

Programming
ArcObjects
with VBA

Second Edition

Programming
ArcObjects
with VBA

A Task-Oriented Approach

Second Edition

Kang-Tsung Chang

CRC Press

Taylor & Francis Group

Boca Raton London New York
CRC Press is an imprint of the
Taylor & Francis Group, an informa business

MATLAB® is a trademark of The MathWorks, Inc. and is used with permission. The Mathworks does not warrant the
accuracy of the text or exercises in this book. This book’s use or discussion of MATLAB® software or related products
does not constitute endorsement or sponsorship by The MathWorks of a particular pedagogical approach or particular
use of the MATLAB® software.

Chapman & Hall/CRC

Taylor & Francis Group

6000 Broken Sound Parkway N'W, Suite 300
Boca Raton, FL 33487-2742

© 2008 by Taylor & Francis Group, LLC
Chapman & Hall/CRC is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Printed in the United States of America on acid-free paper
10987654321

International Standard Book Number-13: 978-1-58488-580-1 (Hardcover)

This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted
with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to
publish reliable data and information, but the author and the publisher cannot assume responsibility for the validity of
all materials or for the consequences of their use.

No part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or
other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any informa-
tion storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://
www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC) 222 Rosewood Drive, Danvers, MA 01923,
978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For orga-
nizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Krantz, Steven G. (Steven George), 1951-
Complex variables : a physical approach with applications and Matlab / Steven G. Krantz.
p. cm. -- (Textbooks in mathematics)
Includes bibliographical references and index.
ISBN 978-1-58488-580-1 (alk. paper)
1. Functions of complex variables. 2. MATLAB. I. Title. II. Series.

QA331.7.K732 2008
5159--dc22 2007023147

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

Contents

INErOAUCHON.......coveiiiiiiiiiiii ettt Xiii
Chapter 1 ATCODJECLS ..ccuevviieieieicteieceite ettt 1
L1 GEOAALADASEeeeueeeeiiiiieeiteeieeetee ettt sttt sttt st bt 2
LL1T VeCtOor Data.....cooeeieeiiiieiieiieeeteete ettt 2
1.1.2 RaASter Data.....cooieiiiiiiiiiiiiieetee ettt 3
1.1.3 Triangulated Irregular Networks (TINS).......cccoceevieniriininiininicnenn 3
1.1.4 Location Data........ccceruierieniiiiienieeiteeieeee ettt 4
1.1.5 Nongeographic Dataccccoieviiniiiiniiiiceceeeeee 4
1.2 ATCODJECES ..ottt ettt et 4
1.2.1 Objects and ClaSsescceeeeruieierieieenieieneeeeeeee e 4
1.2.2 Relationships between Classescccoceeverierinienenienieneeneeeeneenns 5
1.2.3 0 TNEETTACES ..eeeiiiiiieeiieee ettt s 6
1.2.4 Properties and Methodsccceeveeriiinieriiiinienieeeeeeeeeeeee e 7
1.3 Organization of ATCODJECLScceeruirviiniiiiirieiiieeie e 9
1.4 Help Sources 0n ArCODJECES.....c..oeueeriirieriirieieeeeneeteeeere et 10
1.4.1 ArcObjects Developer Help.......c.cocevieeinieiiniiniicniieicceeeeens 10

1.4.2 Environmental Systems Research Institute, Inc. (ESRI)
ODbJECt BIOWSET....c..eouiiiieiiiiciiciciceteeeee et 10
1.4.3 ESRI Library LOCatorccccecuevieiiinieiinieieeeciceeeee e 12
1.5 Geoprocessing ObJECtccuevieiiriiriiiieniiiieeeeee ettt 12
References CRted........oovuiiriiiiiiiieeite ettt ettt et 13
Chapter 2 Programming Basics.........ccceceviririniniiniininenenciceeeeceeeceee 15
2.1 Basic EIBMENTS.....cooiiiiiiiiiiiiieeieeieerteeteste ettt 16
2.1.1 Projects, Modules, Procedures, and Macroscceeceeveervreeneennnen. 16
2.1.2 0 Variablesoouiiiiiiiiiiieee s 17
2.1.3 Use of Properties and Methodsccccceeecieniniiniininieniieceene. 18
2.1.4 QueryInterface........c.ccoeeviiriiiiiiiiiie e 19
2.1.5 Comment Lines and Line Continuationc.ccceeeveeveereerneeeneennnen. 20
2,100 ATTAYS oo e 20
2,17 COlIBCHOMNSttt ettt ettt et es 21
2.2 WIINEZ COAE...coueiiiiiieiiiiieieeieet ettt e 21
2.2.1 If...Then...Else Stat€mMeNtccccoceeruerienieriieniiereneereeeeneeeenaeennes 21
2.2.2 Select Case StAEMENL......ccouuievueerieritienieeieeniteeieesite et esiee e esaeesaeees 22

\ PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

2.2.3 DO...LOOPD StAtEMENL ...ccuvierierireeiierieeieesieesieesteenteesreeaeesbeenseesasees 23

224 For...Next STateMENtc..coouereeriinierienienieetenieetenieeeesieeaesieeiesinens 24

2.2.5 For Each...Next StatemeNt........cccceeveeruerienieneeneeeenieenieneenieneeniennens 25

22,6 With Statementccccceeiruiiuiniiiiiiieieseeieteeeret et 25

227 DIalOoZ BOXES..cccuiiiuiieiieiiiieiienieeieesteeieesite ettt eieesaeebee st eseeseeees 26

2.3 Calling Subs and FUNCHONSc..ccceevierieniiniiniiniiieeienieeeecee e 27
2.4 Visual Basic EditOrc.ccooiiiiiiiiiniiniiiniceeceeteseeceee e 28
2.5 Debug@ing Code.....c.ccocueririinirieniieieniieienieeteeieente ettt s sieens 30
2.5.1 TYPE Of EITOT . ccuiiiiiiiiieiieieeee ettt 30

2.5.2 On Error StateMeNt.........coeevuereerienienienitenieeeenieeeenieeeesieensesseensessnens 31

2.5.3 Use of Breakpoint and Immediate Windowccecceevvervieennennen. 32
Chapter 3 Customization of the User Interfaceccocevovveeeniniininiencnnnne 35
3.1 Creating a Toolbar with Existing ArcMap Commands........c..ccccccecueueeruenne. 36
3.2 Adding a New BUttonccccouevieoienienieiniiinineneseesresteseeeereeeeeeee e 37
3.3 Adding @ New TOOL......ccoieirieriiniiieieieieteeeeese ettt 39
3.4 Storing a New Toolbar in a Templateccccecevverinenenenenenenieieeeceene. 42
3.5 Adding @ FOIMcouiiiiiniiiiiiiecicceteteeee ettt 43
3.5.1 Designing @ FOrM......cccoceeiiirinininininienenencieieteeeeeeeeeeee e 44

3.5.2 Associating Controls with Procedures.........c..ccccocevvevvevieniencnenncncnnens 45

3.53 Running @ FOIMccoceiiiiiiiininiccccctceeeeeeeeeee e 47

3.5.4 Linking a Button to @ FOrm.......cccceccvinininininiinienciiiecceeecncene 48

3.6 Storing a Form in @ Template.........ccccceeeririnininininenenceieeeeeeeeeceeene 48
Chapter 4 Dataset and Layer Management............cocceceeveeneneencneeneneenennens 51
4.1 Using Datasets in ATCGIS.......ooviiiiiiiieniiiieseeeere e 52
4.2 ArcObjects for Datasets and Layers........cccoceevveeerieerieenieenienneenieeieesee e 52
4.3 Adding Datasets as LaYersccoceecuevierienieriinieneneeieneeneeeenieenesieeve e 54
4.3.1 AdAFeatureClaSSccoceevereeeiniisienieiieiteieeeeeie ettt 54

4.3.2 AdAFeatureClASSEScocereeeuineesinieiinieeieeeceiteeesae et 56

4.3.3 AAARGSIEN ..ottt 58

4.3.4 AdALAYETFILEeeoeeeeeieeieeiieeieeeeeeeeeste ettt 59

4.3.5 AdATable...........oououeeeiiicinicinicinicinieeineeeeee e 60

4.4 Managing Layers......coccecereerierienienieientenieete ettt sttt 61
441 FINALAYET ..eooeeeeieiieieeee ettt siae st sate b saaesase e aaesaseenes 61

4.5 Managing Dataselsc.ccoeererierienienienienieetenieete ettt 62
4.5.1 COPYDAIASEL c..eveeeeeeeeiieeieeieesieeieeste et sae e esieesbeesaresabeessnesaseenees 62

Box 4.1 CopyDataset_GPccocevviiiieniieiieeieeeecieeieeee e 63

4.5.2 DeleteDatASErtc.cocuereevuineeiinieienieeieeiteieetete ettt 64

4.6 Reporting Geographic Dataset Informationc.ccceceevvenervienencenennienennn 65
4.6.1 SPALIALRES ..ooeeeeieeieeeeeee ettt ettt sttt 65
Chapter 5 Attribute Data Managementc.cecevverevenenenreneeneeneeneeeeceennes 67
5.1 Managing Attribute Data in ArcGIS..........cccooiiiiiieiieeeee e, 68

5.2 ArcObjects for Attribute Data Managementcccoeeeevueeeeneeieneeneeneene. 68

CONTENTS Vil

S5.2.1 TabBIES..uiiiiiiiiiciicicc s 68

5.2.2 Fields and Field........ccccooiviinininininiiiiiicicciciccccceee e 69

5.2.3 Relationship Classesccceeevierieriieriiienieeieenie et sere e 70

5.3 Listing Fields and Field Properties.........c..ccoccvveevienienienienieneenenicnceieneene. 73
5.3, 1 LiSTOSFIELAS ..ottt s s 73

5.3.2 LiStFICIAPTOPS ...veeeeeeeieeieeie ettt ettt e e sane s 74

5.3.3 USEFINALAYEToooueeeeieeieeie ettt saae e s 76

5.4 Adding or Deleting Fieldsccccoceririiiniiiiniiniiniiicnecicccceecceeeeene 77
5.4.1 AddDeleteField..............oooevinioniinoiininiiniiniinieeienieeieeeene e 77

Box 5.1 AddDeleteField_GPcoooovviiiiiiiiiiiicieieeeeeeeeeeeen 79

5.5 Calculating Field Valuesc.ccoceeeeririiniiieniiinieeneeieeeee et 79
5.5.1 CalculateFieldccocovirienineeniniiniiniinieeieneeieeeene e 79

Box 5.2 CalculateField_GPoooovvviiiiiiiiiiiiiieiieeeeeeeeeeeeen 80

5.5.2 UPAAIEVALUEccuueeeeeieieeiieeeeieeeeeieeee sttt 81

5.6 Joining and Relating Tables.........cccccveriiniiiiniininiieiceeceecc e 82
5.6.1 JOINTADIETOLAYEToooeeeeeiieiieeieeiieeieeiee sttt s 82

5.6.2 JOINMUILIPIETADIESc...ooeeeeeeeeeiieiieeieeeeeie ettt 84

5.6.3 RelateTableTOLAYETcocueeeeeeeieeiieeieeiiesieeieesee e nine e 86

Box 5.3 RelateTableToLayer_GPcccccovvivriiieiieniieienieeeenees 87

5.6.4 RelationalDatabase....................cooccvoeevercienencieniniiineeseineenieseenaeenees 88
Chapter 6 Data CONVEISIONoc.eeiuireieiieeieiieiiesieeie sttt ee et seesnee e eneens 91
6.1 Converting Data in ArcGISccccooviiirinininnneneeceeeeeeeeeeee 92
6.2 ArcObjects for Data CONVEISION......c.cccereruirererenienrenieneetereeeeeeeeeeeeenene 92
6.2.1 Objects for Feature Data CONVErSionccccevevveveveneeeeerenennennes 92

6.2.2 Objects for Rasterization and Vectorizationcccceeeeeeeeeecenenne. 93

6.2.3 Objects fOr XY EVENtccceviriirinirinienienieicieieeeteeeeeeeeee e 95

6.3 Converting Shapefile to GeoDatabaseccccoevererenienieneneieieeeceeenn 96
6.3.1 SAAPESILETOACCESS.cceeeueneirieiiaiiniiniieieienieeeteteeeteet et 96

Box 6.1 ShapefileTOACCESS_GPcccoviereiiieiiiieeeeeeeeee e 98

6.3.2 MultipleShapefileSTOACCESScccueoeeiereeeiieeeieeeeeee et 98

6.3.3 ShapefilesToFeatureDataseroooeverineeenencneecneeeenenenn, 100

Box 6.2 ShapefilesToFeatureDataset_GPccoccovoeeienieieneennen. 102

6.4 Converting Coverage to GeoDatabase and Shapefile............c.ccoevrenreeenne. 103
6.4.1 COVETAGETOACCESS ...ttt 103
6.4.2 CoverageToSRAPESileccuuuecueevceriininininiinienienecieeeeeeeenene 104

6.5 Performing Rasterization and Vectorization...........cc.cecceveverenenveniennennenenn 106
6.5.1 FeatureTORASIEYcc.ooueeieeiaieieteeeeeee et 106

Box 6.3 FeatureTORaSter GPcooovvveeeeeeeiiiiiiiieeeeeeee e, 108

6.5.2 FCDeSCFIPIOFTORASIEFocueeeeeeeeieeeseeeeeee e 108

6.5.3 RasterTOSHAPESIlec.oocueeeeieiiiieeeeeeeeeee e 110

6.5.4 RasterDescriptorToShapefile..............ccouvueviioeeioeiiesieiieieeeeeeen, 111

6.6 Adding XY EVENLS...cccoiviiriiniiieieieeeieeecetene sttt 113
6.0.1 XYEVERLS.....oeeiteeeeteeeetee ettt sttt 113

BoX 6.4 XYEVENLS GP ..oooeiiieeeeeeeeee e 115

Vil

PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

Chapter 7 Coordinate SYSIEMScccvierueeriirriienieeiienieesee e erieesieesseesveeeees 117
7.1 Managing Coordinate Systems in ArcGIScccccocervieniniiniinieniniineiene 118
7.1.1 Defining Coordinate SYStEMSccceevereeruerieniereenenrenienreneenene 118

7.1.2 Performing Geographic Transformationsccccceceeevienenicnnenns 118

7.1.3 Projecting DatasetS........cocueeuierieeriieeniienieeieesieenieesiteesieeseesveesine e 119

7.2 ArcObjects for Coordinate SYStEIMScceeveveerueeriuirriienieeieesreerieenreereenanes 119
7.3 Manipulating On-the-Fly Projection.........c.cccecevvieneroienenieniniienieicnceiene 122
T30 UTM_ORTREFLY ..ottt st sve st naneens 122

7.3.2 IDTM_ORTREFLY ..ottt 122

7.4 Defining Coordinate SYSEIMSccceevuireeriiriererienienienienrenieerenieeeenieeeenne 124
TA L DeEfiIEGCS ..ottt ettt sttt st aesbe e sabesaeesaeeens 125

BOX 7.1 DEAINEGC S _GP .eeeeeieees 126

7.4.2 CopySpatiQIREfErenCeuoucueevvueeciiisieeiiiesiescieenieecieesresnieeneeens 127

7.5 Performing Geographic Transformationsc..cceceeveerervienennieneenienieennenne 128
751 NAD271083_MAP ..ottt 128

7.5.2 NAD2T7t083_SHAPESILEooeeeeaiieiieeieesie ettt 129

7.6 Projecting DatasetS........cecueerierrieerieiieeiienieeieeste et sre et et et e e ebee e 134
T.60.1 PrOjectSRAPESIle.ueeeeieiieieeiieiieeieeste ettt sttt 134

Box 7.2 ProjectShapefile_GPcccoovveviirriieniiciienieeeeeeeeeen, 137

7.6.2 Use of a Different Datumc..coceveevirieninieneniinenicneeieeeeeene 137

7.6.3 ReprojectSRAPESfileooveevcuieiiieiiiiiiieiiieeie sttt 137

Box 7.3 ReprojectShapefile_GPccccoecveeviienieniiienieeienieeieenen. 141

Chapter 8 Data DiSplaycoecueeviiiiiiiiieiiteieeeieeiee sttt 143
8.1 Displaying Data in ArcGIS......ccccooeeviiriiiiniiiietceee e 144
8.1.1 Displaying Vector Dataccoceevuerercieneeiienieiineenieneeneeeeneceeees 144

8.1.2 Displaying Raster Dataccoccevverervienieiienieienieniencenceeeneeeeee 144

8.1.3 Use of Color Ramp and Classification ToolS...........cccceervrrrreennenns 144

8.1.4 Designing a LayOUL......cccueevieerieiiierieeieeniie et 144

8.2 ArcObjects for Data DiSplayccccueevieriiiniienieiiieeieeee e 145
8.2.1 Renderer ODJECS.....cccveriirriienieiiienieeite ettt sttt see et e sre e 145

8.2.2 ClassSification ODJECES.......eevueeruerriierieeriierieereenieenireeeeenieesreenieesnns 146

8.2.3 Color Ramp and Color ObJECtScceevueeriierieriieiieeieeiee e 147

8.2.4 Layout ODJECES ..eevureerieriiieiieeieeitesteesieesteesteesreesteesaeenaeesseensnesnne 148

8.3 Displaying Vector Data..........cecereevieririienieiiinieiineeieeeesie e 149
8.3.1 GraduatedColOrsc.ueeveeeceieiieeieecieiieeeesee st 149

8.3.2 GraduatedSYMDOLScccuoeeueeeiiniieiiiiieecieeie et 155

8.3.3 UNIGUESYMDOLS ...ttt 157

8.4 Displaying Raster Data.........ccoccereriiniiiiiniiiiinieneciececeecc e 158
8.4.1 RasterUniqueSYMDOLScccoecuemeeeeiiiiiieiienieeiiesieeieesve e 158

8.4.2 RasterClassifyColOTRAMPcccueveueeceeiiieiiiniieiienieeieesveeaeenes 161

8.4.3 RasterUserDefinedColorRAMP...........ccceevueeceisciiiiienieecieeeieeieeens 164

8.5 Making a Page Layout........ccoccevuereriinirnienieiinicicececeeeee et 166

8.5, 1 LAYOUL .ottt ettt ettt sttt 166

CONTENTS IX

Chapter 9 Data EXPlOTation......ccccevvieriieniiiniienieeitesieeee sttt saeeseeeeve e 175
9.1 Exploring Data in ArcGIScocoviiiiniiniiiiieereeeceeeeteeeeseeeeee 176
9.2 ArcObjects for Data EXploration..........cccceeeveereenieeniieniieeiiienieeieenie e 176
9.2.1 Use of @ QUEry Filter......cccocivviiniiiiiiiniiciie e 177

9.2.2 CUISOT ..ottt ettt ettt et 178

9.2.3 Data StatiStiCS....eevverurerieriiiiieienieetenttente ettt st et eite b eane e 179

9.3 Performing Attribute QUETYcc.coeevuireeniirieniinienienieneerenieetesieere e 180
9.3.1 S€lECtFEAIUTES ..ottt 180

Box 9.1 SelectFeatureS_GPoovvvviiiiiiiiiiiiiiieieeeeceieeeeeeeeeees 181

9.3.2 S€lECIRECOTASoueeeeiiieiiiiaiieieieeeneeeseeeseee st 181

9.4 Performing Spatial QUETYcc.cocuerieriiriinirieniinienenieneeteseetesieere e 184
Q4.1 SPALIALQUETY ...ttt sttt st sresbe e sabesaeesaeeens 184

Box 9.2 SpatialQueryByName_GPcccocvvviieiiieniiniiinieeicenen, 185

9.4.2 Spatial QUErYBYNGIMEcccueecueeiieeiieesieeiieeniteseieesreeseensesseenaneens 186

9.4.3 MultipleSpatialQUETIEsccuevueecueesiieeiiieniesiiiesieeiieesreesieeneeens 187

9.4.4 SeleCtBYSRAPEooouveeeeieiieieeiiecieeceeeste ettt sttt 189

9.5 Combining Spatial and Attribute QUETIeScecuerrvieriierriierieeieenieeieeaes 192
O.5. 1 BUFETSELECE ..ottt sttt sttt et 192

9.5.2 INIEFSECESELECE ...t 195

9.6 Deriving Descriptive StatiStiCS........cevuireeriiriereriererienenreneerenieerenieeeenne 196
9.6.1 DAIASIALISTICS ..ottt sttt 197

Box 9.3 DataStatiStiCS_GP.......cuvvviiiiiiiiiiiiiiiiieeeeeeeeeeeeveeeeeeeees 198

9.6.2 DataSUBSEISIALISHICScouveovevueeniireiniietenieeieneetesieere et 198
Chapter 10 Vector Data Operations..........cccccueeeeeeueeereninierenesensensessensennenee 201
10.1 Analyzing Vector Data in ArcGISccoooiiiiiiiiiieeeeeeeseeee 202
10.2 ArcObjects for Vector Data Analysisccocevereereriienerienieeieneeiesceiene 202
10.3 BUFFEIING -.eneeiieieitiee ettt s e 204
(O T R 217 1 2 USRS 204

BOX 10.1 BUFTEr GP .. 206

10.3.2 BUffer OPtionsS......c.ceceiuieiierieniieiienie ettt 206

10.4 Performing OVerlay........cccoeoierieiienieiiinieie ettt 207
LOA T IRIEFSECT .t 207

Box 10.2 Intersect_GPc..vvvviiiiiiiiie e 209

10.4.2 Updating Area and Perimeter of a Shapefile.........c.ccoceeeverennenne 209

10.5 Joining Data By LOCAtiONcccueriiriiriiiieiieieneee e 211
10.5.1 JOINBYLOCATIONc..veeeeeeiieaieeeieeieeeieeieesee e ve e seve e 211

10.6 Manipulating Featuresccccecerieiiinienieiiee et 213
L0.6.1 DIESSOIVE .t 213

BOX 10.3 DiSSOIVE _GP ... 214

JO.6.2 METGE..uecneeeeniieeeieeiiecieeie ettt sttt et e be e s aeebaesabeeseenees 215

10.6.3 CORIFOUA ..ottt 216

X PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

Chapter 11 Raster Data Operationscccueeveerrieenieerieeneeniieeneessueeneessseensees 221

11.1 Analyzing Raster Data in ArcGISc..cooeiiiiiniiiiniiiececee, 222

11.2 ArcObjects for Raster Data ANalysiscccceevveereeniienienieenieenieeieesveeaeens 223

11.2.1 RAStEr ODJECLS .eeeuviiiieriiieiieriieeieeeieeieeeteeieeste e e sreebeesbaesaeeaees 223

11.2.2 Operator ODJECLS ...cc.eerieeriieriieieenieeiteeieeieesreeieesreereesaesaeenaees 223

11.3 Managing Raster Datacccccocereriiniiiiininiinieiceceeee e 226

11.3.1 MAKEPETIANENT ..ottt st st 226

11.3.2 EXIFACIBYMASK ..ottt st s 228

Box 11.1 ExtractByMask_GP........cccceoceeviiinieniieiienieeeeieeene 229

11.3.3 RASIETQUETY.c.eeeeeeeeeeiieeieeiee ettt ettt s saee st esavesseenees 230

11.3.4 QUETY2RASIETS w.eoeveeeeeeeeiieeieeeiee sttt sttt et te et esane e e 231

11.4 Performing Local Operations..........c.cceceevuereenereeneniiencneenenreneeneneennenne 233

11.4.1 ReclasSNUMDETFIEld.cccueevcuiveieeniiniienieeiieieeeie e 233

Box 11.2 ReclassNumberField_GPooovvvvviiiiiiiiiiiiiiiiiiiicinnns 235

11.4.2 COMDINE2RASIETS ...c.eveeeeesiieeieeeieeiieeite st enitesteeieesre e sresae e 235

Box 11.3 Combine2Rasters_ GPoovvvivvveeiiiiiiiiiiiiiiieieieceeinnns 237

11.4.3 Other Local Operations..........cceecueerveeriersieeriensieenreesieeneesveeseennne 237

11.5 Performing Neighborhood Operations..........c.ccoceeveruenervenenereneesueneennene 237

L11.5.1 FOCAIMEAN ...ttt 238

Box 11.4 FocalMean_GP.........cccuuvevviiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeaiaas 239

11.6 Performing Zonal OPerationscccceceevuereerereenenieenereenenreneesseneensenne 239

11.6.1 ZONAIMEAN.cccueooeeeeeieiieeiiecieeieeete ettt 239

Box 11.5 ZonalMean_GPccuuveveiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeciaaas 241

11.7 Performing Distance Measure Operations............c.ccecuevervenrercreneesveneennenne 241

L1701 EUCDIST oottt ettt ettt et 241
11.7.2 Use of a Feature Layer as the Source

I EUCDIST .ottt ettt sttt sttt eaa e st e naaesabees 242

BoxX 11.6 EUCDISt_GP...c.eoiiiiieiiiiiceeteeseeeeee e 243

T1.7.3 0 STCE ettt 243

L1774 COSIDISE .ottt sttt sttt save e 245

11.7.5 COSIDISTFULL ...ttt 246

Chapter 12 Terrain Mapping and AnalysiS......ccccceceevereenineenenreenenneencneenne 249

12.1 Performing Terrain Mapping and Analysis in ArcGISc..ccccceveeviniennenne 250

12.2 ArcObjects for Terrain Mapping and Analysiscccccecevvverercieneesiencennene 250

12.3 Deriving Contour, Slope, Aspect, and Hillshadec.cccoceeeveninciinnnenne 252

12301 CORLOUF .ottt ettt 252

Box 12.1 Contour_GP......ooooeieeieeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeaaaas 253

12.3.2 SIOPE .ttt 254

BOX 12.2 SIOPE_GP....eoioiieiieiieeeeee ettt 255

12.3.3 Choice of S1ope MeEaSUTE........ccccueruierieriiienieeieeniieeieeneeesreesneenne 255

12.3.4 ReClASSIfYSIOPEeooeeeeeieiiiieiieeieeieeste sttt 256

12.3.5 ASPECT.uiiiiiiiieeieeieeete ettt ettt sttt e s ae et e s be et e sabeenanenaee 257

12.3.6 ASPECt_SYMBDOL.......ccueeeeieiiieiieiieeiieeteet ettt 258

BOX 12.3 ASPECt_GP...ooiiieiieiiieiieeeeeee ettt 260

12.3.7 Hillshade.........ccooiniiiiiiiiiiiiiiiciice e 262

CONTENTS Xl

12.4 Performing Viewshed Analysis......cc.ccoceeverieriniiiienieninienineeneeeeneeeees 262
12,41 VESIDILITY ettt e 263

12.5 Performing Watershed Analysis.....c...coccevereeriinienienieneneenineeneeeeneeeee 264
12.5.1 WaLEFSHEA ...ttt st 265

12.6 Creating and Editing TINcccccoviriiniininiiiiieieeeeeeeee e 268
12.6.1 RASIETTOTiN. ..ottt s 268

Box 12.4 RasterTOTIN_GPuuuviiiiiiiiiiiiiieieeeeieeeeeeeeeeeeeeeeias 270

12.6.2 EdIITiR .ottt e 271
12.6.3 TEINOAES ..ottt sttt st savesreenees 272
Chapter 13 Spatial Interpolation.........cccceeevieerieriieenieniienee st 275
13.1 Running Spatial Interpolation in ArcGISccccovirviineriininieniniinceiene 276
13.2 ArcObjects for Spatial Interpolation...........ceevveeriirrieeniieniieenieeieenie e 276
13.3 Performing Spatial Interpolations..........cc.ccoceevereenerienerienenieeneeieneenene 277
13301 AW et 277

BoX 13.1 IAW_GP ..o 279

13.3.2 SPNE..cuiiiiiiiitiiteieee ettt 279
13.3.3 Trend SUrfacecoceeeveeieviiniiniiieneeieeeceeeeteeeeeie et 280
13304 KFIGING.eooueiiiieeieeieeeteeit et ettt sttt ettt e st et esavesneenees 280

Box 13.2 Kriging GPccccooiiiiniiiiiiiicieececeeeceeeene 282

13.4 Comparing Interpolation Methods.........cccevcvirriieniiiniieniieeiieniecieeree e 283
13141 COMPATE oottt s 283
Chapter 14 Binary and Index Modelsccccevviirriiiniienieniieieeeeeeeeeee, 287
14.1 Building Models in ArcGIS.......cccociiiiriiiiniiiiieneceeereneecseeeee 288
14.2 ArcObjects for GIS MOdEIS......c.eecuieriiriiiiiiiiieeie et 288
14.3 Building Binary and Index MOdelSc.ccoceevirienenienenieninienceicnceiene 288
14.3.1 VectorBinaryModel................coocceeeeenciinciienieniiieiieeiieeieesveseieenens 288

Box 14.1 VectorBinaryModel_GPcccccovvieviiiiiiienieniienieeeene 293

14.3.2 VectorIndexModel................occueeeceieoieseesiiiinienieesieeeie e sveeeieees 293

Box 14.2 VectorIndexModel_GP.........ooovvvveeiiiiiiiiiiiiiiiiiiiieiccinnns 299

14.3.3 RasterBinaryMOodelcccceveueviuescienieniiieniienieesieessessneenns 300

Box 14.3 RasterBinaryModel_GPcccccoovivviiiiiiiniiniieieeee 304

14.3.4 RasterIndexModel.................ccooccueveeeniuenciinienieeiieeiieeniee e esieenes 304

Box 14.4 RasterIndexModel_GP..........ooovvvveveiiiiiiiiiiiiiiiiiiiiiiinnns 309

Introduction

This book is designed for ArcGIS users who want to get a quick start on programming
ArcObjects. Both ArcGIS and ArcObjects are products developed and distributed
by Environmental Systems Research Institute Inc. (ESRI), ArcObjects is the devel-
opment platform for ArcGIS, a software package for managing geographic infor-
mation systems (GIS). Ideally, users should learn ArcObjects before using ArcGIS,
but that is not the case in reality. Users use ArcGIS first through its toolbars and
commands. It is easier to follow the user interface in ArcGIS than to sort out objects,
properties, and methods in code. The topic of ArcObjects usually emerges when
users realize that programming ArcObjects can actually reduce the amount of repet-
itive work, streamline the workflow, and even produce functionalities that are not
easily available in ArcGIS.

How can users learn programming ArcObjects efficiently and quickly? Perhaps
surprising to some, the answer is to apply what users already know about ArcGIS
to programming ArcObjects.

THE TASK-ORIENTED APPROACH

GIS activities are task oriented. Users use GIS for data integration, data management,
data display, data analysis, and so on. Therefore, an efficient way to learn program-
ming ArcObjects is to take a task-oriented approach, which has at least three main
advantages.

First, it connects ArcObjects with what users already know. Take the example
of QueryFilter. This book first links a QueryFilter object to the task of data explo-
ration. After users know that the object can perform the same function as the Select
By Attributes command in ArcMap, which users have used many times before, it
becomes easy to understand the properties and methods that are associated with the
object.

Second, the task-oriented approach introduces objects in a way that is logical to
ArcGIS users. With thousands of objects, properties, and methods, it can be difficult,
if not impossible, for beginners to navigate the ArcObjects model diagrams. Using
the task-oriented approach, users can learn ArcObjects incrementally from one group
of tasks to another in an organized fashion.

Third, the task-oriented approach can actually help users gain a better under-
standing of ArcGIS with their new knowledge of ArcObjects. For example, as a type

Xin

XV PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

of QueryFilter, the SpatialFilter class has its own properties of geometry and spatial
relation in addition to the properties that it inherits from the QueryFilter class. This
class relationship explains why the Select By Location command in ArcMap can
accept both attribute and spatial constraints for data query. (Perhaps it is more
appropriate to name this command Select By Location and Attributes.)

ABOUT THIS BOOK

This book has fourteen chapters. The first three chapters introduce ArcObjects, pro-
gramming basics, and customization. This book adopts Visual Basic for Applications
(VBA) for programming ArcObjects. Because VBA is already embedded within
ArcMap and ArcCatalog, it is convenient for ArcGIS users to program ArcObjects
in VBA. The following summarizes the major topics covered in the first three
chapters:

¢ Chapter 1: ArcObjects — Geodatabase, ArcObjects, organization of ArcObjects,
the help sources on ArcObjects, and the Geoprocessing object.

e Chapter 2: Programming Basics — Basic elements, writing code, calling subs and
functions, Visual Basic Editor, and debugging code.

¢ Chapter 3: Customization of the User Interface — Creating a toolbar with existing
commands, adding a new button and tool, adding a form, and making basic
templates.

Chapters 4 through 14 discuss programming ArcObjects for solving common
GIS tasks. Organized around a central theme, each chapter has three parts. The first
part is a quick review of ArcGIS commands on the topic; the second part discusses
objects that are related to the theme; and the third part presents sample macros and
Geoprocessing macros for solving common tasks under the theme. This combination
of ArcGIS commands, ArcObjects, and sample macros can effectively relate the
user’s experience of working with ArcGIS to programming ArcObjects.

The CD that accompanies this book contains 95 sample macros stored in the
VBA_programs folder by chapter. Each sample macro starts with a short description
of its usage and a list of key interfaces and members (properties and methods). These
are followed by the listing and explanation of code. Many macros are divided into
two or more parts to better connect the code lines and their explanation. Stored as
text files, these sample macros can be easily imported to Visual Basic Editor in either
ArcMap or ArcCatalog to view and run.

The companion CD also includes 33 Geoprocessing macros that are new in this
second edition. These macros are stored in the GP_programs folder by chapter. The
Geoprocessing object is a new ArcObjects component that supports the execution of
hundreds of Geoprocessing tools in a scripting language such as VBA or Python. These
tools are the same as in the ArcToolbox application of ArcGIS Desktop. The Geopro-
cessing object is a “coarse-grained” object, which is simpler to use than a “fine-grained”’
object. Therefore it allows users who do not understand all the details of ArcObjects

INTRODUCTION XV

to run macros. To separate them from “regular” VBA macros, Geoprocessing macros
are included in “boxes” in Chapters 4 through 7 and in Chapters 9 through 14.

All sample macros in the text have been run successfully in ArcGIS 9.2. The
companion CD contains datasets for the test runs, which are stored by chapter in
the Data folder. Two notes must be made about use of the sample macros. First,
ArcGIS 9.1 or 9.2 is needed to run the macros. Second, the Data folder is coded in
the sample macros as residing on the C drive (for example, c:\data\chap4). If the
folder is stored on a different drive (for example, the G drive), then the path should
be changed (for example, g:\data\chap4) before running the macros.

The following summarizes the major tasks covered in each chapter:

e Chapter 4: Dataset and Layer Management — Add datasets as layers, manage
layers and datasets, and report geographic dataset information.

e Chapter 5: Attribute Data Management — List fields, add or delete fields, calculate
field values, and join and relate tables.

¢ Chapter 6: Data Conversion — Convert shapefile to geodatabase, convert coverage
to geodatabase and shapefile, perform rasterization and vectorization, and add XY
data.

e Chapter 7: Coordinate Systems — Manipulate on-the-fly projection, define the
coordinate system, perform geographic transformation, and project datasets.

¢ Chapter 8: Data Display — Display vector data, display raster data, and create a
layout page.

¢ Chapter 9: Data Exploration — Perform attribute query, perform spatial query,
combine attribute and spatial queries, and derive descriptive statistics.

¢ Chapter 10: Vector Data Operations — Run buffer, perform overlay, join data by
location, and manipulate features.

¢ Chapter 11: Raster Data Operations — Manage raster data and perform local,
neighborhood, zonal, and distance measure operations.

¢ Chapter 12: Terrain Mapping and Analysis — Derive contour, slope, aspect, and
hillshade; perform viewshed analysis; perform watershed analysis; and create and
edit triangulated irregular networks (TIN).

e Chapter 13: Spatial Interpolation — Perform spatial interpolation and compare
interpolation methods.

¢ Chapter 14: Binary and Index Models — Build binary and index models, both
vector and raster based.

TYPOGRAPHICAL CONVENTIONS

The following lists the typographical conventions used in this book:

¢ Sample VBA macros are set off from the text and appear in a different typeface.

e Sample Geoprocessing macros are included in boxes and appear in a different
typeface.

¢ Names of sample macros are capitalized and italicized.

¢ ArcObjects, interfaces, properties, and methods appear in italics.

* Names of datasets and variables appear in italics in the text.

CHAPTER 1

ArcObijects

ArcGIS from Environmental Systems Research Institute (ESRI), Inc. uses a single,
scalable architecture. The three versions of ArcGIS (ArcView, ArcEditor, and
Arclnfo) share the same applications of ArcCatalog and ArcMap. The geodatabase
data model and ArcObjects provide the foundation for these two desktop applica-
tions. They also provide the basis for readers of this book to write programs in Visual
Basic for Applications (VBA) for customized applications in ArcGIS.

The geodatabase data model replaces the georelational data model that has been
used for coverages and shapefiles, two older data formats from ESRI, Inc. These
two data models differ in how geographic and attribute data are stored. The geore-
lational data model stores geographic and attribute data separately in a split system:
geographic data (“geo”) in graphic files and attribute data (“relational’) in a relational
database. Typically, a georelational data model uses the feature label or ID to link
the two components. The two components must be synchronized so that they can
be queried, analyzed, and displayed in unison. By contrast, the geodatabase data
model stores geographic and attribute data together in a single system and geographic
data in a geometry field.

Another important difference that characterizes the geodatabase data model is
the use of object-oriented technology. Object-oriented technology treats a spatial
feature as an object and groups spatial features of the same type into a class. A class,
and by extension an object in the class, can have properties and methods. A property
describes a characteristic or attribute of an object. A method carries out an action
by an object. Developers of ArcGIS have already implemented properties and meth-
ods on thousands of classes in ArcGIS. Therefore, when we work in ArcCatalog and
ArcMap, we actually interact with these classes and their properties and methods.

This chapter focuses on the geodatabase data model and ArcObjects. To use
ArcObjects programmatically, we must understand how spatial data are structured
and stored in a geodatabase and how classes in ArcObjects are designed and orga-
nized. Section 1.1 describes the basics of the geodatabase data model, including the
types of data that the model covers. Section 1.2 explains the basics of ArcObjects,
including classes, relationships between classes, interfaces, properties, and methods.

2 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

Section 1.3 outlines the organization of ArcObjects. Section 1.4 covers the help
sources on ArcObjects.

1.1 GEODATABASE

A geographic information system (GIS) manages geospatial data. Geospatial data
are data that describe both the location and characteristics of spatial features such
as roads, land parcels, and vegetation stands on the Earth’s surface. The locations
of spatial features are measured in geographic coordinates (i.e., longitude and latitude
values) or projected coordinates (for example, Universal Transverse Mercator or
UTM coordinates). The characteristics of spatial features are expressed as numeric
and string attributes. This book uses the term geographic data to describe data that
include the locations of spatial features, and the term nongeographic data to describe
data that include only the attributes of spatial features.

A geodatabase uses tables to store geographic data as well as nongeographic
data. It is therefore important to distinguish different types of tables. A table consists
of rows and columns. Each row corresponds to a feature, and each column or field
represents an attribute. A table that contains geographic data has a geometry field,
which distinguishes the table from tables that contain only nongeographic data. The
following sections describe different types of data, including both geographic and
nongeographic data, which can be stored in a geodatabase.

1.1.1 Vector Data

The geodatabase data model represents vector-based spatial features as points,
polylines, and polygons.' A point feature may be a simple point feature or a multi-
point feature with a set of points. A polyline feature is a set of line segments, which
may or may not be connected. A polygon feature may be made of one or many
rings. A ring is a set of connected, closed, nonintersecting line segments.

A geodatabase organizes spatial features into feature classes and feature datasets.
A feature class is a collection of spatial features with the same type of geometry.
A feature class may therefore contain simple point, line, or polygon features. A
feature dataset is a collection of feature classes that have the same coordinate system
and area extent. A feature dataset can therefore be used for managing different feature
classes from the same study area or reserved for feature classes that participate in
topological relationships with each other such as in a geometric network or a planar
(two-dimensional) topology. A topology is a set of relationships that defines how
the features in one or more feature classes share geometry.

A feature class is like a shapefile in that it has simple features. A feature dataset
is similar to a coverage in having multiple datasets based on a common coordinate
system. However, this kind of analogy does not address other differences between
the traditional and geodatabase data models that are driven by advances in computer
technology.

In a geodatabase, a feature class can be a standalone feature class or part of a
feature dataset. In either case, a feature class is stored as a table. A feature class has

ARCOBJECTS 3

two default fields. One is the object or feature ID and the other is the geometry or
shape field. A feature class can have other attribute fields, but the geometry field
sets a feature class apart from other tables.

ArcGIS users recognize a feature class as a feature attribute table. When we
open the attribute table of a feature layer in ArcMap, we see the two default fields
in the table and through them, we can locate and highlight spatial features on a map
only through a feature attribute table.

Features within a feature class can be further segregated by subtype. For example,
a road feature class can have subtypes based on average daily traffic volume. The
geodatabase data model provides four general validation rules for the grouping of
objects: attribute domains, default values, connectivity rules, and relationship rules.!
An attribute domain limits an attribute’s values to a valid range of values or a valid
set of values. A default value sets an expected attribute value. Connectivity rules
control how features in a geometric network are connected to one another. Relation-
ship rules determine, for example, how many features can be associated with another.

1.1.2 Raster Data

The geodatabase data model represents raster data as a two-dimensional array of
equally spaced cells.! The use of arrays and cells for raster data is the same as the
ESRI grid model.

A large variety of raster data are available in GIS. They include satellite imagery,
digital elevation models (DEMs), digital orthophotos, scanned files, graphic files,
and software-specific raster data such as ESRI grids.? The geodatabase model treats
them equally as raster datasets, but a raster dataset may have a single band or
multiple bands. An ESRI grid typically contains a single band, whereas a multispec-
tral satellite image typically contains multiple bands.

A multiband raster dataset may also appear as the output from a raster data
operation. For example, a cost distance measure operation can produce results
showing the least accumulative cost distance, the back link, and the allocation
(Chapter 11). These different outputs can be initially saved into a multiband raster
dataset, one band per output, and later extracted to create the proper raster datasets.

1.1.3 Triangulated Irregular Networks (TINs)

The geodatabase data model uses a TIN dataset to store a set of nonoverlapping
triangles that approximate a surface. Elevation values along with x-, y-coordinates
are stored at nodes that make up the triangles. In many instances, a TIN dataset is
an alternative to a raster dataset for surface mapping and analysis. The choice
between the two depends on data flexibility and computational efficiency.?

Inputs to a TIN include DEMs, contour lines, GPS (global positioning system)
data, LIDAR (light detection and ranging) data, and survey data. We can also modify
and improve a TIN by using linear features, such as streams and roads, and area
features, such as lakes and reservoirs. Data flexibility is therefore a major advantage
of using a TIN. In addition, the triangular facets of a TIN tend to create a sharper
image of the terrain than an elevation raster does.

4 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

Computational efficiency is the main advantage of using raster datasets. The
simple data structure of arrays and cells makes it relatively easy to perform com-
putations that are necessary for deriving slope, aspect, surface curvature, viewshed,
and watershed.

1.1.4 Location Data

The term location data refers to data that can be converted to point features. Common
examples of location data are tables that contain x-, y-coordinates or street addresses.
We can convert a table with x-, y-coordinates directly into a point feature class, with
each feature corresponding to a pair of x- and y-coordinates. Using a street network
as a reference, we can geocode a list of street addresses into a set of point features.

1.1.5 Nongeographic Data

A table that stores nongeographic data does not have a geometry field. The geoda-
tabase data model defines such a table as an object class. Examples of object classes
include comma-delimited text files and dBASE files. These files or tables contain
attributes of spatial features and have keys (i.e., relate fields) to link to geographic
data in a relational database environment.

1.2 ARCOBJECTS

ArcObjects is the development platform for ArcGIS Desktop, ArcGIS Engine,
and ArcGIS Server. (This book covers only ArcGIS Desktop.) A collection of
objects, ArcObjects is behind the menus and icons that we use to perform tasks in
ArcGIS. These same objects also allow software developers to access data and to
perform tasks programmatically.

1.2.1 Objects and Classes

ArcObjects consists of objects and classes.> An object represents a spatial feature such

as a road or a vegetation stand. In a geodatabase, an object corresponds to a row in a

table and the object’s attributes appear in columns. A class is a set of objects with similar

attributes. An ArcObjects class can have built-in interfaces, properties, and methods.
ArcObjects includes three types of classes:

The most common type is the coclass. A coclass can be used to create new objects.
For example, FeatureClass is a coclass that allows new feature class objects to be
created as instances of the coclass.

The second type is the abstract class. An abstract class cannot be used to create new
objects, but it exists so that other classes (i.e., subclasses) can use or share the
properties and methods that the class supports. For example, GeoDataset is an
abstract class. The class exists so that geographic datasets such as feature classes
and raster datasets can all share the properties of extent and spatial reference that
the GeoDataset class supports.

ARCOBJECTS 5

The third type is the class. A class cannot be used directly to create new objects;
instead, objects of a class can only be created from another class. For example,
EnumlnvalidObject is a noncreatable class because an EnumlinvalidObject can only
be obtained from another object such as a data conversion object. When converting
a shapefile from one coordinate system to another, for example, a data conversion
object automatically creates an EnuminvalidObject to keep track of those objects
that have failed to be converted.

1.2.2 Relationships between Classes

Object-oriented technology has introduced different types of relationships that can
be established between classes. Developers of ArcObjects have generally followed
these relationships. A good reference on relationships between classes in ArcObjects
is Zeiler.? There are also books such as Larman’s* that deal with this topic in the
general context of object-oriented analysis and design. A basic understanding of
class relationships is important for navigating the object model diagrams and for
programming ArcObjects as well.

Association describes the relationship between two classes. An association
uses multiplicity expressions to define how many instances of one class can be
associated with the other class. Common multiplicity expressions are one (1),
one or more (1..¥). For example, Figure 1.1 shows an association between Fields
and Field and between Field and GeometryDef. The multiplicity expressions in
Figure 1.1 suggest that:

One fields object, which represents a collection of fields in a table, can be associated
with one or more field objects.

One field object can be associated with zero or one GeometryDef object, which
represents a geometry definition.

A field associated with a geometry definition is the geometry field, and a table can
have one geometry field at most.

Type inheritance defines the relationship between a superclass and a subclass.
A subclass is a member of a superclass and inherits the properties and methods of
the superclass. But a subclass can have additional properties and methods to separate
itself from other members of the superclass. For example, Figure 1.2 shows Geo-
graphicCoordinateSystem is a type of SpatialReference (an abstract class). Geographic-
CoordinateSystem, ProjectedCoordinateSystem, and UnknownCoordinateSystem

GeometryDef

Figure 1.1 The association between Fields and Field is one or more, and between Field and
GeometryDef is zero or one.

6 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

SpatialReference

Geographic- Projected- Unknown-
Coordinate- Coordinate- | |Coordinate-
System System System

Figure 1.2 SpatialReference and its three subclasses.

share the same properties and methods that the SpatialReference class supports, but
the GeographicCoordinateSystem class has additional properties and methods that
are unique to the geographic coordinate system.

Composition describes the whole—part relationship between classes. Composi-
tion is a kind of association except that the multiplicity at the composite end is
typically one and the multiplicity at the other end can be zero or any positive integer.
For example, a composition describes the relationship between the Map class and
the FeatureLayer class (Figure 1.3). A map object represents a map or a data frame
in ArcMap and a feature layer object represents a feature-based layer in a map. A
map can be associated with a number of feature layers. Or, to put it the other way, a
feature layer is part of a map.

Aggregation, also called shared aggregation, describes the whole—part relation-
ship between classes. Unlike composition, however, the multiplicity at the composite
end of an aggregation relationship is typically more than one. For example, Figure 1.4
shows that a SelectionSet object can be created from a QueryFilter object and a
Table object. A table and a query filter together at the composite end can create a
selection set (a data subset) at the other end.

Instantiation means that an object of a class can be created from an object of
another class. Figure 1.4 shows that, for example, a selection set can be created from
a query filter and a table. Another example is an EnumlnvalidObject, which, as
explained earlier, can be created from a FeatureDataConverter object (Figure 1.5).

1.2.3 Interfaces

When programming with objects in ArcObjects, one would never work with the
object directly but, instead, would access the object via one of its interfaces. An
interface represents a set of externally visible operations. For example, a Ras-
terReclassOp object implements [RasterAnalysisEnvironment and IReclassOp

FeatureLayer

Figure 1.3 A Map object composes zero, one, or more FeatureLayer objects.

ARCOBJECTS 7

QueryFilter - — -,

Lo - »fslcionse

Figure 1.4 A QueryfFilter object and a Table object together can create a SelectionSet object.

(Figure 1.6). We can access a RasterReclassOp object via either the [Raster-
AnalysisEnvironment interface or the IReclassOp interface, but not the object
itself.

An object may support two or more interfaces and, additionally, the same object
may inherit interfaces from its superclass. Given multiple interfaces, it is possible
to access an interface via another interface, or to jump from an interface to another.
This technique is called Querylnterface or QI for short. QI simplifies the process
of coding. Suppose we want to use a RasterReclassOp object to perform raster data
classification. First, we use IRasterAnalysisEnvironment to set up the analysis envi-
ronment. Then, we switch, via QI, to IReclassOp to perform data reclassification.
Chapter 2 on the basics of programming has a more detailed discussion on the QI
technique.

Some objects in ArcObjects have two or more similar interfaces. For example,
a FeatureDataConverter object implements [FeatureDataConverter and
IFeatureDataConverter2. Both interfaces have methods to convert a feature class to
a geodatabase feature class. But [FeatureDataConverter2 has the additional option
of working with data subsets. Object-oriented technology allows developers of
ArcObjects to add new interfaces to a class without having to remove or update the
existing interfaces.

1.2.4 Properties and Methods

An interface represents a set of externally visible operations. More specifically, an
interface allows programmers to use the properties and methods that are on the
interface. A property describes an attribute or characteristic of an object. A method,
also called behavior, performs a specific action. Figure 1.7, for example, shows the
properties and methods on IRasterAnalysisEnvironment. These properties and meth-
ods are collectively called members on the interface.

FeatureDataConverter

v
EnumlInvalidObject

Figure 1.5 An EnuminvalidObject can only be created by a FeatureDataConverter object.

8 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

IReclassOp 0—
IRasterAnalysisEnvironment O—

RasterReclassOp

Figure 1.6 A RasterReclassOp object supports both /ReclassOp and IRasterAnalysisEnvi-
ronment.

A property can be for read only, write only, or both read and write. The read
property is also called the get property, and the write property the put property.
In Figure 1.7, the barbell symbols accompany the properties of Mask and Out-
Workspace on IRasterAnalysisEnvironment. The square on the left is for the get
property, and the square on the right is for the put property. If the square on the
right is open, such as in Figure 1.7, the property is defined as put by reference.
If it is solid, the property is defined as put by value. The two put properties differ
depending on if a value or an object is assigned to the property. Additionally, the
put by reference property requires the keyword Sef, whereas the put by value
property does not. For example, to specify an analysis mask through the Mask
property on IRasterAnalysisEnvironment, we need to use a statement such as Set
pEnv.Mask = pMaskDataset, where pEnv represents an analysis environment and
pMaskDataset represents an analysis mask object.

To carry out an action, a method on an interface may require some arguments
and may return a value or values. In Figure 1.7, the arrow symbols show the
methods of SetCellSize and SetExtent on IRasterAnalysisEnvironment. The syntax
of the SerCellSize method is object.SetCellSize (envType [,cellSizeProvider]).
The method has two arguments of which the first is required and the second is
optional.

An interface may not have both properties and methods. Some interfaces have
properties only, while some have methods only. IReclassOp, for example, only has
methods. Figure 1.8 shows two of the five methods on IReclassOp. These methods
all perform reclassification of raster data but use different mechanisms. The Reclass-
ByASClIIFile method uses an ASCII file, whereas the ReclassByRemap method uses
a remap that can be built programmatically.

IRasterAnalysisEnvironment
B—{1] Mask
B—{] OutWorkspace

44— SetCellSize
«4—— SetExtent

Figure 1.7 Properties and methods on [RasterAnalysisEnvironment. Properties are shown
with the barbell symbols, and methods are shown with the arrow symbols. Occa-
sionally in this book, properties and methods are shown with the double colon
symbols, such as IRasterAnalysisEnvironment::Mask.

ARCOBJECTS 9

IReclassOp
<«— ReclassByASCIIFile
<4— ReclassByRemap

Figure 1.8 Methods on /ReclassOp.

1.3 ORGANIZATION OF ARCOBJECTS

ArcGIS 9.2 has thousands of coclasses and interfaces. ESRI, Inc. groups ArcOb-
jects into more than 65 libraries. Examples of core libraries are ArcCatalog,
ArcCatalogUI, ArcMap, ArcMapUI, Carto, Display, Geodatabase, and Geopro-
cessing. Examples of extension libraries are 3D Analyst, Spatial Analyst, and
Network Analyst. Each library consists of objects that can be diagrammed by their
class relationships. For example, the Carto library has objects such as a map
document, map, and page layout.

The organization of ArcObjects by library and subsystem resembles that of
ArcGIS and its applications and functionalities. This organization provides a good
starting point for those who are already familiar with operations in ArcGIS. For
example, the Spatial Analyst extension library organizes objects by type of raster data
operation. Therefore, the library’s object model lists RasterConditionalOp, Raster-
ExtractionOp, RasterLocalOp, RasterMapAlgebraOp, RasterNeighborhoodOp, Ras-
terZonalOp, and other objects that closely resemble different functionalities of the
Spatial Analyst extension by name. ArcGIS users who are familiar with the Spatial
Analyst extension should have no problems using these objects. Objects in other
libraries such as Geodatabase, ArcMap, and ArcCatalog are more difficult to relate
to because many of them represent new object-oriented concepts and methods.

To use an object in a library, it requires that a reference be made to the library
first. This means that the library to be referenced must be available to the user. The
availability of ArcObject libraries depends on available licenses. For example, a user
will not have access to the ArcScene library and its objects without having a license
for the ArcScene extension.

As of ArcGIS 9.2, ArcObjects core libraries and 3D Analyst and Spatial Analyst
extension libraries are automatically loaded in VBA. In other words, we do not have
to make reference to these libraries before using objects in them. For those libraries
that are not automatically loaded, the Tools menu of Visual Basic Editor has a
References selection that opens a dialog listing available object libraries and allows
the user to make reference to them.

ArcObjects contains objects developed by ESRI, Inc. A recent development is
industry-specific objects. Because real-world objects all have different properties
and methods, it is impossible to apply, for example, the methods and properties of
transportation-related objects to forestry-related objects. ESRI has set up a Web site
that supports the development of object models for address, forestry, transpor-
tation, hydro, land parcels, environmental regulated facilities, and other fields
(http://www.esri.com/software/arcgisdatamodels/). At the same time, increased

10 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

research activities have developed complex objects for 3D, transportation, and other
applications.>” It is worth watching these new objects.

1.4 HELP SOURCES ON ARCOBJECTS

The help sources on ArcObjects include books and documents. ESRI has published
two books on ArcObjects: Exploring ArcObjects,® and Getting to Know ArcObjects:
Programming ArcGIS with VBA.® The former is a two-volume reference on ArcOb-
jects, and the latter is a workbook with 20 hands-on exercises. There are other
publications such as ArcGIS Developer’s Guide for VBA, which covers the basics
of developing ArcGIS applications,” and Avenue Wraps, which is a guide for con-
verting Avenue scripts into VBA code.!” This section covers electronic and online
help documents, which one must regularly consult while programming ArcObjects.

1.4.1 ArcObjects Developer Help

Developer Help on the start-up menu of ArcGIS offers VBA Developer Help, which
has links to ArcObjects library reference, Geoprocessing tool reference (Section
1.5), query the samples, and the ESRI Developer Network (EDN) Web site
(http://edn.esri.com). EDN maintains the up-to-date ArcGIS development informa-
tion, including object libraries, sample code, technical documents, and object model
diagrams. The first page of EDN Documentation Library lists the following libraries
for ArcGIS: Current library, 9.1 library, 9.0 library, and 8.x library. Click on Current
library. Then click on ArcObjects Library Reference on the side bar. The library
reference lists ArcObjects core and extension libraries. We can look at the Geo-
Analyst library as an example by clicking on it. Help on the library is organized
into GeoAnalyst Library Overview, GeoAnalyst Library Contents, GeoAnalyst
Library Object Model Diagram, Interfaces, CoClasses and Classes, and Constants
(i.e., enumerations). The overview page introduces the library and coclasses and classes
in it. The contents page lists interfaces, coclasses and classes, and enumerations. The
object model diagram is in PDF and shows relationships between classes as well as
the interfaces, properties, and methods of the coclasses and classes (Figure 1.9). Both
the interfaces page and the coclasses and classes page are sorted by alphabetical
order. Suppose we want to get help on IRasterAnalysisEnvironment. We can click
Interfaces, IR, and then IRasterAnalysisEnvironment. The interface and its properties
and methods are listed in separate entries. If we click GerCellSize Method, it shows
the method’s syntax for Visual Basic as well as other languages.

1.4.2 Environmental Systems Research Institute, Inc. (ESRI)
Object Browser

The ESRI Object Browser, or EOBrowser, is a utility for browsing object libraries.
The utility is available through ArcGIS/Develop Tools in the start-up menu. The
Object Library References dialog, which can be accessed through the browser’s File

ARCOBJECTS 11

RasterMathSupportOp
IMathSupportOp o— MathSupportOp: Iunknown

«— Divide (In geoDataset1: IGeoDataset, in
geoDataset2: IGeoDataset) ?? GeoDataset

«— Float (In geoDataset ??: IGeoDataset):
IGeoDataset

< Int (In geoDataset: IGeoDataset):
IGeoDataset

<— Minus (In geoDataset1: IGeoDataset in
geoDataset2: IGeoDataset): ?? IGeoDataset

«— Plus (In geoDatasetl: IGeoDataset in
geoDataset2: IGeoDataset): [IGeoDataset

«— Times (In geoDataset1: IGeoDataset in
geoDataset2: IGeoDataset): IGeoDataset

Figure 1.9 A portion of the Spatial Analyst Object Model diagram.

menu, allows the user to add and remove object libraries (Figure 1.10). The
EOBrowser window has controls so that the user can select all coclasses and all
interfaces in an object library for display and browsing (Figure 1.11). Suppose we
want to browse IRasterAnalysisEnvironment. First select Object Library References
from the browser’s File menu. If the window does not list ESRI GeoAnalyst Object
Library as an active library, click on the Add button and select ESRI GeoAnalyst
Object Library from the Select From Registry dropdown menu. Close the Object
Library References dialog. Type irasteranalysisenviron in the Search For box, click
the Contains button, uncheck All boxes for Coclasses, Interfaces, Enumerations, and
Structures, but check the Interface Name box. Then click the Search button. IRaster-
AnalysisEnvironment should now appear at the top of the EOBrowser window. Click
IRasterAnalysisEnvironment and then Show Selected Objects. This displays the
properties and methods (sub) of IRasterAnalysisEnvironment.

Object Library References x|
Mark Active References:
Libraty Mame | Location]
[X]ESRI Object Library Charcgs\arcexe83\bin\esriCore. olb

| ok | Cancel |

Figure 1.10 The Object Library References dialog box lets the user add and remove object
libraries.

12 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

ol
Ele View Help
| tiame * | Desaption 14
FieidMap Field map. =l
FieldMappngli] Field mapping UL
Fiaids. ESRI Fislds Object
CoClass FilsName File Name Object,
FieNames FileNames cbject mainkains an array of file ... lJ
Edahunaon Y W T S

B Class Fields
B A5 IClone
B As IFields

P Field(Index as Long) as IField

Interfaces 5 Al F v FieldCount as Long
o e F 1 FindField(Name as Striing) as Long
i f F 1 FindFieldByAliasNameMName as String) as Long
B AsIF
_ F Field{Index as Long) as IField
Erumerations ra P v FieldCount as Long
_ Function FindField(Name as String) s Long
I™ Erumeration Name Function FindFieldByAliasName(Name a5 String) 35 Long
'|: :mc:: Sub FindFi oualificati as ISOLSyntax, Mame as String, Index a5 Long)
) B As IFieldsEdit
i Froperty Field{index as Long) as IField
Struchures ra P v FieldCount a5 Long
rs N F 1 FindField(Mame as String) a5 Long
I~ Membes Name Funchion FindFieldByAliasName (Name as Stiing) as Long
B As IPersist =
roan | li

Figure 1.11 The top part of the EOBrowser shows all coclasses in the ESRI Object Library,
and the bottom part shows all interfaces that the Fields coclass supports.

1.4.3 ESRI Library Locator

The ESRI Library Locator is a tool, available through ArcGIS/Develop Tools in the
start-up menu, for finding the object library that contains a specified interface or
coclass. The tool opens a dialog for the user to type in an interface, coclass,
enumeration, or structure. Then it reports the library that contains the search item.

1.5 GEOPROCESSING OBJECT

The Geoprocessing object is a new ArcObjects component that supports the execution
of hundreds of Geoprocessing tools in a scripting language such as VBA or Python.
These tools correspond to tools in the ArcToolbox application of ArcGIS Desktop.
The Geoprocessing object differs from other objects because it implements GpDis-
patch, which can pass strings or objects from a script to the Geoprocessing object as
commands and values. The Geoprocessing object is often called a “coarse-grained”
object. Unlike other objects, which typically involve lots of little pieces when used in
a macro, a coarse-grained object is simpler to use and can do more work, thus allowing
users who do not understand all the details of “fine-grained” objects to run programs.

For readers who are familiar with ArcInfo Workstation, programming the
Geoprocessing tools is similar to programming ArcInfo commands in AML (Arc
Macro Language). As long as the syntax is followed correctly, the object or command
will work. How the object or command is pieced together is not a matter of concern
to the programmer.

ARCOBJECTS 13

This book covers macros using the Geoprocessing (GP) object in Chapters 4 to
7 and 9 to 14. These GP macros are presented in boxes so that they are separated
from regular ArcObjects macros. As the name suggests, the Geoprocessing object
has little to offer in the areas of data display, data query, and layer management.
This shortcoming, however, can be remedied by combining GP macros with regular
macros. Chapter 12 has an example that combines a GP macro for deriving an aspect
layer from a digital elevation model (DEM) and a regular macro for displaying the
aspect layer with color symbols.

As a coarse-grained object, the Geoprocessing object is most useful to GIS users
who must perform repetitive data processing tasks. Software developers, who must
work with properties and methods of ArcObjects and combine them in various ways
in macros, will find the Geoprocessing object less useful.

The Geoprocessing tool reference of ArcGIS Desktop Help Online offers up-to-
date information on tools that can be used with the Geoprocessing object. The tools
are organized in the same way as in ArcToolbox. To get the syntax for the Clip tool,
for example, one would select Analysis toolbox, Extract toolset, Tools, and then
Clip (Analysis). On the Clip (Analysis) page, scroll down to the command line
syntax. The help document lists the syntax as follows:

Clip_analysis <in_features> <clip_features> <out_feature_class> {cluster_tolerance}

The first three parameters are the required parameters, representing the input layer,
the clip layer, and the output layer. The last parameter of cluster tolerance is optional.
This command line syntax is to be used in a VBA macro. Python script users, on
the other hand, must follow the scripting syntax: Clip_analysis (in_features,
clip_features, out-feature-class, cluster_tolerance). Python is a text-based, platform-
independent language that can be downloaded from http://www.python.org. This
book does not cover Python scripting.

ESRI, Inc. has published two documents on the Geoprocessing tools: Writing
Geoprocessing Scripts with ArcGIS and Geoprocessing Commands: Quick Reference
Guide. Both documents can be downloaded from their Web site (http://www.
esri.com).

REFERENCES CITED

1. Zeiler, M., Modeling Our World: The ESRI Guide to Geodatabase Design, Environ-
mental Systems Research Institute (ESRI), Redlands, CA, 1999.

2. Chang, K., Introduction to Geographic Information Systems, 4th ed., McGraw-Hill,
New York, 2006.

3. Zeiler, M., Ed., Exploring ArcObjects, ESRI, Redlands, CA, 2001.

4. Larman, C., Applying UML and Patterns: An Introduction to Object-Oriented Analysis
and Design and the Unified Process, 2nd ed., Prentice Hall, Upper Saddle River, NJ,
2001.

5. Koncz, N.A. and Adams, T.M., A data model for multi-dimensional transportation
applications, International Journal of Geographic Information Science, 16,551, 2002.

6. Huang, B., An object model with parametric polymorphism for dynamic segmenta-
tion, International Journal of Geographic Information Science, 17, 343, 2003.

14

10.

PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

Shi, W., Yang, B., and Li, Q., An object-oriented data model for complex objects in
three-dimensional geographic information systems, International Journal of Geo-
graphic Information Science, 17, 411, 2003.

Burke, R., Getting to Know ArcObjects: Programming ArcGIS with VBA, ESRI,
Redlands, CA, 2003.

Razavi, A.H., ArcGIS Developer’s Guide for VBA, OnWord Press/Delmar Learning,
Clifton Park, NY, 2002.

Tonias, C.N. and Tonias, E.C., Avenue Wraps, CEDRA Press, Rochester, NY, 2002.

CHAPTER 2

Programming Basics

ArcObjects is the development platform for ArcGIS. Because ArcObjects is built
using Microsoft’s COM (Component Object Model) technology, it is possible to use
any COM-compliant development language with ArcObjects to customize applica-
tions in ArcGIS. This book adopts Visual Basic for Applications (VBA), which is
already embedded in ArcMap and ArcCatalog of ArcGIS. Other COM-compliant
programming languages include Visual Basic and C++.

Writing application programs for ArcGIS requires knowledge of both VBA and
ArcObjects: VBA provides the programming language and ArcObjects provides
objects and their built-in properties and methods. It may be of interest to some
readers to compare ArcObjects with Avenue and AML (Arc Macro Language), two
programming languages previously developed by Environmental Systems Research
Institute, Inc. (ESRI). Programming ArcObjects is similar to Avenue programming
in that both use objects and their built-in properties and methods (called requests in
Avenue), but they differ in two important aspects. First, we program ArcObjects
using VBA, a common programming language available in Microsoft’s products.
Second, ArcObjects has many more objects, properties, and methods than Avenue
does. Programming ArcObjects is conceptually different from AML programming
because AML is a procedural, rather than an object-oriented, language. The exception
is the Geoprocessing object, which, as explained in Chapter 1, is a coarse-grained
object. Programming the Geoprocessing tools is in many ways similar to program-
ming ArcInfo commands in AML.

This chapter deals with the programming language and code writing, although
many examples in the chapter do involve ArcObjects. Section 2.1 discusses the basic
elements in VBA programming such as procedures, variables, interfaces, and arrays.
Section 2.2 offers common techniques for writing code. Section 2.3 explains how
to put together a program as a collection of code blocks. Section 2.4 covers Visual
Basic Editor, a medium for preparing, compiling, and running macros. Section 2.5
covers the debugging tools that can help identify mistakes in macros.

16 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

2.1 BASIC ELEMENTS

This section covers the basic programming elements. Many elements are directly
related to VBA. Therefore, additional information on these elements can be found
in the Microsoft Visual Basic Help, which is accessible through Visual Basic Editor
in either ArcMap or ArcCatalog.

2.1.1 Projects, Modules, Procedures, and Macros

Procedures are the basic units in VBA programming. A procedure is a block of code
that can perform a specific task such as defining the coordinate system of a geo-
graphic dataset. Applications developed using VBA are called macros in Microsoft’s
products such as Word, Excel, and Access. A macro is functionally similar to a
procedure. A module is a collection of procedures, and a project is a collection of
modules (Figure 2.1). Most sample macros in this book are procedures, but some
are modules. For example, modules, each with several procedures, are used to build
binary and index models in Chapter 14.

A procedure can be private or public. A private procedure can only be called or
used by another procedure in the same module. By contrast, a public procedure is
available to different modules that make up a project.

Three types of procedures exist: events, subs, and functions. Event procedures
are associated with controls on a form or dialog such as command buttons. Subs
and functions, on the other hand, are not directly associated with controls. A function

10l
J4ﬂemmwwmm:mswwwuah 18] x|
an =] N.*BH-H* y o mbd HEH T @, =

|iGene|all j |(Declarations) ll
m ’— |g Frivate Sub P.ec:lasaNurd:ch'Leld(pRu'D“m‘*m"”

+ Nnrmal {Normal.mxt) D_ispll)ﬂndoxclasses

i [FindLayer
= éP_rulz:t Dim pMxDoc As IMxDocument lGetRGEColor
%[5 ArcMap Objects Dim pMap As INap
=1 55 Modules Dim pRasterZly As IRasterLayexrStart
5 ‘QM-IBI Dim pGeols Az IGeoDataset
4 (5 References Dim pReclassOp A= IReclassOp
Dim pRemap A= IRemap
Properties - Modulel x| Dim pNRemap A=z INumberRemap
|Mnddzl L’ Dim pCutRaster As IRaster
Dim pReclasslLy Ais IRasterLayer
Alphabetic Icatmbedi Set pMxDoc = ThisDocument
Moddal Set pHap = pHxDoc.FocusMap

' Pass landuse gd.
Set pRaster2Zly = pRasterly
Set pGeoDs = pRasterily.Raster
' Use a number remap to reclass landuse gd.
Set pReclassOp = New RasterReclassOp
Set plRemap = New NumberRemap
With pNRemap
.HapValue 20, Z0
.MapValue 40, 40
-HapValue 45, 45

.MapValue 50, S50 -
== | >

Figure 2.1 On the left of Visual Basic Editor, the Project Explorer shows that Module1 is a
module in the Project. On the right, the procedure list shows that ReClassNum-
berField is the procedure in the Code window.

PROGRAMMING BASICS 17

returns a value, whereas a sub does not. This book uses mainly subs and functions.
Chapters 3 and 8 have examples that use event procedures to customize the user
interface.

A procedure starts with the keyword of Sub or Function and ends with the End
Sub or End Function statement. VBA automatically creates the first and last lines
of a new procedure, which are called the wrapper lines.

2.1.2 Variables

A variable stores a value that can be accessed or changed by a macro. VBA requires
that a variable be declared before it can be used. Declaration statements can be all
placed at the top of a macro or placed wherever they are needed. This book adopts
the style of declaring variables at the top of a macro. If a macro is divided into parts,
then variables are declared at the top of each part. To ensure that variables are
declared explicitly, the addition of Option Explicit at the beginning of a module is
recommended. When a variable is not declared in a macro, the Option Explicit
statement highlights the line in which an undeclared variable resides and produces
an error message stating “compile error: variable not defined.”

How to declare a variable in a macro depends on whether the variable refers to
an ArcObjects class or not. The following two lines declare a counter variable n,
which does not refer to an ArcObjects class, and assign 5 to be its value:

Dim n As Integer
n=5

Dim is the most often used keyword for declaring a variable. A variable declared
with the Dim keyword within a procedure is only available in that procedure. But a
variable declared with the Dim keyword at the head (i.e., the Declarations section)
of a module is available to all procedures within the module. Other keywords for
declaring variables include Public and Private. A public variable is available to all
modules in a project. A private variable, on the other hand, is available only to the
module in which it is declared. A declaration statement usually includes a data type.
“Integer” in “Dim n As Integer” represents the data type. Other data types include
Boolean, Single, Double, String, and Variant.

If a variable refers to an existing class in ArcObjects, it must be declared by pointing
to an interface that the class supports. The properties and methods of an object are
hidden according to the encapsulation principle in object-oriented technology. There-
fore, the object can only be accessed through the predefined interfaces. Encapsulation
also means that the terms “interface” and “object” can be interchangeable.

The following two lines show how to declare a variable by referencing an existing
class in ArcObjects:

Dim pField As IFieldEdit
Set pField = New Field

The first line declares pField by pointing the variable to the /FieldEdit interface
that the Field coclass supports (Figure 2.2). The second line creates a new field
object by making pField an instance of the Field class. p in pField stands for pointer,

18 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

IFieldEdit

Figure 2.2 A field variable can be declared by pointing to IFieldEdit that a Field object
supports.

and [in [FieldEdit stands for interface. IFieldEdit has the uppercase and lowercase
letters for better reading. These are the naming conventions in object-oriented pro-
gramming. The keyword Set assigns a value to a variable.

The next example defines the top layer in an active data frame of a running
ArcMap.

Dim pMxDoc As IMxDocument
Dim pMap As IMap

Dim pFeatureLayer As ILayer

Set pMxDoc = ThisDocument

Set pMap = pMxDoc.FocusMap
Set pFeatureLayer = pMap.Layer(0)

The Dim statements point pMxDoc to IMxDocument, pMap to IMap, and pFea-
tureLayer to IFeatureLayer. The first Set statement assigns ThisDocument to pMxDoc.
ThisDocument is the predefined name of an MxDocument object. When we launch
ArcMap, MxDocument and Application are already in use. The alternative to This-
Document is Application.Document, which refers to the document of the ArcMap
application. The second Set statement assigns FocusMap or the focus map of the map
document to pMap. The third statement assigns Layer(0) or the top layer in the focus
map to pFeatureLayer. (0) is called an index, and the index begins with 0 in VBA.
FocusMap and Layer() are both properties, which are covered in the next section.

2.1.3 Use of Properties and Methods

Properties are attributes of an object. As examples, FocusMap is a property on
IMxDocument and Layer(0) is a property on IMap. The syntax for using a property
is object.property, such as pMxDoc.FocusMap. Both FocusMap and Layer() happen
to be get-only, or read-only, properties. The following example shows the put, or
write, properties:

Dim pFeatureClass As IFeatureClass
Set pFeaturelayer.FeatureClass = pFeatureClass
PFeaturelLayer.Name = "breakstrm"

The example shows two methods for putting properties: by reference and by
value. The second line statement sets pFeatureClass to be the feature class of
pFeatureLayer by reference, and the third line statement assigns the string “break-
strm” to be the name of pFeatureLayer by value.

The difference between put by reference and put by value is the use of the Set
keyword. How can we tell which method to use? One approach is to consult the
ArcObjects Developer Help. The put by reference property has an open square
symbol, whereas the put by value property has a solid square symbol. Another
approach is to let the VBA compiler catch the error. The error messages are

PROGRAMMING BASICS 19

“Method or data member not found” if the Set keyword is missing and “Invalid use
of property” if the Ser keyword is unnecessary.

Methods perform specific actions. A method may or may not return a value. The
syntax for calling a method is object.method. Many methods require object qualifiers
and arguments. The following line, for example, adds a feature layer to a map:

PMap.AddLayer pFeaturelLayer

The AddLayer method on IMap adds pFeatureLayer to pMap. The method requires
an object qualifier (i.e., pFeatureLayer) and does not return a value or an interface.

The next example gets a workspace on disk and then gets a shapefile from the
workspace.

Dim pFeatureWorkspace As IFeatureWorkspace

Dim pFeatureClass As IFeatureClass

Set pFeatureWorkspace = pWorkspaceFactory.OpenFromFile("c:\data\chap2", 0)
Set pFeatureClass = pFeatureWorkspace.OpenFeatureClass("emidastrm")

The OpenFromFile method on IWorkspaceFactory returns an interface on the
specified workspace (i.e., "c:\data\chap2\"). The code then switches to the IFeature-
Workspace interface and uses the OpenFeatureClass method on the interface to open
emidastrm in the workspace. Both OpenFromFile and OpenFeatureClass require
arguments in their syntax. The first argument for OpenFromFile is a workspace, and
the second argument of O tells VBA to get the ArcMap window handle. The only
argument for OpenFeatureClass is a string that shows the name of the feature class.

VBA has the automatic code completion feature to work with properties and
methods. After an object variable is entered with a dot, VBA displays available
properties and methods for the object variable in a dropdown list. We can either
scroll through the list to select a property or method, or type the first few letters to
come to the property or method to use.

2.1.4 Queryinterface

A class object may support two or more interfaces, and each interface may have a
number of properties and methods. When we declare a variable, we point the variable
to a specific interface. To switch to a different interface, we can use Querylnterface
or QI for short. QI lets the programmer jump from one interface to another.

We can revisit the code fragment from Section 2.1.3 to get a better understanding
of QI

Dim pFeatureWorkspace As IFeatureWorkspace

Dim pFeatureClass As IFeatureClass

Set pFeatureWorkspace = pWorkspaceFactory.OpenFromFile("c:\data\chap2", 0)
Set pFeatureClass = pFeatureWorkspace.OpenFeatureClass("emidastrm") ' Ql

The syntax of the OpenFromFile method suggests that the method returns the
IWorkspace interface that a workspace object supports. But to use the OpenFeature-
Class method, which is on IFeatureWorkspace, the code must perform a QI for
IFeatureWorkspace that a workspace object also supports (Figure 2.3).

20 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

I'WorkspaceFactory::OpenFromFile

I'Workspace O—
Workspace

[FeatureWorkspace O—j

IFeatureWorkspace::OpenFeatureClass

Figure 2.3 The diagram shows how to switch from [Workspace to IFeatureWorkspace by
using Ql.

The next example shows a code fragment for converting feature data to raster
data. A RasterConversionOp object supports both IConversionOp and I[Raster-
AnalysisEnvironment (Figure 2.4). The IConversionOp interface has methods for
converting feature data to raster data, and the IRasterAnalysisEnvironment inter-
face has properties and methods to set the analysis environment. The following
example uses QI to define the output cell size as 5000 for a vector to raster data
conversion:

Dim pConversionOp As IConversionOp

Dim pEnv As IRasterAnalysisEnvironment

Set pConversionOp = New RasterConversionOp
Set pEnv = pConversionOp ' QI
PEnv.SetCellSize esriRasterEnvValue, 5000

2.1.5 Comment Lines and Line Continuation

A comment line is a line of text that is added to explain how a code statement or a
block of code works. A comment line starts with an apostrophe ('). Except for short
comment lines such as QI, which can be placed at the end of a statement, this book
typically places a comment line before a statement or a group of statements. By
default, comments are displayed as green text in Visual Basic Editor.

A code statement usually fits on one line. A long statement can be divided into
two or more lines. An underscore (_) at the end of a line statement means that the
statement continues onto the next line.

2.1.6 Arrays

An array is a special type of variable that holds a set of values of the same data type,
rather than a single value as in the case of a regular variable. Arrays are declared the

IConversionOp O——
IRasterAnalysisEnvironment O——

RasterConversionOp

Figure 2.4 Use QI to jump from IConversionOp to IRasterAnalysisEnvironment.

PROGRAMMING BASICS 21

same way as other variables using the Dim, Private, and Public statements, but an array
variable must have the additional specification for the size of the array. For example,
the following line declares the AnArray variable as an array of 11 (0 to 10) integers:

Dim AnArray(10) As Integer

AnArray is a static array, meaning that it has a predefined size of 11. The other
type of array is a dynamic array. A dynamic array has no fixed size but uses VBA
keywords (e.g., ReDim) to find out information about the array and to change its
size. A dynamic array must be declared at the module level.

2.1.7 Collections

A collection consists of a set of ordered objects that do not have to be of the same
data type. Collections are therefore special arrays. A collection can be created as
follows:

Dim theList As New Collection

The following code fragment uses a loop and the method Add on a Collection
object to add the field names on theList:

Dim thelist As New Collection

For ii = O To pFields.FieldCount - 1
Set aField = pFields.Field(ii)
fieldName = aField.Name
theList.Add (fieldName)

Next

2.2 WRITING CODE

This section covers programming techniques for handling decision making, branch-
ing, repetitive operations, and dialogs.

2.2.1 [If...Then...Else Statement

A simple way for decision making in a macro is to use the If... Then... Else statement.
The statement has the following syntax:

If condition Then
[statements]

Else
[else_statements]

End If

If the condition is true, the program executes statements that follow the Then
keyword. If the condition is false, the program executes statements that follow the
Else keyword. The If...Then...Else statement can therefore handle two possible

22 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

outcomes. To handle more than two outcomes, one can add the Elself clause to the
statement:

If condition Then
[statements]
Elself condition-n Then
[elseif_statements]
Else
[else_statements]
End If

The following example assigns 5 to the variable n if the name of the top layer
is idcounty and 3 to n if the name is not idcounty:

If (oFeatureLayer.Name = "idcounty") Then
n=>5

Else
n=3

End If

When the If...Then...Else statement is used jointly with the TypeOf keyword,
the statement can check whether an object supports a specific interface before using
the interface. The following code fragment verifies that pConversionOp does support
IRasterAnalysisEnvironment before specifying the output cell size of 5000:

Dim pConversionOp As IConversionOp

Dim pEnv As IRasterAnalysisEnvironment

Set pConversionOp = New RasterConversionOp

If TypeOf pConversionOp Is IRasterAnalysisEnvironment Then
Set pEnv = pConversionOp ' Ql
PEnv.SetCellSize esriRasterEnvValue, 5000

End If

Another common use of the If...Then...Else statement is to check for a condition
that can cause a program error such as division by zero. If such a condition is
determined to exist, the Exit Sub statement placed after Else can terminate the
execution of a macro immediately.

2.2.2 Select Case Statement

The If...Then...Else statement can become confusing and untidy if more than three
or four possible outcomes exist. An alternative is to use the Select Case statement,
which has the following syntax:

Select Case test_expression
[Case expression_list-n
[statements-n]]...

[Case Else
[else_statements]]
End Select

ArcObjects codes the data type of a field in numeric values from 0 to 8. A Select
Case statement can translate these numeric values into text strings. The following

PROGRAMMING BASICS 23

example uses a Select Case statement to prepare the data type description of a
field:

Dim fieldType As Integer
Dim typeDes As String
Select Case fieldType
Case 0

typeDes = "Smallinteger"

Case 1

typeDes = "Integer”
Case 2

typeDes = "Single"
Case 3

typeDes = "Double"
Case 4

typeDes = "String"
Case 5

typeDes = "Date"
Case 6

typeDes = "OID"
Case 7

typeDes = "Geometry"
Case 8

typeDes = "Blob"
End Select

2.2.3 Do...Loop Statement

A Do...Loop statement repeats a block of statements in a macro. VBA offers two
types of loops. A Do While loop continues while the condition is true:

Do While condition
[statements]
Loop

The following example uses a Do While loop to repeat a block of statement as long
as the user provides the name of a shapefile and stops the loop when plnput is empty:

Dim plnput As String

plnput = InputBox("Enter the name of the input shapefile")
Do While plnput <> ""
[statements]

Loop
A Do Until loop continues until the condition becomes true:

Do Until condition
[statements]
Loop

The following example uses a Do Until loop to count how many cities are in a
cursor (that is, a selection set):

24 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

Dim pCity As IFeature
Dim intCount As Integer
Dim pCityCursor As IFeatureCursor
Set pCity = pCityCursor.NextFeature
Do Until pCity is Nothing
IntCount = intCount + 1
Set pCity = pCityCursor.NextFeature
Loop

The FeatureCursor object holds a set of selected features. The IFeatureCursor
interface has the NextFeature method that advances the position of the feature
cursor by one and returns the feature at that position. By using the cursor and the
NextFeature method, the code increases the intCount value by 1 each time Next-
Feature advances a feature. The loop continues until no feature (i.e., Nothing) is
advanced.

2.2.4 For...Next Statement

Like the Do...Loop statement, the For...Next statement also repeats a block of
statements. But instead of using a conditional statement for the loops, the For...Next
statement runs a given number of times as determined by the start, end, and step
(with the default of one) values:

For counter = start To end [Step step]
[statements]
Next

The following example uses a For...Next statement to add the field names of a
feature class to an array:

Dim pFields As IFields

Dim ii As Long

Dim aField As IField

Dim fieldName As Variant

Dim theList As New Collection

For ii = 0 To pFields.FieldCount - 1
Set aField = pFields.Field(ii)
fieldName = aField.Name
theList.Add (fieldName)

Next

The FieldCount property on IFields returns the number of fields in pFields. The
code then sets the For...Next statement to begin with zero and to end with the number
of fields minus 1 so that the ii counter corresponds to the index of a field.

The Exit For statement provides a way to exit a For...Next loop and transfers
control to the statement following the Next statement. The following example uses
an Exit For statement to exit the loop if a layer named idcities is located before
reaching a fixed number of loops:

PROGRAMMING BASICS 25

Dim pMxDoc As IMxDocument
Dim pMap As IMap
Dim pLayer As ILayer
Dim i As Integer
Set pMxDoc = ThisDocument
Set pMap = pMxDoc.FocusMap
For ii = 0 To pMap.LayerCount - 1
Set pLayer = pMap.Layer(i)
If pLayer.Name = "idcities" Then
i=i
Exit For
End If
Next ii
MsgBox "idcounty is at index " & i

2.2.5 For Each...Next Statement

The For Each...Next statement repeats a group of statements for each element in an
array or collection.

For Each element In group
[statements]
Next

The following code fragment uses a For Each...Next statement to print each field
name in a collection of field names referenced by theList:

' Display the list of field names in a message box
For Each fieldName In theList

MsgBox "The field name is " & fieldName
Next fieldName

2.2.6 With Statement

The With statement lets the programmer perform a series of statements on a single
object. The With statement has the following syntax:

With object
[statements]
End With

The following code fragment uses a With block to edit the name, type, and length
properties of a new field:

Dim pField As IFieldEdit

Set pField = New Field

With pField
.Name = "pop2000"
.Type = esriFieldTypelnteger
.Length = 8

End With

26 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

The alternative to the With block is to use the following line statements:

pField.Name = "pop2000”
pField.Type = esriFieldTypelnteger
pField.Length = 8

2.2.7 Dialog Boxes

Dialogs in a macro serve the purpose of getting information from and to the user.
This section covers message boxes and input boxes, two simple dialog boxes that
are frequently used in VBA macros. Other types of dialogs are covered elsewhere
in the book. Chapter 3 covers custom dialogs using Visual Basic forms, Chapters
4 and 14 use browser dialogs for selecting datasets, and Chapter 10 uses a progress
dialog for reporting the progress of a spatial join operation. Browser and progress
dialogs are examples of dialogs that allow an ArcObjects macro to interact with
the user.

A message box can be used as a statement or a function. As a statement, a
message box shows text. For example, the following statement displays the quoted
text and the value of the fieldName variable:

MsgBox "The field name is " & fieldName

After viewing the field name, the user must acknowledge by clicking the OK
button, which is also displayed in the message box. VBA has the following chr$()
functions for handling multiline messages: chr$(13) for a carriage return character,
and chr$(10) for a linefeed character. Additionally, the constant vbCrLf also func-
tions as chr$(10) in creating a new line. For example, the following statement
displays the minimum and maximum values in two separate lines:

MsgBox "The minimum is: " & Min & Chr$(10) & "The maximum is: " & Max

As a function, a message box returns the ID of the button that the user presses.
The message box includes a prompt (for example, Do you want to continue?), the
Yes and No buttons, a question mark icon, and a title of Continue. The returned
value is 6 for Yes and 7 for No. The following code fragment creates a message box
and returns a value to iAnswer based on the user’s decision:

Dim iAnswer As Integer
iAnswer = MsgBox("Do you want to continue?", vbYesNo + vbQuestion, "Continue")
MsgBox "The answer is : " & iAnswer

An input box displays a prompt in a dialog box and returns a string containing
the user’s input. The following example displays the prompt of “Enter the name of
the input shapefile” in a dialog box and returns the user’s input as a string to the
pInput variable:

Dim plnput As String
plnput = InputBox("Enter the name of the input shapefile")

PROGRAMMING BASICS 27

2.3 CALLING SUBS AND FUNCTIONS

A procedure, either a sub or a function, can be called by another procedure. VBA
actually provides many simple functions that we use regularly in macros. Both
message boxes and input boxes are VBA functions. Other examples include CStr
and ClInt. The CStr function converts a number to a string, and the Clnt function
returns an integer number.

This section goes beyond simple VBA functions and deals with the topic in a
broader context. A procedure, depending on whether it is private or public, can be
called by another procedure in the same module or throughout a project. Therefore,
we can think of a sub or a function as a tool and build a module as a collection of
tools. The major advantage of organizing code into separate subs and functions is
that they can be reused in different modules. Other advantages include ease of
debugging in smaller blocks of code and a better organization of code.

In the following example, the Start sub uses an input box to get a number from
the user and then calls the Inverse sub to compute and report the inverse of the
number:

Private Sub Start ()
Dim n As Integer
n = InputBox("Type a number")
' Call the Inverse sub.
Inverse n
End Sub

Private Sub Inverse (m)

Dim d As Double

d=1/m

MsgBox "The inverse of the number is: " & d
End Sub

The Start sub passes n entered by the user as an argument to the Inverse sub.
Inverse uses the passed value m (same as n) to compute its inverse. Notice that the
example does not use the Call keyword. If the programmer prefers to use the
keyword, the inverse n statement can be changed to:

Call Inverse (n)

The next example lets the Start sub call a function instead of a sub to accomplish
the same task:

Private Sub Start ()
Dim n As Integer
Dim dd As Double
n = InputBox(“Type a number”)
' Call the Inverse function and assign the return value to dd.
dd = Inverse (n)
MsgBox "The inverse of the number is: " & dd
End Sub

28 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

Private Function Inverse (m) As Double
Dim d As Double
d=1/m
Inverse = d ' Return the d value.
End Function

A couple of changes are noted when the code calls a function instead of a sub.
First, the Start sub uses the following line to assign the returned value from the
Inverse function to dd, which has been previously declared as a Double variable:

dd = Inverse (n)

Second, the code adds the As Double clause to the first line of Inverse:

Private Function Inverse (m) As Double

The clause declares Inverse to be a Double procedure. Thus the value returned by
the function is also of the Double data type.

Third, the following line assigns d, which is the inverse of the passed value m,
to Inverse:

Inverse = d

The d value is eventually returned to Start and assigned to the dd variable.

2.4 VISUAL BASIC EDITOR

Visual Basic Editor is a tool for compiling and running programs. To open Visual
Basic Editor in either ArcCatalog or ArcMap, one can click the Tools menu, point
to Macros, and select Visual Basic Editor.

Figure 2.5 shows Visual Basic Editor in ArcMap. A menu bar, a toolbar, and
windows make up the user interface. Several commands ought to be mentioned at
this point. Import File and Export File on the File menu allow the user to import
and export macros in text file format. The Debug menu has commands for compiling
and debugging macros, and the Run menu has commands for running and resetting
macros. The same commands of Run Sub/UserForm, Break, and Reset are also
available on the toolbar.

Figure 2.5 shows four types of windows: Code, Project, Properties, and Imme-
diate. The Code window is the area for preparing and editing a macro. We can either
type a new macro or import a macro. At the top of the Code window are two
dropdown lists. On the left is the object list, and on the right is the procedure list.
The Project window, also called the Project Explorer, displays a hierarchical list of
projects and the contents and references of each project. Normal.mxt is a template
for all map documents and is present whenever Visual Basic Editor is launched.
Project, on the other hand, is specific to a map document. Macros for specific tasks
are typically developed and stored at the current Project level. The Properties window
shows the properties of controls, such as command buttons and text boxes on a user
form. Chapter 3 on customization of the user interface covers the use of the Properties
window. The Immediate window is designed for debugging. When used with a
Debug. Print statement, the window can show the value of a variable for debugging.

PROGRAMMING BASICS 29

_ioix
Menubar |4 e vew Iset Fomat Debug fun Toos addirs Window Help) =181
Toolbar |@E-H L T RH o |) 1 HES2 B T
ey =| rrm— -
CEICI| 2 5
: éhkﬁtmm} Object list Procedure list [
Project t - Archap Cbiects
window ¢4 Moddel
+ [References
Propertes _Model __E| Code window
Module] todie .
Hghabetic | Categrized |
Moddel

= T of
POty oW | -

Immediate window

K1 L)

Figure 2.5 Visual Basic Editor consists of a menu bar, a toolbar, the Project window, the
Property window, the Code window, the object list, the procedure list, and the
Immediate window.

Visual Basic Editor in ArcCatalog is set up the same way as in ArcMap; the
only difference is that the Project Explorer in ArcCatalog contains only Nor-
mal.gxt. ArcCatalog does not have documents, and all customizations apply to the
application.

The following shows how to use Visual Basic Editor to import and use a sample
module on the companion CD of this book:

1. Right-click Project in the Project Explorer in ArcMap and select Import File. (In
ArcCatalog, right-click Normal in the Project Explorer and select Import File.)

2. Select All Files from the file type dropdown list in the Import File dialog. Navigate
to the sample module in text file format. Click Open to import the sample module
to Visual Basic Editor.

3. Click the plus sign next to the Modules folder in Project to open its contents.

4. Right-click Modulel and select View Code. The code now appears in the Code
window, and the procedure list shows the name of the module.

5. Select Compile Project from the Debug menu to make sure that the module
compiles successfully. To run the module, simply click on the Run Sub/UserForm
button.

Most macros on the companion CD are designed for ArcMap so that the datasets
can be displayed and analyzed immediately. Some macros, such as those for data
conversion, can be run in either ArcCatalog or ArcMap.

30 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

2.5 DEBUGGING CODE

Every programmer has to deal with programming errors. Some errors are easy to fix,
while others may take hours or days to correct. VBA has various debugging tools
that can assist programmers in fixing errors. This section covers some of these tools.

2.5.1 Type of Error

There are three possible types of errors in VBA macros: compile, run-time, and
logic. VBA stops compiling when it finds a compile error. Compile errors are caused
by mistakes with VBA programming syntax. A compile error can occur when a
macro misses the End With line in a With block or the Loop keyword in a Do Until
statement. A compile error can also occur if a macro uses a property or method that
is not available on an interface. For example, the IFeatureWorkspace interface has
the OpenFeatureClass method but not OpenFromFile. When a macro tries to use
OpenFromFile to open a feature class, VBA displays a compile error with the
message of “Method or data member not found.” To make sure that a property or
method is available on an interface, one can first highlight the interface in the code
window and then press F1. This will open the Help page on the interface from the
ArcObjects Developer Help.

A run-time error occurs when a macro, which has been compiled successfully,
is running. Run-time errors are more difficult to fix than compile errors. The fol-
lowing code is supposed to report the name of each layer in the active map:

Private Sub LayerName()
Dim pMxDoc As IMxDocument
Dim pMap As IMap
Dim pFeatureLayer As IFeatureLayer
Dim ii As Integer
Set pMxDoc = ThisDocument
Set pMap = pMxDoc.FocusMap
' Loop through each layer, and report its name.
For ii = 1 To pMap.LayerCount
Set pFeatureLayer = pMap.Layer(ii)
MsgBox "The name of layer is: " & pFeatureLayer.name
Next
End Sub

The macro has no compile errors, but it has a run-time error stating “Run-time
error '5": Invalid procedure call or argument.” VBA expects to have one more layer
than what is available in the active map. To make the macro run successfully, the
For...Next statement must be changed to

For ii = 0 To pMap.LayerCount - 1

The next example is similar to the module used previously to derive the inverse
of a typed number except that it does not pass the typed number n as an argument
from the calling sub to the function. Therefore, m in the Inverse function is treated
as 0. The error message in this case is “Run-time error '11": Division by zero.”

PROGRAMMING BASICS 31

Private Sub Start()
Dim n As Integer
Dim dd As Double
n = InputBox("Type a number")
' Call the Inverse function and assign the return value to dd.
dd = Inverse()
MsgBox "The inverse of the number is: " & dd
End Sub

Private Function Inverse() As Double
Dim d As Double
d=1/m
Inverse = d ' Return the value d.
End Function

Logic errors are even more difficult to correct than run-time errors. A logic
error does not stop a macro from compiling and running but produces an incorrect
result. One type of logical error that every programmer dreads is endless loops.
Endless loops can be caused by failing to set the condition in a Do...Loop statement
correctly.

2.5.2 On Error Statement

VBA has a built-in object called Err. The Err object has properties that identify the
number, description, and source of a run-time error. We can use the On Error
statement to display the properties of the Err object when an error occurs:

On Error GoTo line

The code below includes the On Error statement to trap the run-time error of
division by zero:

Private Sub Start()
On Error GoTo ErrorHandler
Dim n As Integer
Dim dd As Double
n = InputBox(“Type a number”)
' Call the Inverse function and assign the return value to dd.
dd = Inverse()
MsgBox "The inverse of the number is: " & dd
Exit Sub ' Exit to avoid error handler.
ErrorHandler: ' Error-handling routine.
MsgBox Str(Err.Number) & ": " & Err.Description, , "Error"
End Sub

Private Function Inverse() As Double
Dim d As Double
d=1/m
Inverse = d ' Return the value d.
End Function

32 PROGRAMMING ARCOBJECTS WITH VBA: A TASK-ORIENTED APPROACH

& Microsoft Visual Basic - Project [break] - [Module1 (Code)] =101 x|
|4 gl Edt Yo lncet Fomat Qebuy Bn Toos fddins Window beb I =131
@@E-H Ry ek HMEE T O vz L

[(Generay =] [Layerttame =

Frivate Sub LayerName () =
Dim pMxDoc A= IMxDocument =T
Dim pMap A= IMap
Dim pFeacurelayer As IFeatureLayer
Dim ii As Integer
Ser pMxDoc = ThisDocument
Set pHap = pHMxDoc.FocusMap
' Loop through each layer, and report its name.

For ii = 1 To pMap.LayerCount
Set pFeaturelayer = pMap.Layer(1i)
Debug.Print ii & ": " & pFeaturelayer.name

End Sub

== | i
unmediate K

1: idroads

LT 2

Figure 2.6 The breakpoint at the Next line allows the programmer to see that the layer index
is 1 and idroads is the name of the layer.

When the error occurs, the ErrorHandler: routine displays “11:Division by zero”
in a message box with the title of Error. Notice that the On Error statement is placed
at the top of the code. When a run-time error occurs, the code goes to the ErrorHandler:
routine and displays the error message. Also notice that the Exit Sub line is used right
before the ErrorHandler: routine to avoid the error message if no errors occurred.

2.5.3 Use of Breakpoint and Immediate Window

A breakpoint suspends execution at a specific statement in a procedure. A breakpoint
therefore allows the programmer to examine variables and to make sure that the code
is working properly. The following code places a breakpoint at the Next line of the
For...Next statement and uses Debug. Print (the Print method of the Debug object) to
print the counter value and the layer’s name in the Immediate window (Figure 2.6):

Private Sub LayerName()
Dim pMxDoc As IMxDocument
Dim pMap As IMap
Dim pFeatureLayer As IFeatureLayer
Dim i As Integer
Set pMxDoc = ThisDocument
Set pMap = pMxDoc.FocusMap
' Loop through each layer, and report its name.
For ii = 0 To pMap.LayerCount - 1
Set pFeatureLayer = pMap.Layer(ii)
Debug.Print ii & ": " & pFeatureLayer.name
Next
End Sub

PROGRAMMING BASICS 33

Step Step Step
Into Over Out

M oy 1 ad%EEEO0DReS

L L

/ U
Continue Reset Toggle
Breakpoint

Figure 2.7 The Debug toolbar has the tools of Continue, Reset, Toggle Breakpoint, Step Into,
Step Over, and Step Out.

The first time through the loop, the Immediate window shows zero and the name
of the top layer in the active map. Click on the Continue button (the same button
for Run Macro), and the window shows the next set of values.

Visual Basic Editor has Toggle Breakpoint on the Debug menu, as well as on
the Debug toolbar, to add or remove a breakpoint at the current line (Figure 2.7).
Other commands on the Debug menu include Step Into for executing code one
statement at a time, Step Over for executing a procedure as a unit, Step Out for
executing all remaining code in a procedure as if it were a single statement, and
Run To Cursor for selecting a statement to stop execution of code.

CHAPTER 3

Customization of the User Interface

As a commercial product, ArcGIS is designed to serve as many users as possible
and to meet as many needs as possible. It is no surprise that the software package
has a large number of extensions, toolbars, and commands. But most users only use
a portion of the available tools at a time. Therefore, a common customization is to
simplify the way we interact with ArcGIS. ArcGIS Desktop provides options to view
or hi