC, and adds the layer to the active map.

Box 10.3 Dissolve_GP

Dissolve_GP uses the Dissolve tool in the Analysis toolbox to dissolve vulner.shp
by using Class as the dissolve field. At the same time, the sum of Shape_area is
calculated for each Class value in the output. Run the macro in ArcCatalog and
examine the output (Dissolve_result2.shp) in the Catalog tree.

Private Sub Dissolve_GP()
' Create the Geoprocessing object.
Dim GP As Object
Set GP = CreateObject("esriGeoprocessing.GpDispatch.1")
' Dissolve <in_features> <out_feature_class> {dissolve_field;dissolve_field...}
' {field {Statistics_Type}; field{Statistics_Type}...}

VECTOR DATA OPERATIONS 215

' Execute the dissolve tool.

GP.Dissolve_management "c:\data\chap10\vulner.shp", "c:\data\chap10\Dissolve_result2.shp", "Class", _
"Shape_area Sum"

End Sub

10.6.2 Merge

Merge combines two line shapefiles into a single shapefile. Merge has four parts.
Part 1 defines the two tables to be merged. Part 2 defines the output’s workspace
and name. Part 3 sets up a basic geoprocessor object to run Merge. Part 4 creates a
feature layer from the output and adds the layer to the active map.

Key Interfaces: ITable, IWorkspaceName, IFeatureClassName, IDatasetName, IBa-
sicGeoprocessor, I1Array, IFeatureClass

Key Members: WorkspaceFactoryProgID, PathName, Name, WorkspaceName, Array,
Add, Merge, FeatureClass

Usage: Add mtroads_idtm.shp and idroads.shp to an active map. mtroads_idtm is a
major road shapefile of Montana, and idroads is a major road shapefile of Idaho.
Both shapefiles are projected onto the Idaho Transverse Mercator (IDTM) coordi-
nate system. Because only one of the shapefiles can define the attributes for the
output, Merge will use the attributes of mtroads_idtm for the output. Make sure
that mtroads_idtm is on top of idroads in the table of contents. Import Merge to
Visual Basic Editor. Run the macro. The macro creates Merge_result.shp and adds
the shapefile to the active map.

Private Sub Merge()
' Part 1: Define the two input tables.
Dim pMxDoc As IMxDocument
Dim pMap As IMap
Dim pFirstLayer As IFeaturelLayer
Dim pFirstTable As [Table
Dim pSecondLayer As IFeaturelLayer
Dim pSecondTable As ITable
Set pMxDoc = ThisDocument
Set pMap = pMxDoc.FocusMap
' Define the first table.
Set pFirstLayer = pMap.Layer(0)
Set pFirstTable = pFirstLayer
' Define the second table.
Set pSecondLayer = pMap.Layer(1)
Set pSecondTable = pSecondLayer

Part 1 sets pFirstLayer to be the top layer in the active map and sets pFirstTable
to be the same as pFirstLayer. Next, the code sets pSecondLayer to be the second
layer and sets pSecondTable to be the same as pSecondLayer.

' Part 2: Define the output dataset.
Dim pNewWSName As IWorkspaceName
Dim pFCName As IFeatureClassName

216 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

Dim pDatasetName As IDatasetName

Set pFCName = New FeatureClassName

Set pDatasetName = pFCName

Set pNewWSName = New WorkspaceName
pNewWSName.WorkspaceFactoryProgID = "esriCore.ShapefileWorkspaceFactory.1"
pNewWSName.PathName = "c:\data\chap10"

Set pDatasetName.WorkspaceName = pNewWSName

pDatasetName.Name = "Merge_result"

Part 2 creates pFCName as an instance of the FeatureClassName class. The code
then uses the IDatasetName interface to define the workspace and name for pFC-
Name.

' Part 3: Perform merge.

Dim pBGP As IBasicGeoprocessor

Dim inputArray As |Array

Dim pOutputFC As IFeatureClass

' Add the two input tables to an array.

' Notice that esriSystem.Array replaces esriCore.Array in ArcGIS 9.2.
Set inputArray = New esriSystem.Array

inputArray.Add pFirstTable

inputArray.Add pSecondTable

Set pBGP = New BasicGeoprocessor

Set pOutputFC = pBGP.Merge(inputArray, pFirstTable, pFCName)

Part 3 first creates inputArray as an instance of the esriSystem.Array class and
uses the Add method on IArray to add the two input tables to the array variable.
Next, the code creates pBGP as an instance of the BasicGeoprocessor class and uses
the Merge method to create the merged output referenced by pOutputFC. The object
qualifier pFirstTable determines that the fields in the output correspond to those in
the first input table.

' Part 4. Create the output layer and add it to the active map.
Dim pOutputFeatLayer As IFeatureLayer
Set pOutputFeatlLayer = New FeatureLayer
Set pOutputFeatLayer.FeatureClass = pOutputFC
pOutputFeatLayer.Name = pOutputFC.AliasName
pMxDoc.FocusMap.AddLayer pOutputFeatlLayer

End Sub

Part 4 creates a feature layer from pOutputF'C and adds the layer to the active map.
10.6.3 Centroid

Centroid derives a centroid for each polygon of a shapefile and creates a new point
shapefile that contains the centroids. Centroid has three parts. Part 1 defines the
input dataset and calls the CreateNewShapefile function to create an empty output
feature class. Part 2 derives the centroid of each polygon and stores the centroids
in the feature class passed from CreateNewShapefile. Part 3 creates a feature layer
from the output and adds the layer to the active map.

VECTOR DATA OPERATIONS 217

CreateNewShapefile requires the spatial reference of the input dataset as an argu-
ment and returns a feature class object to Centroid. CreateNewShapefile has three
parts. Part 1 defines the output’s workspace, Part 2 edits and defines a shape field and
adds the field to a field collection, and Part 3 creates a new feature class and returns the
feature class to Centroid. Two constants used in CreateNewShapefile, one for the output’s
workspace and the other for the output’s name, are declared at the start of the module.

Key Interfaces: ISpatialReference, IFeatureClass, IFeatureCursor, 1Area, IFeature,
1Point, IWorkspaceFactory, IFeatureWorkspace, IFieldsEdit, IFieldEdit, IGeome-
tryDef, IGeometryDefEdit

Key Members: SpatialReference, Search, NextFeature, Shape, QueryCentroid, Cre-
ateFeature, Store, OpenFromFile, Name, Type, GeometryType, GeometryDef,
AddField, CreateFeatureClass

Usage: Add idcounty.shp to an active map. idcounty shows 44 counties in Idaho.
Import Centroid to Visual Basic Editor. Run the module. The module adds a new
shapefile named Centroid to the active map. The attribute table of Centroid has
three fields: FID, Shape, and ID. ArcGIS automatically adds ID because the
software requires at least one field in addition to the object ID (FID) and the
geometry field (Shape). ID has zeros for all 44 records but, if necessary, the values
can be calculated to be FID + 1.

Const strFolder As String = "c:\data\chap10"
Const strName As String = "Centroid"

Private Sub Centroid()
' Part 1: Define the input dataset, and call a function to create the output.
Dim pMxDoc As IMxDocument
Dim pMap As IMap
Dim plnputFeatLayer As IFeatureLayer
Dim pGeoDataset As IGeoDataset
Dim pSpatialReference As ISpatialReference
Dim pOutputFeatClass As IFeatureClass
Set pMxDoc = ThisDocument
Set pMap = pMxDoc.FocusMap
' Define the input dataset.
Set pinputFeatLayer = pMap.Layer(0)
Set pGeoDataset = pInputFeatLayer
Set pSpatialReference = pGeoDataset.SpatialReference
' Call the CreateNewShapefile function to create the output feature class.
Set pOutputFeatClass = CreateNewShapefile(pSpatialReference)

Part 1 sets pInputFeatLayer to be the top layer in the active map and uses the
IGeoDataset interface to derive its spatial reference, which is referenced by
pSpatialReference. The code then calls the CreateNewShapefile function, which
uses pSpatialReference as an argument and returns a feature class object referenced
by pOutputFeatClass.

' Part 2: Derive centroids for each polygon and store them.
Dim pFCursor As IFeatureCursor

218 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

Dim plnputFeature As IFeature
Dim pCentroidTemp As IPoint
Dim pArea As IArea
Dim pOutputFeature As IFeature
' Set up a cursor for all features.
Set pCentroidTemp = New Point
Set pFCursor = plnputFeatLayer.Search(Nothing, True)
Set pInputFeature = pFCursor.NextFeature
' Step through each polygon feature.
Do Until pinputFeature Is Nothing
Set pArea = plnputFeature.Shape
' Get the centroid.
pArea.QueryCentroid pCentroidTemp
Set pOutputFeature = pOutputFeatClass.CreateFeature
' Store the centroid.
Set pOutputFeature.Shape = pCentroidTemp
pOutputFeature.Store
Set pInputFeature = pFCursor.NextFeature
Loop

Part 2 derives centroids for each polygon and stores them as features in pOut-
putFeatClass. The code first creates pCentroidTemp as an instance of the Point class
and creates a feature cursor referenced by pFCursor. Next the code uses a loop to
step through each feature in the cursor, derive its centroid, and store the centroid as
a new feature in pOutputFeatClass. The method for deriving the centroid is Query-
Centroid on IArea, which is implemented by a polygon object. The method to store
the centroid is Store on IFeature, which is implemented by a feature object.

' Part 3: Create the output feature layer, and add the layer to the active map.
Dim pFeatureLayer As IFeatureLayer
Set pFeatureLayer = New FeaturelLayer
Set pFeatureLayer.FeatureClass = pOutputFeatClass
pFeaturelLayer.Name = "Centroid"
pMap.AddLayer pFeaturelLayer
End Sub

Part 3 creates a new feature layer from pOutputFeatClass, and adds the layer to
the active map.

Public Function CreateNewShapefile(pSpatialReference As ISpatialReference) As IFeatureClass
' Part 1: Define the output’s workspace.
Dim pFWS As IFeatureWorkspace
Dim pWorkspaceFactory As IWorkspaceFactory
Set pWorkspaceFactory = New ShapefileWorkspaceFactory
Set pFWS = pWorkspaceFactory.OpenFromFile(strFolder, 0)

Part 1 uses the OpenFromFile method and the constant strFolder to open a feature
workspace for the new shapefile.

VECTOR DATA OPERATIONS 219

' Part 2: Edit and define a shape field.
Dim pFields As IFieldsEdit
Dim pField As IFieldEdit
Dim pGeomDef As IGeometryDef
Dim pGeomDefEdit As IGeometryDefEdit
' Make the shape field.
Set pField = New Field
pField.Name = "Shape"
pField. Type = esriFieldTypeGeometry
' Define the geometry of the shape field.
Set pGeomDef = New GeometryDef
Set pGeomDefEdit = pGeomDef
With pGeomDefEdit
.GeometryType = esriGeometryPoint
Set .SpatialReference = pSpatialReference
End With
Set pField.GeometryDef = pGeomDef
' Add the shape field to the field collection.
Set pFields = New Fields
pFields.AddField pField

Part 2 defines the shape field and adds it to a field collection. The code first
creates pField as an instance of the Field class and defines its name and type
properties. Next, the code creates pGeomDef as an instance of the GeometryDef
class and uses the GeometryDefEdit interface to define the geometry type and spatial
reference of the new geometry definition. After assigning pGeomDef to be the
geometry definition of pField, the code creates pFields as an instance of the Fields
class and adds pField to the new field collection.

' Part 3: Create the new feature class and return it.
Dim pFeatClass As IFeatureClass
Set pFeatClass = pFWS.CreateFeatureClass(strName, pFields, Nothing, Nothing, esriFTSimple, "Shape", "")
' Return the feature class.
Set CreateNewShapefile = pFeatClass
End Function

Part 3 uses the CreateFeatureClass method on IFeatureWorkspace to create a
feature class object referenced by pFeatClass. CreateNewShapefile then returns
pFeatClass to Centroid.

CHAPTER 11

Raster Data Operations

The simple data structure of raster data is computationally efficient and well suited
for a large variety of raster data operations. One typically starts a raster data operation
by setting up an analysis environment that includes the area for analysis and the
output cell size. Both parameters are important because the inputs to an operation
may have different area extents and different cell sizes.

Raster data query selects cells that meet a query expression. The query expression
may involve one factor from a single raster or multiple factors from multiple rasters.
The output from a query is a new raster that separates cells that meet the query
expression from those that do not.

Raster data analysis is traditionally grouped into local, neighborhood, zonal, and
distance measure operations. A local operation computes the cell values of a new
raster by using a function that relates the input to the output. The operation is
performed on a cell-by-cell basis. A neighborhood operation uses a focal cell and a
neighborhood. The operation computes the focal cell value from the cell values
within the neighborhood. A zonal operation works with zones or groups of cells of
same values. Given a single input raster, a zonal operation calculates the geometry
of zones in the raster. Given a zonal raster and a value raster, a zonal operation
summarizes the cell values in the value raster for each zone in the zonal raster. A
distance measure operation involves an entire raster. The operation calculates for
each cell the distance away from the closest source cell. If the distance is measured
in cell units, the operation produces a series of wave-like distance zones over the
raster. If the distance is measured in cost units, the operation produces for each cell
the least accumulative cost to a source cell.

This chapter covers raster data operations. Section 11.1 reviews raster data
analysis using ArcGIS. Section 11.2 discusses objects that are related to raster data
operations. Section 11.3 includes macros and a Geoprocessing (GP) macro for
saving, extracting, and querying raster data. Section 11.4 offers macros and two GP
macros for cell-by-cell operations. Section 11.5 has a macro and a GP macro for a
neighborhood operation. Section 11.6 has a macro and a GP macro for a zonal
operation. Section 11.7 offers macros and a GP macro for physical distance and cost
distance measure operations. All macros start with the listing of key interfaces and

221

222 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

key members (properties and methods) and the usage. The Spatial Analyst extension
must be checked in the Tools/Extensions menu before running the macros.

11.1 ANALYZING RASTER DATA IN ARCGIS

The Spatial Analyst extension to ArcGIS is designed for raster data operations.
Commands of the extension are available through the extension menu and ArcTool-
box. Discussions in this section refer to the extension menu. Spatial Analyst has an
Options command that lets the user specify an analysis mask, an area for analysis,
and an output cell size. An analysis mask limits analysis to cells that do not carry
the cell value of no data. The area for analysis may correspond to a specific raster,
an extent defined by a set of minimum and maximum x-, y-coordinates, a combina-
tion of rasters, or a mask. The output cell size can be at any scale deemed suitable
by the user although, conceptually, it should be equal to the largest cell size among
the input rasters for analysis.

Raster Calculator in Spatial Analyst incorporates arithmetic operators, logical
operators, Boolean connectors, and mathematical functions in a dialog box. Raster
Calculator is therefore useful for raster data queries as well as for cell-by-cell (local)
operations. A raster data query can apply to a single raster or multiple rasters. The
query result is saved into a raster in which cells that meet the condition are coded
one and other cells are coded zero.

Besides Raster Calculator, the Cell Statistics and Reclassify commands can also
perform local operations. The Cell Statistics command computes summary statistics
such as maximum, minimum, and mean from multiple rasters. The Reclassify com-
mand reclassifies the values of the input cells on a cell-by-cell basis.

The Neighborhood Statistics command performs neighborhood operations. The
command uses a dialog to gather the input data, field, statistic type, and neighborhood
for computation. A neighborhood may be a rectangle, circle, annulus, or wedge. The
statistic type includes maximum, minimum, range, sum, mean, standard deviation,
variety, majority, and minority.

The Zonal Statistics command performs zonal operations on a zonal raster and a
value raster. The command uses a dialog to gather the zone dataset, zone field, and
value raster. Given a single raster with zones, one can use Raster Calculator with such
functions as area, perimeter, centroid, and thickness to compute the zonal geometry.

The Distance command has the following selections: Straight Line Distance,
Allocation, Cost Weighted, and Shortest Path. The first two use physical distance
measures, and the last two use cost distance measures. Straight Line Distance creates
an output raster containing continuous distance measures away from the source cells
in a raster. Allocation creates a raster in which each cell is assigned the value of its
closest source cell. Cost Weighted calculates for each cell the least accumulative
cost, over a cost raster, to its closest source cell. Additionally, the Cost Weighted
command can also create a direction raster that shows the direction of the least cost
path from each cell to a source, and an allocation raster that shows the assignment
of each cell to a source cell. Shortest Path uses the results from the Cost Weighted
command to generate the least cost path from any cell or zone to the source cell.

RASTER DATA OPERATIONS 223

RasterDataset-————

Figure 11.1 The relationship between RasterDataset, RasterBand, Raster, and RasterlLayer.

11.2 ARCOBJECTS FOR RASTER DATA ANALYSIS

Raster data analysis involves objects that can be grouped into the categories of raster
and operator.

11.2.1 Raster Objects

The basic raster objects are RasterDataset, RasterBand, Raster, and RasterLayer
(Figure 11.1). A raster dataset object represents an existing dataset stored on disk
in a particular raster format (for example, ESRI grid, TIFF). A raster band object
represents an individual band of a raster dataset. The number of bands in a raster
may vary; an ESRI grid typically contains a single band, whereas a satellite image
has multiple bands. A raster object is a virtual representation of a raster dataset,
useful for raster data operations. Created from an existing raster or a raster dataset,
a raster layer object is a visual display of raster data.

One other raster object that needs to be mentioned is RasterDescriptor. When
used for data conversion (Chapter 6), a raster descriptor object represents a raster
that uses a field other than the default value field. When used for raster data query,
a raster descriptor object is associated with a query filter and can be created from
a raster or a raster’s selection set (Figure 11.2).

11.2.2 Operator Objects

Operator objects provide methods for raster data analysis. A good reference for
operator objects is the Spatial Analyst Functional Reference in the ArcGIS Desktop
Help. The reference covers operator (Spatial Analyst) objects by type of analysis
(for example, Local) and offers the ArcObjects syntax and example for each object.

IRasterDescriptor

«4— Create
«4— CreateFromSelectionSet

Figure 11.2 /RasterDescriptor has methods to create a raster descriptor from a raster or a
selection set.

224 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

[ExtractOp O0—|
* P RasterExtractionOp

IRasterAnalysisEnvironment O—

[ExtractOp IRasterAnalysisEnvironment
< Point B—] Mask
< Polygon B—1 OutWorkspace

<4— SetCellSize
4—— SetExtent

<4— Raster

Figure 11.3 A RasterExtractionOp object supports IRasterAnalysisEnvironment and IExtractOp.
IRasterAnalysisEnvironment has members for defining the analysis environment,
and /ExtractOp has methods to extract raster data.

This section focuses on operator objects that are used in this chapter’s sample
macros. A RasterExtractionOp object supports IExtractOp, which has methods for
data extraction based on points, a polygon, or araster (Figure 11.3). A RasterReclassOp
object implements [ReclassOp, which has methods for reclassifying raster data
(Figure 11.4). A RasterMathOp object supports ILogicalOp and IMathOp. ILogica-
[Op has methods for logical (Boolean) operations, and IMathOp has methods for
mathematical operations (Figure 11.5). Notice that every operator object also sup-
ports IRasterAnalysisEnvironment, which has members for defining the analysis
environment.

Local, neighborhood, zonal, and distance measure operations are each covered
by an operator object. A RasterLocalOp object supports ILocalOp (Figure 11.6),
a RasterNeighborhoodOp object INeighborhoodOp (Figure 11.7), a RasterZonalOp
object IZonalOp (Figure 11.8), and a RasterDistanceOp object IDistanceOp
(Figure 11.9).

IReclassOp O—

RasterReclassOp
IRasterAnalysisEnvironment O—

IReclassOp

«4— ReclassByASCIIFile
4— ReclassByRemap
<4— Slice

Figure 11.4 A RasterReclassOp object supports IRasterAnalysisEnvironment and IReclassOp.
IReclassOp has methods for reclassifying and slicing raster data.

RASTER DATA OPERATIONS 225

ILogicalOp O—]
IMathOp O— RasterMathOps
IRasterAnalysisEnvironment O—

ILogicalOp IMathOp

«4— BooleanAnd <4— Divide
«4— CombinatorialAnd <4— Float

4— Test <4— Int

<4— Minus
<4— Plus
<4— Times

Figure 11.5 A RasterMathOp object supports IRasterAnalysisEnvironment, ILogicalOp, and
IMathOp. ILogicalOp has methods for logical operations, and /MathOp has meth-
ods for mathematical operations.

[LocalOp O— RasterLocalOp
IRasterAnalysisEnvironment O—
ILocalOp

<4—— Combine

<4— EqualTo

«4— GreaterThan

«4— HighestPosition

«4— LessThan

«4— LocalStatistics

«4— LowestPosition
«4— Popularity
<4— Rank

Figure 11.6 A RasterLocalOp object supports [RasterAnalysisEnvironment and ILocalOp.
ILocalOp has methods for cell-by-cell operations.

INeighborhoodOp O—
eighborhoodOp RasterNeighborhoodOp

IRasterAnalysisEnvironment O—

INeighborhoodOp

«4— BlockStatistics
«4— FocalStatistics

Figure 11.7 A RasterNeighborhoodOp object supports IRasterAnalysisEnvironment and
INeighborhoodOp. INeighborhoodOp has methods for focal and block operations.

226 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

1ZonalOp RasterZonalOp

IRasterAnalysisEnvironment O—

1ZonalOp

<4—— ZonalGeometry
<4—— ZonalStatistics

Figure 11.8 A RasterZonalOp object supports IRasterAnalysisEnvironment and [ZonalOp.
IZonalOp has methods for zonal operations using a single raster or a zonal raster
and a value raster.

11.3 MANAGING RASTER DATA

This section covers the tasks of saving raster data, extracting raster data, and querying
raster data.

11.3.1 MakePermanent

An output from a raster data operation is a temporary dataset in Spatial Analyst. The
temporary dataset is lost unless a disk location and a file name are set up to make
the dataset permanent. MakePermanent takes a raster layer, which represents a
temporary dataset, and saves it to a permanent raster. The macro performs the same
function as using the Make Permanent command from the layer’s context menu in
ArcMap. MakePermanent has two parts. Part 1 defines the temporary raster dataset,
and Part 2 specifies a workspace and makes permanent the temporary raster dataset.

Key Interfaces: [RasterLayer, IRaster, IRasterBandCollection, IRasterDataset,
IWorkspaceFactory, IWorkspace, [TemporaryDataset, IDataset

IDistanceOp RasterDistanceOp

IRasterAnalysisEnvironment O—

IDistanceOp

«4— CostAllocation
<4— CostBackLink
«4— CostDistance
4— CostPath

«4—— CostPathAsPolyline

4—— EucDistance

Figure 11.9 A RasterDistanceOp object supports /RasterAnalysisEnvironment and IDistanceOp.
IDistanceOp has methods for physical distance or cost distance measure operations.

RASTER DATA OPERATIONS 227

Key Members: Raster, Item(), RasterDataset, OpenFromFile, MakePermanentAS,
Name

Usage: Add emidalat, an elevation raster, to an active map. Click Spatial Analyst,
point to Surface Analysis, and select Slope. A temporary grid Slope of emidalat is
added to the active map. Right-click Slope of emidalat and select Properties. The
Source tab of the Layer Properties dialog shows that the raster does have a tem-
porary status and a name of SLOPEx. Import MakePermanent to Visual Basic
Editor. Run the macro. The macro creates a permanent raster from SLOPEx. To
verify the result, add SLOPEx and check its Layer Properties dialog.

Private Sub MakePermanent()
' Part 1: Define the temporary raster data.
Dim pMxDoc As IMxDocument
Dim pMap As IMap
Dim pRasterLy As IRasterLayer
Dim pRaster As IRaster
Dim pRasBandC As IRasterBandCollection
Dim pRasterDS As IRasterDataset
Set pMxDoc = ThisDocument
Set pMap = pMxDoc.FocusMap
' Get the raster from the raster layer.
Set pRasterLy = pMap.Layer(0)
Set pRaster = pRasterlLy.Raster
' Set the raster dataset to be the first band of the raster
Set pRasBandC = pRaster
Set pRasterDS = pRasBandC.ltem(0).RasterDataset

The code first sets pRaster to be the raster of the top layer in the active map.
Next, the code performs a QuerylInterface (QI) for the IRasterBandCollection inter-
face and assigns the raster dataset associated with the first band of pRaster to
pRasterDB (Figure 11.10).

' Part 2: Make permanent the raster dataset.
Dim pWSF As IWorkspaceFactory
Dim pWS As IRasterWorkspace
Dim pTempDS As [TemporaryDataset
Dim pDataset As IDataset
Dim Name As String
' Define the workspace.
Set pWSF = New RasterWorkspaceFactory
Set pWS = pWSF.OpenFromFile("c:\data\chap11\", 0)
' Define the temporary dataset.
Set pDataset = pRasterDS
Name = pDataset.Name
Set pTempDS = pRasterDS
' Make permanent the grid.
Set pRasterDS = pTempDS.MakePermanentAs(Name, pWS, "GRID")

Part 2 makes pRasterDS a permanent raster. To do that, the code must first define
a workspace and a name for the permanent raster. The workspace is specified using

228 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

IGeoDataset O—]
IRaster O— Raster
IRasterBandCollection O—]

IRasterBandCollection
<4— Add
«4— AppendBand

<4— Item

Figure 11.10 The diagram shows how to QI on /Raster for IRasterBandCollection so that a
raster band can be added, appended, or extracted from a raster band collection
object.

the OpenFromFile method on IWorkspaceFactory. The name is specified via the Name
property on IDataset. Then the code accesses ITemporaryDataset and uses the Make-
PermanentAs method to make pRasterDS a permanent ESRI grid (Figure 11.11).

11.3.2 ExtractByMask

ExtractByMask uses a mask raster to extract a data subset from an input raster. The
macro performs the same function as using an analysis mask in Spatial Analyst to
extract a new raster from an input raster. ExtractByMask has three parts. Part 1
defines the input raster, Part 2 prepares a mask raster and uses it to extract data, and
Part 3 creates a raster layer from the extracted data and adds the layer to the active map.

Key Interfaces: /RasterLayer, IRaster, IGeoDataset, IExtractionOp

Key Members: Raster

Usage: Add splinegd and idoutlgd to an active map. splinegd is an interpolated
precipitation raster, whose extent is determined by the extent of x- and y-coordinates
of the weather stations used in interpolation. idoutlgd is a raster showing the outline
of Idaho. splinegd must be on top of idoutlgd. Import ExtractByMask to Visual
Basic Editor. Run the macro. The macro uses idoutlgd as an analysis mask to
extract a temporary raster from splinegd.

IGeoDataset O—]
IRasterBandCollection O—]
IRasterDataset O—
ITemporaryDataset O—

RasterDataset

ITemporaryDataset
<4—— MakePermanent

«4—— MakePermanentAs

Figure 11.11 The diagram shows how to QI on /RasterDataset for ITemporaryDataset so that
a temporary raster can be made permanent.

RASTER DATA OPERATIONS 229

Private Sub ExtractByMask()
' Part 1: Define the input raster.
Dim pMxDoc As IMxDocument
Dim pInRasterLayer As IRasterLayer
Dim pInRaster As IRaster
Set pMxDoc = ThisDocument
Set pInRasterLayer = pMxDoc.FocusMap.Layer(0)
Set pInRaster = pInRasterLayer.Raster

Part 1 sets pInRaster to be the raster of the top layer in the active map.

' Part 2: Use a mask to extract the input raster.
Dim pRasterLayer As IRasterLayer

Dim pMaskDataset As IGeoDataset

Dim pOutRaster As IRaster

Dim pExtrOp As |ExtractionOp

' Define the mask dataset.

Set pRasterLayer = pMxDoc.FocusMap.Layer(1)
Set pMaskDataset = pRasterlLayer.Raster

Set pExtrOp = New RasterExtractionOp

' Perform extraction.

Set pOutRaster = pExtrOp.Raster(plnRaster, pMaskDataset)

Part 2 defines the mask dataset and performs an extraction operation. To define
the mask raster, the code sets pRasterLayer to be the second layer of the active map
and pMaskDataset to be the raster of pRasterLayer. Next, the code creates pExtrOp
as an instance of the RasterExtractOp class and uses the Raster method on IExtractOp
to create a raster referenced by pOutRaster.

' Part 3: Create the output layer and add it to the active map.
Dim pRL As IRasterLayer
Set pRL = New RasterLayer
pRL.CreateFromRaster pOutRaster
pMxDoc.FocusMap.AddLayer pRL

End Sub

Part 3 uses the CreateFromRaster method on IRasterLayer to create a raster
layer from pOutRaster. The code then adds the raster layer to the active map.

Box 11.1 ExtractByMask_ GP

ExtractByMask_GP uses the ExtractByMask tool in the Spatial Analyst toolbox
to extract a raster (extractgd) from an input raster (splinegd) by using a mask
(idoutlgd). Run the macro in ArcCatalog. The extracted raster should appear in
the Catalog tree.

Private Sub ExtractByMask_GP()
' Create the Geoprocessing object and define its workspace.
Dim GP As Object

230 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

Set GP = CreateObject("esriGeoprocessing.GpDispatch.1")

Dim filepath As String

filepath = "c:\data\chap11"

GP.Workspace = filepath

' ExtractByMask <in_raster> <in_mask_dat> <out_raster>

' Execute the extractbymask tool.

GP.ExtractByMask_sa "splinegd", "idoutlgd", "extractgd"
End Sub

11.3.3 RasterQuery

RasterQuery queries an input raster and produces an output raster that shows the query
result. If the input raster has an attribute table, the output raster contains the value of
one for cells that meet the expression and zero for cells that do not. If the input
raster does not have an attribute table, the output raster retains the original cell values
for those cells that meet the expression and no data for cells that do not. In the case
of an integer raster, the macro performs a similar function as using Raster Calculator
in Spatial Analyst to query a raster.

RasterQuery has three parts. Part 1 defines the input raster, Part 2 prepares a
query filter and performs data query, and Part 3 creates a raster layer from the output
and adds the layer to the active map.

Key Interfaces: IRaster, IQueryFilter, IRasterDescriptor, ILogicalOp, IGeoDataset

Key Members: Raster, WhereClause, Create, Test, CreateFromRaster

Usage: Add slopegrd, a raster with four slope classes, to an active map. Import
RasterQuery to Visual Basic Editor. Run the macro. The macro creates a temporary
raster that shows cells in the slope class of 2, and adds it as a raster layer to the
active map.

Private Sub RasterQuery()
' Part 1: Define the raster for query.
Dim pMxDoc As IMxDocument
Dim pMap As IMap
Dim pLayer As IRasterLayer
Dim pRaster As IRaster
Set pMxDoc = ThisDocument
Set pMap = pMxDoc.FocusMap
Set plLayer = pMap.Layer(0)
Set pRaster = plLayer.Raster

Part 1 sets pRaster to be the raster of the top layer in the active map.

' Part 2: Perform raster query.

Dim pQFilter As IQueryFilter

Dim pRasDes As IRasterDescriptor
Dim pLogicalOp As ILogicalOp

Dim pOutputRaster As IGeoDataset
' Prepare a query filter.

Set pQFilter = New QueryFilter

RASTER DATA OPERATIONS 231

pQFilter.WhereClause = "Value = 2"

' Prepare a raster descriptor.

Set pRasDes = New RasterDescriptor
pRasDes.Create pRaster, pQFilter, "value"

" Run a logical operation.

Set pLogicalOp = New RasterMathOps

Set pOutputRaster = pLogicalOp.Test(pRasDes)

Part 2 performs a raster data query and transforms the result into a raster with
ones and zeros. The code first creates pQFilter as an instance of the QueryFilter
class and defines its WhereClause condition. Next, the code sets pRasDes to be
an instance of the RasterDescriptor class and uses the Create method to create
the new raster descriptor from pRaster. Then the code creates pLogicalOp as an
instance of the RasterMathOp class and uses the Test method on ILogicalOp to
create a raster referenced by pOutputRaster.

' Part 3: Create the output raster layer, and add the layer to the active map.
Dim pOutputLayer As IRasterLayer
Set pOutputLayer = New RasterLayer
pOutputLayer.CreateFromRaster pOutputRaster
pOutputLayer.Name = "QueryOutput”
pMap.AddLayer pOutputLayer
End Sub

Part 3 creates a new raster layer from pOutputRaster and adds the layer to the
active map. The temporary layer has the value of one for cells that have the slope
value of two and zero for other cells.

11.3.4 Query2Rasters

Query2Rasters queries two rasters and produces an output raster with ones and
zeros. The macro performs the same function as using Raster Calculator to query
two rasters in Spatial Analyst. Query2Rasters has four parts. Part 1 queries the first
input raster and saves the result into a dataset, and Part 2 queries the second raster
and saves the result into another dataset. Part 3 uses the two datasets from the
previous queries in a logical operation to create an output raster. Part 4 creates a
raster layer from the output and adds the layer to the active map. Parts 1 and 2
contain basically the same code as RasterQuery.

Key Interfaces: IRaster, IQueryFilter, IRasterDescriptor, ILogicalOp, IGeoDataset

Key Members: Raster;, WhereClause, Create, Test, BooleanAnd, CreateFrom Raster,
Name

Usage: Add slopegrd and aspectgrd to an active map, with slopegrd on top in the
table of contents. slopegrd contains four slope classes, and aspectgrd contains five
aspect classes. Import Query2Rasters to Visual Basic Editor. Run the macro. The
macro adds to the active map a temporary raster, which has the one and zero cell
values. A cell value of one means that the cell has the slope class of 2 and the
aspect class of 2.

232 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

Private Sub Query2Rasters()
' Part 1: Query the first raster.
Dim pMxDoc As IMxDocument
Dim pMap As IMap
Dim pRLayer1 As IRasterLayer
Dim pRaster1 As IRaster
Dim pFilt1 As IQueryFilter
Dim pDesc1 As IRasterDescriptor
Dim pLogicalOp As ILogicalOp
Dim pOutputRaster1 As IGeoDataset
Set pMxDoc = ThisDocument
Set pMap = pMxDoc.FocusMap
' Define the first raster.
Set pRLayer1 = pMap.Layer(0)
Set pRaster1 = pRLayer1.Raster
' Create the first query filter.
Set pFilt1 = New QueryFilter
pFilt1.WhereClause = "value = 2"
' Create the first raster descriptor.
Set pDesc1 = New RasterDescriptor
pDesc1.Create pRaster1, pFilt1, "value"
' Create the first output with 1’s and Q’s.
Set pLogicalOp = New RasterMathOps
Set pOutputRaster1 = plLogicalOp.Test(pDesc1)

Part 1 uses the same code as in RasterQuery to create pOutputRaster] from the
first input raster and a query filter.

' Part 2: Query the second raster.

Dim pRLayer2 As IRasterLayer

Dim pRaster2 As IRaster

Dim pFilt2 As IQueryFilter

Dim pDesc2 As IRasterDescriptor

Dim pOutputRaster2 As IGeoDataset

' Define the second raster.

Set pRLayer2 = pMap.Layer(1)

Set pRaster2 = pRLayer2.Raster

' Create the second query filter.

Set pFilt2 = New QueryFilter
pFilt2.WhereClause = "value = 2"

' Create the second raster descriptor.

Set pDesc2 = New RasterDescriptor
pDesc?2.Create pRaster2, pFilt2, "value"

' Create the second output with 1’s and O’s.
Set pLogicalOp = New RasterMathOps

Set pOutputRaster2 = plLogicalOp.Test(pDesc2)

Part 2 creates pOutputRaster2 from the second input raster and a query filter.

' Part 3: Run a logical operation on the two query results.
Dim pOutputRaster3 As IGeoDataset

RASTER DATA OPERATIONS 233

Set pLogicalOp = New RasterMathOps
Set pOutputRaster3 = pLogicalOp.BooleanAnd(pOutputRaster1, pOutputRaster2)

Like Parts 1 and 2, Part 3 also performs a logical operation. But instead of using
the Test method, which is limited to one input raster, the code uses the BooleanAnd
method, which accepts two input rasters. The output referenced by pOutputRaster3
has the cell value of one, where both pOutputRaster!l and pOutputRaster2 have the
cell value of one, and zero elsewhere. The BooleanAnd method can also use pDescl
and pDesc2, instead of pOutputRaster] and pOutputRaster2, as the object qualifiers.
But the output will have the cell values of one and no data, instead of one and zero.

' Part 4: Create the output raster layer, and add the layer to the active map.
Dim pRLayer As IRasterLayer
Set pRLayer = New RasterLayer
pRLayer.CreateFromRaster pOutputRaster3
pRLayer.Name = "QueryOutput2"
pMap.AddLayer pRLayer
End Sub

Part 4 creates a raster layer from pOutputRaster3 and adds the layer to the active map.

11.4 PERFORMING LOCAL OPERATIONS

Local operations constitute the core of raster data analysis. A large variety of local
operations are available in Spatial Analyst. Reclassify and combine are examples of
local operations in this section. Reclassify operates on a single raster, whereas
combine operates on two or more rasters.

11.4.1 ReclassNumberField

ReclassNumberField uses a number remap to reclassify an input raster. A remap
has two columns. The first column lists a cell value or a range of cell values to be
reclassified, and the second column lists the output value, including no data. A remap
object can be either a number remap or a string remap.

ReclassNumberField performs the same function as using Reclassify in Spatial
Analyst to create a classified integer raster. The macro has three parts. Part 1 defines
the input raster, Part 2 performs the reclassification, and Part 3 creates a raster layer
from the reclassify output and adds the layer to the active map.

Key Interfaces: /GeoDataset, IReclassOp, INumberRemap, IRaster

Key Members: Raster, MapRange, ReclassByRemap, CreateFromRaster

Usage: Add slope, a continuous slope raster, to an active map. Import ReclassNum-
berField to Visual Basic Editor. Run the macro. The macro produces a temporary
raster with the reclassification result and adds the raster to the active map.

Private Sub ReclassNumberField()
' Part 1: Define the raster for reclassify.
Dim pMxDoc As IMxDocument

234

PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

Dim pMap As IMap

Dim pRasterLy As IRasterLayer
Dim pGeoDs As IGeoDataset
Set pMxDoc = ThisDocument
Set pMap = pMxDoc.FocusMap

Set pRasterLy = pMap.Layer(0)

Set pGeoDs = pRasterlLy.Raster

Part 1 sets pGeoDs to be the raster of the top layer in the active map.

' Part 2: Reclassify the input raster.
Dim pReclassOp As IReclassOp
Dim pNRemap As INumberRemap
Dim pOutRaster As IRaster

' Prepare a number remap.

Set pNRemap = New NumberRemap
pNRemap.MapRange 0, 10#, 1
pNRemap.MapRange 10.1, 20#, 2
pNRemap.MapRange 20.1, 30#, 3
pNRemap.MapRange 30.1, 90#, 4

' Run the reclass operation.

Set pReclassOp = New RasterReclassOp
Set pOutRaster = pReclassOp.ReclassByRemap(pGeoDs, pNRemap, False)

Part 2 reclassifies pGeoDS by using a remap that is built in code. The code first

creates pNRemap as an instance of the NumberRemap class and uses the MapRange
method on INumberRemap to set the output value based on a numeric range of the
input values (Figure 11.12). A cell within the numeric range of 0 to 10.0 is assigned
an output value of 1, 10.1 to 20.0 an output value of 2, and so on. Then, after having
created pReclassOp as an instance of the RasterReclassOp class, the code uses the
ReclassByRemap method to create a reclassified raster referenced by pOutRaster.

' Part 3: Create the output layer, and add it to the active map.

Dim pReclassLy As IRasterLayer
Set pReclassLy = New RasterLayer

INumberRemap O— NumberRemap
IRemap O—
INumberRemap IRemap
<4— MapRange <4— LoadFromTable
<4— MapRangeToNoData «4— SaveAsTable

<4— MapValue
<4—— MapValueToNoData

Figure 11.12 A NumberRemap object supports INumberRemap and IRemap. The interfaces

have methods to define a remap object for reclassifying a raster.

RASTER DATA OPERATIONS 235

pReclassly.CreateFromRaster pOutRaster
pMap.AddLayer pReclassLy
End Sub

Part 3 creates a new raster layer from pOutRaster and adds the layer to the
active map.

Box 11.2 ReclassNumberField_GP

ReclassNumberField_GP uses the Reclassify tool in the Spatial Analyst toolbox to
reclassify slope, a slope raster, by using a remap, which is specified in the command
line as an argument. Run the macro in ArcCatalog. The reclassed raster (rec_slope)
should appear in the Catalog tree.

Private Sub ReclassNumberField_GP()

' Create the Geoprocessing object.

Dim GP As Object

Set GP = CreateObject("esriGeoprocessing.GpDispatch.1")

' Reclassify <in_raster> <reclass_field> <remap> <out_raster> {DATA | NODATA}

' Define a remap for the third parameter.

Dim parameter3 As String

parameter3 = "0.0 10.000 1;10.001 20.0 2;20.001 30.0 3;30.001 90.0 4"

' Execute the reclassify tool.

GP.Reclassify_sa "c:\data\chap11\slope", "Value", parameter3, "c:\data\chap11\rec_slope"
End Sub

11.4.2 Combine2Rasters

Combine2Rasters combines two input rasters and produces an output raster with its
cell values representing each unique combination of the input cell values. The macro
performs the same function as using the combine function in Spatial Analyst’s Raster
Calculator. Combine2Rasters has three parts. Part 1 defines the two input rasters.
Part 2 creates a new raster by adding to it two bands from the input rasters, and then
performs a combine operation on the new raster. Part 3 creates a new raster layer
from the output raster and adds the layer to the active map.

Key Interfaces: IRaster, IRasterBandCollection, IRasterBand, ILocalOp

Key Members: Raster, Item(), Add, Combine, CreateFromRaster

Usage: Add slopegrd and aspectgrd to an active map. slopegrd shows four slope
classes, and aspectgrd shows four principal directions and a fifth class for flat
areas. Import Combine2Rasters to Visual Basic Editor. Run the macro. The macro
adds to the active map a new temporary raster showing 19 unique combinations
of slope and aspect values.

Private Sub Combine2Rasters()
' Part 1: Define the two rasters for combine.
Dim pMxDoc As IMxDocument
Dim pMap As IMap
Dim pRLayer1 As IRasterLayer

236 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

Dim pRLayer2 As IRasterLayer

Dim pRaster1 As IRaster

Dim pRaster2 As IRaster

Dim pRasBC1 As IRasterBandCollection
Dim pBand1 As IRasterBand

Dim pRasBC2 As IRasterBandCollection
Dim pBand2 As IRasterBand

Set pMxDoc = ThisDocument

Set pMap = pMxDoc.FocusMap

' Derive the first band from the first raster.
Set pRLayer1 = pMap.Layer(0)

Set pRaster1 = pRLayer1.Raster

Set pRasBC1 = pRaster1

Set pBand1 = pRasBC1.ltem(0)

' Derive the first band from the second raster.
Set pRLayer2 = pMap.Layer(1)

Set pRaster2 = pRLayer2.Raster

Set pRasBC2 = pRaster2

Set pBand2 = pRasBC2.1tem(0)

Part 1 defines the raster bands for the combine operation. To define the first
raster band, the code executes the following steps: sets pRasterl to be the raster of
the top layer, switches to the IRasterBandCollection interface, and sets pBandl to
be the first band of pRasterl. The same steps are taken to derive pBand?2.

' Part 2: Create a new raster and perform combine.
Dim pRasBC As IRasterBandCollection

Dim pLocalOp As ILocalOp

Dim pOutRaster As IRaster

' Define a new raster and add to it two input bands.
Set pRasBC = New Raster

pRasBC.Add pBand1, 0

pRasBC.Add pBand2, 1

' Run the combine local operation.

Set pLocalOp = New RasterLocalOp

Set pOutRaster = pLocalOp.Combine(pRasBC)

Part 2 uses a multiband raster to perform the combine operation. The code first
creates pRasBC as an instance of the Raster class. Next, the code uses the Add
method on IRasterBandCollection to add pBandl and pBand?2 to pRasBC. The code
then creates pLocalOp as an instance of the RasterLocalOp class and uses the
Combine method on ILocalOp to create a combine raster referenced by pOutRaster.

' Part 3: Create the output layer, and add it to the active map.
Dim pRLayer As IRasterLayer
Set pRLayer = New RasterLayer
pRLayer.CreateFromRaster pOutRaster
pRLayer.Name = "slp_asp"
pMap.AddLayer pRLayer
End Sub

RASTER DATA OPERATIONS 237

Part 3 creates pRLayer as a new raster layer from pOutRaster and adds the layer
to the active map.

Box 11.3 Combine2Rasters_GP

Combine2Rasters_GP uses the Combine tool in the Spatial Analyst toolbox to
combine slopegrd and aspectgrd in a local operation. Parameter 1 in the command
line contains the input rasters. Run the macro in ArcCatalog and view the output
raster (combine2) in the Catalog tree.

Private Sub Combine2Rasters_GP()
' Create the Geoprocessing object.
Dim GP As Object
Set GP = CreateObject("esriGeoprocessing.GpDispatch.1")
' Combine <in_raster;in_raster...> <out_raster>
' Define the input rasters for parameter 1.
Dim parameter1 As String
parameter1 = "c:\data\chap11\slopegrd;c:\data\chap11\aspectgrd"
' Execute the combine tool.
GP.Combine_sa parameteri, "c:\data\chap11\combine2"
End Sub

11.4.3 Other Local Operations

Macros for other local operations involving multiple rasters have the same code
structure as Combine2Rasters. A local mean operation (that is, deriving the mean
on a cell-by-cell basis from two or more rasters) would change the last line of Part
2 in Combine2Rasters to read:

Set pOutRaster = pLocalOp.LocalStatistics(pRaster, esriGeoAnalysisStatsMean)

The line uses the LocalStatistics method on ILocalOp to compute the local mean
from a raster with multiple raster bands and to save the results into an output raster.

Likewise, a local maximum operation would change the last line of Part 2 in
Combine2Rasters to read:

Set pOutRaster = pLocalOp.HighestPosition(pRaster)

The line uses the HighestPosition method on [LocalOp to derive the highest
value among the input rasters, which are stored in a multiband raster, and to save
the results into an output raster.

11.5 PERFORMING NEIGHBORHOOD OPERATIONS

A Visual Basic for Applications (VBA) macro for a neighborhood operation must
define the neighborhood to be used and the statistic to be derived. The statistics are
computed by using either an overlapping neighborhood or a nonoverlapping neigh-
borhood. An overlapping neighborhood occurs when the operation moves from cell

238 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

to cell. A nonoverlapping neighborhood occurs when the operation moves from
block to block.

11.5.1 FocalMean

FocalMean computes the mean using the cell values within a 3 X 3 neighborhood
and assigns the mean to the focal cell. The macro performs the same function as
using Neighborhood Statistics in Spatial Analyst. FocalMean has three parts. Part
1 defines the input raster. Part 2 prepares a neighborhood operator and a 3 x 3
neighborhood, and runs the focal mean operation. Part 3 creates a raster layer from
the output raster and adds it to the active map.

Key Interfaces: IRaster, INeighborhoodOp, IRasterNeighborhood

Key Members: Raster, FocalStatistics, CreateFromRaster

Usage: Add emidalat to an active map. Import FocalMean to Visual Basic Editor.
Run the macro. The macro creates a temporary raster showing the neighborhood
mean and adds the raster to the active map.

Private Sub FocalMean()
' Part 1: Define the input raster.
Dim pMxDoc As IMxDocument
Dim pMap As IMap
Dim pRLayer As IRasterLayer
Dim pRaster As IRaster
Set pMxDoc = ThisDocument
Set pMap = pMxDoc.FocusMap
Set pRLayer = pMap.Layer(0)
Set pRaster = pRLayer.Raster

Part 1 sets pRaster to be the raster of the top layer in the active map.

' Part 2: Perform focal mean.

Dim pNbrOp As INeighborhoodOp

Dim pNbr As IRasterNeighborhood

Dim pOutputRaster As IRaster

' Define the neighborhood.

Set pNbr = New RasterNeighborhood

pNbr.SetRectangle 3, 3, esriUnitsCells

' Run the focal mean neighborhood operation.

Set pNbrOp = New RasterNeighborhoodOp

Set pOutputRaster = pNbrOp.FocalStatistics(pRaster, esriGeoAnalysisStatsMean, pNbr, False)

Part 2 creates pNbr as an instance of the RasterNeighborhood class and uses the
SetRectangle method on IRasterNeighborhood to define a rectangular neighborhood
with three cells for both its height and width. The code then creates pNbrOp as an
instance of the RasterNeighborhoodOp class and uses the FocalStatistics method to
create a focal mean raster referenced by pOutputRaster. (The FocalStatistics method
uses an overlapping neighborhood, whereas the BlockStatistics method, also on
INeighborhoodOp, uses a nonoverlapping neighborhood.)

RASTER DATA OPERATIONS 239

' Part 3: Create the output layer and add it to the active map.
Dim pOutputLayer As IRasterLayer
Set pOutputlLayer = New RasterLayer
pOutputlLayer.CreateFromRaster pOutputRaster
pOutputLayer.Name = "FocalMean"
pMap.AddLayer pOutputLayer

End Sub

Part 3 creates a raster layer from pOutputRaster and adds the layer to the
active map.

Box 11.4 FocalMean_GP

FocalMean_GP uses the FocalStatistics tool in the Spatial Analyst toolbox to derive
a focal mean raster. Parameters 3 and 4 specify the neighborhood (3 x 3 rectangle)
and the statistic (mean) respectively. Run the macro in ArcCatalog and view the
output raster (focalmean2) in the Catalog tree.

Private Sub FocalMean_GP()
' Create the Geoprocessing object.
Dim GP As Object
Set GP = CreateObject("esriGeoprocessing.GpDispatch.1")

' FocalStatistics <in_raster> <out_raster> {neighborhood} {MEAN | MAJORITY | MAXIMUM | MEDIAN |
' MINIMUM | MINORITY | RANGE | STD | SUM | VARIETY} {DATA | NODATA}

' Execute the focalstatistics tool.
GP.FocalStatistics_sa "c:\data\chap11\emidalat", "c:\data\chap11\focalmean2”, RECTANGLE 3 3", "MEAN"
End Sub

11.6 PERFORMING ZONAL OPERATIONS

A VBA macro for a zonal operation involving two rasters must define a value raster
and a zonal raster so that the cell values of the value raster can be summarized by
zone. The zonal raster must be an integer raster. Like a neighborhood operation, a
zonal operation offers various statistics.

11.6.1 ZonalMean

ZonalMean computes the mean precipitation for each watershed in Idaho. The macro
performs the same function as using Zonal Statistics in Spatial Analyst. ZonalMean has
three parts. Part 1 defines the rasters for the zonal operation and adds the zonal and value
rasters to the active map, Part 2 defines and runs the zonal mean operation, and Part 3
creates the raster layer from the output and adds the layer to the active map.

Key Interfaces: /Raster, IGeoDataset, IZonalOp

Key Members: Raster, CreateFromFilePath, ZonalStatistics, CreateFromRaster

Usage: Import ZonalMean to Visual Basic Editor in ArcMap. Run the macro. The
macro adds precipgd and hucgd, the two input rasters, as well as ZonalMean, the
output raster, to the active map. In this zonal operation, precipgd is the value raster,

240 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

which shows annual precipitation in hundredths of an inch, and hucgd is the zonal
raster, which shows 13 six-digit watersheds in Idaho. ZonalMean contains the mean
precipitation for each watershed.

Private Sub ZonalMean()
' Part 1: Define the zonal and value raster datasets.
Dim pMxDocument As IMxDocument
Dim pMap As IMap
Dim pZoneRL As IRasterLayer
Dim pZoneRaster As IRaster
Dim pValueRL As IRasterLayer
Dim pValueRaster As IRaster
Set pMxDocument = Application.Document
Set pMap = pMxDocument.FocusMap
' Define the zonal raster dataset.
Set pZoneRL = New RasterLayer
pZoneRL.CreateFromFilePath "c:\data\chap11\hucgd"
Set pZoneRaster = pZoneRL.Raster
' Define the value raster dataset.
Set pValueRL = New RasterlLayer
pValueRL.CreateFromFilePath "c:\data\chap11\precipgd"
Set pValueRaster = pValueRL.Raster
' Add the zonal and value raster layers to the active map.
pMap.AddLayer pZoneRL
pMap.AddLayer pValueRL

Part 1 defines the zonal and value raster datasets to be used in the zonal operation.
Instead of referring to raster layers in the active map, the code uses the CreateFrom-
FilePath method on IRasterLayer to open a zonal layer referenced by pZoneRL and
sets pZoneRaster to be its raster. The same procedure is followed to open pValueRL
and to set pValueRaster. The code then adds pZoneRL and pValueRL to the active map.

' Part 2: Perform zonal mean.

Dim pZonalOp As 1ZonalOp

Dim pOutputRaster As IGeoDataset

' Run the zonal mean operation.

Set pZonalOp = New RasterZonalOp

Set pOutputRaster = pZonalOp.ZonalStatistics (pZoneDataset, pValueDataset, esriGeoAnalysisStatsMean, True)

Part 2 creates pZonalOp as an instance of the RasterZonalOp class and uses the
ZonalStatistics method on IZonalOp to create a zonal mean raster referenced by
pOutputRaster.

' Part 3: Create the output layer and add it to the active map.
Dim pOutputLayer As IRasterLayer
Set pOutputLayer = New RasterLayer
pOutputLayer.CreateFromRaster pOutputRaster
pOutputLayer.Name = "ZonalMean"
pMap.AddLayer pOutputLayer

End Sub

RASTER DATA OPERATIONS 241

Part 3 creates a raster layer from pOutputRaster and adds the layer to the
active map.

Box 11.5 ZonalMean_GP

ZonalMean_GP uses the ZonalStatistics tool in the Spatial Analyst toolbox to
derive a zonal mean raster from a zonal raster (hucgd) and a value raster (precipgd).
Run the macro in ArcCatalog and view the output raster (zonalmean2) in the Catalog
tree.

Private Sub ZonalMean_GP()
' Create the Geoprocessing object and define its workspace.
Dim GP As Object
Set GP = CreateObject("esriGeoprocessing.GpDispatch.1")
Dim filepath As String
filepath = "c:\data\chap11"
GP.Workspace = filepath

' ZonalStatistics <in_zone_data> <zone_field> <in_value_raster> <out_raster> {MEAN | MAJORITY |
" MAXIMUM | MEDIAN | MINIMUM | MINORITY | RANGE | STD | SUM | VARIETY} {DATA | NODATA}
' Execute the zonalstatistics tool.

GPZonalStatistics_sa "hucgd", "Value", "precipgd”, "zonalmean2", "MEAN"

End Sub

11.7 PERFORMING DISTANCE MEASURE OPERATIONS

Distance measure operations can be based on physical distance or cost distance.
Both types of operations calculate the distance from each cell of a raster to a source
cell. The main difference is that cost distance measures are based on a cost raster.
This section covers both types of distance measures.

11.7.1 EucDist

EucDist calculates continuous Euclidean distance measures away from a stream
(source) raster. The macro performs the same function as using the Distance/Straight
Line option in Spatial Analyst. EucDist has three parts. Part 1 defines the source
raster, Part 2 defines and runs a distance measure operation, and Part 3 creates a
raster layer from the output and adds the layer to the active map.

Key Interfaces: IRaster, IGeoDataset, IDistanceOp

Key Members: Raster, EucDistance, CreateFromRaster

Usage: Add emidastrmgd to an active map. Import EucDist to Visual Basic Editor.
Run the macro. The macro creates and adds a new temporary raster named Euclid-
eanDistance to the active map.

Private Sub EucDist()
' Part 1: Define the input raster dataset.
Dim pMxDoc As IMxDocument
Dim pMap As IMap

242 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

Dim pSourceRL As IRasterLayer

Dim pSourceRaster As IRaster

Set pMxDoc = ThisDocument

Set pMap = pMxDoc.FocusMap

Set pSourceRL = pMap.Layer(0)

Set pSourceRaster = pSourceRL.Raster

Part 1 sets the raster of the top layer to be the source raster, and references the
raster by pSourceRaster.

' Part 2: Perform distance measures.

Dim pDistanceOp As IDistanceOp

Dim pOutputRaster As IGeoDataset

' Run the Euclidean distance operation.

Set pDistanceOp = New RasterDistanceOp

Set pOutputRaster = pDistanceOp.EucDistance(pSourceDataset)

Part 2 creates pDistanceOp as an instance of the RasterDistanceOp class and
uses the EucDistance method on IDistanceOp to create a continuous distance mea-
sure raster referenced by pOutputRaster.

' Part 3: Create the output layer and add it to the active map.
Dim pOutputLayer As IRasterLayer
Set pOutputLayer = New RasterLayer
pOutputLayer.CreateFromRaster pOutputRaster
pOutputLayer.Name = "EuclideanDistance"
pMap.AddLayer pOutputLayer

End Sub

Part 3 creates a new raster layer from pOutputRaster and adds the layer to the
active map.

11.7.2 Use of a Feature Layer as the Source in EucDist

EucDist uses a raster as the source. With some modification in Part 1, EucDist can
also use a shapefile (emidastrm.shp) as the source. The shapefile must be converted
into a raster before the distance measure operation starts. The following shows the
change in Part 1 of EucDist to accommodate a shapefile source (EucDistToFeat-
Layer.txt on the companion CD is a complete macro to run the distance measure
operation from emidastrm.shp):

' Part 1: Convert the input feature layer to a raster dataset.
Dim pMxDoc As IMxDocument
Dim pMap As IMap
Dim pSourcelayer As IFeaturelayer
Dim pSourceFC As IFeatureClass
Dim pConOp As IConversionOp
Dim pEnv As IRasterAnalysisEnvironment
Dim pWSF As IWorkspaceFactory
Dim pWS As IWorkspace

RASTER DATA OPERATIONS 243

Dim pSourceDataset As IGeoDataset

Set pMxDoc = ThisDocument

Set pMap = pMxDoc.FocusMap

' Define the source feature class.

Set pSourcelayer = pMap.Layer(0)

Set pSourceFC = pSourcelayer.FeatureClass

' Define the workspace for the raster.

Set pWSF = New RasterWorkspaceFactory

Set pWS = pWSF.OpenFromFile("c:\data\chap11\", 0)
' Prepare a new conversion operator.

Set pConOp = New RasterConversionOp

Set pEnv = pConOp

pEnv.SetCellSize esriRasterEnvValue, 30

' Run the conversion operation.

Set pSourceDataset = pConOp.ToRasterDataset(pSourceFC, "GRID", pWS, "SourceGrid")

This revised Part 1 of EucDist first sets pSourceFC to be the feature class of
the source layer. The conversion of pSourceFC to a raster involves three steps. First,
the code defines the workspace for the raster. Second, the code creates pConOp as
an instance of the RasterConversionOp class and uses the IRasterAnalysisEnviron-
ment interface to define the output cell size. Third, the code uses the ToRasterDataset
method on IConversionOp to create the source raster referenced by pSourceDataset.

Box 11.6 EucDist_GP

EucDist_GP uses the EucDistance tool in the Spatial Analyst toolbox and a shapefile
(emidastrm.shp) to derive a distance measure raster (eucdist2) with a cell size of 30
meters. Run the macro in ArcCatalog and view the output raster in the Catalog tree.

Private Sub EucDist_GP()

' Create the Geoprocessing object and define its workspace.

Dim GP As Object

Set GP = CreateObject("esriGeoprocessing.GpDispatch.1")

‘ Define the workspace.

Dim filepath As String

filepath = "c:\data\chap11"

GP.Workspace = filepath

' EucDistance_sa <in_source_data> <out_distance_raster> {maximum_distance}

' {cell_size} {out_direction_raster}

' Execute the eucdistance tool.

GP.EucDistance_sa "emidastrm.shp", "eucdist2", "", "30"
End Sub

11.7.3 Slice

Slice calculates continuous Euclidean distance measures away from a stream
(source) raster and reclassifies the distance measure raster into five equal intervals.
Slice has three parts. Part 1 defines the source raster, Part 2 runs a distance measure

244 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

operation and then a reclassify operation, and Part 3 creates new raster layers from
the output rasters and adds them to the active map.

Key Interfaces: IRaster, IGeoDataset, IDistanceOp, IReclassOp

Key Members: Raster, EucDistance, Slice, CreateFromRaster

Usage: Add emidastrmgd to an active map. Import Slice to Visual Basic Editor. Run
the macro. The macro creates and adds two new temporary rasters named Euclid-
eanDistance and Equallnterval respectively to the active map.

Private Sub Slice()
' Part 1: Define the source raster.
Dim pMxDoc As IMxDocument
Dim pMap As IMap
Dim pSourceRL As IRasterLayer
Dim pSourceRaster As IRaster
Set pMxDoc = ThisDocument
Set pMap = pMxDoc.FocusMap
Set pSourceRL = pMap.Layer(0)
Set pSourceRaster = pSourceRL.Raster

Part 1 sets pSourceRaster to be the raster of the first layer in the active map.

' Part 2: Define and run the distance measure operation.

Dim pDistanceOp As IDistanceOp

Dim pOutputRaster As IGeoDataset

Dim pReclassOp As IReclassOp

Dim pSliceRaster As IGeoDataset

' Run a EucDistance operation.

Set pDistanceOp = New RasterDistanceOp

Set pOutputRaster = pDistanceOp.EucDistance(pSourceRaster)
' Run a slice operation.

Set pReclassOp = New RasterReclassOp

Set pSliceRaster = pReclassOp.Slice(pOutputRaster, esriGeoAnalysisSliceEqualinterval, 5)

Part 2 first creates pDistanceOp as an instance of the RasterDistanceOp class and
uses the EucDistance method to create a continuous distance measure raster referenced
by pOutputRaster. Then the code creates pReclassOp as an instance of the Raster-
ReclassOp class and uses the Slice method on IReclassOp to create an equal-interval
raster with five classes. The equal-interval or sliced raster is referenced by pSliceRaster.

' Part 3: Create the new raster layers and add them to the active map.
Dim pOutputLayer As IRasterLayer

Dim pSliceLayer As IRasterLayer

' Create and add the distance measure layer.

Set pOutputLayer = New RasterLayer

pOutputLayer.CreateFromRaster pOutputRaster

pOutputLayer.Name = "EuclideanDistance"

pMap.AddLayer pOutputLayer

' Create and add the slice layer.

Set pSliceLayer = New RasterlLayer

RASTER DATA OPERATIONS 245

pSliceLayer.CreateFromRaster pSliceRaster
pSliceLayer.Name = "Equalinterval"
pMap.AddLayer pSliceLayer

End Sub

Part 3 creates new raster layers from pOutputRaster and pSliceRaster respec-
tively, and adds these two layers to the active map.

11.7.4 CostDist

CostDist uses a source raster and a cost raster to calculate the least accumulative
cost distance. The macro performs the same function as using the Distance/Cost
Weighted option in Spatial Analyst. CostDist has three parts. Part 1 defines the
source and cost rasters, Part 2 runs a cost distance measure operation, and Part 3
creates a new raster layer from the output and adds it to the active map.

Key Interfaces: IRaster, IDistanceOp

Key Members: Raster, CostDistance, CreateFromRaster

Usage: Add emidastrmgd, a source raster, and emidacostgd, a cost raster, to an active
map. The source raster must be on top of the cost raster in the active map. Import
CostDist to Visual Basic Editor. Run the macro. The macro creates and adds a new
temporary raster named CostDistance to the active map.

Private Sub CostDist()
' Part 1: Define the source and cost rasters.
Dim pMxDoc As IMxDocument
Dim pMap As IMap
Dim pSourceRL As IRasterLayer
Dim pSourceRaster As IRaster
Dim pCostRL As IRasterLayer
Dim pCostRaster As IRaster
Set pMxDoc = ThisDocument
Set pMap = pMxDoc.FocusMap
' Define the source dataset.
Set pSourceRL = pMap.Layer(0)
Set pSourceRaster = pSourceRL.Raster
' Define the cost dataset.
Set pCostRL = pMap.Layer(1)
Set pCostRaster = pCostRL.Raster

Part 1 sets pSourceRaster to be the raster of the top layer in the active map, and
pCostRaster to be the raster of the second layer.

' Part 2: Perform cost distance measures.

Dim pDistanceOp As IDistanceOp

Dim pOutputRaster As IRaster

' Run the cost distance operation.

Set pDistanceOp = New RasterDistanceOp

Set pOutputRaster = pDistanceOp.CostDistance(pSourceRaster, pCostRaster)

246 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

Part 2 creates pDistanceOp as an instance of the RasterDistanceOp class and
uses the CostDistance method on IDistanceOp to create a least accumulative cost
distance raster referenced by pOutputRaster.

' Part 3: Create the output layer and add it to the active map.
Dim pRLayer As IRasterLayer
Set pRLayer = New RasterLayer
pRLayer.CreateFromRaster pOutputRaster
pRLayer.Name = "CostDistance"
pMap.AddLayer pRLayer
End Sub

Part 3 creates a new raster layer from pOutputRaster and adds the layer to the
active map.

11.7.5 CostDistFull

CostDistFull uses a source raster and a cost raster to calculate a back link raster
and an allocation raster in addition to a least accumulative cost distance raster. The
macro performs the same function as using the Distance/Cost Weighted command,
with both Create direction and Create allocation checked, in Spatial Analyst.
CostDistFull has four parts. Part 1 defines the source and cost rasters. Part 2 defines
and runs a cost distance measure operation. From the output of Part 2, Part 3 derives
the least accumulative cost, back link, and allocation rasters. Part 4 creates new
raster layers of the least accumulative cost, back link, and allocation and adds these
layers to the active map.

Key Interfaces: IRaster, IGeoDataset, IDistanceOp, IRasterBandCollection, IRaster-
band

Key Members: Raster, CostDistanceFull, Item(), AppendBand, CreateFromRaster,
Name

Usage: Add emidastrmgd, a source raster, and emidacostgd, a cost raster, to an active
map. The source raster must be an integer raster for calculating the allocation
output. In the active map, emidastrmgd must be on top of emidacostgd. Import
CostDistFull to Visual Basic Editor in ArcMap. Run the macro. The macro creates
and adds three temporary rasters: CostDistance for the least accumulative cost
distance, BackLink for the back link, and Allocation for the allocation. BackLink
contains cell values from zero through eight, which defines the next neighboring
cell along the least accumulative cost path from a cell to reach its closest source
cell. Allocation assigns each cell to its closest source cell.

Private Sub CostDistFull()
' Part 1: Define the source and cost rasters.
Dim pMxDoc As IMxDocument
Dim pMap As IMap
Dim pSourceRL As IRasterLayer
Dim pSourceRaster As IRaster
Dim pCostRL As IRasterlLayer
Dim pCostRaster As IRaster

RASTER DATA OPERATIONS 247

Set pMxDoc = ThisDocument

Set pMap = pMxDoc.FocusMap

' Define the source dataset.

Set pSourceRL = pMap.Layer(0)

Set pSourceRaster = pSourceRL.Raster
' Define the cost dataset.

Set pCostRL = pMap.Layer(1)

Set pCostRaster = pCostRL.Raster

Part 1 sets pSourceRaster to be the raster of the source layer and pCostRaster
to be the raster of the cost layer.

' Part 2: Perform cost distance measures.

Dim pDistanceOp As IDistanceOp

Dim pOutputRaster As IGeoDataset

' Run the cost distance operation.

Set pDistanceOp = New RasterDistanceOp

Set pOutputRaster = pDistanceOp.CostDistanceFull (pSourceRaster, pCostRaster, True, True, True)

Part 2 creates pDistanceOp as an instance of the RasterDistanceOp class and
uses the CostDistanceFull method on IDistanceOp to create the output referenced
by pOutputRaster. The CostDistanceFull method creates the least accumulative cost
distance, back link, and allocation rasters all at once.

' Part 3: Derive the least accumulative cost distance, backlink, and allocation rasters.
Dim pRasterBandCollection As IRasterBandCollection
Dim pCostDistRB As IRasterband

Dim pCostDistRBCollection As IRasterBandCollection
Dim pBackLinkRB As IRasterband

Dim pBackLinkRBCollection As IRasterBandCollection
Dim pAllocationRB As IRasterband

Dim pAllocationRBCollection As IRasterBandCollection
' Extract and create the least accumulative cost distance raster.
Set pRasterBandCollection = pOutputRaster

Set pCostDistRB = pRasterBandCollection.ltem(0)

Set pCostDistRBCollection = New Raster
pCostDistRBCollection.AppendBand pCostDistRB

' Extract and create the backlink raster.

Set pBackLinkRB = pRasterBandCollection.ltem(1)
Set pBackLinkRBCollection = New Raster
pBackLinkRBCollection.AppendBand pBackLinkRB

' Extract and create the allocation raster.

Set pAllocationRB = pRasterBandCollection.ltem(2)
Set pAllocationRBCollection = New Raster
pAllocationRBCollection.AppendBand pAllocationRB

To extract the three rasters created in Part 2, Part 3 first performs a QI for the
IRasterBandCollection interface and assigns the first band, which contains the least
accumulative cost distance output to pCostDistRB. Next, the code creates pCost-
DistRBCollection as an instance of the Raster class and uses the AppendBand

248 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

method on IRasterBandCollection to append pCostDistRB to pCostDistRBCollec-
tion, thus completing the creation of the least accumulative cost distance raster.
Part 3 repeats the same procedure to extract and create the back link raster refer-
enced by pBackLinkRBCollection and the allocation raster referenced by pAlloca-
tionRBCollection.

' Part 4. Create the output layers and add them to the active map.
Dim pCostDistLayer As IRasterLayer
Dim pBackLinkLayer As IRasterLayer
Dim pAllocationLayer As IRasterLayer
' Add the least accumulative cost distance layer.
Set pCostDistLayer = New RasterLayer
pCostDistlLayer.CreateFromRaster pCostDistRBCollection
pCostDistLayer.Name = "CostDistance"
pMap.AddLayer pCostDistLayer
' Add the back link layer.
Set pBackLinkLayer = New RasterLayer
pBackLinkLayer.CreateFromRaster pBackLinkRBCollection
pBackLinkLayer.Name = "BackLink"
pMap.AddLayer pBackLinkLayer
' Add the allocation layer.
Set pAllocationLayer = New RasterLayer
pAllocationLayer.CreateFromRaster pAllocationRBCollection
pAllocationLayer.Name = "Allocation”
pMap.AddLayer pAllocationLayer

End Sub

Part 4 creates new raster layers from pCostDistRBCollection, pBackLinkRBCol-
lection, and pAllocationRBCollection, and adds these layers to the active map.

CHAPTER 12

Terrain Mapping and Analysis

Terrain mapping refers to the use of techniques such as contours, hill shading, and
perspective views to depict the land surface. Terrain analysis provides measures of
the land surface such as slope and aspect. Terrain analysis also includes viewshed
analysis and watershed analysis. A viewshed analysis predicts areas of the land surface
that are visible from one or more observation points. A watershed analysis can derive
watersheds and other topographic variables from an elevation raster. Terrain mapping
and analysis are useful for a wide variety of applications.

A common data source for terrain mapping and analysis is the digital elevation
model (DEM). A DEM consists of a regular array of elevation points compiled from
stereo aerial photographs, satellite images, radar data, and other data sources. For
terrain mapping and analysis, a DEM is first converted to an elevation raster. The
simple data structure of an elevation raster makes it relatively easy to perform
computations that are necessary for deriving slope, aspect, and other topographic
parameters.

An alternative to the DEM is the triangulated irregular network (TIN). A TIN
approximates the land surface with a series of nonoverlapping triangles. Elevation
values and x-, y-coordinates are stored at nodes that make up the triangles. Many
geographic information systems (GIS) users compile an initial TIN from a DEM or
LIDAR (light detection and ranging) data and then use other data sources such as
a stream network to modify and improve the TIN. In addition to flexible data sources,
a TIN is also an excellent data model for terrain mapping and three-dimensional
display. The triangular facets of a TIN create a sharper image of the terrain than a
DEM does.

This chapter covers terrain mapping and analysis. Section 12.1 reviews terrain
mapping and analysis using ArcGIS. Section 12.2 discusses objects that are related
to terrain mapping and analysis. Section 12.3 includes macros for deriving contour,
slope, aspect, and hillshade from an elevation raster. Three Geoprocessing (GP)
macros are also introduced in Section 12.3 for deriving contour, slope, and aspect.
The GP macro for deriving aspect is combined with a regular macro for displaying
the aspect classes in color symbols. Section 12.4 has a macro for viewshed analysis.

249

250 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

Section 12.5 has a macro for watershed analysis. Section 12.6 offers macros and a
GP macro for compiling and modifying a TIN and for deriving features of a TIN.
All macros start with the listing of key interfaces and key members (properties and
methods) and the usage. Make sure that the Spatial Analyst and 3D Analyst exten-
sions are checked in the Tools/Extensions menu before running the macros.

12.1 PERFORMING TERRAIN MAPPING AND ANALYSIS IN ARCGIS

ArcGIS Desktop incorporates commands for terrain mapping and analysis in the
Spatial Analyst and 3D Analyst extensions and ArcToolbox. Discussions in this
section refer to the extensions. Both extensions have a surface analysis menu, which
includes contour, slope, aspect, hillshade, and viewshed. The input to these analysis
functions can be either an elevation raster or a TIN, and the output is in raster format
except for the contour, which is in shapefile format.

Raster Calculator in Spatial Analyst is an important tool for terrain mapping and
analysis because it can evaluate many surface analysis functions. For example, Raster
Calculator can evaluate the slope function and create slope rasters directly, without
going through the surface analysis menu. Raster Calculator can also evaluate watershed
analysis functions that are not incorporated into Spatial Analyst’s menu selections.

3D Analyst has menu selections for creating or modifying TINs. We can create
an initial TIN from a DEM or feature data such as LIDAR data and contour lines,
and then add point, line, and area features to modify the TIN. Additional point data
may include surveyed elevation points and GPS (global positioning system) data.
Line data may include breaklines such as streams, shorelines, ridges, and roads that
represent changes of the land surface, and area data may include lakes and reservoirs.
3D Analyst also has a three-dimensional viewing application called ArcScene that
lets the user prepare and manipulate perspective views, and three-dimensional drap-
ing and animation.

12.2 ARCOBJECTS FOR TERRAIN MAPPING AND ANALYSIS

Two primary components for terrain mapping and analysis are RasterSurfaceOp and
RasterHydrologyOp. A RasterSurfaceOp object supports IRasterAnalysisEnviron-
ment and ISurfaceOp. IRasterAnalysisEnvironment controls the analysis environ-
ment such as the output workspace and the output cell size. ISurfaceOp has methods
for creating contour; calculating hillshade, slope, aspect, and curvature; and per-
forming viewshed analysis (Figure 12.1).

A RasterHydrologyOp object supports IRasterAnalysisEnvironment and IHydrol-
0gyOp. IHydrologyOp has methods for filling sinks in a surface, creating flow
direction, creating flow accumulation, assigning stream links, and delineating water-
sheds (Figure 12.2).

TIN is the primary component for three-dimensional applications. A TIN object
implements ITinEdit, ITinAdvanced, and ITinSurface (Figure 12.3). ITinEdit has
methods for constructing and editing TINs. I7inAdvanced has access to the underlying

TERRAIN MAPPING AND ANALYSIS 251

ISurfaceOp

<4— Aspect

<4— Contour
4— ContourAsPolyline

4— Hillshade
<4— Slope
«— Visibility

Figure 12.1 /SurfaceOp has methods for deriving contour, slope, aspect, hillshade, and view-
shed from an elevation raster.

IHydrologyOp
<4— Basin
<—Fill
«4— FlowAccumulation
«4— FlowDirection

<4— FlowLength
«4— StreamLink
<4— Watershed

Figure 12.2 /HydrologyOp has methods for deriving hydrologic parameters for watershed

analysis.
ITinAdvanced O—
ITinEdit O—{ TIN
ITinSurface O—
ITinAdvanced ITinEdit ITinSurface
B—— DataNodeCount 4—— AddFromFeatureClass <4— Contour
B—— DataEdgeCount <4—— AddFromPixelBlock 4— GetAspectDegrees
IsEditabl —
B— DataTriangleCount <« IsEditable « GetSlopeDegrees
tartEditi —
<4— ConvertToPolygons <« StartEditing < GetSlopePercent
<4— StopEditing

Figure 12.3 A TIN object supports ITinAdvanced, ITinEdit, and ITinSurface. These interfaces
have members to create and edit a TIN, to derive topographic measures from a
TIN, and to derive numbers of nodes, edges, and triangles from a TIN.

252 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

data structure of a TIN, including nodes, edges, and triangles. And ITinSurface
provides surface analysis functions such as contouring and deriving slope and aspect
from a TIN.

Raster objects covered in Chapter 11 may also be involved in terrain mapping
and analysis. For example, to convert an elevation raster to a TIN requires the use
of basic raster objects.

12.3 DERIVING CONTOUR, SLOPE, ASPECT, AND HILLSHADE

This section covers contour, slope, aspect, and hillshade. Besides showing how to
derive these topographic measures from an elevation raster, this section also includes
code fragments for selecting slope measurement units, classifying slope measures,
and displaying aspect measures in eight principal directions.

12.3.1 Contour

Contour creates contour lines from an elevation raster by connecting points of
equal elevation. The macro performs the same function as using the Surface
Analysis/Contour command in Spatial Analyst to create a contour line shapefile.
Contour has three parts. Part 1 defines the input elevation raster, Part 2 performs
contouring and saves the output in a specified workspace, and Part 3 creates a
feature layer from the output, prepares the contour line labels, and adds the layer
to the active map.

Key Interfaces: ISurfaceOp, IRasterAnalysisEnvironment, IWorkspaceFactory, IGeo-
Dataset, IGeoFeatureLayer

Key Members: Raster, OpenFromFile, OutWorkspace, Contour, FeatureClass, Dis-
playField, DisplayAnnotation

Usage: Add emidalat, an elevation raster, to an active map. Import Contour to Visual
Basic Editor. Run the macro. The macro adds Contour with labels to the active
map.

Private Sub Contour()
' Part 1: Define the input raster.
Dim pMxDoc As IMxDocument
Dim pMap As IMap
Dim pLayer As ILayer
Dim pRasterLayer As IRasterLayer
Dim pInputRaster As IRaster
Set pMxDoc = ThisDocument
Set pMap = pMxDoc.FocusMap
Set pLayer = pMap.Layer(0)
Set pRasterLayer = pLayer
Set plnputRaster = pRasterlayer.Raster

Part 1 sets pInputRaster to be the raster of the top layer in the active map.

TERRAIN MAPPING AND ANALYSIS 253

' Part 2: Perform contour.

Dim pSurfaceOp As ISurfaceOp

Dim pEnv As IRasterAnalysisEnvironment

Dim pWS As IWorkspace

Dim pWSF As IWorkspaceFactory

Dim pOutput As IGeoDataset

' Define a surface operation.

Set pSurfaceOp = New RasterSurfaceOp

Set pEnv = pSurfaceOp

Set pWSF = New RasterWorkspaceFactory

Set pWS = pWSF.OpenFromFile("c:\data\chap12", 0)
Set pEnv.OutWorkspace = pWS

' Run the contour surface operation.

Set pOutput = pSurfaceOp.Contour(plnputRaster, 50, 850)
POutput.Rename ("Contour")

Part 2 first creates pSurfaceOp as an instance of the RasterSurfaceOp class. Next,
the code performs a Querylnterface (QI) for IRasterAnalysisEnvironment and uses
the OutWorkspace property to assign pWS as the output workspace. The code then
runs the Contour method on ISurfaceOp to create a geographic dataset referenced
by pOutput. The Contour method uses the arguments of 50 (meters) for the contour
interval and 850 (meters) for the base contour. The contour interval represents the
vertical distance between contour lines, and the base contour is the contour line of
the lowest elevation. The Rename method on IDataset changes the name of pOutput
to Contour. (Without renaming, the contour dataset will have a default name of
Shape*.shp.)

' Part 3: Create the output layer, and add it to the active map.
Dim pOutLayer As IFeatureLayer
Dim pGeoFeatureLayer As IGeoFeatureLayer
' Create the output feature layer.
Set pOutlLayer = New FeatureLayer
Set pOutlLayer.FeatureClass = pOutput
pOutLayer.Name = "Contour"
' Label the contour lines.
Set pGeoFeatureLayer = pOutLayer
pGeoFeaturelLayer.DisplayField = "CONTOUR"
pGeoFeaturelLayer.DisplayAnnotation = True
pMap.AddLayer pOutLayer

End Sub

Part 3 first creates a new feature layer from pOutput and names the layer Contour.
The code then switches to the IGeoFeatureLayer interface to set up the contour
labels, before adding the layer to the active map.

Box 12.1 Contour_GP

Contour_GP uses the Contour tool in the Spatial Analyst toolbox to derive a contour
shapefile from an elevation raster. The contour interval (50) and the base contour (800)

254 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

are specified as arguments. Run the macro in ArcCatalog and view the output
(contour?) in the Catalog tree.

Private Sub Contour_GP()
' Create the Geoprocessing object.
Dim GP As Object
Set GP = CreateObject("esriGeoprocessing.GpDispatch.1")
' Contour <in_zone_data> <out_polyline_features> <contour_interval> {base_contour} {z_factor}
' Execute the contour tool.
GP.Contour_sa "c:\data\chap12\emidalat", "c:\data\chap12\contour2", 50, 800
End Sub

12.3.2 Slope

Slope derives a temporary slope raster from an elevation raster. The macro performs
the same function as using the Surface Analysis/Slope command in Spatial Analyst.
Slope has three parts. Part 1 defines the input raster, Part 2 runs the slope operation
and saves the output in a specified workspace, and Part 3 creates a raster layer from
the output and adds the layer to the active map.

Key Interfaces: ISurfaceOp, IRasterAnalysisEnvironment, IWorkspace, IWorkspace-
Factory

Key Members: Raster, OpenFromFile, OutWorkspace, Slope, CreateFromRaster

Usage: Add emidalat, an elevation raster, to an active map. Import Slope to Visual
Basic Editor. Run the macro. The macro adds a slope layer to the active map.

Private Sub Slope()
' Part 1: Define the input raster.
Dim pMxDoc As IMxDocument
Dim pMap As IMap
Dim pLayer As ILayer
Dim pRasterLayer As IRasterLayer
Dim plnputRaster As IRaster
Set pMxDoc = ThisDocument
Set pMap = pMxDoc.FocusMap
Set pLayer = pMap.Layer(0)
Set pRasterLayer = pLayer
Set pInputRaster = pRasterLayer.Raster

Part 1 sets pInputRaster to be the raster of the top layer in the active map.

' Part 2: Perform slope.

Dim pSurfaceOp As ISurfaceOp

Dim pEnv As IRasterAnalysisEnvironment
Dim pWS As IWorkspace

Dim pWSF As IWorkspaceFactory

Dim pOutRaster As IRaster

' Prepare a raster surface operation.

Set pSurfaceOp = New RasterSurfaceOp

TERRAIN MAPPING AND ANALYSIS 255

Set pEnv = pSurfaceOp

Set pWSF = New RasterWorkspaceFactory

Set pWS = pWSF.OpenFromFile("c:\data\chap12", 0)

Set pEnv.OutWorkspace = pWS

' Run the slope surface operation.

Set pOutRaster = pSurfaceOp.Slope(plnputRaster, esriGeoAnalysisSlopePercentrise)

Part 2 first creates pSurfaceOp as an instance of the RasterSurfaceOp class. Next,
the code accesses IRasterAnalysisEnvironment and sets the workspace for the output.
Then the code uses the Slope method on ISurfaceOp to create a slope raster refer-
enced by pOutRaster. The argument of esriGeoAnalysisSlopePercentrise specifies
that the slope raster be measured in percentage of rise.

' Part 3: Create the output raster layer, and add it to the active map.
Dim pSlopelayer As IRasterLayer
Set pSlopelayer = New RasterlLayer
pSlopelayer.CreateFromRaster pOutRaster
pSlopeLayer.Name = "Slope"
pMap.AddLayer pSlopelLayer
End Sub

Part 3 creates a new raster layer from pOutRaster and adds the layer to the active map.

Box 12.2 Slope_GP

Slope_GP uses the Slope tool in the Spatial Analyst toolbox to derive a percent
slope raster from an elevation raster. Run the macro in ArcCatalog and view the
output (slope2) in the Catalog tree.

Private Sub Slope_GP()

' Create the Geoprocessing object.

Dim GP As Object

Set GP = CreateObject("esriGeoprocessing.GpDispatch.1")

' Slope <in_zone_data> <out_raster> {DEGREE | PERCENT_RISE} {z_factor}

' Execute the slope tool.

GP.Slope_sa "c:\data\chap12\emidalat", "c:\data\chapi2\slope2", "PERCENT_RISE"
End Sub

12.3.3 Choice of Slope Measure

A slope raster can be measured in either degree slope or percent slope. Percent
slope is 100 times the ratio of rise (vertical distance) over run (horizontal distance),
whereas degree slope is the arc tangent of the ratio of rise over run. Because
different projects may require different slope measures, a macro can use an input
box and let the user choose one of these two options before running the slope
operation. To offer these two options, one can replace Part 2 of Slope by the
following code fragment (ChooseSlopeMeasure.txt on the companion CD incor-
porates the revision):

256 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

' Part 2: Perform slope.
Dim pSurfaceOp As ISurfaceOp
Dim pEnv As IRasterAnalysisEnvironment
Dim pWS As IWorkspace
Dim pWSF As IWorkspaceFactory
Dim Message As String
Dim Default As String
Dim Choice As String
Dim pOutRaster As IRaster
' Prepare a raster surface operation.
Set pSurfaceOp = New RasterSurfaceOp
Set pEnv = pSurfaceOp
Set pWSF = New RasterWorkspaceFactory
Set pWS = pWSF.OpenFromFile("c:\data\chap12", 0)
Set pEnv.OutWorkspace = pWS
' Choose slope measures in degrees or in percentage of rise.
Message = "Enter D for slope measures in degrees or P for slope measures in percentage of rise"
Default = "D"
Choice = InputBox(Message, , Default)
' Run the slope surface operation according to the choice.
If Choice = "D" Or Choice = "d" Then
Set pOutRaster = pSurfaceOp.Slope(plnputRaster, esriGeoAnalysisSlopeDegrees)
Elself Choice = "P" Or Choice = "p" Then
Set pOutRaster = pSurfaceOp.Slope(plnputRaster, esriGeoAnalysisSlopePercentrise)
Else: Exit Sub
End If

The code fragment runs the Slope method with the user’s choice of the slope
type (D for degrees and P for percentage of rise). D for degrees is the default.

12.3.4 ReclassifySlope

A slope raster is often classified into slope classes before it is used in a GIS project.
ReclassifySlope is a sub that can be called at the end of Slope to group slope measures
into five classes (ReclassifySlope.txt on the companion CD is a module that has
both Slope and ReclassifySlope).

' Call the sub to display the classified slope layer in a defined color scheme.
Call ReclassifySlope(pSlopelayer)

ReclassifySlope has three parts. Part 1 gets pSlopeLayer from Slope for the input
raster, Part 2 performs reclassification, and Part 3 creates a raster layer from the
output and adds the layer to the active map.

Private Sub ReclassifySlope(pSlopelayer As IRasterLayer)
' Part 1: Define the raster for reclassify.
Dim pMxDoc As IMxDocument
Dim pMap As IMap
Dim pRasterLy As IRasterLayer

TERRAIN MAPPING AND ANALYSIS 257

Dim pGeoDs As IGeoDataset
Set pMxDoc = ThisDocument
Set pMap = pMxDoc.FocusMap
Set pRasterLy = pSlopelayer
Set pGeoDs = pRasterly.Raster

Part 1 gets pSlopeLayer from Slope and assigns the layer to pRasterLy. The code
then sets pGeoDs to be the raster of pRasterLy.

' Part 2: Reclassify the input raster.

Dim pReclassOp As IReclassOp

Dim pNRemap As INumberRemap

Dim pOutRaster As IRaster

' Prepare a number remap.

Set pNRemap = New NumberRemap
pNRemap.MapRange 0, 10#, 1
pNRemap.MapRange 10.1, 20#, 2
pNRemap.MapRange 20.1, 30#, 3
pNRemap.MapRange 30.1, 40#, 4
pNRemap.MapRange 40.1, 90#, 5

' Run the reclass operation.

Set pReclassOp = New RasterReclassOp
Set pOutRaster = pReclassOp.ReclassByRemap(pGeoDs, pNRemap, False)

Part 2 first creates pNRemap as an instance of the NumberRemap class and uses
the MapRange method on INumberRemap to set the output value based on a numeric
range of the input values. A cell within the numeric range of 0 to 10.0 is assigned
an output value of 1, 10.1 to 20.0 an output value of 2, and so on. Next, the code
creates pReclassOp as an instance of the RasterReclassOp class and uses the
ReclassByRemap method on IReclassOp to create a reclassified raster referenced by
pOutRaster. The reclassified raster has five slope classes.

' Part 3: Create the output layer, and add it to the active map.
Dim pReclassLy As IRasterLayer
Set pReclassLy = New RasterLayer
pReclassLy.CreateFromRaster pOutRaster
pReclassLy.Name = "Classified Slope"
pMap.AddLayer pReclassLy

End Sub

Part 3 creates a new raster layer from pOutRaster and adds the classified slope
layer to the active map.

12.3.5 Aspect

To derive a temporary aspect raster from an elevation raster, one can use the same
macro as Slope but change the last line statement in Part 2 to:

258 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

' Run the aspect surface operation.
Set pOutRaster = pSurfaceOp.Aspect(plnputRaster)

The Aspect method on ISurfaceOp uses plnputRaster as the only object
qualifier.

12.3.6 Aspect_Symbol

Aspect is a circular measure, which starts with 0° at the north, moves clockwise, and
ends with 360° also at the north. An aspect raster is typically classified into four or
eight principal directions and an additional class for flat areas. Aspect_Symbol uses a
random color ramp to display an aspect raster with eight principal directions plus flat
areas. A good way to use Aspect_Symbol is to call the sub at the end of a macro that
has derived an aspect layer. The macro can then pass the aspect layer as an argument
to Aspect_Symbol. (Aspect_Symbol.txt on the companion CD includes Aspect for
deriving aspect measures and Aspect_Symbol for displaying aspect measures.)

Aspect_Symbol has three parts. Part 1 creates a raster renderer, Part 2 specifies
the color, break, and label for each aspect class, and Part 3 assigns the renderer to
the raster layer and refreshes the active view.

Private Sub Aspect_Symbol(pAspectLayer As IRasterLayer)
' Part 1: Create a raster renderer.
Dim pMxDoc As IMxDocument
Dim pClassRen As IRasterClassifyColorRampRenderer
Dim pRasRen As IRasterRenderer
Dim pRaster As IRaster
Set pRaster = pAspectlLayer.Raster
' Prepare a raster classify renderer.
Set pClassRen = New RasterClassifyColorRampRenderer
pClassRen.ClassCount = 10
' Define the raster and update the renderer.
Set pRasRen = pClassRen
Set pRasRen.Raster = pRaster
pRasRen.Update

Part 1 first sets pRaster to be the raster of the aspect layer passed to the sub as
an argument. Next, the code creates pClassRen as an instance of the RasterClassi-
fyColorRampRenderer class and specifies 10 for the number of classes. The code
then accesses the IRasterRenderer interface, assigns pRaster to be the raster for
pRasRen, and updates pRasRen.

' Part 2: Specify the color, break, and label for each aspect class.
Dim pRamp As IRandomColorRamp

Dim pColors As IEnumColors

Dim pFSymbol As ISimpleFillSymbol

' Prepare a random color ramp.

Set pRamp = New RandomColorRamp

pRamp.Size = 10

TERRAIN MAPPING AND ANALYSIS 259

pRamp.Seed = 100

pRamp.CreateRamp (True)

Set pColors = pRamp.Colors

' Define the symbol, break, and label for 10 aspect classes.
Set pFSymbol = New SimpleFillSymbol
pFSymbol.Color = pColors.Next
pClassRen.Symbol(0) = pFSymbol
pClassRen.Break(0) = -1

pClassRen.Label(0) = "Flat(-1)"
pFSymbol.Color = pColors.Next
pClassRen.Symbol(1) = pFSymbol
pClassRen.Break(1) = -0.01
pClassRen.Label(1) = "North(0-22.5)"
pFSymbol.Color = pColors.Next
pClassRen.Symbol(2) = pFSymbol
pClassRen.Break(2) = 22.5

pClassRen.Label(2) = "Northeast(22.5-67.5)"
pFSymbol.Color = pColors.Next
pClassRen.Symbol(3) = pFSymbol
pClassRen.Break(3) = 67.5

pClassRen.Label(3) = "East(67.5-112.5)"
pFSymbol.Color = pColors.Next
pClassRen.Symbol(4) = pFSymbol
pClassRen.Break(4) = 112.5
pClassRen.Label(4) = "Southeast(112.5-157.5)"
pFSymbol.Color = pColors.Next
pClassRen.Symbol(5) = pFSymbol
pClassRen.Break(5) = 157.5
pClassRen.Label(5) = "South(157.5-202.5)"
pFSymbol.Color = pColors.Next
pClassRen.Symbol(6) = pFSymbol
pClassRen.Break(6) = 202.5
pClassRen.Label(6) = "Southwest(202.5-247.5)"
pFSymbol.Color = pColors.Next
pClassRen.Symbol(7) = pFSymbol
pClassRen.Break(7) = 247.5
pClassRen.Label(7) = "West(247.5-292.5)"
pFSymbol.Color = pColors.Next
pClassRen.Symbol(8) = pFSymbol
pClassRen.Break(8) = 292.5
pClassRen.Label(8) = "Northwest(292.5-337.5)"
pFSymbol.Color = pColors.Next
pClassRen.Symbol(9) = pFSymbol
pClassRen.Break(9) = 337.5
pClassRen.Label(9) = "North(337.5-360)"

' Set Symbol 9 for north to be the same as Symbol 1 for north.
pClassRen.Symbol(9) = pClassRen.Symbol(1)

Part 2 creates pRamp as an instance of the RandomColorRamp class and specifies
10 for the number of colors to be generated, 100 for the seed of the generator, and

260 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

True to generate the color ramp. The rest of Part 2 assigns a random color, a class
break, and a label for each of the ten classes. Because the north aspect includes
classes (1) and (9) (0 to 22.5° and 337.5 to 360°), the symbol for class (9) is reset
to be the same as the symbol for class (1).

' Part 3: Assign the renderer to the aspect layer, and refresh the active view.
pRasRen.Update
Set pAspectLayer.Renderer = pRasRen
Set pMxDoc = ThisDocument
pMxDoc.ActiveView.Refresh
pMxDoc.UpdateContents
End Sub

Part 3 assigns the updated pRasRen to pAspectLayer, refreshes the active view,
and updates the contents of the map document.

Box 12.3 Aspect_GP

Aspect_GP uses the Aspect tool in the Spatial Analyst toolbox to derive an aspect
raster (aspect2) from emidalat. Then the code defines the top layer of the active map
as pAspectLayer and passes it to the sub AspectSymbol, which is the same as the
sub in Section 12.3.6, for displaying the ten aspect classes in random colors. Add
emidalat to the active map, before running Aspect_GP in ArcMap. The code adds
aspect?2 with symbology to the map. This example shows how to combine a GP
macro with a regular ArcObjects macro for the purpose of data display.

Private Sub Aspect_GP()
' Create the Geoprocessing object.
Dim GP As Object
Set GP = CreateObject("esriGeoprocessing.GpDispatch.1")
' Aspect <in_raster> <out_raster>
' Execute the aspect tool.
GP.Aspect_sa "c:\data\chap12\emidalat", "c:\data\chap12\aspect2"
' Define the top layer of the active map as the newly created aspect map.
Dim pMxDoc As IMxDocument
Dim pMap As IMap
Dim pLayer As ILayer
Dim pAspectLayer As IRasterLayer
Set pMxDoc = ThisDocument
Set pMap = pMxDoc.FocusMap
Set pLayer = pMap.Layer(0)
Set pAspectlLayer = pLayer
' Call the AspectSymbol sub and pass pAspectlLayer to the sub.
Call AspectSymbol(pAspectlLayer)
End Sub

Private Sub AspectSymbol(pAspectLayer As IRasterLayer)
' Part 1: Create a color ramp for displaying the aspect raster.
Dim pMxDoc As IMxDocument

TERRAIN MAPPING AND ANALYSIS 261

Dim pClassRen As IRasterClassifyColorRampRenderer
Dim pRasRen As IRasterRenderer

Dim pRaster As IRaster

Set pRaster = pAspectlLayer.Raster

' Prepare a raster classify renderer.

Set pClassRen = New RasterClassifyColorRampRenderer
pClassRen.ClassCount = 10

' Define the raster and update the renderer.

Set pRasRen = pClassRen

Set pRasRen.Raster = pRaster

pRasRen.Update

' Part 2: Specify the color, break, and label for each class.
Dim pRamp As IRandomColorRamp

Dim pColors As IEnumColors

Dim pFSymbol As ISimpleFillSymbol

' Prepare a random color ramp.

Set pRamp = New RandomColorRamp
pRamp.Size = 10

pRamp.Seed = 100

pRamp.CreateRamp (True)

Set pColors = pRamp.Colors

' Define the symbol, break, and label for 10 aspect classes.
Set pFSymbol = New SimpleFillSymbol
pFSymbol.Color = pColors.Next
pClassRen.Symbol(0) = pFSymbol
pClassRen.Break(0) = -1

pClassRen.Label(0) = "Flat(-1)"
pFSymbol.Color = pColors.Next
pClassRen.Symbol(1) = pFSymbol
pClassRen.Break(1) = -0.01
pClassRen.Label(1) = "North(0-22.5)"
pFSymbol.Color = pColors.Next
pClassRen.Symbol(2) = pFSymbol
pClassRen.Break(2) = 22.5
pClassRen.Label(2) = "Northeast(22.5-67.5)"
pFSymbol.Color = pColors.Next
pClassRen.Symbol(3) = pFSymbol
pClassRen.Break(3) = 67.5
pClassRen.Label(3) = "East(67.5-112.5)"
pFSymbol.Color = pColors.Next
pClassRen.Symbol(4) = pFSymbol
pClassRen.Break(4) = 112.5
pClassRen.Label(4) = "Southeast(112.5-157.5)"
pFSymbol.Color = pColors.Next
pClassRen.Symbol(5) = pFSymbol
pClassRen.Break(5) = 157.5
pClassRen.Label(5) = "South(157.5-202.5)"
pFSymbol.Color = pColors.Next
pClassRen.Symbol(6) = pFSymbol

262 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

pClassRen.Break(6) = 202.5
pClassRen.Label(6) = "Southwest(202.5-247.5)"
pFSymbol.Color = pColors.Next
pClassRen.Symbol(7) = pFSymbol
pClassRen.Break(7) = 247.5
pClassRen.Label(7) = "West(247.5-292.5)"
pFSymbol.Color = pColors.Next
pClassRen.Symbol(8) = pFSymbol
pClassRen.Break(8) = 292.5
pClassRen.Label(8) = "Northwest(292.5-337.5)"
pFSymbol.Color = pColors.Next
pClassRen.Symbol(9) = pFSymbol
pClassRen.Break(9) = 337.5
pClassRen.Label(9) = "North(337.5-360)"

' Set Symbol 9 for north to be the same as Symol 1 for north.
pClassRen.Symbol(9) = pClassRen.Symbol(1)

' Part 3: Assign the renderer to the aspect layer and refresh the active view.
pRasRen.Update
Set pAspectLayer.Renderer = pRasRen
Set pMxDoc = ThisDocument
pMxDoc.ActiveView.Refresh
pMxDoc.UpdateContents
End Sub

12.3.7 Hillshade

To derive a temporary hillshade raster from an elevation raster, one can use the same
macro as Slope but change the last line statement in Part 2 to:

' Run the hillshade surface operation.
Set pOutRaster = pSurfaceOp.Hillshade(plnputRaster, 315, 30, True)

Besides the object qualifier pInputRaster, the Hillshade method on ISurfaceOp
uses three arguments: 315 for the Sun’s azimuth, 30 for the Sun’s altitude, and True
for the shaded relief type to include shadows. The Sun’s azimuth is the direction of
the incoming light, ranging from 0° (due north) to 360° in a clockwise direction.
The Sun’s altitude is the angle of the incoming light measured above the horizon
between 0° and 90°.

12.4 PERFORMING VIEWSHED ANALYSIS

This section covers viewshed analysis. Inputs to a viewshed analysis include an
elevation raster and a feature dataset containing one or more observation points. The
analysis derives areas of the land surface that are visible from the observation
point(s).

TERRAIN MAPPING AND ANALYSIS 263

12.4.1 Visibility

Visibility creates a viewshed using an elevation raster and two observation points.
The macro performs the same function as using the Surface Analysis/Viewshed
command in Spatial Analyst. Visibility has three parts. Part 1 defines the elevation
and lookout datasets, Part 2 runs the visibility analysis and saves the output in a
specified workspace, and Part 3 creates a raster layer from the output and adds the
layer to the active map.

Key Interfaces: /GeoDataset, ISurfaceOp, IRasterAnalysisEnvironment, IWorkspace,
IWorkspaceFactory

Key Members: FeatureClass, Raster, OpenFromFile, OutWorkspace, Visibility, Cre-
ateFromRaster

Usage: Add pine, an elevation raster, and lookouts.shp, a lookout point shapefile, to
an active map. Make sure that lookouts is on top of pine in the table of contents.
Import Visibility to Visual Basic Editor. Run the macro. The macro adds Viewshed
to the active map.

Private Sub Visibility()
' Part 1: Define the elevation and lookout datasets.
Dim pMxDoc As IMxDocument
Dim pMap As IMap
Dim pRasterLayer As IRasterLayer
Dim pRaster As IRaster
Dim pFeatureLayer As IFeatureLayer
Dim pLookoutDataset As IGeoDataset
Set pMxDoc = ThisDocument
Set pMap = pMxDoc.FocusMap
' Define the elevation raster.
Set pRasterLayer = pMap.Layer(1)
Set pRaster = pRasterLayer.Raster
' Define the lookout dataset.
Set pFeatureLayer = pMap.Layer(0)
Set pLookoutDataset = pFeaturelayer.FeatureClass

Part 1 defines the elevation and lookout point datasets. The elevation dataset
referenced by pRaster is the raster of the second layer in the active map. The lookout
dataset referenced by pLookoutDataset is the feature class of the top layer.

' Part 2: Perform visibility analysis.

Dim pSurfaceOp As ISurfaceOp

Dim pEnv As IRasterAnalysisEnvironment
Dim pWS As IWorkspace

Dim pWSF As IWorkspaceFactory

Dim pOutRaster As |GeoDataset

' Define a raster surface operation.

Set pSurfaceOp = New RasterSurfaceOp
Set pEnv = pSurfaceOp

Set pWSF = New RasterWorkspaceFactory

264 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

Set pWS = pWSF.OpenFromFile("c:\data\chap12", 0)

Set pEnv.OutWorkspace = pWS

' Run the visibility surface operation.

Set pOutRaster = pSurfaceOp. Visibility(pRaster, pLookoutDataset, esriGeoAnalysisVisibilityFrequency)

Part 2 creates pSurfaceOp as an instance of the RasterSurfaceOp class. Next,
the code uses the IRasterAnalysisEnvironment interface to set the workspace for the
output. The Visibility method on ISurfaceOp uses pRaster and pLookoutDataset as
the object qualifiers. In this case, the lookout dataset is a point shapefile. But it can
also be a shapefile or coverage containing point or line features. The only other
argument used by Visibility is the visibility type, which can be one of the following
four choices:

« esriGeoAnalysisVisibilityFrequency to record the number of times each cell can
be seen

» esriGeoAnalysisVisibilityObservers to record which lookout points can be seen

» esriGeoAnalysisVisibilityFrequencyUseCurvature to specify whether Earth cur-
vature corrections will be used with frequency

* esriGeoAnalysisVisibilityObserversUseCurvature to specify whether Earth curva-
ture corrections will be used with observers

Visibility uses the first visibility type. Therefore, the output shows the number
of times each cell can be seen from the two lookout points.

' Part 3: Create the output layer and add it to the active map.
Dim pRLayer As IRasterLayer
Set pRLayer = New RasterLayer
pRLayer.CreateFromRaster pOutRaster
pRLayer.Name = "Viewshed"
pMap.AddLayer pRLayer
End Sub

Part 3 creates a new raster layer from pOutRaster and adds the layer to the active map.

12.5 PERFORMING WATERSHED ANALYSIS

To derive watersheds from an elevation raster requires creating the following inter-
mediate rasters: a filled elevation raster, a flow direction raster, a flow accumulation
raster, and a stream links raster. A filled elevation raster is void of depressions. A
flow direction raster shows the direction water will flow out of each cell of a filled
elevation raster. A flow accumulation raster tabulates for each cell the number of
cells that will flow to it. In other words, a flow accumulation raster shows how many
upstream cells will contribute drainage to each cell. Cells having high accumulation
values generally correspond to stream channels. Therefore, a stream links raster can
be derived from a flow accumulation raster by using some threshold accumulation
value. Stream links and the flow direction raster are the inputs for deriving area-
wide watersheds.

TERRAIN MAPPING AND ANALYSIS 265

12.5.1 Watershed

Watershed delineates area-wide watersheds from an elevation raster. In the process,
the macro also creates a filled elevation raster, a flow direction raster, a flow accu-
mulation raster, a source raster, and a stream links raster. Watershed has eight parts.
Part 1 defines the input elevation raster. Part 2 creates a hydrologic operation object
and specifies the output workspace. Parts 3 through 8 perform the various hydrologic
operations for the purpose of delineating watersheds. As each operation is completed,
a raster layer is created and added to the active map. It will take a while to execute
the macro, especially if the elevation dataset is large.

Key Interfaces: [HydrologyOp, IRasterAnalysisEnvironment, [Workspace, IWork-
spaceFactory, IQueryFilter, IRasterDescriptor, ILogicalOp, IRaster

Key Members: Raster, OpenFromFile, OutWorkspace, Fill, CreateFromRaster, Flow-
direction, FlowAccumulation, WhereClause, Create, Test, StreamLink, Watershed

Usage: Add emidalat, an elevation raster, to an active map. Import Watershed to Visual
Basic Editor. Run the macro. The macro adds Filled DEM, Flowdirection, Flowac-
cumulation, Source, Stream link, and Watershed to the active map.

Private Sub Watershed()
' Part 1: Define the input raster.
Dim pMxDoc As IMxDocument
Dim pMap As IMap
Dim pLayer As ILayer
Dim pRasterLayer As IRasterLayer
Dim plnputRaster As IRaster
Set pMxDoc = ThisDocument
Set pMap = pMxDoc.FocusMap
Set plLayer = pMap.Layer(0)
Set pRasterlLayer = plLayer
Set plnputRaster = pRasterlLayer.Raster

Part 1 sets pInputRaster to be the raster of the top layer in the active map.

' Part 2: Create a new hydrology operation.

Dim pHydrologyOp As IHydrologyOp

Dim pEnv As IRasterAnalysisEnvironment

Dim pWS As IWorkspace

Dim pWSF As IWorkspaceFactory

Set pHydrologyOp = New RasterHydrologyOp

Set pEnv = pHydrologyOp

Set pWSF = New RasterWorkspaceFactory

Set pWS = pWSF.OpenFromFile("c:\data\chap12", 0)
Set pEnv.OutWorkspace = pWS

Part 2 creates pHydrologyOp as an instance of the RasterHydrologyOp class
and uses the IRasterAnalysisEnvironment interface to set the workspace for the
output.

266 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

' Part 3: Fill sinks.

Dim pFillDS As IRaster

Set pFillDS = pHydrologyOp.FillpinputRaster)
' Add the filled DEM to the active map.

Set pRasterLayer = New RasterLayer
pRasterLayer.CreateFromRaster pFillDS
pRasterLayer.Name = "Filled DEM"
pMap.AddLayer pRasterLayer

Part 3 uses the Fill method on IHydrologyOp to create a filled elevation raster
referenced by pFillDS. The code then creates a new raster layer from pFillDS and
adds the layer to the active map.

' Part 4: Derive flow direction.

Dim pFlowdirectionDS As IRaster

Set pFlowdirectionDS = pHydrologyOp.Flowdirection(pFillDS, True, True)
' Add the flow direction layer to the active map.

Set pRasterLayer = New RasterLayer

pRasterlLayer.CreateFromRaster pFlowdirectionDS

pRasterLayer.Name = "Flowdirection"

pMap.AddLayer pRasterLayer

Part 4 uses the Flowdirection method on IHydrologyOp to create a flow direction
raster referenced by pFlowdirectionDS. Besides the object qualifier pFillDS, Flow-
direction uses two other arguments: the first specifies whether or not an output raster
will be created, and the second determines the flow direction at the edges of the
elevation dataset. The code then adds a new flow direction raster layer to the active
map.

' Part 5: Derive flow accumulation.

Dim pFlowAccumulationDS As IRaster

Set pFlowAccumulationDS = pHydrologyOp.FlowAccumulation(pFlowdirectionDS)
' Add the flow accumulation layer to the active map.

Set pRasterLayer = New RasterLayer

pRasterlLayer.CreateFromRaster pFlowAccumulationDS

pRasterLayer.Name = "Flowaccumulation"

pMap.AddLayer pRasterLayer

Part 5 uses the FlowAccumulation method on IHydrologyOp to create a flow
accumulation raster referenced by pFlowAccumulationDS. The code then adds a
new flow accumulation raster layer to the active map.

' Part 6: Derive the source raster.
Dim pQFilter As IQueryFilter

Dim pRasDes As IRasterDescriptor
Dim pExtractOp As IExtractionOp
Dim pSourceDS As IRaster

' Use a minimum of 500 cells.

Set pQFilter = New QueryFilter

TERRAIN MAPPING AND ANALYSIS 267

pQFilter.WhereClause = "Value > 500"

Set pRasDes = New RasterDescriptor
pRasDes.Create pFlowAccumulationDS, pQFilter, "Value"
' Run an extraction operation.

Set pExtractOp = New RasterExtractionOp

Set pSourceDS = pExtractOp.Attribute(pRasDes)
' Add the source layer to the active map.

Set pRasterLayer = New RasterLayer
pRasterlLayer.CreateFromRaster pSourceDS
pRasterLayer.Name = "Source"

pMap.AddLayer pRasterLayer

Part 6 determines which cells in the flow accumulation raster are to be included
in the source dataset. The code first creates pQFilter as an instance of the Query-
Filter class and defines its WhereClause condition as “Value > 500.” Next, the
code uses the flow accumulation dataset, pQFilter, and the field name of value to
create an instance of the RasterDescriptor class referenced by pRasDes. Then the
code creates pExtractOp as an instance of the RasterExtractionOp class and uses
the Attribute method to create a source dataset referenced by pSourceDS. The
source dataset has cell values for those cells that have value > 500 and no data
for those cells that have value <= 500. A new source raster layer is then added to
the active map.

' Part 7: Derive stream links.

Dim pStreamLinkDS As IRaster

Set pStreamLinkDS = pHydrologyOp.StreamLink(pSourceDS, pFlowdirectionDS)
' Add the stream link layer to the active map.

Set pRasterLayer = New RasterLayer

pRasterlLayer.CreateFromRaster pStreamLinkDS

pRasterLayer.Name = "Stream link"

pMap.AddLayer pRasterLayer

Part 7 uses the StreamLink method on IHydrologyOp to create a stream links
raster referenced by pStreamLinkDS. The code then adds a new stream links raster
layer to the active map.

' Part 8: Derive watersheds.
Dim pWatershed As IRaster
Set pWatershed = pHydrologyOp.Watershed(pFlowdirectionDS, pStreamLinkDS)
' Add the watershed layer to the active map.
Set pRasterLayer = New RasterLayer
pRasterlLayer.CreateFromRaster pWatershed
pRasterLayer.Name = "Watershed"
pMap.AddLayer pRasterLayer
End Sub

Part 8 applies the Watershed method on IHydrologyOp to create a watershed
raster referenced by pWatershed. The code then adds a new watershed raster layer
to the active map.

268 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

12.6 CREATING AND EDITING TIN

This section includes three sample macros. The first macro converts an elevation
raster to a TIN. The second macro modifies the initial TIN by using streams as
breaklines. And the third macro reports the numbers of nodes and triangles that
make up the modified TIN.

12.6.1 RasterToTin

RasterToTin converts an elevation raster to a TIN. The macro performs the same
task as using the Convert/Raster to TIN command in 3D Analyst. RasterToTin has
three parts. Part 1 defines the input raster band and initiates a new TIN, Part 2 creates
a pixel block and reads into it raw pixels from the raster band, and Part 3 uses the
pixel block to populate the TIN and adds the TIN layer to the active map.

Key Interfaces: IRasterBandCollection, IRasterBand, ITinEdit, IRawPixels, IRaster-
Props, IPixelBlock, IEnvelope, ITinLayer

Key Members: Item(), InitNew, SetCoords, CreatePixelBlock, Read, SafeArray(),
Extent, AddFromPixelBlock, Dataset

Usage: Add emidalat, an elevation raster, to an active map. Import RasterToTin to
Visual Basic Editor. Run the macro. The macro adds a new TIN to the active map.

Private Sub RasterToTin()
' Part 1: Define the input raster band and initiate a new TIN.
Dim pMxDoc As IMxDocument
Dim pMap As IMap
Dim plnputRL As IRasterLayer
Dim pInRaster As IRaster
Dim pRasGDS As |GeoDataset
Dim pRasterBandColl As IRasterBandCollection
Dim pRasterBand As IRasterBand
Dim pTin As [TinEdit
Set pMxDoc = ThisDocument
Set pMap = pMxDoc.FocusMap
Set pInputRL = pMap.Layer(0)
Set pInRaster = plnputRL.Raster
' Extract the first raster band.
Set pRasterBandColl = pInRaster
Set pRasterBand = pRasterBandColl.ltem(0)
" Initiate a new TIN.
Set pTin = New Tin
Set pRasGDS = pInRaster
pTin.InitNew pRasGDS.Extent

Part 1 sets pInRaster to be the raster of the first layer in the active map. Next,
the code performs a QI for the /RasterBandCollection interface and uses the Item
method to assign the first raster band of pInRaster to pRasterBand. The code then
uses the InitNew method on ITinEdit to create pTin as an instance of the TIN class.
The initialization of a TIN object requires an object qualifier that defines the data

TERRAIN MAPPING AND ANALYSIS 269

area, which corresponds to the extent of pInRaster in this case. The InitNew method
also places pTin in edit mode.

' Part 2: Create a pixel block.

Dim pRawPixels As IRawPixels

Dim pProps As IRasterProps

Dim pBlockSize As IPnt

Dim pPixelBlock As IPixelBlock

Dim pBlockOrigin As IPnt

' Define a block size.

Set pProps = pRasterBand

Set pBlockSize = New Pnt

pBlockSize.SetCoords pProps.Width, pProps.Height

' Allocate a pixel block.

Set pRawPixels = pRasterBand

Set pPixelBlock = pRawPixels.CreatePixelBlock(pBlockSize)
' Define the block origin.

Set pBlockOrigin = New Pnt

pBlockOrigin.SetCoords 0, 0

' Read into the pixel block from the input raster band.
pRawPixels.Read pBlockOrigin, pPixelBlock

Part 2 reads pRasterBand from Part 1 into a block of pixels. The process involves
defining a block size, allocating a pixel block, and reading the cell values into the
pixel block. The process also involves IRawPixels and IRasterProps that a Raster-
Band object supports (Figure 12.4). The code first accesses the IRasterProps inter-
face and uses the width and height of pRasterBand to define a block size referenced
by pBlockSize. Next, the code accesses IRawPixels and uses the CreatePixelBlock
method to allocate a pixel block referenced by pPixelBlock. The allocation is based
on the width and height of pBlockSize. After defining the block origin at (0, 0), the
code uses the Read method on IRawPixels to read pRasterBand into pPixelBlock.

[RasterBand O—
IRasterProps O—{ RasterBand
IRawPixels O—

IRasterProps IRawPixels
B— Extent «4— CreatePixelBlock
BE— Height <4— Read
B—8 NoDataValue
BE—8 Width
<4— MeanCellSize

Figure 12.4 A RasterBand object supports IRasterBand, IRasterProps, and IRawPixels.
These interfaces can be used to convert an elevation raster into a TIN.

270 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

' Part 3: Create the TIN and add the TIN layer to the active map.
Dim dataArray As Variant

Dim pEnv As IEnvelope

Dim zTol As Double

Dim pTinLayer As ITinLayer

' Use the pixel block and a z tolerance to create the TIN.
dataArray = pPixelBlock.SafeArray(0)

Set pEnv = pProps.Extent

zTol =5

pTin.AddFromPixelBlock pEnv.XMin, pEnv.YMax, pProps.MeanCellSize.X, pProps.MeanCellSize.Y, _
pProps.NoDataValue, dataArray, zTol

pTin.SaveAs ("c:\data\chap12\emidatin")
' Create the TIN layer and add it to the active map.
Set pTinLayer = New TinLayer
With pTinLayer
Set .Dataset = pTin

\Visible = True
.Name = "emidatin”
End With

pMxDoc.FocusMap.AddLayer pTinLayer
pMxDoc.UpdateContents
End Sub

Part 3 creates the TIN and adds the TIN layer to the active map. The code uses
the AddFromPixelBlock method on ITinEdit to edit pTin, which has been set in edit
mode in Part 1. The method has seven arguments. The first two are the coordinates
of the TIN’s origin. A raster’s origin is at the upper left corner, whereas a TIN’s
origin is at the lower left corner. Therefore, the values entered are the xmin and
ymax of the extent of pRawPixels. The third and fourth arguments are the pixel
sizes in the X and Y dimensions, which are set to be the same as the mean cell sizes
in pRawPixels. The fifth argument is the value of no data, which is set to be the
same as the no data value in pRawPixels. The sixth argument is an array of pixel
values to be read, which, in this case, is dataArray or the SafeArray property of
pPixelBlock. The last argument is the z-tolerance used for converting a raster to a
TIN. The z-tolerance determines the accuracy of a TIN in depicting the original
elevation raster: The larger the z-tolerance is, the less accurate the TIN becomes.
The code uses 5 meters as the z-tolerance. After pTin is created, it is saved as
emidatin on disk. Finally, Part 3 creates a new TIN layer from p7in and adds the
layer to the active map.

Box 12.4 RasterToTin_GP

RasterToTin_GP uses the RasterTin tool in the 3D Analyst toolbox to convert an
elevation raster into a TIN. The z-tolerance is set to be 5 (meters). Run the macro
in ArcCatalog and view the output TIN (emidatin2) in the Catalog tree.

Private Sub RasterToTin_GP()
' Create the Geoprocessing object.
Dim GP As Object

TERRAIN MAPPING AND ANALYSIS 271

Set GP = CreateObject("esriGeoprocessing.GpDispatch.1")

' RasterTin <in_raster> <out_tin> {z_tolerance} {max_points} {z_factor}

' Execute the rastertin tool.

GP.RasterTin_3d "c:\data\chap12\emidalat", "c:\data\chap12\emidatin2", 5
End Sub

12.6.2 EditTin

EditTin modifies an existing TIN by adding streams as hard breaklines. The macro
performs the same task as using the Create/Modify TIN/Add Features to TIN com-
mand in 3D Analyst. EditTin has two parts. Part 1 defines the TIN and the breaklines
dataset, and Part 2 adds streams as breaklines to the TIN and refreshes the map with
the modified TIN.

Key Interfaces: ITin, ITinEdit

Key Members: Dataset, StartEditing, AddFromFeatureClass, StopEditing

Usage: Add newtin, a new TIN, and emidastrm.shp, a stream shapefile for modifying
the TIN, to an active map. The stream shapefile must be on top of newtin in the
table of contents. Import EditTin to Visual Basic Editor. Run the macro. The macro
modifies newtin by adding emidatstrm as hardlines. The code then adds the mod-
ified TIN as a new layer to the active map.

Private Sub EditTin()
' Part 1: Define the TIN and the layer for modifying the TIN.
Dim pMxDoc As IMxDocument
Dim pMap As IMap
Dim pTinLayer As ITinLayer
Dim pStreamFL As IFeatureLayer
Dim pStreamFC As IFeatureClass
Dim pTin As ITin
Set pMxDoc = ThisDocument
Set pMap = pMxDoc.FocusMap
' Define the TIN.
Set pTinLayer = pMap.Layer(1)
Set pTin = pTinLayer.Dataset
' Define the stream layer for modifying the TIN.
Set pStreamFL = pMap.Layer(0)
Set pStreamFC = pStreamFL.FeatureClass

Part 1 sets pTin to be the dataset of the TIN layer in the active map, and
pStreamFC to be the feature class of the stream feature layer.

' Part 2: Modify the TIN and add the modified TIN to the active map.

Dim pTinEdit As ITinEdit

Set pTinEdit = pTin

' Edit the TIN.

pTinEdit.StartEditing

pTinEdit. AddFromFeatureClass pStreamFC, Nothing, Nothing, Nothing, esriTinHardLine
pTinEdit.StopEditing (True)

272 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

' Add the modified TIN to the active map.
Set pTinLayer = New TinLayer
With pTinLayer

Set .Dataset = pTin

Visible = True
.Name = "Modified Tin"
End With

pMxDoc.FocusMap.AddLayer pTinLayer
pMxDoc.UpdateContents
End Sub

Part 2 performs a QI for the /7inEdit interface and uses the StartEditing method
to start the editing process, the AddFromFeatureClass method to add features from
a feature class to the TIN, and the StopEditing method to stop editing. Besides the
object qualifier pStreamF C, the AddFromFeatureClass method uses four other argu-
ments. The first argument is a query filter object, which, if specified, uses selected
features to modify the TIN. The second and third arguments are the fields for height
and tag value, if they exist. The last is the surface type option. EditTin opts for hard
breaklines as the surface type. Finally, the code adds a new TIN layer showing the
modified TIN to the active map.

12.6.3 TinNodes

TinNodes prints the numbers of nodes and triangles of an existing TIN. The macro
performs the same function as using the Source tab on the Layer Properties dialog.
TinNodes has two parts. Part 1 defines the TIN dataset, and Part 2 derives and reports
the numbers of nodes and triangles.

Key Interfaces: /TinAdvanced

Key Members: Dataset, DataNodeCount, DataTriangleCount

Usage: Add plnetin to an active map. Import TinNodes to Visual Basic Editor. Run
the macro. The macro reports the numbers of nodes and triangles in a message box.

Private Sub TinNodes()
' Part 1: Define the TIN.
Dim pMxDoc As IMxDocument
Dim pMap As IMap
Dim pTinLayer As ITinLayer
Dim pTin As ITin
Set pMxDoc = ThisDocument
Set pMap = pMxDoc.FocusMap
Set pTinLayer = pMap.Layer(0)
Set pTin = pTinLayer.Dataset

Part 1 defines pTin as the dataset of the TIN layer in the active map.

' Part 2: Derive and report numbers of nodes and triangles.
Dim pTinAdvanced As ITinAdvanced
Dim pNodeCount As Double

TERRAIN MAPPING AND ANALYSIS 273

Dim pTriangleCount As Double

Set pTinAdvanced = pTin

pNodeCount = pTinAdvanced.DataNodeCount

pTriangleCount = pTinAdvanced.DataTriangleCount

MsgBox "The number of nodes is: " & pNodeCount & " The number of triangles is: " & pTriangleCount
End Sub

Part 2 accesses the ITinAdvanced interface, derives the number of nodes from
the DataNodeCount property, and assigns the number to pNodeCount. The code also
derives the number of triangles from the DataTriangleCount property and assigns
the number to pTriangleCount. A message box then reports the numbers of nodes
and triangles.

CHAPTER 13

Spatial Interpolation

Spatial interpolation is the process of using points with known values to estimate
values at other points. A geographic information system (GIS) typically applies
spatial interpolation to a raster with estimates made for all cells. Spatial interpolation
is therefore a means for converting point data to surface data so that the surface data
can be used with other surfaces for analysis and modeling.

A variety of methods have been proposed for spatial interpolation. These methods
can be categorized in several ways:

» Spatial interpolation methods can be grouped into global and local. A global
interpolation method uses every known point available to estimate an unknown value,
whereas a local interpolation method uses a sample of known points to estimate
an unknown value.

* Spatial interpolation methods may be exact and inexact. Exact interpolation pre-
dicts a value at the point location that is the same as its known value, whereas
inexact interpolation does not.

* Spatial interpolation methods may be deterministic or stochastic. A deterministic
interpolation method provides no assessment of errors with predicted values,
whereas a stochastic interpolation method does.

This chapter covers ArcObjects programming for spatial interpolation. Section 13.1
reviews spatial interpolation using ArcGIS. Section 13.2 discusses objects that are
related to spatial interpolation. Section 13.3 includes macros and two Geoprocessing
(GP) macros for using the methods of inverse distance weighted (IDW), spline, trend
surface, and kriging for spatial interpolation. Both the IDW and spline methods are
local, exact, and deterministic. Trend surface is a global, inexact, and deterministic
method, and kriging is a local and stochastic method. Section 13.4 offers a macro
for comparing different interpolation methods. All macros start with the listing of
key interfaces and key members (properties and methods) and the usage. Make sure
that the Spatial Analyst extension is checked in the Tools/Extensions menu before
running the macros.

275

276 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

13.1 RUNNING SPATIAL INTERPOLATION IN ARCGIS

ArcGIS Desktop offers spatial interpolation through the Spatial Analyst and Geo-
statistical Analyst extensions and ArcToolbox. Discussions in this section refer to
the Spatial Analyst extension, which has menu access to IDW, Spline (spline with
tension and regularized spline), and Kriging (ordinary and universal).

Geostatistical Analyst’s main menu has the selections of Explore Data, Geo-
statistical Wizard, and Create Subsets. The Explore Data command offers histogram,
semivariogram, QQ plot, and other tools for exploratory data analysis. The Geo-
statistical Wizard offers a large variety of global and local interpolation methods
including IDW, trend surface, local polynomial, radial basis function, kriging, and
cokriging. The Create Subsets command handles model validation. Most ArcGIS
Desktop users will probably use Geostatistical Analyst for spatial interpolation and
take advantage of its data exploration and model validation capabilities.

13.2 ARCOBJECTS FOR SPATIAL INTERPOLATION

The RasterInterpolationOp coclass is the primary component for spatial interpola-
tion. A RasterInterpolationOp object supports IRasterAnalysisEnvironment and
IInterpolationOp (Figure 13.1). IRasterAnalysisEnvironment controls the analysis
environment, such as analysis mask and output cell size. IInterpolationOp has the
following methods for spatial interpolation: IDW for inverse distance weighted, Krige
for kriging, Spline for spline, Trend for trend surface, and Variogram for kriging.
Krige and Variogram differ in that the former uses a predefined type of semivario-
gram, whereas the latter uses a user-defined semivariogram.

A local interpolation operation using ArcObjects typically requires two object
qualifiers to create the output (Figure 13.2). The first is a feature class descriptor,
which provides the input data for interpolation. A feature class descriptor is a feature
class based on a specific field. For example, the feature class descriptor to be used
in this chapter’s sample macros is based on a numeric field that records the annual

IInt lationOp o0—|
nterpotationtp RasterInterpolationOp

IRasterAnalysisEnvironment O—

IInterpolationOp

<4— IDW

<4— Krige
«4— Spline
4— Trend

«4—— Variogram

Figure 13.1 A RasterinterpolationOp object supports lInterpolationOp and IRasterAnalysis-
Environment. linterpolationOp has various methods for spatial interpolation.

SPATIAL INTERPOLATION 277

FeatureClass-| _ -
Descriptor Local
== Interpolation
Raster- | _ 5
Radius

Figure 13.2 A FeatureClassDescriptor object and a RasterRadius object together create a
Locallnterpolation object.

precipitation at weather stations. The second is a search radius, expressed as either
a distance or a number, for selecting the sample points to be used in local interpolation.

Because spatial interpolation operations produce rasters, these rasters can be
further analyzed by using objects covered in Chapter 11. For example, mathematical
operations on rasters can compare and evaluate the results from two different inter-
polation methods.

13.3 PERFORMING SPATIAL INTERPOLATIONS

This section covers the spatial interpolation methods of IDW, spline, trend surface,
and kriging. The first three methods have the same code structure. As the only
stochastic method in the group, kriging produces an interpolated surface and an error
measure surface.

13.3.1 ldw

Idw uses the IDW method to interpolate a precipitation surface from a point shapefile.
The macro performs the same function as using the Interpolate to Raster/Inverse
Distance Weighted command in Spatial Analyst. Idw has three parts. Part 1 defines
the point shapefile and a mask dataset; Part 2 creates a raster interpolation object,
sets the analysis environment, and runs the interpolation method; and Part 3 creates
a raster layer from the output and adds the layer to the active map.

Key Interfaces: /FeatureClassDescriptor, 1GeoDataset, lInterpolationOp, IRaster-
AnalysisEnvironment, IRasterRadius, IRaster

Key Members: Create, Raster, SetCellSize, Mask, SetVariable, IDW, CreateFrom-
Raster

Usage: Add idoutlgd and stations.shp to an active map. stations must be on top of
idoutlgd in the table of contents. idoutlgd is a raster showing the outline of Idaho,
and stations is a point shapefile containing 105 weather stations in Idaho. The
Ann_prec field in stations stores the annual precipitation values in inches. Import
Idw to Visual Basic Editor. Run the macro. The macro creates a temporary pre-
cipitation surface raster named IDW.

Private Sub Idw()
' Part 1: Define the input and mask datasets.
Dim pMxDoc As IMxDocument

278 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

Dim pMap As IMap

Dim pFeatureLayer As IFeatureLayer

Dim pFeatureClass As IFeatureClass

Dim sFieldName As String

Dim pFCDescr As IFeatureClassDescriptor

Dim pRasterLayer As IRasterLayer

Dim pMaskDataset As IGeoDataset

Set pMxDoc = ThisDocument

Set pMap = pMxDoc.FocusMap

Set pFeatureLayer = pMap.Layer(0)

Set pFeatureClass = pFeaturelayer.FeatureClass

' Use a value field to create a feature class descriptor.
sFieldName = "Ann_prec"

Set pFCDescr = New FeatureClassDescriptor
pFCDescr.Create pFeatureClass, Nothing, sFieldName
' Define a mask dataset.

Set pRasterLayer = pMap.Layer(1)

Set pMaskDataset = pRasterLayer.Raster

Part 1 defines the input and mask datasets. The code first sets pFeatureClass to
be the feature class of the top layer in the active map. Next, the code creates
pFCDescr as an instance of the FeatureClassDescriptor class and uses the Create
method to create the feature class descriptor based on the Ann_prec field. The code
also sets pMaskDataset to be the raster of the second layer in the active map.

' Part 2: Perform interpolation using IDW.

Dim pIntOp As linterpolationOp

Dim pEnv As IRasterAnalysisEnvironment

Dim pRadius As IRasterRadius

Dim pOutRaster As IRaster

' Create a raster interpolation operation.

Set pIntOp = New RasterInterpolationOp

Set pEnv = pIntOp

pEnv.SetCellSize esriRasterEnvValue, pMaskDataset
Set pEnv.Mask = pMaskDataset

' Set the search radius for the input points.

Set pRadius = New RasterRadius
pRadius.SetVariable 12

' Run the IDW method.

Set pOutRaster = pIntOp.IDW(pFCDescr, 2, pRadius)

Part 2 creates pIntOp as an instance of the RasterInterpolationOp class, and
performs a QuerylInterface (QI) for the IRasterAnalysisEnvironment interface to set
the analysis mask and cell size. Next, the code sets the search radius, referenced by
pRadius, to include 12 sample points. The code then uses the IDW method on
IInterpolationOp to create the interpolated raster referenced by pOutRaster. The
IDW method uses pFCDescr and pRadius for the object qualifiers and specifies two
for the weight (that is, exponent) of distance.

SPATIAL INTERPOLATION 279

' Part 3: Create the output layer and add it to the active map.
Dim pRLayer As IRasterLayer
Set pRLayer = New RasterLayer
pRLayer.CreateFromRaster pOutRaster
pRLayer.Name = "IDW"
pMap.AddLayer pRLayer
End Sub

Part 3 creates a new raster layer from pOutRaster and adds the layer to the
active map.

Box 13.1 Idw_GP

Idw_GP uses the IDW tool to create an interpolated surface from stations.shp and
the ExtractByMask tool to clip the interpolated surface by using idoutigd as the
mask. Both tools reside in the Spatial Analyst toolbox. The code uses the input boxes
to get the output cell size (e.g., 2000) and the power (e.g., 2) from the user. Run the
macro in ArcMap. The macro adds the interpolated surface (idw2) and then the
clipped surface (idw2_extract) to the map.

Private Sub ldw_GP()
' Create the Geoprocessing object.
Dim GP As Object
Set GP = CreateObject("esriGeoprocessing.GpDispatch.1")
' Define the workspace.
Dim filepath As String
filepath = "c:\data\chap13"
GP.Workspace = filepath
' Get the output cell size from the user.
Dim cellsize As Integer
cellsize = InputBox("Enter the output cell size in meters")
' Get the IDW power from the user.
Dim exponent As Integer
exponent = InputBox("Enter the power of inverse distance weighted interpolation”)
" IDW <in_point_features> <z_field> <out_raster> {cell_size} {power}
' Execute the idw tool.
GP.IDW_sa "stations.shp", "ANN_PREC", "idw2", cellsize, exponent
' ExtractByMask <in_raster> <in_mask_data> <out_raster>
' Execute the ExtractByMask tool.
GP.ExtractByMask_sa "idw2", "idoutlgd", "idw2_extract"
End Sub

13.3.2 Spline

To use spline as an interpolation method, the only change from Idw is the following
line statement:

Set pOutRaster = pIntOp.Spline(pFCDescr, esriGeoAnalysisRegularizedSpline)

280 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

The Spline method on IInterpolationOp requires a feature class descriptor as an object
qualifier and a selection on the type of spline. The two types of splines are esriGeoAnal-
ysisRegularizedSpline for regularized spline and esriGeoAnalysisTensionSpline for
spline with tension. The Spline method has two optional arguments for the weight to be
used for interpolation and the number of sample points (with 12 as the default).

13.3.3 Trend Surface

To use trend surface as an interpolation method, the only change from Idw is the
following line statement:

Set pOutRaster = pIntOp.Trend(pFCDescr, esriGeoAnalysisLinearTrend, 2)

The Trend method on IInterpolationOp requires a feature class descriptor as an
object qualifier, a selection on the type of trend surface, and the order of the
polynomial. For the type of trend surface, ArcObjects offers esriGeoAnalysisLin-
earTrend for least squares surface and esriGeoAnalysisLogisticTrend for logistic
surface. The order of the polynomial can range from 1 through 12.

13.3.4 Kriging

Kriging uses the kriging method to interpolate a precipitation surface from a point
shapefile. The macro performs the same function as using the Interpolate to Ras-
ter/Kriging command in Spatial Analyst. Kriging has four parts. Part 1 defines the
input and mask datasets. Part 2 creates a raster interpolation object, sets the analysis
environment, and runs kriging. Part 3 extracts the kriged and variance datasets from
the interpolation output. Part 4 creates raster layers from the output datasets and
adds the layers to the active map.

Unlike the previous interpolation methods, the kriging method apparently ignores
the mask dataset for data analysis, but a mask dataset is still included in Kriging to
specify the output cell size. A macro such as ExtractByMask in Chapter 11 can clip
the output datasets from kriging to fit the study area.

Key Interfaces: IFeatureClassDescriptor, IGeoDataset, IInterpolationOp, IRaster-
AnalysisEnvironment, IRasterRadius, IRasterBandCollection, IRasterBand

Key Members: Create, Raster, SetCellSize, SetVariable, Krige, Item(), AppendBand,
CreateFromRaster

Usage: Add idoutlgd and stations.shp to an active map. stations must be on top of
idoutlgd in the table of contents. Import Kriging to Visual Basic Editor. Run the
macro. The macro creates two temporary rasters: Krige represents the kriged
surface, and Variance represents the variance surface.

Private Sub Kriging()
' Part 1: Define the input dataset.
Dim pMxDoc As IMxDocument
Dim pMap As IMap
Dim pFeatureLayer As IFeatureLayer
Dim pFeatureClass As IFeatureClass

SPATIAL INTERPOLATION 281

Dim sFieldName As String

Dim pFCDescr As IFeatureClassDescriptor

Dim pRasterLayer As IRasterLayer

Dim pMaskDataset As IGeoDataset

Set pMxDoc = ThisDocument

Set pMap = pMxDoc.FocusMap

Set pFeatureLayer = pMap.Layer(0)

Set pFeatureClass = pFeaturelLayer.FeatureClass

' Use a value field to create a feature class descriptor.
sFieldName = "Ann_prec"

Set pFCDescr = New FeatureClassDescriptor
pFCDescr.Create pFeatureClass, Nothing, sFieldName
' Define a mask dataset.

Set pRasterLayer = pMap.Layer(1)

Set pMaskDataset = pRasterlLayer.Raster

Part 1 sets pFeatureClass to be the feature class of the top layer, and creates a
feature class descriptor referenced by pFCDescr. Next, the code sets pMaskDataset
to be the raster of the second layer.

' Part 2: Perform interpolation using kriging.

Dim pIntOp As linterpolationOp

Dim pEnv As IRasterAnalysisEnvironment

Dim pRadius As IRasterRadius

Dim pOutRaster As |GeoDataset

' Create a raster interpolation operation.

Set pIntOp = New RasterInterpolationOp

Set pEnv = pIintOp

pEnv.SetCellSize esriRasterEnvValue, pMaskDataset
' Set the search radius for the input points.

Set pRadius = New RasterRadius
pRadius.SetVariable 12

' Run the Krige method.

Set pOutRaster = pIntOp.Krige(pFCDescr, esriGeoAnalysisCircularSemiVariogram, pRadius, True)

Part 2 creates pIntOp as an instance of the RasterInterpolationOp class, accesses
the IRasterAnalysisEnvironment interface, and uses pMaskDataset as the cell size
provider to set the analysis cell size. Next, the code sets the search radius to include 12
sample points. The code then uses the Krige method on IInterpolationOp to create
the output raster referenced by pOutRaster. The Krige method requires a feature
class descriptor, a selection on the type of semivariogram, a search radius, and the
option for creating a variance dataset. ArcObjects offers the following types of
semivariograms: circular, exponential, Gaussian, linear, spherical, and universal.

' Part 3: Extract the kriged surface and variance rasters.
Dim pRasterBandCollection As IRasterBandCollection
Dim pKrigeRB As IRasterBand

Dim pKrigeRBCollection As IRasterBandCollection

Dim pVarianceRB As IRasterBand

Dim pVarianceRBCollection As IRasterBandCollection

282 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

RasterBand(0) |—| Kriged Raster |

Krige
Output Raster

RasterBand(1) |—| Variance Raster‘

Figure 13.3 The output raster from Krige contains two raster bands, one for the kriged surface
and the other for the variance surface.

Set pRasterBandCollection = pOutRaster

' Extract the kriged surface raster.

Set pKrigeRB = pRasterBandCollection.ltem(0)
Set pKrigeRBCollection = New Raster
pKrigeRBCollection.AppendBand pKrigeRB

' Extract the variance raster.

Set pVarianceRB = pRasterBandCollection.ltem(1)
Set pVarianceRBCollection = New Raster
pVarianceRBCollection.AppendBand pVarianceRB

Because Part 2 asks to create a variance dataset, the output raster referenced by
pOutRaster actually contains two datasets. Part 3 is therefore designed to extract
the two datasets (Figure 13.3). The code performs a QI for the IRasterBandCollection
interface, extracts the first raster band of pOutRaster, and assigns the band to
pKrigeRB. The code then creates pKrigeRBCollection as an instance of the Raster
class and uses the AppendBand method on [RasterBandCollection to append
pKrigeRB to pKrigeRBCollection. The raster band collection thus created has one
raster band and represents the kriged surface. The code uses the same procedure to
create pVarianceRBCollection for the variance surface.

' Part 4: Create the output layers and add them to the active map.
Dim pKrigeLayer As IRasterLayer
Dim pVariancelLayer As IRasterLayer
Set pKrigelLayer = New RasterlLayer
pKrigeLayer.CreateFromRaster pKrigeRBCollection
pKrigeLayer.Name = "Krige"
pMap.AddLayer pKrigeLayer
Set pVariancelLayer = New RasterlLayer
pVariancelLayer.CreateFromRaster pVarianceRBCollection
pVariancelLayer.Name = "Variance"
pMap.AddLayer pVariancelLayer

End Sub

Part 4 creates new raster layers from pKrigeRBCollection and pVariance-
RBCollection, and adds the layers to the active map.

Box 13.2 Kriging_GP

Kriging_GP uses the Kriging tool in the Spatial Analyst toolbox to derive an
interpolated surface (krige2) from stations.shp. The arguments specify that the

SPATIAL INTERPOLATION 283

semivariogram type be circular, the output cell size be 2000 (meters), the search
radius be 12 known points, and the variance prediction raster (variance2) be
created. After the kriged and variance rasters are created, the code uses the
ExtractByMask tool and the mask of idoutigd to clip the rasters. Run the macro
in ArcMap. The macro adds four rasters to the map.

Private Sub Kriging_GP()
' Kriging <in_point_features> <z_field> <out_surface_raster> <semiVariogram_prop>
' {cell_size}{search_radius}{out_variance_prediction_raster}
' Create the Geoprocessing object and define its workspace.
Dim GP As Object
Set GP = CreateObject("esriGeoprocessing.GpDispatch.1")
Dim filepath As String
filepath = "c:\data\chap13"
GP.Workspace = filepath
' Execute the kriging tool.
GPKriging_sa "stations.shp", "ANN_PREC", "krige2", "CIRCULAR", 2000, "Variable 12", "variance2"
' ExtractByMask <in_raster> <in_mask_data> <out_raster>
' Execute the ExtractByMask tool.
GP.ExtractByMask_sa "krige2", "idoutlgd", "krige2_clip"
GP.ExtractByMask_sa "variance2", "idoutlgd", "var2_clip"
End Sub

13.4 COMPARING INTERPOLATION METHODS

A variety of factors can influence the result of spatial interpolation. They include
the interpolation method, number of sample points, distribution of sample points,
and quality of input data. This section shows how to create an output so that the
results from two different interpolation methods can be compared visually. A more
rigorous comparison of interpolation methods would involve cross validation and
model validation techniques.

13.4.1 Compare

Compare compares the interpolated surfaces from the IDW method and the spline
method, and highlights areas with large differences between the two (Figure 13.4).
Compare has four parts. Part 1 defines the input and mask datasets. Part 2 performs
the IDW and spline interpolation methods. Part 3 subtracts one interpolated surface
from the other and reclassifies the surface representing the difference. Part 4 creates
new raster layers from the outputs and adds them to the active map.

Key Interfaces: IFeatureClassDescriptor, 1GeoDataset, IInterpolationOp, IRaster-
AnalysisEnvironment, IRasterRadius, IRaster, IMathOp, IRasterBandCollection,
IRasterBand, IReclassOp, IRemap, INumberRemap

Key Members: Create, Raster, SetCellSize, Mask, SetVariable, IDW, Spline, Minus,
Statistics, Minimum, Maximum, MapRange, ReclassByRemap, CreateFromRaster

284 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

IDW Spline
Raster Raster

IMathOp::Minus

Difference
Raster

| IReclassify::ReclassByRemap

Reclassed
Difference
Raster

Figure 13.4 The flow chart shows how the Compare sub works.

Usage: Add idoutlgd and stations.shp to an active map. stations must be on top of
idoutlgd in the table of contents. Import Compare to Visual Basic Editor. Run the
macro. The macro creates four temporary rasters named IDW, Spline, Difference,
and Reclassed Difference and adds them to the active map.

Private Sub Compare()
' Part 1: Define the input and mask datasets.
Dim pMxDoc As IMxDocument
Dim pMap As IMap
Dim pFeatureLayer As IFeatureLayer
Dim pFeatureClass As IFeatureClass
Dim sFieldName As String
Dim pFCDescr As IFeatureClassDescriptor
Dim pRasterLayer As IRasterLayer
Dim pMaskDataset As IGeoDataset
Set pMxDoc = ThisDocument
Set pMap = pMxDoc.FocusMap
Set pFeatureLayer = pMap.Layer(0)
Set pFeatureClass = pFeaturelayer.FeatureClass
' Use a value field to create a feature class descriptor.
sFieldName = "Ann_prec"
Set pFCDescr = New FeatureClassDescriptor
pFCDescr.Create pFeatureClass, Nothing, sFieldName
' Define a mask dataset.
Set pRasterLayer = pMap.Layer(1)
Set pMaskDataset = pRasterlLayer.Raster

Part 1 defines a feature class descriptor and a mask dataset. The code creates
the feature class descriptor from the feature class of the top layer based on the
Ann_prec field. The feature class descriptor is referenced by pFCDescr. The code
sets the mask dataset, referenced by pMaskDataset, to be the raster of the second
layer.

' Part 2: Perform interpolations using IDW and Spline.
Dim pIntOp As linterpolationOp

SPATIAL INTERPOLATION 285

Dim pEnv As IRasterAnalysisEnvironment

Dim pRadius As IRasterRadius

Dim pldwRaster As IRaster

Dim pSplineRaster As IRaster

' Create a raster interpolation operation.

Set pIntOp = New RasterInterpolationOp

Set pEnv = pIntOp

pEnv.SetCellSize esriRasterEnvValue, pMaskDataset
Set pEnv.Mask = pMaskDataset

' Set the search radius for the input points.

Set pRadius = New RasterRadius
pRadius.SetVariable 12

' Run the IDW method.

Set pldwRaster = pIntOp.IDW(pFCDescr, 2, pRadius)
' Run the Spline method.

Set pSplineRaster = pIntOp.Spline(pFCDescr, esriGeoAnalysisRegularizedSpline)

Before running the interpolation methods, Part 2 creates pIntOp as an instance
of the RasterInterpolationOp class, sets the analysis cell size and mask, and defines
the search radius. The code then runs the IDW method to create pldwRaster and the
Spline method to create pSplineRaster.

' Part 3: Compare the two interpolated rasters.

Dim pMathOp As IMathOp

Dim pDiffRaster As IRaster

Dim pRasBC As IRasterBandCollection

Dim pBand1 As IRasterBand

Dim pMinimum As Double

Dim pMaximum As Double

Dim pReclassOp As IReclassOp

Dim pRemap As IRemap

Dim pNRemap As INumberRemap

Dim pOutRaster As IRaster

' Subtract one raster from the other to create the difference raster.
Set pMathOp = New RasterMathOps

Set pDiffRaster = pMathOp.Minus(pldwRaster, pSplineRaster)

' Derive the minimum and maximum values from the difference raster.
Set pRasBC = pDiffRaster

Set pBand1 = pRasBC.ltem(0)

pMinimum = pBand1.Statistics.Minimum

pMaximum = pBand1.Statistics.Maximum

' Prepare a number remap.

Set pNRemap = New NumberRemap

pNRemap.MapRange pMinimum, -3.1, 1

pNRemap.MapRange -3, 3, 2

pNRemap.MapRange 3.1, pMaximum, 3

Set pRemap = pNRemap

' Reclassify the difference raster.

Set pReclassOp = New RasterReclassOp

Set pOutRaster = pReclassOp.ReclassByRemap(pDiffRaster, pRemap, False)

286 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

Part 3 derives a difference raster from pldwRaster and pSplineRaster, and reclas-
sifies the difference raster into three classes showing high negative difference, low
difference, and high positive difference. To create the difference raster referenced
by pDiffRaster, the code uses the Minus method on IMathOp and pldwRaster and
pSplineRaster as the object qualifiers. To reclassify pDiffRaster, the code first derives
the minimum and maximum values in pDiffRaster by using the Statistics property
on [RasterBand. The minimum and maximum values are then entered in a number
remap referenced by pNRemap to set up the following three classes: minimum to
—3.1 (high negative difference), —3 to 3 (low difference), and 3.1 to maximum (high
positive difference). The result of applying the ReclassByRemap method on IReclassOp
is a reclassified difference raster referenced by pOutRaster.

' Part 4: Create the output raster layers, and add them to the active map.
Dim pldwlLayer As IRasterLayer
Dim pSplineLayer As IRasterLayer
Dim pDiffLayer As IRasterLayer
Dim pOutLayer As IRasterLayer
' Add the IDW layer.
Set pldwLayer = New RasterLayer
pldwLayer.CreateFromRaster pldwRaster
pldwLayer.Name = "IDW"
pMap.AddLayer pldwlLayer
' Add the Spline layer.
Set pSplineLayer = New RasterLayer
pSplineLayer.CreateFromRaster pSplineRaster
pSplineLayer.Name = "Spline"
pMap.AddLayer pSplineLayer
' Add the Difference layer.
Set pDiffLayer = New RasterLayer
pDiffLayer.CreateFromRaster pDiffRaster
pDiffLayer.Name = "Difference"
pMap.AddLayer pDiffLayer
' Add the reclassed layer.
Set pOutLayer = New RasterLayer
pOutlLayer.CreateFromRaster pOutRaster
pOutLayer.Name = "Reclassed Difference"
pMap.AddLayer pOutLayer

End Sub

Part 4 creates new raster layers from pldwRaster, pSplineRaster, pDiffRaster,
and pOutRaster respectively, and adds these layers to the active map.

CHAPTER 14

Binary and Index Models

A model is a simplified representation of a phenomenon or a system. Many types
of models exist in different disciplines. Two types of models that a geographic
information system (GIS) can build are binary and index models, either vector-based
or raster-based.

A binary model selects spatial features that meet a set of criteria. Those features
that meet the selection criteria are coded one (true) and those that do not are coded
zero (false). A common application of binary models is site analysis. A vector-based
binary model requires that the overlay operations be performed to combine attributes
(criteria) to be queried. A raster-based binary model, on the other hand, can be
derived directly from querying multiple rasters, with each raster representing a
criterion.

An index model calculates the index value for each unit area (i.e., polygon or
cell) and produces a ranked map based on the index values. Index models are
commonly used for suitability analysis and vulnerability analysis. Like a binary
model, an index model also involves multicriteria evaluation. The weighted linear
combination method is a popular method for developing an index model. The method
calculates the index value by summing the weighted criterion values. The weight
represents the relative importance of a criterion against other criteria, and the crite-
rion values represent the standardized values, such as Oto 1, 1 to 5, or 0 to 100, for
each criterion.

This chapter covers binary models and index models. Section 14.1 reviews
important commands in ArcGIS for building models. Section 14.2 discusses useful
objects for building models, almost all of which have been covered in previous
chapters. Section 14.3 includes sample modules and Geoprocessing (GP) macros
for building binary and index models, both vector- and raster-based. Each module
has a description of its usage. Make sure that the Spatial Analyst extension is
checked in the Tools/Extensions menu before running the macros for raster-based
models.

287

288 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

14.1 BUILDING MODELS IN ARCGIS

ArcGIS does not offer menu choices for building a binary or index model. The
ModelBuilder extension can be used to build index models. Another option is to use
various ArcGIS commands to construct binary and index models. Commands impor-
tant to building a vector-based binary or index model are overlay (for example,
union, intersect, and spatial join), attribute data manipulation (for example, adding
fields and calculating field values), and attribute data query. Raster Calculator and
Reclassify in Spatial Analyst are important commands for building raster-based
binary or index models. If selection criteria involve buffer zones, then buffering
using vector data or distance measuring using raster data becomes part of the model-
building process.

14.2 ARCOBJECTS FOR GIS MODELS

ArcObjects does not have “model” objects. Many objects that have already been
covered in Chapters 9, 10, and 11 can be used to build models.

14.3 BUILDING BINARY AND INDEX MODELS

This section covers sample VBA (Visual Basic for Applications) modules for build-
ing binary and index models, both vector- and raster-based. Because a model typi-
cally involves several separate tasks, each of the following modules consists of
several subs and functions. And because many objects used have already been
covered in previous chapters, they do not need detailed explanation.

14.3.1 VectorBinaryModel

Using an elevation zone shapefile and a stream shapefile as inputs, VectorBinary-
Model produces a vector-based binary model that selects areas that are in elevation
zone 2 and within 200 meters of streams.

VectorBinaryModel has two subs and two functions (Figure 14.1):

Start: a sub for managing the input and output layers and for attribute data query

Intersect: a sub for the overlay/intersect operation

Buffer: a function for creating a buffer zone

SelectDataset: a function for selecting the input to the buffering and intersect opera-
tions

Usage: Import VectorBinaryModel to Visual Basic Editor. Run the module.
Select stream from the dialog box for the layer to be buffered. Then select elevzone
for the overlay layer. The macro adds stream, elevzone, and the output shapefiles
(Buffer_Result and Intersect_Result) to the active map, and highlights those areas
that meet the selection criteria.

BINARY AND INDEX MODELS 289

Start —l

SelectDataset

SelectDataset @
@ Buffer

Intersect Stream Buffer

Intersect Result

Start

Figure 14.1 The flow chart shows the modular structure of VectorBinaryModel.

Private Sub Start()
Dim pMxDoc As IMxDocument
Dim pMap As IMap
Dim Id As Long
Dim Message As String
Dim pBufferLayer As ILayer
Dim pLayer1 As ILayer
Dim pLayer2 As ILayer
Dim pActiveView As |ActiveView
Dim pFeatureLayer As IFeatureLayer
Dim pFeatureSelection As IFeatureSelection
Dim pQueryFilter As IQueryFilter
Set pMxDoc = ThisDocument
Set pMap = pMxDoc.FocusMap
' Run buffering.
MsgBox "Select the layer to be buffered"
Set pBufferLayer = SelectDataset
Set plLayer1 = Buffer(pBufferLayer, pMap)
MsgBox "Select the overlay layer"
Set plLayer2 = SelectDataset
Call Intersect(pLayer1, pLayer2, pMap)
' Query the intersect result and highlight the final selection.
Set pActiveView = pMap
Set pFeatureLayer = pMap.Layer(0)
Set pFeatureSelection = pFeatureLayer

290 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

Set pQueryFilter = New QueryFilter
pQueryFilter.WhereClause = "Zone = 2"
pActiveView.PartialRefresh esriViewGeoSelection, Nothing, Nothing
pFeatureSelection.SelectFeatures pQueryFilter, esriSelectionResultNew, False
pActiveView.PartialRefresh esriViewGeoSelection, Nothing, Nothing

End Sub

Start first uses a message box and SelectDataset to get stream as the input to
Bufffer. Buffer returns a buffer zone (Buffer_Result). Start then uses the buffer zone
and elevzone as the inputs to Intersect. At the completion of the intersect operation,
Start uses a query filter object to select areas that are in elevation zone 2. The code
then highlights the selected areas by refreshing the active view.

Private Function Buffer(pBufferLayer As ILayer, pMap As IMap) As IFeatureLayer
Dim pFeatureLayer As IFeatureLayer
Dim pFCursor As IFeatureCursor
Dim pSpatialReference As ISpatialReference
Dim pBufWSName As IWorkspaceName
Dim pBufDatasetName As |IDatasetName
Dim pBufFCName As IFeatureClassName
Dim pFeatureCursorBuffer2 As IFeatureCursorBuffer2
Dim pName As IName
Dim pBuUfFC As IFeatureClass
Dim pBuUfFL As IFeatureLayer
Set pFeatureLayer = pBufferLayer
' Create a feature cursor.
Set pFCursor = pFeatureLayer.Search(Nothing, False)
Set pSpatialReference = pMap.SpatialReference
' Define the output.
Set pBufWSName = New WorkspaceName
pBufWSName.WorkspaceFactoryProgID = "esriCore.ShapeFileWorkspaceFactory.1"
pBufWSName.PathName = "c:\data\chap14\ "
Set pBufFCName = New FeatureClassName
Set pBufDatasetName = pBufFCName
Set pBufDatasetName.WorkspaceName = pBufWSName
pBufDatasetName.Name = "Buffer_result"
' Perform buffering.
' Create a feature cursor buffer.
Set pFeatureCursorBuffer2 = New FeatureCursorBuffer
' Define the feature cursor buffer.
With pFeatureCursorBuffer2
Set .FeatureCursor = pFCursor
.Dissolve = True
.ValueDistance = 200
Set .BufferSpatialReference = pSpatialReference
Set .DataFrameSpatialReference = pSpatialReference
Set .SourceSpatialReference = pSpatialReference
Set .TargetSpatialReference = pSpatialReference
End With
' Run Buffer.

BINARY AND INDEX MODELS 291

pFeatureCursorBuffer2.Buffer pBufFCName
' Create the output layer from the output and add it to the active map.
Set pName = pBufFCName
Set pBufFC = pName.Open
Set pBufFL = New FeatureLayer
Set pBuffFL.FeatureClass = pBufFC
pBufFL.Name = "Buffer_Result"
pMap.AddLayer pBufFL
Set Buffer = pBufFL
End Function

Buffer gets the layer to be buffered and the active map as arguments from Start.
The code creates a feature cursor object by including all features in the input dataset,
and defines the workspace and name for the output. Next, the code creates
pFeatureCursorBuffer2 as an instance of the FeatureCursorBuffer class, defines its
properties, and uses the Buffer method to create the output referenced by pBufFC-
Name. Then the code opens the name object, creates a new feature layer from the
buffered feature class, and adds the layer to the active map. Buffer returns pBufFL
as an [FeatureLayer to Start.

Private Sub Intersect(pLayer1 As ILayer, pLayer2 As ILayer, pMap As IMap)
Dim plnputLayer As IFeatureLayer
Dim pOverlayLayer As IFeatureLayer
Dim plnputTable As [Table
Dim pOverlayTable As [Table
Dim pNewWSName As IWorkspaceName
Dim pFeatClassName As IFeatureClassName
Dim pDatasetName As |IDatasetName
Dim pBGP As IBasicGeoprocessor
Dim pOutputFeatClass As IFeatureClass
Dim tol As Double
Dim pOutputFeatlLayer As IFeaturelayer
' Define the input and overlay tables.
Set pInputLayer = pLayer1
Set pOverlayLayer = pLayer2
Set plnputTable = plnputLayer
Set pOverlayTable = pOverlaylLayer
' Define the output.
Set pNewWSName = New WorkspaceName
pNewWSName.WorkspaceFactoryProgID = "esriCore.ShapefileWorkspaceFactory"
pNewWSName.PathName = "c:\data\chap14\ "
Set pFeatClassName = New FeatureClassName
Set pDatasetName = pFeatClassName
pDatasetName.Name = "Intersect_result"
Set pDatasetName.WorkspaceName = pNewWSName
' Perform intersect.
Set pPBGP = New BasicGeoprocessor
tol = O#
Set pOutputFeatClass = pBGP.Intersect(plnputTable, False, pOverlayTable, False, tol, pFeatClassName)
' Create the output feature layer and add it to the active map.

292 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

Set pOutputFeatlLayer = New FeatureLayer
Set pOutputFeatLayer.FeatureClass = pOutputFeatClass
pOutputFeatLayer.Name = pOutputFeatClass.AliasName
pMap.AddLayer pOutputFeatLayer

End Sub

Intersect gets the two layers to be intersected and the active map as arguments
from Start. The code defines the input tables and the workspace and name of the
intersect output. Next, the code creates pBGP as an instance of the BasicGeopro-
cessor class and uses the Intersect method to create the output referenced by pOut-
putFeatClass. Intersect then creates a feature layer from pOutputFeatClass and adds
the layer to the active map.

Private Function SelectDataset() As IFeatureLayer
' Part 1: Prepare an Add Data dialog.
Dim pGxDialog As IGxDialog
Dim pGxFilter As IGxObjectFilter
Dim pGxObjects As IEnumGxObject
Dim pMxDoc As IMxDocument
Dim pMap As IMap
Dim pGxDataset As IGxDataset
Dim pLayer As IFeatureLayer
Set pGxDialog = New GxDialog
Set pGxFilter = New GxFilterShapefiles
' Define the dialog's properties.

With pGxDialog
AllowMultiSelect = False
.ButtonCaption = "Add"
Set .ObjectFilter = pGxFilter
.StartingLocation = "c:\data\chap14\"
.Title = "Add Data"
End With
' Open the dialog.
pGxDialog.DoModalOpen 0, pGxObjects
Set pGxDataset = pGxObjects.Next
' Exit sub if no dataset has been added.
If pGxDataset Is Nothing Then
Exit Function
End If
' Add the layers to the active map.
Set pLayer = New FeaturelLayer
Set plLayer.FeatureClass = pGxDataset.Dataset
pLayer.Name = plLayer.FeatureClass.AliasName
Set pMxDoc = ThisDocument
Set pMap = pMxDoc.FocusMap
pMap.AddLayer pLayer
pMxDoc.ActiveView.Refresh
pMxDoc.UpdateContents
' Return plLayer to the Start sub.
Set SelectDataset = pLayer
End Function

BINARY AND INDEX MODELS 293

SelectDataset creates pGxDialog as an instance of the GxDialog class and defines
its properties. The dialog shows only shapefiles and allows only one dataset to be
selected. The code then creates pLayer as a new feature layer from the selected
shapefile and adds the layer to the active map. SelectDataset returns pLayer to Start.

Box 14.1 VectorBinaryModel _GP

VectorBinaryModel _GP builds a vector-based binary model. The macro uses three tools
in sequence: the Buffer tool in the Analysis toolbox, the Intersect tool in the Analysis
toolbox, and the SelectLayerByAttribute tool in the Data Management toolbox. Run
the macro in ArcMap. The macro adds Buffer_Result_b and Intersect_Result_b. Areas
that meet the criteria are highlighted in Intersect_Result_b.

Private Sub VectorBinaryModel_GP()

' Run this macro in ArcMap.

' Create the Geoprocessing object and define its workspace.

Dim GP As Object

Set GP = CreateObject("esriGeoprocessing.GpDispatch.1")

Dim filepath As String

filepath = "c:\data\chap14\"

GP.Workspace = filepath

' Execute the buffer tool.

' Buffer <in_features> <out_feature_class> <buffer_distance_or_field> {FULL | LEFT | RIGHT}

' {ROUND | FLAT} {NONE | ALL | LIST} {dissolve_field;dissolve_field...}

GP.Buffer_analysis "stream.shp", "Buffer_Result_b.shp", 200, "FULL", "ROUND", "ALL"

' Execute the intersect tool.

" Intersect <features{Ranks};features{Ranks}...> <out_feature_class>

' {ALL | NO_FID | ONLY_FID} {cluster_tolerance} {INPUT | LINE | POINT}

Dim parameter1 As String

parameter1 = "elevzone.shp;Buffer_Result_b.shp"

Dim parameter2 As String

parameter2 = "Intersect_Result_b.shp"

GP.Intersect_analysis parameter1, parameter2

' Execute selectlayerbyattribute

' SelectLayerByAttribute <in_layer_or_view> {NEW_SELECTION | ADD_TO_SELECTION |

' CLEAR_SELECTION} {where_clause}

GP.SelectLayerByAttribute_management "Intersect_Result_b", NEW_SELECTION, "Zone = 2"
End Sub

14.3.2 VectorindexModel

VectorIndexModel uses soil, landuse, and depwater as the inputs and produces a
vector-based index model that shows the degree of susceptibility to groundwater
contamination. The three feature classes are stored in a personal geodatabase. The
criterion values have been computed and are stored in the feature classes: soilrate
in soil for the soils criterion, lurate in landuse for the land use criterion, and dwrate
in depwater for the depth to water criterion. VectorIndexModel calculates the index
value using the following equation: 3 X soilrate + lurate + dwrate. VectorIndexModel

294 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

Start
|
{ !
FindLayer FindLayer

!

Intersect

Intersect Result 1

Intersect

Intersect Result 2

AddIndex

|

CalculateIndex

!

FindLayer

GetRGB
v

DisplayIndexClasses

Index Map

Figure 14.2 The flow chart shows the modular structure of VectorindexModel.

then displays the index values in four classes. The index model does not apply to
urban areas. Therefore, an additional task in building the model is to exclude urban

areas from the analysis.

VectorIndexModel has five subs and two functions (Figure 14.2):

Start: a sub for managing the input and output layers and for calling the other subs
Intersect: a sub for performing the overlay operation
AddlIndex: a sub for adding an index field to the overlay output
CalculateIndex: a sub for calculating the index values
DisplayIndexClasses: a sub for displaying the index values in four classes
FindLayer: a function for finding a specific layer
GetRGB: a function for defining a color symbol

BINARY AND INDEX MODELS 295

Usage: Add soil, landuse, and depwater from Index.mdb to an active map. Import
VectorIndexModel to Visual Basic Editor. Run the macro. The macro creates the
feature classes of Intersect_I and Intersect_2 and adds them to the active map.
Intersect_2 shows the index model in four classes.

Private Sub Start()
' Start uses the subs of FindLayer, Intersect, Addindex, Calculatelndex, and DisplaylndexClasses.
Dim pMxDoc As IMxDocument
Dim pMap As IMap
Dim Id As Long
Dim Message As String
Dim pLayer1 As ILayer
Dim plLayer2 As ILayer
Dim pOutName As String
Dim pFLayer As IFeatureLayer
Set pMxDoc = ThisDocument
Set pMap = pMxDoc.FocusMap
' Run intersect using soil and landuse.
Message = "soil"
|d = FindLayer(Message)
Set pLayer1 = pMxDoc.FocusMap.Layer(ld)
Message = "landuse”
Id = FindLayer(Message)
Set plLayer2 = pMxDoc.FocusMap.Layer(ld)
pOutName = "Intersect_1"
Call Intersect(pLayer1, pLayer2, pOutName)
' Run intersect using the first overlay output and depwater.
Message = "Intersect_1"
Id = FindLayer(Message)
Set plLayer1 = pMxDoc.FocusMap.Layer(ld)
Message = "depwater"
|d = FindLayer(Message)
Set plLayer2 = pMxDoc.FocusMap.Layer(ld)
pOutName = "Intersect_2"
Call Intersect(pLayer1, pLayer2, pOutName)
Set pFLayer = pMxDoc.FocusMap.Layer(0)
' Add a new field to the final output.
Call Addindex(pFLayer)
' Calculate the new field values.
Call Calculatelndex(pFLayer)
' Display index values in classes.
Call DisplaylndexClasses(pFLayer)
End Sub

Start runs the intersect operation twice to combine the three input layers of soil,
landuse, and depwater. Names of the inputs and outputs for these operations are
hard-coded and are used by the FindLayer function to locate them in the active
map. Start then passes the output from the second intersect operation, which is
referenced by pFLayer, as an argument to AddIndex, CalculateIndex, and Display-
IndexClasses. These three subs perform the sequential tasks of adding a new (index)

296 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

field, calculating the field values, and displaying the field values using a class breaks
renderer.

Private Sub Intersect(pLayer1 As ILayer, pLayer2 As ILayer, pOutName As String)
Dim pMxDoc As IMxDocument
Dim pInputLayer As IFeaturelLayer
Dim plnputTable As [Table
Dim pOverlayLayer As IFeatureLayer
Dim pOverlayTable As [Table
Dim pNewWSName As IWorkspaceName
Dim pFeatClassName As IFeatureClassName
Dim pDatasetName As |IDatasetName
Dim pBGP As IBasicGeoprocessor
Dim tol As Double
Dim pOutputFeatClass As IFeatureClass
Dim pOutputFeatLayer As IFeatureLayer
Set pMxDoc = ThisDocument
' Define the input and overlay tables.
Set pinputLayer = pLayer1
Set pInputTable = plnputLayer
Set pOverlayLayer = pLayer2
Set pOverlayTable = pOverlaylLayer
' Define the output.
Set pFeatClassName = New FeatureClassName
Set pDatasetName = pFeatClassName
Set pNewWSName = New WorkspaceName
pNewWSName.WorkspaceFactoryProglD = "esriCore.AccessWorkspaceFactory”
pNewWSName.PathName = "c:\data\chap14\Index.mdb"
pDatasetName.Name = pOutName
Set pDatasetName.WorkspaceName = pNewWSName
' Perform intersect.
Set pBGP = New BasicGeoprocessor
tol = O#
Set pOutputFeatClass = pBGP.Intersect(plnputTable, False, pOverlayTable, False, tol, pFeatClassName)
' Create the output feature layer and add it to the active map.
Set pOutputFeatlLayer = New FeatureLayer
Set pOutputFeatlayer.FeatureClass = pOutputFeatClass
pOutputFeatLayer.Name = pOutputFeatClass.AliasName
pMxDoc.FocusMap.AddLayer pOutputFeatLayer
End Sub

Intersect gets two input layers and the output name as arguments from Start.
Intersect first uses the input layers to set up the input and overlay tables. Next, the
code defines the output’s workspace and name. Then the code creates pBGP as an
instance of the BasicGeoprocessor class and uses the Intersect method on IBasic-
Geoprocessor to create the overlay output. Finally, the code creates a new feature
layer from the overlay output and adds the layer to the active map.

Private Sub Addindex(pFLayer As IFeatureLayer)
Dim pFeatLayer As IFeatureLayer

BINARY AND INDEX MODELS 297

Dim pFClass As IFeatureClass
Dim pField As IFieldEdit
Set pFeatlLayer = pFlLayer
Set pFClass = pFeatlLayer.FeatureClass
' Create and define a new field.
Set pField = New Field
With pField
.Name = "Total"
.Type = esriFieldTypeDouble
.Length = 8
End With
' Add the new field.
pFClass.AddField pField
End Sub

AddIndex gets the top layer in the active map (the layer from the second intersect
operation) as an argument from Start. The code creates pField as an instance of the
Field class and defines its properties, including the field name of Total. Then the
code uses the AddField method on IFeatureClass to add pField to the feature class
of the layer.

Private Sub Calculatelndex(pFLayer As IFeaturelLayer)
Dim pFeatLayer As IFeaturelLayer
Dim pFeatClass As IFeatureClass
Dim pFields As IFields
Dim ii As Integer
Dim pQueryFilter As IQueryFilter
Dim pCursor As ICursor
Dim pCalc As ICalculator
Set pFeatlLayer = pFlLayer
Set pFeatClass = pFeatlLayer.FeatureClass
Set pFields = pFeatClass.Fields
i = pFields.FindField("Total")
' Prepare a cursor for features that have lurate < 99.
Set pQueryFilter = New QueryFilter
pQueryFilter.WhereClause = "lurate < 99"
Set pCursor = pFeatClass.Update(pQueryFilter, True)
' Use the cursor to calculate the field values of Total.
Set pCalc = New Calculator
With pCalc
Set .Cursor = pCursor
.Expression = "([SOILRATE] * 3 + [LURATE] + [DWRATE]) / 250"

.Field = "Total"
End With
pCalc.Calculate
End Sub

CalculateIndex gets the layer with the new field as an argument from Start. The
code uses the FindField method on [Fields to find the field Total. Then the code
uses a query filter object to select those records that have lurate < 99 (nonurban land

298 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

use) and saves them into a feature cursor. Next, the code creates pCalc as an instance
of the Calculator class and defines its properties of cursor, expression, and field.
Finally, CalculateIndex uses the Calculate method on ICalculator to populate the
field values of Total.

Private Function FindLayer(Message As String) As Long
Dim pMxDoc As IMxDocument
Dim pMap As IMap
Dim FindDoc As Variant
Dim aLName As String
Dim Name As String
Dim i As Long
Set pMxDoc = ThisDocument
Set pMap = pMxDoc.FocusMap
Name = Message
For i = 0 To pMap.LayerCount - 1
alLName = UCase(pMap.Layer(j).Name)
If (@LName = (UCase(Name))) Then
FindDoc = i
End If
Next
FindLayer = FindDoc
End Function

FindLayer finds the index of the layer that matches the name from the message
statement. The function makes sure that the appropriate layers are used in the
intersect operations.

Private Sub DisplaylndexClasses(pFLayer As IFeaturelLayer)
' DisplayIndexClasses uses the sub of GetRGB.
Dim pMxDoc As IMxDocument
Dim pLayer As ILayer
Dim pGeoFeatureLayer As IGeoFeaturelLayer
Dim pClassBreaksRenderer As IClassBreaksRenderer
Dim pFillSymbol As IFillSymbol
Set pMxDoc = ThisDocument
Set plLayer = pFLayer
Set pGeoFeatureLayer = pLayer
' Define a class breaks renderer.
Set pClassBreaksRenderer = New ClassBreaksRenderer
pClassBreaksRenderer.Field = "Total"
pClassBreaksRenderer.BreakCount = 4
' Hard code the symbol, break, and label for each class.
Set pFillSymbol = New SimpleFillSymbol
pFillSymbol.Color = GetRGBColor(255, 255, 255)
pClassBreaksRenderer.Symbol(0) = pFillSymbol
pClassBreaksRenderer.Break(0) = O#
pClassBreaksRenderer.Label(0) = "Urban Land Use"
Set pFillSymbol = New SimpleFillSymbol
pFillSymbol.Color = GetRGBColor(245, 175, 0)

BINARY AND INDEX MODELS 299

pClassBreaksRenderer.Symbol(1) = pFillSymbol
pClassBreaksRenderer.Break(1) = 0.75
pClassBreaksRenderer.Label(1) = "0.60 - 0.75"
Set pFillSymbol = New SimpleFillSymbol
pFillSymbol.Color = GetRGBColor(245, 125, 0)
pClassBreaksRenderer.Symbol(2) = pFillSymbol
pClassBreaksRenderer.Break(2) = 0.85
pClassBreaksRenderer.Label(2) = "0.76 - 0.85"
Set pFillSymbol = New SimpleFillSymbol
pFillSymbol.Color = GetRGBColor(245, 0, 0)
pClassBreaksRenderer.Symbol(3) = pFillSymbol
pClassBreaksRenderer.Break(3) = 1#
pClassBreaksRenderer.Label(3) = "0.86 - 1.00"
' Assign the renderer to the layer and refresh the map.
Set pGeoFeatureLayer.Renderer = pClassBreaksRenderer
pMxDoc.ActiveView.PartialRefresh esriViewGeography, pLayer, Nothing
pMxDoc.UpdateContents

End Sub

DisplayIndexClasses gets the layer with the populated field Total as an argument
from Start. The code first creates pClassBreaksRenderer as an instance of the
ClassBreaksRenderer class and defines its properties of field and break count. Dis-
playIndexClasses then assigns the fill symbol, break, and label for each of the four
classes. The color for the simple fill symbol is obtained by entering the red (R),
green (G), and blue (B) values in the GetRGBColor function. Finally, the code
assigns pClassBreaksRenderer to the layer, refreshes the map, and updates the
contents of the map document.

Private Function GetRGBColor(R As Long, G As Long, B As Long)
Dim pColor As IRgbColor
Set pColor = New RgbColor
pColor.Red = R
pColor.Green = G
pColor.Blue = B
GetRGBColor = pColor
End Function

GetRGBColor gets the input values of R, G, and B from DisplayIndexClasses
and returns a RGB color.

Box 14.2 VectorindexModel_GP

VectorIndexModel_GP builds a vector-based index model. The macro first uses the
Intersect tool in the Analysis toolbox to overlay three feature classes. (The Intersect
tool for the ArcInfo version of ArcGIS can accept two or more input layers at one
time.) Then it uses AddField and CalculateField, both tools in the Data Management
toolbox, to add an index field and to populate the field values. Run the macro in
ArcCatalog. The macro adds Intersect2_b. Open the attribute table of Intersect2_b,
and examine the Total field.

300 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

Private Sub VectorindexModel_GP()
' Create the Geoprocessing object and define its workspace.
Dim GP As Object
Set GP = CreateObject("esriGeoprocessing.GpDispatch.1")
Dim filepath As String
filepath = "c:\data\chap14\Index.mdb"
GP.Workspace = filepath
' Execute the intersect tool.
' Intersect <features{Ranks};features{Ranks}...> <out_feature_class>
" {ALL | NO_FID | ONLY_FID} {cluster_tolerance} {INPUT | LINE | POINT}
Dim parameter1 As String
parameter1 = "depwater;landuse;soil"
Dim parameter2 As String
parameter2 = "Intersect2_b"
GP.Intersect_analysis parameter1, parameter2
' Execute the addfield tool.
' AddField <in_table> <field_name> <LONG | TEXT | FLOAT | DOUBLE | SHORT |
' DATE | BLOB> {field_precision} {field_length} {field_alias} {NULLABLE | NON_NULLABLE}
' {NON_REQUIRED | REQUIRED} {field_domain}
GP.AddField_management "Intersect2_b", "Total", "DOUBLE"
‘CalculateField <in_table> <field> <expression> {VB | PYTHON} {code_block}
GP.CalculateField "Intersect2_b", "Total", "temp", "VB", "Dim temp As Double" & vbCrlLf & _

"If [LURATE] = 99 Then" & vbCrLf & "temp = -1" & vbCrLf & "Else" & vbCrlLf & _
"temp = ([SOILRATE] * 3 + [LURATE] + [DWRATE]) / 260" & vbCrLf & "End If"

End Sub

14.3.3 RasterBinaryModel

RasterBinaryModel performs the same task as VectorBinaryModel but in raster
format. stream_gd and elevzone_gd are the raster equivalent of stream.shp and
elevzone.shp, respectively. The binary model finds areas that are in elevation zone
2 and within 200 meters of streams. In building the binary model, RasterBinary-
Model first creates a 200-meter distance measure raster from stream_gd, creates a
descriptor of elevzone_gd, and then uses the distance raster and the descriptor in a
raster data query. The output from the query shows selected areas as having the cell
value of one.
RasterBinaryModel has three subs and one function (Figure 14.3):

Start: a sub for managing the input and output datasets and for calling the other subs
Distance: a sub for creating a 200-meter distance raster from streams

QueryGrids: a sub for raster data query of two processed rasters

FindLayer: a function for finding a specific layer

Usage: Add stream_gd and elevzone_gd to an active map. Import RasterBina-
ryModel to Visual Basic Editor. Run the module. The module adds two temporary
rasters to the active map. One is Distance_To_Stream, a continuous distance raster
from streams. The other is Model, the raster-based binary model, which should look
the same as the vector-based binary model created by VectorBinaryModel.

BINARY AND INDEX MODELS 301

Start —l

FindLayer

FindLayer
Elevzone_gd
Distance

Continuous
Start .
distance measures
QueryGrids

Figure 14.3 The flow chart shows the modular structure of RasterBinaryModel.

Private Sub Start()

' Start uses the subs of FindLayer, Distance, and QueryGrids.
Dim pMxDoc As IMxDocument
Dim pMap As IMap
Dim Id As Long
Dim Message As String
Dim pRasterLy As IRasterLayer
Dim pRasterLy1 As IRasterLayer
Dim pRasterLy2 As IRasterLayer
Set pMxDoc = ThisDocument
Set pMap = pMxDoc.FocusMap
' Run Distance.

Message = "stream_gd"

Id = FindLayer(Message)

Set pRasterLy = pMap.Layer(ld)
Call Distance(pRasterlLy)

" Run QueryGrids.

Message = "Distance_to_Stream
Id = FindLayer(Message)

Set pRasterLy1 = pMap.Layer(Id)

Message = "elevzone_gd"

Id = FindLayer(Message)

Set pRasterLy2 = pMap.Layer(Id)

Call QueryGrids(pRasterLy1, pRasterlLy?2)
End Sub

Start calls the Distance sub to run a 200-meter distance measure operation from
stream_gd. Then the code calls the QueryGrids sub to run a query on elevzone_gd

302 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

and Distance_to_Stream, which is the output from the Distance sub. The result of
the query shows areas that are in elevation zone 2 and within 200 meters of streams.

Private Sub Distance(pRasterLy As IRasterLayer)
Dim pMxDoc As IMxDocument
Dim pMap As IMap
Dim pSourceRL As IRasterLayer
Dim pSourceRaster As IRaster
Dim pDistanceOp As IDistanceOp
Dim pOutputRaster As IRaster
Dim pOutputLayer As IRasterLayer
Set pMxDoc = ThisDocument
Set pMap = pMxDoc.FocusMap
' Define the source raster.
Set pSourceRL = pRasterLy
Set pSourceRaster = pSourceRL.Raster
' Perform the Euclidean distance operation.
Set pDistanceOp = New RasterDistanceOp
Set pOutputRaster = pDistanceOp.EucDistance(pSourceRaster, 200)
' Create the raster layer and add it to the active map.
Set pOutputLayer = New RasterLayer
pOutputlLayer.CreateFromRaster pOutputRaster
pOutputLayer.Name = "Distance_To_Stream"
pMap.AddLayer pOutputLayer

End Sub

Distance gets the source layer for distance measures as an argument from Start.
The code first sets pSourceRaster to be the raster of the stream layer. Next, the code
creates pDistanceOp as an instance of the RasterDistanceOp class and uses the
EucDistance method on IDistanceOp, with a maximum distance of 200 (meters),
to create a distance measure raster referenced by pOutputRaster. Finally, the code
creates a new layer from pOutputRaster and adds the layer to the active map.

Private Sub QueryGrids(pRasterLy1, pRasterLy2)
Dim pMxDoc As IMxDocument
Dim pMap As IMap
Dim pRLayer1 As IRasterLayer
Dim pRaster1 As IRaster
Dim pRLayer2 As IRasterLayer
Dim pRaster2 As IRaster
Dim pFilt2 As IQueryFilter
Dim pDesc2 As IRasterDescriptor
Dim pLogicalOp As ILogicalOp
Dim pOutputRaster As IRaster
Dim pRLayer As IRasterLayer
Set pMxDoc = ThisDocument
Set pMap = pMxDoc.FocusMap
' Define the two rasters for query.
Set pRLayer1 = pRasterLy1

BINARY AND INDEX MODELS 303

Set pRaster1 = pRLayer1.Raster
Set pRLayer2 = pRasterLy2
Set pRaster2 = pRLayer2.Raster
' Use the value field to create a raster descriptor from the elevzone raster.
Set pFilt2 = New QueryFilter
pFilt2.WhereClause = "value = 2"
Set pDesc2 = New RasterDescriptor
pDesc2.Create pRaster2, pFilt2, "value"
' Perform a logical operation.
Set pLogicalOp = New RasterMathOps
Set pOutputRaster = pLogicalOp.BooleanAnd(pRaster1, pDesc2)
' Create the output raster layer and add it to the active map.
Set pRLayer = New RasterLayer
pRLayer.CreateFromRaster pOutputRaster
pRLayer.Name = "Model"
pMap.AddLayer pRLayer
End Sub

QueryGrids gets two raster layers to be queried as arguments from Start: one
is Distance_to_Stream and the other is elevzone_gd. To isolate areas within eleva-
tion zone 2 in Elevzone_gd, the code creates pDesc2, an instance of the RasterDe-
scriptor class, by using a query filter object. Then the code uses the BooleanAnd
method on ILogicalOp to create the logical query output referenced by pOutput-
Raster. Finally, the code creates a new layer from pOutputRaster and adds the layer
to the active map.

Private Function FindLayer(Message As String) As Long
Dim FindDoc As Variant
Dim pMxDoc As IMxDocument
Dim pMap As IMap
Dim aLName As String
Dim Name As String
Dim i As Long
Set pMxDoc = ThisDocument
Set pMap = pMxDoc.FocusMap
Name = Message
For i = 0 To pMap.LayerCount - 1
alLName = UCase(pMap.Layer(j).Name)
If (@LName = (UCase(Name))) Then
FindDoc = i
End If
Next
FindLayer = FindDoc
End Function

FindLayer finds the index of the layer that matches the Message value. The
function makes sure that the appropriate layers are entered as inputs to the subs and
function.

304 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

Box 14.3 RasterBinaryModel_GP

RasterBinaryModel_GP builds a raster-based binary model. The macro first uses
the EucDistance tool in the Spatial Analyst toolbox, with a maximum distance of
200 (meters), to create a distance measure raster. Then it uses the ExtractByAt-
tributes tool to extract a raster within the elevation zone of 2. Finally, the macro
uses the BooleanAnd tool to create the model raster by querying the distance
measure raster and the extracted elevation raster. Run the macro in ArcMap. The
macro adds distance_b, elevzone_2b, and model_b to the map. model_b is the final
model.

Private Sub RasterBinaryModel_GP()
' Create the Geoprocessing object and define its workspace.
Dim GP As Object
Set GP = CreateObject("esriGeoprocessing.GpDispatch.1")
Dim filepath As String
filepath = "c:\data\chap14"
GP.Workspace = filepath
' Execute the euclideandistance tool.
' EucDistance <in_source_data> <out_distance_raster> {maximum_distance}
' {cell_size} {out_direction_raster}
GP.EucDistance_sa "stream_gd", "distance_b", 200
' Execute the extractbyattributes tool.
' ExtractByAttributes <in_raster> <where_clause> <out_raster>
GP.ExtractByAttributes_sa "elevzone_gd", "value = 2", "elevzone_2b"
' Execute the booleanand tool.
' BooleanAnd <in_raster_or_constant1> <in_raster_or_constant2> <out_raster>
GP.BooleanAnd_sa "elevzone_2b", "distance_b", "model_b"
End Sub

14.3.4 RasterindexModel

RasterIndexModel performs the same task as VectorIndexModel in raster format.
soil_gd, landuse_gd, and depwater_gd are the raster equivalents of soil.shp,
landuse.shp, and depwater.shp. In building the index model, RasterIndexModel first
reclassifies landuse_gd to exclude urban land use from the analysis. The module
then performs a map algebra operation by using the three rasters as the inputs. The
output from the map algebra operation is the index model. The cell values of the
index model range from 0.58 to 1.0. Finally, RasterIndexModel uses a color ramp
renderer to display the index model in three classes.
RasterIndexModel has three subs and two functions (Figure 14.4):

Start: a sub for performing the map algebra operation and for calling the other subs
ReclassNumberField: a sub for reclassifying the landuse raster
DisplayIndexClasses: a sub for displaying the index values in three classes
FindLayer: a function for finding a specific layer

GetRGB: a function for defining a color symbol

BINARY AND INDEX MODELS 305

Start

FindLayer

Landuse_gd
Soil_gd Depwater_gd
ReclassNumberField

Reclassed
Landuse_gd
GetRGB
DisplayIndexClasses
Index Map

Figure 14.4 The flow chart shows the modular structure of RasterindexModel.

FindLayer ‘ | FindLayer |

Start

Usage: Add soil_gd, landuse_gd, and depwater_gd to an active map. Import
RasterIndexModel to Visual Basic Editor. Run the module. The module adds two
temporary rasters to the active map. One is Reclass_Landuse, a reclassed land use
raster. The other is Model, the raster-based index model, shown in three classes.
Urban land use is treated as no data and excluded from the legend. The raster-based
index model should look very similar to the vector-based index model created by
VectorIndexModel.

Private Sub Start()
' Start uses the subs of FindLayer, ReclassNumberField, and DisplaylndexClasses.
Dim pMxDoc As IMxDocument
Dim pMap As IMap
Dim Id As Long
Dim Message As String
Dim pRasterLy As IRasterLayer
Dim pMapAlgebraOp As IMapAlgebraOp
Dim pRasterAnalysisEnv As IRasterAnalysisEnvironment
Dim pSoilLayer As IRasterLayer
Dim pSoilRaster As IRaster
Dim pLanduselLayer As IRasterLayer
Dim pLanduseRaster As IRaster
Dim pDepwaterlLayer As IRasterLayer
Dim pDepwaterRaster As IRaster
Dim pModel As IRaster
Dim pModelLayer As IRasterLayer
Set pMxDoc = ThisDocument

306 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

Set pMap = pMxDoc.FocusMap
' Reclass landuse_gd to exclude urban land use from analysis.
Message = "landuse_gd"
|d = FindLayer(Message)
Set pRasterLy = pMap.Layer(ld)
Call ReclassNumberField(pRasterly)
' Create a map algebra operation.
Set pMapAlgebraOp = New RasterMapAlgebraOp
Set pRasterAnalysisEnv = pMapAlgebraOp
' Bind the symbol R1 to soil_gd.
Message = "soil_gd"
Id = FindLayer(Message)
Set pSoilLayer = pMap.Layer(ld)
Set pSoilRaster = pSoilLayer.Raster
pMapAlgebraOp.BindRaster pSoilRaster, "R1"
' Bind the symbol R2 to reclassified landuse_gd.
Message = "Reclass_Landuse"
Id = FindLayer(Message)
Set pLanduselLayer = pMap.Layer(ld)
Set pLanduseRaster = pLanduselayer.Raster
pMapAlgebraOp.BindRaster pLanduseRaster, "R2"
' Bind the symbol R3 to depwater_gd.
Message = "depwater_gd"
Id = FindLayer(Message)
Set pDepwaterLayer = pMap.Layer(ld)
Set pDepwaterRaster = pDepwaterlayer.Raster
pMapAlgebraOp.BindRaster pDepwaterRaster, "R3"
' Execute the map algebra operation.
Set pModel = pMapAlgebraOp.Execute("([R1] * 3 + [R2] + [R3]) / 250")
' Create the output raster layer and add it to the active map.
Set pModelLayer = New RasterLayer
pModellLayer.CreateFromRaster pModel
pModelLayer.Name = "Model"
pMap.AddLayer pModelLayer
Call DisplaylndexClasses(pModellLayer)

End Sub

Start first calls ReclassNumberField to reclassify urban areas in landuse_gd as
no data, thus excluding urban areas from further analysis. Next, Start runs a raster
map algebra operation. The operation requires that each input raster be given a
“symbol.” Therefore, the code calls the FindLayer sub to locate a layer in the active
map and uses the BindRaster method on IMapAlgebraOp to bind the raster of the
layer to a symbol. The R1 symbol binds soil_gd, the R2 symbol binds
reclass_landuse, and the R3 symbol binds depwater_gd. These symbols of R1, R2,
and R3 are then used in the expression that executes the map algebra operation. The
result of the operation is an index model raster referenced by pModel. The code
then creates a new layer named Model from pModel and adds the layer to the active
map. Start concludes by calling DisplayIndexClasses to display the model layer in
three classes.

BINARY AND INDEX MODELS 307

Private Sub ReclassNumberField(pRasterLy As IRasterLayer)
Dim pMxDoc As IMxDocument
Dim pMap As IMap
Dim pRaster2Ly As IRasterLayer
Dim pGeoDs As IGeoDataset
Dim pReclassOp As IReclassOp
Dim pNRemap As INumberRemap
Dim pOutRaster As IRaster
Dim pReclassLy As IRasterLayer
Set pMxDoc = ThisDocument
Set pMap = pMxDoc.FocusMap
' Pass landuse_gd.
Set pRaster2Ly = pRasterLy
Set pGeoDs = pRaster2Ly.Raster
' Use a number remap to reclass landuse_gd.
Set pReclassOp = New RasterReclassOp
Set pNRemap = New NumberRemap
With pNRemap
.MapValue 20, 20
.MapValue 40, 40
.MapValue 45, 45
.MapValue 50, 50
.MapValueToNoData 99
End With
Set pOutRaster = pReclassOp.ReclassByRemap(pGeoDs, pNRemap, False)
' Create the output raster layer and add it to the active map.
Set pReclassLy = New RasterLayer
pReclassLy.CreateFromRaster pOutRaster
pReclassLy.Name = "Reclass_Landuse"
pMap.AddLayer pReclasslLy
End Sub

ReclassNumberField gets landuse_gd as an argument from Start. Designed to
exclude urban areas from analysis, the code creates pNRemap as an instance of the
NumberRemap class and uses the MapValueToNoData method on INumberRemap
to assign no data to urban areas (that is, with the map value of 99). Then the code
uses the ReclassByRemap method on IReclassOp to create a reclassified raster
referenced by pOutRaster. Finally the code creates a new layer from pOutRaster
and adds the layer called Reclass_Landuse to the active map.

Private Function FindLayer(Message As String) As Long
Dim FindDoc As Variant
Dim pMxDoc As IMxDocument
Dim pMap As IMap
Dim alLName As String
Dim Name As String
Dim i As Long
Set pMxDoc = ThisDocument
Set pMap = pMxDoc.FocusMap
Name = Message

308 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

For i = 0 To pMap.LayerCount - 1
alLName = UCase(pMap.Layer(j).Name)
If (@LName = (UCase(Name))) Then

FindDoc = i

End If

Next

FindLayer = FindDoc

End Function

FindLayer finds the index of the layer that matches the Message value. The
function makes sure that the appropriate layers are used in the reclassification and
map algebra operations.

Private Sub DisplaylndexClasses(pModellLayer As IRasterLayer)
' DisplaylndexClasses uses the sub of GetRGB.
Dim pMxDoc As IMxDocument
Dim pMap As IMap
Dim pRLayer As IRasterLayer
Dim pRaster As IRaster
Dim pClassRen As IRasterClassifyColorRampRenderer
Dim pRasRen As IRasterRenderer
Dim pFillSymbol As IFillSymbol
Set pMxDoc = ThisDocument
Set pMap = pMxDoc.FocusMap
Set pRLayer = pModelLayer
Set pRaster = pRLayer.Raster
' Define a raster classify color ramp renderer.
Set pClassRen = New RasterClassifyColorRampRenderer
Set pRasRen = pClassRen
Set pRasRen.Raster = pRaster
pClassRen.ClassCount = 3
pRasRen.Update
' Hard code the symbol, break, and label for each class.
Set pFillSymbol = New SimpleFillSymbol
pFillSymbol.Color = GetRGBColor(245, 245, 0)
pClassRen.Symbol(0) = pFillSymbol
pClassRen.Break(0) = 0.58
pClassRen.Label(0) = "0.58 - 0.75"
pFillSymbol.Color = GetRGBColor(245, 175, 0)
pClassRen.Symbol(1) = pFillSymbol
pClassRen.Break(1) = 0.76
pClassRen.Label(1) = "0.76 - 0.85"
pFillSymbol.Color = GetRGBColor(245, 125, 0)
pClassRen.Symbol(2) = pFillSymbol
pClassRen.Break(2) = 0.86
pClassRen.Label(2) = "0.86 - 1.00"
' Assign the renderer to the layer and refresh the map.
pRasRen.Update
Set pRLayer.Renderer = pRasRen

BINARY AND INDEX MODELS 309

pMxDoc.ActiveView.Refresh
pMxDoc.UpdateContents
End Sub

DisplayIndexClasses gets the model layer as an argument from Start. The code
creates pClassRen as an instance of the RasterClassifyColorRampRenderer class
and uses [RasterRenderer and IRasterClassifyColorRampRenderer to define the
renderer’s raster and class count. The code then provides the fill symbol, break, and
label for each class in pClassRen. The GetRGBColor function generates the color
for the fill symbol. Finally, the code assigns pRasRen to be the renderer of pRLayer,
refreshes the map, and updates the contents of the map document.

Private Function GetRGBColor(R As Long, G As Long, B As Long)
Dim pColor As IRgbColor
Set pColor = New RgbColor
pColor.Red = R
pColor.Green = G
pColor.Blue = B
GetRGBColor = pColor
End Function

GetRGBColor uses the input values of R, G, and B from DisplayIndexClasses
and returns a RGB color.

Box 14.4 RasterindexModel_GP

RasterIndexModel_GP builds a raster-based index model. The macro first uses the
Reclassify tool in the Spatial Analyst toolbox to assign no data to urban areas in the
land use raster. Then it uses the SingleOutputMapAlgebra tool to create the model
raster. The expression for calculating the index value is included in parameter 1 of
the command statement. Run the macro in ArcMap. The macro adds reclass_lu_b
and rastermodel_b to the map.

Private Sub RasterlndexModel_GP()

' Create the Geoprocessing object and define its workspace.

Dim GP As Object

Set GP = CreateObject("esriGeoprocessing.GpDispatch.1")

Dim filepath As String

filepath = "c:\data\chap14"

GP.Workspace = filepath

' Execute the reclassify tool.

' Reclassify <in_raster> <reclass_field> <remap> <out_raster> {DATA | NODATA}

Dim parameter3 As String

parameter3 = "20 20; 40 40; 45 45; 50 50; 99 NoData"

GPReclassify_sa "landuse_gd", "Value", parameter3, "reclass_lu_b"

' Execute the singleoutputmapalgebra tool.

' SingleOutputMapAlgebra_sa <expression_string> <out_raster> {in_data}

GP.SingleOutputMapAlgebra_sa "([soil_gd] * 3 + [depwater_gd] + [reclass_lu_b]) / 250", "rastermodel_b"
End Sub

A

Abbreviation, 124
Abstract class, 4, 5-6, 145, 146
AccessWorkspaceFactory, 53, 55
Actions, 19
Activate, 148
Add
Collection object 21
IRasterBandCollection, 228, 236
ISelectionSet, 178
Add Data button, 52
Add Data command, 58
Add XY Data, 92, 113
AddDeleteField, 77-79
AddElement, 148, 169
AddFeatureClass, 54-55
AddFeatureClasses, 56-57
AddField, 69, 70, 78, 79, 299
AddFromFeatureClass, 251, 271
AddFromPixelBlock, 251, 270
AddIndex, 294, 295-296, 297
Adding datasets as layers, 51, 52, 54-61
Adding fields, 67, 68, 70, 71, 77-79
Adding new form, 43-48
Adding new tool, 3942
Adding query selections, 176
Adding raster band, 228
Adding table to active map with AddTable, 60-61
Adding table to array variable, 216
AddItem, 151
AddLayer, 55, 58
AddLayerFile, 59, 60
AddLegend, 166, 170-171
AddNorthArrow, 166, 171-172
AddRaster, 58-59
AddRelationship, 72, 87
AddRelationshipClass, 90
AddScaleBar, 166, 172—-173
Add Shapefiles dialog box, 56-57
AddTable, 60-61

311

Index

AddTitle, 166
AddTitleSubtitle, 167-170
AddValue, 160, 161
Aerial photographs, 249
Aggregate statistics, JoinAggregate, 202, 203
Aggregation, 6
Algebra operation, 306, 309
AlgorithmicColorRamp, 147, 153, 165, 166
Alias name, 124
Alignment, text, 169
Allocation, 222
Allocation raster, 246, 247, 248
AlternatingScaleBar, 173
AlterSpatialReference, 124, 125, 126
AML (Arc Macro Language), 12, 15
Analysis cell size, 281, 285
Analysis environment, 224
Analysis mask, 8, 9, 222, 228-230, 278
Analysis toolbox, 206, 299
Analysis Tools, 202
AnArray variable, 21
AngularUnit, 119
Annulus, 222
Apostrophe (*), 20
Append, 202
AppendBand, 228, 247-248, 282
Appending raster band, 228
Application, 52, 55, 61, 180, 183
Arc, 55, 103, 111
ArcCatalog, 1, 9
adding or deleting fields, 68
data conversion, 92
Delete command, 64
GxDialog and GxFilter as classes, 56
GxLayer and GxFile as objects, 59
libraries, 9
metadata, 64
ShapefileToAccess functional equivalent, 96
using datasets in ArcGIS, 52
Visual Basic Editor, 29
Visual Basic Help access, 16

312 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

ArcCatalogUI, 9 Symbology/Unique values command, 158
ArcEditor, 1 using datasets in ArcGIS, 52
ArcGIS, 1 vector data display, 144

adding or deleting fields in ArcCatalog Visual Basic Help access, 16

or ArcMap, 68 ArcMapUI, 9
attribute data management, 68 ArcObjects, 1-13
binary and index models in, 288 attribute data management, 68—72
coordinate system definition storage, 117 fields and field, 69-70, 71
coordinate system management in, 118-119 relationship classes, 70-72
data conversion, 91 tables, 68—69
data conversion in, 92 color model, 148
dataset use in, 52 Component Object Model
Desktop Help, 223 (COM) technology, 15
Desktop Help Online, 13 coordinate systems, 119-121
ESRI Developer Network (EDN) displaying data
documentation libraries, 10 classification objects, 146—147
ESRI vector data models, 91 color ramp and color objects, 147-148
exploring data (queries and statistics), 176 layout objects, 148-149
feature class as feature attribute table, 3 renderer objects, 145-146
geoprocessing scripts, 13 exploring data (queries and statistics), 176—180

GridTransformation, 121

libraries, 9—10

raster data operations in, 222

spatial interpolation in, 276

terrain mapping and analysis in, 250

vector data analysis, 202

VectorIndexModel, 299
ArcGIS Developer’s Guide for VBA, 10
Arclnfo, 1, 12, 91, 299
ArcInfoWorkspaceFactory, 53, 55
Arc Macro Language (AML), 12
ArcMap, 1, 9

Add Data command, 58

adding nongeographic table to, 54

adding or deleting fields, 68

Add XY Data command, 113

Application property, 61

creation of new toolbar with existing

commands, 36-37

data display, 144

Data/Export Data command, 104

GxDialog object, 56

Join Data, 211

JoinTableToLayer, 82—-84

layer organization, 51, 52

libraries, 9

on-the-fly projection, 118

Remove command, 64

Select by Attributes command, 180

Source tab data, 64

Symbology/Categories/Unique values

command, 157

cursor, 178-179
data statistics, 179-180
query filter, use of, 177-178
for binary and index models, 288
for data conversion, 92-96
feature data conversion, objects for,
92-93, 94

rasterization and vectorization, objects for,

93, 95
XY event, objects for, 95, 96
geodatabase data model, 2—4
location data, 4
nongeographic data, 4
raster data, 3

triangulated irregular network (TIN), 3—4

vector data, 2-3

geoprocessing object, 12—13

help sources on, 10-12

interfaces, 67

libraries, 9

objects and classes, 4-5

organization of, 9-10

predefined spatial relationships, 177

properties and methods, 7-9

raster data operations, 223-226
operator objects, 223-225, 226
raster objects, 223

relationships between classes, 5-6, 7

spatial interpolation, 276-277

terrain mapping and analysis, 250-252

variable declaration, 18

vector data operations, 202-204

Symbology/Classified command, 164 ArcScene, 9, 250
Symbology/Quantities/Graduated colors ArcToolbox, 13
command, 149, 155 coordinate system projection tools, 118

INDEX 313

Coverage to Shapefile tool, 104 controls with procedures in new form, 45-47
data conversion, 92 defined, 5
Define Projection tool, 125 Attribute data
extension menu, 222 feature class as feature attribute table, 3
geographic transformation tools, 118 geodatabase versus georelational data models, 1
projecting datasets, 119 nongeographic data, 4
spatial interpolation, 276 symbols, 143
terrain mapping and analysis, 250 Attribute data management, 67-90
vector data analysis tools, 202 AddDeleteField, 77-79
ArcView, 1, 91 in ArcGIS, 68
Area ArcObjects for, 68-72
data display fields and field, 69-70, 71
renderer objects, 145 relationship classes, 70-72
symbol types, 143, 144 tables, 68—69
feature dataset, 2 calculating field values, 79-82
raster data operations, 222 CalculateField, 79-81
shapefile, updating, 209-210 UpdateValue, 81-82
ShapefilesToFeatureDataset, 100 definitions and terminology, 67
terrain mapping and analysis, 250 feature attribute table, 51
TIN object, 3, 269 joining and relating tables, 82-90
vector data analysis, 203, 204 JoinMultipleTables, 84-86
AreaUnits.mxt, 48, 49 JoinTableToLayer, 82—84
Area-wide watersheds, 264, 265 RelateTableToLayer, 86—-88
Arguments RelationalDatabase, 88-90
AddFromFeatureClass, 271 listing fields and field properties, 73—77
AddFromPixelBlock, 270 ListFieldProps, 74-76
Contour, 253 ListOfFields, 73-74
CreateNewShapefile, 217 UseFindLayer, 76-77
Dissolve, 214 Attribute method, 267
Flowdirection, 266 Attribute query(ies), 175, 176
Hillshade, 262 combining with spatial queries, 192-196
interface method, 8 BufferSelect, 192-195
intersect, 208 IntersectSelect, 195-196
methods, 19 performing, 180-183
OpenFeatureClass, 55 SelectFeatures, 180-181
pOutAcWorkspaceName creation, SelectRecords, 181-183
103-104 rectangle element, 189
RasterToShapefile, 110-111 VectorBinaryModel, 288, 289
slope raster measurement, 255 Attribute tables, 4, 53
Arithmetic operators, 222 data display, 162
Arrays spatial queries, 181
collections, 21 vector data operations, 202, 210
GraduatedColors cmd_Run_click, 151, 152 Attributes
IDTM_OnTheFly, 123-124 grouping of objects, 3
Merge, 216 layer, overlay output, 201
pPixelBlock, 270 properties as, 1, 18
programming basics, 20-21 spatial features, 2
programming elements, 20-21 spatial filter object constraints,
RasterClassifyColorRamp, 163 184, 192, 194
raster data, 3 spatial join, 202, 203
Aspect, 4, 249, 250, 251, 252, 257-258 Automatic code completion feature, VBA, 19
Aspect_GP, 260-262 Avenue programming language, 15
AspectSymbol, 258-260 Avenue scripts, 10
Association Avenue Wraps, 10

composition as type of, 7 Average, 214

314 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

B

Back link raster, 246, 247, 248
Bands, raster, 223, 281
MakePermanent, 227, 228
multiband data, 3, 146
pixel block creation, 269
RasterUniqueSymbols, 159, 162
Bar charts, 144
Base contour, 253
Base template (.mxt), 42
BasicGeoprocessor, 202, 208, 214, 216,
292, 296
Basin, 251
Basis function, radial, 276
Behavior, 7
Binary and index models, 287-309
in ArcGIS, 288
ArcObjects for, 288
RasterBinaryModel, 300-304
RasterIndexModel, 304-309
VectorBinaryModel, 288-293
VectorIndexModel, 293-300
BindRaster, 306
BiUniqueRenderer, 145
Block operations, raster data,
225, 237
Block size, pPixelBlock, 269
BlockStatistics, 225, 238
Boolean connectors, 222
Boolean data, 18
BooleanAnd, 225, 233, 303, 304
Break
Aspect_Symbol, 258
raster data render, 164
vector data display, 154, 155-156
Break(1) property, 154
Break count, 152, 153, 299
BreakCount, 153
Breaklines, 250, 271-272
Breakpoint, 32-33
Breakstrm, 55
Browser, 10-12, 26
Buffer, 194, 202
Buffer tool, 206
Buffer zone, 177
BufferDistance, 178, 193
Buffering, 201, 204-207
BufferSelect, 192195
context terminology caveat, 203
feature cursor buffer object, 202, 203
spatial queries, 192
VectorBinaryModel, 288, 289, 290,
291, 293
vector data analysis, 202, 203

Button, 26, 36-37
adding new, 37-39, 40
forms, 43, 44
GraduatedColors form, 150
linking to form, 48

Cc

C++ programming language, 15, 49
Calculate, 70, 298
CalculateField, 79-81, 299
CalculateIndex, 294, 295-296, 297-298
Calculating field values, 70, 79-82
CalculateField, 79-81
UpdateValue, 81-82
Calculation expression, 68
Calculator, 70, 298
Calling subs and functions, 27-28, 30
CanAlterSpatialReference, 124, 125, 126
Cardinalities, 68, 90
Carriage return, 26, 74, 198
Carto, 9
Case
font properties, 169
naming conventions, 18, 62
Catalog tree, 52
Categories, vector data display, 144
cboMethod, 150
Cell size
AddFromPixelBlock argument, 270
analysis, 281, 285
for data conversion, 20
IRasterAnalysisEnvironment, 250
Kriging, 283
raster data operations, 222
SetCellSize, 8, 92
Cell-based raster data, symbol option, 146
Cell-by-cell (local) operations; see Local
operations, raster data
Cell Statistics, 222
Cells, 3, 221, 222, 225, 231
data conversion, 91
FeatureToRaster output, 108
raster output, 107
RasterToShapefile arguments, 111
data display, 144
EucDist, 243
input raster, 106
neighborhood operations, 237-238
pixelblock, 269
pOutputRaster, 233
ReclassifySlope, 257
spatial interpolation, 275
watershed analysis, 267

INDEX

Center justified alignment, 169
Central meridian, 117, 124
Central parallel, 120
Centroid, 203, 204, 216-219, 222
ChartRenderer, 145
Charts, 144
CheckBox, 44
Chloropleth map, 149, 150
ChooseSlopeMeasure.txt, 255
Chr$() functions, 26, 74
Chroma, 143
CIELAB model, 148
Circle, 190, 222
Circular semivariograms, 281, 283
Cities, spatial query(ies), 185-186, 187, 188189,
190, 192
Class(es), 1
ArcObjects, 4-5
Developer Help, 10
relationships between, 5-6, 7
association, 5
data display, 144, 150, 152
definitions and terminology, 4
Dissolve, 214
feature, 2
forms, 44
QuerylInterface (QI), 19-20
variable declaration, 18
Class breaks, 147, 152, 164
Class breaks renderer, 152, 155, 163
Class relationships, libraries, 9
Classbreak, 163
ClassBreaksRenderer, 145, 152, 155, 299
ClassCount, 163
ClassField, 163
ClassID, 153
Classification, 144
objects and classes, displaying data, 146147,
151, 152, 153, 163
reclassified difference rasters, 283, 285, 286
Reclassify, 222, 233-235
ReclassifySlope, 256-257
Classification methods, forms, 44, 150, 151
Classified option, 144, 146
Classify (abstract class), 146, 153
Click, form default procedures, 45-46
Clip, 13
rasters, 283
spatial queries, 192, 193
vector data analysis, 201, 202, 203, 207
Cluster tolerance, 13
cmdCancel, 47, 150
cmdCancel_Click, 150, 155
cmdRun, 150
cmdRun_Click, 46, 150-155

315

CMYK (cyan, magenta, yellow, black) color, 147,
148
Coarse-grained object, 12, 15
Coclasses, 4
ArcObject coordinate systems, 119
ArcObjects Developer Help, 10
Classify classification types, 146
ESRI Object Browser (EOBrowser), 11, 12
Geodatabase objects, 53
MemoryRelationshipClassFactory, 71
RelQueryTableFactory, 71
renderer objects, 145, 146
Code
automatic completion feature, 19
debugging, 30-32
elements, 16-21
writing, 21-26
Code window, 28, 29
Cokriging, 276
Collections
creation of, 21
raster band, 159, 227, 228, 282
Color
ArcGIS, use of color ramp in, 144
ArcObjects, 147-148
raster, 161-166
symbol properties, 156
symbols for data display, 143
vector, 149-155
vector data display, 144
VectorIndexModel, 294, 299
Color ramp, 147-148
Aspect_Symbol, 258-260
GraduatedColors cmdRun_Click, 151, 153-154
RasterClassifyColorRamp, 161-164
RasterIndexModel, 309
RasterUserDefinedColorRamp, 164-166
use of, 144
Column charts, 144
Columns, table, 53, 67
COM; see Component Object Model
CombinatorialAnd, 225
Combine, 178, 225, 235-237
Combine2Rasters, 235-237
Combo box, 44, 45, 150, 151
Comma-delimited text files, 4
Command button, forms, 43, 44, 45
Commands tab, 36, 37
Comment lines, 20
Compare, 283-286
Compiler errors, 18-19, 30
Component Object Model (COM), 15, 56
Composition, relationships between classes, 6
Computer-aided design (CAD), 92
Connectivity rules, 3

316 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

ConnectProperties, 94, 163
Constant buffer distance, 206
Constants, 10
Constraints

maximum search distance, 202

spatial filter objects, 184, 192
Containment, 176, 177, 185, 201,

202, 203

Context menu, 52

data conversion, 92

joins and relates, 68

JoinTableToLayer, 82-84
Continue tool, 33
Contour, 249, 250, 251
Contour derivation, 252-253
Contour lines, 3, 250
Contour tool, 253
ContourAsPolyline, 251
Contouring, 252
Contrast, raster data display, 144
Controls

forms, 44

NewUIControl dialog box, 39
Conventional color schemes, 143
Conversion of data, see Data conversion
Conversion toolbox, 98

Conversion to single (CSng) function, 154

Convert command, 92
ConvertFeatureClass, 93, 97, 100,
102, 104
CoverageToAccess, 104
CoverageToShapefile, 106
IFeatureDataConverter, 130
NAD27to83_Shapefile, 133
ProjectShapefile, 136
ConvertFeatureDataset, 93, 130
Convert/Features to Raster, 108
Convert/Raster to Features, 110
Convert/Raster to Tin, 268
ConvertTable, 93, 130
ConvertToPolygons, 251
Coordinate systems, 117-141
AddFromPixelBlock argument, 270
ArcObjects for, 119-121
dataset projection, 134—141
ProjectShapefile, 134—-137
ReprojectShapefile, 137-141
use of different datum, 137
defining, 118, 124-128
CopySpatialReference, 127-128
DefineGCS, 125-127
definitions and terminology, 2
geographical transformations, 128—134
NAD27to83_Map, 128-129
NAD27to83_Shapefile, 129-134

location data, 4
managing in ArcGIS, 118-119
on-the-fly projection, 122-124
IDTM_OnTheFly, 122-124
UDM_OnTheFly, 122
raster data operations, 222
x-, y-coordinate conversion to point features,
91, 95, 96, 113-115
Coordinate systems, spatial analysis, 118
CoordinateUnit, 120
Copy command, 52
CopyDataset, 62-64
CopySpatialReference, 127-128
Core Object Library, 10
Cost distance measures, 222, 226
Cost raster, 246
Cost units, 221
Cost Weighted, 222
CostAllocation, 226
CostBackLink, 226
CostDist, 245-246
CostDistance, 226, 245, 246
CostDistanceFull, 247
CostDistFull, 246-248
CostPath, 226
CostPathAsPolyline, 226
Count, 178, 214
Count variable, FieldCount property, 73
Counties, spatial query(ies), 185, 186, 187, 188
Counting (enumeration), selected features, 185, 189
Coverage
adding datasets as layers, 54
adding to active map with AddFeatureClass, 55
CoverageToShapefile, 104—106
data conversion, 91-93
data formats, 91
Geodatabase coclasses, 53
geodatabase data model, 1
Visibility, 264
Coverage to Shapefile tool, 104
CoverageToAccess, 103-104
CoverageToShapefile, 104-106
Create, 278
coordinate systems, predefined objects, 121
IFeatureClassDescriptor, 108
IRasterDescriptor, 111, 223
pPropset, 103-104
pRasterDescriptor, 112
Create allocation, 246
Create direction, 246
CreateESRISpatialRefemaceFromPRIJFile, 121
CreateFeatureClass, 219
CreateFeatureDataset, 102
CreateFromDataset, 58-59, 107
CreateFromFilepath, 58-59, 240

INDEX

CreateFromRaster, 58-59, 229
CreateFromSelectionSet, 108, 111, 223
CreateGeographicCoordinateSystem, 121, 125
CreateGeoTransformation, 121, 132
Create/Modify TIN/Add Features, 271
CreateNewShapefile, 216-219
CreateParameter, 121, 123-124
CreatePersonalGDB tool, 98, 102
CreatePixelBlock, 269
CreateProjectedCoordinateSystem, 121, 122
CreateProjection, 121
CreateRelationshipClass, 87-88
Create Subsets, 276
CreateSurroundFrame, 149, 170
CreateUnit, 121
Criteria, weighting, 287
CSng (conversion to single) function, 154
Current map document (.mxd), 42
Cursor, 176
CalculateField, 80
creation of, 178-179
DataStatistics, 197
DataSubsetStatistics, 199
ICalculator properties, 70
NextFeature, 24
spatial queries, 175, 185
BufferSelect, 194
MultipleSpatialQueries, 188
SelectByShape, 192
SpatialQuery, 184, 185
SpatialQueryByName, 187
vector data analysis, 202, 203
buffering, 204, 205
updating area and perimeter of shapefile,
210
VectorIndexModel, 298
Curvature, 250
Curvature, surface, 4
Customization
sample toolbar creation, 36-37
user interface, 35-49; see also User interface
customization
Customize dialog box, 36-37, 38, 39

D

Dangling arcs, 111
Data; see Attribute data management; Exploring
data (queries and statistics)
Data area, TIN object, 268-269
Data conversion, 91-115
adding XY events, 113-115
in ArcGIS, 92
ArcObjects for, 92-96

317
feature data conversion, objects
for, 92-93, 94
rasterization and vectorization, objects for,
93, 95

XY event, objects for, 95, 96
companion CD, 29
coordinate systems, 118, 121
CoverageToAccess, 103-104
CoverageToShapefile, 104—106
NAD27to83_Shapefile, 133
RasterDescriptor, 223
rasterization and vectorization, 106—-112
FCDescriptorToRaster, 108—110
FeatureToRaster, 106-108
RasterDescriptorToShapefile, 111-112
RasterToShapefile, 110-111
sample code, 20
raster to TIN, 270
shapefile to GeoDatabase, 96—103
MultipleShapefilesToAccess, 98—100
ShapefilesToFeatureDataset, 100102
ShapefileToAccess, 96-98
terrain mapping, 252
updating area and perimeter of shapefile,
209
Data display; see Displaying data
Data formats; see Data conversion; Formats, data
Data frame, 51, 52, 202, 206
Data Management toolbox, 63—64, 293, 299
Data Management Tools, 202
Data models, 1
geodatabase; see Geodatabase, data models
TIN, 249
Data processing, Geoprocessing object, 13
Data subsets; see Subsets, data
Data types
arrays, 20-21
collections, 21
declaration statement, 18
double, 28
geodatabase, 2—4
Select Case statement, 22-23
dataArray, 270
Database; see also dBASE files; Relational
databases
geodatabase versus georelational data models, 1
tables
joining and relating, 88-90
nongeographic data linkage, 4
DataEdgeCount, 251
Data/Export Data command, 92, 104
DataFrequencies, 151
DataNodeCount, 251, 273
Dataset(s), 52-53
adding as layers, 54-61

318 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

AddFeatureClass, 54-55
AddFeatureClasses, 56-57
AddLayerFile, 59, 60
AddRaster, 58-59
AddTable, 60-61
data conversion, coverage to geodatabase and
shapefiles, 103—106
feature, 2
hierarchical structure in Geodatabase, 53
managing, 62-64
CopyDataset, 62—-64
DeleteDataset, 64
reporting geographic dataset information, 65
SpatialRef, 65
name objects in macros, 53-54
projection, coordinate systems, 118, 119,
134-141
ProjectShapefile, 134-137
ReprojectShapefile, 137-141
use of different datum, 137
raster, 3
TIN (triangulated irregular network), 3—4
types of data, 53
DatasetName, 93
DataStatistics, 197-198
DataSubsetStatistics, 198—-199
DataTriangleCount, 251, 273
DataValues, 151
Datum, 119, 120
Datum change, 118
dBASE files, 51
adding datasets as layers, 54
adding table to active file with AddTable, 60
data conversion in ArcGIS, 92
JoinMultipleTables, 84-86
JoinTableToLayer, 82-84
object classes, 4
RelationalDatabase, 88-90
table objects, 53
DblClick, 39
Debug object, 32
Debug.Print, 32-33
Debugging code, 28-29, 30-33
Decimal digits, 68
Declaration statement, 17, 18, 20-21
Default fields, feature class, 2—3
Default values
ArcMap data display, 144
validation rules for grouping objects, 3
Define, IDTM_OnTheFly, 124
Define Projection tool, 125
Defined interval classification method, 144
DefinedInterval object, 146
DefineEx, 120
DefineGCS, 125-127

Defining
coordinate systems, 119, 120, 124-128
CopySpatialReference, 127-128
DefineGCS, 125-127
fields, 68
Delete command, 52, 64
DeleteDataset, 64
DeleteField, 69, 70, 78, 79
Deleting fields, 67, 71; see also Adding or deleting
fields
Descriptive statistics, 175, 176, 196—-199
Desktop Help, 223
Determinstic methods, spatial interpolation, 275
Developer Help, ArcObjects, 10
Dialog boxes
Customize, 36-37
IGxDialog, 57
MultipleShapefilesToAccess, 99
NewUIControl, 39
Raster Calculator, 222
writing code, 26
Difference, 193
Difference raster, 283, 285-286
Digital elevation model (DEM), 3, 249, 250
Digital orthophotos, 3
Digitizing, vectorization and rasterization, 91
Dim, 18, 21
Discrete buffer zones, 207
Display library, 9
Display tab, 52
DisplayIndexClasses
RasterIndexModel, 304, 305, 306, 308, 309
VectorIndexModel, 294, 295-296, 298, 299,
304, 305, 306
Displaying data, 144-173
in ArcGIS, 144-145
ArcObjects for, 145-149
classification objects, 146-147
color ramp and color objects, 147-148
layout objects, 148-149
renderer objects, 145-146
NAD27to83_Shapefile, 133
on-the-fly projection, 118
page layout, 166—173
raster, 158-166
RasterClassifyColorRamp, 161-164
RasterUniqueSymbols, 158-161
RasterUserDefinedColorRamp, 164-166
vector, 149-158
GraduatedColors, 149-155
GraduatedSymbols, 155-157
UniqueSymbols, 157-158
DisplayRelationshipClass, 71, 72, 84, 86
Dissolve, 201, 202, 203, 207, 213-215
DissolveField, 214

INDEX

Dissolve.Shape, 214
Dissolving overlap, 206
Distance
RasterBinaryModel sub, 300, 301, 302
raster data operations, 222, 241-243
buffering, 204
CostDist, 245-246
CostDistFull, 246-248
EucDist, 241-243
objects, 224, 226
Slice, 243-245
use of feature layer as source in EucDist,
242-243
spatial interpolation, Idw, 278
vector data operations, 201
constant, line feature buffering, 206-207
JoinByLocation, 211-212
spatial join, 202
Distance measure raster, 302, 304
Distance raster, 300
Distance/Cost Weighted command, 246
Divide, 11, 225
dll creation, 49
Do...Loop statement, 23-24, 57, 100, 102
Do Until loop, 23-24
Do While loop, 23
Documentation Library, EDN, 10
Domains, attribute, 3
DoModalOpen, 57, 99
DotDensityRenderer, 145
Double data type, 18, 28, 68
Double procedures, 28
Drainage, 264
Dropdown lists, 19, 44, 150, 176
Dynamic array, 21
Dynamic link library, 49
Dynamic segmentation data model, 103

E

Edges, 251, 252

Edit mode, pTin, 268, 270

Editing, 178

Editor, see Visual Basic Editor

EditTin, 271-272

Elevation, 249, 250, 252, 253
Aspect, 257-258
Contour, 252, 253
RasterBinaryModel _GP, 304
RasterToTin, 268, 269
Slope, 254
VectorBinaryModel, 288, 289
Visibility, 263
watershed analysis, 264, 265
z-tolerance, 270

319

Elevation raster, 249, 250, 251, 252
Eliminate, 202
Emidastrum feature class, 55
emidastrum.shp, 242
emidatin, 270
Encapsulation principle, 18
End Function statement, 17
End statement, 47
End Sub statement, 17
EnumFieldError, 130, 132
EnumGxObject, 57
EnumlnvalidObject, 5, 6, 7, 130
Envelope, 64, 171, 172
Envelope class, 171
Environmental Systems Research Institute
(ESRI), see ESRI (Environmental Systems
Research Institute)
Equal interval classification method, 144
Equallnterval object, 146, 152
EqualTo, 225
Equatorial projection origin, 117
Erase, 202
Err object, 31-32
ErrorHandler, 32
Errors/error handling/error checking
EnumlnvalidObject, 130
FieldError objects, 130
If...Then...Else statement uses, 22
NAD27to83_Shapefile, 133, 134
programming basics, 31-32
Breakpoint and Immediate Window use,
32-33
On Error Statement, 31-32
types of, 30-31
put by reference and put by value properties,
18-19
ReprojectShapefile, 140
specifying Application in SelectRecords, 183
ESRI (Environmental Systems Research Institute)
ArcObjects, comparison with Avenue, 15
Developer Network (EDN) Web site, 10
grids, 3, 106
industry-specific ArcObjects, 9—10
libraries, 9—-10
library locator, 12
Object Browser (EOBrowser), 10-12
Object Library, 11, 12
publications, help sources, 10
vector data models, 91
ESRI grid, 223, 228
esriCIELabAlgorithm, 147, 154
esriCore.ShapefileWorkspaceFactory, 60
esriCore.TextFileWorkspaceFactory, 113
esriGeoAnalysisLogisticTrend, 280
esriGeoAnalysisRegularizedSpline, 280

320 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

esriGeoAnalysisSlopePercentrise, 255
esriGeoAnalysisTensionSpline, 280
esriGeoAnalysisVisibility types, 264
esriHSVAlgorithm, 147
esriLabLChAlgorithm, 147
esriLeftOuterJoin, 84
esriSelectFeatures, 183
esriSelectionResultAdd, 188
esriSpatialRelContains, 177, 185
esriSpatialRelEnum Constants, 177
esriSpatialRelEnvelopelntersects, 177, 203
esriSpatialRelIntersects, 177, 203
esri.System.Array, 216
esriTHACenter, 169
esriViewGeoSelection, 181
EucDist, 241-243
EucDistance, 226, 242, 302, 304
EucDistToFeatureLayer.txt, 242
Euclidean distance measures, 241-242, 243-245
Event source, 113, 114, 115
Event-to-fields properties, 113
EventProperties, 95, 96, 114
Events
MouseDown, 40-42
types of procedures, 16, 17
EventTableName, 96, 114
Exact methods, spatial interpolation, 275
Executable (exe) files, 49
Execution of code, 32-33
breakpoints, 32-33
End statement, 47
error messages, see Errors/error handling/error
checking
termination of, 22, 47
Visual Basic Editor tools to start, stop,
and step through, 33
Exit For statement, 24
Exit Sub statement, 22, 32
Explore Data, 276
Exploring ArcObjects, 10
Exploring data (queries and statistics), 175-199
in ArcGIS, 176
ArcObjects for, 176-180
cursor, 178-179
data statistics, 179—-180
query filter, use of, 177-178
attribute query(ies), performing, 180-183
descriptive statistics, deriving, 196-199
spatial and attribute queries, combining,
192-196
BufferSelect, 192-195
IntersectSelect, 195-196
spatial query(ies), performing, 184—192
MultipleSpatialQueries, 187-189
SelectByShape, 187-192

SpatialQuery, 184-185
SpatialQueryByName, 186—187
SpatialQueryByName_GP, 185-186
Export command, 92
ExportESRISPatialReferenceToPRJFile, 121, 126
ExportFeatureClass, 93
Exporting, 48, 92, 93, 97-98, 121, 126
ExportTable, 93
Expression, calculator, 70, 298
Extension libraries, 9, 10
Extensions, 222, 250
Extensions, file, 42, 48
Extent, 269
abstract class and, 4
coordinate systems, 124
IGeoDataset, 125
IRasterProps, 269
SpatialRef, 64
Extent properties, 177
Extract toolset, 202
ExtractByAttributes, 304
ExtractByMask, 228-230, 280, 283
Extraction, raster data, 228-230, 247

F

Failed objects, see Errors/error handling/error
checking
False easting, 117, 120, 124
False northing, 117, 120, 124
FCDescriptorToRaster, 108-110
Feature(s)
attribute table, 51, 67, 202
buffer creation, 205
cursors, see Feature cursors
IBasicGeoprocessor inputs, 202
symbol types, 143
table rows as, 67
vector data display, 144
vector data operations, 201, 202, 203
Feature-based symbols, data display,
143, 144, 145
Feature-based workspace, 63
Feature class descriptor, 280, 281, 284
Feature classes and datasets, 2, 67, 119
abstract class and, 4
adding datasets as layers
AddFeatureClass, 54-55
AddFeatureClasses, 56-57
attribute data management
accessing through feature layer, 68—69
AddDeleteField, 78
joining two tables to, 72
JoinMultipleTables, 84-86

INDEX 321

JoinTableToLayer, 82—-84 joining and relating tables, 68
RelateTableToLayer, 86-88 properties, 67, 70, 73-77
RelationalDatabase, 88-90 relationship classes, 70-71
tables, 67 table columns, 67
buffering, see Buffer ClassBreaksRenderer properties, 299
coordinate systems coordinate systems, 121
DefineGCS, 126 creation of new and validation with
NAD27to83_Shapefile, 131, 132, 133 FieldChecker, 130
data conversion, 91, 129-130 relationship between Field, Fields, and
in ArcCatalog, 92 GeometryDef classes, 131
ArcObjects, 92-93, 94 ReprojectShapefile, 139
conversion to geodatabase feature class, 7 data display, 151, 152, 153
CoverageToShapefile, 104—105 GraduatedColors, 151
IExportOperation, 97-98 GraduatedSymbols, 155
rasterization, 20, 106-108 renderer objects, 145, 152, 158
ShapefilesToFeatureDataset, 100-101 vector data, 144
ShapefileToAccess, 96-98 data type description, Select Case statement
dataset and layer management, 51, 53, 63 uses, 22-23
geodatabase data model, 2-3 form uses, 43—44
polygon, 203 variable declaration, 17-18
queries, 176 Field Calculator, 68
spatial query(ies), 185 Field class, Centroid, 219
vector data operations, see Vector data Field name, 150
operations Field type value, 75
Feature cursor, 24, 82, 179, 180, 192 FieldChecker, 130, 132, 135
buffering, 202, 203, 204, 205, 206 FieldCount, 24, 70, 73, 74
BufferSelect, 194 FieldDistance, 202
Centroid, 218 FieldError, 130, 132
IFeatureCursor, 82, 180 FieldIndex, 159, 161
IFeatureCursorBuffer, 202, 203 FieldName, 26, 74
updating area and perimeter of shapefile, 210 File extensions, 42, 48
Feature ID, 106, 108 File formats, 49, 117
Feature label, 1 File geodatabases, 53
Feature layer(s), 5, 53; see also Layer(s) FileGDBWorkspaceFactory, 53
FeatureClass , 4, 68-69, 179 Fill, 144, 145, 146, 251
FeatureClassDescriptor, 108, 109, 277, 278 Fill symbol, 189, 191, 299
FeatureClassName, 131, 212 Filled elevation raster, 264, 265, 266
data conversion, 92, 93, 94, 97, 104, 105 FillSymbol, 146
vector data operations, 205, 208, 214, 216 Filters, 56, 99; see also Query filter
FeatureclassToFeatureclass tool, 98 FindDoc, 62, 77
FeatureclassToGeodatabase tool, 102 FindField, 69, 70, 78, 82, 297
FeatureCursor, 24, 82, 179, 180 FindFrame, 148
FeatureCursorBuffer, 202, 205, 291 Finding relates, 71
FeatureDataConverter, 6, 7, 92-93, 97, FindLayer, 61-62, 76-77, 294
129-130, 133 RasterBinaryModel, 300, 301, 303
FeatureDatasetName, 94 RasterIndexModel, 304, 305, 306,
FeatureLayer, 6, 57, 177, 178, 183 307, 308
FeatureRenderer, 145 VectorIndexModel, 295, 298
FeatureToRaster, 106—108 FindRelationshipClasses, 72
Field(s) Fips, 112
association of Field with Fields, 5, 69-70 First standard parallel, 120
attribute data management Float, 11, 225
adding or deleting, 68, 77-79 Flow accumulation, 251, 267
ArcObjects, 69-70, 71 FlowAccumulation, 266

calculating values, 70, 79-82 FlowDirection, 251

322 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

Flowdirection, 266
FlowdirectionDS, 266
FlowLength, 251
Flush interval, 97, 134
Focal operations, raster data, 225
FocalMean, 238-239
FocalStatistics, 225, 238
Folders, 52
Font properties, 149, 168-169
For Each...Next Statement, 25
For...Next loop, 62, 154, 161
For...Next Statement, 24-25, 32-33, 74, 76
Form(s), 4348
associating controls with procedures, 45-47
designing, 44-45
GraduatedColors, 150-155
linking button to, 48
running, 47-48
storing in a template, 4849
Formats, data, 1, 51; see also Data conversion
Formats, file; see File formats
Formatting, text, 149, 168-169
Frame, 44
data; see Data frame
data display, 148, 149, 167, 170-171, 172, 173
IFeatureCursorBuffer2, 202
FrameElement, 148, 149
frm files, 48
frmAreaUnits form, 44, 45, 47-48, 49
from, SQL syntax, 176
Frx files, 48
Full Extent, 36-37
Function keyword, 17
Functions
calling, 27-28, 30
message boxes, 26
types of procedures, 16-17

G

Gaussian semivariograms, 281
General layout template, 144
General toolset, 202
Generalization, of features, 91, 111
Generalization toolset, 202
GeoAnalyst Library, 10
Geodatabase
adding datasets as layers, 54, 55
data conversion, 209
in ArcGIS, 91-92
objects for feature data conversion, 92-93
shapefile, 96103
x-, y-coordinates to point features, 92
data models, 1, 2-4, 67

location data, 4
nongeographic data, 4
raster data, 3
terminology and definitions, 2
triangulated irregular network (TIN), 3—4
vector data, 2-3
flush intervals, 134
hierarchical structure, 53, 100
libraries, 9
RelateTableToLayer_GP, 87-88
relationship classes, storage of, 70-71
Geodatabase library, 9
GeoDataset, 4, 53, 124, 125
Geographic coordinate system, 2, 113-115
Geographic data/datasets, 67
abstract class for sharing properties
and methods, 4
adding datasets as layers, 51
Contour, 253
CopyDataset, 63
data conversion, 91
definitions and terminology, 2
geodatabase versus georelational
data models, 1
reporting, 65
SpatialRef, 64
Geographic Information system (GIS), 1, 91, 117
Geographic transformations
coordinate system projection tools, 118
coordinate systems, 128-134
NAD27to83_Map, 128-129
NAD27to83_Shapefile, 129-134
performing, 118
NAD27to83_Shapefile, 131-132
GeographicCoordinateSystem, 5-6, 119, 120
Geometry
ITopologicalOperator, 192, 193, 203
layout objects, 148
raster data operations, 221, 222
spatial queries
MultipleSpatialQueries, 188
SelectbyShape, 189-192
spatial filter properties, 176, 177
SpatialQuery, 184, 185
vector data operations, 203, 219
Geometry fields, see Shape (geometry) field(s)
GeometryDef, 5, 130, 131, 219
GeometryType, 131
Geoprocessing library, 9
Geoprocessing (GP) macros, 63-64, 67
AddDeleteField_GP, 79
Aspect_GP, 260-262
CalculateField_GP, 80-81
Combine2Rasters_GP, 237
CopyDataset_GP, 63—64

INDEX

DataStatistics_GP, 198
DefineCGS_GP, 126-127
Dissolve_GP, 214-215
EucDist_GP, 243
ExtractByMask_GP, 229-230
FeatureToRaster_GP, 108
Idw_GP, 279
Intersect_GP, 209
Kriging GP, 282-283
ProjectShapefile_GP, 137
RasterBinaryModel_GP, 304
RasterIndexModel_GP, 309
RasterToTin_GP, 270-271
ReclassNumberField_GP, 235
RelateTableToLayer_GP, 87-88
ReprojectShapefile_GP, 141
SelectFeatures_GP, 181
ShapefileToAccess_GP, 98
SpatialQueryByName_GP, 185-186
VectorBinaryModel_GP, 293
VectorIndexModel_GP, 299-300
XYEvents_GP, 115
Geoprocessing (GP) objects, 12-13, 15, 63, 91
IBasicGeoprocessor, 202, 203
Merge, 215, 216
Geospatial data, 2
Geostatistical analyst, 276
Geostatistical wizard, 276
GeoTransformation, 120-121
GetAspectDegrees, 251
GetHistogram, 151, 152, 162
GetRGB, 294, 304, 305
GetRGBColor, 150, 153-154, 155, 156,
158, 299, 309
GetSlopeDegrees, 251
GetSlopePercent, 251
GetSpatialReferences, 121, 129, 132
Getting to Know ArcObjects: Programming
ArcGIS with VBA, 10
Global methods, spatial interpolation, 275, 276
Global positioning system (GPS) data, 3, 250
GpDispatch, 12
GPS (global positioning system) data, 3, 250
Graduated colors, 144
GraduatedColors, 149-155
GraduatedSymbols, 155-157
Graphic elements/graphics; see also Data display
container, 148, 167, 169
data queries, 175, 176
form, 48
SelectbyShape, 189, 190
Graphic files, 1, 3
GrayColor, 147
Grayscale, 148
GreaterThan, 225

323

Grid(s), 3, 106, 133, 223, 228

Grid model, 3

GRIDCODE, 106, 110

GridCount, 131, 133

GridSize, 131, 133
GridTransformation, 121

Grouping objects, validation rules, 3
Groups, object-oriented technology, 1
GRS80 (Geodetic Reference System 1980), 117
GxDataset object, 57

GxDialog, 56, 99, 293

GxFile, 59

GxFilter, 56

GxFilterShapefiles, 56, 99

GxLayer, 59, 60

GxObject, 57

H

Hard breaklines, 271-272
Heading, 160, 161
HeadingCount, 160
Height, 269, 271
Help sources
accessing, 16
ArcObjects, 10-12
developer help, 10
ESRI library locator, 12
ESRI object browser, 10-12
form design, 45
operator objects, 223
put by reference and put by value properties,
18-19
Hierarchical structure, 51
Geodatabase, 53
map and layer objects in ArcMap, 52
ShapefilesToFeatureDataset output, 100
Table, ObjectClass, and FeatureClass, 68—69
High-precision spatial reference, 121
HighestPosition, 225, 237
Hillshade, 249, 250, 251, 262
Histogram data, 147, 151, 152, 162, 163, 276
HLS (hue, lightness, saturation) color, 147, 148
Horizontal alignment, 169
HSYV (hue, saturation, value) color, 143, 147, 148
Hue (HLS and HSV color), 143, 147, 148
Hydrologic operation object, 265

TActiveView, 148, 189

TArea, 203, 204, 218

IBasicGeoprocessor, 202, 203, 207, 208, 214, 296
IBufferProcessingParameters, 202, 203

324 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

ICalculator, 70, 71, 80, 298
IClass, 161
IClassBreaksRenderer, 153
IClassify, 152, 153
IConversionOp, 20, 92, 107, 110, 111, 243
ICurve, 203, 204
ID (feature label), 1, 3, 106
IDataset, 228, 253
IDataset interface, 63
IDatasetName, 60, 93, 94, 131
data conversion
adding XY events, 113
CoverageToAccess, 104
CoverageToShapefile, 105
MultipleShapefilesToAccess, 99-100
ShapefilesToFeatureDataset, 101
ShapefileToAccess, 97
vector data operations, 208, 212, 214, 216
IDataStatistics, 179, 180
idcities, 190
Identity, 202
IDisplayRelationshipClass, 71, 72, 84, 86
IDistanceOp, 224, 226, 242, 246, 247, 302
IDTM coordinates, 137-141
IDTM_OnTheFly, 122-124
IDW method, 276, 277-279, 285
IDW raster, Compare, 283
IElement, 148, 169, 171, 191
IEnvelope, 190
IExportOperation, 93, 97-98
IExtractOp, 224, 229
If...Then.. .Else statement, 21-22
IFeature, 218
IFeatureClass, 78, 82, 210, 297
IFeatureClassDescriptor, 108, 109
IFeatureClassName, 135, 136, 137
IFeatureCursor, 24, 82, 179, 180, 210
IFeatureCursorBuffer, 202
IFeatureCursorBuffer2, 202, 206
IFeatureDataConverter, 93, 97, 98, 104, 106
CoverageToShapefile, 106
interfaces, 7
NAD27to83_Shapefile, 129-130
ProjectShapefile, 136
IFeatureDataConverter2, 7, 93, 129-130
IFeatureLayer, 69, 178, 185, 205, 291
IFeatureSelection, 177, 178
BufferSelect, 193, 194
MultipleSpatialQueries, 187, 188
SelectFeatures, 181
IFeatureWorkspace, 19, 20, 53, 55, 219
IField, 70
IFieldChecker, 130
IFieldEdit, 69-70, 78
IFields, 297

AddDeleteField, 78
FieldCount property, 24, 73
Field objects and, 69-70
IFieldsEdit, 69, 70
IFillShapeElement, 191
IFontDisp, 149, 169
IFormattedTextSymbol, 149, 169
IGeoDataset, 64, 124, 125, 126, 217, 228
IGeoDatasetSchemaEdit, 124, 125, 126
IGeoFeatureLayer, 154, 156, 157, 158, 253
IGeographicCoordinateSystem, 119, 120
IGeographicCoordinateSystemEdit,
119, 120
IGeometryDef, 130, 131
IGeometryDefEdit, 130, 131, 133, 135
IGraphicsContainer, 148, 169
IGridTransformation, 121, 129, 132
IGxDataset, 57
1GxDialog, 57, 99
IGxFile interface, 59, 60
iHeading, 161
IHistogram, 147, 151, 152, 162
IHydrologyOp, 250, 251, 266, 267
IInterpolationOp, 276, 278, 279, 280, 281
ILinearUnit, 123
ILocalOp, 224, 225, 236, 237
ILogicalOp, 224, 225, 231, 303
Image, form controls, 45
IMap, 55, 58, 62, 69
IMapAlgebraOp, 306
IMapFrame, 148, 149, 167, 170
IMathOp, 224, 225, 283, 286
IMemoryRelationshipClassFactory, 71,
84, 87
Immediate Window, 28, 29, 32-33, 136
Import, 118
Import command, 92
Import/Feature Class command, 96, 100
Importing, 29
IMxDocument, 61
IName, 60, 93, 94, 131, 206
Index
AddDeleteField, 78
array, 152
Field objects, 69
FindDoc variable, 62
IDTM_OnTheFly, 123-124
layers, 77
NAD27to83_Shapefile geometry field, 133
ProjectShapefile, 135
RasterBinaryModel FindLayer sub, 303
RasterUniqueSymbols, 159, 161
UpdateValue, 82
Index map, 294
Index models

INDEX

ArcObjects for, 288
RasterIndexModel, 304-309
VectorIndexModel, 293-300
IndexClass variable, 82
Industry layout templates, 144
INeighborhoodOp, 224, 225, 238
Inexact methods, spatial interpolation, 275
Inheritance
Geodatabase objects, 53
ILinearUnit, 123
renderer objects, 145, 146
SpatialReference class, 119
InitNew, 268, 269
Input(s)
ConvertFeatureClass, 100
CoverageToAccess, 103-104
CoverageToShapefile, 105
IBasicGeoprocessor, 202
Input box(es), 26, 27, 43, 186
inputArray, 216
InputBox, 102
InputName, 135, 136
Instantiation, 6, 7
Int, 11, 225
intCount, 24, 185
Integer data, 18
Integer raster, 239
Interfaces
adding to active map with AddLayerFile, 59, 60
ArcObjects, 4, 6-7
ArcObjects Developer Help, 10
compile errors, 30
CopyDataset, 63
encapsulation principle, 18
FeatureLayer object support, 72
If...Then...Else statement uses, 22
libraries, 9
properties and methods, 7-8, 9
QuerylInterface (QI), 19-20
user interface customization; see User interface
customization
Interpolation methods, 283-286; see also Spatial
interpolation
Intersect
context terminology caveat, 203
spatial queries, 176, 177, 192, 193
VectorBinaryModel, 288, 289, 290, 291, 292
vector data analysis, 201, 202, 203, 207-209, 210
VectorIndexModel, 294, 296, 298, 299
Intersect_GP, 209
Intersection, 201
IntersectSelect, 195-196
Interval, contour, 253
INumberRemap, 234, 257
InvalidObjectInfo, 130

325

Inverse distance weighted (IDW) method, 276,
277-279, 285
Inverse sub, 27, 28
IPageLayout, 148
IParameter, 123-124
IPoint, 203, 204
IPropertySet, 93
IQueryFilter, 177
IRaster, 228
IRasterAnalysisEnvironment, 20, 22, 92, 107
EucDist, 243
interfaces, 67
objects, 224, 225, 226
properties and methods, 7-8, 9
spatial interpolation
Idw, 278
Kriging, 281
RasterInterpolationOp and, 276
terrain mapping and analysis, 250
Contour, 253
Slope, 254-255
Visibility, 263-264
watershed analysis, 265
IRasterBandCollection, 159, 227, 228, 236, 2438,
268, 282
IRasterClassifyColorRampRenderer, 163, 309
IRasterClassifyUIProperties, 163
IRasterDataset, 228
IRasterDescriptor, 111, 223
IRasterLayer, 58-59, 107, 229, 240
IRasterNeighborhood, 238
IRasterProps, 269
IRasterRenderer, 160, 163, 165, 258, 309
IRasterUniqueValueRenderer, 160, 161
IRasterWorkspace, 53, 58
IRawPixels, 269
IReclassOp, 6-7, 8, 9, 224, 244, 257, 307
IRelationshipClassCollection, 72
IRelationshipClassCollectionEdit, 71, 72, 87, 90
IRelQueryTable, 84, 85
IRelQueryTableFactory, 85
IRubberBand, 190
IsEditable, 251
ISelectionSet, 178
ISpatialFilter, 177
ISpatialJoin, 203, 212
ISpatialReference, 119
ISpatialReferenceFactory, 121, 122, 126
ISpatialReferenceFactory2, 121, 123-124,
129, 132
ISpatialReferenceFactory3, 121
IStandaloneTable, 70
IStandaloneTableCollection, 69, 70, 83, 85
ISurfaceOp, 250, 251, 253, 255, 262, 264
ITable, 69, 70, 151, 182, 213

326 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

ITableCollection, 61

ITableHistogram, 147

ITableWindow, 178, 179

Item, 228, 268

ITemporaryDataset, 228

ITextElement, 149, 169

ITextSymbol, 149, 169

ITinAdvanced, 250, 251, 252, 272, 273
ITinEdit, 250, 251, 268, 270
ITinSurface, 250, 251, 252
ITopologicalOperator, 192, 194, 203
IUniqueValueRenderer, 158

IUnit, 123

IWorkSpace, 19, 20, 53, 55
IWorkspaceFactory, 53, 55, 58, 103-104, 228
IWorkspaceName, 60, 93, 94
IXYEvent2FieldsProperties, 96, 114
IXYEventSourceName, 96

1ZonalOp, 226, 240

J

Join, spatial, 201, 203
Join Data, 211
JoinAggregate, 203
JoinByLocation, 211-212
Joining and relating tables, 67, 68, 82-90
JoinByLocation, 211-212
JoinMultipleTables, 84-86
JoinTableToLayer, 82—84
relationship classes, 70-71
spatial join, 202, 203
JoinMultipleTables, 84-86
JoinNearest, 203, 212
JoinTableToLayer, 82-84
JoinWithin, 203
Justification, center, 169

K

Keys
joining and relating tables, 68
links, 67
nongeographic data, 4
RelateTableToLayer, 86
Keyword(s)
ArcMap queries, 176
calling subs and functions, 27
procedures, 17
Set, 9
variable declaration, 18
Krige, 276, 280-283
Kriged Raster, 281
Kriging, 280-283

Label(s)

Aspect_Symbol, 258

contour, 253

coverages, 103

forms, 44, 45

raster data renderer, 160, 161, 164
vector data renderer, 153, 154, 155, 156
VectorIndexModel, 299

Label(1) property, 154
Latitude of projection origin, 117, 124
Layer(s)

accessing feature class through feature layers,
68-69

adding datasets as, 54-61
AddFeatureClass, 54-55
AddFeatureClasses, 56-57
AddLayerFile, 59, 60
AddRaster, 58-59
AddTable, 60-61

defined, 51

DefineGCS, 126

deleting with DeleteDataset, 64—65

feature manipulation, 201

FindLayer, 61-62

geodataset objects, 53

hierarchical organization in ArcMap, 52

joining of attributes, 202

Map object components, 52

raster, creating, 58—59

run-time errors, 30

tables
JoinTableToLayer, 82—-84
RelateTableToLayer, 86—-88

using datasets in ArcGIS, 52

vector data operations, 201, 218

Layer properties dialog, ArcMap, 64, 149, 272
Layer()property, 69

LayerCount, 62

Layout design, 143, 144-145, 166-173
Layout objects, 148-149

Layout template, 42-43

Least accumulative cost distance raster,

246, 247

Least squares surface, 280
LeftOuterJoin, 212
Legend, map, 143, 145, 149, 166,

167, 170-171

Length, 67, 68, 70, 76, 204
LessThan, 225
Libraries

ArcObjects, 9-10
developer help, 10
ESRI library locator, 12

INDEX

ESRI Object Browser (EOBrowser), 11, 12
Geodatabase, 53
LIDAR (light detection and ranging)
data, 249, 250
Light detection and ranging (LIDAR)
data, 3, 249, 250
Lightness, HLS color, 147, 148
Linear features, TIN, 3
Linear semivariograms, 281
LinearUnit, 119, 123
Linefeeds, 26, 198
Lines, code
comment, 20
continuation of, 20
multiline messages, 26
new line creation, 198
wrapper, 17, 40, 48
Lines, feature
buffer zone creation, 204—207
contour, 253
generalization, 111
rasterization and vectorization, 91
symbols, 143, 144
terrain mapping and analysis, 250, 264
vector data analysis, 203
Lines, graphic elements/symbols, 143, 144, 146
renderer objects, 145
RubberLine, 190
width property, 191
LineSymbol, 146
Linkage of components
button to new form, 48
geodatabase versus georelational data models, 1
macro to new tool, 41
pStreamLinkDS, 267
tables, 67
to feature class, 51
nongeographic data, 4
List tables, 52
ListBox, 44
Listing fields and field properties, 73-77
ListFieldProps, 74-76
ListOfFields, 73-74
UseFindLayer, 76-77
LoadFromTable, 234
Local maximum operation, 237
Local mean operation, 237
Local methods, spatial interpolation, 275, 276
Local operations, raster data, 221, 225, 233-237
Combine2Rasters, 235-237
commands, 222
local mean and local maximum operations, 237
objects, 224
ReclassNumberField, 233-235
Local polynomial, 276

327

Locallnterpolation, 277

LocalStatistics, 225

Location data, 2, 4, 143, 176

Logic error, 30, 31

Logical operators, 222, 224, 231

Logical query, RasterBinaryModel, 303
Logistic surface, 280

Lookout dataset, 263, 264

Lowercase letters, OOP naming conventions, 18
LowestPosition, 225

Macros
programming elements, 16
workspace and datasets, 53-54
Majority, 222
MakePermanent, 178, 226-228
MakePermanentAs, 228
Manipulation, feature, 201
Manual classification, 144
Many-to-many relationship, 68, 90
Many-to-one relationship, 68
Map(s), 6, 52; see also Data display; Terrain
mapping and analysis
accessing table through standalone
table in, 70
active; see Active map
Carto library, 9
chloropleth, 149, 150
coordinate systems; see Coordinate systems
forms, 43-44
layout; see Layout design
layout objects, 148, 149
on-the-fly projection, 122-123
pMap, 61, 83, 85
TIN (triangulated irregular network), 4
MapFrame, 148-149
MapRange, 234, 257
MapRangeToNoData, 234
MapSurroundFrame, 148, 149
MapValue, 234
MapValueToNoData, 234, 307
Marker symbol, 145, 172
MarkerNorthArrow, 172
MarkerSymbol, 146
MarkFrequency, 173
Mask, 8
raster data operations, 222, 224, 228-230
spatial interpolation, 278, 283, 284, 285
Mathematical functions, 277
Mathematical functions/operations, 68, 222,
224, 225
Maximum, 175, 197, 199, 214, 237

328 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

local, 237
x and y, 222
Maximum search distance, 202
Maximum values
pDiffRaster, 286
XMax and YMax, 64, 171
Mean, 175, 197, 199, 222, 237, 238
local, 237
ZonalMean, 239-241
Measures, terrain analysis, 249, 255-256;
see also Distance
Members, 7-8
Memory relationship class objects, 71, 90
MemoryRelationshipClass, 71, 72
MemoryRelationshipClassFactory, 71, 83,
85-86, 87
Menu, context, 52
Merge, 201, 202, 203, 215-216
Message boxes, 26, 27
CopySpatialReference, 128
DefineGCS, 126
as forms, 43
layer names, 62
SelectbyShape, 192
Messages, multiline, 26
Metadata, 64, 124
Methods, 1, 4, 7-9, 10
compile errors, 30
discrete features, vector data analysis, 203
programming elements, 18-19
relationships between classes, 5-6
Microsoft COM (Component Object Model), 15, 56
Microsoft Forms Reference, 45
Microsoft Visual Basic Help, 45
Minimum, 175, 197, 199, 214
pDiffRaster, 286
x and y, 64, 171, 222
Minimum break, 152-153
Minority, 222
Minus, 11, 225, 283, 286
Models; see Binary and index models;
Geodatabase, data models
Modules, 16-17, 18, 21
MouseDown, 39, 40-42
MouseMove, 39
MouseUp, 39
Multiband data, 3, 146, 161
Multiband raster dataset, 236
Multicriteria evaluation, 287
Multiline messages, 26
MultiPage, 44
MultiPartColorRamp, 147
Multiple Attributes, 144
Multiple buffer zones, 207
Multiple datasets, 56

Multiple fields, 144

Multiple input features, 102

Multiple rasters, data queries, 222, 287
Multiple tables, 84—-86
MultipleShapefilesToAccess, 98—100, 101
MultipleSpatialQueries, 187-189
Multiplicity expressions, 5

mxd file, 42, 49

MxDocument objects, 52, 55

mxt file, 42, 49

N

NAD-1927_to_NAD1983_NADCON, 141
NAD27 (North American Datum of 1927),
117, 118, 121, 125
ArcToolbox Project tools, 119
ProjectShapefile, 134-137
NAD27to83_Map, 128-129
NAD27to83_Shapefile, 129-134
NAD27toNAD83UTM_I11N, 137
NAD27UTM_I11N coordinate system, 117, 122
ProjectShapefile, 134-137
ReprojectShapefile, 137-141
NADS83 (North American Datum of 1983),
117, 118, 121, 123, 133
NADS83UTM_I11N coordinate system, 141
NADCON, 118, 121, 129, 141
Name
adding table to active file with AddTable, 60
adding XY events, 113
attribute data management, 67
coordinate systems, 119, 120
CoverageToAccess, 104
CoverageToShapefile, 105
FeatureClassName object, 93
FindLayer, 62
IConversionOp dataset requirements, 92
IDatasetName, 93, 94, 97
IField and IFieldEdit, 70
IProjectedCoordinateSystem Define
arguments, 124
JoinByLocation, 212
MultipleShapefilesToAccess, 100
NAD27to83_Shapefile, 131, 132
raster data operations, 227-228
RasterToShapefile arguments, 110-111
ReprojectShapefile, 139
ShapefilesToFeatureDataset, 101
ShapefileToAccess, 97
SpatialQueryByName, 186—187
vector data operations, 213
workspace, 93
workspace and dataset macros, 53-54

INDEX

Namelist, 74
Naming conventions
Arc, 55
forms, 44, 45
Geoprocessing objects, 63
layers, 62
object-oriented programming, 18
Natural breaks, 144
NaturalBreaks, 146, 152, 153
Near, 202
Nearest neighbor, 201
Neighborhood operations, raster data, 221, 224,
238-239
Neighborhood Statistics command, 222
Network Analyst library, 9
New coordinate system creation, 118
New dataset creation, 121
New field, 70, 219
New layer creation, 244, 245;
see also specific macros
New line, 26, 74, 198
New object creation, 4, 5, 6, 7
New selection, 176
NewUIControl button, 38, 39
Next, 57
NextFeature, 24, 82, 179, 180, 187
No data argument, 270
NoDataValue, 269, 270
Node, 55
Nodes, 251, 252, 272-273
Nongeographic data, see also Tables
accessing file through standalone table, 69
adding as tables to active data frame, 52
adding datasets as layers, 54
adding to active map with AddTable, 60-61
attribute data management, 67; see also
Attribute data management
definitions and terminology, 2
geodatabase, 4
RelateTableToLayer, 86
Nonoverlapping neighborhood, 237, 238
Normal template (Normal.mxt), 42
North arrow, 143, 149, 166, 167, 171-172
Number of fields, 74-76
Number remap, 286
Numbered position, Field objects, 69
NumberRemap, 234, 257
NumberRemap, 307
Numeric attributes/fields/values
CSng (conversion to single) function, 154
form uses, 43-44
precision, 68
Select Case statement uses, 22
spatial features, 2
NumOfValues, 159

329

(o)

Object browser, 10-12
Object ID, 3
Object-oriented technology, 1
ObjectClass, 68—69
ObjectClassName, 94
Objects
ArcObjects, 4-5
creation of, 6, 7
encapsulation principle, 18
Geoprocessing, 12—13; see also Geoprocessing
(GP) objects
grouping, validation rules, 3
hierarchical structure, 68—69
operator, raster data operations,
223-225, 226
tables, nongeographic data, 4
On Error Statement, 31-32
On-the-fly projection, 118, 122-124
One-to-many relationship, 68
One-to-one relationship, 68
Open
buffering, 206
IMemoryRelationshipClassFactory, 71
JoinMultipleTables, 85
NAD27to83_Shapefile, 131
name objects, 54
pTable, 60
RelateTableToLayer, 87
tables, 52
OpenFeatureClass, 55
OpenFromFile, 53, 55, 58, 63, 218, 228
Opening
frmAreaUnits form, 48
workspace datasets, 53
OpenRasterDataset, 58
Option Explicit, 18
OptionButton, 44
Options command, Spatial Analyst,
222
Origin, raster versus TIN, 270
Out, 76
OutCS function, 139-141
Outline, 156, 190, 191
OutlineColor, 156
OutputName, 137
OutWorkspace, 8, 9, 224, 253
Overlap, 201, 206
Overlapping neighborhood, 237, 238
Overlay, 201, 203, 207-210
binary model, 287
VectorBinaryModel, 288, 289
VectorIndexModel, 294
Overlay toolset, 202

330 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

P pEnvelope, 170, 171
Percentage of rise, 255, 256
pActiveView, 167 Perimeter, 203, 209-210, 222
Page layout, 9, 144-145, 148-149, 166-173 Personal geodatabases, 53, 96-98
PageLayout, 148149 Perspective view, 249, 250
pAlgoRamp, 153 pExtractOp, 267
pAllocationRBCollection, 248 pFCDescr, 278, 281
Parallels, 120 pFCDescriptor, 109, 284
Parameter, 102, 119 pFCName, 97, 104, 208, 212, 214, 216
PartialRefresh, 148, 189 pFCursor, 205-206, 218
pAspectLayer, 260 pFDConverter, 133
Password protection, forms, 49 pFeatClass, 219
Path, 59, 60, 94 pFeatDSName, 101, 102
PathName, 94, 97, 99, 104, 105, 113 pFeatSelection, 193, 194
Pattern, symbol, 143, 144 pFeatureClass, 63, 73
pBackLinkRBCollection, 248 AddDeleteField, 78
pBand, 159 CalculateField, 80
pBand2, 236 DefineGCS, 126
pBandCol, 162 DeleteDataset, 64
pBGP, 208, 214 Idw, 278
pBlockSize, 269 JoinMultipleTables, 85
pBuffFC, 206 JoinTableToLayer, 83, 84
pBuffFCName, 205, 206, 291 Kriging, 280, 281
pBuffFL, 291 RelateTableToLayer, 87
pCalc, 297, 298 RelationalDatabase, 89
pCalculator, 80 UpdateValue, 80
pCentroidTemp, 218 UseFindLayer, 76
pCharacterMarkerSymbol, 172 pFeatureClassName, 97
pCityCursor, 185 pFeatureCursorBuffer2, 205, 207, 291
pCityFClass, 185 pFeatureLayer, 55, 183
pCityLayer, 192 CopyDataset, 63
pCitySelection, 189 DefineGCS, 126
pClassBreaksRenderer, 152, 154, 155 DeleteDataset, 64
pClassify, 152, 163 RelationalDatabase, 90
pClassRen, 163, 165, 166, 258, 309 SpatialRef, 64
pColor, 154, 191 UseFindLayer, 76
pColors, 154 pFeatureSelection, 187
pConOp, 243 pField, 219, 297
pConversionOp, 22, 107, 109, 110, 112 pField1, 78
pCostDistRB, 247, 248 pField2, 78
pCostDistRBCollection, 247, 248 pFieldCheck, 132, 135
pCostRaster, 245, 247 pFields, 73, 219
pCountyCursor, 184, 185, 188 AddDeleteField, 78
pCountyLayer, 184, 185, 188 ListFieldProps, 74, 75, 76
pCountySelection, 184, 185, 187 UseFindLayer, 76
pCursor, 80, 197 pFilDS, 266
pData, 197 pFillSymbol, 154
pDatasetName, 60 pFirstLayer, 215
pDescl, 233 pFirstTable, 215, 216
pDesc2, 233 pFLayer, 197
pDiffRaster, 285, 286 pFlowAccumulationDS, 266
pDistanceOp, 242, 244, 245, 246, 247, 302 pFromGCS, 132
pElem, 190, 191 pFromTable, 83, 84, 87
pElement, 167, 170 pFromTablel and pFromTable2, 85, 86

pEnv, 190 pGeoDs, 234, 257

INDEX

pGeoField, 133, 135

pGeogCS, 125, 126
pGeometryDefEdit, 219
pGeotransNAD27toNADS3, 129
pGeoTransNAD27toNADS3, 132
pGraphicsContainer, 167
pGxDataset, 57

pGxDialog, 56, 99, 293
pGxFilter, 56, 99

pGxLayer, 59, 60

pGxObjects, 57, 100
pHydrologyOp, 265

plD, 173

pldwRaster, 285, 286

Pie charts, 144
pInCovWorkspaceName, 104, 105
pInCS, 138

pInFC, 131, 138

pInFCFields, 132, 135

pInFCN, 135

pInFCName, 105, 106, 131, 135, 136
plnput, 23

plnputFC, 107, 109, 208
plnputFeatLayer, 213, 217

plnputRaster, 110, 112, 252, 254, 262, 265

pInputTable, 213

pInRaster, 229, 268, 269
pInShpWorkspaceName, 97, 99
pIntOp, 278, 285

Pixel blocks, 269

Pixel sizes, 270

pJoinFC, 211

pKrigeRB, 282
pKrigeRBCollection, 282
pLayer, 57, 151, 158, 293
pLinearUnit, 123
pLineSymbol, 191

pLocalOp, 236

pLogicalOp, 231
pLookoutDataset, 263, 264
Plus, 11, 225

pMap, 61, 83, 85
pMapFrame, 167, 170, 173
pMapSurround, 170, 173
pMapSurroundFrame, 170
pMarkerNorthArrow, 172
pMarkerSymbol, 156
pMaskDataset, 8, 278, 281, 284
pMemRelFact, 84, 85, 87
pMxDoc, 55

pName, 131

pNbr, 238

pNbrOp, 238

pNodeCount, 273

pNRemap, 234, 257, 286, 307

Point(s), 4
data conversion
RasterDataToPointFeatureData, 92

331

x-, y-coordinates to, 91, 95, 96, 113115

data display

renderer objects, 145

symbol types, 143

vector data, 144
pCentroidTemp as instance of, 218
raster data operations, 224
RubberPoint, 190
sample, 278, 280

spatial interpolation; see Spatial interpolation

terrain mapping and analysis, 250, 264

vector data operations, 202, 203, 204
Polygon, 91, 92, 177
buffer, 194
centroid derivation, 218
raster data operations, 224
RubberPolygon, 190
vector data operations, 203, 204, 218
Polyline, 193, 226, 251
Polynomials, 276, 280
Popularity, 225
Position, 69
pOutAcFCName, 104
pOutAcWorkspaceName, 103-104
pOutFCFields, 132, 133, 135
pOutFCGeoDef, 133, 135
pOutFClass, 110, 112
pOutFCName, 137
pOutput, 253

pOutputFC, 208, 209, 210, 212, 214, 216

pOutputFClass, 112
pOutputFeatClass, 217, 218, 292
pOutputRaster, 107

distance measure operations, 242, 244, 245, 246

neighborhood operations, 238, 239

RasterBinaryModel, 302, 303

raster data operations, 231

zonal operations, 240, 241
pOutputRaster1, 232, 233
pOutputRaster2, 232, 233
pOutputRaster3, 233
pOutRaster

data conversion, 107, 109, 110

raster data operations, 229, 234, 235, 236, 237

RasterIndexModel, 307
spatial interpolation, 278, 281, 286

terrain mapping and analysis, 255, 257

pOutSh, 106

pOutShFC, 106
pOutShFCName, 105, 106
pOutShWSName, 105
pOverlayFC, 208

332 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

pPageLayout, 167
pPCS, 122, 135
pPixelBlock, 269
pPoint, 169
pProjCoordSys, 128
pProjCoordSysEdit, 124, 139-140
pProjectedCoordinateSystem, 114
pPropset, 103-104, 105
pQFilter, 80-81, 182, 183, 231, 267
pQueryFilter, 181
pRadius, 278
pRamp, 161, 165, 166, 258
pRasBand, 162
pRasBC, 236
pRasDes, 231, 267
pRasRen, 161, 258, 260, 309
pRaster
data operations, 227, 230, 231, 238
displaying data, 159, 160, 161, 162
terrain mapping and analysis, 258, 263, 264
pRaster1, 236
pRasterBand, 268, 269
pRasterDB, 227
pRasterDescriptor, 112
pRasterDS, 58, 227, 228
pRasterLayer, 58, 229
pRasterLy, 257
pRasterSurfaceOp, 253
pRasterWorkspace, 58
pRawPixels, 270
Precision, 68, 70, 76
pReclassOp, 234, 244, 257
pRelClass, 84, 85-86, 87, 90
pRelClass2, 86
pRelQueryTabl, 85, 86
pRelQueryTab2, 86
pRelQueryTableFact, 85
PresetColorRamp, 147
Prime meridian, 119, 120
Print, 32
Private (keyword), 18
Private procedure, 16
Private Sub UserForm_Click(), 45-46
Private variable, 18, 21
prj files, 117, 121
pRLayer, 236, 237, 309
pRoadCursor, 194
pRoadLayer, 193
pRoadSelSet, 194
Procedural language, AML as, 15
Procedures, 16-17, 45-47
ProgID, 113
Programming basics, 15-33
calling subs and functions, 27-28
debugging code, 30-32

Breakpoint and Immediate Window use,
32-33
On Error Statement, 31-32
type of error, 30-31
elements, 16-21
arrays, 20-21
collections, 21
comment lines and line continuation, 20
projects, modules, procedures, and macros,
16-17
QuerylInterface (QI), 19-20
use of properties and methods, 18-19
variables, 17-18
Visual Basic editor, 28-29
writing code, 21-26
Dialog Boxes, 26
Do...Loop statement, 23-24
For Each...Next Statement, 25
For...Next Statement, 24-25
If...Then.. .Else statement, 21-22
Select Case statement, 22-23
With Statement, 25-26
Progress dialogs, 26
Project, 16
Project tools, 118, 119
Project window, 28, 29
ProjectedCoordinateSystem, 5-6, 119, 120, 124,
139-140
Projection, coordinate systems, 2, 117, 134-141
adding XY events, 114
ArcToolbox Project tools, 119
data conversion, 113-115
ProjectShapefile, 134-137
Project.UlButtonUnits, 48
Properties
abstract class and, 4
ArcObjects, 4, 7-9
ArcObjects Developer Help, 10
compile errors, 30
coordinate systems, 119, 120
form design, 45
industry-specific ArcObjects, 9
inheritance of, 5-6, 53
object-oriented technology, 1
programming elements, 18—19
relationships between classes, 5—6
vector data analysis, 203
Properties window, 28, 29
PropertySet, 93, 103—104, 105
ProportionalSymbolRenderer, 145
Protection password, forms, 49
Proximity, 176, 177, 202
Proximity toolset, 202
pRubberEnv, 190
pScratchWS, 182, 183

INDEX

pSecondLayer, 215

pSecondTable, 215

pSelectionSet, 183

pSelectSet, 182-183

pShpToFC, 97

pSliceRaster, 244, 245
pSlopeLayer, 256-257
pSourceDataset, 243

pSourceDS, 267

pSourceFC, 211, 243
pSourceRaster, 242, 244, 245, 247, 302
pSpatialFilter, 185, 192, 194
pSpatialJoin, 212
pSpatialReference, 126, 205, 206, 217
pSpatRefFact, 122, 123, 125, 129, 132
pSplineRaster, 285, 286
pStatResults, 197

pStreamFC, 271

pStreamLinkDS, 267

pStTable, 83

pStTablel and pStTable2, 85
pSurfaceOp, 253, 254-255, 263-264
pSyml, 158

pTable, 60, 61, 151, 159, 162, 183
pTableHist, 162

pTableHistogram, 151
pTableName, 113

pTableWindow, 61, 183
pTargetFL, 127

pTargetGD, 127, 128

pTargetSR, 127, 128
pTextElement, 169

pTextFont, 168

pTextSymbol, 168
pThermalLayer, 194

pTin, 268, 269, 270, 271, 272
pToGCS, 132, 133
pTriangleCount, 273

Public, 18, 21

Public procedure, 16

Publications, 10, 13

pUID, 163
pUniqueValueRenderer, 157-158
pUnit, 123

pUpdateCursor, 210

Put by reference and put by value, 18
PutCoords, 171, 204
PutSpatialReferences, 121
pUVRen, 160, 161

pValueRaster, 240

pValueRL, 240
pVarianceRBCollection, 282
pWatershed, 267
pWorkspaceFactory, 55, 58-59, 63
pWorkspaceFactoryProgID, 97

pWorkspaceName, 97, 99, 113
pWS, 107, 109, 110, 112, 253
pXYEvent2FieldsProperties, 114
pXYEventSource, 114, 115
pXYEventSourceName, 114, 115
Python, 12, 13

pZonalOp, 240

pZoneRaster, 240

pZoneRL, 240

QQ plot, 276
Qualifiers

BooleanAnd, 233

coordinate system, 124

Dissolve, 214

IDW, 278

intersect, 208

IProjectedCoordinateSystem projection
parameters, 124

local interpolation operation, 276-277

methods, 19

NAD27to83_Shapefile, 133

pRasterDescriptor, 112

RasterToShapefile, 110

TIN object initialization, 268-269

Visibility, 264

Quantile object, 144, 146, 147, 152
Quantities option, 144
Query(ies); see also Exploring data

(queries and statistics)
raster data, 221, 222, 223
spatial; see Spatial query(ies)

Query filter, 177-178, 179

AddFromFeatureClass, 271
attribute query(ies), 181, 182
DataSubsetStatistics, 199
RasterBinaryModel, 303
raster data operations
Query2Rasters, 232
raster descriptor object, 223
RasterQuery, 230
spatial queries, 184, 185
BufferSelect, 193
IntersetSelect, 195, 196
VectorBinaryModel, 290
VectorIndexModel, 297-298
watershed analysis, 267

Query object, spatial queries, 184
QueryCentroid, 204, 218
QueryCoords, 204

QueryFilter, 6,7, 80-81, 176-177, 178, 179, 181,

182, 267

333

334 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

QueryFromPoint, 204
QueryGrids, 300, 301-302, 303
QuerylInterface (QI)
adding layer file to active map with
AddLayerFile, 59
CoverageToAccess, 104
DefineGCS, 126
definitions and terminology, 7
GraduatedColors cmd_Run_click, 151
IDatasetName, 93
IFeatureSelection, 181
IFeatureWorkspace, 55
IName interface, 93
IRasterAnalysisEnvironment, 253
ITinEdit, 271
JoinMultipleTables, 85
JoinTableToLayer, 83
MultipleShapefilesToAccess, 99-100
NAD27to83_Shapefile, 131
programming basics, 19-20
raster data operations
IRasterBandCollection, 247
MakePermanent, 227, 228
RelationalDatabase, 90
spatial interpolation, IDW, 278
vector data operations
buffer creation, 205
JoinByLocation, 212
workspace object, 53
QueryToPoint, 204
Query2Rasters, 231-233

R

Radar data, 249
Radial basis function, 276
Radius, search, 212, 281, 283, 285
RandomColorRamp, 147, 258-260
Range, 175, 222
Rank, 225
Raster, 224, 228, 229, 236
Raster Calculator, 222, 231, 235, 250
Raster data
abstract class and, 4
adding datasets as layers, 58-59
AddRaster, 58-59
ArcToolbox Project tools, 119
computational efficiency, 4
data conversion, 91, 92, 93, 95, 110-112
IConversionOp methods, 20
RasterDescriptorToShapefile, 111-112
RasterToShapefile, 110-111
data conversion to (rasterization), 91, 92,
106-110

ArcObjects, 93, 95
FCDescriptorToRaster, 108—110
FeatureToRaster, 106—-108
objects for, 93, 95
displaying, 144
RasterClassifyColorRamp, 161-164
RasterUniqueSymbols, 158-161
RasterUserDefinedColorRamp, 164-166
renderer objects, 145, 146
geodatabase data model, 3
Geodatabase hierarchical structure, 53
IConversionOp methods, 20
interface arguments, 8
layers
geodataset objects, 53
hierarchical layer organization, map and
layer objects in ArcMap, 52
libraries, 9
opening with IRasterWorkspace, 53
terrain mapping and analysis, 250, 252
elevation raster, 249
Raster data operations, 221-248
in ArcGIS, 222
ArcObjects, 223-226
operator objects, 223-225, 226
raster objects, 223
binary models, 287
distance measure, 241-243
CostDist, 245-246
CostDistFull, 246-248
EucDist, 241-243
Slice, 243-245
use of feature layer as source in EucDist,
242-243
local, 233-237
Combine2Rasters, 235-237
local mean and local maximum
operations, 237
ReclassNumberField, 233-235
managing data, 226233
ExtractByMask, 228-230
MakePermanent, 226228
Query2Rasters, 231-233
RasterQuery, 230-231
neighborhood, FocalMean, 238-239
spatial interpolation; see Spatial interpolation
zonal, ZonalMean, 239-241
Raster data query, 230-231
Raster layers, 164
Raster renderer, 163
RasterBand, 223, 269, 281
RasterBinaryModel, 300-304
RasterClassifyColorRamp, 161-164
RasterClassifyColorRampRenderer, 146, 163,
165, 258, 309

INDEX 335

RasterConditionalOp, 9 Rectangle, 222
RasterConversionOp, 20, 92, 93-94, 107, 109, Rectangle element, 189-190
110, 243 RectangleElement class, 190, 191
RasterDataSet, 223 Rectangular neighborhood, 238
RasterDataset, 228 Rectangular object, 64, 177
RasterDatasetName, 92, 94 ReDim, 21
RasterDataToLineFeatureData, 92, 110 Referencing existing class, 18
RasterDataToPointFeatureData, 92 Refresh, 148
RasterDataToPolygonFeatureData, 92 Regularized spline, 280
RasterDescriptor, 111, 112, 223, 231, 267, 303 RelateTableToLayer, 86—-88
RasterDescriptorToShapefile, 111-112 Relating tables, 67, 88-90
RasterDistanceOp, 224, 226, 242, 244, 245, nongeographic data, 4
246, 247, 302 RelateTableToLayer, 86—88
RasterExtractionOp, 9, 224 RelationalDatabase, 88—90
RasterExtractOp, 229 relationship classes, 71-72
RasterHydrologyOp, 250, 265 Relational databases
RasterIndexModel, 304-309 geodatabase data model, 1, 67
RasterInterpolationOp, 276, 278, 281, 285 tables, 4, 67, 88-90
RasterLayer, 58, 223 RelationalDatabase, 88—-90
RasterLocalOp, 9, 224, 225 RelationshipClasses, 72
RasterMapAlgebraOp, 9 Relationships/relationship classes, 71
RasterMathOp, 224, 225, 231 attribute data management, 5-6, 70-72
RasterNeighborhood, 238 cardinalities, 68
RasterNeighborhoodOp, 9, 224, 225 JoinTableToLayer, 84
RasterQuery, 230-231 RelationalDatabase, 88-90
RasterRadius, 277 relationship rules, 3
RasterReclassOp, 6-7, 224, 234, 244, 257 table links, 67
RasterRenderer, 145, 146 Relief, shaded, 262
RasterRGBRenderer, 146 RelQueryTab2, 86
RasterStretchColorRampRenderer, 146 RelQueryTable, 71, 72
RasterSurfaceOp, 250, 255, 263-264 RelQueryTableFactory, 71
RasterToShapefile, 110-111 Remap, 8, 234, 286
RasterToTin, 268-271 Remarks, 124
RasterUniqueSymbols, 158-161 Remove command, 64
RasterUniqueValueRenderer, 146, 160 Remove dataset from active dataframe, 52
RasterUserDefinedColorRamp, 164-166 Remove table, 52
RasterWorkspaceFactory, 53, 58 RemoveRelationship, 72
RasterZonalOp, 9, 224, 226, 240 Rename, 52, 253
Read, 269 Renderer objects, 145-146
Read-only properties, 70 Aspect_Symbol, 258
IGeoDataset, 124 raster data operations, 164, 165, 166
IGeometryDef, 130 vector data operations, 152, 153, 154, 155,
ReclassByASCIIFile, 9, 224 157-158
ReclassByRemap, 8, 9, 224, 234, 257, Reporting geographic dataset information, 65
283, 286, 307 Reprojection, 119
Reclassified difference raster, 283, ReprojectShapefile, 138—-141
285, 286 Reset tool, 33
Reclassify, 222, 233-235, 309 RGB (red, green, blue) color, 309
ReclassifySlope, 256-257 data display, 146, 147, 148, 150, 153-154, 155,
ReclassNumberField, 233-235, 304, 156, 158
305, 306, 307 GetRGB, 294, 304, 305
Records outline symbol, 191
SelectRecords, 181-183 RingDistance, 202
ShowSelected options, 183 Rise, slope, 255, 256

table rows as, 67 Rows, table, 53, 67, 84, 159, 178

336 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

RubberEnvelope, 190
RubberPoint, 190
RubberPolygon, 190
RubberRectangularPolygon, 190
Rules, validation, 3

Run-time error, 30-31

Run To Cursor, 33

S

SafeArray, 270
Satellite imagery, 3, 146, 223, 249
Saturation, HLS and HSV color, 147, 148
SaveAsTable, 234
Saving files; see Storage
Saving layers, 52
Scale, 68, 76
Scale bar, 143, 149, 166, 172-173
Scale factor, 117, 120
ScaleDependentRenderer, 145
Scanned files, 3
Scratch workspace, 182
ScrollBar, 45
Search, 178, 185, 202, 205
Search radius, 212, 281, 283, 285
Select
Analysis Tools, 202
ArcMap features, 176
define coordinate system, 118
events associated with tools, 39
selection set creation, 178, 182-183
Select by Attributes, 36-37, 176, 180
Select by Graphics, 176
Select by Location, 36-37, 176
Select Case statement, 22-23, 76
Select keyword, 176
SelectByShape, 187-192
SelectDataset, 288, 289, 290
VectorBinaryModel, 292, 293
SelectFeatures, 177, 178, 180-181, 188, 193, 194
Selection set creation, 172, 182-183
SelectionColor, 178
SelectionSet, 6, 7, 177-178, 179
SelectionSymbol, 178
SelectLayerByAttribute, 293
SelectObject, 44
SelectRecords, 181-183
Semivariogram, 276, 281, 283
Sequential color ramp, 149
Set keyword, 9, 18-19
SetCellSize, 8, 92, 224
SetExtent, 8, 92, 224
SetHistogramData, 153
SetRectangle, 238

sFieldName, 109, 112
Shaded relief, 262
Shape(s), 143, 201
Shape (geometry) field(s), 67, 121
Centroid, 219
feature class default fields, 3
NAD27to83_Shapefile, 133
ReprojectShapefile, 139
Shape_area, 214
Shapefile(s), 1, 5
adding datasets as layers, 54-55
adding to active map with AddFeatureClasses,
56-57
coordinate systems
NAD27to83_Shapefile, 129-134
ProjectShapefile, 134-137
ReprojectShapefile, 138-141
storage of definitions, 117
data conversion, 5, 91-92, 96-103, 209
in ArcGIS, 92
MultipleShapefilesToAccess, 98—100
RasterDescriptorToShapefile, 111-112
RasterToShapefile, 110-111
Geodatabase coclasses, 53
GxFilterShapefiles class, 56
output to
Contour, 250
Dissolve, 214
updating area and perimeter of, 209-210
ShapefilesToFeatureDataset, 100-102
ShapefileToAccess, 96-98, 209
ShapefileWorkspaceFactory, 53, 55, 63
Shortest Path, 222
Show, 48, 183
ShowProcess, 212
ShowSelected, 179, 183
.shp files, 253
SimpleFillSymbol, 145, 146
SimpleLineSymbol, 145, 146, 158
SimpleMarkerSymbol, 145, 146
SimpleRenderer, 145
Single data type, 18
SingleOutputMapAlgebra tool, 309
Site analysis, 287
Size, cell, 8, 20, 92, 222, 250
Size, grid, 131, 133
Size, symbol, 143, 144, 156
Slice, 224, 243-245
Slope, 4, 249, 250, 251, 252, 254-255
choice of measure, 255-256
ReclassifySlope, 256-257
VectorIndexModel, 294
Slope rasters, 250
Software-specific raster data, 3
Source tab, 52, 64, 272

INDEX

Spatial Analyst, 92, 108, 110
Contour tool, 253
EucDistance tool, 304
raster data operations, 222
analysis mask, 228
Distance/Cost Weighted command, 246
local, 235
operator objects, 223
Raster Calculator, 231, 235
Reclassify tool, 309
spatial interpolation, 276
Surface Analysis/Slope command, 254
terrain mapping and analysis, 250
Surface Analysis/Contour command, 252
Spatial Analyst library, 9
Spatial Analyst Objects, 10, 11
Spatial constraints, spatial filter objects, 184, 192
Spatial features
attribute data, 67
coordinate systems, 117
data display, 143
definitions and terminology, 2
object-oriented technology, 1
tables, nongeographic data, 4
vector-based operations, 201
Spatial filter, 184, 185, 189
BufferSelect, 194
IntersectSelect, 195, 196
MultipleSpatialQueries, 188
Spatial index, 133, 135
Spatial interpolation, 275-286
in ArcGIS, 276
ArcObjects, 276-277
method comparison, Compare, 283-286
performing, 277-283
IDW method, 277-279
Kriging, 280-283
Spline, 279-280
trend surface, 280
Spatial join, 201, 202, 203
Spatial properties, GeometryDef object definition
of, 130
Spatial query(ies), 175, 176
combining with attribute queries, 192—-196
BufferSelect, 192-195
IntersectSelect, 195-196
NAD27to83_Shapefile, 133
performing, 184-192
MultipleSpatialQueries, 187-189
SelectByShape, 187-192
SpatialQuery, 184—185
SpatialQueryByName, 186—187
SpatialQueryByName_GP, 185-186
spatial filter object constraints, 184
vector data analysis caveats, 204

337

Spatial reference, 64, 65
abstract class and, 4
buffer creation, 205
coordinate systems
ArcGIS storage, 117
CopySpatialReference, 127-128
DefineGCS, 125, 126
definitions, 124
NAD27to83_Shapefile, 133
on-the-fly projection, 118
ProjectShapefile, 135
data conversion
adding XY events, 113
ShapefilesToFeatureDataset, 100
vector data operations
buffering, 206
Centroid, 219
Spatial relationships
data queries, 176, 177, 192
feature attribute table, 202
pSpatialFilter, 194
spatial join, 203
SpatialFilter, 176-177, 185, 192
SpatialJoin, 202, 212
SpatialQuery, 184-185
SpatialQueryByName, 186—187
SpatialQueryByName_GP, 185-186
SpatialRef, 64, 65
SpatialReference, 5-6, 96, 124
adding XY events, 114
IGeoDataset, 125
management of, 119
NAD27to83_Shapefile, 131, 133
SpatialReferenceEnvironment, 120-121,
125, 132
IDTM_OnTheFly, 123
NAD27to83_Map, 129
UTM_OnTheFly, 122
SpatialRel property, 177, 180
Spherical semivariograms, 281
Spheroid, 117
SpinButton, 45
Spline, 276, 279-280, 285
Spline raster, Compare, 283
Split, 202
SQL; see Structured Query Language
Stacked charts, 144
Standalone feature classes, 91
MultipleShapefilesToAccess, 98—100
ShapefileToAccess, 96-98
Standalone map, accessing table, 70
Standalone tables, 69, 89-90
StandaloneTable, 69, 83
Standard deviation, 144, 175, 214, 222
StandardDeviation object, 146, 147

338 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

Start, 76
calling subs and functions, 27, 28
layout, 166
RasterBinaryModel, 300, 301, 302, 303
RasterIndexModel, 304, 305, 306, 307,
308, 309
UseFindLayer, 77
VectorBinaryModel, 288, 289, 290, 291,
292,293
VectorIndexModel, 294, 295, 296, 299
StartEditing, 251, 271
State Plane coordinates, 119
Statements
declaration, 18
line continuation, 20
message boxes, 26
Static array, 21
Statistics, 144, 175, 176, 180, 196-199
Compare, 286
Geostatistical analyst, 276
raster data operations, 222
Cell Statistics command, 222
neighborhood operations, 237, 238
ZonalMean, 239-241
vector data operations
Dissolve, 214
spatial join, 202
StdFont object, 168, 169
Step Into, 33
Step Out, 33
Step Over, 33
Stochastic methods, spatial interpolation, 275
StopEditing, 251, 271
Storage
centroids, 218
color ramp, 154
coordinate system definition, 117
feature class, 2-3
form, 48-49
geodatabase data model, 1, 67
IDTM in array, 123-124
MultipleShapefilesToAccess, 99-100
new toolbar, 42-43
raster query result, 222
relationship classes, 70-71
saving layers as layer file, 52
tables, 2
variables, 17
Store, 218
Straight Line Distance, 222
StreamLink, 251, 267
Streams, 250, 264, 265, 271-272, 288, 289
Stretched option, 144, 146
strFolder, 218
String attributes, 2

Strings, 12, 18
Structured Query Language (SQL), 175, 176
Style, symbol, 156
Sub keyword, 17
Subclass, 5
Subs
calling, 27-28, 30
Layout, 166
run-time errors, 30
types of procedures, 16, 17
Subsets, data, 175
aggregation, 6, 7
DataSubsetStatistics, 198—-199
IFeatureDataConverter2 and, 7, 93, 130
selecting features from, 176
spatial query outputs, 203
Subsystems, libraries, 9
Subtitle, 169-170
Subtypes, feature, 3
Suitability analysis, 287
Sum, 214, 222
Sum.Shape_Area, 214
summaryFields, 214
Superclass, 5
Surface, trend, 280
Surface analysis, 250, 252
Surface Analysis/Contour command, 252
Surface Analysis/Slope command, 254
Surface curvature, 4
Surface mapping, TIN, 3
Surface type option, 271
Surround, map and map elements, 148, 167,
170-171, 172, 173
Survey data, 3
Symbology/Categories/Unique values command,
157
Symbology/Classified command, 164
Symbology/Quantities/Graduated colors
command, 149, 155
Symbology tab, 144
Symbology/Unique values command, 158
Symbols
Aspect_Symbol, 258-262
attribute data, 143
IFeatureSelection, 178
page layout, 149, 169, 171-173
raster data display
RasterClassifyColorRamp, 164
RasterUniqueSymbols, 158-161
RasterIndexModel, 306, 309
renderer objects, 145
spatial queries, 190, 191
vector data display, 144, 145
class breaks renderer, 154, 155-156
graduated color, 153

INDEX 339

GraduatedSymbols, 155-157
UniqueSymbols, 157-158
VectorIndexModel, 294, 299
Symmetrical difference, 202
Syntax, 19, 30
ArcObjects, 223
SQL, 176
summaryFields argument, 214

properties, methods, relationships, 70
raster data operations, remap object, 234
relationship classes, 70-71
relationships between classes, 6, 7
Spatial Join, 202
SQL syntax, 176
types of, 2
TableSelectionAction, 179, 183
TableToLayer, 84
TableWindow, 61, 178, 183
T Tabs, 52
TabStrip, 44
Tag value, 271
Templates, 144-145
customized applications, 42-43
storing new form in, 48-49
storing new toolbar in, 42-43
Temporary raster data, 226, 227, 228, 231, 254,
262, 300
Tension, spline with, 280
Termination of execution, 22, 47
Terrain mapping and analysis, 249-273
in ArcGIS, 250
ArcObjects, 250-252
aspect derivation, 257-262
Aspect, 257-258
Aspect_GP, 260-262
AspectSymbol, 258-260
contour derivation, Contour, 252-253
hillshade derivation, 262
slope derivation
choice of slope measure, 255-256
ReclassifySlope, 256-257
Slope, 254-255
TIN (triangulated irregular network), creating
and editing, 268-273
EditTin, 271-272
RasterToTin, 268-271
TinNodes, 272-273
viewshed analysis, Visibility, 262-264
watershed analysis, Watershed, 264-267

Table of contents, 52, 57, 61
Table property, 69
TableHistogram, 147, 151, 152, 162
TableName class, 60, 94, 113
Tables
accessing through standalone table
in active map, 70
adding and deleting, 51
adding as nongeographic data
to active data frame, 52
adding datasets as layers, 54
adding to active map with AddTable, 60-61
ArcObjects, 68—69
attribute data management, 67, 82-90
data conversion
in ArcCatalog, 92
IExportOperation, 97
IFeatureDataConverter, 129-130
x-, y-coordinate conversion into point
features, 113115
data exploration
attribute queries from, 181-183
cursor, 178-179
data selection and presentation, 178
data subsets, 175
dataset class, 53
definitions and terminology, 2
feature class as feature attribute table, 3
feature class storage, 2-3

GraduatedColors, 151

GraduatedColors cmd_Run_click, 151, 152

hierarchical structure, 68—69

JoinByLocation, 211-212

joining and relating, 68, 72, 82-90
JoinMultipleTables, 84-86
JoinTableToLayer, 82—-84
RelateTableToLayer, 86—88
RelationalDatabase, 88-90

nongeographic data, 4; see also Nongeographic

data

objects as rows and object attributes as
columns, 4

pBand, 159

Test (method), 225, 231, 233
Text boxes, 43, 150

Text files, 4, 53, 113

Text formatting, 149, 168-169
Text strings, 22, 149

TextBox, 44

TextElement, 148, 149, 169
TextSymbol, 149, 168
Texture, 143

theList, 21, 25, 76

Thermal toolbar, 43
Thickness, 222
ThisDocument, 55

3D Analyst, 9, 92, 250, 268, 271

340 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

Three-dimensional applications; see TIN
(triangulated irregular network)
Three-dimensional display, 249, 250
Tic, 55, 103
Times, 11, 225
TIN (triangulated irregular network), 4, 249
creating and editing, 268-273
data conversion, 92
hierarchical layer organization, map and layer
objects in ArcMap, 52
terrain mapping and analysis, 249, 250-251
TinNodes, 272-273
Title, map, 143, 166, 167-170
ToFeatureData, 92
Toggle Breakpoint tool, 33
ToggleButton, 44
Toolbar, 36-37, 42-43
Toolbox; see also ArcToolbox
coordinate system projection tools, 118
CopyFeatures tool, 63—64
form design, 44
geographic transformations, 118
Tools, 13, 39-42
Tools menu, 92, 113
Topology, 2; see also Terrain mapping
and analysis
ToRasterDataset, 92, 107, 109, 243
TrackExisting, 190
TrackNew, 190
Transformations, geographic, 118
Transverse Mercator projection, 2, 117, 119,
121, 123
Trend surface, 276, 280
Triangles, 249, 251, 252, 272-273
Triangulated irregular network (TIN); see TIN
(triangulated irregular network)
txtField, 150
txtField.value, 151
txtNumber, 150
txtNumber.value, 152
Type, field properties, 67, 76
IField and IFieldEdit, 70
inheritance of, 5-6
Typeface/font, 149, 168-169
TypeOf Keyword, 22

U

UCase, 62

UDM_OnTheFly, 122
UlIButtonControl, 38
UlIButtonControl 1, 38
UlButtonFields, 38, 40
UlIButtonFields_Click(), 38, 39

UlButtonUnits Click()Sub, 48
UlControl button, 48
UID, 163, 170
UlToolControl 1, 190
Underscore (_), 20
Undissolved buffer zones, 207
Union

context terminology caveat, 203

spatial queries, 192, 193

vector data analysis, 201, 202, 203, 207
Unique Identifier (UID), 163, 170
Unique Values option, 144, 146
UniqueSymbols, 157-158
UniqueValueRenderer, 145, 157-158
UniqueValues, 180
Unit, 119, 120, 123
United States layout templates, 144-145
Units, 202, 207
Universal semivariograms, 281
Universal Transverse Mercator (UTM) system, 2,

117, 119, 121

UnknownCoordinateSystem, 5-6, 117, 119
Update, 80, 82, 160, 202, 210
UpdateContents, 61
UpdateFeature, 82, 179, 180
UpdateSelection, 183
UpdateValue, 81-82
Uppercase letters, naming conventions, 18, 62
Usage, 124
User-defined classification, 147, 155
User-defined color ramp, 164—-166
User inputs, forms, 43-44
User interface

customization of, 36-37, 42-43

SQL integration in ArcMap, 176
UseForm_Initialize, 150
UserForm_Initialize code, 46
useSelected, 214
UTM (Universal Transverse Mercator) system,

2,117, 119, 121

UTM _Zone_11North, 117

Vv

Validate, 130, 135
Validation of fields, 130, 132
Validation rules for grouping objects, 3
Value
arrays, 20-21
field, 68
calculating, 79-82
types of fields, 76
Geoprocessing object, 12
IDTM_OnTheFly, 123-124

INDEX

methods and, 19
putting properties by, 18
Value, HLS and HSV color, 143, 147, 148
Value datasets, 240
Value raster, 221
ValueDistance, 202
Values, pixel, 270
Variables
arrays, 20-21
programming elements, 17-18
switching interfaces, 19-20
variant-type, 76
Variance, 214
Variance prediction raster, 283
Variance surface, raster bands, 281, 282
Variant, data types, 18
Variant-type variable, 76
Variety, 222
Variogram, 276
Vector data
data conversion, 91
in ArcGIS, 92
objects for feature data conversion, 93
vectorization, 91, 95, 106
displaying, 144
GraduatedColors, 149-155
GraduatedSymbols, 155-157
renderer objects, 145
UniqueSymbols, 157-158
geodatabase, 2-3
Vector data operations, 201-209
ArcGIS, analyzing data in, 202
ArcObjects for analysis, 202-204
binary models, 287
buffering, 204-207
Buffer, 204-206
buffer options, 206-207
joining data by location, JoinByLocation,
211-212
manipulating features, 213-219
Centroid, 216-219
Dissolve, 213-215
Merge, 215-216
overlay, performing, 207-210
Intersect, 207-209
updating area and perimeter of shapefile,
209-210
VectorBinaryModel, 288-293
VectorIndexModel, 293-300, 305
Vertical coordinate system, 121

Viewshed analysis, 4, 249, 250, 251, 262-264

Virtual joins, 84-86

Virtual relates, 86, 87, 88-90
Virtual relationship class, 71
Visibility, 251, 262-264

Visual Basic, standalone, 49
Visual Basic Editor, 16, 28-29, 44-45
Visual Basic for Applications (VBA)
ArcObjects Developer Help, 10
automatic code completion feature, 19
coordinate system definitions, 124
Developer Help, 10
dropdown list, properties and methods, 19
ESRI publications, 10
Geoprocessing object, 12
libraries, 9
programming basics; see Programming ba:
vector data analysis, 204
vector data display, 149-150
Visual Basic Help, 45
Vulnerability analysis, 287

w

Watershed, 4, 249, 250, 251, 264-267

Wave-like distance zones, 221

Wedge, 222

Weeding, 91, 111

Weight, 278

Weighted linear combination, 287

where, SQL syntax, 176

WhereClause, 80, 177, 181, 182, 192, 199,

231, 267

Width, 191, 269

Windows, 28, 29, 61

With block, 56, 61, 114, 152, 168,

205, 212

With statement, 25-26, 80, 114

Workspace(s), 53

WorkspaceFactory, 53, 94

WorkspaceFactoryProgID, 93, 94
adding XY events, 113
CoverageToAccess, 104
CoverageToShapefile, 105
MultipleShapefilesToAccess, 99
ShapefileToAccess, 97

WorkspaceName, 93, 94, 97, 99, 100
adding XY events, 113
CoverageToAccess, 104
CoverageToShapefile, 105
pInCovWorkspaceName, 105
ShapefilesToFeatureDataset, 101

World layout templates, 145

wpdata, 87-88

Wrapper lines, 17, 40, 46, 47, 48

Write-only properties, 70, 130

341

sics

Writing code, 21-26; see also Programming basics
Writing Geoprocessing Scripts with ArcGIS and

Geoprocessing Commands: Quick
Reference Guide, 13

342 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

X Y
XFieldName, 96, 114 y coordinates, see x-y coordinates
x-y coordinates, 4 YFieldName, 96, 114
conversion to point features, 91, 95, 96
maximum and minimum, 64, 171, Z
222,270
raster data operations, 222 Zero, cells coded, 222
xmin and ymax, 270 ZFieldName, 96, 114
X-Y dimensions, pixel sizes, 270 Zonal datasets, 240
XYEvents, 95, 96, 113-115 Zonal operations, 221, 222, 224, 226, 239-241
XYEventSource, 95, 96 Zonal raster, 221, 222
XYEventSourceName, 95, 96, 114 ZonalMean, 239-241
XYEvent2FieldsProperties, ZonalStatistics, 222, 240
95, 96, 114 Zoom In, 36-37

XY values, data conversion, 91 z-tolerance, 270

Programming ArcObjects
with VBA

Second Edition

Anyone who is ready to take his or her knowledge of ArcGIS to the next level needs
to learn how to work with ArcObjects. But with thousands of objects, properties, and
methods, how can one ever hope to sort through the ArcObjects model diagrams?

The first edition of Chang’s Programming ArcObjects with VBA: A Task-Oriented
Approach provided the answer, demonstrating how to work through the massive
ArcObjects collection by examining only the objects, properties, and methods needed
to perform specific tasks. Now, with this new edition, the author moves to the next
level, adding macros and explanations for the new Geoprocessing object introduced
in ArcGIS 9.x. Instead of treating this new feature in separate chapters, he incorporates
Geoprocessing code into the existing chapters, placing the code in boxes that makes
it easy to compare sample macros.

Includes Code for Scripting with the New Geoprocessing Object in ArcGIS 9.x
A companion CD-ROM contains 95 complete ArcObjects macros and 33 Geoprocessing
macros, along with datasets to execute the code, which allows users to perform a
wide variety of common tasks. Each program begins with a usage description and a
list of key properties and methods, followed by the listing and explanation of the code.

Teaching practical skills to reduce repetitive tasks and streamline workflow, this new
edition—

* Adds functionalities not easily available in the main interface of ArcGIS
* Presents macros in two or more sections for easier understanding
* Uses extensive diagrams to clearly illustrate the objects, properties, and methods

Regardless of your programming experience, Programming ArcObjects with VBA:
A Task-Oriented Approach, Second Edition provides the key to unlock the power
and versatility of using ArcObijects to help manage GIS activities.

59283
ISBN 0-8493-9243-7
90000
6000 Broken Sound Parkway, NW
CRC Press Suite 300, Boca Raton, FL a7
Taylor & Francis Group 270 Madison Avenue
an informa business New York, NY 10016 9780849392832

www.taylorandfrancisgroup.com | 2 Park Square, Milton Park

Abingdon, Oxon OX14 4RN, UK WWW.Crcpress.com

